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Make Physics as simple as possible, but no simpler.
Albert Einstein

The ideal is to reach proofs by comprehension rather than by computation.
Bernhard Riemann

Preface

My earlier book, Essential Relativity, aimed to provide a quick if thoughtful intro-
duction to the subject at the level of advanced undergraduates and beginning graduate
students, while ‘containing enough new material and simplifications of old arguments
so as not to bore the expert teacher.’ But general relativity has by now robustly entered
the mainstream of physics, in particular astrophysics, new discoveries in cosmology
are routinely reported in the press, while ‘wormholes’ and time travel have made
it into popular TV. Students thus want to know more than the bare minimum. The
present book offers such an extension, in which the style, the general philosophy, and
the mathematical level of sophistication have nevertheless remained the same. Any-
one who knows the calculus up to partial differentiation, ordinary vectors to the point
of differentiating them, and that most useful method of approximation, the binomial
theorem, should be able to read this book. But instead of the earlier nine chapters
there are now eighteen, and instead of 167 exercises, now there are more than 300;
above all, tensors are introduced without apology and then thoroughly used.

Einstein’s special and general relativity, the theories of flat and curved spacetime
and of the physics therein, and relativistic cosmology, with its geometry and dynamics
for the entire universe, not only seem necessary for a scientist’s balanced view of
the world, but also offer some of the greatest intellectual thrills of modern physics.
Perhaps the chief motivation in writing this book has been once more the desire to
convey that thrill, as well as some of the insights that long preoccupation with a subject
inevitably yields. It is true that many aspects of general relativity have still not been
tested experimentally. Nevertheless enough have been tested to justify the view that
all of relativity is by now well out of the tentative stage. That is also the reason why
the introductory chapter contains an overview of all of relativity and cosmology, so
that the student can appreciate from the very beginning the local character of special
relativity and how it fits into the general scheme. The three main parts that follow
deal extensively with special relativity, general relativity, and cosmology. In each I
have tried to report on the most important crucial experiments and observations, both
historical and modern, but stressing concepts rather than experimental detail. In fact,
the emphasis throughout is on understanding the concepts and making the ideas come
alive. But an equal value is put on developing the mathematical formalism rigorously,
and on guiding the student to use both concepts and mathematics in conjunction with
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the tricks of the trade to become an expert problem solver. A vital part in this process
should be played by the exercises, which have been put together rather carefully, and
which are mostly of the ‘thinking’ variety. Though their full solution often requires
some ingenuity, they should at least be looked at, as a supplement to the text, for the
extra information they contain.

No book ever has enough diagrams. That is one of the luxuries that classroom
teaching has over a book. So readers should constantly draw their own, especially
since relativity is a very geometric subject in which the facility to think geometrically
is a great asset. Readers should also constantly make up their own problems, however
trivial: what would happen if . . . ? In an initially paradoxical subject like relativity, it
is often the most skeptical student who is the most successful.

Each of the three parts could well be cut short drastically so that the book might
serve as a text for a one-semester course. To present it fully will take two semesters,
probably with material to spare. But apart from its serving as an introductory text for
a formal course, I also envisage the book as having some use for the general scientist
who might wish to browse in it, and for the more advanced graduate student in search
of greener pastures, as a change from the rocky pinnacles of more severe texts.

At the end of the book there is an Appendix on curvature components for diagonal
metrics (in a little more generality than the old ‘Dingle formulae’), which could be
useful even to workers in the field who have not read the rest of the book. And finally a
word of warning: in many sections, as is the custom in relativity, the units are chosen
so as to make the speed of light unity, and later even to make Newton’s constant of
gravitation unity, which must be borne in mind when comparing formulae; where the
dimensions seem wrong, c’s or G’s are missing.

I owe much to many modern authors (Sexl and Urbantke, Misner, Thorne and
Wheeler, Ohanian and Ruffini, Woodhouse, etc.), though an exact assignment of
debt would be difficult at this stage. I have also benefitted from the many searching
questions of my students over the years, among whom I might perhaps single out
James Gilson and Jack Denur. But the greatest debt I owe, as so often before, to my
friend Jürgen Ehlers—discussion partner, scientific conscience, font of knowledge
without peer.

Dallas, Texas W.R.
January 2001



Preface to the Second Edition

It has been most gratifying to see the favorable reception of the first edition of this
book, to the extent that a second edition is already in order.

In this second edition the last three chapters on cosmology, in particular, have been
updated and revised. But there are additions, improvements, and some new exercises
throughout.

It is my hope that readers of the book will enjoy and give an equal welcome to this
amended version of it.

Dallas, Texas W.R.
January 2006
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1

From absolute space and time to
influenceable spacetime: an overview

1.1 Definition of relativity

At their core, Einstein’s relativity theories (both the special theory of 1905 and the
general theory of 1915) are the modern physical theories of space and time, which
have replaced Newton’s concepts of absolute space and absolute time by spacetime.
We specifically call Einstein’s theories ‘physical’ because they claim to describe real
structures in the real world and are open to experimental disproof.

Since all (or, at least, all classical) physical processes play out on a background of
space and time, the laws of physics must be compatible with the accepted theories of
spaceandtime. Ifonechanges thebackground,onemustadapt thephysics.Thisprocess
gave rise to ‘relativistic physics’, which from the outset made some startling predic-
tions (likeE = mc2) but which has nevertheless been amply confirmed by experiment.

Originally, in physics, relativity meant the abolition of absolute space—a quest
that had been recognized as desirable ever since Newton’s days. And this is indeed
what Einstein’s two theories accomplished: special relativity (SR), the theory of flat
spacetime, abolished absolute space in its Maxwellian role as the ‘ether’ that carried
electromagnetic fields and, in particular, light waves, while general relativity (GR),
the theory of curved spacetime, abolished absolute space also in its Newtonian role
as the ubiquitous and uninfluenceable standard of rest or uniform motion. Surpris-
ingly, and not by design but rather as an inevitable by-product, Einstein’s theory also
abolished Newton’s concept of an absolute time.

Since these ideas are fundamental, we devote the first chapter to a brief discussion
centered on the three questions: What is absolute space? Why should it be abolished?
How can it be abolished?

A more modern and positive definition of relativity has evolved ex post facto from
the actual relativity theories. According to this view, the relativity of any physical
theory expresses itself in the group of transformations which leave the laws of the
theory invariant and which therefore describe symmetries, for example of the space
and time arenas of these theories. Thus, as we shall see, Newton’s mechanics pos-
sesses the relativity of the so-called Galilean group, SR possesses the relativity of the
Poincaré (or ‘general’ Lorentz) group, GR possesses the relativity of the full group
of smooth one-to-one space-time transformations, and the various cosmologies pos-
sess the relativity of the various symmetries with which the large-scale universe is
credited. Even a theory valid only in one absolute Euclidean space, provided that is
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physically homogeneous and isotropic, would possess a relativity, namely the group
of rotations and translations.

1.2 Newton’s laws and inertial frames

We recall Newton’s three laws of mechanics, of which the first (Galileo’s law of
inertia) is really a special case of the second:

(i) Free particles move with constant vector-velocity (that is, with zero acceleration,
or, in other words, with constant speed along straight lines).

(ii) The vector-force on a particle equals the product of its mass into its vector-
acceleration: f = ma.

(iii) The forces of action and reaction are equal and opposite; for example, if a particle
A exerts a force f on a particle B, then B exerts a force−f on A. (Newton’s absolute
time is needed here: If the particles are at a distance and the forces vary, action
today will not equal reaction tomorrow; they must be measured simultaneously,
and simultaneity must be unambiguous.)

Physical laws are usually stated relative to some reference frame, which allows
physical quantities like velocity, electric field, etc., to be defined. Preferred among
reference frames are rigid frames, and preferred among these are the inertial frames.
Newton’s laws apply in the latter.

A classical rigid reference frame is an imagined extension of a rigid body. For
example, the earth determines a rigid frame throughout all space, consisting of all
those points which remain ‘rigidly’ at rest relative to the earth and to each other
(like ‘geostationary’ satellites). We can associate an orthogonal Cartesian coordinate
system with such a frame in many ways, by choosing three mutually orthogonal
planes within it and measuring x, y, z as distances from these planes. Of course,
this presupposes that the geometry in such a frame is Euclidean, which was taken
for granted until 1915! Also, a time t must be defined throughout the frame, since
this enters into many of the laws. In Newton’s theory there is no problem with that.
Absolute time ‘ticks’ world-wide—its rate directly linked to Newton’s first law (free
particles cover equal distances in equal times)—and any particular frame just picks
up this ‘world-time’. Only the choice of units and the zero-setting remain free.

Newton’s first law serves to single out inertial frames among rigid frames: a rigid
frame is called inertial if free particles move without acceleration relative to it. And,
as it turns out, Newton’s laws apply equally in all inertial frames. However, Newton
postulated the existence of a quasi-substantial absolute space (AS) in which he thought
the center of mass of the solar system was at rest, and which, to him, was the primary
arena for his mechanics. That the laws were equally valid in all other reference
frames moving uniformly relative to AS (the inertial frames) was to him a profoundly
interesting theorem, but it was AS that bore, as it were, the responsibility for it all.
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He called it the sensorium dei—God’s sensory organ—with which God ‘felt’ the
world.

1.3 The Galilean transformation

Now consider any two rigid reference frames S and S′ in uniform relative motion with
velocity v. Let identical units of length and time be used in both frames. And let their
times t and t ′ and their Cartesian coordinates x, y, z and x′, y′, z′ be adapted to their
relative motion in the following way (cf. Fig. 1.1): The S′ origin moves with velocity
v along the x-axis of S, the x′-axis coincides with the x-axis, while the y- and y′-axes
remain parallel, as do the z- and z′-axes; and all clocks are set to zero when the two
origins meet. The coordinate systems S: {x, y, z, t} and S′: {x′, y′, z′, t ′} are then said
to be in standard configuration.

Suppose an event (like the flashing of a light bulb, or the collision of two point-
particles) has coordinates (x, y, z, t) relative to S and (x′, y′, z′, t ′) relative to S′. Then
the classical (and ‘common sense’) relations between these two sets of coordinates
are given by the standard Galilean transformation (GT):

x′ = x − vt, y′ = y, z′ = z, t ′ = t, (1.1)

which can be read off from the diagram, since vt is the distance between the spatial
origins. The last of these relations expresses the absoluteness (which is to say, frame-
independence) of time.

Differentiating the LHSs of (1.1) with respect to t ′ and the RHSs with respect to t

immediately leads to the classical velocity transformation, which relates the velocity
components of a moving particle in S with those in S′:

u′1 = u1 − v, u′2 = u2, u′3 = u3, (1.2)

where (u1, u2, u3) = (dx/dt, dy/dt, dz/dt) and (u′1, u
′
2, u
′
3) = (dx′/dt ′, dy′/dt ′,

dz′/dt ′). Thus if I walk forward at 2 mph (u′1) in a bus traveling at 30 mph (v), my
speed relative to the road (u1) will be 32 mph. In special relativity this will no longer
be true.

Fig. 1.1
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A further differentiation yields (with a′1 = du′1/dt ′, etc.)

a′1 = a1, a′2 = a2, a′3 = a3, (1.3)

that is, the invariance of acceleration.
In vector notation, these formulae can be written more concisely (and perhaps also

more familiarly) in the form

r′ = r − vt, u′ = u− v, a′ = a, (1.4)

where r, u, a are the position-, velocity-, and acceleration-vectors, respectively, in S,
and the primed symbols are similarly defined in S′; v denotes the (vector-)velocity of
S′ relative to S.

For future reference we note that two inertial frames which both employ standard
coordinates but are not in standard configuration are related by general GTs, which
are simply compositions of standard GTs with rotations and spatial and temporal
translations.

1.4 Newtonian relativity

Recall that an inertial frame is a rigid frame in which Newton’s first law holds.
Suppose the frame S of Fig. 1.1 is inertial. Since, by (1.2), constant velocities in S
transform into constant velocities in S′, we see that all particles recognized as free
in S move uniformly in S′, which is therefore also inertial. On the other hand, only
frames moving uniformly relative to S can be inertial. For the fixed points in any
inertial frame are potential free particles, so all must move uniformly relative to S,
and evidently no set of free particles can remain rigid unless all their velocities are
identical. So the class of inertial frames consists precisely of all rigid frames that
move uniformly relative to one known inertial frame; for example, absolute space.

Now, from the invariance of the acceleration, eqn (1.4) (iii), we see that all we need
in order to have all three of Newton’s laws invariant among inertial frames is (i) an
axiom that the mass m is invariant, and (ii) an axiom that every force is invariant.
Both these assumptions are indeed part of Newton’s theory. The resulting property of
Newtonian mechanics that it holds equally in all inertial frames is called Newtonian
(or Galilean) relativity.

Newton and Galileo both understood the cruciality of this result in connection with
the ideas of Copernicus. It explains why we see essentially pure Newtonian mechanics
in our terrestrial laboratories—while flying at high speed around the sun. (The earth’s
rotation introduces for the most part negligible errors.) Galileo had pointed to the
more modest example of a ship in which all motions and all mechanics happen in the
same way whether the ship is at rest or moving uniformly through calm waters. Today
we have first-hand experience of this sameness whenever we fly in a fast airplane.

The deep question is whether the relativity of Newton’s mechanics is just a fluke
or an integral part of nature, in which case it would probably go beyond mechanics.
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There are some fascinating indications that Newton, at least during some periods of
his life, might have thought the latter—in spite of his clinging to absolute space.1

1.5 Objections to absolute space; Mach’s principle

Newton’s concept of an absolute space has never lacked critics. From Huyghens
and Leibniz and Bishop Berkeley, all near-contemporaries of Newton, to Mach in the
nineteenth century and Einstein in the twentieth, cogent arguments have been brought
against AS. There are two main objections:

(i) Absolute space cannot be distinguished by any intrinsic properties from all the
other inertial frames. Differences that do not manifest themselves observationally
should not be posited theoretically.

(ii) ‘It conflicts with one’s scientific understanding to conceive of a thing which acts
but cannot be acted upon.’ The words are Einstein’s, but he attributes the thought
to Mach.

It took a surprisingly long time, but by the late nineteenth century it gradually
came to be appreciated that Newton’s theory can logically very well dispense with
absolute space; as an axiomatic basis, one can and should instead accept the exis-
tence of the infinite class of equivalent inertial frames (as Einstein still did in his
special relativity). Then objection (i) is eliminated. But objection (ii) applies just
as much to the entire class of inertial frames as it does to any one of them. Do the
inertial frames really exist independently of the rest of the universe? This problem
became the thorn in Einstein’s consciousness that eventually spurred him on to general
relativity.

But here we shall digress briefly to describe an earlier attempt to address this
problem. It was made by the philosopher-scientist Mach, and it casts its shadow as far
as the present day.2 Mach’s ideas on inertia, whose germ was already contained in the
writings of Leibniz and Bishop Berkeley, are roughly these: (a) space is not a ‘thing’
in its own right; it is merely an abstraction from the totality of distance-relations
between matter; (b) a particle’s inertia is due to some (unfortunately unspecified)
interaction of that particle with all the other masses in the universe; (c) the local
standards of non-acceleration are determined by some average of the motions of all
the masses in the universe; (d) all that matters in mechanics is the relative motion of
all the masses. Thus Mach wrote: ‘. . . it does not matter if we think of the earth as
turning round on its axis, or at rest while the fixed stars revolve around it . . . . The law
of inertia must be so conceived that exactly the same thing results from the second
supposition as from the first.’ Mach called his view ‘relativistic’. Had he found the
sought-for law of inertia, all rigid frames would have become equivalent.

1 See R. Penrose in 300 Years of Gravitation, S. Hawking and W. Israel, eds, Cambridge University
Press, 1987, especially Section 3.3 and p. 49.

2 See, for example, Mach’s Principle, J. Barbour and H. Pfister, eds, Birkhäuser, Boston, 1995.
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A spinning elastic sphere bulges at its equator. To the question of how the sphere
‘knows’ that it is spinning and hence must bulge, Newton might have answered that
it ‘felt’ the action of absolute space. Mach would have answered that the bulging
sphere ‘felt’ the action of the cosmic masses rotating around it. To Newton, rotation
with respect to AS produces centrifugal (inertial) forces, which are quite distinct from
gravitational forces. To Mach, centrifugal forces are gravitational; that is, caused by
the action of mass upon mass.

Einstein coined the term Mach’s principle for this whole complex of ideas. Of
course, with Mach these ideas were still embryonic in that a quantitative theory of the
proposed effect of the motion of distant matter was totally lacking. One is reminded
of Maxwell’s theory, where the motion of the sources affects the field. Indeed, a
Maxwell-type of gravitational theory has many Machian features.3 But it violates
special relativity. For example, whereas charge is necessarily invariant in Maxwell’s
theory, mass varies with speed in SR. Also, because of the relation E = mc2, the
gravitational binding energy of a body has (negative) mass; thus the total mass of a
system cannot equal the sum of the masses of the parts, whereas in Maxwell’s theory
charge is strictly additive, as a direct consequence of the linearity of the theory.

Einstein’s solution to the problem of inertia, GR, turned out to be much more
complicated than Maxwell’s theory. However, in ‘first approximation’ it reduces to
Newton’s theory, and in ‘second approximation’ it actually has Maxwellian features.
(Cf. Section 15.5 below.) But in what sense GR is truly ‘Machian’ is still a matter
of debate and, from a practical point of view, irrelevant. There certainly are GR
solutions where the local standard of non-acceleration does not accord with the matter
distribution. Thus, while in GR all matter, including its motion, undoubtedly affects
local inertial behavior, it appears not entirely to cause it.

Mach’s principle, nevertheless, continues a life of its own. One can perhaps appre-
ciate this best from examples of its predictive successes—although there are also
examples where its predictions are wrong.4 The following instance of a potential
success is due to Sciama. It is known today that our galaxy rotates differentially, with
a typical period of about 200 million years. Such a rotation was already postulated
by Kant to account for the flattened shape of the galaxy, as evidenced by the Milky
Way in the sky. Without orbiting, the stars would fall into the center of the galaxy in
about 100 million years, which is much less than the age of the earth. Now it is known
today that the best-fitting inertial frame for the solar system does not partake of this
rotation; like a huge gyroscope, the solar system orbits the galactic center without
changing its orientation relative to the distant universe, as indeed any Newtonian
physicist would expect. But had Mach been aware of this, he could have applied his
principle to postulate the existence of a vast extragalactic universe (which was not
confirmed until much later) simply in order to make the best-fitting inertial frame of
the solar system come out right.

3 See, for example, D. W. Sciama, Mon. Not. R. Astron. Soc. 113, 34 (1953).
4 See, for example, W. Rindler in Mach’s Principle, loc. cit., p. 439.
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1.6 The ether

We now return to the first problem raised in Section 1.5—if and how one can dis-
tinguish absolute space among the inertial frames. It seems to have been Descartes
(1596–1650) who introduced into science the idea of a space-filling material ‘ether’
as the transmitter of otherwise incomprehensible actions. Bodies in contact can push
each other around, but it required an ether (today we call it a field!) to mediate between
a magnet and the nail it attracts, or between the moon and the tides. A generation later,
even Newton toyed with the idea of an ether with very strange elastic properties to
‘explain’ gravity. It is perhaps no wonder that he thought of absolute space as having
substance. To Newton’s contemporaries, like Hooke and Huyghens, the ether’s main
function was to carry light waves, so it could even be ‘acted on’. This ‘luminiferous
ether’ evolved into a cornerstone of Maxwell’s theory (1864), and became a plausible
marker for Newton’s absolute space.

As is well known, in Maxwell’s theory there occurs a constant c with the dimensions
of a speed, which was originally defined as a ratio between electrostatic and electrody-
namic units of charge, and which can be determined by simple laboratory experiments
involving charges and currents. Moreover, Maxwell’s theory predicted the propaga-
tion of disturbances of the electromagnetic field in vacuum with this speed c—in
other words, the existence of electromagnetic waves. The surprising thing was that
c coincided precisely with the known vacuum speed of light, which led Maxwell to
conjecture that light must be an electromagnetic wave phenomenon. (At that time
‘c’ had not yet invaded the rest of physics; Maxwell would have been unlucky had
light turned out to be gravitational waves!) To serve as a carrier for such waves, and
for electromagnetic ‘strains’ in general, Maxwell resurrected the old idea of an ether.
And it seemed reasonable to assume that the frame of ‘still ether’ coincided with the
frame of the ‘fixed stars’; that is, with Newton’s absolute space. So absolute space is
at least electromagnetically distinguishable from all other inertial frames. Or is it?

1.7 Michelson and Morley’s search for the ether

The great success of Maxwell’s theory made the ether as such a central object of
study and debate in late nineteenth-century physics. There was considerable pressure
on experimenters to try to ‘observe’ it directly. In particular, efforts were made to
determine the speed of the orbiting earth through the ether, by measuring the ‘ether
wind’ or ‘ether drift’ through the lab. The best known of all these experiments is
that of Michelson and Morley of 1887. They split a beam of light and sent it along
orthogonal paths of equal length and back again, whereupon interference fringes
were produced between the returning beams. Different ether wind components along
the two paths should have led to a difference in travel times. However, when the
apparatus was rotated through 90◦, so that this difference should be reversed, the
expected displacement of the fringes did not occur.
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Since the earth’s orbital speed around the sun is 18 miles per second, one could
expect the ether drift at some time during the year to be at least that much, no matter
how the ether streamed past the solar system. And a drift of this magnitude was
well within the capability of the apparatus to detect. The most obvious explanation
for the null result, that the earth completely dragged the ether along with it in its
neighborhood, could be ruled out because of various other optical effects, like the
aberration of starlight.

Thus electromagnetic theory was left with a serious puzzle: How could the average
to-and-fro light speed be direction-independent in spite of the ether wind? (Modern
laser versions have confirmed this experiment to an accuracy of one part in 1015.5)
The Michelson–Morley result falls short of what we know today, namely that even
the one-way speed of light at all times is independent of any ether wind. This is
nicely demonstrated by the workings of international atomic time, TAI (Temps Atom-
ique International). TAI is determined by a large number of atomic clocks clustered
in various national laboratories around the globe. Their readings are continuously
checked against each other by the exchange of radio signals (no different from light
except in having lower frequencies). Any interference with these signals by a vari-
able ether wind of the expected magnitude would be detected by these super-accurate
clocks. Needless to say, none has been detected: day or night, summer or winter,
the signals from one clock to another always arrive with the same time delay. As
another example, the incredible accuracy of modern radio navigational systems (via
satellites) hinges crucially on the speed of radio signals being independent of any
ether wind.

1.8 Lorentz’s ether theory

An ingenious ‘explanation’ of the Michelson–Morley null result was found by
FitzGerald in 1889.6 He suggested that the lengths of bodies moving through the ether
at velocity v contract in the direction of their motion by a factor (1−v2/c2)1/2—which
would just compensate for the ether drift in the Michelson–Morley apparatus. Three
years later Lorentz—apparently independently—made the same hypothesis and incor-
porated it into his ever more comprehensive ether theory.7 He was, moreover, able
to justify it to some extent by appealing to the electromagnetic constitution of matter
and to the known contraction of the field of moving charges (see Section 7.6 below).
This ‘Lorentz–FitzGerald contraction’ then quickly diffused into the literature.

Let us see how it works. For simplicity, assume that one of the two paths or ‘arms’
of the Michelson–Morley apparatus, marked L1 in Fig. 1.2, lies in the direction of an

5 A. Brillet and J. L. Hall, Phys. Rev. Lett. 42, 549 (1979).
6 See S. G. Brush, Isis, 58, 230 (1967).
7 See E. T. Whittaker, A History of the Theories of Aether and Electricity, Tomash/American Institute

of Physics, reprint 1987, vol. 1, pp. 404, 405.



Lorentz’s ether theory 11

Fig. 1.2

ether drift of velocity v. Figure 1.2 should make it clear that the respective to-and-fro
light travel times along the two arms would then be expected to be

T1 =
L1

c + v
+ L1

c − v
= 2L1

c(1− v2/c2)
, (1.5)

T2 =
2L2

(c2 − v2)1/2
= 2L2

c(1− v2/c2)1/2
, (1.6)

where L1 and L2 are the purportedly equal lengths of the two arms. The difference in
these two times is at once eliminated if we assume that the arm along the ether drift
undergoes Lorentz–FitzGerald contraction, so that L1 = L2(1− v2/c2)1/2. A some-
what more complicated calculation (which must have lit the heart of FitzGerald)
shows that under the same assumption the average to-and-fro speed of light, c′, in
any direction is the same,

c′ = c(1− v2/c2)1/2. (1.7)

What the contraction hypothesis by itself does not achieve is to make the average
to-and-fro speed of light independent of the ether drift—there is still a ‘v’ in (1.7)—
nor does it make the one-way speed of light the same in all directions. Both these
defects of the ether theory were eventually cured by insights taken over from Einstein’s
special relativity (for example, time dilation—the slowing down of moving clocks).

Lorentz—a giant among physicists and revered by Einstein (‘I admire this man as
no other’)—could never free himself of the crutch of the ether, and when he died in
1928 he still believed in it. His ether theory came to include all of Einstein’s basic
findings and was, for calculational purposes, equivalent to special relativity, and less
jolting to classical prejudices. But it was also infinitely less elegant and, above all,
sterile in suggesting new results. Today it is best forgotten, except by historians.
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1.9 Origins of special relativity

Einstein’s solution of the ether puzzle was more drastic: it was like cutting the Gordian
knot. In his famous relativity principle (RP) of 1905 he asserted that all inertial frames
are equivalent for the performance of all physical experiments. That was the first
postulate. For Einstein there is no ether, and no absolute space. All inertial frames
are totally equivalent. In each IF the basic laws of all of physics are the same, and
presumably simpler than in other rigid frames. In particular, every IF is as good
for mechanics as Newton’s absolute space, and as good for electromagnetism as
Maxwell’s ether frame.

This last remark almost forces another hypothesis on us, which Einstein, in fact,
adopted as his second postulate: light travels rectilinearly at speed c in every direc-
tion in every inertial frame. For this property characterizes Maxwell’s ether just as
Newton’s first law characterizes Newton’s absolute space. Einstein knew, of course,
that his second postulate clashed violently with our classical (Newtonian) ideas of
space and time: no matter how fast I chase a light signal (by transferring myself to
ever-faster IFs) it will always recede from me at speed c! Einstein’s great achievement
was to find a new framework of space and time, which in a natural and elegant way
accommodates both his axioms. It depends on replacing the Galilean transformation
by the Lorentz transformation as the link between IFs. This essentially leaves space
and time unaltered within each IF, but it changes the view which each IF has of the
others. Above all, it requires a new concept of relative time, no different from the old
within each IF, but different from frame to frame.

Einstein’s relativity principle ‘explains’ the failure of all the ether-drift experiments
much as the principle of energy conservation explains a priori (that is, without the
need for a detailed examination of the mechanism) the failure of all attempts to build a
perpetual motion machine. Reciprocally, those experiments now served as empirical
evidence for Einstein’s principle. Einstein had turned the tables: predictions could
be made. The situation can be compared to that obtaining in astronomy at the time
when Ptolemy’s intricate geocentric system (corresponding to Lorentz’s ‘etherocen-
tric’ theory) gave way to the ideas of Copernicus, Galileo, and Newton. In both cases
the liberation from a time-honored but inconvenient reference frame ushered in a
revolutionary clarification of physical thought, and consequently led to the discovery
of a host of new and unexpected results.

Soon a whole theory based on Einstein’s two postulates was in existence, and
this theory is called special relativity. Its program was to modify all the laws of
physics, where necessary, so as to make them equally valid in all inertial frames.
For Einstein’s relativity principle is really a metaprinciple: it puts constraints on
all the laws of physics. The modifications suggested by the theory (especially in
mechanics), though highly significant in many modern applications, have negligible
effect in most classical problems, which is, of course, why they were not discovered
earlier. However, they were not exactly needed empirically in 1905 either. This is
a beautiful example of the power of pure thought to leap ahead of the empirical
frontier—a feature of all good physical theories, though rarely on such a heroic scale.
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Today, a century later, the enormous success of special relativity theory has made
it impossible to doubt the wide validity of its basic premises. It has led, among other
things, to a new theory of space and time in which the two mingle to form ‘spacetime’,
to the existence of a maximum speed for all particles and signals, to a new mechanics
in which mass increases with speed, to the formula E = mc2, to a simple macroscopic
electrodynamics of moving bodies, to a new thermodynamics, to a kinetic gas theory
that includes photons as well as particles, to de Broglie’s association of waves with
particles, to Dirac’s particle–antiparticle symmetry, and to the theory of quantum
electrodynamics (Lamb shift, magnetic properties of electrons, etc.) which matches
the experimental measurements to an incredible accuracy of ∼10−8. Not least, SR
paved the way for general-relativistic gravity and cosmology.

There is a touch of irony in the fact that Newton’s theory, which had always
been known to satisfy a relativity principle in the classical framework of space and
time, now turned out to be in need of modification, whereas Maxwell’s vacuum
electrodynamics, with its apparent conceptual dependence on a preferred ether frame,
came through with its formalism intact—in itself a powerful recommendation for
special relativity. But on being freed from a material carrier, the electromagnetic field
now became a non-substantial physical entity in its own right, an entity to which no
state of rest and no velocity can be ascribed. Thus was born the modern field concept.
Fields are not necessarily regarded as ‘generated’ by bodies, though influenced by
them through field equations, and interacting with them by exchanging energy and
momentum.

How original was Einstein in his special relativity? As Freud has stressed, most
revolutionary ideas have at least been surmised or incompletely enunciated before.
Like Copernicus, like Newton (‘If I have seen further it is by standing on the shoulders
of giants’), Einstein, too, had precursors, most notably Lorentz and Poincaré. Lorentz
had actually found the ‘Lorentz transformation’ (LT) before Einstein, in 1903, as that
which (in conjunction with a suitable transformation of the field) leaves Maxwell’s
equations invariant. But Lorentz neither penetrated the physical meaning of the LT
nor ever renounced the ether. Poincaré, France’s foremost mathematician of the day,
and another strong participant in the hectic development of electromagnetic theory,
occupies a position somewhat between Lorentz and Einstein. He used the LT equations
to stress the need for a new mechanics in which c would be a limiting velocity, and
yet, like Lorentz, he gave no indication of appreciating, in particular, the physicality
of their time coordinate. He intuited as early as 1895 the impossibility of ever locating
the ether frame, and even enunciated and named the ‘relativity principle’ in 1904,
one year before Einstein. But, unlike Einstein, he did nothing with it. Einstein was the
first to derive the LT from the relativity principle independently of Maxwell’s theory,
as that which connects real space and real time in various inertial frames. He was the
first wholeheartedly to discard the ether and the old ideas of space and time (except as
approximations) and to find equally symmetric and elegant substitutes for them. That
was the vital and original breakthrough which made the subsequent rapid development
of the theory possible. It took an extraordinarily agile and unprejudiced mind to do
this, and Einstein fully deserves the credit for having changed our world view.
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1.10 Further arguments for Einstein’s two postulates

The relativity principle has become such a fundamental pillar of modern physics that
it merits further discussion. Of course, as with all axioms, the proof of the pudding
is in the eating: axioms are best justified by the success of the theory that follows
from them, and this, in the case of special relativity, is overwhelming. But from
a logical point of view, several arguments could and can be advanced for the RP
a priori:

(i) The failure of all the ether-drift experiments—and there were others besides that
of Michelson and Morley (see, for example, Exercise 7.18). Though Einstein made
surprisingly little of these in his famous 1905 paper, they cried out for an explanation,
which the relativity principle neatly provided.

(ii) The actual ‘relativity’ of Maxwell’s theory, if not in spirit, yet in fact. This, to
Einstein’s mind, carried a great deal of weight. Take, for example, the interaction of
a circular conducting loop and a bar magnet along its axis. If we move the loop, the
Lorentz force due to the field of the stationary magnet drives the free electrons along
the wire, thus producing a current. If, on the other hand we leave the loop stationary
and move the magnet, the changing magnetic flux through the loop produces an
identical current, by Faraday’s law for stationary loops. So Maxwell’s theory is as
valid in the rest-frame of the magnet as it is in the rest-frame of the loop.

(iii) The unity of physics. This is an argument of more recent origin. But it has
become increasingly obvious that physics cannot be separated into strictly indepen-
dent branches. For example, no electromagnetic experiment can be performed without
the use of mechanical parts, and no mechanical experiment is independent of the elec-
tromagnetic constitution of matter, etc. If there exists a strict relativity principle for
mechanics, then a large part of electromagnetism must be relativistic also, namely
that part which has to do with the constitution of matter. But if part, why not all? In
short, if physics is indivisible, either all of it or none of it must satisfy the relativity
principle. And since the RP is so strongly evident in mechanics, it is only reasonable
to expect electromagnetism (and all the rest of physics) to obey it too.

(iv) The remarkableness of relativity. We are so utterly used to the relativity of
all physical processes (always the same, in our terrestrial labs hurtling through the
cosmos, in space capsules, in airplanes, etc.) that its remarkableness no longer strikes
us. But recall how deeply Galileo was struck by his discovery that no force was
necessary to keep a particle moving uniformly: he immediately suspected a law of
nature behind it. It is much the same with relativity: if it holds approximately, that is
so remarkable that it strongly suggests an exact law of nature.

As for the second postulate (the invariance of the speed of light), however essential,
Einstein did not even devote a whole sentence to it in his original paper, nor did he
deem it in need of a single word of justification! Here his instinct was sounder than
that of many who followed him in the exposition of the theory. Much time and
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effort was spent wondering about such empirical questions as whether double-star
systems rotating about a common center would appear to rotate uniformly, which
would support the hypothesis that the velocity of light is independent of the velocity
of the source; but then, maybe a cloud of gas around the system would absorb and
re-emit the light and so mask the difference, etc., etc. But in fact (as Einstein very
probably intuited), once we have accepted the RP, the second postulate is nothing
but a two-way switch: As we shall see in Section 2.11, the RP (plus the assumption
of causality invariance) implies that there must exist an invariant velocity—the only
question is which. If that velocity is infinite (that is, an infinite speed in one inertial
frame corresponds to an infinite speed in every other inertial frame), then the Galilean
transformation group and, with it, Newtonian space and time result. If, on the other
hand, the invariant velocity is finite, say c, then the Lorentz transformation group
results, and with it the Einsteinian spacetime framework. So the only function of
the second postulate is to fix the invariant velocity. And Maxwell’s theory and the
ether-drift experiments clearly suggest that it should be c.

From the above, it is also clear that to include ‘rectilinearity’ in the second postulate
is superfluous—even without it one arrives at the LT. We have included it merely for
convenience.

1.11 Cosmology and first doubts about inertial frames

We next turn our attention to the second problem of Section 1.5: How securely is
the ‘zeroth axiom’ of both Newton’s theory and Einstein’s special relativity, namely
the existence of the set of infinitely extended inertial frames, anchored in physical
reality? It will be useful even at this early stage to review briefly the main features
of the universe as they are known today. Our galaxy contains about 1011 stars—
which account for most of the objects in the night sky that are visible to the naked
eye. Beyond our galaxy there are other more or less similar galaxies, shaped and
spaced roughly like coins three feet apart. The ‘known’ part of the universe, which
stretches to a radius of about 1010 light-years, contains about 1011 such galaxies.
It exhibits incredible large-scale regularity. Most cosmologists therefore accept the
cosmological principle which asserts (in the absence of counter-indications) that all
the galaxies are roughly on the same footing; that is to say, the large-scale view of
the universe from everywhere is the same. So there is no end to the galaxies, for in
an ‘island universe’ there would have to be atypical edge-galaxies. But we do not
know whether the universe is flat and infinite, or curved—in which case it could
still be infinite (negative curvature), but it could also curve back on itself and be
finite (positive curvature). If it is intrinsically curved, inertial frames are out anyway,
since they are flat by hypothesis. So let us suppose the universe is flat and infinite,
and uniformly filled with galaxies. Write ‘stars’ for ‘galaxies’ and add ‘static’—
and you have Newton’s picture of the universe. How could Newton think that an
infinite distribution of static matter could remain static in the face of all those mutual
gravitational attractions?
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The answer hinges on absolute space and symmetry: relative to absolute space,
each galaxy would be pulled up as much as down, one way as much as the opposite,
and so it would be in equilibrium and not move. But take away absolute space, and
then this infinite array of galaxies could contract, everywhere at the same rate, without
violating its intrinsic symmetry: each galaxy would see radial contraction onto itself.
Today the universe is known not to contract but to expand, in the same symmetric way,
as though it were the result of some primeval explosion (the ‘big bang’) billions of
years ago. Gravity would slow the expansion and might eventually reverse it—or not.
But the last thing such a universe would do is to expand at a constant rate, as though
gravity were switched off. So how could this universe accommodate both Newton’s
infinite family of uniformly moving inertial frames and the cosmological principle?
It could not. At most one galaxy could be at rest in an intertial frame and all the others
would decelerate relative to that frame. Or accelerate: recent observations have lent
some support to the presence of a cosmological ‘lambda’ force opposing gravity, the
mathematical possibility of whose existence had already been noted by Einstein. In
either case we conclude that extended inertial frames cannot exist in such a universe.

The cosmological principle suggests that under these conditions the center of each
galaxy provides a basic local standard of non-acceleration, and the lines of sight from
this center to the other galaxies (rather than to the stars of the galaxy itself, which
may rotate) provide a local standard of non-rotation: together, a local intertial frame.
Intertial frames would no longer be of infinite extent, and they would not all be in
uniform relative motion. A frame which is locally inertial would cease to be so at
a distance, if the universe expands non-uniformly. Nevertheless, at each point there
would still be an infinite set of local inertial frames, all in uniform relative motion.

The extent of sufficient validity for Newtonian mechanics of such local inertial
frames is clearly of practical importance in celestial mechanics. As a rule, they can
be used to deal with gravitationally bound systems such as the solar system, a whole
galaxy, and even clusters of galaxies small enough to have detached themselves from
the cosmic expansion.

1.12 Inertial and gravitational mass

Different and much smaller ‘local inertial frames’ are used in general relativity.
Einstein came upon them not via dynamic cosmology (he long thought the universe
was static) but through his equivalence principle (EP) of 1907, which begins with a
closer look at the concept of ‘mass’. It is not always stressed that at least two quite
distinct types of mass enter into Newton’s theory of mechanics and gravitation. These
are (i) the inertial mass, which occurs as the ratio between force and acceleration in
Newton’s second law and thus measures a particle’s resistance to acceleration, and (ii)
the gravitational mass, which may be regarded as the gravitational analog of electric
charge, and which occurs in the equation

f = Gmm′

r2
(1.8)

for the attractive force between two masses (G being the gravitational constant.)
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One can further distinguish between active and passive gravitational mass, namely
between that which causes and that which yields to a gravitational field, respectively.
Because of the symmetry of eqn (1.8) (due to Newton’s third law), no essential
difference between active and passive gravitational mass exists in Newton’s theory.
In GR, on the other hand, the concept of passive mass does not arise, only that of
active mass—the source of the field.

It so happens in nature that for all particles the inertial and gravitational masses are
in the same proportion, and in fact they are usually made equal by a suitable choice
of units; for example, by designating the same particle as unit for both. Newton took
this proportionality as an axiom. He tested it to an accuracy of about one part in
1000 by observing (as Galileo had done before him) that the periods of pendulums
were independent of the material of the bob. (The gravitational mass acts to shorten
the period, the inertial mass acts to lengthen it.) Much more delicate verifications
were performed by Eötvös, first in 1889, and finally in 1922 to an accuracy of five
parts in 109. Eötvös suspended two equal weights of different material from the arms
of a delicate torsion balance pointing west–east. Everywhere but at the poles and
the equator the earth’s rotation would produce a torque if the inertial masses of the
weights were unequal—since centrifugal force acts on inertial mass. By an ingenious
variation of Eötvös’s experiment, using the earth’s orbital centrifugal force which
changes direction every 12 h and so lends itself to amplification by resonance, Roll,
Krotkov, and Dicke (Princeton 1964) improved the accuracy to one part in 1011, and
Braginski and Panov (Moskow 1971) even to one part in 1012. Plans are underway for
an even more ambitious experiment called STEP (Satellite Test of the Equivalence
Principle) which would test the free fall of different particles orbiting the earth in a
drag-free space capsule, and which could yield an accuracy of one part in 1018.

The question is sometimes asked whether antimatter might have negative grav-
itational mass; that is, whether it would be repelled by ordinary matter. Direct
experiments to test the rate of falling of a beam of low-energy antiprotons are being
planned at CERN (Holzscheiter et al.). However, quantum-mechanical calculations
by Schiff have long ago shown that there are enough virtual positrons in ordinary
matter to have upset the Eötvös–Dicke experiments if positrons fall up. And there
seems to be astrophysical evidence that the gravitational mass of the meson K◦ and
its antiparticle differ by at most a few parts in 1010.8 Thus all indications point to the
universality of Newton’s axiom.

This proportionality of gravitational and inertial mass is often called the weak
equivalence principle. A fully equivalent property is that all free particles experience
the same acceleration at a given point in a gravitational field. As in the case of the
pendulum, gravitational mass tends to increase the acceleration, inertial mass tends
to decrease it. More precisely, the field times passive mass gives the force, and the
force divided by inertial mass gives the acceleration, so the acceleration equals the
field, a = g, independently of the particle. (That, of course, is why g is often called

8 For this and many other experimental data, see, for example, H. C. Ohanian and R. Ruffini, Gravitation
and Spacetime, 2nd edn, Norton, New York, 1994.
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the ‘acceleration of gravity’.) It follows that free motion in a gravitational field is
fully determined by the field and an initial velocity. Project a piano and a ping-pong
ball side by side and with the same velocity anywhere into the solar system, and
the two will travel side by side forever! This path unicity in a gravitational field is
usually referred to as Galileo’s principle, by a slight extension of Galileo’s actual
findings. (Recall his alleged experiment of dropping pairs of disparate particles from
the Leaning Tower of Pisa—the most direct test of the weak equivalence principle.)

An important consequence of weak equivalence was already demonstrated by
Newton in the Principia, namely: a cabin falling freely and without rotation in a
parallel gravitational field is mechanically equivalent to an inertial frame without grav-
itation. (Recall the televised pictures of astronauts in their spacecraft being weightless
and, if unrestrained, moving according to Newton’s first law!) For proof, consider
the motion of any particle in the cabin; let f and fG, respectively, be the total and
the gravitational force on it, relative, say, to the earth (here treated as a Newtonian
inertial frame), and mI and mG its inertial and gravitational mass. Then f = mI a
and fG = mGg, where a is the acceleration of the particle, and g is the gravitational
field and thus the acceleration of the cabin. The acceleration of the particle relative
to the cabin is a − g (by classical ‘acceleration addition’) and so the force relative to
the cabin is (a − g)mI . This equals the non-gravitational force f − fG if mI = mG;
hence Newton’s second law (including the first) holds in the cabin. And the same is
true of the third law. Gravity has been ‘transformed away’ in the cabin.

1.13 Einstein’s equivalence principle

The proportionality of inertial and gravitational mass is a profoundly mysterious fact.
Why inertial mass (whose significance as ‘resistance to acceleration’ makes sense
even in a world without gravity) should serve as gravitational charge when there
is gravity, is totally unexplained in Newton’s theory and seems purely fortuitous.
Newton’s theory would work perfectly well without it: it would then resemble a
theory of motion of electrically charged particles under an attractive Coulomb law,
where particles of the same (inertial) mass can carry different (gravitational) charges.
GR, on the other hand, contains Galileo’s principle as a primary ingredient and could
not survive without it.

At the beginning of GR, in fact, stands Einstein’s encounter with mI = mG. He
dealt with it as he had dealt with relativity: boldly and universally. No need to wait
for precision experiments. If it is even approximately known to be true, then that is
such an astonishing fact that there must be an exact law of nature behind it. In what
he later called ‘the happiest thought of my life’, he realized that inertia and gravity,
in some deep sense, must really be the same thing. And this is how: You sit in a box
from which you cannot look out. You feel a ‘gravitational force’ towards the floor,
just as in your living room. But you have no way to exclude the possibility that the
box is part of an accelerating rocket in free space, and that the force you feel is what in
Newtonian theory is called an ‘inertial force’. To Einstein, inertial and gravitational
forces are identical.
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All this is encapsuled in Einstein’s equivalence principle (EP) which most usefully
is expressed in terms of freely-falling non-rotating cabins. In a ‘thought experiment’
the walls of such a cabin could be made of bricks loosely stacked without mortar:
if, in free fall, the bricks do not come apart, then the cabin is non-rotating and the
gravitational field is uniform (parallel). The useful size of such a cabin in a specific
case is determined by how much the actual field diverges from being parallel: the
cabin has to be small enough for the field to be essentially parallel throughout its
interior. Even so, if we use it for too long a time, the bricks may still come apart: so
not only its size but also the duration of its use must be suitably restricted.

We can now state Einstein’s equivalence principle as follows: All freely-falling non-
rotating cabins are equivalent for the performance of all physical experiments. If true,
then all such cabins will be equivalent, in particular, to cabins hovering motionless
in an extended inertial frame in a world without gravity, and so the physics in all
these cabins is SR. The cabins themselves are called local inertial frames (LIFs).
Note how much smaller these are than the Newtonian local inertial frames discussed
in Section 1.11, which can encompass whole clusters of galaxies. Note also that (just
like extended inertial frames) the LIFs at one event form an infinite family, all in
uniform relative motion; but LIFs at different points (for example, at opposite poles
on earth) generally accelerate relative to each other.

Einstein’s EP is an extension to all of physics of a principle that was previously
well known to hold for mechanics (namely the one discussed at the end of the pre-
vious section). As in the case of the relativity principle, the unity of physics by itself
would be a strong enough reason to justify this extension. But let us see how it also
corresponds to Einstein’s idea that inertia and gravity are the same thing.

Let C be a cabin freely falling with acceleration g near the earth’s surface
(see Fig. 1.3). Let C′ be another cabin within C and accelerating relative to C with
acceleration g upward, and thus at rest in the earth’s gravitational field. An observer

Fig. 1.3
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performs a variety of experiments, mechanical and non-mechanical, in C′. Each such
experiment E can be viewed as a compound experiment in C, namely, to accelerate
upwards and then do E. Now, according to the EP, all these compound experiments
have the same outcome as when C is freely floating in empty space. But then C′
is an accelerating rocket and its internal field is purely ‘inertial’. So no experiment
can tell the difference between a gravitational and an inertial field: they are (locally)
equivalent.

1.14 Preview of general relativity

Recall Einstein’s philosophical objection to Newton’s extended inertial frames: they
are absolute structures that act but cannot be acted upon. In his equivalence principle
Einstein saw a way to rid physics of these objectionable pre-existing structures. For
special relativity he had still needed them in order to specify the arena of validity
of the theory. But the EP changed all that. No longer is there a need to assume any
absolute structure. What undoubtedly exists in the physical world is the totality of
free-fall orbits—which in turn determine the LIFs everywhere and thus the local arena
for SR. And, of course, those orbits are not absolute: they are influenced by the matter
content of the universe. Only in the complete absence of gravity (as ideally assumed
in SR) do the orbits straighten out, and then the LIFs join together to form extended
IFs. Otherwise the concept of ‘extended inertial frame’ joins ‘absolute space’ and
‘ether’ into banishment.

In the following paragraphs (of which the first three are meant to be read only
very lightly at this stage!) we sketch the road from the EP to GR.9 Technically,
Einstein’s procedure was to introduce four physically deliberately meaningless coor-
dinates x1, x2, x3, x4, whose sole purpose is to label the events (that is, the ‘points’
of spacetime) unambiguously and continuously. Inertia–gravity is then incorporated
by an encoded prescription (the so-called ‘metric’) which allows us at every event to
transform from x1, x2, x3, x4 to the LIFs with their physically meaningful coordinates
x, y, z, t . This, in turn, allows us to predict the motion of ‘free’ particles. (Note that
in GR a particle is called ‘free’ if subject only to inertia–gravity, like the planets in
the solar system, but not the protons in a particle accelerator.) Locally, by the EP,
each free particle moves rectilinearly and with constant speed in the LIF; that means
going ‘straight’ in the local 4-dimensional spacetime. Now in GR the LIF families at
the various events are patched together to form (in the presence of gravity) a curved
spacetime: for if the big spacetime were flat, the various LIFs would all fit together to
make an extended IF and all ‘free’ particles would move straight in that—which we
know is not the case when there is gravitating matter around. The path of a particle
or photon in spacetime is called its ‘worldline’. In SR the worldlines of free particles
(and photons) are straight. In GR they are ‘locally straight’; that is, straight in every

9 For a historical fantasy of how this could have happened earlier, see W. Rindler, Am. J. Phys. 62, 887
(1994).
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LIF along the way. This corresponds to being ‘as straight as possible’ in the big curved
spacetime.

Such lines in any space are called ‘geodesics’. On the surface of the earth they are the
great circles. There is just one geodesic in each direction. In a LIF, knowing a space-
time direction dx : dy : dz : dt is as good as knowing a velocity dx/dt, dy/dt, dz/dt .
So the initial velocity of a particle in a given LIF determines its initial direction in
spacetime and thus the unique geodesic that will be its worldline. The piano and the
ping-pong ball will follow the same worldline! Thus does GR ‘explain’ Galileo’s
principle. To Einstein, the law of geodesics is primary, and a natural extension of free
motion in inertial frames. ‘Gravitational force’ is gone.

Since the geometry of spacetime determines its geodesics and thus the motions
of free particles, it must be the gravitating masses that determine the geometry.
Newtonian active gravitational mass (the creator of the field) goes over into GR as
the creator of curvature. Newtonian passive gravitational mass (that which is pulled
by the field) goes into banishment along with the ether, etc. Inertial mass survives in
non-gravitational contexts only, for example, as that which determines the outcome
of collisions or the acceleration of charged particles in electromagnetic fields.

In sum, general-relativistic spacetime is curved. Its curvature is caused by active
gravitational mass. The relation between curvature and mass is governed by Einstein’s
famous field equations. Finally, free particles (and photons) have geodesic worldlines
in this curved spacetime, which accounts for Galileo’s principle.

It seems almost miraculous that Newton’s theory and GR—so different in spirit—
are predictively almost equivalent in the classical applications of celestial mechanics,
which are characterized by relatively weak fields and relatively slow motions (com-
pared to the speed of light). With one exception: whereas Newtonian theory predicts a
perfectly repetitive elliptical orbit for a (test-)planet in the field of a fixed sun, GR pre-
dicts a similar ellipse that precesses. Now such a precession in the case of the planet
Mercury had been observed as early as 1859 by Leverrier. Although it amounts to
only 43 seconds of arc per century (!), this result was so secure (the figure has hardly
changed since 1882) that it constituted a notorious puzzle in Newton’s theory. Ein-
stein’s discovery (late in 1915) that his theory gave exactly this result, was (and one
can feel with him) ‘by far the strongest emotional experience in his scientific life,
perhaps in all his life. Nature had spoken to him. He had to be right.’10

In the very same paper Einstein gave another momentous result, one that was
capable of early observational verification. Since light travels rectilinearly with speed
c in every LIF, its worldline can be calculated in GR much like that of a particle.
What the calculation yielded was a deflection of light from distant stars by the sun’s
gravity (for light just grazing the sun) through an angle of 1.7′′—just twice as much
as the bending one gets in Newtonian theory by treating light corpuscularly. Such
bending can be looked for during total eclipses of the sun, when the background stars
become visible. And, indeed, the prediction was confirmed in 1919 by Eddington,

10 A. Pais, Subtle is the Lord . . . , Oxford University Press, 1982, p. 253. This is one of the finest
biographies of Einstein.
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who had led an expedition for that purpose to Principe Island, off the coast of Spanish
Guinea. A British expedition validating a German scientist, so soon after a terrible
war that had pitted these two nations against each other—this somehow captured the
popular imagination. It was this happening, not the precession of Mercury’s orbit,
not the relativity of time, not even E = mc2, that made the 40-year old Einstein into
a popular hero and his name and his bushy countenance suddenly famous.

Subsequent theoretical developments and experimental tests have by now estab-
lished GR as the modern theory of gravitation whose predictions are trusted. In
principle, it has replaced Newton’s inverse-square theory. In practice, of course,
Newton’s much simpler theory continues to be used whenever its known accuracy
suffices. And that applies to most of celestial mechanics including, for example, the
incredibly delicate operations of sending probes to the moon and the planets. GR
here serves as a kind of supervisor: Since it contains Newton’s theory as a limit, it
allows us to estimate the errors Newton’s theory may incur, and shows them to be
quite negligible in the above situations. But when the fields are strong, or quickly
varying, or when large velocities are involved (as with photons), or large distances (as
in cosmology), then GR diverges significantly from Newton’s theory. Thus it predicts
the existence of black holes and gravitational waves (both already ‘almost’ validated
by indirect evidence) and it provides a consistent optics in the presence of gravity,
which Newton’s theory does not. The latter has already led to successes in connection
with the study of ‘gravitational lensing’. And in relativistic cosmology GR provides
a consistent dynamics for the whole universe.

In GR two of Einstein’s concerns merged: gravity as an aspect of inertia, and the
elimination of the absolute (that is, uninfluenceable) set of extended IFs. The new
inertial standard is spacetime, and this is directly influenced by active gravitational
mass via the field equations. Yet in the total absence of mass and other disturbances
like gravitational waves, spacetime would straighten itself out into the old family of
extended inertial frames. This would seem to contradict Mach’s idea that all inertia is
caused by the cosmic masses. Einstein was eventually quite willing to drop that idea,
and so shall we. The equality of inertial and active gravitational mass then remains
as puzzling as ever. It would be nice if the inertial mass of an accelerating particle
were simply a back-reaction to its own gravitational field, but that is not the case.

1.15 Caveats on the equivalence principle

Consider the following notorious paradox: an electric charge is at rest on the surface
of the earth. By conservation of energy (or just by common sense!), it will not radiate.
And yet, relative to an imagined freely falling cabin around it, that charge is acceler-
ating. But charges that accelerate relative to an IF radiate. Why doesn’t ours? Again,
consider a charge that is fixed inside an earth-orbiting space capsule. Now, circularly
moving charges do radiate, and one cannot imagine how the earth’s gravitational field
could change that. But relative to the freely falling space capsule the charge is at rest,
and charges at rest in an inertial frame do not radiate. Where is the catch? Much
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has been written on these paradoxes, but the proper solution seems to have been first
recognized by Ehlers: It is necessary to restrict the class of experiments covered by
the EP to those that are isolated from bodies or fields outside the cabin. In the case
of the charges discussed above, their electric field extends beyond the cabin and is,
in fact, ‘anchored’ outside; since radiation is a property of that whole field, it follows
that these ‘experiments’ lie outside the scope of the EP.

Beyond such restriction, there is a school of thought, represented most forcefully
by the eminent Irish relativist Synge,11 which holds that the EP is downright false
and should be scrapped: Since every ‘real’ gravitational field g (as opposed to the
‘fictitious’ field in an accelerating rocket) is non-uniform, there will always be tidal
forces present in the cabin, causing relative accelerations dg between neighboring free
particles. And with perfect instruments these could be detected, no matter how small
the cabin. Hence, the argument goes, we could always recognize a ‘real’ gravitational
field and never mimic it with acceleration.

But consider this: the EP asserts a limiting property, like sin x/x → 1. True, sin x

never equals x in any finite domain, but sin x ∼ x is not useless information. The EP
is, in fact, the exact 4-dimensional analog of the statement that in sufficiently small
regions of a curved surface, plane (Euclidean) geometry applies. If the earth were
a perfect sphere, surely the errors I commit by surveying my backyard using plane
geometry would be miniscule. If, instead, I draw a large ‘geodesic’ triangle whose
area is, say, one-nth of the surface of the earth, the sum of its internal angles is, in
fact, given by

A + B+ C = π
(

1+ 4

n

)
. (1.9)

So for a triangle the size of France (n ≈ 1000) the deviation from π would still only
be 0.4 per cent. The critic insists that even if restricted to an area the size of a penny,
he could, by use of (1.9), in principle determine that this area has a curvature equal
to that of the earth and is decidedly not flat. We, on the other hand, find it useful to
know that even on a scale the size of France, plane geometry will still only be out by
some 0.4 per cent.

What does all this imply for SR? SR always was and always will be a self-consistent
(and rather elegant) theory of an ideal physics in an ideal set of infinitely extended
IFs. For comparison, Euclidean plane geometry always was and always will be a
self-consistent and elegant geometry in an ideal infinite Euclidean plane. If the real
universe is curved, it is possible that there may be nowhere embedded in it an infinite
Euclidean plane, or even a portion of one. But that in no way invalidates plane
geometry per se, nor does it make it useless for practical applications. It will apply
(as it always has) with greater or lesser accuracy, according to circumstances, in
limited regions. If the accuracy is orders of magnitude beyond what our instruments
can measure or what our circumstances may require, what more could we want? And
so it is with SR. Its internal logic is unaffected by the recognition that there are no

11 See, for example, J. L. Synge, Relativity: The General Theory, North-Holland, Amsterdam, 1960,
pp. IX, X.
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extended IFs in the real world. Only the stage on which SR applies to the real world
has shrunk. According to the EP, the best stage we can find for it is a freely falling
cabin. And it is GR that will allow us to estimate the errors incurred when using SR
in specific reference frames, such as our terrestrial labs—just as spherical geometry
allowed us to estimate the errors incurred when using plane geometry on the sphere.

1.16 Gravitational frequency shift and light bending

Einstein’s EP leads directly (that is, without the field equations of GR and also without
the photon concept) to two interesting predictions about the behavior of light in the
presence of gravity. The first is that, as light climbs up a gravitational gradient, its
frequency decreases; and the other, that light is deflected ‘ballistically’ in a parallel
gravitational field.

Of course, both these effects are intuitive once we know that light consists of
photons: We ‘only’ need to know the Planck–Einstein formula E = hν for the kinetic
energy of a photon of frequency ν, Einstein’s formula E = mIc

2 relating energy to
inertial mass, and the weak EP, mI = mG. For the work done by a gravitational field
with potential � on a particle of gravitational mass mG as it traverses a potential
difference d� is −mG d�. This must equal dE, the gain in the particle’s kinetic
energy. For a photon, dE = h dν, and so

h dν = −mG d� = −mI d� = −E

c2
d� = −hν

c2
d�,

whence
dν

ν
= −d�

c2
. (1.10)

Integrating this equation over a finite path from A to B, we find

νB

νA
= e−(�B−�A)/c2 = e−�B/c2

e−�A/c2 . (1.11)

As for light bending, we can imagine a ray of light as a stream of photons; since
these have inertial and gravitational mass, we might expect them to obey Galileo’s
principle and follow a curved path just like a Newtonian bullet traveling at velocity
c. That would make, for example, the downward curvature of a horizontal beam in
the earth’s field (with x horizontal and y up) equal to

d2y

dx2
= d2y

c2 dt2
= − g

c2
.

In units of years and light-years, c = 1, and it so happens that also g ≈ 1; which
shows that the radius of curvature of such a beam is approximately one light-year!
Already in 1801 (unknown to Einstein) the German astronomer Soldner, concerned
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Fig. 1.4

whether bending of light might vitiate the accuracy of astrometrical measurements,
had argued precisely along these lines. He wrote: ‘No one would find it objectionable,
I hope, that I treat a light ray as a heavy body . . .’. He calculated the entire orbit of a
ray grazing the edge of the sun, and correctly found just one-half, 0.′′84, of the later
relativistic value for its total ‘Newtonian’ deflection.12 But such ballistic treatment
of light is inherently inconsistent: because of energy conservation, no Newtonian
particle can travel at constant speed through a variable potential.

Einstein’s EP allows us to obtain these results purely kinematically, without
appeal to photons. Consider a freely falling cabin, say in an elevator shaft on earth
(cf. Fig. 1.4). Suppose it is released from rest at the moment when a light ray enters
its ceiling at an angle θ to the vertical and with frequency ν. If the height of the cabin
is l, the ray arrives at the floor a time l/c cos θ later, when the floor already moves
with velocity v = gl/c cos θ . An observer O at rest on that floor sees the ray arrive
with unaltered frequency ν, since the cabin is a LIF. But an observer O′ at rest in the
shaft at O’s level moves into the light relative to O with velocity v; by the classical
Doppler argument that observer therefore sees a frequency shift given by

dν

ν
= v cos θ

c
= gl

c2
= −d�

c2
,

thus confirming (1.10). Equation (1.11) follows as before.
That result (known as the gravitational frequency shift) has the important conse-

quence that standard clocks fixed in a stationary gravitational field at low potential
go slower than clocks fixed at higher potential. This can be seen as follows. Since the
rates of standards atomic clocks (for example, cesium clocks) are directly linked to

12 Pais, loc. cit., p. 200. Cf. also eqn (11.66) below.
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the frequencies of certain atoms, we may as well regard these radiating atoms them-
selves as standard clocks. So let a standard clock at some point A of low potential
(for example, on the surface of a dense planet) be seen from some point B of higher
potential, and let νA be the universal rate at which all standard clocks tick. Let the
rate at which the standard A-clock is seen to tick at B be νB. This, by (1.11), is less
than the rate νA at which the standard clock at B ticks, by the factor on the RHS.

But if the clock at A is seen to go slow, then it really does go slow. For suppose a
standard clock is taken on a trip from B to A and back to B again after a very long
stay at A, all the while being watched by the observer at B. The times observed to
elapse during the two transfers, both on the traveling clock and on another fixed at B,
can be dwarfed as a fraction of the total by simply extending the sojourn at A. Thus,
in essence, by the time it returns to B, the traveling clock has been seen to tick (and
therefore has ticked) fewer times than the clock at B, by the factor on the RHS of
(1.11). If � is chosen so as to be zero at infinity, then the retardation factor relative to
infinity at a point of (negative) potential � is exp(�/c2). One speaks of gravitational
time dilation. (But see also Exercise 4.4 below.)

Owing to this effect, the US atomic standard clocks kept since 1969 at the National
Bureau of Standards at Boulder, Colorado, at an altitude of 5400 ft, as part of the
International Atomic Time network, gain about five microseconds each year relative
to similar clocks kept at the Royal Greenwich Observatory, England, at an altitude
of only 80 ft. Since both sets of clocks are intrinsically accurate to one-tenth of a
microsecond per year, the effect is observable and is one of several that must be
corrected for.

We shall next derive a formula for the local bending of light by ‘translating’ the
shape of a ray from a freely falling cabin S to a frame S′ fixed to the earth. Let us
choose Cartesian coordinates x and y in S with the x-axis horizontal and the y-axis
straight up. In S′ let similar coordinates x′ and y′ be chosen so that the corresponding
axes of S and S′ coincide at time t = 0, which is also the time when S is released from
rest in S′. Then an argument analogous to that which led to the Galilean transformation
(1.1) would now lead to the transformation

x′ = x, y′ = y − 1
2gt2, (1.12)

if the spacetime were Newtonian. But, as we have seen, it may be curved. In that
case, purely geometric arguments allow us to estimate the possible errors incurred
in using (1.12): they are of the third or higher order in x, y, and t . (Distances in the
tangent plane differ from corresponding distances in a curved surface by quantities
of the third-order.)

Now in S, by Einstein’s EP, the ray will travel straight and with velocity c. If it
travels at an angle θ to the horizontal, its equation will be

x = ct cos θ + O(t3)

y = ct sin θ + O(t3).
(1.13)
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Why the O(t3)? Because there may be tidal forces in the cabin; only at the origin is
d2x/dt2 = d2y/dt2 = 0 guaranteed. Now all that remains to be done is to translate
(1.13) via (1.12) into S′. Thus, eliminating t, we find for the path of the ray in S′:

y′ = x′ tan θ − 1
2c−2gx′2 sec2 θ + O(x′3), (1.14)

and consequently for its curvature κ at the origin:

κ = d2y′/dx′2

[1+ (dy′/dx′)2]3/2
= − 1

c2
g cos θ, (1.15)

exactly. We conclude that the radius of curvature of the ray in the terrestrial frame is
c−2 times the component of the gravitational field normal to the ray.

That, of course, is what one also finds in Newtonian theory for the path of a particle
momentarily traveling at the speed of light. Yet earlier we mentioned that Einstein
predicted a bending of light twice as large as what one gets in Newtonian theory. That,
however, referred not to the above local bending (which is the same in all theories that
accept the EP) but to the entire path past the sun, or, in other words, to the integrated
(‘global’) bending; and here it is the general-relativistic curvature of space itself that
comes into play and doubles the result. (We shall deal with that in Chapter 11, where
also the observations will be discussed.)

Einstein’s proof of the local bending of light from the EP is really a most remarkable
argument. From the mere fact that light travels at finite speed he deduces that ‘light
has weight.’ He made absolutely no other assumption about light. All phenomena
(gravitational waves, ESP?) that propagate with finite velocity in an inertial frame
would thus be forced by gravity into a locally curved path. This suggests rather
strongly that what has been discovered here is not so much a new property of light,
but, instead, a new property of space in the presence of gravitating mass, namely
curvature: if space itself (or spacetime) were curved, all naturally straight phenomena
would thereby be forced onto curved ‘rails’. And, indeed, the rails of curved spacetime
are its geodesics, as we have seen in Section 1.14.

Exercises 1
Note: The order of the exercises (here and later) is roughly that in which the topics
appear in the text, rather than that of ascending difficulty.

1.1. Verify that the Lorentz–FitzGerald length contraction hypothesis in the old
ether theory indeed leads to the result that the two-way speed of light along any rod
moving through the ether with uniform speed v (no matter at what inclination) is
given by eqn (1.7). [Hint: only that component of the rod’s length is shortened which
is parallel to the motion.] Since this is a tricky problem, and merely of historical
interest, it may well be omitted.

1.2. If (in addition to length contraction) all clocks moving through the ether at
velocity v go slow by a factor (1− v2/c2)1/2 (‘time dilation’), deduce from (1.7) that
the measured to-and-fro speed of light in any direction in any inertial frame will be c.
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1.3. It is well known that a moving electric charge creates circular magnetic lines
of force around its line of motion, so that a stationary magnet near it experiences a
torque. Using the relativity principle, deduce that a magnet moving through a static
electric field experiences a torque tending to point it in a direction orthogonal to both
its line of motion and the electric field. Would this be easy to prove directly from the
usual laws of electromagnetism?

1.4. An electric charge moving through a magnetic field experiences a (Lorentz-)
force orthogonal to both its velocity and the field. From the relativity principle deduce
that it must therefore be possible to set a stationary charge in motion by moving a
magnet in its vicinity. Would this be easy to prove directly from the usual laws of
electromagnetism?

1.5. Give some examples of the absurdities that would result if the inertial mass of
some particles were negative. [For example, consider a negative-mass object sliding
on (or under?) a rough table.] It is for reasons such as these that mI ≥ 0 is taken as
an axiom.

1.6. A bob of gravitational mass mG and inertial mass mI is suspended by a weight-
less string of length l in a gravitational field g. Prove that the period for small
oscillations of this simple pendulum is given by 2π

√
mI/mG

√
l/g. So if this is

independent of what the bob is made of, mI/mG must be a universal constant.

1.7. An ‘elevator shaft’ is drilled diametrically through an ideally homogeneous and
spherical earth of radiusR = 6.37×108 cm and densityρ = 5.52 g cm−3. An Einstein
cabin is dropped into this shaft from rest at the surface. Two free particles, A and A′,
are initially at rest in the cabin, at the center of the ceiling and the floor, respectively.
Two others, B and B′, are initially at rest at the centers of two opposite sides. Prove
that the whole cabin relative to the shaft, as well as each of these pairs of particles
relative to the cabin, executes simple harmonic motion of period

√
3π/Gρ = 1.41 h,

G = 6.67 × 10−8 cm3 g−1 s−2 being the gravitational constant. Prove also that the
tidal acceleration between each particle pair at separation dr is (4πGρ/3) dr , equal
to that which would be caused by the gravitation of a ball of density ρ that just fits
between them, and thus equal to a fraction 1/R = 1.57×10−9 of g (the acceleration of
gravity on earth) per centimeter of separation. This shows how little the cabin diverges
from being inertial. [Hint: Use Gauss’s theorem, equating influx of the gravitational
field through a given surface to 4πG times the enclosed mass.]

1.8. Consider two identical pendulum clocks placed at different potential levels in
a given stationary gravitational field. Invent a situation where these clocks run at the
same rate as judged by mutual viewing. [Hint: Consider the inverse-square field of a
point mass.]

1.9. If a Mössbauer apparatus is capable of measuring the Doppler shift of a source
moving with a velocity of as little as 10−5 cm/s, verify that it can detect the gravi-
tational frequency shift down a 22-meter tower on earth. (As was done, in a famous
experiment at Harvard, by Pound and Rebka in 1960.) [Hint: Consider a 22-meter
freely falling cabin.]
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1.10. Prove that if the earth were a billion times denser than it is, a standard clock
on its surface would tick half as fast as at infinity.

1.11. Consider two stationary point masses, m and M , a considerable distance
apart. Use this configuration to demonstrate that two clocks, one of which is in a
stronger field than the other, can nevertheless tick at the same rate. So field strength
is clearly not a criterion for clock rate.

1.12. A freely orbiting particle passes the edge of the sun tangentially at speed c. In
Newtonian mechanics, what is its speed when it gets to infinity? [R� ≈ 7×1010cm,
M� ≈ 2× 1033gm. Answer: ∼ 0.999998c.]

1.13. Prove that the string holding a child’s helium balloon, and anchored to the
floor of an accelerating car, will lean forward in proportion to the acceleration. [Hint:
Archimedes Principle: the force of buoyancy on an object immersed in a fluid in a
gravitational field g equals minus the weight mg of the displaced fluid.]
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2

Foundations of special relativity;
The Lorentz transformation

2.1 On the nature of physical theories

It will be well to preface our detailed discussion of relativity theory with some
comments on the nature of physical laws and theories in general. According to modern
thought (largely influenced by Einstein) even the best of physical theories do not claim
to assert an absolute truth, but rather an approximation to the truth. Moreover, they are
not mere deductions from experimental facts, available to any diligent seeker cleansed
of prejudices, as was thought by Bacon in the sixteenth, and still by Mach in the twenti-
eth century. Human invention necessarily enters into the systematization of these facts.
As Einstein wrote in 1952: ‘There is, of course, no logical way to the establishment
of a theory . . . ’.1 For example, the observations of planetary orbits, by themselves,
do not imply the existence of a gravitational force. True, in Newton’s theory the
planets move as if pulled by the sun with an inverse-square force. But Newton
invented this force. There is no such force in Einstein’s general relativity; there the
planets move as straight as possible in a spacetime curved in a specific manner by
the sun.

A physical theory, in fact, is a man-made amalgam of concepts, definitions, and
laws, constituting a mathematical model for a certain part of nature. It asserts not
so much what nature is, but rather what it is like. Agreement with experiment is the
most obvious requirement for the usefulness of such a theory. However, no amount
of experimental agreement can ever ‘prove’ a theory, partly because no experiment
(unless it involves counting only) can ever be infinitely accurate, and partly because
we can evidently not test all relevant instances. Experimental disagreement, on the
other hand, does not necessarily lead to the rejection of a physical theory, unless an
equally appealing one can be found to replace it. Such disagreement may simply lead
to a narrowing of the known ‘domain of sufficient validity’ of the model. We need
only think of Newton’s laws of particle mechanics, which today are known to fail in
the case of very fast-moving particles, or Newton’s gravitational theory, which today
is known to fail for some of the finer details of planetary orbits. The ‘truer’ relativistic
laws are also mathematically more complicated, and so Newton’s laws continue to
be used in areas where their known accuracy suffices.

1 See p. 35 of R. S. Shankland, Am. J. Phys. 32, 16 (1964). See also pp. 11, 12 of Einstein’s
Autobiographical Notes in Albert Einstein: Philosopher-Scientist (ed. P. A. Schilpp), Library of Living
Philosophers, Evanston, Illinois, 1949.
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Apart from the obvious requirements of a satisfactory experimental fit, of internal
consistency, and of compatibility with other scientific concepts of the day, there
are two more characteristics of a good theory. One is conceptual or mathematical
simplicity or elegance. But it must be borne in mind that mathematical elegance often
depends on which specific mathematical formalism is used (vectors, tensors, spinors,
Clifford algebra, matrices, groups, etc.). What is elegant in one formalism may be
a mess in another! And, lastly, there is the vital requirement of falsifiability, or the
possibility of experimental disproof, as has been stressed by Popper. The better a
theory, the more predictions it will make by which it could be disproved. And as
a corollary, a theory should not allow indefinite ad hoc readjustments to take care
of each new counter-result that may be found. In this way, theories are the engines
of physics: it is the quest for their experimental falsification that drives physics on.
When too many counter-results accumulate, it is time for a new theory to be invented.

2.2 Basic features of special relativity

We are now ready to begin our detailed study of special relativity, building on the
historical introduction given in Sections 1.9 and 1.10. Special relativity (SR)—just like
Newtonian mechanics—is a prime example of a physical theory that is a mathematical
model. Already its initial fine fit with the real world and its inherent elegance (very
much as in the case of Newton’s theory) persuaded its early proponents of its enormous
potential. Most of its development came out of the mathematics rather than out of the
lab. Thus it very quickly produced striking predictions (time dilation, mass increase,
E = mc2, etc.) that went far beyond the testing capabilities of the day. Nevertheless,
as the twentieth century wore on, one after another they were all validated.

Special relativity is crucially based on the concept of inertial frames (IFs), as is
Newton’s mechanics. One can picture an inertial frame as three mutually orthogonal
straight wires (the x, y, and z axes) soldered together at the origin, with equal length
scales etched along each axis. The geometry in each IF is Euclidean and in each IF
Newton’s first law holds; gravity is assumed to be absent in SR. Further, one can
picture infinitely many such reference systems, with all possible orientations of their
axes, moving with all possible uniform velocities (but without rotation) relative to
each other—in Newton’s theory. In SR there is a speed limit: all relative velocities
between IFs are less than c. In Newton’s theory all inertial reference systems share the
same universal (‘absolute’) time and are necessarily related by Galilean transforma-
tions. The crucial mathematical discovery that made SR possible was that, if one is
willing to give up the idea of absolute time (and Einstein had the courage to do this!),
then a whole new family of transformation groups becomes possible, still allowing
Newton’s first law and Euclidean geometry to hold in each IF, and still respecting the
relativity principle, namely the complete equivalence of all IFs. These are the various
Lorentz transformation (LT) groups, each characterized by exactly one finite invariant
speed; that is, a speed that transforms into the same speed in all IFs. The Galilean
transformation turns out to be that limiting LT which transforms infinite speeds (in
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other words, linear sets of simultaneous events) in one IF into infinite speeds in every
other IF, which proper LTs do not. Of course, Einstein picked that LT group which
leaves the speed of light invariant—exactly the content of his second axiom.

The above 3-dimensional picture of IFs as reference triads flying through space
received a new 4-dimensional interpretation by the mathematician Minkowski as
early as 1907. Minkowski’s view corresponds to a movie of the universe that has been
cut up into its separate frames and then stacked to make a 4-dimensional spacetime,
whose points are called events. Higher up in the stack corresponds to later in time.
This spacetime has many interesting and useful properties, such as something akin to
a distance between any two of its points. Many of these properties degenerate when
there is an absolute time; that is, when the stack foliates uniquely into world-wide
moments. For this reason a certain 4-dimensional ‘metric’ vector- and tensor-calculus
in special-relativistic spacetime becomes essentially useless in Newton’s theory. But
in SR that is the formalism in terms of which the theory becomes most elegant.
However, the pre-Minkowskian 3-D view of triads flying through space should not
be disdained. It is the view we shall elaborate until Chapter 5. In order to become an
efficient problem solver in SR one eventually has to learn to switch effortlessly from
one point of view to the other and pragmatically pick what is best from either.

Special relativity is thus, to start with, the theory of space and time in a world filled
with Lorentz-related IFs. This includes results like time dilation, length contraction,
relativistic velocity addition, the existence of a speed limit, the relativistic kinematics
of waves, etc. But, as we have remarked before, since classical physics plays out on
a background of space and time, one cannot change that background (in the model)
without adapting the rest of physics to it. And, of course, just like the spacetime
background, the new physics must satisfy the relativity principle (RP). Most physical
laws make reference not only to length and time, but also to non-kinematic quantities
like forces, fields, masses, etc. Additional axioms must specify how these quantities
transform from one IF to another. (Recall the axioms of force and mass invariance
in Newton’s theory.) To satisfy the RP, the mathematical statement of each law must
then transform into itself under LTs.

So, altogether, SR is Lorentz-invariant physics. Newton’s mechanics is Galileo-
invariant but not Lorentz-invariant, and thus it is inconsistent with SR. It was the
program of SR to review all existing laws of physics and to subject them to the test
of the RP with the help of the LTs. Any law found to be lacking must be modified
accordingly. It is rather remarkable that, in the mathematical formalism of SR, most
of the new laws were neither very difficult to find nor in any way less elegant than
their classical counterparts.2

But let us stress once more the model aspect that relativity shares with all other
physical theories. Special relativity is the theory of an ideal physics in a hypothetical
set of infinite Euclidean inertial frames free of gravity, each perfectly homogeneous
and isotropic for all physical phenomena. The basic laws of this physics are assumed

2 However, in some modern areas such as the quantum theory of interacting systems, there still remain
fundamental difficulties with the relativistic formulation.
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to hold in these frames in their simplest forms—idealizations of the laws observed
in our imperfect terrestrial laboratories. As we have seen in Chapter 1, we do not
expect to find such extended or perfect inertial frames in nature. It is the equivalence
principle that provides the bridge between the ideal SR model and the real world.
According to it, we can find at each event a set of local inertial frames (LIFs), which
may be small or large depending on (i) the distribution of nearby masses, and (ii) the
accuracy we require. It is to these frames (or other frames not differing too much from
these frames) that SR is applied in practice, and with great success. As we mentioned
earlier, there is a close analogy between SR as applied to LIFs and Euclidean plane
geometry as applied to small portions of a curved surface. As abstract theories, SR
and plane geometry are global and exact. But as applied to the real world or to a
curved surface, respectively, both are local and approximative.

2.3 Relativistic problem solving

Apart from leading to new laws, SR leads to a useful technique of problem solving,
namely the possibility of switching inertial reference frames. This often simplifies a
problem. For although the totality of laws is the same, the configuration of the problem
may be simpler, its symmetry enhanced, its unknowns fewer, and the applicable subset
of laws more convenient, in a judiciously chosen inertial frame. In the present section
we shall illustrate the flavor and the power of many of the relativistic arguments to
follow. To make it simple and transparent, we consider two Newtonian examples. (An
Einsteinian version of the first will be given later, in Section 6.5.)

First, then, we wish to prove from minimal assumptions the result, familiar to
billiard players, that if a stationary and perfectly elastic ball is struck by another
similar one, then the diverging paths of the two balls after collision will subtend a
right angle. If the incident ball travels at velocity 2v, say, relative to the table, let us
transfer ourselves to an inertial frame traveling in the same direction with velocity
v. In this frame the two balls approach each other symmetrically with velocities
±v [see Fig. 2.1(a)], and the result of the collision is clear: simply by symmetry, the
rebound velocities must be equal and opposite (±u, say), and by the time-reversibility
of Newton’s laws, they must be numerically equal to v (that is, u = v). With this
information, we can revert to the frame of the table, by adding v to all the velocities
in Fig. 2.1(a), thus arriving at Fig. 2.1(b).

Here the rebound velocities are evidently v ± u, and the simple expedient of
drawing a semicircle centered at the tip of the arrow representing v makes the desired
result self-evident, by elementary geometry. Alternatively, we have (v+u) ·(v−u) ≡
v2−u2 = 0, which also shows that the vectors v ± u are orthogonal. Of course, once
we know about momentum and energy conservation, we do not need the relativistic
detour.

As a second example, consider the familiar exercise machine called a treadmill.
An endless belt connects two rollers at an incline θ (see Fig. 2.2). A motor drives the
belt at speed v and an exerciser of mass m walks uphill, staying at constant height.
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At what rate is he working? The component of his weight along the belt is mg sin θ

and that is the force his driving leg applies at velocity v. Hence the rate of work is
mg sin θ · v. But, more simply, let us look at this problem in the IF attached to the top
belt. Forces are invariant in Newton’s theory, so there is still a vertical gravitational

Fig. 2.2
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field g. The man is now gaining height and therefore potential energy, the latter at the
rate mg · v sin θ , which must equal his the rate of work. Notice the coming into play
of different parts of Newton’s theory in the two inertial frames! (For further examples
of Newtonian relativity, see Exercises 2.1–2.5.)

It was Einstein’s recognition of the fact that arguments of a similar nature were
apparently possible also in electromagnetism that significantly influenced his progress
towards SR. At the beginning of his 1905 paper he discusses the apparent relativity of
electromagnetic induction. And as late as 1952 (in a letter to a scientific congress), we
find him writing: ‘What led me more or less directly to the special theory of relativity
was the conviction that the electromagnetic force acting on a [charged] body in motion
in a magnetic field was nothing else but an electric field [in the body’s rest-frame].’3

2.4 Relativity of simultaneity, time dilation and
length contraction: a preview

Very soon we shall derive these three effects quantitatively by calculation from the
Lorentz transformation. But here it will be our aim to see intuitively (from a simple
thought experiment) why they must arise in special relativity.

According to Einstein’s second axiom, light in every inertial frame behaves like
light in Maxwell’s ether. If light is sent from stationary clock A to stationary clock B
over a distance L, the arrival time at B is L/c units later than the emission time at A.
If light is emitted half-way between A and B, the arrival times at A and B are equal.
Now suppose we are in an IF and a fast airplane flying overhead constitutes a second
IF; let it be the top plane in Fig. 2.3(a). Suppose that a flash-bulb goes off in the exact
middle of its cabin. Then the passengers at the front and back of the cabin will see the
flash at the same time, say when their clocks or watches read ‘3’. But now consider
the progress of this same flash in our IF. Here, too, the light travels with equal speed
fore and aft. Here, too, the flash occurred exactly half-way between the front and
back of the plane. (For, surely, the two halves of the plane will be considered to be
of equal length by us.) But now the rear passengers, who travel into the signal, will
receive it before the front passengers who travel away from the signal. The top of
Fig. 2.3(a) is a snapshot of that plane taken in our IF when the signal hits the back
of the cabin. We know the rear clock then reads 3. But since the signal has not yet
reached the front, the front clock will read less than 3, say 1 (in units very much
smaller than seconds!). These two different clock readings are simultaneous events
in our IF. Thus simultaneity is relative!

Now add a second identical plane to the argument, traveling at the same speed but
in the opposite direction. Suppose the two planes were just level with each other [as
in Fig. 2.3(a)] at the instant in our frame when we took our snapshot. By symmetry,
the second plane’s clocks in that snapshot will also read two units apart, say again 3
in back and 1 in front, if their zero-settings are suitably adjusted. But this implies that

3 See p. 35 of R. S. Shankland, Am. J. Phys. 32, 16 (1964).
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Fig. 2.3

the bottom plane sees the top plane fully alongside of it from time 1 to time 3, as in
Fig. 2.3(b), which is drawn for a relative speed that produces a shortening by 1/3.
Here we have the phenomenon of length contraction.

Lastly, consider the instant in our IF when the rear ends of the two planes pass
each other. We know from Fig. 2.3(b) that this will happen when the rear clock of the
bottom plane reads ‘4’. (It would read ‘5’ had we assumed a shortening by 1/2, etc.)
Clearly we expect the front and back clocks in each plane still to read two units apart.
So, by symmetry, in both planes they now read 4 and 2, as in Fig. 2.3(c). Observe
from Figs 2.3(a) and (c) that the passage of the rear clock of the top plane along the
length of the bottom plane takes only one unit of time by its own reading, but three
units (from time 1 to time 4) by the reckoning of the bottom plane. So the bottom
plane considers this moving clock to go slow by the same factor 1/3 as for length
contraction. This is the phenomenon of time dilation. Note the perfect symmetry
between the two planes: each is the shorter and has the slower clocks by the other’s
estimation.

2.5 The relativity principle and the homogeneity and
isotropy of inertial frames

Each ideal inertial frame is perfectly symmetric. By that we mean that each IF is
spatially homogeneous and isotropic not only in its Euclidean geometry, but for all of
physics, and that it is temporally homogeneous, too. In other words, a given physical
experiment can be set up anywhere in an IF (homogeneity), face in any direction
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(isotropy), be repeated at any time (temporal homogeneity)—and the outcome will
be the same.

All this is a direct consequence of the relativity principle. To see this, let us make a
logical distinction between inertial frames and inertial coordinate systems (a distinc-
tion which later we shall generally ignore). The former are mere extensions (real or
imagined) of non-rotating uniformly moving rigid bodies in a world without gravity,
as in SR. An inertial coordinate system is such an IF plus, in it, a choice of standard
coordinates x, y, z, t in standard units. For a given frame these systems differ from each
other at most by spatial rotations and translations and time translations. Now, strictly
speaking, Einstein’s RP concerns inertial coordinate systems: the laws of physics
are invariant under a change of inertial coordinate system. So we see at once that
this equivalence of coordinate systems, when applied to just one IF, guarantees the
homogeneity and isotropy of that IF.

It is perhaps less well known that, conversely, the homogeneity and isotropy of all
inertial frames implies the RP, as has been especially stressed by Dixon. So it is really
a question of taste which of the two is taken as axiom and which as consequence.
One demonstration of this depends on the simple midframe lemma which asserts
that ‘between’ any two inertial frames S and S′ there exists an inertial frame S′′
relative to which S and S′ have equal and opposite velocities. For proof, consider
a one-parameter family of inertial frames moving collinearly with S and S′, the
parameter being the velocity relative to S. It is then obvious from continuity that
there must be one member of this family with the required property (see Fig. 2.4).
Now imagine two intrinsically identical experiments E and E′ being performed in
S and S′, respectively. We can transform E′, by a spatial translation and rotation
and a temporal translation, in S′, into a position where it differs from E only by
a 180◦ rotation in S′′. Thus, by the assumed homogeneity and isotropy of S′ and
S′′, the outcome of E and E′ must be the same, which establishes Einstein’s RP in
its following alternative form: the outcome of any physical experiment is the same
when performed with identical initial conditions relative to any inertial coordinate
system.

We may note that temporal homogeneity implies (at least in special relativity) that
all methods of time-keeping based on repetitive processes are equivalent, and it denies
such possibilities (envisaged by Milne) as that inertial time (relative to which free

Fig. 2.4
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particles move uniformly) falls out of step over the centuries with atomic time; for
example, that indicated by a cesium clock.

As just another application of the midframe lemma, we end this section with a proof
of the obvious-seeming ‘reciprocity theorem’ which asserts of any pair S and S′ of iner-
tial frames, using identical standards of length and time, that each ascribes the same
velocity to the other. For the manipulation performed in S to determine the velocity of
S′ can be regarded as an experiment in the midframe S′′. By a suitable 180◦-rotation
in S′′ this experiment is transformed into a manipulation in S′ for determining the
velocity of S. And by the assumed isotropy of S′′, the two outcomes must be the same.

2.6 The coordinate lattice; Definitions of simultaneity

The main formal task of the present chapter is to derive the Lorentz transformation
equations. These equations constitute the mathematical core of SR. But before we
transform coordinates from one frame to another, it will be well to clarify how they
are assigned in a single IF, at least conceptually.

First of all, we need universal units of time and of length. In this age of atoms
it makes good sense to fall back on atomic frequencies and wavelengths to provide
these units. Thus in 1967 the (international) General Conference of Weights and
Measures (CGPM-1967) defined the second as follows: ‘The second is the duration
of 9 192 631 770 periods of the radiation corresponding to the transition between the
two hyperfine levels of the ground state of the cesium-133 atom.’ The international
standard of length had been defined back in 1960 in terms of the wavelength of a
certain line in the spectrum of krypton-86. More recently, however, it has become
clear that the precision available from the krypton-86 line is surpassed by the precision
with which, on the one hand, the second, and, on the other hand, the speed of light
are determinable. Thus, demonstrating its complete confidence in special relativity,
CGPM-1983 re-defined the meter as the distance traveled by light in vacuum in a time-
interval of 1/299 792 458 of a second. Note that, consequently, the speed of light is
and remains precisely 299 792 458 meters per second; improvements in experimental
accuracy will modify the meter relative to atomic wavelengths, but not the value of
the speed of light! By the RP, the above units can be reproduced in each IF.

The standard spatial coordinates for inertial frames are orthonormal Cartesian coor-
dinates x, y, z. To assign these to events, the ‘presiding’ observer at the origin of an
inertial frame needs to be equipped only with a standard clock (for example, one
based on the vibrations of the cesium atom), a theodolite, and a means of emitting
and receiving light signals. The observer can then measure the distance of any particle
(at which an event may be occurring) by the radar method of bouncing at light-echo
off that particle and multiplying the elapsed time by 1

2c. Angle measurements with the
theodolite on the returning light signal will serve to determine the relevant (x, y, z)
once a set of coordinate directions has been chosen. The same signal can be used to
determine the time t of the reflection event at the particle as the average of the time
of emission and the time of reception.
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But conceptually it is preferable to precoordinatize the frame and to read off the
coordinates of all events locally. For this purpose we imagine minute standard clocks
placed at rest at the vertices (mε, nε, pε) of an arbitrarily fine orthogonal lattice of
thin rods, where m, n, p run over the integers and ε is arbitrarily small. The spatial
coordinates of these clocks can be engraved upon them. To synchronize the clocks it
is sufficient to emit a single light signal from the origin, say at time t0: each lattice
clock is set to read t0 + r/c as the signal passes it, where r is its distance from the
origin. Once this calibration is in place, we can read off the coordinates of any event
by simply looking at the nearest clock.

In Maxwell’s ether frame the above procedure for synchronizing clocks with a
single control signal from the origin would clearly be satisfactory; in SR every IF is
as good as Maxwell’s ether frame, so here too the method is satisfactory. But what is
satisfactory? What do we require of a ‘good’ time coordinate? In general relativity, for
example, directly meaningful time (and space) coordinates generally do not exist, and
the coordinates are just arbitrary labels for events. But in SR, as in Newton’s theory,
the symmetry of the inertial frames allows us to choose meaningful coordinates (our
‘standard coordinates’) and it pays us to do so. In particular, the time coordinate t can
be chosen so that the mathematical expression of the physical laws reflects their inher-
ent symmetries. Already Newton’s first law then fixes the time rate up to a constant
multiplier (that is, up to a unit) to be such that equal spatial increments along a free
path correspond to equal time increments. A non-linear scale change away from t , like
t 
→ t ′ = sinh t , would destroy this correspondence, and the appearance of temporal
homogeneity in general. While adhering to this preferred rate of time, we could still
make a non-universal change of zero-point, like t 
→ t ′ = t + kx (k = const > 0).
But this would destroy the appearance of spatial isotropy. For example, any given
rifle would then shoot bullets faster in the negative x-direction than in the positive
x-direction (that is, with greater coordinate velocity dx/dt). From this point of view, a
‘good’ standard time is unique, except for changes of rate and zero-point by constants
only.

In Newton’s theory the clocks of any IF can simply ‘take over’ the time from
absolute space, and a time that is satisfactory in the above sense will then result in
each IF (‘universal time’). Not so in SR, where what is a satisfactory time for one IF
turns out to be, if taken over directly, isotropy-violating and unit-violating in another
IF. Hence the need to synchronize the clocks independently in each IF; for example,
by the light-signaling method described above.

But in spite of the traditional and conceptually very convenient use of light signals
in the usual presentations of SR, SR is logically quite independent of the existence
of light signals, or indeed of any real-world effect that travels at the speed of light.
If light were banished from the world, SR would survive. Its success in high-speed
mechanics alone would justify it, and with it the LTs. The latter leave invariant the
velocity c, which at the same time acts (as we shall see) as a kind of speed limit.
But whether anything physical actually travels at speed c is really irrelevant for the
logic of the theory. Such theoretical arguments as those of our Section 2.4 could
be pushed through with imagined geometrical points traveling with velocity c. And
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for the synchronization of clocks in each IF we could use alternative ‘signals’. For
example, the observer at the origin could shoot standard cannon balls from standard
cannons in all directions at time t0. When one of these balls passes a lattice point at
distance r , its clock is set to read t0 + r/u, u being the muzzle velocity of the cannons.
Obviously this synchronization is equivalent to that using light, since it would be so
in absolute space, and since in SR every inertial frame is as good as absolute space.

2.7 Derivation of the Lorentz transformation

In the last section we described methods for assigning coordinates (x, y, z, t) to events
in any inertial frame, based on universal units of length and time. Such coordinates
are called standard coordinates for an IF. We shall now consider the transformation
(x, y, z, t) 
→ (x′, y′, z′, t ′) of the standard coordinates of a given event from one
inertial frame S to another, S′. To start with, the transformation must be linear, as
can be proved in many ways—for example, from Newton’s first law and temporal
and spatial homogeneity: Consider a standard clock C freely moving through S, its
motion being given by xi = xi(t), where xi(i = 1, 2, 3) stands for (x, y, z). Then
dxi/dt = const. If τ is the time indicated by C itself, homogeneity requires the
constancy of dt /dτ . (Equal outcomes here and there, now and later, of the experiment
that consists of timing the ticks of a standard clock moving at constant speed.) Together
these results imply dxµ/dτ = const and thus d2xµ/dτ2 = 0, where we have written
xµ(µ = 1, 2, 3, 4) for (x, y, z, t). In S′ the same argument yields d2x′µ/dτ2 = 0. But
we have

dx′µ
dτ
=
∑ ∂x′µ

∂xν

dxν

dτ
,

d2x′µ
dτ 2

=
∑ ∂x′µ

∂xν

d2xν

dτ 2
+
∑ ∂2x′µ

∂xν∂xσ

dxν

dτ

dxσ

dτ
.

Thus for any free motion of such a clock the last term in the above line of equations
must vanish. This can only happen if ∂2x′µ/∂xν∂xσ = 0; that is, if the transformation
is linear.

An immediate consequence of linearity is that all the defining particles (that is,
those at rest in the lattice) of any inertial frame S′ move with identical, constant
velocity through any other inertial frame S. For suppose that the coordinates of S and
S′ are related by

xµ =
(∑

Aµνx
′
ν

)
+ Bµ.

Then setting x′i = const (i = 1, 2, 3) for a particle fixed in S′, we get dt = A44 dt ′,
dxi = Ai4 dt ′, and thus dxi/dt = Ai4/A44 = const, as asserted. The defining
particles of S′ thus constitute, as judged in S, a rigid lattice whose motion is fully
determined by the velocity of any one of its particles.

Another consequence of linearity (plus symmetry) is that the standard coordinates
in two arbitrary inertial frames S and S′ can always be chosen so as to be in standard
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configuration with each other (as in Fig. 1.1). It is clearly always possible (i) to choose
the line of motion of the spatial origin of S′ as the x-axis of S, and (ii) to choose the
zero points of time in S and S′ so that the two origin clocks both read zero when they
pass each other. Next, any two orthogonal planes intersecting along the x-axis can
serve as the coordinate planes y = 0 and z = 0 of S. By the result of the preceding
paragraph, these two planes, fixed in S, plus the moving plane x = vt (v being the
velocity of S′ relative to S) correspond to plane sets of particles fixed in S′. Moreover,
the planes y = 0 and z = 0 must also be regarded as orthogonal in S′, otherwise the
isotropy of S (in particular, its axial symmetry about the x-axis) would be violated.
So we can take these planes as the coordinate planes y′ = 0 and z′ = 0, respectively,
of S′. Similarly x = vt must be regarded as orthogonal to the x′-axis in S′, otherwise
the projection of that axis on to that plane would violate the isotropy of S. Hence we
can take x = vt as x′ = 0. In what follows, therefore, we assume S and S′ to be in
standard configuration.

The transformation between any pair of inertial frames in standard configuration,
with the same v, must be the same, by the RP (as applied to the first frame in each pair).
Suppose, then, we reverse the x- and z-axes of both S and S′. Referring to Fig. 1.1,
and recalling the reciprocity theorem established at the end of Section 2.5, we see
that this operation produces an identical pair or IFs with the roles of the ‘first’ and
‘second’ interchanged. So if we then interchange primed and unprimed coordinates,
the transformation equations must be unchanged. In other words, the transformation
must be invariant under what we shall call an xz reversal:

x ↔ −x′, y ↔ y′, z↔ −z′, t ↔ t ′. (2.1)

Obviously, the same holds for an xy reversal.
Now, by linearity, y′ = Ax + By + Cz + Dt + E, where the coefficients are

constants, possibly depending on v. Since, by our choice of coordinates, y = 0 must
entail y′ = 0, A, C, D, E must all vanish, whence y′ = By. Applying an xz reversal
yields y = By′ and so B = ±1. But v → 0 must continuously lead to the identity
transformation and thus to y′ = y, whence B = 1. The argument for z is similar, and
so we arrive at the two ‘trivial’ members of the transformation,

y′ = y, z′ = z (2.2)

just as in the Newtonian case, and for the same reasons.
Next, suppose x′ = γ x +Fy +Gz+Ht + J , where in conformity with standard

usage we have denoted the first coefficient by γ . By our choice of coordinates, x = vt

must imply x′ = 0, so γ v +H, F, G, J all vanish and

x′ = γ (x − vt). (2.3)

An xz reversal then yields
x = γ (x′ + vt ′). (2.4)
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At this stage Newton’s axiom t ′ = t would lead from (2.3) and (2.4) to γ = 1 and
x′ = x− vt ; that is, to the GT (1.1). Instead, we now appeal to Einstein’s law of light
propagation. According to it, x = ct and x′ = ct ′ are valid simultaneously, being
descriptions of the same light signal in S and S′. Substituting these expressions into
(2.3) and (2.4) we get the equations ct ′ = γ t (c − v) and ct = γ t ′(c + v), whose
product, divided by t t ′, yields

γ = γ (v) = 1

(1− v2/c2)1/2
. (2.5)

Since v→ 0 must lead to x′ = x continuously, we see from (2.3) that we must choose
the positive root in (2.5). This is the famous ‘Lorentz factor’. Its graph is shown in
Fig. 2.5. Note its slow initial increase and its asymptote at v = c; v ≥ c leads to
unphysical transformations, a first hint of the relativistic speed limit.

The elimination of x′ between (2.3) and (2.4) finally leads to the most revolutionary
of the four transformation equations,

t ′ = γ (t − vx/c2).

Thus, collecting our results, we have found the standard Lorentz transformation
equations

x′ = γ (x − vt), y′ = y, z′ = z, t ′ = γ (t − vx/c2), (2.6)

with γ as given by (2.5).
Since in the above derivation we have used Einstein’s postulates only specifically,

we must still check whether the transformation (2.6) respects them generally. First,
the linearity of the transformation implies that any uniformly moving point transforms
into a uniformly moving point. This, incidentally, recovers the invariance of Newton’s
first law, but, of course, it also applies to light signals. Next, one easily derives from
(2.6) the enormously important fundamental identity [see also after eqns (2.16) below]

c2 dt ′2 − dx′2 − dy′2 − dz′2 = c2 dt2 − dx2 − dy2 − dz2. (2.7)
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Now, the distance dr between neighboring points in a Euclidean frame S is given by
the ‘Euclidean metric’

dr2 = dx2 + dy2 + dz2. (2.8)

From identity (2.7) it then follows that dr2 = c2 dt2 (which is characteristic of any
effect traveling at the speed of light) implies dr ′2 = c2 dt ′2 and vice versa. So the
Euclidicity of the metric and the general invariance of the speed of light are jointly
respected by the LT.

And secondly, in our derivation of the LT, we have used the relativity principle only
for the xz reversal. To show its full incorporation, we must verify that the LTs form
a group—which is postponed to (viii) of the following section.

If a law of physics is invariant under the standard LT (2.6), and under spatial
rotations, spatial translations and time translations, then it is invariant between any two
inertial coordinate systems, no matter how oriented. For the general transformation
between two inertial frames S and S′, whose coordinates are standard but not in
standard configuration with each other, can be broken down into a product of such
transformations: Rotate the x-axis of S to be parallel to the velocity v of S′, thus
arriving at a frame S̃; next apply a standard LT with velocity v to S̃ to arrive at S̃̃,
whose defining particles coincide with those of S′; a spatial rotation, and a spatial and a
temporal translation (at most) will finally bring S̃̃into S′. The resultant transformation
is called a general Lorentz transformation, or a Poincaré transformation. It is, of
course, linear, since each link in this chain of transformations is linear.

In today’s terminology (which we may not always strictly follow) it has become
customary to include reflections (x 
−→ −x, etc.) in the definition of Poincaré and
general Lorentz transformations, and to restrict the term Lorentz transformation to
homogeneous Poincaré transformations (those without translations.)

In our derivation of the transformation equations allowed by the RP we saw that
with Newton’s ‘second axiom’ t ′ = t one arrives at the GT, while with Einstein’s
second axiom c = invariant one arrives at the LT. We shall postpone (but not for
long, only to Section 2.11) the proof that these two ‘second axioms’ exhaust the
possibilities.

Lastly, a remark about the xy and xz reversals we used in the derivation of the LT.
Their advantage was that they do not involve v when one has no a priori knowledge of
the velocity dependence of the coefficients in the LT. But in future we shall find another
symmetry more useful: Any relativistic transformation formula relating unprimed and
primed quantities (from S and S′ respectively) remains valid when v is replaced by
−v and primed and unprimed quantities are interchanged. We call this a v reversal.
The reason for its validity is that just as reversing the x- and z-axes of a pair of frames
in standard configuration reverses their roles, so also does the mere reversing of v.
For S then moves with velocity v along the x′-axis of S′. So whatever formula was
originally true for primed in terms of unprimed quantities is now true for unprimed in
terms of primed. As an example, let us apply a v reversal to the transformation (2.6),
thus obtaining the inverse transformation

x = γ (x′ + vt ′), y = y′, z = z′, t = γ (t ′ + vx′/c2), (2.9)
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which, of course, can also be found directly by algebra (or, alternatively, by an xy or
xz reversal). A v reversal can often save a great deal of algebra.

2.8 Properties of the Lorentz transformation

(i) Relativity of simultaneity: The most striking new feature of the Lorentz transforma-
tion is the transformation of time, which exhibits the relativity of simultaneity; events
with equal t do not necessarily correspond to events with equal t ′. (For a view of t ′
clocks from another frame, see Fig. 3.2, Section 3.5.)

(ii) Symmetry in x and ct: Equations (2.6) are symmetric not only in y and z but
also in x and ct . (The reader can verify this by writing T/c for t and T ′/c for t ′ in (2.6)
and multiplying the first equation by c.) In what follows we shall often find ct a more
convenient variable than t itself.

(iii) Lorentz factor: For v �= 0 the Lorentz factor γ is always greater than unity,
though not by much when v is small. For example, as long as v/c � 1/7 (at which
speed the earth is circled in one second), γ is less than 1.01; when v/c = √3/2 =
0.866, γ = 2; and when v/c = 0.99 . . . 995 (2n nines), γ is approximately 10n. The
following are frequently used identities satisfied by the Lorentz factor:

γ v = c(γ 2 − 1)1/2, c2 dγ = γ 3v dv = γ 3v · dv,

d(γ v) = γ 3 dv.
(2.10)

They are particularly needed later when γ (v) becomes associated with a particle
moving arbitrarily at velocity v. The proofs are left as an exercise to the reader.

(iv) Newtonian limit: The Lorentz transformation replaces the older Galilean trans-
formation, to which it nevertheless approximates when v/c is small. This accounts for
the high accuracy of Newtonian mechanics (invariant under the Galilean transforma-
tion) in describing a large domain of nature. Note also that the two transformations
become identical, as one would expect, if we let c formally tend to infinity. This
occasionally provides a useful check on relativistic formulae.

(v) Only one invariant speed: Any effect whose speed in vacuum is always the
same could have been used to derive the Lorentz transformation, as light was used
in our derivation. Since only one transformation can be valid, it follows that all such
effects (weak gravitational waves, ESP?) must propagate at the speed of light.

(vi) Difference and differential versions: If �x, �y, etc., denote the finite coordi-
nate differences x2 − x1, y2 − y1, etc., corresponding to two events �1 and �2, then
by substituting the coordinates of �1 and �2 successively into (2.6) and subtracting,
we get the following transformation:

�x′ = γ (�x − v�t), �y′ = �y, �z′ = �z,

�t ′ = γ (�t − v�x/c2).
(2.11)
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If, instead of forming differences, we take differentials in (2.6), we obtain equations
identical with the above but in the differentials:

dx′ = γ (dx − v dt), dy′ = dy, dz′ = dz,

dt ′ = γ (dt − v dx/c2).
(2.12)

Analogous formulae arise from the inverse transformation (2.9). Thus the finite coordi-
nate differences, as well as the differentials, satisfy the same transformation equations
as the coordinates themselves. This, of course, is always the case with linear homoge-
neous transformations. Each form has its uses. The original form serves to transform
single events and also whole families of events. The delta form is surprisingly often
useful, but one must be very clear in one’s mind as to precisely which two events are
being considered. And the differential form is useful for problems of particle motion.

(vii) Squared displacement: It follows from (vi) that together with (2.7) we must
also have

c2�t ′2 −�x′2 −�y′2 −�z′2 = c2�t2 −�x2 −�y2 −�z2 (2.13)

and
c2t ′2 − x′2 − y′2 − z′2 = c2t2 − x2 − y2 − z2 (2.14)

under a standard Lorentz transformation. But then, by our remarks on the decom-
position of Poincaré transformations in the last section, and since time and space
translations leave all the �- and d-terms unchanged while rotations preserve the spa-
tial and temporal parts of (2.7) and (2.13) separately, these two identities hold even
under Poincaré transformations; that is, between any two inertial coordinate sys-
tems. [Identity (2.14) holds only in the absence of translations.] Conversely, it can
be shown that Poincaré transformations are the most general transformations which
satisfy (2.7).4 That identity, therefore, concisely characterizes Poincaré transforma-
tions, just as the invariance of the differential form (2.8) characterizes the rotations,
translations and reflections of Euclidean 3-space.

The common value of the two quadratic forms in (2.13) is defined as the squared
displacement �s2 between the two events in question:

�s2 := c2�t2 −�x2 −�y2 −�z2. (2.15)

It can evidently be positive, negative, or zero, and so it must not be thought of as
the square of an ordinary number. It is, in fact, as we shall see later, the square of a
4-vector, hence the bold type. The square root of its absolute value, written �s, is
often called the interval.

(viii) Group properties: The standard Lorentz transformation (with ct as the fourth
variable) has unit determinant, as can easily be verified, and it possesses the two
so-called group properties, symmetry and transitivity, without which it could not

4 cf. W. Rindler, Special Relativity, Oliver & Boyd, Edinburgh 1966, p. 17.
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consistently apply to all pairs of IFs. We have already seen that the inverse of a Lorentz
transformation is another Lorentz transformation (‘symmetry’), with parameter −v

instead of v. Also, it is found that the resultant of two Lorentz transformations with
parameters v1 and v2, respectively, is another Lorentz transformation (‘transitivity’)
with parameter v = (v1 + v2)/(1 + v1v2/c

2). [The direct verification of this is
a little tedious; a more transparent proof is indicated after eqns (2.16).] Thus the
standard Lorentz transformations constitute a group. The same is true of the Poincaré
transformations, as can be seen at once if we accept here without proof that they are
fully characterized by (2.7). As a result, when two frames are each related to a third
by Poincaré transformations, they are so related to each other (by transitivity through
the third). In Lorentz’s ether theory, where each IF is primarily Poincaré related to
the ether frame, the IFs are thus necessarily also Poincaré related to each other.

2.9 Graphical representation of the Lorentz transformation

In this section we concern ourselves solely with the transformation behavior of x

and t under standard LTs, ignoring y and z which in any case are unchanged. What
chiefly distinguishes the LT from the classical GT is the fact that space and time
coordinates both transform, and, moreover, transform partly into each other: they get
‘mixed,’ rather as do x and y under a rotation of axes in the Cartesian x, y plane.
We have already remarked on the formal similarity of the invariance of (2.15), which
characterizes general LTs, to that of (2.8), which characterizes rotations. But in spite
of the similarities, the character of a LT differs significantly from that of a rotation.
This is brought out well by the graphical representation.

Recall first that there are two ways of regarding any transformation of coordinates
(x, t) into (x′, t ′). Either we think of the point (x, t) as moving to a new position
(x′, t ′) on the same set of axes; that is, we regard the transformation as a motion in x,
t space; this is the ‘active’ view. Or we regard (x′, t ′) as merely a new label of the old
point (x, t); this is the ‘passive’ view, whose graphical representation we shall discuss
first. (See Fig. 2.6.) The events, once marked relative to a set of x, t axes, remain fixed;
only the coordinate axes change. For convenience we choose units in which c = 1
(such as years and light-years, or seconds and light-seconds). We draw the x- and
t-axes corresponding to the frame S orthogonal, with t taking the place of the usual y.
This orthogonality is just another convenience without physical significance. Our
2-dimensional diagram, with one dimension taken up by time, has room only to map
whatever is going on along the spatial x-axis of S (that is, one of the three mutually
orthogonal ‘wires’ of the reference triad, not to be confused with the spacetime x-axis,
like the one in Fig. 2.6). Under the standard LT here considered, S′ shares its spatial
x-axis with S. In fact, the diagram can describe whatever happens along this common
spatial axis as seen by any number of frames in standard configuration with S.

Any curve representing a continuous one-valued function x = f (t) in the x, t

plane corresponds to the motion of some geometric point along the spatial x-axis. It
is called the worldline of the moving point. The slope of such a line relative to the
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Fig. 2.6

t-axis, dx/dt , measures the velocity of the point in S. Not all such lines are possible
histories of real particles, since the latter must obey the relativistic speed limit (as we
shall see in Section 2.10). So the inclination to the vertical of a particle worldline can
nowhere exceed 45◦.

‘Moments’ in S have equation t = const and correspond to horizontal lines, while
the worldline of each fixed point on the spatial x-axis of S corresponds to a vertical
line, x = const. Similarly, moments in S′ have equation t ′ = const and thus, by (2.6),
t−vx = const; so in our diagram they correspond to lines with slope v. In particular,
the x′ axis (t ′ = 0) corresponds to t = vx. Again, worldlines of fixed points on the
spatial x′ axis have equation x′ = const and thus, by (2.6), x − vt = const. In our
diagram they are lines with slope v relative to the t axis. In particular, the t ′ axis
(x′ = 0) corresponds to x = vt . Thus the axes of S′ subtend equal angles with their
counterparts in S; but whereas in rotations these angles have the same sense, in LTs
they have opposite sense. S′ can have any velocity between −c and c relative to S;
the corresponding x′- and t ′-axes in the diagram are like scissors pointing NE (in the
direction marked ξ ), fully open for v→−c, closed for v→ c.

We have already tacitly assumed the x- and t-axes in the diagram to be equally
calibrated; for example, 1 cm corresponding to 1 s on the t-axis and to 1 lt-s on the
x-axis. (In fact, the vertical axis is often taken to be ct , so that the units are naturally
the same.) For calibrating the primed axes (not quite as straightforward as in the case
of rotations) we observe that for standard LTs (where y′ = y, z′ = z) and with c = 1,
(2.14) reduces to t ′2 − x′2 = t2 − x2. So if we draw the calibrating hyperbolae
t2 − x2 = ±1, they will cut all four of the axes at the relevant unit time or unit
distance from the origin. They are, in fact, the loci of events whose interval from the
origin is unity [cf. after (2.15)]. The units can then be repeated along the axes, by
linearity. The diagram shows how to read off the coordinates (a′, b′) of a given event
relative to S′: we must go along lines of constant x′ or t ′ from the event to the axes.

Diagrams like Fig. 2.6 are often called Minkowski diagrams. They can be extremely
helpful and illuminating in certain types of relativistic problems. For example, one
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Fig. 2.7

can sometimes use them to get a rough preliminary idea of the answer. But one should
beware of trying to use them for everything, for their utility is limited. Analytic or
algebraic arguments are generally much more powerful.

As a first example, look at the dotted line in Fig. 2.6. It represents the uniform motion
of a ‘superluminally’ moving point, say P, in S. Now imagine the x′- and t ′-axes grad-
ually scissored towards each other. The frame S′ then chases P with ever increasing
velocity v. Observe how, counterintuitively, the faster you chase P, the faster it recedes
from you. Until, when the x′-axis coincides with the dotted line, P moves at infinite
speed. If S′ moves even faster (after the x′-axis surpasses the dotted line), P moves
in the opposite sense along the spatial x′-axis, namely from greater to lesser val-
ues of x′. If P were a bullet, it would now travel from the broken glass back into
the gun!

Length contraction and time dilation can also be read off, qualitatively, from the
diagram. In Fig. 2.7 the shaded area shows the ‘world-tube’ (bundle of worldlines) of
a unit rod at rest on the spatial x-axis between 0 and 1. In S′ this rod moves at velocity
−v. At t ′ = 0 it occupies the segment �� of the x′-axis, which, by reference to the
calibrating hyperbola, is seen to be less than unity: the moving rod is short.

In Fig. 2.8 the t ′-axis is the worldline of a standard clock fixed at the spatial origin
of S′ and therefore moving with velocity v through S. At �, where its worldline
intersects the calibrating hyperbola, it reads 1. However, the corresponding time t in
S is evidently greater than 1: the moving clock goes slow.

These examples should convince the reader of the utility of such ‘passive’
Minkowski diagrams. We next turn to the graphing of active LTs. Viewed actively,
the standard LT moves each point (x, t) to a new position (x′, t ′). Motion is the key
concept. Students good at computer graphics can usually manage to write a program
displaying active LTs. But it is really quite sufficient just to imagine a computer dis-
play of the x, t plane with one’s inner eye. Suppose it is covered with lots of bright dots
like stars on the night sky. As we ‘press the velocity button’, we see the speedometer
indicate bigger and bigger velocities (corresponding to the v of the LT applied), and
watch the points move: They move along the set of hyperbolae t2 − x2 = const,
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Fig. 2.8

as indicated in Fig. 2.9. That they must stay on these hyperbolae is clear from the
invariance of the interval. The four quadrants defined by the ±45◦ lines through the
origin thus separately transform into themselves, as do their boundaries. Of course,
all straight lines transform into straight lines, by linearity.

The details of the motion become clearer when we cast the LT into an alternative
form. Adding and subtracting the x and t members of (2.6) (after multiplying the
latter by c), we find

ct ′ + x′ = e−φ(ct + x)

ct ′ − x′ = eφ(ct − x)
(2.16)

Fig. 2.9
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with

eφ := γ

(
1+ v

c

)
=
(

1+ v/c

1− v/c

)1/2

. (2.17)

The φ here introduced is a useful alternative to v as parameter for the Lorentz group
(it is its ‘canonical’ parameter), often called the ‘rapidity’ or ‘hyperbolic parameter.’
(See also Exercise 2.15.)

To digress briefly: from eqns (2.16) we can read off without effort the group prop-
erties discussed at the end of the last section: the inverse of a Lorentz transformation
with φ is a Lorentz transformation with−φ, and the composition of two Lorentz trans-
formations with φ1 and φ2, respectively, is a Lorentz transformation with φ1 + φ2.
And it is equally easy to read off from these equations (by multiplying them together)
the fundamental invariance c2t2 − x2 = c2t ′2 − x′2.

Returning to Fig. 2.9 (now again with c = 1), note that the (signed) distances, ξ

and η, of a point (x, t) from the lines t + x = 0, t − x = 0, respectively (in other
words, the Cartesian coordinates relative to the asymptotes of the hyperbolae), are
given by

ξ = (t + x)/
√

2, η = (t − x)/
√

2. (2.18)

The corresponding coordinate axes are marked with ξ and η in Figs 2.6 and 2.9. The
LT (2.16) now reads very simply

ξ ′ = e−φξ, η′ = eφη. (2.19)

This shows that, as v (and with it φ) increases from zero to positive values, all ξ coor-
dinates decrease in absolute value while all η coordinates increase. This leads to the
motion pattern shown in Fig. 2.9. The opposite happens when v increases negatively.
The fundamental invariance now reads ξ ′η′ = ξη.

Recall that (x′, t ′) are the coordinates in S′ of some event � whose coordinates in
S are (x, t). If we mark (x′, t ′) as a point in the x, t plane, we see where � would
be mapped if S′ made the map. In other words, after applying an active LT through
the appropriate value of v (or φ), we see the events as mapped by S′ on a standard
set of orthogonal axes—which is, of course, exactly what has by then become of the
original x′- and t ′-axes (shown in Fig. 2.9). This is one of the chief uses of the active
transformation.

As a simple but important example, consider a particle whose worldline, relative
to a given frame S, is the right-hand branch of the hyperbola

x2 − t2 = x2
0 . (2.20)

(Cf. Fig. 2.10.) A worldline is, of course, always traversed into the future (t increas-
ing); so this particle comes from positive infinity along the spatial x-axis of S, moves
in as far as x = x0 (at t = 0), where it momentarily comes to a halt (at the event
marked �) and then goes back to infinity. But what is interesting about this motion
is that the particle has constant proper acceleration; that is, its acceleration relative
to the IF instantaneously comoving with it (its ‘rest-frame’) is always the same. To
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Fig. 2.10

see this, consider an arbitrary event � on the worldline and apply an active LT so
as to bring � onto the horizontal axis: the hyperbola has not changed, � is now
where � was before, and we are evidently in the rest-frame of the particle at � (its
worldline now being vertical at �). Whatever its proper acceleration was at � is
therefore its proper acceleration also at � and our result is established. (We discuss
this ‘hyperbolic motion’ analytically in Section 3.7.) Note also the interesting fact
that a photon dispatched to ‘chase’ the particle at time t = 0 from the spatial origin
x = 0 (its worldline is the top asymptote of the hyperbola) will never catch up with
it; in fact, in any rest-frame of the particle the photon’s distance from the particle is
always precisely x0, as the same active LT reveals.

2.10 The relativistic speed limit

When v = c the γ factor (2.5) becomes infinite, and v > c leads to imaginary values
of γ . This shows that the relative velocity of two inertial frames must be less than
the speed of light, since finite real coordinates in one frame must correspond to finite
real coordinates in any other frame. This is a first indication that no particle can move
superluminally relative to an IF, for a set of such particles moving parallelly would
constitute an IF moving superluminally relative to the first. But there are many other
indications that the speed of particles, and more generally, of all physical ‘signals’, is
limited by c. Consider, for example, any signal or process whereby an event � causes
an event � (or whereby information is sent from � to �) at superluminal speed U > c

relative to some frame S. Choose coordinates in S so that these events both occur on
the x-axis, and let their time and distance separations be �t > 0 and �x > 0. Then
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in the usual second frame S′ we have, from (2.11),

�t ′ = γ

(
�t − v�x

c2

)
= γ�t

(
1− vU

c2

)
. (2.21)

For a v that satisfies
c2/U < v < c, (2.22)

we would then have �t ′ < 0. Hence there would exist inertial frames in which
� precedes �, in which cause and effect are thus reversed and in which the signal
is considered to travel in the opposite spatial direction (as we have already seen
graphically in connection with Fig. 2.6).

So if � were, for example, the breaking of a glass somehow caused in S by the
signal from �, then in S′ the glass would break spontaneously and at the same time
emit a signal to �. Since in macro-physics no such uncaused events are observed,
nature must have a way to prevent superluminal signals.

Other paradoxical consequences would result. In Einstein’s phrase, we could ‘tele-
graph into our past’, and so tamper with it. Suppose we have a gun that can shoot
‘telegrams’ at speed U > c in its rest-frame S. Let us run it backwards at speed v

satisfying (2.22) relative to ‘our’ rest-frame S′, and have it shoot our telegram to a
distant relay station fixed in S′, where it arrives, say, 20 years before it was emitted.
From there it is returned at once, by a similarly backwards moving gun, reaching our
location 40 years before we sent it. The telegram could be addressed to our parents
and read: ‘Have no children.’ Thus we could foil events which have already happened
and get into deep logical trouble. Or, if the first shot sent a question and the second
an answer, we would have our answer before we asked the question!

Or again, let us look graphically at the superluminal signal discussed in eqn (2.21).
In Fig. 2.11 the t- and t ′-axes are the worldlines of two observers O and O′, respec-
tively. The segment �� represents a superluminal ‘message’ sent by O to O′. But
for O′, � precedes �. (Some lines of constant t and constant t ′ are indicated in the
diagram.) There is symmetry between the two observers. Each can think to be the
one who sent the message. What sort of a message is that? Suppose that at an event

Fig. 2.11
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� midway between � and �, the message is hit by lightening and destroyed. Who
will then not know what is in the message?

Since the whole concept of superluminal signaling is thus seen to be fraught with
paradox, we accept the axiom that no superluminal signals can exist: c is an upper
bound to the speed of macroscopic information-conveying signals. In particular, this
speed limit must apply to particles, since they can convey messages. We shall see in
Chapter 6 how relativistic mechanics provides a speed governor by having the mass
of particles increase beyond all bounds as their speed approaches the speed of light.
Note also from Fig. 2.10 how a particle that constantly accelerates in its successive
rest-frames, no matter how strongly, approaches but never attains the speed of light.

It will be well to check that the speed limit c actually does guarantee the invariance
of causality. If two events happen on a line making an angle θ with the x-axis in S
(thus not restricting their generality relative to S and S′), and are connectible by a
signal with speed u ≤ c in S, we see on replacing U by u cos θ in (2.21), that for all
v between ±c, �t and �t ′ do indeed have the same sign.

Arbitrarily large velocities are possible for moving points that carry no information,
for example, the sweep of the light spot on the moon where a movable laser beam
from earth impinges, or the intersection point of two rulers that cross each other at an
arbitrarily small angle.

At this point we should also note the important fact that superluminal speeds always
transform to superluminal speeds and subluminal to subluminal speeds. For if u and
u′ are the speeds of a point (or a signal, or a particle) in S and S′, respectively, and
the differentials refer to its worldline, we can cast eqn (2.7) into the form

dt ′2 (c2 − u′2) = dt2 (c2 − u2), (2.23)

which allows the stated result to be read off directly.
One last item of interest to be extracted from eqn (2.21) (now regarded as refer-

ring to some superluminally moving point) is that in the particular frame S′ having
v = c2/U , the point has zero transit time and thus infinite velocity! So in SR ‘infinity’
is not an invariant speed, as it is in Newtonian theory: every superluminally mov-
ing point has infinite velocity in some IF, just as every subluminally moving point
has zero velocity in some IF. This is also clear from Fig. 2.6, where every sub-
luminal signal is a potential t ′-axis, and every superluminal signal is a potential
x′-axis.

One consequence of the relativistic speed limit is that ‘rigid bodies’ and ‘incom-
pressible fluids’ have become impossible objects, even as idealizations or limits. For,
by definition, they would transmit signals instantaneously.

An interesting fact about rigidity, though unrelated to the speed limit, is that a
body which retains its shape in one frame may appear deformed in another frame,
if it accelerates. As a simple example, consider a rod which, in a frame S′, remains
parallel to the x′-axis while moving with constant acceleration a in the y′-direction. Its
equation of motion, y′ = 1

2at ′2, can be re-written by use of the Lorentz transformation

as y = 1
2aγ 2(t − vx/c2)2, and so the rod has the shape of part of a parabola at each
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instant t = const in the usual second frame S. (For another example, see Exercise 3.7.)
The reason for this phenomenon is the relativity of simultaneity: the S-observer picks
a different set of events at the rod to form an instantaneous view of it. We draw the
reader’s attention to the technique used here of ‘translating’ a whole set of events,
characterized by some equation, from one inertial frame to another. It has many
applications.

2.11 Which transformations are allowed by
the relativity principle?

We shall now establish the result stated in the penultimate paragraph of Section 2.7
that, given the RP, Newton’s and Einstein’s ‘second axioms’ exhaust the possibilities,
or, in other words, that the RP by itself necessarily leads either to the GT or to the
LT. Logically we could have given the proof there and then, but it will make more
sense now that we have discussed superluminal signals.

We shall assume that the future sense along any particle-worldline is the same in
all inertial frames. Without this or an equivalent restriction (‘causality invariance’)
another but wholly unphysical group of transformations becomes possible.5

Now, either there is, or there is not, an upper bound to the possible speeds of
particles. Suppose, first, that there is. Then, mathematically speaking, there must be
a least upper bound, which we will call c. This speed c, whether attained or not by
actual particles, must be invariant. For suppose some velocity of magnitude c in an
inertial frame S corresponds to one of magnitude c′ > c in another inertial frame S′.
By continuity there will then exist a velocity of magnitude slightly less than c in S
(that is, a possible particle velocity) that still corresponds to one of magnitude greater
than c in S′, a contradiction. Similarly c′ < c can be ruled out. So there exists an
invariant speed, which is essentially Einstein’s postulate.

On the other hand, suppose that particles can travel at all speeds. Let S and S′ be in
standard configuration. Then any event in S with t > 0 can be reached by a particle
from the origin-crossing event, and must therefore correspond to t ′ > 0. Similarly
t < 0 must always correspond to t ′ < 0. So t = 0 must correspond to t ′ = 0, and
then, as in our argument preceding eqn (2.2), it follows that t ′ = t . Hence there exists
a universal time, which is Newton’s postulate.

Thus the relativity principle together with causality invariance necessarily implies
that all inertial frames are related either by Galilean transformations, or by Lorentz
transformations with some universal ‘c’. The role of the second axiom is to sepa-
rate these two possibilities, and (in the second case) to fix the value of c. In fact,
fixing c is the only role of the second axiom: c = ∞ corresponds to the Galilean
transformation.

5 Cf. W. Rindler, Essential Relativity, 2nd edn, Springer-Verlag, 1977, p. 51.
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Exercises 2
Note: Problems in special relativity should generally be worked in units which make
c = 1. The ‘missing’ cs can either be inserted later throughout, or simply at the
answer stage by using cs to balance the dimensions. However, the first five exercises
below are on Newtonian relativity.

2.1. Steady rain comes down vertically at velocity u. You drive into it at velocity
v. At what angle to the horizontal do you see the rain come down? [Hint: eqn (1.2).]

2.2. On a perfectly windless day you find yourself in a sailboat on a broad smoothly
flowing river. You need to get as quickly as possible to a given place some miles down-
river. Should you or should you not put up your sail? [Hint: change of reference frame.
And you may have to consult a sailor friend.]

2.3. Use Newtonian relativity (as in Section 2.3) and symmetry considerations to
prove that if one billiard ball hits a second stationary one head-on, and no energy is
dissipated (time-reversibility), the second assumes the velocity of the first while the
first comes to a total stop.

2.4. A heavy plane slab moves with uniform speed v in the direction of its normal
through an inertial frame. A ball is thrown at it with velocity u, from a direction
making an angle θ with its normal. Assuming that the slab has essentially infinite
mass (no recoil) and that there is no dissipation of energy, use Newtonian relativity to
show that the ball will leave the slab in a direction making an angle φ with its normal,
and with a velocity w, such that

u

w
= sin φ

sin θ
,

u cos θ + 2v

u sin θ
= cot φ.

2.5. In Newtonian mechanics the mass of each particle is invariant; that is, it has
the same measure in all inertial frames. Moreover, in any collision, mass is conserved;
that is, the total mass of all the particles going into the collision equals the total mass of
all the particles (possibly different ones) coming out of the collision. Establish this law
of mass conservation as a consequence of mass invariance, momentum conservation,
and Newtonian relativity. [Hint: Let

∑∗ denote a summation which assigns positive
signs to terms measured before a certain collision and negative signs to terms measured
after the collision. Then momentum conservation is expressed by

∑∗mu = 0. Also,
if primed quantities refer to a second inertial frame moving with velocity v relative
to the first, we have u = u′ + v for all u.] Prove similarly that if in any collision the
kinetic energy 1

2
∑

mu2 is conserved in all inertial frames, then mass and momentum
must also be conserved.

2.6. Consider the usual two inertial frames S and S′ in standard configuration. In S′
the standard lattice clocks all emit a ‘flash’ at noon. Prove that in S this flash occurs
on a plane orthogonal to the x-axis and traveling in the positive x-direction at (de
Broglie-) speed c2/v.



Exercises 2 59

2.7. Prove that at any instant there is just one plane in S on which the clocks of S
agree with the clocks of S′, and that this plane moves with velocity (c2/v)(1− 1/γ ).
How is this plane related to the frame S′′ of the ‘midframe’ lemma? [Hint: Fig. 2.3.]

2.8. Establish the approximation γ (v) ≈ 10n when v/c = 0.99 . . . 995 (2n nines).
[Hint: 1− v2/c2 = (1− v/c)(1+ v/c).] Also establish the identities (2.10).

2.9. A spaceship travels to a star 8 light-years away, in a time its crew considers to
be 8 years. What is the ship’s speed? (From a GRE exam.)

2.10. Consider two events whose coordinates (x, y, z, t) relative to some inertial
frame S are (0, 0, 0, 0) and (2, 0, 0, 1) in units which make c = 1. Find the speeds of
frames in standard configuration with S in which (i) the events are simultaneous, (ii)
the second event precedes the first by one unit of time. Is there a frame in which the
two events occur at the same point? [Answers: 1

2c, 4
5c. Hint: (2.11).]

2.11. Looking at Fig. 2.3, and taking the proper length of each plane to be L,
deduce that the relative velocity between the two planes is given by v = L/3 in
the time units indicated by the clocks. If these units are 10−7 s (100 nanoseconds),
prove v = (2

√
2/3)c and L = 85 m. What is the velocity of each plane relative to the

ground? [Answer: (1/
√

2)c. Hint: Consider the two events where the top rear clock
reads 3 and 4, and apply (2.11). Then the clock readings 3,1 in the top plane.]

2.12. Illustrate on a Minkowski diagram a situation similar to that of Exercise 2.6
above: A flash occurs everywhere at once on the spatial x′-axis of the frame S′ at
some instant t ′ = t ′0. Show that in the usual second frame S this flash is a bright spot
traveling forward along the spatial x-axis at superluminal speed c2/v.

2.13. What is the diagram analogous to Fig. 2.6 for the Galilean transformation?
Show that the LT diagram continuously changes into the GT diagram as c → ∞ if
we use ordinary units and take x and t as coordinates.

2.14. Using the equations for the calibrating hyperbola and the t ′-axis, prove that
the t coordinate of the event � in Fig. 2.8 is (1 − v2)−1/2, which is therefore the
time-dilation factor. [In full units: (1 − v2/c2)−1/2.] Similarly, by considering the
hyperbola through � in Fig. 2.7, prove that the x′-coordinate of � is (1 − v2)1/2,
which is therefore the length-contraction factor.

2.15. Prove the following additional relations between the ‘hyperbolic parameter’
(or rapidity) φ defined in (2.17) and the velocity v, and note particularly the last:

cosh φ = γ, sinh φ = v

c
γ, tanh φ = v

c
.

2.16. Three inertial frames S, S′, S′′ are in standard configuration with each other;
S′ has velocity v1 relative to S, and S′′ has velocity v2 relative to S′. Prove that S′′
has velocity (v1 + v2)/(1+ v1v2/c

2) relative to S. [Hint: Utilize the additivity of the
hyperbolic parameter discussed after eqn (2.17) and the last result of the preceding
exercise. Recall that trigonometric identities can be converted to hyperbolic-function
identities by the rule cos x 
→ cosh x, sin x 
→ i sinh x; so, in particular, one finds
tanh(φ1 + φ2) = (tanh φ1 + tanh φ2)/(1+ tanh φ1 tanh φ2).]
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2.17. Prove that, under an active Lorentz transformation of the xt plane, straight
lines transform into straight lines and parallel straight lines transform into parallel
straight lines. [Hint: use ξ, η.] Also prove that a tangent line to a curve transforms into
a tangent line of the transformed curve. Hence prove that the tangent to any hyperbola
t2 − x2 = const at the point where the t ′-axis (x′-axis) intersects it (see Fig. 2.6) is
parallel to the x′-axis (t ′-axis).

2.18. In an inertial frame S a train of plane light waves of wavelength λ travels in
the negative x-direction towards the observer at the origin. The loci of the wavecrests
then satisfy an equation of the form x = −ct + nλ (n = integer) . Sketch some such
loci on a Minkowski diagram and then apply an active LT (2.19) to deduce that in the
usual second frame S′ the wavelength will be given by

λ′ =
√

c − v

c + v
λ.

This is a relativistic Doppler formula.

2.19. Prove that the proper acceleration of the particle whose worldline is given by
eqn. (2.20) is 1/x0 (or c2/x0 in full units).

2.20. The moon’s distance from earth is ∼ 3.84 × 1010 cm. A laser pointer is
mounted on a turntable such that its beam repeatedly sweeps over the surface of the
moon. If it rotates at a period of 8 s, prove that its impact spot travels across the moon
at about the speed of light.

2.21. A stellar object at some known large distance ejects a ‘jet’ at speed v towards
an observer obliquely, making an angle θ with the line of sight. To the observer the
jet appears to be ejected sideways at speed V . Prove V = c sin θ(c/v− cos θ)−1, and
show that this can exceed c, for example, when θ = 45◦. [Indeed, such apparently
superluminal jets once had observers worried—briefly.]

2.22. S and S′ are in standard configuration. In S′ a straight rod parallel to the x′
axis moves in the y′ direction with velocity u. Show that in S the rod is inclined to
the x-axis at an angle −tan−1(γ uv/c2). [Hint: end of Section 2.10.]

2.23. In a frame S′ a straight rod in the x′, y′ plane rotates anticlockwise with
uniform angular velocity ω about its center, which is fixed at the origin. It lies along
the x′ axis when t ′ = 0. Find the exact shape of the rod in the usual second frame
S at the instant t = 0, and draw a diagram to illustrate this shape in the immediate
neighborhood of the origin. Also show that when the rod is orthogonal to the x′-axis
in S′ it appears straight in S.
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Relativistic kinematics

3.1 Introduction

We have seen how Einstein’s second postulate (the invariance of the speed of light)
seems to violate common sense and certainly violates Newtonian kinematics. In
this chapter we meet the new ‘relativistic’ kinematics that accommodates both of
Einstein’s postulates. Its main ingredients are length contraction, time dilation, and
the relativistic velocity addition law. This latter has the strange property that one can
‘add’ any subluminal velocity to the velocity of light and still get the velocity of light,
and one can add any number of subluminal velocities and will always get another
subluminal velocity. And we have already seen in Section 2.4 that relativistic length
contraction and time dilation are symmetric phenomena between two inertial frames,
conceptually very different from the similarly named effects in the old ether theory.
There, the ether flow was regarded as actually ‘doing’ something to the moving clock
or rod. In relativity, I (at rest in any inertial frame) can observe my stationary clock and
my stationary yardstick in their perfect undisturbed state, which is quite unaffected
by the motions of all other inertial frames and their observers; if to them my yardstick
is short and my clock goes slow, well, that’s their business. But all these effects
play together to make a consistent kinematics, and all are direct consequences of the
Lorentz transformation.

3.2 World-picture and world-map

In relativity it is especially important to distinguish between the set of events that
an observer sees at one instant and the set of events that the observer considers to
have occurred at that instant. What an observer actually sees or can photograph at one
instant is called a world-picture. It is a composite of events that occurred progressively
earlier as they occurred farther away. For our present purposes it is irrelevant. But
it assumes importance in cosmology, where it constitutes essentially our entire data
set, and in studies of causality, where it shows all particles at the latest position from
which they could have influenced us now.

The concept that plays a pervasive role in special relativity is that of the world-map.
As the name implies, this may be thought of as a (3-dimensional) map of events,
namely those constituting an observer’s instantaneous 3-space t = t0. It could be
produced by having auxiliary observers at the coordinate lattice-points all map their
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immediate neighborhoods at a pre-determined time t = t0, and then joining all these
local maps into a single global map. Alternatively the world-map can be regarded as a
3-dimensional life-sized photograph exposed everywhere simultaneously, or a frozen
instant in the observer’s inertial frame.

When we speak of ‘a snapshot taken in S’ (as, for example, we did in connection
with Fig. 2.3) or of ‘the length of a moving object in S’ or of ‘the shape of an
accelerating object in S’, etc., we invariably think of the world-map. The world-map
is generally what matters. These remarks are already relevant in the next section,
where we show how moving bodies shrink. The shrinkage refers to the world-map.
How the eye actually sees a moving body is rather different, and in itself not very
significant, except that in relativity some of the facts of vision are a little surprising,
as we shall see in Section 4.5.

3.3 Length contraction

Consider two inertial frames S and S′ in standard configuration. In S′ let a rigid rod
of length �x′ be placed at rest along the x′-axis. We wish to find its length in S,
relative to which it moves with velocity v. To measure the rod’s length in any inertial
frame in which it moves, its end-points must be observed simultaneously. No such
precaution is needed in its rest-frame S′. Consider, therefore, two events occurring
simultaneously at the extremities of the rod in S, and use (2.11)(i). Since �t = 0,
we have �x′ = γ�x, or, writing for �x, �x′ the more specific symbols L, L0
respectively,

L = L0

γ
=
(

1− v2

c2

)1/2

L0. (3.1)

This shows, quite generally, that the length L of a body in the direction of its motion
with uniform velocity v is reduced by a factor (1− v2/c2)1/2.

Evidently the greatest length is ascribed to a uniformly moving body in its rest-
frame, namely the frame in which its velocity is zero. This length, L0, is called the rest
length or proper length of the body. (In general a ‘proper’ measure of a quantity is that
taken in the relevant instantaneous rest-frame.) On the other hand, in a frame in which
the body moves with a velocity approaching that of light, its length approaches zero.

This length contraction is no illusion, no mere accident of measurement or con-
vention. It is real in every sense. A moving rod is really short! It could really be
pushed into a hole at rest in the lab into which it would not fit if it were not moving
and shrunk. (See Section 3.4.) Whatever physical forces of attraction and repulsion
are responsible for holding together the constituent elementary particles of the body
when the body is at rest, will all change in accordance with the laws of relativistic
mechanics when the body is in motion relative to an inertial frame, in such a way as
to produce the shortening in that frame. We cannot and need not know the details of
all this, but we know a priori that there must be a detailed mechanical explanation of
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the shortening. It is much like the total and the detailed Newtonian energy balance
of some engine. We know a priori that as much energy goes in (in the form of heat,
electricity, etc.) as comes out (in the form of kinetic energy, etc.). Although we may
not know or understand every minute process that occurs within (friction, vibration,
heat exchange, etc.), we know that when you add it all up it must give the above
result.

Of course, as required by the relativity principle, length contraction is symmetric:
S′-rods are short in S, and S-rods are short in S′. This we already saw in the discussion
around Fig. 2.3.

Unfortunately there is little prospect of ever being able to test the length contraction
of a macroscopic object directly, since we have no means of accelerating macroscopic
bodies to relativistically significant speeds. But in Chapter 7 we shall see a measurable
effect that length contraction has on the line density of charge in a current-carrying
wire, even though the speeds involved are quite small.

3.4 Length contraction paradox

Consider the admittedly unrealistic situation of a man carrying horizontally a 20-ft
pole and wanting to get it into a 10-ft garage. He will run at speed v = 0.866c to
make γ = 2, so that the pole contracts to 10 ft. It will be well to insist on having a
sufficiently massive block of concrete at the back of the garage, so that there is no
question of whether the pole finally stops in the inertial frame of the garage, or vice
versa. So the man runs with his (now contracted) pole into the garage and a friend
quickly closes the door. In principle we do not doubt the feasibility of this experi-
ment; that is, the reality of length contraction. When the pole stops in the rest-frame
of the garage, it will tend to assume, if it can, its original length relative to the garage.
Thus, if it survived the impact, it must now either bend, or burst the door, or remain
compressed.

At this point a paradox might occur to the reader:1 What about the symmetry of
the phenomenon? Relative to the runner, won’t the garage be only 5 ft long? And, if
so, how can the 20-ft pole get into the 5-ft garage? Very well, let us consider what
happens in the rest-frame of the pole. The open 5-ft garage now comes towards the
stationary pole. Because of the concrete block, it keeps on going even after the impact,
taking the front end of the pole with it (see Fig. 3.1). But the back end of the pole
is still at rest: it cannot yet ‘know’ that the front end has been struck, because of the
finite speed of propagation of all signals. Even if the ‘signal’ (in this case the elastic
shock wave) travels along the pole with the speed of light, that signal has 20 ft to

1 It is perhaps surprising that no such paradox seems to have been noted in the literature before 1960.
See W. Rindler, Special Relativity, Oliver & Boyd, Edinburgh, 1960, p. 37; also W. Rindler, Am. J. Phys.
29, 365 (1961) and E. M. Dewan, Am. J. Phys. 31, 383 (1963). The paradox arose from a memorable class
question—what about the symmetry?—of J. Gilson.
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Fig. 3.1

travel against the garage front’s 15 ft, before reaching the back end of the pole. This
race would be a dead heat if v were 0.75c. But v is 0.866c! So the pole more than just
gets in. It could even get into a garage whose length is as little as 5.4 ft at rest and thus
2.7 ft in motion: the garage front would then have to travel 17.3 ft against the shock
wave’s 20 ft, requiring speeds in the ratio 17.3 to 20 or 0.865 to 1 for a dead heat.

There is one important moral to this story: whatever result we get by correct rea-
soning in any one inertial frame, must be true; in particular, it must be true when
viewed from any other inertial frame. As long as the set of physical laws we are using
is self-consistent and Lorentz-invariant, there must be an explanation of the result in
every other inertial frame, although it may be quite a different explanation from that
in the first frame.

3.5 Time dilation; The twin paradox

Let us again consider two inertial frames S and S′ in standard configuration. Let a
standard clock be fixed in S′ and consider two events at that clock when it indicates
times differing by �t ′. We enquire what time interval �t is ascribed to these events
in S. From the �-form of (2.9)(iv) we see at once, since �x′ = 0, that �t = γ�t ′,
or, replacing �t and �t ′ by the more specific symbols T and T0, respectively,

T = γ T0 =
T0

(1− v2/c2)1/2
. (3.2)

We can deduce from this quite generally that a clock moving uniformly with velocity
v through an inertial frame S goes slow by a factor (1 − v2/c2)1/2 relative to the
synchronized standard clocks at rest in S. Clearly, then, the fastest rate is ascribed
to a clock in its rest-frame, and this is called its proper rate. On the other hand, at
speeds close to the speed of light, the rate of the clock would be close to zero.

This time dilation, like length contraction, is no accident of convention but a real
effect. Moving clocks really do go slow. If a standard clock is taken at uniform
speed v through an inertial frame S along a straight line from point A to point B
and back again, the elapsed time T0 indicated on the moving clock will be related
to the elapsed time T on the clock fixed at A by the eqn (3.2), except for possible
errors introduced when the clock is accelerated to initiate, reverse, and terminate its
journey. But whatever these errors are, their contribution can be dwarfed by simply
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extending the periods of uniform motion. So, at least in theory, the effect is tangible.
But it has by now also been amply observed in the real world, as we shall presently
recount.

For any particular uniformly moving clock, the relativistic laws of mechanics (or
electromagnetism, or whatever) must in principle be responsible for the details that
make this clock go slow by exactly the Lorentz factor. (See, for example, Exercises 3.9
and 7.17.) In the case of accelerated clocks we have no such shortcut through the
details governing their behavior, and no general predictions can be made. Certain
types of clock are unaffected by acceleration to the extent that the internal driving
forces which act between parts of the clock exceed the derivative of the external force
field (for example, the tidal field if the acceleration is gravitational). For the force itself
affects all the parts equally and thus not their relative motion. For other types of clock
it is size that determines their susceptibility to acceleration (cf. Exercises 3.10, 11).

As we shall see, certain natural clocks, like vibrating atoms, decaying muons, etc.,
seem to satisfy criteria of this sort to high accuracy under the accelerations to which
they have so far been subjected. We define an ideal clock as one that is completely
unaffected by acceleration; that is, as one whose instantaneous rate depends only
on its instantaneous speed in accordance with (3.2). As has been stressed by Sexl,
the absoluteness of acceleration implies that ideal clocks are possible objects, at
least in principle. We need only take any good clock, observe (or calculate) how it
reacts to given accelerations, derivatives of accelerations, etc., and then equip it with
accelerometers from which a properly programmed computer can always correct for
the errors incurred and thus display ‘ideal’ time.

The image to keep in mind is that of a lattice of synchronized standard clocks filling
a given inertial frame S and an ideal clock moving arbitrarily through this lattice and
losing time steadily against the fixed clocks according to (3.2). Its total time elapsed,
if it starts at time t1 and stops at time t2, will be given by the path integral

�τ =
∫ t2

t1

(1− v2/c2)1/2 dt =:
∫ τ2

τ1

dτ, (3.3)

where t is the time and v the velocity in S, and where we have introduced a quantity
of great importance in the sequel, namely the proper time τ that is indicated by an
arbitrarily moving ideal clock.

We shall assume that accelerated observers use ideal clocks. One can similarly
define ideal infinitesimal measuring rods, but it is more straightforward (in principle)
to use clocks and radar to determine distances. It is often stated that an accelerating
observer under these circumstances makes the same observations as an instanta-
neously comoving inertial observer. While this is true in certain cases, it is false
in others, as when the two observers observe their accelerometers. So each such
observation must be discussed on its own merits. [See, for example, after eqn (4.5)
below.] There is relevance in this question, since, according to the equivalence princi-
ple, we are all accelerating observers in our terrestrial labs, relative to the (imagined)
inertial observers in free vertical fall in their LIFs.
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Fig. 3.2

Time dilation, like length contraction, must a priori be symmetric: if one inertial
observer considers the clocks of a second inertial observer to run slow, the second
must also consider the clocks of the first to run slow. Figure 3.2—which is really an
extension of Figs 2.3(a) and (c)—shows in detail how this happens. Synchronized
standard clocks A, B, C, . . . and A′, B′, C′, . . . are fixed at certain equal intervals along
the x-axes of two frames S and S′ in standard configuration. The figure shows three
world-maps made, at convenient equal time intervals, in the ‘midframe’ S′′ relative to
which S and S′ have equal and opposite velocities. In each world-map the clocks of
S and S′ are all seen to indicate different times, since simultaneity is relative. [Write
t ′′ for t in (2.6) (iv) and set t ′′ = const.] Suppose the clocks in the diagram indicate
seconds. As can be seen, A′ reads 4 seconds ahead of A in Fig. 3.2(a), only 2 seconds
ahead of C in Fig. 3.2(b), and equal with E in Fig. 3.2(c). Thus A′ loses steadily
relative to the clocks in S. Similarly E loses steadily relative to the clocks in S′, and
indeed all clocks in the diagram lose at the same rate relative to the clocks of the other
frame. (Also note the mnemonic: ‘the Leading clock reads Less’—Ohanian.)

Unlike length contraction, time dilation has been amply confirmed experimen-
tally. For example, muons reaching us from the top of the atmosphere (where they
are produced by incoming cosmic rays), are so short-lived that, even had they trav-
eled at the speed of light, their travel time in the absence of time dilation would
exceed their lifetime by factors of the order of 10. Rossi and Hall in 1941 timed
such muons between the summit and foot of Mt Washington, and found their life-
times were indeed dilated in accordance with eqn (3.2). Equivalent experiments with
muons circling ‘storage rings’ (with velocities corresponding to γ ≈ 29) at the
CERN laboratory in 1975 and thereafter have refined these results to an impressive
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accuracy of ∼ 2 × 10−3 and have additionally shown that, to such accuracy, proper
accelerations of up to 1018g (!) do not contribute to the muons’ time dilation.2 It
may be objected that muons are not clocks—but time dilation applies to any temporal
process and therefore also to muon decay and even human lifetimes (as, for example,
that of astronauts on fast space journeys). To see this, at least for uniform motion, we
need only imagine a standard clock to travel with the muon or the space traveler in
their respective inertial rest-frames.

Another striking instance of time dilation is provided by ‘relativistic focusing’
of electrically charged particles, which plays a role in the operation of high-energy
particle accelerators. Any stationary cluster of electrons (or protons, etc.) tends to
expand at a characteristic rate because of mutual electrostatic repulsion. But the
corresponding particles in a fast-moving beam are observed to spread at a much slower
rate. If we regard the stationary cluster as a kind of clock, we have here an almost
visible manifestation of the slowing down of a moving clock. (This can alternatively be
explained by the same mechanism as that which causes parallel currents to attract each
other.) Yet another such manifestation, the so-called transverse Doppler effect, will
be discussed in Section 4.3. (It, too, has led to a demonstration of high acceleration-
independence for certain natural clocks.)

Nowadays, amazingly, time dilation can even be observed in macroscopic clocks.
This was first done in 1971 (though only to an accuracy of about 10 per cent) by
Hafele and Keating,3 who simply took some very accurate cesium clocks around
the world on commercial airliners! Eventually Vessot et al.4 made a very precise
determination of the gravitational time dilation effect of general relativity jointly with
the time dilation of special relativity by sending rocket-launched hydrogen-maser
‘clocks’ up to 10 000 km in nearly vertical trajectories. The validity of the two effects
jointly was established to an accuracy of ∼10−4.

No account of special relativity would be complete without at least a mention of
the notorious clock or twin paradox dating back as far as 1911. Reams of literature
were written on it unnecessarily for more than six decades. At its root apparently lay
a deep psychological barrier to accepting time dilation as real. From a modern point
of view it is difficult to understand the earlier fascination with this problem, or even to
recognize it as a problem. The ‘paradox’ concerns the situation we already discussed
above (in the second paragraph of this section) of transporting a clock from A to B
and back again, and then finding that the traveling clock upon its return indicates a
lesser time than the stationary one. The story is usually embellished by replacing the
two clocks by two twins, of which the traveler upon returning is younger than the
stay-at-home. The claim now is that all motion is relative. So the traveler can with
equal right maintain that it was the stay-at-home who did the traveling and should
therefore be the younger when they reunite! But, whereas uniform motion indeed is
relative, acceleration is not, and accelerometers attached to the twins will easily settle

2 J. Bailey et al., Nature 268, 301 (1977).
3 J. C. Hafele and R. Keating, Science 177, 166 (1972).
4 R. F. C. Vessot et al., Phys. Rev. Lett. 45, 2081 (1980).
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the dispute: one remained fixed in an inertial frame, and the other did not. The single
most worthwhile remark on this ‘paradox’ was made by Sciama: it has, he said, the
same status as Newton’s experiment with the two buckets of water—one, rotating,
suspended below the other, at rest. If these were the whole content of the universe, it
would indeed be paradoxical that the water surface in the one should be curved and
that in the other flat. But inertial frames have a real existence too, and relative to the
inertial frames there is no symmetry between the buckets, and no symmetry between
the twins, either.

From a practical point of view, the reader might well ask in what real-world refer-
ence frame the twins could play out their experiment. Surely the small freely falling
Einstein cabins are of no interest in this context. And any large ‘Newtonian’ local
inertial frame, say one containing our whole galaxy, will be distorted by curvature,
according to GR. Still, provided the traveler doesn’t pass too close to any highly
concentrated mass, that curvature will be quite negligible in the present context, as
can be seen, for example, from our discussion in Section 1.16 of the influence of the
gravitational potential (curvature!) on clock rates. So here the experiment will work.

3.6 Velocity transformation; Relative and mutual velocity

Once again, let us consider two inertial frames S and S′ in standard configuration. Let
u be the instantaneous vector velocity in S of a particle or simply of a geometrical
point (so as not to exclude the possibility u ≥ c). We wish to find the velocity u′ of
this point in S′. As in classical kinematics, we define

u = (u1, u2, u3) = (dx/dt, dy/dt, dz/dt), (3.4)

u′ = (u′1, u
′
2, u
′
3) = (dx′/dt ′, dy′/dt ′, dz′/dt ′). (3.5)

Substituting from (2.12) into (3.5), dividing each numerator and denominator by
dt , and comparing with (3.4), now immediately yields the velocity transformation
formulae:

u′1 =
u1 − v

1− u1v/c2
, u′2 =

u2

γ (1− u1v/c2)
, u′3 =

u3

γ (1− u1v/c2)
. (3.6)

No assumption as to the uniformity of u was made, and these formulae apply equally
to the instantaneous velocity in a non-uniform motion. Note also how they reduce to
the classical formulae (1.2) when either v � c, or c→∞ formally.

We can obtain the inverse of (3.6) without further effort by applying a ‘v-reversal
transformation’ (see last paragraph of Section 2.7) to (3.6):

u1 =
u′1 + v

1+ u′1v/c2
, u2 =

u′2
γ (1+ u′1v/c2)

, u3 =
u′3

γ (1+ u′1v/c2)
. (3.7)

These last equations can be regarded alternatively as giving the resultant, u, of first
imparting to a particle a velocity v = (v, 0, 0) and then, relative to its new rest-frame,
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another velocity u′. They are therefore occasionally referred to as the relativistic
velocity addition formulae. In particular, the first member gives the resultant of two
collinear velocities v and u′1 and is therefore of the same form as the velocity parameter
for the resultant of two successive Lorentz transformations [see property (viii) of
Section 2.8]. It is occasionally convenient to write u = v +̇u′ and u′ = −v +̇u. But
note that v +̇w �= w +̇ v except for 1-dimensional motion (cf. Exercise 3.14).

Writing u = (u2
1+u2

2+u2
3)

1/2 and u′ = (u′1
2+u′2

2+u′3
2)1/2 for the magnitudes

of corresponding velocities in S and S′ we have, by first factoring out dt ′2 and dt2,
respectively, from the left- and right-hand sides of (2.7), and then using (2.12)(iv),

dt2(c2 − u2) = dt ′2(c2 − u′2) = dt2γ 2(v)(1− u1v/c2)2(c2 − u′2). (3.8)

The first of these equations we have already noted in Chapter 2 [in �-form: (2.23)],
as well as its consequence: u � c implies u′ � c and vice versa. This also shows that
any ‘sum’ u = v +̇u′ of two velocities less than c is itself a velocity less than c. So,
however many velocity increments (less than c) a particle receives in its successive
rest-frames (that is, the sequence of inertial frames in which the particle is momentarily
at rest), it can never attain the velocity of light. The velocity of light thus plays the
role in relativity of an infinite velocity, inasmuch as no sum of lesser velocities can
ever equal it.

If we now cancel dt2 from the extremities of eqn (3.8) and rearrange terms, we find
the following transformation of u2, the squared magnitude of a particle’s velocity:

c2 − u′2 = c2(c2 − u2)(c2 − v2)

(c2 − u1v)2
. (3.9)

Note that u1v = u · v, so that the RHS is actually symmetric in u and v. This means
that the magnitudes of (−v) +̇u and u +̇ (−v) are the same, and this evidently holds
for any two subluminal 3-velocities.

Rewriting (3.9) in terms of γ (u), γ (u′), γ (v), we get an equation which, on taking
square roots, yields the first of the following two useful relations,

γ (u′)
γ (u)

= γ (v)
(

1− u1v

c2

)
,

γ (u)

γ (u′)
= γ (v)

(
1+ u′1v

c2

)
, (3.10)

while the second again results from a v-reversal transformation. These relations show
how the γ -factor of a moving particle transforms.

It will be worth recalling here the simple way in which collinear velocities add
when expressed as ‘rapidities’ φ, as in (2.17) and Exercise 2.15. If

φ(u) = log

(
1+ u/c

1− u/c

)1/2

= tanh−1 u

c
(3.11)

and w = u+̇v, then

φ(w) = φ(u)+ φ(v), (3.12)

as is particularly clear from (2.16).
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We end this section by remarking on one useful velocity concept (and formula)
which applies equally in Newtonian and relativistic kinematics. This concerns the
rate of change, in one given inertial frame S, of the connecting vector between two
particles, whose position vectors and velocities are (let us say) r1, u1 and r2, u2,
respectively: (d/dt)(r2 − r1) = u2 − u1. We call this, for lack of a better name, the
mutual velocity between the particles in S, to distinguish it from the relative velocity,
which is what one particle ascribes to the other. It can be as big as 2c, as when two
photons collide head-on. If I want to know how much time will elapse in my own
frame before two collinearly moving particles collide, I simply divide their present
distance apart by their mutual velocity, in relativistic just as in Newtonian kinematics.

3.7 Acceleration transformation; Hyperbolic motion

When a particle moves non-uniformly, it is useful to know how to transform not only
its velocity, but also its acceleration. To this end, we begin by calculating the velocity
differentials from (3.6):

du′1 = [Ddu1 + (u1 − v)du1v/c2]/D2,

du′2 = [γDdu2 + u2γ du1v/c2]/γ 2D2,

and similarly for du′3, where

D = 1− u1v/c2. (3.13)

Dividing these equations by dt ′ = γ dt (1 − u1v/c2) = γDdt [cf. (2.12)(iv)], then
yields the following transformations for the acceleration components a′1 = du′1/dt ′
etc.:

a′1 =
a1

γ 3D3
, (3.14)

a′k =
ak

γ 2D2
+ a1ukv

c2γ 2D3
, k = 2, 3. (3.15)

Under the Galilean transformation, as we saw in (1.3), the acceleration is invariant;
eqns (3.14), (3.15) show that in relativity this is no longer the case.

Consider, in particular, the case of rectilinear motion, say along the x-axis, and
let S′ be the instantaneous rest-frame of the particle: u1 = v, D = γ−2. Then, if
we define the proper acceleration α of the particle as that which is measured in its
rest-frame (here α = a′1), we have, from (3.14) and (2.10) (iii), and writing u for u1,

α = γ 3 du

dt
= d

dt
[γ (u)u]. (3.16)
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Proper acceleration is precisely the push we feel when sitting in an accelerating rocket.
Also, by the equivalence principle, the gravitational field in our terrestrial lab is the
negative of our proper acceleration, our instantaneous rest-frame being an imagined
Einstein cabin falling with acceleration g.

A case of particular interest is that of rectilinear motion with constant proper
acceleration α. We can then integrate (3.16) at once, choosing t = 0 when u =
0: αt = γ (u)u. Squaring, solving for u, integrating once more and setting the
constant of integration equal to zero once more, yields the following equation for the
motion:

x2 − c2t2 = c4/α2. (3.17)

Thus, for obvious reasons, rectilinear motion with constant proper acceleration
is called hyperbolic motion. We have already seen this kinematic significance of
a hyperbolic worldline from the perspective of an active Lorentz transformation
in Fig. 2.10. The corresponding Newtonian calculation gives the familiar result
x = 1

2αt2; that is, ‘parabolic’ motion. There is no limit on the proper acceler-
ation that a particle can have; by (3.17), α = ∞ implies x = ±ct , hence the
proper acceleration of a photon can be taken to be infinite. A sequence of hyperbolic
worldlines for various values of α is shown in Fig. 3.3 (where we have written X

for c2/α). As α → ∞, they fit ever more snugly into the limiting photon paths
x = ±ct .

3.8 Rigid motion and the uniformly accelerated rod

Look again at Fig. 3.3 and consider, in fact, the equation

x2 − c2t2 = X2 (3.18)

for a continuous range of positive values of the parameter X. For each fixed X it
represents a particle moving with constant proper acceleration c2/X in the x-direction.
Altogether it represents, as we shall presently show, a ‘rigidly moving’ rod.

By the rigid motion of a body one understands a motion during which every small
volume element of the body shrinks always in the direction of its motion in inverse pro-
portion to its instantaneous Lorentz factor relative to a given inertial frame. Thus every
small volume element preserves its dimensions in its own successive instantaneous
rest-frames, which shows that the definition is intrinsic, that is, frame-independent.
It also shows that during the rigid motion of an initially unstressed body no elastic
stresses arise. A body moving rigidly cannot start to rotate, since circumferences of
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Fig. 3.3

circles described by points of the body would have to shrink, while their radii would
have to remain constant, which is impossible.5 In general, therefore, the motion of
one point of a rigidly moving body determines that of all others. Note that the trans-
versely accelerating rod discussed at the end of Section 2.10 moves rigidly in the
present technical sense, even though it continually changes its shape in the frame S.

Clearly, if the front-end of a rigidly moving rod moves forward with constant
proper acceleration, the back-end must move with greater acceleration, because of
the ever-increasing contraction of the rod. (In Fig. 3.3 the horizontal bars show the
rod at various times in S and thus at various stages of contraction.) Since the same
is true of each portion of the rod, the acceleration must increase steadily towards the
rear. But that all points move with constant proper acceleration, and that the total
picture is given by the neat equation (3.18), comes as a pleasant surprise. And yet it
is ‘obvious’: Because of the invariance (2.14), eqn (3.18) translates into itself (that is,

5 For this reason, a ‘rigidly moving’ disk that is set to rotate would have to bend. In the early days
of relativity this was regarded as paradoxical (‘Ehrenfest’s paradox,’ 1909). Of course, a flat unstressed
uniformly rotating disk can be built in motion (of light material, to avoid centrifugal stress). The geometry on
it, as measured by meter sticks at rest relative to it, would be non-Euclidean: for example, its circumference
would exceed 2πr . This played a role in suggesting to Einstein one of the key ideas of general relativity,
namely the relevance of non-Euclidean geometry (curvature) in the presence of gravity—here mimicked
by the centrifugal force.
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intox′2−c2t ′2 = X2) in any frame S′ in standard configuration with the original frame
S; in other words, the worldline pattern of Fig. 3.3 is invariant under an active LT. So
in any such frame S′ the entire rod comes to rest momentarily (vertical worldlines) at
t ′ = 0, and between the same x values as in S; that is, with the same length. And this
is equally true for each portion of it. The rod thus goes from instantaneous rest in one
inertial frame to instantaneous rest in the next, and the next, and so on, each element
always having the same rest length. But that is precisely what characterizes ‘rigid
motion’. The slanting bars in Fig. 3.3 show the rod in its successive rest-frames. The
final geometric result established in Exercise 2.15 allows us to ‘see’ that the slopes
of the worldlines (and thus the velocities) along each slant are equal—as they must
be, since the entire rod is then at rest in a single inertial frame.

From the successive rest-frames it is clear that X measures ruler distance along the
rod; that is, distance measured with ideal infinitesimal rulers at rest relative to the rod
(since an ideal accelerating infinitesimal ruler and a momentarily comoving inertial
ruler coincide.) Note that the rod cannot be extended to X ≤ 0, since X = 0 already
corresponds to a photon. A bundle of such rods can be regarded as a rocketship,
possibly quite a long one. Life in such a rocketship would be similar to life in a static
skyscraper, in which the gravitational field, here mimicked by the proper acceleration
c2/X has parallel field lines but varies in strength inversely with ‘height’ X. (A
constant gravitational vacuum field can not be generated in this way.) We shall have
occasion to make significant use of the above analysis of the uniformly accelerating
rocket in Chapter 12.

Exercises 3
3.1. Suppose there are flash bulbs fixed at all the lattice points of some inertial

frame, and suppose they all flash at once. What is actually seen by an observer sitting
at the origin?

3.2. Invent a more realistic arrangement than the garage and pole described in
Section 3.4 whereby length contraction could be verified experimentally, if only our
instruments were delicate enough. [For example, consider two meter sticks moving
with equal and opposite velocities through the lab, like the airplanes in Fig. 2.3(a).]

3.3. Suppose the rod discussed at the end of Section 2.10 is at rest on the x′-axis,
between x′ = 0 and x′ = l for all t ′ ≤ 0, and that the acceleration begins at t ′ = 0
Indicate on an x, y diagram a sequence of snapshots (world-maps) of this rod in S,
beginning from its being straight and on the x-axis, and paying particular attention to
the various phases of lift-off.

3.4. Use a Minkowski diagram to establish the following result: Given two rods of
rest lengths l1 and l2 (l2 < l1), moving along a common line with relative velocity
v, there exists a unique inertial frame S′ moving along the same line with velocity
c2[l1 − l2/γ (v)]/(l1v) relative to the longer rod, in which the two rods have equal
lengths, provided l21(c − v) < l22(c + v).
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3.5. In the pole-and-garage problem of Section 3.4, what is the longest pole that
can be run into a 12-ft garage at a speed v making γ (v) = 3, assuming that the elastic
shock wave travels at the speed of light? [Answer: 69.941 ft.]

3.6. In a frame S a pole moves in the x-direction at speed v such that γ (v) = 3,
and in the negative y-direction at speed w, while remaining parallel to the x-axis and
being of apparent length 6 ft. The centre of the pole passes the centre of a 9-ft hole
in a plate that coincides with the plane y = 0. Explain, from the point of view of the
usual second frame S′ moving with velocity v relative to S, how the pole gets through
the now 3-ft hole.

3.7. It was pointed out by M. von Laue that a cylinder rotating uniformly about the
x′-axis of S′ will seem twisted when observed instantaneously in S, where it not only
rotates but also travels forward. If the angular speed of the cylinder in S′ is ω0, prove
that in S the twist per unit length is γω0v/c2 in the opposite direction. (This effect is
to be expected, since we can regard the cylinder as composed of a stack of circular
disks, each disk by its rotation serving as a clock, with arbitrary radii which are all
parallel in S′ designated as hands; in S these radii are not parallel, since simultaneity
is relative, cf. Fig. 3.2.)

3.8. Ideal clocks are taken from event � to event � along various worldlines. Prove
that the longest proper time for the trip will be indicated by that clock which follows
the straight worldline—the clock that moves rectilinearly and with constant speed.
[Hint: Pick the most convenient inertial frame from which to look at this problem.]

3.9. A ‘light-clock’ consists of two mirrors at opposite ends of a rod with a photon
bouncing between them. Assuming only length contraction and the invariance of c,
prove that such a clock will go slow by the expected Lorentz factor as it travels (i)
longitudinally, (ii) transversely, through an inertial frame. [Hint: for (i) use ‘mutual’
velocity.]

3.10. A light-clock, as in Exercise 3.9, has proper length l and moves longitudinally
through an inertial frame with proper acceleration α. (Ignore any variation of α along
the rod.) By looking at the time it takes the photon to make one to-and-fro bounce
in the instantaneous rest-frame, show that the frequency and proper frequency are
related, in lowest approximation, by ν = ν0γ

−1(1+ 1
2αl/c2). So the deviation from

idealness is proportional to α and to l. What is it when α = 1017g (g = 980 cm/s2)

and l = 1 cm?

3.11. Consider a mechanical clock consisting of two point masses m separated by
a light spring of spring constant k, and thus having a proper period 2π(m/k)1/2. Let
this clock fall freely and without rotation down the tunnel through the earth which was
discussed in Exercise 1.7. There is now an additional (tidal) acceleration of magnitude
f = 4πGρ/3 per unit separation between the masses. On the basis of Newtonian
mechanics obtain the period of this clock during its fall, and note how the effect of f

can be dwarfed by increasing k. [Answer: 2πm1/2(k + f )−1/2.]

3.12. (i) Two particles move along the x-axis of S at velocities 0.8c and 0.9c,
respectively, the faster one momentarily 1mbehind the slower one. How many seconds



Exercises 3 75

elapse before collision? (ii) A rod of proper length 10 cm moves longitudinally along
the x-axis of S at speed 1

2c. How long (in S) does it take a particle, moving oppositely
at the same speed, to pass the rod?

3.13. In a given inertial frame, two particles are shot out simultaneously from a
given point, with equal speeds v, in orthogonal directions. What is the speed of each
particle relative to the other? [Answer: v(2− (v2/c2))1/2.]

3.14. Show that the result of relativistically ‘adding’ a velocity u′ to a velocity v
in the sense of (3.7) is not, in general, the same as that of ‘adding’ a velocity v to a
velocity u′. [Hint: consider u′ = (0, w, 0) and v = (v, 0, 0).] Note, however, that it
makes sense to add two vector velocities like u′ and v, which are defined in different
frames, only if the axes of these frames are parallel in some well-defined way.

3.15. Two inertial frames S and S′ are in standard configuration while a third,
S′′, moves with velocity v′ along the y′-axis, its axes parallel to those of S′. If the
line of relative motion of S and S′′ makes angles θ and θ ′′ with the x-and x′′-axes,
respectively, prove that tan θ = v′/vγ (v), tan θ ′′ = v′γ (v′)/v. [Hint: use (3.7.)]
The inclination δθ of S′′ relative to S is defined as θ ′′ − θ . If v, v′ � c, prove that
δθ ≈ vv′/2c2. If a particle describes a circular path at uniform speed v � c in a
given frame S, and consecutive instantaneous rest-frames, say S′ and S′′, always have
zero relative inclination, prove that after a complete revolution the instantaneous rest-
frame is tilted through an angle πv2/c2 in the sense opposite to that of the motion.
[This is the so-called‘Thomas precession.’ Hint: Let a tangent and radius of the circle
coincide with the x′- and y′-axes. Then v′ ≈ v2 dt/a, a = radius.]

3.16. How many successive velocity increments of 1
2c are needed to produce a

resultant velocity of (i) 0.99c, (ii) 0.999c? [Answer: 5, 7. Hint: (3.11), (3.12);
tanh 0.55 = 0.5, tanh 2.65 = 0.99, tanh 3.8 = 0.999.]

3.17. If φ = tanh−1(u/c), and e2φ = z, prove that n consecutive velocity
increments u from the instantaneous rest-frame produce a velocity c(zn−1)/(zn+1).

3.18. In the notation of the preceding exercise, show that for u ≈ c, γ (u) ≈ 1
2 eφ .

Deduce that the γ -factor of the resultant of n consecutive velocity increments u ≈ c

is ∼2n−1γ n(u).

3.19. A rod moves along the x-axis with speed u and has length L relative to S. What
is its length L′ relative to the usual second frame S′? [Answer: L/γ (v)(1− uv/c2).]

3.20. A particle moves at uniform speed u around a circular path of radius r . Find
its proper acceleration. [Answer: γ 2u2/r .]

3.21. Derive the Newtonian equation for motion with constant acceleration, x =
1
2αt2, as the c→∞ limit of hyperbolic motion. [Hint: Shift the coordinate origin to
the vertex of the hyperbola, replacing (3.17) by (x + c2/α)2 − c2t2 = c4/α2.]

3.22. A particle moves rectilinearly. If τ denotes proper time and α proper
acceleration, prove dφ(u)/dτ = α/c. [Hint: differentiate (3.11).]

3.23. Consider a particle in hyperbolic motion according to eqn (3.18). If u =
velocity, φ = rapidity, τ = proper time, α = proper acceleration and t and τ vanish
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together, prove the following formulae:

u = c2t/x, γ (u) = αx/c2, φ(u) = ατ/c,

u/c = tanh(ατ/c), γ (u) = cosh(ατ/c),

αt/c = sinh(ατ/c). αx/c2 = cosh(ατ/c).

3.24. A certain piece of elastic breaks when it is stretched to twice its unstretched
length. At time t = 0, all points of it are accelerated longitudinally with constant
proper acceleration α, from rest in the unstretched state. Prove that the elastic breaks
at t = √3c/α.

3.25. Given that g, the acceleration of gravity at the earth’s surface, is∼9.8 ms−2,
and that a year has∼3.2×107 s, verify that, in units of years and light-years, g ≈ 1. A
short rocket moves from rest in an inertial frame S with constant proper acceleration
g (thus giving maximum comfort to its passengers). Find its Lorentz factor relative
to S when its own clock indicates times τ = 1 day, 1 year, 10 years. Find also the
corresponding distances and times traveled in S. If the rocket accelerates for 10 years
of its own time, then decelerates for 10 years, and then repeats the whole manoeuvre
in the reverse direction, what is the total time elapsed in S during the rocket’s absence?
[Answers: γ = 1.000 0038, 1.5431, 11 013; x = 0.000 0038, 0.5431, 11 012 light-
years; t = 0.0027, 1.1752, 11 013 years; t = 44 052 years. To obtain some of these
answers you will have to consult tables of sinh x and cosh x. At small values of their
arguments a Taylor expansion suffices.]

3.26. Show that the equation x dx = X dX, which results from differentiating eqn
(3.18) for constant t , in conjunction with one of the results of Exercise 3.23 above,
directly establishes the ‘rigid motion’ of the rod described by (3.18).

3.27. Consider a long uniformly accelerating ‘rocketship’ analogous to the uni-
formly accelerating rod with eqn (3.18). Prove that the ‘radar distance’ (the proper
time of a ‘light-echo’ multiplied by c/2) of a point on the rocket at parame-
ter X2, from an observer riding on the rocket at parameter X1 (<X2) is always
X1 sinh−1[(X2

2 − X2
1)/2X1X2]. [Hint: refer to Fig. 3.3, and work in the rest-frame

of the rocket at the reflection event.]

3.28. In the rocketship of the preceding exercise, a standard clock is dropped from
rest at level X2 and allowed to fall freely. How much time elapses at that clock
before it passes level X1, and what is its locally measured velocity then? [Answers:
(X2

2 −X2
1)1/2/c, c(X2

2 −X2
1)1/2/X2.]
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Relativistic optics

4.1 Introduction

Optics is one of the fields to which relativity brought considerable simplification.
In the old ether theory, light behaved simply only in the ether frame, and it made
a difference how the observer and the source separately move through the ether.
Relativity eliminated this middleman: every inertial frame is now known to be as
‘primary’ as the ether was once thought to be.

In this chapter we take a pragmatic approach, indifferently treating light as parti-
cles (photons, rays) or waves. The kinematic equivalence of these concepts will be
justified in the next chapter. When discussing frequency, we shall consider a source
to emit a regular series of ‘pulses’ that correspond to the wavecrests of the diverging
wave pattern.

The reader should bear in mind that with optical formulae we can, in general, not
expect to retrieve the classical equivalents by simply letting c →∞, since even the
classical formulae must contain cs. Only some of the cs in the relativistic formulae
come from the new kinematics, while the others refer to the actual light.

4.2 The drag effect

To begin with, we discuss a problem for which relativity provided an ideally simple
solution. Prior to that it had challenged the ingenuity of ether theoreticians. The
question is to what extent a flowing transparent liquid (for example, in a long straight
tube) will ‘drag’ light along with it. Flowing air, of course, drags sound along totally,
but the optical situation is different: on the basis of an ether theory, it would be
conceivable that there is no drag at all, since light is a disturbance of the ether and not
of the liquid. Fizeau’s experiment of 1851 indicated that there was a drag: the liquid
seemed to force the ether along with it, but only partially. If the speed of light in the
liquid at rest is u′, and the liquid is set to move with velocity v, then the speed of
light relative to the outside was found to be of the form

u = u′ + kv, k = 1− 1/n2, (4.1)

where k is the ‘drag coefficient’, a number between zero and one indicating what
fraction of its own velocity the liquid imparts to the ether within, and n is the refractive
index c/u′ of the liquid. (For water, k � 0.44.) Decades earlier (∼1820) Fresnel had
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developed an ether-based theory of light propagation in transparent media, which
predicted this result, and which now seemed vindicated. From the point of view
of special relativity, however, (4.1) is nothing but the relativistic velocity addition
formula! The light travels relative to the liquid with velocity u′, and the liquid travels
relative to the observer with velocity v, and therefore [cf. (3.7)(i)]

u = u′ + v

1+ u′v/c2
≈ (u′ + v)

(
1− u′v

c2

)
≈ u′ + v

(
1− u′2

c2

)
= u′ + kv, (4.2)

neglecting terms of order v2/c2 in the middle steps. Einstein already gave the velocity
addition formula in his 1905 paper, but it took two more years before Laue made this
beautiful application of it.

4.3 The Doppler effect

Waves from an approaching light-source have higher frequency than waves from an
identical stationary source. In the frame of the source, this is because the observer
moves into the wave train, and in the frame of the observer it is because the source,
chasing its waves, bunches them up. The opposite happens when the source recedes.
Similar effects exist for sound and other wave phenomena; all are named after the
Austrian physicist Doppler.

In the analysis of the optical Doppler effect, relativity not only eliminated the
complicating presence of an ether, but added the new element of time dilation of
the moving source or observer, as the case may be. The following derivation of the
relativistic formula, though not the most elegant (see, for example, Section 5.7), is
nevertheless instructive.

Let a light-source P traveling through an inertial frame S have instantaneous velocity
u, and radial velocity component ur relative to the origin-observer O [see Fig. 4.1(a)].
Let the time between successive pulses be dτ as measured by a comoving clock at the

Fig. 4.1
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source, and therefore dτγ (u) in S (by time dilation). So the second pulse is emitted
later (by γ dτ ) and has farther to travel (by γ dτur ). Consequently these pulses arrive
at O a time dt = dτ γ + dτ γ ur/c apart. But dτ and dt are inversely proportional,
respectively, to the proper frequency ν0 of the source and its frequency ν as observed
by O. So

ν0

ν
= 1+ ur/c

(1− u2/c2)1/2
= 1+ ur

c
+ 1

2

u2

c2
+ O

(
u3

c3

)
. (4.3)

Our series expansion separates the ‘pure’ Doppler effect 1 + ur/c from the contribu-
tion 1

2u2/c2 of time dilation, to the order shown. The corresponding pre-relativistic
formula had the Lorentz factor missing, but it was considered valid only for an
observer at rest in the ether.

Note that the above argument and formula apply equally well to the visually
observed frequency ν of a moving clock of proper frequency ν0.

When the motion of the source is purely radial, ur = u and eqn (4.3) reduces to

ν0

ν
=
(

1+ u/c

1− u/c

)1/2

. (4.4)

It is also useful to have a formula relating the frequencies ν and ν′ ascribed by
two observers O and O′ in relative motion at the same event to an incoming ray
of unspecified origin. Let O and O′ be associated with the usual frames S and S′,
respectively. Let α be the angle which the negative direction of the ray makes with
the x-axis of S. The trick here is to assume, obviously without loss of generality, that
the ray originated from a source P at rest in S′ [see Fig. 4.1(b)]. Then (4.3) applies
with the following specializations: ν0 = ν′, u = v, ur = v cos α, and so

ν′

ν
= 1+ (v/c) cos α

(1− v2/c2)1/2
. (4.5)

This formula allows us, when convenient, to evaluate the Doppler ratio in one inertial
frame and then transform it to the frame of interest. This is just what we would
do if, for example, the source were at rest in an inertial frame S through which the
observer moves non-uniformly. At the observer’s location we would simply transform
the frequency ν = ν0 seen in S, to S′, the observer’s instantaneous rest-frame. In this
and similar cases, however, we need a criterion that tells us how much acceleration
can be tolerated before the process of replacing source or observer by momentarily
comoving inertial ones becomes invalid. [Cf. paragraph after (3.3).] Let us see.

To start with, assume that both observer and source can be regarded as ideal clocks.
If not, then the tolerable deviation from idealness sets first limits on the acceleration.
Next note that in the time t = 1/ν which it takes for a complete wave to pass a
point in the observer’s instantaneous rest-frame, the observer, if accelerating with
acceleration α, will have moved a distance 1

2αt2 = 1
2α/ν2. This must be negligible

compared to the wavelength λ = c/ν. So we need α � 2cν in order to legitimately
replace the actual observer by the momentarily comoving inertial one. The same
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restriction clearly holds for a possibly accelerating source. In the case of yellow light,
for example, this amounts to α � 3× 1029 cm/s2; that is, α � 3× 1026g.

A simple case in point is the frequency shift between a source at the center of
a rapidly turning rotor, and an ‘observer’ (a piece of apparatus) at the rim, which
moves, let us say, with linear velocity v. Setting α = 90◦ and ν = ν0 in (4.5), we find
ν′ = ν0γ (v) for the observed frequency of a source of proper frequency ν0. This, of
course, is entirely due to the time dilation of the moving observer. The experiment
was performed (with a view to demonstrating such time dilation) by Hay, Schiffer,
Cranshaw, and Engelstaff in 1960, using Mössbauer resonance. Agreement with the
theoretical predictions was obtained to within an expected experimental error of a
few per cent. Of course, the accelerations produced on any conceivable laboratory
rotor fall within the limit discussed in the last paragraph, by a huge margin. They
were ∼ 6× 104g in the 1960 experiment.

A longer calculation along the same lines would give us the frequency shift between
two arbitrary points on the rotor. But we can get this more easily by using a trick.
Consider a large disk which rotates at uniform angular velocity ω in an inertial frame
S, and which has affixed to it a light source and receiver, at points P0 and P1, at
distances r0 and r1 from the center, respectively. Since each signal from P0 to P1
clearly takes the same time in S, two successive signals are emitted and received
with the same time difference in S, say �t . These differences correspond to proper
time differences �t/γ (ωr0) and �t/γ (ωr1) at P0 and P1, respectively. But those are
inversely proportional to the frequencies ν0 and ν1, respectively, and so

ν0

ν1
= γ (ωr0)

γ (ωr1)
. (4.6)

Time dilation is the only cause of the frequency shift whenever there is no radial
motion between source and observer. This is the so-called transverse Doppler effect,
and has long been considered as a possible basis for time dilation experiments. Prior
to the rotor experiments, however, it was difficult to ensure exact transverseness in the
motion of the sources (for example, fast-moving hydrogen ions). The slightest radial
component would swamp the transverse effect. Ives and Stilwell in 1938 cleverly
used a to-and-fro motion of ions whereby the first-order Doppler effect canceled
out, and only the contribution of time dilation remained, which they were able to
measure to an accuracy of a few per cent. Theirs was a historic experiment, being
the first to demonstrate the reality of time dilation. (Yet by a curious irony of fate,
Ives and Stilwell were lone hold-outs for Lorentz’s ether theory and rejected special
relativity!) A conceptually similar experiment in 1985, using lasers and ‘two-photon
spectroscopy’ on a beam of fast-moving neon atoms as source, verified time dilation
to an accuracy of 4× 10−5, which was improved to 7× 10−7 by 1994.1

A canceling of the first-order contribution also occurs in the so-called thermal
Doppler effect. Radioactive nuclei bound in a hot crystal move thermally in a rapid and

1 M. Kaivolo et al., Phys. Rev. Lett. 54, 255 (1985). R. Grieser et al., Appl. Phys. B 59, 127 (1994).
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random way. Because of this randomness, their first-order (classical) Doppler effects
average out, but not the second-order (relativistic) time dilation effects. The former
cause a mere broadening of the spectral lines, the latter a shift of the entire spectrum.
This shift was observed, once again by use of Mössbauer resonance, in 1960 by Rebka
and Pound. The accuracy of that experiment was only about 10 per cent. However, it
also yielded some evidence for the existence of approximately ideal clocks: in spite
of proper accelerations up to 1016g, these nuclear ‘clocks’ were slowed only by the
velocity factor (1− v2/c2)1/2.

4.4 Aberration

Anyone who has driven into vertically falling rain or snow knows that it seems to
come at one obliquely. For similar reasons, if two observers measure the angle which
an incoming ray of light makes with their relative line of motion, their measurements
will generally not agree. This phenomenon is called aberration, and, of course, it was
well known long before relativity.

Already in 1728 Bradley had discovered the aberration of starlight, as manifested
by the apparent motion relative to the ecliptic (along a small ellipse) of each fixed
star in the course of a year. He had thereby provided the first empirical proof of
Copernicus’s claim (∼1530) that the earth orbited the sun and hence moved relative
to the fixed stars.

As in the case of the Doppler effect, the relativistic formula contains a kinematic
‘correction’, and it applies to all pairs of observers, whereas the prerelativistic formula
was simple only if one of the observers was at rest in the ether frame.

To obtain the basic aberration formulae, consider an incoming light signal whose
negative direction makes angles α and α′with the x-axes of the usual two frames S and
S′, respectively [as in Fig. 4.1(b)]. The velocity transformation formula (3.6)(i) can
evidently be applied to this signal, with u1 = −c cos α and u′1 = −c cos α′, yielding

cos α′ = cos α + v/c

1+ (v/c) cos α
. (4.7)

Similarly, from (3.6)(ii) we obtain the alternative formula (assuming temporarily,
without loss of generality, that the signal lies in the xy-plane)

sin α′ = sin α

γ [1+ (v/c) cos α]
. (4.8)

But the most interesting version of the aberration formula is obtained by substituting
from eqns (4.7) and (4.8) into the trigonometric identity

tan
1

2
α′ = sin α′

1+ cos α′
,
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which gives

tan
1

2
α′ =

(c − v

c + v

)1/2
tan

1

2
α. (4.9)

Since tan 1
2α is a monotonic function between α = 0 and 180◦, it follows that α′ is

less than or greater than α according as v is positive or negative, respectively.
In some situations it is the aberration of outgoing rays that is of interest. To obtain

the corresponding formulae we simply replace c by −c in (4.7)–(4.9), as is clear
when we examine the way we obtained these formulae. Interestingly, this is equiv-
alent to an interchange of α and α′, as can be seen particularly easily from (4.9).
Thus for outgoing rays α is smaller than α′ when v is positive, and significantly so
when v ≈ c. A well-known consequence of this is the so-called headlight effect: a
source that radiates isotropically in its rest-frame throws almost all of its radiation
into a narrow forward cone at high speed (cf. Exercise 4.11). Much the same is true
even if the source does not radiate isotropically in its rest-frame. This effect is very
pronounced, for example, in the synchrotron radiation emitted by highly accelerated
charged particles in circular orbit.

Consider a moving point source and an infinitesimally thin forward cone of radiation
emanating from it, that is, one whose bounding angles α in S and α0 in S′ (the
rest-frame) are both infinitesimal. Then from (4.9) (with c 
→ −c) we have

α0

α
=
(c + v

c − v

)1/2 =: D, (4.10)

where we have written D for the usual Doppler ratio [cf. (4.4)]. Hence the forward ray
density in S is increased by a factor D2 over that in the rest-frame. But, additionally,
the energy hν of each photon as well as the number of photons arriving per unit time
is increased by a Doppler factor ν/ν0, which eqn (4.4) (with −v instead of u for
an approaching source) determines to be D. So we see that the energy current (or
luminosity) ε due to a directly approaching point source is increased by four Doppler
factors over that of a stationary source:

ε = D4ε0 =
(c + v

c − v

)2
ε0. (4.11)

4.5 The visual appearance of moving objects

Aberration causes (at least, theoretically) certain distortions in the visual appearance
of extended uniformly moving objects. For, from the viewpoint of the rest-frame of
the object, as the observer moves past the conical pattern of rays converging from the
object to the observer’s eye, rays from its different points are unequally aberrated.
Alternatively, from the viewpoint of the observer’s rest-frame, the light from different
parts of the moving object has taken different times to reach the eye at a given instant,
and thus it was emitted at different past times; the more distant points of the object
consequently appear displaced relative to the nearer points in the direction opposite
to the motion.
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Fig. 4.2

It is in connection with the visual appearance of uniformly moving objects that
the relativistic results are a little unexpected. Consider the two observers O, O′ at
the origins of the usual pair of frames S and S′. Following an ingenious argument of
Penrose, let us draw a sphere of unit diameter around each observer (see Fig. 4.2),
cutting the negative and positive x-axis at points P and Q, respectively. All that the
observer sees at any instant can be mapped onto this sphere (the ‘sky’). Let it further be
mapped from this sphere onto the tangent plane at Q (the ‘screen’) by stereographic
projection from P. We recall that the angle subtended by an arc of a circle at the
circumference is half of the angle subtended at the center, and we have accordingly
labeled the diagram (for a single incident ray). From (4.9) it therefore follows that
whatever the two momentarily coincident observers in S and S′ see at that moment,
the corresponding images on their imaginary screens will be identical except for size
(‘geometrically similar’).

Consider, in particular, a sphere Z at rest anywhere in the frame of observer O′.
O′ sees a circular outline of Z on the sky and projects this outline as a circle or
straight line onto the screen (for under stereographic projection, circles on the sphere
correspond to circles or straight lines on the plane). Relative to the second observer O,
of course, Z moves. Nevertheless, according to this analysis, the screen image of O
will differ from that of O′ only in size, and must therefore also be circular or straight;
consequently, O’s ‘sky’ image of Z must be circular too. This shows that a moving
sphere presents a circular outline to all observers in spite of length contraction! (Or
rather: because of length contraction; for without length contraction the outline would
be distorted.) By the same argument, all uniformly moving straight lines or rods will
be seen as arcs of circles on the sky.

Stereographic projection is conformal, that is, angle-preserving. Now small con-
formal mappings of a small triangle are clearly similar to the original, so the same
must be true of all small conformal mappings of small figures (by triangulation). It
then follows from the Penrose construction that when the images of some object as
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seen by two coincident inertial observers both subtend small solid angles, then these
images are similar.

Another interesting though less realistic way of studying the visual appearance of
moving objects is by use of what we may call ‘supersnapshots’. These are life-size
snapshots made by receiving parallel light from an object and catching it directly on
a photographic plate held at right angles to the rays, as in Fig. 4.3. One could, for
example, make a supersnapshot of the outline of an object by arranging to have the
sun behind it and letting it cast its shadow onto a plate. Now, the surprising result
(due to Terrell) is this: all supersnapshots that can be made of a uniformly moving
object at a certain place and time by observers in any state of uniform motion are
identical. In particular, they are all identical to the supersnapshot that can be made in
the rest-frame of the object.

To prove this result, let us consider two photons P and Q traveling abreast along
parallel straight paths a distance �r apart, relative to some frame S. Let us consider
two arbitrary events � and � at P and Q, respectively. If � occurs a time �t after
�, then the space separation between � and � is evidently (�r2 + c2�t2)1/2, and
thus, by (2.15), the squared displacement between � and � is −�r2, independently
of their time separation. But if, instead of traveling abreast, Q leads P by a distance
�l, then the space separation between � and � is [�r2 + (c�t +�l)2]1/2, and the
squared displacement is not independent of �t . Now, since squared displacement is
an invariant and since parallel rays transform into parallel rays, it follows that two
photons traveling abreast along parallel paths a distance �r apart in one frame do
precisely the same in all other frames. But a supersnapshot results from catching an
array of photons traveling abreast along parallel paths on a plate orthogonal to those
paths. By our present result, these photons travel abreast along parallel lines with the
same space separation in all inertial frames, and so the equality of supersnapshots is
established.

Now, real snapshots, or images seen by the eye, of objects that subtend sufficiently
small solid angles at the eye, are geometrically similar to supersnapshots taken at the
same place. For consider, as in Fig. 4.3, any ray AE from the object to the eye, and
a corresponding ray AP from the object to the supersnapshot. Then the (small) angle
α between the normal and the incoming ray to the eye is proportional to the distance
EP of the superpicture P of A, which proves our assertion. That, in turn, proves once
more that all such images are similar to each other. But there will always be images
that are not similar to the others, since there will always be observers for whom the
object’s solid angle is large: If I move sufficiently fast away from an object, I can
increase its apparent angular radius, α′, beyond all bounds, as eqn (4.9) (with v < 0)
shows.

As an example, suppose the origin-observer O in S sees at t = 0 a small object,
apparently on the y-axis (α = 90◦). Suppose this object is at rest in the usual second
frame S′. The origin-observer O′ in S′ will see the object at an angle α < 90◦, given
by (4.9). If the object is a cube with its edges parallel to the coordinate axes of S
and S′, O′ of course sees the cube not face-on but rotated. Thus O, who might have
expected to see a contracted cube face-on, also sees an uncontracted rotated cube!
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Fig. 4.3

(However, the basic rotation effect is not specifically relativistic; classically there
would also be rotation, though with distortion.)

Exercises 4
4.1. If the twins Ã (the stay-at-home) and B̃ (the traveler) in the twin-paradox

‘experiment’ discussed in Section 3.5 visually observe the regular ticking of each
other’s standard clocks, describe exactly what each sees as B̃ moves uniformly to
a distant point B and back. [Hint: draw a spacetime diagram, treating B̃’s velocity
changes as instantaneous.] Note that B̃ receives slow ticks for half the time and fast
ticks for the other half, whereas Ã receives slow ticks for more than half the time:
hence Ã receives fewer ticks, hence B̃ is younger when they meet again. This is one
of the arguments often used to illustrate the ‘non-paradoxicality’ of the paradox. Why
does it not lead to an age difference classically?

4.2. A source of monochromatic light of proper frequency ν0 is fixed in a frame
S. An observer travels through S with instantaneous velocity u and radial velocity ur
relative to the source, when observing the source. What frequency does the observer
see? [Answer: γ (u)(1− ur/c)ν0.]

4.3. In some inertial frame S a ray of light travels along a straight line which its
source of proper frequency ν0 crosses at 30◦ at emission and an observer crosses at
30◦ at reception (not necessarily in the same plane). Both have velocity u relative to
S. Find the frequency ν observed. What is ν if the second angle is 60◦ instead of 30◦?

4.4. In the hyperbolically moving rocketship discussed in Section 3.8, a light-signal
is sent from a source at rest at X = X1 to an observer at rest at X = X2. Prove that
the frequency shift ν1/ν2 in the light is given by X2/X1. [Hint: refer to Fig. 3.3, and
transform to a frame in which the observer is at rest at reception.] By the equivalence
principle, the rocketship is a rigid frame with a parallel gravitational field, and as
such it gives rise to a gravitational frequency shift from top to bottom, as discussed in
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Section 1.16. The present example then shows that there is no fundamental difference
between the special relativistic and the gravitational frequency shifts.

4.5. By combining the Doppler formula (4.5) with its inverse (obtained by a v-
reversal transformation), re-obtain the aberration formula (4.7).

4.6. From (4.5) and (4.8) derive the following interesting relation between Doppler
shift and aberration: ν′/ν = sin α/ sin α′.

4.7. Let �t and �t ′ be the time separations in the usual two frames S and S′ between
two events occurring at a freely moving photon. If the photon has frequencies ν and
ν′ in these frames, prove that ν/ν′ = �t/�t ′. [Hint: use the result of the preceding
exercise.]

4.8. Two momentarily coincident observers travel towards a small and distant
object. To one observer that object looks twice as large (linearly) as to the other.
Prove that their relative velocity is 3c/5.

4.9. A rocketship flies at a velocity v through a large circular hoop of radius a,
along its axis. How far beyond the hoop is the rocketship when the hoop appears
exactly lateral to the pilot? [Answer: av/(c2− v2)1/2. Note: this ‘hindsight’ effect is
not specifically relativistic (although the exact result is); and it is quite analogous to
hearing a high-flying aeroplane overhead long after it has actually passed.]

4.10. Writing α′ = α+dα, and assuming v � c, derive the approximate aberration
formula dα = −(v/c) sin α. From it, and given that the earth’s orbital speed is
∼30 km/s, prove that each fixed star’s apparent position relative to the ecliptic (that
is, the earth’s orbit) changes in the course of one year by ∼ 41′′ (seconds of arc) in
the direction parallel to the ecliptic, and by ∼(41′′) sin α in the orthogonal direction,
α being the star’s elevation relative to the ecliptic, that is, its ‘ecliptic latitude’.

4.11. A source of light is fixed in S′ and in that frame it emits light uniformly in
all directions. Show that for large v, the light in S is mostly concentrated in a narrow
forward cone; in particular, half the photons are emitted into a cone whose semi-
angle is given by sin θ = 1/γ . This is called the ‘headlight effect’. Is the situation
essentially different in classical optics?

4.12. A plane mirror moves in the direction of its normal with uniform velocity
v in a frame S. A ray of light of frequency ν1 strikes the mirror at an angle of
incidence θ , and is reflected with frequency ν2 at an angle of reflection φ. Prove that
tan 1

2θ/ tan 1
2φ = (c + v)/(c − v) and

ν2

ν1
= sin θ

sin φ
= c cos θ + v

c cos φ − v
= c + v cos θ

c − v cos φ
.

These results are of some importance in thermodynamics. [Hint: let the mirror be
fixed in S′ and write down the obvious relations in that frame; then transform to S.]

4.13. A particle moves uniformly in a frame S with velocity u making an angle α

with the positive x-axis. If α′ is the corresponding angle in the usual second frame
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S′, prove the ‘particle aberration formula’

tan α′ = sin α

γ (v)(cos α − v/u)
,

and compare this with (4.7) and (4.8). [Hint: use the velocity transformation formula
as for (4.7) and (4.8).]

4.14. In a frame S, consider the equation x cos α + y sin α = wt . For fixed α

it represents a plane propagating in the direction of its normal with speed w, that
direction being parallel to the xy-plane and making an angle α with the positive x-
axis. We can evidently regard this plane as a wave front. Now transform x, y, and
t directly to the usual frame S′. From the resulting equation deduce the following
aberration formula for the wave normal:

tan α′ = sin α

γ (v)(cos α − wv/c2)
.

By comparison with the result of the preceding exercise, note that waves and particles
traveling with the same velocity aberrate differently, unless the velocity is c. But
waves with velocity w = c2/u aberrate like particles with velocity u—a result that
will be of interest to us later (in connection with de Broglie waves).

4.15. Relative to some frame S, a plane slab of width λ (in S) travels at uniform
speed w away from the origin, in the direction of its normal which subtends an angle
α with the positive x-axis. Prove that in the usual second frame S′ its width λ′ and
speed w′ are given by

λ′ = λ[γ 2(v)(cos α − vw/c2)2 + sin2 α]−1/2,

w′ = (w − v cos α)[(cos α − vw/c2)2 + sin2 α/γ 2(v)]−1/2.

Note that these formulae also give the transformations of the wavelength λ and the
speed w of a plane wave train traveling in the direction α with speed w. But the λ

transformation does not simply follow from the length contraction of the width of
the slab: a rod orthogonal to its bounding planes in S is not orthogonal to them in S′!
[Hint: use the method of the preceding exercise.]

4.16. Repeat Exercise 4.14 under the assumption of the Galilean transformation.
Note that there is then no aberration of the wave normal at all! To explain aberration
classically, one needed to use either the concept of light-corpuscles (photons) or of
‘rays’ whose directions do not coincide with the wave normal except in still ether.

4.17. (i) The center of a long straight rod moves at high uniform speed along the
x-axis of some inertial frame, while the rod remains parallel to the y-axis. A (real)
snapshot taken by a camera on the z-axis pointing towards the origin shows the center
of the rod at the origin. How does the rest of the picture look? [Hint: When did
the light leave the ends of the rod? What general information do we have from the
Penrose construction?] (ii) The same camera also photographs a large circular disk
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in the xy-plane whose center moves at high speed along the x-axis. If the snapshot
shows this center at the origin, how does the rest of the picture look? [Answer: like a
boomerang. Hint: The world-map of the disk will be a very narrow ellipse—almost
a rod!]

4.18. Show that the ratio of the solid angles subtended in S and S′ by a thin pencil of
light-rays converging on the coincident origins of these frames, its negative direction
making angles α, α′ with the respective x-axes, is given by

d�

d�′
=
( dα

dα′
)2 = γ 2(v)

(
1+ v

c
cos α

)2 = ν′2

ν2
= sin2 α

sin2 α′
,

[Hint: without loss of generality, consider a solid angle with circular normal cross
section and recall the argument associated with Fig. 4.2.]

4.19. A cube with its edges parallel to the coordinate axes moves with Lorentz
factor 3 along the x-axis of an inertial frame S. A ‘supersnapshot’ of this cube is
made in a plane z = const by means of light-rays parallel to the z-axis. Make an exact
scale drawing of this supersnapshot.

4.20. Uniform parallel light is observed in two arbitrary inertial frames, say the
usual frames S and S′, with the light not necessarily parallel to the x-axes. If ν and
ν′ are the respective frequencies of the light in S and S′, prove that the ratio ρ/ρ′ of
the respective photon densities (number of photons per unit volume) is ν/ν′. [Hint:
supersnapshots.]
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Spacetime and four-vectors

5.1 The discovery of Minkowski space

We have now reached a point at which further progress can be greatly clarified and
simplified by the introduction of a new concept combining space and time and a cor-
responding mathematical technique that is tailor-made for special relativity. The new
concept is Minkowski’s 4-dimensional ‘spacetime’ (now usually called Minkowski
space) and the mathematical technique is the ‘4-vector’ calculus in that spacetime.
(Later we shall recognize this as only a part of a more comprehensive ‘4-tensor’
calculus.)

We have already briefly mentioned in Section 2.2 how (in 1907) Minkowski
replaced Einstein’s (and Newton’s) picture of inertial frames moving uniformly
through space by a static picture in four dimensions. It was Einstein who taught
us to focus our attention on events (x, y, z, t)—the ‘atoms’ of (physical) his-
tory. Minkowski now pictured them as points in a 4-dimensional space he called
spacetime—a stack of 3-dimensional world-maps. This much can certainly be done
just as well in Newton’s theory. But what is new in special relativity is the existence
of an invariant 4-dimensional metric [cf. eqns (2.7), (2.15)]

ds2 := c2 dt2 − dx2 − dy2 − dz2. (5.1)

Apart from the strange mix of plus and minus signs this is reminiscent of the Euclidean
metric

dr2 = dx2 + dy2 + dz2, (5.2)

which is entirely responsible for the structure of Euclidean space and thus for all
of Euclidean geometry! Minkowski now realized that the ds2 of (5.1) provides a
natural metric structure for spacetime, with its resultant rich geometry, and, above
all, with its resultant vector and tensor calculus, which he quickly proceeded to
develop. Minkowski was so struck by his discovery that the proclaimed: ‘Henceforth
space by itself and time by itself are doomed to fade away into mere shadows, and
only a kind of union of the two will preserve an independent reality’.

Minkowski’s spacetime is far more than a mere mathematical artifice. Relativity
made the older concepts of absolute space and absolute time untenable, and yet they
had served as a deeply ingrained framework in our minds on which to ‘hang’ the rest
of physics. Spacetime is their modern successor: it is the new absolute framework
for exact physical thought. This has great heuristic value. Moreover, by automati-
cally combining not only space and time, but also, as we shall see, momentum and
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energy, force and power, electric and magnetic fields, etc., Minkowski’s mathematical
formalism illuminates some profound physical interconnections.

But, once again, Freud’s maxim (few completely new ideas!—cf. Section 1.9) was
confirmed. The same Poincaré who had in some ways anticipated Einstein with the
relativity principle, later also anticipated Minkowski with 4-dimensional arguments,
yet never got as far as metric spacetime. Still, Poincaré’s ideas (consciously or not)
may well have served those bolder spirits as seeds from which sprang forth their own
breakthroughs.

In the mathematical model that is SR, smooth, flat, completely uniform Minkowski
space fills the whole universe—past, present, and future—and constitutes an abso-
lute structure that determines all inertial frames, including their times. As such, it
is subject to the same criticism that Einstein brought against absolute space: it acts,
but cannot be acted on. Only in the further development of the theory, in ‘general’
relativity, did Einstein show that gravitating matter actually does act on spacetime: it
distorts it, giving it curvature.

5.2 Three-dimensional Minkowski diagrams

Minkowski geometrized special relativity. One of the advantages of geometry is that
it allows one to visualize relations. But in order to develop a good visual intuition,
one needs to play with pictures. The pictures relevant to Minkowskian geometry
are Minkowski diagrams. We have, in fact, already come across examples of such
diagrams (in two dimensions) in Section 2.9. A slight generalization will take us to
three dimensions.

The pictures we can draw on a piece of paper of 2-dimensional Euclidean figures
like triangles, circles, etc., are direct; that is, they are the actual objects. On the
other hand, the best we can do for figures in Minkowski space is to map them onto
Euclidean space, as did Mercator with his flat map of the curved surface of the earth.
Such maps necessarily distort metric relations and one has to learn to compensate for
this distortion.

With Minkowski diagrams, even 3-dimensional ones, one also has to learn to
compensate for the unavoidable absence of at least one spatial dimension (usually
the z-dimension), reading circles as spheres, planes as Euclidean 3-spaces, etc. A
3-dimensional Minkowski diagram like Fig. 5.1 is a perspective rendering onto a
plane piece of paper of structures in Euclidean 3-space that are mappings of struc-
tures in Minkowskian 3-space (x, y, t). For example, Fig. 5.1 shows the calibrating
hyperboloids of revolution

c2t2 − x2 − y2 = ±1. (5.3)

These are obtained by rotating the calibrating hyperbolae of Fig. 2.6 about the t-axis.
The inner (2-sheeted) hyperboloid is the locus of events satisfying �s2 = 1, while
the outer (1-sheeted) hyperboloid represents all events satisfying �s2 = −1, relative
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Fig. 5.1

to the origin. Note that we now work in ordinary units (not making c = 1) and label
the vertical axis accordingly ct instead of t . Then particle worldlines, as before, must
subtend angles less than 45◦ with the vertical, since the slope relative to the ct-axis, as
before, measures v/c. Of course, any particle moving uniformly in any inertial frame
has a straight worldline in the diagram. Straight lines at 45◦ to the vertical represent
photons.

The present diagram can accommodate all inertial frames with relative motions
parallel to the single spatial (x, y) plane it describes. Without loss of generality we
can have the spatial origins of all these frames coincide at time zero. The worldline
of the spatial origin x′ = y′ = 0 of any such frame S′ is also the time axis ct ′ = var
of S′ in Minkowski space. The simultaneities ct ′ = const are all the planes parallel to
the tangent plane π ′ to the hyperboloid where the ct ′-axis pierces it—by an argument
quite analogous to that of Exercise 2.17. And the spacetime x′- and y′-axes are parallel
to these simultaneities and pass through the spacetime origin.

5.3 Light cones and intervals

The most fundamental invariant structure in Minkowski space is the set of so-called
light cones or null cones—one at each point (event) �. These are the bundles of
worldlines of all the photons passing through �, or, equivalently, the loci of events
that can send light to or receive light from �, or yet, equivalently, the loci of events
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Fig. 5.2

at zero interval from �, satisfying

c2�t2 −�x2 −�y2 −�z2 = 0. (5.4)

At the origin, and under suppression of the z-dimension, this equation becomes
c2t2 − x2 − y2 = 0 and is recognized as the 45◦-cone asymptotic to the cal-
ibrating hyperboloids in Fig. 5.1. Regarded sequentially in time t in the frame
S, this cone represents a circular light-front in the spatial xy-plane converging
onto the origin and then diverging away from it. Because of the invariance of the
defining equation (5.4) under an active LT (and also directly from the physics),
the light cone presents this same aspect in any inertial frame. In full dimen-
sions, of course, it is not a circular but a spherical light-front that converges onto
and then diverges from the event, but ‘light cone’ is still the term used for its
locus.

The light cones at each event imprint a ‘grain’ onto spacetime, which has no analog
in isotropic Euclidean space, but is somewhat reminiscent of crystal structure. Light
travels along the grain, and particle worldlines have to be within the light cone at each
of their points (cf. Fig. 5.2).

It is of some interest to see what happens to the light cones as we formally let
c → ∞. For this purpose we must use t rather than ct as the time variable. The
light cones (in normal units) will then have slope c relative to the time axis and
consequently flatten out completely as c → ∞: they have become the fundamental
absolute structure of Newtonian spacetime, namely the absolute simultaneities. Thus
while Newtonian spacetime splits naturally into a stack of 3-spaces and absolute
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time, Minkowski spacetime is essentially 4-dimensional, as is already indicated by
the intermingling of x and t in the Lorentz transformation.

Next, we investigate the general physical meaning of the fundamental invariant
form (5.1) of Minkowski space, or, better, of its finite version

�s2 = c2�t2 −�x2 −�y2 −�z2 = �t2
(

c2 − �r2

�t2

)
, (5.5)

where the � terms refer to two not necessarily neighboring events � and �. The
meaning of �s2 depends on its sign. The simplest case is �s2 = 0, which means
precisely that � and � are connectible by a light signal.

When �s2 > 0, then, in any inertial frame, �r2/�t2 < c2, so a clock can be sent
at uniform speed from � to � or vice versa. In its rest-frame S′, � and � occur at the
same location, so �s2 = c2�t ′2. Consequently the interval �s = |�s2|1/2 between
� and � in that case is c times the time elapsed (‘proper time’) on a clock that freely
falls from one to the other.

Note, by reference to (3.3) and writing v = dr/dt , that the time elapsed on an ideal
clock moving arbitrarily between two events � and � is given by

�τ =
∫ �

�

(
dt2 − dr2/c2)1/2 = 1

c

∫ �

�
ds, (5.6)

which reduces to our present result in the case of uniform motion, since then �s =∫
ds (cf. Exercise 5.1). Equation (5.6) interprets ds in its most important practical

context: ds = cdτ .
Lastly, suppose �s2 < 0; this corresponds to �r2/�t2 > c2 (that is, to two events

on a superluminal signal) for which, as we have seen after eqn (2.2), there always
exists an inertial frame in which the events are simultaneous. In that frame, say S′,
�s2 = −�r′2. So �s is the spatial separation between the two events in the frame in
which they are simultaneous. From eqn (5.5)(i) it is clear that this is also the shortest
spatial separation assigned to � and � in any inertial frame.

The light cone at each event � effects a very important causal partition of all other
events relative to � (see Fig. 5.3). All events on and within the future cone (that is, the
top half of it) can be influenced by �; for they can receive signals from �, since they
are all reachable at speeds u ≤ c. Moreover, as we have already seen in Section 2.10,
subluminal connectibility with P ensures that all observes agree that events in this
region happen after �: those events are therefore said to constitute the absolute (or
causal) future of �. Similar remarks apply to the events on or within �’s past cone
(the bottom half of the light cone): they absolutely precede and can influence � and
thus constitute �’s absolute (or causal) past. These two classes of events that are
causally related to � are characterized by �s2 ≥ 0. On the other hand, no event in
the region outside the light cone, characterized by �s2 < 0, can influence � or be
influenced by it, since that would require superluminal communication. But, as we
have seen, each event in this region is simultaneous with � in some inertial frame,
and accordingly we call it the causal present of �.
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Fig. 5.3

5.4 Three-vectors

Before introducing 4-vectors, it will be well to review the salient features of 3-vectors;
that is, of ‘ordinary’ vectors. Anyone who has done 3-dimensional geometry or
mechanics will be aware of the power of the vector calculus. Just what is that power?
First, of course, there is power simply in abbreviation. A comparison of Newton’s
second law in scalar and in vector form makes this clear:

f1 = m(d2x/dt2)

f2 = m(d2y/dt2)

f3 = m(d2z/dt2)

⎫⎬⎭ f = ma.

This is only a very mild example. In looking through older books on physics or geom-
etry, one often wonders how anyone could have seen the underlying physical reality
through the triple maze of coordinate-dependent scalar equations. Yet abbreviation,
though in itself often profoundly fruitful, is only one aspect of the matter. The other
is the abolition of the coordinate-dependence just mentioned: vectors are absolute.

In studying the geometry and physics of 3-dimensional Euclidean space,
each ‘observer’ can set up standard coordinates x, y, z (right-handed orthogonal
Cartesians) with any point as origin and with any orientation. Does this mean that there
are as many spaces as there are coordinate systems? No: underlying all subjective
‘observations’ there is a single space with absolute elements and properties, namely
those on which all observers agree, such as specific points and specific straight lines,
distances between specific points and lines, angles between lines, etc. Vector calculus
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treats these absolutes in a coordinate-free way that makes their absoluteness evident.
All relations that can be expressed vectorially, such as a = b + c, or a · b = 5, are
necessarily absolute. On the other hand, an observer’s statement like f1 = f2 (about
a force), which has no vector formulation, is of subjective interest only.

A (Cartesian) 3-vector a can be defined as a number-triple (a1, a2, a3) which
depends on the choice of a Cartesian reference frame {x, y, z}. Technically, a is
a mapping from the set of Cartesian coordinate systems {x, y, z} to the space R3 of
number triples, a : {x, y, z} 
−→ (a1, a2, a3). The various vector operations can be
defined via these ‘components’; for example, a + b = (a1 + b1, a2 + b2, a3 + b3),
a · b = a1b1+a2b2+a3b3. But they can be interpreted absolutely (that is, coordinate-
independently): for example, a itself as having a certain length and direction, a + b
by the parallelogram rule, etc. Only operations that have absolute significance are
admissible in vector calculus. To check a vector equation, observers could proceed
directly by measuring absolutes like lengths and angles, but they would then really be
‘superobservers’. The observers we have in mind simply possess a standard coordi-
nate lattice, and in fact they can be identified with such a lattice. Thus they can only
read off components of all relevant vectors. To check a relation like a = b+ c, they
would each obtain a set of three scalar equations ai = bi + ci (i = 1, 2, 3) which
differ from observer to observer; but either all sets are false, or all are true. A vector
(component) equation that is true in one coordinate system is true in all: this is the
most basic feature of the vector calculus. Speaking technically, vector (component)
equations are form-invariant under the rotations about the origin and the translations
of axes (and combinations thereof) which relate the different ‘observers’ in Euclidean
space and which in fact constitute the ‘relativity group’ of Euclidean geometry. The
reason for this form-invariance will appear presently.

The prototype of a 3-vector is the displacement vector �r = (�x, �y, �z)

joining two points in Euclidean space. Under a translation of axes its components
remain unchanged, and under a rotation about the origin they suffer the same (linear-
homogeneous) transformation as the coordinates themselves [cf. Section 2.8(iv)], say

�x′ = α11�x + α12�y + α13�z

�y′ = α21�x + α22�y + α23�z (5.7)

�z′ = α31�x + α32�y + α33�z,

where the αs are certain functions of the angles specifying the rotation. Any quantity
having three components (a1, a2, a3) which undergo exactly the same transformation
(5.7) as (�x, �y, �z) under the contemplated changes of coordinates (rotations and
translations) is said to constitute a 3-vector. This property of 3-vectors is often not
stated explicitly in texts; but it is implicit in the usual assumption that each 3-vector
quantity can be represented by a displacement vector (a ‘directed line segment’) in
Euclidean space. Note that the position ‘vector’ r = (x, y, z) of a point relative to
the origin is a vector only under rotations and not under translations! The zero-vector
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defined in all coordinate systems alike as 0 = (0, 0, 0) is a 3-vector according to
(5.7); it is usually (if incorrectly) written as 0, as in a = 0.

From (5.7) it follows that if the components of two 3-vectors are equal in one
coordinate system, they are equal in all coordinate systems; for both sets of new
components are the same linear combination of the old components. So if both sides
of a suspected equation are known to be vectors, the equation will be established if it
is shown to be true in one coordinate system.

If a = (a1, a2, a3) and b = (b1, b2, b3) separately transform like (�x, �y, �z),
then so does a + b := (a1 + b1, a2 + b2, a3 + b3), because of the linearity of (5.7);
hence sums of vectors are vectors. Similarly, if k is a scalar invariant (often shortened
to just ‘scalar’ or ‘invariant’)—that is, a real number independent of the coordinate
system, then clearly ka, defined as (ka1, ka2, ka3),is a vector, again from (5.7).

If (x, y, z) is the current point of a curve in space, and each of the three coordinates
is expressed as a function of the arc l, then the ‘unit tangent’

t =
(

dx

dl
,

dy

dl
,

dz

dl

)
(5.8)

is a vector, usually written as dr/dl. This can be seen by considering the transforma-
tion of the coordinates x, y, z themselves [which differs from the pattern (5.7) only
by the possible presence of additive constants at the end of each line] and differenti-
ating both sides with respect to l. Passing from geometry to Newtonian mechanics,
consider a particle moving along this curve; it will now be convenient to express
x, y, z as functions of the time t , but by the same argument it follows that the velocity
u = dr/dt is a vector. One easily sees, by differentiating the transformation pattern
(5.7) satisfied by any vector, that the derivative da/dθ := (da1/dθ, da2/dθ, da3/dθ)
of a vector with respect to any scalar invariant θ is a vector. Thus the acceleration
a = du/dt = (du1/dt, du2/dt, du3/dt) is a vector. Multiplying u and a by the
mass m (a scalar) yields two more vectors, the momentum p = mu and the force
f = ma. Note how the five basic vectors t, u, a, p, f all arise by differentiation and
scalar multiplication from the coordinates themselves.

Associated with each 3-vector a = (a1, a2, a3) there is a very important scalar, its
magnitude, written |a| or simply a, and defined by

a2 = a2
1 + a2

2 + a2
3, a ≥ 0. (5.9)

That this is an invariant follows at once from the invariance of the metric �x2 +
�y2 + �z2 of Euclidean space under rotations and translations, since (a1, a2, a3)

transforms just like (�x, �y, �z). If a and b are vectors, then a+b is a vector, whose
magnitude must be invariant; but

|a + b|2 = (a1 + b1)
2 + (a2 + b2)

2 + (a3 + b3)
2

= a2 + b2 + 2(a1b1 + a2b2 + a3b3),
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and since a2 and b2 are invariant, it follows that the ‘scalar product’

a · b := a1b1 + a2b2 + a3b3 (5.10)

is invariant; that is, coordinate-independent. If this were our first encounter with vec-
tors, we would now look for the absolute (that is, coordinate-independent) significance
of a · b, which a priori must exist; and by going to a specific coordinate system (for
example, that in which a2 = a3 = 0), we would soon discover it. The product
a · b, as defined by (5.10), is easily seen to obey the commutative law a · b = b · a,
the distributive law a · (b + c) = a · b + a · c, and the Leibniz differentiation
law d(a · b) = da · b + a · db. Also note that a · a = a2 (which we may write
as a2 = a2), so that a · da = ada—a most useful result.

5.5 Four-vectors

We are now ready to develop the calculus of 4-vectors by close analogy with 3-vectors.
And it is easy to see what we are going to get: We get a calculus of vectors in
Minkowski space, the equations of which, when ‘projected’ into the various inertial
frames (that is, when written in component form) are form-invariant under general
Lorentz transformations (cf. Section 2.7, third paragraph from end). So they automat-
ically possess the property required by the relativity principle of all physical laws!
This often enables us to recognize by its vector form alone that a given or proposed
law is Lorentz-invariant, and so assists us greatly in the construction of relativis-
tic physics. However, let it be said at once that not all Lorentz-invariant laws are
expressible as relations between 4-vectors and scalars; some require 4-tensors, and,
in quantum mechanics, even spinors.

The prototye of a 4-vector A = (A1, A2, A3, A4) is the displacement 4-vector
�R = (�x, �y, �z, �ct) between two events, and the defining property of a
4-vector is that it transforms like �R. Note that we here take as our fourth coor-
dinate ct rather than t . The advantages of this are threefold: (i) all four components of
a 4-vector then have the same physical dimensions; (ii) in Minkowski space the
choice ct is preferable since it gives light signals the standard slope unity; and
(iii) it is the convention adopted by most other authors—many of whom, how-
ever, take ct as the first rather than the last coordinate. A small disadvantage of
this convention is that it forces us to carry along some extra cs, but in one’s pri-
vate calculations this is usually irrelevant anyway, since one uses ‘relativistic’ units
making c = 1.

Each 4-vector, then, can be represented by a directed line segment in Minkowski
space. The admissible coordinate systems are the ‘standard’ coordinates of inertial
observers, and hence the relevant transformations are the general Lorentz transfor-
mations (compounded of translations, rotations about the spatial origin, and standard
LTs). These give rise to a 4-dimensional analog of (5.7) for any pair of inertial frames,
with 16 constant αs instead of nine. We shall consistently use lower-case boldface
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letters to denote 3-vectors, and boldface capitals to denote 4-vectors. Under spa-
tial and temporal translations, the components of �R (and thus of any 4-vector) are
unchanged; under spatial rotations about the origin, the first three components of
�R (and thus of any 4-vector) transform like a 3-vector, while the last component is
unchanged; and under a standard LT, the components of any 4-vector A transform as
do those of the prototype (�x, �y, �z, �ct)—which differs from the scheme (2.11)
only by some c-factors:

�x′ = γ
(
�x − v

c
�ct

)
, �y′ = �y,

�z′ = �z, �ct ′ = γ
(
�ct − v

c
�x
)
.

(5.11)

Thus A′1 = γ [A1−(v/c)A4], A′2 = A2, etc. The position 4-‘vector’ R = (x, y, z, ct)

is a 4-vector only under homogeneous general LTs; that is, those that leave the coor-
dinates of the event (0, 0, 0, 0) unchanged. The zero-vector 0 = (0, 0, 0, 0) is a true
4-vector. Sums, scalar multiples, and scalar derivatives of 4-vectors are defined by
analogy with 3-vectors and are recognized as 4-vectors.

The square of any 4-vector A = (A1, A2, A3, A4) is defined by

A2 := A2
4 − A2

1 − A2
2 − A2

3, (5.12)

and its invariance follows from that of the square of the prototype �R =
(�x, �y, �z, �ct). Denoting the latter alternatively by �s now at last justifies the
notation (5.5) that we have used all along. The magnitude or ‘length’ of a 4-vector A
is written as |A| or A and is defined by

A := |A2|1/2 ≥ 0. (5.13)

Precisely as for (5.10) we can now deduce from the invariance of |A|, |B|, and |A+B|
that the scalar product A · B defined by

A · B := A4B4 − A1B1 − A2B2 − A3B3 (5.14)

is also invariant. And if A, B, C are arbitrary 4-vectors, one then verifies at once from
the definitions that

A · B = B · A, A · (B+ C) = A · B+ A · C, A · A = A2, (5.15)

d(A · B) = dA · B+ A · dB. (5.16)

We are now ready to construct our first two real-life 4-vectors in analogy to the
velocity u and the acceleration a of 3-vectors calculus. An important scalar along the
worldline of a particle is the differential interval ds. However, it is often convenient
to work instead with the corresponding proper time interval dτ , defined by

dτ 2 := ds2

c2
= dt2 − dx2 + dy2 + dz2

c2
. (5.17)
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This gets its name from the fact that dτ coincides with the time indicated by an ideal
clock attached to the particle, as we have already seen in eqn (5.6). We shall not
be surprised, therefore, to find dτ appearing in many relativistic formulae where in
the classical analog there is a dt . For example, if (x, y, z, ct) are the coordinates of a
moving particle, we find, by an argument quite analogous to that given after eqn (5.8),
that

U = dR
dτ
=
(

dx

dτ
,

dy

dτ
,

dz

dτ
,

dct

dτ

)
(5.18)

is a 4-vector. This is called the 4-velocity of the particle. It really is the analog of both
t = dr/dl and u = dr/dt and so U can also be regarded as the tangent vector of the
worldline of the particle in spacetime. Now from (5.17),

dτ 2

dt2
= 1− u2

c2
,

u being the speed of the particle, whence (not surprisingly)

dt

dτ
= γ (u). (5.19)

Since dx/dτ = (dx/dt)(dt/dτ) = u1γ (u), etc., we see that

U = γ (u)(u1, u2, u3, c) = γ (u)(u, c). (5.20)

We shall often recognize in the first three components of a 4-vector the components
of a familiar 3-vector (or a multiple thereof), and in such cases we adopt the notation
exemplified by (5.20)(ii).

As in 3-vector theory, scalar derivatives of 4-vectors (defined by differentiating the
components) are themselves 4-vectors. Thus, in particular,

A = dU
dτ
= d2R

dτ 2
(5.21)

is a 4-vector, called the 4-acceleration. Its relation to the 3-acceleration a is not quite
as simple as that of U to u; by (5.19), (5.20) and (5.21) we have

A = γ
dU
dt
= γ

d

dt
(γ u, γ c) = γ (γ̇ u+ γ a, γ̇ c) (5.22)

where γ̇ = dγ /dt . The components of A in the instantaneous rest-frame of the
particle (u = 0) are therefore given by

A = (a, 0), (5.23)

since the derivative of γ contains a factor u [cf. (2.10)(ii)]. Thus A = 0 if and only
if the 3-acceleration in the rest-frame vanishes. The 4-velocity U, on the other hand,
never vanishes. (No particle can stand still in time!)
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In fact, from (5.20) and (5.12) (in which A is any 4-vector) we find

U2 = c2. (5.24)

But it is even easier to get this result by first putting u = 0 in (5.20)! Why does this
work? Because U2 is an invariant and can thus be evaluated in any IF—in particular,
therefore, in the particle’s rest-frame where u = 0. The same trick yields

A2 = −a2
0 =: −α2 (5.25)

from (5.23), where we have written a0 for the 3-acceleration in the rest-frame and α

for the magnitude of a0, namely the proper acceleration.
Once again using the rest-frame, we find

U · A = 0; (5.26)

that is, the 4-acceleration is always ‘orthogonal’ to the 4-velocity. Alternatively, we
could have differentiated eqn (5.24) with respect to proper time, applying the Leibniz
rule (5.16) to its LHS U · U:

A · U+ U · A = 2U · A = 0.

As in Euclidean space, we would expect the general scalar product to have some
absolute significance. But the anisotropy of Minkowski space complicates matters
(cf. Exercises 5.15, 5.16). As an important special case, however, consider the
scalar product of the 4-velocities U, V of two particles which either move uni-
formly or whose worldlines just cross. Evaluating this product in the rest-frame
of the U-particle, relative to which the V-particle has velocity v, say, we find

U · V = c2γ (v); (5.27)

that is, U · V is c2 times the Lorentz factor of the relative velocity of the corresponding
particles.

We have left a slightly more lengthy but nevertheless rewarding calculation to the
end. By working out A2 in the general frame and comparing with eqn (5.25), we
shall obtain a formula for α that generalizes our previous 1-dimensional result (3.16).
From (5.22) we have

A2 = γ 2[γ̇ 2c2 − (γ̇ u+ γ a)2]. (5.28)

Using the relation γ̇ = γ 3u · a/c2 [cf. (2.10)(ii)] and the familiar 3-vector results
u2 = u2, and (u × a)2 = u2a2 − (u · a)2, we find, from (5.28), the desired formula
in two alternative versions:

α2 = −A2 = γ 2[γ̇ 2u2 + 2γ γ̇ uu̇+ γ 2a2 − γ̇ 2c2]

= γ 4a2 + γ 6(u · a)2/c2 = γ 6a2 − γ 6(u× a)2/c2. (5.29)
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When a is parallel to u, the second yields our previous result α = γ 3a and when
a is orthogonal to u (or whenever u̇ vanishes, since u · a = uu̇), the first yields
α = γ 2a. This, in particular, is interesting for fast circular motion, for example, in
proton storage rings: it shows how the proper acceleration exceeds the lab acceleration
u2/r ≈ c2/r (r = radius) by the possibly quite large factor γ 2.

5.6 The geometry of four-vectors

We have seen (in Section 5.3) how the light cone partitions events relative to its vertex
into three classes, according to the sign of �s2. The same partitioning carries over to
the displacement vector �s itself and, by extension, to all 4-vectors, since they can be
represented by displacements. We call a 4-vector A timelike if A2 > 0, null if A2 = 0,
and spacelike if A2 < 0. In the first case, A points into the light cone, in the second
case it points along the light cone, and in the third case it points outside the light cone.

Timelike and null vectors share certain properties and are sometimes classed
together as causal vectors. In particular, the sign of their fourth component is invariant,
since all observers agree on the time sequence along the corresponding displacements.
One can therefore invariantly subdivide causal vectors A into those that are ‘future-
pointing’ and those that are ‘past-pointing’, according as A4 ≷ 0. For example, the
4-velocity U of a particle is timelike and future-pointing. (The 4-acceleration A is
spacelike.)

In our discussion of U we have already seen how a specific choice of reference
frame (namely, the rest-frame) simplifies its component representation to (0, 0, 0, c).
Similar simplifications can be achieved for all 4-vectors. This is analogous to reducing
a 3-vector a to the form (a, 0, 0) by laying the x-axis along it. For a 4-vector A whose
components in some inertial frame S are (A1, A2, A3, A4) we can similarly eliminate
A2 and A3 by rotating the spatial axes so that the spatial x-axis lies along (A1, A2, A3)

which behaves as a 3-vector under rotations. If A is null, we have now reduced it to
the form (N , 0, 0, N ) (if the x- and t-components turn out to have opposite signs,
reverse the x- and y-axes), and this is as far as we can go. But if A is not null, then,
as Fig. 2.6 shows, we can next find a standard LT to an inertial frame S′ such that
either the x′-axis or the t ′-axis lies along A, depending on whether it is spacelike
or timelike. In this way we arrive at the special representations A = (A, 0, 0, 0) or
A = (0, 0, 0,±A), A now being the magnitude of A.

The above simplifications are useful in the proofs of certain geometrical results.
For example, that two null vectors A and B cannot be orthogonal without being
also parallel: choose axes so that A = (N, 0, 0, N); orthogonality to B then implies
B4 = B1, but B2

4 − B2
1 − B2

2 − B2
3 = 0 and consequently B2 = B3 = 0, which

establishes the result.
Another such result is that all 4-vectors orthogonal to a given causal vector are

spacelike, except for the causal vector itself if that is null. (The algebraic proof is left
to the reader.) A spacetime diagram illustrates this result nicely: Consider any timelike
vector A and pick the ct ′-axis in Fig. 5.1 along A. All vectors in the tangent plane π ′
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and also in the plane parallel to π ′ through the origin (the x′y′-plane) are orthogonal to
A (as is clear in primed coordinates.) Now let A tilt towards the light cone. In the limit,
the x′y′-plane will have moved to touch the light cone along what is now the generator
A; all vectors in this plane are orthogonal to A, and all are spacelike except A itself.

We shall later require also the following result: the scalar product of two future-
pointing causal vectors A and B is positive or zero, and it is zero only if A and B are null
and parallel. Proof : If one of the vectors is timelike, take it to be A = (0, 0, 0, A4);
then A · B = A4B4, which is positive by the hypothesis. If both vectors are null, let
A = (A4, 0, 0, A4); then A · B = A4(B4−B1) and it is easily seen that this is positive
unless B1 = B4 and consequently B2 = B3 = 0, which establishes the assertion.
A most important corollary is that the sum of any number of future-pointing causal
vectors A, B, . . . is a future-pointing timelike vector, unless all the summands are
null and parallel, in which case the sum is clearly null also. For timelikeness we must
show that the square of the sum is positive—the positivity of the fourth component
is obvious. Now

(A+ B+ · · · ) · (A+ B+ · · · ) = A2 + B2 + · · · + 2(A · B+ · · · ).

The terms on the RHS are either positive or zero; and all of them are zero if and only
if all the vectors are null and parallel, as claimed.

What we have just proved can also be seen (or, at least, surmised) from a spacetime
diagram. We add vectors head to tail. The order of summation is immaterial. Start at
the origin with a timelike vector if there is one. This takes us to point � inside the
origin’s future cone. Draw the future cone at �: none of the remaining additions can
take us out of that and so the sum is timelike. If there is no timelike summand but at
least one pair of non-parallel null vectors, start with them; their sum also lies inside
the origin’s future cone, and the rest of the argument goes as before. That does it.

In regard to graphical arguments like the above, one must bear in mind that the
Minkowski diagram, being only a map, distorts lengths and angles. In Fig. 5.1 all
vectors that start at the origin and end on one of the calibrating hyperboloids have
equal ‘Minkowski length’ |A|. Vectors that appear orthogonal in the diagram are
not necessarily ‘Minkowski-orthogonal’ in the sense A · B = 0, as exemplified by
the axes of ξ and η in Fig. 2.6. Conversely, the axes of x′ and t ′ are Minkowski-
orthogonal but do not appear orthogonal in that diagram. On the other hand, it is
clear that vector sums in the diagram correspond to ‘Minkowski sums’ A + B, that
parallel vectors in the diagram correspond to ‘Minkowski-parallel’ vectors (in the
sense A = kB, k real), and that the ‘Minkowski ratio’ k of such vectors is also the
apparent ratio in the diagram.

We end this section with an important result, namely the zero-component lemma,
whose analog in 3-vector calculus is geometrically obvious: If a 4-vector has a partic-
ular one of its four components zero in all inertial frames, then the entire vector must
be zero. Here it is best to proceed algebraically. Let the vector be V = (V1, V2, V3, V4)

and suppose, typically, that V2 were always zero. Consider a LT in the y-direction out
of any inertial frame S: V ′2 = γ [V2 − (v/c)V4]. This shows that also V4 must vanish
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in all frames. But then a LT in the x-direction, V ′4 = γ [V4− (v/c)V1], shows that V1
vanishes in all frames, and so does V3 by an analogous argument.

5.7 Plane waves

In this section we shall make the acquaintance of a third fundamental kinematical
4-vector, the wave 4-vector L. While U and A refer to the motion of a particle, L
refers to the motion of a wave.

Consider a series of plane ‘disturbances’ or ‘wavecrests’, a wavelength λ apart,
and progressing in a unit direction n = (l, m, n) at speed w relative to an inertial
frame S. A single stationary plane in S with normal n and at distance p from a point
P0 = (x0, y0, z0) satisfies the equation n · r = p, or, in full,

l(x − x0)+m(y − y0)+ n(z− z0) = p.

If this plane propagates with speed w the equation becomes, in delta-notation,

l�x +m�y + n�z = w�t = w

c
�ct,

where �t measures the time from when the plane crosses P0. A whole set of such
traveling planes, at distances λ apart, has the same equation with Nλ added to the RHS,
N being any (positive or negative) integer. And this can be written, after absorbing a
minus sign into N and dividing by λ,

L ·�s = N, (5.30)

where

L = 1

λ

(
n,

w

c

)
= ν

(
n
w

,
1

c

)
, (5.31)

ν = w/λ being the frequency. Conversely, any equation of form (5.30) will be
recognized in S as representing a moving set of equidistant planes, with λ, ν, w, and
n determined by (5.31). We have written L like a 4-vector, though we do not yet know
that it is one. In fact, let us more specifically write L(S) for just the set of components
(5.31) in S, and similarly define �s(S). Then eqn. (5.30) reads L(S) · �s(S) = N .
In this equation, when written out, replace �x, �y, �z, �ct by their appropriate
Lorentz transforms in an arbitrary second frame S′, each of which will be a linear
homogeneous combination of �x′, �y′, �z′, �ct ′. Collecting all the �x′ terms, etc.,
we can clearly rewrite this translated equation in the form

L(S′) ·�s(S′) = N, (5.32)

where L(S′) stands for the quadruplet of the coefficients of−�x′,−�y′,−�z′, �ct ′.
Thus in S′, too, one has a moving wave train, whose kinematic characteristics
λ′, ν′, w′, and n′ are related to L(S′) analogously to (5.31). The only question is
whether this L(S′) is related to L(S) by the appropriate transformation to make it a
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4-vector. Suppose V(S′) stands for the vector transforms into S′ of the components
L(S). Then, by the invariance of the scalar product, we shall have, from (5.30),

V(S′) ·�s(S′) = L(S) ·�s(S) = N. (5.33)

Each value of N determines a specific one of the set of traveling planes; hence,
forming the difference of eqns (5.32) and (5.33), we get

{L(S′)− V(S′)} ·�s(S′) = 0 (5.34)

for any event on any one of the planes. We can certainly find four linearly independent
vectors �s(S′) corresponding to events on the planes, and thus satisfying (5.34).
Hence { } = 0, that is, L(S′) = V(S′), and so L does transform as a vector and
therefore is a vector.

We note, incidentally, that our analysis of an extended plane wave train applies
locally to arbitrary wave trains, provided only that the wavelength is then much smaller
than the radius of curvature of the wave-fronts, so that a sufficiently small portion of
the train has the appearance of parallel planes.

We shall now use the transformation properties of the wave-vector L to derive
formulae for the Doppler effect, for aberration, and for the velocity transformation
for waves of arbitrary speed w. Consider the usual two frames S and S′ in standard
configuration, and in S an incoming train of plane waves with frequency ν and velocity
w in a direction n = −(cos α, sin α, 0). (For outgoing waves, w 
−→ − w.) The
components of the wave-vector is S are then given by

L =
(−ν cos α

w
,
−ν sin α

w
, 0,

ν

c

)
. (5.35)

Transforming these components by the scheme (5.11), we find for the components
in S′:

ν′ cos α′

w′
=γ ν(cos α + vw/c2)

w
, (5.36)

ν′ sin α′

w′
=ν sin α

w
, (5.37)

ν′ =νγ
(

1+ v

w
cos α

)
. (5.38)

The last equation expresses the Doppler effect for waves of all velocities, and, in
particular, for light waves (w = c). In the latter case, it is seen to be equivalent to our
previous formula (4.5).

From (5.36) and (5.37), we obtain the general wave aberration formula

tan α′ = sin α

γ (cos α + vw/c2)
. (5.39)

In the particular case when w = c, this is seen to be equivalent to our previous
formulae (4.7) and (4.8)—in fact, it corresponds to their quotient.
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Finally, to get the transformation of w, we could eliminate the irrelevant quantities
from (5.36)–(5.38) (which would yield the formula of Execise 4.15), but it is simpler
to make use of the invariance of L2. Writing this out in S and S′, we obtain

ν2
(

1− c2

w2

)
= ν′2

(
1− c2

w′2

)
, (5.40)

whence, by use of (5.38),

1− c2

w′2
= (1− c2/w2)(1− v2/c2)

(1+ v cos α/w)2
. (5.41)

Neither this velocity transformation formula nor the aberration formula (5.39)
are equivalent to the corresponding formulae for particles [cf. Exercise 4.13 and
eqn (3.9)]. The reason is that a particle riding the crest of a wave in the direction of
the wave normal in one frame does not, in general, do so in another frame: there it
rides the crest of the wave also, but not in the normal direction. The one exception is
when w = c.

Exercises 5
5.1. Prove that, for any straight-line segment in spacetime, �s = ∫ ds, where �s

is the magnitude of �s [cf. eqn (2.15)] and ds that of the corresponding ds. [Hint: let
the segment be defined by x = x0 + Aθ, . . . , ct = ct0 +Dθ, 0 ≤ θ ≤ 1.]

5.2. An inertial observer O bounces a radar signal off an arbitrary event �. If the
signal is emitted and received by O at times τ1 and τ2, respectively, as indicated by O’s
standard clock, prove that the squared interval �s2 between O’s origin-event τ = 0
and � is c2τ1τ2. This, in fact, constitutes a uniform method (apparently due to A. A.
Robb) for assigning �s2 to any pair of events.

5.3. A 4-vector has components (V1, V2, V3, V4) in an inertial frame S. Write down
its components (i) in a frame which coincides with S except that the directions of the
x- and z-axes are reversed; (ii) in a frame which coincides with S except for a 45◦
rotation of the xy-plane about the origin followed by a translation in the z-direction
by 3 units; (iii) in a frame which has its axes parallel to those of S and moves with
velocity v in they y-direction.

5.4. We can define the 4-velocity of superluminally moving points in analogy
to that of normal particles: U = c dR/ds. Prove that then U = (u2/c2 − 1)−1/2

(u, c), and U2 = −c2. But U is still tangent to the worldline.

5.5. Use the fact that U = γ (u, c) transforms as a 4-vector to re-derive the transfor-
mation equations (3.6) and (3.10). [Our earlier derivation of (3.6) has the advantage
of applying to all velocities, including the velocity of light.]

5.6. Solve the relative-motion problem of Exercise 3.13 by using formula (5.27).

5.7. An inertial observer O has 4-velocity U0 and a particle P has (variable) 4-
acceleration A. If U0 · A ≡ 0, what can you conclude about the speed of P in O’s
rest-frame?



106 Spacetime and four-vectors

5.8. Prove that, in any inertial frame where a is orthogonal to u, A = γ 2(a, 0), and
conversely. Deduce that for any instantaneous motion it is possible to find an inertial
frame S⊥ in which a is orthogonal to u. Moreover, prove that there is a whole class
of such frames, all moving relative to S⊥ in directions orthogonal to a.

5.9. Muons circle a storage ring of radius 10 m at a speed that makes γ = 30.
Verify that their proper accelerations are ∼ 0.8× 1018g.

5.10. A particle moves in an inertial frame (for a while after t= 0) according to the
equations x = wt , y = 1

2 gt2, z = 0 (w, g = const). Find its proper acceleration as
a function of time. [Hint: (5.29)(ii).]

5.11. Prove: (i) all 4-vectors orthogonal to a given causal vector are spacelike
except for the causal vector itself if it is null; (ii) the sum or difference of any two
orthogonal spacelike vectors is spacelike; (iii) every 4-vector can be expressed as the
sum of two null vectors. [Hint: The component specializations of Section 5.6.]

5.12. (i) Find four linearly independent timelike vectors.
(ii) Find four linearly independent spacelike vectors.

(iii) Find four linearly independent null vectors.

5.13. Consider two inertial observes with non-intersecting and non-parallel world-
lines. Prove that there exists a unique pair of events, one on each worldline, which
are simultaneous to both observers. [Hint: let one of the worldlines be the t-axis.]

5.14. We shall say that three particles move codirectionally if their 3-velocities
are parallel in some inertial frame. Prove that the necessary and sufficient condition
for this to be the case is that the 4-velocities U, V, W of these particles be linearly
dependent. [Hint: component specialization.]

5.15. For any two timelike vectors V1 and V2 which are isochronous (that is, both
pointing into the future or both into the past), prove that V1 · V2 = V1V2 cosh φ12,
where φ12, the ‘hyperbolic angle’ between V1 and V2, equals the relative rapidity
of two particles having worldlines parallel to V1 and V2. [Hint: (5.27).] Moreover,
prove that φ is additive; that is, for any three coplanar such vectors V1, V2, V3
(corresponding to codirectional particles), φ13 = φ12 + φ23.

5.16. Consider the two-plane π in spacetime spanned by two non-parallel spacelike
vectors A and B. Prove: π cuts any light cone whose vertex lies on it if |A ·B| > AB,
and touches it if |A ·B| = AB; if |A ·B| < AB, say A · B = −AB cos θ , then π can
be chosen as the xy plane of some inertial coordinate system S and θ is the ordinary
angle between A and B in S.

5.17. A 3-dimensional hyperplane in Minkowski space is the locus of events satis-
fying a linear equation of the form Ax+By+Cz+Dct = E. For any displacement
in it, we have A�x +B�y +C�z+D�ct = 0. The normal (−A,−B,−C, D)—
when standardized to unit length unless it is null—is seen to be a 4-vector by the same
kind of reasoning as we used for L in eqn (5.30). A hyperplane is called spacelike,
timelike, or null according as its normal is timelike, spacelike, or null, respectively.
Prove: (i) a spacelike hyperplane is a simultaneity for all inertial observers whose
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worldlines are orthogonal to it; (ii) all displacements in a spacelike hyperplane are
spacelike; (iii) all displacements in a null hyperplane are spacelike except for those in
one particular direction, which are null; (iv) a triad of mutually orthogonal 4-vectors
in a hyperplane H necessarily consists of three spacelike vectors if H is spacelike, of
two spacelike and one timelike vector if H is timelike, and of two spacelike and one
null vector if H is null.

5.18. (i) Prove that the necessary and sufficient condition for a particle to move
along a straight line in some inertial frame is that its worldline should be ‘flat’; that is,
lie in a 2-plane spanned by one timelike and one spacelike vector. (ii) Prove that if in
some inertial frame a particle’s 3-acceleration is always parallel to a constant 3-vector,
the flatness condition on the worldline is satisfied. Conversely, prove that the flatness
condition implies this property of the 3-acceleration in every inertial frame. It is thus
an invariant property.

5.19. (i) Prove that the 4-vector equation (d/dτ)A = φU, where φ is some
scalar, implies α = c

√
φ = const. [Hint: Differentiate the equations A · U = 0

and A · A = −α2.] (ii) Prove that the above equation is equivalent to the 3-
vector equation (d/dt)(γ 3a) = 0. [Hint: eqns (5.20), (5.22), and (2.10) (ii).]
Consequently γ 3a = const is an invariant property. By reference to the pre-
ceding exercise, prove that it characterizes hyperbolic motion in some inertial
frame.

5.20. Perform in detail the transformation of eqn (5.30) that is outlined in the
text above eqn (5.32), taking S′ to be related to S by a standard LT and simply
writing L1, L2, L3, L4 for the components of L(S). Then observe directly that L(S′)
is the vector transform of L(S). Complete this finding into an alternative proof that
L transforms as a 4-vector under general LTs by considering rotations.

5.21. From eqn (5.37) deduce the relation λ′/ sin α′ = λ/ sin α for plane waves of
arbitrary speed. Then use eqn (5.39) to rederive the first result of Exercise 4.15.

5.22. (i) If a wave train with wave-vector L is observed by an observer with 4-
velocity U1 to have frequency ν1, prove ν1 = L · U1. If the wave train is emitted by
a source which has proper frequency ν0 and 4-velocity U0, prove ν0 = L · U0. (ii)
Use the first of these results to re-derive the Doppler formula (5.38). (iii) In some
inertial frame S light travels along a straight line which a source crosses at 30◦ at
emission and an observer crosses at 60◦ at reception; find the frequency shift ν1/ν0
by evaluating L · U1/L · U0 in S, and note how the frequency ν of the waves in S
conveniently cancels out: any null vector proportional to L can be used in place of L.
(Cf. Exercise 4.3.) (iv) Re-derive formula (4.3).

5.23. Consider a plane wave propagating along the x-axis of some inertial frame
S. Prove that for all inertial frames in standard configuration with S the wave velocity
w transforms just like a particle velocity; that is, according to formula (3.6)(i). [Hint:
eqns (5.36) and (5.38), or just “translate” x = wt .]
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Relativistic particle mechanics
6.1 Domain of sufficient validity of Newtonian mechanics

What we have done so far has been essentially an elaboration of Einstein’s two basic
axioms, without the addition of further hypotheses. We have seen how Newton’s con-
cepts of space and time could be replaced by a somewhat more complicated but still
elegant and harmonious spacetime structure that accommodates Einstein’s axioms.
But now we have arrived at the next point in the program of special relativity, namely
the scrutiny of the existing laws of physics and the modification of those that are
found to be not Lorentz-invariant. Chief among these is Newton’s basic law f = ma
and his treatment of the force f and the mass m as invariants. Clearly this is at
odds with the new kinematics, where a is no longer an invariant. And altogether,
Newton’s theory is Galileo-invariant and not Lorentz-invariant. Thus it was logically
necessary to construct a new mechanics—long before any serious empirical deficien-
cies of the old mechanics had become apparent. The new mechanics is known as
‘relativistic’ mechanics. This is not really a good name, since, as we have seen, New-
ton’s mechanics, too, is relativistic, but under the ‘wrong’ (Galilean) transformation
group. Newton’s theory has excellently served astronomy (for example, in foretelling
eclipses and orbital motions in general), it has been used as the basic theory in the
incredibly delicate operations of sending probes to the moon and some of the planets,
and it has proved itself reliable in countless terrestrial applications. Thus it cannot be
entirely wrong. Before the twentieth century, in fact, only a single case of irreducible
failure was known, namely the excessive advance of the perihelion of the planet Mer-
cury, by about 43 seconds (!) of arc per century. Since the advent of modern particle
accelerators, however, vast discrepancies with Newton’s laws have been uncovered,
whereas the new mechanics consistently gives correct descriptions. (Of course, New-
ton’s mechanics has undergone two ‘corrections,’ one due to relativity and one due
to quantum theory. We are here concerned exclusively with the former.) The new
mechanics practically overlaps with the old in a large domain of applications (dealing
with motions that are slow compared to the speed of light) and, in fact, it delineates the
domain of sufficient validity of the old mechanics as a function of the desired accu-
racy. Roughly speaking, the old mechanics is in error to the extent that the γ -factors
of the various motions involved exceed unity. In laboratory collisions of elementary
particles γ -factors of the order of 104 are not unusual, and γ -factors as high as 1011

have been calculated for some cosmic-ray protons incident in the upper atmosphere.
Applied to such situations, Newtonian mechanics is not just slightly wrong: it is totally
wrong. Yet within its known slow-motion domain, Newton’s theory will undoubtedly
continue to be used for reasons of conceptual and technical convenience. And as a
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logical construct it will remain as perfect and inviolate as Euclid’s geometry. Only as
a model of nature it must not be stretched unduly.

6.2 The axioms of the new mechanics

The mechanics for which we now seek a Lorentz-invariant substitute is the non-
gravitational part of Newton’s mechanics; that is to say, that which is covered by
Newton’s basic three laws (cf. Section 1.2) and which primarily concerns itself
with particle collisions, particle systems and particles in external fields. We specif-
ically assume the absence of gravity since, according to GR, gravity distorts the
Minkowskian spacetime of SR which here plays a key role.

Though there are many approaches to this new mechanics, the result is always the
same.1 If Newton’s well-tested theory is to hold in the ‘slow-motion limit’, and unnec-
essary complications are to be avoided, then only one Lorentz-invariant mechanics
appears to be possible. Moreover, it is persuasively elegant, and has been uncan-
nily successful in matching nature perfectly in modern high-speed interactions where
Newton’s theory is out by many orders of magnitude.

We must stress that what is required here is the judicious invention of axioms to
be placed at the head of the new mechanics; there is no logically binding way to
derive them. The 4-vector calculus will guide us.

Force, which is the central concept of Newton’s theory, is somewhat more
peripheral in relativity, where its chief manifestation is the Lorentz force of electro-
magnetism. Gravitational force, of course, has been replaced by spacetime curvature.
So it is more convenient to take an analog of momentum conservation (which is a
derived result in Newton’s theory) as primary now.

We begin by assuming what we already know, that associated with each particle
there is an intrinsic positive scalar, m0, namely its Newtonian or proper or rest-mass.
This allows us to define the 4-momentum P of a particle in analogy to its 3-momentum,

P = m0U, (6.1)

U being the 4-velocity. Like U, P is timelike and future pointing. And we take as the
basic axiom of collision mechanics the conservation of this 4-vector quantity: The
sum of the 4-momenta of all the particles going into a point-collision is the same as
the sum of the 4-momenta of all those coming out. (The collision may or may not be
elastic, and there may be more, or fewer, or other particles coming out than going in.)
We can write this in the form ∑∗

Pn = 0, (6.2)

1 The first development of special-relativistic mechanics was given by Planck in 1906, whose starting
point was the relativization of Newton’s law of motion, f = ma. A second soon followed (in 1909) by
Lewis and Tolman, who chose as their starting point the relativization of Newton’s law of momentum
conservation in particle collisions. A development from energy conservation can be found in J. Ehlers,
R. Penrose and W. Rindler, Am. J. Phys. 33, 995 (1965).
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where a different value of n = 1, 2, . . . is assigned to each particle going in and to
each particle coming out, and

∑∗ is a sum that counts pre-collision terms positively
and post-collision terms negatively. The LHS of (6.2) is thus a 4-vector, which makes
our axiom automatically Lorentz-invariant.

Using the component form (5.15) of U, we find the following components for P:

P = m0U = m0γ (u)(u, c) =: (p, mc), (6.3)

where, in the last equation, we have introduced the symbols

m = γ (u)m0, (6.4)

p = mu. (6.5)

The formalism thus leads us naturally to this quantity m, which we shall call the
relativistic inertial mass (or usually just ‘mass’), and to p, which we shall call the
relativistic momentum (or usually just ‘momentum’). Observe that m increases with
speed; when u = 0 it is least, namely m0, which is why we call m0 the rest-mass
of the particle. On the other hand, m becomes infinite as u approaches c—which is
nature’s way to avoid superluminal velocities.

In terms of these quantities the original conservation law (6.2) splits componentwise
into two separate laws, the conservation of relativistic momentum,∑∗

p = 0; that is,
∑∗

mu = 0, (6.6)

and the conservation of relativistic mass,∑∗
m = 0, (6.7)

where, for brevity, we have omitted the summation index n. Evidently in the slow-
motion limit (u � c) these are the corresponding Newtonian conservation laws,
and so our proposed relativistic law passes the three basic tests: Lorentz-invariance,
simplicity, and Newton-conformity. Also in the formal c→∞ limit do the relativistic
laws become Newtonian, which can occasionally be used as a check on our equations.

As in Newton’s theory, eqns (6.6) can be regarded as implicit definitions of the
mass m0. They show that from a sufficient number of collision experiments we can
determine at least the ratios of the rest-masses of all particles.

Since the quantities on the LHSs of eqns (6.6) and (6.7) are the spatial and temporal
components of the 4-vector

∑∗ P, respectively, therefore (by the zero-component
lemma of the end of Section 5.6) the vanishing of either in all inertial frames implies
the vanishing of the other. Logically, therefore, each of these two conservation laws
by itself has the same implications as the full law (6.2).

For reassurance that we are doing the right thing, note that every ‘slow-motion’
collision, proceeding along Newtonian lines in some inertial frame S [thus satisfying
(6.6) and (6.7) with m = m0] necessarily satisfies, when regarded from a fast-moving
inertial frame S′, the same eqns (6.6) and (6.7), but now with m = γ (u)m0. This is
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not a consequence of assuming (6.2), but an unavoidable fact, since a 4-vector relation
[namely (6.2)] if valid in S must be valid also in S′.

For further reassurance, consider two identical particles moving along the respec-
tive z-axes of the usual two inertial frames S and S′ in opposite directions but with
equal speeds u. Then, by (3.6)(iii), each has a z-velocity numerically equal to uγ−1(v)

as judged from the other frame. Let the particles collide and fuse at the momentarily
coincident origins of S and S′. By symmetry, the new compound particle can have
no z-velocity in either frame. Thus conservation of z-momentum in S in accordance
with a formula of type (6.6) requires

m(u)u = m(w)u

γ (v)
,

where m(u) denotes the mass of one of the original particles at speed u, and w is the
total speed in S of the particle moving on the z′-axis. Canceling u and then letting
u→ 0 (that is, considering a sequence of experiments with ever smaller u) forces us
to conclude

m(0) = m(v)

γ (v)
.

This very directly shows that if we wish to salvage the form (6.6) of Newton’s law of
momentum conservation, we must allow m to vary precisely as in (6.4). And that, in
a nutshell, is the crucial difference between relativistic and pre-relativistic collision
mechanics.

6.3 The equivalence of mass and energy

Let us now take a closer look at eqn (6.7),
∑∗m = 0, the conservation of relativistic

mass. At first sight this appears to be just an analog of the Newtonian law of mass
conservation—but it is not! Newton defined mass as ‘quantity of matter’, and asserting
its conservation was tantamount to asserting that matter can neither be created nor
destroyed. But we now know that matter can be transmuted into radiation, as when
an electron and a positron annihilate each other. So it is just as well that

∑∗m = 0
is not, in fact, an analog of the Newtonian law, except in a purely formal sense. What
is conserved here is a quantity, γm0, which varies with speed. In classical mechanics
we know of only one such conserved quantity, namely the kinetic energy of particles
in an elastic collision. Of course, (6.7) must hold in all collisions, elastic or not, if
our approach is right; and we already know for a fact that it holds in all those fast
collisions that are slow in some inertial frame. Could it be that m (or a multiple of it)
is a measure of total energy? The answer turns out to be ‘yes’ and was regarded by
Einstein, who found it in 1905 (but see the last paragraph of this section), as the most
significant result of his special theory of relativity. Nevertheless, Einstein’s assertion
of the full equivalence of mass and energy, according to the famous formula

E = mc2, (6.8)
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was in part a hypothesis, as we shall see. It cannot be uniquely deduced from the
other axioms.

Consider the following expansion for the mass (6.4):

m = m0

(
1− u2

c2

)−1/2

= m0 +
1

c2

(1

2
m0u

2
)
+ · · · (6.9)

This shows that the relativistic mass of a slowly moving particle exceeds its rest-
mass by 1/c2 times its kinetic energy (assuming the approximate validity of the
Newtonian expression for the latter). So kinetic energy contributes to the mass in a
way that is consistent with (6.8). In fact, it is eqn (6.9) that supplies the constant of
proportionality between E and m. And it is the enormity of this constant that explains
why the mass-increases correponding to the easily measurable kinetic energies of
particles in classical collisions had never been observed.

We can next show that, since kinetic energy ‘has mass’, all energy must have mass
in the same proportion. For one of the characteristics of energy is its transmutability
from one form to another. When two oppositely moving identical particles collide and
fuse and remain at rest (we are here thinking of putty balls rather than protons)

∑
m

remains constant throughout, so that whatever mass was contributed before impact by
the kinetic energy is thereafter contributed by the equal amount of thermal energy into
which it changes. But then all forms of energy must have mass in the same proportion.
For inside the now stationary compound particle the extra heat can be transmuted arbi-
trarily into other forms of energy without setting the particle in motion; for each such
transmutation-event can be regarded as a ‘collision’, in which the total momentum is
conserved; but also the total mass is conserved, which proves our assertion.

Yet it is still logically possible that energy only contributes to mass, without causing
all of it. Especially in Einstein’s time it would have been perfectly reasonable to
suppose that the elementary particles are indestructible, so that the available energy
of a macroscopic particle would be c2(m − q), where q is the total rest-mass of its
constituent elementary particles. To equate all mass with energy required an act of
aesthetic faith, very characteristic of Einstein. Of course, today we know how amply
nature has confirmed that faith.

Einstein’s mass–energy equivalence is not restricted to mechanics. It has been
found applicable in many other branches of physics, from electromagnetism to general
relativity. It is truly a new fundamental principle of Nature.

Observe also how this principle determines a zero-point of energy. In Newton’s
theory, for example, one could theoretically extract an unlimited amount of energy
from a macroscopic body by letting it collapse indefinitely under its own gravity.
According to Einstein, on the other hand, Nature must find a mechanism to prevent the
extraction of more than mc2 units of energy. That mechanism is the general-relativistic
‘black hole’!

The relativistic kinetic energy T of a particle is naturally defined as the difference
between its total and its internal or rest energy:

mc2 = m0c
2 + T , T = m0c

2(γ − 1). (6.10)
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The leading term in the power-series expansion of T is, of course, the Newtonian
1
2m0u

2, as in eqn (6.9); the rest is the relativistic ‘correction’. Note that in an
elastic collision, where by definition each particle’s rest-mass is preserved (so that∑∗m0 = 0), the conservation law

∑∗m = 0 implies the conservation of kinetic
energy,

∑∗ T = 0.
Einstein’s mass–energy equivalence allows us to include even particles of zero

rest-mass (photons, . . .) into the scheme of collision mechanics. If such a particle has
finite energy E (all of it being kinetic!), it has finite mass m = E/c2 and thus, because
of (6.4), it must move at the speed of light. Formally we can regard its mass as the
limit of a product, γm0, of which the first factor has gone to infinity and the second
to zero. According to (6.5), it then has a perfectly normal 3-momentum p and thus
also a 4-momentum P given by the last member of eqn (6.3): P = (p, E/c). In this
case, however, P is null (P2 = 0).

In fact, the 4-momentum (6.3) of any particle can now be written in the form

P = (p, E/c). (6.11)

Particle physicists, whose basic unit is the electrovolt rather than the gram, prefer this
form and tend to discard the concept of relativistic mass altogether. And, of course,
they are the main consumers and therefore trend-setters of relativistic mechanics. On
the other hand, it is trivial to switch back and forth between m and E and we prefer
to keep our options open.

So much for the formalism. What about the applications? For a macroscopic
‘particle’ the internal energy m0c

2 is vast: in each gram of mass there are 9×1020 ergs
of energy, roughly the energy of the Hiroshima bomb (20 kilotons). A very small part
of this energy resides in the thermal motions of the molecules constituting the parti-
cle, and can be given up as heat; a part resides in the intermolecular and interatomic
cohesion forces, and some of that can be given up in chemical explosions; another part
may reside in excited atoms and escape in the form of radiation; much more resides
in nuclear bonds and can also sometimes be set free, as in the atomic bomb. But by
far the largest part of the energy (about 99 per cent) resides simply in the mass of the
elementary particles, and cannot be further explained. Nevertheless, it too can be lib-
erated under suitable conditions; for example, when matter and antimatter annihilate
each other.

One kind of energy that does not contribute to mass is potential energy of position.
In classical mechanics, a particle moving in an electromagnetic (or gravitational)
field is often said to possess potential energy, so that the sum of its kinetic and
potential energies remains constant. This is a useful ‘book-keeping’ device, but energy
conservation can also be satisfied by debiting the field with an energy loss equal to the
kinetic energy gained by the particle. In relativity there are good reasons for adopting
the second alternative, though the first can be used as an occasional shortcut: the ‘real’
location of any part of the energy is no longer a mere convention, since energy (as
mass) gravitates; that is, it contributes measurably (in principle) to the curvature of
spacetime at its location.
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According to Einstein’s hypothesis, every form of energy has a mass equivalent:
(i) If all mass exerts and suffers gravity, we would expect even (the energy of) an
electromagnetic field to exert a gravitational attraction, and, conversely, light to bend
under gravity (this we have already anticipated by a different line of reasoning).
(ii) We shall expect a gravitational field itself to gravitate. (iii) The radiation which the
sun pours into space is equivalent to more than four million tons of mass per second!
Radiation, having mass and velocity, must also have momentum; accordingly, the
radiation from the sun is a (small) contributing factor in the observed deflection of the
tails of comets away from the sun. (The major factor is ‘solar wind.’) (iv) An electric
motor (with battery) at one end of a raft, driving a heavy flywheel at the other end by
means of a belt, transfers energy and thus mass to the flywheel; in accordance with
the law of momentum conservation, the raft must therefore accelerate in the opposite
direction. (v) Stretched or compressed objects have (minutely) more mass by virtue
of the stored elastic energy. (vi) The total mass of the separate components of a stable
atomic nucleus always exceeds the mass of the nucleus itself, since energy (that is,
mass) would have to be supplied in order to decompose the nucleus against the nuclear
binding forces. This is the reason for the well-known ‘mass defect’. Nevertheless, if a
nucleus is split into two new nuclei, these parts may have greater or lesser mass than
the whole. With the lighter atoms, the parts usually exceed the whole, whereas with
the heavier atoms the whole can exceed the parts, owing mainly to the electrostatic
repulsion of the protons. In the first case, energy can be released by ‘fusion’, in the
second, by ‘fission’.

From a historical perspective, Einstein’s recognition of E = mc2 did not quite
come ‘out of the blue’. There had been foreshadowings along those lines for almost
a quarter of a century. Already in 1881, J. J. Thomson had calculated that a charged
sphere behaves as if it had an additional mass of amount 4

3c−2 times the energy of its
Coulomb field. That set off a quest for the ‘electromagnetic mass’ of the electron—an
effort to explain its inertia purely in terms of the field energy. (This effort was beset by
the ‘wrong’ factor 4

3 due to the as yet unknown mass-equivalent of the stresses needed
to hold the ‘electron’ together.) In 1900, Poincaré made the simpler observation that,
since the electromagnetic momentum of radiation is 1/c2 times the Poynting flux of
energy, radiation seems to possess a mass density 1/c2 times its energy density. And
then in 1905 came Einstein. What truly sets him apart once more is the universality
of his proposal.

6.4 Four-momentum identities

It will be convenient to have a number of often-used identities collected here for
future reference. We have already discussed the following alternative expressions for
the 4-momentum P,

P = m0U = (p, mc) = (p, E/c), (6.12)
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which lead to the following alternative expressions for its square:

P2 = m2
0c

2 = m2c2 − p2 = E2/c2 − p2. (6.13)

Note that for zero-rest-mass particles, and only for those, P becomes a null vector.
From eqns (6.13),

E2 = p2c2 +m2
0c

4, p2c2 = E2 − E2
0 = c4(m2 −m2

0). (6.14)

When two particles with respective 4-momenta P1 and P2 are involved, and v12 is
their relative speed (that is, the speed of one in the rest-frame of the other) we have

P1 · P2 = m01E2 = m02E1 = c2γ (v12)m01m02, (6.15)

where, typically, m01 is the rest-mass of the first particle and E2 is the energy of the
second particle in the rest-frame of the first. For proof we need only evaluate P1 · P2
in the rest-frame of either particle. The first equation holds even if the second particle
is a photon.

In the particular case of an elastic (that is, rest-mass preserving) collision of two
particles with pre-collision momenta P, Q and post-collision momenta P′, Q′, we
find, on squaring the conservation equation P +Q = P′ +Q′, that

P ·Q = P′ ·Q′; (6.16)

that is, that the relative velocity between the particles is conserved. Since this result
is independent of the value of c, it must hold in Newton’s theory as well!

6.5 Relativistic billiards

As a first example on the new mechanics we shall consider the relativistic analog
of a billiard ball collision—namely, an elastic collision of two particles of equal
rest-mass, one of which is originally at rest. This analysis has many applications.
Agreement with it provided the first direct confirmation of the relativistic collision
laws when Champion in 1932 bombarded stationary electrons in a cloud chamber with
fast electrons from a radioactive source. The much later bubble-chamber experiments
on elastic proton–antiproton scattering fitted into the same framework, and it is still
relevant with modern particle accelerators.

If we approach this problem naı̈vely, setting up the conservation equations for
mass and momentum in the lab frame, we quickly get into a bad tangle of different
γ -factors. So we look for a ‘trick’. One would be to find an elegant 4-vector argument,
but here none presents itself naturally, in spite of the availability of eqn (6.16). The
method we shall use instead is also of very general utility: we go to a frame where the
problem is simpler, or even trivial, and then transform back to the frame of interest,
exactly as we did for the corresponding Newtonian problem in Section 2.3. Let S′
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Fig. 6.1

be the frame in which the two particles originally approach each other with equal
and opposite constant velocities,2 say ±v along the x′-axis. The only way to satisfy
momentum and energy conservation in S′ is for the post-collision velocities also to be
±v, but possibly along some other line, say one making an angle θ ′ with the x′-axis
(see Fig. 6.1). Now let S be in standard configuration with S′ at velocity v. The ‘right’
particle is then originally at rest in S, and so S is the required ‘lab’ frame. All we need
to do now is to transform the remaining three velocities from S′ to S. But in fact we
are interested only in the directions of the post-collision velocities. So we can make
use of the ‘particle aberration’ formula of Exercise 4.13—here needed in its inverse
form tan α = sin α′/γ (v)(cos α′ + v/u′). For the post-collision angles θ and φ in S,
corresponding to θ ′ and φ′ = π − θ ′ in S′, we then have

tan θ = sin θ ′

γ (v)(cos θ ′ + 1)
, tan φ = sin θ ′

γ (v)(− cos θ ′ + 1)
,

where we measure θ anticlockwise and φ clockwise. Multiplying these expressions
together gives the first of the following equations:

tan θ tan φ = 1

γ 2(v)
= 2

γ (V )+ 1
. (6.17)

The second results when we apply (3.10)(ii) to the ‘bullet’, setting u′ = u′1 = v and
u = V, V being the incident velocity in the lab. It is of course clear from momentum
conservation in S that the angles θ and φ are coplanar.

Equation (6.17) gives the required relation between the incident velocity V and
the post-collision angles θ and φ. The Newtonian result θ + φ = 90◦ corresponds to
tan θ tan φ = tan θ cot θ = 1 and can be recovered from (6.17) by letting c → ∞
(cf. penultimate paragraph of Section 6.2). In relativity, for any given θ , the corre-
sponding φ is less than the Newtonian φ, so that θ + φ is always less than 90◦; and
for θ ≈ φ, this total angle can be very small indeed.

2 The possible existence of a short-range electric force between the particles does not affect the
argument: details of what happens in the ‘collision zone’ are irrelevant.
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6.6 The zero-momentum frame

We have seen in the preceding section how useful an inertial frame can be in which
the total momentum vanishes. Such a frame exists uniquely for every particle system.
We call it the zero-momentum frame, SZM, and it corresponds to the classical center-
of-mass frame (cf. Exercise 6.5).

Consider an arbitrary inertial frame S, and in it a system of occasionally colliding
particles subject to no forces other than very short-range forces during collisions (cf.
footnote 2) and thus moving uniformly between collisions. We define the total mass m̄,
total momentum p̄, and total 4-momentum P̄ of the system in S as the instantaneous
sums of the respective quantities belonging to the individual particles:

m̄ =
∑

m, p̄ =
∑

p, P̄ =
∑

P =
∑

(p, mc) = (p̄, m̄c) (6.18)

[cf. (6.12).] Because of the conservation laws, each of the barred quantities remains
constant in time.

The quantity P̄, being a sum of 4-vectors, seems assured of 4-vector status itself.
But, in fact, it is not quite as simple as that. If all observers agreed on which Ps
make up the sum

∑
P, then

∑
P would clearly be a vector. But in each frame the

sum is taken at one instant, which may result in different Ps making up the
∑

P of
different observers. A spacetime diagram, even an imagined one, such as Fig. 5.1, is
useful in proving that

∑
P is nevertheless a vector. A simultaneity in S corresponds

to a ‘horizontal’ plane π in the diagram and a simultaneity in a second frame S′
corresponds to a ‘tilted’ plane π ′. In S,

∑
P is summed over planes like π , and in S′

over planes like π ′. However, we now assert that in S′ the same
∑

P results whether
summed over π ′ or π . For imagine a continuous motion of π ′ into π . As π ′ is tilted,
each individual P, located at a particle on π ′, remains constant (since the particles
move uniformly between collisions) except when π ′ sweeps over a collision; but then
the sub-sum of

∑
P which enters the collision remains constant, by 4-momentum

conservation. Thus, without affecting the value, all observers could sum their Ps over
the same plane π , and thus P̄ is indeed a 4-vector.

Now, even if we allow some or all of the particles of the system to have zero
rest-mass and thus null 4-momentum (as long as not all of them do and move in
parallel), the sum P̄ will be timelike and future-pointing—by the italicized ‘corollary’
of Section 5.6. As we saw in that same section, we can therefore find a frame in
which the spatial components of P̄ vanish; that is, in which p̄ = 0. That frame is
evidently the required SZM. In SZM the 4-velocity UZM of SZM is (0, 0, 0, c), so that,
from (6.18),

P̄ = (0, 0, 0, m̄ZMc) = m̄ZMUZM, (6.19)

where
m̄ZM =

∑
m in SZM, (6.20)

obviously an invariant.
The extremities of (6.19) constitute an important 4-vector relation. Comparing it

with (6.1), we see that m̄ZM and UZM are for the system what m0 and U are for a
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single particle. They are the quantities that would be recognized as the rest-mass and
4-velocity of the system if its composite nature were not recognized (as in the case
of an ‘ordinary’ particle—which is made up of possibly moving molecules).

Let us write out eqn (6.19) in component form in the general frame S, relative to
which SZM has 3-velocity uZM, say:

P̄ = (p̄, m̄c) = m̄ZMγ (uZM)(uZM, c).

From this, we can read off the following useful relations:

m̄ = γ (uZM)m̄ZM (6.21)

and
p̄ = m̄uZM, or uZM = p̄/m̄. (6.22)

6.7 Threshold energies

An important application of relativistic mechanics occurs in so-called threshold prob-
lems. Consider, for example, the case of a free stationary proton (of rest-mass
M) being struck by a moving proton, whereupon not only the two protons but
also a pion (of rest-mass m) emerge. (Such reactions are often written in the form
p + p → p + p + π0.) We shall ignore the electric interaction between the protons
which is confined to a small collision zone. The question is, what is the minimum
(‘threshold’) energy of the incident proton for this reaction to be possible? It is not
simply Mc2 + mc2; that is, it is not enough for the proton’s kinetic energy to equal
the rest energy of the newly created particle. For, by momentum conservation, the
post-collision particles cannot be at rest, and so a part of the incident kinetic energy
must remain kinetic energy and thus be ‘wasted’. (It is a little like trying to smash
ping-pong balls floating in space with a hammer.)

In all such cases the theoretical minimum expenditure of energy occurs when all
the end-products are mutually at rest. For consider, quite generally, two colliding
particles: a ‘bullet’ and a stationary ‘target’, with respective 4-momenta PB and PT .
If the emergent particles have 4-momenta Pi (i = 1, 2, . . . ), then

PB + PT =
∑

Pi .

Squaring this equation, using (6.13) and (6.15), and adopting a self-explanatory
notation, we then find

m2
0B +m2

0T + 2c−2m0T EB =
∑

m2
0i + 2

∑
(i<j)

m0i m0j γ (vij ). (6.23)

All the m0 in this equation are fixed by the problem. The only variable on the LHS
is EB , the energy of the bullet relative to the rest-frame of the target, and therefore



Light quanta and de Broglie waves 119

relative to the lab. The minimum of the RHS evidently occurs when all the γ -factors
are unity; that is, when there is no relative motion between any of the outgoing
particles; its value is then (

∑
m0i )

2. So the threshold energy of the bullet is given by

EB = (c2/2m0T )

[(∑
m0i

)2

−m2
0B −m2

0T

]
. (6.24)

This formula applies even when the bullet is a photon that gets absorbed in the
collision (cf. Exercise 6.16). For our original example of an extra pion coming out of
a proton–proton collision, it yields for the kinetic energy of the bullet,

EB −Mc2 = c2
(

2m+ m2

2M

)
. (6.25)

The efficiency of this and all analogous processes can be defined as the ratio k of
the rest energy mc2 of the new particle to the kinetic energy of the bullet. When eqn
(6.25) applies, we thus have

k = m

(
2m+ m2

2M

)−1

= 2

4+ (m/M)
. (6.26)

The efficiency is thus always less than 50 per cent. In our particular example, m/M ≈
0.14 and k ≈ 48 per cent. But when m greatly exceeds the rest-masses of all other
particles involved, the details of the collision do not matter and eqn (6.24) yields the
very unfavorable efficiency

k ≈ 2m0T

m
. (6.27)

For example, when Richter and Ting created the ‘psi’ particle by colliding electrons
with positrons, k would have been ∼ 1/1850! The way out of the difficulty was to
use a method that is almost 100 per cent efficient: the method of colliding beams.
Here both target and bullet particles are first accelerated to high energy (for example,
electrons and positrons can be accelerated in the same sychrotron, in opposite senses),
then accumulated in magnetic ‘storage rings’, before being loosed at each other. No
‘waste’ kinetic energy need be present after the collision, since there was no net
momentum going in.

6.8 Light quanta and de Broglie waves

One of the most striking discoveries of the twentieth century, and one that is crucial
for our quantum-mechanical understanding of the structure of matter, was that all
micro-particles (photons, electrons, nuclei, atoms, etc.) have both particle-like and
wavelike properties. Not only does this wave-particle duality fit naturally into the
framework of special relativity, it was actually suggested by it—very much as in the
case of the equally important principle E = mc2. All this speaks well for SR as
correctly modeling some very fundamental structures in the real world.
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As a desperate last resort to avoid the notorious infinity (‘ultraviolet catastrophe’)
in the classical theoretical blackbody spectrum, Planck in 1900 had made the truly
unprecedented suggestion that radiation of frequency ν might be emitted only in
definite ‘quanta’ of energy

E = hν, (6.28)

where h is a new universal constant of nature, now known as Planck’s constant.
Perhaps the only person who looked on Planck’s formula as a chink in the curtain

of nature rather than as an embarrassment (as did Planck himself!), was Einstein. He
found that the entropy of blackbody radiation had a mathematical form analogous to
that of a gas, and thus of particles. They could be made to coincide if the particles sat-
isfied Planck’s relation. Einstein also showed that quanta could explain certain strange
effects connected with fluorescence, and others connected with the passage of ultra-
violet radiation through a gas. But above all, he realized that Maxwell’s continuous
radiation theory could never explain the discreteness properties of the photoelectric
effect recently brought to light by Lenard (1902); quanta, on the other hand, provided
the perfect solution. In 1905 he therefore boldly suggested that not only is radiation
emitted in quanta, but that it also travels and is absorbed in quanta, which were later
called photons. According to Einstein, a photon of frequency ν has energy hν (energy
and frequency transform alike, cf. Exercise 6.20), and thus a finite mass hν/c2 and a
finite momentum hν/c.

The generalization of Einstein’s photon-wave duality to other particles (in partic-
ular, to electrons) could have been made almost at once. Of course, there was no
experimental mandate for such a generalization in 1905—but then, neither was there
one in 1923 when de Broglie finally made it. (Except mildly: it correctly explained
the permissible electron orbits in the old Bohr model of the hydrogen atom as those
containing a whole number of ‘electron waves’.) What de Broglie now proposed was
to extend Planck’s and Einstein’s relation E = hν to all particles: a particle of total
energy E would have associated with it a wave of frequency E/h traveling in the
same direction. Of course, de Broglie knew that this wave cannot travel at the same
speed as the particle (unless that speed is c), for that would not be a Lorentz-invariant
association, as we have seen in Section 5.7. According to de Broglie, any particle of
4-momentum P has associated with it a wave of wave-vector L determined by what
is now called de Broglie’s equation:

P = hL; that is, (p, E/c) = hν

(
n
w

,
1

c

)
= h

(
n
λ

,
ν

c

)
(6.29)

[cf. (5.31) and (6.11)]. In fact, this equation is inevitable (by the zero-component
lemma) once we accept the universal validity of E = hν; for (E − hν)/c is the fourth
component of the 4-vector P − hL. Setting p = Eu/c2 = hνu/c2 and comparing
spatial components in (6.29), we now find the following relations between p and n
and between the velocity u of the particle and the velocity w of its wave:

n ∝ p, uw = c2. (6.30)
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For particles of non-zero rest-mass, u < c and thus w > c. The de Broglie wave
speed then has an interesting and simple interpretation. Suppose a whole swarm of
identical particles travel with equal velocity, and something happens to all of them
simultaneously in their rest-frame: suppose, for example, they all ‘flash’. Then this
flash sweeps over the particles at the de Broglie velocity in any other frame. To see
this, suppose the particles are at rest in the usual frame S′, traveling at speed v relative
to a frame S. Setting t ′ = 0 for the flash, we find from (2.6)(iv) that x/t = c2/v, and
this is evidently the speed at which the plane ‘flash wave’ travels in S. Thus de Broglie
waves can be regarded as ‘waves of simultaneity’. It can also be shown quite easily
that the group velocity of the de Broglie waves (the velocity of a wave group or wave
packet), coincides with the velocity of the associated particle. (Cf. Exercise 6.12.)

Note from (6.28) that ν can neither vanish nor be infinite, even if the particle is at
rest (when u = 0 and w = ∞). But the wavelength, λ = w/ν, is infinite for a particle
at rest.

As a way to test his hypothesis, de Broglie suggested that one might look for diffrac-
tion effects when a beam of electrons traverses an aperture that is small compared to
the wavelength. In a historic experiment in 1927 Davisson and Germer indeed discov-
ered electron diffraction, though by a crystal rather than an ‘aperture’. And, of course,
the superiority of the modern electron microscope hinges on de Broglie’s relation,
according to which fast electrons allow us to ‘see’ with greater resolving power than
photons since they have very much shorter wavelengths. But the richest development
that came out of de Broglie’s idea was undoubtedly Schrödinger’s invention of wave
mechanics in 1926, and its eventual merger with quantum mechanics.

6.9 The Compton effect

An extraordinary validation of Einstein’s idea that photons can behave like little
billiard balls with (relativistic) mass and momentum was provided by Compton’s
famous scattering experiment of 1922, in which X-ray photons were the ‘bullets’
and electrons in graphite surfaces the ‘targets’; the results were found to conform
precisely to the laws of relativistic collision mechanics.

To help analyze this situation, we first establish two general results. Our earlier
momentum-product formula (6.15)(i) is still valid and useful when one of the two
momenta is that of a photon: if P1 refers to a particle of finite rest-mass m01 and P2
to a photon of frequency ν2, eqn (6.15)(i) in conjunction with E = hν now yields

P1 · P2 = hm01ν2. (6.31)

But when both P1 and P2 refer to photons, we need to bring into play eqn (6.29)
(with w = c): if the paths of the two photons subtend an angle θ with each other, that
equation yields

P1 · P2 = c−2h2ν1ν2(1− cos θ). (6.32)
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Returning to Compton’s experiment, we can use the left half of Fig. 6.1 to illustrate
the situation: a photon of frequency ν is incident along the x-axis, strikes a stationary
electron, and scatters at an angle θ with diminished frequency ν′ while the electron
recoils at an angle φ. We wish to relate ν, ν′ and θ with m, the rest-mass of the electron.
(No observations were made, at first, on the recoiling electron, but see Exercise 6.22.)
If P, P′ are the pre- and post-collision 4-momenta of the photon and Q, Q′ those of
the electron, then P+Q = P′ +Q′, by conservation of 4-momentum. Next we isolate
the unwanted vector Q′ on one side of the equation and square to get rid of it:

(P +Q− P′)2 = Q′2.

Since Q2 = Q′2 and P2 = P′2 = 0, we are left with P ·Q−P′ ·Q−P ·P′ = 0; that is,

P · P′ = Q · (P − P′), (6.33)

from which we find at once, by reference to (6.31) and (6.32), the desired relation

hc−2νν′(1− cos θ) = m(ν − ν′). (6.34)

In terms of the corresponding wavelengths λ, λ′, and the half-angle θ/2, this may be
rewritten in the more standard form

λ′ − λ = (2h/cm) sin2(θ/2) = 2l sin2(θ/2), (6.35)

where l is the ‘Compton wavelength’ h/cm, gained by the photon when it scatters at
90◦.

Scattering of photons by stationary electrons is called Compton scattering, and
clearly always results in a loss of energy to the photon. The opposite is true for
inverse Compton scattering, in which a photon collides with a fast (‘relativistic’)
electron or other charged particle and often experiences a spectacular gain in energy.
This process is an important source of intergalactic X-rays, but it also has applications
in the laboratory.

To obtain the result of an inverse Compton scattering, we apply (6.33) in the
new ‘lab’ frame, where the electron now moves at high speed u. For simplicity let
us consider only the extreme case of a head-on collision, which will result in the
maximum energy gain by the photon. Assuming the collision paths are along the
x-axis, we may write

Q = γm(−u, 0, 0, c), P = (E/c)(1, 0, 0, 1), P′ = (E′/c)(−1, 0, 0, 1), (6.36)

E and E′ being the pre- and post-collision energies of the photon. Then eqn (6.33)
reads

2EE′/c2 = Eγm(1+ u/c)− E′γm(1− u/c). (6.37)

If we now set 1+ u/c ≈ 2 and 1− u/c ≈ 1/2γ 2 (since the product is γ−2), we can
recast (6.37) into the form

E′

E
= 4γ 2

1+ 4γE

mc2

. (6.38)
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The denominator contains the ratio E/mc2 which is now quite small, even when
multiplied by γ . So the photon energy can be amplified by a factor of the order of γ 2.
For example, when a photon of the cosmic microwave background (hν ≈ 10−3 eV)

collides with a high-energy proton, say one with γ = 1011 (the rest-energy of a proton
being ∼ 1010 eV), its energy can be amplified to ∼1019 eV!

6.10 Four-force and three-force

The only influences on the motion of particles that we have so far considered were
collisions, and we have come quite a long way without recourse to the concept of
force. But that, too, plays an important role in relativistic mechanics, as when fast
charged particles move through an electromagnetic field. Even without such practical
need it would be desirable to have a relativistic version of the force concept, so that
relativistic mechanics might ‘contain’ all of Newtonian mechanics in a suitable limit.

There are at hand essentially only two reasonable definitions for the 4-force F on
a particle of rest-mass m0, 4-acceleration A and 4-momentum P : F = m0A or
F = (d/dτ)P. But P is a more fundamental quantity than A; so we choose as the
more promising definition

F = d

dτ
P = d

dτ
(m0U) = m0A+ dm0

dτ
U. (6.39)

As long as we have no knowledge of specific 4-forces, eqn (6.39) must indeed be
regarded as a mere definition. However, it certainly satisfies the desideratum that in
the absence of a force, P remains constant. And when we later find that the Lorentz
force of Maxwell’s theory fits into this pattern, it will become a law.

In Newton’s theory, the conservation of momentum is a consequence of Newton’s
second and third laws. In our scheme, by contrast, a limited (though 4-dimensional)
analog of Newton’s third law is a consequence of momentum conservation and the
definition (6.39): During the contact phase of a collision of two compound particles,
their proper times are the same, and, of course, the sum of their 4-momenta P1, P2
remains constant. So if F1 and F2 are the respective contact 4-forces on the two
particles, we have

F1 + F2 =
d

dτ
(P1 + P2) = 0, (6.40)

whence, in analogy to Newton’s third law, F1 = −F2. (Note how we could not prove
this from the definition F = m0A, since m0 could vary during impact.)

From (6.3) and (5.19) we find

F = d

dτ
P = γ (u)

d

dt
(p, mc) = γ (u)

(
f,

1

c

dE

dt

)
, (6.41)

where we have introduced the relativistic 3-force f defined by

f = dp
dt
= d(mu)

dt
. (6.42)
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In the slow-motion limit, f becomes the Newtonian force. Note how the power
dE/dt is the complement of the 3-force in making up the 4-vector F, just as the
energy itself is the complement of the 3-momentum in the 4-vector P.

From (6.39) we find, by use of (5.24) and (5.26), the first of the following equations;
the second results from multiplying the rightmost term of (6.41) by U = γ (u)(u, c):

F · U = c2 dm0

dτ
= γ 2(u)

(
dE

dt
− f · u

)
. (6.43)

(The middle term can also be obtained by specializing the RHS to the particle’s rest-
frame.) This shows that F ·U is the proper rate at which the particle’s internal energy
is being increased. A rest-mass preserving force is therefore characterized by

F · U = 0, or f · u = dE

dt
, or F = γ (u)(f, f · u/c). (6.44)

Collision forces on compound particles during contact will not satisfy this condition.
However, if the force is rest-mass preserving, we also see from (6.44)(ii) that the
Newtonian relation

f · dr = dE (6.45)

will be satisfied, and, of course, the energy increment will be purely kinetic, as in the
Newtonian case. If rest-mass is not preserved, f · dr has no such simple significance.

By applying the standard transformation pattern (5.11) to the 4-vector F [F ′1 =
γ (v)(F1 − v/cF4), etc.], we can read off—with the help of our earlier eqn (3.10)—
the transformation of the components (6.41) of F under a standard LT. Writing Q for
the power dE/dt , we thus find

f ′1 =
f1 − vQ/c2

1− u1v/c2

(
f ′1 =

f1 − vf · u/c2

1− u1v/c2
, if m0 = const

)
f ′2 =

f2

γ (v)(1− u1v/c2)
, f ′3 =

f3

γ (v)(1− u1v/c2)
(6.46)

and

Q′ = Q− vf1

1− u1v/c2
, (6.47)

where we have used (6.44) to get the alternative formula for f ′1. In the formal limit
c → ∞, the above formulae reduce to the Newtonian equations f ′ = f and Q′ =
Q− f · v.

In relativity, f is no longer invariant. Indeed, the transformation of f generally
depends on the velocity u of the particle on which the force acts. Thus a velocity-
independent 3-force is not a Lorentz-invariant concept. (The ‘Lorentz force’ of
electromagnetism, which depends on the velocity of the charged particle on which
it acts, is typical of a relativistic force.) However, even in relativity we have f ′ = f
for the special case of a rest-mass preserving force, among those inertial frames in
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standard configuration with each other whose relative velocities are parallel to the
force: Let the x-direction coincide with that of the force f , so that f2 = f3 = 0.
Then f · u = f1u1, and with that the parenthesized formula in (6.46) yields f ′1 = f1,
while f ′2 = f ′3 = 0 is immediate from the remaining two formulae. Thus if in a given
inertial frame there is, for example, a constant parallel rest-mass preserving field f
(such as a uniform electric field), then a particle moving along the field lines ‘feels’
a constant force also in its rest-frame, to which, by (6.42), it responds with constant
proper acceleration f/m0. The resulting motion is therefore hyperbolic.

Note the formal similarity of the transformation equations (6.46) for f to the trans-
formation equations (3.6) for u, especially in the y- and z-directions. This is due
to the similarity of the component patterns on the RHSs of eqns (6.41) and (5.20).
(Cf. Exercise 5.5.)

For a rest-mass preserving force f we have, from (6.42) and (6.44),

f = ma + dm

dt
u, ma = f − f · u

c2
u. (6.48)

This shows that while a is necessarily coplanar with f and u, it is in general not
parallel to f . That happens only when u is zero or perpendicular to f, or when u is
parallel to f. If we split f into a component f‖ parallel to u and another, f⊥, orthogonal
to u, and do likewise for a, we get, from (6.48)(ii),

γm0(a‖ + a⊥) = f‖ + f⊥ − u2

c2
f‖, (6.49)

since f‖uu = f‖u2. Equating corresponding components in (6.49), we now find

γ 3m0a‖ = f‖, γm0a⊥ = f⊥. (6.50)

It appears, therefore, that a moving particle offers different inertial resistances to
the same force, according to whether it is subjected to that force longitudinally or
transversely. In this way there arose the (now somewhat dated but still useful) concepts
of ‘longitudinal mass’ m‖ and ‘transverse mass’ m⊥ ‘transverse mass’ m⊥, defined
as follows:

m‖ = γ 3m0, m⊥ = γm0. (6.51)

Using these definitions and equations (6.50), we arrive at the following alternative to
(6.48)(ii):

a = f‖/m‖ + f⊥/m⊥. (6.52)

A final formula which can occasionally be very useful (cf. Exercise 6.27)—and
which also applies only if m0 is constant—can be read off from the comparison of
the fourth member of (6.41) with the third member of (6.39), and (5.21):

γ (u)f = m0
d2r

dτ 2
. (6.53)
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Exercises 6
6.1. How fast must a particle move before its kinetic energy equals its rest energy?

[0.866 c.]

6.2. How fast must a 1-kg cannon ball move to have the same kinetic energy as a
cosmic-ray proton moving with γ factor 1011? [∼ 5.5 m/s.]

6.3. The mass of a hydrogen atom is 1.00814 amu, that of a neutron is 1.00898 amu,
and that of a helium atom (two hydrogen atoms and two neutrons) is 4.00388 amu.
Find the binding energy as a fraction of the total energy of a helium atom. [Answer:
∼0.76%.]

6.4. In the ‘relativistic-billiards’ collision discussed in Section 6.5, prove that for a
given incident velocity of the bullet, the angle θ+φ between the tracks of the particles
after collision is least when θ = φ. [Hint: Consider tan(θ + φ).]

6.5. The position vector of the center of mass (CM) of a system of particles in any
inertial frame is defined by rCM =

∑
mr/

∑
m, the ms being the relativistic masses.

By considering two equal particles traveling in opposite directions along parallel lines,
show that the CM of a system in one IF does not necessarily coincide with its CM
in another IF. Prove that, nevertheless, if the particles of the system suffer collision
forces only, the CM in every IF moves with the velocity of the ZM frame. [Hint:∑

m,
∑

mṙ are constant;
∑

ṁr is zero between collisions, and at any collision we
can factor out the r of the participating particles: r

∑
ṁ = 0.]

6.6. A rocket propels itself rectilinearly by giving portions of its mass a constant
(backward) velocity U relative to its instantaneous rest-frame. It continues to do so
until it attains a velocity V relative to its initial rest-frame. Prove that the ratio of the
initial to the final rest-mass of the rocket is given by

Mi

Mf
=
(c + V

c − V

)c/2U
.

Note that the least expenditure of mass needed to attain a given velocity occurs when
U = c; that is, when the rocket propels itself with a jet of photons. The reason: all of
the energy is then converted into momentum, cf. (6.14)(i). [Hint: (−dM)U = Mdu′,
where M is the rest-mass of the rocket, and u′ is its velocity relative to its instantaneous
rest-frame. By mass conservation, −dM is the relativistic mass of the jet element.]

6.7. Consider a head-on elastic collision of a ‘bullet’ of rest-mass M with a station-
ary ‘target’ of rest-mass m. Prove that the post-collision γ -factor of the bullet cannot
exceed (m2 +M2)/2mM . This means that for large bullet energies (with γ -factors
much larger than this critical value), the relative transfer of energy from bullet to target
is almost total. [Hint: if P, P′ are the pre- and post-collision 4-momenta of the bullet,
and Q, Q′ those of the target, show, by going to the ZM frame, that (P′ −Q)2 ≥ 0; in
fact, in the ZM frame P′ − Q has no spatial components.] The situation is radically
different in Newtonian mechanics, where the pre- and post-collision velocities of the
bullet are related by u/u′ = (M +m)/(M −m). Prove this.
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6.8. In the situation of the preceding exercise, prove that (in relativistic as in
Newtonian mechanics) the bullet will go forward or backward after impact according
as its rest-mass exceeds that of the target or not. [Hint: translate from the ZM frame.]

6.9. Generalize eqn (6.26), for the efficiency of an elastic bombardment, to the case
where the target has a different rest-mass N from that of the bullet, M . Then note
that (as intuition would suggest) for sufficiently large N , k can be arbitrarily close to
unity. [Answer: k−1 = 1+ (m+ 2M)/2N .]

6.10. If �s = (�r, c�t) is the 4-vector join of two events on the worldline of a
uniformly moving particle (or photon), prove that the wave-vector of its de Broglie
wave is given by L = c−2ν�s/�t , and deduce that ν/�t is invariant. (Compare with
Exercise 4.7.)

6.11. (i) If l = h/cm0 is a particle’s Compton wavelength and λ is its de Broglie
wavelength, prove that λ = l when u/c = √2/2. (ii) Verify that for de Broglie
waves, the frequency transformation (5.38) is equivalent to (3.10)(i), when allowance
is made for α in (5.38) measuring the incoming angle.

6.12. If ω = 2πν is the angular frequency and k = 2π/λ the wave number of the
de Broglie wave belonging to a particle moving with velocity u, establish from (6.29)
the important identity

ω2 − k2c2 = (2πm0c
2/h)2 = c2/l2.

Then deduce that ∂ω/∂k = u, where we envisage particles of the same m0 moving
with speeds differing infinitesimally from u. Since ∂ω/∂k is the usual formula for
the group velocity, we see that de Broglie wave packets travel with the speed of their
particle.

6.13. A rocket propels itself rectilinearly by emitting radiation in the direction
opposite to its motion. If V is its final velocity relative to its initial rest-frame, prove
ab initio that the ratio of the initial to the final rest-mass of the rocket is given by

Mi

Mf
=
(c + V

c − V

)1/2
,

and compare this with the result of Exercise 6.6 above. [Hint: equate energies and
momenta at the beginning and at the end of the acceleration, writing

∑
hν and

∑
hν/c

for the total energy and momentum, respectively, of the emitted photons.]

6.14. In an inertial frame S, two photons of frequencies ν1 and ν2 travel in the
positive and negative x-directions respectively. Find the velocity of the ZM frame of
these photons. [Answer: u/c = (ν1 − ν2)/(ν1 + ν2).]

6.15. Radiation energy from the sun is received on earth at the rate of 1.94 calories
per minute per square centimeter. Given the distance of the sun (150 000 000 km), and
that one calorie = 4.18× 107 ergs, find the total mass lost by the sun per second, and
also the force exerted by solar radiation on a black disk of the same diameter as the
earth (12 800 km) at the location of the earth. [Answers: 4.2×109 kg, 5.8×1013 dyne.
Hint: Force equals momentum absorbed per unit time.]
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6.16. Show that a photon cannot spontaneously disintegrate into an electron–
positron pair. [Hint: 4-momentum conservation.] But in the presence of a stationary
nucleus (acting as a kind of catalyst) it can. If the rest-mass of the nucleus is N , and
that of the electron (and positron) is m, what is the threshold frequency of the photon?
Verify that for large N the efficiency is∼ 100 per cent (cf. Exercise 6.9 above), so that
the nucleus then comes close to being a pure catalyst. [Answer: k = N/(N +m).]

6.17. If one neutron and one pion are to emerge from the collision of a photon with
a stationary proton, find the threshold frequency of the photon in terms of the rest-
mass n of a proton or neutron (here assumed equal) and that, m, of a pion. [Answer:
c2(m2 + 2mn)/2hn.]

6.18. A particle of rest-mass m decays from rest into a particle of rest-mass m′ and a
photon. Find the separate energies of these end products. [Answer: c2(m2±m′2)/2m.
Hint: use a 4-vector argument.]

6.19. A fast electron having rest-mass m and velocity u decelerates in a collision
with a heavy stationary nucleus of rest-mass M and emits a bremsstrahlung (German
for ‘brake-radiation’) photon of frequency ν. Prove that the maximum energy of the
photon is given by

hν = c2mM[γ (u)− 1]

M +mγ (u)(1− u/c)

and occurs when the photon is emitted in the forward direction and the electron
and the nucleus travel ‘as a lump’ after the collision. [Hint: Square the equation
P+Q−N = P′ +Q′, where P, Q, P′, Q′ are the pre- and post-collision 4-momenta
of the electron and nucleus and N is the 4-momentum of the photon.]

6.20. From (4.5) and (6.11) verify that the frequency of an incoming light signal
and the energy of an incoming photon transform alike, thus proving directly that
Einstein’s relation E = hν is Lorentz-invariant.

6.21. Uniform parallel radiation is observed in two arbitrary inertial frames S and
S′ in which it has frequencies ν and ν′ respectively. If p, g, σ denote, respectively,
the radiation pressure, momentum density, and energy density of the radiation in S,
and primed symbols denote corresponding quantities in S′, prove p′/p = g′/g =
σ ′/σ = ν′2/ν2. [Hint: Exercise 4.20.]

6.22. For the ‘Compton collision’ discussed in Section 6.9 prove the relation

tan φ = ν′ sin θ

ν − ν′ cos θ
.

6.23. For motion under a rest-mass preserving inverse square force f = −kr/r3

(k = constant), derive the energy equation m0γ c2 − k/r =const. [Hint: eqn (6.45).]

6.24. As we have seen in (6.48), there is an acceleration component orthogonal to
f unless u is either parallel or orthogonal to f . Find a physical explanation of this fact
in terms of the conservation of momentum.
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6.25. Consider a mechanical clock consisting of two particles of rest-mass m sepa-
rated by a light spring of spring constant k (force per unit extension) and consequently
of proper period 2π(m/2k)1/2. When this clock moves uniformly at speed v in a
direction at right angles to the spring, its period must a priori be lengthened by the
usual time dilation factor γ (v). Show how this can be understood—at least for small
oscillations—as resulting from the increase of mass and the decrease of k.

6.26. For a rest-mass preserving 4-force F, prove that F2 = −m2
0α

2, m0 being the
rest-mass and α the proper acceleration of the particle on which F acts. Deduce that
if a 3-force f acts on a particle of constant rest-mass m0 moving at velocity u making
an angle θ with f , then α = m−1

0 f γ (u)[1− (u2/c2) cos2 θ ]1/2.

6.27. In an inertial frame S there is a uniform electric field E in the direction of the
positive x-axis. (Electromagnetic fields are always rest-mass preserving) A particle
of rest-mass m0 and charge q is projected into this field in the y-direction with initial
velocity ui and corresponding γ -factor γi . Prove that its trajectory is a catenary whose
equation relative to a suitably chosen origin is

x = c2m0γi

qE
cosh

qEy

cm0uiγi
.

[Hint: from (6.53),

d2y

dτ 2
= 0, m0

d2x

dτ 2
= γ qE, γ = 1

c

√(dx

dτ

)2 + c2γ 2
i . ]

In spite of the occurrence of the hyperbolic cosine, the motion in the x-direction is
not ‘hyperbolic’. To see this, go to the inertial frame moving in the x-direction in
which the particle momentarily has no x-velocity, only a y-velocity u2. Show that in
a succession of such x-rest-frames the acceleration of the particle in the x-direction
is qE/m0γ (u2), and thus not constant.



7

Four-tensors; Electromagnetism in
vacuum

7.1 Tensors: Preliminary ideas and notations

As we saw in the last chapter, the mathematical formalism of 4-vectors is ideally
suited for the discussion of particle mechanics, where the chief quantities involved—
velocity, acceleration, momentum, and force—are indeed 4-vectors. But when it
comes to electromagnetism, it turns out that 4-vectors, though important, are not
enough. One might perhaps have expected that the electric and magnetic field
3-vectors e and b should give rise to corresponding field 4-vectors E and B, but
this is not so. Instead, they give rise to a single electromagnetic field 4-tensor!

Three-tensors are often encountered in elementary physics without necessarily
being identified as such. For example, the components of the inertia tensor are
self-effacingly called ‘coefficients of inertia’. The reason is that the property which
primarily characterizes tensors (namely, the way they transform when the reference
coordinates are changed) rarely comes into play in elementary physics, where a sin-
gle reference system is usually all one needs. So then tensors indeed mainly arise as
coefficients which combine with vectors to form other vectors or scalars. This actu-
ally is another basic property of tensors. Thus the inertia tensor Iij gives the (scalar)
moment of inertia of a body about a given point and a given unit direction n = (ni)

as
∑3

i,j=1Iij ninj ; the stress tensor tij gives the elastic force f inside a body on a unit
area with unit normal n as fi =

∑3
j=1tij nj ; and so on. But since, for a given point in

a given body, and a given direction n, the value of
∑

Iij ninj must be independent of
the choice of x, y, z axes, and since we already know how vectors like ni transform,
this invariance implies a certain transformation law for the coefficients Iij —which
turns out to be the tensor transformation law! And the same is true of tij and other
such coefficients.

But let us begin at the beginning. Tensors exist in spaces of all dimensions. The ten-
sors of special relativity are associated with Minkowski space and are 4-dimensional.
But since there is nothing very special about four dimensions, we shall at first discuss
tensors in an N-dimensional space V N . Indices occur naturally in tensor theory and,
once we have decided on a dimension N , all our indices, like i, j, k, etc., will range
over the values 1, 2, . . . , N . All tensors can be denoted by a ‘kernel’ symbol like
A, B, etc., adorned with indices (both subscripts and superscripts) to indicate their
type: Aij , Bi

jk etc. Evidently 1-index tensors (these are called vectors!) have N com-
ponents, 2-index tensors have N2 components, etc. But not all arrays of components
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that look like tensors are tensors. To constitute a tensor, the array must obey the tensor
transformation law. Before we write that down, however, it will pay us to introduce
some streamlined notation.

To start with, we shall adopt Einstein’s summation convention, namely: if any
index appears twice in a given term, once as a subscript and once as a superscript, a
summation over the range of that index is implied. Thus, for example,

AiB
i =

N∑
i=1

AiB
i,

AijkB
jk =

N∑
j=1

N∑
k=1

AijkB
jk,

and so on. By a slight extension of the rule we shall also understand summation in
such expressions as

∂ui

∂xi
,

∂q

∂xi

dxi

dt
, etc.

In certain manipulations the reader may at first find it helpful to imagine the sum-
mation signs in front of the relevant terms. Since the summations are all finite, all
elementary rules, such as interchanging the order of summation, differentiating under
the summation sign, etc., apply. The repeated indices signaling summation are called
dummy indices, while a non-repeated index is called a free index. The same free index
(or indices) must occur in each term of an equation, but can be replaced throughout
by another: fi = gi says the same as fj = gj . (It is understood that such equations
hold for all values of the index.) And a dummy index pair in any term can be replaced
by any other; for example, AiB

i = AjB
j ; this is often necessary in order to avoid

the triple occurrence of an index which would lead to ambiguities.
Our next convention is the primed index notation. This consists in the use of primed

and multiply primed indices to distinguish between various coordinate systems for
the underlying space V N . All range from 1 to N . Thus:

i, j, k, . . . ; i′, j ′, k′, . . . ; i′′, j ′′, k′′, . . . ; . . . = 1, 2, . . . , N.

No special relation is implied between, say, i and i′: they are as independent as i and
j ′. A first system of coordinates can then be denoted by {xi} = {x1, x2, . . . , xN }, a
second by {xi′ } = {x1′ , x2′ , . . . , xN ′ }, etc. Similarly the components of a given tensor
in different coordinate systems are distinguished by the primes on their indices. Thus,
for example, the components of some 3-index tensor may be denoted by Aijk in the
{xi} system, by Ai′j ′k′ in the {xi′ } system, etc. When primed indices take particular
numerical values, we can prime these, so as not to lose sight of the relevant coordinate
system. Thus, for example, when i′ = 2, j ′ = 3, k′ = 5, Ai′j ′k′ becomes A2′3′5′ .
This will already have been noted for the case of the coordinates above. (However,
sometimes we adopt the simpler device of priming the kernel: A′235.)

When we make a coordinate transformation from one set of coordinates xi to
another xi′ (we often drop the braces), it will be assumed that the transformation is
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non-singular; that is, that the equations which express the xi′ in terms of the xi can be
solved uniquely for the xi in terms of the xi′ . We also assume that the functions speci-
fying a transformation are differentiable as often as may be required. For convenience
we write

∂xi′

∂xi
= pi′

i ,
∂xi

∂xi′ = pi
i′ ,

∂2xi′

∂xi∂xj
= pi′

ij (7.1)

(p for ‘partial derivative’), and use a similar notation for other such derivatives.
We observe that, by the chain rule of differentiation,

pi
i′p

i′
i′′ = pi

i′′ , pi
i′p

i′
j = δi

j , (7.2)

where δi
j (the Kronecker delta) equals 1 or 0 according as i = j or i �= j . It is

important to note the ‘index-substitution’ action of δi
j exemplified by Aiklδ

i
j = Ajkl .

Finally note how ps can be ‘flipped’ from one side of an equation to the other, for
example,

Aip
i
i′ = Bi′ ⇒ Ai = Bi′p

i′
i . (7.3)

For proof, multiply the original equation by pi′
j .

7.2 Tensors: Definition and properties

A. Definition of tensors

(i) An object having components Aij ···n in the xi system of coordinates and
Ai′j ′···n′ in the xi′ system is said to behave as a contravariant tensor under
the transformation {xi} → {xi′ } if

Ai′j ′···n′ = Aij ···npi′
i p

j ′
j · · ·pn′

n . (7.4)

(ii) Similarly, Aij ···n is said to behave as a covariant tensor under {xi} → {xi′ } if

Ai′j ′···n′ = Aij ···npi
i′p

j

j ′ · · ·pn
n′ . (7.5)

(iii) Lastly, Ai···k
l···n is said to behave as a mixed tensor (contravariant in i · · · k and

covariant in l · · · n) under {xi} → {xi′ } if

Ai′···k′
l′···n′ = Ai···k

l···npi′
i · · ·pk′

k pl
l′ · · ·pn

n′ . (7.6)

Note that (7.6) evidently subsumes both (7.4) and (7.5) as special cases. The reader
should perhaps be reminded that there are r separate summations going on in the
above formulae if the tensors have r indices.

At a given point in V N the ps are pure numbers. Thus the tensor transforma-
tions (7.4)–(7.6) are linear: the components in the new coordinate system are linear
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functions of the components in the old system, the coefficients being products of the
ps. Contravariant tensors involve derivatives of the new coordinates xi′ with respect
to the old, xi , covariant tensors involve the derivatives of the old coordinates with
respect to the new, and mixed tensors involve both types of derivatives. The conven-
tion of using subscripts for covariance and superscripts for contravariance, together
with the requirement that the free indices on both sides of the equations must balance,
serve as a good mnemonic for reproducing eqns (7.4)–(7.6).

If we simply say an object is a tensor it is understood that the object behaves as a
tensor under all non-singular differentiable transformations of the coordinates of V N .
An object which behaves as a tensor only under a certain subgroup of non-singular
differentiable coordinate transformations, like the Lorentz transformations, may be
called a ‘qualified tensor’, and its name should be qualified by an adjective recalling the
subgroup in question, as in ‘Lorentz tensor’, more commonly called ‘4-tensor’. These
tensors are, as a matter of fact, the (qualified) tensors used in special relativity. The
so-called ‘Cartesian tensors’ of classical physics behave tensorially under orthogonal
transformations (rotations) of the Cartesian coordinates x, y, z.

The above definitions, when applied to a tensor with no indices (a scalar) imply
A′ = A (no ps!), whence a scalar is just a function of position in V N , independent
of the coordinate system. A scalar is therefore often called an invariant.

The zero tensor of any type Ai···k
l···n is defined as having all its components zero in

all coordinate systems. It is clear from (7.6) that it is a tensor. For brevity it is usually
written as 0, with the indices omitted.

Evidently we must call two tensors equal if they have the same components in all
relevant coordinate systems. Now the main theorem of the tensor calculus (trivial in
its proof, profound in its implications) is this: if two tensors of the same type (that is,
having the same number of subscripts and superscripts) have equal components in any
one coordinate system then they have equal components in all coordinate systems.
This is an immediate consequence of the definition (7.6). This ‘theorem’ implies that
tensor-(component) equations always express physical or geometrical facts, namely
facts transcending the coordinate system used to describe them.

B. Three basic tensors

The most basic contravariant tensor is the coordinate differential dxi . For, by the
chain rule of differentiation, we have

dxi′ = pi′
i dxi .

Under linear transformations the coordinate differences �xi transform like the dxi

and are themselves tensors. The ‘4-vectors’ we introduced in Chapter 5 are now seen
to be the contravariant one-index Lorentz tensors in Minkowski space.

The most basic covariant tensor is the gradient of a function of position
φ(x1, x2, . . . , xN). For, if we write

φ,i = ∂φ

∂xi
, (7.7)
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we have, again by the chain rule,

φ,i′ = φ,ip
i
i′ .

The Kronecker delta introduced in (7.2) is a mixed tensor. To see this, we first use
its ‘index substitution’ property and then (7.2)(ii):

δi
jp

i′
i p

j

j ′ = pi′
j p

j

j ′ = δi′
j ′ .

C. The group properties

Tensor transformations satisfy the two so-called group properties, symmetry and tran-
sitivity. In other words, if A······ transforms tensorially from one coordinate system {xi}
to another, {xi′ }, then it transforms tensorially also back from {xi′ } to {xi}; and if,
in addition, it transforms tensorially from {xi′ } to {xi′′ }, then it does so also directly
from {xi} to {xi′′ }. The ‘flip’ property (7.3) of the ps makes symmetry obvious:

Ai′
j ′ = Ai

jp
i′
i p

j

j ′ ⇒ Ai′
j ′p

i
i′p

j ′
j = Ai

j ,

while the δ-property (7.2)(ii) ensures transitivity:

Ai′′
j ′′ = Ai′

j ′p
i′′
i′ p

j ′
j ′′ =

(
Ai

jp
i′
i p

j

j ′
)
pi′′

i′ p
j ′
j ′′ = Ai

jp
i′′
i p

j

j ′′ .

(Higher-index tensors obviously behave in the same way.) As an important corollary,
we can construct a tensor by starting with arbitrary components in one system of
coordinates {xi} and then defining the components in all other admissible coordinate
systems by tensorially transforming away from {xi}. For if Ai′ and Ai′′ , say, are
related to Ai tensorially, then so is Ai to Ai′ by symmetry and thus Ai′′ to Ai′ by
transitivity.

D. Tensor algebra

The algebra of tensors consist of four basic operations—sum, outer product, contrac-
tion, and index permutation—which all have the property of producing tensors from
tensors. All can be defined by the relevant operations on the tensor components, but
must then be checked for tensor character.

The sum Ci···
k··· of two tensors Ai···

k··· and Bi···
k··· of the same type is defined thus:

Ci···
k··· = Ai···

k··· + Bi···
k···.

Trivially it is a tensor (we again exhibit the proof for a particular case):

Ci′
k′ = Ai′

k′ + Bi′
k′ = Ai

kp
i′
i pk

k′ + Bi
kp

i′
i pk

k′

= (Ai
k + Bi

k)p
i′
i pk

k′ = Ci
kp

i′
i pk

k′ .
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Note, however, that the sum of tensors at different points of V N is not generally a
tensor since in the third step above we could not generally pull out the ps. (It is this
which complicates the concepts of derivative and integral in tensor analysis.) But
under linear coordinate transformations the ps are constant, and then the sum of
tensors even at different points is a tensor. Analogous remarks apply to the product
of tensors to be defined next.

If A······ and B ······ are tensors of arbitrary types, the juxtaposition of their components
defines their outer product. Thus, for example,

C
ij
klm = Ai

kB
j
lm

is a tensor of the type indicated by its indices. (The simple proof is left to the reader.)
As a particular case, A······ could be a scalar. In conjunction with sum, therefore, we
see that any linear combination of tensors of equal type is a tensor.

Contraction of a tensor of type (s, t) (s superscripts, t subscripts) consists in the
replacement of one superscript and one subscript by a dummy index pair, and results
in a tensor of type (s − 1, t − 1). For example, if A

ij
klm is a tensor, then

B
j
km = A

hj
khm

is a tensor of the type indicated by its indices. (The proof is left to the reader.)
Contraction in conjunction with outer product results in an inner product, for example,
Cikl = AijB

j
kl . A most important particular case of contraction or inner multiplica-

tion arises when no free indices remain: the result is an invariant. For example,
Ai

i, A
ij
ij , AijA

ij are invariants if the As are tensors. (A particular case: δi
i = N .)

The last of the algebraic tensor operations is index permutation. For example,
from a given set of tensor components Aijk we can form differently ordered sets like
Bijk = Aikj or Cijk = Ajki , etc., all of which constitute tensors, as is immediately
clear from (7.5). Such index permutations are permissible among superscripts as well
as among subscripts. As a result, ‘symmetry’ relations among tensor components,
such as Aij = Aji or Aijk + Ajki + Akij = 0, are tensor equations and thus
coordinate independent.

E. Differentiation of tensors

We shall write
∂

∂xr

(
Ai···k

l···n
) = Ai···k

l···n,r .

[A special case of this notation has already been used in (7.7) in defining φ,i .]
Then if Ai···k

l···n is a tensor defined throughout a region, differentiation of the general

tensor component transformation (7.6) yields (by use of ∂/∂xr ′ = ∂/∂xrpr
r ′ ):

Ai′···k′
l′···n′,r ′ = Ai···k

l···n,rp
i′
i · · ·pk′

k pl
l′ · · ·pn

n′p
r
r ′ + P1 + P2 + · · ·,
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where P1, P2, etc., are terms involving derivatives of the ps. [It should be noted
that a product with implied summations—like the right-hand side of (7.6)—can
be differentiated with complete disregard of these summations, since sum and
derivative commute.] Under general coordinate transformations, therefore, Ai···k

l···n,r is
not a tensor. But under linear coordinate transformations (ps constant)Ai···k

l···n,r behaves
as a tensor of the type indicated by all its indices, including r , since then the P s
vanish. By a repetition of the argument, all higher-order partial derivatives,

Ai···k
l···n,rs =

∂2

∂xr∂xs

(
Ai···k

l···n
)

etc. also behave as tensors under linear transformations, each partial differentiation
adding a new covariant index.

By a similar argument, the derivative of a tensor with respect to a scalar, such as
dA······/dτ , is a tensor under linear coordinate transformations.

F. The metric

So far no special structure has been assumed for V N . But many spaces in which tensors
play a role are metric spaces; that is, they possess a rule which assigns ‘distances’ to
pairs of neighboring points. In particular, one calls a space (pseudo-)Riemannian if
there exists an invariant quadratic differential form

ds2 = gij dxi dxj , (7.8)

where the gs are generally functions of position and are subject only to the restriction
det(gij ) �= 0. They may, without loss of generality, be assumed to be symmetric:
gij = gji , since the ‘mixed’ gs only occur in pairs, for example, (g12+ g21)dx1dx2.
If ds2 > 0 when dxi �≡ 0, the space is called properly Riemannian; Euclidean
N-space, which has ds2 = (dx1)2 + · · · + (dxN)2 if the coordinates are suitably
chosen, is only one example. Since we require ds2 to be an invariant, it follows (see
Exercise 7.2) that gij must be a tensor. We call it the metric tensor, and (7.8) the metric.

In Riemannian spaces one often adopts a notation for vectors analogous to that in
Euclidean spaces. Thus one writes A for Ai , etc., and defines the scalar product of
two vectors as the invariant

A · B = gijA
iBj . (7.9)

In pseudo-Riemannian spaces such as Minkowski space, the square of a vector,

A2 = A · A = gijA
iAj , (7.10)

can be a positive or a negative real number. From A2 one defines the (non-negative)
magnitude |A| or simply A, by the equation

A = ⏐⏐A2⏐⏐1/2 ≥ 0. (7.11)
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The metric ds2 itself can be regarded as the square of the differential displacement
vector ds = dxi , whose magnitude is denoted by ds. The reader will recall all this as
being precisely what we did in the particular case of 4-vectors.

In Riemannian spaces there exists a fifth basic algebraic tensor operation, namely
the raising and lowering of indices. For this purpose we define gij as the elements of
the inverse of the matrix (gij ). Because of the symmetry of (gij ), its inverse (gij ) is
also symmetric. The gij are defined uniquely by the equations

gij gjk = δi
k. (7.12)

If gi′j ′ denote the tensor transforms of gij in the xi′ system [according to (7.4)], then,
by the form-invariance of tensor component equations (since gij and δi

j are tensors),
we have from (7.12)

gi′j ′gi′k′ = δi′
k′ .

But these are also the equations that uniquely define the inverse (gi′j ′) of the matrix
(gi′j ′). Hence the gij defined by equations like (7.12) in all coordinate systems
constitute a contravariant tensor said to be conjugate to gij .

Now the operations of raising and lowering indices consist in forming inner prod-
ucts of a given tensor with gij or gij . For example, given a contravariant vector Ai ,
we define its covariant components Ai by the equations

Ai = gijA
j . (7.13)

Conversely, given a covariant vector Bi , we define its contravariant components Bi

by the equations
Bi = gijBj . (7.14)

As can easily be verified, these operations are consistent, in that the raising of a
lowered index, and vice versa, leads back to the original component. They can of
course be extended to raise or lower any or all of the free indices of any given tensor;
for example, if Aij

k is a tensor we can define Ai
jk by the equations

Ai
jk = girgksArj

s .

Even gij and gij are formally so related. Note how it may sometimes be convenient,
for instant recognition, to use dummies from a distant part of the index alphabet.
Note also that when we anticipate raising and lowering of indices, we should write
the indices in staggered form so that no superscript is directly above a subscript; for
example, Cij

kl rather than C
ij
kl . It should also be pointed out that we think of, say,

Aij
k and Ai

jk as merely different descriptions of the same object.
Lastly, the reader should note and verify

gijA
iBj = AiBi, (7.15)

gi
j = δi

j , (7.16)
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the ‘see-saw’ rule for any dummy index pair:

AiB
i = AiBi, (7.17)

and the conservation of symmetries, for example:

Aij = ±Aji ⇔ Aij = ±Aji ⇔ Ai
j = ±Aj

i. (7.18)

One use of index shifting is that it allows us to form inner products of tensors that could
not otherwise be so combined (for example, AijB

ij from Aij and Bij ). Another use
occurs in the construction of tensor equations, where all terms must balance in their
covariant and contravariant indices (for example, Aij + Bij = Cij from Aij , B

ij ,
and Ci

j ).

G. Four-tensors

In special relativity, the underlying space V N of the above general theory becomes
Minkowski space and the ‘admissible coordinates’ become the standard coordinate
systems

xµ = {x, y, z, ct}. (7.19)

We shall use Greek indices µ, ν, . . . , to run from 1 to 4 and occasionally Latin indices
i, j, . . . , to run from 1 to 3. The relevant coordinate transformations are the general
Lorentz transformations (Poincaré transformations) and quantities behaving tensori-
ally under such transformations are called Lorentz tensors or 4-tensors. We generally
denote them by capital letters, such as Uµ, Eµν , etc., but the metric traditionally is
gµν . Lorentz transformations are linear, and so the simplifications that we alluded to
above apply: 4-tensors from different events can be added and multiplied together,
and partial and scalar derivatives of 4-tensors are 4-tensors.

The relevant metric is [cf. (5.1)]

ds2 = gµν dxµ dxν = c2 dt2 − dx2 − dy2 − dz2, (7.20)

which makes
gµν = diag(−1,−1,−1, 1) = gµν (7.21)

in all admissible coordinate systems. The implications of these simple patterns for
the raising and lowering of indices [cf. (7.13), (7.14)] are as follows:1

Ai = giµAµ = −Ai (i = 1, 2, 3),

A4 = g4µAµ = A4. (7.22)

So, for example, if Uµ = γ (u)(u, c)—this is the index way of writing our earlier
eqn (5.20)—then Uµ = γ (u)(−u, c).

1 In the case of Cartesian tensors, based on Euclidean space with metric gij = diag(1, . . . , 1) =
gij , Ai = Ai and there is no difference between covariance and contravariance.
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Also, whenever the gµν in all admissible coordinate systems are constants (as is
the case here) we can raise and lower indices that precede a differentiation without
ambiguity:

Aµ
,σ = (Aν,σ )gνµ = (Aνg

νµ),σ .

We may note from (7.21) that the ‘zero-component lemma’ of vector theory does not
carry over without modification (cf. Exercise 7.11) to tensors; for example, g12 = 0
in all permissible coordinate systems, yet gµν does not vanish.

From the standard Lorentz transformation (5.11) written with ‘ct’ as the fourth
coordinate, and from its obvious inverse, we can read off the ps that must be used in
transforming all 4-tensors under standard Lorentz transformations [cf. (7.1)]:

p1′
1 = p4′

4 = γ, p1′
4 = p4′

1 = −γ v/c, p2′
2 = p3′

3 = 1, (7.23)

p1
1′ = p4

4′ = γ, p1
4′ = p4

1′ = γ v/c, p2
2′ = p3

3′ = 1, (7.24)

and all others vanish. Thus, for example, for a tensor Aµν we have [cf. (7.4)]:

A1′2′ = Aµνp1′
µp2′

ν = Aµ2p1′
µ = γ

(
A12 − v

c
A42

)
, (7.25)

and so on.
According to the relativity principle, the laws of physics must have the same form

in all inertial frames. This strongly suggests 4-tensor equations as the ideal expression
of such laws, since they have the very property of being true in all frames if true in one.
(Only for the laws of relativistic quantum theory does one need even more general
‘building bricks’ than 4-vectors and 4-tensors, namely spinors.)

7.3 Maxwell’s equations in tensor form

Having prepared the mathematical groundwork, we are now ready to discuss electro-
magnetism. Any such discussion must inevitably begin with a choice of units. The
currently favored SI system (Système International) is extremely inconvenient in rel-
ativity, where it masks the inherent symmetry between the electric and the magnetic
fields. Accordingly we choose the older Gaussian or cgs (centimeter-gram-second)
system of units in which the charge q is defined so that the Coulomb force is q1q2/r2

and Lorentz’s force law reads as in eqn (7.28) below. In accordance with our conven-
tion of denoting 3-vectors by lower-case letters, we write e and b for the electric and
magnetic fields more usually denoted by E and B.

Maxwell’s great achievement was to complete the various laws of the electro-
magnetic field that had been discovered previously and to consolidate them into a
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self-consistent system of differential equations now known as Maxwell’s equations:

div e = 4πρ, curl b = 1

c

∂e
∂t
+ 4π j

c
, (7.26)

div b = 0, curl e = −1

c

∂b
∂t

. (7.27)

Note that the first entry in each line is a scalar equation while the second is a 3-vector
equation, giving us eight equations in all. Equations (7.26) connect the field to its
sources—the charge density ρ and the current density j. Equations (7.27), on the
other hand, represent restrictions on the field, which, as we shall see below, amount
to the necessary and sufficient condition for the existence of the usual potentials. Note
that Maxwell’s equations are linear differential equations, which has the consequence
that two solutions (e, b, ρ, j) can be simply added to form a third.

None of these equations says anything about the action of the field on the motion
of a charged particle. That is the role of Lorentz’s force law:

f = q

(
e + u× b

c

)
, (7.28)

in which q is the charge and u the velocity of the particle. Unlike relativistic mass,
q is an invariant.

There is no way to fit the five eqns (7.26)–(7.28) into the scheme of Newtonian
relativity, where f ′ = f . What Maxwell had in fact discovered, without knowing it,
was a set of equations that fit perfectly into the scheme of special relativity. Thus,
special relativity found here a theory whose laws needed no amendment.2 Neverthe-
less, recognizing the relativity of Maxwell’s theory made a considerable difference
to our understanding of it, and also to the techniques of problem solving in it. More-
over, its basic formal simplicity became apparent now for the first time. Within the
Galilean framework, Maxwell’s theory was a rather unnatural and complicated con-
struct. Within relativity, on the other hand, it is one of the two or three simplest
conceivable theories of a field of force.

To see how Maxwell’s equations can be written in 4-tensorial form, thus demon-
strating their Lorentz-invariance, let us begin with the Lorentz force. We have already
seen [after (6.47)] that a force which acts on a particle independently of its velocity
is not a Lorentz-invariant concept. Thus a relativistic force law must involve that
velocity. From a 4-dimensional standpoint, the simplest dependence of a 4-force Fµ

on the particle’s 4-velocity Uµ is a linear one: Fµ = Aµ
νU

ν , where the Aµ
ν are

tensorial coefficients. [Indeed, the 3-dimensional Lorentz force of eqn (7.28) is linear
in the 3-velocity u.] Let us also suppose that the force is proportional to the charge q

of the particle, and that q is invariant from frame to frame. Then, lowering the index µ

2 This is true, at least, of Maxwell’s theory in vacuum. On the other hand, Minkowski’s extension of
that theory to the interior of ‘ponderable’ media (1908) was a purely relativistic development.
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and introducing a factor 1/c for later convenience, we can ‘guess’ the tensor equation

Fµ = q

c
EµνU

ν, (7.29)

thereby introducing the electromagnetic field tensor Eµν . We would surely want the
force Fµ to be rest-mass preserving, which, according to (6.44) and (7.15), requires
FµUµ = 0. So we need

EµνU
µUν = 0 (7.30)

for all Uµ, and hence the antisymmetry of the field tensor:

Eµν = −Eνµ. (7.31)

Now, antisymmetric 4-tensors have the pleasant property (cf. Exercise 7.10) that their
six independent non-zero components split into two sets of three which transform as
3-vectors under rotations. (Compare this with the fact that the first three components
of 4-vectors similarly transform as 3-vectors under rotations.) Let us therefore define
the electric and magnetic field 3-vectors e and b, respectively, in every inertial frame,
by setting

Eµν =

⎛⎜⎜⎝
0 −b3 b2 −e1
b3 0 −b1 −e2
−b2 b1 0 −e3
e1 e2 e3 0

⎞⎟⎟⎠ , Eµν =

⎛⎜⎜⎝
0 −b3 b2 e1
b3 0 −b1 e2
−b2 b1 0 e3
−e1 −e2 −e3 0

⎞⎟⎟⎠ .

(7.32)

(We exhibit the contravariant form for future reference.)
With these definitions, we can verify that the tensor equation (7.29) is completely

equivalent to the Lorentz force law (7.28). For, writing out the four components of
the RHS of (7.29),

(q/c)γ (u)Eµν(u, c)ν,

where the last factor denotes the νth component of its parenthesis, we get

(q/c)γ (u)
(
− b3u2 + b2u3 − ce1, b3u1 − b1u3 − ce2,

− b2u1 + b1u2 − ce3, e · u
)
. (7.33)

On the other hand, from (6.44)(iii) and our remark after (7.22), we have, first for
any rest-mass preserving 3-force f acting on a particle with velocity u, and then for
the Lorentz force (7.28) in particular, the corresponding (covariant) 4-force

Fµ = γ (u)

(
− f,

f · u
c

)
= qγ (u)

(
− e − u× b

c
,

e · u
c

)
. (7.34)

But (7.33) is precisely the RHS of (7.34), and so our assertion is proved.



142 Four-tensors; Electromagnetism in vacuum

We may note, incidentally, that any rest-mass preserving 3-force which is velocity-
independent in some particular inertial frame S0 must be a Lorentz-type force (though
not every Lorentz force is ever velocity-independent). For the corresponding 4-force
then satisfies a tensor equation of type (7.29), with Eµν defined by an array like
(7.32)(i) with zero bs in S0 and in other frames by the tensor transformation law away
from S0. In other frames Eµν will then have non-zero bs [cf. (7.56) below] and thus
give rise to a full Lorentz-type force law (7.28).

Now for Maxwell’s equations. Since they are differential equations, let us consider
a continuous distribution of sources, and, at first, one that has a unique 3-velocity u at
each event. Let us define the proper charge density ρ0 of this continuum as the charge
density ρ measured in the local (comoving) rest-frame. Then in the lab frame, where
the sources move with velocity u, we shall have, because of length contraction,

ρ = ρ0γ (u). (7.35)

Next we define the 3-current density as

j = ρu, (7.36)

and recall that the conservation of charge is expressed by the following equation of
continuity:

∂ρ

∂t
+ div j = 0. (7.37)

Since div j measures the outflux of charge from a (small) unit volume in unit time,
this equation simply states that to the precise extent that charge leaves a small region,
the total charge inside that region must decrease.

We next define the four-current density Jµ by the first of the following equations
(provisionally—hence the brackets),

Jµ = [ρ0U
µ = ρ0γ (u)(u, c)] = (j, cρ), (7.38)

and note that it allows us to express the equation of continuity (7.37) in the following
tensorial form [cf. (7.7)]:

Jµ
,µ = 0. (7.39)

But while the above definition of Jµ is evidently tensorial, it is not universally appli-
cable. In real life (for example, in a current-carrying metal wire, where the ions stand
still while the electrons drift) the local charge velocities are not all the same. We
assume that we can then divide the charges into classes which do have unique veloc-
ities and charge densities, and we define the effective ρ, j and J as the sums of the
ρs, js and Js of all the classes. These effective quantities will still satisfy (7.37), the
extremities of (7.38), and (7.39), since each class satisfies these equations separately.
But there will now be no effective 4-velocity Uµ of the charge distribution in terms
of which we could write J

µ
eff = ρ0 effU

µ
eff . For whereas the sum of any number of

future-pointing timelike vectors is timelike (cf. Section 5.6), the same is not true of a
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mixture of future- and past-pointing timelike vectors. And that, in general, is just what
the partial Js are, since the partial charge densities ρ can be positive or negative. The
effective J can thus be timelike, spacelike, or even null, and hence not necessarily a
multiple of a 4-velocity.

With these preliminaries out of the way, we are ready to ‘guess’ the 4-tensor forms
of Maxwell’s equations:

Eµν
,µ = 4π

c
J ν (7.40)

and
Eµν,σ + Eνσ,µ + Eσµ,ν = 0. (7.41)

By reference to the definitions (7.32) one easily sees that the first three of the four
equations (7.40) (ν = 1, 2, 3) are indeed equivalent to Maxwell’s equation (7.26)(ii),
while the fourth (ν = 4) is equivalent to (7.26)(i). Giving values 1, 2, 3, respectively,
to the indices µ, ν, σ in (7.41) results in Maxwell’s equation (7.27)(i), while the
values 2, 3, 4; 3, 4, 1; and 4, 1, 2 give the three components of (7.27)(ii). All other
sets of values either yield one of the equations already obtained or 0 = 0.

It is very satisfactory to note that the field equation (7.40) immediately implies
the equation of continuity (7.39), since Eµν

,µν is symmetric in its subscripts but
antisymmetric in its superscripts, and must therefore vanish (E12

,12 = −E21
,21

etc.). This (in 3-vector language) rather than any empirical evidence, was Maxwell’s
reason for adding the ‘displacement current’ ∂e/∂t to his equations, even though
it puzzled some of his contemporaries. Without it, charge conservation would be
violated.

Today we can give an alternative justification for the displacement current (and
indeed for most of the Maxwell equations) from relativity: from the postulation that
Lorentz’s force law (7.28) holds in all inertial frames (which essentially just defines
the e, b field in each frame), it follows that the coefficients Eµν of its 4-dimensional
formulation (7.29), (7.31) constitute a 4-tensor (cf. Exercise 7.2). Then the mere
validity of Maxwell’s first equation, div e = 4πρ (essentially Coulomb’s law), in all
inertial frames, necessarily implies all of his second equation, (7.26)(ii) (including
the displacement current), by the zero-component lemma of Section 5.6. For, as we
have seen, that first equation is equivalent to the vanishing of the fourth component
of the 4-vector consisting of the LHS minus the RHS of eqn (7.40), while (7.26)(ii) is
equivalent to the vanishing of the remaining components. In the same way [cf. (7.59)
below] the validity of the entire second (tensor-) field equation (7.41) (guaranteeing
the existence of a potential) is a consequence of the validity of just div b = 0 in all
inertial frames; that is, of the absence of magnetic monopoles.

7.4 The four-potential

One of the remarkable properties of the Maxwell field is that it allows itself to be
expressed in terms of a ‘potential’, which considerably simplifies the mathematics.
In tensor language, Maxwell’s potential is a covariant 4-vector �µ, whose derivatives
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determine the field according to the equation

Eµν = �ν,µ −�µ,ν. (7.42)

An immediate consequence of this equation is the field equation (7.41). But in the
theory of differential equations the converse is also well known: eqn (7.41) is not
only a necessary but also a sufficient condition for the existence of such a potential.
(Compare this to the more familiar condition gi,j − gj,i = 0, or curl g = 0, for the
existence of a scalar potential φ such that gi = −φ,i , or g = −grad φ—a result
which actually holds in all dimensions.)

Although the potential �µ turns out to be not uniquely determined by the field
tensor Eµν , picking any potential �µ in a frame S and its tensor transforms in all
other frames clearly guarantees eqn (7.42) in all frames. We may therefore take �µ

to be a tensor.
In terms of the 4-potential, the first tensor field equation, (7.40), which is now all

that remains to be satisfied, can be re-expressed as

gµσ (�ν,σµ −�σ,νµ) = 4π

c
Jν. (7.43)

And this would be particularly simple if the second term on the LHS,−�µ
,νµ, were to

vanish, because then these four equations for �ν decouple. But this can be arranged,
since the potential is not unique. Consider a second potential, �̃µ, satisfying (7.42).
The difference, �µ = �µ − �̃µ, must satisfy

�µ,ν −�ν,µ = 0,

which implies that �µ is the gradient of some scalar �, and so

�µ = �̃µ +�,µ. (7.44)

From an arbitrary potential �̃µ we now can, by a proper choice of �, construct a new
potential �µ with the property

�µ
,µ = 0. (7.45)

It is merely necessary for the scalar � to satisfy

gµν�̃µ,ν + gµν�,µν = 0, that is �� = −gµν�̃µ,ν, (7.46)

where � denotes the D’Alembertian operator:

� ≡ ,µνg
µν ≡ 1

c2

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
. (7.47)

In the theory of differential equations this equation is known to be in general solvable
for �, relative to any inertial frame S. In fact, it can be shown that

�(P) = 1

4π

∫
[F ] dV

r
⇒ �� = F, (7.48)
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where F = F(x, y, z, ct) is any integrable function (it must be ‘sufficiently small’ at
infinity), [F ] denotes the value of F ‘retarded’ by the light-travel time to the origin P
from the position r of dV , and the volume integral extends over the entire 3-space in
S. We can therefore assume, without loss of generality, that the potential satisfies the
‘Lorenz (not Lorentz!) gauge condition’ (7.45), and then the field equations (7.43)
decouple and simplify to

��µ = 4π

c
Jµ, (7.49)

in conjunction with (7.45)
Of course, eqn (7.49) itself can be solved by the same integral formula (7.48) as

solved eqn (7.46):

�µ(P) = 1

c

∫
[Jµ] dV

r
. (7.50)

This is a very convenient explicit solution, since (i) it automatically satisfies the
Lorenz gauge condition by virtue of eqn (7.39) (cf. Exercise 7.8), (ii) the integral can
be shown to be tensorial3 and (iii) it can be shown to be the unique solution in the
absence of ‘incoming radiation’.

Note that in charge-free regions (Jµ = 0), eqn (7.49) reduces to the wave equation
with speed c, showing that disturbances of the potential in vacuum are propagated
at the speed of light. The potential, however, is often regarded as an ‘unphysical’
auxiliary. But we find at once from (7.49), (7.42), and the commutativity of partial
derivatives, that when Jµ = 0 the field Eµν itself satisfies the wave equation

�Eµν = 0. (7.51)

Hence disturbances of the field propagate in vacuum at the speed of light. This result,
first discovered by Maxwell, was, of course, the basis for his hypothesis that light
consisted of electromagnetic waves.

We finally observe that by setting

�µ = (−w, φ), (7.52)

thereby defining the 3-vector potential w and the ‘scalar’ potential φ (not a scalar
invariant!) in each inertial frame, we can re-express our earlier eqn (7.42) in the more
familiar 3-dimensional form:

b = curl w, e = −grad φ − 1

c

∂w
∂t

, (7.53)

and similarly for eqns (7.45) and (7.49):

∂φ

∂t
+ c div w = 0 (Lorenz gauge condition) (7.54)

�φ = 4πρ �w = 4π

c
j (field equations). (7.55)

3 Cf. W. Rindler, Special Relativity, Oliver & Boyd, 1966, Sec. 41.
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7.5 Transformation of e and b. The dual field

In Newton’s theory, if I move a point-mass through the lab, its gravitational field will
be just ‘a moving isotropic field’, in the sense that at any frozen moment it is exactly
the usual inverse-square field that would emanate from the point-mass if it were at
rest [the dashed field in Fig. 7.1(b)]. Beginning students often expect the same to
hold in electromagnetism—for example, that the field of a moving bar-magnet would
be just ‘a moving dipole field’. This is not the case. A moving bar-magnet produces
a deformed moving dipole field plus an electric field, and a moving point-charge
produces a deformed moving Coulomb field plus a magnetic field.

It is the tensor property of Eµν that determines how e and b transform from one
inertial frame to another—how, for example, a pure dipole b-field in S is seen in S′.
To find the general transformation, let us, for example, apply (7.25) to the component
E1′2′ of (7.32)(ii), which yields

−b3′ = γ (−b3 + ve2/c).

In the same way we obtain all the other entries in the following list:

e1′ = e1, e2′ =γ (e2 − vb3/c), e3′ =γ (e3 + vb2/c),

b1′ = b1, b2′=γ (b2 + ve3/c), b3′=γ (b3 − ve2/c). (7.56)

The inverse transformations, as usual, are obtained by a v-reversal.
Thus on transforming from one inertial frame to another, the e and b fields get

intermingled. A field which is either purely electric or purely magnetic in one frame
will have both electric and magnetic components in the general frame. This ‘explains’
the transverse deflection of a point-charge moving through a purely magnetic field:
in its rest-frame, the charge feels an electric field! For example, a field having only a
b3 component in S has a transverse electric component e2′ = −(γ v/c)b3 in S′, and
that is what is felt by a charge riding in S′ through S.

The transformation (7.56) is remarkable in its symmetry (apart from signs) between
e and b. And Maxwell’s equations themselves share this pseudo-symmetry in the
absence of sources; their asymmetry arises only from the presumed non-existence of
‘magnetic charge’. The formal interchange

b 
→ e, e 
→ −b (7.57)

leaves the set of transformation equations (7.56) invariant: writing them as (e′, b′) =
T (e, b), we find (−b′, e′) = T (−b, e). Since these transformations characterize any
antisymmetric tensor, the array of components formed from Eµν by the interchange
(7.57) also constitutes a tensor. It is called the dual of Eµν and we denote it by E*µν
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or Bµν :

Bµν =

⎛⎜⎜⎝
0 −e3 e2 b1
e3 0 −e1 b2
−e2 e1 0 b3
−b1 −b2 −b3 0

⎞⎟⎟⎠ , Bµν =

⎛⎜⎜⎝
0 −e3 e2 −b1
e3 0 −e1 −b2
−e2 e1 0 −b3
b1 b2 b3 0

⎞⎟⎟⎠ .

(7.58)

One more dualization brings us back to minus where we started: E*µν = Bµν and
B*µν = −Eµν .

Dualizing the pair of Maxwell equations (7.26) without the source terms produces
(7.27)(ii) and the negative of (7.27)(i). Reference to (7.40) then shows that we can
write (7.41) as Bµν

,µ = 0. Maxwell’s equations can therefore be written in the form

Eµν
,µ = 4π

c
J ν, Bµν

,µ = 0. (7.59)

The e, b pseudo-symmetry (7.57) of the theory also suggests consideration of a
Lorentz-invariant force law analogous to (7.30),

F̃µ = − q̃

c
BµνU

ν, (7.60)

which could apply to hypothetical magnetic point-charges q̃. In 3-vector form it reads,
as dualization and sign-reversal of the RHS of eqn (7.28) shows at once,

f̃ = q̃

(
b− u× e

c

)
. (7.61)

If we accept that the north-pole of a relatively long and thin bar-magnet of length a and
magnetic moment µ experiences a force q̃b in a pure b-field, where q̃ = µ/a, then
eqn (7.61)—being valid in one inertial frame—would have to be valid in all inertial
frames, and thus also in the presence of electric fields. This formula, for example,
gives us directly the torque experienced by a bar-magnet moving through an electric
field (cf. Exercises 1.2 and 7.12).

Just as associated with each 4-vector Aµ there is a scalar invariant, namely its
‘square’ AµAµ, so also associated with each antisymmetric tensor Eµν there are two
and only two independent scalar invariants, which we shall call X and Y , and whose
expressions in terms of e and b can be read off from (7.32) and (7.58):

X = 1
2EµνE

µν = b2 − e2 = − 1
2BµνB

µν, (7.62)

Y = 1
4EµνB

µν = e · b. (7.63)

Physically they tell us, for example, that if the magnitudes of the electric and magnetic
fields are equal (e = b) at some event in one frame, they are equal at that event in all
frames; and if the fields are orthogonal in one frame (e · b = 0), they are orthogonal
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in all frames. When X = Y = 0 the field is said to be null, and e is perpendicular to
b and e = b in all frames. If a field is purely magnetic at some event in one frame
(X > 0), it cannot be purely electric in another, and vice versa. If the angle between
e and b is acute in one frame (Y > 0), it cannot be obtuse in another.

Can any field at some event be either purely electric or purely magnetic in some
frame? Evidently not unless Y = 0 and X �= 0. But then, indeed, there is a whole
family of inertial frames, all in standard configuration with each other, and all having
the same pure e or b field (according as X < 0 or X > 0) in the x-direction. If
X = Y = 0 the field is null and allows no further simplification. In the general case,
when Y �= 0, we can at least achieve e ∝ b in a whole family of inertial frames in
standard configuration, with both the e and b fields in the x-direction (cf. Exercises
7.14 and 7.15). These specializations can occasionally simplify a calculation.

7.6 The field of a uniformly moving point charge

As a good example of the power that special relativity brought to electromagnetic
theory, we shall calculate the field of a uniformly moving charge q by that typically
relativistic method of looking at the situation in a frame where everything is obvious,
and then transforming to the general frame. In the present case, all is obvious in the
rest-frame S′ of the charge, where there is a simple Coulomb field of form

e′ = (q/r ′3)(x′, y′, z′), b′ = 0, (r ′2 = x′2 + y′2 + z′2), (7.64)

if, as we shall assume, the charge is at the origin. Now we transform to the usual second
frame S in which the charge moves with velocity v = (v, 0, 0). We shall calculate the
field everywhere in S at the instant t = 0 when the charge passes through the origin.
Using the second line of (7.56) with b′ = 0, the inverse equations of the first line,
and the Lorentz transformations of x′, y′, z′ with t = 0, we find, successively,

b = (v/c)(0,−e3, e2), e = (e′1, γ e′2, γ e′3) = (qγ /r ′3)(x, y, z)

r ′2 = γ 2x2 + y2 + z2 = γ 2r2 − (γ 2 − 1)(y2 + z2)

= γ 2r2[1− (v2/c2) sin2 θ], (7.65)

where θ is the angle between the vector r = (x, y, z) and the x axis. Thus,

b = 1

c
v × e, e = qr

γ 2r3
[
1− (v2/c2) sin2 θ

]3/2
, (7.66)

and this completes our derivation of the instantaneous field of a moving charge. It is
interesting to note that the electric field at any given point in S is directed away from
the point where the charge is at that instant, though (because of the finite speed of
propagation of all effects) it cannot be due to the position of the charge at that instant
and would be the same even if the charge had been deflected shortly before getting
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Fig. 7.1

there! Both the electric and the magnetic field strengths still fall off as 1/r2 in any
fixed direction away from the charge. But there is now an angular dependence: the
fields are strongest in a plane at right angles to v (where e = γ q/r2) and weakest
fore and aft (where e = q/γ 2r2); and this is even more true of b than of e since the
former has an extra θ -dependence proportional to sin θ . The b field lines are circles
around the line of motion.

Let us recall the field-line representation of the electric field, wherein the field
strength is given by the number of lines per unit area. This is made possible by Gauss’s
theorem (outflux of e = 4π× enclosed charge—the integral version of div e = 4πρ)
as applied to a bundle of field lines. That same theorem also tells us that the number
of field lines emanating from a charge is independent of its motion; that motion,
therefore, merely deforms the line pattern. Interestingly, in the case of a uniformly
moving point charge, the isotropic Coulomb field-line picture gets exactly Lorentz-
contracted in the direction of motion, as illustrated in Fig. 7.1(b). To see this, let
us transform the Coulomb field-line picture in S′ like a rigid body. In S′ the solid
angle of a thin pencil of lines of x-cross-sectional area dA at (x′, y′, z′), is given by
d�′ = dA cos θ ′/r ′2 = dAx′/r ′3 (see Fig. 7.1a). In S the corresponding solid angle
is given by d� = dAx/r3, whence, by reference to (7.65),

d�′

d�
= x′r3

xr ′3
= γ r3

r ′3
= 1

γ 2[1− (v2/c2) sin2 θ]3/2
. (7.67)

Comparing this with (7.66) we find for the electric field strength in S

e = q d�′

r2 d�
= n

d�
,

where n = q d�′ is the ‘number of lines of force’ in the pencil in S′ and d� = r2 d�

is the normal cross-section of the pencil in S. Since there are as many lines in d� as
in d�′, we see that the density of these lines represents the electric field strength in S
as well as in S′, and this establishes our assertion.

As has been pointed out by Ohanian, this length contraction of the field-line pattern
is not magical. If we picture each of the 4πq field lines issuing from the point charge
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q as ending at a charge −q/4π on a ‘sphere at infinity’, then the length contraction
of that sphere implies that of the field-line pattern itself.

We have already noted [cf. (7.57)] the pseudo-symmetry of Maxwell’s theory in e
and b. Suppose a configuration of magnetic charges (for example, a magnetic dipole)
is at rest in some inertial frame S′, making the electric field in S′ zero. Then in any
other inertial frame S the electric and magnetic fields everywhere will be related by

e = −1

c
v × b,

v being the velocity of the sources relative to S; the proof is quite analogous to that
for (7.66)(i) above, and now a consequence of e′ = 0.

7.7 The field of an infinite straight current

As another example of relativistic reasoning in electromagnetic theory, we shall derive
the field of an infinite straight current—which will also throw some light on the
phenomenon of length contraction. We begin by calculating the field of an infinite
static line of charge. By symmetry, the electric field e must be radial, and by applying
Gauss’s outflux theorem to a cylinder having the line charge as axis, we find that its
strength is given by

e = 2λ0

r
, (7.68)

where λ0 is the line density of charge and r the radial distance. Now suppose that
such an infinite line charge with proper line density λ0 moves with velocity v relative
to an inertial frame S. Because of length contraction, its line density λ in S is γ λ0,
and there it constitutes a current i = γ λ0v. Let us identify the location of the static
line charge with the x′-axis of the usual second frame S′. By (7.68), the only non-
vanishing component of the electromagnetic field at the typical point P(0, r, 0) in S′
is e2′ = 2λ0/r . Transforming this field to S by use of the inverses of (7.56), we find
as the only non-vanishing components

e2 =
2γ λ0

r
= 2λ

r
, b3 =

2γ λ0v

cr
= 2i

cr
. (7.69)

Note that the strength of the magnetic field is only a fraction v/c of that of the electric
field, and another factor of order u/c reduces its effect, by comparison, on a charge
moving with velocity u [see (7.28)]. Moreover, in a laboratory current, the electron
drift velocity is only of the order of a millimeter per second. As C. W. Sherwin has said,
it is hard to believe that this magnetic force, which has to suffer a denominator c2, is
the ‘work force’ of electricity, responsible for the operations of motors and generators.
And again, considering that this force arises from transforming a purely electric field
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to another frame having very small velocity relative to the first, A. P. French has
remarked: who says that relativity is important only for velocities comparable to that
of light? The reason is that an ordinary current moves a very big charge: there are
something like 1023 free electrons per cubic centimeter of wire. Their electric force,
if it were not neutralized, would be enormous—of the order of two million tons of
weight on an equal cubic centimeter at a distance of 10 km.

But that force is neutralized in a ‘real’ current flowing in a wire. Such a current
corresponds to two superimposed linear charge distributions, one at rest and one in
motion. The positive metal ions are at rest while the free electrons move, say, with
velocity−v. Before the current is turned on, we can think of the ions schematically as
a row of chairs on which the free electrons sit. When the current flows, the electrons
play musical chairs, always moving to the next chair in unison since there can be no
build-up of charge. But this means that the electrons are now as far apart in motion
as are the stationary ions. Hence the respective line densities of ions and electrons
are equal and opposite in the lab frame, say ±λ, and the current is given by i = λv.
As can be seen from (7.69), the electric fields will cancel exactly, while the magnetic
field is given as before by 2i/cr .

Consider now a test charge moving with velocity u parallel to the wire. It experi-
ences a force in the direction u×b; that is, radially towards or away from the wire. In
its rest-frame, where it can be affected only by e fields, it sees two moving lines of pos-
itive and negative charge, respectively. Without length contraction, it would always
see these two lines as having equal and opposite charge densities, and so never feel
a force. But, in fact, because of length contraction, these two charge densities differ
in absolute value in all frames but the rest-frame of the wire (cf. Exercise 7.20). And
it is this difference which provides the net e field that causes the charge to accel-
erate in its rest-frame. This is about the closest we get to a direct manifestation of
length contraction—a contraction difference arising from a speed difference of a few
millimeters per second!

7.8 The energy tensor of the electromagnetic field

In this final section we give a brief account of Minkowski’s energy tensor, and show
how the electromagnetic field itself possesses energy, momentum, and stress—just
like a material continuum. In this way the well-validated conservation laws of mechan-
ics can be extended to interactions between charged matter and electromagnetic fields.
For example, if we simultaneously release two oppositely charged particles from rest
and they accelerate towards each other, where does the kinetic energy come from? Or,
relative to another inertial frame where one of these charges begins to move before
the other, where does the momentum come from? One can use ‘potential’ energy
and even potential momentum as bookkeeping devices, but there are good reasons
(both formal and physical) for considering the field itself able to exchange energy and
momentum with matter. According to Einstein’s general relativity, energy (that is,
mass), momentum, and stress all curve spacetime (measurably, in principle) at their
location, and so that location is no longer a matter of convention.
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Consider, then, a charged ‘fluid’ in the presence of an electromagnetic field but
subject to no other external forces. We define a (Lorentz-)4-force density vector K̃µ

by a procedure analogous to that which we used in the definition of Jµ [cf. after
(7.38)], namely dividing all moving charges into classes with unique ρ0 and Uµ

(and corresponding u). For each class, K̃µ is the Lorentz force (7.29) on unit proper
volume,4 which thus contains a charge ρ0; and the effective K̃µ exerted on the whole
fluid at any event by the field is defined as the sum of these partial K̃µs, and hence is
itself a 4-vector:

K̃µ =
∑ ρ0

c
Eµ

νU
ν = 1

c
Eµ

νJ
ν; (7.70)

the last equation follows from (7.38) and subsequent text. On the other hand, if we
write k̃ for the partial 3-forces per unit proper volume, we have, from (6.44),

K̃µ =
∑

γ (u)(k̃, c−1k̃ · u) = (k, c−1 ∂W/∂t), (7.71)

where k is the total 3-force per unit lab volume, and ∂W/∂t is the rate of work done
by the field on the fluid in a unit lab volume; for the effect of each γ -factor in the
summation in (7.71) is to convert from the various unit proper volumes to the unit
volume fixed in the lab.

[From here to the end of (7.77) we now are in for some serious calculating!] By
use of Maxwell’s equation (7.40) we can next eliminate all reference to the sources
from the RHS of eqn (7.70), and write that equation in the form

K̃µ = 1

4π
EµνE

σν
,σ = 1

4π

[(
EµνE

σν
)
,σ
− Eµν,σ Eσν

]
. (7.72)

The second term in the bracket can also be transformed into a derivative thus:

Eµν,σ Eσν = 1
2

(
Eµν,σ − Eµσ,ν

)
Eσν = 1

2Eσν,µEσν = 1
4

(
EσνE

σν
)
,µ

, (7.73)

where in the first step we used the antisymmetry of Eσν , in the second step the
Maxwell equation (7.41), and finally the see-saw rule. So, combining (7.71), (7.72),
and (7.73), we have

K̃µ = (k, c−1 ∂W/∂t) = −Mµν
,ν, (7.74)

where

Mµν := 1

4π

(
Eµ

λEλν + 1

4
gµνEλρEλρ

)
. (7.75)

Eqn (7.74) is the Lorentz force law adapted to a charged continuum instead of a
particle, with all reference to the charge or velocity of the continuum eliminated.
When Jµ or Eµν vanish, so must all terms in (7.74), by (7.70).

4 What is meant by a ‘quantity per unit volume’ is, of course, the limit of that quantity for a finite
volume V divided by V , as V → 0. On the other hand, heuristically, we can regard it as the actual quantity
over an actual unit volume, provided we choose our units sufficiently small; and we are always at liberty
to do so. A corresponding remark applies to a ‘quantity per unit time’.
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The tensorMµν which has surfaced here, and which is easily shown to be symmetric
and trace-free,

Mµν = Mνµ, Mµ
µ = 0, (7.76)

is the fundamentally important (Minkowski-)energy tensor of the electromagnetic
field. For its components we find, directly from the definition and from (7.32):

M44 = 1

8π
(e2 + b2) =: σ = energy density

cM4i = c

4π
(e× b)i =: si = energy-current density (Poynting vector)

Mij = − 1

4π
[eiej + bibj + 1

2gij (e
2 + b2)] =: pij = Maxwell stress tensor,

(7.77)

where, however, the last entries in each line (the physical interpretations) have yet to
be justified.

To that end, let us look at the separate components of eqn (7.74). First, setting
µ = 4 yields (after a sign-change)

−∂W

∂t
= ∂σ

∂t
+ div s, (7.78)

which leads us to identify σ as the energy density and s as the energy-current density
of the field. For if ∂W/∂t is the rate of work done by the field on the fluid, −∂W/∂t

can be regarded as the rate of work done by the fluid on the field. And this should
equal the increase of field energy, ∂σ/∂t , in the unit volume, plus the outflux of field
energy, div s, from that volume, in unit time.

Next, let us set µ = i in eqn (7.74). This yields (again after a sign-change)

−ki = ∂c−2si

∂t
+ ∂pij

∂xj
. (7.79)

Since k is the force of the field on the fluid,−k can be regarded as the force of the fluid
on the field, and this should equal the rate at which field momentum is generated inside
a unit volume. The first term on the RHS of eqn (7.79) should therefore represent the
increase of field momentum inside a unit volume, and the divergence-like second term
the outflux of field momentum from that volume. Accordingly we recognize c−2si as
the momentum density of the field and pij as the momentum-current density; that is,
the flux of i-momentum through a unit area normal to the j -direction per unit time.

We note how c−2 times the energy current si of eqn (7.78) serves as momentum
density in eqn (7.79). This is a striking manifestation of Einstein’s mass–energy
equivalence. For an ordinary fluid we would have: energy current = energy density×
velocity = c2 mass density × velocity = c2× momentum density. Even though in
general there is no way to associate a unique velocity with a given electromagnetic
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field (cf. Exercise 7.15), or, equivalently, to assign a rest-frame to it, it still has
momentum and energy current and the two are related ‘as usual’.5

Recall that force equals rate of change of momentum. If a machine-gun fires bullets
into a wooden block, that block experiences a force equal to the momentum absorbed
in unit time; that is, equal to the momentum current. Maxwell accordingly regarded
pij as the i-component of the total force which the field (!) on the negative side of a
unit area normal to the j -direction exerts on the field on the positive side. Thus pij

is called the Maxwell stress tensor of the field.
One can take this idea quite seriously. For example, consider a pure e-field parallel

to the x-axis at some point of interest. Then from (7.77), p11 = −(1/8)πe2. But p11
is pressure in the x-direction. This leads to the idea that there is tension (negative
pressure) along the electric field lines. Such tension ‘explains’ the attraction between
unlike charges. Similarly, p22 = +(1/8)πe2. So there is pressure at right angles to
the field lines, tending to separate them. This ‘explains’ the repulsion between like
charges. (The reader will recall the well-known field-line patterns—materialized by
iron filings—between both equal or opposite ‘magnetic charges’; and the pattern is
the same for electric charges.)

7.9 From the mechanics of the field to the
mechanics of material continua

It was Maxwell, Poynting, Heaviside, and J. J. Thomson who, elaborating on ear-
lier ideas of Faraday and W. Thomson, found the mathematical expressions for the
‘mechanical’ characteristics of the electromagnetic field, namely its conserved energy
and momentum, and its stress. Then, after the advent of special relativity, Minkowski
in 1908 discovered that these mechanical field quantities combine to form a single
4-tensor and one, moreover, whose divergence links the field to any charged fluid with
which it might interact [through eqn (7.74)]. That tensor showed how inextricably
energy, momentum, and stress are intertwined—how each enters into the expression
of any one of them in a transformation to a different inertial frame.

It is perhaps curious that the relativistic mechanics of the electromagnetic field was
understood before that of down-to-earth material continua. But this stems from the
accidental early close association of relativity with electromagnetism, out of whose
turmoil it had been born. The realization that Minkowski’s energy tensor of the field
must carry over to ordinary matter was left to von Laue and came within a year.

From what we have seen in the preceding section it is clear that the mass density
ρ, the momentum density g and the momentum-current density pij of a material
continuum (for example, a liquid, a solid, or a gas), having necessarily the same

5 This velocity-indeterminacy of an immaterial energy current is by no means peculiar to the electro-
magnetic field. Consider a locomotive pushing a freight car. Energy is evidently being transferred to the
car across the buffers at a well-determined rate. But whether it is a big energy concentration flowing slowly
or a small one flowing fast, it is impossible to decide.
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transformation properties as their electromagnetic counterparts, must also combine
into a 4-tensor T µν as in (7.77):

T µν =
(

pij cg
cg c2ρ

)
. (7.80)

If K̃µ, in analogy to (7.70), is the total (rest-mass preserving) external 4-force exerted
on unit proper volume of fluid (and hence a vector), then we expect the analog of eqn
(7.74) to hold:

K̃µ = (k, c−1 ∂W/∂t) = T µν
,ν (7.81)

(recall that −K̃µ, not +K̃µ, was the force on the field, now replaced by the fluid).
The component versions of this tensor equation now read [cf. (7.78) and (7.79)]:

∂W

∂t
= ∂c2ρ

∂t
+ div c2g, (7.82)

ki = ∂gi

∂t
+ ∂pij

∂xj
. (7.83)

And the meanings of these latter equations are clear: eqn (7.82) is the energy balance
equation, which says (when the last term is transposed to the LHS) that the energy
increase in a given volume equals the energy influx from the outside plus the work
done by the external force on the continuum. [Cf. after (7.79).] Equation (7.83), on
the other hand, is the momentum balance equation which says (again after the last
term is transposed) that the rate of increase of momentum in a given volume is equal
to the applied force plus any influx of momentum from outside the volume.

These are exactly the laws that we would wish to impose on the continuum in
conformity with our earlier laws for systems of particles. Consequently we accept
eqns (7.80)–(7.83) as the basis for relativistic continuum mechanics.

Analogously to the electromagnetic case, c2 times the g from the last row of T µν

serves as energy current in eqn (7.82), while the g from the last column serves as
momentum density in eqn (7.83). It is therefore required by Einstein’s mass–energy
equivalence (as we have seen in the preceding section) that the fourth row and fourth
column of T µν be equal in all inertial frames. But that can only happen if the entire
tensor is symmetric (cf. Exercise 7.11), and thus also the pij :

T µν = T νµ, pij = pji . (7.84)

Note, however, that T µ
µ will in general not vanish; that is a peculiarity of the

electromagnetic field.
Also in contrast to the electromagnetic field, the material continuum has a unique

rest-frame at each event; that is, a unique inertial frame in which the 3-momentum
vanishes: g = 0. This is something we have noted for entire particle systems before.
So if we could simply take the continuum in the infinitesimal neighborhood of each
event as a particle system, the result would follow. As it is, we take it as an axiom.
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Thus we can associate a unique velocity u with the continuum at each point, namely
that of the rest-frame.

By going to this rest-frame and rotating the spatial axes to diagonalize the symmetric
3-tensor pij (cf. Exercise 7.1), we can always diagonalize T µν :

T µν = diag(p1, p2, p3, c
2ρ0), (7.85)

where p1, p2, p3 are the “principal pressures”, and c2ρ0 is the energy density in the
rest-frame. For a perfect fluid the principal pressures are all equal, say pi = p. Then
Tij = −pgij and thus Tij is rotation-invariant in the rest frame. But then the pressure
p is also invariant from frame to frame, as follows from the special f -invariance
discussed after (6.47). So finally we find for T µν in the general frame, in which the
perfect fluid moves with 4-velocity Uµ,

T νµ = (ρ0 + p/c2)UµUν − pgµν; (7.86)

for this is a tensor equation, and it reduces to (7.85) in the rest-frame, where Uµ =
(0, 0, 0, c).

It comes as a surprise to most beginners in relativistic continuum mechanics that,
as we transform away from the rest-frame, we do not find the expected relation
ρ = γ 2(u)ρ0 between the mass density ρ0 in the rest-frame and that, ρ, in the general
frame (one γ coming from mass increase and one from length contraction). This is
already clear from (7.86) and (7.80). Nor do we find the naı̈vely expected relation
g = ρu. We must, however, relegate these intriguing questions to the Exercises (see
Exercises 7.26 –7.28).

When the continuum under consideration carries a charge, and the only external
force acting on it is an electromagnetic field, then the K̃µ of eqn (7.81) is given by
(7.70), which, as we have seen, is equivalent to (7.74). Equation (7.81) can then be
written in the form

(T µν +Mµν),ν = 0. (7.87)

If there are non-electromagnetic external forces as well, those will appear on the
RHS of (7.87). This equation shows (for µ = 4 and µ = i, respectively) that for
the combination field-plus-continuum both energy and momentum satisfy balance
equations in every volume element of the reference frame. We can regard T µν+Mµν

as the total energy tensor of all the energy carriers.
This is as far as we can take relativistic continuum mechanics here. But it will

suffice for our purpose, which was to give the reader an understanding of the basic
structure of the theory and how it connects to the rest of relativity. This theory has
gained practical importance in recent decades, for it is no longer true to say that all
continua of physical interest are non-relativistic. For example, near the horizon of a
stellar black hole, or near the surface of a neutron star, or near the center of an atomic
bomb, gases move under conditions so extreme that relativistic effects can become
important. And on the theoretical side, the Minkowski-Laue energy tensor played
a vital role in the birth of general relativity: it is the only quantity fit to represent
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the source of the gravitational field; and its vanishing divergence, eqn (7.87), to a
large extent determined the form of Einstein’s field equations. Lastly we observe
that relativistic continuum mechanics is more basic and more general than relativistic
particle mechanics, and the specialization from the former to the latter is much more
direct than the opposite procedure. Thus, from a logical point of view, the axioms
of relativistic continuum mechanics provide the soundest basis for all of relativistic
mechanics, but it is beyond our present scope to demonstrate this in detail.6

Exercises 7
7.1. If T µν is a 4-tensor, prove that under a spatial rotation T 44 remains unchanged,

T 4i and T i4 transform as 3-vectors, and T ij transforms as a 3-tensor.

7.2. (i) Suppose for a set of coefficients Eµν , defined in every inertial coordinate
system, the product EµνU

ν is a covariant 4-vector for all 4-velocities Uµ. Prove
that the set Eµν constitutes a tensor. [Hint: Prove (Eµ′ν′p

ν′
ν − Eµνp

µ
µ′ ) Uν = 0,

write ( )= φµ′ν , and pick Uν ∝ (0, 0, 0, 1), ( 1
2 , 0, 0, 1), (0, 1

2 , 0, 1) and (0, 0, 1
2 , 1)

in turn.]
(ii) Suppose for a set of coefficients cij , defined in every admissible coordinate

system, the product cijA
ij is invariant for any tensor Aij . Deduce that the set cij

itself constitutes a tensor.
(iii) Suppose for a set of symmetric coefficients gij (= gji) the product gijB

iBj is
invariant for any vector Bi . Prove that the coefficients gij constitute a tensor. [Hint:
Proceed as above and choose a Bi with only one non-zero component and then another
with only two non-zero components.] The results (i), (ii), (iii) are varieties of the so-
called quotient rule: the ‘quotient’ of two tensors is (under certain circumstances)
itself a tensor.

7.3. If the coefficients aij are constant and symmetric, prove (and remember!) that

(aijA
iAj )

,k
= 2aijA

iAj
,k.

[Hint: Leibniz rule and interchange of dummy-index pairs.]

7.4. For any 2-index tensor Aµν we define the tensors A(µν) := 1
2 (Aµν +

Aνµ), A[µν] := 1
2 (Aµν−Aνµ), and call these the symmetric and antisymmetric parts

of Aµν , respectively. Prove Aµν = A(µν)+A[µν]. If Bµν = Bνµ and Cµν = −Cνµ,
prove AµνB

µν = A(µν)B
µν , AµνC

µν = A[µν]C
µν , and BµνC

µν = 0.

7.5. Suppose a field of 4-force Fµ were derivable from a scalar potential � accord-
ing to the equation Fµ = �,µ. Prove that the rest-mass of particles subjected to this
force would have to vary as follows: m0 = �/c2 + const. [Hint: (6.43).]

7.6. (i) A particle of rest-mass m0 and charge q is injected at velocity u into a
constant magnetic field b at right angles to the field lines. Use the Lorentz force law
to establish that the particle will trace out a circle of radius cm0uγ (u)/qb with period

6 See, for example, W. Rindler, Introduction to Special Relativity, Chapter 7.
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2πcm0γ (u)/qb. (It was the γ -factor in the period that necessitated the development
of synchrotrons from cyclotrons, at whose energies the γ was still negligible.)

(ii) If the particle is injected into the field with the same velocity but at an angle
θ < π/2 to the field lines, prove that the path is a helix, of smaller radius, but that
the period for one complete cycle is the same as before.

7.7. Although it is natural to pair the four Maxwell equations as in (7.26) and
(7.27), each pair corresponding to one of the 4-tensor equations (7.40), (7.41), yet it
is also instructive to pair div e = 4πρ with div b = 0. These are the two equations
that contain no time derivatives, and which can, in fact, be regarded as ‘constraints’
on the initial conditions. Verify that they are ‘propagated’ by the other two equations
(the ‘evolution equations’) plus the equation of continuity (7.37). In other words, if
initial conditions (fields and sources) are prescribed on a surface t = t0, satisfying
the constraints, then if we use the evolution equations to calculate the future, this
will automatically continue to satisfy the constraints. [Hint: Consider, for a start,
(∂/∂t)(div e − 4πρ) and use (7.26)(ii) and (7.37).]

7.8. Prove that the retarded potential of eqn (7.50) automatically satisfies the Lorenz
gauge condition (7.45). [Hint: Consider the past light cone with vertex at P = (xν

0 )

over which the integration is performed, and then give it and every volume element
of it a displacement dxν in spacetime (which preserves each r and dV ) so that �µ(xν

0+
dxν) = c−1 ∫ Jµ(xν+dxν) dV/r over the displaced cone; then expand �µ and Jµ.]

7.9. Obtain the Liénard-Wiechert potentials

φ =
[

q

r(1+ ur/c)

]
w =

[
qu

r(1+ ur/c)

]
,

for a moving point-charge q, where the brackets indicate that the enclosed expressions
are to be evaluated at the retarded event at the charge; r is the distance of that event from
the observer and ur the radial velocity of the charge away from the observer. [Hint:
assume that the charge is moving uniformly and ‘spot’ that the Coulomb potential in
its rest-frame satisfies the tensor equation

�µ = qUµ/RνUν,

where Uµ is the 4-velocity of the charge and Rν the (null) connecting vector from the
retarded event at q to the observation event.] Noting that the integral formula (7.50)
does not involve the acceleration of the charge, you may conclude that the above
formulae hold even if the charge accelerates.

7.10. From one of the results of Exercise 7.1 and from the fact that the dual of an
antisymmetric 4-tensor is itself a 4-tensor, deduce that for any antisymmetric 4-tensor
with components written as in eqn (7.32), the triplets (e1, e2, e3) and (b1, b2, b3)

transform as 3-vectors under spatial rotations. As a corollary, deduce that for any
antisymmetric 3-tensor cij with components written as in the leading matrices of eqn
(7.32), the triplet (b1, b2, b3) is a 3-vector. As an example, consider cij = curl u =
ui,j − uj,i .
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7.11. (i) Utilizing results from the preceding exercise, prove the zero-component
lemma for any antisymmetric 4-tensor: if any one of its off-diagonal components is
zero in all inertial coordinate systems, then the entire tensor is zero.

(ii) Prove the following zero-component lemma for a symmetric 4-tensor Aµν =
Aνµ: if any one of its diagonal components is zero in all inertial systems, then the
entire tensor is zero. [Hint: suppose A44 ≡ 0. Then the quantity AµνT

µT ν vanishes
for all timelike 4-vectors T—why? Having shown that, put T = (ε, 0, 0, 1); then put
T = (ε, ε, 0, 1).]

(iii) Prove that if one off-diagonal component of a 4-tensor Bµν is symmetric in all
inertial frames (for example, B12 ≡ B21), then the entire tensor is symmetric. [Hint:
consider Bµν = B(µν) + B[µν].]

7.12. Returning to the situation of Exercise 1.2, consider a small bar magnet of
moment µ which moves longitudinally along the x-axis of an inertial frame with
velocity v. A stationary point-charge q is located at (0,−r, 0). Find the torque on the
magnet in its rest-frame as it passes the origin in two ways: (i) by using eqn (7.61),
and (ii) by using eqn (7.66). [Answer: qµγ v/cr2.]

7.13. Returning to the situation of Exercise 1.3, use the transformation equations
(7.56) to find the force felt by a point charge q, at rest in an inertial frame, due to a
small bar magnet of dipole moment µ pointing straight at it and moving transversely
at velocity v. [Answer: 2qµγ v/cr3. Hint: the magnet’s b-field in its rest-frame and
on its axis is 2µ/r3.]

7.14. If at a certain event an electromagnetic field satisfies the relations e · b =
0, e �= b, prove that there exists a frame in which e = 0 or b = 0. Then prove
that infinitely many such frames exist, all in standard configuration with each other.
[Hint: one of the desired frames moves in the direction e × b; choose coordinates
accordingly.]

7.15. If e · b �= 0, prove that there are infinitely many frames with common relative
direction of motion, and only those, in which e is parallel to b. [Hint: one of the desired
frames moves in the direction e × b, its velocity being given by the smaller root of
the quadratic β2 −Zβ + 1 = 0, where β = v/c and Z = (e2 + b2)/|e× b|. For the
reality of β it is necessary to show that Z > 2.] Note that in all the above frames the
Poynting (energy current) vector c(e × b)/4π vanishes; so there can be no unique
rest-frame for the electromagnetic energy.

7.16. There are good reasons for saying that an electromagnetic field is ‘radiative’
if it satisfies e · b = 0 and e = b; that is, if it is null. Show that the field of a very fast
moving point charge is essentially radiative in a plane which contains that charge and
is orthogonal to its motion.

7.17. In a frame S, two identical point charges q move abreast along lines parallel
to the x-axis, a distance r apart and with velocity v. Determine the force in S that
each exerts on the other, and do this in two ways: (i) by use of the Lorentz force in
conjunction with the field (7.66); and (ii) by transforming the Coulomb force from
the rest-frame to the lab frame S. Note that this force is smaller than in the rest-frame,
while each mass is greater. Here we see the dynamical reasons for the ‘relativistic
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focusing’ effect whose existence we recognized as inevitable by purely kinematic
considerations in Section 3.5. Show that the dynamics leads to exactly the expected
time dilation of an ‘electron clock’.

7.18. Instead of the equal charges moving abreast as in the preceding exercise,
consider now two oppositely charged particles moving with the same constant velocity
but not abreast. Using any method, determine the forces acting on these charges in
the lab frame, and show that they do not act along the line joining them (for example,
along a rod that separates them) but instead constitute a torque kr2 cos θ sin θv2/c2

tending to turn that rod into orthogonality with the line of motion, where θ is the
inclination of the rod and k is the factor multiplying r in (7.66). (Trouton and Noble,
in a famous experiment in 1903, looked for this torque on charges at rest in the
laboratory, which they presumed to be flying through the ether. The fact that the
reaction forces of the rod on the charges might also not be in line with the rod was
unknown then—it ultimately stems from E = mc2, cf. Exercise 7.30 below—and the
null result they obtained seemed puzzling. But it contributed to the later acceptance
of relativity.)

7.19. Two parallel straight wires, at rest in the lab and a distance r apart, carry
currents i1 and i2, respectively, but as usual are electrically neutral in the lab. Prove
that the force which each exerts on the other is 2i1i2/c

2r per unit length, and that the
force is attractive if the currents are in the same direction, and repulsive otherwise.
[Hint: the Lorentz force.]

7.20. In the situation described in the final paragraph of Section 7.7, prove that in
its rest-frame the test charge sees a net line density−λγ (u)uv/c2,−v being the drift
velocity of the electrons and λ the proper line (charge) density of the ions. [Hint: eqn
(3.10).] Prove that the force f̃ which it feels towards the wire in its rest-frame because
of that net line charge, corresponds exactly to the force f = qu × b/c on it in the
rest-frame of the wire, when account is taken of the force transformation (6.46).

7.21. Verify from (7.77) that the energy tensor Mµν is invariant under the dualiza-
tion (7.57), so that in (7.75) we can replace Eµν by Bµν . Referring to (7.62), derive
the following alternative form for it:

Mνµ = 1

8π
(Eµ

λEλν + Bµ
λBλν). (7.88)

7.22. Give reasons why in a random distribution of pure radiation (a ‘photon gas’)
the electromagnetic field components will satisfy the following relations on the (time)
average:

(i) e2
1 = e2

2 = e2
3, b2

1 = b2
2 = b2

3,

(ii) e1e2 = e2e3 = e3e1 = 0, b1b2 = b2b3 = b3b1 = 0,

(iii) e2b3 − e3b2 = e3b1 − e1b3 = e1b2 − e2b1 = 0.

Deduce that the only non-zero components of the average energy tensor can then be
written as M44 = σ0, M

11 = M22 = M33 = p, with 3p = σ0. Such a photon
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gas (like the famous 3◦K background radiation of the universe) has a unique rest-
frame; that is, the above relations hold in but one preferred frame, say S0. Prove that
in the general frame one then has

Mµν = p

(
4

c2
UµUν − gµν

)
,

where Uµ is the 4-velocity of S0 and p transforms as an invariant [cf. after (7.85)].

7.23. (i) Use the energy tensor of the field to prove that the 3-force on each of two
oppositely charged identical parallel plates at rest and facing each other in vacuum is
e2A/8π , where A is the area of the plates and e is the strength of the uniform field
between them, if edge effects are neglected.

(ii) If these plates are simultaneously released from rest, prove that (in the absence
of gravity) the rate at which they gain kinetic energy is equal to the rate at which the
field loses energy.

7.24. For the components σ and s of the energy tensor Mµν establish the identity

σ 2 − s2

c2
=
(

1

8π

)2[
(b2 − e2)2 + 4(e · b)2] =:

(
1

8π

)2

I2,

the invariant I being defined by this equation [cf. (7.62), (7.63)]. Note that this is
reminiscent of the invariance of the square of the 4-momentum (p, mc) of a particle,
even though (s, σc) does not represent a 4-vector.

7.25. Prove that the energy tensor Mµν satisfies the Rainich identities

Mµ
σ Mσ

ν =
(

I

8π

)2

δ
µ
ν , MµνM

µν =
(

I

4π

)2

,

where I is the invariant defined in the preceding exercise. [Hint: if I �= 0, go to a
frame where e1 and b1 are the only non-zero field components; for the case I = 0,
appeal to continuity.]

7.26. Let a given point of a material continuum be momentarily at rest in an inertial
frame S0 and write ρ0, t

ij
0 for ρ and pij in S0. (This t

ij
0 is the elastic stress 3-tensor of

classical mechanics.) Regarding S0 as the S′ of the usual pair S, S′, and writing u for
the usual v (u now being the velocity of the continuum in S), transform the relevant
components of T µν from S0 to S to establish the formulae

ρ = γ 2(u)(ρ0 + u2t11
0 /c4), g1 = uγ 2(u)(ρ0 + t11

0 /c2),

g2 = uγ (u)t12
0 /c2, g3 = uγ (u)t13

0 /c2.

7.27. Give a physical explanation of the unexpectedρ-transformation of the preced-
ing exercise as follows: Consider a small comoving cubical element of the continuum
with its edges of proper length dl parallel to the axes of S0, its rest-frame. Then
imagine all the fluid around that cube instantaneously (and miraculously!) removed
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in S0. In S0 the energy of the cube after the miracle is still c2ρ0 dl3. But in S the ‘left’
face was exposed γ (u)u dl/c2 seconds before the ‘right’ face. (Why?) During that
time the material of the cube did work on the material to the right of it at the rate of
ut11

0 dl2. (Why?) After the removal is complete in S, the cube can be regarded as a
compound particle and hence its mass in S will be γ (u)ρ0 dl3. So before the removal
it must have been [γ (u)ρ0 + γ (u)u2t11

0 /c4] dl3. (Why?) Complete the argument,
bearing in mind the length contraction of the cube.

7.28. Give a physical explanation of the counter-intuitive g-transformation of Exer-
cise 7.26 above, based on the fact that in relativity even a non-material energy current
has momentum density, and that this must be added to the material momentum den-
sity ρu. Bear in mind that the non-material energy current in the i-direction is that
which crosses a unit area normal to the i-direction and fixed in the continuum, and is
therefore given by the scalar product of the force on that area with the velocity of that
area.

7.29. A capacitor at rest in a frame S′ consists of two identical parallel plates
separated by a central non-conducting rod parallel to the x′-axis. When the plates
are oppositely charged, there is a uniform e-field between them, if we ignore edge
effects. By (7.77), the electromagnetic energy residing in the capacitor is given by
E = e2lA/8π, e being the field strength, A the area of the plates, and l the length
of the rod. Regarded from the usual second frame S, the electromagnetic energy
is reduced by a γ -factor. (Why?) But clearly the total energy of this closed system
should increase by a γ -factor. Resolve this apparent paradox7 by including the energy
of the rod and using the ρ-transformation of Exercise 7.26 above. [Hint: the force
between the plates is e2A/8π , cf. Exercise 7.23 above.]

7.30. Give an approximate (‘first-order’) explanation (in the lab frame) of the
Trouton–Noble experiment (cf. Exercise 7.18 above) along the following lines: as
the rod moves forward and is subject to the squeeze of the two charges (which you
can approximate by the Coulomb attraction), the force on the back end does positive
work on the rod while that on the front end does negative work on it. So there is a con-
stant immaterial energy flow along the rod from back to front and hence (E = mc2!)
a constant immaterial momentum p along the rod as well. If the rod has length r and
is inclined at an angle θ , show that p ≈ qv cos θ/c2r . As the rod moves, the moment
of this momentum (that is, the angular momentum L) about a fixed point in the lab
increases steadily: dL/dt = u× p. Verify that this is balanced (at least to first-order
in v2/c2) by the torque of the charges, so that no torque is left over to rotate the rod!

7 See W. Rindler and J. Denur, Am. J. Phys. 56, 795 (1988).
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8

Curved spaces and the basic ideas of
general relativity

8.1 Curved surfaces

One of the most revolutionary features of general relativity is the essential use it makes
of curved space (actually, of curved spacetime). Though everyone knows intuitively
what a curved surface is, or rather, what it looks like, people are often puzzled
how this idea can be generalized to three or even higher dimensions. This is mainly
because one cannot visualize a 4-space in which the 3-space can look bent. But no such
surrounding or ‘embedding’ space is needed to understand curvature. On the contrary,
an embedding space introduces elements that are quite irrelevant to our purpose.

So let us first try to understand that part of the geometry of ordinary surfaces which
is intrinsic; that is, independent of anything outside the surface. Intrinsic properties of
a surface are those that depend only on the measure relations in the surface. They are
those that could be determined by an intelligent race of 2-dimensional beings, entirely
confined to the surface in their mobility and in their capacity to see and to measure.
Intrinsically, for example, a flat sheet of paper and one bent almost into a cylinder or
almost into a cone, are equivalent [see Fig. 8.1(a)]. If we closed up the cylinder or the
cone, these surfaces would still be ‘locally’ equivalent but not ‘globally’. In the same
way [see Fig. 8.1(b)] a helicoid (spiral staircase) is equivalent to an almost closed
catenoid (a surface generated by rotating the shape of a freely hanging chain); and so
on. One way to visualize intrinsic properties, therefore, is to think of them as those
that are preserved when the surface is bent without stretching or tearing. But this
view has its limitations, since some surfaces, for example, spheres or closed convex
surfaces in general, are ‘rigid’ and cannot be deformed smoothly.

The most important intrinsic feature of a surface is the totality of its geodesics.
These are the analogs of the straight lines in the plane. They are lines of minimal
length between any two of their points, provided these points are not too far apart.
For example, on a sphere the geodesics are the great circles—but they are minimal
only between points less than half a circumference apart. A taut string, confined to
the surface, will lie along a geodesic. On a surface with a hump, such a string can
loop the hump (as in Fig. 8.2) and then it clearly is not minimal from one side of the
hump to the other. Figure 8.2 also illustrates the defining property of a geodesic g: if
two points A and B on g are not too far apart, then all nearby lines joining A and B on
the surface, like l and l′, have greater length than the portion of g between A and B.
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(a)

(b)

Fig. 8.1

Since their definition depends only on distance measurements in the surface,
geodesics are clearly intrinsic; for example, they remain geodesics even when the
surface is bent. (Observe this with the various dashed lines in Fig. 8.1.) Now imagine
a geodesic g on some surface that is made of flexible material. Out of this surface cut
a narrow strip which has g as its center-line. When that strip is placed on a flat sur-
face, it will be perfectly straight—since geodesics are intrinsic. This points to another
characteristic of geodesics: they are the straightest possible lines on a curved surface.
They are the paths you describe if you walk on the surface and always ‘follow your
nose’; or if you progressively glue on a straight tape.

From this last property the following result seems ‘obvious’: from each point
on a smooth surface there issues a unique geodesic in a given direction. Another
important result can also be proved: for each point P on a smooth surface there exists

Fig. 8.2
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Fig. 8.3

a neighborhood N(P) (which can be quite large) such that every point in N(P) can be
connected to P by a unique geodesic. [On a sphere, for example, N(P) is the whole
sphere minus one point: the antipode of P.]

Next, let us see how the 2-dimensional beings would discover the curvature of
their world. As prototypes of three different kinds of surface regions, consider a
plane, a sphere, and a saddle. On each of these draw a small geodesic circle of radius
r; that is, a locus of points which can be joined by geodesics of length r to some
center (see Fig. 8.3). In practice this could be done by using a taut string like a tether
on the convex side of the surface. Then we (or the flat people) can measure both
the circumference C and the area A of these circles. In the plane we get the usual
‘Euclidean’ values C = 2πr and A = πr2. On the sphere we get smaller values for
C and A, and on the saddle we get larger values. This becomes evident when, for
example, we cut out these circles and try to flatten them onto a plane: the spherical
cap must tear (it has too little area), while the saddle cap will make folds (it has too
much area).

For a quantitative result, consider Fig. 8.4, where we have drawn two geodesics
subtending a small angle θ at the north pole P of a sphere of radius a. By definition, we
shall assign a curvature K = 1/a2 to such a sphere. At distance r along the geodesics
from P, let their perpendicular separation be η. Then, using elementary geometry and
the Taylor series for the sine, we have

η = θ
(
a sin

r

a

)
= θ

(
r − r3

6a2
+ · · ·

)
= θ

(
r − 1

6
Kr3 + · · ·

)
, (8.1)

and consequently,

C = 2π
(
r − 1

6Kr3 + · · · ), A = π
(
r2 − 1

12Kr4 + · · · ), (8.2)

where we have used A = ∫C dr to get A from C. These expansions yield the following
two alternative formulae for K:

K = 3

π
lim
r→0

2πr − C

r3
= 12

π
lim
r→0

πr2 − A

r4
. (8.3)
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Fig. 8.4

Surprisingly, perhaps, it can be proved that formula (8.1)(iii), to the order shown,
holds for any smooth surface! In other words, the spread of neighboring geodesics
from any given point P is direction-independent up to O(r3), and it is always of the
form (8.1)(iii) for some number K that depends only on P. This number is called
the (Gaussian) curvature of the surface at P. It is obviously intrinsic. Formulae (8.2)
and (8.3) thus also apply generally to small geodesic circles on all smooth surfaces.
They would enable the flat people to determine the curvature of their world at various
places. Note that in convex regions, where C and A are smaller than their Euclidean
values, K is positive, while in saddle-like regions it is negative.

If we differentiate (8.1)(iii) twice with respect to r we find, to lowest order,

η̈ = −Kη (· ≡ d/dr). (8.4)

This is an important formula. It allows us to use the second rate of spread of neigh-
boring geodesics issuing from a point as a measure of the curvature at that point.
‘Sublinear’ spread corresponds to positive curvature, ‘superlinear’ spread to nega-
tive curvature (cf. Fig. 8.5). In fact, Formula (8.4) applies to neighboring geodesics

(a) (b) (c)

Fig. 8.5
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even if they do not intersect at the point of interest (cf. Exercise 8.2). We can test this
at once with eqn (8.1)(i) for neighboring meridian circles on a sphere.

As another important result in the differential geometry of surfaces we mention the
following: If the Gaussian curvature of a smooth surface vanishes everywhere, the
surface is necessarily equivalent to the Euclidean plane, and if the Gaussian curvature
is 1/a2 everywhere, the surface is equivalent to a sphere of radius a—except for
possible topological modifications. In the first case, for example, the surface could
also be a cone, a cylinder, a flat torus (resulting from the identification of pairs of
opposite edges of a rectangle), and so on; and in the second case it could also be, for
example, the ‘elliptic’ sphere which results from the identification of diametrically
opposite points of a sphere.

8.2 Curved spaces of higher dimensions

Many of the ideas of the intrinsic differential geometry of curved surfaces can be
extended to spaces of higher dimensions, such as, for example, the 3-space we live in.
In particular, geodesics in all dimensions are defined, exactly as in the 2-dimensional
case, as minimal-length lines or, equivalently, as ‘straightest’ lines. For a sufficiently
‘well-behaved’ space, the two basic theorems on geodesics also hold: (i) there is a
unique geodesic issuing from a given point in a given direction, and (ii) in a sufficiently
small neighborhood of a given point P each other point can be connected to P by
a unique geodesic. To define the curvature of a 3-space like ours one might then
(in analogy to the procedure used for surfaces) construct small geodesic spheres
(instead of circles) of radius r , and compare their surface area or volume with the
Euclidean values. It is quite conceivable that by very accurate measurements of this
kind we would find our space to deviate slightly from flatness. The great Gauss
himself made various experiments to try to find a curvature, but with the available
surveying instruments (then or now) none can be detected directly.

In any case, the direct generalization of formulae (8.3) turns out to be too crude.
More than one number at each point is needed to characterize fully the curvature
properties of spaces of higher dimensions. Consider all the geodesics issuing from a
point P in the directions of a linear ‘pencil’ λp + µq determined by two directions
p and q at P. Such geodesics are said to generate a geodesic plane through P. Its
curvature K at P is said to be the space curvature K(p, q) at P for the orientation
(p, q). (In three dimensions K is completely known if it is known for 6 orientations,
in four dimensions if it is known for 20.) A geodesic plane is the curved-space analog
of a plane through a point, except that in general is satisfies its defining property only
with respect to that one point.

An important theorem in this connection is the following: If any smooth subspace U
of a larger space V contains a geodesic g of the larger space (cf. Fig. 8.6) then g is a
geodesic relative to the subspace also. This follows at once from the minimal property
of g. For if g is the shortest connection between A and B in V, there can be no shorter
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Fig. 8.6

connection in U. One consequence of this is that the geodesics of a larger space V
which define a geodesic plane U through some point P of V must be geodesics also
relative to U. So in order to determine the curvature of V at P in the orientation (p, q)

we can circumvent the construction of the full geodesic plane. We need merely pick
any pair of neighboring geodesics from the pencil λp+ µq and apply formula (8.4)
to get K . Since the pair are also U-geodesics, this K will be the required curvature
of the geodesic plane at P.

If the curvature K at P is independent of the orientation, we say P is an isotropic
point. Only then is all the curvature information contained in knowing the surface
area S or the volume V of a small geodesic sphere in terms of its radius r (or of
a ‘hypersphere’ in higher dimensions). In three dimensions S and V at an isotropic
point are easily seen to be given by the formulae

S = 4π
(
r2 − 1

3Kr4 + · · · ), V = 4
3π
(
r3 − 1

5Kr5 + · · · ). (8.5)

This first follows from (8.1): the ratio of S to the Euclidean value 4πr2 must equal
the square of the ratio of η to its Euclidean value θr . The second then follows from
the relation V = ∫

S dr . If all points of a space are isotropic, it can be shown that
the curvature at all of them must be the same (Schur’s theorem), and then the space
is said to be of constant curvature.

As an interesting example, let us consider a 3-dimensional space of constant positive
curvature 1/a2—a ‘hypersphere’ S3, the 3-dimensional analog of a 2-sphere. For
any two neighboring and intersecting geodesics in S3 we must have [cf. (8.4)] η̈ =
−(1/a2)η. By the argument of Exercise 8.2, the same relation must hold even for non-
intersecting neighboring geodesics. So if we draw a geodesic plane � at an arbitrary
point P, the η of two neighboring geodesics of � must satisfy η̈ = −(1/a2)η all
along. The curvature of � must therefore be 1/a2 everywhere, and so it is a 2-sphere.
Strange but true: each geodesic plane in S3 is a 2-sphere whose ‘inside’ and ‘outside’
are identical halves of the whole space! (Perhaps an analogy will help to make this
more acceptable: the ‘inside’ and ‘outside’ of each great circle on a 2-sphere are also
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equal halves of the full space.) Now if each geodesic plane through P is a 2-sphere of
radius a, we know from (8.1)(i) exactly how any two neighboring geodesics issuing
from P will spread. And this, in turn, allows us to find the surface area S of a ‘geodesic
sphere’ around P of arbitrary radius r; that is, of the locus of points whose geodesic
distance from P is r . We argue as we did for eqn (8.5): the ratio of S to the Euclidean
value 4πr2 must equal the square of the ratio of η [which now equals θa sin(r/a)] to
its Euclidean value θr . This leads to the first of the following equations,

S = 4πa2 sin2 r

a
, V = 2πa2

(
r − a

2
sin

2r

a

)
, (8.6)

while the second again follows from V = ∫
S dr . What these equations tell us is this:

if we lived in a 3-sphere S3 of curvature 1/a2 and drew concentric geodesic 2-spheres
around ourselves, their surface area would at first increase with increasing radius r

(but not as fast as in the Euclidean case), reaching a maximum 4πa2, with included
volume π2a3, at r = 1

2πa. This is our ‘equatorial’ sphere. After that, more distant
spheres have lesser and lesser surface area, until finally, at r = πa, the ‘sphere’ has
zero area: it is a single point, our antipode. The total volume of our 3-sphere is 2π2a3.
The picture from any other point is exactly the same. (Again, the analogy with the
2-sphere may help: If we are at the north pole and draw larger and larger geodesic
circles around ourselves, their circumferences increase to a maximum at the equator,
and after that a greater radius leads to a lesser circumference until, at the south pole,
the circle becomes a point.) One last curiosity in S3: Suppose I blow up a balloon of
unlimited elasticity. Its surface will increase until it reaches 4πa2, at which point it
has become a geodesic plane through me. By symmetry, it must even look plane to
me. If I continue my blowing, the balloon will curve around behind me and end up
enclosing me tightly! [Cf. Fig. 8.7(a).] An analogy is provided by a 2-dimensional
being ‘blowing up circles’ on the surface of a 2-sphere, as shown in Fig. 8.7(b).

All this is not as fantastic as it may seem. The very first cosmological model put
forward by Einstein in 1917 envisaged our 3-space to be precisely of this kind, a
hypersphere with radius a ≈ 1010 light-years! And even today it is still considered

(a) (b)

Fig. 8.7
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quite possible that our universe constitutes such a hypersphere, albeit a presently
expanding one. The other two modern possibilities are a flat (Euclidean) universe E3

or one with constant negative curvature, H 3.
With very little extra effort we can, in fact, now derive the main geometric features

of the latter also. Our arguments for S3 apply (mutatis mutandis) equally to H 3. Any
two neighboring geodesics of H 3 obey η̈ = + (1/a2)η, and so must neighboring
geodesics of each geodesic plane, along their entire length. Integrating this equation
yields

η = θa sinh
r

a
(8.7)

instead of our previous η = θa sin(r/a). Each geodesic plane now is a 2-space H 2

of constant negative curvature −(1/a2). (We are not as familiar with such 2-spaces,
because—unlike 2-spheres—they have no simply visualizable representation in E3.
We can visualize them as floppy cloths throwing more and more folds as we go out
from any point.)

With (8.7) instead of (8.1)(i) we find, analogously to (8.6),

S = 4πa2 sinh2 r

a
, V = 2πa2

(a

2
sinh

2r

a
− r
)

(8.8)

for the surface area and included volume of geodesic spheres of radius r in H 3. Now
there is no limit to the size of these spheres, and the full space is infinite.

8.3 Riemannian spaces

In the last two sections we have rather liberally quoted, without proof, theorems from
a branch of mathematics called ‘Riemannian geometry’, on the implicit assumption
that the curved spaces under discussion were, in fact, Riemannian. This assumption
we must now examine. On a curved surface we cannot set up Cartesian coordinates
in the same way as in the plane (with the ‘coordinate lines’ forming a lattice of strict
squares)—for if we could, we would have a plane, intrinsically. Certain surfaces
by their symmetries suggest a ‘natural’ coordinatization, like the plane, or the sphere
(see Fig. 8.8) on which one usually chooses co-latitude (x) and longitude (y) to specify
points. On a general surface one can ‘paint’ two arbitrary families of coordinate
lines and label them x = . . . ,−2,−1, 0, 1, 2, . . . and y = . . . ,−2,−1, 0, 1, 2, . . . ,
respectively, and one can further subdivide these as finely as one wishes. The resulting
coordinate lattice may or may not be orthogonal.

If we imagine the surface embedded in a Euclidean 3-space with coordinates
(X, Y, Z) [see Fig. 8.8(c)] then it will satisfy ‘parametric’ equations of the form

X = X(x, y), Y = Y (x, y), Z = Z(x, y), (8.9)

which we assume to be differentiable as often as required. For example, a sphere of
radius a centered on the origin satisfies (cf. Fig. 8.4):

X = a sin x cos y, Y = a sin x sin y, Z = a cos x.
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Fig. 8.8

Since the distance between neighboring points in the Euclidean space is given by

dσ 2 = dX2 + dY 2 + dZ2,

distances in the surface are given by

dσ 2 = (X1 dx +X2 dy)2 + (Y1 dx + Y2 dy)2 + (Z1 dx + Z2 dy)2, (8.10)

where the subscripts 1 and 2 denote partial differentiation with respect to x and y,
respectively. Evidently (8.10) is of the form

dσ 2 = E dx2 + 2F dx dy +G dy2, (8.11)

where E, F, G are certain functions of x and y. In the case of the sphere, for example,
this method yields

dσ 2 = a2 dx2 + a2 sin2x dy2, (8.12)

which can also be understood directly by elementary geometry. Whenever the squared
differential distance dσ 2 is given by a homogeneous quadratic differential form in the
surface coordinates, as in (8.11), we say that dσ 2 is a Riemannian metric, and that the
corresponding surface is Riemannian. It is, of course, not a foregone conclusion that
all metrics must be of this form: one could define, for example, a non-Riemannian
metric dσ 2 = (dx4+dy4)1/2 for some abstract 2-dimensional space, and investigate
the resulting geometry. Such more general metrics give rise to ‘Finsler’ geometry.

What distinguishes a Riemannian metric among all others is that it is locally
Euclidean: At any given point P0 the values of E, F, G in (8.11) are simply numbers,
say E0, F0, G0; thus, ‘completing the square’, we have, at P0,

dσ 2 =
(
E

1/2
0 dx + F0

E
1/2
0

dy
)2 +

(
G0 −

F 2
0

E0

)
dy2 = dx̃2 + dỹ2, (8.13)
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where

x̃ = E
1/2
0 x + F0

E
1/2
0

y, ỹ =
(

G0 −
F 2

0

E0

)1/2

y.

Hence, provided E > 0 and EG > F 2, there exists a (linear) coordinate transfor-
mation (actually there exist infinitely many) which makes the metric ‘Euclidean’ (a
sum of squares of differentials) at any one preassigned point. Conversely, if there
exist coordinates x̃, ỹ in terms of which the metric is Euclidean at a point P0, then in
general coordinates it must be Riemannian at P0; for, as the reader can easily verify,
a Riemannian metric always transforms into another Riemannian metric when the
coordinates undergo a differentiable non-singular transformation. Now we see that in
order to predict the form of the metric (8.11) we could have dispensed with the use
of the embedding space. We could simply have postulated that the surface is locally
Euclidean; that is, that for any given point we can choose the coordinate system so
that dσ 2 = dx2 + dy2 at that point.

All intrinsic properties of a surface spring from its specific metric, (8.11). For it
is the metric that determines all distance relations within the surface. It is a kind of
blueprint from which the surface could actually be constructed: Suppose we draw a
Cartesian grid on a piece of paper, say x, y = 0,±1,±2, . . . , using arbitrarily small
units. Let us triangulate this grid by drawing one diagonal (say the one with positive
slope) in each coordinate square. Then we write along the sides of all the little triangles
whatever length the metric ascribes to them. This is our ‘Mercator map’ of the surface!
By cutting out corresponding triangles that actually have the indicated dimensions,
and fitting them together according to the map, we can then construct the surface.

The idea of a Riemannian metric directly generalizes to spaces of higher dimen-
sions. Such spaces, too, can be coordinatized with arbitrary (‘Gaussian’) coordinates,
just like a surface. In three dimensions, for example, instead of having two families
of coordinate lines, we have three families of coordinate surfaces, which we can label
x, y, z = 0,±1,±2, . . . , and which provide ‘addresses’ (x, y, z) for all points of
the space. If there then exists a metric analogous to (8.11) which, at any given point,
can be transformed to a sum of squares (a Euclidean metric), we say the space is
Riemannian, or locally Euclidean.

We have already, in Chapter 7, met similar metrics and we now return to the notation
introduced there [cf. eqn (7.8)] for the general, N -dimensional, case:

ds2 = gij dxi dxj (i, j = 1, . . . , N), (8.14)

where the gij are symmetric tensor components. We also require det(gij ) �= 0 to
ensure that the metric is truly N -dimensional. [For example, dx2+4 dx dy+4 dy2 =
(dx + 2dy)2 =: dz2 is not truly 2-dimensional.] It is always possible, by a general-
ization of the procedure used in (8.13), to reduce any such metric at any one point to
a sum of positive and negative squares. And although this can be done in infinitely
many ways, the number of positive squares and the number of negative squares one
ends up with is unique (Sylvester’s theorem). For a metric to be locally Euclidean
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(all positive squares), its coefficients must satisfy certain positivity conditions; in two
dimensions, as we have seen, these are E > 0 and EG > F 2.

Metrics of the form (8.14) are called properly Riemannian or just Riemannian if
they are locally Euclidean, and pseudo-Riemannian otherwise. The spaces whose
intrinsic geometry we discussed in the last section were tacitly assumed to be proper
Riemannian spaces. Since their metric is locally Euclidean, so is their geometry. For
example, on any Riemannian surface, the circumference of a small geodesic circle is
2πr to lowest order and thus the complete plane angle around any point is 2π . The
sum of the angles in a small geodesic triangle is π to lowest order. In any Riemannian
3-space, the surface of a small geodesic sphere is 4πr2 and its volume 4

3πr3, to
lowest order, and so forth.

In general relativity, however, we also need the geometry of curved pseudo-
Riemannian spaces, and in particular of those that reduce locally to Minkowski
space,

gµν dxµ dxν 
−→ −(dx̃1)2 − (dx̃2)2 − (dx̃3)2 + (dx̃4)2; (8.15)

that is, whose sign distribution (or signature) is (−−−+). Instead of having locally
the structure of 4-dimensional Euclidean space, these spaces have, to lowest order,
the structure of Minkowski space, with its light cones. Nevertheless, it is remarkable
how much of the geometry of curvature pseudo-Riemannian and properly Riemannian
spaces have in common.

To start with, all Riemannian spaces have geodesics. In pseudo-Riemannian spaces
these are defined as lines of stationary length,

δ

∫
ds = 0, (8.16)

which can be minimal, or maximal, but generally are neither (cf. Exercise 8.12). Eqn
(8.16) applies to all Riemannian spaces. The alternative definition of geodesics as
‘straightest’ lines (whose exact formulation we shall see latter) also applies univer-
sally. So do the two basic theorems: a point and a direction define a unique geodesic,
and all points in a sufficiently small neighborhood of a point P are connectible to
P by a unique geodesic. (A ‘small’ neighborhood in pseudo-Riemannian spaces is
defined by the smallness of the coordinate differences.) In pseudo-Riemannian spaces
it can be shown that the sign of ds2 is constant along any geodesic, but it can be pos-
itive, negative, or zero. And in all Euclidean or pseudo-Euclidean spaces [possible
global metric:

∑±(dxi)2] the geodesics are ‘straight lines’ corresponding to linear
equations in the Euclidean or pseudo-Euclidean coordinates.

While the directional curvature K(p, q) of pseudo-Riemannian spaces is still
defined as that of the geodesic plane containing the directions p and q, the cur-
vature of the geodesic plane itself can no longer be defined (when it is not properly
Riemannian) in terms of limits of small geodesic circles, because there are no small
geodesic circles. Instead, we must fall back on the ‘geodesic deviation’ formula (8.4),
which still applies, albeit in somewhat modified form: at every point P of a pseudo-
Riemannian 2-space the metric can be reduced to that of the Minkowski x, ct plane,
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and so the directions at P fall into four quadrants, in two of which they are ‘positive’
(ds2 > 0) while in the other two they are ‘negative’ (ds2 < 0); and these quadrants
are separated by the four null directions (ds2 = 0). In this general case formula (8.4)
can be shown to take the form.

η̈ = −εKη. (8.17)

where the indicator ε takes the value 1 for two neighboring positive geodesics and
−1 for two neighboring negative geodesics. The sign of K here loses much of its
absolute significance since the overall sign of ds2 for pseudo-Riemannian spaces is
largely conventional. Unless the planar direction is null, there will always be two
opposite quadrants whose geodesics spread sublinearly as in Fig. 8.5(b) and two
whose geodesics spread superlinearly as in Fig. 8.5(c). Of course, if two of these
quadrants have a preferred physical significance, as in relativity, the sign of K can
re-assume significance. We can and do take timelike geodesics as the positive ones,
so that K will be positive if these spread sublinearly. (Not all authors follow this
convention.) When the geodesic plane has an induced metric locally reducible to
−(dx2 + dy2), we must take ε = −1 in all directions.

As in the case of subspaces of proper Riemannian spaces (cf. Fig. 8.6), geodesics of
a pseudo-Riemannian space that lie in a subspace are geodesics in the subspace also.
(And for essentially the same reason: the lengths of neighboring curves can differ at
most in second-order.) So here, too, we can measure K(p, q) directly by the spread
of any pair of neighboring geodesics of the space itself whose initial directions lie in
the plane of p and q.

Pseudo-Riemannian spaces can have (curvature-)isotropic points just like
Riemannian spaces, and Schur’s theorem applies to them as well [cf. after eqn (8.5)].
For each dimension, signature, and value of K , there is a unique space of con-
stant curvature, except for possible topological modifications. The three locally
Minkowskian spaces of constant curvature play an important role in relativity. They
are: (i) Minkowski space itself (K = 0); (ii) de Sitter space (K < 0), whose time-
like geodesics spread super-linearly; and (iii) anti-de Sitter space (K > 0), whose
timelike geodesics spread sublinearly, and, in fact, ‘focus’ like those of a sphere.
In de Sitter space it is the spatial geodesics that focus. De Sitter space is, in fact,
spatially spherical and open only in the time direction, while anti-de Sitter space is
temporally circular and open in all spatial directions. (These features appear clearly in
the representations of these two spaces as hyperboloids of revolution—see Figs 14.1
and 14.4 in Chapter 14 below.)

We have talked earlier of the metric being the blueprint for a surface (up to bending),
and the same holds for Riemannian and pseudo-Riemannian spaces of all dimen-
sions. Spaces with identical metrics can be brought into coincidence (that is, laid
on top of each other), like the corresponding surfaces in Fig. 8.1. But there is an
element of arbitrariness in a Riemannian metric gij dxi dxj , namely the coordi-
nates. These can be laid on the space in a largely arbitrary manner, and different
choices of coordinates will lead to formally different metrics, like dx2 + dy2 and
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dr2 + r2 dθ2 for the Euclidean plane, in Cartesian and polar coordinates, respec-
tively. But, as we have seen, the coefficients gij form a symmetric tensor. And it is in
this so-called metric tensor that the intrinsic structure of a Riemannian space is fully
encoded.

8.4 A plan for general relativity

We have already given a preview of general relativity in Chapter 1 (cf. Sections 1.13–
1.16), although at that stage it was necessarily rather vague. The reader may
nevertheless wish to look at it again from our present vantage point. We are now in
a much stronger position to sketch out the theory that must result (almost inevitably)
from Einstein’s equivalence principle. It is not yet full GR. That only results when
Einstein’s field equations are added. The field equations, however, involve the cur-
vature tensor, and so our quantitative discussion of them must wait until Chapter 10,
where we shall learn more about tensors in Riemannian spaces. Until then, though
we shall refer to the developing theory as GR, the reader should bear in mind that
the same groundwork is shared by other ‘rival’ theories accepting the EP but having
different field equations (for example, the theories of Nordström and of Brans-Dicke,
which, however, have by now been eliminated on empirical grounds).

The vital prerequisites for Einstein’s invention of GR were: (i) his EP; (ii) Newton’s
theory as guide and touchstone and, in particular, (iii) Galileo’s Principle of shared
orbits in a gravitational field; (iv) Minkowski’s concept of 4-dimensional spacetime;
and (v) the basic facts of Riemannian geometry.

Following Minkowski’s procedure in SR, we can regard the set of all (actual or
potential) events in the world as a 4-dimensional continuum (spacetime) which can be
coordinatized with four arbitrary (Gaussian) coordinates xµ(µ = 1, 2, 3, 4). Accord-
ing to the EP, we can find at each event � a small freely falling box in which SR holds.
This box—being a local inertial frame (LIF)—provides us with a local inertial coor-
dinate system {x, y, z, ct}which can be used to assign a unique squared displacement
from � to any neighboring event according to the formula

ds2 = c2 dt2 − dx2 − dy2 − dz2. (8.18)

So there is a uniquely determinable metric structure on the global spacetime. And
since the formula for the metric is locally Minkowskian, it must be globally pseudo-
Riemannian with signature (−−−+). Such spaces are called Lorentzian.

Now at each event, relative to the LIF, free particles move uniformly; that is, 4-
dimensionally ‘straight’. But curves that are locally straight are globally geodesic. So
free particles can be expected to follow geodesics in the Lorentzian spacetime. This
would generalize what we already know happens in the complete absence of gravity
(that is, in the Minkowski space of SR), where, in accordance with Galileo’s law
of inertia, free particles have straight and therefore geodesic worldlines. Moreover,
the geodesic law of motion conforms to (and in fact ‘explains’) Galileo’s Principle,



178 Curved spaces and the basic ideas of general relativity

which asserts that gravitational orbits are independent of the particle that does the
orbiting and are, in fact, determined by an initial velocity. For, a geodesic is particle-
independent and fully determined by an initial (4-dimensional) direction, say dx :
dy : dz : c dt in the LIF, or equivalently, by (dx/dt, dy/dt, dz/dt), namely the
initial velocity. Galileo’s Principle, in Einstein’s interpretation, is now seen as a mere
extension of Galileo’s law of inertia to curved spacetime.

GR can also predict something consistently that Newton’s theory can not: the paths
of light in vacuum under the influence of gravity. In Newton’s theory, though one can
approximately treat light as particles that travel at speed c, this is not a consistent
procedure, since, by the constancy of potential plus kinetic energy, the speed of a
particle in a gravitational field must vary as it traverses different potential levels. In
GR, on the other hand, light in vacuum travels straight in the LIF, and therefore should
travel geodesically in spacetime; however, while free particles have timelike geodesic
worldlines, the worldlines of photons must be null.

It is logically convenient to summarize these findings (and two others) in the form
of axioms:

1. The spacetime of events is Lorentzian; that is, pseudo-Riemannian with
Minkowskian signature.

2. Free test-particles have timelike geodesic worldlines.

3. Light in vacuum follows null geodesics.

4. The arc along any timelike worldline corresponds to c times the proper time of
an ideal point-clock that traces it out. (This will be discussed in the penultimate
paragraph of this section.)

5. Einstein’s field equations will relate the metric with the energy tensor of the sources.

Evidently, for the theory to be useful, it should predict the orbits in the field of
a given mass distribution. Since the orbits (the geodesics) are now determined by
the metric, we might expect the metric in turn to be determined by the sources—
that is, by the gravitating matter. But there is an inherent logical obstacle to this:
unless we already know the metric, we do not know the spacetime at the sources,
and without that we cannot precisely describe extended sources. So it would seem
that we are doomed to use some sort of iterative mathematical process to get from
the sources to the spacetime. In practice, there are often ways to avoid this. Still, the
yet-to-be-discussed field equations can do no more than relate the geometry and the
sources.

At this stage it will be well to elaborate a number of details. First, we have
used Einstein’s freely-falling-box argument to justify the Lorentzian structure of
spacetime; but inside matter we cannot have a freely falling box, though we can
certainly imagine a freely falling coordinate system. But that is the beauty of replac-
ing a partially derived result by an axiom: rather than dream up more complicated
thought-experiments, like drilling little holes in the matter, etc., we simply posit the
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Lorentzian structure of spacetime everywhere, and find that it leads to a self-consistent
theory.

Next, we recall that in Newton’s theory a ‘free’ particle is one subject to no forces,
including gravity. In GR, a ‘free particle’ always means a freely falling one; that is,
one subject to gravity only. In fact, in GR gravity is no longer a force, but rather part
of the geometry. In Whittaker’s phrase, instead of being a player, gravity has become
part of the stage.

In GR, the geometry (that is, the metric gµν), plays the part of a field. There is no
action at a distance to conflict with the SR speed limit. A test particle does not ‘feel’
the sources directly, but rather the field which they have built up in its neighborhood.
In analogy with the electromagnetic field, the metric field can transmit disturbances
in the geometry (gravitational waves) at the speed of light.

If GR is correct, the spacetime we live in is curved essentially everywhere. So what
happens to the neat flat-space special-relativistic laws of physics we have studied so
far? The effort was not wasted. In many contexts the curvature of spacetime (which
GR allows us to estimate) is so small that SR can still be used locally with great
accuracy. In other cases we shall find a simple and universal procedure (suggested by
the EP) for incorporating the effects of curvature into the differential formulation of
the various SR laws. (It devolves on the so-called ‘covariant’ derivative.) So physics
does not have to be totally revamped once more!

The last topic in need of some elaboration is the physical significance of the metric.
The causal ‘grain’ of SR spacetime, namely the existence of little null cones at each
event, and of three different kinds of displacement (timelike, spacelike, and null), is
impressed on the GR spacetime through the LIFs. The little cones will no longer be
‘parallel’ to each other everywhere, but still, a particle worldline will be within the
cone at each of its points (as in Fig. 5.2), and a photon will travel along the cones
(but only in vacuum). The null-geodesic generators of the full cones can be quite
tangled, and two of them issuing from one event may well meet again at another
(‘gravitational lensing’). As for timelike lines, they are always potential worldlines of
ideal point-clocks—freely moving if the line is geodesic, being pushed or accelerated
if the line is curved. The arc

∫
ds along any such line is directly measured by c

times the reading of the corresponding clock; for we know that this is true in SR
[cf. eqn (5.6)], and the equivalence principle allows us to apply SR to infinitesimal
portions of the GR path. Thus null displacements ds correspond to light, and timelike
displacements to particles, their magnitude measuring proper time. But how are we
to visualize a spacelike displacement ds? We know from SR that it is part of the
instantaneous 3-space of of any observer whose worldline is orthogonal to it, and
that its magnitude measures distance in that 3-space. Alternatively, there are various
light-signaling methods for determining all types of differential interval (see, for
example, Exercise 5.2). As for determining the 10 metric coefficients gµν at any given
event � relative to a given Gaussian coordinate system, it will suffice to measure 10
displacements away from �, provided they are not all null; for evidently the null
intervals alone can only determine the gµν up to a common factor.



180 Curved spaces and the basic ideas of general relativity

The reader may now be impatient to see whether indeed spacetimes exist that
can be identified with known gravitational situations, and whether the geodesics in
these spacetimes approximate to the Newtonian orbits. For we must not forget that
Newton’s theory of gravitation agrees almost perfectly with the observed phenomena
throughout an enormous range of classical applications. Any alternative theory must
yield the same predictions to within the errors of classical observations. To test this,
we shall develop in the next chapter a topic that is of great importance in GR in its own
right, namely the theory of static or merely stationary matter distributions. Once we
have that, an encouraging parallelism of GR to Newton’s theory can be very quickly
established.

Exercises 8
8.1. Say which of the following are intrinsic to a 2-dimensional surface:

(i) The angle at which two curves intersect.

(ii) The property of two curves being tangent to each other at a given point.

(iii) The area contained within a closed curve.

(iv) The normal curvature κn of the surface in a given direction; that is, the curvature
of the section obtained by cutting the surface with a plane containing the normal
at the point of interest.

(v) The geodesic curvature κg of a curve on the surface: cut out a thin strip of surface
with the given curve as center-line, then lay the strip on a plane and measure
its curvature; that is κg . Alternatively it is dθ/dl, the arc-rate of turning of the
tangent relative to the surface.

8.2. Generalize formula (8.4) to two neighboring geodesics g1 and g2 on a surface at
a point where they do not intersect. [Hint: lay a third geodesic g at small inclination
across g1 and g2; somewhere between the resulting intersection points let η (the
normal separation between g1 and g2) be divided into η1 and η2 by g. Then apply
(8.4) to η1 and η2.]

8.3. A paraboloid of revolution is generated by revolving the parabola z = ax2

about the z-axis. Find its Gaussian curvature at the general point as a function of
x. [Hint: consider two ‘obvious’ neighboring geodesics corresponding to two axial
sections a small angle θ apart. Answer: 4a2(1+ 4a2x2)−2.]

8.4. The curvature of a plane curve (or, indeed, any curve) in Euclidean space is
defined as the rate of turning of the tangent (in radians) with respect to distance along
the curve; it can be shown to equal lim (2z/r2) as r → 0, where r is the distance along
the tangent at the point of interest and z is the perpendicular distance from the tangent
to the curve. Now, referred to the tangent plane at one of its points P as the x, y plane,
the equation of any regular surface near P can be written as a Taylor series in the form
z = Ax2 + Bxy + Cy2 + terms of higher order (Why?). Use this fact, and polar
coordinates r, θ , to prove that the maximum and minimum of the normal curvature
of a surface [cf. Exercise 8.1(iv)] occur in orthogonal directions. [Hint: κn is of the
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form G cos 2θ +H sin 2θ + const.] Gauss proved the extraordinary theorem that the
product of the two (evidently non-intrinsic) extrema of the normal curvature is equal
to the (intrinsic) curvature K , taking due account of signs. Thus if the spine and the
ribs of the horse that fits the saddle of Fig. 8.3 locally approximate circles of radii a

and b, the curvature K at the center of the saddle is −1/ab. Verify Gauss’s result at
the vertex of the paraboloid of the preceding exercise.

8.5. In the plane, the total angle � through which the tangent of a closed (and
not self-intersecting) curve turns in one circuit is evidently always 2π . On a curved
surface, the corresponding � (increments of angle being measured in the successive
local tangent planes) generally differs from 2π . According to a beautiful theorem
(Gauss–Bonnet), 2π−� equals

∫∫
K dS, the integral of the Gaussian curvature over

the enclosed area, provided this area is simply connected, and provided the turning is
properly counted as positive or negative with reference to the ‘outward’ normal defined
over the entire area; at corners, the angle must lie between±π , and the circuit must be
described in the positive sense relative to the normal on the enclosed area. Consider a
sphere of radius a and on it a ‘geodesic triangle’ formed by three great-circular arcs
making a right angle at each vertex. Test the theorem for both the areas that can be
considered enclosed by this triangle. [Note that there is no contribution to � along a
geodesic, since geodesics are locally straight.]

8.6. Use the Gauss–Bonnet theorem to show that, remarkably, ◦∫∫K dS = 4π for
any surface topologically equivalent to a sphere, and ◦∫∫K dS = 0 for any surface
topologically equivalent to a torus. [Hint: in the first case put a geodesic ‘belt’ around
the surface; in the second case use two such belts, dividing the torus into two bent
tunnels, then cut these open by an inner geodesic.] Lastly prove that for any topological
n-hole torus ◦∫∫K dS= − (n− 1)4π .

8.7. Consider a sphere a radius a and on it a ‘geodesic circle’ of radius r , as in
Fig. 8.4. To find the total angle � through which the tangent of this circle turns in
one circuit (increments of angle always being measured in the local tangent plane),
construct the cone tangent to the sphere along the given circle and then ‘unroll’
this cone and measure the angle at its vertex. Thus prove � = 2π cos(r/a). Then
verify that this accords with the Gauss–Bonnet theorem—as applied to both possible
‘insides’ of the circle.

8.8. It may be thought that the sphere is the only 2-dimensional surface of constant
curvature that is both finite and unbounded. Nevertheless a plane surface, too, can
be finite and unbounded. One need merely draw a rectangle in the plane, discard the
outside, and ‘identify’ opposite points on opposite edges. The area of the resulting
surface is evidently finite, yet it has no boundary. Each point is an internal point, since
each point can be surrounded by a small circle lying wholly in the surface: a circle
around a point on an edge appears in two halves, yet is connected because of the
identification; around the vertices (all identified) such a circle appears in four parts.
Unlike the plane, however, this surface has the topology of a torus, and thus lacks
global isotropy. (Consider, for example, the lengths of geodesics drawn in various
directions from a given point.) Still, it is locally isotropic in its planeness.
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A similar though rather more complicated construction can be made on a surface of
constant negative curvature. Issuing from one of its points, we draw eight geodesics
of equal length r , each making an angle of 45◦ with the next. Then we draw the
eight geodesics which join their endpoints. What can you say about the angles at
the vertices of the resulting ‘geodesic octagon’ in terms of its total area? Deduce
that r can be chosen to make these angles 45◦, and chose r so. Labeling the ver-
tices successively A, B, C, D, E, F, G, H , identify the following directed geodesics:
AB = DC, BC = ED, EF = HG, FG = AH . Draw a picture and verify that (i)
each point on an edge other than a vertex is an internal point, (ii) the eight vertices are
all identified and constitute an internal point, (iii) at all these points the curvature is
the same as ‘inside’. Can the same trick be worked with a four- or six-sided polygon?

Analogous constructions exist, obviously, for flat 3-space and also, much less
obviously, for 3-spaces of constant negative curvature.

8.9. Consider the 3-dimensional hypersphere of curvature 1/a2. Prove that every
geodesic triangle in it must lie on a 2-sphere of curvature 1/a2. [Hint: geodesic
planes.]

8.10. By reference to eqns (8.1)(i) and (8.7), prove that the metric of the 3-sphere
with curvature 1/a2 can be written in the form

ds2 = dr2 + a2 sin2
( r

a

)
(dθ2 + sin2 θ dφ2),

while that of the hyperbolic 3-sphere H 3 with curvature −1/a2 can be written simi-
larly but with sinh2(r/a) in place of sin2(r/a). [Hint: Let the geodesics leaving the
origin be labeled by the usual angles θ and φ of polar coordinates and let r be distance
along these geodesics. For the small angle between neighboring geodesics, cf. the
metric (8.12) of the 2-sphere.]

8.11. For a 2-space with metric ds2 = dr2 + f 2(r) dθ2 prove that K = − f ′′/f .
[Hint: Construct a flat map of this surface with r and θ as polar coordinates; alter-
natively, provided |f ′| < 1, recognize this metric as that of a surface of revolution,
with θ as angle about the axis and r as distance along the meridian curves.]

8.12. To illustrate that geodesics in pseudo-Riemannian spaces generally have nei-
ther minimal nor maximal length, consider the x-axis of Minkowski space M4. Having
linear equation x = σ , y = z = t = 0 (σ being a parameter), it is a geodesic. Con-
sider neighboring curves to it, say between x = 0 and x = 2, consisting of two
straight portions: one from (0, 0, 0, 0) to (a, b, c, d), and one from (a, b, c, d) to
(2, 0, 0, 0). Show that for suitably chosen small a, b, c, d, these neighbors can have
greater or lesser length. But also prove that timelike geodesics in M4 are maximal.
[Hint: The twin paradox.]
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Static and stationary spacetimes

9.1 The coordinate lattice

Loosely speaking, a gravitational field is stationary if it does not change in time, and
it is static if, additionally, ‘there is no rotation’. Examples are the following: the fields
in a uniformly accelerating rocket or on a uniformly rotating disk in Minkowski space
(these are a little unusual in having no sources); the fields of an arbitrary massive body
at rest, or of an axially symmetric body rotating uniformly; the field of a gravitating
fluid flowing uniformly around an arbitrarily shaped closed tube that is fixed in space.

In all such cases we assume that there exists at least one rigid space-filling (imag-
ined) lattice that could be constructed out of massless rigid rods and that allows us
to identify ‘points fixed in the field’ with lattice points. There may be more than one
such lattice for a given source distribution; for example, for the field both outside and
inside the rotating earth we could choose a lattice fixed to the earth or one fixed in
space. Inside moving matter, as in the last example, the lattice must reduce to just a
coordinate lattice—no rods!

We also need the concept of light signals from any fixed point to any other. If the
corresponding null geodesic passes through matter, we simply replace the light by
ideal neutrinos assumed to traverse even matter at the speed of light.

We now define the stationarity of a lattice by the following light-circuit postulate:
if light is sent around any lattice polygon ABC . . . A, then a standard clock at rest at
A always measures the same transit time. If, in addition, that time is independent of
the sense in which the polygons are traversed, we call the lattice static. The spacetime
itself is called stationary (or static) if it contains at least one lattice that is stationary
(or static).

As an example of a stationary but not static lattice, consider one rigidly attached
to the rotating earth. It is easy to see that a sufficiently large lattice triangle in the
equatorial plane will be traversed by light more slowly in the sense of the rotation
than in the opposite sense, simply because relative to the underlying quasi-inertial
background the first circuit is the longer.

There are stationary fields in which two or more different light paths are possible
from point A to point B (quite apart from the fact that the spatial path of light from A
to B need not coincide with that from B to A). The light-circuit postulate must then
hold for each possible polygonal path.
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9.2 Synchronization of clocks

The most important property of stationary spacetimes is that they admit a preferred
time. (Four-dimensionally speaking, it is a time coordinate t such that all sections
t = const through the curved spacetime are identical.) As in SR, the preferred time
is the result of a sensible synchronization prescription. Also as in SR, we imagine
standard clocks attached to all the lattice points. But now these clocks are furnished
with a lever that allows their standard rates to be altered by an arbitrary constant
factor. One of these clocks, say that at A, is chosen to be the master clock, and is
allowed to tick at its standard rate. All the other clocks are then ‘rate-synchronized’
with the A clock as follows. (Full synchronization will involve both the rate and the
zero-point.) The master clock sends out two control signals separated by an arbitrary
(but for convenience preferably small) time �t . Thereupon, all other clocks adjust
their rates so as to receive these signals also a time �t apart. (If there are alternative
light paths, pick an arbitrary one between any two points in each direction for the
synchronization process.)

That some such rate-adjustment is in general necessary is clear from the
‘gravitational-time-dilation’ effect predicted by the equivalence principle (cf.
Section 1.16). In fact, we already ‘know’ from eqn (1.11) that the B clock rate will
have to be modified by a factor e−�B/c2

, if we arbitrarily declare the potential at A
to be zero. That these one-time lever adjustments will, in fact, rate-synchronize all
the clocks mutually and forever and along all possible paths (in the sense that each
permanently sees every other clock tick at the same rate as itself ) is intuitively to be
expected but needs to be proved.

The proof hinges on the light-circuit postulate and goes as follows: Imagine A’s
two control signals to an arbitrary point B reflected from B to a third point C, then
back to A and once more to B (as in Fig. 9.1). Applying our postulate to the lattice

Fig. 9.1
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triangles ABCA and BCAB in turn, we see that the signals get back to A and B
(the B clock runs at a multiple of standard time) still separated by a coordinate time
�t . Because of the arbitrariness of C, B can thus be shown to be synchronous to A
throughout a continuous interval I of arbitrary length. But then, by contemplating
zig-zag pairs of signals bouncing back and forth between A and B for all eternity,
we see, by reference to I and by repeatedly applying the postulate to the ‘2-gons’
ABA and BAB, that B with the proper lever setting always was and always will be
synchronous to A. Of course, the same signals show that A, too, is permanently
synchronous to B. Now C, like B, will also be permanently synchronous to A and
conversely. So the signal pair of Fig. 9.1 passes C at time separation �t since it so
arrives at A. But then the whole argument can be repeated, treating B as the master,
and concluding with B and C being permanently synchronized.

Since we deliberately picked an arbitrary path between two points when there
was a choice, we now conclude that our synchronization process ends up with each
clock seeing each other clock (no matter along which path) always tick in synchrony
with itself. So the same number of ticks will separate any two light signals along the
same path at both ends. The important conclusion is that, with such rate-synchronized
clocks, the travel time of any light signal from point P to point Q is always the same.

Having rate-synchronized the lattice clocks, we are still left with the problem of
synchronizing their zero-settings. In the general stationary case there is no uniquely
preferred way of doing this, although we obviously must insist on a continuous time
coordinate. (The 4-dimensional picture we alluded to earlier may clarify this: given
a stationary spacetime, we can foliate it into identical continuous space slices in
infinitely many ways—just as we can slice a long loaf of bread straight across, or
at a slant, or even, if the knife is bent, with a curve.) One possible way to define a
continuous time coordinate is that which Einstein used in SR. It consists in so setting
the already rate-synchronized clocks that when any one of them exchanges signals
with the master clock, those signals take the same coordinate time in either direction.
If this is not already the case, for example, if light from A to B takes (always) a
time λ and from B to A a time µ, we simply advance the setting of the B clock by
1
2 (µ− λ); then light in both directions takes a coordinate time 1

2 (λ+µ). In general,
however, this procedure will yield different synchronizations for different choices of
master clock. For if all clock pairs could be made ‘Einstein synchronous’, light would
take the same time in both directions round all polygons and the spacetime would be
static. On the other hand, that is precisely what Einstein synchronization with one
master clock A achieves in any static spacetime. For if light in both directions takes
a time λ between A and B, and a time µ between A and C, and a time λ + µ + ν

around ABCA, then it must take a time ν between B and C in both directions. (Four-
dimensionally speaking, there is now a preferred foliation: orthogonally across the
lattice-point worldlines. (Cf. Section 9.5 below.)

As an example, consider the clocks on a rotating disk in Minkowski space. The
most convenient synchronization is that which makes them permanently agree with
the clocks at rest in the underlying Minkowski space as they pass them. All clocks are
then Einstein-synchronous with the clock at the center; and, more generally, any pair
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Fig. 9.2

of clocks on the same radius is Einstein-synchronous, but no other pairs. Figure 9.2
illustrates this: during a certain time-interval the radius AB moves to A′B′; in that
same time light from A travels to B′ and light from B to A′, along straight lines of
equal length in the underlying space.

On the rotating earth, the ‘Temps Atomique International’ (TAI) is similarly taken
over, in effect, from the comoving quasi-inertial frame. Here all the clocks are
Einstein-synchronous with those at the poles, and pairs of clocks on the same merid-
ian are also Einstein-synchronous, as a slight re-interpretation of Fig. 9.2 makes
clear.

There is a small gap in our synchronization argument. Some perfectly good sta-
tionary spacetimes (for example, that outside a black hole) contain point pairs that
cannot exchange light (or even neutrinos) directly. The rate-synchronization must
then be done patchwise, starting with a maximal patch around a first master clock A,
then another patch mastered by a clock B in the first patch (which, of course, does
not tick at standard rate), and so on. The light circuit postulate then guarantees rate
synchrony between any two clocks that can exchange signals. For static spacetimes an
analogous procedure for the zero-settings then yields complete Einstein-synchrony.
In the general case some other continuous zero-setting must be defined.

9.3 First standard form of the metric

Let us now concentrate our attention on the coordinate lattice. We assume that the rates
and zero-settings of all the lattice clocks have been synchronized in accordance with
the procedure set forth in the last section. This allows us to assign a time coordinate t

to all events. Let the lattice itself be coordinatized by arbitrary Gaussian coordinates
xi (i = 1, 2, 3), which will furnish the spatial coordinates of events. We define a
function of position �(xi) by writing e−�/c2

for the (time dilation) factor by which
the standard clock rate at xi has to be altered. Then for successive events at xi we



First standard form of the metric 187

have (since c times proper time measures interval along the clocks’ worldlines)

ds2 = e2�/c2
c2 dt2, (xi = const). (9.1)

The metric of the spacetime will be, as always, a quadratic form in the coordinate
differentials, with only the first coefficient determined by (9.1) so far:

ds2 = e2�/c2
c2 dt2 + A dx1 dt + B dx2 dt + C dx3 dt

+D(dx1)2 + E(dx2)2 + F(dx3)2

+G dx1 dx2 +H dx2 dx3 + I dx1 dx3. (9.2)

We shall now show that stationarity (and the proper choice of coordinate time) imply
the time-independence of all the metric coefficients, and that staticity further implies
the vanishing of the time–space cross-terms: A = B = C = 0.

To this end, consider first a light signal (ds2 = 0) between neighboring lattice points
that differ only in theirx1-coordinate. This signal satisfies the following equation (with
c now set equal to unity):

0 = e2� dt2 + A dx1 dt +D(dx1)2, (9.3)

which can be regarded [after division by (dx1)2] as a quadratic for dt/dx1. Its two
solutions, corresponding to the two senses of travel (dx1 ≷ 0), must be time-
independent (same transit times for repeated signals), so their sum −Ae−2� and
their product−De−2� must be time-independent also, which requires A and D to be
time-independent. Similarly B and E and also C and F must be time-independent.

Next consider a light signal between neighboring points that differ in both x1 and
x2 but not x3, and which therefore satisfies

0 = e2� dt2 + A dx1 dt + B dx2 dt +D(dx1)2 + E(dx2)2 +G dx1 dx2.

But the same equation must hold at a later time with the same values of dt, dx1,
and dx2. So if G′ denotes the later value of G, we have, by subtraction, (G − G′)
dx1 dx2 = 0, whence G is time-independent. By symmetry, of course, the same must
be true of H and I , and so our first assertion is established: all metric coefficients are
time-independent.

That staticity implies the vanishing of the time–space cross-terms follows from the
complete Einstein synchrony: the two solutions dt/dx1 of (9.3) are now equal and
opposite and so their sum −Ae−2� is zero. Hence A, and by symmetry also B and
C must vanish. It is perhaps noteworthy that in order to derive the form of the entire
metric we needed to use synchrony only for neighboring clocks.

We also note that a ‘bad’ choice of time-coordinate even in a stationary spacetime
destroys the time-independence of the metric. The reader can see this quickly by
checking, for example, the effect of a simple transformation like t = exp(x/x0)t

′ on
the usual Minkowski metric (8.18).
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We postpone until Section 9.5 the proof that, conversely, every metric of the form
(9.2) with time-independent coefficients represents a stationary spacetime: It repre-
sents a lattice, coordinatized by the xi and by a coordinate time t , such that (i) all
lattice clocks run at constant multiples of their standard rate, (ii) every light signal (and
indeed every free-falling particle path) from any point P to any point Q is indefinitely
repeatable over the same track and with the same duration, and (iii) in the special
case A = B = C = 0 these signals can traverse the same track also backwards in the
same time as forwards.

If for the moment we accept this, then the frequency-shift formula (1.11), namely
the first of the following equations:

νB

νA
= exp(−�B/c2)

exp(−�A/c2)
=
√

gtt (A)

gtt (B)
, (9.4)

proved only approximately and only for static fields in Chapter 1 (with � as the
Newtonian potential) is now seen as an exact and immediate corollary of the stationary
metric (9.2.), where exp(2�/c2) =: gtt is the coefficient of c2 dt2. For consider two
consecutive wave fronts passing first A and then B. The coordinate time �t between
their passing is the same at A and B. But the frequencies recognized at A and B will
be inversely proportional to the times of passing as measured by standard clocks. So
νB/νA = exp(�A/c2)�t/ exp(�B/c2)�t , whence (9.4).

9.4 Newtonian support for the geodesic law of motion

We shall now show how Einstein’s proposed geodesic law of motion for free particles
in a gravitational field finds its first quantitative support by leading to approximately
the same orbits as Newton’s theory in ‘classical’ situations; that is, for slow test
particles in weak static fields. Of course, this is not entirely surprising, since both
theories share versions of the equivalence principle, which implies that a gravitational
orbit is a succession of inertial motions in a succession of local inertial frames; and
their accelerations, in turn, are determined by the same functions � in both theories.

In the last section we found that the metric of every static field can be brought to
the canonical form (here again with c)

ds2 = e2�/c2
c2 dt2 − dl2, (9.5)

where dl2 is a time-independent 3-metric. We have already recognized [in the second
paragraph of Section 9.2, and again in connection with (9.4)] that the � appearing
in the time-dilation factor exp(−�/c2), and consequently in the metric (9.5), must
coincide, at least approximately, with the Newtonian potential of the field. In dl we
now recognize the radar distance between neighboring lattice points as determined by
standard clocks at rest in the lattice. But radar distance along an infinitesimal rod coin-
cides with ruler distance, even if the rod accelerates through its LIF (cf. Exercise 3.9);
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for the distance measured is proportional to dt while the distance moved (the error) is
proportional to (dt)2. So dl2 in (9.5) is just the spatial metric of the lattice. However,
without the field equations we cannot predict its detailed form. So our procedure here
will be to approximate the lattice with Euclidean 3-space. Obviously the lattice of
such fields as that of the sun in our neighborhood cannot be very curved—or we would
know it! In fact, a relativistically ‘weak’ field is defined precisely as one whose curva-
ture is small; that is, one whose spacetime deviates little from Minkowski space M4.
But then, by the special-relativistic symmetry between ct on the one hand and x, y, z

on the other, one would expect the deviations of all the metric coefficients gµν from
their SR-values diag(−1,−1,−1, 1) to be of the same order of smallness. Now in
classical situations the coefficient of c2 dt2 in (9.5), e2�/c2 ≈ 1+2�/c2, differs very
little from unity. For example, throughout the exterior field of the sun the Newtonian
potential satisfies |2�/c2| < 5×10−6. Suppose dl2 deviates by as much from flatness.
If we neglect this deviation in half of our metric, do we thereby introduce an error of
50 per cent? It depends: for light paths, sometimes yes. But for ‘slow’ orbits (v � c)

the coefficient of c2 dt2 contributes vastly more than the spatial coefficients. If we
approximate the former with unity, we essentially throw out gravity. If we approximate
dl2 with flat space, we introduce only a small error. This can be seen as follows. A
timelike geodesic is found as a curve of extremal length (actually: of maximal length)
among a bundle of neighboring worldlines connecting two events in spacetime. But
a slow-motion worldline in slightly deformed M4 is almost parallel to the time axis.
A deformation of the time dimension therefore has a first-order effect on the lengths of
those lines, whereas a deformation of the spatial dimensions has only a second-order
effect.

We can also see this quantitatively: Consider a static metric ds2 = Ac2 dt2−B dl2

(dl2 flat). Inasmuch as they differ from unity, A and B measure deviations from
M4. The worldline of a particle moving with coordinate speed v = dl/dt has
ds2 = dt2(Ac2 −Bv2). Thus the space and time deviations are weighted in the ratio
v2 : c2. For all the sun’s planets, for example, v < 50 km/s, so that v2 : c2 < 3×10−8,
which illustrates the smallness of the spatial contribution. But for high-speed parti-
cles, and especially for light, this contribution can and does become significant, even
in weak fields.

In light of all this, we now take the metric of a weak static field to be

ds2 = (1+ 2�/c2)c2 dt2 − dl2, (9.6)

where � is the Newtonian potential and dl2 is flat. For a particle-worldline between
two events �1 and �2 at times t1 and t2 we then have

∫ �2

�1

ds =
∫ t2

t1

ds

dt
dt = c

∫ t2

t1

(
1+ 2�

c2
− v2

c2

)1/2

dt,
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where v = dl/dt is the coordinate velocity of the particle. Applying the binomial
approximation to the last integrand, we thus find∫ �2

�1

ds = c

∫ t2

t1

(
1+ �

c2
− 1

2

v2

c2

)
dt

= c(t2 − t1)−
1

c

∫ t2

t1

(1

2
v2 −�

)
dt. (9.7)

The condition that
∫

ds be maximal is therefore equivalent to the last integral in
(9.7) being minimal. But that is exactly Hamilton’s Principle for the motion of a
particle in a gravitational potential �! This shows that the ‘slow-motion’ geodesics
of the spacetime (9.6) indeed coincide with the Newtonian orbits in a potential �,
to first approximation. And it identifies once more the relativistic � (from clock
synchronization) with Newton’s potential.

It must have been a memorable moment when, by some such calculations as the
above, Einstein first realized (probably in March 1912) that GR could ‘work’. What
remained was the invention of satisfactory field equations that (in some suitable limit)
also reduced to Newtonian theory.

The present result illustrates well the ‘man-made’ character of physical theories.
It is really remarkable how the same empirically known orbits can be ‘explained’ by
two such utterly different models as Newton’s universal gravitation and Einstein’s
curved spacetime. Nature exhibits neither potentials nor Lorentzian metrics. Yet both
these human inventions lend themselves to a description of a large class of observed
phenomena.

And again, GR is one of the classic examples where a pure mathematician’s flight
of fancy (Riemann’s n-dimensional geometry of 1854) later becomes the physi-
cists’ bread and butter—a process that has often been repeated. Mathematics is
the theoretical physicists’ hardware store where they can get the materials for their
models!

One consequence which we can read off at once from eqn (9.5) is what has come to
be called the Shapiro time delay. A light-ray satisfies ds2 = 0 and thus (with c = 1)
e� dt = ± dl, the two signs corresponding to the two possible directions of travel.
Consequently a radar signal reflected by a distant object will return to its emission
point after a coordinate time

�t = 2
∫

e−� dl

has elapsed there, the integration being performed over the path of the signal. If that
passes near a concentrated mass and thus through regions of large negative �, the time
delay can be significant. It was Shapiro who in the sixties first proposed measuring
this effect for radar signals from earth to Venus, as these signals become more and
more disturbed by the approaching sun. (See Section 11.7 below.)

The reader might find the concept of a ‘world-movie’ (somewhat similar to the
‘world-map’ of SR) useful in connection with static and stationary spacetimes. Imag-
ine a movie of the 3-dimensional curved lattice, successive frames showing it at
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successive coordinate moments t = 1, 2, 3, . . . . One sees test particles and photons
trace out identical paths again and again, always in the same time. But the most
characteristic feature is the pronounced slowing down of photons (light) near heavy
masses and, as we shall see later, their total standstill at horizon-edges of stationar-
ity. Their behavior is the exact opposite of what ordinary particles do in Newtonian
theory: the deeper the potential well, the faster they must go to keep the total energy
constant. In the relativistic world-movie, ordinary particles behave classically for
slow motions and weak potentials; but near infinite wells (horizons) they too slow
down and eventually come to a complete standstill.

9.5 Symmetries and the geometric characterization of
static and stationary spacetimes

Recall our active interpretation (in Section 2.9) of the standard Lorentz transformation
as a motion of Minkowski space upon itself. Such metric-preserving motions of metric
spaces upon themselves are called isometries, and they describe symmetries of the
spaces when they exist. As other examples consider two spheres, or two planes, or
two spiral staircases (half-helicoids) sliding over each other, one representing the
original, the other the moved space. If the motion is continuous, like the rotation of a
sphere about a fixed axis, the various points of the space trace out the so-called group
orbits (or trajectories).

Under isometric mappings, all intrinsic features of a metric space are pre-
served, since the entire space has simply been ‘moved elsewhere’. Most importantly,
geodesics map into geodesics and lengths and angles remain invariant.

One particularly interesting isometry can occur under reflection in a surface or
hypersurface H of one dimension less than the full space V . Let G be the congruence
of geodesics orthogonal to H (that is, orthogonal to every direction in H) and define
a mapping of points P 
→ P′ as follows: P and P′ shall lie on the same member of G,
on opposite sides of H, and equidistant from it. If this mapping is an isometry, we say
that H is a symmetry surface of V . It clearly divides V into two identical halves.

Suppose we have reflection isometry about H, but relative to some other congruence
of curves intersecting H, not necessarily geodesic, and relative to some other param-
eter, not necessarily length. This must be equivalent to geodesic reflection isometry!
For since the mapping preserves geodesics and angles, the geodesics orthogonal to H
map into themselves; and since distances are preserved, equidistant points on these
geodesics correspond to each other. That proves it. The members of that other congru-
ence, incidentally, must also cut H orthogonally. For consider a small triangle ABC,
where A and B lie in H while C lies on the mapping curve through A. If C′ is the
image of C, the triangles ABC and ABC′ are congruent. But since CAC′ is locally
straight, AB must be orthogonal to it.

All this is relevant to stationary and static spacetimes, which possess some impor-
tant symmetries along these lines. As is clear from (9.2) (with all the coefficients
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time-independent), all time-translations

(xi, t) 
−→ (xi, t + a) (9.8)

leave a stationary metric invariant. These constitute a one-parameter isometry group
(with parameter a) whose orbits t = var are the (timelike) worldlines of the lattice
points. Additionally, static spacetimes possess time-reflection symmetry about every
time-slice t = a: if A = B = C = 0 in (9.2), the transformation

(xi, t) 
−→ (xi, 2a − t) (9.9)

leaves the metric invariant and thus maps the spacetime isometrically upon itself.
[Note that (9.9) implies (xi, a−b) 
−→ (xi, a+b).] By the remarks of the preceding
paragraph, every time slice is then a symmetry surface, and orthogonal to the orbits
t = var.

Conversely, suppose we know that a given spacetime possesses a continuous one-
parameter isometry group with timelike orbits. Then it is stationary. For proof, take the
group orbits as the worldlines xi = const of ‘lattice points’ and the parameter as time
coordinate t . Then, since a time-translated geodesic is still a geodesic over the same
lattice track and with the same duration (the t-values at both ends increase equally),
all light signals between two given lattice points are indefinitely repeatable and our
original light-circuit postulate is satisfied, which was our criterion for stationarity.
If, additionally, there exists a hypersurface H orthogonal to all the group orbits, we
can re-define the zero of time by setting t = 0 on H. At t = 0 the t = var lines are
then orthogonal to the t = const surface and this implies [as we shall see in (10.4)]
that A = B = C = 0 in the stationary metric (9.20). But that shows t = 0 to be a
symmetry surface relative to t (the metric being invariant under t 
→ −t). So for each
set of events (xi, t) corresponding to a geodesic g from event � to event � there is a
mirror-image set (xi,−t) also forming a geodesic, g′, passing over the same spatial
track, from event �′ to vent �′ (cf. Fig. 9.3). However, as a worldline, g′ must be
traversed from �′ to �′; that is, into the future. So for every light signal between
lattice points P and Q there is another of equal duration over the same track from Q
to P. This leads to the strengthened light-circuit postulate being satisfied, which was
our criterion for staticity.

So if we temporarily denote the light-circuit postulate by L and its strenthened ver-
sion by LS; the metric (9.2) with time-independent coefficients by M and if A, B, C

are missing, by MS; and translational symmetry with timelike orbits by T and this
jointly with hypersurface-orthogonality by TS—then what we have by now established
is

L⇒ M ⇒ T ⇒ L

LS ⇒ MS ⇒ TS ⇒ LS.

Consequently for both stationary and static spacetimes all of the three relevant
characterizations are equivalent.
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Fig. 9.3

Our arguments (two paragraphs back) have also established what we asserted ear-
lier: every geodesic motion (of light or particles) is indefinitely repeatable in stationary
spacetimes, and even in reverse in static spacetimes.

Whilst on the subject of symmetry surfaces, it will be well to develop a few general
results which will stand us in good stead later on. An always surprising example
of symmetry surfaces is provided by the geodesic planes of 3-spheres. They are,
as we noted earlier [cf. before (8.6)], 2-spheres whose inside and outside are iden-
tical halves of the full space. We can check this from the metric of the 3-sphere
(cf. Exercise 8.9):

ds2 = dr2 + a2 sin2
( r

a

)
(dθ2 + sin2 θ dφ2), (9.10)

where θ and φ are the ‘usual’ angles at the origin. Clearly φ → −φ is an isometry,
so φ = 0 is a symmetry surface; and it is intuitively clear that it is a geodesic plane
at the origin. Its induced metric, from (9.10), is

ds2 = dr2 + a2 sin2
( r

a

)
dθ2, (9.11)

which, as Fig. 8.4 shows, represents a 2-sphere of radius a. This can also be obtained
from the metric (8.12) by x 
→ r/a, y 
→ θ .

One chief property of symmetry surfaces is that they are totally geodesic. By this
we mean that each of their geodesics is also a geodesic of the full space. For consider
a geodesic g of a symmetry surface H with initial direction dg. Let g′ be the geodesic
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Fig. 9.4

of the full space that starts out along dg; if it left the surface on one side, its mirror
image would have to leave the surface on the other side, and there would be two
geodesics with the same initial direction, which is impossible. So g′ must lie in H.
But then (cf. Section 8.3, third paragraph from end) it is also a geodesic of H. Since
only one geodesic of H can start out in any given direction, g is g′, and thus a geodesic
of the full space. A similar argument also shows that an equivalent characterization
of a totally geodesic subspace is that any geodesic of the full space that is tangent to
it, fully lies in it.

Totally geodesic hypersurfaces need not be symmetry surfaces: our proof would
have gone through even if the symmetry extended only a little on either side
of H. Also totally geodesic subspaces of an N -dimensional space can have any
dimension less than N , whereas symmetry surfaces have dimension N − 1. And,
of course, not all Riemannian spaces contain either symmetry surfaces or totally
geodesic subspaces. But when they do, it can considerably shorten the calculation of
geodesics.

The following three lemmas are useful in this respect: (i) If U is a t.g. (totally
geodesic) subspace of V, which itself is a t.g. subspace of W, then U is a t.g. subspace
of W; (ii) if U is a t.g. subspace of W, then it is also a t.g. subspace of any subspace
V of W that contains it; (iii) the intersection U∩V of any two t.g. subspaces U and
V of W is itself t.g. Proofs (cf. Fig. 9.4): (i) Any geodesic of U is a geodesic of V; but
any geodesic of V is a geodesic of W; QED. (ii) Every geodesic of U is a geodesic
of W; but every geodesic of W that lies in V is a geodesic of V (cf. Section 8.3);
QED. (iii) Let dg be an arbitrary initial direction in U∩V: it must lie in U and in
V; draw the W-geodesic in the direction dg: it lies totally in U and in V and thus in
U∩V; it is therefore a geodesic of U∩V; so the U∩V-geodesic in the direction dg is
a W-geodesic; QED.

By way of illustration: we have already noted that φ = 0 is a symmetry surface
of the 3-sphere (9.10). So is θ = π/2, since θ → π − θ is an isometry. Hence, by
lemma (iii), the radius φ = 0, θ = π/2 is t.g. By the spherical symmetry, any radius
θ, φ = const can be isometrically rotated into that one, so all such radii are t.g. And a
t.g. 1-space (a curve) must itself be a geodesic (since a geodesic of the big space that
starts in it, stays in it.) So (to no one’s surprise) all such radii are geodesics, and the



Canonical metric and relativistic potentials 195

surface φ = 0 is indeed a geodesic plane through the origin. Einstein’s static universe
of 1917 has the 3-sphere as its lattice, carrying a homogeneous matter distribution
(which is held in equilibrium against gravity by the so-called �-term in the field
equations.) By the overall symmetry, all the lattice clocks can run at their standard
rates, and so the metric is

ds2 = c2 dt2 −
{

dr2 + a2 sin2
( r

a

)
(dθ2 + sin2 θ dφ2)

}
. (9.12)

By the same reasoning as before, the radii θ, φ = const are now t.g. 2-spaces (in
r, t). So particles and light signals that originally move radially stay on fixed radii and
are geodesics of the metric c2 dt2 − dr2. But this is 2-dimensional Minkowski space
and its geodesics are given by r = vt + const. So free particles (and photons) can
go round and round great circles at constant speeds for ever. In particular, the lattice
points themselves trace out timelike geodesics and are thus potential locations of free
particles (galaxies!).

9.6 Canonical metric and relativistic potentials

Whereas in the case of the static metric (9.5) the 3-metric of the lattice can be read off
directly as (minus) its spatial part, the same is not true in the general case (9.2). Why?
Because there the sections t = const cut obliquely across the worldlines t = var of
the lattice points; and that means (switch to SR geometry locally!) that the lattice
is measured from a moving frame, and thus with length contraction. The way to
find the lattice-metric (and more) is via what we shall call the canonical form of the
metric, which results when we ‘complete the square’ in (9.2) to absorb the time–space
cross-terms:

ds2 = e2�/c2
(
c dt − 1

c2
wi dxi

)2 − kij dxi dxj , (9.13)

with w1 = −(c/2)Ae−2�/c2
, etc. Of course, � is the clock-rate function as it has

been all along, and wi and kij are newly arising time-independent coefficients. We
shall presently recognize in wi an analog of the Maxwellian vector potential w and
in kij the metric of the lattice.

Our synchronization process of Section 9.2 leaves little leeway for the time coor-
dinate t : we can change all clock rates by a constant factor k > 0, and we can change
the zero points by a continuous function of position:

t 
→ t ′ = k[t + f (xi)]. (9.14)

It is easy to see (cf. Exercise 9.7) that this is, in fact, the most general time transfor-
mation that leaves the metric (9.2) and hence also the metric (9.13) form-invariant;
of course, the lattice coordinates can be transformed arbitrarily: xi 
→ xi′ = xi′(xi).
Under each of these transformations the two summands of (9.13) remain separate,
and, in particular, under (9.14) we find:

�′ = �− c2 log k, w′i = k(wi + c3f,i), k′ij = kij , (9.15)



196 Static and stationary spacetimes

where once again we use the derivative notation introduced in (7.7). We shall refer
to (9.14) and its concomitants (9.15) as gauge-transformations and note that physi-
cally meaningful quantities must be ‘gauge-invariant’. Examples of gauge-invariant
quantities are:

�,i, e�(wi,j − wj,i), kij , kij . (9.16)

At any given lattice point we can always achieve � = wi = 0 by a suitable
gauge-transformation and thus reduce (9.13) to ds2 = c2 dt2 − kij dxi dxj , which
establishes kij as the metric of the lattice [cf. after (9.5)].

A stationary metric (9.13) under certain circumstances (bad choice of clock set-
tings) can be transformed into a static metric with the same lattice. This is the case
whenever we can transform wi away; that is, whenever there exists an f such that
(with c = 1) wi = −f,i(w = −grad f ), which happens (in simply connected spaces)
whenever wi,j−wj,i (‘curl w’) vanishes. In fact, we shall see presently that the second
quantity in (9.16) describes the local rotation rate of the lattice: static lattices are char-
acterized by non-rotation. (This is directly related to the ‘hypersurface-orthogonality’
of the lattice worldlines.)

To elucidate the physical significance of wi , let us repeat our earlier weak-
field slow-orbit calculation that led from (9.6) to (9.7), but this time with wi . We
approximate the metric (9.13) by

ds2 =
(

1+ 2�

c2

)(
1− 2w · v

c3

)
c2 dt2 − dl2

≈
(

1+ 2�

c2
− 2w · v

c3

)
c2 dt2 − dl2,

writing w · v for wi dxi/dt and once again dl2 for the metric of the lattice. This is
equivalent to replacing the � of (9.6) by �− (w · v)/c and thus leads to the following
generalization of (9.7):∫ �2

�1

ds = c(t2 − t1)−
1

c

∫ t2

t1

(1

2
v2 −�+ w · v

c

)
dt. (9.17)

The geodesic requirement on the orbit, namely that
∫

ds be maximal, is once again
equivalent to the integral on the RHS being minimal. But an identical variational
principle is known to hold in an electromagnetic field with scalar potential � and
vector potential w for the non-relativistic (that is, slow) motion of a particle whose
mass and charge are numerically equal (m = q).1 In gravitation, the mass and ‘charge’
of a particle are always equal (mI = mG). So in a stationary field a free particle moves
like a particle of equal charge and mass subject to a Lorentz-type force law

f = −grad �+ 1

c
v × curl w (9.18)

1 See, for example, J. D. Jackson, Classical Electrodynamics, 2nd edn, John Wiley, New York, 1975,
eqn (12.9).
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per unit mass. For it is this law, in conjunction with Newton’s f = ma, that is
equivalent to the above variational principle when ∂w/∂t = 0. [Cf. Jackson, loc. cit.,
eqn (6.31).] But now � and w are the relativistic potentials of the gravitational field,
defined by the canonical metric (9.13). (The term ‘gravimagnetic potential’ is also
used for w.) The slow general-relativistic motion of particles in weak stationary fields
is thus seen to have pronounced Maxwellian features, which will be seen to carry over
even to the field equations. (One corollary: moving matter gravitates differently from
static matter.)

Now we know from classical mechanics that if a point P of a rigid reference frame
L travels at acceleration a through an inertial frame while L rotates about P at angular
velocity �, then a free particle of unit mass at P moving relative to L at velocity v
experiences relative to L an ‘inertial’ force

f = −a + 2v ×�, (9.19)

where the last term is the well-known Coriolis force. But according to Einstein, inertial
and gravitational forces are indistinguishable. Comparison of (9.19) with (9.18) thus
leads to the conclusion that the lattice at any of its points P moves relative to the local
inertial frame (LIF) with acceleration

a ≈ grad � (9.20)

and angular velocity

� ≈ 1

2c
curl w. (9.21)

Conversely (according to the present approximative calculation) the acceleration
of the LIF and its rotation rate relative to the lattice are−a and−� respectively. The
first, of course, is what would be recognized as the gravitational field relative to the
lattice, and the second is the rotation rate of a ‘gyrocompass’ suspended at a lattice
point. The exact calculation leads to the following (gauge-invariant!) expressions:

|a| = gravitational field = (kij�,i�,j )
1/2 (9.22)

|�| = (proper-time) rotation rate of gyrocompass

= 1

2
√

2c
e�/c2[

kikkjl(wi,j − wj,i)(wk,l − wl,k)
]1/2

, (9.23)

where the magnitude of the gravitational field is defined as that of the proper
acceleration of a lattice point. [For the proofs, see eqn (10.50) and Exercise 10.11.]

We have seen � in its role as clock-rate function, and, almost equivalently, with
that as frequency-shift function. And both earlier and now again we have recognized
its role as scalar potential. This latter, however, is to be understood as determining
the whole field relative to the lattice—or what in Newtonian language would be the
sum of the gravitational and the inertial force on a unit mass. In a rotating frame, for
example, that includes the centrifugal force and corresponds to what on earth is called
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the ‘geopotential’. Einstein, in his famous 1905 paper, in which he already predicted
time dilation by a γ -factor, suggested that this might be tested by comparing clock
rates at the equator with those at the pole. His equivalence principle and with it the
recognition of gravitational time dilation was still two years away. As a result, we
know today (also from measurements) that there is no rate-discrepancy at all between
clocks at the pole and clocks at the equator: the surface of the oblate earth is practically
an equipotential surface � = const! This can be seen by imagining the earth as having
cooled from a rigidly rotating liquid ball; if its surface were not equipotential, the
total field would have a component in the surface causing the liquid to move sideways,
thus violating the assumption of equilibrium (rigid motion).

Lastly, let us take one more look at eqn (9.17) for an arbitrary path. It shows that
the proper-time increment c−1 ∫ ds measured by a slowly transported standard clock
(like one of those flown by Hafele and Keating around the world—cf. penultimate
paragraph of Section 3.5) differs from the coordinate-time increment (t2 − t1) by:
(i) the usual special-relativistic time dilation − ∫ 1

2 (v2/c2) dt [cf. eqn (3.3)]; (ii) the
general-relativistic ‘altitude’ correction − ∫ (�/c2) dt ; and (iii) in non-static fields
also a ‘source-motion’ correction − ∫ (w · v/c3) dt .

9.7 The uniformly rotating lattice in Minkowski space

A transparent example for some of our results on stationary fields is provided by the
uniformly rotating lattice. We begin by writing the metric of Minkowski space in
cylindrical coordinates r, φ′, z (now again with c = 1):

ds2 = dt2 − dr2 − r2 dφ′2 − dz2 (9.24)

and introduce a new angular coordinate φ measured from a fiduciary half-plane that
rotates about the z-axis with constant angular velocity ω; [see Fig. (9.5)]:

φ = φ′ − ωt, dφ′ = dφ + ω dt. (9.25)

Fig. 9.5
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As we mentioned in Section 9.2 (third paragraph from end), the appropriate coordinate
time for a rotating disk (we now have a stack of them) is that of the underly-
ing Minkowski space. Accordingly the only change we make to (9.24) is (9.25).
A straightforward calculation then yields the following canonical form of the metric
for the field associated with the rotating lattice:

ds2 = (1− r2ω2)

[
dt − r2ω

1− r2ω2
dφ

]2

− dr2 − r2

1− r2ω2
dφ2 − dz2. (9.26)

Lattice points at r = 1/ω satisfy ds2 = 0; that is, they move at the speed of light.
Beyond that, neither the lattice nor the metric (9.26)—though valid—is of interest.

We recognize the expression 1−r2ω2 that occurs repeatedly in (9.26) as (1−v2) =
γ−2, γ being the Lorentz-factor of the lattice points at radius r . This explains its
presence at the beginning: lattice clocks must be speeded up by a factor γ to keep in
step with the underlying clocks (SR-time dilation!); its presence underneath r2 dφ2

shows the ruler length of a lattice circle r, z = const to be
∮

γ r dφ = 2πrγ (SR-length
contraction of comoving rulers!).

The metric of the lattice is the negative of the last three terms in (9.26) and represents
a curved 3-space (cf. Exercise 9.11):

kij = diag (1, r2(1− r2ω2)−1, 1),

kij = diag (1, r−2(1− r2ω2), 1). (9.27)

And the relativistic scalar potential � is given by exp 2� = (1− r2w2); that is,

� = 1
2 log(1− r2ω2). (9.28)

Its gradient (the centrifugal force) is clearly in the r-direction and, since r is then
ruler distance, we simply have

|grad �| =
∣∣∣d�

dr

∣∣∣ = rω2

(1− r2ω2)
. (9.29)

[This is also what the exact formula (9.22) yields.] So the Newtonian centrifugal force
rω2 now has a relativistic correction factor γ 2 which makes it approach infinity at
r = 1/ω, the limit of stationarity.

But perhaps the most interesting result to be extracted from the metric (9.26) is the
so-called Thomas precession of special relativity. Imagine a gyrocompass suspended
at one of the lattice points. Relative to the underlying space, that gyrocompass is being
taken along a circular path and will not precisely return to its original orientation after
a complete revolution (cf. Exercise 3.15). To calculate the effect, we first read off the
relativistic vector potential components from (9.26):

w = (0, r2ω(1− r2ω2)−1, 0), (9.30)
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whose only non-zero derivative is

w2,1 =
2rω

(1− r2ω2)2
. (9.31)

Substituting this into (9.23) and writing v for rω, we find

� = v

r
(1− v2)−1 (9.32)

exactly. [While the summation in (9.23) ranges over all values of i, j, k, l, only
1, 2, 1, 2 and 2, 1, 2, 1 give non-zero contributions.] So after one revolution the
orientation of the gyrocompass relative to the lattice changes by an angle

α′ = ��τ = �γ−1�t = �γ−12πω−1 = (1− v2)−1/22π (9.33)

in the opposite sense to ω, as can be seen from (9.21) and (9.31). If this were 2π ,
there would be no precession of the gyrocompass in the underlying space. But, in
fact, there is a precession, in the retro sense, given by

α = α′ − 2π = 2π((1− v2)−1/2 − 1) ≈ πv2, (πv2/c2 in full) (9.34)

per revolution. (Compare this with the result of Exercise 3.15.)

Exercises 9
9.1. Observers at two fixed points A and B in a stationary gravitational field

determine the radar distance between them by use of standard clocks. If LA and
LB are these determinations made at A and B respectively, prove LA/LB =
exp(�A/c2)/ exp(�B/c2).

9.2. Two twins decide to ‘buy youth’ in two different ways. The first buys enough
energy to quickly accelerate himself and his vehicle to a certain high speed, at which
he then cruises through space for a long time before spending as much energy again
decelerating and returning to earth. The second twin buys enough energy to lower
herself and her vehicle quickly to the surface of a dense planet, where she will live
for a long time before spending as much energy again to return to earth. Both return
simultaneously and during their absence both have aged at only one nth the rate of
their former contemporaries. But as long as the gravitational field is weak enough to
be Newtonian, their expenses are essentially in the ratio (n− 1) : log n in favor of the
dense planet. Prove this. (Cf. also Section 12.2 below.)

9.3. Consider a light path l from a fixed point A to a fixed point B in a stationary
gravitational field with scalar potential �. The light was emitted by a source of proper
frequency ν0 passing A at velocity u (measured with standard clocks and rulers at
rest) in a direction making an angle α with l. By using an auxiliary observer at A′
near A on l and our earlier formula (4.3), find the frequency ν at which the source is
seen at B.

9.4. A satellite is in circular orbit of radius r around the earth (radius R), satisfying
Kepler’s law ω2 = GM/r3, where M is the mass of the earth and ω the angular
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velocity in the orbit. Neglecting the rotation of the earth, prove that the frequency ν

observed on earth when the satellite appears directly overhead, of a source of proper
frequency ν0 on the satellite, is given by

ν

ν0
≈ 1+ GM

Rc2
− 3GM

2rc2
.

Note that this exceeds unity only if r > 3R/2.

9.5. Two neighboring particles are released from rest on the same vertical and fall
freely to earth. Use Newton’s law r̈ = −GM/r2 to prove that the spatial separation
η of these particles satisfies η̈ = (2GM/r3)η (tidal acceleration!). Their worldlines
are geodesics in the spacetime surrounding the earth. Draw a diagram of these (slow)
geodesics in a quasi-Minkowskian spacetime to establish that ct corresponds to their
arc length and η to the η of eqn (8.4). Hence deduce that −2GM/c2r3 is (at least
approximately) the Gaussian curvature of earth’s spacetime in an orientation deter-
mined by dt and dr . (Note the correlation of curvature with tidal force.) What is the
curvature in an orientation determined by dt and a direction orthogonal to a radius?

9.6. In the Eistein universe (9.12), a rocketship moves radially, from rest, at con-
stant proper acceleration α. How much time elapses at the starting point before the
rocketship returns? [Answer: 2π(a/c)

√
1+ c2/πaα.]

9.7. Prove our assertion of Section 9.6 that the most general time transformation t =
F(t ′, xi) that leaves the stationary metric (9.2) form-invariant is that corresponding
to eqn (9.14). [Hint: all four partial derivatives of F must be time-independent.]

9.8. Apply a gauge transformation to convert the stationary metric

ds2 = x2 dt2 − 6x4y dx dt − 2x5 dy dt + 6x7y dx dy − dz2

into a static metric. (The coordinate x is dimensionless, y and z are lengths, and
c = 1.)

9.9. In the static spacetime whose canonical metric is of the form

ds2 =
(

1+ x2

a2

)
dt2 − dl2,

where dl2 is an arbitrary 3-metric in x, y, z, find a subset of lattice points whose
worldlines are geodesics.

9.10. In the stationary spacetime with canonical metric

ds2 = (dt + aydx)2 − (dx2 + dy2 + dz2)

find the rotation of the lattice, and also prove that the lattice worldlines are geodesics.
(This simple spacetime bears some resemblance to the famous Gödel universe.)

9.11. For the rotating lattice of Section 9.7 find the frequency-shift in the light sent
from any point at radius r0 to another at radius r1. Compare your result with our
earlier formula (4.6).



202 Static and stationary spacetimes

9.12. (i) By considering the lengths of circles r, z = const in the lattice corre-
sponding to the metric (9.26), prove that the Gaussian curvature of the lattice on the
z-axis for the orientation orthogonal to that axis is −3ω2/c2. (ii) Prove that the radii
r = var are geodesics of the lattice. [Hint: symmetry surfaces.] Hence find the value
of its Gaussian curvature for the orientation z = const as a function of r . [Answer:
−(3ω2/c2)(1− r2ω2/c2)−2.]
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Geodesics, curvature tensor and
vacuum field equations

10.1 Tensors for general relativity

Whereas historically SR could progress quite a long way (until 1908, to be exact)
without recourse to tensors, no such elementary access to GR is possible. The very
foundations of the theory, the field equations, require the language of tensors even
for their enunciation.

In Chapter 7 we introduced tensors already with a view to using them both in SR
and in GR. We regarded them as existing in an arbitrary background space V N ,
coordinatized by arbitrary coordinates {xi}, and possessing an arbitrary pseudo-
Riemannian metric gij . Only after eqn (7.19) did we specialize by taking V N to
be Minkowski space, {xi} its standard coordinates {x, y, z, ct} and consequently
gij = diag(−1,−1,−1, 1).

Now that we have recognized curved spacetime as playing the key role in GR, it
will be natural to take that as the background space for our tensors. The coordinates
are no longer required to have special physical meaning (except when its suits us—
for example, in the standard form of the metric for stationary spacetimes.) Arbitrary
(Gaussian) coordinate systems are permitted, as long as they cover the spacetime
smoothly (patchwise if necessary). Different such systems are related to each other
by smooth and invertible transformations xi′ = xi′(xi), which, of course, also form
a group as did the Lorentz transformations of SR. When we transform coordinates,
tensor components undergo their typical tensor transformations, but now these usually
vary from point to point unlike the universal Lorentz transformations of SR.

Once again we revert to Greek indicesµ, ν, . . . for the range 1–4 and usually reserve
Latin indices i, j, . . . for the range 1–3 (or for tensors in arbitrary dimensions.) In
curved spacetime we can no longer picture vectors as displacements, but physicists
have little trouble picturing them as scalar multiples of differential displacements
dxµ. We recall the definitions (7.9)–(7.11) of scalar product, square, and magnitude
of vectors:

A · B = gµνA
µBν, A2 = gµνA

µAν, A = |A| =: |A2|1/2 ≥ 0. (10.1)

These invariants can be evaluated in any coordinate system, but in the locally
Minkowskian system at each point they reduce to their familiar SR forms and
meanings. We can define the angle θ between two non-null vectors A and B
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by cos θ := A · B/AB, and in properly Riemannian spaces this determines a
real θ .

In particular, two directions dx and �x are orthogonal if

gµν dxµ δxν = 0. (10.2)

We speak of coordinate hypersurfaces xν = const and coordinate lines xµ = var.
The condition for the xµ and xν lines to be orthogonal at a given point is seen to be

gµν = 0 (specific µ and ν), (10.3)

since the µth and νth components are then the only non-zero components of dx and
�x, respectively. We say the xµ line is orthogonal to the xµ hypersurface if it is
orthogonal to all directions in the hypersurface, and for that we need

gµν = 0 (specific µ, all ν �= µ). (10.4)

For example, in static spacetimes with metric (9.5) the worldlines t = var are orthog-
onal to the time slices t = const, since g4i = 0; not so in stationary spacetimes with
metric (9.2), where the g4i (A, B, and C) do not all vanish. When all the mixed gµν

vanish we speak of orthogonal coordinates or of a diagonal metric. When additionally
all the gµµ are ±1 at some point, we call the coordinates orthonormal or pseudo-
Euclidean at that point. Since orthogonal coordinates can considerably simplify the
mathematics, it is useful to know that in 2- and 3-dimensional spaces orthogonal
coordinates always exist. In higher dimensions this is unfortunately no longer true.
But at least in static spacetimes, with metric (9.5), fully orthogonal coordinates can
always be presupposed since dl2 is diagonizable.

Only in one important respect do the 4-tensors of SR not generalize painlessly
to GR. As we saw in Section 7.2, the partial differentiation of tensors is a tensorial
operation only as long as the permitted coordinate transformations are linear—as they
are for the Cartesian tensors of classical physics and the 4-tensors of SR. But in GR
non-linear coordinate transformations are forced on us. And yet, neither physics nor
geometry can progress far without differentiation. So a more general tensorial oper-
ation had to be found: it is called covariant differentiation. And since one approach
to this topic is via geodesics, that is where we shall turn our attention next.

10.2 Geodesics

We have talked a lot about geodesics in the preceding two chapters but we still have
no systematic method for actually finding the geodesics in a general curved space.
This problem will now be addressed. And for the next few sections we shall again do
the analysis quite generally for an N -dimensional (pseudo-)Riemannian space V N

with metric
ds2 = gij dxi dxj (i, j = 1, . . . , N). (10.5)
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Let us consider the geodesic between two given points A and B, and a bundle of
neighboring curves also connecting A to B. Our problem is to find the curve satisfying
the variational principle

0 = δ

∫
ds = δ

∫ ∣∣gij dxi dxj
∣∣1/2 = δ

∫ u2

u1

∣∣∣∣gij
dxi

du

dxj

du

∣∣∣∣1/2

du, (10.6)

where in the last integral u is an arbitrary parameter which continuously parametrizes
the entire bundle of comparison curves (much like ct in Fig. 10.1) so as to have fixed
values u1 and u2 at the fixed end-points of the curves. With ẋi = dxi/du, eqn (10.6)
becomes

δ

∫ ∣∣gij ẋ
i ẋj
∣∣1/2 du =: δ

∫
L(xi, ẋi ) du = 0. (10.7)

The reader is perhaps familiar from classical mechanics with this kind of ‘variational’
problem. Its solution xi = xi(u) is found by integrating the well-known Euler–
Lagrange differential equations:

d

du

( ∂L

∂ẋi

)
− ∂L

∂xi
= 0. (10.8)

At this stage we may conveniently take u to be the arc s along the solution curve,
provided that curve is not null. This makes L = 1 along the solution curve and allows
us to replace the awkward Lagrangian L defined by eqn (10.7) (the square root of a
metric is never pleasant) by essentially its square,

� := gij ẋ
i ẋj = ±L2. (10.9)

For consider the variational principle

δ

∫
� ds = 0, (10.10)

whose solution is determined by the N equations

Li := d

ds

( ∂�

∂ẋi

)
− ∂�

∂xi
= 0 = d

ds

(
2L

∂L

∂ẋi

)
− 2L

∂L

∂xi
, (10.11)

where, for future reference, we have introduced the notation Li for the LHS of the
ith equation. Since the solution satisfies L = const, we see that the Euler–Lagrange
equations for � are equivalent to those for L. They are, in fact, the standard equations
used in the practical determination of geodesics.

Mainly for theoretical purposes, we now further examine the structure of the set
of eqns (10.11)(i). With (10.9) substituted it becomes, successively (with a few index
tricks),

Li ≡ d

ds
(2gij ẋ

j )− gjk,i ẋ
j ẋk = 0

2gij,kẋ
j ẋk + 2gij ẍ

j − gjk,i ẋ
j ẋk = 0 (10.12)

(gij,k + gik,j − gjk,i)ẋ
j ẋk + 2gij ẍ

j = 0.
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So if we now define the so-called Christoffel symbols of the first kind by

�ijk := 1
2 (gij,k + gik,j − gjk,i), (10.13)

and those of the second kind (also called connection coefficients) by raising the index i,

�i
jk := ghi�hjk, (10.14)

we can re-express eqns (10.12) (after raising i and recalling gi
j = δi

j ) as

1
2L

i ≡ ẍi + �i
jkẋ

j ẋk = 0. (10.15)

This is the alternative standard form of the set of differential equations for geodesics. It
shows that geodesics are fully determined by an initial point O and an initial direction
ẋi

0. [At least, if we assume analyticity: for eqn (10.15) yields ẍi
0, (10.15) differentiated

yields
...
x i

0, etc., and so the Taylor series for xi(u) can be constructed.]
The Christoffel symbols play an important role in differential geometry and also

in GR. But they are not tensors! We note their symmetry:

�ijk = �ikj , �i
jk = �i

kj , (10.16)

and the ‘inverse’ of eqn (10.13), which shows they are not tensors:

gij,k = �ijk + �jik. (10.17)

[For proof, just substitute (10.13) into the RHS.] This latter equation, together with
(10.13), shows that the vanishing of all the �s at one point is equivalent to the vanishing
of the derivatives of all the gs.

For the actual calculation of the �s of a given metric (an often unavoidable task in
GR) one can sometimes bypass (10.13) and simply compare the coefficients of ẋj ẋk

in eqns (10.15) with those in the written-out versions of eqns (10.11). This works best
in the case of orthogonal coordinates when eqns (10.11) and (10.15) differ only by
a factor 2gii . But then one can also use the formulae of the Appendix of this book.
(See, for example, Exercise 10.3.)

The reader may worry that eqn (10.15) ‘does not know’ that the parameter is
supposed to be the arc. But, essentially, it knows: one can show [cf. after (10.42)]
that any solution xi(u) of (10.15) with · = d/du necessarily satisfies

gij ẋ
i ẋj = const; (10.18)

that is, L = const, which was the basic assumption of our derivation.
We can re-write eqn (10.18) in the form ds2 = (const) du2 and deduce, first,

that the sign of ds2 is necessarily constant along a geodesic, and second, that every
solution parameter is ‘affinely’ related to the arc:

u = as + b. (10.19)
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Here we have assumed that there is an arc; that is, that our geodesic is not null. But
we do not need this assumption to verify directly that the parameters of all possible
solutions xi(u) of (10.15) are related affinely to each other:

ũ = au+ b. (10.20)

[For proof, set ũ = f (u) and show that (10.15) is form-invariant if and only iff ′′ = 0.]
These parameters are consequently called affine parameters along the geodesic.

We can now define a null geodesic as the limit of a family of non-null geodesics
whose initial direction is gradually turned into a null direction. The following example
will make this clear (cf. Fig. 10.1). Consider, in SR, the family of geodesic worldlines
x = vt , y = z = 0. For each we have s = ct/γ , γ being the usual Lorentz factor.
Unlike s, the affine parameter

u = ct (= γ s, if s exists)

satisfactorily parametrizes the entire family including the null member x = ct .
The LHSs of eqns (10.11) and (10.15) continuously change while remaining form-
invariant under any such limiting procedure. These equations, with the extra
requirement ds2 = 0, thus determine all null geodesics. [We may note that the origi-
nal variational principle (10.7), with its solution (10.8), is useless for null geodesics:
for example, ∂L/∂xk = 1

2 |gij ẋ
i ẋj |−1/2gij,k is infinite when L = 0.]

An affine parameter along a null geodesic is proportional to the arc along a neigh-
boring non-null geodesic. (In spacetime, when we speak of ‘neighboring’, we mean
‘separated by small coordinate differences’, provided the coordinates are continu-
ous.) It is the nearest thing we can find to ‘distance’ along a null geodesic. While we
cannot assign an invariant length to any segment of a null geodesic, ratios of lengths
can be invariantly defined as the ratios of the corresponding increments of an affine
parameter.

Fig. 10.1
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10.3 Geodesic coordinates

Geodesics provide a convenient (though not the only) approach to an important
lemma: in a neighborhood of any given point P we can always construct a coordinate
system such that all the Christoffel symbols vanish at P. Any coordinate system with
this property is called a geodesic coordinate system at P and P is said to be its pole. We
immediately note two things: (i) the lemma could not be true if the �s were tensors,
since no tensor except the zero tensor can ever have all its components zero; and
(ii) in these coordinates all the gij,k vanish at P.

For proof of the lemma, we first transform to orthonormal coordinates yi at P.
[cf. after (10.4)]. This can be achieved by ‘completing the square’ as in (8.13). Around
P we then draw the coordinate hypersphere

∑
(yi)2 = ε2 for some convenient ε

(the analog of a circle x2 + c2t2 = ε2 in Fig. 10.1.) We label this u = ε, and P,
u = 0, thereby defining an affine parameter u on every geodesic issuing from P,
including possible null geodesics. (Of course, this is only one of many possibilities
of ‘spreading’ an affine parameter continuously over all the geodesics.) There is
a general theorem which states that in a sufficiently small neighborhood of P, say
within our ε-sphere, every point Q can be connected to P by a unique geodesic. In
this neighborhood we can define new coordinates xi as follows: let yi(u) represent
the unique geodesic connecting P to Q, and write(

dyi

du

)
u=0
=: ai (10.21)

for its tangent vector at P. Then if Q corresponds to the parameter value u, define its
xi-coordinate thus:

xi = aiu. (10.22)

As u varies, xi ranges over the entire geodesic. Since u is an affine parameter,
eqn (10.22) must satisfy the differential equation (10.15), whence

�i
jka

j ak = 0

all along PQ. But this is true for every geodesic through P. So we can conclude that
�i

jk = 0 at P, and that the xi indeed provide one geodesic system with pole at P.
Of course, there are many more geodesic coordinate systems at P than the presently

discussed systems based on eqn (10.22), for any of the latter can be totally deformed
away from P without affecting the defining property �i

jk = 0 at P.
Having one geodesic coordinate system at P, it is indeed easy to generate infinitely

many others. For we have the following lemma: any two geodesic systems {xi} and
{xi′ } at P are related ‘locally linearly’:

(pi′
jk)P = 0 (10.23)

[in the notation (7.1)], and, conversely, any system so related to a geodesic system is
itself geodesic. [Relation (10.23) is clearly an equivalence relation between coordinate
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systems.] For proof we have, with ·≡ d/du,

ẋi′ = pi′
j ẋj

ẍi′ = pi′
jkẋ

j ẋk + pi′
i ẍi . (10.24)

Now any geodesic xi(u) through P referred to an affine parameter must satisfy
eqn (10.15), and thus ẍi = 0 at P if {xi} is a geodesic system. For two such sys-
tems we then deduce from (10.24) that (pi′

jk)P = 0. Conversely, if (pi′
jk)P = 0 and

{xi} is geodesic at P, every geodesic in {xi′ } also satisfies ẍi′ = 0 at P and so, by
(10.15), (�i′

j ′k′)P = 0.
Next suppose we transform from a system {xi′ } that is geodesic at P to an arbitrary

system {xi}. Then all geodesics through P, at P satisfy ẍi′ = 0 and thus, ‘flipping’
pi′

i in eqn (10.24),

ẍi + pi′
jkp

i
i′ ẋ

j ẋk = 0.

Comparison with (10.15) then shows that at P:

�i
jk = pi′

jkp
i
i′ . (10.25)

However, if we differentiate the relation pi
i′p

i′
j = δi

j [cf. (7.2)] with respect to xk ,
we find

pi
i′p

i′
jk + pi

i′k′p
k′
k pi′

j = 0,

which, after a cosmetic dummy replacement, yields the following alternative to the
RHS of (10.25):

�i
jk = −pi

j ′k′p
j ′
j pk′

k . (10.26)

Both versions will be needed in the next section.
Any coordinate system in terms of which the geodesics through a given point P have

equations like (10.22) are called Riemannian. If additionally they are orthonormal
(that is, pseudo-Euclidean) at P, they are called normal coordinates with pole at P.
Any two normal systems at P are related to each other globally by generalized rotations
about P; that is, transformations that preserve the (pseudo-)Euclidean metric at P. (In
spacetime these are the LTs.) For, u ∝ s, so ds/du = s/u and therefore

(gij )P xi(Q) xj (Q) = (gij )P
dxi

du

dxj

du
u2 = s2 = (gi′j ′)P xi′(Q) xj ′(Q),

where (gij )P and (gi′j ′)P both represent the (pseudo-)Euclidean metric at P. That

proves it. For example,
∑

(xi)2 = ∑
(xi′)2 if V N is properly Riemannian. These
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normal coordinates are thus the analogs of (pseudo-)Euclidean coordinates in flat
space. Note also the similarity of (10.22) to the familiar relations x = r cos θ, y =
r sin θ and their analogs in higher dimensions.

In GR, any system {x, y, z, ct} that is both geodesic and orthonormal at an event �
is the mathematical embodiment of Einstein’s ‘freely falling cabin’; that is, of a local
inertial frame (LIF) at �. Its nearby lattice points x, y, z = const satisfy ct = s and
thus ẍµ = 0, which are the geodesic equations at � and approximately near �. So
the system is freely falling. The distances between neighboring lattice points near �,
|gij�xi�xj |1/2 (i, j = 1, 2, 3), remain momentarily constant because gµν,σ = 0 at
�. So the system is also rigid and non-rotating. (Recall that a freely falling rotating
box of loose bricks will come apart.) That makes it a LIF.

In general spaces, if a coordinate system {xi} is both geodesic and orthonormal at a
point P, then near P, by essentially the above arguments, each of the mutually orthog-
onal sets of coordinate lines xi = var is seen to correspond to parallel geodesics, and
the entire coordinate net has locally the character of a (pseudo-) Euclidean coordinate
net. In GR this provides the nearest thing we can get to a locally Minkowskian frame.
We can do no better: the second derivatives of the metric, gij,kl , encode the curvature,
and cannot in general be transformed away.

10.4 Covariant and absolute differentiation

In Section 7.2E we noted that the operation of partial differentiation is not a tensorial
operation unless the coordinates transform linearly. The underlying reason for this
is that differentiation involves taking a difference of tensors at different points, and
such a difference is not, in general, a tensor (since the ps differ—cf. Section 7.2D).
However, this is not a problem among the various geodesic coordinate systems with
the same pole P: as we have seen in (10.23), among them (pi′

jk)P is zero and so the
first-order ps are essentially the same at and near P. Our plan for a tensorial and
thus geometrically meaningful derivative operation is now the following: To take
the derivative of a given tensor field in given coordinates at P, we first transform
the field to any geodesic coordinate system at P, take its derivative in that system,
and then tensorially transform the derivative back to the original system. In practice,
fortunately, we shall find a formula that does all this automatically.

To simplify the manipulation, consider just a 2-index tensor field F i
j . Under a

change of coordinates it obeys the usual tensor law [cf. (7.6)]

F i′
j ′ = F i

jpi′
i p

j

j ′ .

Partially differentiating both sides with respect to xk′ yields

F i′
j ′,k′ = F i

j,kp
k
k′p

i′
i p

j

j ′ + F i
jpi′

ikp
k
k′p

j

j ′ + F i
jpi′

i p
j

j ′k′ . (10.27)
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Since the 3-index ps in the last two terms vanish between geodesic systems, F i
j,k

is seen to behave tensorially between such systems. We now define the covariant
derivative F i

j ;k of F i
j , in an arbitrary coordinate system {xi}, as the tensor transform

of the partial derivative in a geodesic system {xi′ }:

F i
j ;k = F i′

j ′,k′p
i
i′p

j ′
j pk′

k .

Since the partial derivatives are related tensorially among geodesic systems, F i
j ;k is

related tensorially to all of them, by transitivity (cf. Section 7.2C). The same is true
of F i′′

j ′′;k′′ , similarly defined in another arbitrary system {xi′′ }. So, again by transitivity
and symmetry, F i

j ;k and F i′′
j ′′;k′′ are tensorially related, which shows that our definition

indeed creates a tensor.
In eqn (10.27), let us now assume the system {xi′ } to be geodesic and the system
{xi} to be arbitrary; let us write a for the dummy j in the last term, and similarly
for the dummy i in the term before; if we then ‘flip’ pi′

i , p
j

j ′ , and pk
k′ [cf. (7.3)],

we get

F i′
j ′,k′p

i
i′p

j ′
j pk′

k = F i
j,k + Fa

j pi′
akp

i
i′ + F i

apa
j ′k′p

j ′
j pk′

k .

The LHS is the required covariant derivative F i
j ;k . On the RHS we can eliminate

all reference to the auxiliary geodesic coordinate system by applying our carefully
prepared formulae (10.25) and (10.26). Thus we finally obtain (with some relief!)

F i
j ;k = F i

j,k + Fa
j �i

ak − F i
a�a

jk. (10.28)

This formula is typical. For the general tensor field F ······ it again begins with the partial
derivative, followed by positive �-terms resulting from the replacement, one after the
other, of all the contravariant indices of F ······ by a dummy which is linked to a � that
also takes over the replaced free index; similarly there is a negative �-term for each
covariant index. It is an easy pattern to remember. In particular, for a scalar φ(xi) it
gives

φ;i = φ,i, (10.29)

which is not surprising, since φ,i is a tensor.
A pleasant property of the covariant derivative is that it satisfies the ordinary rules

for differentiating sums and (inner and outer) products:

(S······ + T ······ );k = S······ ;k + T ······ ;k, (10.30)

(S······T ······ );k = S······ ;kT
······ + S······T ······ ;k. (10.31)

For, at the pole of geodesic coordinates, where covariant and partial differentiation
are the same, the above equations are trivially true; but, being tensor equations, they
must then be true in all coordinates.
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Equally pleasant is the ‘covariant constancy’ of the fundamental tensors gij , g
ij ,

and δi
j :

gij ;k = 0, gij ;k = 0, (10.32)

δi
j ;k = 0. (10.33)

The first and third of these equations again follow immediately from their validity
at the pole of geodesic coordinates. The second results on covariantly differentiating
the identity gij g

jk = δk
i and then multiplying by gih. As a consequence, covariant

differentiation commutes with index shifting and contraction:

ghiF
i
j ;k = (ghiF

i
j );k = Fhj ;k, (10.34)

δ
j
i F i

j ;k = (δ
j
i F i

j );k = F i
i;k, (10.35)

which makes the expressions on the RHSs unambiguous, when regarded as arising
from F i

j .
We next define a concept closely related to covariant differentiation, namely abso-

lute differentiation. Consider a curve C parametrically given by xi(u), and on it a
tensor field; for example, F i

j (u). Then the derivative of F i
j along C, dF i

j /du, is not
a tensor (except among the geodesic coordinates at each point of C) as can again
be seen by differentiating the tensor transformation law F i′

j ′ = F i
jpi′

i p
j

j ′ , this time
with respect to u. So, analogously to the covariant derivative, we now define an abso-
lute derivative DF i

j /du by stipulating that it be a tensor and reduce to the ordinary
derivative dF i

j /du at the pole of geodesic coordinates. Following a calculation anal-
ogous to that preceding eqn (10.28), we could now find the corresponding formula
for DF i

j /du. However, we can use eqn (10.28) directly by applying a little trick: if
F i

j is not already defined off C, let us extend its definition arbitrarily but smoothly
into a neighborhood of C. [For example, we can define F i

j = (F i
j )C—in some arbi-

trary coordinate system—throughout the hypersurface generated by the geodesics
orthogonal to C at a given point.] Then DF i

j /du will be given by

DF i
j

du
= F i

j ;kẋ
k. (10.36)

For the RHS is a tensor (from the chain rule, ẋi′ = pi′
i ẋi , so ẋi is a vector.) and

it does reduce to dF i
j /du at the pole of geodesic coordinates. Substituting into (10.36)

from (10.28), we then find

DF i
j

du
=

dF i
j

du
+ Fa

j �i
akẋ

k − F i
a�a

jkẋ
k. (10.37)

In this final formula, no extension of F i
j away from C is needed. The generalizations

of both (10.36) and (10.37) to arbitrary tensor fields F ······ are obvious. In particular,
and importantly, for any scalar φ we have Dφ/du = dφ/du.



Covariant and absolute differentiation 213

That absolute differentiation follows the ordinary rules for differentiating sums and
products is again clear at the pole of geodesic coordinates, where D ≡ d; and that
gij , g

ij , and δi
j are ‘absolutely constant’ along any curve (Dgij /du = 0, etc.) follows

from (10.36), (10.32), and (10.33).
One particularly important vector field along a curve C is that of its tangent vector T.

If C is not null, we can take the arc as parameter and define the unit tangent vector as

T i = dxi

ds
. (10.38)

Its unicity is obvious:

T2 = gij
dxi

ds

dxj

ds
= ds2

ds2
= ±1. (10.39)

The absolute derivative of T is called the principal normal N of C; from (10.38) and
(10.37) we find

Ni = DT i

ds
= d2xi

ds2
+ �i

jk

dxj

ds

dxk

ds
= 1

2
L

i , (10.40)

where the last equation follows from (10.15) and implies the possibility of an
alternative calculation of Ni . The magnitude of N is defined to be the curvature κ of C:

κ = |gijN
iNj |1/2. (10.41)

(Since T has unit magnitude, its derivative measures its rate of turning.) That N is
indeed a normal can be seen by absolutely differentiating (10.39):

0 = D

ds
(gij T

iT j ) = 2gijN
iT j = 2N · T (10.42)

From (10.40)(iii) we see that a geodesic, and only a geodesic, has zero curvature.
It is this property that allows us to characterize geodesics as ‘straightest’ lines.

If we define T i(u) and Ni(u) as in (10.38) and (10.40), but for an arbitrary param-
eter u instead of the arc s, eqn (10.42) without the initial ‘0 =’ and with u for s, still
applies. So if Li (u) = 0, and consequently Ni(u) = 0, we shall have, from (10.42),
gij ẋ

i ẋj = const, since the absolute derivative of a scalar coincides with its ordinary
derivative. This establishes our earlier assertion [cf. the paragraph containing (10.18)]
that any solution of the geodesic equation L

i (u) = 0 necessarily satisfies (10.18).
Recall that this implies the constancy of the sign of ds2 all along every geodesic; in
spacetime, therefore, geodesics fall into three categories: timelike, spacelike, and null.

In Euclidean 3-space, if along a straight line we define a unit tangent vector
t = dr/ds, then t is constant, dt/ds = 0; and this holds even if we define t = dr/du

for some affine parameter u. But in terms of an arbitrary parameter w the tangent
vector t = dr/dw varies in magnitude and so we have dt/dw = φt for some
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function φ along the line; and conversely, such an equation still implies a straight
line. In just the same way, in curved space, the equation N(w) ∝ T(w), or

D

dw
T(w) = φ(w) T(w), or

d2xi

dw2
+ �i

jk

dxj

dw

dxk

dw
= φ

dxi

dw
(10.43)

still implies a geodesic. (Evidently the w here is a non-affine parameter, otherwise
the RHS would be absent.) For proof, suppose T(w) = dxi/dw, T(u) = dxi/du, for
two different parameters u and w, so that

T(w) = T(u)
du

dw
=: ψ(w) T(u). (10.44)

Substituting this into (10.43)(i) and performing the differentiation, we have

ψ2 D

du
T(u)+ dψ

dw
T(u) = φ(w) ψ(w) T(u),

since, by (10.37), D/dw = (du/dw)D/du. We can now choose ψ(w) so as to make
the second and third terms in this equation equal:

log ψ =
∫

φ(w) dw,

and this, by (10.44), yields u = ∫ ψ(w) dw as an affine parameter. Conversely the
geodesic equation N(u) = 0 becomes N(w)∝T(w) in terms of a general parameter
w, as absolute differentiation of (10.44) shows.

An important conclusion that can be drawn from (10.40) and the orthogonality
(10.42) (even if s is replaced by an affine parameter u) is the following: Li (u) T i(u) =
0. This tells us that there is a linear relation connecting the N differential equations
Li (u) = 0. So if N−1 of them are satisfied, the N th will be satisfied automatically—
unless T N ≡ dxN/du = 0; that is, unless xN = const along the curve. This often
allows us to discard whichever is the ‘worst’ of the differential equations and to replace
it by the universally valid relation � = const (= ±1 if u = s), which contains only
first derivatives.

Let us now look at the tangents and normals of worldlines xµ(τ) of particles in
curved spacetime (τ = s/c being proper time). Naturally we define the generalized
4-velocity U, 4-acceleration A, and the proper acceleration α of such particles as
follows:

Uµ := dxµ

dτ
= cT µ (10.45)

Aµ := DUµ

dτ
= c2Nµ = 1

2
c2

L
µ (10.46)

α := |gµνA
µAν |1/2 = c2κ. (10.47)

For these are tensorial definitions and they reduce in LIF coordinates (cf. penultimate
paragraph of Section 10.3)—that is, when seen in the freely falling cabin—to exactly
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the familiar SR definitions. Apart from factors c, Uµ is thus seen to be the tangent
vector, Aµ the normal vector, and α the curvature of the worldline! Just as we would
expect, geodesic worldlines are characterized by Aµ = 0 or, equivalently, by α = 0:
geodesics correspond to non-accelerated particles.

As a simple example, let us find the 4-acceleration Aµ of a lattice point in the
stationary field (9.13). It will provide us with a measure of the gravitational field
itself. From (10.46) and (10.40), now with · = d/ds and temporarily with c = 1, we
have

Aµ = gµνẍ
ν + �µνρẋν ẋρ .

But for a lattice point (xi = const, i = 1, 2, 3) in (9.13) we also have

ẋi = 0, ẋ4 = e−� = const, ẍµ = 0,

so that [cf. (10.13)]

Aµ = �µ44e−2� = − 1
2g44,µe−2� = (−�,i, 0). (10.48)

As long as we preserve the canonical form (9.13), the quantity

a = �,i (10.49)

is a 3-vector relative to the spatial metric kij . Reference to (5.23) and (7.22) then
identifies it as the 3-acceleration of the lattice point relative to the rest-LIF. It is the
force on our feet when we stand in the lattice. Its negative is the gravitational field. Its
magnitude α, the proper acceleration, can be evaluated either relative to the metric
kij , or as that of Aµ relative to the metric (9.13). Either approach yields

α = (�,i�,j k
ij )1/2. (10.50)

To see the latter, observe that �,i�,j k
ij is gauge invariant [cf. (9.16)] and equals

−AµAνg
µν when the gauge is � = wi = 0. Note also from dimensional consid-

erations that eqns (10.50), (10.49), and the extremities of eqn (10.48) are valid even
if c �= 1.

One further geometric aspect of absolute differentiation needs to be addressed
briefly. It concerns the parallel transport of a vector V i along a curve xi(u), which
is defined by

DV i

du
= 0. (10.51)

In flat space, referred to (pseudo-)Euclidean coordinates, this reduces to the constancy
of the components. On a 2-surface, if we cut out a strip bounded by the curve and
flatten it out in a plane, a parallel vector field along the curve becomes parallel in the
plane. Note, from (10.40), written with u for s, that geodesics (even null geodesics)
transport their own tangents parallely. The scalar product of two parallely transported
vectors remains constant:

D

du
(gijV

iWj ) = gij
DV i

du
Wj + gijV

i DWj

du
= 0,
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and so does the magnitude of any one such vector (put V i = Wi). Hence the angle
between two parallely transported vectors remains constant, and a vector transported
parallely along a geodesic subtends a constant angle with its tangent. Parallel transport
of a vector from point A to point B generally depends on the path chosen, and parallel
transport around a closed loop generally returns the vector in a different orientation.

As an application, consider a null geodesic g : xµ = xµ(u) representing a ray of
light or the path of a photon, u being an affine parameter. At each of its points the
wave vector L [cf. (5.31)] must be a multiple of the tangent vector T = dxµ/du :
L = θ(u)T. Suppose the light was emitted by a source of proper frequency ν0 and
4-velocity V0 at point �0 of g, so that ν0 = L0 ·V0 = θ0T0 ·V0. (For proof, evaluate
the product in the rest-frame of the source.) Now let Ṽ be the parallel vector field along
g determined by V0. Since consecutive vectors of Ṽ correspond to parallel worldlines
in the LIFs along g, all observers crossing g with velocities Ṽ see the source still at
frequency ν0 : θ(u)T · Ṽ = ν0. But T · Ṽ is constant along g, whence θ = const. So
the frequency ν seen by an arbitrary observer crossing g with velocity V is given by

ν

ν0
= L · V

L · Ṽ =
T · V
T · Ṽ =

T · V
T0 · V0

. (10.52)

This formula holds in arbitrary spacetimes; in stationary spacetimes we already have
a simpler method (cf. Exercise 9.3). The reader may have felt uneasy at our use (now
that we are in curved spacetime) of the special-relativistic wave vector L and the
special-relativistic result ν = L · V. But bear in mind that a tensor is defined by its
components in any one coordinate system, which can always be taken to be the LIF;
and there our SR results are assumed to hold.

There is one variation of parallel transport that plays an important role in GR. How,
for example, are the axes of a gyrocompass transported along some arbitrary worldline
it is forced to follow (as when a gyrocompass is fixed to a lattice point in a station-
ary field)? Such ‘transport without rotation’ is called Fermi–Walker (FW-)transport.
Given any timelike worldline C with tangent T (T2 = 1) and normal N, we require
the following properties of FW-transport:

(i) T itself is FW-transported

(ii) V · T = 0 and V FW-transported⇒ V* ∝ T (∗ = D/ds)

(iii) Scalar products are preserved.

Condition (i) ensures that in an FW-transported Minkowskian reference tetrad the
particle (gyro) is always momentarily at rest; (ii) requires any FW-transported vector
in the 3-space orthogonal to C to vary only in the direction of T; that is, not to rotate
about T; and (iii) of course, also implies that magnitudes are preserved. Now we
can check immediately that the following differential equation, which defines the
FW-transport of a vector V, fulfills all three conditions:

V* = (V · T)N− (V · N)T. (10.53)
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[For (iii), consider (V ·W)∗ = V* ·W + V ·W* ]. When C is a geodesic, N = 0 and
the RHS of (10.53) vanishes; FW-transport then reduces to parallel transport.

10.5 The Riemann curvature tensor

Let us introduce the following notation for the repeated covariant derivative of a
tensor:

(T ······ ;i );j = T ······ ;ij ,

and similarly for higher derivatives. (This parallels the notation we have already
introduced in Section 7.2E for repeated partial derivatives: T ······ ,ij .) From elementary
calculus we are familiar with the commutativity of partial derivatives: T ······ ,ij = T ······ ,j i .
But the corresponding statement for covariant derivatives is generally false. Only in
flat space is it true that

T ······ ;ij = T ······ ;ji (flat space). (10.54)

For then we can always choose (pseudo-)Euclidean coordinates (gij = ±δi
j ), in

which the �s vanish globally, and in which even repeated covariant differentiation
therefore reduces to repeated partial differentiation; in these coordinates, (10.54) is
true, and being tensorial, it must then be true in all coordinates. In the general case
we cannot prove (10.54) by going to the pole of geodesic coordinates: for while the
�s vanish there, the same is not true of their derivatives. And it is these which cause
the inequality.

Let us do the calculation for the simplest case, a vector V h. We have

V h;j =
[
V h

,j + V a�h
aj

] =:

[
h

j

]
, say

V h;jk =
[
h

j

]
,k

+
[
b

j

]
�h

bk −
[
h

b

]
�b

jk.

If we write this out in full, reverse j, k and subtract, we find

V h;jk − V h;kj = −V aRh
ajk, (10.55)

where
Rh

ijk = �h
ik,j − �h

ij,k + �h
aj�

a
ik − �h

ak�
a
ij . (10.56)

Since V a in (10.55) is an arbitrary vector, it follows from the quotient rule (cf. Exercise
7.2) that Rh

ijk must be a tensor. It is, in fact, one of the most important tensors in
Riemannian geometry, the so-called Riemann curvature tensor. Its relation to the
curvature at a given point will become apparent a little later. In flat space it clearly
vanishes. And conversely, its global vanishing can be shown to imply flat space.
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Equation (10.55) can be generalized to arbitrary tensors:

T
ij ···
k··· ;lm − T

ij ···
k...;ml

=− T
aj ···
k··· Ri

alm − T ia···
k··· Rj

alm − · · ·
+ T

ij ···
a··· Ra

klm + · · · (10.57)

Note how this pattern is reminiscent of the covariant derivative formula: Here we
have a negative R-term for each contravariant index and a positive R-term for each
covariant index of the original tensor. If we lower h in eqn (10.55), see-saw a, and
anticipate the symmetry (10.63) of the Riemann tensor, we see (10.57) validated for
Vh. (Recall that index shifting commutes with covariant differentiation.) For scalars,
(10.57) yields

�;ij = �;ji , (10.58)

which can also be seen directly, since �;ij = �,i;j = �,ij at the pole of geodesic
coordinates.

The fully covariant version of the curvature tensor,

Rhijk = ghaRa
ijk, (10.59)

will exhibit most clearly its many symmetries. (These are to be expected, since surely
44 = 256 independent components would be a bit much for describing the curvature
at a point in 4-space, say!) A straightforward calculation, using the definition (10.56),
converts the RHS of (10.59) into the following alternative forms:

Rhijk = �hik,j − �hij,k + �a
ij�ahk − �a

ik�ahj , (10.60)

Rhijk = 1
2 (ghk,ij + gij,hk − ghj,ik − gik,hj )+ �a

ij�ahk − �a
ik�ahj . (10.61)

At the pole of geodesic coordinates all the undifferentiated �s vanish, which makes
it easy to read off the following symmetries:

Rhijk = −Rhikj , (10.62)

Rhijk = −Rihjk, (10.63)

Rhijk = Rjkhi, (10.64)
Rhijk + Rhjki + Rhkij = 0. (10.65)

[The first and last of these follow most easily from (10.60); the second and third, from
(10.61).] As a consequence of these symmetries, it can be shown that the number of
independent components of Rhijk in N dimensions is reduced to N2(N2 − 1)/12;
that makes 20 for N = 4, 6 for N = 3, and only one for N = 2. (In the last case all
non-zero components equal ±R1212.)

Again, at the pole of geodesic coordinates, where the �s vanish and the covariant
derivative equals the partial, we have from (10.56),

Rh
ijk;l = �h

ik,j l − �h
ij,kl . (10.66)
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This provides a simple way to establish an additional differential symmetry of the cur-
vature tensor, independent of the previous algebraic symmetries, namely the Bianchi
identity:

Rh
ijk;l + Rh

ikl;j + Rh
ilj ;k = 0. (10.67)

By successive contraction of the Riemann tensor we obtain two further curvature
quantities of great importance, especially in GR. First, the Ricci tensor:

Rij := Rh
ijh = Rjh

h
i = Rj

h
hi = Rh

jih = Rji, (10.68)

and second, the curvature scalar:

R := Ri
i = Rij

ji . (10.69)

To establish the symmetry of the Ricci tensor, we have used the interchange symmetry
(10.64), the see-saw rule, and the skew-symmetries (10.62) and (10.63) simultane-
ously. Of the other two possible contractions of the Riemann tensor, one vanishes:
Rh

hjk = 0, because of (10.63); and the other, Rh
ihj = −Rh

ijh, is the negative of
the Ricci tensor.

This may be a good place to warn the reader of an unfortunate sign confusion in
the literature. About fifty per cent of authors define Rh

ijk as �h
ij,k − · · · instead of

our �h
ik,j − · · · , and another fifty per cent define Rij as Rh

ihj . Caveat lector!
If in the Bianchi identity (10.67) we contract h with k, then raise i and contract

it with j , also writing R,l for R;l (since R is a scalar), we get the following ‘twice-
contracted’ Bianchi identity:

R,l − 2Rj
l;j = 0. (10.70)

For the construction of his full field equations, Einstein needed to find a curvature-
related symmetric two-index tensor of ‘zero divergence’. It was eqn (10.70) that led
the way to what is now known as the Einstein tensor:

Gij := Rij − 1
2gijR, Gi

j ;i = 0. (10.71)

The reader will find at the end of this book an Appendix from which to read
off, without undue labor, the Christoffel symbols, as well as the components of the
Riemann, Ricci, and Einstein tensors, plus the curvature scalar, for diagonal metrics
of dimension 2, 3, and 4.

So far, our discussion of the curvature tensor has been mainly formal. We shall now
exhibit, without proof, three standard formulae that show more directly its connection
with the curvature of the underlying space. The first of these (and the easiest to
establish—see Exercise 10.15) gives the change �V that a vector V suffers when it
is parallely transported around a small parallelogram spanned by the displacements
dx and �x, and going along dx first:

�V h = −Rh
ijkV

i dxj δxk. (10.72)
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Note that, since �V h is the difference between two vectors at one point, it is itself a
vector. [The connection of (10.72) with curvature is discussed in Exercise 10.16.]

The second important formula1 gives the curvature K(p, q) of a space V N for the
orientation p, q (cf. Section 8.2):

K(p, q) = Rhijkp
hqipj qk

(ghj gik − ghkgij )p
hqipj qk

. (10.73)

At an isotropic point, where the curvature is the same for all orientations, we must
then have

Rhijk = K(ghjgik − ghkgij ). (10.74)

(While the sufficiency of this condition is evident, its necessity is a little more tedious
to establish—cf. Exercise 10.17.) In particular, for a 2-surface, where every point is
isotropic (there is only one orientation!), this yields

K = R1212

(g11g22 − g2
12)
= R1212

‖gij‖
. (10.75)

By raising h and contracting it with k in (10.74), we find, at a general isotropic point,

Rij = −(N − 1)Kgij , (10.76)

and doing this once more, with i and j ,

R = −N(N − 1)K. (10.77)

Suppose every point of some V N is an isotropic point; we can then covariantly
differentiate (10.76) and (10.77) (treating K a priori as variable) and substitute into
(10.70). That yields

(N − 1)(N − 2)K,l = 0, (10.78)

and consequently Schur’s theorem: if N > 2 and every point of V N is isotropic, K

must be constant.
We note from (10.76) that every space of constant curvature and every 2-space is

an Einstein space, namely a space satisfying the proportionality

Rij = φgij (10.79)

for some scalar φ. (Contraction shows φ = R/N .) An argument identical to that which
leads to Schur’s theorem shows that for every Einstein space φ must be constant unless
N = 2, in which case φ = −K , by (10.76). It can also be shown (cf. Exercise 10.19)
that every Einstein space of dimension 3 (but no other) is necessarily of constant
curvature.

1 See, for example, J. L. Synge and A. Schild, Tensor Calculus, University of Toronto Press, Toronto,
1949, p. 95.
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The third in this set of important curvature formulae is that for geodesic deviation
(cf. Synge and Schild, loc. cit., p. 93). It concerns two neighboring geodesics g1 and
g2 separated by an infinitesimal connection vector field ηh along and orthogonal to
g1. If xi(s) is the coordinate representation of g1 in terms of its arc s, the formula in
question is

D

ds

(
Dηh

ds

)
= (Rh

ijkẋ
i ẋj )ηk, (10.80)

overdots denoting d/ds. Its analogy to our earlier formula (8.17) (and thus its con-
nection with curvature) is evident, but note that here we differentiate the connecting
vector and not just its length. If we specialize (10.80) to 4-dimensional spacetime, and
consider g1 and g2 as the worldlines of two neighboring free particles in a gravitational
field, the formula gives their relative acceleration vector. The relative acceleration is
a manifestation of the so-called tidal field, which is what remains of the gravitational
field in a freely falling box at the first particle. [The earth (apart from its rotation and
its own gravity) is essentially such a freely falling box in the combined gravitational
field of the sun and the moon, and it is the tidal force between the center and the surface
that pulls up the tides.] In GR there is no tensorial measure of the gravitational field
itself, since that can always be transformed away by going to the LIF. The quantity
that does have a tensorial measure is the tidal field, and, as seen from (10.80), the
Riemann tensor is its measure. If we throw out a handful of test particles and measure
their relative accelerations, we could, in principle, use (10.80) to determine Rµ

νρσ

at any event in spacetime.

10.6 Einstein’s vacuum field equations

Our final task in this chapter is to set up the vacuum field equations of GR, for which
our study of the curvature tensor has prepared us.

The starting point must be Newton’s inverse-square gravitational theory. Its tremen-
dous success in classical situations makes it imperative that any new gravitational
theory reduce to Newton’s ‘in the classical limit’. Newton’s inverse-square law can
be expressed in differential form as Poisson’s equation,

−div g ≡ div grad � ≡
∑

�,ii = 4πGρ, (10.81)

and this is what the GR field equations must spring from.
Accordingly, let us consider a weak gravitational field, with slowly (that is,

non-relativistically) moving sources, and therefore slowly changing field compo-
nents. From the relativistic point of view, this shall mean that spacetime is globally
quasi-Minkowskian, with coordinates {xi, ct} such that

gµν ≈ diag(−1,−1,−1, 1), gµν,4 ≈ 0. (10.82)
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We then expect the Newtonian equation of motion,

d2xi

dt2
= −�,i (10.83)

and the Einsteinian equation of motion [cf. (10.15)],

d2xµ

dτ 2
+ �

µ
ρσ

dxρ

dτ

dxσ

dτ
= 0 (10.84)

to be essentially equivalent for slowly moving test particles. For such particles we
have t ≈ τ (proper time), and consequently, with u� c,

dxµ

dτ
≈ (u, c),

d2xi

dτ 2
≈ d2xi

dt2
,

d2t

dτ 2
≈ 0. (10.85)

With that, the equivalence of (10.83) and (10.84) is assured if

c2�i
44 = �,i and �4

44 = 0, (10.86)

since all other �s have negligible effect on the orbits, their contribution being dimin-
ished by small velocity components ui . (Recall—from Section 9.4—how the spatial
geometry was unimportant in determining the slow orbits in static spacetimes.) And
(10.86)(ii) is automatic, since we assume gµν,4 ≈ 0.

Now � satisfies Poisson’s equation (10.81), and so we have, from (10.86)(i),∑
�,ii = c2�i

44,i = 4πGρ. (10.87)

The last equation in this line represents the Newtonian field equation in ‘relativistic’
though not yet tensorial form. However, referring to (10.56), and using (10.87)(i),
we find

R44 = Rµ
44µ = Ri

44i = −�i
44,i = −c−2

∑
φ,ii , (10.88)

since in a weak field we ignore products of �s (we assume the gµν,ρ to be small and
their products to be negligible), and in a slowly varying field we ignore gµν,4. So
if there is to be correspondence with Newtonian theory, (10.88) must be satisfied in
lowest approximation. At first, we shall be interested only in vacuum fields, such as
the field around the sun, for which ρ = 0. The relevant Newtonian field equation,∑

φ,ii = 0, by (10.88), then implies R44 = 0. This suggests

Rµν = 0 (10.89)

as a candidate for the vacuum field equation2 of GR, which, of course, must be
tensorial. And that, indeed, was Einstein’s proposal (1915). It has been strikingly
vindicated: not only does GR, completed by this field equation (and its generalization
to the non-vacuum case, see Section 14.2), reproduce within experimental errors all

2 Sometimes we think and speak of (10.89) as a single tensor equation, sometimes as ten component
equations.
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those Newtonian results that agree so well with observation, but where GR differs
observably from Newton’s theory (as in the precession of the orbit of Mercury or in the
bending of starlight around the sun) it is GR that is found to be correct. A later ‘crucial’
effect that also validated GR was the Shapiro light retardation in the field of the sun (see
Section 11.2H). And more recently there have been indirect indications for the exis-
tence of black holes and gravitational radiation—further support of the field equation
(10.89). The well-established gravitational Doppler shift, occasionally also referred
to as a crucial effect, is, in fact, not a test of the field equation but merely of the equiv-
alence principle—at least in lowest order, which is all that can be observed at present.

But how is it that instead of the one field equation (10.81) of Newtonian theory there
should be ten in GR? (The Ricci tensor, because of its symmetry, has 10 independent
components.) The reason is that the field equations must determine the whole metric;
that is, the gµν . And there are just ten of these. Once we lay an arbitrary coordinate
system over our spacetime, the ten functions gµν should be uniquely determined.
In fact, these ten tensor components gµν are the analogs of the Newtonian scalar
potential � (for which there is just one field equation) and of the 4-vector-potential
components �µ of Maxwell’s theory (for which there are four field equations). This
is why Einstein chose the symbol g (for gravitational potentials) to denote the metric.
We have already seen how in the static metric (9.5) g44 is directly related to Newton’s
�, and how in the stationary metric (9.13) the gµ4 are analogous to Maxwell’s �µ.

The analogy of the three theories can be seen quite clearly both in the field equations
and in the equations of motion. Consider first the (vacuum) field equations:

Newton : gij�,ij = 0 [cf. (10.81)]

Maxwell : gµν�ρ,µν = 0 [cf. (7.49)]

Einstein : gµνgρσ,µν + · · · = 0 [cf. (10.61)].

And next, the equations of motion (of which only Newton’s are velocity-independent):

Newton :
d2xh

dt2
= −ghi�,i

Maxwell :
d2xµ

dτ 2
= − q

cm0
gµα(�α,β −�β,α)

dxβ

dτ

[cf. (7.29), (7.42)]

Einstein :
d2xµ

dτ 2
= −1

2
gµα(gαβ,γ + gαγ,β − gβγ,α)

dxβ

dτ

dxγ

dτ

[cf. (10.15)]

GR is thus a field theory with a tensor potential. That is why its presumed quantum,
the graviton, would have spin 2. One enormous difference from the other two theories
is that GR is non-linear: though its field equations are linear in the second derivatives
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of the gµν , as is seen from eqn (10.61), they are non-linear in the first derivatives. This
not only greatly complicates their mathematical solution, but it also robs us of the
possibility of ‘adding’ solutions. One reason for the non-linearity is mathematical:
there are no tensor fields that are linear in the gµν and their partial derivatives. But
actually, non-linearity is needed by the physics: it allows gravity itself to gravitate—
as demanded by E = mc2. We have already noted (in Section 6.3) how the negative
binding energy of atomic nuclei diminishes the total mass of the constituent nucleons,
thus causing the well-known ‘mass defect’. In much the same way, we would expect
the gravitational forces that hold a massive body together to diminish the mass of its
constituents. The field of two massive balls which stick together by mutual gravity
should be less than twice the field of one ball. Yet the full field equations do not treat
the gravitational field itself as a source: it is the non-linearity that miraculously takes
account of it. (Cf. end of Subsection 11.2B.)

From the theoretical point of view, therefore, the field equations Rµν = 0 seem
just right. Certainly there exist none that are simpler and still consistent with the
fundamental ideas of GR. And it should be remembered that field equations are a
matter of choice and not of proof. They belong among the axioms of a theory. The next
logical step is to see whether they correctly predict verifiable results. In order to show
this, we begin in the next chapter to develop some of the consequences of the theory.

Exercises 10
10.1. Consider the approximate static metric (9.6) for the case of a spherically

symmetric body of mass m:

ds2 = (1+ 2�) dt2 − dr2 − r2(dθ2 + sin2 θ dφ2), � = −Gm/r (c = 1).

Apply eqns (10.11) to orbits in the typical symmetry surface θ = π/2. Verify that
they imply (at least approximately) the conservation of angular momentum and of
energy, the inverse-square law for radial fall, and, for circular orbits, Kepler’s third
law (dφ/dt)2 = Gm/r3. [Hint: � = (1+ 2�)ṫ2 − ṙ2 − r2φ̇2 = 1.]

10.2. In the spacetime with metric ds2 = dt2 − dl2, where dl2 is an arbitrary
and possibly time-dependent 3-metric, prove that the coordinate lines t = var are
geodesics. If dl2 is time-independent, prove that every geodesic of ds2 follows a
geodesic spatial track in the metric dl2. The Einstein universe (9.12) is a case in
point. [Hint: (10.15).]

10.3. Use the method suggested in the text [after (10.17)] to calculate all the �i
jk of

the metric of the 3-sphere given in Exercise 8.9; for simplicity put a = 1. [Hint: for
example, (∂�/∂ṙ)• − ∂�/∂r = 2r̈ − 2 sin r cos r(θ̇2+ sin2 θφ̇2); so �1

11 = 0, �1
22 =

− sin r cos r, �1
33 = − sin r cos r sin2 θ and �1

ij = 0 (i �= j); etc.]

10.4. Two metrics ds2 = gij dxi dxj and d̃s
2 = g̃ij dxi dxj on the same coordi-

nate net are said to be conformally related if g̃ij = ψgij for some positive function ψ

of the coordinates. Prove that if the curve xi = xi(u) is a null geodesic of the metric
ds2, then it is also a null geodesic of the metric d̃s

2
; that is, conformal spaces share
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their null geodesics. [Hint: prove �̃i
jkẋ

j ẋk = �i
jkẋ

j ẋk + (ψ−1ψ,j ẋ
j )ẋi and use the

result of the paragraph containing eqn (10.43).]

10.5. With · ≡ d/dw, prove that eqn (10.43) can alternatively be written in the
form Li ∝ ∂�/∂ẋi .

10.6. Prove that for any vector Ai and for any antisymmetric tensor Tij ,

Ai;j − Aj ;i = Ai,j − Aj,i

Tij ;k + Tjk;i + Tki;j = Tij,k + Tjk,i + Tki,j .

10.7. Given the rule for differentiating a determinant a = ‖aij‖ : a,k =
a
∑

ij Ajiaij,k , where Aij is the inverse matrix of aij , prove the often useful result

�i
ji =

1

2g

∂g

∂xj
= (log

√
|g|),j , g = ‖gij‖.

[Hint: the first expression is invariant under g 
→ −g.]

10.8. The familiar operations∇· and∇2 on Euclidean 3-vectors and scalars, respec-
tively, can be generalized to arbitrary coordinates and arbitrary spaces: ∇ ·A := Ai ;i
and ∇2� := gij�;ij . Prove

∇ · A = Ai
,i + 1

2g−1g,iA
i = |g|−1/2(|g|1/2Ai),i ,

∇2� = |g|−1/2(|g|1/2gij�,i),j ,

and use the second of these formulae to express ∇2� in cylindrical polar coordinates
ρ, φ, z in Euclidean 3-space. Finally, if Aij is antisymmetric, prove

Aij ;j = |g|−1/2(|g|1/2Aij ),j and Aij ;ij = 0.

10.9. Fill in the details of the following proof of a formula for the curvature κ

of a curve C in a space V N . Let g be its tangent geodesic at the point P. Choose
Riemannian coordinates so that

C : xi = (ẋi )Ps + 1
2 (ẍi )Ps2 + · · ·

g : x̃i = (ẋi )Ps,

s being arc along g and C. Then near P the orthogonal distance η between g and C

is given by

η2 = gij (x
i − x̃i )(xj − x̃j ) = 1

4 (gij ẍ
i
Pẍ

j
P)s4 = 1

4 (gijN
i
PN

j
P )s4 = 1

4κ2s4,

so that κ = lims→0 2η/s2, just as in the plane, where g is simply the tangent. [Cf.
beginning of Exercise 8.4.]

10.10. In any stationary spacetime (9.13), prove directly that the initial acceleration
d2xi/dτ 2, relative to the lattice, of a test particle released from rest, equals −�,i in
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orthonormal coordinates. [Hint: in eqn (10.15) put (ẋi )0 = 0, (ẋ4)0 = e−�, and cf.
(10.48).]

10.11. In the stationary spacetime (9.13), consider the infinitesimal Fermi–Walker
transport of a unit spacelike vector V µ along the worldline of a lattice point, xi =
const. Choosing the gauge � = 0, w = 0, kij = diag (1, 1, 1) at the event of
interest, c = 1 and V µ = (1, 0, 0, 0), prove dV µ/ds = ( 1

2 (w1,i − wi,1), 0) and
verify that this is consistent with (9.21). [Hint: a position vector r being rotated about
the origin with angular velocity � changes by dr = � × r dt .] By repeating this
verification with V µ = (0, 1, 0, 0) and V µ = (0, 0, 1, 0)—which essentially follows
from symmetry—we can in this way establish (9.21) in the present gauge. But then
(9.23) necessarily follows from gauge invariance.

10.12. (i) Compute R1212 for the metric y2 dx2+x2 dy2 (do not use the Appendix
for this except as a check) and so verify that it represents the Euclidean plane. (ii) Do
the same for the metric y dx2 + x dy2 and deduce that it represents a curved surface.

10.13. By reference to the definitions (10.60), (10.68), verify that when a metric
(of arbitrary dimensions) is the sum of two mutually independent submetrics (a “com-
posite metric”), the Riemann and Ricci tensor components of the submetrics together
constitute all non-zero components of these tensors in the full metric. Also show that
the geodesics of the full metric are of the form xi = xi(u), xα = xα(u), where the
xi(u) are geodesics of the submetric involving the xi , and xα(u) are geodesics of
the submetric involving the xα , and u is an affine parameter for both submetrics
and the full metric.

10.14. In Riemannian coordinates the equation of a geodesic through the pole is
xi = ais, where ai = (ẋi )0. Hence (ẍi )0 = 0, (

...
x i)0 = 0, etc. But ẍi = −�i

jkẋ
j ẋk ,

so (
...
x i)0 = −(�i

jk,l)0a
jakal—why? Deduce that P(�i

jk,l)0 = 0 and P(�ijk,l)0 =
0, where P denotes the sum over all permutations of j, k, l. Use this identity in
proving that

gij = (gij )0 + 1
3 (Rhijk)0x

hxk + O(x3).

This formula allows us, for example, to estimate the useful extent of a LIF. [Hint:
convert 1

2 (gij,hk)0x
hxk into the curvature term.3

10.15. Consider a small parallelogram PQRS spanned by two displacements dx
and �x away from a pole P of geodesic coordinates. Transport a vector V h parallely
from P to the opposite vertex R along the two alternative paths and prove that

V h
R(dx then �x)− V h

R(�x then dx) = −Rh
ijkV

i dxj δxk,

and that, consequently, for a round-trip from R, with −dx first, the increment in V h

is given by (10.72).

10.16. On a 2-surface, the ‘total angle � through which a closed curve turns’
(cf. Exercise 8.5) is measured against the standard of a parallel vector field along

3 Cf. L.P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton 1960, pp. 252–3.
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the curve. So if, after a complete circuit, for example the parallely transported initial
tangent vector returns rotated through an angle θ in the sense in which the curve is
described, the curve has turned by that much less than 2π : � = 2π − θ . By the
Gauss–Bonnet theorem of Exercise 8.5, therefore, θ = 2π − � = ∫ K dS. Verify
this last formula, for an infinitesimal rectangle, from (10.72). [Hint: use orthonormal
coordinates and let V = dx.]

10.17. Establish formula (10.74) along the following lines: Let Thijk be LHS–
RHS of (10.74), so that (10.73) reads Thijkp

hqipj qk = 0. Verify that Thijk has the
same symmetries (10.62)—(10.65) as Rhijk . Now give p and q the specific values
p1 = 1, q2 = 1, all other components zero, and deduce T1212 = 0; so evidently all
components with two equal index pairs vanish. Next put p1 = p2 = 1, q3 = 1 and
deduce T1323 = 0; so evidently all components with one equal index pair vanish.
Lastly, put p1 = p2 = 1, q3 = q4 = 1, and deduce T1324 + T1423 = 0; interchange
2 and 3: T1234 + T1432 = 0; add these two equations and deduce the antisymmetry
T1234 = −T1324; now show that T1234 + T1342 + T1423 = 3T1234 = 0; so evidently
all components with four unequal indices vanish.

10.18. Derive the metric of the paraboloid that results when the parabola z2 =
4a(x−a), y = 0, is revolved about the z-axis in Euclidean 3-space, using r = (x2+
y2)1/2 and the azimuthal angle φ as coordinates. [Answer: dl2 = (1− a/r)−1 dr2+
r2 dφ2.] Prove that the Gaussian curvature of this surface is given by K = − 1

2a/r3.
[Hint: find R1212 using the Appendix.]

10.19. For every properly Riemannian 3-space prove that at a point where the
coordinates are orthonormal the following relations hold: R3123 = R12, R1221 =
1
2 (R11+R22−R33) and similarly for the other non-zero components of Rhijk . Hence
prove that every properly Riemannian 3-dimensional Einstein space is of constant
curvature. By writing εi for the sign of gii , generalize the argument and prove the
result also for pseudo-Riemannian 3-spaces.

10.20. Prove that every vacuum spacetime (Rµν = 0) whose metric has the form
A(x) dt2 − dx2 − dy2 − dz2, where A(x) is an arbitrary positive function of x, is
necessarily flat. [Hint: Use the Appendix to show that R1414 is essentially the only
possible non-zero component of Rµνρσ and then apply the field equations.] Show also
that A(x) = x2 is essentially the only solution. The metric represents a flat lattice
with all the field lines parallel to the x-direction; and the result shows that the only
static vacuum field of this nature is that of the uniformly accelerating rocket—for
which indeed we saw that the ‘gravitational field’ was proportional to 1/x, as it is
here (cf. end of Section 3.7).

10.21. For the approximative metric of a weak static field ds2 = (1 +
2�/c2)c2 dt2 −∑ dx2 [cf. (9.6)], verify that R44 ≈ −

∑
�,ii/c

2, in conformity
with (10.88). [Hint: use the Appendix.]
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The Schwarzschild metric

11.1 Derivation of the metric

It was left to Schwarzschild to find, early in 1916, the first and still the most important
exact solution of the Einstein vacuum field equations. It represents the field outside a
spherically symmetric mass in otherwise empty space. (Later it was also recognized
as the solution representing both the outside and the inside of a non-rotating black
hole.) Schwarzschild’s solution allows the exact calculation of several of the ‘post-
Newtonian’ effects of GR, including the precession of planetary orbits, the bending
of light around the sun, the exact gravitational frequency shift, the Shapiro time delay
of light passing near the sun, and the precession of orbiting gyroscopes. Curiously,
Einstein himself had apparently not attempted to find this relatively straightforward
and elegant solution (perhaps doubting its existence) and had contented himself with
approximative calculations to derive the advance of the perihelion and the bending
of light.

In re-deriving Schwarzschild’s metric, say for the spacetime outside a stable non-
rotating star, which is clearly static, we can fall back on our findings of Chapter 9.
With a suitably adapted time coordinate t , the sought-for solution will be a special case
of the static metric (9.5). As for the lattice, spherical symmetry implies that it will be
a radial distortion of Euclidean 3-space E3. The metric of E3 in polar coordinates is

dl2 = dr2 + r2(dθ2 + sin2θ dφ2), (11.1)

where r is distance from the origin, θ the inclination from the axis, and φ the
(‘azimuthal’) angle around the axis. The angular part is the metric on the 2-sphere of
radius r , with the quantity in parenthesis measuring the square of the angular distance
between neighboring points. In a curved spherically symmetric space, the area of
successive parallel spheres will not necessarily increase as the square of the distance.
It will be convenient, nevertheless, to have the area of the sphere at radial coordinate
r still be 4πr2, thus defining the coordinate r as ‘area distance’, an intrinsic quantity.
The radial distance increments will then generally be of the form F(r) dr [or, for cal-
culational convenience, eB(r) dr] rather than just dr . Thus, if we set c = 1, spherical
symmetry allows us to specialize (9.5) to the form

ds2 = eA(r) dt2 − eB(r) dr2 − r2 (dθ2 + sin2θ dφ2), (11.2)

since the potential � = 1
2A must be independent of θ and φ. This metric contains

only two unknowns, the functions A(r) and B(r), which must now be determined by
the field equations.
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Because diagonal metrics like (11.2) occur frequently, we have listed in the
Appendix once and for all the curvature tensor components for such metrics. From
that list we now find for the metric (11.2):

Rrr = 1
2A′′ − 1

4A′B ′ + 1
4A′2 − B ′/r (11.3)

Rtt = −eA−B
( 1

2A′′ − 1
4A′B ′ + 1

4A′2 + A′/r
)

(11.4)

Rθθ = e−B
[
1+ 1

2 r(A′ − B ′)
]− 1 (11.5)

Rφφ = Rθθ sin2 θ (11.6)

Rµν = 0 when µ �= ν, (11.7)

where primes denote d/dr and where we have introduced an often useful notation: if,
for example, the indices 1, 2, 3, 4 refer to the coordinates r , θ, φ, t in this order, then
Rrt = R14, Rφφ = R33, etc. The advantage of this notation is that it is independent
of which numbers are assigned to which coordinates. It is the analog of writing
a = (ax, ay, az).

The vacuum field equations require Rµν = 0 for all indices. Thus (11.3) and (11.4)
yield

A′ = −B ′ (11.8)

whence A = −B + k, k being a constant. Reference to (11.2) shows that a simple
change in time scale, t 
→ e−k/2t , will absorb this k, and then

A = −B. (11.9)

With that, (11.5) yields
eA(1+ rA′) = 1, (11.10)

or, setting eA = α,
α + rα′ = (rα)′ = 1. (11.11)

This equation can at once be integrated, giving

α = 1− 2m

r
, (11.12)

where at this stage 2m is merely a constant of integration of the dimension of a length.
But, as the notation suggests, m will presently turn out to be the mass of the central
body in ‘relativistic units’ (which make c = G = 1). Substituting our findings into
(11.2), we have now obtained the Schwarzschild metric

ds2 =
(

1− 2m

r

)
dt2 −

(
1− 2m

r

)−1
dr2 − r2(dθ2 + sin2θ dφ2). (11.13)

However, since we have used the field equations (11.3) and (11.4) only in combina-
tion, we must yet verify that (11.13) satisfies these equations separately. Happily it
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does, except, of course, at r = 0 and r = 2m, where the metric becomes meaningless.
(These loci turn out to have physical importance and will be discussed later.) Note
that far out (r →∞) the metric becomes Minkowskian. This ‘asymptotic flatness’ is
a result; that is, it was not included as an assumption. It implies that asymptotically
t and r have their special-relativistic significance.

11.2 Properties of the metric

A. The field strength and the meaning of m

Comparison of (11.13) with (9.5) shows that the relativistic potential � of the
Schwarzschild metric (temporarily with c) is given by

� = c2

2
ln
(

1− 2m

r

)
= c2

(
− m

r
+ · · ·

)
. (11.14)

From this we can calculate the field strength g. The field itself is radial, of course,
and from (9.20) we find

g = |grad �| = d�

dl
= d�

dr

dr

dl
= mc2

r2

(
1− 2m

r

)−1/2
, (11.15)

where l is radial ruler distance and dr/dl = (1−2m/r)1/2 by (11.3). The same exact
result can be obtained from (9.22).

Note how the field becomes infinite at the so-called Schwarzschild radius r = 2m

and becomes Newtonian for large r . Indeed, if we set

m = GM

c2
, (11.16)

we see that, for large r, g ∼ GM/r2. Consequently we identify M with the mass of
the central body, so that both theories agree asymptotically for the weak far field. In
relativistic units (c = G = 1) we simply have m = M .

B. Birkhoff’s theorem

In 1923 Birkhoff discovered a very important extension of the validity of
Schwarzschild’s solution. He showed that even without the assumption of static-
ity, Schwarzschild’s solution is the unique vacuum solution with spherical symmetry.
The proof is not even all that difficult, but we shall omit it here; basically one adapts
Schwarzschild’s derivation to the case where A and B in (11.2) are allowed to be
functions of r and t .

Birkhoff’s theorem has significant implications. Suppose, for example, the central
spherical body were to start pulsating or exploding or imploding in a spherically
symmetric (radial) way: the external field would show no trace of a response.
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(Just as in Newton’s theory!) In particular, no spherically symmetric gravitational
radiation (being a progressive disturbance of the vacuum field) is possible. Again, the
field inside a spherical vacuum cavity (if its center is regular) must be flat, even if the
surrounding spherically symmetric matter were to move radially. For the spacetime
is regular (that is, it has finite curvature) at r = 0 only if m = 0 in which case
the Schwarzschild metric becomes the Minkowski metric. Somewhat more generally,
consider a vacuum zone between concentric spheres

∑
1 and

∑
2 with spherically

symmetric but possibly radially moving matter both inside
∑

1 and outside
∑

2. In
between, the Schwarzschild metric applies. Specifically, consider a massive star sur-
rounded, beyond a concentric sphere, by a radially expanding isotropic universe.
Its field is that of Schwarzschild and its planetary (test-)orbits ‘feel’ nothing of the
expanding universe.

Lastly, consider a large cold ball of matter. Suppose this ball is allowed to shrink
under its own gravity, and suppose that much of its original potential energy is thereby
used to heat it up. Because of E = mc2, the heated material has greater mass.
Birkhoff’s theorem shows that the field equations (at least in this case) allow for the
‘gravity’ of the gravitational field: The original potential energy must have gravitated.

C. The Schwarzschild radius

The reader has no doubt observed a most un-Newtonian feature of the Schwarzschild
spacetime, namely the coordinate singularity at the Schwarzschild radius r = 2m.
A first indication of what goes on there is the fact that the g-field (11.15) becomes
infinite. An infinite g-field in a static metric means that for a particle to remain at rest
in the lattice it must have infinite proper acceleration, that is, it must be a photon! So
it would appear that the locus r = 2m is potentially an outwardly directed spherical
light-front that doesn’t get anywhere! It will turn out to be the ‘horizon’ of a ‘black
hole’ whenever the vacuum continues through it. But for the moment it will not
concern us. For the moment, we shall be interested in the gravitational field outside a
star like our sun or a planet like our earth (idealized as non-rotating). And then the locus
r = 2m turns out to be irrelevant. For the Schwarzschild vacuum solution terminates
at the surface of the central body, which in general is far beyond the critical value
r = 2m. Inside the body an entirely different metric takes over, depending somewhat
on its equation of state, but in any case regular throughout. The Schwarzschild radius
2m, or equivalently 2GM/c2, for the sun turns out to be 2.9 km, whereas the exterior
field terminates at r� ≈ 7 × 105 km. So the sun would have to shrink by a linear
factor of the order of 105 for its Schwarzschild radius to become relevant! For the
earth, the Schwarzschild radius is 0.88 cm, and for a proton it is 2.4× 10−52 cm.

11.3 The geometry of the Schwarzschild lattice

In order to apply the Schwarzschild metric to physical problems it is important to
understand its spatial geometry. One way to visualize any curved 3-space like that of



232 The Schwarzschild metric

Fig. 11.1

the Schwarzschild lattice, whose metric is given by

dl2 = dr2

(1− 2m/r)
+ r2(dθ2 + sin2θ dφ2), (11.17)

is to pretend that it is really flat, but that rulers in it behave strangely. (‘Distorted-ruler’
viewpoint; but see Exercise 11.3.) In the case of (11.17), we can pretend that by some
action of the central mass little radial rulers shrink by a factor (1 − 2m/r)1/2—as
all rulers might shrink if, for example, it were colder near the center. Accordingly if
we draw any plane through the origin of this E3, say the plane θ = π/2, then when
we measure it out with little rulers its geometry is curved. Moreover, by the spherical
symmetry, all such central planes are identically curved. Figure 11.1(a) shows a
typical one. The little rulers shown along one radial direction are intrinsically all of
the same length. This section therefore has the same ruler geometry as the surface
of revolution (actually a paraboloid) shown in Fig. 11.1(b), where the rulers are
undisturbed and the circles have the same circumference as in (a). [(a) can also be
regarded as a view of (b) ‘from the top’.] But note how much easier it is to visualize
a family of plane central sections with equally distorted rulers, than a family of
paraboloids that can be rotated into each other!

The central sections here discussed, of which the loci θ = π/2 or φ = const are
typical ones, must clearly be symmetry surfaces (cf. Section 9.5) of both the full
Schwarzschild spacetime (11.13) and of its 3-dimensional lattice. Formally this is
most easily established for the ‘plane’ φ = 0 since φ 
→ −φ leaves both the full and
the spatial metric invariant; and by a coordinate rotation any other central section can
be isometrically transformed into this one.

The way to determine the exact surface of revolution isometric to the central
section θ = π/2 [cf. Fig.11.1(b)] is to compare the metric of that section, dl2 =
(1−2m/r)−1 dr2+ r2 dφ2, with the general metric of a surface of revolution, dl2 =
(z′2+1) dr2+ r2 dφ2, where z = z(r)(r2 = x2+y2) is the curve that, when rotated
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Fig. 11.2

about the z-axis, generates the surface. In this way one finds the generating curve

z2 = 8m(r − 2m), (11.18)

and so the surface is a paraboloid, usually referred to as Flamm’s paraboloid
(cf. Fig.11.2). Of course, only half of this paraboloid (the upper or the lower) is
relevant for our present purposes, and of that only the part corresponding to r-values
greater than the radius of the central body. The curvature of the paraboloid can be
computed to be −m/r3 at coordinate r (cf. Exercise 10.18; also Exercise 9.5). At
the surface of the earth this is −2 × 10−27 cm−2 and at the surface of the sun it is
−4× 10−28 cm−2. Of course, it is in the nature of paraboloids to flatten out at large
distances from the axis and become effectively plane.

11.4 Contributions of the spatial curvature
to post-Newtonian effects

(The less geometrically inclined reader can omit this section without loss of continu-
ity.) Minute though it is, the spatial curvature of the Schwarzschild metric contributes
significantly to four ‘post-Newtonian’ effects of GR, namely the bending of light
around the sun, the Shapiro light echo delay for sun-grazing radar signals to Venus,
the advance of the perihelia of the planets, and the de Sitter geodetic precession. If
one calculates the geodesics of (11.13) with simply dr2 in place of dr2/(1− 2m/r),
one gets only two-thirds of the advance of the perihelia, one-half of the bending of
light and of the echo delay, and only one-third of the geodetic precession. We shall
here show directly how the spatial geometry makes its contributions.
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Fig. 11.3

Suppose that on the assumption of flat-space geometry an orbit is nearly circular,
with mean radius a, and possibly with some perihelion advance, like the curve C in
Fig. 11.3(a). To first approximation, the ‘plane’ of the orbit is really the tangent cone
to Flamm’s paraboloid at radius r = a cos ψ [see Fig. 11.3(b)], where the small angle
ψ is given by

ψ ≈ dz

dr
= 4m

z
, (11.19)

as we calculate easily from (11.18). To make the plane of the flat-space calculation
into this cone, we must cut out of it a wedge of angle δ such that

a(2π − δ) = 2πr = 2πa cos ψ

≈ 2πa
(
1− 1

2ψ2). (11.20)

Clearly, δ will be the contribution of the spatial geometry to the perihelion advance.
Solving (11.20) and substituting from (11.19) and (11.18) (with r � m), we get

δ ≈ 2πm

r
, (11.21)

which is one-third of the full perihelion advance, as we shall see in Section 11.3.
This angle δ is also fairly obviously the contribution of the space geometry to the

advance of the axis of a test gyroscope in circular orbit around a mass m at radius
r , if the axis lies in the plane of the orbit (or of the projection of the axis onto this
plane, otherwise). There is a second contribution to this advance, namely the so-called
Thomas precession, which is a flat-space phenomenon [cf. Section 9.7, especially eqn
(9.34)]. In the present case, by Kepler’s third law (ω2 = GM/r3), this amounts to
πm/r numerically. However, for a freely falling gyroscope the retrograde sense is
reversed: it is the frame of the field that Thomas-precesses around the gyroscope,
which itself is ‘free’. The total effect, geometric and Thomas, gives the well-known
de Sitter precession of 3πm/r , in the same sense as the orbit. (Cf. Section 11.13
below.)
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The contribution of the space geometry to the bending of light can be understood
in the same kind of way. If a long, thin, rectangular strip of paper, with a straight
line drawn down its middle (corresponding to a straight light path in flat space), is
glued without wrinkles to the upper half of Flamm’s paraboloid, and then viewed
from the z-axis at large z, the center-line will appear bent inwards; this is precisely
the contribution of the space geometry to the bending of light. If the center-line is
already slightly bent relative to the strip, as implied by the EP for a light ray, then it
will appear even more bent when applied to the paraboloid. The EP, as we have seen
in Section 1.16, predicts the exact curvature of light in the static space locally, which
corresponds to little tangent-plane elements on Flamm’s paraboloid. We have needed
the field equations to tell us how these tangent-plane elements are fitted together,
namely into a portion of a paraboloid.

There is one basic fact that is illustrated well by this ‘paper-strip’ argument: a light
signal in general does not follow a spatial geodesic in static or stationary fields. For
whereas the spatial geodesic corresponds to the center-line of the strip, the light path is
bent relative to that line whenever the gravitational field has a component orthogonal
to it.

Finally, as for the signal running time, the space geometry contributes to its length-
ening simply by lengthening the track. For consider a straight thin tape stretched
across the top of the paraboloid of Fig. 11.2, approaching the z-axis no closer than
2m. The space geometry forces the tape onto the paraboloid, thereby lengthening it.

11.5 Coordinates and measurements

The relation of the coordinates to the time and distance measurements that can actually
be performed in a spacetime is always entirely encoded in the metric. For example, the
coordinates θ and φ in the Schwarzschild metric—and indeed in any spherically sym-
metric metric like (11.2)—are very simply related to observations. By an argument
analogous to that given at the end of Section 9.5, the radii θ, φ = const are totally
geodesic and hence potential light paths. So if the central body were transparent, and
if we could observe from its center, the θ and φ of any event would simply be the
usual polar angles subtended at that center by the light whereby it is seen. As for the
time coordinate t , we already understand its relation to clock time from the general
discussion of static fields in Chapter 9: it is the time shown by standard lattice clocks
that have been speeded up by factors (1− 2m/r)−1/2 depending on position.

What about the distance between two widely separated events? The primary defi-
nition of distance in a static (or stationary) lattice is the integral of ruler distance,

∫
dl,

along the shortest geodesic joining two points. But in astronomical applications of GR,
where ruler distance is clearly not primary, other methods of determining distances
must be used. These include radar distance, distance from apparent size or luminosity,
and distance by parallax. Classically all these methods would be equivalent, but in
curved spacetime they are not, except in the local limit.
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As an illustration, we shall compare radial coordinate distance with, ruler distance
and radar distance in the Schwarzschild metric. Along any radius θ, φ = const we
have, from (11.13),

dl =
(

1− 2m

r

)−1/2
dr ≈

(
1+ m

r

)
dr

whence

l =
∫ r2

r1

dl ≈ r2 − r1 +m ln
r2

r1
. (11.22)

In the sun’s field the excess mln(r2/r1) of ruler distance over coordinate distance from
the sun’s surface to earth is only about 8 km, a discrepancy of one part in 2× 107.

Radar distance R is defined as cT , 2T being the proper time elapsed at the observer
between emission and reception of a radio echo. A radial signal satisfies ds2 = 0 and
thus, by (11.13) (now with c),

c dt = ±
(

1− 2m

r

)−1
dr ≈ ±

(
1+ 2m

r

)
dr, (11.23)

the two signs corresponding to the two possible directions of motion. Converting
from coordinate to proper time at the location of the observer, say r1, by multiplying
by the time dilation factor (1− 2m/r1)

1/2 ≈ 1−m/r1, we have

R ≈
(

1− m

r1

) ∫ r2

r1

c dt ≈
(

1− m

r1

)(
r2 − r1 + 2m ln

r2

r1

)
. (11.24)

Returning to the observer at the center of a transparent central body, we note that
the ‘distance from apparent size’ of a small object, namely the square root of the ratio
of its cross-sectional area to the solid angle at which it is seen, coincides with the
coordinate r . For, since the entire sphere at coordinate r has area 4πr2, an nth part
of that sphere has area 4πr2/n and is seen at solid angle 4π/n.

11.6 The gravitational frequency shift

According to our general discussion of static metrics in Chapter 9 and, in particular,
using eqn (9.4), we can read off directly from the Schwarzschild metric (11.13) the
frequency shift between any two of its lattice points A and B:

νB

νA
=
(

1− 2m/rA

1− 2m/rB

)1/2

. (11.25)

Equivalently, as we have discussed in Section 1.16, this formula also gives the
gravitational time dilation. It is an exact result. Its validity in lowest order,

νB

νA
= 1− m

rA
+ m

rB
+ · · · ,
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is simply a consequence of the equivalence principle and Newton’s theory, as we
have seen in Section 1.16. Its experimental verification at that level, which by now is
very satisfactory (cf. Section 1.16), is therefore a test of the equivalence principle but
not of ‘full’ GR. Full GR is distinguished among all possible gravitational theories
that accept the EP by its specific field equations. It is these that determine the exact
coefficient of dt2 in the Schwarzschild metric and hence (11.25). Only a second-order
verification of that formula would provide specific support for GR.

11.7 Isotropic metric and Shapiro time delay

By a simple change of the radial coordinate (cf. Exercise 11.3) we can recast the
Schwarzschild metric (11.13) into the following so-called isotropic form (which
makes the coordinate speed of light direction-independent):

ds2 = (1−m/2r̄)2

(1+m/2r̄)2
dt2 − (1+m/2r̄)4(dx2 + dy2 + dz2), (11.26)

where r̄2 = x2+y2+z2. Suppose we now consider a light signal passing a spherical
mass m at distance R, as in Fig. 11.8 below. In first approximation we can take its path
as given by y = R, z = 0, r̄ =

√
x2 + R2. Then if, in (11.26), we neglect O(m2/r̄2)

and set ds2 = 0 for our signal, we find

dt ≈ ±
(

1+ 2m

r̄

)
dx = ±

(
1+ 2m√

X2 + R2

)
dx.

Integrating this equation between 0 and X gives us the coordinate time �t for the
signal to travel from the point of closest approach to x = X (or vice versa):

�t ≈ X + 2m log
X +

√
X2 + R2

R
≈ X + 2m log

2X

R
,

where for the last approximation we assumed R2/X2 � 1. So if the signal actually
travels from X1 on one side to X2 on the other side, the total coordinate time �t12 is
given by

�t12 ≈ (X1 +X2)+ 2m log
4X1X2

R2
.

The logarithmic term is the Shapiro time delay. It arises from both the spatial and
temporal coefficients in the metric and can thus serve as a true test of the GR field
equations, as was first proposed by Shapiro in 1964. If one measures the radar distance
to Mercury or Venus or even to an artificial satellite for a period that includes a
close conjunction with the sun, that distance will show a sharp temporary increase at
conjunction owing to the time-delay term. For example, in the case of Mercury this
can amount to some 66 extra kilometers.
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First verifications to an accuracy of∼20 per cent (using Mercury and Venus) were
announced by Shapiro in 1968 and to ∼5 per cent in 1971. Use of transponders
on the Viking spacecraft in orbit around Mars and on the ground on Mars enabled
Reasenberg and Shapiro to increase the accuracy of this test to 0.1 per cent by 1979.

11.8 Particle orbits in Schwarzschild space

The variety of qualitatively different orbits in Schwarzschild space is much larger
than in the case of a Newtonian central field, where all the orbits are conics. In
Schwarzschild space, for example, there are spiraling orbits. While a detailed discus-
sion of all possible orbits is beyond our present scope, we shall nevertheless provide
an overview.

Recall that the ‘plane’ θ = π/2 (and every other such central plane obtainable
from this one by a rotation) is a symmetry surface. (The metric is invariant under a
reflection in it: θ 
→ π − θ .) Now, every possible initial direction of an orbit lies in
precisely one such plane. [The viewpoint of flat space and shrunk rulers is very useful
here— cf. after (11.17).] But since a symmetry surface is totally geodesic, a geodesic
that starts out in such a plane must remain in it, which shows that all orbits are plane.
Without loss of generality we can take θ = π/2 as the plane of our orbits, and work
out the geodesics of the full space as the geodesics of this totally geodesic subspace,
which has the metric

ds2 = α dt2 − α−1 dr2 − r2 dφ2, α = 1− 2m

r
. (11.27)

The Lagrangian � [cf. (10.9)] is then given by

� = αṫ2 − α−1ṙ2 − r2φ̇2, (11.28)

where · ≡ d/ds. This Lagrangian is independent of t and φ, whence the corresponding
Euler–Lagrange equations (10.11) have two immediate first integrals:

αṫ = k, (11.29)

r2φ̇ = h, (11.30)

k and h being constants. The third Euler–Lagrange equation reads

(α−12ṙ)· −
{

2m

r2
ṫ2 − ∂

∂r
(α−1)ṙ2 − 2rφ̇2

}
= 0. (11.31)

We have exhibited this last equation for one purpose only, namely to extract from it
the circular orbits, r = const. With ṙ ≡ 0, this equation yields (and the preceding
two equations permit) the relation

ω2 = m

r3
, (11.32)
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where ω = dφ/dt . This is Kepler’s third law! Of course, such an exact correspondence
is a mere accident of our choice of t- and r-coordinates. Substitution of (11.32) into
(11.27) yields

ds2 =
(

1− 3m

r

)
dt2, (11.33)

which shows that for massive particles we must have r > 3m. The orbit r = 3m

evidently corresponds to a circular light path!
For all orbits, the eqns (11.29) and (11.30) are the relativistic analogs of the

Newtonian equations of conservation of (kinetic plus potential) energy and angular
momentum, respectively. In the case of eqn (11.30), the analogy is obvious, and we
speak of h as the specific angular momentum (angular momentum per unit rest-mass).
To see the connection of (11.29) with energy, suppose the orbit goes to, or comes
from, infinity. At infinity α = 1, Schwarzschild space reduces to Minkowski space,
and ṫ = dt/ds = γ , the Lorentz factor. So k is then the specific total energy of the
particle (remember we are working in units that make c = 1). When the orbit does not
include infinity we can define k to be the total energy. (Cf. Exercises 11.10 and 11.11.)

As we have remarked after eqn (10.42), a solution of N − 1 of the Euler–Lagrange
equations automatically satisfies the N th, unless that solution includes xN = const.
Since we have already dealt with r = const, we can now forget about eqn (11.31).
Instead, we use the metric itself. For the moment we are interested in timelike orbits
and so we can set ds2 = ds2 in (11.27) and �= 1 in (11.28). If we then multiply by
α, substitute from (11.29) and (11.30) for ṫ and φ̇ and rearrange terms, we can obtain

ṙ2 = k2 − 1

r3
(r − 2m)(r2 + h2) =: k2 − V (r), (11.34)

the last equation now defining an ‘effective potential’ V (r), in analogy to
1-dimensional motion. [Like the first integrals (11.29) and (11.30), the equation
obtained in this way from the metric is always free of second derivatives!] Note that
V (r) contains the angular momentum h as a parameter. Figure 11.4(a) shows a typical
graph of V (r) for some specific choice of h.

For comparison, let us consider the Newtonian central field. The equations for
energy and momentum conservation now read (with G = 1)

1

2
(ṙ2 + r2φ̇2)− m

r
= E, (11.35)

r2φ̇ = h, (11.36)

where E = specific energy and the overdot here denotes d/dt . Elimination of φ̇

between these two equations gives us the analog of eqn (11.34):

ṙ2 = 2E − 1

r2
(h2 − 2mr) =: 2E − VN(r), (11.37)
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Fig. 11.4

the last equation now defining the effective Newtonian potential VN(r). (This is
actually double of what one would normally call the potential.) Figure 11.4(b) shows
a typical graph of this function.

Though the graphs in Fig. 11.4 do not tell the whole story, there is much to be
learned from them. A help in their interpretation is the equation we get from (11.34)
[and similarly from (11.37)] by differentiating with respect to s and then canceling ṙ:

2r̈ = −dV

dr
. (11.38)

Now, a particular orbit is determined by a coice of h and k. The former determines
the exact form of V (r). Let us draw a horizontal line [dashed in Fig. 11.4(a)] at height
k2. The depth of V (r) below this line is ṙ2. So only those portions of such a dashed
line that lie above V (r) correspond to possible orbits. Consider a line like the one
marked 2E in Fig. 11.4(b). This corresponds to a scattering orbit: as r comes in from
infinity, the radial velocity component |ṙ| increases until r passes the bottom of the
potential well; then it decreases to zero as r reaches the intersection point of V (r) and
2E, at which r̈ is positive by (11.38), and so r has a minimum there, turns around,
and goes back to infinity. Analogous orbits are possible also in the relativistic case.
Here, however, there also are incoming orbits with nonvanishing h that hit r = 0 (for
sufficiently large k), and bound orbits (to the left of the potential hump) that come
out of r = 2m, spiral to a maximum value of r , and then spiral back into the horizon.

As this last assertion implies, our discussion is, in fact, also applicable to orbits
around a complete Schwarzschild white hole–black hole, where the vacuum extends
through the horizon r = 2m. Particles can then come out of the horizon whilst it is
still a white hole and fall back in again when it has meanwhile become a black hole.
(Chapter 12 will clarify these remarks!)

One thing that can not be read off so easily from the potential diagram is the
angular behavior (although we know φ̇ = h/r2.) For example, we cannot tell that the
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Newtonian scatter orbit is a hyperbola (a parabola if E = 0) or that the oscillating
orbits (corresponding to energy horizontals within the potential well) are ellipses in
the Newtonian case and precessing pseudo-ellipses in the relativistic case.

The bottom point of the potential well corresponds to a stable circular orbit, since
any disturbance just modulates it into a nearby ellipse (in Newton’s theory) or pseudo-
ellipse (in GR). But the top of the potential hump in the relativistic case corresponds to
an unstable circular orbit; any disturbance produces something like the time-reversal
of the orbits corresponding to the horizontal tangent: spiraling into the circular orbit
from below or from above. For very small h (h < 4m) the top of the hump dips
below the horizontal asymptote V = 1, which enables particles coming out of the
horizon to spiral out to arbitrarily large distances before turning round and reversing
course.

For the minimum point of VN(r) [that is, for the zero of (d/dr)VN(r)], we find

r = h2/m, (11.39)

and so there is a minimum (horizontal tangent) whenever h �= 0. Not so in the
relativistic case. Here the condition for (d/dr)V (r) = 0 is found to be

r = h2 ±
√

h4 − 12m2h2

2m
, (11.40)

and this has no solution if h < 2
√

3m = 3.464 m. In that case the graph of V (r)

looks like the dotted curve in Fig. 11.4(a), and every incoming particle falls into the
black hole, or hits the central body if there is one. As noted above, stable circular
orbits can occur only at a minimum of V (r), for which we need h > 2

√
3m and thus

r > 6m. (When h = 2
√

3m and r = 6m, the extrema of V merge into an inflection
point.)

11.9 The precession of Mercury’s orbit

Our next task is to examine in detail the changes that relativity has wrought in planetary
orbit theory. Minute though these changes are in the case of our solar system, one
such change in particular, the precession of the orbit of Mercury, holds an important
place in the history of the acceptance of general relativity (cf. Section 1.14).

Again, for comparison purposes, we begin with the Newtonian orbits, where the
basic equations are (11.35)–(11.37). Suppose we are now interested only in the shape
of the orbit and not in its temporal development. Then we could eliminate t from
(11.36) and (11.37) by forming ṙ2/φ̇2 = (dr/dφ)2. However, in practice it has been
found convenient here to work with the reciprocal of r ,

u := 1

r
. (11.41)
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If we convert eqn (11.37) into an equation in u, and then eliminate t between that
equation and (11.36), we easily find( du

dφ

)2 + u2 = 2mu

h2
+ 2E

h2
. (11.42)

It turns out that the best way to integrate this differential equation is to differentiate
it first, so as to get rid of the squared derivative. If we do this, and cancel a factor
2du/dφ, we get the simple linear differential equation

d2u

dφ2
+ u = m

h2
. (11.43)

Its general solution is of the form

u = m

h2
(1+ e cos φ), (11.44)

apart from the freedom φ 
→ φ + const. Equation (11.44) represents a conic of
eccentricity e with focus at the origin of r , and hence all Newtonian orbits are such
conics. In the case of the planets, the orbits are ellipses (e < 1).

If we now apply the same successful procedure (converting to u = 1/r and
forming u̇2/φ̇2) to the relativistic equations (11.34) and (11.30), we are led without
approximation to the following differential equation:

d2u

dφ2
+ u = m

h2
+ 3mu2. (11.45)

The extra term on the RHS is the obvious cause for the existence of all the non-classical
orbits. But in the case of the solar planets, it merely acts as a minute ‘correction’ term.
For consider the ratio 3mu2 : m/h2 of the two terms on the RHS. If v is the orbital
velocity and we set h ≈ rv, this ratio is

3

r2
:

c2

r2v2
= 3

v2

c2
, (11.46)

in full units. For Mercury, the fastest of the planets, we have 3v2/c2 ≈ 10−7. This
relative smallness of the correction term allows us to substitute for the u in it the
Newtonian value (11.44). With that, eqn (11.45) reads

d2u

dφ2
+ u = m

h2
+ 3m3

h4
(1+ 2e cos φ + e2 cos2 φ). (11.47)

Linear differential equations of this type are solved by adding to the general solution
of the equation with only some or none of the terms on the RHS, particular inte-
grals corresponding to the remaining terms, taken one at a time [as exemplified by
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eqns (11.43) and (11.44)]. So we need particular integrals of the following three types
of equations,

d2u

dφ2
+ u = A, = A cos φ, = A cos2 φ,

where each A is, in fact, a constant of order m3/h4. These must then be added to
(11.44). As can be verified easily, such particular integrals are, respectively,

u = A, u = 1
2Aφ sin φ, u = 1

2A− 1
6A cos 2φ. (11.48)

Of these, the first simply adds a minute constant to the Newtonian solution (11.44),
while the third adds a minute constant and a periodic ‘wiggle’, all quite unobservable.
But the second adds something that does not have period 2π and which is, in fact,
responsible for an ultimately observable precession. So we take as our approximative
solution of (11.47) the following:

u = m

h2

(
1+ e cos φ + 3m2

h2
eφ sin φ

)
≈ m

h2

[
1+ e cos

(
1− 3m2

h2

)
φ

]
, (11.49)

where we have used the formula cos(φ − β) = cos φ cos β + sin φ sin β, and the
approximations cos β ≈ 1, sin β ≈ β for a small angle β = 3m2φ/h2. The equation
shows u (and therefore r) to be a periodic function of φ with period

2π

1− 3m2/h2
> 2π. (11.50)

Thus the values of r , which of course trace out an approximate ellipse, do not begin to
repeat until somewhat after the radius vector has made a complete revolution. Hence
the orbit can be regarded as an ellipse that rotates (‘precesses’) about one of its foci
(see Fig. 11.5) by an amount

� = 2π

1− 3m2/h2
− 2π ≈ 6πm2

h2
≈ 6πm

a(1− e2)
(11.51)

per revolution. Here we have used the Newtonian relation

2m

h2
= 1

r1
+ 1

r2
= 2

a(1− e2)
, (11.52)

which follows from (11.44) on setting φ = 0, π ; a is the semi-major-axis, and r1, r2
are the maximum and minimum values a(1±e) of r . This � is the famous Einsteinian
advance of the perihelion.

From our approximative treatment it is by no means obvious that the relativistic
quasi-elliptic orbits are strictly periodic, which in fact they are: For bound orbits
the exact solution of the GR analog to the Newtonian equation (11.42) [which we
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Fig. 11.5

did not exhibit but nevertheless used en route to (11.45)] is an elliptic function u(φ)

with real period. Alternatively: As is evident from eqn. (11.34), the minimum value
of r (given by ṙ = 0) depends only on k, h, and m, and is therefore the same
at successive perihelia. Since then also dr/dφ = 0 (and with that, du/dφ = 0), the
“initial conditions” for the differential equation (11.45) are identical at each perihelion
and so the orbit repeats exactly.

If we apply the procedure that led to (11.51) to the flat-space metric (9.6), which
was based solely on the equivalence principle, we get only two-thirds of the full GR
precession. The missing third comes from the spatial geometry, as we have already
indicated in Section 11.4, at least for nearly circular orbits.

The accuracy with which planetary perihelion shifts can be observed depends not
only on the shift per orbit, but also on the frequency of revolution (which multiplies
the effect) and on the ellipticity of the orbit, which sharpens the definition of the
perihelion. The case of Mercury is by far the most favorable. Its actually observed
precession, relative to the Newtonian local inertial frame of the solar system, is∼574′′
per terrestrial century. All but ∼43′′ of this can be accounted for by the action of the
other planets (for example, 277′′ from Venus, 153′′ from Jupiter, etc.) The best modern
value for the irreducible residue is 42′′.98± 0.04. And 42′′.98 is also the prediction
of general relativity!

Of course, all the other planets precess too, and can be expected to have similar
irreducible conflicts with Newtonian theory. With modern observational and compu-
tational techniques it has been possible to determine these residues for Venus, Earth,
and Mars, and they are found to agree with the GR predictions (8′′.62, 3′′.84, 1′′.35,
respectively) to better than 1 per cent.
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Although our analysis is not directly applicable to close binary star systems (some
of which have pronounced eccentricities and periods of as little as a few hours) it can
at least give us some order-of-magnitude estimates of what to expect. For example,
for a system consisting of two solar masses orbiting each other one solar diameter
apart (whose period is about five hours), eqn (11.51) with m = 2M� suggests an
orbital precession of ∼ 4 × 10−5 radians per revolution, which adds up to ∼ 4◦ per
year. Indeed, the famous ‘binary pulsar’ discovered by Hulse and Taylor in 1974
and intensively studied ever since (it has been called an extraterrestrial laboratory for
general relativity!) has an orbital period of ∼8 h and a whopping orbital precession
of 4◦.22663 per year. If one uses the appropriate analysis, the GR expression for
the precession turns out to be a function of the total mass M , which in the case of
the binary pulsar was unknown a priori. The incredibly accurate determination of the
precession therefore was used to fix M , and time-dilation measurements on the period
of the pulsar (as its speed and distance from the companion vary) then allowed the
determination of the separate masses (1.44 M� for the pulsar, 1.39 M� for the com-
panion.) This, in turn, allowed a prediction to be made of the rate of energy loss due
to gravitational radiation. And the prediction was verified precisely by the observed
minute continuous increase in the orbital frequency. This constitutes the strongest
support available so far for the general-relativistic theory of gravitational radiation.

11.10 Photon orbits

As we have seen in Section 10.2, photon orbits (null geodesics) satisfy the same
geodesic differential equations as ordinary particles, except that we must use an
affine parameter instead of the arc length, and set ds2 = 0. In this way we obtain
from the metric (11.27) the following three equations in analogy to (11.29), (11.30),
and (11.34):

αṫ = k̄ (11.53)

r2φ̇ = h̄ (11.54)

ṙ2 = k̄2 − h̄2

r2

(
1− 2m

r

)
=: k̄2 − VP (r), (11.55)

where now the overdot denotes differentiation with respect to the affine parameter,
and where the last equation defines VP (r), the effective photon potential. Since the
scale of the affine parameter is arbitrary, we choose it to make h̄ = 1, thereby
excluding the (trivial) radial orbits (h̄ = 0) from our discussion. As in the case of
ordinary particles, the potential diagram, Fig. 11.6, holds the key to the classification
of the orbits, each now characterized by its k̄-value, essentially a measure of an
initial direction [cf. (11.60) below]. The sign of ṙ can change only where the k̄2-line
intersects VP, and since eqn (11.38) still holds, now for VP , those intersection points
correspond to maxima or minima of r .
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P

Fig. 11.6

On differentiating VP (r) we find

Vmax = 1

27m2
(11.56)

at r = 3m. The circular light path corresponding to r ≡ 3m, which we already
discovered after (11.33), is evidently unstable; a slight increase in r causes it to spiral
out to infinity, a slight decrease and it will spiral into the horizon (or the central
mass). Vmax is evidently the critical value for k̄2: while orbits with greater k̄2 do not
encounter the potential barrier, those with lesser k̄2 get reflected at that barrier.

Following Misner, Thorne, and Wheeler,1 we shall find it of interest to classify the
orbits relative to the angle ϑ which a ray ‘initially’ makes with the radial direction.
Directly from the spatial part of the metric (11.27), as applied to an infinitesimal
portion of the orbit [see Fig. 11.7(a)], we find

sin2 ϑ = r2 dφ2

(α−1 dr2 + r2 dφ2)
= α

(
α + 1

r2

dr2

dφ2

)−1

. (11.57)

On the other hand, from (11.54),

ṙ2 = dr2

dφ2
φ̇2 = dr2

dφ2

1

r4
. (11.58)

In conjunction with (11.55) this yields

1

r2

dr2

dφ2
= r2ṙ2 = k̄2r2 − α, (11.59)

1 C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco, 1973, p. 675.
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Fig. 11.7
whence, by (11.57),

sin2 ϑ = α

r2

1

k̄2
. (11.60)

And this formula applies equally to the angle between a direction and the outward or
the inward radius [since sin(π − ϑ) = sin ϑ]. We see from Fig. 11.6 that if a photon
is emitted at an r-value greater than 3m in an outward direction (ṙ > 0), it will go
to infinity. But if emitted inwards, its fate depends on the angle ϑ which the initial
direction makes with the inward radius. For large k̄2-values (small ϑ) it falls into the
horizon; for small k̄2-values (large ϑ) it gets scattered. If the photon is emitted at an
r-value less than 3m in an inward direction, it will go through the horizon. But if emit-
ted outwardly, it will go to infinity for large k̄2 (small ϑ); for small k̄2 (large ϑ) it will
attain a maximum radius, turn back and spiral into the horizon. In both cases the critical
k̄2-value is k̄2 = Vmax = 1/27m2, and so, by (11.60), the critical ϑ-value is given by

sin ϑ = α1/2

r
3
√

3m. (11.61)

Figure 11.7(b), drawn in the plane of the orbit, illustrates these results. Initial direc-
tions within the black sectors correspond to those that will propel the photon into the
black hole, directions within the white sectors send the photon to infinity, and the crit-
ical directions lead to orbits that spiral onto the circle r ≡ 3m. At r = 3m the critical
angle is 90◦.
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11.11 Deflection of light by a spherical mass

As our discussion in the preceding section showed, only those photon orbits that
come within a few multiples of r = 2m show strongly non-Newtonian features, such
as capture by the horizon, or by the circular orbit at r = 3m. Still, even in such
problems as the deflection of starlight by the field of the sun (see Fig. 11.8), though
the relativistic scattering orbit is similar to the Newtonian, namely almost a straight
line, the actual scattering angle can be doubled.

To analyze this problem, we fall back once again on the relativistic equation that
governs the shape of the orbit, namely (11.45). But we must remember that the h in
(11.45) (and in all of Section 11.8) is not the same as the h̄ in (11.54). For though
the definitions (11.30) and (11.54) look alike, the differentiation in (11.30) is with
respect to the arc s, while that in (11.54) is with respect to the affine parameter. Thus
the h in Section 11.8 must be set equal to infinity for photons (ds = 0). (This can
also be understood by recalling that h is the relativistic angular momentum per unit
rest-mass.) So the exact relativistic equation governing the shape of all photon orbits
is the modified eqn (11.45):

d2u

dφ2
+ u = 3mu2. (11.62)

For solving the present problem we shall rely once more on the smallness of the
term on the RHS, this time relative to the u on the LHS (3mu2/u = 3m/r). Without
it, a suitable solution of (11.62) is the ‘straight line’ R/r = sin φ (cf. Fig. 11.8), or

u = sin φ

R
, (11.63)

where R can be regarded as the radius of the sun. Substituting this first approximation
to the orbit into the RHS of (11.62) gives

d2u

dφ2
+ u = 3m

R2
(1− cos2φ),

of which a particular integral is [cf. (11.48)]

u = 3m

2R2

(
1+ 1

3
cos 2φ

)
.

Adding this to (11.63) yields the second approximation

u = sin φ

R
+ 3m

2R2

(
1+ 1

3
cos 2φ

)
. (11.64)

For large r the first and dominant term on the RHS shows that φ is very small, and so
sin φ ≈ φ, cos 2φ ≈ 1. Going to the limit u→ 0 in (11.64), we thus find φ → φ∞
(see Fig. 11.8), where

φ∞ = −2m

R
.
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Fig. 11.8

Consequently the magnitude of the total deflection of the ray, by symmetry, is

� = 4m

R

(
= 4GM

c2R

)
(11.65)

in radians, the expression in parenthesis being in full units.
For a ray grazing the sun, for example, this amounts to 1′′.75. Some 10 expeditions

attempting to observe stars near the sun during a total solar eclipse have been launched
since Eddington’s historic first in 1919, the latest to Mauritania in 1973 by a team
from the University of Texas. In spite of all these efforts it has proved impossible
to reduce the 20 per cent uncertainty of Eddington’s original observations to much
below 10 per cent—within which agreement with Einstein’s prediction was indeed
found.

But a major step forward came in 1969 with an entirely new method that relied on
radio signals and thus did not involve waiting for, and traveling to, a solar eclipse. On
its path around the sun the earth each year passes locations where the sun aligns with
close configurations of distant radio-emitting quasars. As the earth passes, their rela-
tive angular separations change—in perfect accord with Einstein’s bending formula.
The latest (1991) results by Robertson et al., using Very Long Baseline Interferometry
(VLBI), verified Einstein’s prediction to a previously undreamt of accuracy of 10−4.

As we mentioned earlier, on the basis of Newtonian theory one gets a deflection of
light that is only one-half as big as that predicted by GR. An instructive way to obtain
this result is to integrate the local bending expression (1.15) we obtained in Chapter 1
(and which applies equally in GR and Newton’s theory) over flat space. According
to (1.15), disregarding the sign, writing l for the arc along the orbit and ψ for its
inclination to the initial tangent, we have, for the configuration illustrated in Fig. 11.8,

κ = dψ

dl
= g cos θ ≈ m

r2
· R

r
≈ mR

(l2 + R2)3/2
.

From this we find

1

2
� =

∫
dψ =

∫ ∞
0

mR

(l2 + R2)3/2
dl =

[
ml

R(l2 + R2)1/2

]∞
0
= m

R
, (11.66)

which bears out our assertion. Of course, for highly relativistic scattering orbits,
for example for rays approaching a concentrated mass to within almost 3m, neither
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the above relativistic nor the Newtonian approximative results would be expected to
apply, nor the simple factor 2 relating them (cf. Exercise 11.14).

11.12 Gravitational lenses

From the analysis of the preceding section it is clear that if a beam of parallel light
of sufficient cross-section is directed at a massive object, those rays that do not hit
the object but pass around it get converged [as in Fig. 11.9(a)]. This is an example
of a ‘gravitational lens’, so called because (like a glass lens) it converges the light.
But that is also the whole extent of the analogy. Gravitational lenses do not bring
the light to a unique focus, produce neither real nor virtual images, and, in con-
trast to convex glass lenses, their bending decreases with distance from the center.
Even so, as we shall see, they can serve as important observational tools in modern
cosmology.

Figure 11.9(a) shows the simplest configuration of gravitational lensing. A point-
source lies directly behind a spherical gravitating body, and an observer sees it as a
luminous ring (an ‘Einstein ring’) around the lens. The shortest distance D that an
observer can be from the lens to see such a ring occurs when the source is essentially
at infinity and the light just grazes the lens. Then, using (11.65), we find

D = R

�
= R2

4m
, (11.67)

where R (the distance of closest approach) is now the radius of the lens, and m is
its mass. If the lens is a star like the sun, � = 1′′.75, R = R�, and D ≈ 10−2

light-years. Observers farther from the lens see the same source by rays that have
passed the lens farther out and which have therefore been less bent. So the ring they
see has a lesser angular diameter. In fact, from (11.67), that diameter is given by
2� = 4

√
m/D.

While such perfect alignment as is needed for the observation of an Einstein ring is
extremely unlikely with stellar lenses, approximate Einstein rings have been observed
with whole galaxies acting as lenses and radio galaxies as sources. A more likely
situation is illustrated in Fig. 11.9(b), where the observer sees two images of the
source. (‘Image’ is used here in the sense of an image on the retina, as when I see a
single image of a star in the ordinary way of looking at it, by catching a bundle of
rays.) One image in that figure is seen by more or less direct viewing, the other by
light that has detoured around the lens.

Thin cones of rays emanating at the source with the same solid angle may well arrive
at the observer from different directions with different cross-sections. Accordingly
the two images may have different brightnesses. Occasionally a lensed image is thus
greatly magnified. Another type of magnification occurs when the apparent diameter
of an extended source is stretched; that is, when the lensed cone of rays from the
rim of the source to the eye subtends a greater solid angle than if the source were
viewed directly. In fact, the two types of magnification go hand in hand, by a classical
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Fig. 11.9

theorem of Etherington [cf. after (17.20) below.] Some of the most distant known
galaxies were observed only because foreground clusters magnified their images.

With point-like lenses (because the light paths are plane) there can only be two
paths (except when the alignment is perfect) for the light from a source to us. But
with extended transparent lenses, such as galaxies or clusters of galaxies, there can
be more than two images, depending on the exact configuration; and at least one of
them will be magnified (‘magnification theorem’).

The way multiple images can be identified as such is by comparing their redshifts
(which must be the same), their spectra, and also their light curves, if available.
Fortunately, quasars undergo irregular but rapid changes in luminosity. So if two
images display the same redshift and congruent light curves (possibly displaced by
a constant time interval �t of a few years corresponding to the difference in the
optical path length) they can be assumed to represent the same source. The number
of confirmed cases of double or multiple quasar images grows yearly and lies in the
dozens.

Lensing, when perfected (though preliminary results exist already), should allow
among other things direct determinations of cosmological distances and thus of the
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Hubble expansion parameter, as well as independent (non-dynamical) determina-
tions of the masses of the lensing galaxies. We shall indicate without proof (but see
Exercise 11.16), and only in principle, how this works. Neglecting the expansion
of the universe, any possible non-sphericity of the lens, and the Shapiro effect, and
assuming the source to be essentially at infinity, one can quite easily obtain the fol-
lowing two formulae relating the (small) angular distances θ1, θ2 of the images from
the center of the lens, the mass m of the lens, our distance D from it, and the signal
separation �t :

θ1θ2 =
4m

D
, D = �t

|θ2
1 − θ2

2 |
(11.68)

(in units making c = G = 1). Thus, by observing θ1, θ2, and �t , we can in principle
find D and m.

11.13 De Sitter precession via rotating coordinates

De Sitter precession (also known as geodetic precession) is a general-relativistic
phenomenon without classical equivalent. Its mathematical existence was discovered
as early as 1916 by de Sitter, who found that a gyroscope in free (and therefore
‘geodetic’) orbit around a massive body will precess. We shall here re-derive this
result (for the special case of circular orbits) by the method of rotating coordinates
that we already used in Section 9.7 to derive the Thomas precession. (This method
is good for finding circular geodesics and gyroscopic precession in all axisymmetric
spacetimes.2)

As in Section 9.7, but now in the Schwarzschild rather than the Minkowski
metric, we introduce a uniformly rotating coordinate system relative to which
Schwarzschild spacetime is no longer static but still stationary. Writing φ′ for the
original Schwarzschild coordinate φ in (11.13) and introducing a new angular coor-
dinate φ measured from a fiduciary half-plane that rotates about the ‘vertical’ with
constant angular velocity ω (cf. Fig. 9.3), we have

φ = φ′ − ωt, dφ′ = dφ + ω dt, (11.69)

and consequently—after setting θ = π/2 for a typical orbital plane, and doing a little
algebra,

ds2 =
(

1− 2m

r
− r2ω2

)(
dt − r2ω

1− (2m/r)− r2ω2
dφ

)2

−
(

1− 2m

r

)−1

dr2 − r2 − 2mr

1− (2m/r)− r2ω2
dφ2. (11.70)

2 Cf. W. Rindler and V. Perlick, Gen. Rel. and Grav. 22, 1067 (1990).
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This is a stationary metric whose lattice rotates with angular velocity ω relative to
the original lattice. The first parenthesis corresponds to the factor exp(2φ/c2) of the
canonical form (9.13) (now with c = 1). We know from (9.22) that at points where
�,i = 0 there is no gravitational field; so a free particle can remain at rest there, and the
worldline of the lattice point is a geodesic. Here this happens whereω2 = m/r3. So we
have recovered our earlier result (11.32) without solving a differential equation. (This
is how rotating coordinates can determine the circular geodesics in all axisymmetric
metrics.)

The geodetic precession on a circular orbit can be obtained by applying formula
(9.23), for the rotation rate of a gyrocompass fixed in the lattice, to the metric (11.70)
at a freely orbiting lattice point. Comparing (11.70) with the canonical form (9.13),
and using ω2 = m/r3 where convenient, we find

e2� = 1− 3m

r
,

ω3 = r2ω
(

1− 2m

r
− r2w2

)−1
, ω3,1 = 2rω

(
1− 3m

r

)−1
, (11.71)

k11 = 1− 2m

r
, k33 =

(
1− 3m

r

)(
1− 2m

r

)−1
r−2,

with the indices 1,2,3 referring to r, θ, φ, respectively. Equation (9.21) shows that
−�, the angular velocity of the gyrocompass relative to the rotating lattice, in the
present case points in the negative direction relative to the orbit. (This is also clear
physically, since in Newton’s theory the gyrocompass would not precess at all relative
to the original lattice.) For the magnitude of � we substitute from (11.71) into (9.23)
and find

� = e�(k11k33w2
3,1)

1/2 = ω. (11.72)

(This coincidence of � with ω is only apparent, since � is a proper rotation rate while
ω is a coordinate rate.) We can now repeat, mutatis mutandis, the argument that led
from (9.32) to (9.34). Using �τ = (1 − 3m/r)1/2�t which follows from (11.33),
we thus find for the precession of the gyrocompass per orbital revolution, relative to
the rotating lattice:

α′ = −2π
(

1− 3m

r

)1/2
(11.73)

without approximation, and therefore, relative to the original lattice:

α = −2π
[(

1− 3m

r

)1/2 − 1
]
≈ 3πm

r
= 3πv2. (11.74)

Because of the positive sign, this precession is in the same sense as that in which the
orbit is described. Note from (11.73) that, as r → 3m, the precession relative to
the rotating lattice ceases altogether and the gyroscope turns a constant face towards
the center.

De Sitter had, in fact, discovered the precession now named after him by calculating
the motion of the earth–moon ‘gyroscope’ in its orbit around the sun. The minute
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theoretical precession of about 0.02′′ per year was hopelessly beyond verification at
the time. Nevertheless, it is precisely this instance of de Sitter precession that has been
verified recently with modern methods of laser ranging and radio interferometry: by
Bertotti et al. in 1987 to an accuracy of ∼10 per cent, by Shapiro et al. in 1988 to
∼2 per cent, and by Dicke et al. in 1994 to ∼1 per cent.

As a footnote, we may mention a mild inconsistency in the term ‘geodetic pre-
cession’: while in GR non-spinning point particles unquestionably follow geodesics,
spinning particles theoretically follow slightly different orbits, as has been shown by
Papapetrou and others. Still, the spin would have to be quite extreme before it could
affect our results measurably.

Exercises 11
11.1. Prove that the GR vacuum field equations do not permit the existence of a

static cylindrical spacetime or portions thereof (that is, nested 2-spheres of equal
radius.) Its metric would be of the form

ds2 = A(z) dt2 − dz2 − a2(dθ2 + sin2θ dφ2),

where z is ruler distance along the generators θ, φ = const of the 3-cylinder. [It is
really this result—apart from common sense—that allows us to pick the radius r of
the nested spheres in (11.2) as a variable.] [Hint: There is an important theorem (cf.
Exercise 10.13) to the effect that if a metric splits into the sum of two independent
metrics of lower-dimensional spaces, the Riemann and Ricci tensors of the full space
are simply those of the subspaces. For example, the Rzθ of the above metric auto-
matically vanishes while its Rθθ is just the Rθθ of the negative 2-sphere metric. Use
the Appendix to show Rθθ = −1. Also note from the Appendix (or directly from the
definitions) that the Rijkl of two metrics ds2 and k ds2 (k = const) are in the ratio
1 : k while the Rij are the same.]

11.2. What is the radial coordinate velocity dr/dt of light in Schwarzschild space-
time (11.13)? Note how this decreases as r → 2m. If light is sent radially towards
a concentrated spherical mass and reflected by a stationary mirror back to where it
came from, calculate the total to-and-fro coordinate time and note that it tends to
infinity as the mirror approaches r = 2m. If a uniformly emitting light-source falls
freely along a radius towards and through the horizon at r = 2m, what can you say
qualitatively about its apparent velocity, brightness, and color as observed from the
point where it was dropped?

11.3. By introducing a new radial coordinate r̄ defined by the relation

r =
(

1+ m

2r̄

)2
r̄ ,

which is strictly monotonic for r > 2m(r̄ > 1
2m), transform the Schwarzschild metric

(11.13) into the following well-known ‘isotropic’ form:

ds2 = (1−m/2r̄)2

(1+m/2r̄)2
dt2 − (1+m/2r̄)4[dr̄2 + r̄2(dθ2 + sin2 θ dφ2)].
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One can then go from r̄ , θ , φ to x, y, z by the usual transformation from polar to
Cartesian coordinates, and so obtain (11.26).

We have seen in Section 11.3 that we arrive at the correct ruler geometry if we
pretend that space is flat and that transverse rulers are unaffected by the gravitational
field while radial rulers shrink by a factor (1− 2m/r)1/2. Now we see that this was
really just pretending and not some genuine physical effect: according to the isotropic
form of the metric we can also arrive at the correct ruler geometry if we pretend that
rulers in any direction shrink by a factor (1+m/2r̄)−2. [In fact, infinitely many such
distorted-ruler interpretations are possible.]

11.4. The frequency-shift formula (9.4) for stationary spacetimes applies when
source and observer are at rest in the lattice. If either or both of them move, we can
locally apply a previous SR result (cf. Exercise 5.21): The ratio of the frequencies
which two momentarily coincident observers with 4-velocities U1 and U2 ascribe to a
wave train with wave vector L that passes them is given by ν1/ν2 = N · U1/N · U2, N
being any null vector parallel to L. Use this to show that, if a source of proper frequency
νA at lattice point A has 4-velocity UA and an observer at B has 4-velocity UB, the
observed frequency νB is given by

νB

νA
= (NB · UB)(NA · ŨA)

(NB · ŨB)(NA · UA)
·
√

gtt (A)

gtt (B)
,

where NA and NB refer to the connecting ray at A and B, respectively, and ŨA, ŨB
are the 4-velocities of the lattice points A and B. In static spacetimes (9.5) show that if
we standardize each N to N̂ := dxµ/dt for the ray in question, the formula simplifies
to

νB

νA
= N̂B · UB

N̂A · UA
· gtt (A)

gtt (B)
.

11.5. Two free particles are in circular orbit in Schwarzschild space (11.13), one
at radius r1 and the other at radius r2(> r1). At some instant, the inner particle
sees the outer particle by light that has traveled radially. If the proper frequency
of the light emitted at the outer particle was ν2, what is the frequency ν1 seen at
the inner particle? [Hint: use the last formula of the preceding exercise. Answer:
ν1/ν2 = (1− 3m/r2)

1/2/(1− 3m/r1)
1/2.]

11.6. Verify that the coordinate lines r=var (θ, φ, t = const) are geodesics of the
Schwarzschild metric (11.13). [Hint: Either use the equations, or appeal to what we
know about totally geodesic subspaces, cf. Section 9.5.]

11.7. Consider radial free fall in Schwarzschild spacetime (11.13) as a particular
case of the eqns (11.29), (11.30), and (11.34). Find the exact escape velocity at radius
r , as measured by standard clocks and rulers locally. [Hint: standard clocks in the
neighborhood of a given lattice point read time T = e�t . Answer: (2m/r)1/2, just as
in Newton’s theory. Note that this tends to the speed of light at the horizon.]
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11.8. Using (11.35) and the Newtonian potential diagram Fig. 11.4(b), show that the
type of orbit is fully determined by an initial velocity at any given point, independently
of the initial direction (provided it is non-radial): if the initial velocity equals or
exceeds the escape velocity (2m/r)1/2, the orbit goes to infinity, and otherwise it is
closed. Discuss how the general relativistic situation differs from this.

11.9. At radial coordinate r in outer Schwarzschild space an otherwise freely mov-
ing particle is projected with initial proper angular velocity dφ/dτ = ω (in the plane
θ = π/2) at right angles to the radial direction. Find the minimum value of ω for the
particle to reach infinity. What is the corresponding value of ω in Newton’s theory?
Do the two results agree for large r? [Answer: ω2 = r−2(α−1 − 1).]

11.10. Prove that, in first approximation, the quantity αṫ of eqn (11.29) which is
strictly conserved along any geodesic in Schwarzschild spacetime (11.13), represents
the sum of the internal energy, the kinetic energy, and the potential energy, per unit
rest-mass, of the freely falling particle. [Hint: Prove αṫ ≈ 1+ 1

2v2 −m/r .]

11.11. Prove that the relativistic energy, relative to an observer at rest in the lattice,
of a particle of rest-mass m0 moving arbitrarily through Schwarzschild space (11.13)
is m0α

1/2 ṫ . Prove also that if this energy could be totally converted into radiation and
sent to infinity, its magnitude on arrival would be m0αṫ , and thus always the same, if
the particle moves freely. [Hint: Apply locally the SR formula Uobserver · Pparticle =
(energy relative to observer)—cf. (6.15).]

11.12. A particle and its antiparticle, both of rest-mass m0, orbit a spherical mass
m along the same circular orbit of ruler circumference 2πr , but in opposite directions.
They collide and annihilate each other. How much radiative energy is liberated, as
measured by an observer at rest in the lattice where the collision occurs? [Answer:
2m0(1− 3m/r)−1/2(1− 2m/r)1/2.]

11.13. Suppose that at the instant a particle in circular orbit around a spherical mass
passes through a point P, another freely moving particle passes through P in a radially
outward direction, at precisely the velocity necessary to ensure that it falls back to P
when also the orbiting particle again passes through P after a complete orbit. Without
detailed calculations, show that it is certainly possible for the two particles to take
different proper times between their encounters. We have here a version of the ‘twin
paradox’ where neither twin experiences proper acceleration.

11.14. Derive the exact Newtonian scattering angle � for a ray of light approaching
the center of a spherical mass m to within a distance R, and do this twice: once on the
assumption that the ‘light-particles’ have velocity c at the point of closest approach,
and once on the perhaps more reasonable assumption that they have velocity c at
infinity. Work in units making c = G = 1. [Answers: sin 1

2� = (R/m∓ 1)−1. Hint:
Let the path be described by (11.44), so that cos φ∞ = −e−1. In the first case, h = R.
In the second case use (11.37) to determine E, then (11.42) to find h2.]

11.15. Prove that every GR orbit that contains a point where ṙ = 0, is mirror-
symmetric about the radius to that point.
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11.16. Derive the lensing formulae (11.68). [Hint: Let Q be a point-source essen-
tially at infinity, C a point-lens, and O the observer. Let the (small) angle between
OC and CQ be φ. Then θ1 − φ = 4m/Dθ1, θ2 + φ = 4m/Dθ2—why? The first
result now follows. Next, from any point P on the continuation of the straight line
QC an Einstein ring is seen; so in a 2-dimensional diagram the ‘left’ and ‘right’ light
arrives simultaneously. Suppose P and O are on the same wave front of the right
light. Let ψ be the (small) angle between the left and right wave fronts at P, which, to
sufficient accuracy, equals the corresponding angle at O, and so ψ = θ1 + θ2. Then
�t = PO · ψ ≈ Dφψ—why? The second result now follows.]

11.17. Find the unique radius for a free circular light path r = const in the spacetime
with metric (in units making c = 1):

ds2 = exp(r2/a2) dt2 − dr2 − r2(dθ2 + sin2θ dφ2).

[Answer: r = a. Hint: rotating coordinates.]

11.18. Find the geodetic precession per orbital revolution of a gyroscope in free
circular orbit r = const in the spacetime of the preceding exercise. [Answer:
2π{1− (1− r2/a2) exp(r2/2a2)} in the same sense as the orbit.]
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Black holes and Kruskal space

12.1 Schwarzschild black holes

A. Formation of horizons

We have already on several occasions noted the special role that the locus r = 2m

(the Schwarzschild horizon) plays in the Schwarzschild metric. It is now time to study
it systematically.

In full units [cf. (11.16)] the Schwarzschild radius r̃ for a spherical mass M of
uniform density ρ and radius r is given by

r̃ = 2GM

c2
= 8π

3

G

c2
ρr3, (12.1)

if we ignore curvature corrections. So we have

r̃

r
= 8π

3

G

c2
ρr2, (12.2)

which shows that, for any constant density ρ, however small, we can have r̃ > r if
only r is large enough; that is, the horizon can be outside the mass. For the sun we
saw (cf. end of Section 11.2C)

r̃�
r�
≈ 3

7
× 10−5. (12.3)

But consider a (quite unrealistic!) spherical and non-rotating galaxy containing about
1011 suns, like ours, but equally spaced throughout and initially at rest. Since r̃ ∝ m,
we would have

r̃Gal ≈ 1011r̃� ≈ 3

7
× 106r�, (12.4)

by (12.3). So the ratio of the volume inside r̃Gal to the volume of a sun is given by(
r̃Gal

r�

)3

≈ 1017. (12.5)

If this were 1011, the suns would have to be packed like stacks of cannon balls to
fit into the horizon sphere. But we have a factor 106 to spare; that is, such a stack
expanded by a linear factor of 102 would still fit into the galactic horizon. In other
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words, if that galaxy were to collapse to a volume where the individual stars were
still 100 stellar diameters apart, it would already be inside its horizon.

Intuition tells us that (given the assumed initial conditions) such a collapse would
surely occur. (Only rotation and centrifugal force can save most galaxies from this
fate.) Intuition also tells us that, as the last of the stars fall into the horizon, nothing very
special would occur there. The essence of the horizon has already been foreshadowed
in Section 11.2C: it is a potential outwardly directed spherical light front of constant
radius. But that is a global property; locally, to a freely falling observer, the horizon
is a light front like any other.

B. Regularity of the horizon

Let us look at the Schwarzschild metric (11.13) over the entire range r > 0. Exami-
nation of the steps leading to (11.13) shows that it satisfies the vacuum field equations
for r < 2m just as well as for r > 2m. To see that nothing untoward occurs at the
horizon, we could work out (rather tediously, with the help of the Appendix, or quite
easily with a computer) the 14 independent invariants of the Riemann curvature tensor
and so verify that the curvature remains finite there. (The separate components of the
curvature tensor do not tell the whole story, since they have no intrinsic significance.)
For example, we can find

Rµνρσ Rµνρσ = 48
m2

r6
, Rλµ

νρRνρ
στRστ

λµ = 96
m3

r9
. (12.6)

So at least two out of the fourteen are well-behaved at r = 2m. But either one of
these invariants already shows that we have a genuine curvature singularity at r = 0.

A simpler way to show that the spacetime is regular at r = 2m is to find an
alternative coordinate system that bridges the Schwarzschild singularity regularly.
One such is the Eddington–Finkelstein system r, θ, φ, v (1924, rediscovered 1958),
where r, θ, φ are the original Schwarzschild coordinates but v is defined by

t = v − 2m log

⏐⏐⏐⏐ r

2m
− 1

⏐⏐⏐⏐− r. (12.7)

We immediately find

dt = dv − α−1 dr (α = 1− 2m/r), (12.8)

which, when substituted into (11.13), gives the Eddington–Finkelstein form of the
Schwarzschild metric:

ds2 = α dv2 − 2 dv dr − r2(dθ2 + sin2θ dφ2). (12.9)

It is regular for all r > 0, and this shows the horizon events to be ordinary. [Note that
if we put v = R+T , r = R−T , then at the horizon where α = 0 the first part of the
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metric reads 2(dT 2 − dR2).] The Schwarzschild singularity is thus recognized as a
mere coordinate singularity: it can be transformed away.

For r > 2m and for r < 2m the Eddington–Finkelstein metric clearly satisfies the
vacuum field equations, since these are tensorial and therefore form-invariant under
a regular coordinate transformation, which (12.7) is, except at r = 2m. But since
the gµν of (12.9) together with their conjugates and first and second derivatives are
continuous at r = 2m, the field equations must be satisfied there also, by continuity.
So the entire spacetime described by the Schwarzschild metric is regular and vacuum
down to r = 0, where the curvature becomes infinite.

C. Infalling particles

Another way to see the regularity of the horizon is to examine the free fall of particles
through it, most easily along a radius. Going back to eqn (11.34), and setting h = 0
for radial fall [cf. (11.30)], we find, writing 2E for k2 − 1,

ṙ2 = 2m

r
+ 2E. (12.10)

This equation has exactly the Newtonian form (kinetic plus potential energy = const).
Of course, here the derivative is with respect to proper time rather than Newton’s
time, but this form makes it a priori clear that all proper fall times are finite. For a
particle dropped from rest at r = r0 > 2m we have E = −m/r0, and, if it falls to
r = r1, the proper time elapsed is seen to be [inverting (12.10) gives dτ/dr]

�τ =
∫ r0

r1

dr√
2m/r − 2m/r0

=
∫ r0

r1

√
rr0√

2m(r0 − r)
dr. (12.11)

And this is finite all the way down to r1 = 0. In particular, as shown by eqn (12.13)
below, if the particle is released from rest at the horizon (or rather, infinitesimally
outside of it), �τ down to r = 0 is πm.

On the other hand, the coordinate time t elapsed in a fall to the horizon is always
infinite, which most importantly means that an external observer never sees the particle
cross the horizon. (More t is consumed by the light signal back to the observer.) The
reason for this divergence is that the integral for �t looks just like that in (12.11)
except for an extra factor

dt

dτ
= k

1− 2m/r

in the integrand, as follows from (11.29).

D. Non-staticity of inner Schwarzschild space

In our original derivation of the Schwarzschild metric we looked for a static spherically
symmetric field. General relativity, through Schwarzschild, tells us that such fields
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cannot be continued to arbitrarily small radii. The horizon is the limit of staticity.
No part of the spacetime inside of it is static, or even stationary. To see this, note that
both gtt and grr in (11.13) change sign at r = 2m; so inside the horizon the dr2-term
is the only positive one. Consequently r cannot stand still for a particle- or photon
worldline, which must satisfy ds2 ≥ 0. But not being able to stand still is characteristic
of time! And indeed, inside the horizon, r is the time coordinate (though it also retains
its geometrical significance). As such it can only go one way: the future time direction
inside a black hole is that of decreasing r . Since at a lattice point of a stationary
field the curvature would have to remain constant, eqns (12.6) show that r would
have to remain constant. But lattice points are potential particles, so no lattice can
exist.

Even more directly, the non-stationarity of any part of the inner Schwarzschild
region becomes apparent from the fact that the total length of any particle-worldline
inside the horizon is at most πm (whereas in stationary spacetimes all lattice points
have infinite worldlines). For, integrating along an arbitrary worldline inside the
horizon, we have, from (11.13),

�s =
∫ {(

2m

r
− 1

)−1

dr2 −
(

2m

r
− 1

)
dt2

− r2(dθ2 + sin2 θ dφ2)

}1/2

. (12.12)

Any variation in t, θ , or φ decreases the value of this integral. It is therefore maximal
for a worldline t, θ, φ = const (which, by this very argument, must be a timelike
geodesic, cf. also Exercise 11.6). And that maximum is given by

�smax =
∫ 2m

0

(
2m

r
− 1

)−1/2

dr = πm (12.13)

(as can be checked by the substitution r = 2m sin2 u). The particle cannot oscillate
between two r-values. Time cannot turn around. It begins at r = 2m and ends at r = 0.
[Note that (12.13) is a special case of (12.11) corresponding to r0 = 2m, r1 = 0.]

For example, once all the stars have crossed r̃Gal in our earlier thought experiment,
they have at most a proper time 1011πm� to live, if we assume the surface particles
to be governed by the interior vacuum metric. In full units, this maximal proper time
would be 1011 m�πc−1 ≈ 1.55 × 106 s or ∼ 18 days. This is, in fact, identical
with the time required in Newtonian theory for a ball of mass 1011 M� and radius
r̃Gal = 2 × 1011GM�c−2 to collapse from rest—perhaps not surprisingly, in view
of the shared equation (12.10). The Newtonian time for the original non-rotating
hypothetical galaxy to collapse (if it had a typical radius of ∼ 1023 cm) would be
∼ 108 years. On the other hand, a star more or less like the sun, once inside its
6 km-horizon, would collapse in ∼10−11 × 18 days ≈ 10−5 s!
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E. Funnel geometry

In spite of all classical analogs, what happens inside the horizon is very far from
being Newtonian or Euclidean, especially as we proceed inwards and especially in
the final stages. We have seen that the lines t, θ, φ = const are possible radial par-
ticle geodesics in the vacuum inner Schwarzschild space. Consider two neighboring
concentric infalling spherical shells of test particles so moving, one with t ≡ t0 and
the other with t ≡ t0 + δt . Along a radius the metric reads

ds2 =
(

2m

r
− 1

)−1

dr2 −
(

2m

r
− 1

)
dt2. (12.14)

Applying SR locally, we recognize the last term as ruler distance squared in the LIF.
Consequently the ruler distance δl between the infalling shells, as measured in the
LIF, is given by

δl =
(

2m

r
− 1

)1/2

δt. (12.15)

And this tends to infinity as the ‘time’ r progresses from 2m to zero. There
is little difference between a shell so moving [which corresponds to k = 0 in
Fig. 11.4(a)] and one released from rest just outside the horizon (which corresponds
to k = infinitesimal). So we can approximate the latter with the former. A useful
picture of inner Schwarzschild spacetime is therefore an infinite succession of such
freely falling test-spheres peeling off from just outside the horizon and disappearing
down an infinitely long funnel.

The smoothed-out inside of our hypothetical collapsing-ball galaxy [cf. after (12.3)]
is not a vacuum and so the vacuum Schwarzschild metric applies only outside. As
the ball contracts it creates the funnel between itself and the horizon. Its internal geo-
metry provides a rounded cap to the funnel’s ever lengthening and narrowing neck.
[Cf. end of Section 12.5.] Note, incidentally, how futile it would be to try to define a
gravitational field strength in a non-stationary spacetime like a black hole neck.

F. Formation of black holes

If our collapsing-ball galaxy continuously emits spherical light fronts from its surface,
then, as that surface approaches the horizon, the light takes ever longer coordi-
nate times to reach an observer at rest in the external lattice (cf. Exercise 11.2).
The horizon-crossing event itself is seen only in the infinite future. Human and
other activities on infalling planets (as seen by the external observer) are gradu-
ally slowed down to an apparent standstill at the horizon-crossing. The redshift
of the outermost stars has by then become infinite. The outward light front emit-
ted at the horizon remains stuck there for ever and outward light fronts emitted
later contract immediately. No more communication with the outside is possible:
a black hole has been formed. The collapse can no longer be halted, no matter
what internal forces might oppose it. The r coordinate of particles and photons in
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the vacuum between the ball and the horizon must steadily decrease. It is sometimes
said that an irresistible gravitational force pulls everything, including light, inwards.
That force is nothing but time (in the guise of r), which inexorably sweeps everything
before it into the future.

It is believed that there may well be old and inactive black holes containing millions
of solar masses at the core of many galaxies, including our own. The active collapse
of such a galactic black hole and the energy generated in the process (for example,
through rotation, magnetic fields, and synchrotron radiation) may account for the
extreme luminosity of quasars. On the other hand, single stars can collapse to form
stellar black holes. Millions of these may exist in our galaxy alone. It is expected that
when a star’s nuclear fuel is depleted and thermal pressure can no longer resist gravity,
then, after various possible more or less violent events (for example, supernovae), the
star will end up ‘dead’ in one of three final configurations: a white dwarf, a neutron
star (pulsar), or a black hole. The matter in a white dwarf has density ∼ 105 g/cm3

and consists of a (Fermi-) gas of electrons intermingled with a gas of nuclei. Stiffness
against gravity is provided by electron degeneracy. It can be shown by quantum-
mechanical considerations that the maximum mass of a white dwarf is∼1.4 M� (the
‘Chandrasekhar limit’). More massive stars can overcome this electron pressure and
be halted next by the pressure of neutron degeneracy, when all the electrons have
been squeezed into the protons to form neutrons. The density of a neutron star is
∼1014 g/cm3 and its radius is of the order of 10–20 km. Again, there is a quantum-
mechanical limit of∼3 M� to the mass of neutron stars. [The Schwarzschild limit is
less crucial here: eqn (12.1) yields a maximum mass of ∼6 M� for balls of neutron-
star density.] When even neutron pressure cannot halt the collapse, a black hole
would seem to be the inevitable outcome. There are now on record several binary-star
systems with one invisible component whose calculated mass exceeds these limits
and which is therefore presumed to be a black hole.

We may note that, since most stars and galaxies at formation possess angular
momentum, their collapse, if it occurs, is generally preceded by a period of rapid
rotation—to which the spherically symmetric Schwarzschild metric would apply only
very approximatively. It is the Kerr metric, which also possesses a horizon and leads
to rotating black holes, that then takes over. [Cf. after (15.92).]

12.2 Potential energy; A general-relativistic ‘proof’ of E = mc2

We have already seen several roles played by the relativistic scalar potential � in
static and stationary spacetimes—for example, in connection with clock rates and
light frequencies, but also as yielding the gravitational field by its gradient. Does it
additionally measure (as in Newton’s theory) the energy needed to move a unit mass
from point A to point B? The answer is both yes and no and has implications for
black holes.

As we proved in (10.49), −�,i is the gravitational field and so, by our special-
relativistic result f · dr = dE [cf. (6.45)], the energy needed in the local rest-frame
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to move a particle of unit rest-mass through a displacement dxi is �,i dxi . The total
energy needed to move the particle from point A to point B, if acquired en route, is
therefore

∫
�,i dxi = ∫ d� = (�B −�A), just as in classical mechanics.

Suppose, however, that we (standing at B) wish to pull a particle of unit rest-mass
up along a field line from a point A of lower potential, with a massless string. The
string may have to be frictionlessly constrained to follow the field line across the
lattice. Suppose we pull the string with force f through a ruler distance dl, thereby
doing work f dl. Then we let go of the string and allow the particle to return to A,
doing work gdl locally, where g is the gravitational field at A. Let the harvested
energy be beamed to us in the form of radiation. We receive it diminished by the
usual Doppler factor exp(�A−�B). But by energy conservation this must suffice to
pull the particle back a distance dl. So we have

f/g = e(�A−�B) < 1. (12.16)

To digress for a moment: In Schwarzschild spacetime, (12.16) yields, together with
(11.15) and (11.16),

f = e�A

e�B
g = α

1/2
A

α
1/2
B

· GM

r2
A

α
−1/2
A = GM

r2
A

α
−1/2
B . (12.17)

So the force f∞ needed at very large r to dangle a particle of unit rest-mass at the
horizon rA = 2GM is given by f∞ = (4GM)−1, a quantity referred to as the surface
gravity of the black hole.

Continuing with our previous calculation, and writing �,i dxi for the local energy
needed to raise the particle at the general point along the way, we have, from (12.16),∫

f dl = e−�B

∫ B

A
e��,i dxi = e−�B

∫ B

A
d(e�) = e−�B(e�B − e�A).

Thus the total energy expended at B in pulling the particle up from A is given by

E = 1− e(�A−�B) = 1− e�A

e�B
. (12.18)

Conversely, this is also the energy per unit mass we would extract at the end of the
string if we slowly lowered the particle into the potential well.

Let us take the concrete example of Schwarzschild spacetime (11.13), where

e� =
(

1− 2m

r

)1/2

, � = 1

2
log

(
1− 2m

r

)
.

No particle could afford to pay along the way to extract itself from near the horizon:
�B −�A (in particular−�A) becomes infinite as A approaches the horizon. On the
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other hand, rope-rescue is affordable: eqn (12.18) yields E = 1 for A on the horizon.
In full units this reads E = m0c

2 for a particle of rest-mass m0. The converse is even
more interesting: By slowly lowering a particle of rest-mass m0 to the horizon, we
could extract from it all its energy m0c

2!
A fair question: have we really extracted this energy from the particle, using the

field as a mere catalyst, or have we extracted it from the field? This is best answered
by playing the game with a thin spherical shell of mass m0 at r = rB, say, and
demonstrating that the field remains unchanged. After the shell is lowered slowly to
the horizon (so as to arrive there without kinetic energy), an amount of energy m0c

2

(and thus a mass m0) has been accumulated at its original location. The shell itself
can then be discarded into the horizon. By Birkhoff’s theorem, the field outside the
reconstituted shell has not changed. But the field between the black hole and that shell
has not changed either! For if it had, we could repeat the process indefinitely and so
build up an arbitrarily large field difference across the shell at rB, which is absurd.

As a corollary, we note that the mass of the black hole is unchanged in spite of
having absorbed a mass m0 ‘from rest at the horizon’. This is what is meant by saying
that the number of elementary particles inside a black hole is indeterminate.

12.3 The extendibility of Schwarzschild spacetime

Let us consider what might be called a ‘Schwarzschild diagram’, Fig. 12.1, in analogy
to the Minkowski diagram of special relativity. This is an r, t map of motions along
a typical radius θ, φ = const in Schwarzschild spacetime (11.13). The heavy line at
r = 2m represents the horizon. The most important feature of the diagram are the light

Fig. 12.1
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Fig. 12.2

cones at various r-values. For radial light rays (ds2 = 0) the metric (11.13) yields

dr

dt
= ±

(
1− 2m

r

)
. (12.19)

This corresponds to the slopes relative to the t-axis of inwardly and outwardly emitted
signals. For large r , these slopes approach ±1, as in the Minkowski diagram. As we
come in to the horizon, however, the slopes approach zero: plots of light signals near
the horizon are almost vertical on both sides of the horizon. But, as we cross the
horizon, the ‘insides’ of the cones, namely the regions where ds2 > 0 which contain
all worldlines through the vertex, change discontinuously. And so does the direction
of the future: upward for r > 2m, leftward for r < 2m.

For comparison, Fig. 12.2 shows an ‘Eddington–Finkelstein diagram’, which nicely
demonstrates the continuity of the light cone structure in coordinates that bridge the
horizon continuously. From eqn (12.9) we have, for the two radial light signals through
each event, in Eddington–Finkelstein coordinates,

dv = 0,
dr

dv
= 1

2

(
1− 2m

r

)
. (12.20)

In this diagram, therefore, all v = const lines correspond to inwardly emitted radial
light signals. For the outwardly emitted signals, the slope tends to 1

2 for large r , is
zero at the horizon, and tends to −∞ as r → 0. Both diagrams make it clear that for
all worldlines inside the horizon, be they of particles or photons, r must decrease.

In spite of its discontinuity at the horizon, the Schwarzschild diagram has certain
advantages, and we now return to it. Consider a typical infalling-particle worldline
(a geodesic), say the one consisting of the segments marked A and B in the diagram,
which may be regarded as connected at t = ∞. Since the entire Schwarzschild
metric is reflection-symmetric in the coordinate t (that is one of its advantages), we
know from general theory (cf. Fig. 9.3 and accompanying text) that the t-reflected
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segments A′, B′ are also geodesics. A′ represents a free particle moving away from
the horizon. Where has it come from? Evidently from inside the horizon, moving
along B′ towards the horizon. Yet the inner Schwarzschild space we have discussed
so far does not permit such motions and its horizon is not penetrable in that direction.
The only way out of this dilemma is to have a second copy of the inner region joined
to the outer region at the horizon, one in which time runs in the sense of increasing
r and which is bounded by an outwardly penetrable horizon. [Indeed that must be
where the various particles ‘coming out of the horizon’ in Fig. 11.4(a) all come from.]
But that is not all. In the original inner spacetime, B′ traversed towards r = 0 must be
a possible particle worldline, and it evidently comes from A′ traversed in the sense of
decreasing t . So we also need a second copy of outer Schwarzschild spacetime, one
in which time runs in the sense of decreasing t . All four of these regions are joined
at r = 2m.

This mysterious topology will become quite transparent when all four regions are
seen as portions of Kruskal space, which removes the distortions inherent in the
Schwarzschild coordinates. (The Eddington–Finkelstein coordinates are only a half-
way measure). The most misleading feature of the Schwarzschild diagram is the
line r = 2m. Its entire finite portion will be seen to correspond to a single event
(inaccessible to particles from the outside), while the ‘points at infinity’ correspond
to light signals to and from this event! We recall that t = const corresponds to a
radial particle geodesic in inner Schwarzschild spacetime. A typical such trajectory
is marked C in Fig. 12.1. Does it suddenly stop at the horizon? No: it goes up to the
horizon in one copy of inner space and comes back in the other. It is such apparent
stopping in mid-space of geodesics that is referred to as the extendibility of the original
Schwarzschild solution. A spacetime is said to be extendible if it is a mere portion of
a larger spacetime where geodesics do not stop in mid-space. (Geodesics stopping at
a spacetime singularity do not indicate extendibility.) That larger space is called the
maximal extension of the smaller space. In the case of Schwarzschild, the maximal
extension is Kruskal space.

12.4 The uniformly accelerated lattice

In preparation for the discussion of Kruskal space, we return to special relativity
and the uniformly accelerated rocket of Section 3.8. Looking at Minkowski space,
M4, from the lattice of such a rocket will shed much light on the relation between
Schwarzschild and Kruskal space.

Recall that the motion of the entire rocket was characterized by eqn (3.19),

x2 − t2 = X2 (12.21)

(now written with c = 1), each point of the rocket corresponding to some fixed value
of the parameter X > 0, and having constant proper acceleration 1/X. Consider now
the following transformation from the standard coordinates x, y, z, t of M4 to new
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coordinates X, Y, Z, T (where T is dimensionless):

t = X sinh T , x = X cosh T , y = Y, z = Z (X > 0). (12.22)

This implies
x2 − t2 = X2, x/t = coth T (12.23)

and also the following transformation of the metric:

ds2 = dt2 − dx2 − dy2 − dz2 = X2 dT 2 − dX2 − dY 2 − dZ2, (12.24)

as can be verified at once. The new metric is also static, and also has a Euclidean lattice,
in which X, Y, Z measure ruler distance. Comparing (12.23)(i) and (12.21), we see
that each of its lattice points executes hyperbolic motion in the x-direction of M4

and constitutes, in fact, a fixed point in the rocket. Our lattice is the rocket of Section
3.8! Quite independently of what we proved there, all the properties of this rocket
now follow from our general knowledge of static spacetimes. Obviously the lattice
‘moves rigidly’. Its relativistic potential � is given by X2 = exp 2�, � = log X and
so the exact gravitational field strength is given by

g =
⏐⏐⏐⏐d�

dX

⏐⏐⏐⏐ = 1

X
, (12.25)

which is also the proper acceleration of the corresponding lattice points.
Although the ‘rocket’ defined by (12.22) coincides with fully one-half (x > 0) of

the lattice of M4 at t = 0, we shall mostly prefer to visualize just a typical part of
it, something like a tall thin skyscraper on its side, accelerating along the positive
x-axis of M4. Infinitely many such skyscrapers side by side, all infinitely tall, then
constitute the full rocket lattice.

Quadrant I of Fig. 12.3 is the Minkowski diagram of the rocket. It shows the world-
lines (hyperbolae) of the lattice points, as well as the adapted-time cuts T = const.
As in all static spacetimes, these time cuts are orthogonal to the lattice worldlines.

The±45◦ lines through the origin are plane light fronts representing the ‘bottoms’
of the rocket lattice. They correspond to X = 0 and thus to g = ∞. They will soon
be recognized as horizons. One of these light fronts accompanies the rocket during
the ‘first half of eternity’ (t < 0) when the rocket decelerates and moves oppositely
to the acceleration which always points in the positive x-direction. At t = 0 this light
front peels off and is replaced by another that accompanies the accelerating rocket
henceforth. The ruler distance of either front, while it is ‘attached’ to the rocket, from
any rocket point remains constant and equal to X, the point’s coordinate. (Cf. end of
Section 2.9.)

As the Minkowski diagram shows, this one rocket provides alternative coordinates
for only one quadrant of M4, namely that marked I in the diagram. (This ‘wedge’,
so coordinatized, is occasionally referred to as Rindler space; for reasons that will
presently become clear, it has also been called a ‘toy black hole’.) It is easy enough
to coordinatize quadrant III with a similar rocket moving in the opposite direction,
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,

,

Fig. 12.3

Table 12.1

I (X > 0) and III (X < 0) II (X > 0) and IV (X < 0)

t = X sinh T X cosh T

x = X cosh T X sinh T

x/t = coth T tanh T

x2 − t2 = X2 −X2

dt2 − dx2 = X2 dT 2 − dX2 −X2 dT 2 + dX2

by choosing X < 0 in (12.22). Equations (12.23) and (12.24) remain valid. What
about quadrants II and IV? These can be coordinatized in formally the same way,
using the same Lorentz-invariant and mutually orthogonal pattern of hyperbolae and
radii. Table 12.1 summarizes the x, t 
→ X, T transformation in all four quadrants.
The ‘trivial’ part of the transformation, y = Y, z = Z, remains valid everywhere.
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Fig. 12.4

Table 12.2

2R − 1 = x2 − t2 =
{

X2 (I, III)

−X2 (II, IV)

The kinematic significance of the new coordinates in quadrants II and IV is shown in
Fig. 12.4. The loci T = const correspond to a family of planes parallel to the rocket
bottoms, each moving uniformly (that is, falling freely), with respective rapidity
T (u = x/t = tanh T ). The coordinate X measures the proper time (the interval)
elapsed on each of these planes since they all coincided at t = 0. (In the rockets, T

is the time indicated by the coordinate clocks, and X is ruler distance.)
To unify the appearance of the metric in all four quadrants, we can replace X by

another variable, R, as shown in Table 12.2. The result is the metric

ds2 = (2R − 1) dT 2 − (2R − 1)−1 dR2 − dY 2 − dZ2, (12.26)

valid everywhere. A similarity to (11.13) is beginning to appear.
The Schwarzschild metric has a curvature singularity. Minkowski space (no matter

how we change the coordinates) has none. So in order to aid the analogy, we produce an
artificial singularity: we truncate M4 at R = 0. As shown in Fig. 12.5, the spacetime
regions corresponding to R < 0 are declared not to exist, and the two branches
of the hyperbola R = 0 become the past and future edges of spacetime. Truncated
Minkowski space is, in a sense, a universe of finite duration. Free paths all begin on the
past edge and end on the future edge after a finite proper time. Infinite existence can be
had only outside the horizons (rocket bottoms), and only by ceaselessly accelerating so
as not to fall in. (This produces the ever-increasing time dilation needed for unlimited
existence.) Once in quadrant II, a particle must hit the future edge.

The analogy we wish to draw is between our rocket in quadrant I and a skyscraper
outside a Schwarzschild black hole, as shown in Fig. 12.6, where struts connect the
whole family skyscrapers sideways to prevent their falling into the horizon.

For us, Minkowski space is easy to understand—even if truncated. But in its totality
it is not quite so easy to understand from the vantage point of the rocket inhabitants.
They live in a changeless world. Their most convenient metric is (12.24)(ii), but for
our benefit they are also happy with (12.26). They can draw a diagram very much
like the Schwarzschild diagram of Fig. 12.1 and they can figure out that particles
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Fig. 12.5

dropped down an open elevator shaft fall into an ‘inner’ space R < 1
2 , where R is

time and steadily decreases. But they also see the need for a second inner space where
R increases, to explain where incoming particles come from. (They may even observe
free particles being shot up into their open elevator shafts, reaching some maximum

horizon

Fig. 12.6



272 Black holes and Kruskal space

height, and then falling back and out.) And, just as in the Schwarzschild case, the
two inner spaces require a second outer space where T decreases, so that geodesics
will not stop in mid-space. It is particularly hard for these people to understand how
their horizon apparently permits particles to cross it in either direction, little suspect-
ing that all incoming particles cross one horizon and outgoing particles another. Only
when they learn how they fit into Minkowski space does the rocket people’s confusion
evaporate.

12.5 Kruskal space

Kruskal space is to outer Schwarzschild space what Minkowski space is to the
rocket: its maximal extension. It serves as the background space through which each
Schwarzschild skyscraper (cf. Fig. 12.6) actually moves like a rocket. And just as
each Minkowski rocket has an identical partner moving oppositely (cf. Fig. 12.4),
so does each Kruskal rocket. In both cases the gap between such rocket pairs can
be filled with geodesically (that is, freely) moving test matter. Of course, while the
individual Minkowski rockets all move parallelly to the x-axis, the Kruskal rockets
move radially, as indicated in Fig. 12.6. But note that the partner of the rocket labeled
A in Fig. 12.6 is not the rocket labeled B, diametrically across the horizon from A,
but rather A′ on the other side of a ‘wormhole’, as in Fig. 12.7. This figure repre-
sents Kruskal space at one instant, with one dimension suppressed (circles are really
spheres!). It is similar to the cross-section of Schwarzschild space shown in Fig. 11.1,
but now with the bottom half of the funnel, as in Fig. 11.2. As time goes on, the spool
lengthens and the rockets fly through space. The horizons stay of constant diameter
and separate ‘at the speed of light’, while the test matter in between (shown as a series
of circles) moves geodesically, as in Fig. 12.4.

To facilitate the analogy with our Minkowski rocket, we shall choose the units of
length, time, and mass in the Schwarzschild metric (11.13) so as not only to make
c = G = 1 but also m = 1

4 ! With that, and writing T , R for the Schwarzschild t and

Fig. 12.7
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0

Fig. 12.8

r , (11.13) becomes

ds2 =
(

1− 1

2R

)
dT 2 −

(
1− 1

2R

)−1

dR2 − R2(dθ2 + sin2θ dφ2). (12.27)

Note that the horizon is now at R = 1
2 . In the same units, the metric that defines

Kruskal space is the following:

ds2 = 1

2Re2R
(dt2 − dx2)− R2(dθ2 + sin2θ dφ2), (12.28)

where R is a monotonic positive function of x2−t2, implicitly defined by the equation

e2R(2R − 1) = x2 − t2. (12.29)

Fig. 12.8 illustrates the relation between R and x2− t2 schematically. Because of the
time-dependence of R, (12.28) is not a stationary metric.

Note (from its last parenthesis) that the metric (12.28) describes a spherically
symmetric spacetime (nested parallel 2-spheres), in which R measures area distance
[cf. after (11.1)]. The coordinate x in (12.28) is to be regarded as an alternative radial
distance measure, whose relation to R changes with time. [Our use of the letters x

and t in (12.28), while suggestive for our purposes, is non-standard: most authors use
u and v instead.]

Kruskal space, K4, is, in fact, made up of two outer and two inner Schwarzschild
spacetimes, all separated by horizons. Each outer region can be regarded as made
up of rockets flying through space; or perhaps even better, since the radially flying
rockets never separate, as stationary rockets with space streaming past them. Each
inner region can be filled with freely moving parallel test spheres (instead of the
parallel test planes of Fig. 12.4), which are represented by circles in Fig. 12.7.

To justify these assertions, let us consider a Kruskal diagram in the coordinates x

and t . It looks identical to the Minkowski diagram of Fig. 12.5, but has a different
interpretation. That same diagram now represents a single radial line θ, φ = const of
K4 rather than a line parallel to the x-axis of M4. We see from the form of the metric
(12.28) that all ±45◦ lines in the diagram (dx = ±dt) are light paths—just as in the
Minkowski diagram. The ±45◦ lines through the origin, which will again turn out to
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Table 12.3

e2R(2R − 1) = x2 − t2 =
{

X2 (I, III)

−X2 (II, IV)

be horizons (rocket bottoms), again divide the diagram into four distinct quadrants.
Now apply the transformation of Table 12.1 of the preceding section to the Kruskal
metric (12.28)! This transforms its (dt2 − dx2) part into one involving the auxil-
iary variable X, to which Kruskal’s R of eqn (12.29) is now related as indicated in
Table 12.3. (Cf. Table 12.2.) If we finally use this table to eliminate X in favor of R, the
result is Schwarzschild’s metric (12.27) in all four quadrants! [Compare with (12.26).]
By an argument analogous to that of the last paragraph of Section 12.1B, all of Kruskal
space except for its two singular extremities R = 0 satisfies Einstein’s vacuum
field equations.

Quadrants I and III represent two outer Schwarzschild regions R > 1
2 , with future

senses corresponding to T increasing and decreasing, respectively. Quadrants II
and IV represent two inner Schwarzschild regions 0 < R < 1

2 with future senses
corresponding to R decreasing and increasing, respectively. Note how particles and
light from IV can move to I and III, and from there to II. Particles can also move
directly from IV to II through the origin; free worldlines of this nature correspond to
the typical one marked C in Fig. 12.1. Region IV is called a white hole, since every
particle or photon is expelled from it; region II is called a black hole, since nothing
can escape from it.

The very shape of the hyperbolic worldlines R = const in quadrant I suggests a
rocket flying through Kruskal space. That these rockets move rigidly is clear from the
rigidity of the Schwarzschild lattice, and that each point moves with constant proper
acceleration is implicit in the staticity of the Schwarzschild metric.

But there is a more direct way of seeing this. Just like M4, K4 transforms into
itself isometrically under a homogeneous Lorentz transformation in x and t! For
such a transformation preserves both dt2 − dx2 and t2 − x2 (and thus R) in (12.28).
Under such an active LT, the worldlines R = const (x2 − t2 = const) transform
into themselves and so their proper acceleration is everywhere the same as at the
vertex, and therefore constant. Moreover, any two cuts T = const through quadrant
I are Lorentz transformable into each other and therefore isometric. Hence we have
a rigidly moving uniformly accelerating rocket.

There are other consequences of the radial Lorentz invariance of Kruskal space:
(i) Since x = 0 is evidently a symmetry surface of (12.28), the line x = 0, that
is, T = 0 (and θ, φ = const) in quadrants II and IV is a geodesic; but all other
lines T = const in these two quadrants are Lorentz-transformable into this one and
hence geodesics too. They are the worldlines of the free test particles moving radially
between the rockets. (ii) Lorentz invariance also makes it obvious that the total proper
lifetimes along all these geodesics are the same. (iii) Under any isometry, geodesics
map into geodesics. It follows, in particular, that all the geodesics leaving any one
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of the hyperbolic worldlines in quadrant I tangentially can be mapped into the one
at the vertex. Consequently, for example, all free particles dropped from rest at the
same point in outer Schwarzschild space take the same proper time to reach the sin-
gularity, in spite of the non-staticity of the inner region. [The same result is implicit
in eqns (12.11) and (12.13).] Evidently T 
→ T + const is an isometry for the entire
Schwarzschild metric (12.27), mapping geodesics into geodesics; in the outer regions
this is a simple time translation, while in all regions it is a Lorentz transformation
in x and t (cf. Exercise 12.6). (iv) As we mentioned in the preceding paragraph, any
two cuts T = const in region I (but, of course, continuing to region III) are isometric.
We know this a priori, since, via (12.27), any such cut consists of two entire outer
Schwarzschild lattices; they join together at R = 1

2 ; that is, at the horizon. With one
dimension suppressed, any cut T = const through Kruskal space is thus a full Flamm
paraboloid—top and bottom.

How did we arrive at the wormhole of Fig. 12.7 as a typical time slice of Kruskal
space? In non-stationary spacetimes (like Kruskal space) the time coordinate is largely
arbitrary, though one would probably still want to adapt it to whatever symmetries the
spacetime possesses. Kruskal’s original time coordinate t is not the best choice for
understanding the geometrical evolution of this spacetime: any section t = const > 1
(or < −1) cuts the spacetime in two! A more convenient slicing is provided by the
hyperbolae confocal with the hyperbola of the singularity R = 0 (see Fig. 12.9). This

Fig. 12.9
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entire family is characterized by the equation

t2

a2
− x2

2− a2
= 1, (12.30)

the distance between the foci being 2
√

2, and the parametera varying (for the hyperbo-
lae of interest) between one and zero. The asymptotes of all these hyperbolae intersect
at the origin, and as a → 0 the asymptotes open up while the vertices approach the
origin. Kruskal’s time t on the t-axis can serve to calibrate these hyperbolae, so that
our new time coordinate t̃ coincides with the parameter a in eqn (12.30), provided we
assign the negative value to it below the x-axis. The entire Kruskal ‘universe’ then
comes into being at time t̃ = −1 and ceases to exist at time t̃ = 1. We can regard
the infinite proper lifetimes outside the horizon as due to fast motion and consequent
time-dilation, just as in the Minkowski rockets.

The R in the Kruskal diagram (Fig. 12.5) tells us the radius of the 2-sphere R =
const of full Kruskal space through the event in question. In fact, each point in the
diagram can be regarded as representing such a 2-sphere. As we move along any
line t̃ = const in the Kruskal diagram from left to right, R decreases from infinity
to a minimum at x = 0, and then increases back to infinity, giving us the wormhole
geometry. The distance between successive spheres R = const corresponds to the arc
along the line t̃ = const. Along t̃ = 0, this is easy to calculate (from the Schwarzschild
form of the metric), and that is why the equation of the Flamm paraboloid is so easy
to obtain. For all other lines t̃ = const, the exact calculation is forbidding (unless
done by computer) but it is also unnecessary. Qualitatively correct diagrams (see
Fig. 12.10) are quite enough to give us an understanding of the Kruskal geometry. A
section t̃ = const > 0 close to t̃ = 0 will correspond to a double-trumpet very much
like Flamm’s paraboloid but with a slightly thinner waist (the minimum value of R

along the cut is now less than 1
2 ), and the two horizon spheres R = 1

2 have already
somewhat separated. As t̃ increases, the waist of successive sections gets thinner,
the neck gets longer, the horizon spheres separate farther, as do the flares. For large
R-values, the flares of all these sections are practically identical, since t̃ = const
then practically coincides with its asymptotes T = const, all of which correspond
to identical Flamm paraboloids. As the neck lengthens, the horizon spheres R = 1

2
(drawn as heavy circles in Fig. 12.10, like two iron rings) race over Kruskal space
at the speed of light. Similarly, the rockets of Fig. 12.7, standing on these horizons,
race outwards. Alternatively, space itself can be regarded as falling in through the
horizons at the speed of light, thus thwarting all efforts to get out.

For negative t̃ , from −∞ to zero, the evolution is the time reversal of the one just
described. Thus Kruskal space begins as an infinite line of infinite curvature; this
immediately flares open into a long-drawn-out double trumpet, reaches maximum
girth and zero neck as a Flamm paraboloid, whereupon the entire sequence is reversed,
back to a line of infinite curvature, and then nothing. (Or, at least, nothing that we can
predict, since we cannot integrate our equations across a singularity.) As the flares
open up, the horizons bounding the white-hole region IV move inwards; at half-time
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Fig. 12.10

they cross over each other, region IV disappears and the black-hole region II begins
to develop.

There is an alternative (though related) slicing of Kruskal space that is also of some
interest. Take the same confocal hyperbolae t̃ = const as in Fig. 12.9 between the
horizons, but just outside the horizons, where they intersect a fixed hyperbola R =
1
2 + ε, continue them with T = const. A typical such slice is shown as a heavy line in
Fig. 12.11(a). It corresponds to two exact Flamm-paraboloid halves (‘minus ε’) joined
by the neck (‘plus ε’) that corresponds to the t̃-hyperbola under consideration, as
shown in Fig. 12.11(b). As time progresses, the paraboloid halves remain unchanged.
Only the neck between them contracts from infinity to zero, at which time the horizons
are interchanged, whereupon the neck lengthens back to infinity. An observer on one
of the paraboloids (outer Schwarzschild space!) is oblivious to the dynamic behavior
of the neck. Nevertheless this is the only way a vacuum can behave to create the static
conditions outside.

John Wheeler and his school at one time hoped to construct a geometric the-
ory of elementary particles in which Kruskal spaces together with their ‘electrically
charged’ generalizations, and a spacetime honeycombed with Kruskal-type worm-
holes would play a basic role. (‘Matter without matter’, ‘charge without charge’,
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Fig. 12.11

‘vacuum geometry is everything’.) Unfortunately that intriguing idea eventually ran
into unsurmountable difficulties.

Other than that, do full Kruskal spaces exist in nature? Probably not. They would
have to be created as white holes. Collapsing objects only create partial Kruskal
spaces—single trumpets rather than double trumpets. But partial Kruskal diagrams
are still very useful in this connection. Figure 12.12 illustrates on a Kruskal diagram
the collapse of a Schwarzschild-type object. The hyperbola R = Rs represents the
object’s original surface. At B the collapse BCD begins. The part of the diagram to
the left of the surface locus ABCD is inapplicable and would have to be replaced
by some representation of the interior metric. But the part to the right of that line is
fully operational and could be used, for example, to study how an outside observer
sees the collapse. In Fig. 12.11(b) we could imagine a somewhat curved black rubber
disk covering the hole and representing the object before collapse; the trumpet below
it is missing. As the collapse begins, the disk shrinks and drops down the neck,
which only comes into existence as needed. Eventually the disk passes the horizon at
R = 1

2 , whereupon continued collapse becomes inevitable. The neck now lengthens
and narrows indefinitely, with the ever smaller rubber cap rounding it off at the bottom.

Fig. 12.12
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12.6 Black Hole Thermodynamics and Related Topics

In this section we report, in a purely anecdotal way, some of the later developments
in black hole theory, of which the reader should at least be aware.1

A kind of revolution began in theoretical general relativity in 1965 with the intro-
duction of global topological techniques by Penrose, and it continued later with the
introduction of quantum-mechanical methods by Hawking in 1974. Already in 1963,
general relativity had been enriched by Kerr’s discovery of a new exact stationary
vacuum solution of Einstein’s field equations that corresponds to the axially symmet-
ric field around some steadily rotating source. It contains just two free parameters:
one, m, representing the effective mass of the source, and another, a, representing
its angular momentum per unit mass. When a is set to zero, Kerr’s solution reduces
to that of Schwarzschild. It gradually came to be understood, and proved, that it rep-
resents a rotating black hole, and, in fact, the unique final equilibrium configuration
of any electrically neutral fully collapsing body, no matter how irregular, after all
the wobbling and gravitational radiating has died off. Like the Schwarzschild field,
Kerr’s field also has a horizon and an inner curvature singularity. It soon became the
basis of all further black-hole research.

What Penrose established in 1965 was the first “singularity theorem”. Before that,
it was thought that Schwarzschild- and even Kerr-collapse were very special and
artificially symmetric cases, and that perhaps in more realistic situations the collapsing
matter might somehow swirl around and avoid ending in a singularity. Penrose showed
that this was not so. He invented the concept of a “trapped surface”. This is a closed
surface, such that all light emitted on it moves inward; which is just what happens
over any surface r = const < 2m in Schwarzschild space. (Technically, one requires
both inward and outward directed light rays to “converge”.) And then he proved that
under some very reasonable assumptions (positivity of energy, etc.) a singularity
must form inside any trapped surface. Not all of the matter necessarily ends up at
that singularity, but at least some will. Later Penrose and Hawking, Hawking alone,
and others, extended the original singularity theorems and proved, for example, that
our expanding universe, even under less symmetric initial conditions than are usually
assumed, must have had a singularity in the past, and will have another in the future,
if it ever recollapses.

These global topological studies led Hawking (with input from Penrose) in 1970 to
the theorem that the area of a black hole (namely, of its horizon) can never decrease,
and that, for example, when two black holes merge, the area of the resultant black
hole exceeds the sum of the previous areas. This was reminiscent of the second law of
thermo-dynamics, the inevitable increase of entropy. Christodoulou, then a graduate
student at Princeton, had already pointed out the similarity of several of the black-
hole equations to those of thermodynamics. Bekenstein, another Princeton student,
now became convinced that black holes actually must have entropy, and that from
Hawking’s result one could identify this entropy with some multiple of the hole’s

1 For a fuller and very readable overview, see J.D. Bekenstein, Physics Today, Jan. 1980.
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area. He had long been worried by the aspect of black holes as unlimited sinks for
entropy, in violation of the second law. Here was the solution! He found a formula
for this entropy, which turned out to give huge values for stellar black holes. This he
did by clever thought experiments, for example, the slow lowering of tepid gas in a
box to the horizon (cf. our Section 12.2), and thus extracting most of its energy but
not all (since the box must not quite touch the horizon.)

But now came a paradox: having entropy, the black hole would have to have a
temperature; and having a temperature, it would have to radiate. Yet radiate it cannot,
since nothing can escape a black hole.

Or can it? After much original opposition to Bekenstein’s ideas from the “establish-
ment” (including Hawking), Hawking himself in 1974 made the startling discovery
that black holes can and do radiate—by quantum-mechanical processes. Moreover,
the radiation (Hawking radiation) will have a blackbody spectrum. A “poor man’s
version” of the process is that vacuum fluctuations just outside the horizon create
virtual photon pairs, which the tidal forces not only pull apart but also convert into
real photons. One is swallowed, the other escapes, and has robbed the black hole
of the energy needed to make it real; so the black hole shrinks ever so little. In this
way the liaison between quantum mechanics and general relativity (it is not yet a
full marriage!) saved general relativity from the embarrassment of allowing objects
(black holes) that could defy the second law of thermodynamics.

The Bekenstein-Hawking formulas for the temperature and entropy of a black hole
are as follows:

TBH = �c3

8πGkM
, SBH = kc3A

4G�
, (12.31)

where k is Boltzmann’s constant, M is the mass of the black hole, and A its surface
area. As the radiation carries away mass (at first at an incredibly slow rate for “normal”
holes), the temperature rises, and the mass-loss rate speeds up. One speaks of black-
hole evaporation. In the end (aeons down the road), the tidal forces get strong enough
to pull apart even massive virtual particle pairs (such as electrons) and the black hole
ends in a violent explosion. For its total lifetime one finds

tBH ≈ 1.5× 1066
(

M

M�

)3

y. (12.32)

From the analogy of the accelerating reference frame discussed in Section 12.4
above, it may now come as no complete surprise that even in that frame a stationary
observer will measure a temperature; that is, an observer accelerating through the
Minkowski vacuum sees a virtual heat bath! This effect was discussed by Davies in
1975 and analysed by Unruh in 1976. It is referred to as Unruh radiation, and its
temperature is given by

TU = �α

2πck
, (12.33)
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α being the proper acceleration of the observer. At an acceleration g, for example,
the temperature is a mere 4 × 10−20 K. But for the high accelerations occurring in
particle accelerators it may become measurable; and there are, indeed, indications of
its reality.2

Just as the existence of black holes without temperature and without entropy would
disturb the fabric of thermodynamics, so the existence of “naked” singularities would
disturb not only thermodynamics but all of physics. For the very essence of physics
is that it allows us to predict the evolution of systems. Naked singularities, unguarded
by outwardly impassable horizons—like the initial singularity of a Kruskal “white
hole”—would foil all predictions, since no laws govern what comes out of them.
Guided by various plausibility calculations, Penrose in 1969 proposed what he called
the cosmic censorship hypothesis: Nature forbids nakedness! The only permitted
naked singularity is the big bang itself; here we believe we know what came out.
According to Penrose’s hypothesis, no singularity apart from the big bang will ever
be “seen” by any observer. Realistic mass distributions imploding to a singularity will
always develop a horizon, that is, will form a black hole. Although some theoretical
counterexamples have been constructed, the general concensus is that these are all too
artificial to occur naturally. With the censorship hypothesis, general relativity and the
rest of physics are in harmony. As Penrose has pointed out, the hypothesis is required
in order that the modern discussion of black holes can be carried through—like the
area increase theorem or the settling down into a Kerr black hole rather than something
worse in generic gravitational collapse. But a rigorous proof is still outstanding, and
is regarded as one of the most urgent problems in general relativity.

Exercises 12
12.1. Using the last formula of Exercise 11.4, prove that an observer falling freely

from rest at infinity towards a Schwarzschild black hole of mass m receives a radially
infalling photon at frequency ν = ν0(1+

√
2m/r)−1, where r > 2m is the observer’s

radial coordinate at reception and ν0 is the photon’s frequency at infinity. Give reasons
why this formula must continue to hold even for 0 < r ≤ 2m. What is ν at the horizon?
What is ν at r = 0? [Hint: (12.10), (11.29).]

12.2. In Newtonian theory, consider the gravitational collapse from rest of a homo-
geneous ball of dust of mass M and original radius r0 and density ρ0. Prove that the
total time �t of the collapse is given by

�t = π

2
r

3/2
0 (2GM)−1/2 = (3π/32Gρ0)

1/2.

[Hint: Consider the motion of a particle of the surface; a differential equation of the
form r̈ = f (r) (· = d/dt) is solved by using an integrating factor ṙ; and for the
resulting integral cf. (12.13).]

2 J.S. Bell and J.M. Leinaas, Nucl. Phys. B284, 488 (1987).
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12.3. In Newtonian theory, prove that the collapse time of two point masses m,
originally at rest a distance 2r1 apart, is given by

�t = πr
3/2
1 (2Gm)−1/2.

12.4. A small electric generator lights an incandescent lamp at the bottom of a deep
shaft on earth. If the same generator is placed at the top of the shaft and connected to
the lamp by resistance-less wires, by what factor does the lamp shine more brightly?
[Answer: by two Doppler factors. Hint: Consider beaming the light up to power the
generator.]

12.5. By examining the metric (12.9) and Fig. 12.2, find an Eddington–Finkelstein
type coordinate system r, θ, φ, u that regularly covers a ‘white hole’; that is, an outer
Schwarzschild space where the positive sense of t determines the future and an inner
Schwarzschild space where the positive sense of r determines the future. (The orig-
inal system covered a black hole.) Also draw the new system’s light cone diagram
analogous to Fig. 12.2.

12.6. By reference to eqn (2.16), prove that for coordinates x, t and X, T related
as in Table 12.1 (be it in Minkowski or in Kruskal space) a T -translation T 
→ T −φ

is equivalent to a standard Lorentz transformation in x and t with φ as the hyperbolic
parameter.

12.7. In the Minkowski-space rocket described in Section 12.4, prove that all light
paths (except those in the X-direction) are semi-circles relative to the Euclidean lat-
tice coordinates X, Y, Z, with typical equation X2 + Y 2 = const, X > 0. Similarly,
prove that all free-particle paths (other than those parallel to the X-direction) are semi-
ellipses. [Hint: Use Table 12.1 to translate from the underlying x, y, z, t system—but
preferably after applying a Lorentz transformation to make the path orthogonal to the
x-axis (aberration!).]

12.8. In truncated Minkowski space all timelike geodesics, and, in particular, those
parallel to the spatial x-axis, end on the future ‘edge’. Show that, by contrast, in
Kruskal space timelike radial geodesics do not necessarily end on the future singu-
larity. (This essentially stems from the fact that under a 1/r2 law there is an escape
velocity, while under a 1/r law there is none.) On the Kruskal diagram, sketch such
an unending geodesic, bearing in mind that eventually it must surpass every positive
R- and every positive T -value.

12.9. In the Kruskal diagram, qualitatively sketch a sequence of worldlines of free
particles dropped from rest at some given lattice point P in region I; that is, issuing
tangentially from one of the hyperbolae R = const. Recall that all such geodesics are
Lorentz transformable into each other. In particular, prove: (i) If one of these world-
lines were to have an inflection point, so would all. [Hint: An inflection point would lie
between two points at which the tangents are parallel.] (ii) All these worldlines start
off between the hyperbola corresponding to P and its tangent at the event of release.
[Hint: Show that for the special radial geodesics of (12.28) which start with ẋ = 0
at t = 0, ẍ is initially positive.] Observe that all the geodesics which impinge the
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locus R = 0 at any one of its points, are divided by the geodesic T = const into two
classes, coming from quadrants I and III respectively. They are further subdivided
into those that ultimately come from IV, and those that do not.

12.10. Two particles are dropped, one after the other, from rest at the same lattice
point of outer Schwarzschild space, and both fall through the horizon to the singu-
larity R = 0. Use a Kruskal diagram to answer the following questions: (i) Do the
particles see each other at all times? (ii) Does the second particle see the first hit the
singularity? (iii) Is there a finite portion of the first particle’s history that cannot be
seen by the second?

12.11. Describe the geometry of inner Schwarzschild space (that is, region II in the
Kruskal diagram), as a succession of cuts R = const, from R = 1

2 to R = 0. What

can you say about the loci T = const which all coincided at R = 1
2 ? Can an observer,

riding on such a locus, at all times see all other such observers? [Hint: For the metric
of these cuts it is convenient to choose the original Schwarzschild coordinates, as in
(12.27), writing T̃ for R and R̃ for T .]

12.12. (Denur’s paradox) Consider a Schwarzschild black hole of radius r0. An
infalling concentric massive shell of negligible thickness at radius r1 > r0 has just
created another horizon at r1. Consider a particle between these two horizons. Before
the shell sweeps over it, it lives in an outer Schwarzschild region (by Birkhoff’s
theorem), and can therefore remain at constant r (for example, using a jet engine).
Yet it is inside the outer horizon. How can a particle ‘stand still’ inside that horizon?
On an r−τ diagram analogous to Fig. 12.1, but with a conventional time coordinate τ

instead of t that remains finite when the shell crosses both horizons, sketch the history
of the infalling shell as well as the complete history of the two horizon light fronts,
both before and after they are crossed by the shell. Draw little future light cones at
various points along all three of these worldlines and also in the regions between.
[Answer: As the light cone structure will demonstrate, a particle can stand still in the
diminishing zone outside the inner horizon and inside the shell. All along the worldline
of a particle on the infalling shell, between the two horizons, the ‘right’ side of the light
cone points straight up. Cf. J. Ehlers and W. Rindler, Phys. Lett. A180, 197 (1993).]

12.13. According to the Stefan-Boltzmann law, the rate of energy loss from a hot
surface at temperature T is given by σT 4 per unit area, where the Stefan-Boltzmann
constant σ has the value 5.670 × 10−5 erg cm−2s−1K−4. Use this information to
derive (12.32). [Hint: take the surface area of the black hole to be 4πr2 with
r = 2 GM/c2.]

12.14. Taking the age of the universe to be ∼ 2 × 1010y, what would have to
be the initial mass of a primordial black hole (a “minihole”)—formed from fluctu-
ations soon after the big bang—for it to explode today? [Answer: ∼ 10−19 M� or
∼ 1014 g.] Astromomers have looked for minihole explosions but found no evidence
of their existence.
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An exact plane gravitational wave

13.1 Introduction

In this short chapter we shall exhibit and discuss one very special gravitational wave,
not so much because in itself it has any practical importance, but rather to familiarize
the reader with the very idea of gravitational waves and with some of the topological
subtleties that may arise. In this particular case these are quite as surprising as was
the topology of Kruskal space.

One might well expect that curvature disturbances in spacetime would propagate at
the speed of light, and so give rise to ‘gravitational radiation’. That this is, in fact, the
case has been shown by many theoretical investigations, using mainly approximative
methods. However, there also exist certain exact solutions of Einstein’s vacuum field
equations that clearly represent gravitational waves, and we shall here examine one of
the simplest of these, a special plane ‘sandwich’ wave. It is not the kind of wave that
could be generated by any reasonable source distribution; rather, it would have to be
created in toto, much like full Kruskal space. Nevertheless it exhibits some interesting
properties which might be expected to apply also in more realistic radiative situations.

Note that a gravitational wave in vacuum satisfies the vacuum field equations.
Although it certainly carries energy and momentum, such gravitational energy and
momentum are not (and cannot be) treated as source terms in the field equations; they
are nevertheless included in the physics through the non-linearity of those equations.

13.2 The plane-wave metric

Any scalar wave profile p = f (x) propagating in the x direction at speed c will,
after time t , be given by the equation p = f (x − ct). We shall here take c = 1 and
also, following tradition, write p = p(t − x), where p(x) = f (−x). Guided by the
electromagnetic analogy, we might expect gravitational waves to be transverse; that
is, to distort spacetime only in directions orthogonal to the direction of propagation.
In this way we are led to consider plane-wave metrics of the form

ds2 = dt2 − dx2 − p2(u) dy2 − q2(u) dz2, (13.1)

where p(u) and q(u) are assumed to be positive functions depending only on the
‘null coordinate’

u := t − x. (13.2)



The plane-wave metric 285

For simplicity we assume the absence of a cross-term r2(u) dy dz. Such waves are
homogeneous on all instantaneous 2-planes x = const. By reference to the Appendix,
it is straightforward to compute the components of the Riemann tensor Rµνρσ and the
Ricci tensor Rµν for the metric (13.1). In this way we obtain the flatness condition

p̈ = q̈ = 0 ⇔ Rµνρσ = 0 (13.3)

(where overdots denote differentiation with respect to u), and the vacuum condition
(field equation)

p̈

p
+ q̈

q
= 0 ⇔ Rµν = 0. (13.4)

We now specialize the metric (13.1) to represent a sandwich wave, namely a region
of curvature sandwiched between two parallel null planes u = 0 and u = −a,
say, outside of which spacetime is flat, namely Minkowskian (cf. Fig. 13.1). In
3-dimensional language this appears to correspond to a single 3-dimensional flat
background space through which two parallel planes orthogonal to the x-axis and
bounding a region of curvature travel at the speed of light in the positive x-direction
(cf. Fig. 13.2). However, as we shall see, this picture will have to be taken with a grain
of salt.

According to our plan, we must choose the functions p(u) and q(u) so as to satisfy
the vacuum condition (13.4) everywhere and the flatness condition (13.3) outside the
region bounded by the planes u = 0 and u = −a. Along these planes the metric must
satisfy certain smoothness conditions, which here simply amount to p, q and ṗ, q̇

being continuous. The flatness condition demands that p and q be linear functions
of u outside the wave zone. For reasons that will become clear presently, we choose

Flat
 sp

ac
eti

me

Fig. 13.1
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Fig. 13.2

these linear functions as follows:

p = q = 1− u (when u > 0) (13.5)

and
p = p0 = const, q = q0 = const (when u < −a). (13.6)

Exactly how p and q can be continued (in infinitely many ways) inside the wave zone
so as to satisfy the vacuum field equation (13.4) and to join smoothly with (13.5) at
u = 0 and to go smoothly over into some constant values at u = −a in accordance
with (13.6), is shown in Section 13.7 below, so as not to break the continuity here. But
Fig. 13.3 should make it plausible that such a continuation can be found. By (13.4), p̈

Fig. 13.3
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and q̈ must have opposite signs, so p and q must inflect at a common u value; and the
larger of the two must have a proportionately larger second derivative. Let us assume
that a definite choice for these functions in the wave zone has been made.

13.3 When wave meets dust

To analyze what happens when this wave encounters a sheet of stationary test dust
(that is, dust so ‘light’ as to make no contribution to the spacetime geometry), and
later also an oncoming sheet of test photons (cf. Fig. 13.2), we need the following
two lemmas:

Lemma I: Particles satisfying the equations

x, y, z = const

follow timelike geodesics of the metric (13.1).

Lemma II: ‘Particles’ satisfying the equations

x = ±t; y, z = const

follow null geodesics of the metric (13.1). In both cases, t is an affine parameter. For
proof we need only check (with the help of the Appendix) that

�
µ
xx = �

µ
xt = �

µ
tt = 0; (13.7)

the worldlines of Lemma I imply d2xµ/dt2 = 0, dy/dt = 0, dz/dt = 0, and so do
those of Lemma II; so each of these sets of worldlines satisfies the geodesic equation
(10.15) with t as affine parameter. And substitution in the metric shows the former
lines to be timelike and the latter to be null.

Now consider a typical plane x = 0 of test dust particles all of which are initially
at rest in the Minkowski space with metric

ds2 = dt2 − dx2 − p2
0 dy2 − q2

0 dz2 (13.8)

ahead of the wave. By virtue of the continued validity of the equations x = 0; y, z =
const for the motion of each such particle through and beyond the wave zone (accord-
ing to Lemma I), and by our choice of the functions p(u) and q(u), all these particles
will focus (meet) at one single event � having (x, y, z, t) = (0, 0, 0, 1). For the
dx, dy, dz of any two neighboring dust particles remain constant (with dx = 0) and
the square of their spatial separation at all times after leaving the wave zone is given
by dx2 + (1 − t)2(dy2 + dz2), which vanishes at t = 1. Since the particle having
x = y = z = 0 is present at �, so must all the others be. On the other hand, we note
that the distance between any two imagined neighboring dust particles having only
an x-separation, say dx, never changes.
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For readers returning to the present section after covering Section 16.3 below, we
may point out that the effect of the passing wave on the sheet of dust at x = 0 is to
convert it into a 2-dimensional, flat, collapsing Milne universe with FRW metric

ds2 = dt2 − (1− t)2(dy2 + dz2). (13.9)

We shall presently develop a method for finding the exact paths of these particles
in the post-wave space, and by that method also show that a plane of photons meeting
the wave head-on gets similarly focused (though not at �). The same method will
also provide answers to some troubling questions: (i) What about the singularity of
the metric (13.1) at u = 1 where, by (13.5), the functions p(u) and q(u) vanish?
(However, since the space is flat arbitrarily close to this event, it is at least not a
curvature singularity.) (ii) How is it that dust particles arbitrarily far away from the
x-axis at impact can travel to arrive at � a time 1 + a later without breaking the
relativistic speed limit? And (iii) why does the focus lie on the x-axis rather than off
it, seeing that there is complete homogeneity in the y and z directions?

13.4 Inertial coordinates behind the wave

The method we have alluded to consists in going to a new set of coordinates X, Y, Z, T

in the post-wave space, which converts the metric (13.1) there into the familiar
Minkowskian form and so provides a direct physical picture of what is going on.
One possible such coordinate set is given by the transformation

T = t − 1
2 (1− u)(y2 + z2)

X = x − 1
2 (1− u)(y2 + z2)

Y = (1− u)y

Z = (1− u)z,

(13.10)

which transforms (13.1) with (13.5) into the metric

ds2 = dT 2 − dX2 − dY 2 − dZ2 (13.11)

in the post-wave space (as can be checked at the cost of a little algebra). This immedi-
ately answers the first of our ‘troubling questions’: there are no intrinsic singularities
in the post-wave zone.

The front of the wave, u = −a = t − x, is seen as a 2-plane orthogonal to the
x-axis and traveling at the speed of light in the x-direction in the inertial frame (13.8)
ahead of the wave. Similarly, the back of the wave, u = 0 = t − x = T − X, is
seen as a 2-plane traveling at the speed of light in the X-direction in the inertial frame
(13.11) behind the wave.

As we shall show in Section 13.7, we can have p0 and q0 arbitrarily close to unity
by taking the width of the wave zone small enough. To simplify our further discussion
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we accordingly go to the limit and treat the wave as a ‘delta wave’, with essentially
zero width and p0 = q0 = 1. The wave is then axially symmetric around the x-axis.

Let us now fix our attention on a typical radial line of dust particles in the plane
x = 0, say

x = 0, y = η, z = 0, (13.12)

with η serving as parameter. By Lemma I, eqns (13.12) permanently characterize
any one of these particles. After emerging from the wave, by (13.10), the η particle
satisfies the equations of motion (with t as parameter)

T = t − 1
2 (1− t)η2

X = − 1
2 (1− t)η2

Y = (1− t)η

Z = 0.

(13.13)

In particular, it exits the wave at u = 0 (and t = 0), at the event

(X, Y, Z, T ) = (− 1
2η2, η, 0,− 1

2η2) (13.14)

and travels forward along the line

Y = −2

η
X, Z = 0. (13.15)

The effect of the passing wave is therefore to ‘kick’ the particle forward and towards
the X-axis. (A similar effect can occur with electromagnetic waves: at first, the passing
electric field kicks a stationary charge sideways, and once it moves the magnetic field
kicks it longitudinally.)

We observe, from (13.13), that all the particles of the original plane x = 0 will be
present at the focus event � corresponding to the parameter value t = 1:

(X, Y, Z, T ) = (0, 0, 0, 1). (13.16)

The squared displacement for each particle from exiting the wave to � is therefore
given by

�s2 = �T 2 −�X2 −�Y 2 −�Z2

= (1+ 1
2η2)2 − ( 1

2η2)2 − η2 = 1. (13.17)

It is positive: none has broken the speed limit! The mechanism whereby this is possible
is the most surprising result of this analysis. While the particles all enter the wave
simultaneously at t = 0 as judged in the front inertial frame S, they leave it at different
times as judged in the back inertial frame S̃: one ring at a time, as we see from (13.14);
the farther from the X-axis, the earlier. It is this that gives them the necessary head
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Fig. 13.4

start to make it to the focus event. By (13.14), the emergence events all lie on the
paraboloid of revolution (cf. Fig. 13.4)

Y 2 + Z2 = −2X. (13.18)

As the wave plane passes over this stationary paraboloid, it releases particles at
its intersection ring with the paraboloid, whereupon these particles set out on their
journey to the focus. Emerging rings have the same diameter as when they entered,
since, by (13.10), Y = y at u = 0.

Let us now return to the question of why the focus lies on the X-axis and not on some
other point of the plane X = 0, since the physics itself does not single out the X-axis.
The answer is that our choice (13.10) of coordinates for the post-wave inertial frame
S̃ favors the particle originally on the x-axis: S̃ is that particle’s eventual rest-frame,
and so all other particles travel to that one. Every one of the original particles in this
way determines a post-wave inertial frame in which it would be at rest at emergence
while the rest of the picture would be identical. (Readers who have studied Milne’s
universe will readily understand this.)

13.5 When wave meets light

An analysis very similar to that for a stationary plane of dust can be given for an
incident plane x = −t of test photons meeting the wave head-on at x = t = 0.
Instead of (13.12), we now have

x = −t, Y = η, z = 0 (13.19)

for a typical radial line of photons. And by our Lemma II, eqns (13.19) will perma-
nently characterize a given photon. After emerging from the wave this photon, by
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(13.10), therefore satisfies the equations of motion (again with t as parameter)

T = t − 1
2 (1− 2t)η2

X = −t − 1
2 (1− 2t)η2

Y = (1− 2t)η

Z = 0.

(13.20)

In particular, it exits the wave at u = 0, (and t = 0), hence at the event

(X, Y, Z, T ) = (− 1
2η2, η, 0,− 1

2η2). (13.21)

Not surprisingly, we have exactly the same exit pattern for the photons as for the dust:
one ring of photons exits after another, and all the exit events lie on the paraboloid
(13.18), as before.

After emerging from the wave zone, the photons must, of course, travel rectilinearly,
which is consistent with (13.20). Like the dust particles swallowed up by the wave
at the same time as the photons, the latter also converge onto a common focus event,
though a different one from that of the dust. Inspection shows that the paths (13.20)
all contain the event

(X, Y, Z, T ) = (− 1
2 , 0, 0, 1

2

)
, (13.22)

which, in fact, occurs at the same value of the affine parameter, t = 1
2 , for all of them.

This is the focus event for the photons.

13.6 The Penrose topology

A plane delta wave with flat spacetime in back and in front of it might be pictured
(wrongly!) as a simple Minkowski space with a ‘crack’ filled with curvature cutting
it in half, as shown in Fig. 13.5. In this picture, two events on either side of the crack,

Fig. 13.5
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Fig. 13.6

which are close in the diagram, would be close also in a physical sense. But just by
the focusing property of the wave, even if it were only focusing in one direction (as it
would be without special adjustment of p and q—cf. Exercise 13.5), this picture
cannot be right. For consider a single infinite line of dust particles, as in eqn (13.12),
whose worldlines are marked in Fig. 13.5, entering the wave. With the simple topology
of Fig. 13.5, such a line would emerge from the crack also as an infinite straight line.
But then the particles could not possibly all travel to a focus in the finite future without
breaking the speed limit (that is, without some worldlines being inclined to the time
direction at more that 45◦).

The true situation, as was first pointed out by Penrose,1 is that the two half-
Minkowski spaces on either side of the crack are joined with a more complicated
topological identification of points (cf. Fig. 13.6). Let us take y, z, and

v = t + x (13.23)

as coordinates for the lower crack surface, whose equation is x = t , or u = 0 (since
we assume a = 0). And similarly take Y, Z, and

V = T +X (13.24)

1 R. Penrose, in Battelle Rencontres, ed. C. M. Dewitt and J. A. Wheeler, W. A. Benjamin, New York,
1968, p. 198; also R. Penrose, Int. J. Theor. Phys. 1, 61 (1968).
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as coordinates for the upper crack surface. Then, by (13.10), we have the relation

V = v − Y 2 − Z2. (13.25)

(In Figs 13.5 and 13.6 the z and Z dimensions are, of necessity, suppressed.) All
straight lines v = const on the lower crack surface [such as the line of particles
(13.12) just entering the wave] correspond to, and must be topologically identified
with, the respective parabolae V = v − Y 2 on the upper crack surface. It is easy to
convince oneself that each such parabola lies entirely within the past light cone of the
corresponding focus event, so that the focusing can be achieved legally. In fact, by
(13.17), each such parabola is the intersection of the crack plane with the hyperboloid
of revolution �s2 = 1 centered on the corresponding particle focus �. It is also the
intersection of the crack plane with the past light cone of the corresponding photon
focus �̂. The diagram shows one typical photon path (���̂) and two typical particle
paths (	
� and ���) through the wave.

In sum, then, the topology of our particular delta wave consists of two half-
Minkowski spacetimes connected across a null plane (the crack) with a parabolic
relative displacement between identified points of the lower and upper crack surfaces.
In full dimensions, the crack is 3-dimensional (the history of a 2-plane traveling at the
speed of light), and the topological displacement (13.25) is a paraboloid of revolution.
The details of the identification depend on the particular wave, but there must always
be a displacement involved if the wave is homogeneous and focusing.

13.7 Solving the field equation

In this section we shall justify our solution (13.5) and (13.6) of the field equation (13.4)
for the metric (13.1) —a task we postponed at the time to streamline the argument. For
this purpose, we introduce two auxiliary functions L(u) and m(u) by the equations

p = Lem, q = Le−m. (13.26)

It is then straightforward to verify that the field equation (13.4) corresponds to

L̈+ Lṁ2 = 0. (13.27)

Our choice (13.5) for the region u > 0, namely p = q = 1 − u, corresponds to
L = 1 − u and m = 0, while the choice (13.6) for the region u < −a, namely
p = p0, q = q0, corresponds to L, m = const (cf. Fig. 13.7). The results we
anticipated were that p and q could be suitably continued across the wave zone and
also that p0, q0 → 1 as a→ 0.

We now join the two prescribed pieces of L across the wave zone by the quartic

L = 1− u+ 1

a2
u3 + 1

2a3
u4, (13.28)
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Fig. 13.7

which makes L as well as

L̇ = −1+ 3

a2
u2 + 2

a3
u3, (13.29)

and

L̈ = 6

a3
(au+ u2) (13.30)

continuous at both ends u = 0 and u = −a. [Note that, by (13.27), we need L̈

continuous for ṁ to be continuous.] The function m(u) can then be obtained from
(13.27) by quadrature; by (13.27) and (13.30) it will satisfy ṁ = 0 at u = 0,−a.
Thus, via (13.26), p and q are now satisfactorily connected across the wave zone.
Our next interest is in the inequalities

1 ≤ L < 1+ 3
2a (13.31)

and

|L̈| ≤ 3

2a
(13.32)

valid throughout the wave zone so that, from (13.27),

|ṁ| ≤
√

3
2a−1. (13.33)

For proof of (13.31) we observe that all terms but the third on the RHS of (13.28)
are non-negative in the wave zone, so that L is overestimated by their maximum,
1+ 3

2a. On the other hand, the sum of the two middle terms is non-negative, so that
L is underestimated by 1. For proof of (13.32) we find the minimum of the RHS of
(13.30) by differentiating with respect to u (cf. Fig. 13.7).

The inequality (13.33) limits the change of m across the wave zone to |�m| ≤
√

3
2a.

With decreasing a, therefore, we have L(−a) → 1 and m(−a) → 0, whence
p0, q0 → 1, as we wished to show.
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Exercises 13
13.1. Verify eqns (13.3) and (13.4).

13.2. Verify that eqn (13.10) leads to (13.11).

13.3. Verify eqn (13.27).

13.4. Prove that at any instant T = const the entire set of already emerged particles
originally at rest at x = 0 lies on the ellipsoid of revolution

2
(
X + 1− T

2

)2 + Y 2 + Z2 = 1

2
(1− T )2,

which, as one would expect, shrinks to a point when T = 1. [Hint: eliminate t and η

from eqns (13.13).]

13.5. Consider a plane sandwich wave of type (13.1), flat outside the wave zone
which here we take as 0 < u < a, and defined inside by p = cos ku, q = cosh ku.
(i) What are the functional forms of p and q outside the wave zone? (ii) How must
k be chosen so that when the wave becomes a delta wave (a → 0), p = 1 − u, and
q = 1 + u behind the wave? (iii) Describe the exact effect of this delta wave on a
sheet of stationary test dust at x = 0, and on a plane x + t = 0 of oncoming test
photons. (iv) Describe the Penrose topology of this delta wave. [Hint: In analogy to
(13.10) consider

T = t − χ, X = x − χ,

Y = (1− u)y, Z = (1+ u)z,

χ = 1
2 (1− u)y2 − 1

2 (1+ u)z2.]

13.6. Use the machinery developed in Section 13.7 to prove that it is impossible
to construct a plane sandwich wave which, instead of fully focusing, fully diverges
an incoming sheet of test dust—which would typically require L = 1 + u, m = 0,
behind the wave. [Hint: sketch the graph of L(u) and consider eqn (13.27).]
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The full field equations;
de Sitter space

14.1 The laws of physics in curved spacetime

We have not yet seen the full version of Einstein’s field equations, only the special
version that applies in vacuum. For the exterior Schwarzschild problem that was quite
sufficient, since symmetry did most of the work for us; and in the case of gravitational
waves it was also sufficient, as long as propagation rather than generation was our
interest. But if, for example, we want to calculate the spacetime around (and inside)
an arbitrary blob of matter, or the gravitational waves emitted by some double star
system, then we need to know how matter interacts with spacetime, or in other words,
the field equations with source terms.

The analogous Newtonian field equations are the ‘vacuum’ Laplace equation∑
�,ii = 0 and the ‘full’ Poisson equation

∑
�,ii = 4πGρ [cf. (10.81)]. The

former, in conjunction with spherical symmetry, is quite enough to yield the inverse-
square character of the field around a spherical mass M: � ∝ 1/r, g ∝ r̂/r2. But the
latter is needed to fix the constant (g = −GM r̂/r2) or, for example, to find the field
inside the mass.

Einstein’s full field equations must take the place of Poisson’s equation. But here
we run into a problem, namely how to treat the sources. For these have no choice but
to live in the curved spacetime which they at least partly generate. In fact, we have
two problems, one of which is deep and has no general solution. It is the problem of
circularity we have already alluded to in Section 8.4: we need the sources before we
can solve for the spacetime, but we need the spacetime before we can even properly
describe the sources. An iterative or an approximative approach will often surmount
this difficulty. The other problem is easier: what consistency laws must the sources
satisfy in curved spacetime (for example, conservation of energy and momentum)?

To address this second problem, we first widen it: what are the exact laws of
physics in curved spacetime? For example, what laws govern particle collisions or
electromagnetic fields in Schwarzschild space? Happily, it turns out that the process
of adapting the SR laws to curved spacetime is fairly straightforward, as long as the
laws are local. The key ideas in this transition are the following:

(i) The definition of physical quantities, and the laws governing them, are in the
nature of axioms; their formulation and adoption are matters of judgement rather
than proof.
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(ii) All we can logically require of a curved-spacetime law or definition is that it
be coordinate independent, that it be as simple as possible, and that it reduce
to the corresponding SR law or definition (if there is one) in the special case of
Minkowski spacetime.

(iii) In Minkowski spacetime, referred to standard coordinates, absolute and covariant
derivatives of tensors reduce to ordinary and partial derivatives, respectively,
since the Christoffel symbols vanish.

Accordingly, the standard procedure is first to express the SR definition or law in
fully tensorial form (that is, a form not restricted to the use of standard coordinates);
this usually requires substituting absolute and covariant derivatives in place of ordi-
nary and partial derivatives. Once this is done, we can simply accept the same tensorial
definitions and laws in curved spacetime. We have already seen this procedure applied
in the definitions of the generalized 4-velocity and 4-acceleration [cf. (10.45), (10.46)]
of a particle in curved spacetime.

Einstein’s equivalence principle also tells us how to do physics in curved spacetime,
namely to transfer to a freely falling Einstein cabin (or LIF) and there to use SR. The
process described above is essentially equivalent to this, and saves the detour to
the LIF. For, as we have seen (at the end of Section 10.3), a LIF at some event �
corresponds to an orthonormal geodesic system of coordinates with pole at �; and, in
general, if we follow the standard procedure, the curved-spacetime law will reduce to
the SR law at the pole of such coordinates. However, the present discussion also shows
up one of the limitations of the equivalence principle. Suppose the SR law involves
second partial derivatives of a tensor, for example, Fµ

,ρσ . When we generalize this
to Fµ;ρσ , that will not reduce to Fµ

,ρσ at the LIF pole. For at any point where
there is curvature, we can make at most the �s but not their derivatives vanish. In
such cases, the equivalence principle just cannot be fully obeyed: the inevitable tidal
forces, described by the derivatives of the �s, make themselves felt even in the freely
falling cabin.

There is another problem with SR laws involving higher partial derivatives of ten-
sors: whereas, for example, Fµ

,ρσ = Fµ
,σρ , we have Fµ;ρσ = Fµ;σρ −FνRµ

νρσ

[cf. (10.55)]. So the procedure may become ambiguous, and then extraneous criteria
must come into play.

An example along these lines is provided by Maxwell’s equations. Generalizing
them in their potential form [cf. (7.45), (7.49)]

�µ
,µ = 0, �µ

,
ν
ν =

4π

c
Jµ, (14.1)

to curved spacetime appears to be straightforward: just replace the commas by semi-
colons (without ambiguity, since �µ;νν = �µ;νν). But then charge conservation,
Jµ;µ = 0 [cf. (7.39)] would no longer be implicit. What has gone wrong? Gener-
alizing the original Maxwell equation (7.41) leaves it unchanged (cf. Exercise 10.6)
and so in curved spacetime, too, it implies the existence of a potential [cf. (7.42) and
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Exercise 10.6]:
Eµν = �ν,µ −�µ,ν = �ν;µ −�µ;ν . (14.2)

Substituting that into the other original Maxwell equation (7.40) and choosing a
generalized Lorenz gauge, �µ;µ = 0, we find

Eνµ;ν = �µ;νν −�ν ;µν = 4π

c
Jµ. (14.3)

But whereas in SR the Lorenz gauge makes the second � term vanish, here it merely
allows us to replace that term by �νRµ

ν . So the proper generalization of Maxwell’s
equations in potential form is

�µ;µ = 0, �µ;νν +�νRµ
ν = 4π

c
Jµ, (14.4)

and this does imply Jµ;µ = 0 (cf. Exercises 14.1, 14.2).
Returning now to the specific problem that triggered our excursion into extending

SR laws in general, let us recall the SR mechanics of continua discussed in Section 7.9.
A continuum is the most general distribution of matter. And, as we have seen, in SR
the state of a continuum is fully described by its energy tensor T µν . This specifies the
energy density, the momentum density, and the various stress components (relative
to a given inertial frame) according to the scheme (7.80). No one of these parts
has intrinsic meaning by itself; all enter into the transformation of each one. Hence
nothing less than the full energy tensor can figure in any invariant equation—unless
it be just its trace, T = T µ

µ, a scalar.
If we have a continuum in curved spacetime, we can define its energy tensor T µν

through its components (7.80) in any LIF. This allows us to determine the components
of T µν in all coordinate systems by tensorially transforming away from the LIF.
Clearly the symmetry property T µν = T νµ (which ultimately depends on E = mc2)
will hold generally, and will prove to be vital in the construction of the full field
equations.

In the absence of an external force density K̃µ [cf. (7.81)], T µν satisfies the four
conservation equations T µν

,ν = 0 for energy and momentum [cf. (7.82), (7.83)]
locally in each LIF. Note that gravity does not enter as an external force, since in
the LIF there is no gravity. In general coordinates the local conservation equations
will read

T µν ;ν = 0. (14.5)

And this is the restriction on the source distribution that we have been looking for,
which will influence the form of the GR field equations.

The most likely external force to act on our continuum, if it is charged, is an
electromagnetic force. As we have seen in eqn (7.75), we must then add the energy
tensor Mµν of the electromagnetic field to that of the matter in order to get the joint
conservation equation (T µν +Mµν),ν = 0. In curved spacetime this becomes

(T µν +Mµν);ν = 0. (14.6)
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Because of the covariant derivative, this no longer expresses the exact conservation
of material and electromagnetic energy-momentum. It must be understood to include
gravitational energy-momentum as well.

14.2 At last, the full field equations

In Section 10.6 we saw reasons why the GR analog of Laplace’s equation
∑

�,ii = 0
is Rµν = 0. What, then, is the analog of Poisson’s equation

∑
�,ii = 4πGρ? In

Newtonian gravity the only source is the mass density ρ; the instantaneous field is
the same whether the mass moves or not, or whether it is squeezed or not. Already in
Maxwell’s theory the motion of a charge makes a difference to the field. And now it
looks as though in GR even the state of stress of the matter will affect the field, since
only T µν as a whole offers itself as the source term.

One’s first try at generalizing Poisson’s equation would surely be Rµν = const ×
Tµν , as is permitted by the symmetry of Tµν . (For brevity, we assume the absence of
an electromagnetic energy tensor Mµν ; if present, it simply gets added to Tµν .) But
just as Maxwell’s field equations (14.4) are constructed so as to be consistent with
charge conservation, Jµ;µ = 0, so the GR field equations should be consistent with
energy and momentum conservation, T µν ;ν = 0. This is where our first try fails.
Rµν ;ν = 0 is certainly not an identity. The need for it to be nevertheless satisfied
would raise to an impossible 14 the number of independent conditions on the 10
‘unknown’ functions gµν . On the other hand, as we have seen in (10.71), there does
exist a modified version of Rµν , namely the Einstein tensor (or ‘trace-reversed Ricci
tensor’) Gµν , which is symmetric and divergence-free:

Gµν = Rµν − 1
2gµνR, Gµν ;ν = 0. (14.7)

It is this which needs to go on the LHS of the field equations:

Rµν − 1
2gµνR = −κTµν, (14.8)

where κ is a universal constant which is determined by the classical limit, and thus
ultimately by observation. These are the full GR field equations that Einstein proposed
in 1915. The conservation equation T µν ;ν = 0 is now an automatic consequence of
the field equations (as is the analogous conservation equation in Maxwell’s theory),
rather than a separate restriction.

The choice of Gµν for the LHS of the field equations may at first seem somewhat
arbitrary. But it can be shown [cf. D. Lovelock, J. Math. Phys. 13, 874 (1972)] that
Gµν is the only tensorial and divergence-free function of the gµν and at most their first
and second partial derivatives, that, when put on the LHS of the field equations, allows
Minkowski space as a solution in the absence of sources. Since, as we have recognized
on several occasions (cf. Section 10.6), the gµν are the relativistic potentials, the
analogy with Newton’s and Maxwell’s theory (or just the usual demand for simplicity)
makes it reasonable to look for no higher than second-order differential field equations.
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And it is the uniqueness of Gµν—the non-existence of an alternative that is linear in
the gµν and their derivatives—which forces the non-linearity of the field equations.

Let us next determine the value of κ . For this and many other purposes it is con-
venient to cast the field equations into an alternative standard form. Raising µ and
contracting it with ν in (14.8) yields

R = κT , (14.9)

so that the field equations (14.8) can be rewritten in the form

Rµν = −κ(Tµν − 1
2gµνT ). (14.10)

Thus to correct the ‘naive’ version Rµν = −κTµν , we can replace either side by its
trace-reversal. The form (14.10) makes it immediately clear that the full equations
reduce to the previously accepted vacuum equations Rµν = 0 in the absence of
sources. To determine κ we can now pick any convenient known situation. So let us
consider a weak static source distribution, having negligible stress and momentum,
in a quasi-Minkowskian background. Then Tµν = diag(0, 0, 0, c2ρ), T = c2ρ, and
so (14.10) yields R44 = − 1

2κc2ρ. On the other hand, for just such a situation we
saw in (10.88) (from a comparison with Newton’s theory) that R44 = −

∑
φ,ii/c

2.
It therefore follows from comparison with Poisson’s equation (10.81) that

κ = 8πG

c4
= 2.073× 10−48 s2 cm−1 g−1, (14.11)

and this is the accepted value of Einstein’s gravitational constant.
According to the field equations (14.8), the only explicit sources of the gravitational

field gµν are the material energy tensor Tµν and, if present, the electromagnetic energy
tensor Mµν . So does the gravitational field itself have no energy? Does gravity not
gravitate? We have already broached this question at the end of Section 10.6. If
two massive balls stick together gravitationally, we expect their joint field to be less
than twice the field of one ball, by the field of the negative binding energy. Yet it
would be hard to include that with the sources, since at the outset the gravitational
field is the unknown. Moreover, it cannot have an energy tensor analogous to that
of the electromagnetic field, since there is no intrinsic gravitational field strength:
at each event gravity can be transformed away by going to the LIF. But in Section
10.6 we have also indicated the resolution of this apparent problem. The gravity of
gravity is ‘miraculously’ taken care of by the non-linearity of the field equations—
their most significant difference from those of Newton and Maxwell. Non-linearity
‘spoils’ the additivity of solutions. The field of two balls is not twice that of one ball.
The difference, we trust, corresponds to the gravity of gravity.

The non-linearity of the field equations also permits them to imply the equations of
motion. In electromagnetism, for example, the field equations are perfectly satisfied
by the superimposed Coulomb fields of two identical little balls of charge a small
distance apart and eternally at rest. What makes them move apart is the additional
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Lorentz force law. Not so in GR. Already the field equations would not tolerate two
Schwarzschild fields side by side: solutions cannot be added. Each particle ‘feels’
the presence of the other. Einstein suspected early on that the originally hypothetical
geodesic law of motion might, in fact, be implicit in the field equations. And in a series
of complicated papers stretching from 1927 to 1940 he and collaborators proved this
to be the case.

We can illustrate this in a simple situation. A continuum modeled by non-interacting
particles moving in unison at each event is technically referred to as ‘dust’. (Any
random motion would constitute stresses, whereas ‘dust’ is stressless.) Its energy
tensor is given by

T µν = ρ0U
µUν, (14.12)

ρ0 being its proper density and Uµ its 4-velocity. [This follows from eqn (7.86) with
p = 0, which goes over directly to GR.] The field equations, as we have seen, imply
T µν ;ν = 0; that is,

Uµ(ρ0U
ν);ν + ρ0U

µ;νUν = 0. (14.13)

Multiplying this by Uµ yields

c2(ρ0U
ν);ν + ρ0UµUµ;νUν = 0. (14.14)

But Uµ;νUν = Aµ, the 4-acceleration of the continuum [cf. (10.46) and (10.36)],
and so the second term in (14.14) vanishes, being ρ0U · A. Hence the first term
vanishes also. When that is substituted into (14.13), we get Aµ = 0. So the dust
moves geodesically. Now if every particle in even a very small dust cloud floating in
vacuum follows a geodesic, surely it seems very likely that a free test particle does
the same.

We have already loosely indicated in Section 10.6 how GR and Newtonian gravita-
tional theory converge in the limit of classical mechanics. In fact, this correspondence
can be established much more carefully and turns out to be extremely close, as long
as the field is weak (�� c2), the sources move slowly (u� c), the energy-density
term predominates in the energy tensor, and only orbits of slow particles are consid-
ered. Consequently all the classical observations of celestial mechanics, which are
in such excellent agreement with Newtonian theory, can be adduced as support for
Einstein’s theory too, at least at one end of its applications spectrum. It would, of
course, be desirable to test the full field equations in non-Newtonian situations. But
though they are being used routinely in analyzing neutron star models and similarly
extreme astrophysical objects, quantitative confirmation is still sparse. (The famous
‘binary pulsar’ has been a fruitful laboratory of GR.)

Additional confirmation may soon come in connection with ‘gravimagnetism’ [cf.
after (9.18)]. Whereas Newton’s theory can be regarded as a ‘first approximation’
to GR, there is a definite sense in which a Maxwell-like gravitational theory can be
regarded as a kind of second approximation. The full field equations imply, as we noted
before, that moving matter gravitates differently from matter at rest. We shall see
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(in Section 15.5 below) that moving matter generates a ‘gravimagnetic’ field which
pushes moving test masses sideways, just as a magnetic field pushes moving charges
sideways. And there is hope that we can detect, for example, the gravimagnetic field
generated by the rotating earth through satellite experiments.

Perhaps a word about light propagation inside matter will be in order here. Unless
the matter is extremely tenuous (as it is in cosmology), we would not expect the
light to follow null geodesics—whose speed in every LIF is c. But since there is an
extension of Maxwell’s theory within moving media to curved spacetime, one can
study wave propagation in media in curved spacetime much as one does in Minkowski
space. Such an analysis would be unavoidable in order to predict the exact rays. We
may also state without proof that Maxwell’s curved-spacetime vacuum equations
lead precisely to the null-geodetic propagation of electromagnetic waves in curved
vacuum.

To end this section, we return to the problem of circularity inherent in the full field
equations. They can not be regarded as straightforward prescriptions for finding the
metric gµν corresponding to a given matter distribution Tµν . We can lay an arbitrary
coordinate system over our spacetime, but then we cannot, in general, describe the
sources without reference to a preexisting metric. Even for so simple a material as
‘dust’ [cf. (14.12)], how could we specify a velocity vector Uµ of magnitude c, or
how pick a density ρ0 satisfying the conservation equation T µν ;ν = 0, without ref-
erence to a metric? In general, therefore, we must regard the field equations simply
as ten restrictions on the tensor pair (gµν, Tµν). Occasionally a high degree of sym-
metry (spherical, axial, temporal, etc.) inherent in a problem, may suggest preferred
coordinates in terms of which the metric may be determined up to just a few unknown
functions [as we saw in the case of spherical symmetry, cf. (11.2)]. These unknowns
would then enter both sides of the field equations, and be determined by them, thus
leading to an exact solution.

Observe how in their original form (14.8) the field equations immediately yield
the components Tµν once a coordinate system and a metric have been chosen. This
might appear to offer a promising way of generating any number of exact solution pairs
(gµν, Tµν), from which one could then pick the one most suitable for one’s purposes.
But the trouble with this idea is that most randomly chosen metrics yield completely
unphysical energy tensors Tµν—for example, ones with regions of negative energy,
or of unreasonably large momentum- or stress components. Nevertheless, an ever-
growing number of physically acceptable ‘exact solution’ pairs (gµν, Tµν) are known
by now, and these provide valuable insights into the potentialities of GR.

Still, when it comes to tackling real-life GR problems, such as arise in astrophysics,
one of two practical methods is usually employed. The first is an approximative
method called linearized GR, which plays out in Minkowski space and works along
the lines of a classical linear field theory. This will be the subject of our Chapter 15.
The other method, which takes advantage of the emergence of powerful computers,
is called numerical relativity. Although this has many variations, the basic idea is to
choose some ‘initial’ hypersurface corresponding to the world at one instantx4 = 0, to
consistently specify the metric and energy tensor on that surface, and then to ‘evolve’
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both to successive future surfaces. It turns out that four of the ten field equations
can be used as consistency conditions on the initial surface, while the remaining six
determine the evolution. (Cf. Exercise 7.7.)

14.3 The cosmological constant

The field equations (14.8) were constructed so as to allow flat Minkowski space as a
solution in the absence of all sources. If we drop this requirement, then a slightly more
general symmetric and divergence-free tensor can be put on the LHS (also uniquely,
as was later shown by Lovelock, loc. cit.):

Rµν − 1
2gµνR +�gµν = −κTµν, (14.15)

where � is a universal constant. This could be positive, zero, or negative, and, like
R, has the dimensions of a curvature, namely (length)−2. It has come to be called
the cosmological constant, because only in cosmology does it play a significant role.
There, however, it may well be forced on us by the observations. Current cosmological
data limit its magnitude to

|�| < 10−55 cm−2, (14.16)

and we shall see that this makes it totally negligible in all non-cosmological contexts.
It was Einstein himself who, in 1917, added the ‘cosmological term’ to his original

field equations, for the sole purpose of making a static universe possible. When he
later came to accept the irrefutable evidence for the expansion of the universe, he
scrapped the � term for good in his own work, and called it ‘the biggest blunder of
my life’. From today’s perspective, Einstein’s real blunder was to have insisted on a
static universe in the face of what the field equations were clearly telling him. The
� term, on the other hand, seems to be here to stay; it belongs to the field equations
much as an additive constant belongs to an indefinite integral.

Analogously to (14.9), we find from (14.15) that

R = κT + 4�, (14.17)

which allows us to rewrite (14.15) in the alternative form

Rµν = �gµν − κ
(
Tµν − 1

2gµνT
)
. (14.18)

Clearly these equations do not permit flat spacetime in the absence of sources, when
they reduce to

Rµν = �gµν, (14.19)

which implies curvature. [The reader may recall, cf. (10.79), that spaces satisfying a
relation like (14.19) are called Einstein spaces.] In the total absence of sources and
waves we would expect spacetime to assume the maximal symmetry of a space of
constant curvature K . Comparing (14.19) with (10.76), we see that this curvature
would be K = − 1

3�. A spacetime having negative constant curvature is called
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de Sitter space,1 and we shall discuss it in Section 14.4 below. If we accept Einstein’s
modified field equations with positive �, as the cosmological evidence now seems to
suggest, it would be de Sitter space rather than Minkowski space which corresponds
to ‘undisturbed’ spacetime. Because of its miniscule curvature, the difference would
be locally quite undetectable.

In eqn (10.88) we saw that, in the Newtonian limit, R44 = −
∑

�,ii/c
2; and

after (14.10) we saw that, in the same limit, the 4,4-component of the RHS of
eqn (14.10) reduces to −4πGρ/c2. Substituting these values in the modified field
equations (14.18) yields their Newtonian equivalent, namely the modified Poisson
equation: ∑

�,ii +�c2 = 4πGρ. (14.20)

Even in Newton’s theory, with such a field equation, a static universe (� = const)
becomes possible; one merely needs the precarious balance: � = 4πGρ/c2, as,
indeed, did Einstein.

Equation (14.20) shows that � is equivalent to an all-pervasive negative ‘space’
density ρ� = −�c2/4πG, and thus, by Gauss’s outflux theorem, to a repulsive
gravitational field 1

3�c2r away from any center. (Note how this is reminiscent of a
tidal force.) As an example, the � force away from the sun at the location of the earth,
would be about 10−21 of the attraction of the sun itself, if we take � at its maximal
value of 10−55 cm−2.

14.4 Modified Schwarzschild space

In Section 11.1 we derived the Schwarzschild metric (11.13), the unique spherically
symmetric vacuum solution of Einstein’s field equations without � term. (Though we
assumed staticity in the derivation, Birkhoff’s theorem asserts that the Schwarzschild
solution is the unique consequence of spherical symmetry.) Let us now do the corre-
sponding analysis for the modified field equations, once more assuming staticity in
the ‘outer’ region. This will lead us to a first rough bound on the value of �, as well
as to the important de Sitter- and anti-de Sitter spacetimes.

We can again begin with the spherically symmetric metric (11.2) and its Ricci tensor
(11.3)–(11.7), and again it will be convenient to work in ‘relativistic units’ making
c = G = 1. But now we require Rµν = �gµν instead of Rµν = 0. Nevertheless, as
before, we find A′ = −B ′ and A = −B. The equation Rθθ = �gθθ then yields

eA(1+ rA′) = 1−�r2,

or, setting eA = α,
α + rα′ = (rα)′ = 1−�r2.

1 It should be noted that for authors who choose the opposite basic signature to ours, namely (+++−),
de Sitter space has positive curvature.
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Hence

α = 1− 2m

r
− 1

3
�r2, (14.21)

where −2m is again a constant of integration. It is easily verified that this solution
indeed satisfies all the equations Rµν = �gµν . Thus we have found the following
metric:

ds2 =
(

1− 2m

r
− 1

3
�r2

)
dt2 −

(
1− 2m

r
− 1

3
�r2

)−1
dr2 − r2(dθ2 + sin2θ dφ2),

(14.22)

representing Schwarzschild–de Sitter space, so-called because for ‘small’ r it approx-
imates Schwarzschild space and for ‘large’ r , de Sitter space if � is positive (as we
shall see). We can think of it as de Sitter space disturbed by the presence of a single
spherical mass.

Once again, there is a theorem analogous to Birkhoff’s: even without the assumption
of staticity, (14.22) results almost uniquely as a consequence of spherical symmetry;
but now, with �, there also exists a solution consisting of successive identical spheres;
that is, a cylindrical universe [cf. W. Rindler, Phys. Lett. A245, 363 (1998), and
Exercise 14.6]. This, of course, could not be confused with the field around a mass.

By comparison with the standard metric for stationary fields, (9.13), we can read
off the ‘relativistic potential’ � of the metric (14.22):

� ≈ −m

r
− 1

6
�r2, (14.23)

valid as long as �� 1. This once more establishes m as the mass of the central body,
and the effect of � as that of a repulsive force of magnitude 1

3�r .
The effect of � on planetary orbits can be found by retracing the steps that led to

the previous orbit equations (11.30) and (11.45). Even with � the former remains
unchanged, but instead of the latter we now find (cf. Exercise 14.8)

d2u

dφ2
+ u = m

h2
+ 3mu2 − �

3h2u3
. (14.24)

The main effect of the extra � term in this equation can be shown to be an additional
advance of the perihelion by an amount (for nearly circular orbits)

� ≈ π�h6

m4
. (14.25)

In the case of Mercury, for example, this would be one second of arc per century if �

were ∼5× 10−42 cm−2. Since this would have been detected, � cannot be that big.
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14.5 de Sitter space

As a second application of the metric (14.22) we specialize it to the case m = 0, when
it is called the de Sitter metric:

ds2 = (1− 1
3�r2) dt2 − (1− 1

3�r2)−1dr2 − r2(dθ2 + sin2 θ dφ2). (14.26)

This represents the unique spherically symmetric spacetime that satisfies the modified
vacuum field equations and has a center (r = 0) where it is regular. Since we expect
the undisturbed vacuum to have the maximal symmetry of a spacetime of constant
curvature −1

3� [cf. after (14.19)], we expect the metric (14.26) to describe such a

spacetime: it is called de Sitter space, D4, if � > 0, and anti-de Sitter space, D̃4, if
� < 0. These spaces are of importance in cosmology.

Note that, for positive �, the metric (14.26) has at least a coordinate singularity at
r = √3/�; yet for both smaller and larger r it satisfies the field equations, as is clear
from the derivation. And if our conjecture that (14.26) is a space of constant curvature
is correct, then there are no geometric singularities. Still, whenever a physically
meaningful coordinate system has a metric singularity, something of physical interest
is going on. So also here. It turns out that the locus r = √3/� has many analogies to
the Schwarzschild horizon r = 2m: it is a static light front (the field strength becomes
infinite) and bounds the static lattice, which here is inside of it; and also, half-way
through eternity, it changes direction. Observe that, just like the Schwarzschild metric
inside its horizon, the de Sitter metric outside its horizon becomes non-static: the dr2

term is then the only positive term, so r cannot stand still for a particle worldline.
We shall now take an instructive roundabout route to establish that the metric

(14.26) represents a spacetime of constant curvature. Let us begin by considering the
4-dimensional hypersurface � defined by the equation

x2 + y2 + z2 + u2 + v2 = a2 (14.27)

in 5-dimensional Euclidean space E5 with metric

ds2 = dx2 + dy2 + dz2 + du2 + dv2. (14.28)

Any 2-planar direction in � at any point P of � can be transformed into any other
such direction at P by a rotation of E5. This leaves both (14.27) and (14.28) invariant.
Thus every point of � is an isotropic point, and so, by Schur’s theorem, � is a space
of constant curvature. The cuts u = 0 and v = 0 are evidently symmetry surfaces of
�, whence their intersection, x2 + y2 + z2 = a2, ds2 = dx2 + dy2 + dz2, is totally
geodesic, and consequently a geodesic plane of �. But it is just a sphere of curvature
1/a2, which is therefore the curvature of �. So � is the 4-sphere S4 of radius a.

Now for a little trick: we apply the coordinate transformation v 
→ it! Equation
(14.27) becomes

x2 + y2 + z2 + u2 − t2 = a2, (14.29)
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and the metric (14.29) becomes

ds2 = dx2 + dy2 + dz2 + du2 − dt2. (14.30)

But a mere coordinate transformation (even if it is complex) cannot change the validity
of a tensor equation, and so, as reference to (10.73) shows, all sectional curvatures are
preserved. So the hypersurface (14.29) in the 5-dimensional Minkowski-type space
(14.30) still has curvature 1/a2. However, if we adopt the opposite metric

ds2 = dt2 − dx2 − dy2 − dz2 − du2, (14.31)

the subspace (14.29) has negative curvature, −1/a2. For a metric reversal

gµν 
→ −gµν (14.32)

has the effect of changing the sign of every covariant curvature–tensor component, as
can be seen by inspecting eqn (10.60). Consequently all sectional curvatures (10.73)
change sign, and this establishes our assertion. (It has relevance for Footnote 1 above.)

The next step is to prove that the space characterized by the de Sitter metric (14.26)
with positive � can be mapped isometrically into the subspace (14.29) (with a2 =
3/�) of 5-dimensional Minkowski space M5 with metric (14.31). Let us replace the
Euclidean coordinates y, z, u by polar coordinates r, θ, φ in the usual way, so that
y2 + z2 + u2 = r2 and dy2 + dz2 + du2 = dr2 + r2(dθ2 + sin2 θ dφ2). Then
eqn (14.29) reads

x2 + r2 − t2 = a2, (14.33)

and the M5 metric (14.31) reads

ds2 = dt2 − dx2 − dr2 − r2(dθ2 + sin2θ dφ2). (14.34)

We shall temporarily write T for t in (14.26) and also set 3/� = a2, so that de Sitter’s
metric reads:

ds2 = (1− r2/a2) dT 2 − (1− r2/a2)−1 dr2 − r2(dθ2 + sin2 θ dφ2). (14.35)

The mapping in question leaves r, θ, φ unchanged. But we now map into a
5-dimensional space: (T , r, θ, φ) 
→ (t, x, r, θ, φ). The (T , r) 
→ (t, x) mapping
is essentially our old rocket mapping, whose details depend on which quadrant of the
(t, x) plane we map into [see Fig. 14.1(a) and compare Tables 12.1, 12.2, and 12.3
of Chapter 12]. Here we first define the auxiliary function X and note its differential:

Table 14.1

a2 − r2 =
{

X2(I, III)

−X2(II, IV),
dX2 = ±

( r2

a2 − r2

)
dr2
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II

III

IV

Fig. 14.1
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Then we define the transformation (T , r) 
→ (t, x) by the first two lines of Table 14.2:

Table 14.2

I(X > 0) and III(X < 0) II(X > 0) and IV(X < 0)

t = X sinh(T /a) X cosh(T /a)

x = X cosh(T /a) X sinh(T /a)

x/t = coth(T /a) tanh(T /a)

x2 − t2 = X2 −X2

dt2 − dx2 = (X2/a2) dT 2 − dX2 −(X2/a2) dT 2 + dX2

The x2 − t2 entries in this table, together with Table 14.1, confirm that the map
point always lies on the surface (14.33), while the dt2 − dx2 entries confirm (after a
little algebra) that the mapping is isometric; that is, (14.35) goes over into (14.34).

So we have mapped the original de Sitter space (14.35) isometrically into the
constant-curvature hypersurface (14.29) in M5. This surface is a (hyper-)hyperboloid
analogous to the one-sheeted hyperboloid in Fig. 5.1, being the locus of points with
constant squared displacement −a2 from the origin. Without regard to θ and φ,
its equation is (14.33) and that locus is the hyperboloid of revolution � shown in
Fig. 14.1(b). All points of the full surface (14.29) which have the same r-value are
here condensed into a single point, so that each point of � stands for an entire
2-sphere having the radius of its r coordinate. Alternatively we can regard � as the
full representation of a single radial direction θ, φ = const,−∞ < r < ∞, of the
original de Sitter space (14.35), the front half of � representing the positive radius,
the back half of � the negative radius.

Actually, � is made up of two ‘inner de Sitter spaces’ (|r| < a) and two ‘outer
de Sitter spaces’ (|r| > a), as described by the original metric (14.35). Quadrant I
represents an inner space where T increases into the future, quadrant III one where
T decreases into the future; quadrant II represents an outer space where r increases
into the future, quadrant IV one where r decreases into the future.

The reader has undoubtedly noticed that the relation between the original de Sitter
space (14.35) and the full hyperboloid (14.29) is closely analogous to the relation
between Schwarzschild space and Kruskal space. The full hyperboloid represents the
‘maximal extension’ of the original de Sitter space. An examination of the ‘whence
and whither’ of geodesics (just as in the case of Schwarzschild) makes it clear that
at least two inner and two outer de Sitter spaces must be joined together to allow the
continuity of geodesics, and the hyperboloid not only shows how to do this, but also
that the result is maximal.

The surface of revolution � is quite analogous to the flat Kruskal diagram, Fig. 12.5,
in which all ±45◦ lines correspond to light paths. (Only the horizons are actually
marked.) The±45◦ (to the vertical) straight-line generators of �, typified by the pair
of lines r = a [and thus t = ±x, by (14.33)], also represent light-paths, being both
null and straight in M3 (with metric ds2 = dt2−dx2−dr2). Note that, by symmetry,
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all geodesics (and also all worldlines of uniformly accelerated particles) through the
spatial origin of de Sitter space (14.35) lie on a radius and thus on the hyperboloid �.
But since de Sitter space has constant curvature, its spatial origin is arbitrary, and thus
each of its geodesics (and uniformly accelerated worldlines) lies on a hyperboloid
like �.

Observe that � can be mapped isometrically onto itself by rotations in (x, r) and
standard LTs in (t, x) and (t, r), all of which leave (14.33) and (14.34) (without
the angular term) invariant. This allows us to prove two interesting results: (i) all
sections of � by planes through its center are geodesics, and (ii) all other plane
sections, if timelike, are potential worldlines of particles moving with constant proper
acceleration. To prove (i), we need only observe that the particular section r = 0,
being a symmetry surface, is clearly geodesic, and that, by an LT in (t, r) and a
rotation about the t-axis, this can be transformed into any other timelike central
section. (Spacelike geodesics arise similarly from the waist circle t = 0.) To prove
(ii), consider any of the hyperbolic sections r = const < a shown in Fig. 14.1(a); by
an LT in (t, x) any of its points can be brought to the vertex, leaving the hyperbola
as a whole unchanged. It consequently represents a worldline with constant proper
acceleration. By choosing various r values we get planes variously distant from the
center, which can then be brought into coincidence with any other relevant plane by
an LT in (t, r) followed by a rotation about the t-axis.

There is also an analogy to our earlier rocket space: quadrants I and III can be
regarded as filled with rockets. Again the rockets ‘stand’ on the spherical horizon as
in Fig. 12.6, but this time they point inwards.

Lastly we show how ‘maximal de Sitter space’ (that is, the entire hyperboloid �,
which should really have a name of its own, as does Kruskal space) can be visualized
(much like Kruskal space) as the time evolution of a suitable spacelike section. Here
each section t = t0 = const is simply a 3-sphere, as is clear from (14.29) and (14.31):

x2 + y2 + z2 + u2 = a2 + t2
0

ds2 = dx2 + dy2 + dz2 + du2. (14.36)

(The intrinsic geometry of a space is never affected by a metric reversal ds2 
→ −ds2;
and for proper Riemannian spaces one naturally prefers the positive version of the
metric.) That this is a 3-sphere follows as after (14.27), (14.28). We can represent it by
one of its typical symmetry surfaces, u = 0, a 2-sphere in E3 of radius

√
(a2 + t2

0 ):
x2 + y2 + z2 = a2 + t2

0 . The horizons r = a correspond to the circles y2 + z2 =
a2, x = ±t0 on this 2-sphere (see Fig. 14.2). As time t progresses from−∞ through
zero to +∞, this sphere shrinks from infinite extension to a minimum radius a at
t = 0, whereupon it expands to infinity once again. Meanwhile the horizon-circles
(light fronts), having fixed radius a, approach each other for ‘the first half of eter-
nity’, during which time they are penetrable inwards (that is, towards the respective
origin-observers O, O′) by particles and light; they meet and cross each other at t = 0,
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Fig. 14.2

and then they separate again for the second half of eternity when they are penetrable
outwards. We can think of them as running over the ‘material’ of the balloon (space)
at the speed of light; when the balloon shrinks, they run outward, when it expands,
they run inward.

The above considerations also allow us to conclude that the spatial geometry of the
static lattice of inner de Sitter space is that of a hypersphere S3 of radius a, or rather
a hemi-hypersphere, whose equator is the horizon. [More experienced readers may
have recognized this directly from the form of the spatial part of the metric (14.35).]
For the geometry of the lattice corresponds to that of any spacelike cut T = const
through the spacetime [cf. Fig. 14.1(a)]. But the particular cut T = 0 coincides with
t = 0, and that, as we have seen in (14.36), is a 3-sphere of radius a, in which the two
horizons just touch at the equator; so inside each horizon there is a hemi-hypersphere
of radius a.

The movie-like time development of de Sitter space can be generalized to
Schwarzschild–de Sitter space. Instead of a regular center, the spacetime (14.22) has
a Kruskal wormhole. So the de Sitter sphere of Fig. 14.2 must now have a wormhole
at the center of each horizon, which naturally joins to another de Sitter sphere, and so
on ad infinitum, since this ‘extension’ process has no natural end (see Fig. 14.3). At

Fig. 14.3
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t = ±∞, the spheres are infinitely large and the wormholes infinitely thin and long.
In between they shrink to a minimum, and then expand again. On each sphere, and
on each wormhole, there are two horizons of constant radius.

The metric (14.26) was found by de Sitter in 1917, the year of � and of Einstein’s
static universe. It, too, was put forward as a static universe (up to the horizon),
albeit one of vanishing density. However, it was soon realized that free particles
would stream away from the center, driven by the � force, and de Sitter space even-
tually became a model for an expanding universe. It still plays a role in modern
cosmology as the limit of a whole family of non-empty models. Its horizon was at
first misunderstood just like that of Schwarzschild space, but not for nearly as long.
Already by 1920 Eddington clearly understood it—and missed an equal understand-
ing of Schwarzschild’s singularity by a hair [cf. (12.9)]. Unaccountably (like so many
things that seem easy in hindsight), that had to wait another 13 years—for Lemaı̂tre
in 1933.

14.6 Anti-de Sitter space

The cosmological significance of the spacetime (14.26) with � < 0 (known as anti-
de Sitter space) is distinctly inferior but still not negligible. This spacetime has no
coordinate singularity and no horizon; it is globally static; and it is maximal (that is,
inextensible). And in its simplest topological form it possesses, as we shall see, an
interesting feature shared with a few other GR universes: closed timelike lines, which
allow one to travel into one’s past.

To study it, we again temporarily write T for t in (14.26) and this time set
3/� = −a2:

ds2 = (1+ r2/a2) dT 2 − (1+ r2/a2)−1 dr2 − r2(dθ2 + sin2θ dφ2). (14.37)

It is algebraically clear that this spacetime has constant positive curvature 1/a2 if
de Sitter spacetime has constant negative curvature −1/a2. For any curvature for-
mula previously involving a2 must now involve −a2 and be otherwise the same. For
the same reason, the global spatial lattice of anti-de Sitter space must be a 3-space
of constant negative curvature −1/a2. But we shall still find it instructive to obtain
an alternative picture of anti-de Sitter space as a manifestly constant-curvature hyper-
surface. Once again we start with the 4-sphere of radius a, (14.27) and (14.28), and
this time make the substitution (x, y, z, u, v) 
→ (x, iy, iz, iu, t), thus obtaining

t2 + x2 − y2 − z2 − u2 = a2, (14.38)

ds2 = dt2 + dx2 − dy2 − dz2 − du2. (14.39)

This space still has constant curvature 1/a2! It now appears as a hypersurface in
5-dimensional pseudo-Minkowskian space M̃5 characterized by the metric (14.39).
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As before, we can go over to polar coordinates in place of y, z, u:

t2 + x2 − r2 = a2, (14.40)

ds2 = dt2 + dx2 − dr2 − r2(dθ2 + sin2θ dφ2). (14.41)

Then the required mapping between anti-de Sitter space [as described by (14.37)] and
this hypersurface is the following (globally):

t = (a2 + r2)1/2 cos
T

a
(14.42)

x = (a2 + r2)1/2 sin
T

a
, (14.43)

while r, θ, φ go over unchanged. This mapping evidently satisfies (14.40), and a
simple calculation shows that it also takes the metric (14.37) into (14.41). It is, in
fact, one-to-one for the full range of all the coordinates involved except for T : all
points (events) whose T coordinates differ by multiples of 2πa map into the same
point.

Let us look at this situation geometrically. Without regard to θ and φ, the equation
of the hypersurface (14.38) is (14.40), whose locus is the hyperboloid of revolution
�̃ shown in Figure 14.4. All points of the full hypersurface which have the same r

coordinate are condensed into a single point of �̃, so that each point of �̃ stands for an
entire 2-sphere having the radius of its r coordinate (just as in the case of our earlier
�.) Thus the full space (14.38) is a 4-dimensional hyper-hyperboloid. But once again
we can alternatively regard �̃ as the full representation of a single radius θ, φ = const,

Fig. 14.4
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−∞ < r <∞, of the original space (14.37), the right half of �̃ now corresponding
to the positive direction of the radius, the left half to its negative direction. And
once again, all geodesics and all uniformly accelerated particle worldlines lie on a
hyperboloid like �̃.

The worldlines r = const of all the lattice points of the static metric (14.37) are
circles in Figure 14.4, T/a measuring the angle about the r axis. After a time lapse
�T = 2πa the entire universe repeats its history! Since in Fig. 14.4 there are two time
coordinates, t and x, it is possible to orient all the light cones consistently (simply
in the direction of increasing T ), and for an entire circle to be a timelike worldline
(ds2 > 0), with all the logical paradoxes which that involves. However, it is by no
means necessary to accept the possibility offered by this spacetime to have closed
timelike lines. All we need to do to get a physically more reasonable spacetime is
to regard �̃ as an infinite scroll, like a roll of paper. After one complete circuit we
simply find ourselves on the next layer. Then the map from the original space (14.37)
to the hyper-hyperboloid is strictly one-to-one.

As in the de Sitter case, there are obvious isometries that take the space (14.40),
(14.41) into itself, namely rotations in (t, x) and standard LTs in (t, r) and (x, r). And
again we can use these to establish that timelike central sections of �̃ correspond to
geodesic worldlines, while timelike non-central sections correspond to uniformly
accelerated worldlines. The waist circle r = 0, being a symmetry surface of �̃, is
clearly geodesic, and also timelike; by an LT in (t, r) it can be arbitrarily tilted and
then by a rotation in (t, x) it can be moved into any other timelike central section.
So all timelike geodesics are closed curves in the non-scrolled spacetime, and all
free particles repeat their histories. Once again, all the generators of the hyperboloid,
typified by the line pair x = a, t = ±r , are null geodesics (being both straight and
null). Next, all sections r = const of �̃ (worldlines of the lattice points), by their
rotational symmetry have constant proper acceleration. And these, too, can be made
to coincide with any other non-central but timelike section using a suitable LT and
rotation. So even uniformly accelerated particles have repetitive histories.

Exercises 14
14.1. Prove that the Lorenz gauge �µ;µ = 0 implies �ν ;µν = −�νR

µ
ν . [Hint:

consider �µ;ρσ −�µ;σρ .]

14.2. Prove that eqn (14.4) implies Jµ;µ = 0. [Hint: work with eqn (14.3)(ii) and
apply (10.57).]

14.3. Prove carefully that in the presence of an electromagnetic field Eµν in curved
spacetime, the equation of motion of a charged particle of rest-mass m0 and charge
q is

d2xµ

dτ 2
+ �

µ
ρσ

dxρ

dτ

dxσ

dτ
= q

cm0
Eµ

ρ
dxρ

dτ
.

[Hint: (10.46).]
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14.4. For ‘dust’, we have seen that the first term in eqn (14.14) must vanish. Interpret
this as the energy balance equation in the rest-LIF. (The geodesic motion of the dust
takes care of momentum balance.)

14.5. We have already seen (in Exercise 10.20) that Einstein’s vacuum field
equations do not permit the existence of a constant parallel vacuum gravitational
field g, whose metric would have to be of the form [cf. (10.49), (10.50)] ds2 =
exp(2gx) dt2−dx2−dy2−dz2. Use the full field equations to determine the energy
tensor Tµν corresponding to this metric, and decide whether it represents a ‘reason-
able’ matter distribution inside of which the constant parallel field could exist. [Hint:
use the Appendix. Answer: Tµν = diag(0, g2, g2, 0); not reasonable.]

14.6. Prove that spherically symmetric (cylindrical) Bertotti–Kasner space, defined
by the metric

ds2 = dt2 − e2
√

�tdr2 − 1

�
(dθ2 + sin2 θ dφ2)

satisfies Einstein’s vacuum field equations with � term. [Hint: Appendix. You may
use the important result (cf. Exercise 10.13) that when a metric splits into two unrelated
metrics, the Riemann and Ricci tensor components of the two submetrics constitute
the entire set of non-zero Riemann and Ricci tensor components of the full metric.]

14.7. Consider the ‘interior’ Schwarzschild metric:

ds2 =
[

3
2

√
1− Ar2

0 − 1
2

√
1− Ar2

]2

dt2−(1−Ar2)−1 dr2−r2(dθ2+sin2 θ dφ2),

in the region 0 ≤ r ≤ r0, where A is a positive constant such that A < 8/9r2
0 . Observe

that it is static. Observe that its spatial lattice is a 3-space of constant curvature A

(similar to that of de Sitter space, cf. Section 14.4). Observe that, if we set A = 2m/r3
0 ,

then at r = r0 this metric matches the ‘exterior’ Schwarzschild metric. By working
out its Ricci tensor components [with the help of eqns (11.3)–(11.7)], verify that
the interior Schwarzschild metric represents a ball of radius r0 of constant density
ρ = 3A/κ , and pressure p given by

p = 3A

κ

α − α0

3α0 − α
(α2 = 1− Ar2, α2

0 = 1− Ar2
0 ),

which varies from zero at r = r0 to a maximum at the center. For r > r0 we assume
vacuum and the exterior Schwarzschild metric.

14.8. Verify eqn (14.24). Then fill in the details of the following proof for eqn
(14.25): As a first approximation, as before, substitute the Newtonian solution (11.44)
into (14.24), ignoring the term 3mu2, which has already been dealt with. Expand in
powers of e, assuming e � 1; that is, assuming a nearly circular orbit. Then it
is the term (�h4/m3)e cos φ that causes the precession. And since earlier the term
(6m3/h4)e cos φ in eqn (11.47) was seen to cause a precession � = 6πm2/h2 [cf.
(11.51)], the present � term causes the precession given by (14.25).
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14.9. For the de Sitter and anti-de Sitter spacetimes (14.26) prove that the gravita-
tional field in the static region of the metric (which in the anti-de Sitter case covers
the whole spacetime) is given by

g = 1
3�r

/(
1− 1

3�r2)1/2
,

and do this twice: once by analogy with eqn (11.15), and once by calculatinggµνA
µAν

for a lattice point. Observe, in particular, what happens at the horizon of de Sitter
space (interpretation?) and at infinity in anti-de Sitter space. For any two neighboring
free particles a distance r apart (either of which can be regarded as the orgin), observe
that the relative acceleration is �r/3. By reference to (8.4) show that this is consistent
with constant curvature −�/3.

14.10. Explain how to read off from Fig. 14.4 the fact that the total coordinate
lifetime �T for any free photon in anti-de Sitter space is πa. Verify this by calculation
from the metric (14.37).

14.11. (i) By reference to eqns (14.27) and (14.28), prove that every symmetry
surface of every properly Riemannian space of constant positive curvature is itself a
space of the same constant curvature. [Hint: v = 0 is a typical symmetry surface.]

(ii) To investigate properly Riemannian spaces of constant negative curvature,
start with eqns (14.27) and (14.28), and make the transformation (x, y, z, u, v) 
→
(ix, iy, iz, iu, t), which yields t2 − ∑ x2 = a2, ds2 = dt2 − ∑ dx2. But this
hypersurface is spacelike, since its position vector V = (t, x, . . .) is timelike and
displacements in it are orthogonal to V: t dt −∑ x dx = 0. So the hypersurface is
a properly Riemannian space of constant curvature 1/a2. Yet for all displacements
in it, ds2 < 0. For properly Riemannian spaces we always take ds2 > 0, so here
we must reverse the metric and take ds2 = ∑ dx2 − dt2. Then the hypersurface is
seen to have curvature −1/a2. (In two dimensions it corresponds to the 2-sheeted
hyperboloid of Fig. 5.1.) Now prove the analog of (i) for properly Riemannian spaces
of constant negative curvature.

(iii) Prove as directly as possible (that is, without the detour to higher dimensions)
that the static lattice of de Sitter (and anti-de Sitter) space, whose metric can be read
off from (14.26), is a space of constant curvature �/3.

14.12. In a homogeneous cosmological model, the geodesic worldlines of all the
galaxies are on the same footing; that is, each galaxy sees the same. So there must
be isometries of the background spacetime which map the whole congruence of
these ‘fundamental’ worldlines onto itself and any one of them into any other. Three
essentially different such congruences can be laid on de Sitter space. The first consists
of all the sections of the hyperboloid � of Fig. 14.1(b) which contain the t-axis;
rotations about that axis are the corresponding isometries. This universe contracts
from infinity to a minimum (at the waist of �) and then re-expands. The second kind
of congruence is typically generated by all the timelike sections of � containing the
r-axis; LTs in (t, x) are the corresponding isometries. This universe starts with a ‘big
bang’ and then expands indefinitely. The third kind of congruence results typically
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from all the timelike sections of � containing the null line l : r = 0 and t + x = 0.
This universe has a big bang in the infinite past and then expands indefinitely. We
have not previously discussed the LTs that serve as the required isometries here; they
are called null rotations about l. Their characteristic is that they leave exactly one null
direction invariant, whereas standard LTs leave two such directions invariant. Show
(geometrically, not algebraically!) how a null rotation about l can be compounded
of a rotation about the t-axis, which takes l into some other null direction l′ on the
central null cone, followed by an LT in (t, r) that brings l′ back to l. Show how
such a compound transformation can take the ‘vertical’ plane through l into any other
timelike plane through l. (For a picture of the three congruences, see Fig. 18.1 of
Chapter 18 below.) Also prove that there is essentially only one such congruence on
anti-de Sitter space. Describe the motion of the corresponding universe.
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Linearized general relativity

15.1 The basic equations

Although it seems that one cannot construct a satisfactory full theory of gravitation
within special relativity (one that gives consistent results no matter how strong the
field) we shall nevertheless see in this chapter how to construct a special-relativistic
linear approximation to general relativity that is valid when the fields are weak. It is
referred to as ‘linearized general relativity’. Although its results are approximations,
these are often very good approximations, and the method has many applications in
cases where the full equations of GR are too difficult to solve.

Suppose, then, that we have a weak gravitational field, in the sense that for its
spacetime we can find quasi-Minkowskian coordinates xµ = {x, y, z, t} (we shall
work in units making c = 1) such that the metric differs from its Minkowskian form

ηµν := diag(−1,−1,−1, 1) = ηµν (15.1)

only by small quantities hµν :

gµν = ηµν + hµν, hµν � 1. (15.2)

These must clearly be symmetric: hµν = hνµ. We shall assume not only the smallness
of the hs themselves, but also that of all their derivatives, and neglect products of any
of these. This corresponds to assuming that the hs are small multiples of ordinary
functions Hµν ,

hµν = εHµν, (15.3)

and discarding terms involving ε2.
From (15.2) we must then have

gµν = ηµν − hµν, (15.4)

where hµν = ηµαηνβhαβ (which is also of order ε); for only this guarantees
gµνgνσ = δ

µ
σ . It follows that indices on quantities of order ε are shifted using ηµν

and ηµν , since, for example, gµαhαν = ηµαhαν to first order in ε.
Under a Lorentz transformation p

µ
µ′ of the special coordinates, {x, y, z, t} 
→

{x′, y′, z′, t ′}, the ηs transform into themselves, and so we have, from (15.2),

gµ′ν′ = gµνp
µ
µ′p

ν
ν′ = ηµ′ν′ + hµνp

µ
µ′p

ν
ν′ . (15.5)



The basic equations 319

Hence the hs transform as Lorentz tensors; that is, like tensors in special relativity.
This allows us to shift our point of view: On the one hand we have the slightly
curved spacetime representing the general-relativistic weak field, and a whole family
of Lorentz-related special coordinates {x, y, z, t} which make the metric manifestly
quasi-Minkowskian, as in (15.2). This spacetime we map onto an exact Minkowski
space (x, y, z, t), where now the Lorentz tensor hµν represents the gravitational field.
(There appears to be an analogy between hµν and the electromagnetic field Eµν—but
whereas Eµν is anti-symmetric and represents the field itself, hµν is symmetric and
represents the gravitational potential; it is actually the analog of the electromagnetic
4-potential �µ.)

Both the field equations satisfied by the hs, and the equations of motion of free par-
ticles, are impressed on our special-relativistic gravitational theory by what happens
in the curved spacetime according to general relativity. Consider first the Christoffel
symbols, which determine the free orbits according to eqn(10.15). From (10.13) and
(10.14) we find, for later reference,

2�
ρ
µν = h

ρ
µ,ν + h

ρ
ν,µ − hµν,

ρ, (15.6)

to first-order. (Recall that indices on quantities of order ε are shifted with the ηs.)
Next we find, from (10.61), to first order,

2Rλµνρ = hλρ,µν + hµν,λρ − hλν,µρ − hµρ,λν. (15.7)

And multiplying this equation with ηλρ yields [cf. (10.68)]:

2Rµν = �hµν + h,µν − hλ
µ,νλ − hλ

ν,µλ, (15.8)

where h := hλ
λ and, as before [cf. (7.37)], � denotes the D’Alembertian operator:

� :=,µνη
µν = ∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
. (15.9)

Since the hs are Lorentz tensors, so are the RHSs of eqns (15.6)–(15.8), and, with
them, the component sets �

µ
νσ (!), Rλµνρ and Rµν . All are of order ε.

It turns out to be surprisingly useful to introduce the trace-reversed version of the
hs [cf. before (14.7)]:

cµν := hµν − 1
2ηµνh. (15.10)

Writing c := cλ
λ, we immediately find

c = −h, (15.11)

and consequently the usual inverse relation

hµν = cµν − 1
2ηµνc. (15.12)

The Ricci tensor (15.8) can then be condensed to

2Rµν = �hµν − cλ
µ,νλ − cλ

ν,µλ, (15.13)

and a suitable coordinate transformation will even rid us of the last two terms.
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To this end consider an infinitesimal coordinate transformation

x′µ = xµ + f µ(x), (15.14)

where the functions f µ of position are of order ε, f µ = εFµ, just like the hs
and cs. (This is one of the few occasions where the old-fashioned ‘primed kernel’
notation is more convenient than the ‘primed index’ notation, as one finds very quickly
if one tries to use the latter.) Equation (15.14) is not, in general, an infinitesimal
Lorentz transformation (unless fµ,ν+fν,µ = 0, see Exercise 15.1), yet in the curved
spacetime it nevertheless preserves the quasi-Minkowskian character of the coordinate
system, as can be seen from (15.16) below. All that happens in the Minkowski map
is a change in the hs, which will be regarded as a gauge change, for reasons that will
become clear presently. Accordingly, transformations of the form (15.14) are referred
to as gauge transformations.

Of course, under (15.14) the gµν transform as tensors, and so we have

gµν = g′αβ
∂x′α

∂xµ

∂x′β

∂xν
= g′αβ(δα

µ + f α
,µ)(δ

β
ν + f β

,ν). (15.15)

When we substitute from (15.2) for gµν , and analogously for g′µν , (15.15) is seen to
imply

h′µν = hµν − fµ,ν − fν,µ, (15.16)

in analogy to the gauge transformation �′µ = �µ − �,µ of electromagnetism
[cf. (7.44)]. From (15.11) we have the first of the following equations:

c′ − c = h− h′ = 2f λ
,λ. (15.17)

while the second results on contracting (15.16). Substituting from (15.12) into (15.16)
then yields

c′µν = cµν + ηµνf
λ
,λ − fµ,ν − fν,µ. (15.18)

Note, however, that all general-relativistic tensor components of order ε, like Rλµνρ

or Rµν (but not �
µ
νσ !), are left invariant (to first-order) by any such gauge transfor-

mation. This is clear from the typical tensor transformation equation (15.15), if we
momentarily pretend that gµν is of order ε: it then implies g′µν = gµν .

As we have remarked already after (7.47), it is known from the theory of differential
equations that equations of the form �� = F(x, y, z, t) are explicitly solvable for
�. In particular, therefore, we can choose f µ so as to satisfy the four equations

�f µ = cµν
,ν . (15.19)

With that choice, eqn (15.18) yields

c′µν
,ν = 0; that is, h′µν

,ν − 1
2h′,µ = 0. (15.20)

We are then in what is called the harmonic gauge. It is analogous to the Lorenz gauge
of electromagnetism characterized by �µ

,µ = 0 [cf. (7.45)].
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In the gauge (15.20) we find from (15.13) that

2Rµν = �hµν, (15.21)

so that Einstein’s vacuum field equation Rµν = 0 reduces to

�hµν = 0 (plus cµν
,ν = 0). (15.22)

But then we have
�h = �ηµνhµν = ηµν�hµν = 0, (15.23)

whence, equivalently to (15.22), we also have

�cµν = 0 (plus cµν
,ν = 0). (15.24)

The very form of (15.22) (a ‘wave equation’) suggests the existence of gravi-
tational waves. However, some wavelike solutions of (15.22) turn out to be mere
‘coordinate waves’; that is, solutions that can be reduced to hµν = 0 by a suitable
gauge transformation, as we shall see below. But with (15.22), eqn (15.7) implies

�Rλµνρ = 0, (15.25)

and since Rλµνρ is a Lorentz tensor and gauge invariant [cf. after (15.18)], this does
show that small disturbances of curvature propagate with the speed of light.

The Einstein tensor Gµν = Rµν − 1
2gµνR [cf. (14.7)] in harmonic gauge becomes

Gµν = 1
2

(
�hµν − 1

2ηµν�h
) = 1

2�cµν, (15.26)

so that the full field equations (14.8) now reduce to

�cµν = −2κTµν = −16πGTµν (plus cµν
,ν = 0). (15.27)

Observe that these are linear field equations, just like those of the Maxwell field in
special relativity [cf. (7.49)]. In terms of the cµν , the eqns (15.27) are also decoupled.
And, lastly, they are hyperbolic partial differential equations, which they would not
be in terms of the hs; this is of interest for the existence and uniqueness of solutions,
and therefore also for numerical relativity, the modern research field of solving GR
problems by use of often very powerful computers.

Since the �s are of order ε, it follows from the definitions (10.28) that covariant
derivatives (of all orders) of quantities of order ε here reduce to partial derivatives.
Consequently the contracted Bianchi identity Gµν ;ν = 0 [cf. (14.7)] is automatically
satisfied because of the gauge condition cµν

,ν = 0, via eqn (15.26). But while
Gµν is manifestly of order ε, we cannot assume the same of T µν , nor thus the
effective equality of T µν

,v and T µν ;ν . What is implied by (15.27) is T µν, ν =
0. Yet T µν; ν = 0 is the real equation satisfied by the sources. In practice, this
does not invalidate (15.27): because of the exceedingly small numerical value of
κ(∼2 × 10−48 s2 cm−1 g−1 or ∼2 × 10−27 cm/g in units where c = 1) relative to
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the other physical quantities occurring in most problems, we can regard κ as of order
ε, so that in linearized GR κT µν

,ν = κT µν ;ν .
One immediate consequence of the linearity of the field equations (15.27)—they

are linear also in the hµν—is that solutions can be added. Thus if the tensor pairs
(h
a
µν, T

a
µν) separately satisfy the field equations for a = 1, 2, . . . , then the metric

gµν = ηµν +
∑

h
a
µν satisfies the field equations with

∑
T
a
µν as the sources. But

as a result, just as in the case of Maxwell’s theory, as far as the field equations
(15.27) are concerned, the sources do not ‘feel’ each other. Two point masses could
sit side by side forever, their separate radial fields simply superimposed. This is
tolerable if we are interested, say, in the far field of sources whose motion we know
a priori and if we are willing to neglect the ‘gravity of gravity’. But if we wish to
find out how the sources move under their own gravity, we need to solve the equation
T µν; ν = 0 [cf. (14.12)–(14.14)]—not T µν, ν = 0, which takes into account only the
nongravitational interactions. One approach—into whose subtleties and limitations
we cannot here enter—is to calculate the cs from (15.27), then the �s from (15.6),
and finally the T µν; ν from (10.28).

As in Maxwell’s theory [cf. (7.50) and subsequent text], the field equations (15.27)
can be solved explicitly (temporarily in full units):

cµν(P) = −4G

c4

∫
[Tµν] dV

r
, (15.28)

where [. . .] denotes retardation relative to P. And for the same reasons as before, (i)
this solution automatically satisfies the harmonic gauge condition cµν

,ν = 0 provided
κT µν

,ν = 0, (ii) the integral represents a Lorentz tensor, and (iii) it is the unique
solution in the absence of source-less radiation.

As an example, we shall obtain the linearized metric of a weak stationary field
generated by sources in stationary motion (for example, a rotating ball). We shall
assume that the stress components Tij within the sources are negligible compared
to the other components of Tµν , and that unique velocities v can be associated with
various parts of the sources, small enough to allow us to neglect v2/c2. Then (once
again in units making c = 1) the energy tensor takes the form

Tµν =
(

03 −ρv
−ρv ρ

)
(15.29)

[cf. (7.80) and Exercise 7.25]. We now define the gravitational scalar and vector
potentials � and w as follows:

� := −
∫

GρdV

r
= −G

∫
T44dV

r
= 1

4
c44

wi := 4
∫

GρvidV

r
= 4G

∫
Ti4dV

r
= −ci4. (15.30)

Since the sources are stationary, we need no retardation brackets in these definitions.
(The same is true if the sources are merely periodic, like a double-star system, but do
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not move appreciably in the time it takes light to cross them.) Now Tij = 0 implies
cij = 0, so that

c = ηµνcµν = c44. (15.31)

And this, after a short calculation, together with (15.30) is seen to imply

hµµ = 2�, hi4 = −wi, hij = 0 (i �= j). (15.32)

So the metric reads

ds2 = (1+ 2�) dt2 − 2wi dxi dt − (1− 2�)
∑

(dxi)2. (15.33)

Observe that this is the linearized form of the canonical metric (9.13) for a stationary
spacetime, with one important (even though only approximative) improvement: the
unspecified lattice metric kij dxi dxj of (9.13) has here become explicit, (1− 2�)∑

(dxi)2, by virtue of the field equations. Thus when using (15.33) to calculate orbits
of test particles, we no longer need to restrict ourselves to slow orbits, for which
the spatial geometry is almost irrelevant; (15.33) can be used even to predict light
paths. Its validity also extends to non-stationary sources with negligible stress and
low velocities. It is then merely necessary to perform the retardation operation [. . . ]
indicated in (15.28) on the integrals of (15.30).

The remarkable similarity of the definitions (15.30) to the corresponding definitions
in electromagnetism will not have escaped the reader’s attention. They will be further
elaborated in Section 15.5 below.

To end this section, we make a remark that will presently be of great importance
to us. Equations (15.19) do not uniquely determine the gauge transformation that
achieves the harmonic gauge (15.20): any vector gµ of order ε and satisfying the
wave equation

�gµ = 0 (15.34)

can be added to f µ without affecting the result (15.19). Gauge transformations gen-
erated by vectors satisfying (15.34) can therefore be used freely within the harmonic
gauge. And so can Lorentz transformations of the coordinates {x, y, z, t}; for under
these, hµν and cµν are tensors, and the gauge condition (15.20) is tensorial and thus
preserved.

15.2 Gravitational waves; The TT gauge

In this and the following two sections we develop some of the basic facts about
gravitational radiation. We have, of course, already met an exact gravitational wave
in Chapter 13, but that came somewhat out of the blue, and allowed few general
conclusions. The systematic approach we shall follow here is the basis of most of the
experimental work on wave detection currently in progress.
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Let us consider an arbitrary plane wave propagating in the x-direction,

cµν = cµν(u), u = t − x. (15.35)

This automatically satisfies the first part of the vacuum field equations, (15.24)(i). In
order for it also to satisfy the harmonic gauge conditions (15.24)(ii) we need

cµ1
,1 + cµ4

,4 = −ċµ1 + ċµ4 = 0, (15.36)

where the overdot denotes d/du. Integrating the last equation gives

cµ1 = cµ4 + const, (15.37)

but the constant can at once be discarded. For, as we have seen, solutions are additive,
and any solution corresponding to constant cs corresponds to constant hs and thus,
via (15.7), to zero Rµνρσ ; so it represents undisturbed Minkowski space. Lowering
the indices in (15.37) we then have, in full,

c11 = −c14, c21 = −c24, c31 = −c34, c41 = −c44. (15.38)

These four harmonic gauge requirements on the ten cs apparently leave six degrees of
freedom for the wave. However, as we already alluded to after (15.24), many apparent
wave solutions (15.35) are spurious, being mere wavelike disturbances of the coor-
dinate system (‘coordinate waves’) rather than of the intrinsic spacetime curvature.
The hµν or cµν representing such waves can be made to vanish by suitable gauge
transformations, which shows that they correspond to zero curvature Rµνρσ , which is
gauge invariant. We shall now demonstrate this by applying a gauge transformation
of the type mentioned at the end of the last section, which preserves the harmonic
gauge. Any four smooth functions

gµ = gµ(u) (15.39)

will not only automatically satisfy the requirement (15.34), but also, when we apply
(15.18), preserve the wave character (15.35) of the cs. In particular, (15.18) leads to

c′41 = c41 + ġ4 − ġ1,

c′42 = c42 − ġ2, (15.40)

c′43 = c43 − ġ3.

Evidently, by a proper choice of gµ we can thus achieve

c′41 = c′42 = c′43 = 0. (15.41)

But since the new cs also satisfy the harmonic gauge, it then follows from the analog
of (15.38) that

c′11 = c′21 = c′31 = c′44 = 0. (15.42)
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So we are left with only c′23, c
′
22, and c′33. Inspection of (15.40) shows that we still

have ġ4 + ġ1 at our disposal and we can use this freedom to achieve

c′22 = −c′33, (15.43)

or equivalently c′ = c′µµ = 0. For, by reference to (15.18), this just requires

0 = cµ
µ + 2(gµ

,µ) = cµ
µ + 2(ġ1 + ġ4). (15.44)

Now only two degrees of freedom remain: the choice of c22 and c23 (we now drop
the primes!). Since c = 0, we finally have

hµν = cµν = {h22 = −h33, h23 = h32; all others zero}. (15.45)

The gauge which achieves this reduction is called the transverse-traceless (TT) gauge,
and the corresponding hs are often denoted by hTT

µν (‘traceless’ because h = c = 0,
and ‘transverse’ because all the components are in the spatial directions perpendicular
to the direction of propagation). It is automatically harmonic.

Now observe, from (15.16), that the gauge transformation generated by (15.39)
leaves the transverse hs (h22, h33, and h23) invariant. It follows that these hs must
already be in their final form if only the wave satisfies hµν = hµν(u) plus the
harmonic gauge conditions—except that istead of h22 + h33 = 0 we could have

h22 + h33 = const. (15.46)

The possibility of this extra constant arises from our having discarded the constants
in (15.37). So the reduction to TT gauge of a wave that is already in harmonic gauge
is achieved by simply discarding all the non-transverse hs and the constant in (15.46).
In practice we need never solve for the gs in eqns (15.40) and (15.44); the existence
of the necessary gauge transformation is all that needed to be established.

15.3 Some physics of plane waves

By the result (15.45) of the preceding section, in linearized GR the metric of every
plane gravitational wave propagating in thex-direction can be reduced to the following
‘canonical’ form:

ds2 = dt2 − dx2 − (1− λ) dy2 − (1+ λ) dz2 + 2µ dy dz, (15.47)

where all that is required of λ and µ is that they be of order ε but otherwise quite
arbitrary smooth functions of t − x:

λ = λ(u), µ = µ(u), u = t − x. (15.48)

We are simply writing h22 = λ and h23 = µ. In this section we shall find it preferable
to revert to the ‘slightly-perturbed-Minkowski-space’ picture rather than using the
‘exact-Minkowski-space’ map.
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It is still possible that (15.47) represents a mere coordinate wave, for which the
spacetime is flat. Let us therefore consider the curvature tensor for the metric (15.47).
Referring to (15.7), we can quickly convince ourselves that the only not identically
vanishing independent components of Rλµνρ are the following:

Rα11β = Rα44β = 1
2 ḧαβ

Rα14β = Rα41β = − 1
2 ḧαβ,

(15.49)

where α, β = 2 or 3 and dots denote d/du. So unless λ̈ = µ̈ = 0, the metric (15.47)
represents a real wave with non-vanishing curvature and �Rλµνρ = 0 [cf. (15.25)].

The reader will no doubt have noticed the similarity of the canonical metric (15.47)
(when µ = 0) to our earlier exact wave metric (13.1), whose conditions (13.3) and
(13.4) are here parallelled. As in Chapter 13, we shall again be interested in what
happens when the wave meets a stationary plane of dust or an oncoming plane of
photons head-on. And once again we have the following two relevant lemmas:

Lemma I: Particles satisfying the equations

x, y, z = const (15.50)

follow timelike geodesics of the metric (15.47);

Lemma II: ‘Particles’ satisfying the equations

x = ±t; y, z = const (15.51)

follow null geodesics of the metric (15.47). And again, in both cases, t is an affine
parameter. For proof, we cannot here use the Appendix, since the dy dz term spoils
the diagonality of the metric. Nevertheless we have, as before,

gtt = −gxx = 1, gµt = 0 (µ �= t), gµx = 0 (µ �= x), (15.52)

which trivially suffices to ensure

�µxx = �µtt = �µxt = 0. (15.53)

And this, in turn, implies the previous eqns (13.7), from which the lemmas follow.
In linearized GR we can superimpose solutions; this allows us to regard (15.47) as a

superposition of a ‘pure λ’ wave and a ‘pure µ’ wave, and to discuss these separately,
beginning, say, with the λ wave:

ds2 = dt2 − dx2 − (1− λ) dy2 − (1+ λ) dz2. (15.54)
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As in Chapter 13, we shall concentrate on a ‘sandwich’ wave; that is, one contained
between two parallel planes traveling at the speed of light, with flat spacetime before
and aft. Without loss of generality we can suppose λ = 0 before the wave has passed
and λ = some linear function of u [cf. (15.49)] thereafter. Within the sandwich,
linearized GR imposes no restrictions on λ except �λ = 0, which is satisfied by any
smooth function of u = t − x. Let us put a plane of static test dust, orthogonal to the
x-axis, ahead of the wave, say at x = 0. Any two of its free particles separated only by
an infinitesimal y-difference dy remain so separated permanently, by Lemma I. But,
according to (15.54), the ruler or radar distance dY between these particles at any
instant t = const is given by dY = (1− 1

2λ
)
dy (to first-order in ε), and so it varies

as the wave passes. Similarly, two free dust particles originally separated only by an
infinitesimal z-difference dz also move relative to each other; as measured by rulers, or
radar, their distance apart dZ at any instant t = const is given by dZ = (1+ 1

2λ
)

dz.
(Ruler distances between free particles in the x-direction remain invariant.) If we
imagine special sets of dust particles colored to mark the y, z coordinate net, forming
‘vertical’ lines y = const and ‘horizontal’ lines z = const, then, as the wave passes,
whenever λ increases the vertical lines all bunch up and the horizontal lines all spread
out (as measured by radar) and vice versa when λ decreases.

The diagram representing an active Lorentz transformation, Fig. 2.9, can serve to
illustrate this state of affairs, if we replace ξ and η by the ‘ruler-distance’ coordinates
dY and dZ relative to any one dust particle P at the center of the diagram. In Chapter 2
the crucial relation between ξ and η was the constancy of their product for the motion
of a point: ξη = const; here it is

dY dZ = dy dz = const (15.55)

(to first-order in ε). Relative to P, all neighboring particles move along the hyperbolae
(15.55). A small circle of dust particles around P, originally satisfying dy2+dz2 = a2,
becomes the ellipse

dY 2

(1− λ)
+ dZ2

(1+ λ)
= a2 (15.56)

inside the wave. And if the wave is sinusoidal, say

λ = ε cos ω(t − x), (15.57)

then the ellipse oscillates between being elongated in the y-direction and being elon-
gated in the z-direction. Its total area, like that of all closed curves made up of specific
dust particles, remains constant, since for each area element eqn (15.55) holds.

It is helpful to imagine a small freely floating rigid plate behind the plane of
dust, having its center permanently coincident with the particle P, and having a ruler-
distance coordinate net dY, dZ = const etched into it. It is relative to these coordinates
that eqn (15.56) is to be understood. The particles of the plate do not follow geodesics
(except, by supposition, its center) and their ruler separations are permanent except
for the minute elastic deformations caused by the passing wave. The forces exerted by
the wave on the plate are gravitational tidal forces, tending to push neighboring points
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apart or to pull them together. For example, the tidal field fPQ between the point P
and another, Q, ‘horizontally’ beside it at rigid distance dY , equals the acceleration
relative to P of the free dust particle just passing Q. As we have seen, for that particle
we have dY = (1− 1

2λ
)

dy, so that d2(dY )/dt2 = − 1
2 λ̈ dy. If the wave is sinusoidal,

as in (15.57), the tidal field in the y-direction is therefore given by

fPQ = 1
2εω2(cos ωt) dy, (15.58)

positive values corresponding to repulsion. The response of the plate to these tidal
forces depends on its elastic properties. But transverse light remains ‘rigid’.

It is of interest to note that a plane of orthogonally incoming test photons is affected
by the wave very much like a plane of particles, as follows from Lemma II. If at the
back end of the sandwich λ is increasing, we cannot conclude that it will increase
linearly to unity and so focus all the photons onto a vertical line; for our analysis
presupposes λ�1. But we can legitimately reach the same conclusion from the fact
that neighboring photons on the same horizontal leave the wave zone on converging
paths, which proceed rectilinearly since we are in flat spacetime, and thus must
meet. By iteration, all photons on this horizontal meet at the same point, and all
photons of the incoming plane meet on a vertical, as do the dust particles. It is not
a priori clear how seriously such exact results are to be taken in an approximative
theory. But in this particular case we can fall back on the exact wave of Chapter 13
for confirmation. However, for a realistic wave of limited extent we can ignore the
topological ramifications of Chapter 13.

Let us next consider the ‘pure µ’ component of the metric (15.47),

ds2 = dt2 − dx2 − dy2 − dz2 + 2µ dy dz. (15.59)

A 45◦ rotation of the axes,

y = (y′ − z′)/
√

2, z = (y′ + z′)/
√

2, (15.60)

(and immediate dropping of the primes) preserves dy2 + dz2 and converts 2 dy dz

into dy2 − dz2, so that the metric (15.59) takes on the form of a λ wave:

ds2 = dt2 − dx2 − (1− µ) dy2 − (1+ µ) dz2. (15.61)

It follows that a µ wave is nothing but a λ wave rotated by −45◦.
Now in a pure sinusoidal λ wave, each free particle of the original dust plane in

the neighborhood of an arbitrary particle P (through which we might as well draw the
x-axis) executes a small-amplitude simple-harmonic motion (s.h.m.) in a direction
determined by the hyperbolae of Fig. 2.9 (repeated in Fig. 15.1). In a pure sinusoidal µ
wave, each such particle executes s.h.m. in the orthogonal direction, namely along the
hyperbolae of the λ wave rotated through−45◦, and these are everywhere orthogonal
to those of the original λ wave. (See Fig. 15.1 and cf. Exercise 15.5.) It follows that
in a general monochromatic λ, µ wave, each free particle in a y, z plane executes a
motion, relative to any nearby center P, which is the superposition of two s.h.m.s of
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Fig. 15.1

the same frequency in orthogonal directions. In the special case when these are in
phase, the resulting motions are all s.h.m.s along small straight-line segments; if the
components are exactly out of phase and of the same amplitude, the motions are all
little circles; and in the general case, the particles move along little ellipses, whose
axes remain fixed in space, and whose dimensions obviously increase linearly with
their distance from P. The wave is then said to be linearly, circularly, or elliptically
polarized, respectively. Also, the little circles or ellipses can be described in an anti-
clockwise or a clockwise sense (looking at the oncoming wave), depending on the
phase difference of the components. One accordingly speaks of right-handed or left-
handed polarization, or positive or negative helicity, respectively. And because the
two distinct displacement patterns shown in Fig. 15.1 correspond to a + sign and a
× sign, the respective λ and µ polarization states are often referred to as the + and
× (‘plus’ and ‘cross’) states, and λ and µ are written as h+ and h×.

It may appear from our discussion and from Fig. 15.1 that a general (λ, µ) wave
determines a preferred orientation for the y and z coordinate axes. But this is not
the case: both TT conditions, h22 = −h33(h

i
i = 0) and h23 = h32(hij = hji) are

clearly invariant under yz rotations. (Cf. Exercise 15.4.)
In electromagnetic theory, too, every monochromatic plane wave can be com-

pounded of two basic ‘linearly polarized’ types: one in which the e and b fields are
permanently, let us say, in the y- and z-directions, respectively, if x is the direction of
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propagation; and one in which these fields are rotated through 90◦ (in contrast to the
45◦ separation between the two polarization states in gravity). In electromagnetism it
is the tip of the vector e itself that oscillates linearly, circularly, or elliptically in these
three types of polarization, and again anti-clockwise or clockwise motions determine
right-handed or left-handed polarization, respectively. In the gravitational case, the
wave is invariant under a 180◦ rotation about the direction of propagation, in the elec-
tromagnetic case the analogous angle is 360◦, and for neutrino waves it is 720◦. This
is closely related to the spin values of the quanta corresponding to these waves: the
graviton with spin 2, the photon with spin 1, and the neutrino with spin 1/2. It is also
related to the dimensionality of the potential for these three fields: hµν for gravity, �µ

for electromagnetism, and a spinor φA (the ‘square root’ of a vector) for the neutrino.

15.4 Generation and detection of gravitational waves

In eqn (15.58) we have the germ of the principle of gravitational wave detection. It is
‘merely’ necessary to put either a large rigid body in the path of the wave and measure
its elastic deformations, or to have widely separated free test masses in the path of
the wave and to measure the wiggle in their separation by laser interferometry. But
before one can design a detector, it is imperative to have a good idea of the strength and
frequency of the wave one is hoping to detect. This means one must study the possible
generation of gravitational waves. It turns out that there is no conceivable way to
generate such waves of detectable strength in the laboratory. Only hefty astronomical
sources can generate enough power.

Let us see what our formulae tell us. Suppose we have some spatially limited
source, like a double star system, at large distance from us. Equation (15.28) then
gives us the metric here and now. Returning to units that make c = 1, we have

cµν = −4G

r

∫
T µνdV, (15.62)

where we must remember eventually to evaluate the integral at the ‘retarded’ time (if
that makes a difference); and since the distance r to the various parts of the source is
essentially the same, we have taken r outside the integral. Let the center of mass of
the source define the spatial origin and imagine our detector far away on the x-axis.
Evidently, by the time the wave gets to us, it is essentially plane. As we have seen in
Section 15.2, only the spatial cs will then contribute to radiation, and so it will suffice
to study

∫
T ij dV .

Consider therefore the identity∫
(T ikxj ),k dV =

∫
T ik

,k xj dV +
∫

T ij dV, (15.63)

which arises from differentiating T ikxj and integrating the resulting equation, let
us say over a volume that extends slightly beyond the source region. By Gauss’s
theorem, which converts the volume integral of a divergence into a surface integral
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over the boundary, the integral on the LHS is seen to vanish. The first integrand on
the RHS can be transformed by use of the special-relativistic conservation equation
T µν

,ν = 0 which the sources will satisfy if we neglect their mutual gravitation—for
example, if we think of a double-star system as held together by a string. Thus we
find, successively,∫

T ij dV = −
∫

T ik
,k xj dV =

∫
T i4

,4 xj dV

= d

dt

∫
T i4xj dV = 1

2

d

dt

∫
(T i4xj + T j4xi) dV, (15.64)

where for the last equation we have used the fact that all integrals in this sequence of
equations must share the i, j symmetry of the first. We can next play the same trick
as in (15.63) once more:

0 =
∫

(T 4kxixj ),k dV =
∫

T 4k
,k xixj dV +

∫
(T 4ixj + T 4j xi) dV, (15.65)

and we again use the conservation equation, this time to convert T 4k
,k into −T 44

,4.
Then eqns (15.64) and (15.65) together give∫

T ij dV = 1

2

d2

dt2

∫
T 44xixj dV. (15.66)

This is the well-known Laue theorem of SR, which holds for any conserved sym-
metric tensor T µν . (See Exercise 15.6 for a physical interpretation.) In linearized GR
its use lies in facilitating the evaluation of the spatial cµν corresponding to distant
moving sources. We know that in the rest-LIF of any material (in full units) we have

T 44 = c2ρ, (15.67)

ρ being the mass density. In LIFs moving with low velocity v relative to the rest-LIF,
T 44 differs from c2ρ only by quantities of order v2/c2 (cf. Exercise 7.26). Conse-
quently, in LIFs where the material moves ‘non-relativistically’, eqn (15.67) applies
in good approximation. The integral on the RHS of (15.66) is thus recognized as the
quadrupole moment of the source. And so, by (15.62), the second time-derivative of
the quadrupole moment determines the wave metric:

cij = − 2G

c4r

d2

dt2

∫
ρxixj dV, (15.68)

in full units. The smallness of the numerical factor should give us pause!
There is, of course, also a non-radiative field; but for realistic distant sources, just

as in electromagnetism, it is utterly negligible.
Note that, both in electromagnetic and gravitational theory, the monopole moment∫
ρ dV is constant in time and generates no radiation; in electromagnetic theory
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the dipole moment
∫

ρxi dV has non-vanishing second time-derivative and thereby
provides the main contribution to electromagnetic radiation; in gravitational theory,
on the other hand, the first derivative of the dipole moment is the momentum

∫
ρẋidV ,

which remains constant. So here the first and main contribution to the radiation comes
from the quadrupole, and that, by dimensional necessity, carries the unfortunately high
power of c in the denominator.

As an example, let us apply (15.68) to the simplest imaginable source—two stars
of equal mass M (here to be treated as mass points) going round the same circle of
radius a at opposite ends of a diameter. Let their common angular orbital velocity �
point along the x axis. Then the 2-dimensional quadrupole tensor is given by∫

ρxixj dV = 2Ma2
(

cos2 ωt cos ωt sin ωt

cos ωt sin ωt sin2 ωt

)
(15.69)

with i, j = 2, 3. Recalling the identities 2 cos2 A = 1+ cos 2A and 2 sin A cos A =
sin 2A, and substituting (15.69) into (15.68), we find

cij = 8GMa2ω2

c4r

(
cos 2ωt sin 2ωt

sin 2ωt − cos 2ωt

)
. (15.70)

Observe that this result is already in TT gauge. It represents the sum of a λ wave of the
form λ = ε cos 2ωt (at fixed x) and a µ wave of the form µ = ε sin 2ωt . [To ‘retard’
the RHS of (15.70), we replace t by t−x/c; but at fixed x we can shift the time origin,
t 
→ t+x/c, to get back to (15.70).] Not surprisingly, the wave has frequency 2ω, the
frequency with which the source returns to identical configurations. And according to
our findings in Section 15.3, it is circularly polarized; interestingly, though, the little
circles described by test dust relative to an arbitrary center are described at twice the
angular speed of the source. If the rotation axis of the source were not along the line
of sight, this would manifest itself in a less symmetric polarization state of the wave
we observe. (Cf. Exercise 15.9.) In fact, the polarization state serves as an indicator
of the orientation of the source.

Results like (15.70), based on eqn (15.68), allow us to estimate the amplitude of
waves coming from various likely sources. That amplitude is then the ε one uses in
eqn (15.58) to predict the response of the detector. A typical value for ε from nearby
binary star systems is of the order of ∼10−20. A wave of such an amplitude wiggles
two free particles 10 km apart by ∼10−14 cm—about 1/30 of the classical radius of
the electron. This conveys some inkling of the difficulties of detection. Add to that the
fact that the earth is bathed in periodic gravity waves from thousands of binaries with
thousands of different frequencies and that, unlike optical telescopes, gravitational
‘telescopes’ cannot be aimed at specific sources; so some very subtle mathematics
will be needed to unravel whatever signal might be detected. ‘Burst’ sources, on
the other hand, like nearby supernovae, would stand out from this background and,
moreover, would yield larger amplitudes, of the order of ∼10−18.

The first attempts to observe cosmic gravity waves were made by Weber in the
early 1960s. It was he who invented the bar detector, which, in modified form, is still
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being used by a majority of research groups around the world. It consists of a large
metal cylinder, weighing up to 5 tonnes, whose mechanical oscillations are driven by
gravity waves. Transducers on its surface convert the bar’s oscillations into electrical
signals. Weber’s aluminum cylinders operated at room temperature and eventually
reached a sensitivity of ε ≈ 3× 10−16. Modern bars are made of various alloys with
10 times more favorable damping factors, and run at liquid helium temperatures to
reduce noise. They are getting close to a sensitivity of ε ≈ 10−18. Higher sensitivities
are expected from various beam detectors presently under construction. These consist
in principle of two masses separated by a few kilometers, suspended so as to damp out
local noise, and with a laser beam measuring their relative displacement. This is done
by interferometry from a second, orthogonally placed, mass pair, and amplified by
repeated signal transits. The portion of Earth between the masses here acts effectively
as a Weber Cylinder, and the laser beam as a rigid ruler [cf. after (15.54)]. Ultimate
sensitivities of ε ≈ 10−22 are envisioned for such instruments. There are even plans
for a triangular detector in space, consisting of three free-flying spacecraft about
5× 106 km apart. This LISA project (‘Large Interferometric Space Antenna’) might
fly by ∼2015.

We end this section by reporting, without proof, two important results. As we
stressed in Chapter 14, no proper energy tensor can be assigned to the gravitational
field, because of its elusiveness. (By the equivalence principle, a change of reference
frame can always eliminate the field at one point.) Also, no such tensor is needed on
the RHS of the full non-linear field equations to take care of the ‘gravity of gravity’.
But in linearized GR, it is both possible and useful to construct a pseudo-energy
tensor, which plays much the same role as a proper energy tensor, provided one
sticks to the preferred coordinates.

The linear field equations of linearized GR cannot automatically take care of the
gravity of gravity; for example, of the fact that gravity waves carry energy. That they
do carry energy is clear, for example, from the consideration that sand on a rigid
horizontal plate would move in response to the tidal forces of a passing wave, and
thus do work against (some very small) friction.

If, for the wave, we expand the Einstein tensor Gµν beyond the first power of ε, say

Gµν = G
(1)
µν +G

(2)
µν +· · · , successive terms being O(ε), O(ε2), etc., then the vacuum

field equation Gµν = 0, which the wave satisfies in the full theory, is approximated by

G(1)
µν = −G(2)

µν =: −8πG

c4
tµν. (15.71)

The symmetric components tµν defined by this equation in analogy to the full field
equations (14.8), (14.11), evidently constitute a Lorentz tensor (the so-called pseudo-
energy tensor) and satisfy the conservation equation tµν

,ν = 0. If there is matter
in the path of the wave, its energy tensor Tµν must be added to tµν in eqn (15.71),
and its interaction with the wave will be governed by the joint conservation equation
(T µν + tµν),ν = 0. So the components of tµν must mean for the gravitational field
just what the Tµν mean for the material continuum.
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The straightforward calculation of G
(2)
µν yields, after averaging over a spacetime

region of several wavelengths,

tµν = c2

16πG

〈(
∂λ

∂t

)2

+
(

∂µ

∂t

)2〉⎛⎜⎜⎝
0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎞⎟⎟⎠ (15.72)

for a wave in TT gauge propagating in the x-direction, as in eqn (15.47). The averaging
〈. . . 〉 is necessary in order to get a physically useful energy density t44 and energy
current density −ct14, whose instantaneous values at a single point are meaningless.
Perhaps not surprisingly, this energy tensor corresponds to that of a swarm of zero-
rest-mass particles (gravitons) traveling parallelly at the speed of light. It is therefore
also identical in form to the energy tensor of an electromagnetic wave.

Since calculations like that leading to (15.70) allow us to obtain the wave metric
anywhere at some distance from a source, and the pseudo-energy tensor then allows
us to calculate the energy current represented by the waves, it is possible (for example,
by integrating over a sphere) to calculate the rate −dE/dt at which energy is lost by
the source due to the gravitational radiation it emits. In such a manner one can obtain
the formula

−dE

dt
= G

5c5

〈(
d3Jij

dt3

)2(d3J ij

dt3

)2〉
, (15.73)

where Jij is the ‘reduced’ (that is, trace-free) quadrupole moment of the source,

Jij =
∫

ρ
(
xixj − 1

3
δij
∑

xkxk
)

dV. (15.74)

This result, in essence, was found by Einstein in 1916! Of course, it is only an approxi-
mation, valid as long as the source matter moves non-relativistically. In the simple case
of the binary system described by eqn (15.69), formula (15.73) can be shown to imply

−dE

dt
= 128

5

G

c5

(
Ma2ω3)2 = 32G7/3

5 3
√

4c5
(Mω)10/3, (15.75)

where for the second equation we utilized the Keplerian relation

ω2 = GM/4a3, (15.76)

expressing the balance of centrifugal and gravitational force. It is not difficult to
generalize these results to binaries with unequal masses and non-circular orbits.

A binary system which loses energy will spin ever faster while its orbit shrinks.
Consider, for example, the simple circular system discussed above. Its kinetic energy
M(aω)2 and its potential energy−GM2/2a make a total of−GM2/4a when account
is taken of the Keplerian relation (15.76). This total energy decreases for decreasing a,
and thus, via (15.76), for increasing ω. To date, the only experimental proof we have of
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the reality of gravitational radiation is the minutely documented observation over the
last 25 years of just such a spin-up. The object in question is the famous ‘binary pulsar’
PSR 1913 + 16, discovered by Hulse and Taylor in 1974, and the object of intense
observational scrutiny and theoretical analysis ever since. It consists of two neutron
stars of almost equal mass ∼1.4M�, one live and one dead, in a highly excentric
orbit (e ≈ 0.6) of period ∼8 h and radius ∼1R�. The live component is a pulsar of
period 59 ms. Much general-relativistic mechanics has gone into the analysis of this
system (which has been called a ‘veritable laboratory’ for GR), and all conceivable
non-radiative causes of orbital spin-up (such as tidal dissipation) have been allowed
for. What remains is an impressive validation of the general-relativistic prediction
that the orbital period should decrease owing to radiation by 7.2 × 10−5 s per year.
The agreement between observation and prediction by now lies within 0.5 per cent.

15.5 The electromagnetic analogy in linearized GR

We have already in Section 9.6 seen features of weak stationary gravitational fields
that are very reminiscent of electromagnetic fields. In particular, the law of motion
(9.18) for slow orbits mimics the Lorentz force law of Maxwell’s theory. And in eqns
(15.30) above we saw a remarkable resemblance to the electromagnetic expressions
for the potentials in terms of the sources. In fact, those results together establish an
essentially Maxwellian theory of slow orbits in weak stationary gravitational fields
generated by low-stress, low-velocity sources.

In eqns (15.77)–(15.81) below we collect the details of this Maxwellian analogy,
writing the electromagnetic formulae on the left and the gravitational formulae on the
right. We have already chosen the units of length and time so as to make c = 1. Now
we additionally choose the unit of mass so as to make G = 1, which corresponds
to choosing Gaussian units in electromagnetism, in terms of which the Coulomb
force becomes simply q1q2/r2. We write E and B for the ‘gravielectric’ and the
‘gravimagnetic’ fields, respectively:

φ = +
∫

ρ dV

r
←→ � =−

∫
ρ dV

r
(15.77)

w = −
∫

ρu dV

r
←→ w =+ 4

∫
ρu dV

r
(15.78)

e = −grad φ ←→ E =− grad � (15.79)

b = curl w ←→ B=curl w (15.80)

a = q

m
(e + v × b) ←→ a =E+ v ×B. (15.81)

Note, above all, the sign differences in the first two lines: electric force repels, while
gravitational force attracts, like charges. Also there is the noteworthy factor 4 in the
integral for the gravitational vector potential w: moving masses accordingly generate
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a four times stronger gravimagnetic field than direct analogy with electromagnetism
would imply. And finally, the absence of a multiplier in the ‘gravitational Lorentz
force law’ (15.81)(ii) stems from the equality of gravitational and inertial mass.

In Chapter 9 we used a very indirect argument to establish the ‘force law’ (9.18).
Now that we are in possession of the explicit form of the law of motion,

d2xρ

ds2
+ �

ρ
µν

dxµ

ds

dxν

ds
= 0, (15.82)

we can prove it directly. The orbits are assumed to be slow, such that, if they are
described at velocity v, we can neglect v2. Since ds2 ≈ (1 − v2) dt2, we have
dt/ds ≈ γ = (1− v2)−1/2. This entails (with · = d/dt)

dxρ

ds
= ẋργ,

d2xρ

ds2
= ẍργ 2 + ẋρ γ̇ γ . (15.83)

But from (2.10) we know that γ̇ = O(v), so that, to first-order in v, we have

dxρ

ds
= ẋρ =: (vi, 1),

d2xi

ds2
= ẍi ,

d2x4

ds2
= γ̇ γ . (15.84)

As we have seen [in the paragraph following (10.44)], when three of the geodesic
equations are satisfied, the last is satisfied automatically. So here we take the first
three, and when we substitute from (15.6) and (15.84) into (15.82), these become

ẍi = −1

2

(
hi

µ,ν + hi
ν,µ − hµν,

i

)
ẋµẋν . (15.85)

Referring to (15.32); remembering that raising or lowering an i introduces a negative
sign; remembering also that hµν,4 = 0 by the assumed stationarity of the field; and,
for ease of recognition, writing out a few of the summations in full, we discover that
(15.85) expresses precisely the law

a = −grad �+ v × curl w, (15.86)

which is thus re-established.
The electromagnetic analogy has many uses. To begin with, it supplies us with a

familiar model for the extra gravitational force created by the motion of the sources,
and felt only by moving particles (namely, the B field). Also occasionally the analogy
allows us simply to ‘translate’ familiar results from electromagnetism to weak GR.
For example, recall the electromagnetic potentials created at position r from its center
by a uniformly rotating ball of homogeneous charge density:

φ = q

r
, w = 1

5

R2q�× r

r3
. (15.87)
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Here q is the total charge, R the radius, and � the angular velocity of the ball. We
can translate this into a gravitational result. The charge q becomes the mass m of a
rotating ball. It is usual in GR to introduce a quantity a defined by

L = Iω =: ma, (15.88)

where L is the angular momentum and I the moment of inertia; so a is the ‘angular
momentum per unit mass’. For a homogeneous ball, we have I = (2/5)mR2. Thus,
translating (15.87) by use of (15.77) and (15.78), we obtain

� = −m

r
, w = −2I�× r

r3
. (15.89)

In the linearized metric (15.33) we require the expression wi dxi = w · dr. We find
this from (15.89)(ii):

w · dr = −2I

r3
� · (r × dr) = −2Iω

r3
(x dy − y dx), (15.90)

where we have used the well-known ‘interchangeability of dot and cross’ in the triple
product. So the metric (15.33) around the ball takes the form

ds2 =
(

1− 2m

r

)
dt2 −

(
1+ 2m

r

)∑(
dxi

)2

+ 4ma

r3
(x dy − y dx) dt. (15.91)

In terms of polar coordinates r, θ, φ it becomes

ds2 =
(

1− 2m

r

)
dt2 −

(
1+ 2m

r

)[
dr2 + r2(dθ2 + sin2θ dφ2)

]
+ 4ma

r
sin2 θ dφ dt. (15.92)

This is, in fact, the linearized version of the famous Kerr metric. [And without the cross
term that makes it non-static it is clearly the linearized version of the Schwarzschild
metric in its isotropic form (11.26).] The Kerr metric is known to correspond exactly
and uniquely to a steadily rotating black hole, and as such it plays an important role
in theoretical GR. But it is not known exactly which types of regular rotating mass
distributions might also serve as its source. For most practical purposes the linearized
metric (15.92) satisfactorily describes the gravitational field around a rotating star or
planet.

As an example, let us work out the periods of free circular orbits in the equatorial
plane of a rotating star, and, in particular, let us calculate the difference in periods for
orbits described in the positive and negative senses at the same radius. We could do this
via the geodesics of the metric (15.92), but an alternative method will be instructive.
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Consider the magnetic field b corresponding to the electromagnetic potentials (15.87).
It is the well-known dipole field of a rotating charged ball,

b = 3

5
R2q

(
� · r r

r5
− 1

3

�

r3

)
. (15.93)

Its gravitational analog [taking into account the factor −4 between eqns (15.78)] is

B = −12

5
R2m

(
� · r r

r5
− 1

3

�

r3

)
, (15.94)

and in the equatorial plane this reduces to

B = +4

5

R2m�

r3
. (15.95)

We can now find the orbit by equating its radial acceleration−rφ̇2 to the gravitational
acceleration (15.86). To first order the latter is−m/r2, so that v = rφ̇ = ±(m/r)1/2.
With that and (15.95), the contribution v×B to a can be written down and added to
−m/r2; after canceling a factor −r we then obtain

φ̇2 = m

r3
∓ 2L

r4

√
m

r
, (15.96)

where L is the angular momentum of the ball [cf. after (15.88)] and the top and bot-
tom signs correspond to the positive and negative senses of describing the orbit,
respectively. We leave the calculation of the period difference to the Exercises
(cf. Exercise 15.11); but we see immediately that the retrograde orbit is the faster—
simply because the gravimagnetic force increases the effective pull towards the center,
which must be balanced by a greater centrifugal force.

It has long been customary to refer to gravimagnetic phenomena like the one
discussed here in terms of ‘frame dragging’ or ‘space dragging’. This dates back to
Einstein (‘Mitführung’) and his early fascination with Mach’s principle, according
to which the ‘rotating’ universe ‘drags’ the inertial frame relative to the non-rotating
earth. But that metaphor can be very misleading. In the present case, for example, if
the rotating ball really dragged the space around with it, surely the retrograde orbit
would be the slower. Our recommendation is to use the vague concept of dragging at
most in a tentative way, and for definite results to rely instead on the solidly established
Maxwellian analogy.1

We have already discussed in Chapter 9 [cf. after (9.19)] the intimate connection
between the rotation rate of the local inertial frame, �LIF, and the gravimagnetic
field. In fact, according to eqn (9.21) and the subsequent text, that rotation rate is
given in first approximation by

�LIF = − 1
2B. (15.97)

1 Cf. W. Rindler, The case against space dragging, Phys. Lett. A233, 25 (1997).
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We shall now use this formula to derive an interesting result first discussed by Lense
and Thirring as early as 1918. The earth’s rotation induces a precession in all the
gyroscopes we can imagine affixed to the stationary lattice surrounding the earth and
at rest relative to infinity. The pattern of the rotation directions is given by the familiar
magnetic field lines issuing from a rotating ball of charge, as shown in Fig. 15.2, where
�LT denotes the Lense–Thirring precession angular velocity, namely − 1

2 times the
RHS of eqn (15.94). (There is a direction reversal between b and B, and another
between B and �LT.) Thus, for example, the gyroscopes at the poles precess in the
sense of earth’s rotation, while those in the equatorial plane precess in the opposite
sense. For these latter we find, from (15.97) and (15.95)

�LT = −2

5

R2mω

r3
= − J

r3
= −ma

r3
. (15.98)

For a gyroscope in free circular orbit in the equatorial plane this precession must be
added to the de Sitter precession (11.74) discussed in Chapter 11, which applies to
orbits around a non-rotating earth. Since the time �t for one orbital revolution is
given to sufficient accuracy by the Keplerian formula 2π(r3/m)1/2, we can find from
(15.98) the angle precessed per revolution, αLT = �LT�t , due to the Lense–Thirring
effect; adding this to the de Sitter angle (11.74) gives us the total precession:

α = ±3πm

r
− 2πa

√
m

r3
, (15.99)

the top and bottom signs referring to positively and negatively described orbits,
respectively. For near-earth orbits the first term adds up to ∼8 seconds of arc per
year, the second to only about 1 per cent of that. The Stanford Gyroscope Experi-
ment (also known as Gravity Probe-B)—in the planning since the early 1970s and

Fig. 15.2
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finally launched in 2004—aims to test these effects to high accuracy by flying a
shielded satellite containing gyrosopes in low polar orbit (to avoid large Newtonian
effects due to the earth’s non-sphericity). As we saw before, the de Sitter part of
the precession has already been validated satisfactorily (cf. penultimate paragraph of
Chapter 11). The Stanford Experiment will be the first to validate gravimagnetism (in
its Lense–Thirring manifestation), in addition to improving the de Sitter data even
further. However, somewhat crude evidence (to an accuracy of 20 per cent) for a
different gravimagnetic effect—the precession of the orbital plane itself, if inclined
to the equator (cf. Exercise 15.16)—has already been reported by Ciufolini et al. in
1998; this resulted from observations of the precession of the line of nodes of a pair
of LAser-ranged GEOdynamics Satellites (LAGEOS I and II).

After this digression to the present day, we return to the work of Thirring. Already
before his collaboration with Lense he had in 1918 attacked a problem of great
Machian interest to Einstein: the gravimagnetic field inside a uniformly rotating shell,
say of mass m and radius R. Now the magnetic field b inside a shell of charge q and
radius R rotating at angular velocity � is constant and given by

b = 2

3

q�

R
. (15.100)

By our translation from b to B (effected by a factor−4) and from B to �LIF (effected
by a factor − 1

2 ), we immediately deduce

�LIF = 4

3

m�

R
. (15.101)

Thus all stationary gyroscopes inside the rotating mass shell precess in unison. In
fact, the spacetime inside the shell is (in linear approximation) Minkowskian but
uniformly rotating. To see this directly, consider the electromagnetic vector potential
wel corresponding to the constant b field (15.100), say in the z-direction:

wel =
1

3

qω

R
(−y, x, 0). (15.102)

The electric potential φel inside the charged rotating shell is zero. By our translation
scheme, this leads to

�grav = 0, wgrav = −4

3

mω

R
(−y, x, 0) (15.103)

inside the mass shell. These values in turn, by reference to (15.33), lead to the metric

ds2 = dt2 −
∑

(dxi)2 + 8

3

mω

R
(x dy − y dx), (15.104)

which finally, in terms of cylindrical polar coordinates, takes the form

ds2 = dt2 − dr2 − r2 dφ2 + 8

3

mω

R
r2 dφ dt − dz2. (15.105)
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Note from (15.103) that w = O(rω). But we see from (15.32) that in linearized GR
w must be considered to be of the same order of smallness as the hs. Consequently
its square is neglected. In the present case we thus neglect r2ω2. With that, the metric
(15.105) becomes equivalent to the metric (9.26) of a lattice uniformly rotating in
Minkowski space with angular velocity

ωlattice = −
4

3

mω

R
(15.106)

about the z-axis. So the stationary lattice inside the rotating shell, fixed relative to infin-
ity, rotates negatively relative to an underlying Minkowski space. By transforming to
positively rotating coordinates with angular velocity 4mω/3R relative to infinity, we
would arrive at the Minkowski metric, and our assertion is proved.

Of course, the factor in front of ω in (15.106) and (15.101) (in full units:
4Gm/3c2R) is so minute that terrestrial tests are out of the question. For a shell
of mass 10x tonnes and radius 10y meters, that factor is ∼10−24+x−y .

Nevertheless, it is easy to see why Thirring’s result was a victory for the Machians.
The distant universe, considered as a rotating mass shell relative to a static earth (never
mind its necessarily superluminal transverse velocity!) might similarly, but this time
fully, drag the local inertial frame at the earth along with it. Already in 1913 Einstein
had preliminarily obtained the above results on the rotating shell and reported them
enthusiastically to an aging and unresponsive Mach.

Exercises 15
15.1. Prove that the transformation (15.14) is an infinitesimal Lorentz transforma-

tion (that is, it transforms ηµν into itself) if and only if fµ,ν + fν,µ = 0.

15.2. Prove that the harmonic gauge condition cρν
,ν = 0 is equivalent to �ρ :=

gµν�
ρ
µν = 0. In the full theory, prove that �ρ = 0 implies that the coordinates xρ

themselves satisfy the wave equation, �xρ = 0. Such coordinates are called har-
monic coordinates and �ρ = 0 is called the harmonic coordinate condition. [Hint:
for any scalar function φ establish the indentity �φ = gµνφ;µν = gµνφ,µν−�ρφ,ρ .]

15.3. Prove that in linearized GR the wave-vector kµ of a plane wave is an
eigenvector of the curvature tensor, in the sense that Rλµνρkρ = 0, indepen-
dently of any gauge. [Hint: establish the following relations in the TT gauge:
ḧµνk

ν = 0, hµν,ρσ = kρkσ ḧµν . Then by reference to (15.7) prove the eigenvector
property in the TT gauge. Finally show that it is gauge-invariant.]

15.4. Verify that the harmonic gauge conditions for a plane wave in the x-
direction, hµν = hµν(t − x), are equivalent to the following relations among the
hs : h21 = −h24, h31 = −h34, h41 = − 1

2 (h11 + h44), h22 + h33 = 0, apart
from additive constants which can be discarded. Prove that any wave satisfying
these conditions plus h22 = h23 = h32 = h33 = 0 is a pure coordinate wave.

15.5. Prove that under a rotation of the y and z coordinate axes through an angle
ψ (that is, y′ = y cos ψ + z sin ψ, z′ = −y sin ψ + z cos ψ), the (λ, µ) wave (15.47)
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becomes a (λ′, µ′) wave, such that

λ′ = λ cos 2ψ + µ sin 2ψ

µ′ = −λ sin 2ψ + µ cos 2ψ.

In particular, note that if ψ = 45◦, λ′ = µ, µ′ = −λ; and if ψ = 180◦, the wave is
unchanged. [Hint: the hαβ are Lorentz tensor components.]

15.6. Prove that the two sets of co-asymptotic hyperbolae of Fig. 15.1 intersect
each other everywhere orthogonally. Let the λ-hyperbolae have equation xy = const
[cf. (15.55)] in an x, y plane, while the µ-hyperbolae are the λ-hyperbola rotated
through 45◦, x 
→ 1√

2
(x − y), y 
→ 1√

2
(x + y). [Hint: if (dx, dy) is a displacement

along a λ-hyperbola and (δx, δy) one along a µ-hyperbola, prove dx δx+dy δy = 0.]

15.7. Perform a calculation analogous to that which led us from (15.63) to Laue’s
theorem (15.66), for the electromagnetic four-current density Jµ in place of T µν ,
thus obtaining ∫

J i dV = d

dt

∫
ρxi dV.

In the special case of a stationary current distribution, the RHS of this equation van-
ishes. All currents must then be closed loops, which explains the vanishing of the
LHS. In the general case, the RHS measures the changing accumulations of charge
due to the variable currents. [Hint: (7.38), (7.39).]

15.8. Consider a system of four identical stars equally spaced and orbiting on a
common circle under their mutual gravity. Prove that this system does not radiate at
all. [Hint: the quadrupole tensor of this system is the sum of the quadrupole tensors
of two binaries out of phase by 90◦.]

15.9. Consider the gravitational radiation generated by the binary system whose
quadrupole tensor is (15.69), but now far away in the plane of rotation. To conform
to our convention that the wave propagates in the x-direction, let i and j in (15.69)
and (15.70) now take the values 1, 2. The cs will not be in exact harmonic gauge,
since we neglected the tension in the putative string connecting the masses. Ignore
this, and use the result of the final paragraph of Section 15.2 to impose the TT gauge.
Hence prove that the radiation in the plane of the orbit is linearly polarized and that
its amplitude is only half of that of the frontal radiation at equal distance.

15.10. Rederive the result (15.96) for equatorial orbits in the linearized Kerr metric
(15.92) by the method of rotating coordinates introduced in Section 11.13.

15.11. Derive the time difference �T between the periods of the negative and
positive equatorial orbits at constant distance from the rotating ball discussed in the
paragraph containing eqn (15.93). [Answer: �T ≈ 4πa (cf. (15.88)) independently
of r to first order in m/r .]

15.12. Consider a light-signal guided by mirrors round a circular orbit of radius r

in the equatorial plane of the rotating ball of the preceding exercise. Find the time
difference �T between the periods of the two orbits described in opposite senses and
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observe that it is now the positive orbit that is the faster. [Hint: use (15.92). Answer:
�T ≈ 8πma/r to first order in m/r .]

15.13. A particle is dropped from rest at infinity in the equatorial plane of a ball of
mass m and radius R rotating uniformly at angular velocity ω. Prove that the particle
experiences a transverse acceleration

∼ 4

5

R2ω

c2

√
2G3m3

r7

in the direction of the ball’s rotation when at distance r from its center, thus lending
credence to the dragging metaphor. [Hint: (15.86), (15.95).]

15.14. A Foucault pendulum suspended at the earth’s north pole swings freely in a
vertical plane �. Prove that the earth’s rotation causes � to precess relative to the dis-
tant universe by∼7.13×10−4 seconds of arc per day in the sense of its own rotation.
[Hint: recall from the end of Section 11.2C that for the earth GM/c2 = 0.44 cm.]

15.15. The magnetic field b inside an infinite solenoid is strictly parallel to the axis,
pointing in the positive sense relative to the current, and everywhere of magnitude
4πnI/c, where I is the current and n is the number of wire turns per unit length.
Use this information to prove that the gravimagnetic field inside a long cylindrical
shell of radius R and mass µ per unit length, rotating uniformly at angular velocity
�, is given by B = − 8Gµ�/c in full units. Deduce that the spacetime inside
the cylinder, to linear approximation at least, is Minkowskian and rotating at angular
velocity 4Gµ�/c2 relative to infinity. [Hint: cf. the argument following (15.103).]

15.16. Give a heuristic Maxwell-type argument for the precession of the axis of
a circular non-equatorial orbit (for example, that of an artificial satellite) around the
earth’s angular velocity vector �. [Hint: Replace the earth by a rotating charged ball
and the orbit by a current loop, whose magnetic field will tend to align itself with �,
thus producing a torque. In the gravitational analog, that torque will make the angular
momentum vector of a rotating massive ring (roughly representing the satellite in
orbit) precess around �. By following the analogy in detail, determine the direction
of the precession.]
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Cosmological spacetimes

16.1 The basic facts

A. Introduction

Cosmology—the inquiry into the largest-scale features of the universe—has obvi-
ously excited Man’s curiosity since time immemorial. But in spite of the spectacular
advances in astronomy since the days of Galileo and Kepler, cosmology remained
more speculation than science until well into the twentieth century. Relevant obser-
vations were sparse, and so theories, however fanciful, could not be falsified. All
this changed drastically with the advent of the giant telescopes early in the twentieth
century, which suddenly brought a significant portion of the whole universe into view.
And other powerful technologies soon followed. On the theoretical side, general rel-
ativity entered the field. It provided a consistent dynamics and optics for the huge
self-gravitating system that is our universe. Cosmology became a science.

B. Regularity of the universe

One of the main features uncovered about the universe is its large-scale regularity.
All directions around us appear to be equivalent, and the limited region we have been
able to survey in detail appears to be typical of all the rest. In other words, the entire
universe appears to be isotropic and homogeneous. Add to this the assumption that
the laws of physics, as discovered here on earth, are valid in all regions and at all
times, and one can begin to construct cosmological models. These basic assumptions
then turn out to be well supported by the agreement of their consequences with the
observations, and by the general harmony of the resulting picture. It should also be
noted that if the universe is really homogeneous, then that is a good indication that the
laws of physics are at least spatially universal; for if they were not, different regions
might well have evolved differently.

The apparent regularity of the universe is very fortunate for cosmologists. It is hard
to see how without it one could extrapolate from local observations, and how one
could even begin to construct useful cosmological models. It is also very mysterious.
Whereas the nice roundness of astronomical objects like sun or earth is understandable
in terms of energy and gravity, the homogeneity and isotropy of the entire universe,
if real, has never been satisfactorily explained. One may eventually find that the big
bang itself had no choice but to lead to such a universe.
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C. History

Modern theoretical cosmology found its inspiration in Einstein’s general relativity.
Not only did that provide the necessary dynamics and optics, but it opened the door
to such exciting geometrical possibilities as finite closed universes and universes
where one could travel into the past. Perhaps most importantly, general-relativistic
mechanics had already suggested non-static model universes by the time astronomers
found to their great surprise that they were needed.

By contrast, Newton’s mechanics had proved sterile as a source of cosmological
models. Its laws are problematic for infinite mass distributions. Newton’s idea of
an infinite static universe (cf. Section 1.11) was based not on dynamics but rather
on symmetry and the existence of absolute space. It was beset with contradictions.
Suppose, for example, we remove a finite ball of matter from it. The field inside the
cavity is zero by Gauss’s theorem. But then when we put the matter back, it will
collapse under its own gravity. It seems the outside masses must provide a centrifugal
field inside. But how? Attempts were made in the late nineteenth century to tamper
with the inverse square law, just to make a static universe possible. In retrospect it is
hard to understand why astronomers were so bent on the idea that the universe must be
static. Even Einstein initially resisted what his own field equations clearly told him:
he tampered with them so that his first cosmological model (of 1917) could be static!

However, before we discuss cosmological models, we must look at some of the
facts. Evidently the first concern of cosmologists must be with the spatial distribution
of stars and galaxies. For Copernicus in the early sixteenth century, just as for Ptolemy
and Plato centuries before, all the stars were still fixed to a ‘crystalline’ sphere, though
now centered on the sun rather than on the earth. But as early as 1576, Thomas Digges
boldly replaced that sphere by an infinity of stars extending uniformly through all
space, the dimmer ones being farther away. The same extension was also made by
Giordano Bruno (who for his ideas was burned at the stake in 1600), and mystically
foreshadowed a century earlier by Nicholas of Cusa. But, whereas to Digges the sun
was still king of the heavens, one who ‘raigneth and geeveth lawes of motion to ye
rest’, Bruno recognized it for what it is: just a star among many. The infinite view was
later supported by Newton, who believed that a finite universe would ‘fall down into
the middle of the whole space, and there compose one great spherical mass. But if the
matter was evenly disposed throughout an infinite space . . . some of it would convene
into one mass and some into another. . . . And thus might the sun and the fixed stars
be formed’ (1692). The really revolutionary content of this passage is the idea of an
evolving universe, and of gravity as the mechanism causing condensation.

Both Newton and his contemporary Huyghens knew that the stars were immensely
far apart. Huyghens had let light from the sun fall onto a pinhole after expanding
it optically to an apparent diameter 30 000 times that of the pinhole, whereupon the
pinhole seemed as bright as he remembered (!) Sirius to be at night. He concluded that
Sirius is 30 000 times as distant as the sun. Newton gave that multiple as 100 000, bas-
ing his calculation on the fact that Sirius appears about as bright as the planet Saturn.
Both Newton and Huyghens assumed that Sirius (the brightest star in the sky) was
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intrinsically as bright as the sun. But, in fact, it is much brighter, and so it is even
farther away than they thought; the correct multiple is about 540 000.

The next revolutionary idea was born in 1750 with Thomas Wright’s recogni-
tion that we lived in a huge but finite conglomeration of stars in the form of a
disk, whose rim was indicated by the Milky Way. This idea was soon extended
by Immanuel Kant to, once more, an infinite universe—this time with disk-shaped
‘island universes’ like our own spaced throughout. Various ‘nebulae’ observed by
the astronomers were candidates for this new role; and the ellipticity of some of
these would now be explained as disks seen sideways. By 1783 Messier had cata-
loged 103 such nebulae, and William Herschel with his powerful 48-inch reflector
telescope located no fewer than 2500 before his death in 1822. He became the great
observational supporter of the multi-island universe theory, though, ironically, many
of his arguments turned out to be quite false. Still, he came to foresee the impor-
tant division of nebulae into two main classes—galactic and extragalactic. Herschel’s
theory had its ups and downs in favor, but essentially its verification had to wait
for the slow development of observational capacity to match its huge demands. The
waiting period culminated in a historic wrangle, continued at one astronomers’ con-
ference after another from 1917 to 1924—until it suddenly ended on January 1, 1925:
Hubble, with the help of the new (1917) 100-inch telescope at Mount Wilson, had
resolved star images in three of the nebulae, and, as some of these were Cepheids,
he was able to establish beyond all doubt their extragalactic distances. Only one
main feature of the universe as we know it today was still missing: its expansion.
From 1912 onwards, Slipher had observed the spectra of some of the brighter spi-
ral nebulae and found many of them redshifted, which presumably meant that these
nebulae were receding. But distance criteria were still lacking. Hubble now applied
his ‘brightest star’ measure of distance and, together with Humason, extended the
redshift studies to ever fainter nebulae. Finally, in 1929, he was able to announce
his famous law: all galaxies recede from us (apart from small random motions) at
velocities proportional to their distance from us. The modern era of cosmology had
begun.

For another 20 years or so the big 100- and 200-inch telescopes were chiefly respon-
sible for enriching our knowledge of the universe. But radar developments during
World War II led to radio-astronomy after the war, and with it came a second consid-
erable enlargement of the observable universe, as well as the discovery of important
new phenomena: quasars in 1962, the thermal background radiation in 1965, and
pulsars in 1967. Balloon, rocket, and satellite experiments escaped the obscuring
atmosphere of the earth; electronic computers led to new methods of data processing;
and solid-state detectors were 50 times more sensitive than photographic plates. In
the seventies came infrared, X-ray, and gamma-ray astronomy, which opened up yet
further spectral regions, and which located many interesting sources both inside and
outside the galaxy emitting such highly energetic radiation. Most recently, the orbiting
Hubble space telescope and a new generation of 10-meter earthbound telescopes have
collected spectacular new data. Neutrino- and gravitational-radiation astronomy are
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in a nascent state. And computers and advances in nuclear theory have made possible
previously unthinkable numerical investigations into stellar and galactic evolution.

D. Stars and galaxies

However, we must forego a detailed account of the further growth of modern knowl-
edge, and content ourselves with simply listing the main astronomical findings
relevant to our purpose. Stars, to begin with, are huge balls of plasma, held together by
gravity whose enormous central pressure triggers the generation of energy by nuclear
fusion. This occupies most of the star’s lifetime and can last ten billion years—or
more, or much less, depending mainly on the total mass and chemical composi-
tion. In the end, of course, all stars must burn out. Possibly after violent explosions
(supernovae) they end up as white dwarfs, neutron stars (pulsars), or black holes.
The size of stars can be appreciated by considering that the earth, with the moon’s
orbit, would comfortably fit into the sun, a very average star. About 7000 of them
are visible at night to the naked eye; about 1011 are contained in a typical galaxy.
(Most of us lack mental images for numbers of that size. Here is one possibility:
consider a cubical room, 15× 15× 15 ft; the number of pinheads needed to fill it is
about 1011.)

Stars within a galaxy are very sparsely distributed, being separated by distances
of the order of 10 light years. In a scale model in which stars are represented by
pinheads, these would be about 50 km apart and the solar system (out to the orbit of
Pluto) would have a radius of 5 m. A typical galaxy has a radius of 3×104 light years,
is 3× 106 light years from its nearest neighbor, and rotates with an angular velocity
that decreases from the center outwards, at an average period of 100 million years.
Like a coin, it has a width only about a tenth of its radius, and coins spaced about a
meter apart make a good first model of the galactic distribution. About 1011 galaxies
are within range of the 200-inch Mount Palomar telescope. In the coin model, the
farthest of these are 3 km away, but the farthest known quasars are four times as far.

To digress: ∼1011 galaxies are thus known to exist, although there may well be
infinitely many (if the universe turns out to be infinite). They contain∼1011 stars
each, so a minimum of 1022 altogether. As closely packed pinheads these stars would
fill a box 15 × 15 × 15 mi! One of these pinheads is our sun. (Can this possibly be
the only center of life in the universe?)

At one time it was thought that the galaxies might be more or less evenly dis-
tributed throughout space. But this is not so. Galaxies, first of all, join into small
groups and large clusters, leaving single galaxies (so-called field galaxies) as the
exceptions. Clusters can contain as many as 1000 or even 10 000 and more individual
galaxies. They are held together by gravity and have decoupled from the cosmic
expansion. Clusters themselves can join into superclusters—but these already expand
with the rest of the cosmos. Higher-order clustering seems not to occur. Instead, in
recent times, a kind of spongy or filamentary structure has emerged, which has even
been matched by computer simulations of structure formation. It seems that clus-
ters form chains, which meet in knots (centers of superclusters) and thus form a
kind of irregular lattice. Its cell walls have lesser densities than the edges, and there
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appear to be huge voids in between. The cells have dimensions of∼108 light-years.
Above this scale, however, the homogeneity of the universe seems to set in. After
all, the observable universe contains upwards of 106 such cells—like little cubic
centimeters in a cubic meter.

E. Homogeneity and isotropy

But we must note that homogeneity, in a non-static universe with finite signal speed,
is a little tricky to observe. How can we check whether a distant region is similar to
our own? We see that region as it was millions of years ago. But (i) we do not know
exactly how many millions, since we do not know the exact expansion history of the
universe, which affects the light travel time; (ii) even if we knew the light travel time,
we do not know how our own region looked that long ago; and (iii) we do not know
the exact spatial geometry that would allow us to translate angular measurements into
transverse distances.

In a non-isotropic universe, that would be a real problem. (Homogeneity can, of
course, exist without isotropy—as in a crystal.) But we are fortunate: we actually
observe almost perfect isotropy around ourselves. Since today we strongly believe
not to be in a special position in the universe, nor to exist at a special time, we conclude
that there is isotropy anytime from anywhere. But that guarantees homogeneity! For if
any region A had evolved differently than some other region B, that difference would
be seen as non-isotropy from points located equidistantly between these regions.

Much of the evidence for the regularity of the universe therefore hinges on its
isotropy around ourselves. We have several independent ways to observe this. The
most important are the following three: (i) optical and radio-astronomical mappings
of the sky; (ii) the cosmic background radiation; and (iii) the Hubble expansion. As for
the first, suffice it to say that when allowance is made for the obscuring effects of our
own Milky Way (though for radio signals it is virtually transparent) the distribution
of distant galaxies as seen both in the optical and the radio spectrum is completely,
though only coarsely, isotropic.

F. Thermal background

Isotropy on an almost unbelievably finer scale is exhibited by the cosmic background
radiation. This 2.7 K blackbody microwave radiation was serendipitously discovered
by Penzias and Wilson in 1965, unaware that already in 1948 Alpher and Herman
had predicted its existence on the basis of Gamow’s theory of element production in
a hot big bang. It is estimated that about 300 000 years after the big bang (long before
galaxies began to condense) the original continuum of particles and photons had
cooled down to about 3000 K, at which point the hydrogen ions and electrons could
combine into atoms, leaving no charged particles to strongly scatter the photons. The
universe became transparent. Henceforth the radiation is decoupled from the matter;
it effectively lives in an expanding cage (the material universe), keeping its black-
body profile but cooling, in inverse proportion to the size of the universe, down to its
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present temperature. Early ground-based efforts to study this radiation were super-
seded by measurements made with the COBE satellite (‘Cosmic Background
Explorer’) launched in 1989, which not only confirmed the perfect blackbody spec-
tral curve of the radiation, but also its incredible isotropy to better than a few parts
in 104. So good is this isotropy that a minute systematic ‘dipole’ variation of about
5 × 10−3 K has been used to determine the earth’s motion through the background
as ∼380 km/s, since by the Doppler effect the observed temperature must be slightly
higher fore than aft. In effect, the background radiation provides a local standard of
rest in the universe everywhere, relative to which the peculiar velocities of individual
galaxies are small.

The isotropy of the thermal radiation reaching us today is a direct indication only
of the isotropy of a thin shell of continuum at the time of decoupling, namely that
shell (the so-called ‘surface of last scattering’), centered on us, where the radiation
we receive today originated. (With that radiation we are ‘seeing back’ to within
300 000 years of the big bang!) But the assumed isotropy of all such shells implies
the incredibly fine homogeneity of the entire universe at decoupling time, compared
to the much coarser homogeneity that resulted from later structure formation.

As we shall see later, the density of radiation in the universe follows the law ρ ∝
R−4 (R = ‘radius of the universe’), while that of its matter content obeys ρ ∝ R−3.
At the present time, the latter density greatly outweighs the former. But clearly there
must have been a time in the past when the two density curves crossed over. Apparently
by coincidence, this seems to have happened around the time of decoupling. For the
dynamics of the universe it is in fact an acceptable approximation to piece together, at
about t = 300 000 y, an earlier pure-radiation universe with a later pure-matter one.

G. Hubble expansion

One more argument for the isotropy and homogeneity of the universe comes from its
Hubble expansion. The entire universe is found at present to expand by about 1 per
cent in 108 years. On a human scale, this seems a leisurely pace. But the universe is
large; so even a small proportionate expansion rate translates into vast relative speeds
of widely separated galaxies. A galaxy 10x light years away from us moves another
(10x/100) light years in the next 108 years, which translates into a speed of 10x−10c;
and that is c when x = 10! (We shall see later that this statement is essentially exact
in terms of instantaneous ruler distance and cosmic time.)

The Hubble expansion pattern is best visualized by picturing an infinite regular
cubical lattice (in the simplest case of a spatially flat universe) with knots at all the
lattice points representing the galaxies. Suppose at one ‘cosmic instant’ all the edges
of all the lattice cubes have length l. A cosmic time dt later, they all have expanded to
l+dl. Consider now a lattice line of such edges issuing from a given galaxy. Another
galaxy n edges away (that is, at distance x = nl) has moved with velocity v = n dl/dt .
So we have

v = ndl/dt

nl
x = dl/dt

l
x =: Hx, (16.1)
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the exact Hubble law, with H = (dl/dt)/ l. This H is called Hubble’s parameter. It
evidently need not be constant in time. It can even become negative, if expansion
changes to contraction. Its present value, H0, is called Hubble’s constant.

The lattice motion pattern here described preserves the spatial homogeneity of the
universe. It is also the only motion pattern that does that, and the only one consistent
with Hubble’s law. If Hubble’s law were, for example, quadratic in x, a homo-
geneous lattice around ourselves would quickly lose its homogeneity: distant cells
would expand faster than nearby ones. So the linearity of Hubble’s law is needed
for maintaining the spatial homogeneity of the universe. The fact that H0 is also
direction-independent fits in with the isotropy of the universe.

No reliable figures seem to exist for the degree of that direction-independence, but
it is clearly satisfactory. The actual value of Hubble’s constant is still uncertain to
some±7%. Hubble originally (in 1929) set it at 540 (km/s)/megaparsec. [The parsec
(pc) is a distance unit favored by astronomers and is equivalent to 3.087× 1018 cm,
or 3.26 light years; a megaparsec (Mpc) equals 106 pc.] But this figure has undergone
several drastic revisions, mainly downwards, and mainly caused by refinements of
the various steps leading to a determination of the cosmic distances. The best present
estimates seem to be in the range 70± 5 (km/s)/Mpc.

H. The big bang

One further aspect of the cosmic expansion needs to be addressed, namely its explana-
tion. Recall Newton’s universe: a homogeneous static distribution of stars throughout
absolute space. Think of the stars as the knots of our lattice, at rest in AS. Sym-
metry relative to AS then forbids any motion. But if we scrap the ideas of AS and
of extended inertial frames (cf. Section 1.11), and only consider the lattice per se,
symmetry does permit its Hubble expansion or contraction. If the stars were ini-
tially mutually at rest, gravity would make them Hubble-contract. But we see the
universe expand. Astronomers were at first surprised at that. Was there some mys-
terious expansion of space itself? However, a quite simple and ‘obvious’ (though
never previously contemplated!) solution was found: the big bang. Extrapolating
the present expansion of the universe backwards in time, one sees that in the most
straightforward scenario it must get ever denser and ever hotter, until a singularity of
infinite density and infinite temperature is reached some 1010 years ago (on the crude
approximation of linear expansion). The time-inverse of this sequence, a symmetric
cosmic explosion from infinite density and temperature, is referred to as the big bang.
Why it happened remains unexplained. But if it happened, the observed expansion is
no more mysterious than the flying apart of shrapnel from a grenade that explodes in
mid-air. And this image also answers the question whether everything must expand.
If two shrapnel pieces could briefly reach out and hold hands to halt their relative
motion, they would henceforth be quite unaffected by the motion of the rest. It is
much the same in the universe: the forces holding atoms and molecules together have
decoupled their constituents from the general expansion; the gravity that holds the
stars in a galaxy together has decoupled them from the expansion. We have already
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seen (in Birkhoff’s theorem) that the Schwarzschild metric (and with it the planetary
orbits) are unaffected by the existence of expanding surrounding mass shells. The
local situation in the universe is quite analogous.

The hypothesis of the big bang (and with it the existence of progressively denser
and hotter phases in the past) was strongly boosted by the discovery of the cosmic
background radiation which the big-bang theory had predicted. And much further
evidence comes from the theory of nucleosynthesis. It so happens that there is about
one helium atom for every ten hydrogen atoms practically wherever we look in the
universe. This helium could not all have been produced by the fusion of hydrogen in
stellar furnaces—there just are not enough of them. The only alternative is the cosmic
furnace a few minutes after the big bang when the temperature was ∼109 K, as had
been suggested in a seminal paper by Alpher, Bethe, and Gamow in 1948. Indeed,
to have eventually accounted for the observed relative abundances of the light nuclei
1H, 2H, 3He, 4He, and 7Li is one of the great achievements of the big-bang theory.
(The heavier nuclei all had to be created in stars, where at comparable temperatures
there is a very much higher density of matter and lower density of radiation. Through
supernova explosions of massive short-lived stars these nuclei were then released into
space, only to appear later in “second generation” stellar systems, like ours.)

But the most straightforward way to justify the big bang is simply to look at
the general-relativistic dynamics of presently expanding model universes. Given the
known parameters of the universe we live in, and the Penrose-Hawking singularity
theorems, it would take the most exotic and unlikely circumstances in the past to
prevent its backward extrapolation from terminating in a big bang.

I. Age of the universe

Nevertheless it is important that we have independent estimates for the age of the
universe. Radioactive dating methods applied to terrestrial and even lunar rocks have
yielded an age of∼4.5×109 years for our solar system (and the sun is expected to live
at least that long again). Theories of stellar evolution, when applied to various globular
clusters (of stars) in our galaxy, yield ages of (13±2)×109 years for the oldest among
them. This is indicative of the age of the galaxy itself. Quite independent estimates for
this age can be made from the relative abundances of certain radioactive elements. For
example, the two isotopes of uranium, 235U and 238U, though created in roughly equal
amounts in stellar interiors and then released into space through explosive events, are
actually found to occur in a ratio of about 7× 10−3 : 1. This is due to the much faster
rate of decay of 235U. Taking account of the fact that the production is spread out
over time, one arrives at estimates of (15± 5)× 109 years for the time that this has
been going on—presumably for most of the life of the galaxy. And yet independently,
a very specific value for the present age of the universe seems to be emerging from
an analysis of the fine structure anisotropies of the cosmic microwave background:
(13.7± 0.2)× 109 years. (Wilkinson Microwave Anisotropy Probe, WMAP.)

What is striking is that these astronomical estimates agree (even if only in a rough
way) with the dynamical age of the universe; that is, the age of a general-relativistic
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big-bang model that matches today’s observed state of the universe. If every galaxy
were to move at constant speed away from us, and t0 denotes the time since the big
bang, we would have x = vt0 for a galaxy at distance x having constant velocity v;
but we also have, from (16.1), x = H−1

0 v, so that t0 = H−1
0 . This is the so-called

Hubble age of the universe, which ignores the real dynamics. But even so, it should
at least give an order-of-magnitude estimate of the real age of a big-bang universe.

For a present expansion rate of 1 per cent in 108 years, the Hubble age would be
1010 years, which is not out of line. But there is still uncertainty about the correct
value of H0, which is entirely due to the uncertainty in the cosmological distance
scale. Since that same uncertainty enters several other cosmological quantities, it has
been found convenient to condense it into a dimensionless factor h of order unity, by
writing

H0 = h · 100 (km/s)/Mpc = h(3.24× 10−18) s−1 = h(1.02× 10−10)y−1. (16.2)

We then find

H−1
0 = h−1(3.09× 1017) s = h−1(9.78× 109) y. (16.3)

As we have seen, present estimates of H0 place h between 0.65 and 0.75 which
implies, for the Hubble age,

13.0× 109y < H−1
0 < 15.0× 109y. (16.4)

J. Cosmological constant

We saw in Section 14.3 that Einstein’s full field equations contain a “cosmological”
constant �, which, if positive, effectively counteracts gravity as a distance-
proportional repulsive force 1

3�c2r . The value of � should clearly be determined
empirically rather than set equal to zero by edict, as used to be the fashion. And it is
now beginning to emerge from cosmological observations that � indeed has a non-
negligible positive value. Two distinct routes have led to this same conclusion. One is
via the dynamics of GR: If we feed the present density, expansion rate, and age of the
universe into the standard model, consistency cannot be had without � > 0. The sec-
ond route is more direct. There is a specific type (Ia) of supernovae whose light-curves
are well understood. Using their apparent brightnesses, therefore, as reliable distance
indicators, it has been possible to extend accurate redshift vs. distance measurements
well beyond our immediate neighborhood and thus ‘into the past’. What was found is
that the expansion is accelerating! But in Friedmanian cosmology, with ‘reasonable’
sources, there is only one way in which this can happen, namely with a positive �.

As Fig. 16.1 shows, for a steadily decelerating universe, H−1
0 overestimates the

present age t0. But in a universe first slowed by gravity, then accelerated by �, H−1
0

can be greater or less than t0.
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K. Density of universe

The last important datum characterizing the present state of the universe is its aver-
age density ρ0. If we know that (as well as H0 and t0 and homogeneity-isotropy)
we can construct the appropriate dynamical model. But ρ0 is also the hardest datum
to determine, and the numbers are still in flux. Fortunately the standard model is
overdetermined by its various parameters, so alternative data, such as the present
acceleration rate or the approximate flatness, can serve to fix it.

The masses of some of the nearer spiral galaxies can be approximately obtained by
analyzing their ‘rotation curves’. These are plots of the velocities v of stars (or gas
clouds far beyond the visible edge) versus the radii r of their orbits. If we neglect the
non-sphericity of the mass distribution, we can assume the Keplerian relation

v2 = GM(r)/r (16.5)

to find the mass M(r) within the orbit. One would have expected M(r) to level off
beyond the visible edge of the galaxy. But, surprisingly, it is v that levels off: v ≈
const. This implies M(r) ∝ r beyond the edge. Thus was born the concept of a spher-
ical ‘halo’ of unknown dark matter, enveloping the galaxy, with density proportional
to 1/r2, and in its totality at least ten times as massive as the luminous matter.

But rotation curves cannot be continued sufficiently far out to give reliable estimates
of the total masses of galaxies. These can be independently estimated by measuring
the velocities of the component galaxies in binary systems, or by applying the virial
theorem to the velocities and separations of galaxies in gravitationally bound clusters.
Such methods have led to an estimate for the density of galactic matter in the universe:

ρ0(galactic) ≈ 2× 10−30h2 g/cm3. (16.6)

This and several other density estimates involve the Hubble uncertainty factor h. To
see why, consider that in the determination of H0 = v/x only x is in doubt, since v
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can be measured directly by observing the redshift and using the Doppler formula.
Conversely, if we determine x via the redshift and the Hubble relation x = v/H0,
then x carries the uncertainty factor h−1. So, for example, to assign a density to a
spiral galaxy via equation (16.5), we measure v directly from the redshift, whence
the uncertainty in M is proportional to that in r , while the uncertainty in the density is
proportional to r/r3 and so to h2—since transverse distances are measured angularly
as xθ .

An entirely different approach to determining the density of baryonic matter (pro-
tons and neutrons) in the universe today comes from the big-bang theory of the forma-
tion of the light elements. This highly successful theory is very sensitive to the density
of baryons at formation time, and thereby sets an upper limit to that density today,

ρ0(baryonic) � 2× 10−31 g/cm3, (16.7)

without h. That seems to indicate a considerable preponderance of non-baryonic (or
dark) matter in the galaxies.

Of course, there is no way, so far, to exclude the possible existence of non-baryonic
matter even in intergalactic space. Massive neutrinos have been considered in this
context among many other possibilities, but we cannot pursue these questions here.
However, we must draw attention to the fact that much of the density debate is
conducted in terms of a dimensionless density parameter, �0, defined by the first of
the following equations:

�0 =
8πGρ0

3H 2
0

= 0.53× 1029h−2ρ0, (16.8)

where the last expression holds for ρ0 in units of grams and centimeters. Alternatively,
we have

ρ0 = 1.88× 10−29�0h
2 g/cm3. (16.9)

The density parameter �0 is chosen so as to be unity when the density is critical; that
is, when it is just still small enough so as not to make the expanding universe recollapse
in the absence of a Λ-force. A value �0 > 1 would then, via the GR field equations,
lead not only to a recollapsing but also to a closed (and therefore finite) universe.

Most cosmologists believe that there is enough matter in the galaxies to make �0
as large as 0.3 ± 0.1, while baryonic matter can account for at most ten per cent of
this. ‘Ordinary’ matter thus appears to be in a minority compared to the bulk of the
galactic material, whose nature has yet to be determined.

L. Cosmogony

In the rest of this book we shall content ourselves with a study of the smoothed-out
motion and geometry of the universe since shortly after the big bang. This is where
GR makes its contribution. The fascinating field of cosmogony (the study of the
formation of the elements and of structures like stars and galaxies out of a primordial
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mixture of elementary particles in thermal equilibrium) depends on nuclear, atomic
and plasma physics, as well as gas dynamics, and is well beyond our present scope.
It has, of course, great philosophical interest since, in a sense, it takes over where
Darwin left off. If Darwin and modern biology can explain the rise of man from an
originally lifeless earth, cosmogony is close to explaining the rise of earths, suns, and
galaxies out of amorphous matter, perhaps even the origin of matter itself, given only
the immutable laws of nature, and an energizing big bang.

16.2 Beginning to construct the model

As we have seen, the distribution and motion of matter in the universe is by no means
random. Though the matter is obviously lumpy, the lumpiness itself appears to be the
same in all sufficiently large regions, which are still small relative to all we see. And
though, for example, the individual galaxies in clusters have individual velocities,
the mass centers of such clusters seem to follow the Hubble expansion pattern quite
closely. Accordingly we idealize the actual universe, crudely speaking, by grinding up
its matter and redistributing it uniformly so as to match the actual average density and
average motion everywhere. We assume that this smoothing out results in a perfectly
homogeneous and isotropic mass and velocity distribution. And then we make the
very reasonable additional assumption that the motion and geometry of this ideally
regular model universe under its own gravity parallels the average motion pattern and
geometry of the actual universe.

The material particles of the model (when regarded as mere geometric points)
constitute its kinematic substratum. We think of it as a space-filling set of moving
particles (the fundamental particles of cosmology) each of which is a potential center
of mass of a cluster of galaxies in the real world. Moreover, each is imagined to carry
an observer, called a fundamental observer. When in the sequel we loosely speak of
galaxies in a model, we shall really mean the fundamental particles. And we ourselves
correspond to a fundamental observer.

The a priori demand for the homogeneity of a cosmological model is called the
cosmological principle—though a better name would be ‘cosmological axiom’. It
is sometimes loosely formulated by saying that every galaxy is equivalent to every
other. It eliminates such in themselves reasonable models as island universes, in
which boundary galaxies are atypical; or ‘hierarchical’ universes where galaxies form
clusters, clusters form superclusters, and so on ad infinitum, since then no region is
large enough to be typical. Homogeneity is a simplifying hypothesis of great power.
Whereas non-homogeneous model universes involve us in global questions, the beauty
of homogeneous models is that they can be studied mainly locally: any part of them
is representative of the whole.

The assumption of isotropy everywhere is even stronger. As we have seen in the
preceding section, it implies homogeneity. We accept it as a working hypothesis,
which is very strongly supported by the evidence.
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In 1948 Bondi and Gold proposed what they called the ‘perfect cosmological
principle’, and based their steady state cosmology on it. This strongest of cosmological
principles claims that, in addition to being spatially homogeneous and isotropic, the
universe is also temporally homogeneous; that is, it presents the same average aspect
at all times. It has no beginning or end—a very attractive feature, philosophically.
As the universe expands, sufficient new matter must be created to fill the gaps. This
constitutes a deliberate violation of energy conservation (and thus of GR), but not by
‘much’: the spontaneous creation of about one hydrogen atom per 10 cubic kilometers
of space per year is all that is needed. The steady state theory has the further advantage
of leading to a unique model, which, as such, is highly vulnerable to empirical disproof
(cf. end of Section 2.1). It had many adherents and enjoyed great popularity for
almost two decades. But the observational evidence against it (radio source counts,
the distribution of quasars, the thermal background radiation, etc.) gradually mounted
and eventually overwhelmed it.

So far we have talked rather loosely about homogeneity. We have already (in the
preceding section) alluded to the trickiness of defining it in an evolving universe with
only finite-speed signals at our disposal. The following definition is due to Walker:
Homogeneity means that the totality of observations that any fundamental observer
can make on the universe is identical to the totality of observations that any other
fundamental observer can make. In other words, if throughout all time we here,
as well as observers on all other galaxies, could keep a log of all our observations
(for example, the local density of the universe, its expansion rate, the temperature
of the microwave background, etc.) together with the times at which the observa-
tions are made (as measured, say, by standard cesium clocks), then homogeneity
is equivalent to the coincidence of all these logs—up to a possible time translation,
of course.

A most important corollary of homogeneity (at least in evolving universes) is the
existence of a preferred cosmic time. This refers to the synchronization of the standard
clocks on all the fundamental particles (‘fundamental clocks’) brought about by sim-
ply aligning the logs. A slice through cosmological spacetime at one cosmic instant
then finds conditions everywhere identical; and conversely, identical conditions define
a cosmic instant: the universe acts as its own synchronization mechanism.

In the case of the steady state theory (as in all other expanding or contracting
homogeneous universes), any two fundamental observers can synchronize their clocks
by aligning their records of bouncing light signals off each other. If a homogeneous
universe is static, the usual signaling method achieves a ‘good’ time coordinate, and
by homogeneity this agrees with proper time at each fundamental particle. Only when
the fundamental particles constitute a stationary but non-static lattice (which would
necessarily be anisotropic) is there no kinematically preferred time coordinate, even
with homogeneity (cf. Section 9.1).

The assumption of isotropy can be dropped rather more easily than that of homo-
geneity, without leading to inordinate difficulties. While this seems not called for in
modeling the present universe, homogeneous non-isotropic models have been consid-
ered for various reasons; for example, to investigate whether isotropy could develop
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out of non-isotropy in the early universe. Some such models also yield interesting
examples of what is possible in GR—for instance, universes with closed timelike
lines (traveling into one’s own past) and ‘anti-Machian’ universes that rotate relative
to each LIF. We mention all this just to make the reader aware of the alternatives. But
we ourselves shall stay with homogeneity and isotropy.

16.3 Milne’s model

The first cosmological model that we shall now discuss is not meant as a representation
of the actual universe. For one thing, it has gravity ‘switched off’, so it is not even
a dynamical model. On the other hand, it is so simple and surveyable and exhibits
so many of the kinematic features of the more realistic but also more complicated
dynamical models, that it serves as a useful pedagogical introduction to the subject.
The model in question was found by Milne in 1932. It is, in fact, one of the ‘Friedman
models’ of general relativity (corresponding to the limit ρ → 0 with � = 0, cf.
Section 18.3 below), but it was Milne who reformulated it in more elementary terms.

Since gravity is switched off, the model lives in Minkowski space and can be treated
by special relativity. Milne considered an infinite number of test particles (no mass, no
volume) shot out (for reasons unknown), in all directions and with all possible speeds,
at a unique creation event 	. Let us look at this situation in some particular inertial
frame S(x, y, z, ct), and suppose 	 occurred at its origin O at t = 0. All the particles,
being free, will move uniformly and radially away from O, with all possible speeds
short of c. Hence the picture in S will be that of a ball of dust whose unattained
boundary expands at the speed of light. At each instant t = const in S, Hubble’s
velocity–distance proportionality is accurately satisfied relative to O: a particle at
distance r has velocity r/t . Still, at first sight, this seems an unlikely candidate for a
modern model universe, since (i) it appears to have a unique center, and (ii) it appears
to be an ‘island’ universe. Leaving aside the second objection for the moment, let us
dispose of the first: The boundary of the ball behaves kinematically like a spherical
light front emitted at 	, and thus each particle, having been present at 	, will consider
itself to be at the center of this front! Moreover, since all particles coincided at 	,
and since all move uniformly, each particle will consider the whole motion pattern
to be radially away from itself, and of course uniform. There remains the question
whether we can have an isotropic density distribution around each particle.

To study this, let τ denote the proper time elapsed at each particle since creation.
Then n0, the proper particle density at any given particle P, is of the form

n0 = N/τ 3 (N = const), (16.10)

because the expansion is radial relative to P, and because a small comoving sphere
centered on P has radius proportional to τ . This τ is clearly the ‘cosmic time’ of the
preceding section (penultimate paragraph), since it figures as time from the big bang
in every log. So, for homogeneity, N must be the same constant at every particle. This
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also guarantees that the global density pattern is isotropic and the same around each
fundamental particle. For let Q be such a particle and S its inertial rest-frame with
Q at the origin. At each moment t = const in S, the particles on a sphere r = const
satisfy the equation

c2τ2 = c2t2 − r2, (16.11)

and thus have τ and with it n0 constant.
To determine the entire density pattern at some constant t in S, we transform

eqn (16.10) from the rest-frame of the general particle P into S. Since P moves, the
volume of a small comoving sphere at P is diminished by a γ -factor in S; but the
number of particles inside that sphere is the same in S, so the particle density n in S
is given by n = γ n0. We also have t = γ τ . Thus, from (16.10) and (16.11),

n = t

τ
n0 =

t

τ4
N = Nt

(t2 − r2/c2)2
. (16.12)

Note how the density approaches infinity at the ‘edge’ r = ct . Beyond every galaxy
there are others, and no galaxy is even near the edge by its own reckoning. Relativistic
kinematics thus gets around the classical objection to island universes—that they must
contain atypical edge galaxies. Of course, it must have been an incredibly finely tuned
big bang to produce the required density pattern (16.12) and thus global homogeneity!

But though the island nature of Milne’s model does not conflict with the cosmolog-
ical principle, it does offend against another criterion that can be required of model
universes: maximality. Obviously there is no spacetime singularity at the edge of the
ball; spacetime itself is continuous across the edge. So there is more spacetime than
substratum, spacetime from which light and particles could enter the substratum and
disturb it, spacetime, also, that swallowed whatever light was emitted at the big bang.
A spacetime diagram, Figure 16.2, illustrates this. The steady state theory suffered
from the same defect (see end of subsection containing Fig. 18.1 below).

0

Fig. 16.2
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We shall next give an alternative description of Milne’s model that brings it into
line with the standard general-relativistic description of all homogeneous–isotropic
model universes. It is mainly the result of switching from the ‘private time’ t of some
preferred fundamental observer’s inertial frame to the ‘public time’ τ (in Milne’s
terminology) shared by all. Milne’s description (an expanding ball) corresponds to a
sequence of cuts t = const through the worldtube of the substratum in M4. In the stan-
dard description the model is foliated, instead, by the cuts τ = const (see Fig. 16.2).
Moreover, one uses ‘comoving’ coordinates, which means that the fundamental par-
ticles, though in relative motion, have fixed space coordinates—like the lattice points
in a permanently labeled but expanding Cartesian lattice. One such system for the
Milne universe might be {u, θ, φ}, where u is the velocity of a receding galaxy and
θ and φ are its angular coordinates. The standard description is then encoded in a
special form of the metric, called the Friedman metric.

Let us begin by writing the metric of M4 in the polar form

ds2 = c2 dt2 − dr2 − r2(dθ2 + sin2θ dφ2), (16.13)

and assume one of the fundamental particles to be at rest at the spatial origin. The
coordinates θ and φ are already comoving, and instead of u, for later convenience,
we choose ψ , the rapidity, as our radial coordinate. We then have (cf. Exercise 2.15),
since t = γ τ and r = vt ,

t = τ cosh ψ, r = cτ sinh ψ, (16.14)

and this transforms (16.13) into the desired Friedman form,

ds2 = c2 dτ 2 − c2τ 2{dψ2 + sinh2ψ(dθ2 + sin2θ dφ2)}. (16.15)

This metric, plus the information that the spatial coordinates are comoving, tells us
a great deal about the model, in addition to characterizing its spacetime background.
[By contrast, (16.13) tells us no more than that.] First, we can read off that τ is
proper time on any fundamental particle (just put ψ, θ, φ = const). Secondly, that
any section τ = const through the model is a space of constant curvature −1/c2τ2

[it is one sheet of the 2-sheeted hyperboloid of Fig. 5.1—cf. Exercise 14.11(ii)].
This would establish τ as cosmic time (a time that connects equal states), if we did
not already know it. All cosmic sections τ = const are of infinite volume, as is to
be expected; for a cosmic moment finds the particle density everywhere the same,
and we know that there must be infinitely many particles. Milne’s model beautifully
illustrates how, by the magic of relativity, the universe can already be infinite (in one
sense) a mere instant after its point-creation. Thirdly, the proper rate of expansion of
the substratum is encoded in the coefficient outside the brace: clearly the infinitesimal
distance between any two neighboring fundamental particles is proportional to τ (put
dψ, dθ, dφ = const). Hence the metric suggest a picture of the substratum as an
infinite 3-dimensional lattice of constant negative curvature, expanding at constant
rate while remaining similar to itself. Each ‘public space’ or cosmic moment τ = a
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is tangent at each of its points to the flat ‘private space’ t = a of the fundamental
observer present, as Fig. 16.2 illustrates. Thus each public space can be regarded as
a composite of identical origin-neighborhoods from the ball model.

There are, however, at least three important facts that are not directly visible from
the metric (16.15): (i) that the model lives in M4; (ii) that the model is not maximal
[cf. paragraph after (16.12)]; and (iii) that the big bang is a point event; that is, that
there exist spacelike sections (t = const) through the substratum containing all the
matter in a finite and arbitrarily small volume.

The simple Milne model serves well to illustrate the kinematics of the 2.7 K back-
ground radiation. Let the cosmic ‘instant’ of decoupling be represented by the dashed
line τ = a (∼300 000 years) in Fig. 16.2. All the fundamental particles at this instant
are the effective sources of the radiation seen today. Ahead of the section τ = a the
universe is transparent. As time goes on, each fundamental observer like P (in whose
rest-frame the diagram is drawn) receives the radiation (dotted lines in Fig. 16.2)
from ever farther fundamental particles, thus ever more redshifted and therefore ever
more cooled. Note incidentally how P could ‘see’ (not by photons because of the
opaqueness before τ = a, but, for example, by neutrinos) fundamental particles at
all proper ages τ > 0, but not the big bang itself. (In realistic models with ρ �= 0, as
we shall see, even the big bang is in principle visible.)

16.4 The Friedman–Robertson–Walker metric

A. Introduction

To Friedman belongs the great distinction of having been the first (in 1922) to con-
template and analyze a dynamic universe that moves under its own gravity. This was
one of the few momentous leaps forward against received opinion that was in the air
and yet was missed by Einstein. It was also completely ignored for several years.
Although Friedman’s derivation was to some extent not quite rigorous, the metric he
found lives on and well deserves to be known by his name. It is, however, often called
the Robertson–Walker metric these days, for reasons we shall discuss below.

B. Three-metrics of constant curvature

As a preliminary to the derivation of Friedman’s metric and to much of our subse-
quent discussion, we need the various forms of the metric of 3-dimensional spaces
of constant curvature. In Chapter 14 we already recognized the metrics of the static
lattices of de Sitter space (� > 0) and anti-de Sitter space (� < 0) [cf. (14.26)],

dσ 2 = (1− 1
3�r2)−1 dr2 + r2(dθ2 + sin2θ dφ2), (16.16)

to be 3-spaces of constant curvature 1
3�. Let us introduce a standard notation for the

metric of the unit 2-sphere referred to the usual polar angles θ and φ:

dω2 := dθ2 + sin2θ dφ2 (16.17)
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[cf. (8.12)]. Evidently this dω also measures the angle between neighboring radii
separated by coordinate differences dθ, dφ (since angle = arc/radius). Now the metric
(16.16), as we have seen, has positive or negative curvature according as � is positive
or negative, and it has zero curvature if � = 0, when it reduces to the usual polar
metric of E3. Writing aη for r (η being dimensionless and not the η of Fig. 8.5) and
k/a2 for the curvature K = 1

3� [with k = sign(K)], we can rewrite (16.16) as

dσ 2 = a2
{

dη2

1− kη2
+ η2 dω2

}
, (16.18)

where k(= 0, 1, or−1) is called the curvature index. The metric in braces corresponds
to a = 1 and thus to a 3-sphere (or hyperbolic 3-sphere) of unit radius, unless k = 0.
Note how an overall factor a2 increases the radius of curvature (K−2) in the ratio
1 : a, as is geometrically quite clear in the case of a sphere where all distances are
increased in the ratio 1 : a.

A second standard form of the metric of a 3-space of constant curvature is obtained
from (16.18) by setting η = sin ψ, ψ, or sinh ψ according as k = 1, 0, or − 1:

dσ 2 = a2

⎧⎨⎩dψ2 +
⎛⎝ sin2ψ

ψ2

sinh2ψ

⎞⎠ dω2

⎫⎬⎭ . (16.19)

Here aψ measures radial distance away from the origin, and the functions sin ψ , etc.,
characterize the lateral spread of neighboring radii. Radii, of course, are geodesics (a
typical one being the intersection of the symmetry surfaces θ = π/2, φ = 0) and so
the metric (16.19) is seen to be consistent with our earlier formulae (8.1) and (8.7).

A third metric form is obtained from (16.18) by introducing a new dimensionless
radial coordinate r [not to be confused with that of eqn (16.16)], via the relation

η = r

1+ 1
4kr2

, (16.20)

namely:

dσ 2 = a2
{

dr2 + r2 dω2

(1+ 1
4kr2)2

}
. (16.21)

This exemplifies, in the case of three dimensions, the well-known theorem that any
space of constant curvature is conformally flat; that is, has a metric that can be
expressed as a multiple of the Euclidean metric.

The geometric relations between the three alternative radial coordinates ψ , η, and
r of a galaxy P, in the case k = 1, are illustrated in Fig. 16.3. The circle represents the
geodesic plane at the origin O that contains P; for example, the 2-sphere θ = π/2. The
figure, in conjunction with the following line of equations, should be self-explanatory:

η = sin ψ = 2 tan(ψ/2)

1+ tan2(ψ/2)
, r = 2 tan

ψ

2
. (16.22)
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Fig. 16.3

There is, of course, an analogous geometrical picture involving hyperboloids in the
case k = −1, but it is less enlightening. When k = 0, η, ψ and r are all the same.

C. The Friedman–Robertson–Walker metric

We are now in a position to derive the characteristic metric of the most general
smoothed-out GR model universe that satisfies the assumptions of homogeneity and
isotropy. In fact, with very little extra effort we can and shall derive the required metric
from an apparently much weaker assumption, namely that of local isotropy every-
where, by which is meant spatial isotropy in a finite neighborhood around the origin
of every comoving LIF.1 We have already shown in a heuristic way (in Section 16.1)
why isotropy everywhere implies homogeneity; so it is intuitively to be expected that
local isotropy implies local homogeneity and thus, by iteration, global homogene-
ity. Global isotropy, on the other hand, is a topological concept quite separate from
(and not encodable in) the metric. For example, a cylinder has the same Euclidean
metric as the plane, is locally isotropic and globally homogeneous (intrinsically), but
nevertheless it is not globally isotropic.

Let Uµ = dxµ/dτ denote the 4-velocity of the fundamental particles and thus the
tangent vector to their worldlines (‘fundamental worldlines’). An immediate conse-
quence of local isotropy is that all these worldlines must be geodesics. For suppose
the 4-acceleration

Aµ = Uµ;νUν (16.23)

at some event were not zero. Being a spacelike 4-vector, it would then have a spatial
projection in the local rest-LIF, thus violating local isotropy.

1 Our derivation largely follows one due to J. Ehlers.
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Next, consider the tensor Uµ;ν − Uν;µ. We can show that in the present case
this has no components in the direction of Uµ. From (16.23) we already know that
Uµ;νUν = 0; and by differentiating UµUµ = c2 we also find Uµ;νUµ = 0. Together
these equations justify our assertion. In the LIF determined by Uµ the only non-zero
components of the tensor Uµ;ν − Uν;µ = Uµ,ν − Uν,µ (cf. Exercise 10.6) are thus
Ui,j − Uj,i ≡ curl Uspatial(i, j = 1, 2, 3) and they must vanish by local isotropy.
Consequently we have Uµ,ν − Uν,µ = 0, which, as we know [cf. after (7.42)],
implies that Uµ is the gradient of some function, say c2t (for later convenience):

Uµ = c2t,µ. (16.24)

This t we take as our time coordinate. It coincides with proper time along each
fundamental worldline:

dt = c−2Uµ dxµ = c−2gµνdxµ dxν/dτ = dτ,

and each section t = const is orthogonal to those worldlines, since

Uµ dxµ = c2t,µ dxµ = c2 dt = 0

for all dxµ in the section.
Let us choose arbitrary coordinates xi in any one hypersurface t = const and

declare them ‘comoving’; that is, they are to be invariant along the fundamental
worldlines. Then we have

ds2 = c2 dt2 − gij dxi dxj , (16.25)

where thegij can depend on t as well as on thexi . But consider an infinitesimal triangle
of fundamental particles, ABC. Each of its angles must remain constant as time goes
on; for if the angle at A varied, so would all such angles at A, by isotropy, and thus
the full solid angle at A would have to vary, which is impossible. Hence the triangle
remains similar to itself. This implies that the ratios of the gij at any fundamental
particle must remain constant, and so they can involve time only through a common
factor, say R(t, xi):

ds2 = c2 dt2 − R2(t, xi) dσ 2, (16.26)

where dσ 2 is a purely 3-dimensional metric.
Now consider the relative expansion rate of neighboring fundamental particles

separated by a distance dl, namely (with · = d/dt)

H = (dl)·
dl
= (R dσ)·

R dσ
= ∂R/∂t

R
. (16.27)

If this were spatially variable, it would have a gradient, which would violate isotropy.
So it must be purely a function of time. [The reader will recognize H as Hubble’s
parameter, cf. (16.1).] But then R itself splits into two factors, one dependent on time,
one on space only, as we see on integrating (16.27):

∂R/∂t

R
= H(t)⇒ ln R =

∫
H dt + g(xi)⇒ R = R(t)S(xi).
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The factor S(xi) can be absorbed into dσ 2 so that the metric now simplifies to

ds2 = c2 dt2 − R2(t) dσ 2. (16.28)

Its sections t = const have intrinsic significance, being orthogonal to all the fun-
damental worldlines. [Cf. (10.4).] By the assumption of local isotropy, each of
their points must then be an isotropic point, and hence, by Schur’s theorem, the
entire section must be a space of constant curvature. The metric dσ 2 can thus be
transformed into some constant multiple of, say, the brace in (16.23), and that mul-
tiple can be absorbed into R2(t). The full metric now at last assumes its standard
(‘Friedman–Robertson–Walker’) form:

ds2 = c2 dt2 − R2(t)

{
dη2

1− kη2
+ η2(dθ2 + sin2θ dφ2)

}
, (16.29)

with possible replacements of the brace from (16.19) or (16.21). Note how t is ‘cosmic’
time in the sense of connecting identical states of the universe (here: curvature states);
it is also the proper time at each fundamental particle.

In Chapter 17 we shall discuss various methods of assigning a distance to far-
away galaxies, all based on optical observations. But at this point we define, for
future reference, a purely theoretical distance measure, the so-called proper distance
(or metric distance) l between galaxies. It is what we would get if at a given cosmic
moment we could lay little rulers end to end between two galaxies. The proper distance
from the origin, at time t , to a galaxy at ‘comoving’ distance ψ [if we use the brace
from (16.19) in (16.29)] is evidently given by

l = R(t)ψ. (16.30)

It is usual to call universes with k = 1 ‘closed’ and those with k = 0 or − 1
‘open’, and to regard the former as finite (‘compact’) and the latter as infinite. This
accords with the tacit assumption that the cosmic sections t = const are 3-spheres
S3, Euclidean 3-spaces E3, or hyperbolic 3-spheres H 3, respectively. But, as we
have mentioned before, the global topology is not implicit in the metric. There are all
sorts of ‘topological identifications’ which preserve homogeneity and local isotropy
(though most spoil global isotropy) and which can produce finite 3-spaces even for k =
0 or k = −1 (cf. Exercise 8.8). The simplest example is the hypertorus, which results
from identifying opposite faces of a rectangular cell in E3. If we lived in a flat universe
with this topology, our view would be reminiscent of that in a cabinet of mirrors. We
would see infinitely far in all directions, though we see nothing but replicas of the
basic cell at ever earlier times. In the seventies, Ellis suggested that we may live in
such a ‘small universe’, which could explain the apparent large-scale homogeneity
even if the basic cell were chaotic. In fact, for k = 0 there are 18 topologically
different space forms, and for both k = 1 and k = − 1 there are infinitely many; for
k = 1 all forms are finite, while for k = 0 or − 1 some are finite, some are not.

One cannot help feeling that all but the basic space forms are somewhat contrived.
Nevertheless the alternative of an infinite universe also has its uneasy aspects. Infinity
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as a mathematical convention is one thing, but the infinity of a material system boggles
the mind.

16.5 Robertson and Walker’s theorem

In two independent and important papers, Robertson and Walker almost simultane-
ously discovered (by group-theoretical methods, around 1935) that Friedman’s metric
applies (in a limited way) to all locally isotropic cosmological models, quite indepen-
dently of GR; that is, without any of the assumptions of GR. Their effort was kindled
by Milne’s ‘kinematic relativity’ (a theory of relativity starting from cosmology and
pointedly independent of GR) which had its optimistic followers for a brief period
after about 1935.2

What Robertson and Walker proved was that the mere assumption of local isotropy
for the substratum and for light propagation leads to certain properties of the model
that are conveniently summarized in a Riemannian map with Friedman’s metric,
having the following features: (i) The motion of the substratum corresponds to fixed
spatial coordinates; (ii) light rays follow null geodesics of the metric; (iii) t is a cosmic
time coordinate in Walker’s sense and corresponds to proper time on the fundamental
particles; and (iv) the spatial part of the metric corresponds to radar distance between
neighboring fundamental particles.

The two free elements of the metric, k and R(t), can only be determined by addi-
tional assumptions (if we approach the task theoretically) or possibly by observation
of the actual universe. Observation without further theory, however, is of very limited
potential, especially for R(t). (For k, see Exercise 16.9.)

Conforming to current usage and acknowledging Robertson and Walker’s theorem,
we refer to the metric in question as the Friedman–Robertson–Walker (FRW) met-
ric. Though irrelevant for GR, this theorem found a second important application in
another non-general-relativistic theory, namely Bondi and Gold’s Steady State Cos-
mology. (See, for example, H. Bondi, loc. cit.) As we mentioned earlier (in Section
16.2), this was based on the ‘perfect cosmological principle’, according to which the
universe is not only homogeneous and isotropic, but also presents the same large-scale
aspect at all times. (In Bondi’s tongue-in-cheek formulation: ‘Geography does not
matter, and history does not matter either’.) Since, in particular, Hubble’s parameter
H(t) must then be constant, eqn (16.27) implies R = a exp(H t) for some constant
a, which we can absorb into the exponential by a time translation. And since the
curvature of the cosmic sections, k/R2, must likewise be constant in time, k must
necessarily vanish. Hence the relevant FRW metric is

ds2 = c2 dt2 − e2Ht {dr2 + r2(dθ2 + sin2θ dφ2)}, (16.31)

2 A good review of this theory can be found in H. Bondi, Cosmology, Cambridge University Press,
1961.
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and now the model is fully specified, except for its constant density. Since H is fairly
well known, there was no wiggle room against adverse observations, which indeed
eventually ruled out this very attractive idea.

Exercises 16
16.1. Prove that, in spite of length contraction, the total proper volume available to

all the moving matter inside Milne’s expanding sphere r = ct is finite, namely π2c3t3

at time t . Hence Milne’s infinitely many fundamental particles must be strictly ideal
point-particles.

16.2. As an example of a non-isotropic but homogeneous substratum, consider the
motion of (non-gravitating) ‘test-dust’ in the interior (that is, the neck) of Kruskal
space, with T , θ , and φ as comoving coordinates (cf. quadrants II and IV of Fig. 12.5).
Prove that this substratum is indeed homogeneous [Hint: Lorentz transformations],
and note the analogy to Milne’s model. What is cosmic time here? Describe the
evolution of this ‘universe’ by considering the succession of its cosmic sections.
[Hint: they are 3-cylinders R × S2.]

16.3. In FRW model universes, prove that, in terms of proper distance l, Hubble’s
law l̇ = Hl is strictly satisfied to all distances, with H = Ṙ/R. (This is a manifestation
of the homogeneous expansion of the cosmic lattice.)

16.4. Consider timelike geodesics (free-particle worldlines) in FRW models. Since
the radii θ, φ = const are totally geodesic, all geodesics issuing from the spatial
origin are purely radial; but any fundamental particle can serve as spatial origin,
so all geodesics are radial relative to some fundamental particle. With ψ as radial
coordinate, derive the geodesic equations

R2ψ̇ = A = const, ṫ2 = 1+ A2/R2,

where · ≡ d/dτ and c = 1. (Evidently the fundamental worldlines themselves satisfy
these equations.) Suppose a freely moving particle has velocity v relative to the local
fundamental observer. Since t is that observer’s proper time, we have ṫ = γ (v); prove
γ v = A/R. Consequently the motion satisfies Rp = const, where p is the particle’s
relativistic momentum relative to the substratum. In the case k = 1 this equation has
a spurious ‘explanation’: Consider the motion of the particle on a geodesic plane of
the substratum, a 2-sphere of radius R: its angular momentum relative to the center is
conserved! As a consequence of the constancy of Rp, the random proper motion (that
is, motion relative to the substratum) of a field galaxy (that is, one not bound gravita-
tionally to others) must have been faster in the past, and will be slower in the future.

16.5. Consider the de Broglie wave associated with the particle of the preceding
exercise. Show that its wavelength λ is proportional to R, and thus partakes of the
expansion of the universe. We shall find exactly the same behavior for light waves in
the next chapter. This suggests the metaphor of space itself expanding. But note that
λ is here measured by the fundamental observer present. In Milne’s model, in its SR
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form, the λ of an outgoing wave is progressively lengthened simply because of the
progressively greater speed of the fundamental observers that measure it.

16.6. Prove that it is in general impossible for two free particles in FRW space to
remain at constant proper distance from each other. [Hint: let one of the particles be at
the origin and for the other show that Rψ = const implies dR/dτ = const.] But bear
in mind that proper distance is measured instantaneously within a cosmic section. By
reference to Fig. 16.2 (careful: here τ is cosmic time), verify that in Milne’s model
the proper distance between a particle P and a particle at rest in P’s private space is
not constant. [Hint: (16.14), (16.15).]

16.7. In an infinitely expanding FRW universe, a particle is projected from the
origin at time t0 with (locally measured) velocity v0. Prove that it ultimately comes
to rest in the substratum at ψ-coordinate

ψ =
∫ ∞
t0

A dt

R(R2 + A2)1/2
, A = R(t0)v0γ (v0),

provided the integral converges. (If, for example, R ∝ t1/2, the integral does not con-
verge.) Illustrate this result graphically for Milne’s universe, using Fig. 16.2. [Hint:
use the equations of Exercise 16.4.]

16.8. In the real lumpy universe the curvature near the lumps vastly outweighs the
cosmic curvature k/R2. Verify this statement by comparing the curvature due to sun
and earth with the cosmic curvature of a Milne universe of age 1010 years. [Hint: see
after (11.18).]

16.9. If we lived in a Milne universe, we would, in fact, live in flat Minkowski
space, and whatever local experiments we performed to determine the local space
curvature, the result would always be zero. Yet in its FRW guise (16.15), Milne’s
universe has curvature −1/c2t2. What is the connection? To answer this question
in general, we define the private space3 of any fundamental observer in any FRW
universe as that generated by all the geodesics orthogonal to the observer’s worldline
at one instant. If local curvature measurements are made (for example, comparing
radii and surface areas of little spheres), the curvature found would always be that of
the private space. By the assumed local isotropy, that private space is locally isotropic
at the fundamental observer. Fill in the details of the proof of the relation

K̃ = K + H 2

c2

between the cosmic curvature K = k/R2, the private curvature K̃ , and Hubble’s
parameter H , as follows: Write the FRW metric with the brace from (16.21) and
replace the numerator by dx2 + dy2 + dz2, with x2 + y2 + z2 = r2. By use of the
Appendix, calculate R12 12/g11g22 = −(k/R2 + Ṙ2/c2R2). Now the LHS of this
equation is the curvature of the geodesic plane of FRW space determined by the x

3 Cf. W. Rindler, Gen. Rel. and Grav. 13, 457 (1981).
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and y directions [cf. (10.73)]. However, if we regard private space as a 3-space in its
own right, its curvature is the negative of the above, since every component of the
Riemann tensor changes sign when the gµν change sign [cf. after (14.32)].

Check the validity of the displayed formula for Milne’s model. And note
that, in principle, this formula allows us to determine K for any FRW universe
observationally, and with it both k and the present value, R0, of R.

16.10. Consider a rocket moving radially with constant proper acceleration α in
FRW space. How do we obtain its motion? If the universe does not expand apprecia-
bly during the journey (which might be the case even for journeys lasting 108 cosmic
years!), the relevant 2-dimensional metric is ds2 = dt2 − (R dψ)2 with R = const,
and the relevant formulae are those of special relativity (cf. Exercises 3.23 and 3.25).
Nevertheless, as an exercise, consider the strict solution of the problem, with R given
as a function of t . The equation of motion is gµνAµAν = −α2, where Aµ is the
4-acceleration of the rocket. Using the formula Aµ = 1

2Lµ [cf. (10.46)] write out this
equation, and note that it involves ψ̇ (· ≡ d/dτ) but not ψ itself. Use the metric to
replace ψ̇ by (ṫ2 − 1)1/2R−1 thus obtaining a complicated second-order differential
equation for t (τ ). Once that is solved (for example, numerically), we can get ψ(τ)

by quadrature from the metric.

16.11. By considering a small comoving sphere in the steady-state model, prove
that a mass dM = 3VHρ dt must be created per volume V in time dt , if a density ρ

is to be maintained. Assuming, in cgs units, that H = 2×10−18 and ρ = 10−30, and
given that one year is∼3.2×107 and that the mass of a hydrogen atom is∼1.7×10−24,
prove that one new hydrogen atom would have to be created in a volume of 1 km3

about every 9 years.

16.12. Since the volume of FRW universes with k = 0 or − 1 is infinite at each
cosmic time t > 0, it might be thought that the big bang, too, occurred all over
infinite space. But that would be an erroneous view. The general situation is similar
to what happens in the Milne model. In spite of the infinite volume of all the cosmic
sections, the entire substratum can also be enclosed in a finite volume which gets ever
smaller towards t = 0, thus establishing the big bang as a point event.4 As Fig. 16.2
makes clear, the volume of a section through the substratum depends on how one
cuts it. Even the most general (gravitating) universe permits cuts of finite volume.
For simplicity, consider the so-called Einstein–de Sitter model which has zero cos-
mological constant and k = 0, and for which the field equations yield R ∝ t2/3 (as
we shall see later). Using (16.19) in the FRW metric, consider the cut t = t0e

−ψ ,
centered on a given fundamental particle at time t = t0. [For comparison, note from
(16.14)(i) that the cuts t = a in Milne’s model, Fig. 16.2, correspond to (cosmic
time) = a/ cosh ψ .] Choose t0 small enough to ensure that the cut is spacelike. For
larger t0 the cuts have to be somewhat modified; for example, by having an initial
portion with dt = − 1

2Rdψ , until a sufficiently small t value is reached, whereupon
the cut proceeds as before. Prove that �s along each radius θ, φ = const from ψ = 0

4 Cf. W. Rindler, Physics Letters A276, 52 (2000).
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to ψ = ∞ is finite. Also prove that the product Rψ along each generator remains
finite. Hence prove that the total volume

∫
4πR2ψ2 ds of these cuts is finite and tends

to zero as t0 → 0. (For early universes that are ‘matter-dominated’ we always have
R ∝ t2/3, while for ‘radiation-dominated’ early universes we always have R ∝ t1/2,
and then the argument is similar.)

The reader may question how the infinite universe’s infinite mass could fit into these
finite-volume sections. But the matter coming out of the big bang is essentially col-
lapsed matter, of the kind that goes into a black hole. Early cosmic sections t = const
have arbitrarily large densities. Hence the densities near the ‘edge’ of each finite cut
tend to infinity, and thus make the total mass integral infinite also.



17

Light propagation in FRW universes

17.1 Representation of FRW universes by subuniverses

Almost all the information we have of the cosmos comes to us via electromagnetic
waves of one kind or another—which, for brevity, we shall here just call ‘light’.
Evidently, in order to interpret the observations, we must understand what happens to
the light on its long journey to us. We shall make a simplifying assumption about the
universe, namely that it is sufficiently rarefied so as not to impede the null-geodetic
propagation of light.

For the present and many other purposes we often visualize an FRW universe as a
succession of cosmic-time cuts t = const, much as we visualized Kruskal space by
the succession of cuts shown in Fig. 12.10. But whereas those cuts were somewhat
arbitrary, the set of cosmic cuts has intrinsic significance (connecting identical states)
and contains much of the essential kinematic information about the model.

For ease of reference, we write down the FRW metric (16.29) once more, this time
with c = 1 and using the brace from (16.19):

ds2 = dt2 − R2(t){dψ2 + η2(ψ)(dθ2 + sin2 θ dφ2)}, (17.1)

where η = sin ψ, ψ , or sinh ψ according as k = 1, 0, or −1. All cosmic sections
are 3-spaces of constant curvature, and here we shall assume them to have the sim-
plest space-forms (S3, E3, or H3), without any topological identifications. An FRW
universe can thus be pictured as an expanding S3, E3, or H3. But our imagination
deals more easily with S2 etc. Fortunately, within each S3 universe, for example, there
live infinitely many co-expanding S2 subuniverses consisting of permanent subsets of
galaxies, and such that photons and free particles move permanently in them. These
subuniverses are the symmetry surfaces of the full universe. One basic symmetry sur-
face of (17.1) is evidently θ = π/2, the metric being invariant under θ 
→ π−θ . This
is a 2-dimensional FRW universe, with constant-curvature spatial sections, the spatial
part of the metric now reading R2{dψ2+ η2(ψ)dφ2}. By the rotational symmetry of
(17.1), there is such a symmetry surface in every planar direction through its spatial
origin, and, by homogeneity, also through every other point.

Now, again in the case of S3, any particle- or photon path in the full metric (17.1)
corresponds to a great-circle path traced out in some S2-subuniverse! For the intersec-
tion of the obvious symmetry surfaces θ = π/2 and φ = 0 of (17.1) is totally geodesic,
and thus, by the rotational symmetry of the metric, so is every radius θ, φ = const. It
follows that any geodesic issuing from the origin ψ = 0 (in particular, a photon- or
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(a) (b) (c)

Fig. 17.1

particle worldline) stays on a radius (as intuition demands). It therefore lies on all the
S2-subuniverses containing that radius. And any galaxy can serve as origin.

In the case k = 1 we obtain a faithful representation of each such subuniverse
by picturing it as a rubber balloon of radius R(t) in Euclidean 3-space with classical
time, of which the fundamental clocks partake. Each balloon is blown up at a possibly
variable rate prescribed by the expansion function R(t). The substratum corresponds
to the material of the balloon, and actual galaxies to ink dots sprinkled more or less
uniformly over the surface.

In the cases k = 0 and k = −1 we replace these balloons by homogeneously
expanding ‘rubber’ planes or saddle surfaces, respectively (see Fig. 17.1). Unfortu-
nately there is no singularity-free way of embedding all of a 2-surface of constant
negative curvature in Euclidean 3-space; so we must content ourselves with a saddle
locally and use our imagination to complete the picture (radii spreading superlinearly).
Since the balloon is the easiest to visualize, we mostly use that in our discussions, it
being understood that the other two cases are analogous.

We have already seen (cf. Exercise 16.4) that free particles move through the
substratum so as to appear to preserve their relativistic angular momentum Rp with
respect to the center of the balloon on which they follow a great circle. (No such
‘interpretation’ exists when k = 0 or −1.) What about photons? For radial light
(θ, φ = const, ds2 = 0) the metric (17.1) yields

dt = ±R dψ. (17.2)

Recall our definition (16.30) of proper distance l = Rψ along a radius, which
corresponds to instantaneous ruler distance on the rubber membranes. We have dl =
R dψ + ψ dR; so at the origin ψ = 0 a photon satisfies dl = ±dt . We conclude
that photons move over the balloon as would single-minded little beetles: always
along great circles, always at the speed of light locally (that is, with respect to the
substratum).

17.2 The cosmological frequency shift

The redshift is the primary piece of information we can gather from the galaxies in
the universe. We shall now derive the relevant formula as a first example on the use
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of the ‘rubber’ models. The cosmological frequency shift is traditionally denoted by
1+ z, and it is given by

1+ z := λ0

λe
= 1+ �λ

λe
= R(t0)

R(te)
, (17.3)

where λe and λ0 = λe +�λ are the wavelengths at emission and reception, respec-
tively, of light emitted and received at cosmic times te and t0, respectively. Now for
the proof: If two beetles crawl in close succession over a non-expanding track, they
arrive as far apart as when they started. But if the track expands (as does the balloon)
proportionately to R(t), then their distance apart at each moment is also proportional
to R(t). (This can be seen most readily by imagining equidistant beetles crawling all
around a great circle.) Replacing the beetles by two successive wavecrests separated
by a wavelength λ, we arrive at (17.3).

What is remarkable about this formula is that the frequency shift depends only on
the values of R(t) at emission and reception. What R(t) does in between is irrelevant.
Regarded in this way, the cosmological redshift is really an expansion effect rather
than a velocity effect. True, for sufficiently nearby galaxies cz measures velocity, as
it would classically (see Exercise 17.2). But for really distant galaxies, the ‘velocity’
at emission, by any reasonable definition (for example, v = dl/dt), is quite irrelevant
for the ultimately observed redshift.

Note that the same argument that supports the stretching of light waves also supports
the stretching of all distances between the photons of the cosmic photon gas (the
background radiation). Hence its particle density is proportional to R−3. The energy
of each photon, by Planck’s relation E = hν, is proportional to R−1. So altogether the
energy density of the photon gas (and therefore also the fourth power of its temperature
T, from thermodynamics) is proportional to R−4, whence T ∝ 1/R.

The ‘expansion’ aspect of the redshift led Shklovsky in 1967 to suggest an interest-
ing explanation of the puzzling predominance of values z ≈ 2 among the then-known
quasars. It is merely necessary to postulate that the radius of the universe was for
a comparatively long time quasi-stationary at approximately one-third of its present
value [see Fig. 17.2, where we also introduce the obvious notation R1 = R(t1), etc.].
Then one quasar could be several times as far away from us as another (in light-travel
time) yet as long as R(t) was the same when each emitted, the observed redshift will
be the same. (Present opinion seems to be that there really was a maximum of quasar
formation at an epoch around z ≈ 2.) Shklovsky’s example shows how unreliable
z is as an indicator of cosmic distances, in spite of the classical Doppler relation
z = �λ/λ ∝ v and Hubble’s law v ∝ x.

To end this section, we show how to derive the frequency-shift formula (17.3)
directly, though perhaps less illuminatingly, from the metric. As we have seen, any
radial light signal satisfies (17.2); so two successive signals from a galaxy at coordinate
ψ to the origin at ψ = 0 satisfy, in turn, the first two of the following equations:

ψ =
∫ t0

te

dt

R(t)
=
∫ t0+�t0

te+�te

dt

R(t)
=
∫ t0

te

dt

R(t)
+ �t0

R(t0)
− �te

R(te)
, (17.4)



376 Light propagation in FRW universes

Fig. 17.2

while for the last expression we used the fact that an integral over a short range �t

equals the integrand times �t . Equation (17.4) implies

�t0

�te
= R(t0)

R(te)
.

If we now identify the two signals with successive wavecrests, eqn (17.3) results.

17.3 Cosmological horizons

The ‘rubber’ subuniverses of the preceding section can also be used to advantage in
illustrating the basic ideas behind the concept of cosmological horizons. For definite-
ness we consider a universe with positive curvature, though most of the arguments
apply equally in all three cases. In Fig. 17.1(a) we have marked our own galaxy and
a photon on its way toward us. Now it can happen that the universe expands at such a
rate that this photon never gets to us. (One can obviously blow up the balloon at will
so that the photon’s proper distance from ‘us’ stays constant or even increases.) As
Eddington put it, light is then like a runner on an expanding track with the winning
post (us) forever receding from him. In such a case there will be two classes of (actual
or virtual) inward moving photons on every great circle through us: those that reach
us at a finite time (or before the big crunch if the universe recollapses), and those
that do not. They are separated by the photon that reaches us at t = ∞ (or at the
big crunch). All such critical photons are shown in the diagram as a dashed circle. In
the full universe they constitute a spherical light front moving towards us. This light
front is our event horizon, and its existence and motion (relative to us) depend on the
form of R(t). Events occurring behind it are forever beyond our possible powers of
observation (unless we travel away from our galaxy).

It is sometimes said that at the horizon galaxies stream away from us at the speed
of light, in violation of SR. Certainly such an event horizon can be stationary relative
to us (l = const), and galaxies must cross it (since it, being a light front, crosses them)



Cosmological horizons 377

at the speed of light, measured locally. Also at the horizon in indefinitely expanding
models the redshift becomes infinite [since R0 → ∞ in eqn (17.3)]—as it would
in SR if the source reached the speed of light. But the SR speed limit applies only
to objects in an observer’s inertial rest-frame. Cosmological observers have local
inertial frames in which the speed limit applies—but obviously an observer and his
horizon can never coexist in a single inertial frame, which disposes of the paradox.
In open universes, distant galaxies routinely recede from us at superluminary proper
speeds, l̇ > c, since l̇ = Hl (cf. Exercise 16.3) and there is no limit to l.

In positively curved universes there is a complication which we shall address below:
the ‘last’ photon to reach us from any direction may already have circled the universe
before, and so could have been seen by us, possibly more than once.

Figure 17.1 can also be used to illustrate the concept of a particle horizon. Suppose
the very first photons emitted at our location in the substratum at the big bang are
still in the substratum at the present time. (For where else could they be? Unless, of
course, there is ‘more space than substratum’, as in the Milne model.) Let the dashed
circle in the diagram now denote the present position of our ‘first’ photons. In the full
universe they constitute a spherical light front moving away from us. As it sweeps
outward over more and more galaxies, these galaxies see us for the very first time. By
symmetry, however, at the cosmic instant when a galaxy sees us for the first time, we
see it for the first time also. Hence the position of that light front at any cosmic instant
(our particle horizon at that instant) divides all galaxies (fundamental ‘particles’) into
two classes relative to us: those already in our view, and all others. As we shall see
below, such horizons can exist even in models with infinite past, though not very
realistically.

In order to discuss both types of horizons quantitatively, it is useful to employ
a ‘conformal diagram’ (cf. Fig. 17.3). Let us extract a factor R2(t) from the FRW
metric (17.1) and set θ, φ = const (since we are interested only in a typical radius);
then we can write

ds2 = dt2 − R2(t) dψ2 = R2[T ] (dT 2 − dψ2) =: R2[T ] d̃s
2
, (17.5)

where R[T ]= R(t(T )), d̃s
2

is defined by the last equation, and

T =
∫ t

t0

dt

R(t)
, (17.6)

for an arbitrary t0 which might as well denote ‘now’. The ‘conformal time’ T is a
partly stretched and partly squeezed version of t , which has the advantage of leading
to a ‘conformally flat’ form of the metric. One important fact about conformally

related metrics (metrics differing only by an overall factor) like ds2 and d̃s
2

in (17.5)]
is that they share their null geodesics (as we saw in Exercise 10.4). But here we have
no need of such a general theorem; radii in FRW models are totally geodesic, as we
have noted repeatedly, and hence the null geodesics along them are simply the null
lines (since both are unique). And these are clearly shared. Now the null lines of the

metric d̃s
2

are the familiar ±45◦ lines of SR, as shown in Fig. 17.3.
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Fig. 17.3

Let t0 ≤ t < tE (E for ‘end’) be the entire future of the model, where tE is either
finite or infinite, depending on whether or not there is a recollapse. Similarly, let
tB < t ≤ t0 (B for ‘beginning’) be the model’s entire past, where again tB can be
finite or infinite depending on whether or not there was a big-bang beginning. (One
can certainly contemplate models with infinite past, such as the steady state model.)
Now consider the conformal times corresponding to tE, tB, respectively:

TE :=
∫ tE

t0

dt

R(T )
, TB := −

∫ t0

tB

dt

R(t)
. (17.7)

Quite independently of whether tE and tB are finite or not, TE and TB can be finite or
infinite, depending on the convergence or divergence of the integrals, which in turn
depends on the character of R(t). Figure 17.3 shows the spacetime diagram of the

metric d̃s
2
, drawn on the assumption that both TB and TE are finite. If not, the upper

or lower edge (or both) of the diagram would be at plus or minus infinity, respectively.
The vertical lines in the diagram are some of the fundamental worldlines ψ = const,
with ‘ours’ in the center. In the case k = 1 the worldlines shown at intervals 2π

are actually all ours, while those at ±π belong to our antipode. For a more realistic
representation we can then imagine the diagram rolled up suitably into a cylinder,
representing the history of a great circle through us (cf. Exercise 17.9).

It is now evident that an event horizon exists whenever TE is finite (
∫ tE dt/R

convergent). For if the diagram has no upper edge, then sooner or later our backward
light cone sweeps over all events, and thus all events become visible. But if TE is
finite, our ‘last’ backward light cone is our event horizon. It separates events seen
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from events not seen—unless k = 1. In that case, only those events in the shaded
triangles above TE−π are never seen. All other events are in at least one of the cones
going back from T = TE at ψ = 0,±2π,±4π . . ..

From (17.6) and (17.7), and with reference to Fig. 17.3, we see that the ψ coordinate
of the event horizon of the origin observer at time t is given by

ψEH = TE − T =
∫ tE

t

dt

R(t)
. (17.8)

For example, in the steady state theory [cf. (16.31)], where R = exp(H t), we find
ψEH = H−1 exp(−Ht), and so the proper distance of the event horizon is given by
lEH = RψEH = H−1. This distance is constant, as befits the steady state theory, but
in general that is not the case.

The same diagram helps to determine the condition for a particle horizon to exist:
it is that TB be finite (

∫
tB

dt/R convergent). For consider an arbitrary cosmic section,
say T = 0, and one of ‘our’ earlier forward light cones, say that emitted at T = T1.
All fundamental observers whose worldlines lie inside that cone at T = 0 have seen
our T1-event by then. If there is no lower edge to the diagram, we can slide our T1-cone
back indefinitely, so that at T = 0 no fundamental worldline is excluded. Then all
fundamental observers would already have seen us, and, by symmetry, we them. On
the other hand, if we have an ‘earliest’ forward light cone at TB, its intersection with
T = 0 (a spherical light front in the full universe) is our particle horizon at T = 0:
fundamental observers whose worldlines lie outside of it have not yet seen us, nor
we them. Once again, however, the case k = 1 is peculiar. The particle horizon then
exists precisely until time T = TB + π . The diagram shows how every fundamental
worldline enters one of our then equivalent earliest cones at or before that time.

Analogously to (17.8) we can now find the ψ coordinate of the particle horizon of
the origin observer at time t :

ψPH = T − TB =
∫ t

tB

dt

R(t)
. (17.9)

It turns out that all non-trivial (that is, genuinely gravitating) FRW models with a
big bang necessarily have a particle horizon, since for matter-dominated models the
field equations will be seen to imply R ∼ t2/3 and for radiation-dominated models,
R ∼ t1/2, near the big bang.

And this leads to some problems. First, a speed problem: To be outside particle
A’s earliest light cone, particle B must have moved away from A faster than the first
photon which A emitted in the same direction; that is, faster than light. Here the
relativistic speed limit really was broken. But recall that the speed limit applies only
in the LIF, and that the size of a LIF decreases with increasing spacetime curvature.
At the big bang the curvature is infinite, and the LIF has shrunk out of existence.
Thus at curvature singularities all the laws of physics have a perfect right to break
down. It is believed that GR will actually break down even close to the big bang as
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one enters the regime of quantum fluctuations somewhere near the Planck time of√
�G/c5 ≈ 10−43 s.
Then there is the notorious ‘smoothness’ or ‘horizon’ problem. Why is the uni-

verse so homogeneous? At decoupling time the particle horizon was still so small
that if today we could ‘see’ it on the sphere of last scattering, its diameter would
subtend an angle of about one degree. (Cf. Exercise 17.10.) Yet that entire sphere
is already perfectly homogeneous. If two regions one degree apart had not yet made
causal contact, how could the entire universe already be homogeneous? In Friedman
cosmology this is no mystery, since isotropy-homogeneity, by assumption, goes all
the way back to an admittedly finely tuned big bang. For people who on philosophical
grounds prefer a chaotic big bang and a self-homogenizing universe, the Friedman
horizons are irrelevant. They need large horizons in the chaos. Inflationary cosmol-
ogy (see Section 18.5) claims to solve this problem. By contrast, Penrose has given
a powerful argument against homogenization.1 The second law of thermodynamics
(entropy increase) is at least as much of a puzzle as is homogeneity. And he points out
that only a highly tuned big bang like that of the Friedman models has the necessary
low entropy to start off the second law. Homogeneity and isotropy are then simply
implicit in the initial conditions.

Event horizons are not quite as ubiquitous as particle horizons among realistic
models. But, as we shall see, all indefinitely expanding models with cosmological
term as well as all collapsing models have them. On the other hand, the existence
of event horizons poses no particular logical or philosophical problems (except the
spurious speed problem alluded to in the second paragraph of the present section.)

As can be seen particularly clearly from Fig. 17.3, when a model is run backwards
in time, its event- and particle horizons interchange roles. And the ideal FRW models
can be run backwards without violating the dynamics, since all the equations are
time-symmetric. Just from this it follows that all non-empty collapsing models have
event horizons, since all such big-bang models have particle horizons.

We end this section with a few further remarks concerning the event horizon (EH)
and the particle horizon (PH):

1. The reader will no doubt have noticed an analogy between the cosmological
event horizon and that of a Schwarzschild black hole. Both hide forever a class of
events from the observer, and both are spherical light fronts moving towards (but
never reaching) the observer. But the Schwarzschild horizon is the same for all exter-
nal observers and moves outward towards all of them, whereas in cosmology each
fundamental observer has his own EH that moves inward towards only him.

2. Every galaxy but A within A’s EH eventually passes out of it. This is
immediately clear from Fig. 17.3.

1 See, for example, R. Penrose in Fourteenth Texas Symposium, ed. E. Fenyves, New York Academy
of Sciences, New York, 1989.
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3. Every galaxy B within A’s EH remains visible forever at A. For the EH itself car-
ries to A the ‘last’ image of B, namely that of B crossing the horizon. As B approaches
the horizon, its redshift at A tends to infinity if the model expands indefinitely; for
then R → ∞ at reception [cf. eqn (17.3)]. Also any finite part of B’s history up to
the crossing event appears infinitely dilated at A; for example, B’s clock apparently
never quite reaches noon, if at noon B crosses the horizon. In collapsing models B’s
light gets infinitely blueshifted (so it appears infinitely bright) near the horizon, since
R→ 0 at reception; and B’s pre-crossing history appears infinitely accelerated. After
crossing the horizon, B hurtles superluminally towards A and A never sees the last
part of B’s history. B together with all its later emitted photons only meets A at the
big crunch.

4. As galaxies are overtaken by A’s PH, they come into view at A with infinite
redshift (zero luminosity) in big-bang models and with infinite blueshift (infinite
luminosity) in models with unlimited expansion in the past (for example, R ∝ cosh t).
For in the former case R was zero, in the latter, infinite, at emission. (Infinite blueshift
is the optical analog of a sonic boom.)

5. In big-bang models with PH (in contrast, for example, to Milne’s model), the
big bang is visible, in principle, to all observers in all directions at all times. This
is evident from Fig. 17.3. (Provided they can ‘see’ with neutrinos: photons cannot
penetrate the earliest opaque 300,000 years.) A useful image: picture a large and
expanding balloon, representing the universe; picture identical small but growing
circles around all fundamental particles, representing their ever-expanding creation
light fronts (PHs); imagine yourself at the center of one of these: as you look far-
ther and farther down any direction, you see younger and younger galaxies—in
principle you even see galaxies just being born at your PH. You have the impres-
sion of surveying the entire universe. But as time goes on, shell after shell of
ever more distant just-born galaxies comes into view. You always seem to see
the very ‘edge of the universe’; but all you see is your visible universe, namely
that within your particle horizon (the little circle on the large balloon). Its radius,
very roughly, is of the order of t0 light years, if t0 is the age of the universe in
years.

6. Consider non-empty big-bang models. All have a PH. Hence all light signals in
such models originate on the lower edge in Fig. 17.3, which is a curvature singularity.
Such models either end up on another curvature singularity (coinciding with the upper
edge) if they recollapse; or else they ultimately expand into Minkowski or de Sitter
spacetime. Hence light can never leave their substratum nor enter it from elsewhere.
Unlike Milne’s model, therefore, such models are maximal; that is, they have no
causal connection to spacetime beyond their substratum.

7. In models without PH, any observer can be present at any event, provided he
is willing to travel and provided he starts out early enough. For, in principle, his only
travel restriction is to stay within his forward light cone at the start of the trip. And
in the absence of a lower edge in Fig. 17.3, that cone can be pushed back to include
any event.
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Fig. 17.4

8. If an EH exists, two arbitrary events are, in general, not both knowable to any
single observer, even if he travels. For if there is an upper edge in Fig. 17.3, it is
easy to specify pairs of events whose forecones do not intersect. Yet to have known
both events implies being and therefore remaining in both their forecones. In the case
k = 1, such unknowable pairs of events can only occur after time TE − π .

9. Suppose a model has both an EH and a PH. Let the instantaneous ψ-radii
of these horizons be ψEH = e and ψPH = p, respectively, and note [either from
eqns (17.8) and (17.9), or directly from Fig. 17.4] that e + p = const = TE − TB.
Figure 17.4 shows the entire EH of galaxy B, and half the PHs of galaxies A and C.
From this figure we can read off the following facts: (i) galaxies farther than p+e can
never be seen at A, nor can they be visited by a traveler from A. (ii) Even a traveler
from A can never see events whose instantaneous distance from A exceeds p + 2e.
(iii) And no traveler from A can ever see a galaxy beyond 2p + 2e.

17.4 The apparent horizon

The event- and particle horizons discussed in the last section are conceptually quite
unrelated to a Schwarzschild type of horizon that must exist in some guise in FRW
models: We have seen [cf. after (12.2)] that homogeneous balls even of low density
will produce a Schwarzschild horizon provided they are sufficiently large. But in at
least the open FRW universes there are at all times homogeneous balls of arbitrarily
large size. Surely something special must happen relative to the center of each such ball
at the location where its Schwarzschild radius would be if the outside were vacuum.
Let us imagine a thin shell of vacuum surrounding a ball of such critical size. By
Birkhoff’s theorem (even with �-term), the rest of the universe does not affect the
vacuum spacetime in that shell. It must contain the ball’s Schwarzschild-horizon light
front. If that front points outward (which happens in collapsing universes), that ball
would now seem to be doomed to collapse totally in a maximal proper time πm as
measured on its shrinking surface [cf. (12.13)] or 1

2πr̃ , where r̃ is the ‘area coordinate’
of the horizon [cf. after (11.1)], since r̃ = 2m.
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To find the exact location of this horizon, we characterize it as a momentarily sta-
tionary light front in terms of the area coordinate (that is, a light front of momentarily
stationary area). In the FRW metric (17.1) the area coordinate corresponds to r̃ = Rη,
and for its stationarity we need dr̃ = 0; that is,

R dη + η dR = 0 = R dη + ηṘ dt. (17.10)

For any particle moving radially with this sphere we also have θ, φ = const, and then
the metric (17.1) gives, when we utilize (17.10),

ds2 = dt2
(

1− η2Ṙ2

1− kη2

)
. (17.11)

If the particle is a photon, ds2 = 0. The horizon therefore has ( ) = 0, and, after a
little algebra, this yields

r̃2
AH = (R2η2)AH =

R2

Ṙ2 + k
(17.12)

for its area coordinate; this horizon is called the apparent horizon. But here, in
contradistinction to the Schwarzschild case, the area coordinate r̃ is now a ‘time’
outside the horizon (cf. Exercise 17.13), which must decrease in contracting universes;
no particle or photon can move outward in that region relative to the center.

We shall see [cf. eqns (18.17) and (18.18) below] that the field equations for ‘dust’
universes with zero cosmological constant � directly fix the value of the RHS of
(17.12) as (8

3πρ)−1 (in units making c = G = 1). And so we have

r̃AH =
( 8

3πρ
)−1/2

, (17.13)

exactly as in the ‘naı̈ve’ eqn (12.2) (where we must put r̃ = r)!
As an example [for which we again anticipate the dynamics—cf. (18.36) below],

we consider the ‘oscillating’ dust model corresponding to k = 1 and � = 0. The graph
of its expansion function R(t) is a cycloid, whose maximal height, Rmax, is related to
its total duration, tmax, by tmax = πRmax. On the other hand, at the instant of maximal
extension (Ṙ = 0), eqn (17.12) gives r̃AH = Rmax, and so the apparent horizon is
then at the equator, the same for each pair of antipodal fundamental particles. The
‘Schwarzschild’ maximal duration thereafter, as we have seen, is 1

2πr̃ , which here
coincides with 1

2πRmax, the actual proper time elapsed at each fundamental particle
before the big crunch.

Just like the Schwarzschild horizon, the cosmological apparent horizon is a limit
of ‘trapped surfaces’ (cf. Section 12.6), which this time lie outside of it. (Recall
that trapped surfaces have the property that light emitted from them, both outwardly
and inwardly, moves inwardly or, more strictly, ‘converges’.) And this has relevance
for the Penrose-Hawking cosmological singularity theorems. According to them, the
existence of an apparent horizon leads under certain very reasonable conditions to
a big-crunch singularity, or, in time-reversal, indicates a big-bang singularity in the
past. [cf. after (18.10) below.]
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17.5 Observables

Astronomers observe galactic redshifts directly, and correlate them with galactic
‘magnitude’, which, in astronomical usage, means apparent luminosity normalized
in a certain way. For these and other observations to be compared with theory, it is
necessary for theory to relate observables to the parameters of the model. Several
such relations will be obtained in the present section.

But first, let us consider some definitions of distance in cosmology. As in
Schwarzschild spacetime (cf. Section 11.5), various ‘reasonable’ definitions turn out
to be inequivalent, except locally. We have already come across two useful theoretical
distance measures, namely proper distance (or instantaneous ruler distance), l = Rψ ,
and area distance, r̃ = Rη. But, of course, these are not directly accessible. More
practical methods of obtaining distance estimates in astronomy involve, for exam-
ple, parallax, radar, apparent size, and apparent luminosity. But for distant galaxies
even the first two of these methods are impracticable. So we shall here concentrate
on ‘distance from apparent area’, DA, and ‘distance from apparent luminosity’, DL.
Since theory must intervene anyway to interpret the observations, one chooses the
simplest possible definitions, namely those that in a static, unchanging Euclidean
universe would actually yield the Euclidean distance. So the DA of an object of pre-
sumed cross-sectional area A, seen subtending a small solid angle �, is defined by
the equation

� = A

D2
A

. (17.14)

Similarly the DL of a source that presumably radiates energy isotropically at total
proper rate L is defined by the equation

S = L

4πD2
L

, (17.15)

where S is the energy received at the observer crossing unit area in unit time. L stands
for (intrinsic, total) luminosity, which could be measured in Watts, just as for light
bulbs. The apparent luminosity S is related to traditional astronomical ‘magnitude’
m by the formula m = −2.5 log10 S + const; one speaks of ‘bolometric’ magnitude
when S includes energy received over the whole spectrum, not just the visual range. In
practice, of course, corrections have to be made for absorption by the atmosphere, etc.

By (17.1), the area of a coordinate sphere η = const at cosmic time te is 4πR2
e η2,

and the solid angle it subtends at the origin is 4π . Consequently, the solid angle
subtended by the bundle of radii to a galaxy of cross-sectional area A on that sphere is

� = A

R2
e η2

. (17.16)

And this is the solid angle which the galaxy is seen to subtend at whatever time t0
the light it emits at te arrives at the origin. For it is its position at emission time that
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determines the bundle of radii along which the light from it will travel to the origin.
(The rubber models should make that clear; the galaxy does not expand along with
the rest of the universe!) Hence we have, utilizing (17.3),

DA = Reη = (1+ z)−1R0η. (17.17)

Suppose, next, that a source of intrinsic luminosity L is placed at the origin and
that its light, emitted at te, is observed at t0 on a sphere η = const comoving with
the substratum. If the universe were static, the total energy flux through that sphere
would, of course, be L. But because the universe expands, the energy E = hν of
each photon is diminished by a Doppler factor (‘Planck effect’) and since the time
between the arrival of ‘successive’ photons is also lengthened by a Doppler factor
(‘number effect’), the total flux through the sphere is L(1+ z)−2. So the flux per unit
area is given by

S = L

(1+ z)24πR2
0η2

. (17.18)

By symmetry, however, the (permanent) η coordinates which two galaxies ascribe to
each other are equal. We therefore conclude that (17.18) applies to the flux measured
by us at time t0 due to a source at coordinate η relative to us. Eqns (17.15), (17.18),
and finally (17.17), then yield

DL = (1+ z)R0η = (1+ z)2DA. (17.19)

The extremities of this equation constitute an interesting model-independent relation
between observables; squaring and using (17.14), (17.15), we have:

L

4πS
= (1+ z)4 A

�
. (17.20)

[This goes back to Etherington (1933) and actually applies without any cosmological
symmetry assumptions.] The ‘disturbing’ presence in some of the above formulae,
from an observational point of view, is the coordinate η. To eliminate it, consider
that to each event along a given incoming ray of light reaching us at time t0 there
correspond a pair of alternative radial coordinates η and ψ , a time t , a redshift z, and
an R-value. All these variables are monotonically related (if we accept Ṙ > 0). Now
from (17.2) we have

dψ

dR
= dψ

dt

dt

dR
= − 1

RṘ
, (17.21)

which, after a little computation, yields the following Taylor series for ψ :

ψ = 1

RṘ
�+ 1

2

RR̈ + Ṙ2

R2Ṙ3
�2 + · · · , (17.22)

where � = R0 −Re and R, Ṙ, R̈ are here and for the rest of this chapter understood
to be evaluated at t0. But

η = (sin ψ, ψ, or sinh ψ) = ψ + O(ψ3), (17.23)
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so that the RHS of (17.22) also equals η, as far as it goes. On the other hand, we have

Re = R(1+ z)−1 = R(1− z+ z2 + · · · ) (17.24)

as long as z < 1, and so
� = R(z− z2 + · · · ). (17.25)

Substituting this into (17.22), writing η for ψ and substituting that into (17.19)(i),
we finally find

H0DL = z+ 1
2 (1− q0)z

2 + O(z3), (17.26)

where, of course, H0 = Ṙ/R and we have introduced

q0 := −RR̈

Ṙ2
= − R̈

RH 2
0

. (17.27)

This q0 is a convenient dimensionless parameter that essentially measures R̈. Until
recently, cosmologists were so sure that the universe is decelerating (pulled back
by gravity), that they introduced the minus sign into the definition and called q0
the deceleration parameter. In retrospect, it would have been better to define an
acceleration parameter, but we seem to be stuck with q0.

By use of (17.19) we can convert (17.26) into a formula for DA (cf. Exercise 17.18).
Either of these formulae can serve to determine H0, and, in principle, q0.

As we noted in connection with (17.24), the above approximations hold only if
z < 1, and are really useful only when z is not much bigger than 0.5. On the other
hand, formulae like (17.26) can be extended to arbitrarily many powers. At the third
power the curvature index k begins to appear, because of (17.23). But by now redshifts
as big as z ≈ 6 have been observed, looking back to when the universe was a mere one-
seventh of its present size! To utilize such data, the above methods must be replaced
by exact model-specific numerical computations, following essentially the same logic
(cf. Ex. 18.16). Such more exact methods, applied to supernovae (specifically, super-
novae of type Ia) at 0.3 � z � 1, have recently yielded the already mentioned finding
(cf. Section 16.1J) that q0 is negative, with its implication of a positive �.

The main problem with the procedure outlined above is the difficulty of knowing
the intrinsic luminosity L of the sources, on which a determination of DL via (17.15)
depends. And also, since for high redshift we look far back in time, a theory of how L

evolves would be needed—all of which is at present only very imperfectly known for
entire galaxies. But the above-mentioned technique of observing supernovae in distant
galaxies rather than the galaxies themselves, has largely overcome this difficulty, since
their luminosity properties are believed to be universal.

We now turn to another important empirical relation obtained by astronomers (both
optical and radio), namely the number of galaxies per unit solid angle of sky whose
redshift is less than some given z, or whose apparent luminosity is greater than some
given S. Such ‘number counts’ evidently probe the galactic distribution in depth, or,
in other words, radially. Consider a cone (a bundel of radii) of solid angle � issuing
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from the origin at some cosmic instant t0 (‘now’) and terminating at coordinate η. Its
instantaneous volume, from (17.1) and (17.23), is given by

V = �R3
∫ η

0
η2 dψ = �R3

∫ η

0
η2 d[η + O(η3)]

= �R3[ 1
3η3 + O(η5)

]
. (17.28)

Multiplying V by the present particle density n0, we obtain the total number N(η)

of galaxies presently in the cone—and this will be the number in it at all times as
long as galaxies are neither created nor destroyed. As in converting (17.19)(i), we can
replace η3 in (17.28) by a power series in z; the resulting expression for N = n0V is

N(z) = n0�H−3
0

[ 1
3z3 − 1

2 (1+ q0)z
4 + · · · ]. (17.29)

This formula gives the number of galaxies seen in the solid angle � at redshift z or less.
But, especially with radio galaxies, it is the energy flux (or apparent luminosity) that
is more readily determined than the redshift. So we solve (17.26) for z by setting z =
H0DL+a(H0DL)2+· · · and comparing coefficients, which yields a = − 1

2 (1−q0).
With this expression for z substituted, eqn (17.29) becomes

N(DL) = n0�
(1

3D3
L −H0D

4
L + · · ·

)
, (17.30)

independently of q0 up to this order. Above all, this equation serves to determine n0.
The corresponding formula for the steady state theory, where particles are

continuously created, is found to be (cf. Exercise 17.19)

N(DL) = n0�
( 1

3D3
L − 7

4H0D
4
L + · · ·

)
. (17.31)

The RHS of (17.31) is less than that of (17.30), since at earlier look-back times there
were fewer galaxies in the cone than there are now. However, it is not so much this
second-order difference between the two equations that lends itself to observational
testing. Consider instead the common first-order part of eqns (17.30) and (17.31), and
write it in terms of L and S via (17.15):

S3/2N(S) = 1
3n0�(L/4π)3/2. (17.32)

In the steady state theory the luminosity of all galaxies would certainly not be the
same. Let us imagine many classes of galaxies with different luminosities Li and
corresponding particle densities ni . These numbers, however, would have to be per-
manent. For each class there is an equation like (17.32) with N, L and n0 replaced
by Ni, Li and ni . Adding these equations, and writing N(S) for

∑
Ni(S) (the total

number of galaxies seen at apparent magnitude S and bigger), we find

S3/2N(S) = independent of S. (17.33)
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This equation is not satisfied by the standard model, because as we look farther and
farther back in time, there are systematic changes in Li and ni . And indeed it was the
observed non-constancy of the LHS of (17.33) that contributed in the sixties to the
demise of the steady state theory—and to an appreciation of the evolution of intrinsic
luminosities.

Exercises 17
17.1. One of the most redshifted quasars observed so far has z = 6.2 and is judged

to be at a present proper distance of∼26×109 light years. Our universe is no older than
∼15× 109 years. Show that in an expanding universe there need be no contradiction
in these numbers.

17.2. From (17.3) derive the formula (in full units) z = l̇/c + O(�t2), where l

is the proper distance of the observed source at the time of emission, and �t is the
look-back time. Compare this with our earlier Doppler formula (4.3). [Hint: expand
Re as a power series in �t centered on R0.]

17.3. Consider an FRW universe with R = t and k = 1. In theory, an observer can
see each galaxy by light received from two diametrically opposite directions. Prove
that the redshifts in the light arriving simultaneously from the same galaxy but from
opposite directions satisfy (1+ z1)(1+ z2) = exp(2π).

17.4. According to Planck’s law of blackbody radiation, the energy density of
photons in the frequency range ν0 to ν0 + dν0 is given by

du0 = 8πhν3
0c−3(ehν0/kT0 − 1)−1 dν0,

where k is Boltzmann’s constant and T0 the absolute temperature; and this charac-
terizes the spectrum of blackbody radiation. We have inserted the subscript zero to
indicate that we look at the various quantities at some cosmic instant t0. Now suppose
that the radiation in question uniformly fills an FRW universe with expansion factor
R(t), and suppose we can neglect its interaction with the cosmic matter. Prove that,
as the universe expands or contracts, the radiation maintains its blackbody character.
[Hint: third paragraph of Section 17.2.]

17.5. By referring to the Kruskal diagram of Fig. 12.5, prove that in the homoge-
neous Kruskal universe discussed in Exercise 16.2 there exist both particle horizons
and event horizons.

17.6. By reference to the rubber models, show that in a universe where soon after
the big bang (while R is still small) the expansion slows down for a relatively long
period before speeding up again, the particle horizons are relatively large. [Hint:
Consider the ψ of the horizon.]

17.7. If an event horizon exists, prove that the farthest galaxy in any direction to
which an observer can travel if he starts ‘now’, is the galaxy which lies on his event
horizon in that direction ‘now’.
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17.8. If a model universe has both an event horizon and a particle horizon, prove
that the farthest galaxy, on any line of sight, from which a radar echo can be obtained,
is that present where these horizons cross each other.

17.9. Make a paper model of the cylinder represented by Fig. 17.3 when k = 1,
by cutting out a suitably drawn diagram and rolling it up so that the lines ψ = ±π

coincide. (It will come out best if your vertical extent is not much more than 3π .)
Note how the first and last light cones of the origin galaxy re-focus at the antipodal
galaxy. Convince yourself that after time TB + π all galaxies have seen the origin
galaxy and have therefore been seen by it, and that all events occurring before time
TE − π are visible at the origin galaxy.

17.10. Consider the source sphere, around us, of today’s 2.7 K radiation, at a look-
back time of∼1010 y. Assume R ∝ t1/2 for the radiation-dominated universe before
recombination (at ∼ 3 × 105 y after the big bang and at ∼ 3000 K), while R ∝ t2/3

afterwards, assuming the simplest model. Prove that the proper distance of the par-
ticle horizon, lPH, at recombination time was ∼ 6 × 105 lt-y and that our proper
distance then from the sources we see today was ∼ 3 × 107 lt-y. Deduce that the
angular separation between two points on that source sphere which only just came
into causal contact at the time of recombination is of the order of one degree. [This
is the ‘smoothness problem’ referred to after (17.9).]

17.11. In a non-static FRW universe, consider the history of two spheres centered on
the origin, one at constant proper distance l, the other at constant area distance r̃ from
it. Show that unless k = 0 these two spheres can coincide at most at one cosmic instant.

17.12. Prove that in collapsing universes the apparent horizon relative to the origin
is the locus of turn-back points of outgoing light signals in terms of area distance
r̃ (dr̃ = 0). Also prove that the light-turn-back locus in terms of proper distance
l (dl = 0) is a different surface (unless k = 0), namely l = −1/H .

17.13. Prove that in models with k = 0 or k = 1 the apparent horizon (17.12)
always exists (that is, corresponds to a definite locus in the substratum). For the case
k = −1, look ahead at the field equation (18.9) and deduce that the apparent horizon
exists whenever 8πρ +� > 0 (c = G = 1).

17.14. Re-write equation (17.11) as ds2 = dt2(1− r̃2/r̃2
AH)/(1−kη2), and deduce

that r̃ = const � r̃AH implies ds2 � 0; interpret this.

17.15. For the expanding (contracting) radiation model with k = � = 0 and
R ∝ t1/2, verify that the apparent horizon and the particle (event) horizon coin-
cide, both being at l = 2t . What is the corresponding situation for the ‘dust’ model
k = � = 0 and R ∝ t2/3?

17.16. By reference to the rubber models, describe the most general FRW universe
in which it is possible for two galaxies, seen simultaneously by an observer in the
same direction at one given instant, to exhibit the same non-zero redshift and the same
distance by apparent area, and yet for one to be at twice the proper distance as the
other.
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17.17. Suppose an ideal big-bang FRW universe is filled uniformly with galaxies,
n0 per unit volume at the present cosmic instant t0, and all having equal luminosity
L(t) at equal cosmic time t . Assuming conservation of galaxies, prove that the present
apparent brightness of the sky is then given by

B = (n0/4πR0)

∫ t0

0
R(t)L(t) dt,

where B is defined as the energy flux through a unit area A due to all the ‘point’-
galaxies within a thin cone of radii orthogonal to A; divided by the solid angle of that
cone. In a k = 1 universe the same galaxy might be counted repeatedly, but this is as
it should be. Note also that for a static and unchanging universe the lower integration
limit would be - ∞ and B would be infinite; this constitutes the so-called Olber’s
Paradox for such old-fashioned universes. [Hint: Consider contributions to B from a
thin collection cone of solid angle �, as the light travels down the cone. Its volume
element dV at coordinate η and emission time te is given by dV = �R3

e η2 dψ ; the
number of galaxies in it is n0(R

3
0/R3

e ) dV ; and each of these galaxies contributes
S = LeR

2
e /4πR4

0η2 to B; in the integration use dψ = −dt/R.]

17.18. From (17.26) and (17.19) derive the following analog of (17.26) for DA:

H0DA = z− 1
2 (3+ q0)z

2 + O(z3).

17.19. Derive formula (17.31) for the steady state theory. [Hint: Recall the rele-
vant FRW metric: R = exp(H t), H = const, k = 0, and pick t0 = 0; from (17.21)
derive Hψ = exp(−Ht)− 1 = z; now the number n0 of galaxies per unit volume is
constant: N(ψ) = n0

∫
R3(t)ψ2 dψ . Finally, use (17.26) with q0 = −1.]
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Dynamics of FRW universes

18.1 Applying the field equations

In a famous labor-intensive paper of 1938, Einstein, Infeld, and Hoffmann showed that
the field equations of general relativity actually imply the geodesic law of motion—
which had originally been regarded as one of the axioms of the theory. Of course,
that law had been strongly suggested by the equivalence principle, but that could not
be considered a ‘proof’. Even the rigor of the 1938 paper was soon challenged and
numerous improvements followed. But the result itself is not in question: the field
equations determine the motion. Nowhere is this more directly apparent than in FRW
cosmology, where the field equations determine the expansion factor R(t). (Of course,
the assumed symmetries already imply—as we have seen—that the substratum moves
geodesically.)

In the present chapter we shall examine the dynamics that results from apply-
ing the field equations to the FRW metric. We take the field equations in their
general form (14.15), that is, with the so-called cosmological term �gµγ . Var-
ious arguments have over the years been advanced against the inclusion of this
term. But they have all been rendered invalid by the observations (cf. Section
16.1J). As for the sources, we already mentioned that, in effect, our proce-
dure is to grind up all the matter (including, of course, the ‘dark matter’) and
redistribute it uniformly. The assumed isotropy of the model then restricts the
physical characteristics of the sources. In fact, as we shall see, the sources
must have an energy tensor [cf. (7.80)] whose components in the rest-LIF are of
the form

Tµν = diag(p, p, p, c2ρ). (18.1)

Sources of this kind are called perfect fluids. The only stress they can sus-
tain is the isotropic pressure p; ρ is the mass density. It is generally agreed
that, except in the early universe, the pressure of the sources can be neglected.
A perfect fluid with zero pressure is technically referred to as dust. Such
dust sits still on the substratum, since any random motion would constitute a
pressure. In the early universe, however, uniform radiation (a photon gas) is
thought to have predominated. This does have pressure; its equation of state (cf.
Exercise 7.22) is

p = 1
3c2ρ. (18.2)
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It will be advantageous, because of the resulting symmetry, to use the FRW metric
(16.29) with the brace from (16.21) in Cartesian coordinates so that r2 = x2+y2+z2:

ds2 = c2 dt2 − R2(t)

{
dx2 + dy2 + dz2(

1+ 1
4kr2

)2
}

. (18.3)

The main labor in applying the field equations

Gµν = −8πGc−4Tµν (18.4)

to this metric lies in the computation of the (modified) Einstein tensor

Gµν = Rµν − 1
2Rλ

λgµν +�gµν. (18.5)

[We here eschew the usual symbol R for the scalar curvature Rλ
λ so as to avoid

notational conflict with the expansion factor R(t).] The computation is simplified if
we refer to the expressions listed in the Appendix. Clearly we only need the values
of Gµν at the origin r = 0, since this is a typical point. Here is what we then find:

G11

g11
= G22

g22
= G33

g33
= − 2R̈

Rc2
− Ṙ2

R2c2
− k

R2
+�, (18.6)

G44

g44
= − 3Ṙ2

R2c2
− 3k

R2
+�, (18.7)

and Gµν = 0 when µ �= ν. These expressions, when substituted in the field equations
(18.4), imply an energy tensor of the general form (18.1), and thus, as we saw in
Chapter 7, of the form (7.86). Writing Uµ = (0, 0, 0, c) for the 4-velocity of the
matter at the origin r = 0, and lowering the indices in (7.86), we find

Tµν = diag(−giip, c2ρ).

With that, the field equations (18.4) read:

2R̈

Rc2
+ Ṙ2

R2c2
+ k

R2
−� = −8πGp

c4
(18.8)

Ṙ2

R2c2
+ k

R2
− �

3
= 8πGρ

3c2
. (18.9)

Note that the high degree of symmetry which we imposed a priori on the metric (just
as in the Schwarzschild case) reduces the number of restrictions imposed by the field
equations; here from a potential 10 to just 2.

It is often convenient to replace eqn (18.8) by that which results when we subtract
eqn (18.9) from it:

R̈

R
= −4πG

3

(
ρ + 3p

c2

)
+ 1

3
�c2. (18.10)
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18.2 What the field equations tell us

A. Energy conservation

If we multiply the LHS of eqn (18.9) by R3 and differentiate, we get ṘR2 times the
LHS of eqn (18.8); for the RHSs this implies(

8πGρ

3c2
R3
)·
= −ṘR2

(
8πGp

c4

)
,

or, after a little manipulation,

(ρc2R3)· + p(R3)· = 0. (18.11)

Since the volume V of a small comoving ball of the substratum is proportional to R3,
(18.11) can also be written with V in place of R3. If we then write ρc2V = U for the
energy content, A for the surface area of the little ball and r for its radius, we obtain

dU = −p dV = −pA dr, (18.12)

the usual equation of continuity (energy balance) in the absence of thermal flow. Of
course, the isotropy of the universe implies that there can be no thermal flow, or, in
other words, that the motion must be adiabatic.

If the fluid obeys a simple equation of state,

p = wc2ρ, (18.13)

with constant w, eqn (18.11) becomes

ρ̇

ρ
= −(1+ w)

(R3)·
R3

,

which integrates to
ρ ∝ R−3(1+w). (18.14)

For pure radiation we have [cf. (18.2)] w = 1
3 , so that ρ ∝ R−4, while for dust

we have w = 0 and ρ ∝ R−3. If dust and radiation co-inhabit a universe without
interacting, the sum of their energy tensor components enters (18.4) and thus (18.8)–
(18.13); but each separately satisfies (18.12) and thus (18.11) and (18.14). Hence
(ρdust/ρradiation) ∝ R. At present, it is estimated that radiation (mainly the 2.7 K
background) accounts for only about one-thousandth of the total density. Accordingly,
when the universe was about one thousandth as big as today, the radiation- and dust
densities crossed over; before that, radiation was dominant.

As we mentioned, the field equations will specify the motion. But note how they also
include an equation of continuity, which, too, is a separate assumption in Newton’s
theory. This was to be expected, since the GR field equations imply T µν ;ν = 0.
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B. The Friedman equation

Now assume that we have a dust-dominated universe, and accordingly set p = 0. Then
directly from (18.11) we see ρR3 = const (conservation of mass!). It is convenient
to define a constant C by the equation

8
3πGρR3 =: C = const, (18.15)

so that eqn (18.9) reads

Ṙ2 = C

R
+ �c2R2

3
− kc2. (18.16)

In the case of dust, eqns (18.15) and (18.16) together are fully equivalent to (18.8) and
(18.9), unless Ṙ ≡ 0. For we have just derived the former pair from the latter; and con-
versely, (18.15) and (18.16) together imply (18.9), while the result of differentiating R

times (18.16) is ṘR2c2 times (18.8). Equation (18.16) is known as Friedman’s differ-
ential equation, after its discoverer. It is this equation that governs the cosmic motion.

C. The Newtonian analogy

In the cosmological context, the field equations determining the motion allow a
Newtonian interpretation, and thus a degree of intuitive understanding that is often
unavailable from the formalism alone. Let us consider the Newtonian motion of a small
homogeneous ball of dust of radius aR and mass a3M(a = const) under its own grav-
ity. A particle on its surface (and thus its whole surface) experiences an acceleration

R̈ = −GM

R2
(18.17)

towards the center (the as cancel out). Compare this with eqn (18.10), after replacing
M by 4

3πR3ρ. If � = p = 0, and given the right initial conditions, the ball fits

into the substratum! Even if we include a ‘cosmological’ repulsive force 1
3�c2r (cf.

Section 16.1J) into the Newtonian analysis, the ball still fits: there is then a term
1
3�c2R on the RHS of (18.17) which matches the analogous term in (18.10). So the
substratum-dust can be pictured as an aggregate of little balls moving Newtonianly.

We can integrate the Newtonian eqn (18.17), including the extra �-term on the
RHS, after multiplying by an integrating factor 2Ṙ, to find

Ṙ2 = 2GM

R
+ 1

3
�c2R2 − k̃c2, (18.18)

where the constant of integration is written as −k̃c2, to match Friedman’s equa-
tion (18.16), in conjunction with (18.15), which just expresses the conservation of
mass. If k̃ �= 0 we can normalize it to be ± 1 (just like k) by first re-scaling R and
then a. After multiplying (18.18) by 1

2a2m it actually becomes the Newtonian energy
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equation for a particle of mass m on the surface of the ball of radius aR:

(kinetic energy)+ (potential energy) = − 1
2a2mk̃c2.

This is the Newtonian interpretation of Friedman’s differential equation. In the
absence of �, the sign of k̃ determines whether the ball will recollapse or not. If
k̃ < 0, the surface gets to infinity with kinetic energy to spare. If k̃ > 0, the kinetic
energy runs out at a finite distance and the ball must recollapse. The case k̃ = 0
corresponds to the ‘escape’ velocity: the ball just gets to infinity. GR, however,
in a quite un-Newtonian way, fits the little Newtonian balls together into a posi-
tively curved, negatively curved, or flat universe, according as k is positive, negative,
or zero.

D. Pressure

A further un-Newtonian feature arises when pressure enters the picture. Eqn (18.10),
on the Newtonian interpretation, says that a pressure p makes a positive contribution
3p/c2 to the effective gravitating density. Thus, counterintuitively, positive pressure
slows the expansion. There is no heuristic or intuitive explanation for this gravitating
effect of pressure in cosmology. It is simply a consequence of the field equations,
as is the gravitating effect of all the other stress and momentum components of the
energy tensor in more general situations. But it should be noted that the extra term
3p/c2 does not represent stored elastic energy, as in the case of a compressed spring.
That is already included in ρ [cf. (18.12)], as is the binding energy of the gravitational
field.

But why does pressure have no direct mechanical repulsive effect? The reason is
symmetry. Consider a uniformly contracting Newtonian (or Milnean) universe with
gravity switched off. As the stars come into contact, will their mutual pressure slow
the collapse? No. Each, being at rest in an inertial frame, finds itself suddenly pressed
by stars from all sides. But where is it to move? So it, and all the other stars, must
simply continue riding their respective inertial frames unbraked to the bitter end.
In much the same way, even realistic universes are unaffected by pressure as such.
Only the force of gravity is exempt from this symmetry argument: it moves the LIFs
themselves.

E. Energy tensor of the vacuum

Since the cosmological constant � is apparently here to stay, cosmologists are now
tying to understand it better. Many are no longer content to regard it as just a ‘con-
stant of integration’ in Einstein’s field equations. The trend has been to transpose
the �-term from the LHS of the field equations (the geometry) to the RHS (the
sources):

Rµν − 1
2Rλ

λgµν = −κ[Tµν + (�/κ)gµν] (18.19)
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[cf. (18.4) and (18.5)]. Then (�/κ)gµν can be regarded as an additional energy tensor,
and the prevalent view is to regard it as the energy tensor of the vacuum:

T
µν
(�)
= �

κ
gµν. (18.20)

Classically, of course, this seems to be an oxymoron, but according to quantum theory
the vacuum is alive with ‘vacuum fluctuations’ and well capable of having an energy
tensor. A constant multiple of the metric is, in fact, the only form that such an energy
tensor could take, since it must have the same form in all inertial frames. Unfortunately
all reasonable quantum calculations seem to yield a value for the corresponding �

that is many, many orders of magnitude too big.
In the rest-LIF, and in full units, eqn (18.20) reads:

T
µν
(�)
= (c4�/8πG)diag(−1,−1,−1, 1). (18.21)

So, by comparison with (18.1), we conclude that the energy density of the vacuum is
positive and its pressure is negative, both numerically equal:

c2ρvac = c4�/8πG, pvac = −c4�/8πG. (18.22)

On the other hand, the corresponding Newtonian density ρ + 3p/c2, which, via
(18.10), determines the acceleration, is negative:

ρvac−N = ρvac + 3pvac/c
2 = −�c2/4πG. (18.23)

So in the Newtonian picture the cosmological constant acts like an all-pervasive
permanent negative density of the vacuum, which accounts for its ‘anti-gravitating’
effect.

Some further remarks are in order. The objection to having the �-term on the
geometric side of the field equations, where Einstein put it as the only possible
addendum, is that it represents a classically unexplained and pre-existing curvature
−�/3 of the 4-D vacuum [cf. after (14.19)]. Quantum mechanics can make this more
palatable, though the numbers don’t match. The trouble with putting the �-term on
the source side of the field equations is that the rationale for its uniqueness then
disappears: it no longer needs to be a divergence-free ‘geometric’ tensor, built solely
from thegµγ . If one merely looks for an explanation of the observed acceleration of the
universe in terms of some hypothetical ‘dark’ (read: mysterious!) energy, the energetic
vacuum is just one possibility. All one then needs is an isotropic energy tensor (18.1)
with negative effective Newtonian density as in (18.23), namely, p < − 1

3c2ρ. That,
indeed, is the definition of dark energy. In this book we adhere to the geometric view
of �, which is undoubtedly the simplest, though we shall occasionally bow to the
prevalent vacuum-energy interpretation and language.
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F. Multi-component universes

For later reference, we shall generalize Friedman’s differential equation to universes
containing non-interacting dust and radiation. According to the remark after (18.14),
the ρ in (18.9) then becomes ρdust + ρradiation and, because of their assumed non-
interaction, each separately satisfies a conservation equation (18.14). So, in addition
to (18.15) for dust, we can also set

8
3πGρradiationR

4 =: D = const, (18.24)

choosing the multiplier thus for convenience. With that, (18.9) becomes the Friedman-
Lemaître equation:

Ṙ2 = C

R
+ D

R2
+ �c2R2

3
− kc2. (18.25)

In fact, if we wish, we can regard the �-vacuum as a third component not interacting
with the other two, and then the �-term in (18.25) represents its contribution to the
dynamics, which evidently becomes significant only for large R.

Near the big bang, where the last two terms in (18.25) become negligible compared
to the preceding two, and the C-term becomes negligible compared to the D-term if
that exists, we find

R ∼ (4D)1/4t1/2 or R ∼
(

9
4C
)1/3

t2/3 (no radiation). (18.26)

18.3 The Friedman models

A. Introduction

We shall now discuss the solutions of the Friedman differential equation (18.16),
with a view to obtaining and classifying all homogeneous and isotropic GR ‘dust’
universes. These are the Friedman models. We shall pretend, although we know this
to be false, that the substratum behaves like dust all the way back to the big bang; it
was only for about the first 107 years (less than a thousandth of the total) that radiation
played a non-negligible gravitating role, and in many contexts we can ignore this.

It will be convenient to employ units making c = 1, so that Friedman’s equation
reads

Ṙ2 = C

R
+ �R2

3
− k =: F(R)

(
C = 8

3πGρR3). (18.27)

The symbol F(R) is simply an abbreviation for the three terms preceding it; the
parenthesis is a repeat of eqn (18.15), whose sole function is to define C. We can
formally write down the solution at once by quadrature,

t =
∫

dR√
F

, (18.28)
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and we could proceed to the full solution by using elliptic functions [and then inverting
from t(R) to the more interesting R(t)]. In special cases the solution can be obtained
in terms of elementary functions, as we shall see. However, in the general case it
will be enough for us, and more instructive, to give a qualitative rather than an exact
analysis. We preface our discussion with some general remarks:

1. A Friedman model is uniquely determined by a choice of the three parameters
C, �, k, an ‘initial’ value R(t0), and the sign of Ṙ(t0). For eqn (18.27) then gives
Ṙ(t0), and thus, in principle, the solution can be iterated uniquely—unless Ṙ(t0) = 0.
In that one case we must fall back on the parent equation (18.8) to get R̈(t0), and then
again the solution can in principle be iterated uniquely.

2. Since R = 0 is a singularity of the Friedman equation, no regular solution R(t)

can pass through R = 0. Regular solutions are therefore entirely positive or entirely
negative. Moreover, the solutions occur in matching pairs±R(t); this is because, for
physical reasons, we must insist on ρ ≥ 0, which implies that the sign of C must be
the same as that of R—but then eqn (18.27) is unaltered by the change R 
→ −R,
and this proves our assertion. Since only R2 occurs in the FRW metric, we therefore
exclude no solutions by insisting that R ≥ 0 and C ≥ 0.

3. Equation (18.27) also enjoys invariance under the changes t 
→ −t or t 
→
t + const. The first implies that to every solution R(t) there corresponds the same
solution run backwards, R(−t), as was to be expected from the time-symmetry of
the underlying laws; and the second implies that every solution R(t) represents a
whole set of solutions R(t + const), differing only in the zero point of time. Bearing
these properties in mind, we shall so normalize our solutions that of the pair R(±t)

we exhibit the expanding one in preference to the collapsing one, and of the set
R(t + const) we exhibit, if there is one, that member which passes through the origin
t = 0, R = 0.

4. Because of the time-reversibility of (18.8) and (18.9), every ‘oscillating’
Friedman model is symmetric about its point of maximal extension, where Ṙ = 0; for
at that point the model and its time-reversal have identical ‘initial’ conditions. (The
term ‘oscillating’ here is simply synonymous with ‘recollapsing’; genuine oscillations
in the sense of repeating the cycle beyond the ‘big crunch’ are not expected.)

B. The static models

It is well to clear out of the way the static models first; that is, those which have
Ṙ ≡ 0. As we remarked after (18.16), this is the exceptional case in which Friedman’s
equation is insufficient and both its parent equations (18.8) and (18.9) must be used.
These permit Ṙ ≡ 0 provided

k

R2
= � = 4πGρ (≈ 10−57 cm−2). (18.29)
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(In parentheses we give the value of 4πGρ corresponding to ρ = 10−30 g/cm3,
which illustrates the typical smallness of � and of the curvature k/R2.) Equations
(18.29) of course imply ρ = const, and for a realistic solution we need ρ > 0, and
thus k = +1. This gives the so-called Einstein universe, the very first GR model
universe to be proposed (by Einstein, in 1917). The spatial part of the model is the
static 3-sphere we discussed in Section 8.2. To its inventor at the time it seemed to have
every desirable feature. Einstein apparently did not realize that it was unstable: the
slightest contraction will make it collapse, the slightest expansion becomes runaway;
for the former increases the gravitational force on each particle towards any center,
while decreasing the �-repulsion; and the latter does the opposite. (Cf. Ex. 18.5.)

Without the �-term, a non-empty universe (ρ > 0) could be held in static equi-
librium only by a negative pressure, p = −c2ρ/3, as can be seen from (18.8) and
(18.9). Again, k would have to be positive.

The only other way of satisfying (18.29) (less physical but still acceptable as a
limiting case) is k = � = ρ = 0, R = any constant. The transformationRx 
→ x, etc.
in (18.3) then leads to the Minkowski metric, and the model consequently represents
a static, non-gravitating substratum filling an infinite inertial frame.

C. The empty models

Models with zero density (or, equivalently, with ‘gravity switched off’, G = 0),
like Milne’s or the above static Minkowski model, are unrealistic but they provide
important limiting cases. We therefore classify them next. Setting C = 0 reduces
(18.28) to the elementary form (unless � = k = 0)

t =
∫ (1

3�R2 − k
)−1/2 dR, (18.30)

which has the following solutions [apart from (a), which we get directly from (18.27)]:

(a) � = 0, k = 0, R = arbitrary constant

(b) � = 0, k = −1, R = t

(c) � > 0, k = 0, R = exp(t/a)

(d) � > 0, k = 1, R = a cosh(t/a)

(e) � > 0, k = −1, R = a sinh(t/a)

(f) � < 0, k = −1, R = a sin(t/a)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ a = |3/�|1/2.

(18.31)

Models (a) and (b) we already know: (a) is the empty static model and (b) is Milne’s
model; these have identical spacetime backgrounds (M4) but different substrata (that
is, motion patterns). The same is true also of the three models (c), (d), and (e), all
of which have de Sitter space D4 (cf. Section 14.5) for their spacetime background.
(This situation can arise only with the empty models; non-empty models with differ-
ent substrata have different spacetimes.) That models (c), (d), and (e) must share de
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Fig. 18.1

Sitter spacetime is a priori clear, since, as we saw in Section 14.5, D4 is the unique
spacetime that satisfies Einstein’s vacuum field equations with � > 0 and is spa-
tially isotropic about every point; and each of the three models in question has these
properties. The hyperboloids in the first three diagrams of Fig. 18.1 all represent de
Sitter space with two dimensions suppressed, just as in Fig. 14.1. As we mentioned
then, geodesic worldlines correspond to timelike central sections of the hyperboloid.
In the notation of Fig. 14.1, it can be shown that the substrata of models (c), (d),
and (e) correspond, respectively, to plane sections containing one of the following
lines: the line t + x = 0, r = 0; the t-axis; and the x-axis. Lorentz transformations in
the embedding 3-dimensional Minkowski space can carry each of these fundamental
worldlines into the ‘central’ one in models (c) and (e) (cf. Exercise 14.12), which
once more shows the equivalence of all these lines.

Model (c) is the well-known de Sitter universe. Kinematically it is identical with
the steady state universe (16.31). Thus, for example, it has an event horizon. Though
unrealistic because of its zero density, it constitutes a limit to which all indefinitely
expanding models with � > 0 must tend. For, indefinite expansion (R → ∞) in a
general model causes the RHS of eqn (18.27) to be ultimately dominated by the �

term, which leads to R ∼ exp(1
3�)1/2t (a multiplicative constant can be absorbed

by a time-translation); the curvature k/R2 of the model and its density 3C/8πGR3

become ultimately small, so that k = 0 and ρ = 0 are good approximations. As a
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consequence, for example, all indefinitely expanding models with � > 0 possess
an event horizon. The horizon associated with the ‘central’ fundamental observer in
diagram (c) is indicated by a pair of dotted lines (recall that light paths correspond to
generators), and in the diagrams (d) and (e) it must be the same, since in the absence of
density the spacetime is unaffected by the substratum. The significance of the horizon
as the light front that reaches the observer in the infinite future is well brought out by
the diagram.

Model (d) is the analog in D4 of the static model (a) in M4—but it is static only
for an instant, corresponding to the waist circle of the hyperboloid. In contrast to
M4, if you fill D4 with non-gravitating particles that are mutually at rest, this state
cannot last: �-repulsion sets in at once. In this quite unrealistic model the substratum
collapses from infinity down to a state of minimum separation and then expands back
to infinity again. We call it the catenary model, since its R vs. t graph has the shape
of a suspended chain.

Model (e) is the analog of Milne’s model in D4. Here, too, it can alternatively
be regarded as an expanding ball of test dust (‘horizontal’ sections), bounded by a
spherical light front. Its expansion, however, is speeded by � repulsion. Both models
have k = −1 and in the beginning they look very much alike, with R ∼ t .

Model (f), in the same way, is the analog of Milne’s model in anti-de Sitter space D̃4

(cf. Section 14.6). Slowed by � attraction, this test-dust ball finally stops expanding
and recollapses. Its substratum corresponds to central sections of the appropriate
hyperboloid, all containing an axis perpendicular to the symmetry axis.

Finally, it is evident from inspection of the diagrams, that models (c), (e), and (f)
are all non-maximal (just like Milne’s model) in the sense of there being more space
than substratum.

D. The three non-empty models with � = 0

For many cosmologists and for many years, these three models were the only models
ever considered seriously. The vanishing of � was taken so much for granted that
it was not even stated as an assumption. Putting � = 0 and C �= 0 in Friedman’s
equation (18.27) makes that equation quite straightforward to solve. For k = 0 we
immediately find

R = ( 9
4C
)1/3

t2/3 (k = 0). (18.32)

This model is called the Einstein–de Sitter universe. It is the one that just has the escape
energy at the big bang and makes it to infinity with no energy to spare. Its parame-
ters satisfy some simple relations. For example, from the parenthesized equation in
(18.27), it follows that

ρ = 1

6πGt2
. (18.33)

And differentiating (18.32) leads to Ṙ/R = 2
3 t−1, so that

Ht = 2
3 . (18.34)
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With h = 0.7 this last would imply [cf. (16.3)] t0 ≈ 14 × 109 years and thus, from
(18.33), ρ ≈ 0.9× 10−29 g/cm3, distinctly on the high side [cf. (16.6)].

When k �= 0, the solutions are as follows:

k = 1 : t = C[sin−1
√

X −
√

(X −X2)],

k = −1 : t = C[
√

(X +X2)− sinh−1
√

X],

}
(X = R/C). (18.35)

By putting X = sin2(χ/2) and X = sinh2(χ/2), respectively, we can also express
these solutions parametrically:

k = 1 : R = 1
2C(1− cos χ), t = 1

2C(χ − sin χ), (18.36)

k = −1 : R = 1
2C(cosh χ − 1), t = 1

2C(sinh χ − χ). (18.37)

The k = −1 model was once a serious contender for the actual universe. We see from
(18.37), since cosh χ ∼ sinh χ and sinh χ � χ for large χ , that R ∼ t and so the
model ultimately resembles the Milne universe. (Except for one difference: no matter
how old this universe gets, each fundamental particle is still surrounded somewhere
by its ‘creation light front’ —the particle horizon.)

Though even less likely to represent the actual universe (according to present data),
the k = 1 model is more interesting in itself. Geometers will recognize in eqn (18.36)
the parametric equation of a cycloid; that is, the curve traced out by a point on the
rim of a rolling circle. Here the radius of that circle is 1

2C, and χ is the angle through
which it turns. (The graphs of all three models are shown in Fig. 18.2.)

The full range of χ for the cycloidal universe is 0 to 2π ; its maximal radius is given
by Rmax = R(χ = π) = C, and its total duration by ttot = t (χ = 2π) = πC. Let us
define the total mass M of any closed universe as the product of the density and the
volume at any cosmic instant. The volume is that of a 3-sphere of radius R, which is
2π2R3 (as we have seen in Section 8.2). Consequently we have, using the definition
of C in (18.27),

M := 2π2R3ρ = 3πC/4G. (18.38)

Fig. 18.2
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As has been stressed by Lynden-Bell, this relation makes the cycloidal universe
‘Machian’ in a sense that the k = 0 and k = −1 universes are not. For if � = 0, and
a total finite mass M is decided on, the model is unique: a finite mass always implies
k = +1 and then M fixes C and thus the entire cycloidal spacetime. In the limit of
zero mass, C = 0 and there is no spacetime. Looking at this slightly differently, we
are struck by a powerful constraint that the field equations impose on the big bang of
a cycloidal universe: whereas a Newtonian ball of given mass M can be ‘exploded’ so
as to recollapse at any desired future time, the same is evidently not true for cycloidal
universes. Even for � �= 0, the situation is essentially the same: A finite choice of M ,
via (18.38) and (18.27), then determines the entire expansion history of the universe.

As we saw in (18.26), all non-empty big-bang dust models share the behavior
R ∼ ( 9

4C)1/3t2/3 near t = 0. In particular, therefore, it can be seen that they all
have a particle horizon. Moreover, because of the symmetry of oscillatory models
about the point of maximal extension, and because a particle horizon becomes an
event horizon under time-reversal, it is seen that all non-empty oscillatory models
have both a particle horizon and an event horizon.

E. Non-empty models with � �= 0

If we allow arbitrary values of �, the variety of possible solutions increases sub-
stantially. To obtain a qualitative overview of this class of solutions of the Friedman
differential equation (18.27), we begin by rewriting it in the form

Ṙ2 + k = C

R
+ �R2

3
=: f (R, �), (18.39)

and, of course, we assume C > 0. The function f (R, �), defined by the last equation,
will serve as a kind of potential, playing a role analogous to that of V (r) in the
qualitative solution of the Schwarzschild orbit equation (11.34). Figure 18.3 shows
some level curves of this function, f (R, �) = m(m = −1, 0, 1

2 , 1, 3
2 , . . . ), drawn for

some fixed C value. They are obtained by setting f = m in (18.39) and solving for �:

� = 3(mR − C)

R3
. (18.40)

These curves have one of two characteristic shapes, according as m ≤ 0 or m > 0. In
the former case, they lie entirely below the R axis, but approach that axis monoton-
ically from below. In the latter case, they cross the R axis (at R = C/m), proceed to
a maximum, and then approach the R-axis monotonically from above. In all cases,
� ∼ −3C/R3 near R = 0.

If we differentiate eqn (18.39) with respect to t , we find (after dividing by Ṙ)

2R̈ = ∂f

∂R
= − C

R2
+ 2�R

3
, (18.41)
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Fig. 18.3

whence the locus of R̈ = 0 is given by

� = 3C

2R3
. (18.42)

This is shown in Fig. 18.3 as the dotted line. Above this locus we have R̈ > 0,
below it, R̈ < 0. It will be noticed that this locus passes through the maxima of the
level curves. This is no accident; differentiating f (R, �) = m, we find d�/dR =
−(∂f/∂R)/(∂f/∂�), and so the maxima occur where ∂f/∂R = 0, which, by (18.41),
is where R̈ = 0.

The maximum point of the level curve f = 1 (marked E in the diagram) has
‘coordinates’

R = 3C

2
, � = 4

9C2
=: �E, (18.43)

precisely the values corresponding to the Einstein static universe [cf. (18.29) and
(18.27) (ii)]—hence the notation �E .

Now each Friedman model has � = const. We can therefore obtain solutions by
choosing any physically possible starting point (Ṙ2 ≥ 0!) in Fig. 18.3 and proceeding
horizontally. The level curves we cross tell us the value of Ṙ2 (once we have chosen
k), and thus the slope of the solution curve, up to sign. The level curves f = −1, 0, 1
(heavy lines) are of particular importance: for the respective cases k = −1, 0, 1, they
are the locus of Ṙ2 = 0 and they constitute the upper boundaries of the ‘prohibited’
regions where Ṙ2 < 0.

If we start at R = 0 and � < 0, we necessarily get an oscillating universe.
According as we choose k = 1, 0, or −1, the critical level curves will be f = 1, 0,
or −1, respectively; these cannot be crossed, since Ṙ2 is negative beyond them. Our
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Fig. 18.4

solution curve R(t) therefore starts with infinite slope Ṙ, which gradually decreases
and becomes zero at the critical curve. However, at that point in the diagram, R̈ < 0,
and thus Ṙ must go on decreasing; since we cannot cross the critical level curve,
we get the decreasing half of an oscillating model by going back along the same
horizontal (O1, O2, or O3) to R = 0, this time choosing the negative value of Ṙ. All
the corresponding solution curves are shown schematically in Fig. 18.4 as O.

If we start at R = 0 and � > 0, and choose k = 0 or−1, we do not get stopped by
a critical level curve; Ṙ at first decreases from its original infinite value to a minimum
at the R̈ = 0 locus and then increases again. The result is an inflexional universe (see
I in Figs 18.3 and 18.4).

The choice k = 1 and � > 0 yields a richer variety of solutions. The critical level
curve is now f = 1. For starting points at R = 0 in Fig. 18.3, we get inflexional
universes (I ) if � > �E , and oscillatory universes (O) if � < �E . If � = �E ,
we approach the critical curve at its maximum E: there, all derivatives of R vanish,
and the solution curve flattens out into a straight line. This corresponds to a big
bang universe which approaches the Einstein static universe asymptotically (E1 in
Figs 18.3 and 18.4). By choosing � > �E but close to �E , we can construct
inflexional models with arbitrarily long quasistationary periods, as in Fig. 17.2. If
we start on the other side of the ‘hump’ of the critical curve (that is, with large R

and � < �E) and proceed horizontally to the left in Fig. 18.3, Ṙ2 decreases from
large values to zero (and R̈ > 0), and we get one half of a rebounding universe (B);
the other half corresponds to going back along the same horizontal with the opposite
sign of Ṙ. Like oscillatory universes, rebounding universes are symmetric about their
stationary point, and for the same reason. Observe that for identical C, � (and k = 1)
we can get two different types of model, depending on the initial value of R. Similarly,
if for � = �E we approach the critical point E from the right, we get a universe
which decreases from infinite extension and approaches the Einstein static universe
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asymptotically; we prefer to exhibit this model in time-reversed (expanding!) form:
E2 in Figs 18.3 and 18.4. Thus, for � = �E (and k = 1) there are three different
models, including the Einstein static universe E.

Figure 18.4 shows the various solution curves schematically; they are labeled
according to the signs of � and k, in this order. The dashed curve, contrary to our
premise C �= 0, represents the empty de Sitter universe; it is included here to show its
role as an ‘asymptote’ to all indefinitely expanding models with � > 0. It can be seen
from both Figs 18.3 and 18.4 that the Einstein universe is unstable: a slight perturba-
tion will set it on the course E1 (in collapsing form), or on the course E2 (expanding).
In fact, the expanding universe E2 can be regarded as the result of a disturbed Einstein
universe, and on this interpretation it is called the Eddington–Lemaı̂tre universe.

As we have seen, all models with C = 0 or with � = 0 allow representation by
elementary functions. The same is true also for models with k = 0:

R3 = (3C/2�)[cosh(3�)1/2t − 1] (� > 0, k = 0), (18.44)

R3 = (3C/|2�|)(1− cos |3�|1/2t) (� < 0, k = 0). (18.45)

These models are of type I and O, respectively. In fact, as we shall see, (18.44) is a
model that is currently highly favored by the observations.

18.4 Once again, comparison with observation

Now that we have subjected the FRW metric to the field equations (assuming pure
‘dust’ universes, as we shall continue to do), we still find ourselves left with an
embarrassingly large choice of possibilities. But whereas feasible observations have
little impact on the unrestricted FRW models, they can much more easily decide
between the dynamically possible ones. To show this, it will be convenient to work
with the following three functions of cosmic time:

H = Ṙ

R
, � = 8πGρ

3H 2
, q = − R̈

RH 2
, (18.46)

in full units. We have met all of these before: H is the Hubble parameter and has
dimension (time)−1;� is the dimensionless density parameter, and q is the dimen-
sionless deceleration parameter. In principle, the present values of these parameters
can be determined by observation: H and q from relations such as (17.26), and �

from estimates of ρ.
In terms of these functions we can now rewrite (i) eqn (18.15), (ii) eqn (18.10)

(with p = 0), and (iii) eqn (18.8) (with p = 0) minus three times eqn (18.9) (we are
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again working in units that make c = 1):

(i) � = C/H 2R3; C = �0H
2
0 R3

0 (18.47)

(ii) 1
2�− q = �/3H 2; � = 3H 2

0

( 1
2�0 − q0

)
(18.48)

(iii) 3
2�− q − 1 = k/H 2R2; k = H 2

0 R2
0

( 3
2�0 − q0 − 1

)
. (18.49)

The second entry in each line solves for one of the constants C, �, k; and since these
are constants, we can evaluate their representations at any time, in particular at the
present time t = t0; that is the significance of the suffixes zero.

From the second entries in (18.47)–(18.49) it is seen that if we know H0, �0, and
q0, we can first determine � and k/R2

0 (which yields k and R0 unless k = 0, in which
case R0 is arbitrary anyway), and finally C. And, as we have seen, �, k, C, and R0
determine a unique Friedman model. Unfortunately this persuasively simple scheme
does not quite work out in practice: the uncertainties in the current determinations of
�0 and q0, and, to a lesser extent, of H0, are so great that no tight conclusions are
possible from these equations. But Robertson had the idea of coupling these three
uncertain data with a fourth: t0, the age of the universe. Some models can then be
eliminated simply because they are too young or too old.

Before we go into this, we digress briefly to discuss conditions for the universe
to be closed (k = 1). One sufficient but by no means necessary condition would
evidently be q0 < −1 [cf. (18.49)]. Next, from (18.48), observe that

� = 0 ⇔ q0 = 1
2�0, (18.50)

and then (18.49) yields

k � 0 ⇔ �0 � 1 (� = 0). (18.51)

So in the days when � = 0 was assumed as a matter of course, �0 = 1 characterized
the critical density beyond which the universe would be closed (k = 1) and conse-
quently recollapse, given its present rate of expansion (cf. Fig. 18.2). But suppose
� �= 0. In that case one can define a dimensionless ‘density parameter of the vacuum’
[cf. (18.22)]:

�� := �c2

3H 2
= 8πGρvac

3H 2
(18.52)

(in full units). From (18.48) we then have

�� = 1
2�− q, (18.53)

so that in (18.49) we can eliminate q0 in favor of ��0:

k = H 2
0 R2

0[�0 +��0 − 1]. (18.54)

Instead of (18.51) we now have:

k � 0⇔ �0 +��0 � 1. (18.55)
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But k > 0 is no longer necessarily coupled with recollapse, nor is k < 0 necessarily
coupled with indefinite expansion. Reference to Fig. 18.4 shows that with � �= 0 a
closed universe may well expand indefinitely while an open one may recollapse.

We now return to Robertson’s idea of using the age of the universe as an additional
model parameter. We reject as unrealistic the few non-big-bang models shown in
Fig. 18.4, so that we can speak of a present age t0. Let us begin by substituting from
(18.47)–(18.49) into Friedman’s differential equation (18.27). This yields

ẏ2 = H 2
0 {�0y

−1 + ( 1
2�0 − q0)y

2 + (1+ q0 − 3
2�0)}, y := R/R0. (18.56)

Setting R(0) = 0, we then have

H0t0 =
∫ t0

0
H0 dt =

∫ 1

0
{ }−1/2dy =: φ(�0, q0), (18.57)

where the empty brace denotes the braced expression of (18.56). The values of this
integral for different choices of �0 and q0 can be machine calculated, and thus the
relation between H0t0, �0, and q0 established (cf. Table 18.1).

We knowingly commit a small error in computing t0 by treating the universe as
‘dust’ all the way back to the big bang, instead of allowing for the influence of radiation
during the first ten-million years or so. But we can afford an error of 0.1 percent.

Since eqn (18.56) can be written as Ṙ2/Ṙ2
0 = {}, and since the contents of the

brace are dimensionless, that equation is invariant under independent scale changes
in R and t . It accordingly determines R(t) only up to such rescalings. But eqn (18.49)
determines Ṙ0 uniquely (unless k = 0), and so the scale changes in R and t must be
the same (unless k = 0). Therefore, since H0t0, �0 and q0 are related by (18.57), any
two of these parameters determine a Friedman model up to scale; and more cannot
be expected of dimensionless parameters. Any additional dimensional datum like H0
or t0 or ρ0 will then determine the scale and thus the full model.

In the phase diagram, Fig. 18.5, where every point corresponds to the present state
of a unique Friedman big-bang model (up to scale), we could have chosen any two
of the three parameters H0t0, �0, q0 as ‘Cartesian coordinates’, marking the third in

Table 18.1 H0t0 as a function of q0 and �0

q0

�0�
��

0.1 0.2 0.3 0.4 0.5

1.5 0.690 0.671 0.657 0.644 0.634
1.0 0.743 0.719 0.701 0.686 0.673
0.5 0.812 0.781 0.758 0.739 0.723
0.0 0.910 0.866 0.835 0.810 0.789
−0.5 1.070 0.998 0.949 0.912 0.882
−1.0 1.436 1.256 1.156 1.087 1.036
−1.5 1.994 1.586 1.404
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Ο

oscillating

non-oscillating

Fig. 18.5

the form of contour lines. The choice H0t0 and log �0 turns out to be convenient.
There are three important demarkation lines in this diagram: (i) that which separates
� > 0 from � < 0 models, (ii) that which separates k > 0 from k < 0 models, and
(iii) that which separates oscillating from non-oscillating models. As one sees from
(18.48), the first of these, the locus � = 0, corresponds to the curve

1
2�0 − q0 = 0. (18.58)

The second, the locus k = 0, by (18.49) corresponds to the curve

3
2�0 − q0 − 1 = 0. (18.59)

As for the demarkation between oscillating and non-oscillating models, we see from
Fig. 18.3 that for k = 0 or k = −1, it is simply � = 0 and thus the curve (18.58).
But for k = 1, the required boundary is � = �E = (4/9)C−2. Substituting these
values for � and k into eqns (18.48) and (18.49), and then eliminating R0 from eqns
(18.47)–(18.49), we find the following equation for this locus:

27
( 1

2�0 − q0
)
�2

0 = 4
( 3

2�0 − q0 − 1
)3

. (18.60)
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It is represented by the dotted line in the diagram. At k = � = 0 all the above
loci meet; this point is given by �0 = 1, q0 = 1

2 , H0t0 = 2
3 and corresponds to the

Einstein–de Sitter universe (18.32). So the boundary between oscillating and non-
oscillating models runs along the curve � = 0 up to where that curve intersects the
locus k = 0, and then proceeds independently into the k, � > 0 domain. Models lying
on or above this boundary do not oscillate, while those below do. Each point on the dot-
ted line represents anE1 universe (cf. Figs 18.3 and 18.4), while each point on the other
branch of the boundary (� = 0) represents a model of type (18.37). For each oscillat-
ing model there always are of course, two cosmic times (symmetric with respect to the
time of maximum extension) that correspond to the same pair of values �0 and q0; our
phase diagram gives the earlier time, corresponding to the expansive period. For it is
based on the positive root in (18.57), namely on H0 > 0, the one certain empirical fact.

Observations can set limits on the possible values of the parameters H0t0, �0, and
q0. Together these limits determine a patch of possible models in the diagram. The
patch we have marked in the middle of Fig. 18.5 corresponds to 0.65 < h < 0.75,
13 × 109y < t0 < 15 × 109y, and 0.2 < �0 < 0.4 (and thus 0.86 < H0t0 < 11.5 and
−0.7 < log �0 < − 0.4). This rectangle lies essentially all above the q0 = 0 line.
That shows that the H0, t0 and �0 data independently imply an accelerating universe,
quite apart from the direct supernova evidence. The patch also straddles the line
k = 0. That is consistent with the claimed prediction of inflationary cosmology (see
Section 18.5), but also with the more direct evidence for a very nearly flat universe
that has come from an analysis of the micro-anisotropies of the background radiation.
(The angular separation of the minute temperature fluctuations in this radiation, as
seen on the ‘surface of last scattering’, can be predicted for each of the possible
geometries, k = 0, 1, or −1, of the intervening space; and k = 0 seems to match the
data best.) Now k = 0 leads, via (18.55), to the presently much cited equality

�0 +��0 ≈ 1.

Together with �0 ≈ 0.3 it implies ��0 ≈ 0.7, and thus the predominance of myste-
rious ‘vacuum’ or ‘dark’ energy over matter energy in the ratio 3:7. Add to that the
already mentioned predominance by at least 1:10 of equally mysterious ‘dark matter’
over ordinary matter, and we are left with less than 3% of the contents of the universe
that we understand!

To take us into k > 0 territory (closed Friedman models have certain philosophical
attractions, see end of Section 16.4 and penultimate paragraph of Section 18.3D)
would require relatively large values of H0, t0, �0 and −q0. For example, with
�0 = 0.3 we would need, from (18.49), q0 < − 0.55, which from Table 18.1,
requires H0t0 > 1.03, as when h > 0.72 and t0 > 14× 109y.

Inspite of all the uncertainties, we have come a long way in the last two decades
towards at least determining ‘the’ correct Friedman cosmological model. But we
should always bear in mind that unexpected discoveries or changes in paradigm
(String theory? M-theory?) might yet invalidate much of our apparent progress.
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18.5 Inflation

In the last two sections of this book we report on two rather speculative topics,
which the reader (according to taste) can either accept or reject. But since they form
part of the present-day cosmological debate, it is well to be informed about them. The
first of these topics is inflation. It affects only the first 10−35 s (!!) of the universe.
Thereafter the inflationary model agrees kinematically with the standard FRW model,
except for one important detail: the size of the particle horizons (creation light fronts)
around each fundamental particle, both now and at all earlier times, are many, many
orders of magnitude larger with inflation than without it. And this is one of its often
cited attractions: inflation, it is claimed, solves the smoothness problem with its large
horizons. But it also has important implications for cosmogony.

Though the basic idea, like most novel ideas, had precursors (Zeldovich, Starobin-
sky, Sato, etc.), inflation in its modern form was first put forward by Guth in 1980.
Since then many cosmologists (especially those coming to cosmology from particle
physics) have strongly rallied to this theory, even though it is still very largely based
on pure hypothesis. Others, perhaps remembering the equally strong attachment that
many people (possibly they themselves) felt for the equally hypothetical steady state
theory during the fifties of the last century, have remained more skeptical.1

Inflationary cosmology is based on not yet fully established ‘grand unified theories’
(or GUTs). According to these theories, the quantum vacuum is stable at the highest
temperatures, but then, some 10−37 s after the big bang, when the temperature had
dropped to a critical value of ∼1027 K, the vacuum became unstable but still highly
energetic. This ‘false’ vacuum is described by an energy tensor having precisely the
form of the cosmological term in Einstein’s field equations but with a huge �, some
100 orders of magnitude greater than today’s ‘cosmological’ �. (Cf. Section 18.2E.)
At this stage, or soon thereafter, the vacuum energy begins to dominate that of any
other matter or radiation present, and causes a rapid expansion of the universe, by a
factor of∼1043, in a mere 10−35 s. The expansion is exponential, just like that of the
de Sitter model [cf. (18.31)(c)], and for the same reason, namely the (here temporary)
presence of a � term in the field equations, albeit with a different interpretation. The
positive vacuum density corresponding to the � term remains constant throughout
this expansion [cf. (18.22)]. As a consequence, the matter-energy content of each
comoving volume increases in proportion to that volume. In Guth’s phrase, this was
‘the ultimate free lunch’. In inflationary cosmology the big bang itself was a mere
‘big whimper’, most of the matter-energy of the universe being created during the
inflationary phase. When this phase comes to an end, the false vacuum becomes a
real vacuum and its energy is converted into radiation. From here on the universe
is kinematically and dynamically indistinguishable from one that could have been
created by a standard big bang of the right strength.

1 For two recent and sympathetic accounts of inflation, see, for example, A.H.Guth, Physics Reports
333–334,555 (2000) and A. Linde, ibid., p. 575. For a strong critique, see R. Penrose, loc. cit. (Footnote
1 on p. 380.)



412 Dynamics of FRW universes

REI = 10–25 R0

t

RBI

× 1043

R

10–35 s

BBBW tBI tEI

BOTH

CH

AOS

IN
FL

A
TI

O
N

ST
A

N
D

A
R

D

Fig. 18.6

Fig. 18.6, which is obviously not drawn to scale, schematically illustrates the
relation between standard Friedman and inflationary cosmology2; BB stands for big
bang, BW for big whimper, and BI and El for beginning and end of inflation. We know
that the present conditions of our universe (age, density, expansion, acceleration) in
principle determine a unique Friedman model—and inflationists have no quarrel with
that. We can follow this model back in time. Somewhere around decoupling time,
for increased accuracy, we can replace the dust model by a radiation model, and
still, inflationists have no quarrel with that. Only after we come to a radius of about
10−25R0 do the backward continuations diverge: the inflationary R drops somewhat
more gently. But since the divergence of the two models in that miniscule earliest
stretch of time has essentially no effect on the calculated age of the universe, inflation
is irrelevant in the empirical determination of the correct Friedman model along the
lines of the preceding section.

It is perhaps worth taking a closer look at the join between the two models at tEI.
For dynamical reasons Ṙ must be continuous at the end of inflation, as can be seen
from eqn (18.9): During inflation � is constant and ρ essentially zero: whatever non-
vacuum ρ was present before inflation is quickly dissipated by the expansion. At the
end of inflation the term −�/3 [or −8πGρvac/3c2, cf. (18.22)] shifts to the RHS,

2 I am grateful to Professor John Peacock for drawing my attention to a significant error in my previous
version of this Figure.
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with ρvac 
−→ ρ: Ṙ and k do not change. (The ‘cosmological’ �-term is still totally
negligible then.) So at R = REI the accelerating branch of inflation smoothly joins
the decelerating branch of standard cosmology, and so must lie to the left of it, and
be slower.

There is actually a conceptual problem with the sudden appearance, at the end of
inflation, of a material (mainly radiative) substratum performing Hubble expansion
on what was essentially, up to that time, a featureless Lorentz-invariant vacuum. How
does each newly created particle know its required momentum at birth, or, in other
words, the Hubble flow at its location? During inflation, which enlarged the universe
by a linear factor of ∼1043, the density remained constant, so that only one part in
103×43 of the final matter-energy was present initially. Our observable universe of
some 1011 galaxies thus grew out of a patch of pre-inflationary matter-energy equiv-
alent to only 10−118 of a galaxy or 10−48 of a proton. The rest came into being
at tEI. It is hard to see how that miniscule remnant of primordial matter-energy
could have provided at tEI a matrix for the new substratum; and if not that,
then what?3

As we have already mentioned, there is one main difference between the universe
that emerges from inflation at tEI and the corresponding FRW big-bang universe at
that juncture. The former has vastly more inclusive past light cones at each point. To
see why, consider the inflationary epoch from tBI to tEI and during that time let R =
A exp(H t), with A, H constant, assuming for simplicity that k = 0 [cf.(18.31)(c)].
Then for the ‘conformal’ time TBI reckoned backward from tEI [cf.(17.7)(ii)] we have

|TBI| =
∫ E1

B1

dt

R
=
∫ E1

B1

dR

RṘ
=
∫ E1

B1

dR

HR2

= 1

H

[
1

RBI
− 1

REI

]
≈ 1

HRBI
. (18.61)

And this can be made arbitrarily large by simply choosing RBI small enough.
Qualitatively the reason for the enlarged particle horizon is to be found in the rela-

tively shallow part that all exponential curves have, namely the initial slow expansion
phase. In terms of the balloon picture, the beetles (photons) can cover large comoving
angular distances ψ at small radius before that radius swells in earnest and frus-
trates much further ψ-progress. It is sometimes said that inflationary horizons are big
merely because the ‘huge expansion’ stretches them; but, of course, the comparative
Friedman models must expand every bit as hugely.

So by the time of recombination our visible universe could well have had time to
thermalize. But how this solves the smoothness problem is unclear on two counts.
First, there was so little real matter in the universe to thermalize during inflation.
And secondly, the above analysis of the inflationary period, including the horizon
stretching, was based on FRW formalism, and thus on the assumption of already
achieved homogeneity-isotropy!

3 Cf. P. Anninos, R. A. Matzner, T. Rothman, M. P. Ryan Jr., Phys. Rev. D 43, 3821 (1991).
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An alternative argument current in inflationary literature is that the patch of pri-
mordial matter that later became our visible universe (the 10−48 proton equivalent
referred to earlier) had accidentally homogenized during the lull before inflation set
in – homogenized, in fact, to a sufficient degree to justify Friedmanian evolution. The
large horizons then encouraged even greater smoothing to occur. In this connection it
may be of interest to note that in all FRW models the metric size of the particle hori-
zon near the big bang is proportional to 1/

√
ρ (cf. Exercise 18.6). This may be some

indication of the relative ease of homogenization even out of chaos, if the density is
sufficiently low. (But also recall Penrose’s criticism on p. 380.)

A second problem often cited as having been successfully solved by inflation is the
so-called ‘flatness problem’. This refers to the perceived improbability, in standard
cosmology, of finding our present universe so very nearly flat. Inflation, on the other
hand, claims to predict flatness. According to inflation, the early universe expands
exponentially, driven by something equivalent to a huge cosmological constant �. The
pre-inflation energy density quickly dissipates and leaves essentially pure vacuum.
So the possible Friedman solutions for this phase are the models (c), (d) and (e)
of (18.31).

The corresponding �� [cf. (18.52)] are easily calculated; they are, respectively,

�� = 1, coth(�/3)1/2t, tanh(�/3)1/2t. (18.62)

At the end of inflation, therefore, no matter which of the three models, �� = 1, either
exactly or to very high accuracy. All other density has dissipated by then, and so the
flatness condition � + �� = 1 [cf. (18.55)] is satisfied to very high accuracy. Yet
we cannot conclude k = 0. Eqn (18.54) still yields, not surprisingly, k = 0, 1,−1
in the respective three cases. It seems that the only inflational argument for flatness
is not that k = 0 but that R is necessarily very big with inflation, so that the actual
curvature k/R2 is is very small.

One crucial contribution that inflation has made, and which no other theory has so
far matched, is to predict the fine structure of the temperature fluctuations in the cosmic
microwave background across the surface of last scattering. Accordingly the results
of the COBE satellite observations in 1992 were anxiously awaited. And, indeed, they
seemed to confirm the predictions. Even stronger confirmation came from the later
‘Boomerang’ balloon experiment and from the WMAP satellite. These predictions,
moreover, are of great importance in the problem of how inhomogeneities formed in
the substratum that eventually led to the formation of structures like the galaxies.

We may also mention the solution of the ‘monopole problem’. This has been
called an internal problem, since to perceive it as a problem you must believe in
grand unified theory to start with. But then indeed you have a problem explaining
where all the magnetic monopoles went, that should have been created at ∼1027 K.
According to this theory, monopoles of enormous energy (∼1016 GeV) should occur
at a spacing of about one per particle-horizon volume at the end of inflation. If the
particle horizons were as small as in standard cosmology (cf. Exercise 17.10), the
mass density of monopoles would exceed that of baryons by a factor 1014! With
inflation, on the other hand, there is at most one monopole in the universe we see.
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18.6 The anthropic principle

It would be reassuring if one could believe that our universe (which seems destined
to expand indefinitely and suffer a freezing death) is not the sum-total of all physical
existence. A philosophically persuasive line of argumentation has, in fact, led some
modern cosmologists to posit the existence of infinitely many alternative universes,
all with possibly different physical constants and different initial conditions. For them
that seems to be the only scientific way out of a profound puzzle: why is our universe
favorable to human existence? The number of lucky ‘coincidences’ required to pro-
duce an environment in which life as we know it is possible, seems to defy the laws of
chance.

Let us begin with the big bang. A slightly lower initial expansion rate, or higher
density, or higher constant of gravity, would have made the universe recollapse and
reheat before it had time to cool sufficiently to make life possible. A slightly higher
expansion rate, or lower density, or lower gravitational constant, would have thinned
the matter too fast for galaxies to condense. It takes billions of years to cook up and
distribute the basic building blocks of life (carbon, oxygen, and nitrogen) in the only
suitable furnaces, the interiors of stars. A life-supporting universe must get to be at
least that old, and its laws must permit the process. For example, it is ‘lucky’ that
the nuclear force is not quite strong enough to allow the formation of ‘diprotons’
(proton+proton), a process that would have quickly used up all primordial hydrogen
and so deprived the stars of their fuel, and life of one of its bases. Yet that force is just
strong enough to favor the formation of deuterons (proton+ neutron), without which
higher nucleosynthesis cannot proceed. Without a ‘lucky’ energy level in the carbon
nucleus the formation of carbon out of helium (3He4 → C12 + 2γ ) would have
failed. But equally luckily, the oxygen nucleus has an energy level that prevents the
reaction C12 +He4 → O16, which would have depleted the carbon as soon as it was
formed. And so it goes on.

Examples of this kind abound also in other branches of science. Here we shall
mention only two. One from biology: apparently the whole basis of life (DNA)
would be in jeopardy if the charge or mass of the electron were only slightly different
from what they are. And an example from ecology: water possesses the rare yet vital
property that its solid form (ice) is lighter than its liquid form. As a consequence,
lakes freeze over in winter and the ice protects the life below, possibly even emerging
life. Were it otherwise, more and more ice would grow from the bottom upwards
without melting in the summers, until lakes and oceans were frozen solid.

Can all these ‘lucky’ coincidences be due to pure chance? The law that multiplies
probabilities makes this highly unlikely. One can perhaps hope for the eventual dis-
covery of a ‘Theory of Everything’—a theory that fixes all the laws and constants of
nature and shows our universe to be unique. But that would only deepen the mystery:
why does the only possible universe permit life? One supposition that cannot be dis-
proved is that a benevolent deity so designed the world. But it is part of the credo
of modern science not to invoke a deity to explain physical facts. (Newton did not
yet feel that so strongly: he believed that God would have to intervene periodically
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to adjust the planetary orbits, since it seemed to him that the mutual gravity of the
planets would lead to instabilities. It took a hundred years before Laplace was able
to solve the stability problem the modern way.) Out of all these difficulties grew the
anthropic principle: if there are infinitely many alternative universes, then there is
no mystery in finding ourselves in one that permits our presence.4 A belief in the
existence of other universes may be strengthened by the consideration that whatever
physics permitted one big bang to occur might well permit many repetitions. Certainly
in our limited experience, whatever can occur does occur, repeatedly. And so there
may yet be grounds for a cautions cosmic optimism!

Exercises 18
18.1. Consider the Newtonian ball (part of a Friedman universe) which we dis-

cussed in Section 18.2C. Prove that its total kinetic energy is given by T =
2
5πρH 2R5a5, with H = Ṙ/R, and its total potential energy (in the absence of �)

by V = − 16
15π2ρ2GR5a5, if the zero-point is at infinity. Deduce that �, as defined

in (18.46) (ii), is the absolute value of the ratio V/T for every little ball making up
the universe. Also show that Friedman’s differential equation (18.27), for � = 0,
coincides with the Newtonian energy equation of each such ball. Is this implicit in
(18.22)?

18.2. Prove that, in Newtonian theory, a self-gravitating ball of homogeneous dust,
moving instantaneously according to Hubble’s law, maintains both homogeneity and
Hubble’s law.

18.3. Obtain the following three ‘purely radiative’ solutions of eqn (18.25) without
the � term and with c = 1:

R = (4D)1/4t1/2 (k = 0)

(t −
√

D)2 + R2 = D (k = 1)

(t +
√

D)2 − R2 = D (k = −1),

and plot the corresponding R versus t graphs: half a parabola, a semicircle, a quarter
of a hyperbola.

18.4. Obtain the following exact solution of eqn (18.25) for a flat dust-plus-
radiation universe without �:

t = 1

3C2
(2CR − 4D)(CR +D)1/2 + 4

3

D3/2

C2
.

18.5. As has been pointed out by B. Ryden5, the Einstein universe would collapse
out of equilibrium if some or all of its matter were converted to radiation, for example,
by the stars. Prove this. [Hint: energy conservation and eqn (18.10).]

4 A full and excellent account of this topic can be found in the book by J. D. Barrow and F. J. Tipler,
The Anthropic Cosmological Principle, Oxford University Press, 1986.

5 B. Ryden, Introduction to Cosmology, Addison-Wesley 2003, p.61.
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18.6. (i) For the flat pure dust and pure radiation models without �-term, R ∝ t2/3

and R ∝ t1/2, prove that the proper distance to the particle horizon is given by 3t

and 2t , or ( 2
3πGρ)

− 1
2 and ( 8

3πGρ)
− 1

2 respectively. (ii) For the t2/3 universe, find
today’s proper distance to a source which emitted the light whereby we see it when
the radius of the universe was α times what it is today. [Answer: 3t0(1−

√
α).] (iii)

For the t2/3 universe, what is the proper distance to the particle horizon today (in
light years) and what multiple of today’s distance to the ‘sphere of last scattering’ is
that? [Answer: multiple ≈ (1− 10−3/2)−1 = 1.033.]

18.7. For the cycloidal universe (18.36), prove dt/R = dχ . Deduce that a ‘creation
photon’ circles the universe exactly once between big bang and big crunch. [Hint:
(17.2).]

18.8. For the cycloidal universe (18.36), prove that the fraction of the total volume
visible at parametric time χ is (χ − sin χ cos χ)/π . Thus, at half-time (χ = π), the
whole universe is already visible. [Hint: (8.6) (ii).]

18.9. For the cycloidal universe (18.36), prove � = 2/(1 + cos χ). Hence prove
that the inequality � < 2 holds for 18 per cent of the full time range of this universe.

18.10. For the hyperbolic universe (18.37), prove dt/R = dχ and � = 2/(1 +
cosh χ). Find χ0 and C if �0 = 0.3 and t0 = 1.4×1010 years. Hence find the proper
distance of the particle horizon today. [Answer: ∼5× 1010 light-years.]

18.11. Describe how to construct closed oscillating models in which each creation
photon circles the universe arbitrarily often between big bang and big crunch. [Hint:
Fig. 18.3.]

18.12. Find the range of values of � and R0 for the models within the viable patch
shown in Fiq. 18.5.

18.13. For a pure radiation universe [eqn (18.25) with C = 0] prove that the
equations (18.47)–(18.49) must be replaced by the set:

D = �r0H
2
0 R4

0

� = 3H 2
0 (�r0 − q0)

k = H 2
0 R2

0(2�r0 − q0 − 1),

where �r0 denotes the present value of the density parameter of the radiation.

18.14. Prove that in any ultimately accelerating dust-plus-� universe the inflection
point in the R versus t graph (R̈ = 0) occurs when �/�� = 2, which is just when
the effective anti-gravitating density of � equals the density of matter. Then prove
that �/�� ∝ ρ ∝ R−3, whence, if �/�� = 0.3/0.7 today, the inflection occurred
at R ≈ 0.6R0, or z ≈ 0.67.

18.15. Consider the problem of finding the present proper distance l0 of a galaxy
seen at z = z0. For light from any galaxy we have eqn (17.2), and thus, from (16.30),
l0 = R0

∫
dψ = R0

∫
R−1dt , integrated over the light travel time. Eqn (18.57) gives
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dt in terms of y and dy, with y = (1+ z)−1. So we have

l0 = H−1
0

∫
y−1{ }−1/2dy,

integrated between appropriate limits. Finally, changing to z as the variable of inte-
gration, and approximating for (1 + z)n with 1 + nz, derive the following formula,
valid for small z:

l0 = H−1
0 [z0 − (1+ q0)z

2
0/2].

18.16. In Exercise 17.18 we saw an approximative formula for the distance from
apparent size, DA [cf.(17.14)]. But for large z, for example to relate the actual sizes of
the fluctuations on the surface of last scattering (z ≈ 1090!) to their observed angular
separation, we need an exact formula. Using a result of the preceding exercise, prove
that

DA = H−1
0 ye

∫ 1

ye

y−1{ }−1/2dy

for k = 0; and for k = ±1, with the same integral,

DA = Re sin(1/R0H0)

∫
, DA = Re sinh(1/R0H0)

∫
.

18.17. With a slight change of emphasis, we can regard Fig. 18.5 as a representation
of cosmological phase space, in which every non-vacuous big-bang Friedman dust
model follows a certain trajectory. It is clear that, near the big bang, H = Ṙ/R→∞,
so �� = �/3H 2 → 0 and, by (18.54), � → 1. Verify that similarly Ht → 2

3 .
[Hint: use R ∝ t2/3.] So the trajectory of every such model begins at the ‘critical’
point � = 1, H t = 2

3 . On a copy of this diagram, plot the trajectories of the three
� = 0 models (k = 0, k = 1, k = −1), and also of the three k = 0 models
(� = 0, � > 0, � < 0).
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Curvature tensor components for the diagonal metric

One of the most tedious calculations in GR is the determination of the Christoffel
symbols �

µ
νσ , the Riemann curvature tensor Rµνρσ , the Ricci tensor Rµν , the curva-

ture invariant R, and the Einstein tensor Gµν , for a given spacetime metric. Various
computational shortcuts exist, but rather than start from scratch each time, it is well
to have tables for certain standard forms of the metric. In this appendix we shall deal
with the general 4-dimensional diagonal metric,

ds2 = A(dx1)2 + B(dx2)2 + C(dx3)2 +D(dx4)2, (A.1)

where A, B, C, D are arbitrary functions of all the coordinates, and as a byproduct—
without extra labor—we shall get the various curvature components also for the 2-
and 3-dimensional diagonal metrics

ds2 = A(dx1)2 + B(dx2)2, ds2 = A(dx1)2 + B(dx2)2 + C(dx3)2. (A.2)

Rule 1. The components �
µ
νσ , Rµνρσ , Rµν , and R for the 2- and 3-dimensional

metrics (A.2) are obtained from the 4-dimensional formulae by setting D = 1 (not
zero!) in the 3-dimensional case, and C = D = 1 in the 2-dimensional case, and
treating the remaining coefficients as independent of x4, or of x3 and x4, respectively.
This can be useful in connection with the result of Exercise 10.13 on composite
metrics.

We remind the reader that all 2- and 3-dimensional metrics can be ‘diagonalized’;
that is, brought to the respective forms (A.2) by a suitable transformation of coor-
dinates, and that every static spacetime metric can be so diagonalized [cf. (9.5)], as
well as many others.

We shall use the following symbols

α = 1

2A
, β = 1

2B
, γ = 1

2C
, δ = 1

2D
, (A.3)

and the notation typified by

Aµ = ∂A

∂xµ
, B12 =

∂2B

∂x1 ∂x2
, etc. (A.4)

Then, directly from the definition (10.14), we find (for µ = 1, 2, 3, 4)

�1
23 = 0, �1

22 = −αB1, �1
1µ = αAµ. (A.5)
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From these three typical �s all others can be obtained by obvious permutations (for
example, �2

33 = −βC2, �
4
44 = δD4, etc.).

From the �s we now obtain the curvature tensor Rµνρσ as defined by (10.60). We
find the following typical components.

R1234 = 0 (A.6)

2R1213 = −A23 + αA2A3 + βA2B3 + γA3C2 (A.7)

2R1212 = −A22 − B11 + α(A1B1 + A2
2)+ β(A2B2 + B2

1 )

− γA3B3 − δA4B4. (A.8)

Again, all other components can be obtained from these by permutation, and, of
course, by making use of the symmetries (10.62)–(10.65). For example, to get R3432,
we subject (A.7) to the permutation 1 → 3, 2 → 4, 3 → 2 (and so, necessarily,
4 → 1)—accompanied by A → C, B → D, C → B, D → A. Rule 1 applies for
extracting the 2- and 3-dimensional formulae.

Next, we calculate the Ricci tensor Rµν , as defined by (10.68). Typically, we find

R12 = γC12

−γ 2C1C2

−αγA2C1

−βγB1C2−−−−−−−

�
�
�
�
�
�
�
�
�
�

+δD12

−δ2D1D2

−αδA2D1

−βδB1D2
(A.9)

R11 = βA22

+βB11

−β2B2
1

−αA1(0 + βB1

−βA2(αA2 + βB2
−−−−−−−−−−−−
−γA3(αA3 − βB3
−−−−−−−−−−−−
−δA4(αA4 − βB4

�
�
�
�
�
�
�
�
�
�
�
�
�

+γA33

+γC11

−γ 2C2
1

+γC1

−γC2

+γC3
−−−−−
−γC4

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

+δA44

+δD11

−δ2D2
1

+δD1)

−δD2)

−δD3)

+δD4)
(A.10)

All other components can be found by making the obvious permutations on these two.
The dashed lines indicate the terms that remain in the 2- and 3-dimensional cases,
respectively, according to our Rule 1.
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For the curvature invariant R = gµνRµν we find

1
4R = αβ(A22 + B11 − αA2

2 − βB2
1 − αA1B1 − βA2B2 + γA3B3 + δA4B4)

+ αγ (A33 + C11 − αA2
3 − γC2

1 − αA1C1 + βA2C2 − γA3C3 + δA4C4)

+ βγ (B33 + C22 − βB2
3 − γC2

2 + αB1C1 − βB2C2 − γB3C3 + δB4C4)

+ αδ(A44 +D11 − αA2
4 − δD2

1 − αA1D1 + βA2D2 + γA3D3 − δA4D4)

+ βδ(B44 +D22 − βB2
4 − δD2

2 + αB1D1 − βB2D2 + γB3D3 − δB4D4)

+ γ δ(C44 +D33 − γC2
4 − δD2

3 + αC1D1 + βC2D2 − γC3D3 − δC4D4).

(A.11)

Note: the factor 1
4 on the left remains unchanged even in the 2- and 3-dimensional

cases obtained by Rule 1.
Lastly, for the Einstein tensor Gµν = Rµν − 1

2Rgµν , we find the following typical
components:

G12 = R12 (A.12)

αG11 =
βγ (−B33 − C22 + βB2

3 + γC2
2 − αB1C1 + βB2C2 + γB3C3 − δB4C4)

+ βδ(−B44 −D22 + βB2
4 + δD2

2 − αB1D1 + βB2D2 − γB3D3 + δB4D4)

+ γ δ(−C44 −D33 + γC2
4 + δD2

3 − αC1D1 − βC2D2 + γC3D3 + δC4D4).

(A.13)

All other components can be obtained from these by permutation. Note, however,
that Rule 1 does not apply here.
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definition of 41
relativity of 38, 47
waves of 121

singularity 260, 379
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a local theory 23, 36
defined 3
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steady state cosmology 359, 368, 388, 411
STEP (satellite) 17
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Trouton-Noble experiment 160, 162
twin paradox (clock paradox) 67, 85, 256
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