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To the Student

Physics is for everyone. It is more than simply the study of the physical uni-
verse. It is much more interesting, diverse, and far more extreme. In physics,
we observe nature, seek regularities in the data, and attempt to create math-
ematical relationships that we can use as tools to study new situations.
Physics is not just the study of unrelated concepts, but rather how every-
thing we do profoundly affects society and the environment. 

Features

Flowcharts

The flowcharts in this book are visual summaries that graphically show you
the interconnections among the concepts presented at the end of each section
and chapter. They help you organize the methods and ideas put forward in
the course. The flowcharts come in three flavors: Connecting the Concepts,
Method of Process, and Putting It All Together. They are introduced as you
need them to help you review and remember what you have learned.

Examples

The examples in this book are loaded with both textual and visual cues, so
you can use them to teach yourself to do various problems. They are the
next-best thing to having the teacher there with you.

Applying the Concepts

At the end of most subsections, we have included a few simple practice ques-
tions that give you a chance to use and manipulate new equations and try out
newly introduced concepts. Many of these sections also include extensions of
new concepts into the areas of society, technology, and the environment to
show you the connection of what you are studying to the real world.
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End-of-chapter STSE

Every chapter ends with a feature that deals exclusively with how our stud-
ies impact on society and the environment. These articles attempt to intro-
duce many practical applications of the chapter’s physics content by
challenging you to be conscious of your responsibility to society and the envi-
ronment. Each feature presents three challenges. The first and most impor-
tant is to answer and ask more questions about the often-dismissed societal
implications of what we do. These sections also illustrate how the knowledge
and application of physics are involved in various career opportunities in
Canada. Second, you are challenged to evaluate various technologies by per-
forming correlation studies on related topics. Finally, you are challenged to
design or build something that has a direct correlation to the topic at hand.

Exercises

Like a good musician who needs to practise his or her instrument regularly,
you need to practise using the skills and tools of physics in order to become
good at them. Every chapter ends with an extensive number of questions to
give you a chance to practise. Conceptual questions challenge you to think
about the concepts you have learned and apply them to new situations. The
problems involve numeric calculations that give you a chance to apply the
equations and methods you have learned in the chapter. In many cases, the
problems in this textbook require you to connect concepts or ideas from
other sections of the chapter or from other parts of the book. 

Labs

“Physics is for everyone” is re-enforced by moving learning into the practi-
cal and tactile world of the laboratory. You will learn by doing labs that
stress verification and review of concepts. By learning the concepts first and
applying them in the lab setting, you will internalize the physics you are
studying. During the labs, you will use common materials as well as more
high-tech devices.

Appendices

The appendices provide brief, concise summaries of mathematical methods
that have been developed throughout the book. They also provide you with
detailed explanations on how to organize a lab report, evaluate data, and
make comparisons and conclusions using results obtained experimentally.
They explain uncertainty analysis techniques, including some discussion
on statistical analysis for experiments involving repetitive measurements. 

We hope that using this book will help you gain greater enjoyment in
learning about the world around us.

Toronto, 2002

Table of  Contents xi

S T

S E

E X E RC I S E S





unit  a :  Forces and Motion:  Dynamics 1

1 Kinematics and Dynamics

in One Dimension

2 Kinematics and Dynamics

in Two Dimensions

3 Extension: Statics —

Objects and Structures 

in Equilibrium

Forces and 
Motion: Dynamics

A

UNIT



585 BC

430 BC
300 BC

140

1513

1543

1596

330 BC 

260 BC  

530 BC  

1570s   

Timeline: The History of Forces 
and Motion

�600 �400 �200 200 1500 15500

Early Greek natural 

philosophers speculated 

about the material that 

composes everything. 

Water and fire are 

popular guesses.

Aristotle codified all of 

Greek philosophy and 

established concepts 

of nature and the 

universe that would 

last for 2000 years.

Greeks suggested that 

all matter is composed of 

tiny atoms bumping and 

clumping in empty space.

Euclid put together 

300 years of Greek 

mathematics in 13 

books of The Elements, 

still in use in the early 

20th century.

Ptolemy—mathematician, 

astronomer, and geographer. 

Books by this epitome of 

Greek science informed 

students for the next

1400 years.

Copernicus improved 

Ptolemy’s astronomy by 

proposing that Earth 

revolves around the Sun.

Copernicus—published 

results of 30 years’ analysis 

of the planetary system 

with Sun at the  centre of 

planets’ orbits; Earth has 

daily rotation on axis.

Kepler began 30-year 

study of the orbits of 

the planets.

Italian engineers 

published studies of 

mechanical devices 

following principles 

of Archimedes.

Archimedes made 

substantial analysis of 

the physics of floating 

bodies and of levers. 

Also conducted great 

engineering projects.

Pythagoras established 

the branch of mathematics 

called geometry.

With three simple laws, Newton explained all motion around us. Yet, these
laws took thousands of years to formulate. Even though the ancient Greeks
made many valuable contributions to mathematics, philosophy, literature,
and the sciences, they didn’t perform experiments to test all their scientific
ideas, which led to some erroneous conclusions.

The classical physics we study today was mostly developed from the
mid-16th to the late 19th centuries. The scientific method was formally
developed and applied during the Enlightenment (17th and 18th centuries).
As a result, many important advances were made in many scientific fields.
Nicolas Copernicus (1473–1543), a Polish mathematician, explained the
daily motion of the Sun and stars by suggesting that Earth rotates on an
axis. Galileo Galilei (1564–1642), an Italian mathematician, experimented
extensively to test ancient theories of motion. His famous experiment of
dropping two stones, a large one and a small one, from the Tower of Pisa
disproved the ancient idea that mass determined the properties of motion.
The understanding of celestial mechanics grew quickly with Johannes
Kepler (1571–1630), who explained celestial results using Tycho Brahe’s
data (1546–1601). Sir Isaac Newton (1642–1727) developed the concepts of
gravity and laid the foundations of our current concepts of motion in his
published book, Principia Mathematica. With his three laws and the devel-
opment of the mathematical methods now called calculus, Newton is
responsible for our understanding of dynamics and kinematics. Newton
and Galileo created a new approach for scientific analysis — testing and
experimentation — which we still use today.
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1604  

1602  

1638  

1610  
1666  

1687
1769  

1672

1785  

1792
1971

1600 1650 1700 1750 1800

Galileo began 

experimenting with 

pendulums and 

rolling balls down 

inclined ramps. 

Earlier theories of 

motion had not 

fitted experience.

Kepler published first two 

laws of planetary motion. 

Galileo published discovery 

with telescope of Jupiter’s 

moon and roughness of the 

Moon’s surface.

Newton (age 24) laid 

foundations for 

calculus, experimental 

optics, and notion of 

“gravity extending to 

the orb of the moon.”

Newton’s Mathematical 

Principles of Natural 

Philosophy built on 

Kepler and Galileo to 

describe forces and 

motions on Earth and

on planets and comets.

Patents awarded to 

Watt for improved 

steam engine; and to 

Arkwright for 

harnessing water 

power to spin cotton.

By 1604, Galileo had 

derived a new theory 

from analyzing 

experiments. He found 

objects fall distances 

proportional to the 

square of the time.

After being condemned 

for Earth’s motion in 

1633, Galileo published 

result of a lifetime of 

motion studies in his 

Two New Sciences.

Huygens in Holland 

published mechanical study 

of his new pendulum clock, 

accurate to 10 s per day — 

a gigantic improvement.

Application of steam 

engine to machine 

spinning of cotton lead 

to great expansion of 

textile industry in Britain, 

giving it economic and 

technological domination 

in the world.

The 14th General 

Conference on Weights and 

Measure picked seven 

quantities as base quantities, 

forming the basis of the 

International System of Units 

(SI), also called the metric 

Republic of France 

established a new system 

of weights and measures, 

defining the metre for the 

first time. It also tried a 

10-h day.

In this unit, we will learn various methods for
studying a variety of forces ranging from simple motion,
to motion with friction, to orbital motion. We will also
explain the motion of human beings, the development
of a variety of vehicles, and the reasons behind the
designs of different types of equipment, such as skis and
car tires, in terms of the classical laws of physics. This
unit lays the foundation for later units on momentum,
energy, fields, and modern physics.
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4

1 Kinematics and Dynamics
in One Dimension

By the end of this chapter, you will be able to
• analyze the linear motion of objects using graphical and algebraic methods
• solve problems involving forces by applying Newton’s laws of motion
• add and subtract vector quantities in one dimension
• solve problems involving Newton’s law of universal gravitation
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between Angle of Inclination and Acceleration
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1.1 Introduction

Every day, we observe hundreds of moving objects. Cars drive down the
street, you walk your dog through the park, leaves fall to the ground. These
events are all part of our everyday experience. It’s not surprising, then, that
one of the first topics physicists sought to understand was motion. 

The study of motion is called mechanics. It is broken down into two
parts, kinematics and dynamics. Kinematics is the “how” of motion, that
is, the study of how objects move, without concerning itself with why they
move the way they do. Dynamics is the “why” of motion. In dynamics, we
are concerned with the causes of motion, which is the study of forces. In the
next two chapters, we will consider the aspects of  kinematics and dynam-
ics in relation to motion around us. 

1.2 Distance and Displacement

In any field of study, using precise language is important so that people can
understand one another’s work. Every field has certain concepts that are
considered the fundamental building blocks of that discipline. When we
begin the study of physics, our first task is to define some fundamental con-
cepts that we’ll use throughout this text. 

Suppose a friend from your home town asks you, “How do you get to
North Bay from here?” You reply, “North Bay is 400 km away.” Is this
answer sufficient? No, because you have only told your friend the distance
to North Bay; you haven’t told her the direction in which she should travel.
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Your answer is a scalar. A scalar is a quantity that has a magnitude only, in
this case, 400 km. An answer such as “North Bay is 400 km east of here”
would answer the question much more clearly. This answer is a vector
answer. A vector is a quantity that has both a magnitude and a direction.
“400 km east” is an example of a displacement vector, where the magnitude
of the displacement is 400 km and the direction is east. Displacement is
the change in position of an object. The standard SI (Système International
d’Unités) or metric unit is the metre (m), and the variable representing dis-
placement is �d��. Examples of scalars are: 10 minutes, 30°C, 4.0 L, 10 m.
Examples of vectors are: 100 km [E], 2.0 m [up], 3.5 m [down].
Displacement is commonly confused with distance. Distance is the length
of the path travelled and has no direction, so it is a scalar. 

e x a m p l e  1 Distance and displacement

A cyclist travels around a 500-m circular track 10 times (Figure 1.3). What
is the distance travelled, and what is the cyclist’s final displacement? 

Fig.1.3

Solution and Connection to Theory

The cyclist travels a distance of 500 m each time she completes one lap.
Since she completes 10 laps, her total distance is 5000 m. To find her dis-
placement, we draw a line segment from the starting point to the end
point of her motion. Because she starts and ends at the same point, her
displacement has a magnitude of zero. 

In this example, we obtain very different answers for distance and
displacement. It is a good reminder of how important it is to clearly dif-
ferentiate between vector and scalar quantities. 
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Defining Directions

In two-dimensional vector problems, directions are often given in terms
of the four cardinal directions: north, south, east, and west. For one-
dimensional or linear problems, we use the directions of the standard
Cartesian coordinate system: vectors to the right and up are positive, and
vectors to the left and down are negative. 

1.3 Unit Conversion and Analysis 
In the past, when the Imperial system of measurement was in common use,
it was often necessary to convert from one set of units to another. Today, by
using the SI or metric system, conversions between units need only be done
occasionally. To convert the speed of a car travelling at 100 km/h to m/s, we
multiply the original value by a series of ratios, each of which is equal to
one. We set up these ratios such that the units we don’t want cancel out,
leaving the units of the correct answer. For example,

100 km/h � ��100
h

km
����60

1
m
h

in
����16

m
0

i
s
n

����11
00

k
0
m
m

�� � 27.8 m/s

e x a m p l e  2 Unit conversions

How many seconds are there in 18 years?

Solution and Connection to Theory

Let’s assume that one year (or annum) has 365 days.

18 a � 18 a��36
1
5
a
d

����21
4

d
h

����60
1
m
h

in
����1

6
m
0

i
s
n

�� � 5.7 � 108 s

There are 5.7 � 108 s in 18 years.

1. How many seconds are there in a month that has 30 days?
2. A horse race is 7 furlongs long. How many kilometres do the horses

run? (Hint: 8 furlongs � 1 mile, 1 km � 0.63 miles.)
3. Milk used to be sold by the quart. An Imperial quart contains 

20 fluid ounces (1 oz � 27.5 mL). How many millilitres of milk are
in a quart?
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Table 1.1
Prefixes of the Metric System

Factor Prefix Symbol

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecto h

10 deka da

10�1 deci d

10�2 centi c

10�3 milli m

10�6 micro �

10�9 nano n

10�12 pico p

10�15 femto f

10�18 atto a

ap
plylying

theC
o

n c e p

ts

1 m/s � � 3.6 km/h

3.6 is a useful conversion factor to

remember. To convert m/s to km/h,

multiply by 3.6. To convert km/h to

m/s, divide by 3.6.

0.001 km
��

�
36

1

00
� h
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o
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1.4 Speed and Velocity 

If you were to walk east along Main Street for a distance of 1.0 km in a time
of 1 h, you could say that your average velocity is 1.0 km/h [E]. However,
en route, you may have stopped to look into a shop window, or even sat
down for 10 minutes and had a cold drink. So, while it’s true that your aver-
age velocity was 1.0 km/h [E], at any given instant, your instantaneous
velocity was probably a different value. It is important to differentiate
between instantaneous velocity, average velocity, and speed.

Average speed is the total change in distance divided by the total elapsed
time. Average speed is a scalar quantity and is represented algebraically by
the equation

vavg � �
�

�

d
t
� (eq. 1) 

Average velocity is change in displacement over time. Average velocity is a
vector quantity and is represented algebraically by the equation

v��avg � �
�

�

d�

t

�

� (eq. 2) 

Instantaneous velocity is the velocity of an object at a specific time. Note
that speed is a scalar and velocity is a vector, but both use the same variable,
v, and have the same units, m/s. To distinguish velocity from speed, we
place an arrow over the velocity variable to show that it’s a vector. Similarly,
an arrow is placed over the displacement variable, �d��, to distinguish it from
distance, �d. Later, they will be distinguished in the final statement only.

Average and instantaneous velocities can be calculated algebraically. We
will revisit these two terms in Section 1.8 using graphical methods.

1. What is the velocity of the train if it travels a displacement of 25 km
[N] in 30 minutes? 

2. A ship sails 3.0 km [W] in 2.0 h, followed by 5.0 km [E] in 3.0 h. 
a) What is the ship’s average speed? 
b) What is the ship’s average velocity?

3. The table below shows position–time data for a toy car. 

d�� (m) [E] 0  2.0  4.0  6.0  8.0  8.0  8.0  9.0  9.0

t (s) 0  1.0  2.0  3.0  4.0  5.0  6.0  7.0 8.0

a) What is the average velocity of the toy car’s motion? 
b) What is the instantaneous velocity of the car at time t � 5.0 s?
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1.5 Acceleration

The simplest possible type of motion that an object can undergo (short of being
at rest) is uniform motion. Uniform motion is motion at a constant speed in
a straight line. Another name for uniform motion is uniform velocity. 

When an object’s motion isn’t uniform, the object’s velocity changes.
Because velocity is a vector, its magnitude as well as its direction can
change. An example of a change of magnitude only occurs when a car speeds
up as it pulls away from a stoplight. A change in the direction only of an
object’s velocity occurs when a car turns a corner at a constant speed. 

Acceleration is the change in velocity per unit time. Velocity can change
in magnitude or direction or both. A negative acceleration in horizontal
motion is an acceleration to the left. If an object’s initial velocity is to the left,
the negative acceleration will cause it to speed up. If an object’s initial veloc-
ity is to the right, the negative acceleration will cause it to slow down.

Algebraically, we can express acceleration as

a�� � �
�

�

v�

t

�
� (eq. 3) or

a�� � �
v��2

�

�

t
v��1

� (eq. 4)

The SI unit for acceleration is a derived unit; that is, it is a unit created by
dividing a velocity unit (such as m/s) by a time unit (such as s), giving

units � � ��
m
s
�� � �

1
s

� or �
m
s2�

Writing acceleration units as m/s2 doesn’t mean that we have measured a
second squared. It is simply a short form for the unit (m/s)/s, which means
that the velocity is changing so many m/s each second.

e x a m p l e  3 Vector acceleration

When struck by a hockey stick, a hockey puck’s velocity changes from 
15 m/s [W] to 10 m/s [E] in 0.30 s. Determine the puck’s acceleration.
Recall that in our standard coordinate system, we can represent west as
negative and east as positive.

Solution and Connection to Theory

Given
v��1 � �15 m/s v��2 � �10 m/s �t � 0.30 s

This example is a vector problem, so be sure to take the directions into
consideration. We can use the kinematics equation

�
m
s�

�
s

Fig.1.6 Slapshot!



a�� � �
v��2

�

�

t
v��1

�

a�� �

a�� � 83 m/s2

The puck’s acceleration is 83 m/s2 [E].

The next example deals with negative acceleration.

e x a m p l e  4 Negative acceleration

A car on a drag strip is travelling at a speed of 50 m/s. A parachute opens
behind it to assist the car’s brakes in bringing the car to rest. Is the accel-
eration of this car positive or negative? How would its motion change if
the acceleration was in the opposite direction?

Solution and Connection to Theory

If we use our standard coordinate system and assume that the initial
motion of the car was in the positive direction, its acceleration is in the
direction opposite to its initial motion. Therefore, the car’s acceleration is
negative. If in our example the acceleration of the car is �4.0 m/s2, the car
is losing 4.0 m/s of speed every second. The negative value for accelera-
tion doesn’t mean that the car is going backwards. It means that the car is
changing its speed by 4.0 m/s2 in the negative direction. Since the car was
travelling in a positive direction, it is slowing down.

For motion in one dimension, we will designate the direction by using � and
� signs. Thus, 12 km [N] becomes �12 km (written as 12 km) and 12 km [S]
is written as �12 km.

We will also omit vector arrows in the equations for displacement, velocity,
and acceleration. Instead, we will convey direction by using � and � signs.
We will place vector arrows over variables only if the full vector quantity is
referred to (e.g., d�� � 12 km [N]).

1.6 An Algebraic Description of Uniformly
Accelerated Linear Motion

Thus far, we have defined two algebraic equations that apply to objects
undergoing uniform acceleration. These two equations are

vavg � �
�

�

d
t
� (eq. 2) and a � �

v2

�

�

t
v1

� (eq. 4)

10 m/s � (�15 m/s)
���

0.30 s

10 unit  a :  Forces and Motion:  Dynamics

If the initial velocity of the car in

Example 4 had been �15.0 �
m

s
�, an

acceleration of �1.0 m/s2 would

mean that the car was speeding up 

in the negative direction.
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From equation 2, we can isolate �d:

�d � vavg�t

If the acceleration is uniform, vavg � �
v1 �

2
v2

�

and �d � ��v1 �

2
v2

���t (eq. 5)

Even though the vector arrows have been left off of these equations, they
are still vector equations! For linear motion, we will leave the vector arrows
off, but still indicate direction as positive or negative. In general (i.e., when
solving two-dimensional problems), we leave the vector arrows on, other-
wise we might forget to add and subtract these values vectorially.

Equations 4 and 5 are both very useful for solving problems in which
objects are accelerating uniformly in a straight line. If we look carefully at
these two equations, we will notice that many of the variables are common.
The only variables not common to both equations are changes in displace-
ment, �d, and acceleration, a. We can combine equations 4 and 5 by substi-
tuting the common variables to form other new and useful equations. First,
isolate v2 in equation 4:

v2 � a�t � v1 (eq. 6)

Now, substitute equation 6 into equation 5:

�d � ��v1 � a
2
�t � v1
���t

�d � v1�t � �
1
2

�a�t2 (eq. 7)

The other two possible equations are

�d � v2�t � �
1
2

�a�t2

and
v2

2 � v1
2 � 2a�d

The derivation of these equations is left as an exercise in the Applying the
Concepts section. The five equations for uniform linear acceleration are
listed in Table 1.2.
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Table 1.2
The Five Equations Valid for Uniform Linear Acceleration

# Equation �d a v2 v1 �t

1 v2 � v1 � aa�t ✔ ✔ ✔ ✔

2 �d � �
1

2
�(v2 � v1)�t ✔ ✔ ✔ ✔

3 ∆d � v1∆t � �
1

2
� a∆t2 ✔ ✔ ✔ ✔

4 ∆d � v2∆t � �
1

2
� a∆t2 ✔ ✔ ✔ ✔

5 v2
2 � v1

2 � 2aa∆d ✔ ✔ ✔ ✔

e x a m p l e  5 Choosing the correct equation

A physics teacher accelerates her bass boat from 8.0 m/s to 11 m/s at a rate
of 0.50 m/s2. How far does the boat travel? Consider forward to be positive.

Solution and Connection to Theory

Given
v1 � 8.0 m/s v2 � 11 m/s a � 0.50 m/s2

To solve this problem, we must first find an equation from Table 1.2 that
contains only the three known variables and the one unknown variable.
Usually, only one equation meets these requirements. (Occasionally, we
may get lucky and find that more than one equation will work.) For this
example, we require equation 5.

v2
2 � v1

2 � 2a�d (eq. 5)

The problem is asking us for the distance travelled. Therefore, we isolate
�d in equation 5:

�d � �
v2

2

2
�

a
v1

2

�

�d �

�d � 57 m

Therefore, the boat will travel a distance of 57 m.

(11 m/s)2 � (8.0 m/s)2

���
2(0.5 m/s2)
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Figure 1.8 below summarizes how to choose the correct kinematics equation.

Fig.1.8 Choosing Kinematics Equations

e x a m p l e  6 A quadratic solution

Jane Bond runs down the sidewalk, accelerating uniformly at a rate of
0.20 m/s2 from her initial velocity of 3.0 m/s. How long will it take Jane
to travel a distance of 12 m?

Solution and Connection to Theory

Given 
a � 0.20 m/s2 v1 � 3.0 m/s �d � 12 m

The required equation is equation 3.

�d � v1�t � �
1
2

�a�t2

Equation 3 is a quadratic equation for the variable �t. We will have to
solve this problem either by factoring or by using the quadratic formula.

0 � �
1
2

�a�t2 � v1�t � �d

0 � (0.1 m/s2)�t2 � (3.0 m/s)�t � 12 m

�t ��
�b 	 �

2
b
a

2 � 4�ac�
�
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Determine which variables you are given values for, and which variables you 
are required to find

Check each of the five kinematics equations in order

Do
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value for each
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to find?
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equation

Use this
equation

Fig.1.9 Jane Bond
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�t �

�t � �
�3.0

0.
	

2
3.7

�

Therefore, �t � 3.5 s or �t � �33.5 s

We use the positive value because time cannot be negative. Therefore,
�t � 3.5 s. It takes Jane Bond 3.5 s to run 12 m.

e x a m p l e  7 A multiple-step problem

Bounder of Adventure accelerates his massive SUV from rest at a rate of
4.0 m/s2 for 10 s. He then travels at a constant velocity for 12 s and finally
comes to rest over a displacement of 100 m. Assuming all accelerations
are uniform, determine Bounder’s total displacement and average velocity.
Assume that all motion is in the positive direction. 

Solution and Connection to Theory

The first step is to break the problem down into simpler parts or stages.
This problem asks us to find the total displacement and average velocity. We
can solve the problem by first finding the displacement, time, and velocity
at each stage of Bounder’s trip, then adding the results of each stage together
to obtain the final answer. The table below illustrates the different stages of
Bounder’s trip and the information we are given at each stage.

Stage A Stage B Stage C
vA1 � 0 vB1 � vB2 � vA2 vC1 � vB � ?
vA2 � ? �t � 12 s vC2 � 0
a � 4.0 m/s2 a � 0 �dc � 100 m
�t � 10 s

Stage A:

Given
vA1 � 0 �tA � 10 s aA � 4.0 m/s2

To calculate the final velocity, we can use equation 1 from Table 1.2:

v2 � v1 � a�t
vA2 � a�t
vA2 � (4.0 m/s2)(10 s)
vA2 � 40 m/s

�3.0 	 �(3.0)2�� 4(0�.1)(�1�2)�
����

2(0.1)
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The Quadratic Equation

If ax2 � bx � c � 0, then

x �
�b 	 �b2 � 4�ac�
��

2a

Fig.1.10 A sport utility vehicle (SUV)
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�
m

s
� 	 ���

m

s
��2

�� �
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m
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� ��m�

�
s

m
2
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�
m

s
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m

s
��2

����
m

s
��2�

�
s

m
2
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� � s

�
m

s
�

�

�
s

m
2
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To calculate the displacement, we use equation 3:

�d � v1�t � �
1
2

�a�t2

�dA � 0 � �
1
2

�(4.0 m/s2)(10 s)2

�dA � 200 m 

Stage B:

Given
�t � 12 s

The velocity is constant during this stage, and equal to the final velocity
during stage A:

vB � 40 m/s; therefore,
�dB � vB�t � (40 m/s)(12 s)
�dB � 480 m

Stage C:

Given
�dC � 100 m vC2 � 0

The initial velocity during stage C is the same as the velocity during stage
B because the SUV hasn’t slowed down yet; therefore, 

vC1 � vB � 40 m/s

We can calculate the time using equation 2:

�d � �
1
2

�(v2 � v1)�t

Isolating �t, we obtain

�tC � �
vC

2

1

�

�

dC

vC2

�

�tC � �
2
4
(1
0
0
m
0

/
m
s

)
�

�tC � 5.0 s

To find the total displacement, we add the displacements at each stage:

�dtot � �dA � �dB � �dC

�dtot � 200 m � 480 m � 100 m
�dtot � 780 m
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Before we can calculate the average velocity, we need to find the total
time of the trip:

�ttot � �tA � �tB � �tC

�ttot � 10 s � 12 s � 5.0 s 
�ttot � 27 s

To find the average velocity, we substitute displacement and time into the
velocity equation:

vavg � �
�

�

d
tt

t

o

o

t

t
�

vavg � �
7
2
8
7
0

s
m

�

vavg � 29 m/s

Therefore, Bounder’s total displacement is 780 m and his average veloc-
ity is 29 m/s.

e x a m p l e  8 A two-body problem

Fred and his friend Barney are at opposite ends of a 1.0-km-long drag
strip in their matching racecars. Fred accelerates from rest toward Barney
at a constant 2.0 m/s2. Barney travels toward Fred at a constant speed of
10 m/s. How much time elapses before Fred and Barney collide?

Solution and Connection to Theory 

Given
�d � 1000 m aF � 2.0 m/s2 v1F � 0 vB � �10 m/s

To solve this problem, we must note two things. First, the distance travelled
by Barney plus the distance travelled by Fred must add up to 1000 m.
Second, Fred is accelerating uniformly, while Barney is undergoing uni-
form motion. 

We will assume that Fred is moving in the positive direction. At any time
�t, his distance from his starting point is

�d � v1�t � �
1
2

�a�t2

�d � 0 � �
1
2

�a�t2

�dF � �
1
2

�a�t2

�dF � �
1
2

�(2 m/s2)�t2
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Barney’s displacement from the same point is 1000 m plus his displace-
ment at time �t:

�dB � 1000 m � vB�t
vB � �10 m/s
�dB � 1000 m � (10 m/s)�t

When Fred and Barney meet, their two displacements are equal:

�dF � �dB

�
1
2

�(2 m/s2)�t2 � 1000 m � (10 m/s)�t

(1 m/s2)�t2 � (10 m/s)�t � 1000 m � 0 

Using the quadratic equation to solve for �t,

�t ��
�b 	 �

2
b
a

2 � 4�ac�
�

�t �

�t �

�t � 27 s or t � �37 s

Since time is positive, we choose the positive answer. Fred and Barney
collide after 27 s.

e x a m p l e  9 Catching a bus

Jack, who is running at 6.0 m/s to catch a bus, sees it start to move when
he is 20 m away from it. If the bus accelerates at 1.0 m/s2, will Jack over-
take it? If so, how long will it take him?

Solution and Connection to Theory

Given
vJack � 6.0 m/s v1bus � 0 abus � 1.0 m/s2 aJack � 0 �d � 20 m

We will consider Jack’s initial position as our origin and assume that he
is running in the positive direction. His displacement at any time �t is
given by

�d � v1�t � �
1
2

�a�t2

�dJack � (6.0 m/s)�t

�10 m/s 	 64 m/s
���

2 m/s2

�10 m/s 	 �(10 m�/s)2 �� 4(1 m�/s2)(��1000 m�)�
������

2 m/s2
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The displacement of the bus from the same origin at any time �t is

�dbus � 20 m � v1�t � �
1
2

�a�t2

�dbus � 20 m � �
1
2

�(1.0 m/s2)�t2

When Jack overtakes the bus, the two displacements are equal:

(6.0 m/s)�t � 20 m � (0.5 m/s2)�t2

(0.5 m/s2)�t2 � (6.0 m/s)�t � 20 m � 0

Using the quadratic equation to solve for �t,

�t �

�t �

There are no real roots for this equation; therefore, there is no real time
at which Jack and the bus have the same position. Jack will have to walk
or wait for the next bus!

1. A CF-18 fighter jet flying at 350 m/s engages its afterburners and
accelerates at a rate of 12.6 m/s2 to a velocity of 600 m/s. How far
does the fighter jet travel during acceleration? 

2. A butterfly accelerates over a distance of 10 cm in 3.0 s, increasing
its velocity to 5.0 cm/s. What was its initial velocity? 

3. During a football game, Igor is 8.0 m behind Brian and is running
at 7.0 m/s when Brian catches the ball and starts to accelerate away
at 2.8 m/s2 from rest.
a) Will Igor catch Brian? If so, after how long?
b) How far down the field will Brian have run?

4. A bullet is fired into a tree trunk (Figure 1.12), striking it with an ini-
tial velocity of 350 m/s. If the bullet penetrates the tree trunk to a depth
of 8.0 cm and comes to rest, what is the acceleration of the bullet?

Fig.1.12

6.0 m/s 	 �36 m2�/s2 ��40 m2�/s2�
����

1 m/s2

6.0 m/s 	 �(�6.0� m/s)2� � 4(0�.5 m/s�2)(20 m�)�
������

2(0.5 m/s2)
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5. A delivery truck accelerates uniformly from rest to a velocity of 
8.0 m/s in 3.0 s. It then travels at a constant speed for 6.0 s. Finally,
it accelerates again at a rate of 2.5 m/s2, increasing its speed for 10 s.
Determine the truck’s average velocity.

6. While undergoing pilot training, a candidate is put in a rocket sled
that is initially travelling at 100 km/h. When the rocket is ignited,
the sled accelerates at 30 m/s2. At this rate, how long will it take the
rocket sled to travel 500 m down the track?

7. A parachutist, descending at a constant speed of 17 m/s, acciden-
tally drops his keys, which accelerate downward at 9.8 m/s2. 
a) Determine the time it takes for the keys to reach the ground if

they fall 80 m. 
b) What is the final velocity of the keys just before they hit the ground?

8. Derive the following equations from first principles:
a) v2

2 � v1
2 � 2a�d

b) �d � v2�t � �
1
2

�a�t2

1.7 Bodies in Free Fall
Galileo Galilei (1564–1642), an Italian astronomer and physicist, is credited
with being the father of modern experimental science because he combined
experiment and calculation rather than accepting the statements of an
authority, namely Aristotle, regarding the study of nature. His greatest con-
tributions were in the field of mechanics, especially dynamics. His experi-
ments on falling bodies and inclined planes disproved the accepted
Aristotelean idea that a body’s rate of descent is proportional to its weight.
Galileo’s conclusions greatly upset Aristotelean scholars of his day. 

The Guinea and Feather Demonstration

Galileo experimented in many different fields. One of his experiments in
mechanics involved rolling spheres down a wooden ramp (Figure 1.13b).
He found that the square of the time a sphere took to reach the bottom of a
ramp was proportional to the length of the ramp. He also observed that the
time a sphere took to reach the bottom of the ramp was independent of its
mass; that is, less massive objects and more massive objects both reach the
bottom of the ramp at the same time when released from the same height.
By using ramps inclined at different angles, Galileo extrapolated his find-
ings to a ball falling straight down. He concluded that if two objects of dif-
ferent masses are released from the same height, they will strike the ground
at the same time (see Figure 1.14). 
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Fig.1.13b The inclined plane used

by Galileo Galilei



Today, we can easily confirm Galileo’s findings by performing the guinea
and feather demonstration. A guinea (or any coin) and a feather are placed
in a long glass tube with a hole at one end, which is connected to a vacuum
pump. If the guinea and feather are allowed to fall through the tube full of
air, they will not strike the bottom at the same time. The guinea will land
first and the feather will flutter slowly to the bottom due to air resistance.
If the vacuum pump is used to remove the air from the tube, both objects
will strike the bottom at the same time.

Acceleration due to Gravity

Today we know that when objects are dropped from a height close to
Earth’s surface, they accelerate downward at a rate of 9.8 m/s2. This num-
ber is known as the acceleration due to gravity. It doesn’t depend on the
object’s mass. For this value to be valid, we must assume that air resistance
is negligible and that Earth is a sphere of constant density and radius. In
Section 1.15, we will study gravity in greater depth.

e x a m p l e  1 0 A marble in free fall

A marble is dropped from the top of the CN Tower, 553 m above 
the ground. 

a) How long does it take the marble to reach the ground? 
b) What is the marble’s final speed just before it hits the ground? 
c) What is the marble’s speed at the halfway point of its journey?

Solution and Connection to Theory

Given
�d � 553 m v1 � 0 a � g � 9.8 m/s2

a) We choose down to be the positive direction. To calculate the time, we
use the equation

�d � v1�t � �
1
2

�a�t2
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Since v1 � 0,

�d � �
1
2

�a�t2

Isolating �t, we obtain the equation

�t � ��
2�

a
d

��
�t � ��

2
9
(
.
5
8
5
m
3� /

m
s2

)
��

�t � 11 s

Therefore, the marble takes 11 s to reach the ground.

b) To find the final speed, we use the equation

v2
2 � v1

2 � 2a�d

v2 � �2(9.8�m/s2)(�553 m�)�

v2 � 1.0 � 102 m/s

Therefore, the marble’s final speed is 1.0 � 102 m/s.

c) At the halfway point, d � �
553

2
m

� � 276.5 m. Using the algebra from b),

v2 � �2(9.8�m/s2)(�276.5�m)�
v2 � 74 m/s

Therefore, the marble’s speed at the halfway point is 74 m/s.

e x a m p l e  1 1 Maximum height

A baseball is thrown straight up in the air, leaving the thrower’s hand at
an initial velocity of 8.0 m/s. 

a) How high does the ball go? 
b) How long will it take the ball to reach maximum height? 
c) How long will it take before the ball returns to the thrower’s hand? 

Solution and Connection to Theory

There are three important things to note in this example: 

1) After the ball is released upward, its acceleration is in the opposite
direction of its motion; that is, the ball is moving upward, but acceler-
ation due to gravity is downward. Using our standard coordinate 
system, we will make acceleration negative. 

B

A C

Fig.1.17 Throwing a

baseball straight up



2) At its maximum height, the ball will come to rest. After that, it will fall
back down into the thrower’s hand. This problem is an example of
symmetry because the amount of time it takes the ball to travel
upward to maximum height equals the amount of time it takes the ball
to fall back down. Also because of symmetry, the velocity with which
the ball strikes the thrower’s hand equals its initial upward velocity. 

3) The acceleration is constant in both magnitude and direction for the
entire motion. For this reason, the ball slows down as it goes up and
speeds up as it falls down. 

Given
v1 � 8.0 m/s a � �9.8 m/s2 v2 � 0

a) To find the maximum height of the ball, we use the equation

v2
2 � v1

2 � 2a�d

�d � �
�

2
v
a

1
2

�

�d � �
2
�

(�

(8
9
.0
.8

m
m

/
/
s
s
)
2

2

)
�

�d � 3.27 m
�d � 3.3 m

Therefore, 3.3 m is the maximum height of the ball.

b) v2 � v1 � a�t

�t � �
v2 �

a
v1

�

�t � �
0
�

�

9.
8
8
.0
m

m
/s

/
2

s
�

�t � 0.82 s

Therefore, the ball reaches maximum height in 0.82 s.

c) Because of symmetry, we know that the time to go up equals the time
to come down. The time for the ball to go up and come back down is
simply twice the answer in b); that is, 1.6 s.

or

For the complete motion (up and down), 
�d � 0
v1 � 8.0 m/s
a � �9.8 m/s2

�t � ?

22 unit  a :  Forces and Motion:  Dynamics

In this problem, we are ignoring 

the effects of air resistance.



Using equation 3,

�d � v1�t � �
1
2

�a�t2

0 � (8.0 m/s)�t � (�4.9 m/s2)�t2

�t � 0 or �t � 1.6 s

e x a m p l e  1 2 Throwing a rock upward

A rock is thrown vertically upward from the edge of a cliff at an initial
velocity of 10.0 m/s. It hits the beach below the cliff 4.0 s later. How far
down from the top of the cliff is the beach? Consider up to be positive.

Solution and Connection to Theory

Given
v1 � 10.0 m/s �t � 4.0 s a � �9.8 m/s2

�d � v1�t � �
1
2

�a�t2

�d � (10.0 m/s)(4.0 s) � �
1
2

�(�9.8 m/s2)(4.0 s)2

�d � 40.0 m � 78.4 m

�d � �38.4 m

Therefore, the beach is 38.4 m below the top of the cliff.

1. An arrow is shot straight up in the air at 80.0 m/s. Find
a) its maximum height.
b) how long it will take the arrow to reach maximum height.
c) the length of time the arrow is in the air.

2. Tom is standing on a bridge 30.0 m above the water.
a) If he throws a stone down at 4.0 m/s, how long will it take to

reach the water?
b) How long will the stone take to reach the water if Tom throws it

up at 4.0 m/s?
3. A ball thrown from the edge of a 35-m-high cliff takes 3.5 s to reach

the ground below. What was the ball’s initial velocity?
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1.8 A Graphical Analysis of Linear Motion

So far, the examples we have studied have been algebraic problems. We have
therefore used algebraic solutions. Often in physics, especially while per-
forming experiments, data is presented in graphical form. So, physicists
need to be able to analyze graphical data. 

There are three main types of graphs used in kinematics: position–time
graphs, velocity–time graphs, and acceleration–time graphs. The relationships
among these graphs provide us with some of our most powerful analytical tools. 

Velocity

Figure 1.18 shows the position–time graph for an air-hockey puck moving
down the table. This simple example provides us with a considerable
amount of information about the motion of the object. Recall that

slope � �
r
r
u
is

n
e

�

m � �
�

�

d
t
(
(
m
s)

)
�

v � �
�

�

d
t
� ��

m
s
��

By calculating the slope of the linear graph, we can determine the velocity
of the air-hockey puck in metres per second. From this result, we can con-
clude that:

The slope of a position–time graph gives the velocity of the object.
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If the slope of a position–time graph gives velocity, and uniform motion is
constant velocity, then the graph must have a constant slope (i.e., be a
straight line). In other words,  

If an object is undergoing uniform motion, its position–time graph must
be a straight line.

Not all position–time graphs are straight lines. Some are curves, and some are
a complex combination of curves and straight lines. Regardless of the graph’s
shape, the slope of the position–time graph gives the velocity of the object. 

Figure 1.19 summarizes the information we can obtain from position–
time graphs.

Fig.1.19 Summary of d��–t Graph Analysis

chapter 1 : Kinemat ics  and Dynamics  in  One Dimension 25

� �

�d �d

�d �d

�d
t t t

t t

At rest

Speeding
up

Accelerating

Positive
acceleration

Is
the graph
a straight

line?

YES

YES

YES

NO

NO

NO

Is the
magnitude

of the slope
increasing?

Is
the slope
of the line

� 0?

Constant velocity
(uniform motion)

Increasing
positive velocity

Decreasing 
negative velocity

�d–t
graphs

�d �t

�d
t

Negative
acceleration

Decreasing 
positive velocity

Increasing
negative velocity

�d �t

�d
t

Slowing
down

Speeding
up

co

nnectcting

theC
o

n c e p

ts



Figure 1.20 shows the slope of the tangent at points A and B on an
increasing position–time graph. At point B, the velocity of the object (i.e.,
the slope of the tangent) is greater than at point A. The graph also shows a
line joining points A and B. The slope of this secant gives us the average
velocity between points A and B.

vavg � �
�

�

d
t
�

Average velocity is the slope of a line connecting two points on a
position–time graph. For position–time graphs representing uniform
acceleration, the instantaneous velocity of an object can be determined
by finding the slope of the tangent to the curve.

e x a m p l e  1 3 The slope of the tangent on a velocity–time graph 

The graph in Figure 1.21 represents the motion of a lime-green AMC
Pacer, which has started to roll downhill after its parking brake has
disengaged. Using this data, determine the slope of the tangent to the
position–time graph at four different points. Then plot the corresponding
velocity–time graph, and find its slope. Consider positive values to be
down the hill.

Solution and Connection to Theory

When we calculate the slope (i.e., the velocity) at four different points
along the curve in Figure 1.22a, we find that these values are increasing.
An increasing slope indicates acceleration. Since the velocity–time graph
is a straight line (Figure 1.22c), we know that the acceleration is uniform. 
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Fig.1.22

(a) (b)

(c)

Now we can find the slope of the 
velocity–time graph (Figure 1.22c):

slope � �
r
r
u
is

n
e

�

slope � �
�

�

v
t
�

slope � �
1
4
8
.5
m

s
/s

�

slope � 4.0 m/s2 � acceleration

From this example, we have determined that:

The slope of a straight-line velocity–time graph is the constant accelera-
tion of the object.

By analogy,

If the velocity–time graph is a curve (Fig.1.22d), the slope of its tangent
at any given point is the instantaneous acceleration of the object.

What can we learn by finding the area under a velocity–time graph? Let’s
look at the following example: 
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e x a m p l e  1 4 The area under a velocity–time graph

What is the area under the graph in Figure 1.23 for the first 3.5 s? (Be sure
to include the correct units.)

Fig.1.23

Solution and Connection to Theory

Figure 1.23 is a linear, increasing velocity–time graph. The area under
this graph is a triangle, which equals half the base times the height: 

A � �
1
2

�bh

A � �
1
2

�(3.5 s)(14 m/s)

A � 24 m

The unit generated in this example is metres; therefore, we can conclude that:

The area under a velocity–time graph is the displacement of the object, �d��.

Similarily, 

The area under an acceleration–time graph is the change in velocity of
the object, �v��.

Assuming an object starts from rest at the origin, we can summarize our
graphical analysis of linear motion in one simple diagram:
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e x a m p l e  1 5 Velocity–time graphs

1. From Figure 1.25, what is the instantaneous velocity of the object at
each of the following times? 

t � 4.0 s
t � 8.0 s
t � 12 s

2. a) What is the average acceleration from time t � 0 to t � 4.0 s? 
b) What is the average acceleration from time t � 10 to t � 15 s?

3. What is the instantaneous acceleration at t � 9.0 s?
4. How far has the object travelled in the first 7.0 s?

Solution and Connection to Theory

1. We can determine the instantaneous velocity by simply reading it off
the velocity–time graph. At time t � 4.0 s, the velocity is 2.0 m/s. At
t � 8.0 s, the velocity is 5.0 m/s. At t � 12 s, the velocity is 1.0 m/s. 

2. Since acceleration is determined by taking the slope of a velocity–time
graph, we need to find the slope of the graph at each time interval. For 
a) t � 0 to t � 4.0 s,

slope � acceleration � �
�

�

v
t
�

slope � �
2.

4
0
.0
m

s
/s

�

slope � 0.50 m/s2

b) From t � 10 s to t � 15 s, the graph is a descending straight line. We
therefore expect to have a negative slope:

a � �
�

�

v
t
�

a � �
v
t

2

2

�

�

v
t1

1
�

a �

a � �
�1

5
0
.0

m
s
/s

�

a � �2.0 m/s2

The negative acceleration is interesting for two reasons. Above the hori-
zontal time axis, negative acceleration indicates that the object is decreas-
ing in speed (i.e., it is slowing down). At the time axis, the object has a
velocity of zero and is at rest for an instant. Finally, below the time axis,

(�5.0 m/s) � (5.0 m/s)
���

15 s � 10 s

Fig.1.25
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2

the object is still accelerating in the negative direction, but its speed is
increasing in the opposite direction of its original motion (i.e., the object
is speeding up backwards). As an example of this type of motion, con-
sider an astronaut who is outside her shuttlecraft and is approaching it
with a velocity of 10 m/s [E]. To prevent herself from colliding with the
shuttlecraft, she fires a retro-rocket from her rocket pack, which shoots a
small amount of hot gas in the easterly direction, causing her to acceler-
ate in the westerly direction. If the rocket pack causes an acceleration of
1.0 m/s2 [W], the astronaut would continue to slow down until she came
to rest 10 s later. If at that point she shut off the rocket pack, she would
remain at rest. If she inadvertently left the rocket pack on, she would con-
tinue accelerating in the westerly direction immediately after having
come to rest. The astronaut’s velocity would increase by 1.0 m/s [W] for
each second that the retro-rocket was left burning. 

3. The instantaneous acceleration at time t � 9.0 s can be found by
inspection. The slope of the velocity–time graph gives the acceleration.
From t � 7.0 s to t � 9.0 s, the slope is horizontal, that is, zero. Zero
slope means that the object is undergoing uniform motion.

4. To determine the object’s displacement, we need to find the area
under the graph. In this case, we can simplify the calculation by break-
ing the area down into a series of triangles and rectangles. 

Fig.1.26

Atot � A1 � A2 � A3

A1 and A2 are both triangles and A3 is a rectangle. We substitute the
appropriate equations for each area:

Atot � �
1
2

�bh � �
1
2

�bh � lw

A1 � �
1
2

�(4.0 s)(2.0 m/s) � 4.0 m

A2 � �
1
2

�(3.0 s)(3.0 m/s) � 4.5 m

A3 � (3.0 s)(2.0 m/s) � 6.0 m

Atot � 4.0 m � 4.5 m � 6.0 m

Atot � 14.5 m 

Therefore, the object’s displacement in the first 7.0 s is 14.5 m.



Figure 1.27 summarizes how to obtain information from a velocity–time graph.

Fig.1.27 Information Obtained from a v�–t Graph

1. The v���t data in Figure 1.28 are for Puddles, the dog playing at the park.

Fig.1.28

a) Determine Puddles’ instantaneous acceleration at each of the 
following points:

t � 7.0 s
t � 12 s
t � 3.0 s

b) How far did Puddles run from time t � 5.0 s to t � 13 s?
2. Figure 1.29 shows v���t data for Super Dave, Sr. and his son, Super

Dave, Jr., who are racing their motorcycles on a straight 150-m track.

From the graph, determine the following:
a) How long does it take both Super Daves to reach the 

50-m mark?
b) Who wins the 50-m race, and by how much time?
c) Who would have won if the race had been 100 m long?
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Fig.1.29

3. Figure 1.30 shows d���t data for The Flash, a local jogging enthusiast.

Fig.1.30

a) Determine the average velocity for each segment of The Flash’s motion.
b) What is his average velocity for the entire trip?

1.9 Dynamics

Dynamics is often called the “why” of motion because it is the study of why
objects move as opposed to how they move. The following terms are very
important in the study of dynamics:

A force is commonly referred to as a push or pull in a given direction.
These forces are called contact forces. There are also non-contact forces such
as gravity. Force is a vector quantity, and its standard metric unit is the newton
(N). In the next few sections, we will study how different types of forces can
cause or affect the motion of objects. 
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Mass is the amount of matter in an object. It is a measure of an object’s
inertia. The standard SI unit for mass is the kilogram (kg). Weight, on the
other hand, is the force of gravity acting on an object. The terms mass and
weight are commonly thought to be synonymous, but they are not. Mass is a
quantity that doesn’t vary with location, whereas weight depends on your
location in the universe.

Gravity is the mutual force of attraction between any two objects that
contain matter. The magnitude of the force of Earth’s gravity (Fg) on an
object can be calculated using the following equation:

Fg � mg

The symbol g represents Earth’s gravitational field strength of 9.80 N/kg. This
value is also commonly referred to as the acceleration due to gravity, with units
m/s2. For this equation to be valid, we must assume that the object is reasonably
close to Earth’s surface and that Earth is a sphere of uniform mass and radius. 

1.10 Free-body Diagrams

Free-body diagrams (FBDs) are very useful conceptual tools for physics stu-
dents because they help us isolate the object we wish to study from its envi-
ronment so that we can examine the forces acting on it. A free-body diagram
is created by drawing a circle around the object. The forces acting on the object
are represented by arrows pointing away from the circle. For example, if we
were to draw a free-body diagram of this textbook sitting at rest on a lab bench,
we would draw a circle around the textbook, and draw two arrows represent-
ing forces acting on it, as shown in Figure 1.32a. One of the forces is the force
of gravity on the book, pulling it downward. The other force is the force due
to the bench pushing the book upward. Note that the force applied by the book
on the bench downward isn’t shown because this force
is exerted by the book. This force would only be
shown in a free-body diagram of the lab bench. 

The forces in Figure 1.32a are equal and oppo-
site; that is, the magnitude of the gravitational force
is equal to the magnitude of the upward force due to
the lab bench. These two forces are an example of
balanced forces. When an object is acted on by bal-
anced forces, the forces cancel each other out and
the object behaves as though no force is acting on it. 

Figure 1.32b is a free-body diagram of a textbook in
free fall. Assuming negligible air resistance, the only
force acting on the book is the force of gravity down-
ward; there is no balancing upward force. As a result,
the force due to gravity on the book is unbalanced. 
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In more formal physics, the object in a free-body diagram is
reduced to a dot representing the object’s centre of mass. The
forces are shown pointing away from the dot, as in Figure 1.33a .
Notice that side-by-side forces are drawn slightly offset. 
An alternative is to place parallel forces head to tail in a line 
(Figure 1.33b).

Fig.1.33
(a) (b)



1.11 Newton’s First Law of Motion: 
The Law of Inertia

Newton’s first law of motion is one of the most important and most com-
monly misunderstood laws in physics. Newton’s first law states:

An object will remain at rest or in uniform motion unless acted upon by
an external unbalanced force.

In other words, objects at rest or in uniform motion don’t require any other
forces in order to maintain their current states. An object at rest that is
acted on by two balanced forces remains at rest and needs no other force to
stay that way. We wouldn’t expect the textbook in Figure 1.32a to suddenly
start flying around the room unless an additional force was applied to it. For
objects in uniform motion, imagine that we take a baseball into outer space
and throw it. Once the ball has left our hand and experiences no other
forces, it will continue travelling at a constant speed in a straight line away
from us forever! No additional force is required to maintain its motion.

e x a m p l e  1 6 Understanding Newton’s first law

A physics teacher is driving down the highway in her new blue
Porsche 911 turbo at a constant velocity of 90 km/h. Why can she not shut
the engine off, and travel at a constant speed in a straight line forever
(assuming the road is perfectly straight and there is no other traffic)?

Solution and Connection to Theory

Figure 1.35 shows the forces acting on the car. We can assume that the
upward force on the car from the road and the downward force of grav-
ity on the car balance, so the net force in that direction is zero. The two
horizontal forces, that is, the force
of the engine acting on the car and
the force of friction from the road
and air resistance, are balanced if
the car is travelling at a constant
velocity. The two horizontal forces
are unbalanced if the car’s engine
is shut off. With the engine off,
friction will eventually bring the
car to rest.
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Inertial and Non-inertial Frames of Reference

The point of view from which we observe motion is called a frame of 
reference. It is the stationary “platform” from which we judge or measure all
other motion. Situations where Newton’s first law applies are referred to as
inertial frames of reference. In an inertial frame of reference, the observer
is either at rest or travelling at a constant velocity relative to the frame of refer-
ence he or she is observing. A non-inertial frame of reference is accelerating,
and Newton’s first law doesn’t apply. 

Imagine you are driving in a car down a perfectly straight and perfectly
flat road at a constant speed. If you closed your eyes, you would be unaware
of any motion. If, all of a sudden, the driver stepped on the gas and caused
the car to accelerate, you would feel a force pushing you back into the 
seat. From your reference frame inside the car, you are accelerating back; 
therefore, according to Newton’s first law, you require an unbalanced
force acting on you. But nothing is pushing you back; so, Newton’s first
law doesn’t apply in a non-inertial frame of reference. An observer in an
inertial frame of reference on the side of the road would see a force applied
to you (i.e., you being pushed by the back of your seat) to accelerate for-
ward along with the car. Therefore, Newton’s first law applies to inertial
frames of reference only.

Figure 1.36 summarizes Newton’s first law and the states of motion
to which it applies.

Fig.1.36 States of Motion
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1. Draw a free-body diagram for each of the following situations, and
determine if the forces are balanced or unbalanced. Explain your
reasoning in each case. 
a) A goalie kicks a soccer ball from the ground. 
b) An Olympic marksman experiences recoil as his rifle fires. 
c) A penny falls through the water in a wishing well. 
d) An airborne soldier floats to the ground with her parachute open.

1.12 Newton’s Second Law of Motion: 
F��net � ma��

Newton’s second law describes the acceleration produced when an unbal-
anced force acts on an object. Newton’s second law of motion can be
stated algebraically as

F��net � ma��

where the net force (F��net) is the vector sum of all forces acting on the object. 

e x a m p l e  1 7 Newton’s second law

What is the acceleration of a 5.0-kg bowling ball that simultaneously expe-
riences a 60-N force east and a 50-N force west? Assume that east is positive.

Fig.1.37

Solution and Connection to Theory

Given
m � 5.0 kg F��1 � 60 N [E] F��2 � 50 N [W]
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From Newton’s second law,

F��net � ma��

F��net � F��1 � F��2

Fnet � 60 N � 50 N

a � �
F
m
net
�

a ��
(60 N

5.0
�

k
5
g
0 N)

�

a � 2.0 m/s2

Therefore, the acceleration, a��, of the bowling ball is 2.0 m/s2 [E]. In the
vertical direction, Fsurface � Fg and Fnety � 0.

e x a m p l e  1 8 Frictional force

A 50-kg block of ice experiences an applied horizontal force of 80 N [W]
as it accelerates at 1.2 m/s2 [W] against a force of friction. Determine the
magnitude and direction of the frictional force acting on the block of ice. 

Solution and Connection to Theory

Fig.1.38

Given
m � 50 kg F��app � 80 N [W] a�� � 1.2 m/s2 [W]

Assuming east is positive, Fapp � �80 N and a � �1.2 m/s2

From Newton’s second law,

F��net � ma��

F��app � F��f � ma��

F��f � ma�� � F��app

Ff � (50 kg)(�1.2 m/s2) � (�80 N)
Ff � �20 N

Therefore, the frictional force is 20 N [E]. Notice that it is in the opposite
direction to the ice block’s motion, as we would expect.
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e x a m p l e  1 9 A multiple-step problem

An 800-kg police boat uniformly changes its velocity from 50 km/h [N]
to 20 km/h [N] as it enters a harbour. If the acceleration occurs over a dis-
placement of 30 m, what is the frictional force on the boat?

Solution and Connection to Theory

Given
v��1 � 50 km/h [N] v��2 � 20 km/h [N]

Assuming north is positive, v1 � 50 km/h � � 13.9 m/s

v2 � 20 km/h � � 5.56 m/s

�d � 30 m m � 800 kg Ff � ?

In order to find the force, we must first calculate the acceleration.

Using the equation

v2
2 � v1

2 � 2a�d

and isolating a, we obtain

a � �
v2

2

2
�

�d
v1

2

�

a �

a � �2.57 m/s2

The negative sign means that the acceleration is to the south. Therefore,
the acceleration is 2.57 m/s2 [S].

The force of friction of the water on the boat is the only unbalanced force
acting on the boat and is therefore the net force. So,

F��net � F��f

ma�� � F��f

Ff � (800 kg)(�2.57 m/s2)
Ff � �2.1 � 103 N

Therefore, the frictional force slowing the boat down is 2.1 � 103 N [S].
Notice once again that the force of friction is in the opposite direction to
the boat’s motion.

(5.56 m/s)2 � (13.6 m/s)2

���
2(30 m)

1000 m
�
3600 s

1000 m
�
3600 s
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1. A 2.0-kg duck is accelerated by a force of 10 N. 
a) What is the acceleration of the duck? 
b) How would the duck’s acceleration change if its mass was doubled? 
c) How would the duck’s acceleration change if the force was halved? 

2. A 90-kg parachutist in free fall has an acceleration of 6.8 m/s2.
What is the frictional force provided by air resistance when she is
accelerating at this rate? 

3. A dart strikes a 0.45-cm-thick dartboard at a velocity of 15 m/s and
accelerates uniformly to rest. What force does the dartboard apply
to the 80-g dart in bringing it to rest? 

4. A 600-kg jet car accelerates from rest under the force of its jet
engine. After travelling 1.00 km in 21.0 s, the jet engine shuts off
and the jet car eventually comes to rest 1.4 km farther down the
track, stopped by the frictional force of the ground. Calculate the
force due to the jet engine, and the constant frictional force applied
while the car was in motion.

5. A 250-g baseball strikes a catcher’s mitt with a velocity of 28 m/s.
If the catcher’s mitt moves backwards 35 cm in bringing the ball to
rest, determine the force applied by the mitt on the ball.

1.13 Newton’s Third Law: Action–Reaction
Consider the following situation: You are standing on a hockey rink, wearing
your hockey skates and facing the boards. You apply a 10-N [W] force on
the boards. What type of motion will occur due to this force, and in which
direction will it occur? 

You will move east even though you have applied a force west. This
effect is explained by applying Newton’s third law:.

For every action (applied) force, there is an equal and opposite reaction
force. The reaction force is equal in magnitude and opposite in direction
to the action force.

In our example, you applied a force on the boards of 10 N [W]. According to
Newton’s third law, the boards apply an equal and opposite reaction force
on you of 10 N [E], causing you to accelerate east.
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e x a m p l e  2 0 Unbalanced action–reaction forces 

You are standing in the middle of a hockey rink, face to face with Eric
Lindros. If you apply a force of 10 N [W] on Eric, who will move and in
which direction? What is Eric’s force on you, and what are your respec-
tive accelerations? Assume that Eric’s mass is 100 kg and yours is 70 kg.

Solution and Connection to Theory

Given
mE � 100 kg mY � 70 kg F�� � 10 N [W]

Consider the free-body diagram of Eric. Assuming no friction, one force
only is applied to him, so

aE � �
m
F

E
� � �

�

10
1
0
0

k
N
g

�

aE � �0.1 m/s2

Eric accelerates at –0.1 m/s2 [W].
From Newton’s third law, the reaction force on you is 10 N [E], so

aY � �
m
F

Y
� � �

7
1
0
0

k
N
g

� � 0.14 m/s

Your acceleration, a��, is 0.14 m/s2 [E].

e x a m p l e  2 1 Newton’s third law

A tractor pulls two 2000-kg hay wagons, A and B, connected together as
shown in Figure 1.44a. If the tractor applies a constant force of 5000 N,
determine the acceleration of the two hay wagons, and the force at the
point where the two wagons are joined together. Assume no friction.
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�

Fig.1.44a

Solution and Connection to Theory

Given
mA � mB � 2000 kg F��T � 5000 N [E]

Because a constant force is being applied by the tractor, the hay wagons are
accelerating. To find the acceleration of both wagons, we use Newton’s 
second law:

F��net � ma��

F��net � (mA � mB)a��

a�� � �
(mA

F��

�
net

mB)
�

a �

a � 1.25 m/s2

The acceleration of the hay wagons is 1.25 m/s2.

To find the force at the junction point of the two wagons, consider wagon A.
The only force acting on it is the force from wagon B (see Figure 1.44c).

FBA � mAa
FBA � (2000 kg)(1.25 m/s2)
FBA � 2.5 � 103 N

Now consider wagon B.

a � 1.25 m/s2

Fnet � ma

From Figure 1.44d,

5000 N � FAB � (2000 N)(1.25 m/s2)
FAB � �2.5 � 103 N

F��BA and F��AB are two equal and opposite forces, as predicted by Newton’s
third law.

5000 N
���
(2000 kg � 2000 kg)
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Figure 1.45 summarizes how to solve problems involving Newton’s laws 
of motion.
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Fig.1.45 Applying Newton’s Laws

1. Identify the action–reaction pairs in each of the following situa-
tions. Include the direction of each force (organize in chart form).
a) A soccer player kicks a stationary soccer ball east.
b) A canoeist pushes the water back with his paddle.
c) A child releases a balloon full of air, letting go of the open end.
d) An apple hangs from a tree branch.
e) A laptop computer sits on a desk.

Fig.1.47 What are the action–reaction pairs here?

2. Competitive clay target shooters (Figure 1.47) experience Newton’s
third law every time they compete. Explain what happens in terms
of Newton’s third law.

Fig.1.46



�v

3. A tugboat pulls three barges connected end to end with wire cables
(Figure 1.48). The barge closest to the tugboat has a mass of 6000 kg.
The next-closest barge has a mass of 5000 kg, and the last barge has
a mass of 4000 kg.
a) Calculate the force that the tugboat must apply to accelerate the

three barges at a rate of 1.5 m/s2.
b) Determine the tension in the cable joining each pair of barges.

Fig.1.48

4. A dog team driven by an Inuit hunter pulls two toboggans (Figure 1.49).
The dog team can apply a maximum force of 700 N. Each toboggan
experiences a constant frictional force of 100 N. 
a) Determine the acceleration of the two toboggans, if each has a

mass of 300 kg. 
b) What is the force in the rope joining the two toboggans together?

Fig.1.49

Recoilless Rifles

A recoilless rifle (Figure 1.50) is a type of cannon that can be used as
an antitank weapon. A conventional artillery piece must have a large
mass and be securely fixed to the ground to prevent the substantial
recoil from moving it out of position. Because a recoilless rifle doesn’t
recoil, it can have a smaller mass and can be mounted less securely on
a jeep or small tripod.

5. How would you design a gun that fires a shell of approximately the
same size as a regular cannon but doesn’t recoil? 

6. Earth applies a gravitational force to the Moon, and the Moon
applies an equal and opposite gravitational force to Earth. Why
don’t these forces cancel each other out? Explain your answer in
terms of Newton’s laws of motion.
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1.14 Friction and the Normal Force

Whenever two bodies slide over each other, frictional forces between them
develop. Sometimes these forces help us and sometimes they hinder us.
Without friction, it would be impossible to make a car start, stop, or turn.
However, if we were able to turn friction off once our car was travelling at a
constant velocity, we wouldn’t need the engine anymore because, according to
Newton’s first law, we would travel at a constant speed in a straight line.

The microscopic details of the force of friction are still not properly
understood. We believe that when two objects are in contact, they make
microscopic connections at various points on their surfaces. Even highly
polished surfaces are rough and ridged when viewed under a powerful
microscope. Because the contact points are so close to each other, intermol-
ecular forces form microscopic welds that must be broken in order for the
objects to move apart. These welds continually form and break as the
objects move across each other.

Consider a lamp sitting on a table. Figure 1.52 is a free-body diagram of
the lamp showing the force due to gravity (downward) and the force due to
the table (upward). Assuming that the lamp isn’t accelerating, these two
forces are equal and opposite. The upward force of the table is perpendicu-
lar to the table’s surface. Any force applied on an object by a surface that is
perpendicular to the surface (i.e., normal to the surface) is referred to as a
normal force, Fn. 

The force of friction always acts to oppose the sliding of two surfaces
past each other. The magnitude of the force of friction, which depends
directly on the normal force, Fn, is given by

Ff � �Fn

where � (pronounced “mew,” like a cat), the coefficient of friction,
depends on the nature of the surfaces and is found experimentally.
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There are two kinds of sliding friction: static friction and kinetic
friction. In general, the force of static friction is greater than the force of
kinetic friction. In other words, it is more difficult to begin moving an object
at rest than it is to move an object already in motion. For example, when a
car is stuck in mud, it is more difficult to get it unstuck than it is to keep it
moving once unstuck. To reflect this observation, we use different coeffi-
cients of friction, depending on whether the object is at rest or in motion.
When an object is at rest (i.e., static), we substitute the coefficient of
static friction, �s, in the friction equation. When an object is in motion,
we use the coefficient of kinetic friction, �k.

e x a m p l e  2 2 Frictional force

A new homeowner pushes a 150-kg refrigerator across the floor at a con-
stant speed. If the coefficient of kinetic friction is 0.30, what is 

a) the frictional force on the refrigerator?
b) the force applied by the homeowner?

Solution and Connection to Theory

a) Our free-body diagram shows four forces. We know that the fridge is
travelling at a constant speed; that is, all forces acting on it are bal-
anced (Newton’s first law). We can therefore conclude that the applied
force and the frictional force are equal, as are the normal force and the
gravitational force. Calculating the frictional force,

F��nety � F��n � F��g

0 � Fn � Fg, so Fn � Fg

Ff � �Fn

Ff � �Fg

But Fg � mg. Therefore,

Ff � �kmg
Ff � (0.30)(150 kg)(9.80 N/kg)
Ff � 4.4 � 102 N

The frictional force on the fridge is 4.4 � 102 N.

b) F��netx � F��app � F��f

0 � Fapp � Ff, so Fapp � Ff

The force applied by the homeowner is also 4.4 � 102 N.

�Fn

�Fg

�Ff
�Fapp

�

�Fig.1.53

The coefficient of friction is the ratio
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e x a m p l e  2 3 Coming to rest

While cleaning your room, you throw your shoe into the closet. It starts
across the floor at a speed of 1.5 m/s. If the shoe has a mass of 200 g, and
the coefficient of kinetic friction between the shoe and the floor is 0.15,
how far will the shoe travel before coming to rest?

Solution and Connection to Theory

Given
v��1 � 1.5 m/s [R] �k � 0.15 m � 0.200 kg v��2 � 0

To the right is positive.

Since the shoe has already left your hand, your hand is no longer capable
of applying a force on it. The two vertical forces, the gravitational force
and the normal force, balance. Therefore, there is no vertical motion. 

In the x direction,

Fnet � �Ff � ��kFn

But Fn � mg
Fnet � ��kmg

a � �
F
m
net
� � �

��

m
kmg
� � ��k g

a � �(0.15)(9.8 N/kg)
a � �1.47 m/s2

To calculate the distance the shoe travels before coming to rest, we use
the equation

v2
2 � v1

2 � 2a�d

and isolate �d:

�d � �
�

2
(v

a
1

2)
�

�d ��
2

�

(�

(1
1

.

.
5
47

m
m
/s

/
)
s

2

2)
�

�d � 0.77 m

Therefore, the shoe you threw will travel 0.77 m before coming to rest.
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e x a m p l e  2 4 Calculating the force of friction for 

a lawn mower being pushed

A lawn mower of mass 12 kg is being pushed by a force of 150 N hori-
zontally and 40 N down. If the coefficient of kinetic friction between
wheels and grass is 0.9, find the force of friction acting on the lawn
mower and the lawn mower’s acceleration.

Solution and Connection to Theory

Assume the standard reference system and that motion is to the right.

Given
m � 12 kg g�� � 9.8 m/s2 [D] �k � 0.9 F��h � 150 N [E] F��v � 40 N [U]

Notice that we have isolated the lawn mower and not the person and
lawn mower. If we did that, the two given forces would not be marked on
the diagram because they act on the lawn mower only. Because the force
of friction involves the normal force, we chose the direction of the nor-
mal force first when solving for F��net. We designate F��n as positive.

Vertically,

Fnet � Fn � Fg � 40 N

There is no vertical motion. Therefore, Fnet � 0 and Fg � mg.

Fn � mg � 40 N � (12 kg)(9.8 m/s2) � 40 N � 158 N

Horizontally, because the lawn mower is moving,

Ff � �kFn � (0.9)(158 N) � 142 N

The force of friction acting on the lawn mower is 142 N.

Having solved for F��net in the y (vertical) direction, we now solve for F��net

in the direction of motion (horizontal, x) to calculate the lawn mower’s
acceleration.

Fnet � 150 N � Ff

The direction of friction is opposite to the direction of motion. In this case,

F��net � ma��

ma � 150 N � 142 N � 8.0 N

a � �
8
1

.
2
0

k
N
g

� � 0.7 m/s2

The applied force accelerates the mower at 0.7 m/s2 [E].
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1. a) What frictional force is required to bring a skidding 4000-kg 
truck to rest from 60 km/h in 10 s?

b) What minimum coefficient of kinetic friction is required?
2. A toy duck waddles across the floor at a constant speed.

a) How do the magnitudes of the applied force and the frictional
force compare to each other?

b) If the coefficient of kinetic friction of the floor is 0.15, what is
the maximum forward acceleration the duck can give itself?

3. A 90-kg movie stuntman jumps off the back of a truck moving at 
80 km/h, and slides down the road on his protected back. If the
coefficient of kinetic friction between his protective suit and the
road is 0.60, determine how far the stuntman will slide.

1.15 Newton’s Law of Universal Gravitation

Gravity is the mutual force of attraction between any two objects that con-
tain matter, regardless of their size. The strength of the gravitational force
between two objects depends on two variables: mass and distance. If we
were to take two physics textbooks into outer space and separate them by
1.0 m, they would accelerate toward each other very slowly. If we separate
two planet Earths by 1.0 m between their surfaces, they would accelerate
toward each other very rapidly. If we significantly increased the distance
separating the two Earths, they would accelerate toward each other much
more slowly. Newton expressed this relationship algebraically in his law of
universal gravitation. 

Consider two spheres of mass m1 and m2, separated from their centres
by a distance r (see Figure 1.56a). According to the law of universal gravi-
tation, the magnitude of the force of attraction between them is expressed
by the equation

Fg � �
Gm

r
1
2

m2
�

where Fg is the gravitational force of m1 on m2, r is the separation of the cen-
tres of m1 and m2, and G is the universal gravitational constant.

The universal gravitational constant, G, was first measured by Henry
Cavendish in 1798. In his classic experiment, Cavendish used a torsional
balance consisting of a horizontal 2-m rod suspended from its centre by a
thin wire. A 0.8-kg lead sphere was mounted at each end of the rod. When
two larger, 50-kg lead spheres were brought near each of the small spheres,
the thin wire twisted slightly due to the forces of attraction between the
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large and small spheres (see Figure 1.56b). Cavendish was able to calculate
the force required to twist the thin wire, and used it to find the force of
attraction between the spheres. He found that the force of attraction
between two 1-kg masses 1 m apart is 6.67 � 10�11 N. From Newton’s law
of universal gravitation, 

F � �
Gm

r
1
2

m2
�

Therefore,

G � �
m
F

1

r
m

2

2
�

G �

G � 6.67 � 10�11 N�m2/kg2

This constant should not be confused with g, which is the gravitational field
strength, or the acceleration due to gravity.

e x a m p l e  2 5 The gravitational force between two textbooks 

What is the gravitational force between two 1.3-kg textbooks separated
from their centres by a distance of 2.0 m?

Solution and Connection to Theory

We will assume that these textbooks are uniform, and that their centres
of mass are the centres of the textbooks.

Given
m1 � m2 � 1.3 kg r � 2.0 m G � 6.67 � 10�11 N�m2/kg2

F � �
Gm

r
1
2

m2
�

F �

F � 2.8 � 10�11 N

Because this force is so small, if the two textbooks were released in outer
space, the acceleration experienced by each one would also be incredibly
small. Note that the forces applied by the books on each other are equal
and opposite.

(6.67 � 10�11 N�m2/kg2)(1.3 kg)(1.3 kg)
�����

(2.0 m)2

(6.67 � 10�11 N)(1.00 m)2

���
(1.00 kg)(1.00 kg)

m1

r

m2

PHYSICSPHYSICS

Fig.1.57

Fig.1.56b



Calculating Gravitational Forces 

In Section 1.9, we used the equation Fg � mg to calculate the gravitational
force. This equation only applies to objects close to Earth’s surface. We can
derive the value of g using the law of universal gravitation.

Consider an apple of mass mA near Earth’s surface. We express this sit-
uation algebraically by the equation

Fg � �
Gm

r
E
2

mA
�

This equation can be rewritten as

Fg � mA��Gr
m
2

E
��

If mE � 5.98 � 1024 kg, rE � 6.38 � 106 m, and G � 6.67 � 10�11 N�m2/kg2,
then

g � �
G

r
m
2

E
�

g �

g � 9.8 m/s2

Therefore, Fg � mg

Both equations for gravitation are valid near Earth’s surface. As we move
farther from Earth’s surface, we either have to use the law of universal grav-
itation or change the value of g to calculate the force of gravity between two
objects (see Table 1.3).

e x a m p l e  2 6 Gravitational proportionalities

Two spheres of mass mA and mB are separated from their centres by a dis-
tance rAB. What would happen to the force between the spheres if

a) mA was doubled?
b) both masses were doubled?
c) the masses were not changed, but the distance between the spheres

was doubled?

Solution and Connection to Theory

a) Recall that

FAB1 � �
Gm

rA

A

B

m
2

B
�

(6.67 � 10�11 N�m2/kg2)(5.98 � 1024 kg)
�����

(6.38 � 106 m)2
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Table 1.3
How much does a 60-kg 

earthling weigh?

Place g (N/kg ) Weight (N)

Earth’s moon 1.62 97

Mercury 3.61 217

Mars 3.75 225

Venus 8.83 530

Earth 9.81 589
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If we double mA, the equation becomes

FAB2 � �
G(2

r
m

AB

A
2

)mB
�

FAB2 � 2��Gm
rA

A

B

m
2

B
��

The value in parentheses is the original force value. Therefore, dou-
bling one of the masses causes the force between them to double.

b) If we double both masses,

FAB2 � �
G(2m

r
A

A

)

B

(
2

2mB)
�

FAB2 � 4��Gm
rA

A

B

m
2

B
��

Doubling both masses causes the force between them to quadruple.
c) If we double the distance between the spheres, the equation becomes

FAB2 � �
G
(2

m
rA

A

B

m
)2

B
�

FAB2 � �
1
4

���Gm
rA

A

B

m
2

B
��

The force is now one-quarter of its original value.

1. What is the force of gravity between two electrons separated by a
distance of 1.0 cm? (me � 9.1 � 10�31 kg)

2. What is the force of gravity between Earth and the Moon if the
Moon’s mass is 0.013 times that of Earth? 

3. Two spheres of mass m1 and m2 are separated by a distance r. What
would happen to the force of gravitational attraction between them if
a) m1 was halved and m2 was quartered?
b) m1 was doubled and r was tripled?
c) m1, m2, and r were all doubled?

4. How far above Earth’s surface would you have to go to lose half
your weight?

5. Jupiter has a mass of 1.9 � 1027 kg and a radius of 7.2 � 107 m.
What is the acceleration due to gravity on Jupiter?
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New Respect for the Humble Tire 
Canada has some of the most variable weather in the world. Dramatic
changes in temperature, combined with rain, snow, and ice, can make driving
conditions treacherous. New cars in Canada are usually equipped with
all-season radial tires. These tires are designed to provide better traction in
the snow than summer tires, while still providing an acceptably good ride
during the summer months. All-season radial tires provide a good balance
between winter traction and mild weather needs.

Many factors must be considered in designing a quality tire. Two important
factors are the values of the coefficients of kinetic and static friction provided
by the tire’s surface. For driving on dry pavement, we are concerned with the
coefficient of static friction only because the tire is constantly rotating while
making contact with the road and is not sliding across it. On dry roads,
smooth (no-tread) tires, such as those used on racecars, provide a coefficient
of static friction of about 0.9. The increased surface area of the tire that makes
contact with the road increases the coefficient of static friction. 

The value for the coefficient of kinetic friction is usually significantly lower
than that of static friction. In some cases, the coefficient of kinetic friction is
only 50% of the coefficient of static friction. In an emergency situation, with
brakes locked, the coefficient of kinetic friction ultimately determines the
car’s minimum stopping distance. 

When water is on the surface of a road, it acts as a lubricant, which
dramatically reduces the coefficient of static friction. As a result, automobile
tires are designed with treads that pump the water away from the road, thereby
increasing traction. Studies have shown that in snowy or icy conditions,
all-season radial tires provide less traction than winter tires and studded tires. 

Good tire maintenance is important regardless of tire type or make. Tire
pressure must be maintained at the recommended level if the tire treads are
to make contact with the driving surface in a way that ensures maximum
surface contact. If tires are allowed to wear excessively, insufficient tread
depth will prevent tires from channeling water away from the road surface,
which decreases the coefficient of static friction and makes maneuvering the
car more difficult. Similarly, in an emergency situation without antilock
brakes, the coefficient of kinetic friction will be reduced to an even lower
value than on a dry surface. On snow and ice, where it may be impossible for
tires to make contact with the road surface, tread depth, design, and the type
of rubber used are especially important.

Winter tires are designed with treads that are up to 30% deeper than
all-season tires. Deeper treads provide greater grip by allowing the tires to
eject snow more easily. One reason for loss of traction in all-season tires is
that the rubber compounds used tend to become hard at temperatures below
�10°C. Winter tires, on the other hand, use special rubber compounds that
allow them to stay elastic in temperatures as low as �40°C. 
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Fig.STSE.1.1 A Michelin X One 

all-season radial tire

Studded tires have small metal studs embedded in them that provide
enhanced traction. They are illegal in Ontario on the grounds that they damage
road surfaces, but may be used in all other provinces with some restrictions. 

Design a Study of  Societal  Impact 

Every year, thousands of Canadians die in car accidents. Design a
study to investigate the societal impact of car accidents. Compare the
frequency and severity of the accidents that occur in a population from
one season to another. Compare data between two areas, such as
Sweden (where studded winter tires are commonplace) and Ontario
(where studded tires are illegal). Determine the societal cost of damaged
roads caused by studded tires. Do the benefits of using studded tires
outweigh the cost? 

Design an Activ ity  to Evaluate 

Photograph ten different types of tire treads found on cars in your school
parking lot or a local tire store. Photograph as broad a selection of tire
treads as possible, such as all-season radials, winter tires, and, if possible,
studded tires. Look for similarities and differences in tire treads for each
of these three types of tires. Using your knowledge of Newton’s laws,
explain how various features in these treads are used to increase traction,
expel snow and water, and help the car maneuver effectively.

Speculate as to which of the tires you photographed provides the
shortest stopping distance on dry roads, snow, and ice. Use the
Internet and electronic and print resources to collect data on the stop-
ping distances for the tires you have chosen. Compare these results to
your predictions.

Bui ld a Struc ture 

Make an “ice slide” by coating a piece of plywood with ice. (This activity
is most easily done outdoors in winter by wetting a piece of plywood
several times during the day.) Obtain different types of used tires from
a local tire store. Cut same-size samples of rubber from each tire and
place each piece of rubber sequentially on the ice slide. Then increase
the angle of inclination of the slide. Determine the coefficient of static
friction for each piece of rubber by using the equation

� � tan 

Compare your results for each rubber sample. In general, how does the
coefficient of static friction for winter tires on ice compare to that for
all-season radials? What controls are necessary for the results of this
experiment to be valid?
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S P E C I F I C  E X P E C TAT I O N S  S U M M A R Y

You should be able to

Understand Basic Concepts:

Differentiate between scalar and vector quantities. 
Perform unit conversions and analysis. 
Define and calculate distance and displacement.
Define and calculate speed and velocity. 
Define and calculate acceleration. 
Describe algebraically the motion of objects
undergoing uniform linear acceleration. 
Solve problems using the five kinematics equations. 
Describe the contributions of Galileo to our under-
standing of physics. 
Define and describe the acceleration due to gravity
of objects near the surface of Earth. 
Solve problems involving objects thrown vertically. 
Perform graphical analyses in describing linear
motion. 
Determine information from displacement–time,
velocity–time, and acceleration–time graphs. 
Differentiate between mass and weight. 
Define Newton’s three laws of motion. 
Differentiate between balanced and unbalanced
forces. 
Define and describe the frictional force acting on
an object. 
Solve linear problems involving friction using
Newton’s laws. 
Apply Newton’s law of universal gravitation to
objects close to and far from the surface of Earth. 

Develop Skills of Inquiry and Communication:

Design and perform an experiment to determine
the relationship between displacement and time
for an object undergoing uniform acceleration. 
Design and perform an experiment to determine
the relationship between the angle of inclination
and acceleration for an object on an inclined plane. 

Relate Science to Technology, Society, 

and the Environment:

Investigate the societal benefits of studded tires. 
Design an activity to evaluate which physical
characteristics of tires can be changed to increase
traction. 
Determine the coefficient of static friction of
different tires.
Appreciate the role of physics in the design of
better tires. 

Equations 

v��avg � �
�

�

d�

t

�

�

a�� � �
v��2

�

�

t
v��1

�

�d�� � ��v��1 �

2
v��2

���t

�d�� � v��1�t � �
1
2

�a���t2

�d�� � v��2�t � �
1
2

�a���t2

v��2
2 � v��1

2 � 2a���d

F��g � mg��

F��net � F��1 � F��2 � …

F��net � ma��

Ff � �Fn

Fg � �
Gm

r
1
2

m2
�
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E X E RC I S E S

Conceptual Questions

1. Is it possible for an object to be accelerating
and at rest at the same time? Explain.

2. Does a speedometer measure a car’s speed or
velocity?

3. A penny is dropped into a wishing well from
a height of 2 m. The well is 2 m deep, and the
penny falls through the water at a constant
speed. Sketch a position–time graph and a
velocity–time graph describing the motion of
the penny.

4. Explain the significance of having a negative
displacement, a negative velocity, and a nega-
tive acceleration.

5. Why are the seconds squared in the standard
SI unit for acceleration? What is the signifi-
cance of this notation?

6. Figure 1.58 shows possible shapes of graphs.
Interpret each graph, first as a d��–t graph and
then as a v��–t graph, to describe the motion.

Fig.1.58

7. A bus drives 1 km up a hill in 5.0 minutes. It
then drives down the hill in 4.0 minutes. For
the bus, find
a) the average speed up the hill.
b) the average speed down the hill.
c) the average speed for the whole trip.
d) Why is the answer for c) not equal to

?

Fig.1.59 Does this craft need its engines burning?

8. In science fiction movies, spacecraft are often
seen with their engines burning. If you were
to fly from planet A to planet B, when during
your flight would you be required to burn
your engines?

9. What is meant by the statement “free-body
diagrams show the forces applied on an
object, not the forces applied by an object”?
Give an example to clarify your answer.

10. Draw a free-body diagram of a motorcycle
when its brakes are applied as it approaches a
red light.

11. Write a brief letter to your ten-year-old cousin
explaining Newton’s first law of motion.
Include an example and a diagram.

12. Earth and the Moon apply equal and opposite
gravitational forces to each other. Why don’t
these two forces cancel each other out?

the speed up the hill plus the speed down
�����

2

t t

t t

0 0

0 0
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13. When you fire a rifle, the bullet goes in one
direction and you recoil in the opposite direc-
tion. Why?

14. A baseball is thrown straight up in the air,
then caught on its way down. Prove that the
time it takes to go up is equal to the time it
takes to fall back down. 

15. A ball at the end of a string is swung in a hor-
izontal circle above a person’s head at a speed
of 2.0 m/s. Is the ball undergoing uniform
motion? Explain your answer.

Problems

1.2 Distance and Displacement

16. A flight of stairs is 10 m high. If you were to
run up and down the stairs 10 times, determine
a) your total distance travelled.
b) your total displacement.

Fig.1.60 A guardsman at Buckingham Palace

17. A guardsman in front of Buckingham Palace
(Figure 1.60) marches 15 m [E], followed by
6.0 m [W], and finally 2.0 m [E].
a) What is his total distance travelled?
b) What is his total displacement?

1.3 Unit Conversion and Analysis

18. Convert the acceleration due to gravity, g,
from its metric units to standard imperial
units, feet per second squared. 1 ft � 12 in
and 1 in � 2.54 cm.

19. Mariners use a distance measurement called
the nautical mile. One nautical mile is 6080 ft.
A ship travelling at a speed of one nautical
mile per hour is said to be travelling at one
knot. What is the speed of a ship travelling 
at 10 knots
a) in kilometres per hour?
b) in metres per second?

20. Astronomers use a distance measurement
called the light year. A light year is the dis-
tance travelled by light in one Earth year. If
light has a speed of 3.0 � 108 m/s, how many
centimetres are there in one light year?

1.4 Speed and Velocity

21. Catwoman can run the 100-m dash in 15.4 s.
Robin can run the 200-m dash in 28.0 s. Find
the average speed of each.

22. The sweep second hand of a clock has a
length of 2.0 cm.
a) What is the speed of the sweep second

hand tip at the 6 o’clock position?
b) What is the velocity of the sweep second

hand tip at the 6 o’clock position?

23. A shopper can ride up a moving escalator in
15 s. When the escalator is turned off, the
shopper can walk up the stationary escalator
in 8.0 s. 
a) How long would it take the shopper to

walk up the moving escalator?
b) Could the shopper walk down the moving

escalator to the floor below? If so, how
long would it take?
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1.5 Acceleration

24. A rabbit, initially hopping at 0.5 m/s, sees a
fox and accelerates at a rate of 1.5 m/s2 for
3.0 s. What is the rabbit’s final velocity?

25. How much time does it take for an F-22
fighter jet to accelerate from Mach 1 to Mach 2
at a rate of 50 m/s2? (Hint: speed � Mach
number � speed of sound (332 m/s at 0°C).)

26. A squash ball makes contact with a squash
racquet and changes velocity from 15 m/s
west to 25 m/s east in 0.10 s. Determine the
vector acceleration of the squash ball.

1.6 An Algebraic Description of
Uniformly Accelerated Linear Motion

27. Two friends see each other in a grocery store.
Initially, they are 50 m apart. The first friend
starts walking toward the second friend at a
constant speed of 0.50 m/s. At the same
instant, the second friend accelerates uni-
formly from rest at a rate of 1.0 m/s2 toward
the first friend. How long before the two
friends can shake hands?

28. Batman is sitting in the Batmobile at a stoplight.
As the light turns green, Robin passes Batman
in his lime-green Pinto at a constant speed of 
60 km/h. If Batman gives chase, accelerating at
a constant rate of 10 km/h/s, determine
a) how long it takes Batman to attain the

same speed as Robin.
b) how far Batman travels in this time.
c) how long it takes for Batman to catch up 

to Robin.

29. A child is running at her maximum speed of
4.0 m/s to catch an ice-cream truck, which is
stopped at the side of the road. When the child
is 20 m from the truck, the ice-cream truck
starts to accelerate away at a rate of 1.0 m/s2.
Does the child catch the truck?
Note: This problem can be solved either
graphically or algebraically.

30. An Olympic athlete wants to complete the
4000-m run in less than 12.0 minutes. After
exactly 10.0 minutes of running at a constant
speed, she still has 800 m to go. If she then
accelerates at a rate of 0.40 m/s2,
a) how much longer will it take her to 

complete the race?
b) will she achieve her desired time?

1.7 Bodies in Free Fall

31. A falling flowerpot takes 0.20 s to fall past a
window that is 1.9 m tall. From what height
above the top of the window was the flower-
pot dropped?

32. A person standing on the roof of a building
throws a rubber ball down with a velocity of
8.0 m/s.
a) What is the acceleration (magnitude and

direction) of the ball?
b) Does the ball slow down while falling?
c) After 0.25 s, how far has the ball fallen?

33. A hot-air balloon is rising upward with a con-
stant velocity of 4.0 m/s. As the balloon
reaches a height of 4.0 m above the ground,
the balloonist accidentally drops a can of pop
over the edge of the basket. How long does it
take the pop can to reach the ground?

34. A stone is dropped off a cliff of height h. 
At the same time, a second stone is thrown
straight upward from the base of the cliff 
with an initial velocity v��i. Assuming that the
second rock is thrown hard enough, at what
time t will the two stones meet?



1.8 A Graphical Analysis of Linear Motion

35. Consider the displacement–time graph for a
running jackrabbit in Figure 1.61.

Fig.1.61

a) In which parts of the graph is the jackrabbit
undergoing uniform motion? 

b) In which parts of the graph is the jackrabbit
undergoing uniform acceleration?

c) What is the average velocity during seg-
ments B, C, and D? 

d) What is the instantaneous velocity of the
jackrabbit at t � 6.0 s?

e) What is its instantaneous velocity at 
t � 25 s?

f) Interpret the negative slope in segment D.
g) What is the jackrabbit’s displacement after

42 s?

36. The velocity–time graph in Figure 1.62 is for
a car on a drag strip.

Fig.1.62

a) Determine the car’s acceleration during
each of the three segments shown.

b) Interpret the negative acceleration.
c) How far did the car travel during its 

15-s trip?

37. A skateboarder is riding his skateboard up and
down the sides of an empty hemispherical
swimming pool. The velocity–time graph in
Figure 1.63b describes his motion as he goes
from the bottom of the pool up to ground level
and back down again.

Fig.1.63a

Fig.1.63b

a) Explain which part of the graph describes
the skateboarder’s upward motion.

b) Explain which portion of the graph
describes his downward motion.

c) What kind of motion is the skateboarder
undergoing in both of these situations?

d) At what point on the graph is the skate-
boarder at rest? Where is he at rest in the
swimming pool? 

e) Calculate the skateboarder’s acceleration.

38. The Three Stooges, Curly, Larry, and Moe, 
are having a motocycle race. Figure 1.64 is the
velocity–time graph of their motion.
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Fig.1.64 

a) What is the instantaneous acceleration of
each Stooge at t � 4.0 s?

b) How far has each Stooge cycled at t � 4.0 s?
c) If the race takes place on a 600-m track,

who wins?

1.10 Free-body Diagrams

39. Draw a free-body diagram for a baseball at the
instant it is struck by a baseball bat.

40. Two large boxes are side by side, as shown in
Figure 1.65. A force is applied to the box on
the left such that both boxes accelerate to the
right. Draw a free-body diagram for each box.
Include the force of friction.

Fig.1.65

41. A baby is bouncing up and down in a Jolly
Jumper, as shown in Figure 1.66. Draw a 
free-body diagram for the baby. 

42. A textbook tossed across a lab bench eventually
slows down due to friction. Draw a free-body
diagram of the textbook just after it hits
the bench. 

1.11 Newton’s First Law of Motion: 
The Law of Inertia

43. For each of the following situations, draw free-
body diagrams showing all the forces. Compare
the magnitudes of the forces on each FBD.
a) You are in an elevator that is at rest on the

second floor of a building.
b) You are in an elevator that is moving from

the second floor to the third floor at a con-
stant speed.

c) The cable of the elevator you are in has
just broken.

d) You are in a car driving at 50 km/h when
all of a sudden, you hit a patch of black ice.

e) You are in an F-14 Tomcat at rest on the
flight deck of an aircraft carrier. Suddenly,
the catapult is released and you are rapidly
launched off the ship. 

1.12 Newton’s Second Law of Motion:
F��net � ma��

44. A pickup truck travelling at 50 km/h strikes a
tree. During the collision, the front end of the
truck is compressed and the driver comes to
rest after travelling a distance of 0.60 m.
What is the average acceleration of the driver
during the collision? Express your answer in
terms of g, the acceleration due to gravity.

45. A booster rocket causes a shuttlecraft of mass
10 000 kg to accelerate from 100 m/s to 150 m/s
over a distance of 1.00 km. Determine the force
applied by the booster rocket to the shuttlecraft.

46. Canadian astronaut Chris Hadfield is
approaching his shuttlecraft, Atlantis, at a
velocity of 0.50 m/s. If Chris’s mass with
equipment is 200 kg and the retro-rockets on
his space suit provide a force of 400 N, how
long will it take Chris to come to rest?
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Fig.1.66 A child in a

Jolly Jumper



47. An applied force accelerates mass A at a rate
of 6.0 m/s2. The same force applied to mass B
accelerates the mass at a rate of 8.0 m/s2. If
the same force were used to accelerate both
masses together, what would the resulting
acceleration be?

1.13 Newton’s Third Law:
Action–Reaction

48. A hammer drives a nail a distance of 1.3 cm
in 0.10 s. If the hammer has a mass of 1.8 kg,
determine the force applied by the hammer to
the nail. Determine the force applied by the
nail to the hammer.

49. Five 200-kg cows are standing on a steel plate.
Determine the upward force applied by the
steel plate to the cows.

Fig.1.67

50. A motorboat is pulling three water skiers 
connected in series, as shown in Figure 1.67.
The water skiers’ masses are 75 kg, 80 kg,
and 100 kg. If the boat applies a force of 
10 000 N, assuming no friction, determine
a) the acceleration of the water skiers.
b) the force applied by each water skier on

the other skiers.

1.14 Friction and the Normal Force

51. Determine the frictional force applied to a
2.0-kg horizontally sliding block if the coeffi-
cient of kinetic friction is 0.16.

52. A pizza box thrown across the room strikes
the floor with a horizontal velocity of 2.0 m/s.
If the 300-g box encounters a floor with a
coefficient of kinetic friction of 0.3, how far
will the box slide before coming to rest?

53. What force must a jet boat’s engine apply in
order to accelerate the boat from 50 km/h to
100 km/h in 6.0 s? The mass of the boat is 
800 kg and the coefficient of kinetic friction 
is 0.30.

1.15 Newton’s Law of Universal
Gravitation

54. What is the force of gravity between two
supertankers, each of mass 300 000 kg, if they
are separated by a distance of 1.0 km? What
acceleration would each tanker experience
due to this attraction?

55. What would the acceleration due to gravity
on Earth be if its mass was doubled, assuming
the same density?

56. Three planets, X, Y, and Z, are situated as
shown in Figure 1.68. What is the net gravita-
tional force on planet Z? 

Fig.1.68

57. A 100-kg astronaut is in a spacecraft 300 km
above Earth’s surface. What is the force of
gravity on him at this location?
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Introduction and Theory
Galileo Galilei performed experiments in funda-
mental mechanics in the 1600s using a grooved
ramp and a sphere. In this experiment, we will
duplicate one of Galileo’s experiments using
more modern equipment.

Purpose
To determine the relationship between displace-
ment and time for an object undergoing uniform
acceleration

Hypothesis
Based on what you already know, predict the
relationship between displacement and time for
an object undergoing uniform acceleration.

Equipment
Stopwatch
Metre stick
Masking tape
Graph paper
Bricks 
Dynamics cart
Inclined plane, ramp or table, approximately 
2 m long, that can be set at an angle

Procedure
1. Set up the ramp at an angle of inclination of

approximately 5°.
2. Place the dynamics cart at the top of the

ramp such that all four wheels are on the
ramp. Mark a zero point at the front of the
cart using masking tape in such a way that
it will not interfere with the motion of the
cart going down the ramp. 

3. Starting at the zero point, measure down
the ramp and mark positions at distances of
10 cm, 40 cm, 90 cm, and 160 cm.

Data
1. Simultaneously release the dynamics cart

from the zero point and start the stopwatch.
Stop the stopwatch as soon as the front of
the dynamics cart reaches the 10-cm mark.

Record this distance–time data in a data
table and repeat this measurement three
more times. Record your values.

2. Repeat step 1 for positions 40 cm, 90 cm,
and 160 cm.

3. Calculate an average time value for each of
your displacement trials and record it in the
data table.

Uncertainty
Assign an instrumental uncertainty to the metre
stick you are using. Estimate the uncertainty in
your time measurements based on your personal
reaction time and the stopwatch you are using.
Include these uncertainties in your data table. 

Analysis
1. Plot a displacement-versus-average time

graph. Draw a line or curve of best fit.
2. Manipulate your displacement–time data so

that you end up with a straight-line graph.
3. Calculate the slope of this straight-line graph.

Discussion
1. Describe your initial displacement–time

graph.
2. What is the relationship between your 

displacement and time data values?
3. What must be the relationship between 

displacement and time to give you a straight-
line graph?

4. What was the slope of your straight-line
graph? (Don’t forget the units!)

5. What is the significance of the slope of your
displacement–time graph?

6. Write the equation that describes your
straight-line graph.

Conclusion
State the relationship you found between dis-
placement and time for an object undergoing
uniform acceleration.
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1.1 Uniform Acceleration: The Relationship 
between Displacement and Time
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Purpose
To determine the relationship between the
acceleration due to gravity for an object on an
inclined plane, and the angle of inclination

Equipment
Tickertape apparatus: power supply, clacker or
spark gap timer
Tickertape
Metre stick
Graph paper
Masking tape
C-clamp
Bricks 
Dynamics cart
Inclined plane or ramp (approximately 2 m long)
that can be set at an angle

Note: This lab can also be performed using
other measuring devices such as a motion sensor
and computer interface, an air track and photo
gates, or a stopwatch.

Procedure
1. Set the ramp at an angle of inclination of

approximately 5º.
2. Attach the measuring device you will be

using to the top of the ramp.
3. Allow the dynamics cart to roll down the

inclined plane, accelerating uniformly.
4. Record the tickertape results in a data table.
5. Repeat the procedure four more times, each

time inclining the ramp at a different angle.

Data
For each angle of inclination,
1. measure the height, h, of the top of the

inclined plane from the horizontal. Also
measure the length, L, of the inclined plane.
Record both values in a data table.

2. Analyze your data to determine the time
and speed of the cart.

3. Plot a speed–time graph. From the graph,
determine the acceleration of the dynamics
cart. Record this value in a data table.

4. Calculate the height-to-length ratio ��
L
h

�� for
each height of the inclined plane. Record
these numbers in your data table.

Uncertainty
Assign an instrumental uncertainty to the metre
stick you are using. Estimate the uncertainty in
your acceleration value based on the measuring
device you used. Record these values in your
data table.

Analysis
Plot a graph of acceleration versus �

L
h

�, with accel-
eration as the dependent variable.

Discussion
1. Describe your acceleration-versus-��

L
h

�� graph.
2. What is the slope of this graph?
3. What is the equation of this graph?
4. Rewrite your equation using a trigono-

metric function.
5. Explain how Galileo used this method to

determine the acceleration due to gravity.

Conclusion
State the relationship you found between the
acceleration of an object on an inclined plane
and the angle of inclination.
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By the end of this chapter, you will be able to
• add and subtract vectors in two dimensions
• analyze the motion of projectiles in two dimensions
• solve problems involving Newton’s laws in two dimensions
• solve problems involving inclined planes
• investigate the centripetal accelerations of objects moving in uniform 

circular motion
• solve problems involving centripetal force 63
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2.1 Vectors in Two Dimensions

In Chapter 1, we learned that a vector is a quantity that has both a magni-
tude and a direction. Vectors can be represented as directed line segments.
Throughout this chapter, we will use vector addition and vector subtraction
to solve problems.

In two dimensions, we will use scalar components in the x and y directions.
As in one-dimensional kinematics, we will convey direction using the � and
� signs. No vector arrows will be used unless referring to a vector diagram or
a quantity that has both magnitude and direction (e.g., d�� � 12 km [N30°E]).

Vector Addition

If two vectors are perpendicular, we can add them using Pythagoras’ theorem.

e x a m p l e  1 Two perpendicular vectors

An ant walks 10 cm [E] across a picnic table, then turns and walks 
15 cm [N]. What is the ant’s total displacement?

Solution and Connection to Theory

Given
d��1 � 10 cm [E] d��2 � 15 cm [N]

d��T � d��1 � d��2

Fig.2.1a

First we determine the resultant’s magnitude.

dT
2 � d1

2 � d2
2

dT
2 � �d1

2 ��d2
2�

dT � �(10 cm�)2 � (1�5 cm)2�
dT � 18 cm

For the resultant’s direction, 

tan � � �
a
o
d
p
j
p
a
o
c
s
e
i
n
te
t

�

tan � � �
d
d

2

1
�
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Fig.2.1b

The direction of this vector can be

expressed as [E30°S] or [S60°E],

which is read “point south and turn

60 degrees east.”



� � tan�1��11
5
0 c

c
m
m

��
� � 56°

The final displacement is d��T � 18 cm [E56°N] or 18 cm [N34°E].

e x a m p l e  2 Addition of two generalized vectors 

in two dimensions

A sailboat travels 20 km [E25°N], and then moves 45 km [N40°W].
What is the sailboat’s total displacement?

Solution and Connection to Theory

Given
d��1 � 20 km [E25°N] d��2 � 45 km [N40°W] 

d��T � d��1 � d��2

Method 1: Vector Addition by Components

Fig.2.2

Using the cosine function, we can describe d1x as follows:

cos 25° � �
d
d

1

1

x
�

d1x � d1 cos 25°

By analogy, d2x � �d2 cos 50°

To find the y components, we use the sine function. For d1,

sin 25° � �
d
d

1

1

y
�

or d1y � d1 sin 25°

By analogy, d2y � d2 sin 50°
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The vector sum of the x components is

d��Tx � d��1x � d��2x

dTx � d1 cos 25° � d2 cos 50°

dTx � (20 km)cos 25° � (45 km)cos 50°

dTx � 18.13 km � 28.93 km 

dTx � �10.80 km 

Therefore, d��Tx � 10.80 km [W]

Notice that we have carried four significant digits in this answer to
reduce the chance of rounding error. The final answer will be rounded to
two significant digits, which is correct for the numbers given.

The vector sum of the y components is

d��Ty � d��1y � d��2y

dTy � d1 sin 25° � d2 sin 50°

dTy � (20 km)sin 25° � (45 km)sin 50°

dTy � 8.452 km � 34.47 km

dTy � 42.92 km

Therefore, d��Ty � 42.92 km [N].

To find the magnitude of the displacement, we use Pythagoras’ theorem
(Figure 2.3),

dT
2 � dTx

2 � dTy
2

dT � �dTx
2 �� dTy

2�
dT � �(10.80� km)2�� (42�.92 km�)2�
dT � 44 km

To find the direction, we use the tangent function. From Figure 2.3,

tan � � �
d
d

T

T

x

y
�

� � tan�1��41
2
0.

.
8
9

0
2

k
k

m
m

��
� � 76°

The x component is negative and the y component is positive; therefore,
the angle is [W76°N].

The total displacement is d��T � 44 km [W76°N].
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Method 2: Vector Addition Using the Sine and Cosine Laws

Fig.2.4a

Using the cosine law,

d 2
T � d 2

1 � d 2
2 � 2d1d2 cos 75°

dT � �(20 km�)2 � (4�5 km)�2 � 2(�20 km�)(45 k�m)cos� 75°�
dT � 44 km

Using the sine law,

�
si

d
n

2

	
� � �

sin
d
7
T

5°
�

	 � sin�1��(45 k
4
m
4

)
k
s
m
in 75°
��

	 � 79°

To find the angle from the horizontal, 
, we subtract from 180° (see
Figure 2.4a):


 � 180° � 	 � 25°

 � 76°

Therefore, d��T � 44 km [W76°N]. This answer is the same as the one we
obtained using the component method.
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25°

50°

40°

T R I G O N O M E T R I C  EQ UAT I O N S
In Figure 2.4b, the angles of the tri-
angle are labeled using uppercase
letters, and the sides opposite them
are labeled using lowercase letters.
Whenever the lengths of two sides
and the contained angle (the angle
between them) are known, the
cosine law is used. 

c2 � a2 � b2 � 2ab cos C .

Similarily, if we know the value of an
angle, the side opposite it, plus
another angle or side, we can use
the sine law.

�
sin

a

A
� � �

sin

b

B
� � �

sin

c

C
�

A

B

C

a
c

b

Fig.2.4b 



Figure 2.5 summarizes the steps for solving vector addition problems
using the component method.

Fig.2.5 Vector Addition by Components

e x a m p l e  3 Vector acceleration

A school bus changes its velocity from 10 m/s [W] to 10 m/s [W30°S] in
5.0 s. Determine the vector acceleration of the school bus.

Solution and Connection to Theory

Given
v��1 � 10 m/s [W] v��2 � 10 m/s [W30°S] t � 5.0 s

a�� � �
�

�

v�

t

�
�

�v�� � 10 m/s [W30°S] � 10 m/s [W]

This problem involves vector subtraction. We can convert it to a vector
addition problem by adding the negative of v��1:

�v�� � 10 m/s [W30°S] � 10 m/s [E]

68 unit  a :  Forces and Motion:  Dynamics

2-D vector problem

Add x components
vectorially

Add y components
vectorially

Write the defining
equation

Use Pythagoras’ theorem to find magnitude and
the tangent function to find direction

Break vectors into x and y components

Draw two component vectors, joined head to tail
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p
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of

Fig.2.6 Can this bus accelerate

without changing its speed?



method
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Fig.2.7

To find the magnitude of �v, we use the cosine law:

c 2 � a2 � b2 � 2ab cos 30°

�v � �(10 m�/s2)2 �� (10 m�/s2)2 �� 2(10 m�/s2)(10� m/s2)�cos 30�°�

�v � 5.18 m/s

To find the direction of �v, we use the sine law:

�
1
s
0
in

m
�

/s
� � �

sin
�

3
v
0°

�

sin � ��
(10

5
m
.1
/
8
s)

m
sin

/s
30°

�

� � 75°

Therefore, �v�� � 5.18 m/s [E75°S].

a�� � �
�

�

v�

t

�
�, so

a�� ��
5.18 m

5
/
.
s
0

[
s
E75°S]
�

Therefore, the acceleration is 1.0 m/s2 [E75°S]

Note that the value for acceleration is non-zero. Even though the speed
(magnitude of velocity) hasn’t changed, the school bus has still under-
gone acceleration because its direction has changed.

Figure 2.9 summarizes the rules for subtracting vectors.

Fig.2.9 Vector Subtraction
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sine and cosine laws 
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A vector pointing in one direction

can be made to point in the opposite

direction by rotating it 180°. For

example, a vector pointing [N25°E]

rotated 180° now points [S25°W].

Therefore, subtracting a vector

pointing [N25°E] is the same as

adding a vector pointing [S25°W].

[S25°W]

[N25°E]
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W E

25°
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An alternative method of vector sub-

traction is to join the two vectors tail

to tail:

�v1

�v2  ��v

Fig.2.8b



1. Describe the direction for each of the following vectors in two ways.

Fig.2.10

2. Break each of the following vectors into their x and y components.
a) �d�� � 50 m [S14°E]
b) v�� � 200 m/s [W30°S]
c) a�� � 15 m/s2 [E56°N]

3. A cold duck slides down a snow-covered hill inclined at an angle of
25° to the horizontal. If the duck’s speed down the incline is a con-
stant 5.0 m/s, determine the horizontal and vertical components of
its velocity.

4. A hot-air balloon is rising at a velocity of 3.0 m/s. At the same time, the
wind is blowing it horizontally with a velocity of 4.0 m/s. According to
an observer on the ground, what is the velocity of the balloon?

5. Add each of the following sets of vectors together using the method
indicated.
a) v��1 � 50 m/s [W36°N], v��2 � 70 m/s [E20°S] (both methods)
b) �d��1 � 28 m [W37°S], �d��2 � 40 m [W53°N] (sine and cosine laws)
c) F��1 � 140 N [W], F��2 � 200 N [E30°N], F��3 � 100 N [S35°W]

(component method. Why?)
6. When a handball strikes a vertical wall, its velocity changes from

25 m/s [S15°E] to 30 m/s [S40°W]. Determine the handball’s
change in velocity.

2.2 Relative Motion
All motion is relative; that is, motion must be measured relative to a frame
of reference. For example, if you’re sitting in a rowboat that is floating
down a river with the current, your friend sitting on the shore may see you
moving downstream with a velocity of 10 m/s [W]. Relative to your friend’s
frame of reference, you have a velocity of 10 m/s [W]. On the other hand,
relative to a passenger sitting in your boat, you have a velocity of zero;
you’re not moving because you are both at rest in your common frame of
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reference, the boat. Relative to your frame of reference in the boat, your
friend on the shore is moving at 10 m/s [E]. This example is a simple one-
dimensional example of relative motion. In this section, we will study two-
dimensional relative motion problems.

Relative Velocity Problems

We will examine a number of examples where an object is moving through
a medium, like air or water, which is in turn moving relative to Earth or
the ground. In order to keep these velocities distinct, we will use a series
of subscripts.

v��og is the velocity of the person or object relative to the ground, or ground
velocity.

v��mg is the velocity of the medium the person or object is in, relative to
the ground.

v��om is the velocity of the object or person relative to the medium it is in;
for example, the velocity of a swimmer relative to the water around him.

The equation that relates these three velocities is 

v��og � v��mg � v��om

e x a m p l e  4 A river-crossing problem: Part A

Fig.2.11

A physics teacher wants to cross the Bernoulli River. He hops into his
bass boat at A-ville and drives straight, due north, toward B-ville with a
velocity of 5.0 km/h. If the river is 5.0 km wide, how long does it take the
teacher to reach the other side?
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Solution and Connection to Theory

Since the boat isn’t accelerating, we can use the defining equation for speed.

Fig.2.12a

Given
�d � 5.0 km vbg � 5.0 km/h

vbg � �
�

�

d
t
�

�t � �
�
vb

d
g

�

�t � �
5
5
.0
.0

k
k
m
m
/h

�

�t � 1.0 h

The teacher takes 1.0 h to reach B-ville.

A river-crossing problem: Part B
Let’s introduce a current, flowing at 2.0 km/h [E], which will prevent the
boat from landing at B-ville by pushing it farther east. Instead, the boat
will land at C-ville, as shown in Figure 2.12b. How does the current affect
the time required to cross the river? Does the boat take the same amount
of time, a shorter period of time, or a longer period of time?

Fig.2.12b
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Solution and Connection to Theory

It will take the boat exactly the same amount of time to reach the other shore,
regardless of whether a current is present or not. Time isn’t affected because
the boat’s velocity [N] and the current’s velocity [E] are perpendicular to
each other. Therefore, the boat’s velocity has no components in the same (or
in the opposite) direction as the current’s velocity and vice versa. The two
velocities therefore have no effect on each other. Since the boat is travelling
at the same velocity due north as in the Part A of this example, and the
distance across the river hasn’t changed, it will take the same amount of time
to cross the river.

A river-crossing problem: Part C
Given that it still takes 1.0 h to reach the other shore, how far is it from
B-ville to C-ville?

Solution and Connection to Theory

The only velocity causing the boat to move downstream from B-ville to 
C-ville is the river current’s velocity. Therefore, we can calculate the 
distance by using the defining equation for speed and substituting the
current’s speed, represented by the subscript cg:

vcg � �
�

�

d
t
�

�d � vcg�t
�d � (2.0 km/h)(1.0 h)
�d � 2.0 km

Therefore, the distance between B-ville and C-ville is 2.0 km.

Notice that in this problem, no vector diagrams or vector addition is
required. As we have shown, the entire problem can be solved using
scalars. We would only need to use vectors if we wanted to determine the
ground velocity, v��bg, of the boat; that is, the velocity of the boat relative to
a person standing on the ground (or shore). To solve the problem, we add
the two perpendicular vectors, v��bc (the velocity of the boat relative to the
current) and v��cg (the velocity of the current relative to the ground) using
Pythagoras’ theorem and the tangent function. This calculation is shown
in Figure 2.12c.

chapter 2 : Kinemat ics  and Dynamics  in  Two Dimensions 73



v��bg � v��bc � v��cg

v 2
bg � v 2

bc � v 2
cg

vbg � �(5.0 k�m/h)2� � (2.�0 km/�h)2�
vbg � 5.4 km/h

tan 	 � �v
v

b

cg

c
�

	 � tan�1��25
.
.
0
0

k
k

m
m

/
/
h
h

��
	 � 22°

v��bg � 5.4 km/h [N22°E]

Therefore, the boat’s ground velocity is 5.4 km/h [N22°E].

Figure 2.13 summarizes how to solve problems where the object’s heading
is perpendicular to the medium velocity.

Fig.2.13 Solving Problems Involving Perpendicular Vectors

Problems Involving Non-perpendicular Vectors

e x a m p l e  5 A boat-navigation problem

The physics teacher from Example 4 Part B wants to go to B-ville, which
is directly north of A-ville. To do so, the bass boat must be aimed
upstream to compensate for the current, as shown in Figure 2.14a. The
current velocity is 2.0 km/h [E] and the boat’s speed is 5.0 km/h.
a) In which direction must the boat be pointed in order to land at B-ville?
b) What is the ground velocity of the boat?
c) How long will it take the boat to reach the other shore?
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Solution and Connection to Theory

Let v��cg be the velocity of the current relative to the ground, let v��bc be the
velocity of the boat relative to the water, and let v��bg be the velocity of the
boat relative to the ground. The triangle in Figure 2.14a is a right-angle
triangle. Therefore, we can determine the direction in which the boat
must be pointed by using the cosine function:

Given
v��cg � 2.0 km/h [E] v��bc � 5.0 km/h [want to go north]

a) for direction, cos � � �
v
v

b

cg

c
�

� � cos�1��25
.
.
0
0

k
k

m
m

/
/
h
h

��
� � 66°

Fig.2.14a

In Figure 2.14a, v��bc shows the direction in which the boat must be
pointed in order to land at B-ville; that is, [W66°N] or [N24°W].

b) To determine the magnitude of the ground velocity, vbg, 

vbc
2 � vcg

2 � vbg
2

vbg
2 � vbc

2 � vcg
2

vbg � �(5.0 k�m/h)2� – (2.0� km/h�)2�
vbg � 4.58 km/h (The extra digit is for further calculations.)

From Figure 2.14a, we can see that the direction of the ground velocity
is north.

Therefore, the ground velocity of the bass boat is 4.58 km/h [N].
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 Bernoulli River

B-ville

A-ville
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�vcg � 2.0 km/h [E]

�



c) If you were observing the boat, you would see the situation illustrated
in Figure 2.14b.

Fig.2.14b

Note that the magnitude of the ground velocity is less than the magnitude
of the boat’s velocity relative to the water. As a result, it will take longer
to cross than if the boat was pointed straight across the river. This time,
however, the teacher lands at B-ville. The time to cross the river can be
calculated as follows:

vbg � �
�

�

d
t
�

�t � �
(4

(
.
5
5
.
8
0

k
k
m
m

/
)
h)

�

�t � 1.1 h

In Example 4, it took the teacher 1.0 h to cross the river. Therefore, it
now takes him an extra 0.1 h to cross the river.

e x a m p l e  6 A classic air-navigation problem

A pilot wishes to fly her Cesna 441 due north. There is a wind from the
west at 20.0 km/h. If the plane can fly at a velocity of 150 km/h in still air,
a) what is the plane’s heading (i.e., in which direction should the pilot

point the plane)?
b) what is the plane’s ground velocity?

Fig.2.15a What factors affect air navigation?
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Solution and Connection to Theory

Given
v��wg � 20.0 km/h [E] (a wind from the west blows east)
v��ow � 150 km/h [?] v��og � ? km/h [N]

a) To determine the plane’s heading, we solve for 
 (Figure 2.15b):

cos 
 � �
v
v

o

w

w

g
�


 � cos�1��21
0
5
.
0
0

k
k
m
m

/
/
h
h

��

 � 82°

Therefore, by looking at Figure 2.15b, we can see that the plane’s
heading is [W82°N].

b) To calculate the magnitude of the ground velocity, 

vow
2 � vog

2 � vwg
2

vog � �vow
2 –�vwg

2�
vog � �(150 k�m/h)2� � (20�.0 km/�h)2�
vog � 149 km/h

We are given that the plane’s direction is north. Therefore, the plane’s
ground velocity is 149 km/h [N].

Figure 2.16 summarizes how to solve relative velocity problems.

Fig.2.16 The Overall Picture

1. A ship’s captain wants to sail east. Her ship experiences a current of
5.0 km/h [N]. The ship’s engines can produce a speed of 20 km/h.
a) What is the ship’s required heading?
b) What is the ground velocity of the ship?
c) If the ship travels a total distance of 100 km, how long is the trip?
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2. A boy and girl race their canoes across a 500-m-wide river to a loca-
tion due north of their starting point. Both young people can pad-
dle their canoes at a velocity of 3.0 m/s in still water. The boy
paddles in a northerly direction, while the girl aims her canoe
slightly upstream so that she travels directly north as she paddles. If
the current in the river is 0.50 m/s [W], determine
a) the girl’s heading.
b) the time it takes for each person to reach the opposite shore.
c) the distance between the boy and girl when they reach the

opposite shore.
d) As soon as he reaches the shore, the boy starts to run toward the

girl’s landing site at a speed of 5.0 m/s. Who wins the race?
3. A large cruise ship is moving with a velocity of 10 km/h [E] relative

to the water. A passenger jogging on deck moves with a velocity of
6.0 km/h [N] relative to the ship. What is the jogger’s velocity relative
to the water?

Fig.2.17

4. Terry, the three-year-old terror, rides his tricycle down the sidewalk
at a velocity of 0.50 m/s [N]. As he passes his sister, who is 5.0 m
east of his position, Terry throws a peanut-butter-and-jam sand-
wich at her.
a) If Terry can throw the sandwich at a maximum velocity of 2.0 m/s,

in which direction must he throw it in order to hit his sister?
b) How much time does his sister have to get out of the way?

2.3 Projectile Motion
In projectile motion, the projectile travels at a constant velocity in the hor-
izontal direction only. In the vertical direction, however, all projectiles
accelerate downward at 9.8 m/s2 due to the force of gravity. A projectile
therefore experiences uniform horizontal motion as well as vertical acceler-
ation (assuming no air resistance).
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Figure 2.18 summarizes the method of solving projectile motion problems.

Fig.2.18 Solving Projectile Motion Problems

e x a m p l e  7 A horizontal projectile

Fig.2.19

A bowling ball is rolled off the top of a cliff with an initial horizontal veloc-
ity of 6.0 m/s (Figure 2.19). If the cliff is 100 m above the ground, determine
a) the ball’s time of flight (i.e., the time taken to reach the ground).
b) the ball’s range (i.e., the horizontal distance travelled by the ball).
c) the final velocity of the ball just before it strikes the ground.

Solution and Connection to Theory

In projectile motion problems, the horizontal and vertical components of
motion are considered separately. The common variable is the time of
flight; that is, the length of time the object is in the air is the same for both
vertical and horizontal components.
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Given
v1x � 6.0 m/s ax � 0 v1y � 0 ay � �9.8 m/s2 �dy � �100 m

a) To determine the time of flight from the vertical components, we use
the equation 

�dy � v1y�t � �
1
2

�ay�t2

Since the ball originally rolled off the cliff horizontally, its initial ver-
tical velocity is zero; that is, v1y � 0. Therefore,

�dy � �
1
2

�a y�t2

�t � ��
2�

ay

dy
��

�t � ���
We choose the positive root because time must be positive.

�t � 4.52 s

b) To calculate the range, we use the equation

�dx � v1x�t � �
1
2

�ax�t2

Since this projectile has no horizontal acceleration, ax � 0. Therefore,

�dx � v1x�t
�dx � (6.0 m/s)(4.52 s)
�dx � 27 m

Therefore, the range of the bowling ball is 27 m.
c) To calculate the final velocity, we must first determine the final velocity

components. For the horizontal motion, the final velocity is equal to
the initial velocity because there is no acceleration:

v1x � v2x � 6.0 m/s

For the vertical motion, the object is accelerating.

v2y
2 � v1y

2 � 2ay�dy

Since the ball is rolled off the cliff, its initial motion is horizontal.
Therefore, its vertical velocity v1y � 0. So,

v2y
2 � v1y

2 � 2ay�dy

v2y � �2(�9.�8 m/s2�)(�10�0m)�
v2y � 44.3 m/s

2(�100 m)
��
�9.8 m/s2
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For the final velocity,

vf � �(6.0 m�/s)2 �� (44.3� m/s)2�
vf � 45 m/s

tan � � �
4
6
4
.0
.3

m
m

/
/
s
s

�

� � 82°

Therefore, the ball’s final velocity is 45 m/s [R82°D].

e x a m p l e  8 A projectile launched at an angle

A golf ball is launched from the roof of a school with a velocity of 20 m/s
at an angle of 30° above the horizontal. If the roof is 40 m above the
ground, calculate

a) the ball’s time of flight.
b) the ball’s horizontal displacement.

Fig.2.21

Solution and Connection to Theory

Given
v1 � 20 m/s � � 30° ax � 0 ay � �9.8 m/s2 �dy � �40 m

v1x � v1 cos 30°
v1y � v1 sin 30°
v1x � 17.3 m/s
v1y � 10.0 m/s

From the given information, we can determine the time of flight by con-
sidering vertical motion only.
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a) For the vertical components,

�dy � v1y�t � �
1
2

�ay�t2

0 � �
1
2

�ay�t2 � v1y�t � �dy

0 � (�4.9 m/s2)�t2 � (10.0 m/s)�t � 40 m

�t ��
�b � �

2
b
a

2 � 4�ac�
�

�t � 

�t � 

�t � �2.0 s or �t � 4.1 s

We take the positive �t because negative time is not permitted. Therefore,
the golf ball’s time of flight was 4.1 s.

b) To determine the horizontal displacement, 

�dx � v1x�t � �
1
2

�ax�t2

Since there is no horizontal acceleration, ax � 0.
�dx � v1x�t
�dx � (17.3 m/s)(4.1 s)
�dx � 71 m

Therefore, the golf ball will travel 71 m horizontally.

e x a m p l e  9 A projectile with a vertical displacement of zero

Fig.2.23

�10 m/s � 29.7 m/s
���

�9.8 m/s2

�10 m/s � �(10.0�m/s)2�� 4(��4.9 m/�s2)(40� m)�
������

2(�4.9 m/s2)
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Negative Time

We can give a meaning to the negative

square root for time found in problems

like Example 8. The quadratic equation,

which describes a parabola, has two

roots: �t � �2.0 s and �t � 4.1 s.

These values are the two points at

which the parabola intersects the

time axis. If the golf ball had been

launched from the ground so that its

velocity 40 m up was 20 m/s, 30°

above the horizontal, it would have

taken 2.0 s to reach that point.

Mathematically, the earlier part of

the motion is the part of the

parabola to the left of the vertical

axis, as shown in Figure 2.22.
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Fig.2.24

A soccer player kicks a ball from the ground with a velocity of 15 m/s. 
If the ball is kicked at an angle of 20° above the horizontal,

a) what is the ball’s time of flight?
b) how far will the ball travel horizontally before striking the ground?

Solution and Connection to Theory

This problem is an example of a special case. Since the soccer ball starts
and finishes its motion at ground level, its vertical displacement is zero,
which means that we don’t need to use the quadratic equation to deter-
mine the time of flight.

a) Given
v��1 � 15 m/s [E20°N] ax � 0 ay � �9.8 m/s2 �dy � 0 m

v1x � v1 cos 20°
v1x � 14.1 m/s
v1y � v1 sin 20°
v1y � 5.13 m/s

For the vertical components, we use the equation

�dy � v1y�t � �
1
2

�ay�t2

Since �dy � 0,

0 � v1y�t � �
1
2

�ay�t2

Because �t  0, we can divide both sides by �t.

0 � v1y � �
1
2

�ay�t

�t � �
��

a
2

y

v1y�
�

�t ��
�

�

2(
9
5
.
.
8
13

m
m
/s

/
2

s)
�

�t � 1.047 s

Therefore, the ball’s time of flight is 1.0 s.
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�dx � (v sin �)�t

sin � � �
�

v�

d

t

x
�

�dy � 0 � (v cos �)�t � �
1

2
�g�t2

cos � � �
2

g�

v�

t2

t
�

Combining these two equations, 

we obtain

sin � cos � � �
�

2

d

v

x

2

g

�

�

t

t
2

2

�

2sin � cos � � �
�

v

d
2

xg
�

But 2sin � cos � � sin 2�

Range � R ��dx � �
v2 si
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b) For the horizontal components,

�dx � v1x�t � �
1
2

�ax�t2

Since ax � 0,

�dx � v1x�t
�dx � (14.1 m/s)(1.047 s)
�dx � 15 m

Therefore, the ball’s range is 15 m.

Figure 2.25 summarizes the steps in calculating the final velocity of a projectile.
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Fig.2.25 Projectile Motion Overview

1. A helicopter flying horizontally at a velocity of 25 m/s drops a
mailbag from a height of 15 m to a letter carrier waiting on the
ground below.
a) How long will the bag take to fall to the ground?
b) How far in advance of the letter carrier must the bag be released

so that it lands at her feet?
2. Blasto the Magnificent is fired from a cannon inclined at 40° to the hor-

izontal (Figure 2.26). If Blasto leaves the cannon at a speed of 35 m/s,
a) how long will it take him to reach his maximum height?
b) how far will he travel horizontally?



3. A fighter jet going 350 km/h dives at an angle of 25° to the vertical.
If it drops a bomb from a height of 200 m,
a) how far will the bomb travel horizontally?
b) what will be the velocity of the bomb just before it hits the ground?

4. A golfer strikes a golf ball at an angle of 17° above the horizontal.
With what velocity must the ball be struck in order to reach the
green, which is a horizontal distance of 250 m from the golfer at the
same height?

2.4 Newton’s Laws in Two Dimensions

We are now ready to solve some other types of problems in two dimensions.
These problems will be either in the horizontal or the vertical plane.

e x a m p l e  1 0 Newton’s laws in two dimensions 

(balanced forces)

A barge is being pulled through a canal by two horses, as shown in
Figure 2.27a. If each horse applies a force of 5000 N, determine the fric-
tional force applied by the water as the barge moves at a constant speed.

Solution and Connection to Theory

Given
F1 � F2 � 5000 N � � 40°

The free-body diagram in Figure 2.27b has two forces, labeled F��1 and F��2,
applied on the barge, pulling to the right. Each of these vectors has
two perpendicular components: F��1x, F��1y, and F��2x, F��2y. Since the forces
applied by each horse are equal, and the angles at which the forces are
applied relative to the canal are equal, by symmetry, F1y and F2y are both 
(5000 N)sin 40° in opposite directions. As a result, the y-component
forces cancel and the net force on the barge is strictly forward. So, the
net force is the sum of the x components.
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Newton’s first law states that if the barge is travelling at a constant 
velocity, all forces must be balanced. Therefore, F1x and F2x (applied to the
right) must be balanced in magnitude by the frictional force, Ff (applied
to the left).

For the y components,

F��nety
� F��1y

� F��2y

Fnety
� F1 sin 40° � F2 sin 40°

Fnety
� 0

For the x components,

F��netx
� F��1x � F��2x

� F��f

Since F1x � F2x
,

Fnetx
� 2F1 cos 40° � Ff

Fnetx
� ma

x
� 0

0 � 2(F1 cos 40°) � Ff

Ff � 2(5000 N)cos 40°

Ff � 7.7 � 103 N

Therefore, the frictional force applied by the water on the barge is 
7.7 � 103 N [left].

e x a m p l e  1 1 Newton’s laws in two dimensions (vertical plane)

A father pulls a child on a sled across the snow, as shown in Figure 2.28a.
The child and sled have a combined mass of 50 kg. If the snow has a coeffi-
cient of kinetic friction of 0.28 and the father applies a force of 200 N along
the handle of the sled 30° above the horizontal, determine the acceleration
of the child and sled.

Solution and Connection to Theory

Given
m � 50 kg �k � 0.28 F�� � 200 N [R30°U]

In Figure 2.28b, the applied force, F��, has been broken down into its 
perpendicular components. Assuming that the child and sled accelerate
horizontally only, then, according to Newton’s first law, all of the vertical
forces must be balanced.
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For the vertical motion, according to Newton’s first law, since the
object is not accelerating vertically, the sum of the forces upward must
be balanced by the sum of the forces downward. Algebraically, the
scalar equation is

Fnet � 0 � Fn � F sin 30° � Fg

Fn � mg � F sin 30°
Fn � 3.90 � 102 N

For the horizontal motion, we apply Newton’s second law:

Fnetx � ma

Fx � Ff � ma

a � �
Fx

m
� Ff
� (eq. 1)

Fx � F cos 30° (eq. 2)

Ff � �kFn

Ff � (0.28)(3.90 � 102 N)
Ff � 1.09 � 102 N

Substituting this value into equation 1,

a ��
F cos 3

m
0° � Ff
�

a �

a � 1.3 m/s2

Therefore, the acceleration of the child and sled is 1.3 m/s2 [right].

e x a m p l e  1 2 Newton’s laws in two dimensions 

(horizontal plane)

Mr. Wharf accidentally fires two rockets on his shuttlecraft at the same
time. The first rocket applies a force of 1000 N [E25°S], and the second
rocket applies a force of 1200 N [N40°W]. If the shuttlecraft has a mass
of 5.0 � 104 kg, determine the vector acceleration it will experience.

Solution and Connection to Theory

Given
F��1 � 1000 N [E25°S] F��2 � 1200 N [N40°W] m � 5.0 � 104 kg

(200 N)cos 30° � 1.09 � 102 N
����

50 kg
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Fig.2.29c

Adding the x components,

F��netx � F��1x � F��2x

Fnetx � (1000 N)cos 25° � (1200 N)cos 50°
Fnetx � 135 N

Adding the y components,

F��nety � F��1y � F��2y

Fnety � (1200 N)sin 50° � (1000 N)sin 25°
Fnety � 497 N

Now we add the resultants of the x and y components using Pythagoras’
theorem to find the final resultant:

Fnet � �Fnetx
2 �� Fnety

2�
Fnet � �(135 N�)2 � (�497 N�)2�
Fnet � 515 N

To find the angle of the resultant force, we use the tangent function:

tan � � �
F
F

n

n

e

e

t

t

x

y
�

� � tan�1��41
9
3

7
5

N
N

��
� � 75°

Therefore, the resultant force is F��net � 515 N [E75°N].

To find the acceleration, from F�� � ma��, 

a�� ��
51

5
5
.0

N
�

[E
10

7
4

5
k
°N

g
]

�

a�� � 1.0 � 10�2 m/s2 [E75°N]

Therefore, the acceleration of Mr. Wharf’s shuttlecraft is 
1.0 � 10�2 m/s2 [E75°N].
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1. Two people are pushing horizontally on a 200-kg stove at the same
time. The first person applies a force of 200 N [N] and the second
person applies a force of 300 N [W]. If �k for the stove is 0.23, what
is the resulting acceleration of the stove?

2. Three politicians are having a tug-of-war on a voter. If the force
exerted by each politician on the 80-kg voter is F��1 � 25 N [S16°E],
F��2 � 35 N [N40°E], and F��3 � 45 N [W], determine
a) the net force acting on the voter.
b) the acceleration of the voter. 

3. Two players kick a soccer ball at the same time. If one player applies
a force of 100 N [N25°W] and the 250-g ball experiences an accel-
eration of 200 m/s2 [W15°S], determine the magnitude and direc-
tion of the force applied by the second player.

4. A gardener pushes down on the handle of a lawnmower, applying a
force of 250 N. The handle is inclined at an angle of 45° to the hor-
izontal. If the coefficient of kinetic friction between the wheels of
the lawnmower and the ground is 0.40, what is the acceleration of
the 20-kg lawnmower?

2.5 The Inclined Plane
Since many real-life situations occur either on a ramp, a hill, or some other
form of incline, inclined-plane problems are very common. Inclined-plane
problems can be solved using coordinate rotation; that is, using axes that are
parallel and perpendicular to the incline itself.

e x a m p l e  1 3 An inclined-plane problem

A girl sits at the top of a frictionless snow-covered hill
on her inner tube. If the hill is inclined at an angle of
25° to the horizontal, what will be the girl’s acceleration
due to gravity?

Solution and Connection to Theory

Given
� � 25°

Because the girl is on an inclined plane, the value of her
acceleration will be less than 9.8 m/s2. 
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Fig.2.32b

Figure 2.32b shows the force due to gravity acting on the girl, broken
down into components. The first component is perpendicular to the incline
and is labeled F���. The other force that is perpendicular to the incline
is the normal force, F��n. It is the force of the incline on the girl. F��� and
F��n are equal and opposite (balanced), so they don’t affect the girl’s
motion if there is no friction. The only unbalanced force is the com-
ponent of the force of gravity that is parallel to the incline, F����. This
force is the net force acting on the girl. It can be described trigono-
metrically in terms of the gravitational force, F��g; that is, we can write
F���� as a component of F��g. Now we can use Newton’s second law to
determine the acceleration of the girl:

F��net � ma��

F�� � ma

Substituting Fg sin 25° for F��, we get

Fg sin 25° � ma

Since Fg � mg, then

mg sin 25° � ma
a � g sin 25°
a � (9.8 m/s2)sin 25°
a � 4.1 m/s2

Therefore, the girl’s acceleration is 4.1 m/s2 down the incline.

25°

25°
y

x

�Fn

�Fg

�F	 

�F�

Perpendicular (�) 

Parallel (	)

Fig.2.32a

�Fg � m�g

�1

�2F 	 
� mg sin

 � F
� �

 m
g cos � 

The right side of �1 is perpendicular to

the left side of �2. The left side of �1 is

perpendicular to the right side of �2.

Therefore, �1 = �2 = �.



chapter 2 : Kinemat ics  and Dynamics  in  Two Dimensions 91

e x a m p l e  1 4 An inclined-plane problem with friction

Evil Kinevil is driving his motorcycle up a ramp inclined at 30° to the
horizontal before jumping over a row of cars. If there’s a constant fric-
tional force of 1000 N on the ramp, determine the force that the
motorcycle engine must apply to accelerate the motorcycle up the
ramp at �

1
3

� g. (Assume that Evil and the motorcycle have a combined
mass of 250.0 kg.)

Solution and Connection to Theory

Given

Ff � 1000 N a � �
1
3

� g � �
9.8

3
m/s2

� � 3.27 m/s2 m � 250.0 kg

Assuming up the ramp is positive,

F��net � F��engine � F���� � F��f � ma��

Fengine � F�� � Ff � ma

Isolating Fengine and substituting mg sin 30° for F��, the equation becomes

Fengine � ma � mg sin 30° � Ff

Fengine � (250 kg)(3.27 m/s2) � (250 kg)(9.8 m/s2)sin 30° � 1000 N

Fengine � 3.04 � 103 N

Therefore, the engine must apply a force of 3.04 � 103 N.

e x a m p l e  1 5 Determining the coefficient of static friction 

We can determine the coefficient of static friction experimentally by placing
a small block of wood on the surface of a piece of plywood and slowly
increasing the angle of inclination of the plywood until the block of wood
just begins to move. At this instant, all forces acting on the block are bal-
anced; therefore, the block will move at a constant speed. We can then
determine the coefficient of static friction for a block sliding down an
inclined plane at a constant speed.

Solution and Connection to Theory

Given
Since the block is moving at a constant speed, all forces acting on it
are balanced. 

30°

30°�Ff

�Fn

�F	 

�F�

�Fg

�F engine

Fig.2.33b

Fig.2.33a
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For the components perpendicular to the incline,

Fnet � 0
Fn � mg cos � � 0
Fn � mg cos �

Since Ff � �sFn,
Ff � �smg cos �

For the components parallel to the incline,
Fnet � 0
Ff � mg sin � � 0
Ff � mg sin �

Combining the two equations,
�smg cos � � mg sin �

�s � �
c
s
o
in

s
�

�
�

�s � tan �

We can determine the coefficient of static friction for an inclined plane
by simply measuring the angle of inclination, �.

1. A copy of Physics: Concepts and Connections leaves the printing press
and slides down a 4.0-m-long ramp into the arms of an eager physics
student. If the ramp is inclined at an angle of 25° to the horizontal
and has a coefficient of kinetic friction of 0.10, how long will it take
the 2.0-kg textbook to reach the student?

2. The plastic case from your least-favourite CD recording is flung up
a frictionless ramp, inclined at an angle of 20° to the horizontal. If
the case leaves your hand at a speed of 4.0 m/s, how long will it take
before the case comes to rest?

3. A skateboarder slides down a frictionless ramp inclined at an
angle of 30° to the horizontal. He then slides across a frictionless
horizontal floor and begins to slide up a second incline at an angle
of 25° to the horizontal. The skateboarder starts at a distance of
10 m from the bottom of the first incline. How far up the second
incline will he go if the coefficient of kinetic friction on the second
incline is 0.10?

4. Batman is driving the Batmobile down a hill coming from the Bat Cave.
The hill is inclined at an angle of 30° to the horizontal and has a coef-
ficient of kinetic friction of 0.28. What force must the Batmobile’s
engine apply to cause the Batmobile to accelerate at 0.60g?
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� �

 m
g cos � 

Fig.2.33c



2.6 String-and-pulley Problems

To solve a string-and-pulley problem, we need to draw a free-body diagram
for each object being considered, determine the direction of motion of
each object, then write an algebraic description of Newton’s second law
for each object. We then solve the equations for the unknown variables.
In this section, we will assume throughout that the pulleys are massless
and frictionless, and that the strings are infinitely strong, massless, and
never stretch.

e x a m p l e  1 6 Strings and pulleys for a frictionless 

horizontal surface

Two 5.0-kg masses are connected as shown in Figure 2.34a. Determine
the acceleration of the system and the tension in the rope if the tabletop
is frictionless.

Solution and Connection to Theory

Given
m1 � m2 � 5.0 kg

The first step is to draw a free-body diagram for each of the two masses
(Figure 2.34b).

Fig.2.34b

Notice that the free-body diagram for m1 has two vertical forces. The nor-
mal force upward is balanced by the gravitational force downward. As a
result, these two forces will not affect the acceleration of m1. The only
force causing m1 to accelerate is the tension, T��. Mass m2, on the other
hand, has two forces that could cause it to accelerate. We expect m2 to
move downward. Therefore, the gravitational force must be greater than
the tension in the rope.
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m2

m1

�Fg1

�Fn1

m1

�Fg2

�T

m2�T

Fig.2.34a



The second step is to apply Newton’s second law to each mass. We will
then have two equations that we can solve for acceleration and tension.

For m1,

F��net � ma��

T � m1a (eq. 1)

For m2,

Fg2 � T � m2a
m2 g � T � m2a (eq. 2)

Adding equation 1 and equation 2,

m2 g � (m1 � m2)a

a � �
m1

m
�

2 g
m2

�

Since m1 � m2,

a � �
m
2m

2 g

2
�

a � �
2
g

�

a � 4.9 m/s2

The acceleration of the system is 4.9 m/s2.

To determine the tension, we can substitute our acceleration value into
equation 1 or equation 2. Substituting into equation 1,

T � (5.0 kg)(4.9 m/s2)
T � 24 N

The tension in the rope is 24 N.

e x a m p l e  1 7 A vertical string-and-pulley problem

A 3.0-kg mass and a 4.0-kg mass are suspended from a frictionless pulley,
as shown in Figure 2.35a. Determine the system’s acceleration and the
tension in the rope.

Solution and Connection to Theory

Given
m1 � 3.0 kg m2 � 4.0 kg
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m1 � 3.0 kg
m2 � 4.0 kg

Fig.2.35a

Alternative Solution

If we assume that all the internal

forces balance, then the only force

causing the system to accelerate is

the weight of m2; that is, Fg2
, which

accelerates m1 and m2. Therefore,

F��net � ma��

Fg2
� (m1 � m2)a

a � �
m1

m

�

2g

m2

�

a � 4.9 m/s2
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From Figure 2.35b, since m2 is more massive than m1, m2 will go down-
ward. Therefore, the gravitational force acting on m2 must be greater
than the tension of the rope pulling it upward. Using Newton’s second
law, for m1, T�� � F��g1 � F��net

T � m1 g � m1a (eq. 1)

For m2, F��g2 � T�� � F��net

m2 g � T � m2a (eq. 2)

Adding equation 1 and equation 2,

m2 g � m1 g � m1a � m2a
(m2 � m1)g � (m1 � m2)a

a � �
(m

m
2

1

�

�

m
m

1

2

)g
�

a �

a � 1.4 m/s2

The acceleration of the system is 1.4 m/s2.

Substituting into equation 1 to solve for T,

T � m1a � m1g
T � m1(a � g)
T � (3.0 kg)(1.4 m/s2 � 9.8 m/s2)
T � 34 N

The tension in the rope is 34 N.

(4.0 kg � 3.0 kg)(9.8 m/s2)
����

3.0 kg � 4.0 kg

m2m1

�Fg2

�T�T

�Fg1

Fig.2.35b

Alternative Solution

The total mass of the system is

mT � m1 � m2

F��net � F��g2
� F��g1

Fnet � Fg2
� Fg1

(right)

a � �
F

m
ne

T

t
� � �

F

m
g2

1

�

�

F

m
g

2

1�

a �

a � 1.4 m/s2

(4.0 kg)(9.8 m/s2) � (3.0 kg)(9.8 m/s2)
�����

3.0 kg � 4.0 kg



e x a m p l e  1 8 Strings, pulleys, and an inclined plane

Jane Bond is suspended in the unfortunate frictionless situation shown
in Figure 2.36. If Jane has a mass of 75 kg and her car has a mass of 
1500 kg, determine
a) the direction of Jane’s motion.
b) Jane’s acceleration.
c) the tension in the rope.

Solution and Connection to Theory

Given
mJane � 75 kg mcar � 1500 kg

a) There is a tug-of-war going on between Jane and her car. Jane’s 
gravitational force is pulling her down. The parallel component of the
car’s gravitational force, F����, is trying to pull the car down. The
stronger force will cause both bodies to accelerate in its direction.

Fig.2.37

To calculate which force is stronger, we use Newton’s second law:

F�� � Fgcar sin 25° FgJane � mJane g
F�� � mcar g sin 25° FgJane � (75 kg)(9.8 m/s2)
F�� � (1500 kg)(9.8 m/s2)sin 25° FgJane � 735 N
F�� � 6212 N

F�� is greater than Jane’s gravitational force; therefore, the car goes
down the ramp and Jane goes up.
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25°

25°

�T

�T

mcar

�Fn

�Fg
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b) To calculate the acceleration,
for mcar,
Fx � T � mcara (eq. 1)

for mJane, 
T � mJane g � mJanea (eq. 2)

Adding equation 1 and equation 2,

Fx � mJane g � (mcar � mJane)a, where Fx � mcar g sin 25°

Isolating a and substituting, we obtain

a �

a �

a �

a � 3.48 m/s2

Jane’s acceleration is 3.48 m/s2 [up].

c) To calculate the tension in the rope, we substitute the acceleration
from part b) into equation 2:

T � mJane(a � g)
T � (75 kg)(3.48 m/s2 � 9.8 m/s2)
T � 996 N

Therefore, the tension in the rope is 1.0 � 103 N.

Figure 2.38 summarizes the method of solving string-and-pulley problems.

Fig.2.38 Solving String-and-pulley Problems

(9.8 m/s2)[(1500 kg)sin 25° � 75 kg]
����

1500 kg � 75 kg

g(mcar sin 25° � mJane)
���

mcar � mJane

mcar g sin 25° � mJane g
���

mcar � mJane
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Determine direction of motion of system

Write Newton’s second law for each body

Solve system of equations for     �a

Substitute     into one equation to determine T�a

pu
tting

T
o

T
o

g e t h e
rit all

Alternative Solution

(m1 � m2)a � mcarg sin � � mJaneg

a ��
mcarg

m

si

1

n

�

� �

m2

mJaneg
�

a � 

a � 3.48 m/s2

(1500 kg)(9.8 m/s2)sin 25° � (75 kg)(9.8 m/s2)
������

1500 kg � 75 kg



1. For each of the following systems, determine the acceleration and
the tension in each rope.

a) Fig.2.39

b) Fig.2.40

c) Fig.2.41

d) Fig.2.42

2.7 Uniform Circular Motion

A special kind of two-dimensional problem involves objects undergoing uni-
form circular motion. Uniform circular motion is motion in a circle at a
constant speed. 
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m1 � 10 kg

m2 � 15 kg

�k1 � 0.20

m 1 �
 3.0 kg

m2 � 5.0 kg�k1 � 0.18

35°

m 1 �
 2

0 kg

m
2 �

 30 kg

�k1 � 0.20 �k2 � 0.3040° 60°

m 1 �
 30 kg

30°
m3 � 10 kg

m2 � 20 kg

No friction
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e x a m p l e  1 9 An analogue stopwatch — 

calculating average acceleration

A track coach starts an analogue stopwatch and allows it to run for
one minute. If the sweep second hand on the stopwatch is 2.0 cm in
length, determine

a) the speed of the sweep second hand.
b) the velocity of the sweep second hand at the 15-s point.
c) the velocity of the sweep second hand at the 30-s point.
d) the average acceleration of the sweep second hand between the 15-s

and 30-s points.

Solution and Connection to Theory

Given
rstopwatch � 2.0 � 10�2 m t � 15 s

a) To determine the speed of the sweep second hand, we can use the
defining equation for speed,

v � �
d
t
�

which can be modified to

v � �
C
T

�, where C is the circumference of the stopwatch, in metres, and
T is the period, in seconds. C � 2�r; therefore,

v � �
2

T
�r
�

v ��
2�(2.0

6
�

0
1
s

0�2 m)
�

v � 2.1 � 10�3 m/s

b) Now that we know the speed of the sweep second hand, we only need
to determine the direction for velocity. At t � 15 s, the second hand is
moving down. Therefore, the velocity of the sweep second hand at 
t � 15 s is v��15 � 2.1 � 10�3 m/s [D].

c) Similarly, at t � 30 s, the sweep second hand is moving left. Therefore,
the velocity is v��30 � 2.1 � 10�3 m/s [L].

d) To determine the average vector acceleration, we can use our defining
equation for acceleration,

a��avg � �
v��30

�

�

t
v��15

�

Recall that subtracting a vector is the same as adding its opposite!
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Fig.2.43

Fig.2.44a



Fig.2.44b

In Figure 2.44b,

�v�� � v��30 � (�v��15)

�v � �(2.09�� 10��3 m/s)�2 � (2�.09 ��10�3 m�/s)2�
�v � 2.96 � 10�3 m/s

tan � � 1.0
� � 45°

�v�� � 2.96 � 10�3 m/s [L45°U]

a��avg � �
�

�

v�

t

�
�

a��avg �

a��avg � 2.0 � 10�4 m/s [L45°U]

Therefore, the average acceleration of the sweep second hand between
the 15-s and 30-s points is 2.0 � 10�4 m/s2 [L45°U].

From this example, we can note two things. First, remember that accelera-
tion is a vector. The magnitude of the velocity (i.e., the speed) need not
change in order for acceleration to occur; it is sufficient that there is a change
in direction, as in this case. As a result, we have acceleration.

Second, what is the direction of the average acceleration? In Example
19, the direction is [L45°U]. This value is the average acceleration over the
15-s time interval. Therefore, it is also the direction of the instantaneous
acceleration at the midpoint of the arc between t � 15 s and t � 30 s. More
precisely, it is the direction of the instantaneous acceleration at t � 22.5 s.
At this point, the instantaneous acceleration is directed toward the centre
of the circle; that is, the acceleration is centre-seeking or centripetal.

Whenever an object is undergoing uniform circular motion, it undergoes
centripetal acceleration (i.e., directed toward the centre of the circle).

2.96 � 10�3 m/s [L45°U]
���

15 s
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�

  ��v
  –v15 � 2.09 � 10�3 m/s

v30 � 2.09 � 10�3 m/s

�v2

�v1
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B
�

Fig.2.45a

�v30

�v15

  ��v

Alternative diagram 

(tail-to-tail method)

Fig. 2.44c



The magnitude of centripetal acceleration is constant, as in Example 19, but
its direction changes every instant so that it is always directed toward the
centre of the circle. Our task now is to derive an algebraic equation for the
magnitude of centripetal acceleration.

Figure 2.45a shows a stopwatch with a sweep second hand and two
velocity vectors, v��1 and v��2, at times t1 and t2, respectively. As the sweep second
hand rotates from point A to point C in Figure 2.45a, it sweeps out an angle, �.
Figure 2.45b shows both vectors, v��1 and v��2, drawn from the same point. The
angle 
 represents the change in the velocity vector’s direction as the second
hand’s velocity changes from point A to point C. Since the radii BA and BC
are both perpendicular to the tangential velocities v��1 and v��2,


 � � � 90° and     � � � � 90°

Therefore, angles 
 and � must be equal.

Fig.2.45c Fig.2.45d

As the second hand sweeps through a change in time �t, it sweeps through
an arc of length v�t (Figure 2.45c). As �t approaches zero, the angle � also
approaches zero, and the arc swept out by the second hand gets smaller
and smaller and eventually approaches a straight line. The triangle DAE,
shown in Figure 2.45d, is an isosceles triangle. The vector �v�� is its base.
Because angles 
 and � are equal, triangles CBA and DAE are similar triangles.
Since v1 � v2 � v,

�
�

v
v
� � �

v�

r
t

� or      �
�

�

v
t
� � �

v
r

2

�

But a � �
�

�

v
t
� is the equation for acceleration. Therefore, the magnitude of

centripetal acceleration, ac, is

ac � �
v
r

2

� (eq. 1)

For objects undergoing uniform circular cyclic motion, we can also find
the centripetal acceleration in terms of frequency and period.
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Fig.2.45b
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In our sweep-second-hand example, we can describe the speed of the
second hand as

v � �
d
t
�

Since the distance travelled equals the circumference of the circle, C � 2�r,
and the time taken is equal to the period of rotation, T, we can state that

v � �
2

T
�r
� (eq. 2)

Substituting equation 2 into equation 1, we obtain

ac �

ac � �
4
r
�

T

2r
2

2

�

ac � �
4
T
�

2

2r
� (eq. 3)

Also, since T � �
1
f
� (where f represents the frequency of rotation), 

ac � 4�2rf 2 (eq. 4)

1. A racecar enters a circular curve of radius 30 m at a constant speed
of 25 m/s. Determine the car’s centripetal acceleration.

2. A bicycle wheel of radius 1.3 m undergoes 25 rotations in 60 s.
Determine the centripetal acceleration of a point on the wheel.

3. A carnival ride rotates children on swings about a vertical axis (Figure
2.46). Describe the effect on the centripetal acceleration of a child as
a) the speed is doubled.
b) the radius is doubled.
c) the radius is halved.

4. The Moon orbits Earth with a period of approximately 27.3 days. If
the distance from Earth to the Moon is approximately 3.8 � 105 km,
a) what is the magnitude of the Moon’s centripetal acceleration?
b) in which direction is the Moon’s centripetal acceleration?
c) what causes this centripetal acceleration?

5. The outer edge of a 120-mm-diameter CD-ROM experiences an
acceleration of 1.6 m/s2. What is the speed of the CD-ROM?

6. Space stations can produce “artificial gravity” by rotating. A space
station is built in the shape of a bicycle wheel of diameter 500 m.
How many times each day should the space station rotate for an
astronaut to experience an acceleration equal to the acceleration
due to gravity on Earth?

��
2

T
�r
��

2

�
r
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2.8 Centripetal Force

An object undergoing uniform circular motion experiences centripetal
acceleration. From Newton’s second law, the centripetal acceleration
must be caused by an unbalanced force. Whenever an object travels in a
circle at a constant speed, it must have a force acting on it that is per-
pendicular to its velocity. The centripetal force is the net force; that is,
the vector sum of all forces acting on the object. If the net force becomes
zero, inertia will cause the object to move off at a constant speed in a
straight line.

Since

F��c � F��net � ma��c

we can derive three forms of F��net for circular motion by substituting the three
derived equations for centripetal acceleration (magnitude only):

Fc � �
m

r
v2

�

Fc � �
m4

T
�
2

2r
�

Fc � m4�2rf 2

Fig.2.47



�F
5.0 cm
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e x a m p l e  2 0 Centripetal force in the horizontal plane

Fig.2.48a Fig.2.48b

A 0.20-g flea sits at a distance of 5.0 cm from the centre of a rotating LP
record. If the record rotates at 77 rpm, what centripetal force must be pro-
vided by friction to cause the flea to maintain its uniform circular motion?

Solution and Connection to Theory

Given
m � 0.20 � 10�3 kg r � 5.0 � 10�2 m f � 77 rpm � 1.28 Hz

F��net � F��f

Fc � Ff

Fc � m4�2rf 2

Fc � (0.20 � 10�3 kg )4�2(5.0 � 10�2 m)(1.28 Hz)2

Fc � 6.5 � 10�4 N

Therefore, friction must create a centripetal force of 6.5 � 10�4 N.

e x a m p l e  2 1 Centripetal force in the vertical plane

A 25-g chestnut with a hole drilled through its centre is hanging from a
long massless shoelace. A child spins the chestnut in a vertical circle at a
speed of 4.0 m/s. If the shoelace is 0.80 m long, determine the tension in
the shoelace at the top and bottom of the circle.

Solution and Connection to Theory

Given
m � 0.25 kg v � 4.0 m/s r � 0.80 m

Recall that the centripetal force is the vector sum of all forces acting
on an object undergoing circular motion. This force can be expressed
algebraically as

�Fg

�Fg

�T

�T

Fig.2.49a

�Ff

�Fn

�Fg
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F��net � T�� � F��g

F��c � T�� � F��g

T�� � F��c � F��g

where T�� is the tension in the shoelace, F��c is the centripetal force, and F��g

is the gravitational force on the chestnut. 

At the top of the circle: 
According to our standard coordinate system, both F��c and F��g are down-
ward forces, as indicated by their negative signs below. Expanding the
third equation, we obtain

Ttop � �
�m

r
v2

� � (�mg)

Ttop � �
�m

r
v2

� � mg

Ttop � � (0.25 kg)(9.8 m/s2)

Ttop � �2.6 N

The tension at the top of the circle is �2.6 N or 2.6 N [down].

At the bottom of the circle:
Again using our standard coordinate system, the gravitational force will
have a negative sign because it is directed downward, and the centripetal
force will have a positive value because it’s applied upward toward the
centre of the circle:

F��c � T�� � F��g → Fc � T � Fg

TTbottom � �
m

r
v2

� � mg

Tbottom � � (0.25 kg)(9.8 m/s2)

T��
bottom � 7.4 N [up]

The tension at the bottom of the circle is 7.4 N [up].

There are two things of note in this solution. First, note the directions of the
tensions at the top and bottom of the circle.  At the top of the circle, the ten-
sion is downward, toward the centre of the circle. At the bottom of the circle,
the tension is upward, also toward the centre of the circle. In each case, the
chestnut is being pulled toward the centre.

(0.25 kg)(4.0 m/s)2

���
0.80 m

�(0.25 kg)(4.0 m/s)2

���
0.80 m

Fig.2.49b

Fig.2.49c

�Fg�T

�Fg

�T



Second, the magnitudes of the tensions at the top and bottom of the circle
are not the same. At the top of the circle, gravity applies a downward
force toward the centre of the circle, providing part of the centripetal
force. As a result, the rope can apply a smaller force than would other-
wise be needed to keep the chestnut moving in a circle. At the bottom,
on the other hand, the shoelace not only applies a force upward to provide
the centripetal force, it must also apply an upward force to balance gravity.
So, the tension in the shoelace is greater at the bottom of the circle than at
the top.

Centripetal Force and Banked Curves 

When a car travels along a curve, the centripetal force is usually provided
by the frictional force between the car’s tires and the road’s surface. To
reduce the reliance on friction, we can incline, or bank, the curve relative
to the horizontal. This method is used in car races on circular or oval tracks
and on highway on- and off-ramps. For a given banked curve, there is one
speed at which the centripetal force is provided strictly by a component of
the normal force. At this speed, the object doesn’t require a frictional force
to undergo uniform circular motion. 

e x a m p l e  2 2 Banked curves

A racecar travels along a banked curve at a speed of 120 km/h. It doesn’t
depend on the force of friction to keep it on the track. If the turn is
banked at an angle of 25° to the horizontal, what is its radius of rotation? 

Solution and Connection to Theory

Given
v � 120 km/h � 33.3 m/s � � 25°

Fig.2.50
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25°

C

25°

25°

Fn sin 25°

�Fn

�Fg

Fn cos 25°

At the top, the tension force can

become zero because gravity provides

the necessary force to turn the object.

In this case, the speed at which the

object turns is the minimum speed

required to keep the object moving

in a circle.



In Figure 2.50, the only two forces acting on the car as it travels along the
curve are the gravitational force and the normal force. The normal force
has two components: the vertical component is balanced by gravity,
whereas the horizontal component is unbalanced. This component is the
centripetal force because it acts toward the centre of motion, labeled C. 

For the vertical forces, 

Fnety � 0
Fny � Fg

Fny � mg
Fn cos 25° � mg (eq. 1)

For the horizontal forces,

Fnx � Fc

Fn sin 25° � �
m

r
v2

� (eq. 2)

Dividing equation 2 by equation 1,

�
F
F

n

n

c
s
o
in

s
2
2
5
5
°
°

� �

tan 25° � �
r
v
g

2

�

r � �
g tan

v2

25°
�

r ��
(9.8

(3
m
3

/
.3
s2

m
)ta

/s
n
)2

25°
�

r � 2.4 � 102 m

Therefore, the radius of rotation is 2.4 � 102 m.

Centrifugation

In laboratories, it is often necessary to separate one material from
another. In many cases, if left to stand for long periods of time, substances
such as sand and rocks will settle to the bottom of a test tube due to the
force of gravity. This effect is called sedimentation. In some cases, when
the particles of a given substance are of small mass, it may take too long
to wait for substances to separate by sedimentation. In such cases, a cen-
trifuge is often used. A centrifuge is a device that separates substances
suspended in a liquid by spinning a sample of liquid very quickly around

�
m

r
v2

�

�
mg
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an axle. The test tubes are placed symmetrically about a vertical axle.
They are usually mounted in a cradle that allows their bottom ends to
pivot outward. As the vertical axle starts to rotate at low speed, the test
tubes are positioned vertically. As the speed increases, they progressively
lift higher and higher until they approach the horizontal. Any small
denser particles found in the liquid travel in a straight line inside the test
tube, obeying Newton’s first law. The liquid in the test tube applies a cen-
tripetal force on these particles to keep them moving in a circle.
Eventually, as the speed increases, the liquid is unable to apply a great
enough force to maintain the particles’ circular motion, and the tiny par-
ticles will continue to move in a straight line until they reach the bottom
of the test tube. The test tube itself then provides the centripetal force that
keeps the particles moving in a circle. After running the centrifuge at high
speed for a period of time, the particles become clumped together at the
bottom of the test tube.
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Fig.2.51a

Fig.2.51b



Modern ultracentrifuges must be very precisely balanced. In some cases,
they can run at frequencies as high as 60 000 rpm. An improperly balanced
centrifuge can have catastrophic results.

Satellites in Orbit

The Moon has been orbiting Earth for millions of years (Figure 2.52a).
Human-made Earth satellites, however, have only been around since 1958.
Canada is one of the world leaders in satellite technology. In November
2000, Canada launched the Anik F1 satellite (Figure 2.52b). Upon launch,
it was the most advanced telecommunications satellite in the world.

Anik F1 was launched from French Guiana on an Ariane rocket. It is
currently in geosynchronous Earth orbit (GEO). GEO is an orbit
approximately 19 400 nautical miles (35 900 km) above Earth’s surface at
the equator, in which a payload completes one Earth orbit in a 24-hour
period, holding a fixed position relative to Earth.

Placing a satellite in geosynchronous Earth orbit requires a sufficient
force, with sufficient speed, to transport the satellite to Earth orbit. If its
speed is too fast, the satellite will miss Earth orbit and, according to
Newton’s first law, travel at a constant speed in a straight line until acted
upon by an unbalanced force. If its speed is too slow, the satellite will crash
to Earth due to Earth’s gravitational force. 
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Geosynchronous orbit is also known

as geostationary orbit.

Fig.2.52a The Moon has been

orbiting Earth for millions of years

Fig.2.52b The Anik F1 satellite



e x a m p l e  2 3 Geosynchronous Earth orbit

The Anik F1 satellite has a mass of 3021 kg. How high above the equator
must the satellite be in order to maintain geosynchronous Earth orbit?
Earth’s period is 23 hours, 56 minutes, and 4 seconds.

Solution and Connection to Theory

Given
ms � 3021 kg mE � 5.98 � 1024 kg rE � 6.38 � 106 m 

T � 23 h��360
h
0 s
�� � 56 min��

6
m
0
in
s

�� � 4 s � 8.61 � 104 s

To solve this problem, we note that Earth’s gravitational attraction pro-
vides all the necessary centripetal force to keep the satellite in orbit.
Second, we will assume that the satellite’s period of rotation is the same
as that of Earth.

F��g � F��c

�
Gm

r
E
2

ms
� � �

ms

T
4�

2

2r
�

r3 � �
Gm

4�
ET

2

2

�

r � �3 �
Gm

4�
ET

2�2

��
r ��3 ���
r � 4.22 � 107 m

This distance is the distance from Earth’s centre to the satellite. To deter-
mine the satellite’s distance above Earth’s surface, we subtract Earth’s
radius from this value.

r � 4.22 � 107 m � 6.38 � 106 m
r � 3.58 � 107 m

Therefore, the satellite must be 3.58 � 107 m above the equator in order
to maintain GEO.

�6.67 � 10�11 �
N
k
�

g
m

2

2

��(5.98 � 1024 kg)(8.61 � 104 s)2

������
4�2
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1. A 10-kg child is riding a merry-go-round of radius 5.0 m. If the
merry-go-round completes 20 rotations in three minutes,
a) at what speed does the rider rotate?
b) what is the centripetal force on the child?
c) what provides this centripetal force?

2. If Tarzan (of mass 60 kg) has a speed of 4 m/s at the bottom of his
swing on a 2.5-m vine, find the tension in the vine.

3. A child spins a bucketful of water in a vertical circle by using a piece
of rope attached to the bucket. If the rope is 1.2 m long, at what
speed must the bucket move so that, at the top of its path, there is
no tension in the rope?

4. A racecar driver drives her 1500-kg car around a circular turn,
which is banked at an angle of 20° to the horizontal. If the car is
travelling around the frictionless curve of radius 100 m,
a) draw a free-body diagram of the situation.
b) what is the car’s speed?
c) what is providing the centre-seeking force on the car?
d) What would change in this problem if the car were travelling at

a higher speed?
e) What other force could provide a centre-seeking force in a real-

life situation?
5. Earth and the Moon are separated at their centres by a distance

of 3.4 � 108 m. Determine the period of the Moon’s rotation
about Earth.

Fig.2.54

6. The Hubble Telescope (Figure 2.54) is in orbit 600 km above
Earth’s surface. At what speed is the telescope travelling?

7. In 1969, the Apollo 8 command module orbited 190 km above the
Moon’s surface. Given that the Moon is 0.013 times the mass of
Earth, determine how long it took the command module to orbit the
Moon ten times. The Moon’s radius is 1.74 � 106 m.
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The Tape-measure Home Run

Hitting a pitched baseball (especially a curved pitch) at a major-league baseball
game is the most technically difficult task for a professional athlete. The ball
takes half a second to arrive at the plate, during which time the batter must
swing his bat and hit it in a direction that will allow the ball to remain in play. 

For over 100 years, the sight of a baseball player hitting a ball over the
outer fences of the stadium has been one of the most dramatic events in
sports. In 1927, Babe Ruth hit 60 home runs in 152 games. In 1961, Roger
Maris hit 61 home runs in 162 games. In 1998, Mark McGwire hit 62 home
runs in 142 games. 

How far do these baseballs travel? It depends on the stadium. Each stadium
has its own standards. Some officials record the distance from home plate to
the point where the ball lands, while others are interested in how far the
ball would have travelled if the stands had not gotten in the way. No one has
ever hit a ball out of Yankee Stadium in New York City, but baseballs routinely
sail out of Comiskey Park and Wrigley Field in Chicago and Tiger Stadium
in Detroit. In the 1950s, the era of Willy Mays and Mickey Mantle, outfield
fences were 15 m deeper than in most stadiums today.

What about the winds? Barry Bonds played for years at San Francisco’s
Candlestick Park, which had strong swirling winds that likely affect a base-
ball’s range. On the other hand, it took him only a couple of years of playing
at the new Pacific Bell Park to hit his new record, possibly because this stadium,
although still subject to winds off the Pacific Ocean, is built at sea level so
ground structures play a much greater roll in reducing these effects.

Who was the best home run hitter of all time? What principles can we
apply to put the performances of these athletes on equal footing?

The trajectory of a hit baseball cannot be solved using the range equation,

R �

because air drag on the ball slows it down. The path appears more like that
shown in Figure STSE.2.2.

Drag is a mechanical force generated by a solid object moving through
a fluid (liquid or gas). The amount of drag on an object depends on its shape
and size, its velocity and inclination to fluid flow, and the compressibility,
viscosity, and mass of the fluid moving past the object. The equation for
drag is 

Fdrag � �Av2CD

v2 sin 2�
�

g

Fig.STSE.2.1 In 1998, Mark

McGwire hit 70 home runs! During

his career, he averaged a home run

for every 12 hits. He also hit some 

of the longest homers on record. 

Fig.STSE.2.2 The real range of a

baseball is shorter than its ideal

range because of air drag  

Ideal

Typical

Distance

H
ei

gh
t
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where � is the density of air, A is the reference area of the
object experiencing drag, v is the object’s velocity, and CD is
the drag coefficient. For a sphere of radius r, CD � 6��r,
where � is the viscosity of the medium in g/cm. 

Design a Study of  Societal  Impact

Discuss with baseball fans of all ages who they think was
the best home-run hitter of all time. You might interview
the sports caster of a local media network or a teacher
who is knowledgeable in this sport. What do you think of
the policies of how home runs are measured? Consider
contacting various teams to find out how home runs are
measured in their stadium. 

Sometimes, baseball stadiums are adapted to suit home-
run hitters. Is this practice fair? Think of other examples of
such practices in other sports.

Design an Activ ity  to Evaluate

How can we compensate for the differences among stadiums? Design
an activity that will use the flight of a baseball, possibly hit in the
schoolyard, and filmed as a model for what is seen on TV in the major
leagues. Study the factors that affect the flight of a baseball. How does
wind change the distance it travels? You should be able to estimate the
distance with some accuracy based on the initial speed of the ball as it
leaves the bat, its direction of travel, and the wind speed and direction. 

Either manually or using a spreadsheet, use the drag equation to
determine which variables affect the range of a projectile the most.
Draw a graph of each version of your equation. Which graph comes
closest to the ideal range curve in Figure STSE.2.2? 

Bui ld a Struc ture

Design and build a sighting device that will allow a person sitting in a
stadium at a specific location of your choosing (but it must be the same
for the entire game) to give a reasonably accurate estimate of the distance
that a particular home run will travel. Measure the exact position of
certain objects in a local ballpark or stadium. Then, using similar
triangles, calculate the range of the projectile using your sighting device. 

Fig.STSE.2.3 The forces acting on a ball being thrown

Initial forceAirstream Drag

Weight

Lift
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S P E C I F I C  E X P E C TAT I O N SS U M M A R Y

You should be able to

Understand Basic Concepts:

Add vectors in two dimensions using compo-
nents, and sine and cosine laws.
Determine the x and y components of a vector at
an angle.
Subtract vectors in two dimensions using compo-
nents, and sine and cosine laws.
Calculate the vector acceleration of an object in
two dimensions.
Solve relative motion problems in two dimensions.
Describe and solve projectile motion problems in
two dimensions using kinematics equations.
Use free-body diagrams to isolate and analyze
objects and the external forces acting on them in
two dimensions.
Distinguish between inertial and non-inertial
frames of reference.
Describe the motion of an object in two dimen-
sions using Newton’s laws.
Determine the acceleration of an object in two
dimensions using Newton’s second law.
Calculate the net force acting on an object in two
dimensions.
Solve problems involving accelerating bodies on
inclined planes.
Solve string and pulley problems, including those
that involve inclined planes.
Define and describe centripetal acceleration.
Solve problems involving objects undergoing 
uniform circular motion, and calculate their cen-
tripetal acceleration.
Define centripetal force.
Solve problems involving objects undergoing
uniform circular motion, and determine the
forces acting upon them, in both horizontal and
vertical planes.
Solve problems involving objects and astronomi-
cal bodies in Earth orbit, and analyze the forces
acting on these objects.
Explain the operation of the laboratory centrifuge.

Develop Skills of Inquiry and Communication:

Predict the motion of projectiles, and perform an
experiment to confirm your predictions.
Investigate, through experimentation, the rela-
tionships among centripetal acceleration, radius
of orbit, and the frequency of an object in uni-
form circular motion.
Describe, or construct prototypes of, technologies
based on the concepts and principles related to
circular motion.

Relate Science to Technology, Society, and the Environment:

Investigate how knowledge of physics can be ben-
eficial to athletes.
Investigate how equipment and stadium modifi-
cations have increased athlete performance.
Design and construct a sighting devive.

Equations

R �

v��og � v��om � v��mg

Ff � �Fn

ac � �
v
r

2
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4
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�
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� ac � 4�2rf 2
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r
v2
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T
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Fg|| � mg sin �

Fg⊥ � mg cos �

� � tan �
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E X E RC I S E S

Conceptual Questions

1. A textbook is sitting on top of a table. Why
will the frictional force between the table and
the textbook not cause the textbook to move?

2. Is it possible to swing a mass at the end of the
string in a horizontal circle above your head?
Explain your answer.

3. When an object rests on a horizontal surface,
how can you be certain that the normal force
is balanced by the gravitational force? How
would you know if these two forces were 
not balanced?

4. North, south, east, and west can be used to
describe directions in two-dimensional
physics problems. How would you describe
directions in three dimensions (e.g., in which
direction would a vector coming out of the
plane of this page be pointing)?

5. Two identical bullets are at the same height.
One bullet is fired horizontally from a rifle
at a velocity of 1000 m/s over level ground.
The other bullet, released at the same instant,
falls straight down. How long does it take
each bullet to reach the ground? Explain
your answer.

6. Write a brief letter to your cousin Wolfgang
explaining why a river current’s velocity 
doesn’t affect the amount of time it takes to
paddle a canoe across a river. In your letter,
describe which variables determine the length
of time required to cross the river.

7. A 100-kg sofa needs to be moved across a
level floor. The coefficient of static friction
between the sofa and the floor is 0.40. Two
physics students decide to apply a force F�� on
the sofa. One student recommends that the

force be applied upward at an angle � above
the horizontal. The other student recom-
mends that the force be applied downward at
an angle � below the horizontal. Explain
which student has the better idea and why.

8. A baseball is thrown straight up in the air.
Describe the baseball’s velocity and accelera-
tion at each of the following points:
a) half-way up.
b) at its maximum height.
c) half-way down.

9. In baseball, after a pitcher has released the
ball, it will accelerate downward due to gravity.
To compensate for this downward motion, the
pitcher stands on a mound that is raised relative
to the rest of the field. If you were to play
baseball on the Moon, would you still need a
mound? If so, how would its height compare
to a mound on Earth?

10. On Earth, an athlete can jump a horizontal
distance of 1.8 m from a standing start. How
far could she jump on a planet that has one-
half the acceleration due to gravity on Earth?

11. When you ride a bicycle down a wet road
after removing the fenders, you’ll get a wet
stripe down your back. Why?

12. The last cycle in a washing machine is always
the spin cycle, during which the drum rotates at
high speed about a vertical axis. Explain how
the spin cycle removes water from clothing.

13. NASA uses an aircraft, the Vomit Comet, to
train astronauts. If flown correctly, for a brief
period time, the astronauts will feel weight-
less. Describe how the aircraft should be
flown in order to achieve weightlessness.
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(a)

d � 25 km

20°

(b)

F � 10 N

30°

(c)

a � 30 m/s2

45°
(d)

p � 42 kg • m/s

3°

Problems

2.1 Vectors in Two Dimensions

14. In your notebook, break each of the following
two-dimensional vectors into perpendicular
components.

Fig.2.55

15. A 10-m-long crane is inclined at an angle of 40°
to the horizontal. If the Sun is directly overhead,
a) what is the length of the crane’s shadow

on the ground?
b) how high above the ground is the top of

the crane?

16. A skier accelerates at a rate of 4.0 m/s2 down a
ski hill inclined at 35°. What are the vertical
and horizontal components of her acceleration?

17. A pizza delivery truck drives 2.0 km [W], 
followed by 3.0 km [W20°N]. What is the
total displacement of the delivery truck?

18. A projectile is launched with a horizontal
velocity of 10 m/s and a vertical velocity of 
20 m/s. What is the magnitude and direction
of the projectile’s initial velocity?

19. Add the following displacements using the
component method:
d��1 � 20 cm [N], d��2 � 50 cm [S35°E],
d��3 � 100 cm [W15°S]

20. A tennis ball’s initial velocity is 30 m/s [S].
When struck by a tennis racquet, its velocity
becomes 28 m/s [N30°W]. Determine the
ball’s change in velocity.

21. A billiard ball with an initial velocity of 
2.0 m/s [S30°E] strikes the bumper of a
billiard table and reflects off it at a velocity of
1.8 m/s [N30°E]. If the interaction with the
bumper takes 0.10 s, determine the vector
acceleration of the billiard ball.

2.2 Relative Motion

22. A swimmer, who can swim at a maximum
speed of 1.8 km/h, swims heading straight
north across a river of width 0.80 km. If the
river’s current is 0.50 km/h [E],
a) how long does it take the swimmer to cross

the river?
b) how far downstream will the swimmer land?
c) what is the swimmer’s ground velocity?

23. If the swimmer in problem 22 decided to
change his direction so as to go straight north,
determine
a) his heading.
b) his ground velocity.
c) the amount of time it would take him to

cross the river.
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24. A concerned parent wants to throw a forgot-
ten lunch bag into the back of his daughter’s
passing pickup truck. The parent is standing
10 m north of a road that runs east–west. If
the parent can throw the bag at a speed of 
2.0 m/s and the speed limit on the road is 
60 km/h, how far east of the parent must the
westbound truck be when the bag is released?

Fig.2.56

25. A helicopter pilot wishes to fly east. There’s a
wind from the north at 20 km/h. If the heli-
copter can fly at a speed of 150 km/h in still
air, in which direction must the pilot point
the helicopter in order to fly east (i.e., what 
is the pilot’s heading)?

26. A ship’s captain wishes to sail his ship north-
east. A current is moving his ship with a
velocity of 5.0 km/h [S]. If the ship has a
maximum speed of 30 km/h, what is the
ship’s required heading?

27. A cruise ship is sailing north at a speed of 
10 km/h. A passenger walks along the deck
with a velocity of 0.5 m/s toward the stern of
the ship. She then turns toward port and walks
to the railing at the same speed. Determine the
passenger’s velocity for both motions
a) relative to the ship.
b) relative to the water.

28. A high-school football quarterback is practis-
ing by throwing a football into a garbage pail.
The quarterback runs along a line 6.0 m away
from the garbage pail at a speed of 4.0 m/s. If

the quarterback can throw the football at a
speed of 5.0 m/s,

Fig.2.57

a) how far in advance of the garbage pail
must the quarterback release the ball if the
ball is thrown perpendicular to the direc-
tion in which he’s running?

b) how long will it take the football to reach
the garbage pail?

c) what is the football’s ground velocity?

29. The quarterback in the problem 28 decides to
practise in a different way. This time, he runs
along the same path, 10 m away from the
garbage pail, and releases the football just as
he passes the garbage pail.
a) In which direction must he throw the foot-

ball so that it lands in the garbage pail?
b) How long does it take the football to reach

the garbage pail this time?
c) What is the football’s ground velocity?

2.3 Projectile Motion

30. Blarney, the orange dinosaur, throws a Nerf™
ball horizontally out of an open window with
a velocity of 3.0 m/s. If the window is 10 m
above the ground, how far away from the
building must Blarney’s friend stand to catch
the ball at ground level?

31. A rock thrown horizontally from the top of a
water tower lands 20.0 m from the base of the
tower. If the rock was initially thrown at a veloc-
ity of 10.0 m/s, 
a) how high is the water tower?
b) What is the final velocity of the rock?

Garbage pail 

6.0 m

vQ � 4.0 m/s  

10 m

vtruck � 60 km/h



32. A bag of mail is catapulted from the top of 
a building 200 m above the ground with a
velocity of 20 m/s at an angle of 15° above
the horizontal. If the mail is to land on the
roof of another building 100 m away, how 
tall is the second building?

33. A tourist taking the train from Toronto,
Ontario to Montreal, Quebec accidentally
drops a cup of coffee from a height of 1.3 m.
The train is travelling at 180 km/h.
a) How long does it take the cup of coffee to

hit the floor?
b) Where does the cup land relative to the

tourist?
c) How much closer to Montreal is the cup

when it strikes the floor compared to when
it was dropped?

34. Bounder of Adventure is trying to cross 
a piranha-infested pool of water in his
Humvee. He races up a ramp inclined at 
20° to the horizontal at a speed of 30 m/s.
There is an identical ramp on the other side
of the pool. What is the maximum width of
the pool that Bounder of Adventure can
successfully cross?

Fig.2.58

35. A soccer ball is kicked from the ground at an
angle � above the horizontal. Show that the
equation h � 0.25R tan � represents the maxi-
mum height of the ball, where h is the height
and R is the range.

36. A baseball player makes perfect contact with
the ball, striking it 45° above the horizontal
at a point 1.3 m above the ground. His home-
run hit just clears the 3.0-m wall 130 m from
home plate. With what velocity did the base-
ball player strike the ball?

2.4 Newton’s Laws in Two Dimensions

37. Determine the net force for each of the 
following situations:

Fig.2.59
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dx
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(a)
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� 10 N
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� 50 N

(b)

40°

(c)
60°
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38. Three movers are applying forces F��1 � 100 N
[W20°N], FF��2 � 200 N [E40°S], and F��3 � 300 N
[S] on a 300-kg grand piano. If �k for the piano
is 0.10, use the component method to determine
a) the net force acting on the piano.
b) the acceleration of the piano.

39. A worker drags a 20-kg bag of cement across 
a floor by applying a force of 100 N at an angle
of 50° to the horizontal. If the coefficient of
kinetic friction between the cement bag and the
floor is 0.30, determine the acceleration of the
bag. (Be sure to draw a free-body diagram.)

40. A 0.25-kg hockey puck sliding across the ice
with an initial velocity of 12 m/s [S] is struck
by a hockey stick with a force of 300 N
[N25°E]. If the hockey stick interacts with 
the puck for 0.20 s, determine the puck’s 
final velocity.

41. A 100-kg baseball player slides into home plate.
If the coefficient of kinetic friction is 0.50,
a) what is the frictional force acting on the

baseball player?
b) If the baseball player comes to rest in 1.3 s,

what was her initial speed?

42. A person tosses his car keys on top of his
dresser with an initial velocity of 2.0 m/s.
How far will the keys slide across the dresser
if the coefficient of kinetic friction between
the two surfaces is 0.30?

43. While mopping the deck, a sailor pushes with
a force of 30 N down on the handle of his
mop at an angle of 45° to the horizontal. If
the mop accelerates horizontally at 1.0 m/s2

and the coefficient of kinetic friction is 0.10,
what is the mass of the mop?

2.5 The Inclined Plane

44. The coefficient of static friction between a
box and an inclined plane is 0.35. What is the
minimum angle required for the box to begin
sliding down the incline?

45. Two children are having a toboggan race
down a frictionless hill inclined at 30° to the
horizontal. The children’s masses are 20 kg
and 40 kg.
a) What is the acceleration of each child?
b) Which child reaches the bottom of the 

hill first?

46. A rescue worker slides a box of supplies from
rest down a hill to a group of trapped campers.
The hill is inclined at 25° to the horizontal
and is 200 m long. If the coefficient of kinetic
friction on the hill is 0.45,
a) what is the acceleration of the box as it

goes down the hill?
b) at what speed does the box reach the 

bottom of the hill?
c) how long does it take the box to reach 

the bottom of the hill?

47. Boom-Boom Slapshot, Canadian hockey star,
slides down a 50-m-long ice-covered hill on
his hockey skates. The frictionless hill is
inclined at 35° to the horizontal. Once he
reaches the bottom of the hill, the ice is 
covered with deep snow that has a coefficient
of kinetic friction of 0.50. How far into the
snow will Boom-Boom go before coming 
to rest?

Fig.2.60

48. Spot the Wonder Cow has strapped on her
roller blades and rocket pack and is standing at
the bottom of a hill inclined at 20° to the hori-
zontal. If Spot’s rocket pack provides a force of
2000 N and Spot has a mass of 250 kg, how
long will it take her to reach the top of a 
250-m-long hill?

35°



2.6 String-and-pulley Problems

49. a) For each frictionless situation in Figure
2.61, determine the acceleration of the 
system and the tension in each rope:

b) Repeat for �k � 0.2.

Fig.2.61

50. Determine the acceleration of the system 
in Figure 2.62 if the coefficient of kinetic 
friction for the tabletop is 0.10. 

Fig.2.62

51. In Figure 2.62, what coefficient of friction
would be required to prevent the system 
from moving?

52. Tarzana (m � 65 kg) is trying to rescue
Tarzan (m � 80 kg), who has fallen over the
edge of a cliff (Figure 2.63). Tarzana is stand-
ing on a horizontal frictionless surface 15 m
from the edge of the cliff. Determine how
long it will take before Tarzana reaches the
edge of the cliff, starting from rest.

Fig.2.63

2.7 Uniform Circular Motion

53. David spins a sling in a horizontal circle above
his head. What would happen to the period of
rotation if he applied the same force and the
length of the sling was
a) doubled?
b) halved?

54. The drum in a clothes dryer has a diameter of
0.70 m and completes one rotation every 0.42 s.
a) What is the centripetal acceleration of 

the drum?
b) Why do the clothes not fly toward the 

centre of the clothes dryer?
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m1 � 5.0 kg

m2 � 4.0 kg

m2 � 20 kg

m1 � 20 kg

(a)

(b)

m1 �
 10 kg

m2 � 15 kg

m1 � 10 kg

m2 � 10 kg

m3 � 30 kg

25°

(c)
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55. Earth is approximately 1.5 � 1011 m from 
the Sun. If Earth orbits the Sun with a 
period of 365 days, determine Earth’s 
centripetal acceleration.

56. What is the maximum speed at which a 
1500-kg car can round a curve on a flat road if
the radius of the curve is 90 m and the coeffi-
cient of static friction is 0.50? Is it necessary to
know the mass of the car to solve this problem?

57. A 1000-kg Indy car travels around a curve
banked at 25° to the horizontal. If the radius
of the curve is 80 m, at what speed must the
car be travelling if no friction is present?

2.8 Centripetal Force

58. Roller-coaster riders on the “Vomit” go
through a vertical loop of radius 10 m. At
what minimum speed must a “Vomit” car
travel so that the riders don’t fall out?

59. A clock’s pendulum is 60 cm long with a 
bob at the end of mass 500 g. Determine 
the maximum tension in the pendulum rod
when the bob is
a) at rest.
b) swinging at a speed of 2.4 m/s.

60. A 2.0-kg mass is attached to the end of a 
3.0-m-long rope and spun in a vertical circle
at a speed of 6.6 m/s. Determine the maxi-
mum and minimum tensions in the rope.

61. As a pilot comes out of a dive in a circular
arc, she experiences an upward acceleration 
of 9.0 gs.
a) If the pilot’s mass is 60 kg, what is the

magnitude of the force applied to her by
her seat at the bottom of the arc?

b) If the speed of the plane is 330 km/h, 
what is the radius of the plane’s arc?

62. Earth is a satellite of the Sun with an orbit
radius of approximately 1.5 � 1011 m.
a) What is the Sun’s mass?
b) If the Sun’s radius is 6.96 � 108 m, how

does the Sun’s density compare with
Earth’s density?

63. A block of mass m1 is attached to a rope of
length L1, which is fixed at one end to a table.
The mass moves in a horizontal circle sup-
ported by a frictionless table. A second block
of mass m2 is attached to the first mass by a
rope of length L2. This mass also moves in a
circle, as shown in Figure 2.64. If the period
of the motion is T, find the tension in each
rope. (Assume all ropes are massless.)

Fig.2.64

m2

L2

L1

m1
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Purpose
To design and construct a device that will exper-
imentally confirm the projectile motion equa-
tions in this chapter; specifically, to compare
theoretical and experimental values for time of
flight, range, and maximum height

Hypothesis
Using your previous knowledge, predict values
for time of flight, range, and maximum height
for projectiles launched at different angles.
Predict how your real-life values will compare to
your theoretical values. Give reasons for any
potential differences.

Equipment
Provided by the instructor:
Stopwatch Safety goggles Metre stick
Tape measure Masking tape

Provided by the student:
Bean balloon projectile launcher
Bean balloon

Procedure
1. Design and construct a device that will safely

launch “bean balloons” (i.e., small water 
balloons containing dried beans, rice, etc.).

2. Launchers must be able to launch bean 
balloons at different angles relative to the
horizontal. Launchers must also be capable of
firing projectiles at different speeds.

3. The targets will be paper plates placed flat on
the floor in front of your launcher. Your
teacher will give you the distance to the targets.

4. Using a spreadsheet or calculator, generate
theoretical data that will predict theoretical
values for time of flight, range, and maximum
height given the speed of the projectile, verti-
cal height of launch, and angle of launch.
Record these theoretical values in a data table.

5. Launches must be based on theoretical data
(no guessing!), and will be compared to
experimental values.

6. Launches will take place in an area such as a
gymnasium, which is of known length and
height. Be sure that none of your launches
hits the ceiling or walls.

7. Students launching balloons must wear safety
goggles for protection.

Data
1. For each of the four required target distances,

experimentally determine a value for time of
flight, range, and a maximum height. To deter-
mine an approximate maximum height, stick a
piece of masking tape to the wall a known
height above the floor. Using the launcher, fire
a bean balloon parallel to the wall and estimate
the distance from the masking tape to the
place where the bean balloon reaches its max-
imum height.

2. Record your experimental values in your
data table. Compare them to the theoretical
values obtained using the projectile motion
equations. Calculate a percent error for each
experimental value.

Uncertainty
Assign an instrumental uncertainty for the
metre stick you used. Estimate the uncertainty
in your time measurements based on your per-
sonal reaction time and the stopwatch you used.
Estimate the significance of air resistance in the
results of your experiment. Include these uncer-
tainties in your data table.

Analysis
Describe the methods you used to measure time
of flight, range, and maximum height.

Discussion
1. How did you design your projectile launcher

so that it was able to launch bean balloons at
different angles and different velocities?

2. How did you calibrate your projectile launcher
to successfully hit targets at different distances?

3. How could you have modified your calibration
process to minimize the effect of air resistance?

4. What modifications could you make to your
bean balloons to minimize the effect of air
resistance?

5. How closely do the theoretical equations for
projectile motion match your experimental
results? Give reasons for any discrepancies.

Conclusion
Are the theoretical equations for projectile
motion true, within experimental error?

2.1 Projectile Motion
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Purpose
To determine the relationships between cen-
tripetal force (centripetal acceleration) and
radius, period, and frequency

Hypothesis
Using your previous knowledge, predict the rela-
tionship between centripetal force (centripetal
acceleration) and frequency, period, and radius.

Equipment
Rubber lab stopper
Standard mass set
1 small paper clip
2.0 m of fine fishing line or nylon thread
Glass tube (wrapped with masking tape to 
prevent breakage)
Metre stick
Stopwatch
Safety goggles

Fig.Lab.2.1

Procedure

Part A: Centripetal Force 
(Acceleration) and Period
1. Working in pairs, tie a rubber stopper

securely to the end of the 2.0-m string. Pass
the string through the glass tube, as shown

in Figure Lab.2.1. Tie a secure loop at the
opposite end of the string to act as a support
for the standard lab masses.

2. Attach a small standard mass to the loop at
the end of your string.

3. Pull the string so that the rubber stopper is
1.5 m from the top of the glass tube.

4. With the string pulled taut, place the
paper clip about 3.0 cm below the glass
tube, between the glass tube and the stan-
dard mass.

5. Make sure that both partners are wearing
safety goggles.

6. Holding on to the standard mass at the end
of the string, swing the rubber stopper in a
horizontal circle above your head such that
the paper clip between the stopper and the
glass tube remains 3.0 cm away from the
end of the tube. If the paper clip starts to go
downward, then the radius of your circle is
less than 1.5 m. The stopper is spinning too
slowly and you need to increase the speed
of rotation. If the paper clip goes upward
and hits the bottom of the tube, then the
radius of your circle is greater than 1.5 m.
The stopper is spinning too quickly and you
need to decrease the speed of rotation.
Finding the optimal speed of rotation will
take some practice.

7. Once you are proficient at swinging, the
partner with the stopwatch can start count-
ing rotations and measuring the time for a
set number of rotations (e.g., the time for
five rotations, ten rotations, etc.).

8. Add a different standard mass to the end of
the string and repeat step 7 for the same
number of rotations. As the mass is
changed, the person doing the swinging will
need to change the speed of rotation to
maintain the reference paper clip in the
position required.

9. Continue this procedure for at least six
different masses.

2.2 Centripetal Force and Centripetal Acceleration

Reinforced wrapped
glass tube

Rubber
lab stopper

R

3 cm

Lab mass

Reference
paper clip

Paper clip
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10. Calculate the gravitational force for each mass
used. Recall that in this experiment, the grav-
itational force is equal to the centripetal force.

11. Create a data table showing the centripetal
force, the number of rotations, time, period,
and frequency for all six data sets.

Part B: Centripetal Force and Radius
In this part of the experiment, we will calculate
the centripetal force and the radius of the circle
with frequency as the constant.
1. Attach a 200-g mass to the end of the string.
2. Adjust the string to provide a radius of rota-

tion of 0.750 m.
3. Swing the rubber stopper in a horizontal

circle, as in Part A.
4. Record the number of rotations and time in

a data table, as in Part A. Calculate the fre-
quency and the frequency squared, and
record these numbers in your data table. 

5. Repeat steps 1 to 4 for radii of 1.00 m, 
1.25 m, and 1.50 m.

Uncertainty
Assign an instrumental uncertainty for the
metre stick you used. Estimate the uncertainty
in your time measurements based on your per-
sonal reaction time and the stopwatch you used.
Include these uncertainties in your data table.

Analysis
Part A: Centripetal Force 
(Acceleration) and Period
1. Plot a graph of centripetal force versus period.
2. Determine the relationship between cen-

tripetal force and period.

3. Plot a graph of centripetal force versus 
frequency.

4. Determine the relationship between cen-
tripetal force and frequency.

Part B: Centripetal Force and Radius
1. Plot a graph of centripetal force versus fre-

quency squared. This graph will look odd
because you only have four points on your
graph. Don’t connect the points! Instead,
draw a line from each point to the origin
(because the centripetal force for a fre-
quency of 0 Hz is zero). You will get four
straight lines, as shown in Figure Lab.2.2.

Fig.Lab.2.2

Radius
(m)

0.75

1.00

1.25

1.50

Number of
rotations

Time
(s)

Frequency2

(Hz2)
Frequency

(Hz)

Table Lab.2.1

0

12

f 2

Fc

r  �
 1

.50 m

r  �
 1

.25 m

r  �
 1

.00 m

r  �
 0

.75 m
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2. Draw a vertical line on your graph. This ver-
tical line will cross each of the four lines plot-
ted on your graph. By reading vertically up to
each line plotted, you will be able to read
across to the central force axis and determine
the values of centripetal force for a constant
f 2 value for each corresponding radius.

3. Record these four sets of centripetal-force-
versus-radius data in a new data table.

4. Plot a graph of centripetal force versus
radius for a constant f 2, with centripetal
force as the dependent variable.

5. Determine the relationship between cen-
tripetal force and radius.

Discussion
1. Write a proportionality statement for, and

the equation describing the relationship
between, centripetal force and
a) frequency.
b) period.
c) radius.

2. How do your results from question 1 com-
pare to those in your hypothesis?

3. From your results, what centripetal force
would be required to rotate the rubber stopper
in a horizontal circle of radius 1.5 m with a
frequency of 8.0 Hz?

Conclusion
Are the theoretical equations for centripetal force
(acceleration) true, within experimental error?
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2.3 Amusement Park Physics

Amusement park rides are designed to thrill and
entertain. By providing us with situations vastly
different from our everyday experiences, they
allow us to safely experience velocities and accel-
erations that we would otherwise be unable to
attain. Whether you are a fan of roller coasters,
free-fall rides, or whether you prefer something
more subdued, amusement parks give us a change
from everyday life. Through an understanding of
physics, we can better appreciate how these rides
provide us with so much excitement.

Fig.Lab.2.3

Research
Carry out research on the rides at an amusement
park. Current print or online resources may be
used for collecting information. Choose one
amusement park ride and analyze one part or
motion of the ride. Investigate the forces and
accelerations that occur. Describe them in writ-
ing by applying your knowledge of kinematics
and dynamics.

Fig.Lab.2.4

Design and Construct
Design and construct a model of the portion of
the amusement park ride that you researched in
the previous section. Your model should be con-
structed so as to show the physics involved. Use
a free-body diagram and the appropriate algebra
to describe the forces and accelerations involved
in the ride. Explain why the ride you chose is
so thrilling.
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By the end of this chapter, you will be able to
• understand the concepts of balancing forces and torques to maintain objects 

in static equilibrium
• relate the concepts of centre of mass and torque to the stability of an object
• define and solve problems based on the principle of stress and strain

Extension: Statics —
Objects and Structures
in Equilibrium
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3.1 Keeping Things Still: 
An Introduction to Statics

Thus far, we have studied the physics of motion and forces, or dynamics.
But there are many situations when we don’t want things to move, like the
snow-covered roof of a barn, or the bridge across the river, or the new deck
you just built. Statics is the physics of keeping objects still by applying
forces to them. This branch of physics involves one of the key components
of Newton’s first law of motion.

Newton’s first law of motion: All objects remain in a state of rest or
continue to move at a constant velocity unless acted upon by an external
unbalanced force.

An object will stay at rest if no unbalanced forces act on it; that is, if all the
forces on the object balance each other. When we use objects, we apply forces
to them. For example, when we cross a bridge, we apply a force on it. But a
bridge that remains at rest only when no forces act on it wouldn’t be a very
good bridge. Bridges are built to withstand great forces without collapsing.
Statics is the study of the application of appropriate forces in order to bal-
ance all forces, keeping the object still, or in static equilibrium. The study
of statics is very important for careers in structural design, such as architecture
and engineering. The collapse of the Tacoma Narrows Bridge (Figure 3.1)
reminds us of what can happen when an inherent design flaw in a structure
prevents it from remaining in static equilibrium.

Our study of Newton’s first law has dealt mainly with uniform velocity,
or dynamic equilibrium. In this chapter, we will turn our attention to
static equilibrium, the aspect of Newton’s first law where all forces applied
on an object lead to no acceleration and zero velocity. But before we can dis-
cuss static equilibrium, we need to learn about the centre of mass, a concept
that will help us simplify complex situations.

3.2 The Centre of Mass — The Gravity Spot
In our study of traditional mechanics and dynamics, we have mainly exam-
ined one type of motion — translation — where an object moves from one
place to another. In Chapter 7 (Angular Motion), we will study a force that
causes an object to move in a curved path or rotate. Here, we will consider
forces on objects around us that tend to cause both translation (movement
from one place to another) and rotation, as illustrated in Figure 3.2. These
forces must be balanced in order to maintain static equilibrium.

In order to simplify our study of the static equilibrium, we will consider
the mass of an object to be concentrated at its centre of mass.
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Fig.3.1 The bridge over the 

Tacoma Narrows in Washington State

collapsed in 1940 due to an inherent

design flaw. The structure began to

oscillate in resonance with a gale. For

information on similar disasters, visit

<www.irwinpublishing.com/students>.

The words “static” and “equilibrium”

come from the Latin for “at rest” 

and “equal forces,” respectively.



The centre of mass is a single point at which the entire mass of a body is
considered to be concentrated. For uniform, regularly shaped objects such as a
sphere, the centre of mass is its geometric centre, as shown in Figure 3.4a. For
more oddly shaped objects, like the triangular block in Figure 3.4b, the centre of
mass is located at its balance point in any gravitational field. The centre of mass
is also referred to as the centre of gravity, the point at which the force of
gravity acts on a complex or oddly shaped object. Like a balance point, the force
of gravity on the mass is equal on both sides of an object’s centre of gravity.

One way to determine the balance point of a three-dimensional object is to
hang it randomly from at least three different points, as shown in Figure 3.6.
The point of intersection of all three plumb lines is the object’s centre of
gravity. This point is also the object’s centre of mass. We will use the con-
cept of centre of mass in later sections of this chapter to determine where
the force of gravity acts on an object to cause translation or rotation.
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Fig.3.2 Forces cause translation and rotation. Two

people paddling a canoe not only share the work, but

also balance the rotational effect of each canoeist 

paddling separately. The dual effect of translation and

rotation is the reason why a canoe may move erratically

when there is only one person at the stern (Figure 3.3).

Fig.3.3 A single canoeist must

apply specialized strokes and sit in 

a different position to eliminate any

rotational effects and move the

canoe along a relatively straight 

path to where he or she wants to go
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Fig.3.4 The centre of mass is the balance point of the object. In two dimensions, the

balanced mass on either side means that equal forces of gravity balance the object. In three

dimensions, there must be an equal amount of mass surrounding this point. The centre

of mass may be difficult to locate in an oddly shaped figure like the triangular block.
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Fig.3.5 Where is the centre of

mass of this “balanced” rock?
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3.3 Balancing Forces … Again!

Forces tend to cause translation and rotation, depending on where they act
with respect to the centre of mass. How does this tendency relate to statics,
the study of no motion?

An object can be in a state of translational static equilibrium under only
two circumstances: either when no forces are applied to it, or when the
forces applied to it acting through the centre of mass all balance one
another. Mathematically, static equilibrium can be expressed as follows.

The first condition for static equilibrium:

F��net � F��1 � F��2 � F��3 �…� F��n � 0

where F��net is the sum of all forces acting on an object through the centre
of mass (for statics, it is zero), and F��1 to F��n are the independent external
forces applied to an object.

The following example will help you remember how to solve force problems
using vector addition and free-body diagrams.

e x a m p l e  1 Static equilibrium: balanced forces

Figure 3.7a illustrates a typical case of static equilibrium: several children
are playing a parachute game during a physical education class.

a) What force must child 8 apply if all children in the circle are applying
the same 35.0-N force outward in order to keep the parachute in trans-
lational static equilibrium?
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Fig.3.6 The centre of mass is the point

of intersection of all the plumb lines
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b) What extra force would child 4 and child 6 each need to apply if their
teacher was playing the game in position 1 and applied a force twice
that of a typical child?

Fig.3.7a Fig.3.7b

Solution and Connection to Theory

a) Each force that has an equivalent force applied in the opposite direction
can be balanced because the pair will add vectorially to zero. As a
result, vectors 1 and 5, 2 and 6, and 3 and 7 cancel each other out.
Child 8 must therefore provide the same 35.0-N force in the opposite
direction of child 4 in order to keep the entire parachute still (in trans-
lational static equilibrium).

b) Child 5 still balances 35 N of force from the teacher, and child 4 and
child 6 must each apply their 35-N forces to balance their respective
opposing partners, child 2 and child 8. The simplified free-body dia-
gram is shown in Figure 3.8. Notice that the force arrows originate
from the object’s centre of mass.

For static translational equilibrium, the sum of all the force vectors
must be zero when they act through the centre of mass.

The forces applied by child 4 and child 6 must have the same magnitude in
order to balance the force applied by the teacher in the opposite direction.
In Figure 3.9, we have taken the information from our FBD and created a
scaled vector diagram. We can now solve the problem by measuring with a
ruler and a protractor, or by calculation using components or trigonometry.
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Both applied forces from child 4 and child 6 may be broken down into
east–west (E–W) and north-south (N–S) components, as shown in
Figure 3.9. The (N–S) components, given by the expression Fextra sin �,
cancel one another because the parachute remains vertically stationary.
Therefore, the extra 35.0 N of westward force from the teacher must be
balanced by the two eastward force components of each child, Fextra cos �.
Substituting into the equation for static equilibrium, we obtain

2(Fextra cos �) � (�35.0 N) � 0

Fextra � �
2
35

c
.
o
0
s
N
�

�

Fextra � 24.7 N

Child 4 and child 6 each need to apply an additional force of 24.7 N in
order to balance the force applied by the teacher. Therefore, they each
apply a total force of 35.0 N � 24.7 N � 59.7 N.

Figure 3.10 summarizes the procedure for solving translational equilibrium
problems.
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Static equilibrium occurs when forces such as tension/compression, gravity,
friction, magnetism, electrostatics, and even elastic forces involving Hooke’s
law directed through the centre of mass are all balanced. The following prob-
lems illustrate some of these possibilities.

1. A guy wire with a tension of 1.0 � 104 N and at an angle of 60º
from the ground is attached to the top of a hydroelectric pole, as
shown in Figure 3.11. What are the horizontal and vertical compo-
nents of the force exerted by the wire at the top of the pole in order
to maintain the system in static equilibrium?

2. A canoe is tethered to a car with ropes, as shown in Figure 3.12a.
What is the tension in the vertical rope if the junction (assumed
massless) is held at static equilibrium by the two lower ropes, each
with a tension of 100.0 N?

Fig.3.12a Fig.3.12b

3. A bag of clothespins hung in the middle of a 3.00-m clothesline
causes the line to dip 1.5° below the horizontal at each end.
a) Draw a free-body diagram for this situation.
b) How far does the centre of the line dip when the bag of clothes-

pins is hung on it?
c) What is the mass of the bag of clothespins if the tension in the

line is 85.0 N?
4. Forces can also be applied by compressing or tensing a rigid object

such as a beam. Two beams support a 4.0-kg pail of water above an
open well, as shown in Figure 3.13.
a) How much compression force is exerted on each beam by the

water pail?
b) What outward force do the two beams exert on the well’s wall?
c) What additional vertical compression is exerted on the bricks

under the beams?
5. Review some of the Applying the Concepts problems or end-of-

chapter exercises in this chapter and find at least three cases of
static equilibrium. If you are having difficulty, change some of the
variables so that the situation represents a static situation.
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6. A boat of mass 400.0 kg is on a trailer at an angle of 30º, as shown
in Figure 3.14. There is a coefficient of static friction of 0.25
between the boat and the trailer rollers. What must be the tension
in the cable to keep the boat in static equilibrium?

Fig.3.14

3.4 Balancing Torques
When a force applied on an object isn’t directed through the object’s centre of
mass, then the force rotates the object as well as translating it. Figure 3.15 shows
how a force could either translate or rotate our canoe, depending on where along
the canoe it’s applied. For example, a large sweep stroke will rotate the canoe
more than a long straight stroke applied close to the body of the canoe.

The rotational effect caused by a force is called torque, �, or moment
of force. You apply torque when you open a bottle of water, tighten a screw,
turn on a water tap, or turn the steering wheel of your car. To examine the
factors that affect torque, let’s consider the case of opening a stiff door. We
know that in order to open this door, we need to apply a force. But where
on the door should we apply it and in which direction? Let’s do a quick
demonstration. Stand this textbook on its bottom edge and open the front
cover 90°. Now open and close the front cover by applying forces at differ-
ent positions and at different angles. Pushing the cover at 90° to the surface
at a position farthest away from the pivot point (the spine) rotates the cover
with a minimum effort. Similarly, the placement of a doorknob farthest
away from the hinges minimizes the force required because it maximizes
the torque applied (see Figure 3.16).

If the applied force is not at 90° to the radius, we need to substitute
its perpendicular component, F sin �, where � is the angle between the
applied force and the radius (see Figure 3.17); that is, F�app � Fapp sin �.
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Torque � or moment of force is given by the expression

� � rF�app � rFapp sin �

where r is the perpendicular distance (in metres) between the place
where the force is applied and the pivot point (point of rotation), F�app is
the applied force, in newtons, at 90° to the surface, � is the angle between the
surface and the applied force, and � is the torque in newton-metres (N
m).

Torque is a vector quantity because it is the cross product of the vector
quantities r�� and F��.

��� � r�� � F��

By definition, the direction of the cross product is perpendicular to the plane
defined by the two base vectors, r�� and F�� (see Figure 3.18). The direction of ���

can be found using the right-hand rule, as described in Figure 3.19. Even though
the right-hand rule can be used to describe the direction of the torque vector,
in calculations involving a constant axis of rotation in one plane, direction is not
required. We will use the clockwise direction for positive (�) rotation and
the counterclockwise direction for negative (�) rotation. Let’s use a door
example to illustrate how the torque equation and its direction are applied.

e x a m p l e  2 Calculating torque

Hannah, a lively collie, wants to go outside. She pushes the door with a
45.0-N force at an angle of 5° from the perpendicular, 60.0 cm from the
hinges. What perpendicular force is she applying to the door and what is
the final torque?

Solution and Connection to Theory 

Given
Fapp � 45.0 N r � 60.0 cm��10

1
0

m
cm
�� � 0.600 m 

� � 90° � 5° � 85°

F�app � Fapp sin �
F�app � (45.0 N)sin 85°
F�app � 44.8 N

The perpendicular force that Hannah applies is 44.8 N.

To calculate the torque Hannah applies to the door, we use the equation
� � rFapp sin �
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Substituting the given values, we obtain
� � (0.600 m)(45.0 N)sin 85°
� � 26.9 N
m

Therefore, Hannah applies a torque of 26.9 N
m to the door in the direction
that the door rotates to open.

For the examples in this text, we will assume that the twist or direction of
torque is in the same plane as a page of text. In the next example, we will
illustrate how the direction of torques is applied.

e x a m p l e  3 Calculating total torque

Two girls are applying torque to a steering wheel (40.0 cm in diameter)
of a bumper car during an amusement park ride. The girl on the left
applies a force of 10.0 N [up], while the girl on the right pulls directly
down with a force of 15.0 N. What net torque are both girls applying to
the steering wheel?

Solution and Connection to Theory

Given
r � 0.200 m (for both girls) F��girl1 � 10.0 N [up] 
F��girl2 � 15.0 N [down] � � ?

The torques being applied by both girls are turning the steering wheel clock-
wise in the same plane as the steering wheel. We will consider the direction
of the torque to be clockwise and positive. We can now add the individual
torques of the two girls to find the total torque on the steering wheel.

���total � ���girl1 � ���girl2

�total � rFgirl1 sin � � rFgirl2 sin �
�total � (0.200 m)(10.0 N)sin 90° � (0.200 m)(15.0 N)sin 90°
�total � 5.0 N
m

The total torque applied to the steering wheel by both girls is 5.0 N·m.
Because it is a positive number, the torque is in the clockwise direction.
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Figure 3.20 summarizes the procedure for solving rotational equilibrium
problems.

Fig.3.20 Procedure for Solving Rotational Equilibrium Problems
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1. The trunk of an old Cadillac Eldorado, 1.50 m long and open to an
angle of 50° above the horizontal, can only be closed by someone
with a mass greater than 45.0 kg hanging vertically from the end of
the open lid.
a) Draw a labelled diagram of this situation. Be sure to note any

forces applied.
b) What is the minimum amount of torque required to close this

trunk?
2. The locks at Port Severn, Ontario, are operated by lock personnel

who manually push cranks, as shown in Figure 3.21.

a) If the torque required to start turning the lock mechanism is 
2.0 � 103 N
m, what force must be exerted by one lock operator?

b) The two arms on the mechanism are for two operators. What
would the addition of a second operator do for the torque required
to operate the lock? Of what benefit would a second operator be for
i) the original operator?
ii) the average boater waiting for the lock?

3. A water wheel is an engine/turbine that is driven by falling water. The
torque is generated by water filling compartments on one side of the
wheel (see Figure 3.22) that are pulled down by the force of gravity.
The wheel has an effective radius of 2.5 m, and each of the eight
equally spaced compartments holds 10.0 L of water.
a) What is the force of gravity acting on each of the water 

compartments?
b) Which position, A, B, or C, provides the most torque to turn 

the wheel?
c) What torque is produced at each of the three positions?
d) The total torque is the sum of the individual torques. How could

you increase the total torque applied to this water wheel?
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3.5 Static Equilibrium: Balancing 
Forces and Torque

We know that forces tend to cause either translational or rotational motion,
depending on the direction and position of the force applied with respect to the
centre of mass. Now we turn our attention to one specific effect of an application
of force: static equilibrium, or no motion at all. To achieve true static equilibrium,
two conditions must be met. First, to avoid translation (moving from place to
place), the net force directed through the centre of mass of the object must be
zero. Second, to avoid rotation, the net torque on the object must also be zero.
These two conditions for static equilibrium are summarized in Table 3.1.

Table 3.1
Conditions for Static Equilibrium — Summary

Condition

1 F��net � 0 F��net � F��1 � F��2 � F��3 � …� F��n � 0 If F��net � 0, there is no translational 
acceleration/motion

2 ���net � 0 ���net � ���1 � ���2 � ���3 � …� ���n � 0 If ���net � 0, there is no rotational motion

The application of both these conditions simultaneously is useful in solving
more complicated problems. Let’s do some examples.

e x a m p l e  4 Static equilibrium

While training on a stationary bicycle, an athlete takes a break by just
standing on the pedals, as shown in Figure 3.23a. Her 384-N weight is
applied equally on the two pedals, each with a radius of 15.0 cm.

Fig.3.23a 

a) How do we know that the first condition for static equilibrium (no
translation) has been met?

b) Show that the second condition for static equilibrium (no net rotation
of the pedals and crank) has been met.
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Solution and Connection to Theory

Given
Fg � 384 N r � 15.0 cm��10

1
0

m
cm
�� � 0.150 m �net � ?

a) From the problem statement, we know that the athlete is neither
falling vertically to the ground, nor rising any higher. Therefore, we
can assume that the force of gravity is balanced by the normal force.
Let’s consider up as positive. The relationship between the vertical
forces acting on the pedals and crank is shown in Figure 3.23b. We can
substitute these forces into the equation:

F��net � F��n � F��g

Fnet � Fn � Fg

Fnet � 384 N � 384 N
Fnet � 0 N

The two forces have the same magnitude but the opposite direction;
therefore, the net force on the athlete is zero.

b) To find the total torque, we need to define a positive rotational direc-
tion (clockwise) around a pivot point. The crankshaft between the
pedals is the point of rotation for this mechanism. The total torque on
the bicycle can be written as

���net � ���1 � ���2

�net � �→ � �←

�net � rF→sin � � rF← sin �
�net � (0.150 m)(192 N)sin 90° � (0.150 m)(192 N)sin 90°
�net � 28.8 N
m � 28.8 N
m
�net � 0 N
m 

The net torque on the pedals due to the athlete is zero. In other words,
the pedals don’t turn if the athlete’s weight is balanced between them.

e x a m p l e  5 The torque involved in balancing a mobile

A mobile is an artistic piece with figures hanging on it from horizontally
balanced massless rods, as shown in Figure 3.24. The 10.0-g figure on the
left at 18.0 cm from the pivot point balances another figure at 25.0 cm
from the pivot point to maintain static equilibrium of the mobile.

Fig.3.24
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a) What is the mass of the figure on the right?
b) What is the tension in the single string supporting the entire mobile?

Solution and Connection to Theory

Given
mleft � 10.0 g��1

1
00

k
0
g
g

�� � 0.010 kg mright � ?

rleft � 18.0 cm��10
1
0

m
cm
�� � 0.180 m   rright � 25.0 cm��10

1
0
m
cm
�� � 0.250 m

a) If the positive rotational direction is clockwise, then the net torque on
the mobile can be written as

���net � ���1 � ���2

Because the mobile isn’t rotating, we can assume that all torques are
balanced. Therefore, we can write

�net � �→ � (��←) � 0
�net � rF→ sin � � rF← sin � � 0

Substituting the given values into the equation, we obtain 

�net � (0.250 m)(F→)sin 90° � (0.180 m)(0.010 kg)(9.8 N/kg)sin 90° � 0
�net � (0.250 m)(F→) � 0.0176 N
m � 0

In order for the condition of static equilibrium to be met, �net must
equal zero. Therefore,

(0.250 m)(F→) � 0.0176 N
m � 0

F→ � �
0.0

0
1
.2
7
5
6
0
N
m

m

�

F→ � 7.04 � 10�2 N
F→ is positive; therefore, its direction is clockwise. So,
F→ � 7.04 � 10�2 N [clockwise]

Now that we know the force applied to the figure on the right, we can
calculate its mass using the equation

F � mg
F→ � mright g

mright � �
F
g
→
�

mright ��
7.0

9
4
.8
�

N
1
/
0
k

�

g

2 N
�

mright � 7.2 � 10�3 kg or 7.2 g

Therefore, a 7.2 g figure balances the mobile.
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b) No translation means that all forces are balanced. From Figure 3.24,

T�� � F��g � 0
T � mT g � 0
T � mT g, where up is positive.
T � (10.0 � 10�3 kg � 7.2 � 10�3 kg)(9.8 N/kg)
T � 0.236 N

The tension in the string is 0.236 N [up].

Not all situations involve objects that are horizontal when in static equilibrium,
like the pedals on our stationary bike or the mobile. The next example
shows how the forces and torques of objects being lifted by a construction
crane change.

e x a m p l e  6 Torques applied on a construction crane

A 30.0-m-long construction crane of mass 200.0 kg is supported at an
angle of 60° above the horizontal by a horizontal support beam 5.00 m
from its base, as shown in Figure 3.25.

Fig.3.25

The mass of 1.50 � 103 kg hanging from the crane and the crane’s arm
are held in static equilibrium by a torque provided by the support beam
and a force applied at the base. Find the tension in the support beam and the
vertical and horizontal reaction forces at the base of the crane’s arm.
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Solution and Connection to Theory

Given
Larm � 30.0 m marm � 200.0 kg mload � 1.50 � 103 kg
rbeam � 5.00 m � � 90° � 60° � 30°

The first step in solving this type of problem is to decide which force to 
calculate first. All forces tend to cause translation and rotation, and the rota-
tional forces can be determined from the torques applied. 

Let’s choose the base of the crane’s arm as our pivot point. From
Figure 3.25, we can identify three torques: 1) the torque due to the weight
of the crane’s arm (counterclockwise), 2) the torque due to the load weight
(counterclockwise), and 3) the torque of the horizontal support beam
(clockwise). Because the crane’s arm is in static equilibrium (as stated in
the problem), all of the torques acting on it are balanced. Therefore, we
can write the statement

���net � ���arm � ���load � ���beam � 0

The next step is to isolate each torque acting around the pivot point. Let’s
consider the centre of mass of the crane’s arm to be a single point in the
centre of the arm. Taking counterclockwise to be a positive rotation,

�arm � rarm(marm)g sin �
�arm � (15.0 m)(200.0 kg)(9.8 N/kg)sin 30°
�arm � 1.470 � 104 N
m
�load � rload(mload)g sin �
�load � (30.0 m)(1.50 � 103 kg)(9.8 N/kg)sin 30°
�load � 2.205 � 105 N
m

Therefore, the total counterclockwise torque on the arm is

1.470 � 104 N
m � 2.205 � 105 N
m � 2.352 � 105 N
m

For static equilibrium, the support beam must provide a clockwise (nega-
tive) torque equal in magnitude to the total counterclockwise torque of
2.35 � 105 N
m to keep the arm from rotating such that

�net � �← � (��→) � 0
�← � �→

rbeamFbeam sin � � �→

Fbeam � �
rbeam

�→

sin �
�

Fbeam � (From Figure 3.25, the angle between the 
support beam and the crane’s arm is 60°.)

Fbeam � 5.43 � 104 N [horizontal]

The tension in the support beam must be 5.43 � 104 N.

2.35 � 105 N
m 
��
(5.00 m)sin 60°

chapter 3 : Extens ion:  Stat ics  — Objects  and Structures in  Equi l ibr ium 143



�Fg(load)

�Fr(h)

�Fr(v) � ?

�Fg(crane)

30
.0

 m

60°60°

30°

1.50 � 103 kg

P

5
 m

5
 m

5
 m

30°30°

200.0 kg

�T

Because there is no translational motion, we can find the horizontal and
vertical components of the force on the pivot point at the base of the
crane, as illustrated in Figure 3.26a.

Fig.3.26a Fig.3.26b

In order for the crane to remain in static equilibrium, both Fh and Fv

must balance all other horizontal and vertical forces.

Vertically,

F��v(net) � F��r(v) � F��g(arm) � F��g(load) � 0

If up is positive, then
Fr(v) � Fg(arm) � Fg(load) � 0
Fr(v) � Fg(arm) � Fg(load)

Fr(v) � (200 kg)(9.8 N/kg) � (1.50 � 103 kg)(9.8 N/kg)
Fr(v) � (1.960 � 103 N) � (1.470 � 104 N)
Fr(v) � 1.666 � 104 N

Therefore, the vertical force is 1.67 � 104 N [up].
Horizontally,
F��h(net) � F��r(h) � T�� � 0

If right is positive, then
Fr(h) � T � 0
Fr(h) � �T
Fr(h) � �(�5.432 � 104 N)
Fr(h) � �5.43 � 104 N

Therefore, the horizontal force applied to the bottom of the crane is
5.43 � 104 N [left]. Both the vertical and horizontal reaction forces must
be applied to the bottom of the crane’s arm to stop it from translating in
either direction.
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Figure 3.27 summarizes the steps for solving torque problems.

Fig.3.27 Method for Solving Torque Problems

In the following example, we will use the concept of static equilibrium to
find the centre of mass/gravity of an object.

e x a m p l e  7 The centre of mass of a person

We can determine a person’s centre of mass by having the person lie on
a specially designed platform supported by two spring scales, as shown in
Figure 3.28a.

Fig.3.28a
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Does
this lever have 

mass?

� � 0?

Balance all torques

method

p
ro c e ss

of

 1.87 m

h

 

Spring scale
F1 � 235 N

 

Spring scale
F2 � 460 N

Centre
of mass rg



If the left and right scales read 235 N and 460 N, respectively, for a 
person 1.87 m tall, where is the person’s centre of mass?

Solution and Connection to Theory

Given
F1 � 235 N F2 � 460 N h � 1.87 m rg(cm) � ?

Choosing the left end of the lever in Figure 3.28a as the pivot point and
clockwise as the positive rotational direction, we can balance the torques
from the two spring scale forces [up] and the force of gravity [down].
Because the person is stationary, we can express the net torque as

���net � ���scale1 � ���g � ���scale2 � 0

where �scale1 and �scale2 are the torques applied at the left and right ends of
the lever, respectively, and �g is the torque applied by the person’s weight
through the centre of mass. But �scale1 � 0 because the distance, r, from the
pivot point is zero. Therefore,

���net � ���g � ���scale2 � 0 and
�g � �scale2 � 0

rgFg sin � � rscale2Fscale2 sin �

rg � �
rscale

F
2F

g

s

s
ca

i
l

n
e2

�

sin �
�

But sin � � sin 90° � 1

Therefore, 

rg � �
rscale

F
2F

g

scale2
�

The total weight of the person is

F��g � F��scale1 � F��scale2

Fg � 235 N � 460 N
Fg � 695 N

Substituting the values into our equation, we obtain

rg(cm) ��
(1.87

6
m
95

)(4
N

60 N)
�

rg(cm) � 1.24 m

Therefore, the centre of mass/gravity is 1.24 m from the person’s feet.
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 1.87 m

 

Spring scale
F1 � 235 N

 

Spring scale
F2 � 460 N

rg

Fig.3.28a



The centre of mass of the human body is the point at which we can consider
all our body mass to be concentrated. It is also the point around which the
body rotates in free space. Figure 3.28b shows an Olympic diver rotating around
her centre of mass.

The idea of body symmetry was captured by Italian Renaissance painter
Leonardo da Vinci in his drawing Vitruvian Man (Figure 3.28c). The cen-
tre of mass of this figure is a point along the midline of the torso.

1. A 45.0-kg boy walks along a 3.00-m-long wooden plank of mass
20.0 kg that overhangs a partially completed deck by 0.75 m. How
far away from the deck edge can the boy walk before the plank tips?

2. Two children of masses 45 kg and 30 kg are playing on a teeter-
totter of length 4.0 m and mass 30.0 kg, pivoted at its centre. The
heavier child sits 1.75 m from the centre of the teeter-totter that is
0.50 m from the ground.
a) What torque does the teeter-totter apply to each of its sides? With

this knowledge, how could you simplify any further calculations?
b) Where would the lighter child have to sit from the centre of the

teeter-totter to balance properly?
c) What percentage of either child’s torque is lost between the hor-

izontal position and maximum height?
3. A window of mass 5.00 kg and length 0.75 m is being held open at

an angle of 40° from the vertical by a duck pushing it out horizon-
tally from the bottom, as shown in Figure 3.29.
a) How much force must be provided to hold the window statically?
b) What horizontal and vertical reaction forces must the hinges at

the top provide when the window is held open?

chapter 3 : Extens ion:  Stat ics  — Objects  and Structures in  Equi l ibr ium 147

Fig.3.28b Any object, such as our

Olympic diver, that tumbles or rotates in

the air pivots around its centre of mass

Fig.3.28c Leonardo da Vinci’s Vitruvian Man
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4. A block of stone of mass 120.0 kg is being supported by two saw-
horses and a rigid plank of mass 5.0 kg, as shown in Figure 3.30.
What reaction force must each sawhorse provide to support 
the block?

3.6 Static Equilibrium and the Human Body
One of the most practical applications of statics is the human body. Our
bone structure gives us inherent flexibility of movement at the joints. When
muscle fibres contract, they provide tensile forces that act through tendons
connecting muscle to bone at points of insertion. These forces provide
torque for our arms, shoulders, knees, and legs to rotate as levers about our
joints. The application of simple concepts of static equilibrium in the exam-
ples in this section will help us understand the stresses and strains on various
parts of our bodies. Table 3.2 presents simplified force-and-pivot drawings
for several body parts.
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1.60 m

2.0 m

0.75 m
120.0 kg

Fig.3.30

Table 3.2 
Force and Pivot Points on the Human Body

Elbow

Fig.3.31a Fig.3.31b

Knee

Fig.3.32a Fig.3.32b

4.0 cm

P
Knee

�Fapp

�Fg

�Fknee

Humerus

Triceps Biceps

Radius
Ulna

�Ftriceps
�Fbiceps

All forces are balanced

�Fhumerus

Quadriceps

Centre of gravity
of lower leg



Table 3.2 (cont’d) 
Force and Pivot Points on the Human Body

Spine

Fig.3.33a Fig.3.33b

Foot

Fig.3.34a Fig.3.34b

Shoulder

Fig.3.35a Fig.3.35b
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Pivot

Heel

Tibia

�Ftibia

�FAchilles tendon

�Fn
�Fn

Pivot

�Ftibia

�FAchilles tendon

Deltoid muscle

Humerus

P
P

Centre of gravity

12°Reaction force

Hip

Spine

Back muscle

P

�Fw

�Fg



�Fweight

�Fg

�Fbiceps

34
 cm

5.0
 cm

10 kg

45°
45°

45°

�Fhumerus

P

�Fbiceps

�Fg
�Fweight

14 cm

34 cm

5.0 cm

P

45°

P

(b)

(c) (d)

34 cm

5.0 cm

10 kg

�Fbiceps

P

90°

(a)

Radius

Humerus

e x a m p l e  8 Torque and weightlifting

“Curls” (Figure 3.36) are a form of weight training that targets the biceps
muscle. Figure 3.37a and Figure 3.37b show two different positions of an
arm curling a 10-kg mass. The athlete’s forearm has a mass of 2.3 kg and
a length of 34 cm from the elbow joint to the palm. The biceps muscle is
attached to the bone vertically at a point 5.0 cm from the elbow joint. The
centre of mass of the forearm is 14 cm from the elbow.
a) Calculate the effort required (force of tension from the biceps muscle)

for each orientation of the forearm (Figures 3.37a and b).
b) What is the reaction force of the humerus on the radius at the elbow

joint when the weight is held in the horizontal position?
c) How do the tension on the biceps muscle and the reaction force at the

elbow compare with the force of gravity on the weight?

Fig.3.37

Solution and Connection to Theory

Given
Larm � 34 cm��10

1
0

m
cm
�� � 3.4 � 10�1 m marm � 2.3 kg

mweight � 10 kg rbiceps � 5.0 cm��10
1
0

m
cm
�� � 5.0 � 10�2 m

rarm � 1.4 � 10�1 m rweight � 34 cm��10
1
0
m
cm
�� � 3.4 � 10�1 m � � 90°

150 unit  a :  Forces and Motion:  Dynamics

Fig.3.36

(a) (b)



a) From Figure 3.37c, all torques are balanced around the pivot point
(i.e., the elbow):

���net � ���humerus � ���biceps � ���arm � ���weight � 0

But �humerus � 0 because the distance rhumerus from the pivot point 
is zero.

So ���net � ���biceps � ���arm � ���weight � 0

Let’s designate the clockwise direction as positive.

�biceps � �arm � �weight � 0

rbicepsFbiceps sin � � rarmFarm sin � � rweightFweight sin � � 0

Fbiceps �

But sin 90° � 1; therefore,

Fbiceps �

Fbiceps �

Fbiceps � �730 N or �7.3 � 102 N

The force that the biceps muscle applies is 7.3 � 102 N counter-
clockwise or up.

Similarly, if the weight is held up at � � 45°, then

Fbiceps �

But sin 45° � 0.7071; therefore,

Fbiceps �

Fbiceps �

This expression is identical to the expression for the horizontal case
(� � 90°); therefore, the tension, Fbiceps, is independent of the angle of
the curl.

�(rarmmarm g � rweightmweight g)
����

rbiceps

�sin �(rarmmarm g � rweightmweight g)
����

rbiceps sin �

(�rarm Farm sin � � rweight Fweight sin �)
����

rbiceps sin �

�[(1.4 � 10�1 m)(2.3 kg)(9.8 N/kg) � (3.4 � 10�1 m)(10 kg)(9.8 N/kg)]
��������

5.0 � 10�2 m

�(rarmmarm g � rweightmweight g)
����

rbiceps

(�rarmFarm sin � � rweightFweight sin �)
����

rbiceps sin �
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b) The reaction force of the humerus on the radius at the elbow is found
by balancing all the vertical forces:

F��net � F��humerus � F��biceps � F��g(arm) � F��g(weight) � 0
Fhumerus � �Fbiceps � Fg(arm) � Fg(weight)

Fhumerus � �(Fbiceps � marm g � mweight g)
Fhumerus � �[�7.3 � 102 N � (2.3 kg)(9.8 N/kg) � (10 kg)(9.8 N/kg)]
Fhumerus � �609 N or 6.1 � 102 N [down]

The humerus pushes down on the radius at the elbow with a force of
6.1 � 102 N.

c) The force of gravity on the weight is (10 kg)(9.8 N/kg) � 98 N. The 

tension in the biceps muscle is �7.3
9
�

8
1
N
02 N
� � 7.4 times the force of the 

weight alone. The reaction force is � 6.2 times the force of

the weight alone. No wonder that even mild physical activity can
cause muscle damage!

e x a m p l e  9 Torque on outstretched arms

Just holding our arms straight out at our sides from our shoulders can
provide a good isometric workout for our shoulders (deltoid muscles). A
ballerina holds her 3.9-kg arm out horizontally such that her arm’s cen-
tre of mass is 34 cm from her shoulder joint. Her deltoid muscle is
attached to her arm 14 cm from the joint and pulls her arm upward 17°
above the horizontal.

a) What is the tension in her deltoid muscle?
b) What is the reaction force (magnitude and direction) of her shoulder

on her humerus (arm bone)?

Solution and Connection to Theory

Given
marm � 3.9 kg rarm � 0.34 m rdeltoid � 0.14 m �deltoid � 17° �arm � 90°

a) Once again, we use all the parameters to create a free-body diagram of
the humerus (Figure 3.38).

We then balance all the torques around the pivot point (shoulder):

���net � ���shoulder � ���deltoid � ���arm � 0

But �shoulder � 0 because the distance rshoulder from the pivot point is
zero. Therefore,

���net � ���deltoid � ���arm � 0

6.1 � 102 N
��

98 N
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�Fg

34 cm

14 cm

�1 � 17°

�2

Centre of mass
m � 3.9 kg

P

�Fr � ?

Fig.3.38



Let’s designate the clockwise direction as positive rotation. If the deltoid
rotates clockwise and the weight of the arm rotates in the opposite
direction, then

�arm � �deltoid � 0

rarmFarm sin �2 � rdeltoidFdeltoid sin �1 � 0

Fdeltoid � �
ra

r
r

d

m

e

F

lto

a

id

rm

si
s
n
in

�

�

1

2
�

Fdeltoid �

F��deltoid � 317 N or 3.2 � 102 N [left 17° up]

The tension on the deltoid muscle is 3.2 � 102 N. This force is equivalent
to the force required to lift a 30-kg mass directly, even though the mass
of the arm is only about �

1
1
0
� of this mass.

b) To find the reaction force of the shoulder on the arm (F��r), we must 
balance the forces in the vertical and horizontal directions. In the 
vertical direction, let’s designate up as positive. Then,

F��net � F��r(v) � F��deltoid � F��g(arm) � 0

Fr(v) � �Fdeltoid(v) � Fg(arm)

Fr(v) � �Fdeltoid sin �deltoid � marm g sin �arm

Fr(v) � �(3.2 � 102 N)(sin 17°) � (3.9 kg)(9.8 N/kg)

F��r(v) � �55 N or 55 N [down]

In the horizontal direction, let’s designate right as positive. Then,

F��net � F��r(h) � F��deltoid(h) � 0

Fr(h) � Fdeltoid(h)

Fr(h) � (Fdeltoid cos �deltoid)

Fr(h) � (3.2 � 102 N)(cos 17°)

F��r(h) � 306 N [right]

Combining both vertical and horizontal components of force in
Figure 3.39,

F��r � F��deltoid(v) � F��deltoid(h)

F��r � 3.1 � 102 N [down 80° right]

The reaction force in the ballerina’s shoulder joint is 
3.1 � 102 N [down 80° right].

(3.4 � 10�1 m)(3.9 kg)(9.8 N/kg)(sin 90°)
�����

(1.4 � 10�1 m)(sin 17°)
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�

306 N

55 N
    �      �306 N

55 N
� � 80°

� � tan
�1

(55 N)2 � (306 N)2

 � 3.1 � 102 N

�����������������

�     FRx

 �    FR�     FRy
�     FRy

Pivot point
P

Fig.3.40 A component reminder

Fig.3.39 A component reminder



1. A sprinter preparing for the Olympics is exercising her knee muscles
by sitting in a chair and lifting weights (attached to her feet) from a
hanging position to a complete horizontal position. The athlete’s
lower leg, of mass 5.0 kg and length 48 cm, has a centre of mass �

1
2

� of
the way down from the knee. What torque is exerted on the leg while
holding a 10-kg extra mass at an angle of 45° from the vertical?

2. A small boy of mass 27 kg stands on his toes to peer over a fence.
With each foot supporting half his mass in the foot orientation
shown in Figure 3.41, what force must be exerted by the calf mus-
cle through the Achilles tendon? Does the angle of the foot make
any difference in how this question is answered?

Lifting Heavy Objects the Correct Way

Health and safety officials have been publicizing for years that care
should be taken to protect the muscles of the lower back during lifting.
In Example 8, we discovered that the forces on muscles and joints are
often many times larger than required to support the same weight by a
simple cable or string. In fact, the forces become much larger if the
angle between the muscle and the bone it acts on is very small. The
muscles of the lower back are even more at risk because they must 
provide the lift force or torque for the load as well as for the upper
body that acts as a lever.

3. A teenager picks up his 19.0-kg little sister and holds her statically with
a straight spine at an angle of 15° above the horizontal. Fifty-seven
percent of his 85-kg body mass is located in his upper body, the centre
of which acts through his shoulders, a distance of 75 cm from the pivot
in his lower back. The muscles of his lower back are attached to the spine,
45 cm from the pivot at an angle of 11° to the spine (see Figure 3.43).
a) What is the effective tension in the lower back muscles and what

reaction force is experienced by the lower vertebrae (pivot point)?
b) Use your knowledge of torque and static equilibrium to describe

a technique for lifting heavy items.

Fig.3.43
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Pivot

2 cm
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�FAchilles tendon

�Ftibia

Fig.3.41

Fig.3.42

11°

15°

75 cm

45 cm

�Fg
�Fg

P
PP



3.7 Stability and Equilibrium

Take a close look at the way a chair is designed. How many legs does it have?
The difference between a four-, three-, or two-legged chair can be described
by one word: stability. To be stable, an object must remain in static equilib-
rium when certain forces are applied to it, such as supporting someone’s
weight on a chair. There are three categories of static equilibrium: stable,
unstable, and neutral. The difference between these types of equilibrium
depends on what happens to the object’s centre of mass when a force is
applied. We will use the example of a baby playing with toys (Figure 3.44) to
illustrate the difference between the three types of equilibrium.

Table 3.3 illustrates how a change in the position of the centre of mass
and the resulting gravitational torque can determine the type of equilibrium
of a static object.

chapter 3 : Extens ion:  Stat ics  — Objects  and Structures in  Equi l ibr ium 155

Fig.3.44

Table 3.3
Types of Equilibrium

Stable Equilibrium

Fig.3.45

Unstable Equilibrium

Fig.3.46

Neutral Equilibrium

Fig.3.47

�Fg

�Fn

Centre
 of mass

�Fg

 �d 

�F

In stable equilibrium, a slight displacement
causes the centre of mass to lift vertically and
shift horizontally. Both of these changes provide
a torque of Fg�d in a direction that lowers the
centre of mass and returns the object to its
original stable position. F��g remains inside F��n.

In unstable equilibrium, a slight displacement
by a force causes a vertical drop and a horizontal
shift of the centre of mass. Both of these changes
provide a torque of Fg�d in a direction that
continues the tipping motion and the block
topples over. F��g moves outside F��n.

If the disruptive force causes no vertical 
change in the centre of mass when it is pushed
horizontally, then no new torque is produced
and the object remains stable. This type of
equilibrium is called neutral equilibrium. F��g

remains in line with F��n.

Centre
 of mass

�Fn

 �d 

�F

�Fg

Centre
 of mass �Fg

 �d 

�F

�Fg

�Fn



An object that has all torques and forces balanced is in equilibrium.
Equilibrium is stable as long as the vertical line from the centre of mass
remains inside the area of the base of the body. If a disruption moves the
vertical line from the centre of mass outside of the base, then the equilib-
rium is unstable. Neutral equilibrium exists when any disruptive force acts
horizontally but the vertical height of the centre of mass remains
unchanged. The object remains in equilibrium because the centre of mass
doesn’t move with respect to the object’s base.

The stability of any free-standing object requires a large base of support
with a low centre of mass. In sports, participants must stand in such a way
to maintain their stability so as to have a positive influence in the game.
The two karate stances depicted in Figures 3.48a and b illustrate how a
well-trained person can apply the laws of physics to improve the stability
of a stance.

An object remains stable if the centre of mass remains low and inside the area
of the base of the structure, sometimes called the footprint. Racecars need to
be able to withstand great reaction forces when turning corners at high speed.
That’s why racecars have a lower centre of mass and a wider base than stan-
dard passenger cars. Large reaction forces that would topple taller passenger
cars are less effective on low and wide racecars because it’s more difficult to
lift and shift the centre of mass outside the racecar’s footprint.

The central character of the family game Tip-it by Mattel (see Figure
3.48c) can balance in stable equilibrium because the lower protrusions hold-
ing the rings place the centre of mass/gravity at or below the point of contact.
Like a pendulum, the figure is always stable. Milton-Bradley has another
game called Jenga (Figure 3.48d) that tests the players’ understanding of
stability. As the players remove the lower blocks and place them on the top,
they are affecting the base and raising the centre of mass of the tower until
it collapses.

156 unit  a :  Forces and Motion:  Dynamics

Fig.3.48 The low, wide stance makes

the karateka stable. In Figure 3.48a,

the karateka is in a horse stance, which

provides stability against an attack 

from the side. The front stance in

Figure 3.48b is more stable against 

a frontal attack.

(a) (b)

Fig.3.48c The low rings place the

centre of mass of this figure below

the point of contact. The net result

is that the figure hangs from the

support instead of resting above it.



Taller people are generally less stable than shorter people because their
higher centre of mass can be more easily pushed outside their footprint. A
tall person can improve his or her stability by forming a wide two-footed
stance to increase the footprint. Shorter and longer dogs, such as the dachs-
hund (Figure 3.48e), are much more stable than taller and shorter ones
because of their wider base and lower centre of gravity. The three-legged
dog shown in Figure 3.48f has had to shift her centre of mass by leaning to
compensate for the missing limb. The dog increases her stability by moving
her centre of mass to the centre of her smaller, three-legged footprint.

The geometry of objects allows us to use the concept of stability to cal-
culate the critical tipping angle; that is, the angle at which an object is
tipped when its centre of gravity is directly over the outer edge of its sup-
port base. At this point, F��g and F��n are along the same vertical line. If we
know the position of the centre of gravity, we can calculate the tipping angle
by applying the principles of static equilibrium.

e x a m p l e  1 0 The tipping angle of a mailbox

A 23.0-kg mailbox is 156.0 cm tall and 60.0 cm wide (see Figure 3.49a).
Calculate its tipping angle. Assume its centre of mass is at its geometric centre.

Fig.3.49a
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Fig.3.48e The low centre of mass and wide

support stance of this dog make it very stable

Fig.3.48f The dog has shifted her

centre of mass to a location over the

remaining three-legged support system

 156.0 cm
Centre
of mass

78.0 cm

Mail Mail

�Fn

�Fg

�

60.0 cm

p p

30.0 cm

78.0 cm

Fig.3.48d In this game, the struc-

ture becomes unstable when the

support is removed and new mass 

is distributed above it, changing 

the position of the centre of mass
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Solution and Connection to Theory

Given

length � 156.0 cm � 1.560 m Lcm � �
560

2
m

� � 0.780 m 

width � 60.0 cm � 0.600 m Wcm � �
0.60

2
0 m
� � 0.300 m 

From Figure 3.49b, the critical tipping angle is the angle between the line
drawn from the centre of mass to the base of the mailbox (the midline)
and the line from the centre of mass to the horizontal, just beyond the
corner of the mailbox. These lines form a triangle that we can use to cal-
culate the critical tipping angle. Using the tangent function,

tan � � �
W
Lc

c

m

m
�

tan � � �
0
0

.

.
3
7

0
8

0
0

m
m

�

tan � � 0.3846

� � 21.0°

The critical tipping angle for this mailbox is 21.0°.

1. A physics student has placed his chair in unstable equilibrium by
tipping it back and balancing on the back legs at an angle of 43°, as
shown in Figure 3.50. The seat of the chair is 34.0 cm � 34.0 cm
and the legs are 40 cm long. The centre of mass of the chair and 
student lies along the midline of the chair.
a) How high above the two lower legs is the centre of mass of the

chair and student when the chair is tilted back?
b) How high above the ground is the centre of mass of the chair and

student when the student is sitting straight?

All-terrain Vehicles
All-terrain vehicles (ATVs) are growing in popularity for work and
leisure. Small, manoeuvrable, yet still powerful, these vehicles are
used for access and load carrying to remote sandy, marshy, or rocky
areas, and often replace more expensive four-wheel-drive trucks that
may be too large to pass through thick vegetation and trees. ATVs
are also used for motorized hiking instead of less stable motorized
dirt bikes or mountain bikes. One initial design for ATVs included
only three wheels (a tricycle) (see Figure 3.51a) instead of the more
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stable four-wheel model (Figure 3.51b). The three-wheel models became
controversial because so many accidents were reported due to tipping
forward, left, or right on either side of the front wheel. Many juris-
dictions have banned the manufacture, sale, and grandfathered use
of previously purchased three-wheel models.

2. a) Use the wheel base and centre of gravity information given in
Figure 3.52 to calculate the critical tipping angle for the three-
and four-wheel ATVs.

Fig.3.52

b) Research the current laws for these vehicles in other jurisdictions
around the world. Are three-wheel ATVs still manufactured or
sold anywhere? If so, why is it permitted?

3.8 Elasticity: Hooke’s Law
When a force is applied to an elastic medium, like a rubber band or a spring,
it changes the object’s length without affecting its other dimensions. The
law that describes the simplest relationship between the applied force and
the amount of length change or deformation in an elastic medium is called
Hooke’s law. This law describes a direct relationship between the restoring
force and deformation of the elastic medium (see Figure 3.53).
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Fig.3.51 The three-wheel ATV,

known for its instability, has been

replaced by the wider wheel base

design of the four-wheel model

(a)

(b)

(a) (b)

(c)

1.25 m

0.70 m

1.20 m

Centre
of mass

1.25 m

1.20 m

0.70 m

0.60 m

Centre
of mass

ATV1.0 m

Centre of mass
(with operator)



The straight-line slope of k for this relationship implies that the restoring
force and the deformation are directly related:

F � kx

where F is the restoring force exerted by the spring, in newtons, x is the
deformation in the spring, in metres, and k is the constant of proportionality
(spring constant) in newtons per kilogram.

e x a m p l e  1 1 The force to deform a spring

A 6.5-kg baby is placed into a Jolly Jumper that is suspended by one
spring with a spring constant of 7.8 � 102 N/m. How far will the spring
stretch when the baby is gently lowered into the chair?

Solution and Connection to Theory

Given
m � 6.5 kg k � 7.8 � 102 N/m x � ?

From Figure 3.54, F � kx so x � �
F
k

�

But F � Fg � mg; therefore,

x � �
m
k
g
�

x �

x � 8.2 � 10�2 m

The spring will stretch 8.2 cm when the baby is placed in the Jolly Jumper.

(6.5 kg)(9.8 N/m)
���

7.8 � 102 N/m
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1. A student stretches an elastic band with a spring constant of 16.0 N/m
by 30.0 cm to launch a paper airplane.
a) What average force does the student apply to launch the plane?
b) What is the acceleration of the plane if its mass is 2.7 g and it

experiences no friction or air resistance?
2. A 67.5-kg mechanic sits on a truck suspension spring and notices that

it only compresses by 1.0 cm. A spring is installed at each of the four
equally spaced wheels of the truck with a body mass of 2.15 � 103 kg.
How far will each spring compress when the full truck body is low-
ered onto them if the truck’s weight is equally distributed?

3. A windsock helps helicopter pilots judge which way the wind is
blowing and its strength. During a heavy wind, the aluminum pole
that supports the 3.0-m-tall windsock is bent sideways by the wind,
as shown in Figure 3.55. A shadow cast from the noonday Sun shows
the top of the windsock pushed sideways a distance of 30.0 cm. If
the spring constant for the pole is 120 N/m, what is the force of the
wind on the windsock?

3.9 Stress and Strain — Cause and Effect
Thus far in this chapter, we have learned that when forces are applied to
objects, they cause objects to translate, rotate, or remain in static equilibrium.
Forces can also cause changes within an elastic material, making it longer or
shorter, or distorting its shape. In this section, we will examine what happens
within more rigid, less-elastic objects that experience reaction and torque
forces. Structures, such as a post that supports the weight of a heavy beam in
a house, are affected by the heavy load while keeping it in static equilibrium.
The force of gravity pulling on the beam induces a change in the beam and
the post. This force on the post gives rise to stress. The measurable changes in
the post as a result of stress are called strain. In this section, we will quantify
the concepts of stress and strain and study their cause-and-effect relationship.

Stress: The Cause of Strain

Stress is caused by a force applied on the surface of objects, not at one par-
ticular point. Stress is the force applied per unit area.

Stress � �
A
F

�

where F is the force applied (in newtons) over a surface area, A (in
square metres).

There are three different types of stress, classified according to how the
stress is applied to the object (see Table 3.4).

chapter 3 : Extens ion:  Stat ics  — Objects  and Structures in  Equi l ibr ium 161

ap
plylying

theC
o

n c e pts

Pressure is also the force per 

unit area on an object. Stress and

pressure can both have the same

units. To avoid confusion, in this text,
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A*

Tension

L

�F

�F

�L

A*

Compression

�F

�F

�L

L

L

A*

Shear

�F

�F �L

Table 3.4
The Different Types of Stress

Type of Stress Diagram/Example

Tensile stress occurs when outward forces Fig.3.56
along the length of an object cause the 
object to increase in length because the 
atoms are pulled farther apart.

Compressive stress is the opposite of Fig.3.57
tensile stress: inward forces along the 
object’s length tend to decrease the
length of the object because the atoms
are pushed closer together.

Shear stress changes the shape of an Fig.3.58
object but not its dimensions. It occurs 
when different forces act across the object 
at different points, warping or deforming 
the object as the atoms are forced sideways.

* A � cross-sectional area
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Strain: The Effect of Stress

Stress (the cause) has the effect of changing the dimensions of an object.
The distortion of the dimensions of an object due to stress is called strain.
We measure strain on an object by comparing the change in dimensions to
the initial dimensions before the stress was applied.

Strain � �
�

L
L
�

where �L is the change in length of the entire object of initial length L.

What factors affect the amount of distortion in an object? Different materials
respond differently to similar forces.

In Figure 3.59, the force of a human foot on wet concrete produces differ-
ent results than on dry concrete. The amount of distortion of a material
depends on the type of material and can only be quantified by a constant of
proportionality k (similar to the spring constant, k, in Hooke’s law). An
object’s length, L, also affects the amount of distortion the object can
undergo. The change in length is related to the overall length of the material
(�L  L). Compare the stretch of a long versus a short piece of fishing line.
The long piece has more elasticity and will stretch more than the short
piece, even though both pieces are made from the same material. In contrast,
a wide object with a large cross-sectional area, A, is distorted less by the same
force than an object with a small cross-sectional area (�L  �

A
1

�). A thin elas-
tic band can be stretched more than a thick band of the same material.
Finally, the greater the force applied to the object, the greater the distortion
of the object (�L  F). Figure 3.60 illustrates the relationships among the
parameters of strain.
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Fig.3.59 Soft, wet concrete is a

much more pliable material than

cured concrete. The more pliable 

the material, the more easily it is

deformed.



Fig.3.60 The Relationships among the Parameters of Strain

Combining all the proportionality statements from Figure 3.60, we come up
with the relationship

�L  �
F
A
L
�

To change this proportionality statement into an equation (see Appendix D),
we add constant of proportionality k that quantifies the type of material.

�L � �
k

A
FL
�

In terms of cause and effect, the cause or stress on the object is the force
applied to a specific surface area, �

A
F

�. The effect or strain on an object repre-
sents the change in an object’s length with respect to its entire length, �

�

L
L
�.

When we rearrange the equation to isolate the stress and the strain compo-
nents from the constant, we obtain

�
1
k

� �

This inverse constant, �
1
k

�, is called Young’s modulus or the elastic modulus, E.
It must be determined empirically for each material through experimentation.

E � � �
S
S
t
t
r
r
a
e
i
s
n
s

�

where F is the force applied, in newtons, to a surface area A (in metres
squared), �L is the change in the object’s length (in metres), and L is the
object’s initial length (in metres). 

��
A
F

��
�

��
�

L
L
��

��
A
F

��
�

��
�

L
L
��
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This equation is much more useful than Hooke’s law because it includes all
the variables that affect strain when a stress is applied.

Young’s modulus (E) is the ratio of stress to strain on an object and is there-
fore a useful measure of the cause and effect of forces on a particular material.
The equation for Young’s modulus, E, describes how tensile and compres-
sive stresses are related to the strain on an object because it is concerned
with change in the object’s length. Other forms of stress, such as shear
stress and pressure (compressive stress on a fluid), can also be examined in
a similar fashion. Table 3.5 outlines the different ways in which stress can
be applied and its effect on a material in terms of a specific constant of pro-
portionality, called a modulus.
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Young’s modulus was named after 

the British scientist, Thomas Young

(1773�1829). We will study more 

of Young’s work in Unit D.

Table 3.5
Types of Stress

Type of Stress Equation Description

Tensile/Compressive E � � �
S

S

t

t

r

r

e

a

s

in

s
� E is Young’s modulus, measured in N/m2.

Shear G � � �
S

S

t

t

r

r

e

a

s

in

s
� G is called the shear modulus (also in N/m2). It is usually smaller

than E because a shear sideways flex is much easier to achieve than
a compression or stretch.

Pressure (fluid) B � � � � �
S

S

t

t

r

r

e

a

s

in

s
� B is the bulk modulus. It relates the pressure (stress) to the 

change in volume (strain) of a fluid as described by Boyle’s law.  
The negative sign in this equation ensures that the bulk modulus
is always a positive number.

�(�P)
�

��
�

V

V
��

��
A

F
��

�

��
�

V

V
��

��
A

F
��

�

��
�

L

L
��

��
A

F
��

�

��
�
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L
��

Figure 3.61 summarizes how a modulus is calculated.

Fig.3.61 The Modulus — The Cause-to-effect Ratio
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The moduli discussed in this section are constants of proportionality that are
determined empirically by experimentation. Table 3.6 lists these constants for
various construction or support materials as well as some liquids and gases.

Table 3.6
Moduli for Various Substances

Young’s elastic

modulus (tensile/ Shear modulus Bulk modulus 

compressive stress) (shear stress) (pressure on fluid) 

Material E (N/m2) G (N/m2) B (N/m2)

Solids

Cast Iron 100 � 109 40 � 109 90 � 109

Steel 200 � 109 80 � 109 140 � 109

Aluminum 70 � 109 25 � 109 70 � 109

Brass 100 � 109 35 � 109 80 � 109

Copper 110 � 109 38 � 109 120 � 109

Lead 16 � 109 5.6 � 109 7.7 � 109

Concrete 20 � 109

Brick 14 � 109

Marble 50 � 109 20 � 109 70 � 109

Glass 57 � 109 24 � 109 40 � 109

Granite 45 � 109 20 � 109 45 � 109

Wood (pine, parallel grain) 10 � 109

Wood (pine, perpendicular grain) 1 � 109

Nylon 5 � 109

Bone (limb) 15 � 109 80 � 109

Liquids

Water 20 � 109

Alcohol 10 � 109

Kerosene 13 � 109

Glycerine 45 � 109

Mercury 26 � 109

Gases (isothermal at normal 

atmospheric pressure)

Most gases (Air, H2, He, CO2) 1.01 � 105

The equations and moduli studied in this section help us to identify the sim-
ilarities and differences in the stress and strain of different materials. A few
examples of how these equations and constants are used will help to
implant them “statically” in our minds.
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e x a m p l e  1 2 Stress on a steel cable

During building construction, a large bucket of concrete is lifted by a 
single crane to the upper floors, as described by the free-body diagram in
Figure 3.62.

a) What mass of concrete (and metallic bucket) can be lifted by a steel
cable of diameter 1.5 cm such that the cable will only stretch by a max-
imum of 0.15%?

b) What maximum mass can this cable hold statically if its maximum
strength is 5.0 � 108 N/m2?

c) How much would this maximum load stretch a cable with an initial
length of 35 m?

Solution and Connection to Theory

Given
d � 1.5 cm � 0.015 m �

�

L
L
� � 0.15% � 1.5 � 10�3

E � 20 � 1010 N/m2 m � ?

a) To find the circular cross-sectional area of the cable,

A � �r2 � ���
d
2

��2

We use Young’s modulus equation because the cable is experiencing
tensile stress:

E �

To calculate the mass, we first isolate the force: 

F � �
E�

L
LA
�

F � E��
�

L
L
�����

d
2

��2

F � (20 � 1010 N/m2)(1.5 � 10�3)���0.01
2
5 m
��2

F � 5.3 � 104 N

��
A
F

��
�

��
�

L
L
��
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The force is a lifting force, Fg � mg; therefore,

m � �
F
g

g
�

m � �
5.

9
3
.8
�

N
1
/
0
k

4

g
N

�

m � 5.4 � 103 kg

The total mass for a 0.15% increase in cable length is 5.4 � 103 kg or
5.4 metric tonnes.

b) The maximum stress or force per unit area on the cable can’t exceed
5.0 � 108 N/m2; therefore,

�
F
A

g
� � 5.0 � 108 N/m2

�
m
A

g
� � 5.0 � 108 N/m2

m � 5.0 � 108 N/m2��
A
g
��

m � 5.0 � 108 N/m2� �
m � 9.0 � 103 kg

The maximum mass that the cable can hold statically is 9.0 � 103 kg.

c) Given
L � 35 m m � 9.0 � 103 kg �L � ?

To calculate the stretch of the cable, we can isolate �L in Young’s mod-
ulus equation and solve:

�L � �
E
F

A
L
�

�L �

�L �

�L � 8.75 � 10�2 m

The load would cause the cable to stretch 8.8 cm.

(9.0 � 103 kg)(9.8 N/kg)(35 m)
����

(20 � 1010 N/m2)���0.01
2
5 m
��

2

mgL
�

E���
d
2

��
2

���0.01
2
5 m
��

2

��
9.8 N/kg
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The maximum strength of various materials is of particular interest to engi-
neers and architects when designing support structures of new buildings.
Table 3.7 lists the maximum strengths of various support materials.

Table 3.7
Strengths of Support Materials

Tensile strength Compressive Shear strength 

Material (N/m2) strength (N/m2) (N/m2)

Cast iron 17 � 107 55 � 107 17 � 107

Steel 50 � 107 50 � 107 25 � 107

Aluminum 20 � 107 20 � 107 20 � 107

Brass 25 � 107 25 � 107 20 � 107

Concrete 0.2 � 107 2.0 � 107 0.2 � 107

Brick 3.5 � 107

Marble 8 � 107

Granite 17 � 107

Wood (pine, parallel grain) 4.0 � 107 3.5 � 107 0.5 � 107

Wood (pine, perpendicular grain) 1.0 � 107

Nylon 50 � 107

Bone (limb) 13 � 107 17 � 107

1. A steel guitar string of diameter 0.29 mm and original length 0.90 m
is elongated by 0.22 mm when a tensile force is applied. Calculate the
diameter of a nylon string that has the same extension and tension.

2. A marble column of cross-sectional area 3.0 m2 supports a mass of
3.0 � 104 kg.
a) What is the stress on the column?
b) What is the strain on the column?
c) By how much is the height of the 15-m-high column decreased

under the load?

Stress and Strain on the Human Body

The human body is made up of living tissue supported by bone tissue.
Muscle fibres provide tension forces through tendons, which connect
bones to muscles, thereby giving us mobility. The large compressive
strength of bone tissue (1.7 � 108 N/m2) is attributed to the presence of
hydroxyapatite crystals containing calcium. Long collagen fibres along
the length of the bone also give it a great tensile strength (1.3 � 108 N/m2).
Bones are hollow, which makes them strong yet light. Their centre is filled
with bone marrow, which produces red blood cells in the body. The
spine is of particular interest in the study of forces on the human body. It
is a column composed of a series of smaller bones called vertebrae that
provide the structural support for the upper body and protection for the
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spinal nerves connected to the brain while providing mobility. Figure 3.63
illustrates the fluid-filled discs in between the vertebrae, which transmit
force along the length of the spine, protect the vertebrae from stress dam-
age, and prevent friction between vertebrae.

3. Olympic weightlifters lift masses in excess of 200 kg over their
heads. The maximum compressive strength of a human bone such
as the femur (thigh bone) of diameter 4.0 cm is given in Table 3.7.
a) If the weight was supported by a weightlifter’s two thigh bones

only, what maximum mass could the athlete lift?
b) After considering the article above and your own assumptions of

the human body structure, what other parts of the body would
be a more realistic limit to the “world record” mass lifted in 
a competition?

3.10 Stress and Strain in Construction
One of the major applications of statics is in the design and construction of
buildings. All buildings, ancient and modern, contain vertical and horizon-
tal support structures called posts and beams, respectively. Figure 3.64a
outlines how posts and beams work to transmit forces to the ground. Like a
flat tabletop, a beam flexes, creating tension in the lower portion of the material
and compression in the upper layers. If the material in the beam can withstand
these forces, the force of gravity of the supported object is transmitted through
the beams to the ground by posts, which are like the legs of a table.

The ancients built some of their buildings out of stone, which has great
compressive strength but poor tensile strength. The beams of ancient stone
buildings are therefore very short, as illustrated by the close spacings
between the posts (columns) in Figure 3.64b. To compensate, Roman archi-
tects began using the arch as a combined beam and post. The wedge-shaped
pieces of stone in the arch experience compressive forces when supporting
weight (see Figure 3.64c).
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The outward horizontal forces produced by an arch require a buttress to
hold the arch together.

Eventually, stronger tensile materials such as steel, invented by Henry
Bessemer in 1830, improved the effective span of the beam. Design improve-
ments led to the development of a specialized beam called a truss. Trusses,
like those shown in Figure 3.64d, use individual bars called members that
direct the internal forces on the truss very efficiently while using a minimum
amount of material. The lowest section of the Eiffel Tower (Figure 3.64e) is
a combination of one giant arch constructed from a truss. The buttressing for
this arch is provided through the four sloping legs of the tower.

Today, in modern housing construction, new materials are used to make
longer spanning beams that minimize the number of unsightly and costly
posts. Try finishing off a basement family room that has several support
posts right where you want to put the billiard table. The composite wooden
I-beam (Figure 3.64f), used as a floor-support beam, is made of pieces of
fast-growth wood such as poplar that is compressed and glued together to
achieve maximum compressive and tensile strength. The use of smaller
pieces of wood for I-beams is a more inexpensive solution and helps to pre-
serve old-growth forests while still allowing longer beam lengths in resi-
dential applications.

In high-rise concrete structures, steel bars called re-bars are placed inside
concrete forms before the wet concrete is poured to improve the concrete’s
tensile strength. Wooden trusses are often reinforced by running metal
cables or bars across the lower truss member, which is then tensioned and
anchored at both ends. Concrete may be pre-stressed or tensioned by
stretching steel cables or rods suspended in the wet concrete before it has
cured and had a load applied to it. Any stress that would normally be cre-
ated by a load is absorbed until the pre-stress amount has been reached.
Concrete can also be post-stressed, where the tensioning is done after the
concrete has set.
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Fig.3.64d A typical roof truss transfers forces efficiently

through the many small parts that comprise its overall structure

Fig.3.64e The Eiffel Tower in Paris,

France looks like one huge truss. The

lowest part is constructed as an arch

because of the large distance between

the vertical supports.

Fig.3.64f A composite wood

beam can span a greater distance,

eliminating the need for many 

vertical support posts

Fig.3.64c In an arch, the inward horizontal forces of the

load are transferred to the vertical posts by compression

only. The outward reaction forces are so large that the

posts must be supported by buttresses.
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The Ultimate Effect of Stress on a Structure

An expanding population centralized in growing urban centres has prompted
the design of structures that expand upward instead of outward. The study of
statics is applied directly to the design and construction of buildings and shel-
ters, a basic human necessity. On May 25, 2001, the top floor of the Versailles
Hall, a multi-storey building in the industrial section of Jerusalem, collapsed
under the stress of the weight of about 650 people attending a wedding recep-
tion (see Figure STSE.3.1). The dance floor collapsed, taking wedding guests
with it as it fell three stories through two vacant floors to the ground level
below. Shaul Nevo, an engineer and a reserve army major who was helping
in the disaster rescue, said that the use of thin concrete layers in the building’s
construction was probably one of the causes of the collapse. Concrete, a mate-
rial that has great compressive strength but poor tensile strength, must be pre-
or post-stressed and secondarily supported with steel cable or beams. Prior
renovation of the lower floors in the Versailles Hall changed the structural
support for the floors above. The weight of the structure above and of several
hundred patrons on thin beams (thin concrete layers) over an increased span
without structural support was most likely the cause of the collapse.

The same principle of great weight over an extreme beam span caused the
eventual collapse of both towers of the World Trade Center in New York
City on September 11, 2001 (see Figure STSE.3.2) after a heinous terrorist
attack. The impact of a large aircraft removed key structural support for the
weight of the building above the point of impact, as shown in the simplified
diagram in Figure STSE.3.3. The World Trade Center was designed so that it
could have withstood the impact of a Boeing 707. However, the damage was
done by a larger 767 airplane. The structural degradation by the crash and resid-
ual fire caused the final horrific collapse.

As buildings get taller, much more work has to be
done to the design of these structures to ensure structural
safety. Disasters such as those in Jerusalem and New
York City also serve as a reminder to architects and 
engineers of the importance of means of evacuation in
building design.
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Fig.STSE.3.1 Damage done to 

the Versailles Hall in Jerusalem was

caused by insufficient support in 

the floor area

Fig.STSE.3.2 The twin towers of the

World Trade Center just before their

collapse on September 11, 2001

Web link: See �www.irwinpublishing.com/students�
for links to Web sites on structural design as well as

news sites on these disasters.

Fig.STSE.3.3 The aircraft damage

removed key structural support 

elements for the upper floors
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Design a Study of  Societal  Impact

Many buildings in cities such as New York or Toronto exceed 
75 floors and can at any time hold tens of thousands of occupants.
Many design considerations must be taken into account to bring
amenities to the upper floors of tall buildings. Research how services
such as electricity, water, sewage, and telephone are supplied to the 
CN Tower in Toronto. Research the specific safety features that are
part of the design of the CN Tower as a result of its size and shape.

Design an Activ ity  to Evaluate

Analyze an animated cartoon of your choice (with teacher approval) for
misconceptions in statics, kinematics, and dynamics. Make a list of all the
plausible impossible or simply impossible situations you see and describe
how they violate the laws of physics. For example, the base of a catapult
shouldn’t rotate up over the coyote; instead, the catapult arm should rotate
to release the coyote. Write a short reflection stating your opinion about
the role of accurate or inaccurate physics in cartoons. If you are artistically
inclined, draw a cartoon strip that includes inaccurate physics.

With a camera (digital or 35-mm), create a slide show of natural and
human-made structures (beams, posts, and arches) that are in static equi-
librium. Superimpose free-body diagrams on your photos (scanned if
using a 35-mm camera) using drawing software to illustrate stresses and
strains in the structures. Present your slide show to the class.

Bui ld a Struc ture

Design and construct a pegboard, force-board, or torque balance for
use in the two labs at the end of this chapter. Build your board or bal-
ance using a series of pulleys (plastic thimbles with protractors) that
can be mounted on a pegboard and kept for future use in class. Strings,
protractors, and masses can be used to create various situations for
verifying the necessary conditions for static equilibrium.

Design competition: Build a model bridge or other structure out of
uncooked spaghetti or drinking straws such that it supports the most
weight possible.
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S U M M A R Y

You should be able to

Understand Basic Concepts:

Define the concept of centre of mass and describe
how it relates to the centre of gravity.
Relate the concepts of Newton’s laws of motion
to situations of static equilibrium.
Describe torque in qualitative and quantitative
terms and use it to solve simple problems.
State the two conditions necessary for static equi-
librium and use them qualitatively and quantita-
tively to solve problems.
Apply the two conditions of static equilibrium to
quantitatively analyze situations involving the
human body.
Relate the concept of centre of mass/gravity and
torques to the stability of certain structures,
including the calculation of a tipping angle.
Define and describe the quantities of stress and
strain and relate them to the force (stress) that
causes a deformation (strain) of structural
materials.
Compare and contrast the types of strain on an
object by describing and illustrating the source
and direction of the stress applied.
Use Hooke’s law to quantitatively describe how
stress applied deforms construction materials.

Develop Skills of Inquiry and Communication:

Conduct an experiment to determine the net force
on an object in static equilibrium. Verify the first
condition of static equilibrium, the balance of
forces, and analyze discrepancies between the
theoretical and empirical values.
Conduct an experiment to verify the second con-
dition for static equilibrium.
Design and perform an experiment to evaluate
the relationship of stress and strain on a metallic
wire. Include a system of measuring small
changes in dimensions, such as a vernier scale.

Relate Science to Technology, Society, 

and the Environment:

Apply the concepts of centre of mass/gravity and
static equilibrium to structural stability and
stress and strain on the human body.
Evaluate the social and economic impact of locat-
ing base sites of financial or government institu-
tions and high-density housing in large urban
centres. Describe instances where developments
in construction patterns, intended to improve the
quality of life, have degraded it.
Relate the occurrence of disasters to the improve-
ment of building design, construction, and emer-
gency evacuation plans.

Equations
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E X E RC I S E S

Conceptual Questions

1. Why can’t a Hydro line or telephone cable be
run completely horizontally?

2. A ladder rests against a frictionless wall.
a) In which direction is the ladder pushing

against the wall?
b) How is the force that the ladder exerts on

the ground related to the weight of the 
ladder? Why?

3. In terms of static equilibrium and stability,
what is the difference between standing 
with your feet together and apart? Explain
your answer.

4. Why does wearing high-heeled shoes some-
times cause lower back pain?

5. Electricity or telephone line installers pur-
posely allow lines to sag or droop, especially
in areas where freezing rain and ice build-up
are frequent. Why?

6. How can a wrench handle be adapted to 
better loosen a rusty bolt?

7. A ladder is placed against a wall at an angle 
of 65° to the ground. Will the ladder be more
likely to slide down if a person stands on a
lower rung or on a higher rung? Why?

8. A person on a bicycle presses down on 
each pedal half-way through each rotation. 
In which position is the torque at zero? 
at a maximum?

9. The benefits of weight training are maximized
when muscles are exercised through their full
range of motion. Is there any benefit for a
weight trainer to do curls all the way to the
highest weight position? (See Example 8.)

10. What type of equilibrium is your textbook in
when it is sitting flat on your desk? What
about if you balanced it on its corner?

11. Many people require the use of a cane to walk
comfortably. What is the purpose of the cane
in terms of stability?

12. When standing up from a sitting position,
why must we first lean forward?

13. Office chairs with casters used to be supported
by a base with four legs. Now the base consists
of five legs. Why?

14. Why do tall fluted champagne glasses usually
have a wide base?

15. Ships empty of cargo are often loaded with extra
water or other weights such as rocks. Why?

16. The balancing toy shown in Figure 3.65 won’t
fall from its stable position even when pushed
gently. Why is this figure so stable?

Fig.3.65

17. Two bones of equal radius but different
lengths are subjected to equal twisting
torques. Which bone will fracture first?

18. Why is a piece of 2” � 4” lumber placed with
its wide side vertical when used to support
long spans of fence?

19. A cantilever is a board that projects beyond
its support, such as a diving board. Would you
use concrete to create a large cantilevered
structure? Why or why not?
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Problems

3.2 The Centre of Mass — 
The Gravity Spot!

20. a) Copy the following shapes (Figure 3.66)
into your notebook and mark the centre 
of mass on each.

Fig.3.66

b) For each shape, explain your choice of
position for the centre of mass.

c) Trace these onto a piece of paper and 
use the technique described in Section 3.2
to verify the actual position of the centre 
of mass.

3.3 Balancing Forces … Again!

21. A 10.0-kg flowerpot is suspended from the
end of a horizontal strut by a cable attached
at 30° above the horizontal, as shown in
Figure 3.67. If the strut has no mass, find 
the tension in the cable.

Fig.3.67

22. In problem 21, how much horizontal force
must the strut provide?

23. A 100.0-kg mass is suspended from two ropes,
each at an angle of 30° to the vertical. What
is the tension in each rope?

24. What maximum mass, m, can be supported by
the strut-and-cable arrangement in Figure 3.68
if the maximum force on the strut is 2500 N?

Fig.3.68

25. A 500-kg load of drywall is lifted up the side
of a building by a crane. When the load is
pulled to the side by a horizontal rope, the
support cable of the crane makes an angle 
of 12° to the vertical. What is the tension 
in the support cable? What is the tension 
in the horizontal rope?

26. A 250-kg crate is being unloaded from a cargo
ship by a crane with a cable 10 m long. The
load must be pushed horizontally onto an
awaiting wooden skid by a worker of mass
100 kg.
a) If the coefficient of friction between the

worker’s shoes and the floor is 0.63, what
maximum horizontal force can he apply
before his shoes begin to slip?

b) What is the crate’s maximum horizontal
displacement from rest?

27. A car is stuck in a snow bank, but the driver
is very knowledgeable about physics. She ties
a rope from her car to a tree 25.0 m away and
then pulls sideways on the rope at the mid-
point. If she applies a force of 425 N and
draws the rope over a horizontal distance of
1.5 m, how much force is applied to the car?

(a) (b)

(c)

Strut

Cable

(a)

30°

10.0 kg

60°

m
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28. A bird lands on a telephone wire midway
between two poles 18 m apart. The wire
(assumed weightless) sags by 52 cm. If the
tension in the wire is 90 N, what is the mass
of the bird?

29. When a person’s thighbone (femur) is broken,
the muscles draw the broken parts so tightly
together that the length of healed leg is
slightly shorter than its original length. In the
past, a traction device (see Figure 3.69) was
used to oppose the natural muscle tension,
allowing the bone to heal properly. What is
the magnitude and direction of the tension
force applied to the femur if the mass of the
leg is 3.75 kg?

Fig.3.69

30. A string of length L is connected to two pulleys
on an I-beam curtain rod, as shown in Figure
3.70. A curtain of mass m, is hung from the
midpoint of the string and the pulleys are
drawn as far apart as possible. The coefficient
of static friction between the pulleys and the
rod is 	. Find the maximum distance, x, in
terms of L and 	, between the pulleys before
they begin to roll toward each other.

Fig.3.70

3.4 Balancing Torques

31. Figure 3.71 shows a 2.0-m-long rod with a 
1.0-kg mass at one end and a 3.0-kg mass at 
the other end. 
a) If from the heavy end, the mass of the rod is

negligible, where is the centre of gravity of
the system? 

b) What is the tension in the single support
cable?

Fig.3.71

32. Find the forces exerted by the two supports 
of a 4.0-m, 50-kg uniform cantilever (diving
board) when a 8.5-kg duck stands at the 
opposite end, as shown in Figure 3.72.

Fig.3.72

33. Find the centre of mass of the L-shaped steel
plate shown in Figure 3.73. (Hint: Think of
the L as two separate figures, each with its
own centre of mass. Use the total centre of
mass in two dimensions as the coefficients 
of the two-dimensional centre of mass.)

Fig.3.73

40°

40°

5 kg

x

L/2
L/2

String

Curtain

0

x �T � ?

m2 � 1.0 kg

m1 � 3.0 kg

2.0 m

Ceiling

Centre
of gravity

x3 � 3.2 m�F1

x1 � 0.8 m

�F2

�w1 �w2

x2 � 1.2 m

4 m

 2 m

1 m

 1 m



3.5 Static Equilibrium: Balancing
Forces and Torque

34. Three people carry an extension ladder of
length 5.0 m in the horizontal position. The
lead person holds the ladder’s front end, and 
the other two people are side by side on oppo-
site sides of the ladder a distance x from its back
end. Calculate x if the two people in the rear
each support one-third of the ladder’s weight.

35. An 86-kg man is trying to pry up a rock by
hanging from the end of a class-one lever (a
uniform piece of lumber of mass 2.0 kg), as
illustrated in Figure 3.74. What is the maxi-
mum mass of the rock if it can be just lifted?

Fig.3.74

36. Two children of masses 17 kg and 27 kg sit 
at opposite ends of a 3.8-m teeter-totter that is 
pivoted at the centre. Where should a third child
of mass 20 kg sit in order to balance the ride?
Does the mass of the teeter-totter matter?

37. A 5.0-kg bag of cement is placed on a 2.5-m-long
plank at 1.5 m from its end. The 2.0-kg plank is
picked up by two men, one at each end. How
much weight does each man support?

38. The centre of mass of a 30-kg dog standing on
all fours is located 70 cm from her hind legs
and 30 cm from her front legs. Find the force
of the ground on each of her legs.

39. The hinges of a 20-kg door, 2.4 m high and
0.8 m wide, are placed at the top and bottom
of the door’s vertical edge. The door is sup-
ported by the upper hinge.
a) What is the magnitude and direction 

of the force that the door exerts on the
upper hinge?

b) What is the magnitude and direction 
of the force that the lower hinge exerts 
on the door?

40. A weightless ladder 7.0 m long rests against a
frictionless wall at an angle of 65° above the
horizontal. A 72-kg person is 1.2 m from the
top of the ladder. What horizontal force at 
the bottom of the ladder is required to keep 
it from slipping?

41. A box of total mass 75 kg rests on a floor with
a coefficient of static friction of 0.42. The box
is 1.6 m high, 1.0 m deep, and has uniform
weight distribution.
a) What is the minimum horizontal force

required to start the box sliding across 
the floor?

b) What is the maximum height at which 
this force can be applied without tipping
the crate?

3.6 Static Equilibrium and 
the Human Body

42. Pierre holds a 10-kg bucket of water with his
upper arm at his side and his forearm hori-
zontal (90° at the elbow). The palm of his
hand is 35 cm from the elbow, and his upper
arm (shoulder to elbow) is 30 cm long. His
biceps muscle is attached to the forearm 
5.0 cm from the elbow. If the centre of mass
of his 3.0-kg forearm is 16 cm from his elbow,
what force does the biceps muscle exert to
support both the arm and the bucket?
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43. The hand, forearm, and upper arm of a 
gymnast have masses of 0.4 kg, 1.2 kg, and
1.9 kg, respectively, and their respective 
centres of mass are 0.60 m, 0.40 m, and 
0.15 m from her shoulder joint. Find the 
centre of mass of her unbent arm as it is 
held horizontally from her shoulder.

44. When you stand on the ball of your foot, the
reaction force upward on the ball of your foot
is equivalent to your weight. To raise your
heel as shown in Figure 3.75, you must apply
an upward force, F��1, through your Achilles
tendon so that the downward reaction force,
F��2, is greater than your weight. Calculate F��1

and F��2 for a 65-kg woman with foot dimen-
sions L1 � 4.0 cm and L2 � 12 cm. If L1 was
greater than L2, how would the force exerted
by the Achilles tendon, F��1, be affected?

Fig.3.75

45. In Figure 3.76, what are the forces F��1 and F��2

if the tooth remains in static equilibrium?

Fig.3.76

46. An Olympic athlete is holding a 7.25-kg 
shot-put, as shown in Figure 3.77. Her fore-
arm is 28.0 cm long and has a mass of 2.7 kg
with centre of mass 11 cm for the elbow. The
attachment of the triceps extensor muscle is
2.4 cm on the short end of the pivot and acts
at 90° to the bone. What force must the tri-
ceps exert in order to hold the shot-put in
static equilibrium?

Fig.3.77

3.7 Stability and Equilibrium

47. A square table is 0.6 m long with a centre 
of mass 0.6 m above the ground. What is its
tipping angle?

48. A square-based box of length 1.00 m and 
uniform weight distribution tips when tilted
past 30°. How tall is the box? 

49. The centre of mass of a 0.14-m-tall drinking
glass is 0.050 m from the bottom, which is a
circle with radius 0.020 m, as shown in
Figure 3.78. How far can the top of the glass
be tipped without toppling it?

Fig.3.78

�F2

�F1

L1 L2

�W

 0.02 m

 0.01 m

�F1 

�F2 

F � 0.5 N 

�FT

28 cm

11 cm
2.4 cm

Elbow joint

Forearm mass
is 2.7 kg

Centre of mass

Triceps
extensor
muscle

7.25 kg

 0.020 m       
 0.050 m

 0.14 m

�F

Centre of 
gravity

d � ?



50. A transport truck 4.3 m tall and 2.5 m wide
has a centre of mass 2.5 m high along the
midline. How steep a side slope can the truck
be parked on without tipping over sideways?

3.8 Elasticity: Hooke’s Law

51. A spring scale is used to measure the weight
of nails in a hardware store. Nails of mass
3.0 kg cause the spring to stretch 1.8 cm.
What is the spring constant?

52. The spring in Figure 3.79 must support the
lever in static equilibrium when a mass is
placed on its end. What is the spring constant
if the stretched spring is only 4.0 cm longer
than its rest position?

Fig.3.79

53. A heavy steel bar is hung from the ceiling 
by two springs attached at each end, then
released, as shown in Figure 3.80. What is 
the mass of the steel bar?

Fig.3.80

3.9 Stress and Strain — 
Cause and Effect

54. An aluminum wire is 20 m long and has a
radius of 2.0 mm. The linear limit of force for
aluminum is 6.0 � 107 N/m2.
a) What tension must be applied to reach this

limit?
b) How much will the wire stretch when this

force is applied?

55. A 100-kg mass is suspended from the end of a
vertical 2-m-long cast-iron post with a cross-
sectional area of 0.1 m2.
a) What are the stress and strain on the post?
b) How much does this post stretch?
c) What is the maximum mass that can be

suspended from this post?

56. What tension load will cause a femur to 
fracture if the minimum cross-sectional 
area of this leg bone is 6.40 � 10�4 m2?

57. What is the “spring constant” for a human
femur under a compression force of 200 N
if it has an average cross-sectional area of 
10�3 m2 with a length of 0.38 m?

58. A cylindrical steel rod 2.0 m long has a radius
of 0.01 m. If a load causes it to bend elastically
with a radius of curvature of 20 m, what is
the torque on the rod?

59. A freight elevator and its contents have a
mass of 1.00 � 104 kg and are at rest. The
steel cable supporting them has a stress equal
to 10% of its maximum tension.
a) What is the radius of the cable’s 

cross-section?
b) What is the strain on the cable when the

elevator is accelerating upward at 2.0 m/s2?

3.10 Stress and Strain in Construction

60. A pine post with dimensions 10 cm by 15 cm by
3 m supports a load of 1000 N along its length.
a) What are the stress and strain on the post?
b) What is the change in length of the post

while supporting this load?

61. In ancient Rome, marble columns were 
used to support heavy structures. In one
application, a cylindrical column 1.00 m 
in diameter and 22.0 m long was used to 
support a mass of 2.5 � 104 kg. What length 
of unloaded column, 0.80 m in diameter, must
be used to support the same mass at the same
height when loaded?
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Purpose
To examine the first condition for static equilib-
rium: the balance of forces

Equipment
Force table or peg force board (see Chapter 3
STSE)
Protractor (360°) mounted on square background
3 pulleys
Masses (with hangers)
Small builder’s level
String or fishing line

Fig.Lab.3.1

Procedure
1. Set up a data table in your notebook similar

to Table Lab.3.1.
2. Set up the force board as shown in Figure

Lab.3.1 with the two pulleys about 30 cm
apart.

3. Place one string across the two pulleys and
fasten a mass, m1 and m2, on each end such
that they balance. The pulleys can be placed
at any level to achieve balance.

4. Tie a second piece of string to the horizon-
tal string between the two pulleys and hang
a third mass, creating a Y shape. Adjust the
masses and the pulley positions such that
the system reaches static equilibrium.

5. Move the circular protractor to a point
behind the strings. Measure the angles
between the strings, as shown in Figure
Lab.3.1. Use the builder’s level to ensure
that the top of the protractor is horizontal.

6. Record the masses of m1, m2, and m3 in the
data table.

7. Change masses m1 and m2 only. Reset the
apparatus to static equilibrium and record
all of the masses and angles in the data table.

8. Apply a third pulley to the string attached
to the middle mass, as shown in Figure
Lab.3.1. Hold the pulley in place by hand
and measure the angles (including the new
one in the middle string) and masses being
used when in static equilibrium. Record all
your observations in the data table.

Uncertainty
Assign your angle measurements an instrumental
uncertainty of �1°. The uncertainty of the
masses will vary depending on the precision of
the balance you used. For instructions on how to
perform an uncertainty analysis, see Appendix C.
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3.1 Equilibrium in Forces

1 4

2 3

Peg
board

Table
top

m1 m2

m3m3

Extra
pully

Table Lab.3.1

Forces (left/right) Sum of all Force 
Masses (g) Angles (degrees) by masses (N) forces (N) (middle mass)

m1 m2 m3 �1 �2 �3 �4 �5 F1(v) F1(h) F2(v) F2(h) Ft(v) Ft(h) F3(v) F3(h)
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Analysis
1. Calculate the sum of the vertical and hori-

zontal components of the force supplied by
the outer two masses (m1 and m2) for this
lab. Record your answers in your data table.

2. Calculate the force of gravity on the middle
mass (m3) for steps 2�7, then calculate the
horizontal and vertical components of this
force for step 8. Record them in your data table.

Discussion
1. In each case, how does the sum of the verti-

cal components relate to the force of gravity
on the middle mass, within experimental
uncertainty?

2. The sum of the horizontal components 
for steps 2�7 should equal zero. Is your
sum approximately zero, considering the
uncertainties?

3. How does the sum of the vertical and hori-
zontal forces from the outer two masses
compare with the vertical and horizontal
forces of gravity on the middle mass in step 8?

4. Draw a free-body diagram that illustrates
the first condition for static equilibrium.

Conclusion
Summarize how your results prove or disprove
the first condition for static equilibrium.
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Purpose
To examine the second condition for static equi-
librium: the balance of torques

Equipment
Peg force/torque board (see Chapter 3 STSE)
Metre stick with hole drilled in centre
Newton spring scales
Masses with hangers
String
Pulleys (mounted on pegboard)

Procedure
1. Place the metre stick onto a peg on the peg-

board such that it is horizontally balanced
but can freely rotate.

Part A: Forces at 90°
2. Place a 100-g mass (m1) at the 10-cm mark

at the left end of the metre stick. Hang a
300-g mass (m2) on the opposite end of the
metre stick such that the metre stick is bal-
anced horizontally, as illustrated in Figure
Lab.3.2. Record all masses, angles, and posi-
tions in a data table in your notebook.

Fig.Lab.3.2

3. Add another 100-g mass, m3, at the 30-cm
mark on the left side of the metre stick, beside
m1. Move m2 to the right along the metre stick
until the metre stick is balanced, as shown in
Figure Lab.3.2. Record all masses, angles, and
positions of all three masses in your data table.

Part B: Forces at an Angle
4. Hold onto the metre stick and place a peg

with pulley into the board two spaces to the
left of the string from m1 below the metre
stick. Grasp the string from mass m1 and
drape it over the peg, as illustrated in Figure
Lab.3.3.

Fig.Lab.3.3

5. Before releasing the metre stick, drape m2

over a peg in a similar way that m1 was
draped but toward the right of the appara-
tus. Slide m3 back and forth until the metre
stick is balanced when released.

6. Record all masses, angles, and positions
from the pivot in your data table.

3.2 Balancing Torque

P
?

m2 � 300 g
m1 � 100 g

m3

�1 �2 Peg
board

10 cm

P

10 cm
30 cm

?

300 g

�1 � ?

100 g 100 g

Table Lab.3.2

Distance from Sum of all torques 
Masses (kg) Angles pivot (m) Torques (N·m) (N
m)

m1 (g) m2 (g) m3 (g) �1 �2 �3 r1 r2 r3 �1 �2 �3 �total

Part A: Forces at 90°

100 300 ––– 90° 90° ––– ––– –––

100 300 100 90° 90° 90°

Part B: Forces at an angle
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Uncertainty
Assign instrumental and experimental uncer-
tainties to your measurements. When working
with uncertainties and trigonometric functions
such as the sine function, a high- and low-range
calculation may be performed (see Appendix C).

An uncertainty of �1° leads to an interest-
ing result when used in torque calculations.

Example: (100 N)(1 m)sin 26° � 43.8 N
m 
(100 N)(1 m)sin 25° � 42.3 N
m
(100 N)(1 m)sin 24° � 40.7 N
m

The difference between the high and middle
marks is 1.5 N·m, but the difference between
the lower two marks is 1.6 because of the nature
of the sine function. In this case, the larger of the
two uncertainties is usually used.

Analysis
Calculate the torque applied by each of the
masses in Parts A and B, then find the sum of all
the torques. Place all your results and uncertain-
ties in the data table. Be sure to assign a positive
or negative to the clockwise or counterclockwise
rotational direction.

Discussion
1. The sum of all of the torques should be zero

if the metre stick did not rotate. Is your sum
close to zero, considering all of the uncer-
tainties? Give reasons for any discrepancy.

2. Friction within the main pivot as well as
with the pulleys in Part B may cause the sec-
ond condition for static equilibrium to not be 
witnessed in this lab, even when considering
experimental uncertainties. Describe how
friction in the pivot would affect your results.

Conclusion
Summarize how the results of your own lab
prove or disprove the second condition for static
equilibrium.L
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Aristotle believed

that heavier objects 

accelerate at a faster 

rate during free fall 

than lighter objects.

Plato predicted the 

existence of ether

as the fifth element.

Nicolas Cusanus 

believed that Earth is 

in motion.

Galileo Galilei 

demonstrated

that free-falling 

objects accelerate

at the same rate, 

independent of mass.

Galileo Galilei 

presented his 

principle of inertia.

Francis Bacon 

developed the empirical 

scientific method as 

well as the theory that 

heat is produced as a 

result of motion.

Isaac Newton developed 

the principles of his 

theories of mechanics, 

gravity, mass, and force.

John Wallis developed the 

concept of conservation 

of momentum.

Nicolas Copernicus 

published his view that 

Earth and the other 

planets orbit the Sun.

1500 1550 1600 1650

Timeline: The History of Energy
and Momentum

What does the expression “Energy cannot be created or destroyed” really
mean? How does it relate to events such as a billiard ball collision, a car crash,
or an arrow passing through an apple? In the Principia, Newton considered
the quantity of motion as arising from “velocity and mass conjointly.” This
fundamental quantity is known as momentum. What role does momentum
play in the examples just mentioned?

In this unit, we will introduce the concepts of energy and momentum
and their interrelationship, along with work and power. These concepts
lead to two fundamental laws: the law of conservation of energy and the law
of conservation of momentum. Using these laws, we will investigate the
interaction of objects in collisions and the relationship between objects and
forces. The laws of conservation of energy and of momentum can be used
to describe how shock absorbers cushion the ride of a car and how running
shoes preserve our knee joints. The interaction of objects in motion with
other objects causes the transfer of energy and momentum.

The study of everyday interactions of objects in terms of
energy and momentum complements our explanations of
motion in terms of dynamics in the previous unit and helps
us obtain a more complete understanding of ordinary events.
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Conservation of Energy



1676

1684

1714

1798

1851

Robert Hooke 

developed the laws of 

springs and elasticity. 

Gottfried Leibniz 

published the concept of 

conservation of energy.

Benjamin Thompson 

realized that the heat 

generated by motion 

equals the amount of 

work done.

William Thomson (Lord 

Kelvin) developed the 

concept of absolute 

zero and the absolute 

temperature scale. 
Isaac Newton published 

the inverse square law for 

gravitational attraction.

1700 18001750 1850 1900
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4 Linear Momentum

Chapter Outline

4.1 Introduction to Linear Momentum

4.2 Linear Momentum

4.3 Linear Momentum and Impulse

4.4 Conservation of Linear Momentum 

in One Dimension

4.5 Conservation of Linear Momentum 

in Two Dimensions

4.6 Linear Momentum and Centre of Mass

Recreational Vehicle Safety and Collisions

4.1 Linear Momentum in One Dimension: 

Dynamic Laboratory Carts

4.2 Linear Momentum in Two Dimensions: 

Air Pucks (Spark Timers)

4.3 Linear Momentum in Two Dimensions: 

Ramp and Ball

By the end of this chapter, you will be able to
• solve problems involving linear momentum and impulse
• use the law of conservation of linear momentum to solve 

momentum problems in one and two dimensions
• apply the concept of linear momentum to everyday situations

S T

S E



4.1 Introduction to Linear Momentum

Have you ever seen a car accident? Was it a head-on collision? Was one car
travelling faster than the other? Have you ever been in-line skating, cycling,
or skateboarding and had to execute a tight turn in order to avoid an object
at rest? Would you have reacted differently if the object in your path was a
soccer ball as opposed to a parked car? In either case, the masses of the
objects involved and their velocities play a role in a collision.

Momentum and energy are two very important concepts in the study of
physics. In this chapter, we will look at the effects of mass and velocity on
objects involved in collisions and how these quantities are related in
momentum. We will also study the conservation of linear momentum in
one-dimensional and two-dimensional systems. The concept of centre of
mass in relation to linear momentum will also be discussed.

4.2 Linear Momentum
The concept of momentum was first developed by Sir Isaac Newton, who
thought that a change in momentum was caused by a force. He called 
linear momentum “the quantity of motion” and combined a moving
object’s mass and velocity in the following way:

p�� � mv��

where p�� is the object’s linear momentum, in kilogram metres per 
second (kg·m/s, the SI unit for momentum), m is the mass of the object, in
kilograms (kg), and v�� is the velocity of the object, in metres per second (m/s).

Linear momentum is a vector quantity that has the same direction
as the velocity of the object. If a direction is not given in a problem,
assume that the object is moving in the positive direction.

Figure 4.1 shows an in-line skater travelling east along a path. The skater’s
momentum is also directed east.

Figure 4.2 shows a five-pin and a ten-pin bowling ball. Which ball has
more momentum?

This question cannot be answered because the momentum depends on
both the mass and velocity of the balls. Since the velocities are unknown,
the momentum is unknown. However, a fast-moving ball will have greater
momentum than a slow-moving ball of the same mass.
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Fig.4.1 The in-line skater’s velocity

and linear momentum are both in 

the same easterly direction. The

direction of the linear momentum is

always the same as the direction of

the velocity.

Gutter

Gutter

�v10p

�v5p

Fig.4.2 The linear momentum of 

an object varies directly as the mass

and the velocity of the object
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�v
Car braking
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Car stopped

�v � 0
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�

e x a m p l e  1 Calculating linear momentum

Calculate the momentum of a 50-g bullet travelling at 200 m/s [N].

Solution and Connection to Theory

Given

m � 50 g ��1
1
00

k
0
g
g

��� 0.050 kg v�� � 200 m/s [N]

Using the momentum equation and assuming north to be the positive
direction,

p�� � mv��

p � (0.050 kg)(200 m/s)
p � 10 kg·m/s

Therefore, the momentum of the bullet is 10 kg·m/s [N].

1. What is the momentum of an 8.0-kg shot-put moving at 16 m/s
[W20°N]? Draw a scale vector diagram to represent this situation.

2. Determine the mass of a car that is travelling eastbound at 72 km/h
with a momentum of 9.0 � 104 kg·m/s [E].

3. Draw a vector diagram to show
a) a 0.5-kg baseball travelling south toward home plate at 32 m/s.
b) a 0.5-kg baseball travelling north away from home plate at 45 m/s.
c) Calculate the change in momentum of the ball if its motion

changes from a) to b). Draw a scale diagram.

4.3 Linear Momentum and Impulse
In order to change an object’s momentum, we must change either its veloc-
ity or its mass. To change velocity, we need to apply a net force on the
object. Newton suggested that the rate of change of momentum in an object
is directly proportional to the net force applied to it.
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Scale: 1 cm � 5 kg�m/s

� 10 kg�m/s [N]�p

Fig.4.3 Momentum is a vector. Its

direction is indicated by an arrow,

and its magnitude is indicated by 

the arrow’s length.
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Fig.4.4 A vehicle changes its speed

as a force is applied during a time

interval, �t, thereby changing the 

linear momentum of the car



A driver approaching a red light must apply the brakes in order to
reduce the vehicle’s velocity. The force of friction between the brake pads
and disks, and between the rubber tires and the road, allows the driver to
slow down and to eventually stop. The force causes the momentum to
change to zero in a time interval ∆t. Mathematically, this change in momen-
tum with repect to time can be written as ∆p�� and

F�� � �
∆
∆

p�

t

�
�

where F�� is the force applied, measured in newtons (N), ∆p�� is the change in
momentum, measured in kilogram metres per second (kg·m/s), and ∆t is
the change in time, measured in seconds (s).

The force applied and the change in momentum are both vector quanti-
ties. The direction of the force applied is the same as the direction of the
change in momentum. The change in momentum can also be written as

∆p�� � p��final � p��initial

where p��final and p��initial are the final momentum and initial momentum,
respectively. To simplify this statement, we can use the subscript o to
represent the initial or original momentum and the subscript f to represent
the final momentum. The equation for the change in momentum is written as 

∆p�� � p��f � p��o

The change in linear momentum is called impulse, J��. Mathematically,

J� � ∆p��

Isolating ∆p�� in F�� � �
∆
∆

p�

t

�
� gives

J� � F��∆t

where J� is measured in newton-seconds (N·s), F�� is the net force, measured
in newtons (N), and ∆t is the time interval during which the force was
applied, measured in seconds (s).

The impulse, the net force, and the change in momentum are all vector
quantities with the same direction. Combining the two equations for the
impulse, J� � ∆p�� and J� � F��∆t, we obtain

F��∆t � ∆p��

F��∆t � p��f � p��o

F��∆t � mv��f � mv��o

F��∆t � m(v��f � v��o)
F��∆t � m∆v��

which is the equation for Newton’s second law of motion.
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F���t � m�v�

F�� � �
m

�

�

t

v�
�

But a�� � �
�

�

v

t

�
�; therefore,

F�� � ma�� (Newton’s second law)



Figure 4.5 summarizes when to use the equation for impulse and when
to use the equation for momentum.

Fig.4.5 Cause and Effect from Newton’s Second Law

e x a m p l e  2 The impulse on a shell

The average accelerating force exerted on a 2.00-kg shell in a gun barrel
is 1.00 � 104 N, and the muzzle velocity is 200 m/s. Calculate

a) the impulse on the shell.
b) the length of time it takes for the shell to exit the heavy gun barrel. 

Solution and Connection to Theory

Muzzle velocity is the shell’s velocity as it exits the gun barrel. In this case,
the shell starts from rest and attains a velocity of 200 m/s. We will consider
the shell’s direction along the barrel of the gun as positive. Also associated
with firearms is the recoil velocity. When a rifle, handgun, or cannon is
fired, the device kicks backwards because of the force of the explosion.

Given 
m � 2.00 kg F � 1.00 � 104 N vo � 0 vf � 200 m/s
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a) Assuming the bullet goes in the positive direction, from the impulse
equation,
J� � �p��

J� � p��f � p��o

J� � mv��f � mv��o, where v��o � 0
J � (2.00 kg)(200 m/s)
J � 400 kg·m/s

The impulse on the shell is 400 N·s along the barrel of the gun.

b) To find the length of time it took the shell to exit the gun barrel, we
can use our result from part a):

J� � F���t

�t � �
F�
J�
��

�t � �
1
4
.0
0
0
0

�

kg·
1
m
04

/
N
s

�

�t � 0.0400 s

The time it takes for the shell to leave the gun is 4.00 � 10�2 s.

Figure 4.6 summarizes the steps to follow when solving impulse and linear
momentum problems.

Fig.4.6 Calculating Impulse and Momentum
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e x a m p l e  3 Solving impulse and momentum problems

What velocity will a 300-kg snowmobile acquire if pushed from rest by a
force of 6240 N [E] for 1.25 s? What average force will stop this snow-
mobile from moving at this speed in 1.25 s?

Solution and Connection to Theory

Given
m � 300 kg     F�� � 6240 N [E]     ∆t � 1.25 s     v��o � 0

Let’s assume that east is positive.

Using F��∆t � m∆v��,

F��∆t � m(v��f � v��o), where v��o � 0.

v��f � �
(F��

m
∆t)
�

vf ��
(6240

30
N
0
)(
k
1
g
.25 s)

�

vf � 26.0 m/s

Therefore, the velocity of the snowmobile after the constant force was
applied is 26.0 m/s [E].

In order to find the force required to stop the snowmobile,

F��∆t � m∆v��

F��∆t � m(v��f � v��o), where v��f � 0 because the snowmobile comes to a stop. 

Therefore,

F��∆t � �mv��o

F�� � �
�

∆
m

t
v��o

�

F �

F � �6240 kg·m/s2

Therefore, the force required to stop the snowmobile in 1.25 s is 
�6.24 � 103 N[E] or 6.24 � 103 N[W]. This force has the same magni-
tude but the opposite direction of the initial force.

[�(300 kg)(26.0 m/s)]
���

1.25 s
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U N I T  A N A LYS I S
Show that N·s/kg � m/s 

Starting with 
N·s/kg, where 1 N � 1 kg·m/s2

N·s/kg � kg·m/s2·s/kg

Canceling the common factors, 
we are left with
N·s/kg � m/s 



Force-versus-Time Graphs

Another way to represent impulse is by graphing the force applied versus
time. We will consider three different situations: a constant force, a uni-
formly varying force, and a non-uniformly varying force.

Figure 4.7b represents a constant force of 400 N [forward], applied over a
given time period on a racecar accelerating from rest. Since the force is con-
stant, we can calculate the impulse at any time interval. For instance, the
impulse for the first 5 s is

J� � F��∆t
J � (400 N)(5 s)
J � 2000 N·s

Notice that the area under the force-versus-time graph also represents impulse.
What if the force is not constant? The impulse, J� is still the area under the
force-versus-time graph. J� � F���t is an algebraic description of the impulse
only when the force is constant.
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Fig.4.7a A racecar accelerates at a uniform rate as a result

of a constant applied force (a�� � �
m

F��
�)

Fig.4.7b A constant force of 400 N over 5 s

allows the racecar to accelerate from rest

Fig.4.8 Impulse in sports



e x a m p l e  4 A graphical representation of impulse

Calculate the impulse for the time interval shown in each of the 
following graphs.

a) Figure 4.9a represents a decreasing force over a time period, such as a
stretched elastic band on a slingshot that is released.

b) Figure 4.9b represents a varying force over a short time period.
Varying forces are found in sports, such as a golf driver coming into
contact with a golf ball, or a tennis racket coming into contact with a
tennis ball. The force on the tennis ball increases with the greater
indentation of the racket, as illustrated in Figure 4.9c.

Solution and Connection to Theory

The impulse in Figure 4.9a is found by calculating the area under the
graph (see Figure 4.10a). The shape under the graph is a trapezoid. The
area of a trapezoid is given by

A � �
1
2

�(a � b)h, where A � J� and a � F��o, b � F��f, and h � ∆t

J� � �
1
2

�(F��o � F��f)∆t

J � �
1
2

�(70 N � 20 N)(1.0 s)

J � 45 N·s

The impulse applied in 1.0 s is 45 N·s [E].

Figure 4.10a also shows a horizontal line at F��avg. The area under this line,
F��avg∆t, also represents the impulse for this uniformly changing force.
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Fig.4.9b The varying force of a tennis

racket on a tennis ball. The force increases,

then decreases over the time interval.

Fig.4.9a A stretched elastic band applies

more force than a limp elastic band. The

applied force is decreasing over time as the

stretched band returns to its relaxed state.

We can’t use J� � F���t to find impulse

because the forces are not constant.

Fig.4.9c
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c) The force applied in Figure 4.9b is non-uniformly changing. Since we
don’t know the average force, we can’t use the equation F��avg∆t. Our
only recourse is to determine the area under the graph. As illustrated
in Figure 4.10b, we can only estimate its area by counting the total
number of squares and multiplying that number by the length and
width of each square. There are approximately 72 squares, each with
an area of (2.5 N)(0.05 s) � 0.125 N·s. The total area is therefore
approximately (72)(0.125 N·s) � 9 N·s [E].

� F (
N

) 
[E

]

0.2 0.6 0.8 1.00.4

t (s)

70

60

50

40

30

20

10

0

�Favg  

b

a

h

� F (
N

) 
[E

]
0.1 0.3 0.4 0.50.2 0.6 0.7

t (s)

40

35

30

25

20

15

10

5

0

Fig.4.10bFig.4.10a

a
b

h

Atrapezoid � 1/2 (a � b)h

The expression �
1

2
�(F��o � F��f) represents

the average force applied, written 

as F��avg.

J� � F��avg�t

A LT E R N AT I V E  S O LU T I O N
Divide the graph time interval into n sub-intervals, each of duration �

∆
n

t
�. Assuming the force 

is constant for each interval at Favg, the total area (impulse) is the sum of the areas of the 

sub-intervals:

J� � F��1�t � F��2�t � F��3�t … � F��n�t

If we divide the 0.7-s interval into seven -s intervals as in Figure 4.10b, then the total

impulse is

J� � F��1�t � F��2�t � F��3�t … � F��n�t

J � (2 N)(0.1 s) � (7 N)(0.1 s) � (16 N)(0.1 s) � (24 N)(0.1 s) �

(23 N)(0.1 s) � (14 N)(0.1 s) � (4 N)(0.1 s)

J � 9 N·s

The impulse is 9 N·s [E].

In calculus, the method for finding the area under a curve is integration. The equation for 

calculating impulse is written as 

J ��t2

t1

F·dt

1
�
10

Fig.4.11 The area of a trapezoid



1. Calculate the impulse on each of the following objects.
a) A force of 3257 N [forward] is applied to a 2000-kg car for 1.3 s.
b) A 30.0-g bullet is fired from a gun. The bullet’s speed increases

from 0 m/s to 200 m/s in 0.05 s.
c) A 500-g ball falls vertically for 3 s.

2. A 54-kg truck tire strikes the pavement with a speed of 25 m/s [down]
and rebounds with a speed of 20 m/s [up]. Ignoring any effects due to
air resistance, determine the change in the tire’s momentum.

3. The impulse on a human cannon ball is 2.5 � 103 N·s. The cannon
ball has a mass of 65 kg.
a) What force does the cannon exert on the human cannon ball if

it takes 0.2 s for the human cannon ball to leave the cannon?
b) How long is the barrel of the cannon if the cannon ball leaves the

cannon at 120 km/h?
4. Calculate the impulse for each situation in Figure 4.12.

Fig.4.12
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4.4 Conservation of Linear Momentum 
in One Dimension

The law of conservation of energy states that energy cannot be created
or destroyed; it can only change from one form to another. The same con-
cept holds true for momentum. In the 17th century, Sir Isaac Newton rec-
ognized that momentum is conserved in a collision. The total momentum of
a system before a collision is equal to the total momentum of the system
after collision. This statement is known as the law of conservation of 
linear momentum. It applies to all collisions as long as the net external
force acting on the system is zero.

A system represents all the objects involved in a collision. If the net
external force on all objects as a group is zero, we say that the system is an iso-
lated or a closed system. For instance, a ball rolling along a frictionless hor-
izontal surface with no external forces acting on the ball is a closed system.
On the other hand, a ball thrown upwards is not a closed system because the
external force of Earth’s gravity is pulling on it.

The conservation of momentum is written as

p��totalinitial � p��totalfinal

p��To � p��Tf

For two solid objects colliding, the conservation of momentum can be
written as

m1v��1o � m2v��2o � m1v��1f � m2v��2f

The subscripts 1 and 2 refer to the different objects involved in a collision.
The first part of the equation, m1v��1o � m2v��2o, represents the initial momen-
tum (i.e., the momentum before the collision). The second half of the equa-
tion, m1v��1f � m2v��2f, represents the final momentum (i.e., the momentum
after the collision) if the masses remain intact and their velocities change.

The law of conservation of momentum is very useful in predicting what
will happen in a collision. Many real-life situations involve collisions in
some form or another, from gas molecules in chemistry, police investiga-
tions of car accidents, and ballistics, to the study of subatomic particles and
light by physicists.
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when two billiard balls collide head on
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will be further discussed in Chapter 5.



e x a m p l e  5 Conservation of linear momentum 

when firing a cannon

A shell of mass 7.0 kg leaves the muzzle of a cannon with a horizontal
velocity of 490 m/s [right]. Find the recoil velocity of the cannon if its
mass is 700 kg.

Solution and Connection to Theory

Let the subscripts s and c represent the shell and the cannon, respectively.
Right is the positive direction.

Before firing After firing
ms � 7.0 kg ms � 7.0 kg
mc � 700 kg mc � 700 kg
v��so � 0 m/s (starts from rest) v��sf � 490 m/s [right] � �490 m/s
v��co � 0 m/s (starts from rest) v��cf � ?

Because the cannon is recoiling, we know that the direction of its
velocity is to the left, or negative. Using the law of conservation of lin-
ear momentum,

p��To � p��Tf

msv��so � mcv��co � msv��sf � mcv��cf

v��cf �

vcf �

vcf � �4.9 m/s

The velocity of the cannon after collision is �4.9 m/s or 4.9 m/s [left].

The velocities of the cannon and cannon ball are both measured with
respect to Earth. With respect to the cannon, the speed of the cannon ball
is 494.9 m/s (490 m/s � 4.9 m/s). In the case of a rifle and bullet, this
speed would represent the muzzle velocity.

(7.0 kg)(0 m/s)�(700 kg)(0 m/s)�(7.0 kg)(�490 m/s)
�������

700 kg

msv��so � mcv��co � msv��sf���
mc
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Before firing
After firing, the 
cannon moves 
back (recoils)

Fig.4.14 As a cannon fires, the cannon

itself recoils or moves backward

T H R U ST
A phenomenon similar to muzzle
velocity occurs in rocket propulsion.
The rocket ejects gases from its tail
at a high velocity, just as a rifle
ejects bullets from its barrel. A
rocket’s mass isn’t constant because
the fuel it contains is constantly
decreasing. The resultant force is
called the thrust:

F��thrust � v��gas� �∆m
�
∆t

A simplification:

p��To
� 0 (v�so

� v�co
� 0 m/s)

so p��Tf
� 0

Therefore, 

msv�sf
� �mcv�cf

and

v�cf
�

vcf
�

vcf
� �4.9 kg

�(7.0 kg)(490 m/s)
���

700 kg

�msv�sf�
mc



e x a m p l e  6 A collision where the masses stick together

An arrow flying at 60 m/s strikes and imbeds itself in a 300-g apple at
rest. After impact, the apple and arrow move horizontally at 12 m/s.
What is the mass of the arrow?

Solution and Connection to Theory

Assume that forward motion is positive and that the arrow is travelling
forward.

Before collision
mapple � 300 g � 0.300 kg
marrow � ?
vappleo � 0 m/s
varrowo � 60 m/s

After collision
Since the arrow is embedded in the apple, we can write the mass and
velocity after the collision as

mtotal � mapple � marrow and  v��f � 12 m/s [forward]

Using the law of conservation of linear momentum,

p��To � p��Tf

mapplev��appleo � marrowv��arrowo � (mapple � marrow)v��f

Since v��appleo � 0,

marrowv��arrowo � (mapple � marrow)v��f

marrowv��arrowo � mapplev��f � marrowv��f

marrow � �
v��a

m

rrow

ap

o

pl

�
ev��f

v��f
�

marrow �

marrow � 0.075 kg

The mass of the arrow is 75 g.

(0.300 kg)(12 m/s)
���

60 m/s � 12 m/s
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Figure 4.15 summarizes how to solve problems involving the conserva-
tion of linear momentum.

Fig.4.15 Momentum is Conserved in All Situations

1. A lab cart of mass 1.2 kg and a velocity of 6.4 m/s [forward] collides
with a stationary lab cart of mass 3.6 kg. Calculate the velocity of
the second cart if the first cart rebounds with a velocity of 
1.2 m/s [backward].

2. Find the recoil velocity of a 1.9-kg rifle if a 30-g bullet has a veloc-
ity of 750 m/s after firing.

3. A cue ball of mass 400 g hits the stationary eight ball of the same
mass head on with a top spin. If the velocity of the cue ball is 
3.0 m/s [forward] before collision and 1.0 m/s [forward] after collision,
determine the velocity of the eight ball after collision.

4. An unstable atom of momentum 7.9 � 10�17 kg·m/s [left] disinte-
grates into two particles, one of which has a mass 80 times that of
the other. If the larger particle moves to the right at 4.5 � 103 m/s
and the smaller particle moves to the left with a speed of 
1.5 � 106 m/s, what is the mass of the smaller particle?

5. Five coupled freight cars, each of mass m, are travelling at a con-
stant speed, v, on a straight and level track. They collide with two
coupled stationary cars, each of mass 2m. If all the cars are coupled
together after the collision, what is their common speed?
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Collision

Find initial values of momentum   
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stops

Move in same 
direction
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�
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4.5 Conservation of Linear Momentum 
in Two Dimensions

During a glancing collision, the objects involved are deflected in more
than one dimension. Typically, in a curling shot (Figure 4.16), the stones
that collide move away at various angles because the collision was not a
head-on collision. In this section, we will look at two-dimensional collisions
and apply the law of conservation of momentum using vector addition.

e x a m p l e  7 Solving momentum problems in two

dimensions involving equal masses

Two identical curling stones of mass 19.5 kg collide, as shown in
Figure 4.17. The first stone hits the stationary second stone with a veloc-
ity of 5.0 m/s [N]. If the velocity of the first stone is 3.2 m/s [N30°W]
after collision, find the velocity of the second stone after collision. Omit
any effects due to friction.

Fig.4.16 The game of curling often involves glancing collisions



Solution and Connection to Theory

Method 1: Components
Let the subscripts 1 and 2 represent the first and second curling stones.

Given
m1 � m2 � 19.5 kg

Before collision After collision
v��1o � 5.0 m/s [N] v��1f � 3.2 m/s [N30°W]
v��2o � 0 v��2f � ?

p��1o � (19.5 kg)(5.0 m/s [N]) � 97.5 kg·m/s [N]
p��2o � 0
p��1f � (19.5 kg)(3.2 m/s [N30°W]) � 62.4 kg·m/s [N30°W]
p��2f � ?

Let’s assume that north and east are positive. Since momentum is
always conserved in any collision,

p��To � p��Tf

p��1o � p��2o � p��1f � p��2f

p��2f � p��1o � p��1f

p��2f � 97.5 kg·m/s [N] � 62.4 kg·m/s [N30°W]

Fig.4.19a Fig.4.19b 
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�        p1o 

� 97.5 kg�m/s [N]

 (
6

2
.4

 k
g

�m
/s

)s
in

 6
0

° 
�

 5
4

 k
g

�m
/s

 (�62.4 kg�m/s)cos 60° � �31.2 kg�m/s

   
�

      p
1

f �
 62

.4
  m

/s [N
30

°W
]

60°

Before collision

�v2o

After collision

 � 0 m/s

�v1o
 � 5.0 m/s [N]

�v1f
 � 3.2 m/s [N30°W] �v2f

 � ?

m1

m2 m1 m2

30°

Fig.4.17 When solving

momentum problems, we

always draw two diagrams: one

to represent the momentum

before the collision, and one

to represent the momentum

after the collision

�a �a

�b

�a

�b

�a

�b

�b

�b

�a �b�

�b �a–

�a–

�a–

�b

�b �a–

�a

or

Fig.4.18 Adding and

subtracting vectors



From Figure 4.19b, for the vertical components, 

p��1o(v) � p��2o(v) � p��1f(v) � p��2f(v)

p��2f(v) � p��1o(v) � p��1f(v)

p2f(v) � 97.5 kg·m/s � (62.4 kg·m/s)sin 60°
p2f(v) � 97.5 kg·m/s � 54.0 kg·m/s
p2f(v) � 43.5 kg·m/s 

For the horizontal components, 

p��1o(h) � p��2o(h) � p��1f(h) � p��2f(h)

p��2f(h) � �p��1f(h)

p2f(h) � 0 � (�62.4 kg·m/s)cos 60°
p2f(h) � 31.2 kg·m/s 

Fig.4.19c

p2f � �(43.5�kg·m/�s)2 ��(31.2�kg·m/�s)2�
p2f � 53.5 kg·m/s

tan 	 � �
4
3

3
1.

.
2
5

k
k

g
g
·
·

m
m

/
/
s
s

�

	 = 35.6°

From Figure 4.19c, the momentum direction is north and east; therefore,

p��2f � 53.5 kg·m/s [N35.6°E]

To find the velocity of the second stone,

v��2f �

v��2f � 2.7 m/s [N35.6°E]

As a check, we can draw a scale diagram (see Figure 4.19d) to verify the
magnitude and direction of p��2f.

53.5 kg·m/s [N35.6°E]
���

19.5 kg
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Method 2: Trigonometry
Alternatively, we can use the sine and cosine laws to find the length of
the vector and its direction.

Fig.4.19d

From Figure 4.19d, the angle between p��1o and p��1f is 30°. Using the cosine
law, we can find the magnitude of p��2f:

c2 � a2 � b2 � 2ab cos C

(p2f)
2 � (97.5 kg·m/s)2 � (62.4 kg·m/s)2

� 2(97.5 kg·m/s)(62.4 kg·m/s)cos 30°

p2f � 53.5 kg·m/s

The magnitude of the second stone’s momentum after collision is 
53.5 kg·m/s. Now we use the sine law to determine the angle between p��1o

and p��2f. We can call this angle 	.

�
s
6
i
2
n
.4
	

� � �
si

5
n
3
3
.5
0°

�

	 � 35.6°

Therefore, p��2f � 53.5 kg·m/s [N35.6°E]

m2v2f � 53.5 kg·m/s

v2f � �
53.

1
5
9

k
.5

g·
k
m
g

/s
�

v2f � 2.7 m/s

Therefore, v��2f � 2.7 m/s [N35.6°E]. The direction of the final velocity of
the second stone is found by looking at the vector diagram in Figure 4.19d.

Sine law:

Cosine law:

sin A
a

sin B
b

sin C
c

� �

a2 � b2 � c2 –  2bc cos A
b2 � a2 � c2 –  2ac cos B
c2 � a2 � b2 –  2ab cos C

a

b

A

B

C

c

Fig.4.20 Sine law and cosine law

for oblique triangles

  
 
�        p2f 

� ?

  
p1f 

� 62.4 kg�m/s 

	

30°

  
 
�        p1o

 
 
� 97.5 kg�m/s [N]
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25°

20°

N

S

W E

v2f
� 4.1 m/s

v1f
� 5.5 m/s

Fig.4.22

Figure 4.21 summarizes the method for solving linear momentum prob-
lems using the component method.

Fig.4.21 Component Method for Addition of Momentum Vectors

e x a m p l e  8 Solving momentum problems in two dimensions

involving unequal masses

A 5.0-kg bomb at rest explodes into three pieces, each of which travels
parallel to the ground. The first piece, with a mass of 1.2 kg, travels at
5.5 m/s at an angle of 20° south of east. The second piece has a mass of
2.5 kg and travels 4.1 m/s at an angle of 25° north of east (see Figure
4.22). Determine the velocity of the third piece. Use two different methods.

Solution and Connection to Theory

Let m and v��o represent the mass and velocity of the bomb, respectively,
before the explosion. Let m1, m2, and m3, and v��1f, v��2f, and v��3f represent the
masses and velocities of the three pieces, respectively, after the explosion.

Break down all momentum vectors into x and y components

Write an expression for the 
conservation of momentum

in the x direction

Write an expression for the 
conservation of momentum

in the y direction

Simplify and isolate the 
unknown variables
(e.g.,        � ... )

Simplify and isolate the 
unknown variables
(e.g.,        � ... ) 

�ptotalfinal
 � �ptotalinitial

Solve for the velocity
(if required)

  
 

        p3fx
  
 

        p3fy

Use Pythogoras’
theorem and the

 tangent function to
solve for momentum

method

p
ro c e ss

of
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Given
Before explosion After explosion
m � 5.0 kg m1 � 1.2 kg    m2 � 2.5 kg 

m3 � 5 kg � (1.2 kg � 2.5 kg) � 1.3 kg

v��o � 0 m/s v��1f � 5.5 m/s [E20°S] 
v��2f � 4.1 m/s [E25°N]
v��3f � ?

p��o � 0 p��1f � (1.2 kg)(5.5 m/s [E20°S]) � 6.6 kg·m/s [E20°S]
p��2f � (2.5 kg)(4.1 m/s [E25°S]) � 10.25 kg·m/s [E25°N]
p��3f � (1.3 kg)(v��3f)

From the law of conservation of momentum,

p��totalinitial � p��totalfinal

p��To � p��1f
� p��2f

� p��3f
� 0

p��3f
� �p��1f

� (�p��2f
)

Method 1: Components
Since po � 0, the sum of the x and y components of momentum for the
three pieces must be zero.

Adding the east–west components (Figures 4.23a and 4.23b),

0 � p��1fx � p��2fx � p��3fx

p��3fx � �p��1fx � p��2fx

p3fx � �(6.6 kg·m/s)cos 20° � (10.25 kg·m/s)cos 25°

p3fx � �15.5 kg·m/s

Adding the north–south components (Figures 4.23a and 4.23b),

0 � p��1fy � p��2fy � p��3fy

p��3fy � �p��1fy � p��2fy

p3fy � �(�6.6 kg·m/s)sin 20° � (10.25 kg·m/s)sin 25°

p3fy � �2.26 kg·m/s � 4.33 kg·m/s

p3fy � �2.07 kg·m/s

To find the magnitude of the momentum of the third piece,

p3f � �(p3fx)
2�� (p3f�y)

2�
p3f � 15.6 m/s

25°

(10.25 kg�m/s)sin 25°

(10.25 kg�m/s)cos 25°

 � 10.25 kg �m/s

p2 f

Fig.4.23b

20°

(�6.6 kg�m/s)sin 20°

(6.6 kg �m/s)cos 20°

p
1
f  � 6.6 kg�m/s

Fig.4.23a
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Fig.4.23c

For the angle,

tan 	 � �p
p

3

3

f

f

x

y
�

tan 	 � �
1
2

5
.0

.5
7 k

k
g
g
·
·

m
m

/
/
s
s

�

	 � 7.6°

Therefore, p��3f � 15.6 kg·m/s [W7.6°S]

m3v3 � 15.6 kg·m/s

v3 � �
15.6

1.
k
3

g
k
·
g
m/s

�

v��3 � 12 m/s [W7.6°S]

Therefore, the final velocity of the third piece is 12 m/s [W7.6°S].

Method 2: Trigonometry

Fig.4.23d

Using the cosine law and Figure 4.23d,

(p3f)
2 � (6.6 kg·m/s)2 � (10.25 kg·m/s)2 � 2(6.6 kg·m/s)(10.25 kg·m/s)cos 135°

(p3f)
2 � 244.3 (kg·m/s)2

p3f � 15.63 kg·m/s

Substituting 1.3 kg for m3,

v3f � �
15.6

1.
k
3

g
k
·
g
m/s

�

v3f � 12 m/s

Therefore, the magnitude of the velocity of the third piece is 12 m/s. 
We can determine its direction using the sine law.

  
 
�        p3fy

  
 
�        p3fx

  
 
�        p3f

	

135°

25°

20°

25°
�  p1f 

� 6.6 kg�m/s

 
� p3f

� m3

 
� v3f

�  p2f  
� 10.25 kg�m/s

	



From Figure 4.23d, solving for the angle 	 between p3f
and p2f

, we obtain

�
15

s
.
i
6
n

k
1
g
3
·
5
m
°

/s
� � �

6.6
s
k
in
g·

	

m/s
�

	 � 17.4°

We need the angle from the horizontal. From Figure 4.23d,

25° � 17.4° � 7.6°

From Figure 4.23d, the directions of the angle are west and south;
therefore, the direction of the third piece is [W7.6°S] and its velocity is 
12 m/s [W7.6°S].

1. A 2.0-kg steel ball rolling at 5.0 m/s [W] strikes a second steel ball of
equal mass at rest. After a glancing collision, the first ball is deflected
[N35°W] at 3.0 m/s. Determine the velocity of the second ball.

2. A hockey player of mass 85 kg, travelling at 15 m/s [N], collides with
another hockey player of mass 70 kg travelling at 5.0 m/s [E]. If the
two players lock skates during the collision and are held together,
find the resultant velocity of the pair. (Assume there is no friction.)

3. A 0.5-kg grenade explodes horizontally into three pieces. The first
piece has a velocity of 10 m/s [N] and a mass of 0.10 kg. The second
piece has a velocity of 5.0 m/s [S10°E] and a mass of 0.20 kg. Find
the velocity of the third piece.

4. A billiard ball of mass 0.50 kg, moving with a velocity 2.0 m/s 
[forward], strikes a second ball of mass 0.30 kg, initially at rest. A
glancing collision causes the first ball to be deflected at an angle of
30° to the left of its original direction with a speed of 1.5 m/s.
Determine the velocity of the second ball after collision.

Linear Momentum and the Compton Effect
The conservation of linear momentum applies even at the atomic level.
The Compton effect (Figure 4.24) describes the conservation of momen-
tum when x-ray photons collide with electrons. The momentum of an x-ray
photon before a collision with an electron is equal to the momentum of
the ejected electron and of the x-ray photon after collision with an elec-
tron. We will discuss the Compton effect in greater detail in Chapter 12.

210 unit  b :  Energy and Momentum

“Every great discovery I ever made, 

I gambled that the truth was there

and then I acted on it in faith until 

I could prove its existence.” Arthur

Compton (1892–1962), Nobel 

laureate in physics, 1927
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4.6 Linear Momentum and Centre of Mass

Recall from Chapter 3 that the centre of mass (cm) of a solid, homogeneous
object is the point at which a body’s entire mass may be considered to be
concentrated for analyzing its motion (see Figure 4.25). The centre of mass
for a system consisting of two identical objects, such as two billiard balls, is
the point midway between the objects. Figure 4.26b represents the glancing
collision of two identical objects. The dotted line represents the centre of
mass of the two objects at every instant of the collision. Unlike the centre
of mass of two individual objects, the path of the centre of mass between two
objects doesn’t deviate; that is, it is always midway between the objects. The
momentum of the centre of mass is conserved. We can calculate the momen-
tum of the centre of mass as follows:

p��totalinitial � p��totalfinal � p��cm

Ejected electron
with kinetic energy

Thin metal foil

High-energy x-rays

Lower-energy x-rays
Fig.4.24 The Compton effect

Fig.4.25 For the human balancing act shown here, the acrobats’ centre of

mass lies in a vertical line somewhere above the feet of the supporting acrobat.



For two objects of unequal mass, the centre of mass is found along the
straight line between their centres. The point representing the centre of
mass divides the line into two parts in an inverse ratio to the masses of the
objects; that is, the centre of mass is always closer to the more massive
object. For instance, for a system with a 2.0-kg steel ball and a 1.0-kg steel ball,
the centre of mass is on a point �

1
3

� the distance away from the 2.0-kg ball.
Then we can consider the system as one 3.0-kg ball moving along at the
location of the centre of mass, as shown in Figure 4.28.
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Centre of mass

m2

m1

EW

x

x

x
x

x

x
x

x

x

x
x

x

x

x

x

x

N

S

Fig.4.26b The centre of mass of a system of two idential masses in two

dimensions. Note that the momentum of the centre of mass doesn’t change

direction after the collision. The time between consecutive balls is 0.1 s.

The centre of mass of two unequal

masses is like the balance point of

an unequal barbell.

Fig.4.27

Centre of
mass

m1 m2
Centre of

mass Stationary

Fig.4.26a The centre of mass of 

a system of two identical masses in

one dimension
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1. Determine the centre of mass of
a) two identical objects 3.0 m apart.
b) a 5.0-kg ball and a 2.0-kg ball 60 cm apart.
c) a 400-kg satellite and a 200-kg satellite 20 km apart.

2. Refer to the collision illustrated in Figure 4.28.
a) Using a ruler and a protractor, determine the momentum before

and after the collision for the first ball (m1 � 2.0 kg), the second
ball (m2 � 1.0 kg), and the centre of mass (mcm � 3.0 kg).

b) Draw a vector diagram to represent the total momentum
i) before collision. ii) after collision.

c) How does the total momentum before and after collision com-
pare to the momentum of the centre of mass?
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1.25 cm

S

m2  � 1.0 kg

m1    � 2.0 kg

8°

1/3s1

2/3s1

Fig.4.28 The momentum of the

centre of mass of two objects with

different masses. The time between

consecutive images is 0.1 s. “x”

represents the centre of mass.
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Fig.STSE.4.1 Snowmobiles are

becoming more popular as a form of

recreation. They are also becoming

more massive and powerful.

Recreational Vehicle Safety and Collisions

Recreational vehicles such as all-terrain vehicles (ATVs), snowmobiles,
motorized scooters, or motorcycles (Figures STSE.4.1 and 4.2) are a popular
form of entertainment in many parts of Canada. Some of these vehicles,
such as the snowmobile, had practical beginnings when they were the only
type of vehicle able to access areas isolated by heavy winter snowfall. Now
capable of achieving greater speeds, the open nature of the driving compart-
ment of these vehicles means that the vehicle operators are exposed to and
unprotected from the surroundings. It is impractical and most likely unsafe
to install any form of passenger restraint systems, such as seat belts or air
bags, to improve crash survivability. The operation of these vehicles is
restricted by provincial and federal laws as well as by municipal bylaws in
an attempt to ensure driver safety. Mopeds, a form of a motor-assisted bicycle
(see Figure STSE.4.3), were considered to be a bicycle when they first
became popular for their low fuel consumption during the “energy crisis” in
the early 1970s. By 1973, they required the use of helmets and needed to be
licensed as a motorized vehicle. 

The collision dynamics of smaller vehicles is different than the collision
dynamics of automobiles because the ratio of the passenger’s mass to the
vehicle’s mass is greater. Without significant tethering, the passengers of
smaller vehicles run the risk of becoming projectiles, which increases the
chances of serious injury and death.

Design a Study of  Societal  Impact

Insurance companies base their premium rates on risk analysis, and
injury and death rate statistics. Even your generic life insurance 
premiums may be different if you are licensed to drive a motorcycle or
other small vehicle.
a) Examine the relative safety of various vehicles, including recreational

vehicles, by researching insurance rates for these vehicles. Many
insurance companies provide online premium quote engines on their
Web sites (see<www.irwinpublishing.com/students>. Find out what
other factors affect your insurance rate.

b) Research vehicle safety equipment such as helmets, extra padding,
or other design changes that could improve vehicle safety. Write a
short cost–benefit analysis paper on how safety equipment, although
necessary, might detract from the enjoyment of riding the vehicle.

c) What local laws or restrictions improve vehicle safety?

Fig.STSE.4.3 Mopeds (motorized

bicycles) were once regulated as 

regular bicycles before stricter 

licensing came into effect

Fig.STSE.4.2 Drivers of open 

recreational vehicles like these

scooters are exposed to injury 

in the event of a mishap
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Fig.STSE.4.4 Two snowmobiles

collide. Conservation of linear

momentum is applied in the 

police investigation.

Table STSE.4.1
Mass of driver A 80 kg

Mass of driver B 90 kg

Mass of vehicle A 270 kg

Mass of vehicle B 310 kg

Direction of vehicle A 
before collision [E]

Direction of vehicle B 
before collision [E30°N]

Direction of entangled 
vehicles A and B 
after collision [E15°N]

Length of final skid 18 m

Displacement of driver A 
from point of impact 8 m

Time from impact 
to end of skid 2.5 s

Design an Activ ity  to Evaluate

Figure STSE.4.4 shows a snowmobile accident on Ramsey Lake in
Northern Ontario.

A police officer arrives at the scene of the collision of the two snow-
mobiles (Figure STSE.4.4) to find both drivers unconscious. When the
two vehicles collided, their skis became entangled and the two snow-
mobiles remained locked together as they skidded to a stop. One driver
was thrown clear of the mishap, but the other driver remained in the
driver’s seat. The posted speed limit for snowmobiles in this cottage
area is 60 km/h. The information the police officer obtained from eye-
witness accounts and collision scene measurements are provided in
Table STSE.4.1. One witness described how driver A was thrown 
horizontally at a constant speed from his seat (0.5 m above the snow
surface) to his final resting position.
a) Use the physics of kinematics, projectiles, conservation of momen-

tum, and metric conversions to estimate the pre-collision speed of
both vehicles.

b) What assumptions did you make in your calculations?
c) Which, if either, of the two vehicles was speeding?
d) How would you respond if asked how confident you were of the

results of your calculations? Could you be so sure that vehicle B was
speeding that you would recommend the officer charge the driver?

Bui ld a Struc ture

a) Use the physics simulation software Interactive Physics™, Exploration
of Physics™, or even a program of your own design to simulate the
collision of the two snowmobiles.

b) Create a simulation of the snowmobile collision on a standard two-
dimensional spark-timer air table. Simulate the driver that is
thrown during the collision by placing a loose marble on one of the
air-table pucks. The landing position of the loose marble will be
marked by impact on tracing paper with carbon paper underneath.

30°

45°

15°

N

W

E

S

A

A

B

�vA � ?

�v
B �

 ?

8 m

18
 m
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You should be able to

Understand Basic Concepts:

Define and describe the concepts and units related to momentum 
and impulse.
Analyze with the aid of vector diagrams the linear momentum of a 
collection of objects, and apply quantitatively the laws of conservation of
linear momentum.

Develop Skills of Inquiry and Communication:

Investigate the conservation of momentum in one and two dimen-
sions by carrying out experiments or simulations and the necessary
analytical procedures.
Compile, organize, and interpret data using appropriate formats and
treatments, including tables, flowcharts, graphs, and diagrams.
Select and use appropriate numeric, symbolic, graphical, and linguistic
modes of representation to communicate scientific ideas, plans, and
experimental results.
Communicate the procedures and results of investigation and research.

Relate Science to Technology, Society, and the Environment:

Analyze and describe, using the concepts and laws of momentum, 
some practical applications of momentum conservation.
Identify and analyze social issues that relate to the development 
of vehicles.
Identify careers related to momentum.

Equations
p�� � mv��

F�� � �
∆
∆

p�

t

�
� � �

m
∆
∆
t
v��

� � ma��

J� � ∆p��

J� � F��∆t

F��∆t � m∆v��

J� � F��avg∆t

p��totalinitial � p�� totalfinal

∆p��total � 0

p��totalinitial � p��totalfinal � p��cm
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Conceptual Questions

1. Describe momentum. Explain why momen-
tum is a vector quantity.

2. Explain what is meant by a closed system and
by an open isolated system.

3. What force is used in the calculation of
impulse, the applied force or the net force?

4. How is impulse related to momentum?

5. Explain why the change in momentum is 
zero in an isolated system.

6. State the law of conservation of momentum
in two ways.

7. Does a ball thrown upward lose momentum
as it rises? Explain.

8. A grenade thrown upward explodes into 45
pieces. Determine the sum of the momentum
vectors after the explosion.

9. A Canadian astronaut is at a space station
working on the Canadarm while wearing his
tool belt containing a left-handed monkey
wrench. He loses his grip on the space station
and begins to float in space. Explain how he
could use the law of conservation of momen-
tum to return to the space station.

10. Use the terms “momentum” and “impulse” to
describe how a rocket can change its course 
in space.

11. Two balls of equal mass and speed are heading
for each other along a horizontal surface.
Write the general equation for the total
momentum before and after collision.

12. An open-top freight car is coasting along a 
railway track at a constant speed. Suddenly, 
it begins to rain. Describe and explain the
changes that will occur in the train’s motion.

13. In Figure 4.29, the objects are held together
after the collision. If both objects have the
same mass, which object is moving faster, 
A or B? Explain your answer.

Fig.4.29

14. In what type of momentum problem would
the component method be preferred over the
trigonometric method for solving?

15. a) Why do grocery clerks lean back when 
carrying heavy boxes?

b) Explain what is meant by “centre of mass”
and how this concept can be applied to
simplify momentum problems.

Problems

4.1 Introduction to Linear Momentum

16. Calculate the momentum of a 7500-kg plane
flying at 120 m/s.

17. Determine the momentum of a 25-g butterfly
flying at 3.0 m/s.

18. What is the momentum of a 25-g ball moving
at 90 km/h?

19. An airplane with a speed of 500 km/h has a
momentum of 23 000 kg·m/s. Calculate the
mass of the plane.



20. The mass of a proton is 1.6726 � 10�27 kg. What
is the speed of the proton if it has a momentum
of 1.00 kg·m/s. Is your answer reasonable?

21. Draw a vector diagram to show the momen-
tum of a 50-g egg falling at a rate of 10 m/s.

22. Draw a vector diagram representing the
momentum of a 6000-kg plane flying north-
west at 300 km/h.

4.3 Linear Momentum and Impulse 

23. A boy pulls a 50-kg wagon from rest horizon-
tally with a force of 250 N [forward] for 3.0 s.
What is the final speed of the wagon if there
is no friction acting on it?

24. A 150-kg go-cart accelerates from rest at a
rate of 2.0 m/s2 for 4.0 s.
a) What is the go-cart’s momentum after 4.0 s?
b) What was the impulse exerted on the 

go-cart?

25. A loose 1.5-kg brick at the top of a 17-m wall
falls to the ground.
a) Calculate the time it takes to fall.
b) Calculate the force acting on the brick as 

it falls.
c) What is the impulse of the brick just before

it hits the ground?

26. A tennis player hits a tennis ball with a force
of 700 N. The racquet is in contact with the
ball for 0.095 s.
a) What is the impulse received by the ball?
b) What is the tennis ball’s change in 

momentum?

27. A 0.20-kg rubber ball, initially at rest, is
dropped from the window of a building. It
strikes the sidewalk with a speed of 25 m/s
and rebounds with a speed of 20 m/s.
Ignoring any effect due to air resistance, 
calculate the magnitude and direction of the
change in momentum of the ball as a result 
of its impact with the sidewalk.

28. Using dimensional unit analysis, show that 
F�t � m�v.

29. For the following momentum vectors (Figure
4.30), representing p��1 and p��2, draw the vector
representing the change of momentum, p��2 � p��1.

Fig.4.30

30. The average accelerating force exerted on a
3.0-kg shell in a gun barrel is 2.0 � 104 N. If
the muzzle velocity is 250 m/s, calculate
a) the impulse on the shell.
b) the length of time it takes the shell to exit

the gun barrel.

31. A 7000-kg transport truck passes a sports 
car at 110 km/h. The truck suddenly loses a
wheel, which causes the driver to lose control
of the truck. The truck hits a concrete barrier
and comes to rest in 0.40 s.
a) Calculate the average force acting on 

the truck.
b) What would be the magnitude of the aver-

age force if the truck driver had managed
to drive onto the soft shoulder of the road
and stop in 8.0 s?

32. A police investigator doing some ballistics
testing in his laboratory fires a 30-g bullet
with a velocity of 360 m/s into a lead paper-
weight placed against a concrete wall. Because
of a constant resistance force, the bullet pene-
trates 5.0 cm into the paperweight before
coming to a stop. Calculate
a) the initial momentum of the bullet before

the collision.
b) the acceleration of the bullet in the 

paperweight.
c) the average force exerted on the bullet.
d) the time required to stop the bullet in the

paperweight.
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e) the impulse.
f) Draw a force-versus-time graph for 

this situation.

33. A rocket increases its upward force uniformly
from 5.0 � 106 N to 8.0 � 106 N over 15 s.
a) Draw a force-versus-time graph for the

rocket.
b) Calculate the impulse on the rocket.

34. Calculate the impulse for the first 0.9 s in
Figure 4.31.

Fig.4.31

35. Calculate the impulse on a hockey puck 
represented by the graph in Figure 4.32.

36. If the hockey puck in Figure 4.32 has a mass
of 250 g, determine the speed of the puck just
after it is struck by a hockey stick.

Fig.4.32

4.4 Conservation of Linear 
Momentum in One Dimension

37. A 5000-kg train moving at 5.0 m/s [S] collides
with another train of equal mass at rest and
the two trains become coupled. Calculate the
speed of the coupled trains after collision.

38. To impress his friends, a 45-kg skateboarder
runs at 5.0 m/s and jumps on his 2.0-kg skate-
board, initially at rest. Find the combined
speed of the skateboarder and the skateboard.

39. A 65-kg adult skier, skiing at 15 m/s, collides
head on with another skier (m � 100 kg)
moving toward her at 5.0 m/s. If the 65-kg
skier slows to �

1
3

� her initial velocity after the
collision, calculate the velocity of the larger
skier if all the velocities are horizontal and
any effects due to friction are negligible.

40. A soccer ball of mass 0.50 kg is kicked with a
horizontal speed of 20 m/s. If a 30-kg goalie
jumps up and catches the ball in mid-air,
what is the goalie’s horizontal speed just after
she catches the ball?

41. A billiard ball of mass 0.20 kg moving at 
3.0 m/s [right] strikes an identical ball moving
in the opposite direction at 1.0 m/s. If the veloc-
ity of the second ball after collision is 2.0 m/s
[right], what is the velocity of the first ball
after collision?

42. A train loaded with steel, moving at 90 km/h,
collides head on with a stationary train of mass
6000 kg. If the trains couple after collision and
move forward with a velocity of 80 km/h, find
the mass of the train loaded with steel.

43. Beginning with Newton’s third law (F1 � �F2),
derive a statement for the conservation of
momentum (∆p�� � 0).
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44. A particle accelerator accelerates a stationary
proton from rest to 2.2 � 107 m/s. The accel-
erated proton then strikes a stationary alpha
particle (two protons and two neutrons). The
proton combines with the alpha particle to
form a new particle. Assuming that the mass
of the proton is the same as the mass of the
neutron, calculate the velocity of the new 
particle after collision.

45. Three coupled freight cars, each of mass m,
are travelling with a constant speed v on a
straight and level track. They collide with two
coupled stationary cars, each of mass 2m. If
all five cars are coupled together after colli-
sion, what is their common speed?

46. A stationary 50-kg miser carrying a bag of gold
bars (50 kg) is stranded on a frozen pond 200 m
from shore. The miser decides to throw one of
his 500-g shoes toward the opposite shore at 
20 m/s. How long will it take the miser to reach
shore? Omit any effects due to friction.

4.5 Conservation of Linear 
Momentum in Two Dimensions

47. A hockey player with a momentum of 
375 kg·m/s [E] collides with another hockey
player with a momentum of 450 kg·m/s
[N45°E]. The hockey players grab on to each
other’s jerseys when they collide. Omit all
friction between the skates and the ice.
a) Draw a vector diagram to represent the

total momentum before collision.
b) Determine the total momentum after 

collision.

48. A 3.2-kg hawk soaring at 20 m/s [N] collides
with a 0.50-kg sparrow flying at 5.0 m/s [W].
If both the hawk and sparrow are on the same
horizontal plane, find their velocity if the
hawk hangs on to the sparrow after collision.

49. A 3000-kg car travelling at 20 m/s [N] collides
with a 5000-kg truck moving east on an icy
road. The bumpers of the two vehicles
become entangled and the vehicles remain
joined after the collision. Calculate the initial
speed of the truck if both vehicles after colli-
sion go [E30°N].

50. Radioactivity is the result of atoms that decay
or break apart spontaneously. A stationary
parent nucleus of mass 1.2 � 10�24 kg decays
into three particles. One particle of mass 
3.0 � 10�25 kg moves away with a velocity of
2.0 � 107 m/s [E]. Another particle of mass
2.3 � 10�25 kg moves north at a speed of 
4.2 � 107 m/s. Calculate the mass and velocity
of the third particle.

51. A curling stone thrown by the skip takes 
4.8 s to travel 60 m. The stone collides with
another stone. The collision is a glancing one.
If the second stone is deflected 25° and travels
1.5 m/s, calculate the angle of deflection of
the first stone after collision. Omit any effects
due to friction.

52. A 10 000-kg space shuttle moving east at
3000 km/h wishes to change its course by
10°. It does so by ejecting an object at a speed
of 5000 km/h [S]. Calculate the mass of the
ejected object.

53. From Figure 4.33, determine the final velocity
of the first ball after collision if m1 � m2.

Fig.4.33
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54. From Figure 4.33, determine the final velocity
of the first ball after collision if m2 � 2m1.

55. An air table with a spark timer produces the
pattern shown in Figure 4.34. The mass of
each puck is 0.30 kg. Using a ruler and a 
protractor, determine
a) the speed of the pucks before and after col-

lision, if the time between each dot is 0.10 s.
b) the velocity of the pucks before and after

collision. The line of travel of the first
puck before collision is 0°.

c) the total momentum of the pucks before
and after collision. Use a vector diagram.

d) the components of the momentum of each
puck before and after collision.

e) Is momentum conserved in this collision?

Fig.4.34

56. A 1.0-kg grenade explodes into four pieces, all
moving parallel to the ground. The first piece
of mass 0.20 kg moves east at 24 m/s. The
second piece of mass 0.30 kg flies north at 
18 m/s. A third piece of mass 0.25 kg is
directed west at 30 m/s. What is the velocity
of the fourth piece?

4.6 Linear Momentum and Centre 
of Mass

57. A system is made up of two trucks 400 m
apart. One truck has a mass of 5000 kg and
the other truck has a mass of 10 000 kg.
a) What is the total mass of the system?
b) Where is the centre of mass located?

58. A satellite of mass 2000 kg is moving at 
200 m/s [E]. Another satellite of mass 
1000 kg is moving at 200 m/s [S30°E]. 
Draw a vector diagram to indicate
a) the momentum of the first satellite 

before collision.
b) the momentum of the second satellite

before collision.
c) the momentum of the centre of mass

before collision.
d) the momentum of the centre of mass 

after collision.

59. From Figure 4.34, determine the momentum 
of the centre of mass before and after collision.
Assume 0.10 s between consecutive balls.

m1

m1

m2
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Purpose
To verify the conservation of momentum in a
simple lab-cart collision.

Equipment
2 laboratory carts
Timing equipment: tickertape and spark timer.
An alternative method of timing may be used,
such as a photo gates, video camera, motion sen-
sors (CBR), or a stopwatch.
Metre stick
Pins (or nails) and corks (or rubber stoppers)
Newton scale or balance
Various weights
Spring-loaded cart (optional)

Procedure
Part A: Head-on Collision (Equal Masses)

Fig.Lab.4.1

1. Set up two lab carts: one with a pin and another
with a cork, as shown in Figure Lab.4.1.

2. Measure the mass of each cart. Add weights
as needed so that both carts have about the
same mass.

3. Attach the tickertape to the first cart.
4. On a smooth horizontal surface with the sec-

ond cart stationary, collide the first cart with
the second cart so that the pin sticks into the

cork during collision. Collect the data on the
ticker timer, or with CRB motion sensors, for
the velocity of cart 1 before the collision and
the combined carts after the collision.

Part B: Head-on Collision (Unequal Masses)
1. Prepare two lab carts such that the first cart

is about twice the mass of the second cart.
You can either add weights or stack two carts
on top of each other.

2. Measure the mass of each cart.
3. Follow steps 3 to 5 in Part A.

Data
Assign appropriate instrumental uncertainties
for all measurements and complete a table similar
to Table Lab.4.1 for Parts A and B. Place all
measurements of mass and velocity in the table
with uncertainty.

Analysis
1. Calculate the momentum for m1 and m2

before and the combined carts after collision,
including uncertainty.

2. Record your results in the data table.

Discussion
1. Is the momentum in Part A conserved?
2. Is the momentum in Part B conserved?
3. What are some possible reasons conservation of

momentum may not be observed here?
4. Draw a vector diagram for the total momen-

tum before and after collision for Part A only.

Conclusion
Make a concluding statement that summarizes the
success of the lab, with experimental uncertainty.

4.1 Linear Momentum in One Dimension: 
Dynamic Laboratory Carts

Cart 1 Pin

Tape from timer

Cart 2Cork
m1 m2

Part

A

B

C

Cart 1 Cart 2 Combined 
carts after

m1

kg m/s

v1o
v1f

p1f
p1o

kg · m/s

m2

kg m/s

v2o
v2f

p2f
v T p Tp2o

mTo

kg · m/s kg · m/skg              m/s

Table Lab.4.1
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Part C: Exploding Carts
1. Measure the masses of the spring-loaded cart

and another cart of different mass.
2. Set up the spring-loaded cart and another cart

as shown in Figure Lab.4.2. You will need
two pieces of tickertape, one for each direc-
tion. Before the explosion, both carts will
start at rest with the spring compressed.

Fig.Lab.4.2

3. Start the timing devices and release the
spring. Save both tickertapes.

4. Analyze both tapes for final velocity.
5. Complete the analysis and discussion ques-

tions as in Parts A and B.
6. Is the momentum conserved in the explosion?

Cart 1

From timer 1Spring bumper

From timer 2

Cart 2

m2

m1
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Purpose
To investigate a two-dimensional glancing collision

Safety Consideration
Do not touch the air table when the spark timer
is activated!

Equipment
Air table
Spark timer
Magnetic and non-magnetic steel pucks
Vacuum pump
Carbon paper
Metre stick
Tape

Procedure
1. Set up the equipment as shown in Figure

Lab.4.3.

Fig.Lab.4.3

2. Be careful with the electrical connections
and take note of any safety features out-
lined by your teacher.

3. Measure the mass of each puck, including
uncertainty.

4. Make sure that the air table is level. Adjust
the legs of the table so that a puck sitting in
the centre of the table will not slide in any
direction with the air table turned on.

Part A: A Glancing Collision with the
Second Puck Starting from Rest
1. Place a blank sheet of paper on the carbon

paper.
2. Turn on the air pump.
3. Place one of the pucks in the centre of the

table. Call this puck the second puck or
mass 2.

4. Take a few practice shots by sliding a puck
(mass 1) into the edge of mass 2 so that the
collision is a glancing one, as shown in
Figure Lab.4.4a.

Fig.Lab.4.4a

5. Have your partner turn on the spark timer
as you release mass 1 into mass 2 so you can
record the collision on the paper. Remove
the paper from the table. On this paper,
clearly label with a pencil the locations of
mass 1 and mass 2 after the collision.

6. Record the frequency on the spark timer.

Part B: A Glancing Collision with Both
Pucks Moving Toward Each Other
1. Place a blank sheet of paper on top of the

carbon paper.
2. With one hand on mass 1 and the other

hand on mass 2, push the pucks toward
each other such that the resulting collision
is a glancing one, as shown in Figure
Lab.4.4b. Practise this step several times
before turning on the spark timer.
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4.2 Linear Momentum in Two Dimensions: 
Air Pucks (Spark Timers)

m1

m1

m2

	1f

	2f
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Fig.Lab.4.4b

3. Remove the paper from the air table. Clearly
label the paths of mass 1 and mass 2 on
your sheet.

4. Record the frequency of the spark timer.

Data
Part A
1. Prepare a data table similar to Table

Lab.4.2. With a metre stick, draw a straight
line following the path of the puck, m1, you
released. Extend this line well beyond the
point of collision. Now draw a line of best
fit along the path of both pucks after colli-
sion. Measure the angle that both these
lines make relative to the first line drawn.
Record these angles on your paper, as
shown in Figure 4.4a.

2. Measure the distance travelled by each puck
before and after the collision in a specified
time interval. To determine the time, count
the dots. For instance, if the spark timer is
set at 60 Hz, then 60 dots represent 1 s and
6 dots represent 0.1 s. 

3. Record your results in a table like the one in
Table Lab.4.2.

4. Retain your data for further analysis in the
next chapter.

Part B
1. With a metre stick, draw four lines along

the straight part of both curves, as illus-
trated in Figure Lab.4.5 (X-analysis). Draw
a line through the points of intersection, as
shown in Figure Lab.4.5. Measure the angle
of the pucks before and after collision, as
shown. Label these angles on your diagram.

Fig.Lab.4.5

m1 m2

Before

After

x
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x

	1f

	2f

 m2 m1

	1o

	2o

Table Lab.4.2

Part m1 m2 �d1 o
�t1 o

�d2o
�t2o

�d1f
�t1f

�d2f
�t2f


1 o

2o


1f

2f

(g) (g) cm (s) (cm) (s) (cm) (s) (cm) (s) deg deg deg deg

A — — 0 —

B
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Table Lab.4.3

m1 m2 v�1o
v�2o

v�1f
v�2f

p��1o
p��2o

p��1f
p��2f 

p��To
p��Tf

(g) (g) cm/s cm/s cm/s cm/s g·cm/s g·cm/s g·cm/s g·cm/s g·cm/s g·cm/s

2. Measure the distance travelled for each
puck in a specified time interval and the
angles of the pucks’ path.

3. Record your results in a table similar to
Table Lab.4.2.

4. Retain all your results and data for Chapter 5,
when you will investigate the conservation
of energy.

Analysis:
Calculate all velocity (v��) and momentum (p��) 
values, including the associated uncertainties,
and record them in a table like Table Lab.4.3.

Graphical Vectors

Part A
1. Draw a vector diagram of p��1o, p��1f, and p��2f.
2. Draw the resultant for the total momentum

after collision (p��totalfinal � p��1f � p��2f).

Part B
1. Draw a vector diagram of p��1o, p��2o, p��1f, and p��2f.
2. Draw the resultant for the total momentum

before collision (p��totalinitial � p��1o � p��2o).
3. Draw the resultant for the total momentum

after collision (p��totalfinal � p��1f � p��2f).

Component Method
1. For Part A, calculate the total momentum

before and after collision using the compo-
nent method, including uncertainty.

2. For Part B, calculate the total momentum
before and after collision using the com-
ponent method, including uncertainty.
Use the prepared spreadsheet on 
<www.irwinpublishing.com/students>.

Discussion
1. From your answers obtained using the

graphical method, calculate the percent dif-
ference between the magnitude of the
momenta before and after the collisions.

2. Considering the percent differences, was
momentum conserved in parts A and B?

3. What are some possible reasons why momen-
tum may not have been conserved?

4. Was momentum conserved, within experi-
mental uncertainty, using the component
method?

Conclusion
Summarize your conclusions regarding the success
of this lab with respect to the method of analysis.

Extension
1. Write (or key) all your calculations, including

those for uncertainties, and display them
neatly on the original recording paper.

2. Laminate or mount the page as a poster for
future reference.

3. Prepare a simulation of the collision using
Interactive Physics™ or other software.

4. Present the results of your lab to the class,
using the poster and software as visual aids.
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Purpose
To investigate the two-dimensional collision of
two solid balls using a ramp

Equipment
Ramp (2-D collision apparatus)
C-clamp
Plumb line
2 steel balls and 2 other solid balls (e.g., glass
marbles)
Carbon paper
Masking tape
Paper and pencil

Procedure
1. Set up the equipment as shown in Figure

Lab.4.6.

Fig.Lab.4.6 A two-dimensional collision apparatus

2. Take the two steel balls, mass 1 and mass 2.
Hold mass 1 at the top of the ramp and bal-
ance mass 2 on the swivel at the bottom of the
ramp. Both balls should have the same mass.

3. Adjust the swivel so that mass 1 (the inci-
dent ball) just touches mass 2 (the target
ball) at the point of collision at the bottom
of the ramp. Adjust the swivel to ensure
that mass 1 doesn’t make contact with the
swivel. Check your adjustment by releasing
mass 1 without mass 2 in place and care-
fully listening for any sound as mass 1
clears the swivel without touching it.
Adjust the swivel until no sound is heard.

4. Place the carbon paper on the floor with the
ink side up. Cover it with a large blank
sheet of paper. Use masking tape to keep all
the papers in place.

5. Use a plumb line to locate the point on the
floor directly below the point of collision.
Mark this point with an X on your paper.

6. Release mass 1, allowing it to roll down the
ramp, just clearing the swivel arm. The ball
should land on the paper and leave a mark
on it.

7. Repeat step 6 five times, always releasing
mass 1 from the same height, to gather a
cluster of points.

8. Place mass 2 on the target support. Release
mass 1 from the same height so that it collides
with mass 2. Clearly label the points where
both masses make the initial contact with the
paper. Label this set of points “Trial 1.”

9. Adjust the swivel arm slightly to change the
position of the target ball to produce a sec-
ond set of points on the same sheet of paper.
Label these points “Trial 2.”

10. Repeat step 9 for a third trial. Label these
points “Trial 3.”

Mass 1 (incident ball)

Mass 2 (target ball)

Target support
Swivel arm

Plumb line

Blank paperCarbon paper

4.3 Linear Momentum in Two Dimensions: 
Ramp and Ball
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Data
Label all impact and reference points on the large
sheet of paper used to mark the impact points.

Analysis
1. Draw a line from X, the plumb-line mark, to

the middle of the cluster of points in step 7
above. The length of this line represents the
initial momentum vector for mass 1.

2. For Trials 1, 2, and 3, draw a line joining X
with the point of contact of mass 1. Draw
another line joining X with the point of con-
tact of mass 2. The length of these two lines
represents the final momentum vectors of
mass 1 and mass 2 because mass 1 � mass 2
and p�� � v�� and v�� � �d�� for this activity.

3. Measure all angles between these momen-
tum lines. Draw a scale vector diagram for
each trial to represent the sum of the two
final momentum vectors. For addition of
vectors, join them head to tail.

4. Find the resultant momentum for each trial.

Discussion
1. Do both balls hit the ground at the same

time? Explain.
2. Why does the distance from X to the centre

of the clustered points represent the initial
momentum of mass 1?

3. Compare the vector sum of the final
momentums for each trial with the initial
momentum of mass 1.

4. Is momentum conserved in a two-
dimensional collision? Explain.

5. What are some reasons why momentum
was not conserved?

6. How can this experiment be improved?

Conclusion
State a conclusion based on your results.

Extension
Repeat the experiment using a steel incident ball
and a glass target ball. Measure the mass of each
ball and adjust the momentum vectors on your
page accordingly (p��glass � ��mm

g

st
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By the end of this chapter, you will be able to
• describe energy transfer from one form to another as a result of doing 

work on an object
• apply the concept of conservation of energy to solve energy problems
• solve elastic and inelastic collision problems

Energy and Interactions 5
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5.1 Introduction to Energy

The countdown to takeoff is a very exiting moment for the thousands of
people who visit Cape Canaveral to witness a shuttle launch. The sheer
power and energy required for liftoff is an amazing sight! The space shuttle
ignites its main engines, burning thousands of tons of solid and liquid fuel.
The burning of fuel propels the shuttle upward while at the same time
decreasing its mass. The energy in the fuel is converted to energy of motion of
the rocket, causing it to accelerate at an average rate of about 1600 km/h/min
in the first 60 seconds.

We are surrounded by numerous energy interactions in our daily lives.
When we eat breakfast in the morning before going to school, our bodies
convert food energy into kinetic energy as we walk to school, and to potential
energy as we climb the stairs to the second-floor physics lab. When we start
a car, the chemical potential energy stored in fuel is converted to electrical
energy stored in the battery and used to power the radio, windshield wipers,
and headlights. The fuel is also converted into mechanical energy of the
car’s motion. As the car does work to drive up a hill, the energy from the
fuel is converted into mechanical energy to turn the wheels. As the car
descends the hill, the gravitational potential energy it possesses at the top of
the hill is converted to kinetic energy of motion.

In this chapter, we will explore how work and energy are related. We
will expand on Chapter 4 to include collisions, interactions, and energy and
momentum transfers. We will define various forms of energy, such as
kinetic energy and elastic potential energy. We will also investigate devices
where energy interactions are common, such as shock absorbers, clocks,
and safety equipment used in sports.

Isolation and Systems

To undertake the study of energy and interactions, we first need to define
two basic concepts: open and closed systems and isolated and non-isolated
systems.  If a system doesn’t lose or gain particles during the time of measure-
ment, it’s said to be a closed system, such as the one shown in Figure 5.1a.
Any other system is considered an open system (Figure 5.1b). If a system
doesn’t exchange energy with any object or circumstance outside of its own
boundary, it is an isolated system. Systems that exchange energy with
other systems are non-isolated systems. 
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Car 1Car 1

Car 2Car 2

In neutral

A system is closed if the amount of energy contained in it is constant. In practice,
a closed system is difficult to obtain. Nature adds and subtracts energy from
a system in many ways, and most of these processes are not immediately
obvious. But many systems lose only a small amount of their total energy,
which allows us to accurately analyze energy transfer.

We can illustrate the difference between open and closed systems
using the example of two cars (Figure 5.2). Both cars are initially moving
at the same speed. Car 1 puts its transmission into neutral and slowly rolls
to a stop. Car 2 continues with its transmission properly engaged and its
speed unchanged. What is the difference between these two cars from an
energy standpoint? 

Fig.5.2 Which car is an open system?

For car 1, the energy removed from the initial kinetic energy of the car is
lost to the environment in different forms. The most common type of
energy loss is due to heat, but energy is also lost in the form of sound and
other types of mechanical energy such as air drag, mechanical friction,
and tire deformation as the car rolls. Ultimately, these forms of energy are
also heat loss.
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Fig.5.1a The non-porous boundary

of this box prevents movement of

molecules between the box and the

outer environment. The inside of the

box is therefore a closed system.

Fig.5.1b With a porous boundary,

the molecules of gas in the box can

escape while air molecules from out-

side the box can move in. In an open

system, there is no way to ensure

that the original contents of the box

will remain the same.



Fig.5.3 A car’s initial kinetic energy is lost to the environment in various forms

In a closed system, energy is transferred from one form to another, but there
is no energy transfer from a source that wasn’t originally in the system.
This constraint keeps the total energy constant. Therefore, for car 1, if we
consider the car and the natural environment, then the system is closed
since no energy is coming from a source outside our defined boundary. 

For car 2, energy is still being fed into it by its engine. If the system
boundaries we have defined are the same, then the system is open because
chemical energy is being transferred from the fuel tank. However, if we
broaden our system to include the energy in the fuel tank, then both systems
(car 1 and car 2) are closed! The system would be open if the cars were
being fuelled. Thus, we must be careful in defining our system. The definition
of whether a system is closed or open is a relative one.  

1. A ball rolls down a hill and stops at the bottom. Describe the conditions
necessary for it to be 
a) a closed system.
b) an isolated system.
c) an open system.
d) a non-isolated system.

Flight Data Recorders

Figure 5.4 shows a flight data recorder. These devices are installed on
all commercial aircraft and are designed to withstand the horrific energies
released during a crash. If a crash or other mishap occurs, investigators
can obtain very important data on a number of aircraft systems prior
to the mishap. Also used on large aircraft is the cockpit voice recorder,
which records everything said in the cockpit until the time of impact.
These devices help investigators piece together the possible human
events that occurred prior to the mishap. They also reveal the amount
of energy the plane had prior to impact. The information gained from
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data and voice recorders has also helped to improve aircraft design and
flight crew procedures. 

2. Read reliable newspapers and magazines to find three examples of
events such as accidents and other mechanical failures. Examine
the evidence as described in the article and photographs. 
a) As an accident-site investigator, what questions would you ask

the survivors? Why?
b) What other evidence would you want from the scene? Explain

how this evidence would contribute to a full knowledge of the
energy budget. 

5.2 Work
Work is the transfer of energy. Work is done when a force acts on an object,
causing the object to move in the direction of the force. Mathematically,
work is the dot product of the force applied and the displacement: 

W � F��·�d��

where W is the work done on an object, measured in joules (J), F�� is the
force applied on the object, measured in newtons (N), and �d�� is the dis-
placement of the object, in metres (m).

In Figure 5.5, two construction workers are applying a force to the right.
Worker A is pushing a wall that isn’t moving, while worker B is pushing a
wheelbarrow that’s moving. Because work depends on displacement as well as
force, only worker B is doing work. Worker A isn’t displacing the wall; there-
fore, no work is being done on the wall. Worker B is displacing the wheel-
barrow with his applied force; therefore, he is doing work on the wheelbarrow.

The SI unit for work is the joule (J) and it is defined as the force of one
newton applied to an object to move it one metre:

1 J � 1 N·m

Work is a scalar quantity because it doesn’t have a direction. If the direction
of motion is in the direction of the force, then W � F�d.
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Fig.5.4 A flight data recorder

Fig.5.5 Work is done only when an

applied force displaces an object



e x a m p l e  1 Calculating the work done

Calculate the work done by
a) applying a force of 830 N [forward] on a 3000-kg car to displace it 

25.0 m forward.
b) applying a force of 20 N [right] to a 0.4-kg puck as it slides along a 

frictionless surface from rest to 10 m/s in 0.2 s.
c) lifting a 57-kg outboard motor a distance of 1.4 m from the ground up

to the box of a pickup truck.

Solution and Connection to Theory

a) Let’s assume that forward is positive.

Given
F�� � 830 N [forward] m � 3000 kg �d�� � 25 m [forward]

W � F��·�d�� � F�d
W � (830 N)(25 m)
W � 20 750 N·m
W � 20 750 J

The work required to move the
car 25 m with a force of 830 N is 
20 750 J.

b) Given
F � 20 N m � 0.4 kg v1 � 0 m/s v2 � 10 m/s �t � 0.2 s

First, we calculate the displacement using the equation 

�d � �
1
2

�(v1 � v2)�t

�d � �
1
2

�(0 � 10 m/s)(0.2 s)

�d � 1 m

For work,

W � F��·�d�� � F�d
W � (20 N)(1 m)
W � 20 N·m

The work required to move the puck is 20 J.
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Fig.5.6a
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Fig.5.6b
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c) Let’s assume that up is positive.

Given
m � 57 kg �d � 1.4 m

In order to lift the motor, the minimum force required must 
be equal in magnitude but opposite in direction to the force 
of gravity acting on the motor. Therefore,

F � mg 
F � (57 kg)(9.8 N/kg)
F � 558.6 N

W � F��·�d�� � F�d
W � (558.6 N)(1.4 m)
W � 782 N·m
W � 782 J

Therefore, the work required to lift the outboard motor onto the box
of the pickup truck is 782 J.

The expression F��·�d�� is called a vector dot product with magnitude

W � F�d cos 	

where 	 is the angle between the direction of the force, F��, and the displacement,
�d��. If a force is applied to an object, the object may undergo a displacement in
the direction of a component of the force. In Figure 5.7, even though the cart
is pulled with a force, F��app, of 125 N [R30°U], the cart’s displacement is to
the right; that is, horizontal, because it is being pulled along a horizontal
surface. The force doing the work on the cart is the horizontal component
of F��app � 125 N [R30°U]; that is, Fappx � (125 N)cos 30°.
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Jonston 15

  ��d � 1.4 m [up] 

Outboard motor

m � 57 kg

Fig.5.6c Fig.5.6d �Fapp 

�Fg 

Dynamics cart String 30°

�d � 10 m

Fappy
� (125 N)sin 30°

Fappx 
� (125 N)cos 30°

Fapp � 125 N

To calculate the work, the force and the component of the 
displacement must be in the same direction

30°

Fig.5.7



e x a m p l e  2 Calculating work using the equation 

W � F�d cos �

a) A newspaper carrier pulls a wagon with a force of 275 N at an angle
of 45° to the horizontal. How much work is required to move the
wagon 8.00 m? Omit any friction with the road.

b) Calculate the work done on a cyclist if a braking force of 40 N
[backward] slows the cyclist from 20 m/s to 15 m/s in 2.0 s.

Solution and Connection to Theory

Let’s assume that right is positive.

a) Given
F�� � 275 N [U45°R] �d�� � 8.00 m [R]

Since the force and the displacement are not in the same direction but
45° apart, the magnitude of the work done in the direction of the
displacement is

W � F�d cos 	
W � (275 N)(8.00 m)cos 45°
W � 1560 N·m
W � 1560 J

The work done to move the wagon horizontally a distance of 8.00 m 
is 1560 J.

b) Given
F�� � 40 N [L] v��1 � 20 m/s [R] v��2 � 15 m/s [R] �t � 2.0 s

We can calculate the displacement using the kinematics equation

�d � �
1
2

�(v1 � v2)�t

�d � �
1
2

�(20 m/s � 15 m/s)(2.0 s)

�d � 35 m

Because the cyclist is braking, she is applying a force that is in the
opposite direction to her displacement. Therefore, the angle between
her force and her displacement is 180°. To calculate the work done, 

W � F�d cos 	
W � (40 N)(35 m)cos 180°
W � (40 N)(35 m)(
1)
W � 
1400 J

The work done on the cyclist is 
1400 J.
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An alternative method is to first 

calculate the horizontal component

of the force. We obtain

Fh � (275 N)cos 45°

Fh � 195 N

Therefore, the work done in the

direction of the displacement 

(horizontal) is

W � F��h·�d��

W � (275 N)cos 45°(8.00 m)

W � 1560 N·m

W � 1560 J



The value for work is negative because the force and the displacement are
in opposite directions. Negative work represents a flow or transfer of energy
out of the object or system.

Work from an F��-versus-�d�� Graph

Work can also be determined by finding the area under a force-versus-
displacement graph. (If the displacement is the same as the distance, then
the work can be calculated using the area under a force-versus-distance
graph.) In Figure 5.8, a constant force is the dependent variable and the
displacement is the independent variable. The work done is F���d��.

e x a m p l e  3 Calculating work given a F��-versus-�d�� graph

Calculate the work done in each of the two cases represented in Figure 5.8.

Fig.5.8

Solution and Connection to Theory

Fig.5.9a
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a) Given
F � 10 N �d � 13 m

W � F�d
W � (10 N)(13 m)
W � 130 J

The work done when a constant force of 10 N is applied over a distance
of 13 m is 130 J.

b) Given
F1 � 20 N F2 � 5.0 N �d � 20 m

Figure 5.9b shows a uniformly decreasing force. We can calculate
work by finding the average force,

W � Favg�d, where

Favg � �
1
2

�(F1 � F2)

W � �
1
2

�(F1 � F2)�d

W � �
1
2

�(20 N � 5 N)(20 m)

W � �
1
2

�(25 N)(20 m)

W � 250 J

The work done is 250 J.

Fig.5.9b

1. Determine the work done in each of the following cases:
a) Kicking a soccer ball forward with a force of 40 N over a distance

of 15 cm
b) Lifting a 50-kg barbell straight up 1.95 m
c) Pulling a sled with a force of 120 N at an angle of 25° to the

horizontal if the sled is displaced 4.0 m forward
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Favg � 12.5 N

F1 � 20 N

F2 � 5 N
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1

2
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An alternative solution would be to

count the number of squares above

the displacement axis (positive work)

and below the displacement axis

(negative work), and multiply the

number of squares by the area of

one square.



2. A tow truck pulls a 3000-kg car from rest with a horizontal force of
5000 N. The truck and car accelerate at 2.5 m/s2 for 5.0 s to reach the
speed limit of 45 km/h. How much work is done by the tow truck?

3. A wheelbarrow is pushed by a force of 78 N [U35°R] over a dis-
tance of 10 m. Determine the work done to move the wheelbarrow
along the ground.

4. A 52 000-kg train slows from 25 m/s to 14 m/s in 5.0 s. Calculate
the work done on the train.

5. Calculate the work done in each of the following graphs (Figure 5.10).

Fig.5.10

6. Determine the height from which a 3-kg axe must be dropped so
that it does 480 J of work to split a log resting on the ground.

5.3 Kinetic Energy
In Figure 5.11, a force is applied to a crate of mass m, initially at rest on
some rollers. Because of the force F��, over time �t, the crate undergoes a
displacement of �d��. Because of the work done on the crate, its velocity increases
from zero to v��2.

Using our knowledge of kinematics and dynamics studied in Chapters 1
and 2, we can develop an equation for the work done on the crate. 

W � E � F�d � ma�d

where a � �
(v2

�




t
v1)

� and �d � ��v1 �

2
v2

���t
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Since the force and the displacement are in the same direction along a 
horizontal line, we can omit the vector notation.

E � m��v2

�




t
v1

����v1 �

2
v2

���t

Since v1 = 0,

E � �
1
2

�mv2
2

If we let v2 � v, then

E � �
1
2

�mv2

The expression �
1
2

�mv2 is the term for kinetic energy. Kinetic energy is the
energy of motion when work is done on an object. Kinetic energy is a scalar
quantity and its SI unit is the joule (J). (Work and kinetic energy both have
the same unit.)

Ek � �
1
2

�mv2

where m is the mass of the moving object, measured in kg, v is the object’s
velocity, measured in m/s, and Ek is the kinetic energy, measured in joules.

Since the initial velocity of the crate in Figure 5.11 is zero, the crate has
no initial kinetic energy. Once work is done on the crate, its velocity increases
and it now has kinetic energy. The change in kinetic energy is caused by the
work done on the crate. Mathematically, 

W � �Ek

W � Ek2 
 Ek1

where Ek2 and Ek1 represent the final and initial kinetic energies, respectively.
The relationship W � Ek2 
 Ek1 is called the work–energy theorem. The

work–energy theorem states that if the speed of an object increases, the work
done on the object is greater than zero:

If v2 � v1, then W � 0.

Conversely, if the work done is less than zero, then the object is doing work
on the agent exerting the force:

If v1 � v2, then W � 0.

The greater the velocity, the greater the kinetic energy of the object, which
has constant mass. The kinetic energy varies directly as the mass and the
square of the velocity; that is,
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Ek � m and Ek � v2

In other words, for a moving object, if the mass is doubled, the kinetic
energy is also doubled. If the velocity is doubled, the kinetic energy is
quadrupled.

e x a m p l e  4 The work–energy theorem

a) How much kinetic energy does a 50.0-kg crate have if its velocity is
5.0 m/s?

b) How much work is required to increase the crate’s velocity to 7.0 m/s?

Solution and Connection to Theory

a) Given
m � 50.0 kg v � 5.0 m/s

Ek � �
1
2

�mv2

Ek � �
1
2

�(50.0 kg)(5.0 m/s)2

Ek � 625 J

Therefore, the kinetic energy of the crate is about 630 J.

b) Given
m � 50.0 kg v1 � 5.0 m/s v2 � 7.0 m/s

According to the work–energy theorem, the amount of work required
to increase the velocity is the change in kinetic energy:

W � �Ek � Ek2 
 Ek1

W � �
1
2

�mv2
2 
 �

1
2

�mv1
2

W � �
1
2

�(50.0 kg)(7.0 m/s)2 
 �
1
2

�(50.0 kg)(5.0 m/s)2

W � 1225 J 
 625 J

W � 600 J

The work required to increase the velocity of the crate by 2.0 m/s
is 600 J.

Kinetic Energy and Momentum

Both kinetic energy and momentum contain mass and velocity variables in
their equations. By manipulating the equations p � mv and Ek � �

1
2

�mv2, we
can form an equation to relate momentum, p, and kinetic energy, Ek:

p � �2mEk�
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From p � mv

v � �
m

p
�

Substituting this equation into the

equation for kinetic energy,

Ek � ��
1

2
�m���

m

p
��2

Ek � ��
1

2
�m���

m

p2

2
��

Ek � �
2

p

m

2

� or

p � �2mEk�



e x a m p l e  5 Kinetic energy and momentum

Determine the momentum and speed of a proton that has a kinetic energy
of 4274.7 eV. The mass of a proton is 1.67 � 10
27 kg.

Solution and Connection to Theory

Given
Ek � 4274.7 eV m � 1.67 � 10
27 kg 1 eV � 1.602 � 10
19 J

Converting the units for kinetic energy into SI units,

Ek � (4274.7 eV)(1.602 � 10
19 J/eV)
Ek � 6.848 � 10
16 J

To find the momentum of the proton, 

p � �2mEk�
p � �2(1.67� � 10
�27 kg)(�6.848�� 10
�16 J)�
p � 1.51 � 10
21 kg·m/s

We can use either the momentum or the kinetic energy equation to find
the speed. Using the momentum equation,

v � �
m
p
�

v �

v � 9.06 � 105 m/s

The momentum of the proton is approximately 1.51 � 10
21 kg·m/s and
its speed is about 9.06 � 105 m/s.

1. Calculate the kinetic energy in each of the following cases:
a) A 20 000-kg space shuttle moves at an orbital speed of 7.5 km/s.
b) A 1.0-kg eagle flies at 20 km/h.
c) A 30-g bullet moves at 400 m/s.

2. Determine the speed of a 245-kg boat if it possesses 3.9 kJ of 
kinetic energy.

3. Determine the mass of a ball that has a speed and kinetic energy 
of 15 m/s and 729 J, respectively.

4. What is the momentum of an electron with a kinetic energy of 
6 keV in a particle accelerator?

1.51 � 10
21 kg·m/s
���

1.67 � 10
27 kg
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5. Calculate the change in kinetic energy when a 60.0-kg skateboarder
slows down from 14.0 m/s to 5.0 m/s. Where does this energy go?

6. An arrow of mass 350.0 g, travelling at 25.0 m/s, strikes a stationary
wood fence post and penetrates it to a depth of 2.4 cm. Calculate
a) the kinetic energy of the arrow as it strikes the post.
b) the work done by the post on the arrow.
c) the average force of the wood on the arrow to stop the arrow.

5.4 Gravitational Potential Energy

When we see a book teetering on the edge of an overhead shelf, or when we
walk under a ladder that has a can of paint hooked to the top rung, we can
imagine the consequences of the objects falling. They could potentially damage
any obstacles at ground level, including your toe. The more massive the
object and the higher off the ground it is, the greater the possibility for
damage. The ability of gravity to do work on an object by causing it to fall
is known as gravitational potential energy (Eg).

Figure 5.12 shows the variations in a brick’s gravitational potential energy
depending on its height. In Figure 5.12b, some work had to be done in order to
elevate the brick from ground level (Figure 5.12a). The work done to lift the
brick becomes the brick’s gravitational potential energy. If the brick were to fall,
its potential energy would decrease as it fell. According to the law of conserva-
tion of energy, the total amount of energy of a system must remain constant.
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Using the ground
as a reference point,
Eg � 0

The brick’s Eg increases
the higher it is raised.

As the brick falls,
Eg decreases and
Ek increases.

�h � 0

Eg � 0

Eg � mg�h ET � Eg � Ek

�

mm

�h1

�h2

�Fg

�Fg
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Therefore, if the brick’s gravitational potential energy decreases when it falls,
its kinetic energy must correspondingly increase. The brick accelerates as it
falls, pulled by Earth’s gravitational force.

We can derive an equation for gravitational potential energy from the
equation for work,

W � F�d

But Eg � W and �h � �d; therefore,

W � Fg�h

But Fg � mg. Therefore,

W � mg�h

Using the ground as our reference point for measuring the change in height,
�h, the expression mg�h represents the change in potential energy from
ground level 0 to a height of h. At ground level, Eg � 0.

�Eg � mg�h

where m is the mass of the object, measured in kilograms (kg), g is the grav-
itational constant, measured in newtons per metre (N/m), and �h is the
change in height of the object, measured in metres (m).

Near Earth’s surface, the gravitational constant, g, barely changes. For
simplicity’s sake, we will use g � 9.8 N/m when dealing with objects near
Earth’s surface.

e x a m p l e  6 Solving potential-energy problems

A 2.0-kg planter is dangling from a balcony 8.0 m above the sidewalk.
a) How much gravitational potential energy does the planter have with

respect to the ground?
b) A wind blows the planter off the balcony, causing it to fall straight

down. With what speed does the planter hit the ground?
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�g � 9.780 N/kg [down]

�g � 9.81 N/kg [down]

Mountain top

Sea level Below sea level

Fig.5.13 The value of g varies

slightly from location to location.

The average value for g is 9.8 N/kg.

From Chapter 1, 

g � �
G

rE

m
2

E
�

g � 9.8 N/kg



Solution and Connection to Theory

a) Given
m � 2.0 kg h � 8.0 m g � 9.8 N/kg

Eg � mgh
Eg � (2.0 kg)(9.8 N/kg)(8.0 m)
Eg � 156.8 N·m
Eg � 1.6 � 102 J

The planter possesses about 160 J of gravitational potential energy
relative to the sidewalk. Relative to any other point, the planter would
have a different value for its gravitational potential energy. For instance,
relative to a point 2 m below the sidewalk, the planter’s gravitational
potential energy would be Eg � (2 kg)(9.8 N/m)(8.0 m � 2 m) � 196 J.
Typically, gravitational potential energy is calculated relative to the
ground or to any other useful reference point.

b) While on the balcony, the planter possesses gravitational potential
energy only. When the planter falls, this energy is converted to kinetic
energy. The moment the planter reaches the sidewalk, all its original
gravitational potential energy has been converted to kinetic energy.

Eg(balcony) � Ek(sidewalk)

mgh � �
1
2

�mv2

Dividing both sides of the equation by m, we obtain 

gh � �
1
2

�v2

v � �2gh�
v � �2(9.8�N/kg)�(8.0 m�)�
v � 12.5 m/s

The speed of the planter is 12.5 m/s. Since we know it is going down,
its velocity is

v�� � 12.5 m/s [down].

The mass of the planter was not required for the speed calculation. The
mass is irrelevant because all masses on Earth are attracted to Earth by a
constant gravitational field (9.8 N/kg), which causes a uniform acceleration
of 9.8 m/s2.
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Alternative Solution for part b)

using Kinematics

Since the motion is vertical, the

velocity can be calculated using the

kinematics equations from Chapter 1.

Given

v1 � 0, �d � 
8 m, a � 
9.8 m/s2

vf
2 � vo

2 � 2a�d

vf � �2(
9.�8 m/s2�)(
8 m�)�
v�f � 
12.5 m/s or 12.5 m/s [down]



e x a m p l e  7 Solving potential-energy problems

Bounder of Adventure is standing on the edge of a 3.7-m-high cliff over-
looking a lake. He throws a 2.5-kg life preserver upward with a speed of
12 m/s. The life preserver eventually falls into the water, as shown in
Figure 5.14. If energy is conserved,
a) what is the maximum height of the life preserver?
b) with what velocity does the life preserver hit the water?
c) with what average force did Bounder of Adventure throw the 

life preserver if he pushes it upward over a distance of 80 cm?

Solution and Connection to Theory

Let’s use the lake’s surface as our reference point because it is the lowest
point in the problem. Let’s use the subscripts 1, 2, and 3 to represent the
three main points of the life preserver’s trajectory; that is, the starting point,
the highest point, and the lowest point, respectively, as shown in Figure 5.14.

a) Given
h1 � 3.7 m m � 2.5 kg v1 � 12 m/s

Let’s assume that the system consisting of Bounder of Adventure, the
cliff, the life preserver, and the lake is closed. Therefore, according to
the law of conservation of energy, the total amount of energy through-
out the problem is constant. When Bounder of Adventure first throws
the life preserver, it has some gravitational potential energy and some
kinetic energy. At the top of its trajectory (maximum height), the life
preserver possesses gravitational potential energy only, and its velocity
is zero. Once the life preserver hits the water, all of its gravitational
potential energy has been transferred to kinetic energy.

Etotal1 � Etotal2 � Etotal3

To determine the maximum height of the life preserver, we are only
concerned with the energy transfer between point 1 and point 2, where

Etotal1 � Etotal2

Ek1 � Eg1 � Ek2 � Eg2

�
1
2

�mv1
2 � mgh1 � �

1
2

�mv2
2 � mgh2

But at maximum height, v2 � 0; therefore,

�
1
2

�mv1
2 � mgh1 � mgh2

�
1
2

�v1
2 � gh1 � gh2

�
1
2

�(12 m/s)2 � (9.8 N/kg)(3.7 m) � (9.8 N/kg)(h2)
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72 m2/s2 � 36.26 m2/s2 � (9.8 m/s2)(h2)

108.26 m2/s2 � (9.8 m/s2)(h2)

h2 � 11.05 m � 11 m

This height represents the height above the water’s surface. To find
the maximum height of the life preserver above the top of the cliff, we
subtract the height of the cliff:

11 m 
 3.7 m � 7.3 m

b) To calculate the velocity of the life preserver, we use the law of conser-
vation of energy, which states that the total energy at the top of the
life preserver’s trajectory is equal to its total energy at the end of its
trajectory; that is,

Etotal2 � Etotal3

Etotal2 � mgh � (2.5 kg)(9.8 m/s2)(11 m)

Etotal2 � 270 J

270 J � �
1
2

�mv3
2

270 J ��
1
2

�(2.5 kg)v3
2

v3
2 � 216 �

kg·
k
m
g

2/s2

�

v3 � 14.7 m/s

The speed of the life preserver is 14.7 m/s.

The velocity of the life preserver just as it hits the water is approx-
imately 14.7 m/s [down].

c) To calculate the average force with which Bounder of Adventure threw
the life preserver, recall that according to the work–energy theorem,
the amount of work required to throw the life preserver upward is
equivalent to the change in the life preserver’s energy. The work done
is equal to its increase in kinetic and potential energies.

Given
�d � �h � 0.80 m �v � 12 m/s

F�d � mg�h � �
1
2

�mv1
2

F � mg � �
m
2�

�

d
v2

�

F � (2.5 kg)(9.8 m/s2) ��
(2.5

2
k
(0
g)
.8
(1
0
2
m
m
)
/s)2

�
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F � 24.5 N � 225 N
F � 250 N

The average force required to throw the life preserver is 250 N [up].

Figure 5.15 summarizes the equations for the conservation of mechanical
energy.

Fig.5.15 Summary of the Conservation of Mechanical Energy

1. Calculate the gravitational potential energy of each of the following:
a) A 3.5-kg bowling ball held 1.2 m above the ground by your fingers
b) A 2000-kg piano resting on the floor
c) The same 2000-kg piano with respect to the basement floor, 

1.9 m below
2. A 65-kg stunt diver dives from a height of 27 m with no 

initial velocity.
a) Calculate the diver’s velocity as she hits the water.
b) A second diver jumps up with a velocity of 3.0 m/s from the same

platform as the first diver and just clears the board on her way
down. Calculate the second diver’s velocity as she hits the water.
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Initial conditions
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3. A 3.0-kg rocket is launched from a pad that is 5.0 m above the
ground. The rocket’s total energy at the top of its flight is 5460 J.
a) What was the rocket’s initial speed?
b) What height did the rocket achieve above the launch pad?
c) What is the potential energy and the kinetic energy of the rocket

2.0 s into its flight?
4. A 5000-kg truck drives over a pothole in the road that causes the

truck to push down on all four springs a distance of 4.0 cm. If
energy is conserved and the springs obey Hooke’s law, calculate the
spring constant for each spring.

5.5 Elastic Potential Energy 
and Hooke’s Law

Potential energy is often referred to as stored energy. As we saw in Section
5.2, an object in motion possesses kinetic energy and has the ability to do
work. But an object need not necessarily be moving in order to have the abil-
ity to do work. Take the spring in a windup toy, for instance (see Figure 5.16).
If the spring isn’t wound, it has no energy and can’t do any work to move
the toy. If we give the spring some energy by winding it up, we give it the
potential to do work to move the toy. Through a series of gears, the potential
energy from the spring is transferred into kinetic energy in the toy. We say
that the spring has the ability to do work; therefore, it has potential energy.
This energy is somehow stored in the mechanism of the spring when it is
wound. As the spring regains its natural (unwound) form, its potential
energy decreases. We can consider a spring to be in equilibrium when it is
in its normal, unwound state.
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Windup spring
(toys, watches)

Bungee cord         Spring
(shock absorber)

Sling shot



An object is considered elastic if it can be deformed by a force in order
to store energy, and transfer its stored energy by returning to its normal
state. Examples of elastic objects are watch springs, windup toys, car
bumper mounts, trampolines, elastic slingshots (Figure 5.17), and leaf or
coil springs.

Robert Hooke (1635–1703), a British scientist, was one of the first
scientists to study the elasticity of matter.

Hooke’s law states that the deformation of an elastic object is proportional
to the force applied to deform it.

When an elastic object is deformed, the amount of deformation can be deter-
mined by measuring the length of the object’s stretch or compression. The
graph in Figure 5.18 represents a coiled spring to which an increasing force is
applied until the spring breaks. If the force is not too great, the stretched spring
can return to its normal length. If too much force is applied, the spring may
become permanently deformed, or it may break. Deforming the spring by an
excessive force destroys the elasticity of the spring, and we say that the spring
becomes inelastic. 

For an elastic spring, the graph of the force applied (F) versus the amount
of deformation (x) is a straight line. Hooke’s law states that

F � x
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Changing the proportionality statement to an equation gives

F � kx

where F is the applied force to stretch or compress an elastic object, measured
in newtons (N), x is the amount of deformation, measured in metres (m),
and k is the spring constant of the elastic object, measured in newtons per
metre (N/m).

The quantities F and x are both scalars. A simple sign convention is used
to represent the force, F, and the amount of deformation, x. Positive (�)
numbers are used for F and x when a spring is stretched, and negative (
)
numbers are used when a spring is compressed. The spring constant, k, can be
found by calculating the slope of the straight line on the F-versus-x graph.

e x a m p l e  8 Calculating the spring constant

Determine the spring constant for the spring in Figure 5.18.

Solution and Connection to Theory

The spring constant, k, is found by calculating the slope of the straight
line on the graph. Let’s use the points (0,0) and (0.5 m, 500 N).

k � �
�

�

F
x
�

k � �
F
x

2

2







F
x1

1
�

k � �
5
0
0
.5
0

m
N







0
0

m
N

�

k � 1.0 � 103 N/m

The spring constant is 1.0 � 103 N/m.

Every spring has its own spring constant, which is a measure of the stiff-
ness of a spring. The larger the value for k, the stiffer the spring. 

We saw in Section 5.2 that work done is represented by the area
under the force-versus-distance graph. The work done to deform the
spring in Figure 5.18 is the same as the amount of stored energy in the
spring. This stored energy has the potential to do work and is referred to
as elastic potential energy (Ee). The elastic potential energy has the same
units as work, namely, the joule (J). A general expression for elastic potential
energy can be derived using the fact that the area under the F-versus-x
graph of any elastic object that obeys Hooke’s law is always in the shape
of a triangle, as shown in Figure 5.19.
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Ee � area under the F-versus-x graph

Ee � �
1
2

�bh

Ee � �
1
2

�(x)(F), where F � kx

Ee � �
1
2

�(x)(kx)

Ee � �
1
2

�kx2

where Ee is the elastic potential energy, measured in joules (J), k is the
spring constant or force constant, measured in newtons per metre (N/m),
and x is the amount of deformation, in metres (m). 

e x a m p l e  9 Solving a typical spring problem

A spring with a force constant of 240 N/m has a 0.80-kg mass suspended
from it. What is the extension of the spring and how much potential
energy does it have once the mass is suspended?

Solution and Connection to Theory

Given
k � 240 N/m m � 0.80 kg

The stretch of the spring depends on the force of gravity pulling on the mass.

Fe � Fg

kx � mg

x � �
m
k
g
�
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x �

x � 0.033 m

Therefore, the amount of stretch or the extension of the spring is 3.3 cm.

To calculate the potential energy,

Ee � �
1
2

�kx2

Ee � �
1
2

�(240 N/m)(0.033 m)2

Ee � 0.13 N·m

The amount of energy this spring possesses as a result of the weight
suspended is 0.13 J. This value also means that 0.13 J of work was
needed to stretch the spring.

Conservation of Energy

In Example 9, we learned that the work done on a spring is the same as the
amount of potential energy stored in that spring. If the mass were removed
from the suspended spring, the spring would recoil, thereby releasing stored
energy as kinetic energy. This interaction between various forms of energy
leads us to one of the fundamental laws in physics: the law of conservation
of energy. Three possible ways to state this law are:

1) Energy cannot be created or destroyed, but only transferred from one
object to another or transformed from one form to another without
any loss.

2) In any closed system, the total energy remains constant.
3) Energy can change from one form to another, but the total amount of

energy remains the same as long as the system being considered is a
closed one.

Consider a moving laboratory cart colliding with a stationary cart. In the short
time that the carts are in contact, the moving cart exerts a force on the station-
ary cart, doing work on it and transferring kinetic energy to it. At the same
time, the moving cart experiences a force exerted on it by the stationary cart
(Newton’s third law), and its kinetic energy is decreased.

(0.80 kg)(9.8 N/kg)
���

240 N/m
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e x a m p l e  1 0 Using the law of conservation of energy to find x

In Figure 5.20, a frictionless metal block of mass 5.0 kg slides at a speed
of 6.0 m/s into a fixed spring bumper with a spring constant of 720 N/m.
If the block comes to rest, how much does the spring compress?

Solution and Connection to Theory

According to the law of conservation of energy, the kinetic energy lost by
the block is the same as the elastic potential energy gained by the spring
bumper. Therefore,

Ek(block) � Ee(spring bumper)

�
1
2

�mv2 � �
1
2

�kx2

mv2 � kx2

x � ��
m

k
v2

��
x � ��
x � 0.5 m

We choose the negative value for x because the spring is being com-
pressed. Therefore,

x � 
0.5 m.

The spring bumper was compressed 50 cm before coming to a full stop.

1. Figure 5.21 is a graph of F versus x for an elastic spring. Determine
a) the spring constant.
b) the spring’s maximum amount of elastic potential energy.
c) the change in elastic potential energy when the spring extends

from 3 cm to 4 cm.

Fig. 5.21

(5.0 kg)(6.0 m/s)2

���
720 N/m
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2. A spring attached to a ceiling has a mass of 500 g suspended from it
such that the spring stretches 4.0 cm. Calculate the spring constant.

3. How much work must be done to
a) compress a spring 4.0 cm if the spring constant is 55 N/m?
b) stretch a spring 8.0 cm if the spring constant is 85 N/m?

4. A slingshot with a spring constant of 200 N/m is pulled back 8.0 cm.
A 20-g pea is launched by the slingshot horizontally. At what speed
does the pea leave the slingshot?

5. The bumper of a 2000-kg car has a spring constant of 5 � 106 N/m.
The car is moving at 4.5 m/s horizontally when it crashes into a
solid brick wall. How much will the car’s bumper be compressed if
the car comes to a complete stop?

6. A 1.2-kg spring laboratory cart is held against a wall. The spring
constant is 65.0 N/m. The spring is compressed 8.0 cm when held
against the wall. What is the compression of the spring when the
cart’s velocity is 42.0 cm/s?

5.6 Power

So far in this chapter, our calculations concerned amounts of energy transfer.
We must also consider how quickly this transfer occurs. Power is the rate
of energy transfer; that is,

P � �
�

E
t

�

The unit of power is the watt, W, equal to J/s.
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increases its power output

Fig.5.22b Stereo speakers are rated
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Fig.5.22a Light bulbs are rated with a 
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have limits on the size of light bulb that 
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e x a m p l e  1 1 Power on the ski slopes

a) What power is required for a ski-hill chair lift that transports 500 people
(average mass 65 kg) per hour to an increased elevation of 1200 m?

b) What is the power of a high-speed chair that transports 25% more
people up the same hill in half the time?

Solution and Connection to Theory

Given
m � (500)65 kg g � 9.8 m/s2 h � 1200 m �t � 3600 s

a) P � �
�

E
t

�

P �

P � 1.06 � 105 W

The power required for the lift is 1.06 � 105 W.

b) Since P � �
�

m
t

�, 

�
P
P

1

2
� � �

m
m

1

2

�

�

t
t

2

1
�

P2 ��
(P1

m
)(

1

1
(
.
0
2
.
5
5

m
�t

2

1

)
)
�t1

�� 2.5P1

P2 � 2.5(1.06 � 105 W) � 2.65 � 105 W

The high-speed chair requires 2.5 times the power or 2.65 � 105 W.

We can also derive an equation for the amount of power required to main-
tain an object in motion at constant speed. The concepts of work and power
are related via energy. If

W � E � F���d��

then 

P � F����
d�

t

�

� � F���v��

If motion and force are in the same direction, then we can simplify the dot
product to

P � Fv

500(65 kg)(9.8 m/s2)(1200 m)
����

3600 s

256 unit  b :  Energy and Momentum

Fig.5.23



e x a m p l e  1 2 A car engine’s power

A car travels at a constant speed of 20 m/s. The car’s engine provides a
force of 1800 N at the wheels to overcome air drag. What is its power?

Solution and Connection to Theory

Given
v � 20 m/s F � 5000 N

Since F and v are both in the same direction,
P � Fv
P � (1800 N)(20 m/s) 
P � 36 000 W � 36 kW

Therefore, the car engine’s power is 36 kW.

The following example illustrates how a car’s power must increase in order
to climb a hill at a constant speed. 

e x a m p l e  1 3 Power at constant speed

A car climbs a hill inclined at 6° at a constant speed of 20 m/s.  
a) If the car’s mass is 1000 kg and it uses 36 kW of power to overcome

air drag, what is its total power?
b) If 65% of the power generated by the engine is transferred to the car,

what is the engine’s power output?

Solution and Connection to Theory

Given
v � 20 m/s m � 1000 kg 	 � 6° Pair drag � 36 kW

We can calculate the change in height per second and convert it to the
change in potential energy. Since the car’s speed up the incline is 20 m/s,
in 1.0 s, it travels 20 m.
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E L EC T R I C A L  P OW E R  U N I TS
We often use the word “power
company” to describe an electrical
utility, but generating stations really
provide energy. The distribution
system permits rates of energy
transfer (power!) that are reasonable
for the average house and company.
A generating station has generating
units that are rated according to how
much power they possess. Typically,
nuclear power stations have units
rated from 500 MW to 1000 MW. 

The electrical power meter out-
side your house is in units of kilowatt
hours (kWh). To convert kWh to kilo-
joules, we multiply by 3600 kJ/kWh.
The kWh is a more practical unit than
the kilojoule for calculating cost.

Fig.5.24



h � d sin 6°
h � (20 m)(0.105)
h � 2.09 m 

In 1.0 s, the car climbs 2.09 m. The increase in its potential energy is

Ep � mgh � (1000 kg)(9.8 m/s2)(2.09 m) 
Ep = 20 482 J 

In 1.0 s,

P � �
20

1.
4
0
8

s
2 J

� � 20.5 kW

Since 36 kW is required to overcome air drag, the total power is
PT � 36 kW � 20.5 kW � 56.5 kW

Therefore, the car’s power output increases to 56 kW.

b) If 56.5 kW represents 65% of the engine’s power, then the total power
of the engine is 

P � �
56

0
.5
.6

k
5
W

� � 87 kW

We often hear the power of a car engine expressed in horsepower. One
horsepower equals 746 W. In Example 13, the engine horsepower for the car
to climb the hill at constant speed is �7

8
4
7
6
0
W
00

/h
W

p
� � 117 hp � 120 hp.

Figure 5.25 summarizes how to solve power problems.

Fig.5.25 Solving Power Problems
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1. An electric stove has a power rating of 1 kW on its large burner. If
the stove heats 2.3 L of water for 10 minutes from 10°C to 65°C,
how much energy is lost to the environment? (Assume that water
requires 4.2 � 103 J/°C/L.)

2. Tarzan runs up a flight of stairs to a height of 13.0 m above his
starting point in 18.0 s. If his mass is 83.0 kg,
a) what is his average power?
b) what is the total amount of energy transferred?
c) Is the value you found in b) accurate? Why or why not? 

3. The Sun radiates 3.9 � 1026 W of power. If Earth’s diameter is 
13 740 km and its mean distance from the Sun is 1.49 x 1011 m, how
much of this radiation is intercepted by Earth each second?

Power and the Human Body
Humans dissipate or consume about 100 W of power in just staying
alive. Our brains alone require about 15 W of power. This value is
loosely proportional to our weight. As we begin to move around, we
consume more energy and our power increases to the 200-W level.
Somewhere around 200 W, respiration and heart rate increase. The body
uses more chemical energy than its standard respiration rate can supply,
so respiration increases to increase cell oxygen intake. As power con-
sumption surpasses 200 W, the body sweats to release excess heat. With
more exercise, respiration and heart rate increase further. Eventually, we
require sustenance in the form of food and water. The human body has
limited ability to metabolize its food and convert it to energy. 

Fig.5.26

4. Calculate the total energy consumed by a hockey player during
three 20-minute periods if he is on the ice 25% of the time con-
suming energy at a rate of 215 W. (The remainder of the time, he
rests on the bench.)
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5.7 Elastic and Inelastic Collisions

There are numerous energy interactions in everyday collisions. The different
forms of energy involved in a collision may include kinetic energy, heat
energy due to friction, the energy used to produce a sound (such as a crash
or a bounce), gravitational potential energy, and elastic potential energy.
Physics is concerned with the interactions between matter and the interac-
tions involving energy. In all collisions, momentum is conserved according
to the law of conservation of momentum, studied in Chapter 4. According to
the law of conservation of energy, the total amount of energy involved in a
collision is also conserved. In some collisions, the total amount of kinetic
energy is conserved. This type of collision is referred to as an elastic collision.
If the total final kinetic energy is different than the total initial kinetic
energy in a collision, then the collision is said to be an inelastic collision.
Momentum is conserved for both cases. In inelastic collisions, kinetic energy
is lost to other forms of energy, such as heat and light.

Equations for One-dimensional Elastic Collisions

The following derivation leads to a shortcut for calculating the final velocities
for two objects involved in an elastic collision where the second object is
initially at rest.

Two objects of masses m1 and m2 are involved in an elastic collision.
The initial velocity of the first mass is v1o. Since the second mass is initially
at rest, v2o � 0. Using the law of conservation of momentum,

p��totalinitial � p��totalfinal

p��1o � p��2o � p��1f � p��2f

m1v��1o � m2v��2o � m1v��1f � m2v��2f

But v2o � 0. Therefore,

m1v1o � m1v1f � m2v2f

m1v1o 
 m1v1f � m2v2f

m1(v1o 
 v1f) � m2v2f (eq. 1)

Using the law of conservation of kinetic energy for an elastic collision,

Ek total initial � Ek total final

�
1
2

�m1v1o
2 � �

1
2

�m2v2o
2 � �

1
2

�m1v1f
2 � �

1
2

�m2v2f
2
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In a linear system, we can let � and 


indicate direction and omit the

vector arrows.



But v2o � 0. Dividing both sides of the equation by �
1
2

�, 

m1v1o
2 � m1v1f

2 � m2v2f
2

Moving the like terms (m1) to one side of the equation, we obtain

m1v1o
2 
 m1v1f

2 � m2v2f
2

m1(v1o
2 
 v1f

2) � m2v2f
2 (eq. 2)

Dividing equation 2 by equation 1, we obtain

�
m
m

1(

1(
v
v
1o

1

2

o







v
v

1

1

f

f

2

)
)

� � �
m
m

2

2

v
v

2

2

f

f

2

�

v1o � v1f � v2f (eq. 3)

Substituting equation 3 into equation 1,

m1(v1o 
 v1f ) � m2(v1o � v1f)

m1v1o 
 m1v1f � m2v1o � m2v1f

Isolating the v1o terms,

m1v1o 
 m2v1o � m1v1f � m2v1f

v1o(m1 
 m2) � v1f(m1 � m2)

v1f � v1o��mm1

1




�

m
m

2

2
�� (eq. 4)

where v1f is the final velocity of the first mass, in m/s, v1o is the initial velocity
of the first mass, in m/s, and m1 and m2 are the first and second masses,
respectively, measured in kilograms.

Similarly, we can also show that

v2f � v1o��m1

2
�

m1

m2
�� (eq. 5)

where v2f is the velocity of the second mass after collision.
Equations 4 and 5 are used to find the final velocities of two objects

involved in a linear elastic collision. You will have the opportunity to derive
equation 5 in the Applying the Concepts section at the end of this section.

We can draw several conclusions based on an analysis of equations 4
and 5. Let’s consider three cases:
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Case 1: m1 � m2

In equation 4, the numerator (m1 
 m2) becomes zero; therefore, v1f � 0.
The first object comes to rest when it collides with the second object at rest.

In equation 5, the numerator and denominator are equal to 1; therefore,

v2f � v1o

Case 2: m1 �� m2

In equation 4, the numerator (m1 
 m2) and denominator (m1 � m2) both
approach m1 and cancel each other out; therefore, v1f � v1o.

In equation 5, the denominator approaches m1; therefore, v2f � 2v1o.

Case 3: m1 �� m2

In equation 4, the term �mm
1

1




�

m
m

2

2
� approaches 
1; therefore, v1f � 
v1o (the final

velocity of the first object has the same magnitude but the opposite direction
of its initial velocity).

In equation 5, the term �m1

2
�

m1

m2
� approaches zero; therefore, v2f � 0.

e x a m p l e  1 4 A linear elastic collision problem, v2o
� 0

A 300-g toy train and a 600-g toy train are involved in an elastic collision
on a straight section of a model rail. The 300-g train, travelling at 2 m/s,
strikes the 600-g train at rest. Determine the velocities of both trains after
the collision.

Solution and Connection to Theory

Let’s designate the forward direction as positive to simplify the vectors.

Given
m1 � 300 g � 0.3 kg m2 � 600 g � 0.6 kg v1o � 2 m/s v2o � 0

Since the collision is one-dimensional and elastic, we can use equations
4 and 5.

v1f � v1o��mm1

1




�

m
m

2

2
�� � (2 m/s)��00

.

.
3
3

k
k

g
g




�

0
0

.

.
6
6

k
k

g
g

�� � 
0.7 m/s

v2f � v1o��m1

2
�

m1

m2
�� � (2 m/s)��0.3

2
k
(
g
0.

�

3 k
0
g
.6
)

kg
�� � 1.3 m/s

The final velocity of the first train is –0.7 m/s (i.e., moving at 0.7 m/s in
the opposite direction to its original path) and the final velocity of the
second train is 1.3 m/s (i.e., moving in the same direction as the original
path of the first train).
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v1f
� v1o ��m

m1

1




�

m

m

2

2

�� (eq. 4)

v2f
� v1o ��m1

2

�

m1

m2

�� (eq. 5)



e x a m p l e  1 5 A linear elastic collision problem, v2o
� 0

Two balls of equal mass are involved in an elastic head-on collision. If the
first ball (red) was travelling at 4 m/s [E] and the second ball (yellow) was
travelling at 2 m/s [W], determine the velocity of each ball after collision.

Solution and Connection to Theory

In order to use equations 4 and 5, we need to adjust the problem slightly
so that the initial velocity of one of the balls equals zero. We can do so by
changing our frame of reference to that of m2 such that v2o � 0. From the
perspective of m2, both balls travelling toward each other at 4 m/s and 
2 m/s, respectively, is the same as m1 travelling toward m2 at 6 m/s; that
is, the speed of m1 relative to m2 is 4 m/s � 2 m/s � 6 m/s. The velocity
of m1 is therefore 6 m/s [E].

Given
m1 � m2 � m v1o � 6 m/s v2o � 0

v1f � v1o��mm1

1




�

m
m

2

2
�� � (6 m/s)��mm




�

m
m

�� � 0 m/s

v2f � v1o��m1

2
�

m1

m2
�� � (6 m/s)��

2
2

m
m
�� � 6 m/s

The final velocities of m1 and m2 from the frame of reference of m2 are 0 m/s
and 6 m/s, respectively.

In order to complete the problem, we must return to our original frame
of reference (in which both balls are initially in motion) and determine
the final velocity of each ball. We can do so by subtracting the initial
velocity of m2 that was given in the problem (2 m/s [W] or 
2 m/s) from
the final velocities we obtained using equations 4 and 5.

v1f � 0 m/s 
 2 m/s � 
2 m/s and
v2f � 6 m/s 
 2 m/s � 4 m/s

The final velocities for the first and second ball are –2 m/s and 4 m/s,
respectively.
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Table 5.1
A Graphical Representation of an Elastic Collision

Snapshot of the collision F versus x graph Description

Fig.5.29a Fig.5.29b The carts are approaching each other (F � 0) until the 
spring touches the second cart. The separation at this 
point is labeled xmax.

Fig.5.30a Fig.5.30b The carts are doing work on each other by compressing the 
spring between them. Kinetic energy is being transferred into
elastic potential energy as the spring is being compressed.

Fig.5.31a Fig.5.31b The spring has reached its maximum compression and the 
two carts are at a minimum separation, xmin. In the general 
case, both carts reach the same velocity.

Fig.5.321a Fig.5.32b The carts are coming out of the collision. As the spring 
returns to its equilibrium state, it expands, returning the 
stored potential energy of the spring into kinetic energy for 
both masses. Once the spring has returned to equilibrium, 
the carts are no longer affected by each other (F � 0) at xmax.

Entire collision Fig.5.33 In an elastic collision, the total amount of energy stored is 
returned to kinetic energy.

m1 m2

F � 0
�v1 �v2

F

(N)

xmax x (m)

m1 m2

�v1 �v2

Both carts stopped

m1 m2

m1 m2

F � 0
�v1 �v2

F

(N)

xmax x (m)

Energy is
stored in
the spring

F

(N)

xmaxxmin x (m)

Total energy
is stored

xmaxxmin

F

(N)

x (m)

Total energy
is taken out
of storage

xmaxxmin

F

(N)

x (m)
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Table 5.2
A Graphical Representation of an Inelastic Collision

Snapshot of the collision F versus x graph Description

Fig.5.34a Fig.5.34b The carts are approaching each other (Fnet � 0). At the 
moment the spring touches m2, the separation distance is xmax.

Fig.5.35a Fig.5.35b The carts are doing work on each other and kinetic energy 
is being transferred or stored in the collision mechanism.

Fig.5.36a Fig.5.36b The spring has reached its maximum compression and all 
the kinetic energy is stored in the collision mechanism. The
distance between the two carts is xmin. In the general case, 
both carts reach the same velocity.

Fig.5.37a Fig.5.37b As the carts come out of the collision, only some energy is 
taken out of storage. Energy may have been dissipated as
heat so that the carts rebound with less kinetic energy than 
they initially had.

Entire collision Fig.5.38 The shaded area represents the energy that was put into 
storage but not taken out. In an inelastic collision, some 
energy is lost during the collision.

m1 m2

F � 0
�v1 �v2 F

(N)

xmax x (m)

m1 m2

�v1 �v2

Both carts stopped

m1 m2

m1 m2

F � 0
�v1 �v2

F

(N)

xmax x (m)

Energy is
stored 

F

(N)

xmaxxmin x (m)

Total energy
is stored

xmaxxmin

F

(N)

x (m)

Some energy
is released 
from storage

xmaxxmin

F

(N)

x (m)

Energy lost 
as a result of
the collision
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Graphical Representations of Elastic 

and Inelastic Collisions

In most collisions, the objects colliding are in contact for a short time interval,
during which various energy transfers can take place. In an elastic collision,
some energy may be stored as potential energy during the collision and
reappear later as kinetic energy after the collision. For instance, consider a
physics laboratory spring cart colliding elastically against another cart with
equal and opposite momentum (see Table 5.1).

Recall that the area under the force-versus-separation graph represents the
energy stored during a collision. If the collision is elastic, the area under the
before-collision portion of the graph is equal to the area under the after-collision
portion of the graph. That way, all the energy stored during the collision as
the objects are approaching is completely used up to separate the objects
after the collision. 

During an inelastic collision, some potential energy is transferred into
another form of energy, such as heat, sound, or light. Table 5.2 represents an
inelastic collision where the difference in the areas represents the energy lost. 

Figure 5.28 summarizes the method of solving collision problems in one
and two dimensions.

Collision

One
dimension

Elastic Inelastic

Two
dimensions

Elastic Inelastic

� ptotal initial
� ptotal final

�� ptotal initial
� ptotal final

� � ptotal initial
� ptotal final

�

Ektotal initial
Ektotal final

�

Change the frame
of reference so v2o

 � 0 

Return to original
frame of reference

v1f
 � v1o

m1 – m2

m1 � m2
��

v2f
 � v1o

2m1

m1 � m2
��

Head on v2o
 � 0 

v1f
 � v1o

m1 – m2

m1 � m2
��

v2f
 � v1o

2m1

m1 � m2
��

Head on v2o
    0 

Fig.5.28 Solving Collision Problems in One and Two Dimensions
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Safety During Collisions

In order to reduce the amount of impact during a vehicle collision, various
safety features are used to dissipate the energy of the collision over a
longer period of time. By using materials such as padding in helmets,
bumpers on cars, or shock absorbers on bicycles, the kinetic energy of
a collision can be transferred to elastic potential energy, which can
then be converted back into kinetic energy.

Take, for example, a spring shock absorber on a mountain bike
(Figure 5.39a). When the bike’s front wheel rolls over a protruding
tree root on the trail, the spring in the shock absorber absorbs some
energy as it compresses, and returns that energy to kinetic energy of
motion when it springs back into equilibrium. The spring absorbs the
energy instead of the rider. If the spring wasn’t there, the rider would
feel the bicycle moving up over the root in his arms, legs, and back.
Without the shock absorber, the rider’s inertia would be interrupted
abruptly by the tree root.

Seat belts and air bags (Figure 5.39b) in cars also provide a mechanism
for transferring energy to prevent or reduce injury. In a head-on collision,
the vehicle stops abruptly, but the driver still possesses kinetic energy
because of Newton’s first law of motion (an object in motion continues
in motion unless acted on by an unbalanced force). The seat belt and the
deployed air bag allow the kinetic energy of the driver’s motion to be
transferred to the air bag and seat belt. The fibres in the seat belt expand,
and the deployed air bag compresses, absorbing some of the driver’s
energy. Some energy may also be dissipated as sound and heat. 

A snowboarder doing aerials (Figure 5.39c) converts potential
energy into some other form of energy as she falls through the air.
Typically, her potential energy is converted into kinetic energy and
then into other forms of energy when she touches down on the
ground. Some of her kinetic energy is absorbed by her body when she
bends her knees and flexes her muscles upon landing. Some kinetic
energy is transferred to elastic potential energy in the deformation of
the snowboard, and some of her energy is transferred to compress and
heat the snow, and to create sound energy. In case they crash, snow-
boarders wear helmets that absorb their kinetic energy by deforming the
plastic covering and permanently compressing the foam inside the helmet.

1. Should seat belts and air bags be mandatory in Canada? Research
and write a short paragraph explaining your position.

2. Bicycle helmets are now mandatory equipment for cyclists in most
municipalities. Explain how energy is transferred during a collision
where a cyclist wearing a helmet collides headfirst with the pavement
during an accident.
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Fig.5.39b

Fig.5.39c



3. A 3.0-tonne truck (1 tonne � 1000 kg) moving at 20 m/s [W] 
collides with a 1.0-tonne car, initially at rest. The collision slows the
truck to 10 m/s [W].
a) What is the speed of the car after the collision?
b) Is this collision elastic or inelastic? Explain.
c) How much work is done by the truck as it collides with the car?

4. A 500-g hockey puck is travelling head-on at 33.0 m/s toward a
goalie’s pads. The goalie, initially at rest and completely padded, has
a mass of 75 kg. The puck causes the goalie’s pad to be compressed
by 3 cm and pushes her backward at 0.30 m/s.
a) Calculate the momentum and kinetic energy of the puck and the

goalie before collision.
b) Calculate the velocity of the puck after collision.
c) Calculate the kinetic energy of the puck and the goalie after 

collision.
d) Is this collision elastic or inelastic? Explain.

5. An elastic collision occurs between a 10-g marble and a 50-g marble.
The smaller marble is travelling north at 5 m/s in a head-on collision
course with the other marble, initially at rest. Determine the final
velocities of both marbles.

6. Two metal gliders are floating along a horizontal air track and col-
lide elastically. The first glider (200 g) is moving at 32 cm/s while the
second glider (300 g) is moving in the opposite direction at 52 cm/s.
What is the velocity of each glider after impact?

7. A metal sphere rolls toward another sphere of the same mass, ini-
tially at rest. They collide head-on and elastically. Using the laws of
conservation of momentum and energy, show that there are two
possible answers for the velocity of the metal sphere. What situa-
tions do the two solutions represent?

8. Given the force-versus-separation graph for a collision in Figure 5.40,
a) calculate the amount of energy stored before the collision. 
b) calculate the amount of energy lost in the collision.
c) Is the collision elastic? Explain.

Fig.5.40
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9. The force-versus-separation graph in Figure 5.41 represents a shock
absorber on a bike involved in a collision.
a) Calculate the amount of energy stored before the collision.
b) Determine the amount of energy released during the collision.
c) Calculate the percentage of energy lost during the collision.
d) Is the collision elastic? Explain.
e) Where did the energy lost during this collision go?

Fig.5.41
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S c ience—Technology—S ociety—
Environmental  Interrelat ionships

The Physics Equation — The Basis of Simulation

In physics, we try to understand the behaviour of systems in the natural world.
To help us achieve our goal, we make use of mathematical models in the form
of equations. We come up with mathematical models by designing experiments
in which we manipulate one variable and observe the effects on other variables.
Appendix D describes the mathematical techniques physicists use to examine
the relationships between variables in order to derive an equation that will
model physical behaviour and help us predict how a system will behave. A
single equation is a very simple simulation of an idealized natural event
because during experiments, we manipulate only one variable at a time.
Computers allow us to model highly complex situations because they can
perform extensive calculations almost instantaneously, using multiple equa-
tions, and display the results graphically. Computers are used to simulate
the performance of technological designs before they are built, which saves
time and money, and is much safer. Prior to the development of computers,
physical models of proposed designs had to be built and tested at great financial
and human cost. Many video games, such as “Pokemon Pinball” (Figure
STSE.5.1), are computer simulations of natural events.

To get an idea of how computers simulate natural events by combining
equations, let’s consider the example of launching a spring. In this unit, we have
studied the kinematics and dynamics of projectile motion, including the vari-
ous energy transformations required to propel an object through space. The
three equations that pertain to launching a spring are listed in Table STSE.5.1.

All three of these equations can be combined to create a single equation
describing the range of a spring projectile in terms of its initial stretch and
launch angle:

x ���
k
m
si

R
n

g
	

��
where x is the stretch required for the spring to launch itself, m is the mass of
the spring, R is the range it travels, g is the acceleration due to gravity, k is the
spring constant, and 	 is the launch angle. 
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Fig.STSE.5.1 “Pokemon Pinball”

models the motion of a ball in a pinball

game, including the rolling of the ball

up and down the incline and the

striking action of a simulated paddle

Table STSE.5.1
Equation Description

Ep � �
1

2
� kx2 Potential energy stored in a spring, where k is the spring

constant and x is the deformation (stretch) of the spring

Ek � �
1

2
� mv2 Kinetic energy of any object where m is the mass and v is

the object’s speed

R � �
v2 si

g

n 2	
� Range, where v is the launch speed and 	 is the launch angle

of a projectile that takes off and lands at the same level
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Fig.STSE.5.3 A counterweight-

powered catapult, called a trebuchet,

helped medieval “physicists” study

projectile motion

Fig.STSE.5.4 An example of a

spring launcher design
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Fig.STSE.5.2 The visual display

from a projectile simulation program

1198 m

4020 m

We can use a computer program to simulate the flight of our spring given
a specific set of parameters. Figure STSE.5.2 shows the output of a projectile
simulation program.

The following activities will give us an opportunity to test the accuracy of
our modelled behaviour of a spring projectile.

Design a Study of  Societal  Impact

Before the advent of computer processing power, intensive scientific
research could be extremely expensive. Often, the financial resources nec-
essary for such research were limited to government departments such as
the armed forces. In fact, much of our understanding of kinematics,
dynamics, and kinetic energy comes from the study of ballistics and pro-
jectile weapons such as the catapult, illustrated in Figure STSE.5.3. 

Compile a list of significant technological inventions (such as the
telephone, the television, and the nuclear reactor). Research the devel-
opment costs of your chosen inventions and categorize them as high,
medium, or low cost. Choose at least one item from each category and
research the history of its development. Do any of these items have
military applications? If so, have they been put to any significant non-
military use? Will underfunding of military research due to public sen-
timent be detrimental to scientific discovery?

Design an Activ ity  to Evaluate

Use the equations in Table STSE.5.1 to derive the projectile equation
for a spring. Measure the mass of a spring (distributed by your teacher)
and design and perform a simple activity that will evaluate the spring
constant, k.

Bui ld a Struc ture

Design and build a spring launcher that can propel a stretched spring
at a defined angle toward a simple target (such as a wastebasket). See
Figure STSE.5.4 for a simple design. This launcher should allow you to
stretch the spring a set amount and launch it on an adjustable incline.
Hold a design competition to see how well the physics equation predicts
the range of the spring projectile.

Extension: Use the equation in spreadsheet software to 
model the behaviour of the projectile while in flight. See 
�www.irwinpublishing.com/students� for a copy of the 
projectile simulation software in Figure STSE.5.2.
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You should be able to

Understand Basic Concepts:

Define and describe the concepts and units related to momentum and
energy, including the work–energy theorem, gravitational potential
energy, elastic potential energy, elastic collisions, and inelastic collisions.
Analyze situations involving the concepts of mechanical energy and the
laws of conservation of momentum and of energy.
Distinguish between elastic and inelastic collisions.
Analyze and explain common situations involving work and energy
using the work–energy theorem.
State Hooke’s law and analyze it in quantitative terms.

Develop Skills of Inquiry and Communication:

Investigate the laws of conservation of momentum and of energy in one
or two dimensions by carrying out experiments or simulations and the
necessary analytical procedures.
Design and conduct an experiment to verify the law of conservation of
energy in a system involving kinetic energy, gravitational energy, and
elastic potential energy.
Conduct an experiment to verify Hooke’s law.

Relate Science to Technology, Society, and the Environment:

Analyze and describe, using the concepts and laws of conservation of
energy and of momentum, practical applications of energy transformations
and momentum conservation.
Analyze and describe the operation of a spring bumper, seat belts, 
protective equipment used in sports, and the workings of a clock.

Equations
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S U M M A R Y
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E X E RC I S E S

Conceptual Questions

1. Holding your physics book steady in your out-
stretched arm seems like a lot of work. Explain
why it is not considered work in physics.

2. A golf ball and a football have the same
kinetic energy. Which ball has the greater
momentum? Explain.

3. What does a negative area under a force-
versus-displacement graph represent?

4. How is an object different as a result of 
having work done on it?

5. Explain how energy is transferred when a
diver jumps on a spring diving board, then 
dives into the pool.

6. Use unit analysis to show that the units work
out in the equation Ek � �

1
2

�mv2.

7. Explain what is meant by 
�Ee � �Ek.

8. Can an object have different amounts of 
gravitational potential energy if it remains 
at the same elevation?

9. Explain the difference between an elastic 
collision and an inelastic collision. Give an
example of each.

10. Can an object have momentum without 
having any kinetic energy? Is the reverse 
possible? Explain.

Problems

5.2 Work

11. How much work is required to
a) tow a boat with a force of 4000 N for 5.0 m?
b) kick a football with a force of 570 N over a

distance of 8.0 cm?
c) accelerate an electron from rest to 

1.6 � 108 m/s (me � 9.1 � 10
31 kg)?

12. How much work is done pushing a wheel-
barrow full of cement 5.3 m [forward] if a
force of 500 N is applied
a) horizontally?
b) 20° above the horizontal?
c) 20° from the vertical?

13. Jake the deliveryman pushes a box up a ramp,
exerting a force of 350 N. He walks on the
ramp, pushing the box for 25.0 m. If the box
has a mass of 50.0 kg, what is the height of 
the ramp and the angle it makes with the 
horizontal? Ignore friction. 

14. A snowplough diverts snow from the road to
the ditch (an average movement of 5.0 m of
snow at an average speed of 10.0 m/s). The
density of the fresh snow is 254 kg�m3 and the
average depth is 35.0 cm. Assume that a lane
of traffic is 4.0 m wide. If the snowplough clears
a road that is 8.0 km long, how much work
did it do on the snow?

15. Two campers pull a canoe, as illustrated in
Figure 5.42. If the force of friction on the
canoe is 84 N, how much work must each
camper do to keep the canoe in the middle 
of the river for a displacement of 50 m?

Fig.5.42

16. Calculate the amount of work done by a
hammer thrower if an 8.0-kg hammer attached
to a 1.3-m-long rope is rotated horizontally
above the thrower’s head. The hammer thrower
holds the rope with a tension of 300 N.

Shore

River

Camper 1

Camper 2

Ff � 84 N

45°

45°



17. Explain what is meant by –350 J. Give an
example.

Fig.5.43

18. A 35-kg box needs to be lifted to the top of 
a loading dock, which is also accessible by
ramp. The ramp is 5.0 m long and has a 
vertical height of 1.7 m.
a) What minimum force is required to lift the

box straight up onto the loading dock?
b) What minimum amount of work is

required to lift the crate straight up onto
the loading dock?

c) What force is required to push the crate up
the ramp such that the amount of work is
the same as in b)? Assume no friction.

19. Calculate the work done on a 50-kg wakeboard
enthusiast who experiences the horizontal
force indicated on the graph in Figure 5.44.

Fig.5.44

20. A lawn tractor pulls a 120-kg wagon along a
frictionless surface with a horizontal force
given by the graph in Figure 5.45.

a) How much work is done in moving the
wagon 4.0 m?

b) How is the wagon different as a result of
the force applied?

c) Calculate the speed of the wagon at a 
distance of 4.0 m from the start.

Fig.5.45

5.3 Kinetic Energy

21. Calculate the kinetic energy of
a) a 45-kg sprinter running at 10 m/s.
b) a 2.0-g fly buzzing around your head every

second. (Assume your head has a radius 
of 10 cm.)

c) a 15 000-kg army tank charging forward 
at 100 km/h.

22. A fish swimming horizontally and nibbling the
end of your barbless hook has a kinetic energy
of 450 J. You notice that 5.0 m of line is released
every 2.0 s. Calculate the mass of the fish.

23. Calculate the velocity of a 1.2-kg falling star
(meteorite) with 5.5 � 108 J of energy.

24. A 15-kg mass is released from rest at a height
of 200 m. If air resistance is negligible,
determine the kinetic energy of the mass 
after it has fallen 199 m.

25. Using unit analysis, show that p � �2mEk�
is correct.
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26. What percentage of the speed of light is 
the speed of an electron with 5.0 keV of 
kinetic energy? (me � 9.1 � 10
31 kg, 
1 eV � 1.6 � 10
19 J)

27. A 15-g bullet strikes a metal plate on an
armoured car at a speed of 350 m/s. The 
bullet penetrates the armour 3.3 mm before
coming to a stop.
a) Calculate the average net force acting on

the bullet while it is in the metal.
b) Calculate the average force exerted on the

metal by the bullet.

28. Figure 5.46 represents the horizontal force 
on a 1.5-kg trolley as it moves 3.0 m along a
straight and level path. If the trolley starts
from rest, calculate its kinetic energy and
velocity after each metre of its motion.

Fig.5.46

29. Calculate the momentum of a 5.0-kg briefcase
with a kinetic energy of 3.0 � 102 J.

30. A thin 200-g arrow moving horizontally at
125 m/s strikes a 1.0-kg apple, initially at rest.
The arrow pierces the apple in a negligible
time, emerging from it with a velocity of 
100 m/s, and causing the apple to slide 
forward 3.0 m before coming to a standstill.

a) What is the apple’s velocity just after the
arrow exits?

b) What is the maximum kinetic energy of
the apple?

c) Is this collision elastic? Explain.
d) What is the average frictional force stopping

the apple?

5.4 Gravitational Potential Energy

31. Calculate the gravitational potential energy of
a) a 2.0-kg physics textbook sitting on your

desk 1.3 m above the floor.
b) a 50-g egg dropped from the top of a 

3.0-m-high chicken coup.
c) a 200-kg air glider flying 469 m above 

the ground.
d) a 5000-kg car parked on the road.

32. A forklift requires a force of 4410 N to lift 
a roll of steel 3.5 m.
a) What is the mass of the steel?
b) How much work is required to lift the steel?

33. A rodeo rider is 1.8 m off the ground when
on a bull. The bull suddenly throws the rider
straight up at a velocity of 4.7 m/s. With what
velocity will the rider land on the ground?

34. A 3.0-kg ball is dropped from a height of 0.80 m
onto a vertical spring with a force constant of
1200 N/m. What is the maximum compression
of the spring?

35. A ping-pong ball with a mass of 5.0 g is
dropped from a height of 2.0 m. The ball loses
20% of its kinetic energy with each bounce.
How many bounces would it take for the
ping-pong ball to lose just over half of its
original height?

� F (
N

)

�d (m)

21 3

350

300
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200
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100
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36. A 1000-kg roller coaster car starts from rest 
at point A on a frictionless track, shown in
Figure 5.47.

Fig.5.47

a) At which point on the track is the car’s
gravitational potential energy the greatest?
the least?

b) What is the car’s maximum speed?
c) What is the speed of the roller coaster car

at point E?
d) What constant braking force would have to

be applied to bring the coaster car at point
F to a stop in 5.0 m?

37. A slingshot with a force constant of 890 N/m is
used to propel a primitive 10 005-kg starship in
deep space by releasing a 5.0-kg block of ice into
space. How much should the slingshot be pulled
in order to increase the ship’s speed by 5.0 m/s?

38. A toy rifle shoots a spring of mass 0.008 kg
and with a spring constant of 350 N/m. You
wish to hit a target horizontally a distance of
15 m away by pointing the rifle 45° above the
horizontal. How far should you extend the
spring in order to reach the target?

39. Newton was lying down in an apple orchard
when an apple struck his stomach. It then
bounced straight back up, having lost 15% of
its kinetic energy in the collision. How high
did it rise on the first bounce if it dropped
from a branch 2.0 m high?

40. A human cannon (Figure 5.48) has a spring
constant of 35 000 N/m. The spring can be
extended up to 4.5 m. How far (horizontally)
would a 65-kg clown be fired if the cannon is
pointed upward at 45° to the horizontal?

Fig.5.48

5.5 Elastic Potential Energy 
and Hooke’s Law

41. Determine the spring constant for the elastic
band represented in Figure 5.49.

Fig.5.49

42. A spring that obeys Hooke’s law has the 
following F-versus-x graph (Figure 5.50).
How much work is required to stretch 
the spring
a) 5.0 cm?
b) 7.0 cm?
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Fig.5.50

43. A toy gun has its spring compressed 3.0 cm 
by a 50-g projectile. The spring constant was
measured at 400 N/m. Calculate the velocity
of the projectile if it is launched horizontally.

44. A large bungee cord is used to propel a 
jet of mass 2.5 � 103 kg horizontally off an
aircraft carrier. The rubber band is pulled
back 35 m and released such that the jet takes
off at 95 m/s. What is the spring constant of
the rubber band?

45. A small truck is equipped with a rear bumper
that has a spring constant of 8 � 105 N/m.
The bumper can be compressed up to 15 cm
without causing damage to the truck. What 
is the maximum velocity with which a solid
1000-kg car can collide with the bumper 
without causing damage to the truck?

46. Figure 5.51 shows a 3.0-kg block of ice 
held against a spring with a force constant 
of 125 N/m. The spring is compressed by 
12 cm. The ice is released across a horizontal
plank with a coefficient of friction of 0.10.
a) Calculate the velocity of the ice just as 

it leaves the spring. Assume the friction
between the plank and the ice is negligible
until the moment when the ice leaves 
the spring.

b) Determine the distance the ice travels after
it leaves the spring.

Fig.5.51

47. A spring with a force constant of 350 N/m
(Figure 5.52) is compressed 12 cm by a 3.0-kg
mass. How fast is the mass moving after only
10 cm of the spring is released?

Fig.5.52

48. What minimum force will compress a spring 
15 cm if the spring constant is 4000 N/m?

49. A mattress manufacturer estimates that 
20 springs are required to comfortably support
a 100-kg person. When supporting the person,
the 20 springs are compressed 3.5 cm. Calculate
the spring constant for one spring.

50. A bungee cord needs to transfer 2.0 � 106 J of
energy. A 10-kg mass extends the bungee cord
1.3 m. What is the maximum extension of the
bungee cord?

5.6 Power

51. A 60-W light bulb is left on for 3 days, 8 hours,
and 15 minutes. How much energy is used?
Express this value in kWh as well.

52. a) A crane lifts a 3500-kg crate from the
ground to a height of 13.4 m. If the lift takes
23 s and the crane’s mechanical systems
are 46% efficient, then what power must
the engine provide?

b) Convert the value in part a) to horsepower.
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53. Suppose that your home uses 9.4 kWh of
power in one day and you would like to
replace that energy by riding a bicycle generator
for 4 h. Using energy transfer theory, explain
the physical condition (comfortable,
exhausted, dead, etc.) you would be in at 
the end of the ride.

54. An elevator in a large hotel has a mass of
4400 kg. The maximum passenger load is
2200 kg. Suppose the speed of the elevator
is 2.4 m/s. 
a) What is the average power required of the

lifting device? 
b) Compare your answer in a) with some

other power value in your daily experience.
c) What would be the power consequence of

counterweighing the elevator with a steel
mass of 4400 kg?

55. A cyclist coasts down a 7.2° hill at a steady
speed of 10.0 km/h. If the total mass of the
bike and rider is 75.0 kg, what power output
must the rider have to climb the hill at the
same speed?

5.7 Elastic and Inelastic Collisions

56. Derive the expression v2f � v1o��m1

2
�

m1

m2
�� for two

objects involved in an elastic collision, where
the first object is initially at rest.

57. A 15-kg object, moving at 3.0 m/s, collides
elastically (head-on) with a 3.0-kg object, 
initially at rest.
a) What is the velocity of each object after

collision?
b) How much energy was transferred to the

smaller object?

58. A 35-g sparrow, travelling at 8.0 m/s with its
beak open, swallows a 2.0-g mosquito, travelling
in the opposite direction at 12 m/s. Calculate
the velocity of the sparrow and mosquito just
after collision.

59. A 3.2-kg dynamics cart, moving to the right at
2.2 m/s, has a spring attached to one end. The
cart collides with another cart of equal mass,
initially at rest. After the collision, the first
cart continues to move in the same direction
at 1.1 m/s.
a) Calculate the total momentum and the

total kinetic energy before the collision.
b) Find the final velocity of the second cart.
c) Calculate the total amount of kinetic

energy after the collision.
d) Is this collision elastic? Explain.

60. A 15-g bullet travelling at 375 m/s penetrates
a 2.5-kg stationary block of wood sitting on a
frictionless surface. If the bullet emerges at
300 m/s, find the final velocity of the block.

61. A totally elastic, head-on collision occurs
between object A, with a mass of 6m, and
object B, with a mass of 10m. Object A is
moving at 5 m/s [E], while object B is moving
at 3 m/s [W]. Calculate the velocity of each
mass after the collision.

62. An elastic collision occurs on an air track
between a moving mass m1 and a stationary
mass m2. If the initial velocity of m1 is 5 m/s
and m1 � 3m2,
a) calculate the velocity of the first mass after

the interaction.
b) calculate the velocity of the second mass

after the interaction.
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63. A 750-g block of wood is attached to a spring
with k � 300 N/m, as shown in Figure 5.53.
A 0.030-kg bullet is fired into the block, and
the spring compresses 10.2 cm.
a) Calculate the velocity of the bullet before

the collision.
b) Is this collision elastic or inelastic?

Explain.

Fig.5.53

64. As part of a forensic experiment, a 50-g bullet
is fired horizontally into a 2.0-kg wooden
pendulum, as illustrated in Figure 5.54. The
pendulum with the bullet imbedded in it rises
15 cm vertically from its initial position.
a) Calculate the velocity of the block and 

bullet just after the collision.
b) What is the velocity of the bullet just

before impact?

Fig.5.54

65. A glancing elastic collision occurs between a
cue ball and the eight ball. Both balls have the
same mass and the eight ball is initially at rest.
Prove that the angle between the velocity of the
cue ball and the eight ball after collision is 90°.

mb � 0.030 kg

m � 750 g

k � 300 N/m

15 cm

m � 2.0 kg

m � 50 g

1 m
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Purpose
To calculate the height from which a ball must
be released from a curved ramp in order to land
at a specified point

Equipment
Using a curved ramp (where a ball is released
horizontally) and a solid steel ball as a starting
point, state any other apparatus needed for your
experiment. Draw a fully labeled diagram of
your set-up.

Procedure
1. Calculate the theoretical height from which a

metal ball must be released such that the ball
will land 30.0 cm (horizontally) from the
edge of the ramp. You must measure and
record the drop height first before performing
the actual experiment.

2. Write a procedure, including all steps required,
to collect the data necessary to calculate the
height from which a solid ball must be released
to land 30.0 cm from the base of the ramp.

3. Using the theoretical height you calculated in
step 1, carry out the procedure in step 2 to
determine the horizontal distance.

4. Using a systematic trial-and-error method,
determine the drop height to achieve the dis-
tance of 30.0 cm. Record all of your results;
you will use them later.

Data
Organize your data in a neat and organized 
fashion.

Analysis
1. Determine the amount of energy lost or

gained when you compare the experimental
versus the theoretical values.

2. Write the difference as a percentage loss 
or gain.

Discussion
1. Does it matter how you record the height?
2. Of the methods you used, which was the best

one for determining the horizontal distance?
3. Describe where the loss or gain in energy went.
4. Was the energy lost or gained a direct relation

to the distance that the metal ball travelled
along the ramp? Using all of the data obtained,
supply facts to back up your opinion. Graph
your results.

Conclusion
State your conclusion in relation to the original
purpose of this lab.

Extension
1. Does the mass of the ball affect the theoretical

calculation? Check and record your results
experimentally.

2. Determine an absolute error for the theoreti-
cal height in your experiment.
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Purpose
To determine a relationship between the exten-
sion of a spring and the force applied

Equipment
Retort stand
Test-tube clamp
Spring
1 metre stick
Various masses

Procedure
1. Attach the spring to a clamp, as illustrated 

in Figure Lab.5.1. Adjust the height of the
spring so that the lower end of the spring is
level with the zero mark on a metre stick.

Fig.Lab.5.1

2. Set up a data table like the one in Table Lab.5.1.
3. Add a small mass (100 g) to the spring.

Measure the extension from the zero point
and record your result in the data table. The
size and number of the masses you add will
depend on the rigidity of the spring.

4. Repeat step 3 roughly 10 times, increasing the
mass each time without damaging the spring.

Table Lab.5.1

Data
Calculate the force of gravity on each mass and
record your result in your data table.

Analysis
1. Draw a graph of force (F) versus extension

(x) of the spring.
2. From the shape of the graph, write a propor-

tionality statement relating F and x.
3. Write the proportionality statement as an

equation, using the constant k.
4. Determine the value of k, the spring constant,

by finding the slope of the line of best fit on
your graph. Rewrite your equation relating F
and x.

5. Use an equation to calculate the extension on
the spring if
a) a 50-g mass is suspended from it.
b) a 2.0-kg mass is suspended from it.

6. Using the graph, calculate the energy stored
in the spring when the largest mass you used
was suspended from it.

7. Using the equation, calculate the energy
stored in the spring when the largest mass
you used was suspended from it.

Discussion
Is the energy the same in steps 6 and 7? Explain
any differences.

Conclusion
State a conclusion for your spring.

Extension
1. How would the graph of F versus x be different

for a stiffer spring?
2. Repeat the experiment with two different

springs attached to each other.
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Purpose
To study the effects of a head-on inelastic collision

Equipment
None

Procedure
A head-on collision between mass A and mass B
occurs as described in the F-versus-s graph below.

Fig.Lab.5.2

Mass A � 1.0 kg, mass B � 2.0 kg
1. Answer the questions in the analysis part.
2. Complete the table in the data section.

Data

Analysis
1. Complete the first five columns of the data

table, being careful to apply the correct equa-
tion. Write out the equation that applies to
each object at each stage of the collision.

2. Complete the next six columns to determine
the momenta and kinetic energies of each
object and of the system.

3. Complete the last two columns to determine
the position and velocity of the centre of mass.

Discussion
1. How can we be certain from the information

given that this collision will be inelastic?
2. a) Outline the four stages of the collision.

b) How will we know when one stage ends
and the next stage begins?

3. Was momentum conserved at every moment
during the collision?

4. Was kinetic energy conserved at each
moment of the collision?
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A Detailed Study of a Head-On Inelastic Collision
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5. a) Was the velocity of the centre of mass 
constant?

b) Determine the momentum of the centre of
mass and compare it to the total momen-
tum of the system.

c) Determine the kinetic energy of the centre
of mass.

6. a) What was the minimum separation of the
two objects?

b) What notable events occurred at minimum
separation?

7. a) On one grid, draw position-versus-time
graphs for objects A and B and the centre
of mass.

b) On one grid, draw velocity-versus-time
graphs for objects A and B and the centre
of mass.

c) On one grid, draw momentum-versus-time
graphs for objects A and B and the system.

d) On one grid, draw kinetic-energy-versus-
time graphs for objects A and B and the
system.

Conclusion
State a conclusion based on your analysis and
discussion of the collision.

Purpose
To determine if kinetic energy is conserved in 
a glancing collision

Equipment
See Lab 4.2, Linear Momentum in Two
Dimensions: Air Pucks (Spark Timers).

Procedure
See Lab 4.2, Linear Momentum in Two
Dimensions: Air Pucks (Spark Timers).

Data
Use the data collected during Lab 4.2, Linear
Momentum in Two Dimensions: Air Pucks
(Spark Timers).

Analysis
For the data in Part A and Part B, calculate
1. the total amount of kinetic energy before

collision.

2. the total amount of kinetic energy after 
collision.

3. the change in kinetic energy.

Discussion
For the calculation in Part A and Part B,
1. is the kinetic energy conserved in your 

collision?
2. calculate the percent difference.
3. explain some possible reasons for the difference.
4. What are some things you can do to improve

the experiment?

Conclusion
State a conclusion based on your results.

Note
You may access the Irwin Web site at
<www.irwinpublishing.com/students> to verify
your calculations and to check your uncertain-
ties. Follow the steps outlined in the program to
input your observations.

5.4 Conservation of Kinetic Energy
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6 Energy Transfer

Chapter Outline

6.1 Gravity and Energy

6.2 Orbits

6.3 Simple Harmonic Motion — 

An Energy Introduction

6.4 Damped Simple Harmonic Motion

The International Space Station

6.1 The Pendulum

By the end of this chapter, you will be able to
• describe planetary and satellite motion in terms of energy and 

energy transformations
• calculate the energy and speed required for a rocket to escape Earth’s 

gravitational field
• find the gravitational potential energy of a satellite in a stable circular orbit
• describe the forms of energy involved in simple harmonic motion
• understand how damping effects simple harmonic motion
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6.1 Gravity and Energy

According to current theory, gravity is a bending of space and time. The
force of gravity can also be explained by field theory. The attractive nature
of gravity can be represented by an energy well. When an object is in a
gravitational well of another mass, energy is required to move it out of the
well because the mass attracts it. (This type of relationship is also shared by
electric force fields. In electrical theory, repulsion between two like charges
produces energy “hills” and attraction between opposite charges produces
energy “wells.” The forces of gravity and electrostatics will be compared in
greater detail in Chapter 8.)

A well representation of gravity is similar to a golf ball in a hole. If the
green is considered to be the zero-potential-energy level, then positive
kinetic energy is required to raise the ball out of the hole. Objects on the
surface of Earth are in a type of hole. Energy is required to remove them
from the influence of Earth’s gravitational pull. When we escape Earth’s
gravitational pull, we leave the hole (see Figure 6.1).

On Earth’s surface, elevations vary only a few kilometres from the mean
sea level. These variations are a very small fraction of the distance to
Earth’s centre. From Chapter 1, we know that using the law of universal
gravitation is clumsy for applications involving gravity near Earth’s surface.
If we assume that the distance from Earth’s surface to its centre is fixed, we
can divide both sides of the universal gravitation law by the mass of the
object on Earth and obtain the mean acceleration of gravity for Earth’s surface.
This value is 9.8 m/s2. However, when astronomical distances are involved,
we must use the universal gravitation equation,

F � �
GM

r2

m
�
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Earth

Fig.6.1 Earth is at the bottom

of an energy well

One of the differences between the
electrostatic force and the gravita-
tional force is that the electrostatic
force has a repulsive component.
The repulsive component of gravity
is antigravity. To date, antigravity has
not been discovered.

Fg � mg � �
Gm

r2

Em
�

g � �
G

r

M
2

E
�



The area under the graph in Figure 6.2 represents the work done, or the
change in potential energy, when the distance between M and m is changed.
In other words, as we increase the distance from Earth’s centre, we must do
work against gravity.

Because the function in the graph is a curve, it is more difficult to calculate
its area. Using integral calculus,

Area � work � � F dr

We substitute �GM
r2

m
� for F to obtain

W � � ��GM
r2

m
��dr
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Fig.6.2 The force of gravity on an

object varies inversely as the distance

from Earth’s centre

Checking units for the work done by
gravity, we obtain N�m or joules, the
unit for area under a force-versus-
distance graph.

Integrating to find the area under

the force-versus-distance graph is

like adding a set of rectangular

areas with bases �r times heights

F. Delta (�) is replaced by dr when

the bases, �r, shrink to a very

small value. Thus, �F�r becomes

�F dr when �r becomes infinitely

small. Our step-like approximation

becomes a continuous curve once

�r shrinks to dr (see Figure 6.3).

(a) (b)

F F

rr
�r �r

The area under the       graph. As �r becomes very small, the rectangles fit 

the curve exactly, and the sum of the areas equals the area under the curve.

1
r2

Fig.6.3



The GMm does not depend on the area under the curve, so 

W � GMm��
r
1

2� dr

Using calculus, the area under the curve �
r
1

2� is

��
r
1

2� dr � �
�

r
1
�

From this result, we arrive at our final equation for the work done by gravity:

W � �
�G

r
Mm
�

But if an object is lifted from Earth’s surface, it gains potential energy; thus,

Ep � �
�G

r
Mm
�

The negative sign indicates that while we are in a gravitational field, like
standing on Earth’s surface, energy must be added in order to move us far-
ther away from the centre of the energy well we are in. Consider the graph
of Ep versus r (Figure 6.4). In three dimensions, it looks like a well. In fact,
it’s an “energy well.” A rocket on Earth’s surface (a distance rE from Earth’s
centre) is as close as it can get to Earth’s centre. It is located at the bottom
of Earth’s gravitational energy well. If its gravitational energy is increased
by �

GM
rE

m
�, it will escape from Earth’s gravitational well, reaching a level of

zero potential energy.
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Fig.6.4 An Ep-versus-r graph

(where r � �x2 � y2� and r is

the distance from the vertical

line passing through (0, 0, 0))

is an “energy well”

W � GMm� dr

W � �
�G

r
Mm
� � constant

W � �GMm ��

r
�
r

1
2
� dr

W � �GMm��
�

r
1
��

W � �GMm��
�

�

1
� ���

�

r

1
���

Since �
�
1

� � 0, we are left with

W � �
�G

r
Mm
�

1
�
r2

�

r



e x a m p l e  1 A rocket moving upward from Earth

How much work is done moving a 1000-kg spacecraft from Earth’s surface
to a height of 200 km above Earth’s surface?

Solution and Connection to Theory

Given
M � 5.98 	 1024 kg m � 1000 kg r1 � rEarth � 6.38 	 106 m 
d � 200 km � 2 	 105 m
r2 � r1 � d � 6.38 	 106 m � 2 	 105 m � 6.58 	 106 m

W � �E � Ep2 � Ep1

W � �
�G

r
M

2

m
� � ���G

r
M

1

m
��

W � �GMm��
r
1

2
� � �

r
1

1
��

W � �(6.67 	 10�11 N�m2/kg2)(5.98 	 1024 kg)(1000 kg)��6.58 	

1
106 m
� � �

6.38 	

1
106 m
��

W � 1.90 	 109 J

The work done to move the spacecraft is 1.90 	 109 J.

e x a m p l e  2 The potential energy of the Moon

Calculate the potential energy of the Moon (mMoon � 7.35 	 1022 kg)
relative to Earth (mEarth � 5.98 	 1024 kg) given that the distance between
their centres is 3.94 	 105 km.

Solution and Connection to Theory

Given
mMoon � 7.35 	 1022 kg mEarth � 5.98 	 1024 kg
rE/M � 3.94 	 105 km � 3.94 	 108 m 

For potential energy,

Ep � �
�G

r
Mm
�

Ep �

Ep � �7.4 	 1028 J

The potential energy of the Moon relative to Earth is �7.4 	 1028 J.

�(6.67 	 10�11 N�m2/kg2)(5.98 	 1024 kg)(7.35 	 1022 kg)
�������

3.94 	 108 m
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Fig.6.5 The Moon



A Comparison of �Ep � mg�h and Ep �

In Chapter 5, we learned that the potential energy near Earth’s surface is
described by the equation

�Ep � mg�h

where �h is the change in height. Using this equation, the change in poten-
tial energy is a positive value. How does this equation relate to the equation
we derived earlier in this section?

Imagine that you have fallen down a well and are rescued by firemen
hoisting a rope to pull you out. They have to add energy to pull you to the
surface. If we assume that your potential energy is zero at Earth’s surface,
then your potential energy in the well is negative until you come out. At the
bottom of the well, you have the most negative value of potential energy; for
example, �1000 J. Nearer the top, it becomes less negative (approaching
zero), for example, �200 J, so

�Ep � Ep2 � Ep1 � �200 J � (�1000 J) � �800 J

The change in potential energy is positive. Similarly, we obtain a positive
value when we use the equation Ep � mg�h because we set an arbitrary
Ep � 0 and consider the change in Ep relative to this reference point.

e x a m p l e  3 Finding the energy change on Earth 

in two different ways

What is the energy change in moving a 1.00-kg mass from Earth’s surface
to a distance two times the radius of Earth? Use both equations for grav-
itational potential energy.

Solution and Connection to Theory

Given
rEarth � 6.38 	 106 m � r1 r2 � 2rEarth � 1.28 	 107 m
MEarth � 5.98 	 1024 kg m � 1.00 kg

Using Ep � �
�G

r
Mm
�:

�Ep � Ep2 � Ep1

�Ep � �
�G

r
M

2

m
� � ���G

r
M

1

m
��

�GMm
�

r
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Deriving �E � mg�h from the 

general case of Ep � �
�G

r

Mm
�

Ep � �
�G

r

Mm
�

If we move a height �h above Earth’s

surface, then r becomes r � �h.

Thus,

�Ep � Ep2 � Ep1 � �
�G

r

Mm
� � �h � ���G

r

Mm
��

�Ep � GMm ��r �

�1

�h
� � �

1

r
��

�Ep � GMm ���r

r

(

�

r �

r �

�h

�

)

h
��

�Ep � �
r(

G

r

M

�

m

�

�

h

h

)
�

For small values of h (1 km or less), 

r � �h 	 r (where r is Earth’s radius,

6.38 	 106 m) because r 

 �h.

Therefore,

�Ep � �
GM

r

m
2

�h
� (eq. 1)

But F � �
GM

r2

m
� and �

m

F
� � a � g (the

acceleration due to gravity)

So, g � � �
G

r

M
2
�

Substituting g for �
G

r

M
2
� in equation 1,

we obtain

�Ep � gm�h � mg�h

�
GM

r2

m
�

�
m



�Ep �

�

�Ep � �3.12 	 107 J � 6.25 	 107 J
�Ep � 3.13 	 107 J

Using �Ep � mg�h:
If we assume that g � 9.8 m/s2, then
Ep � mg�h � (1.00 kg)(9.8 m/s2)(6.38 	 106 m) � 6.25 	 107 J

We have used 6.38 	 106 m for �h because this distance is the distance
above Earth’s surface. Notice that both values are positive. In the first
calculation, the object’s gravitational potential energy became less nega-
tive due to the change in height.

The different answers arrived at using the two methods are due to
the difference in the values of g at this distance. This difference
becomes noticeable at about 400 000 m above Earth’s surface, where
the difference between the surface value of g (9.8 m/s2) and the local
value of g is roughly 10%.

Kinetic Energy Considerations

Potential energy is only part of the energy equation. From Chapter 5, we
know that in a closed system, the total energy must be constant at all times.
We also know that kinetic energy is given by the equation

Ek � �
1
2

�mv2

Thus, in general,

ET � Ek � Ep

But

Ep � �
�G

r
Mm
�

Therefore,

ET � �
1
2

�mv2 � �
GM

r
m

�

(�6.67 	 10�11 N�m2/kg2)(5.98 	 1024 kg)(1.00 kg)
������

6.38 	 106 m

�(6.67 	 10�11 N�m2/kg2)(5.98 	 1024 kg)(1.00 kg)
������

1.28 	 107 m
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e x a m p l e  4 Ballistic trajectory

A 2300-kg rocket shuts off its engines (burns out) 494 km above Earth’s
surface. Its velocity at burnout is 3.0 km/s directly upward. Ignoring air
resistance, what maximum height will the rocket reach?

Solution and Connection to Theory

Given
m � 2300 kg v1 � 3.0 km/s � 3000 m/s rE � 6.38 	 106 m
r1 � 494 km � rE � (0.494 � 6.38) 	 106 m � 6.87 	 106 m r2 � ?

Since we know the rocket’s mass and speed at burnout, we can calculate
its kinetic energy. We also know that at maximum height, v � 0; there-
fore, the kinetic energy is also zero, meaning that all the kinetic energy
from the launch has been transferred to gravitational potential energy, Ep.
We need to calculate the difference in gravitational potential energy at
launch and at the peak of the ballistic arc as Ek, then solve for the
unknown distance.

Ek � �Ep

Ek � E2 � E1

�
1
2

�mv2 � �
�G

r
M

2

m
� � ���G

r
M

1

m
��

The only unknown variable is r2. We can solve the equation algebraically
before substituting any values into it. First, we can cancel m and multi-
ply by 2 to eliminate the fraction.

v2 � �
2G

r1

M
� � �

�2
r
G

2

M
�

r2 � �
v2

�

r1

2
�

GM
2G

r1

M
�

Substituting values for the variables,

r2 �

r2 � 7.45 	 106 m

If Earth’s mean radius is 6378 km, then the height of the rocket at
burnout is

h � r2 � rE � 7450 km � 6378 km � 1072 km � 1100 km

This rocket’s maximum height is 1100 km.

�2(6.67 	 10�11 N�m2/kg2)(5.98 	 1024 kg)(6.87 	 106 m )
��������
(3000 m/s)2(6.87 	 106 m) � 2(6.67 	 10�11 N�m2/kg2)(5.98 	 1024 kg)
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Fig.6.6 Liftoff of a Saturn V 

Moon rocket



Escape Energy and Escape Speed

How much energy must we give a rocket at Earth’s surface in order for it to
escape entirely from Earth’s gravitational pull? 

We know that the gravitational potential energy at Earth’s surface is
given by

Ep � �
�G

r
M

E

m
�

We also know that to escape Earth’s gravity, the sum of the kinetic and
potential energies of the rocket (i.e., the rocket’s total mechanical energy)
must equal zero. If we wish our rocket to just escape Earth’s gravitational
field, we must give it an initial kinetic energy of

Ek � ��
GM

rE

m
�

Escape speed is the minimum speed required for an object to escape the
gravitational pull of another object at a given distance. Solving for the
escape speed, vesc,

�
1
2

�mvesc
2 � �

GM
r

m
� � 0

The rocket mass cancels:

�
1
2

�vesc
2 � �

G
r
M
� � 0

Therefore,

vesc � 
�
2G

r
M
��

e x a m p l e  5 Escape speed from Earth

Find the escape speed required to leave Earth.
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Fig.6.7 Liftoff of a space shuttle



Solution and Connection to Theory

Given
mEarth � 5.98 	 1024 kg
rEarth � 6.38 	 106 m

ET � 0 for escape; therefore, �
1
2

�mv2 � �
GM

r 2

m
�

The mass of the craft cancels out:

vesc � 
�
2G

rE

M
��

vesc � 
���
vesc � 1.1 	 104 m/s � 11 km/s

Therefore, the escape speed required to leave Earth is 11 km/s.

Implications of Escape Speed

Case 1: vprobe 
 vesc

If vprobe 
 vesc, then ET 
 0. Thus, when the craft reaches an infinite distance,
it will not stop but keep going.

Case 2: vprobe � vesc

Conversely, if vprobe � vesc, then ET � 0. If vprobe is close to vesc, ideally, the
probe will return, but gravitational forces in the universe will do work on
the probe and may change its course, preventing its return.

Case 3: vprobe � vesc

The craft has just enough energy to escape a body’s gravitational pull and
will not return. We can calculate the minimum speed required to escape a
gravitational field using the equation

�
1
2

�mv2 � �
GM

r
m

� or vesc � 
�
2G

r
M
��

e x a m p l e  6 Leaving the Moon

Apollo astronauts had to fire their rocket engine in order to return to
Earth after the Moon landings. If their spacecraft had an altitude of 100 km
above the lunar surface, what was the escape speed from the Moon if its
mass is 7.35 	 1022 kg? (Assume that the Moon’s diameter is 3476 km.)

2(6.67 	 10�11 N�m2/kg2)(5.98 	 1024 kg)
�����

6.38 	 106 m
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Fig.6.8 Pioneer 10 was the first

human-made satellite to leave our

solar system (1983). It had an

escape speed greater than the 

Sun’s escape speed.

Escape speed is a simplification that

describes a one-time velocity that

would be required to escape Earth’s

gravitational pull without any subse-

quent work being done by the rocket

engine. In practice, only probes that

leave Earth to explore other planets

must reach this speed.



Solution and Connection to Theory

Given
mMoon � 7.35 	 1022 kg dMoon � 3476 km � 3.476 	 106 m
h � 100 km � 1 	 105 m vesc � ?

First, we need to determine the distance from the spacecraft to the centre
of the Moon:

r � �
dM

2
oon
� � h

r � �
3.476 	

2
106 m
� � (1 	 105 m)

r � 1.838 	 106 m

For escape speed,

vesc � 
�
2Gm

r
M�oon
��

vesc � 
���
vesc � 2.309 	 103 m/s

Therefore, the required speed to escape lunar gravity at this altitude is
2309 m/s.

Figure 6.9 summarizes the steps in solving energy-transfer problems.

Fig.6.9 Escape Speed and Energy Transfer

2(6.67 	 10�11 N�m2/kg2)(7.35 	 1022 kg)
�����

1.838 	 106 m
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1. Assume Earth is orbiting the Sun in a circular orbit. Look up
Earth’s mass and mean distance to the Sun and calculate
a) its kinetic energy.
b) its potential energy relative to the Sun.
c) the total energy of the orbit.

2. What is the effective value of g 1000 km above Earth’s surface?
Earth has a mass of 5.98 	 1024 kg and a radius of 6.38 	 106 m.

3. A 1000-kg rocket fired from Earth has a speed of 6.0 km/s when it
reaches a height of 1000 km above Earth’s surface.
a) If the rocket has used all of its fuel, will it escape from Earth?
b) If it does not escape, what maximum height above Earth will

it reach?

6.2 Orbits

If we throw a baseball, it comes back to Earth very quickly. If we fire an
artillery shell, the projectile travels possibly 40 km over the surface before
coming back to Earth. Some experimental rockets travel part way around
the world before landing. Figure 6.10 illustrates that if we can make an
object travel fast enough, then it will go all the way around the world (ignoring
the effects of the atmosphere’s drag).

In Chapter 2, we learned that objects moving in a circular path are acted
upon by an unbalanced force inward, called the centripetal force. An object
orbiting Earth or any other body has an unbalanced force of gravity acting
90° to its velocity. Thus

Fnet � Fg

For circular motion,
Fnet � Fc

Therefore,

Fc � �
GM

r 2

m
�

But

Fc � �
m

r
v2

�

�
m

r
v2

� � �
GM

r 2

m
�

where m is the mass of the orbiting object. Canceling the common factors,
we obtain the equation for the orbital speed:

v � 
�
G

r
M
��

ap
plylying
theC

o
n c e p

ts

Fig.6.10 With sufficient velocity, 

a horizontal projectile could 

circle Earth



e x a m p l e  7 Calculating orbital speed

What speed is required for an object to stay in orbit just above Earth’s
surface?

Solution and Connection to Theory

Given
M � 5.98 	 1024 kg rE � 6378 km

To find the orbital speed,

v2 � �
G

r
M
�

v2 �

v2 � 6.253 	 107 m2/s2

v � 7908 m/s � 7900 m/s

The object must travel at a speed of 7900 m/s. This speed is the reason why
jetliners that fly at speeds approaching 1000 km/h don’t escape Earth, nor
do military aircraft, which fly a lot faster. Spacecraft not only have to fly
fast, but also above the atmosphere. Since the effects of atmospheric drag
are a function of the speed squared, the heat produced by an object travelling
at this speed through the atmosphere would cause it to burn up.

e x a m p l e  8 The orbital speed of a space station

What is the speed of the International Space Station (ISS) in its typical
orbit of 340 km above Earth’s surface?

(6.67 	 10�11 N�m2/kg2)(5.98 	 1024 kg)
�����

(6.378 	 106 m)
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Fig.6.11 The International Space Station



Solution and Connection to Theory

Given
M � 5.98 	 1024 kg h � 340 km � 3.4 	 105 m

The value of r in the equation is the distance from the orbiting object to
the centre of Earth. So,

r � rE � h � 6.378 	 106 m � 3.4 	 105 m � 6.718 	 106 m

For orbital speed,

v2 � �
G

r
M
�

v2 �

v2 � 5.94 	 107 m2/s2

v � 7705 m/s � 7700 m/s

Therefore, the ISS is travelling at an orbital speed of 7700 m/s.

If we consider a satellite travelling in a circular orbit around Earth, we
know that the required centripetal force is supplied by gravity such that

Fc � �
r
m

or

v

bi

2

t
� � �

G
ro

M

rbi

m

t
2�

mv2 � �
G
r
M

orb

m

it
�

Dividing by 2,

�
1
2

�mv2 � �
G
2r

M

orb

m

it
�

Therefore, for a circular orbit

Ek � �
G
2r

M

orb

m

it
�

Since the energy required to escape Earth’s gravitational pull is �
GM

r
m

�, a
satellite in orbit has one-half the required energy to escape. Therefore, the
additional energy it needs to escape Earth’s gravitational pull is

�
GM

2r
m

�

(6.67 	 10�11 N�m2/kg2)(5.98 	 1024 kg)
�����

6.718 	 106 m
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e x a m p l e  9 The total mechanical energy of Earth’s orbit

What is the total mechanical energy of Earth’s orbit around the Sun if
the mean Earth�Sun distance is 1.5 	 1011 m, the mass of Earth is
5.98 	 1024 kg, and the mass of the Sun is 2.0 	 1030 kg?

Solution and Connection to Theory

Given
Total mechanical energy of Earth’s orbit

� �
GM

2r
m

�

�

� 2.7 	 1033 J

The total mechanical energy of Earth’s orbit around the Sun is 2.7 	 1033 J,
a huge amount of energy!

Kepler’s Laws of Planetary Motion

Johannes Kepler (1571�1630) struggled with the problem of planetary
motion. The accepted view of the time was Copernicus’s solar-centred
(heliocentric) universe consisting of circular orbits for the planets due to
their geometric perfection. But observations revealed that the orbits of the
planets weren’t perfect circles. The motion of Mars was especially puzzling
because it made loops in the sky every two years or so (known as
retrograde motion — see Figure 6.12). Other planets did so as well, but
Mars was the most obvious. Kepler believed that if he could solve the
problem of Mars’ motion, then the motions of the other planets would
also be explained.

(6.67 	 10�11 N�m2/kg2)(5.98 	 1024 kg)(2.0 	 1030 kg)
������

2(1.5 	 1011 m)
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Fig.6.12 Martian retrograde motion



Kepler tried various geometric solutions. When he tried elliptical paths, the
predictions agreed remarkably well with observations. From his work,
Kepler formulated three laws of planetary motion.

Law 1: The path of each planet is an ellipse with the Sun at one focus
(see Figure 6.13a).

Law 2: A body in orbit around another body sweeps out equal areas in
equal times (see Figure 6.13b). The body moves fastest at its closest
approach and slowest when farthest away, which allows us to determine
the orbiting object’s location at any chosen time.

Law 3: The ratio of the radius of the orbit cubed divided by the square
of the period is equal to the same constant for all planets:

�
T
r3

2� � K
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Minor axis

Major axis

Foci
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b
c

a2 � b2 � c2

Elliptical orbit

These areas are equal if
the time intervals are equal

Sun

Neptune

Fig.6.13a

Fig.6.13c The ellipse

Fig.6.13b

If a satellite of mass m is in a circular

orbit about Earth, then the centripetal

force is supplied by gravity:

�
G

r

M
2

m
� � �

m

r

v2

� � �
m4

T

�
2

2r
� (Recall the

three equations for centripetal force

from Section 2.8.)

�
T

r3

2
� � �

4

G

�

M
2

�

But �
4

G

�

M
2

� � K, a constant; therefore,

�
T

r3

2
� � K

Kepler’s third law can also be

expressed in terms of a, the average

radius of an elliptical orbit. This

radius is approximately the sum of

the apogee and perigee distances.

The period of the orbit (T) and the

semimajor axis of the orbit are

related by the equation

T2 � ka3.

In this case,

k � �
4

G

�

m

2

�



e x a m p l e  1 0 A year on Venus

If the distance from Venus to the Sun is 0.723 times the distance from
Earth to the Sun, how many Earth days are there in a year on Venus?

Solution and Connection to Theory

Given
rV � 0.723rE TE � 365 days

Using Kepler’s third law,

�
T
rV

V

3

2� � �
T
rE

E

3

2�

TV
2 � �

rV

r

3

E

T
3

E
2

�

TV
2 �

TV
2 � (0.723)3(365 days)2 � 50 350 days2

TV � �50 350�
TV � 224 days

A year on Venus is 224 Earth days long.

Kepler’s Third Law for Similar Masses

The constant K in Kepler’s equation assumes that the orbiting mass is
infinitesimally small. If the mass of the orbiting object is a significant
fraction of the larger mass, then the equation KT 2 � r3 is invalid because
the objects orbit about the centre of mass of the two objects, known as the
barycentre, not about the larger mass. In the case of Earth and the Moon,
the centre of mass of the Earth�Moon system is about 1600 km below
Earth’s surface. Thus, Earth wobbles while the Moon orbits. For similar
masses, the equation for K must be modified in the following manner:

K � �
G(M

4�

�
2

m)
�

This equation is valid when m is a significant fraction of M. In our solar
system, Pluto and its moon Charon are an example of two large masses orbit-
ing a barycentre. Charon is about 20% of the mass of Pluto, so both objects
orbit around a point in space between them approximately every six days.

(0.723rE)3(365 days)2

���
rE

3
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Binary stars have similar orbital paths. Sometimes, a star is observed to
undergo a small amount of movement or “wobble” due to an unseen compan-
ion. Given the period of this wobble, we can calculate the distance between the
unseen companion and the star along with its mass relative to the star. This
wobble period is used to find black hole candidates and extrasolar planets.

Extension: Orbital Parameters

There are five main parameters in celestial mechanics that describe the
shape of orbits in space and help locate orbiting objects in their trajectories. 

The orbital period, T, is the time required to complete one orbit from
an inertial frame of reference.

The eccentricity, e, is the flatness of the ellipse.

The semimajor axis, a, is the distance along the major (longest) axis,
from the geometric centre of the ellipse to its edge.

The pericynthion is the point of closest approach to the large central mass.

The apocynthion is the point of farthest approach to the large central mass.

The Total Energy of an Elliptical Orbit

The total energy of a circular orbit is given by the equation

ET � �
�G

2
M
r

m
�

For an elliptical orbit, we replace r with the semimajor axis, a, which is the
average radius, ravg. Thus,

ET � �
�G

2
M
a

m
�

The shape of an orbit and its orientation in space doesn’t depend on its total
energy. If Earth’s orbit was highly elongated but had the same semimajor axis,
it would have exactly the same energy and orbital period (see Figure 6.16).
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Fig.6.15 Orbital parameters for our solar system
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major axis determines the energy
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Table 6.1
Extreme Points of 

Passage in Orbits

Central mass Trajectory 

object extrema suffix

Earth gee

Sun helion

Moon lune

Jupiter jove

Star astron



There are three possibilities for the total energy of an orbit: ET � 0, ET 
 0,
and ET � 0. When ET � 0, the orbit is periodic and is called a bound system.
For example, the Moon is bound to Earth, and is not about to go visit Mars.
When ET 
 0, the energy is positive and the object is no longer bound. Since
potential energy is always negative and is a function of position, the kinetic
energy must increase to make ET 
 0. This type of orbit is a hyperbola, such
as a satellite launched from Earth and leaving the solar system. When ET � 0,
the orbit is a parabola and is called an escape trajectory; that is, it has just
enough energy to overcome the gravitational pull of the mass it orbits (see
Figure 6.17). Any force acting on the orbiting body changes its path and
may also change the type of orbit.

Figure 6.18 summarizes the three orbital shapes and their energies.

Fig.6.18 Summary of Orbital Shapes

1. Comet Halley has an orbital period of 76.1 years.
a) What is its semimajor axis?
b) What is the eccentricity of its orbit? (Look it up in a resource.)
c) How fast is this comet moving at perihelion?

2. What is the escape speed of an object 10 000 km above Jupiter’s
“surface”?

3. a) How much speed would have to be added to the Moon for it to
leave Earth’s influence?

b) How much energy would it take to achieve your answer in a)?
c) Compare your answer in b) with an everyday energy value.

4. Recall from Chapter 2 that some communications satellites are in geo-
stationary Earth orbit. What are the special circumstances of such satel-
lites? Where are they located? (Hint: They are maintained in position
by their orbit and gravity, not by continually firing rocket engines.)

The Elliptical Path of a Projectile
Kepler’s laws allow us to revisit one of the concepts covered in Chapter 2.
The range of a ballistic projectile is given by the equation

R � �
v0

2 s
g
in 2
�
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This equation is based on the assumption that the particle starts and
leaves at the same height above ground. The path travelled by the object
is parabolic. This equation is also based on the assumption that Earth
is flat because no change in the direction of g is given: g always points
to Earth’s centre. 

Technically, the direction of g changes slightly on a projectile’s
flight path. The amount of the change in the direction of g is illustrated
by the Verrazano Narrows Bridge in New York City. Opened in 1964 and
with a span of 1280 m, it was the world’s longest bridge until the 1990s.
The two support towers are about 15 cm farther apart at the top of the
tower than at the bottom due to Earth’s curvature.

Earth’s curvature changes the path of a projectile from a parabola to
an ellipse. Nevertheless, we can still apply the equation R � �

v0
2 s

g
in 2
� since

the error is insignificant on short-range projectiles. According to Kepler,
the projectile is actually in orbit about Earth’s centre. It would continue
orbiting Earth in an elliptical trajectory, but the ground gets in the way.
5. Calculate the orbital period of a baseball thrown at a speed of

25 m/s parallel to Earth’s surface if the baseball were to pass through
Earth. Assume that all of Earth’s mass is concentrated at a point at
Earth’s centre.

6.3 Simple Harmonic Motion — 
An Energy Introduction

If the spring in Figure 6.21 is supported vertically, the mass will stretch the
spring until an equilibrium point is found. Suppose that the mass is pulled down
and released. In its lower position, the spring exerts a force that accelerates the
mass upward toward the equilibrium point. At the equilibrium point, the mass
has very little force on it since the spring is no longer stretched, and continues
past the equilibrium point due to its momentum. The spring then begins to com-
press to a point ideally the same distance from the equilibrium point. Once the
spring is compressed enough that it has stored all the kinetic energy possessed
by the mass when it passed the equilibrium point, it then begins to fall back
down past the equilibrium point, to the point from which it was released.
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Fig.6.19 The Verrazano Narrows

Bridge in New York City
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Fig.6.21
Fig.6.20 This 40-kg brass pendulum

at the Smithsonian Institution in

Washington, DC, swings to and fro 

all day. It’s an example of repetitive

motion, where the force on the object

is proportional to the distance from

the equilibrium point.

Actually, the mass will not reach the

exact same point because there is

friction in the coiling of the spring

that will slowly damp the oscillation.

The air, acting as a fluid, also exerts a

small amount of drag on the spring

and mass. Thus, all oscillating motion

is damped and will slowly come to

rest after a number of oscillations.



Hooke’s Law

Recall from Chapter 5 that the restoring force of a spring system is pro-
portional to the displacement from the equilibrium position, defined by
the equation

F � �kx

where k is the spring constant and x is the displacement from the equilib-
rium point.

Notice that the force operates in the opposite direction to the displace-
ment vector, which is why it is called a restoring force. Expanding on
Hooke’s law and applying Newton’s second law, we can derive the equation
for the acceleration of the mass:

F��net � F��spring

ma � �kx

or

a � ���
m
k
��x

e x a m p l e  1 1 The acceleration of a mass on a spring

A 500-g puck is connected to the side of an air table by a spring. A force
of 1.4 N is applied to pull the puck 8.0 cm to the right. Then, the puck
is released.

a) What is the maximum acceleration of the puck?
b) What is the acceleration of the puck as it passes its original rest position?

Solution and Connection to Theory

Given
m � 500 g � 0.50 kg F � 1.4 N x � 8.0 cm � 0.08 m

a) k � �
F
x

� � �
0
1
.0
.4
8

N
m

� � 17.5 N/m

a � ���
m
k
��x

The acceleration is greatest when x � 0.08 m.

a � ���10
7
.
.
5
5
0
N
k
/
g
m

��0.08 m � �2.8 m/s2

The acceleration of the puck is 2.8 m/s2 to the left.

b) As the puck passes the original rest position, the puck’s displacement
is zero, so the acceleration at that point is also zero.
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We ignore the negative sign in

Hooke’s law because Hooke’s law

specifically considers the action of 

a restoring force against an applied

force. Since we are only concerned

with the energy stored in an ideal

spring being compressed or

expanded, the defining equation 

for force becomes F � kx.



Motion that obeys Hooke’s law is called simple harmonic motion (SHM)
(see also Chapter 10). To determine some of the properties of the
mass�spring system, we can study its energy. The equation for kinetic
energy is

Ek � �
1
2

�mv2

We know that the work done to compress the spring equals its potential
energy because the system is closed and isolated. Hooke’s law gives us the
following graph:

Fig.6.22

The energy stored in the spring is given by the area under the graph in Figure
6.22, which is A � �

1
2

�bh or E � �
1
2

�Fx. Combining the equations E � �
1
2

�Fx and
F � kx, we obtain

E � �
1
2

�(kx)x

E � �
1
2

�kx2

Therefore, the total energy of the mass–spring system is

E � �
1
2

�mv2 � �
1
2

�kx2

We can determine the total energy of the system from the spring’s max-
imum compression. At maximum compression, the kinetic energy of the
system is zero because the mass is motionless. Similarly, we can also deter-
mine the total energy of the system from the speed of the mass as it passes
the equilibrium point. At this point, there is no potential energy stored in
the spring because x � 0. Thus,

ET � �
1
2

�mv2 � �
1
2

�kx2

e x a m p l e  1 2 The speed of an oscillating mass

A spring with a spring constant of 80.0 N/m has a 1.5-kg block attached
to its free end. If the block is pulled out 50.0 cm from its rest position and
released, what is its speed when it returns to the equilibrium position?
Assume there is no friction.
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Solution and Connection to Theory

Given
k � 80.0 N/m m � 1.5 kg x � 50.0 cm � 0.500 m

At the equilibrium position, x � 0 and all the initial potential energy of
the spring is converted to kinetic energy.

�
1
2

�mv2 � �
1
2

�kx2

v � 
�
k
m
x2

�� � 
��
v � 3.7 m/s

The block’s speed at the equilibrium position is 3.7 m/s.

At maximum compression (displacement) from equilibrium (zero kinetic
energy), the amplitude of the system’s motion is A. The total energy of the
system is

ET � �
1
2

�kA2 � �
1
2

�mv2 � �
1
2

�kx2

which becomes

kA2 � mv2 � kx2

e x a m p l e  1 3 Calculating the energy and speed 

of a pendulum

Determine the total energy and maximum speed of a pendulum with a
mass of 0.200 kg, a maximum amplitude of 0.500 m, and a spring con-
stant of 1.00 N/m.

Solution and Connection to Theory

Given
k � 1.00 N/m m � 0.200 kg A � 0.500 m

We can calculate the total energy of the system from the amplitude:

ET � �
1
2

�kA2

ET � �
1
2

�(1.00 N/m)(0.500 m)2

ET � 0.125 J

(80 N/m)(0.500 m)2

���
1.5 kg
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1.5 kg

Fig.6.23



From this result, we can determine the maximum speed of this mass and
spring by using the equation

E � �
1
2

�mvmax
2

vmax
2 � �

2
m
E
�

vmax
2 � �

2
0
(
.
0
2
.
0
1
0
25

kg
J)

�

vmax � 1.12 m/s

The pendulum has a total energy of 0.125 J and a maximum speed of
1.12 m/s.

1. Given a mass�spring system with a bob of mass 0.485 kg, a spring
constant of 33 N/m, and an initial displacement of 0.23 m, determine
a) the kinetic energy of the bob as it passes the equilibrium point.
b) the change in energy when the bob passes the equilibrium point

in the opposite direction.
c) the bob’s speed as it passes the equilibrium point.

2. From the data given in problem 1 above, determine
a) the period.
b) the bob’s speed when the displacement is 0.16 m.
c) the bob’s kinetic energy at the 0.16-m point.

3. Table 6.2 lists data for the position and speed of a mass�spring
system. Calculate the time and plot a graph of position versus time.
What is the shape of this graph? Explain.
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Table 6.2
Position and Speed Data for a Mass�Spring System

x (m) v (m/s) �t (s) Total time (s)

0.5 0 0 0

0.4 0.6708 0.298 0.298

0.3 0.8944 0.1278 0.4258

0.2 1.0247 0.1042 0.53

0.1 1.09545 0.09433 0.6243

0 1.118 0.0904 0.71473

�0.1 1.095 0.0904 0.80513

�0.2 1.0247 0.09433 0.89946

�0.3 0.8944 0.1042 1.00366

�0.4 0.6708 0.1278 1.13146

�0.5 0 0.298 1.4294



6.4 Damped Simple Harmonic Motion

All motion experiences friction. The effect of friction on SHM is called
damping. If SHM is damped, it may stop in less than one oscillation, or it
may oscillate any number of times before finally stopping. Damping affects
amplitude and makes its value much more time-dependent.

Three Types of Damping

The three types of damping and the corresponding graph of the motion are
given below.

1) Overdamping: Oscillation ceases and the mass slowly returns to equi-
librium position (Figure 6.24).

2) Critical damping: Oscillation ceases and the mass moves back to equi-
librium position as fast as theoretically possible without incurring further
oscillations. This special point is never perfectly reached in nature
(Figure 6.25).

3) Underdamping: Oscillation is continually reduced in amplitude
(Figure 6.26).
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Applications of Damping

Door Closers

Fig.6.27a Ouch!

Spring-loaded storm door closers would slam the door closed if they were
not damped (see Figures 6.27a and b). The closer contains a spring, a pis-
ton, and a valve. The valve allows air into the cylinder when opening the
door pulls the piston back. As the door closes, the valve lets the air out
slowly, damping the motion. The motion is slightly overdamped, which
means that the door stops before it is completely closed. Then the spring
slowly closes it the rest of the way.

Shock Absorbers

The suspension system of all cars is made up of a spring-loaded wheel
mount and a strut or shock absorber to damp the motion so that the car does
not continue to bounce up and down in SHM every time you go over a
bump. Shocks may be either gas filled or oil filled. A piston inside the shock
is forced up and down as the car’s suspension moves up and down. As the
piston moves up or down, the fluid inside is forced to flow through a small
hole in the piston, which restricts its motion. The car’s motion is slightly
underdamped. If you push down on the front corner of your car, it should
spring back slightly past the rest position and stop when it returns to equi-
librium if your shock absorbers are working properly.

1. Explain three examples of damped SHM not given in this text.
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Fig.6.27b A door-closing mechanism

Fig.6.28 Shock absorbers on 

vehicles act as dampers
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S c ience—Technology—S ociety—
Environmental  Interrelat ionships

The International Space Station

Space travel is always in the media — whether we are exploring a new world
with robotic spacecraft or sending astronauts into space aboard the space
shuttle. Flying in space is tremendously expensive. The energy required to
reach orbital speeds is phenomenal. Outside Earth’s atmospheric envelope,
there is nothing to support life. The region is a vacuum that is 20 times
deeper than that easily obtained on Earth. Radiation from the Sun, nor-
mally stopped by the atmosphere, creates hazards for astronauts and their
equipment. Without the surrounding atmosphere to moderate temperatures
by dispersing heat, sunlit regions of a spacecraft are about 200°C hotter
than their shaded counterparts a few metres away. If we go into space, we
need to bring everything. Given that space travel is neither cheap nor easy,
why is the ISS a priority for the international scientific community?

Very expensive laboratories around the world are designed to simulate
any environment possible to perform research on a wide array of topics, 
but none of them can suspend the effects of gravity. In a micro-gravity
environment, many chemical and physical reactions change their nature.
For example, when heating water in a sealed pot on an electric stove, only
the water near the stove element will heat by conduction. The “roiling” that
is typically seen in a pot of boiling water is due to convection, which occurs
because the density of water decreases with heat, so the hotter water moves
higher, forced up by the cooler, denser water that takes its place. In a micro-
gravity environment, although density changes also occur, convection is
impossible because there is no unbalanced force of gravity. The water far-
thest from the burner remains at the same cool temperature, while the water
at the bottom boils. The entire pot of water eventually heats, but at a much
slower rate, and only by conduction. In space, agitation of fluids is necessary
to ensure thermodynamic stability.

The ISS is currently being constructed in Earth orbit by the Russians
and the US space-shuttle fleet. The construction project is a consortium of
16 nations, including Canada. Canada’s prime contribution to the station is
the Space Station Remote Manipulator System (SSRMS), otherwise known
as Canadarm 2, which will move about outside the station, performing
many tasks that would otherwise require space walks. The station will be
completed around 2005.

Experiments are already being conducted on the ISS. Current experiments
include protein crystal experiments, where scientists expect to learn how pro-
teins actually work and how to grow them; cell and tissue growth experiments
for research in cancer, diabetes, and AIDS; and a number of experiments to
measure human adaptability to the micro-gravity environment. Once the ISS
is complete, scientists will be able to perform more complicated experiments.
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Fig.STSE.6.1 An artist’s rendition of

the completed International Space

Station (ISS)

One way to save energy during 

shuttle launch is to take advantage 

of Earth’s rotation. When the shuttle

launches, it quickly pitches and rolls

to fly up and east. At a distance of

two Earth radii from Earth’s centre,

the shuttle (and all of us, for that

matter) moves eastward at a speed of

one Earth circumference per day, or

2�(6.38 	 106 m)/24 h, or about

464 m/s. The shuttle can use the

kinetic energy from this speed to

begin its journey.

Objects in the ISS are normal-

forceless rather than weightless; that

is, they are still acted upon by the

force of gravity, but they are in free

fall toward Earth. The circular motion

of their orbit also means that as they

fall, they also move tangentially to

Earth’s surface. The net result is that

the objects have no normal force

holding them in place and are 

therefore constantly accelerating

toward Earth’s surface.
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The ISS may be able to accommodate more than 10 people at a time,
so the chances of being able to work in this unique environment will be
much greater than in the past when spacecraft were limited to only two
or three individuals. If you are curious about the kind of background
required to fly in space, examine the NASA astronaut biography Web site
to see what some of these amazing people did before they flew in space
(see �www.irwinpublishing.com/students
).

Design a Study of  Societal  Impact

Research current experiments on the ISS as well as those that are planned
in the next few years. Explain what benefits these experiments will have
for humanity, and why these experiments must be conducted in space.

The space station will cost about US$75 billion. Explain the value
of this price tag for humanity. Compare this cost to what Canadians
typically spend per year on items such as recreation, music, cosmetics,
alcohol, and cigarettes.

Design an Activ ity  to Evaluate

Research the mass of a typical space shuttle, including payload and the
orbit parameters for a typical mission. Calculate the gravitational
potential energy of the shuttle and payload in typical orbit. What percent-
age of the total launch energy was provided by the rotational kinetic
energy described in this STSE? How much fuel must be burned to send
the shuttle into space?  

Investigate the cost of possible commercial transportation ventures
to the ISS. What is the likelihood that one of us will visit it?

Bui ld a Struc ture

Space hardware must be strong yet lightweight and fit into a small
cargo area. Design an object that is made of lightweight materials such
as toothpicks and paper. Use paper to represent a solar panel. The
device must fit into a 10-cm3 cube when stowed, and deploy to a length
of 1 m without external support.
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S P E C I F I C  E X P E C TAT I O N S

You should be able to

Understand Basic Concepts:

Analyze planetary and satellite motion.
Analyze the factors affecting the motion of 
isolated celestial objects.
Explain how astronauts can be “weightless” while
a large gravitational force is exerted on them.
Describe the energy transformations that take
place when a spaceship escapes Earth’s gravita-
tional field.
State Kepler’s three laws.
Explain the mathematical model for SHM.
Understand how energy is transferred during SHM.
Explain damping and give a practical example
not given in this text.
Solve SHM-type problems.
Explain the negative signs in Newton’s law of
universal gravitation and in the gravitational
potential energy equation.

Develop Skills of Inquiry and Communication:

Calculate the gravitational potential energy of
isolated celestial objects.
Calculate the energy and speed required to propel
a spacecraft from Earth’s surface out of Earth’s
gravitational field.
Calculate the kinetic and gravitational potential
energies of a satellite that is in stable circular
orbit around a planet.
Perform experiments with a pendulum, includ-
ing analysis, to verify the theoretical relation-
ships between its period, mass, initial angle, and
string length.

Relate Science to Technology, Society, 

and the Environment:

Understand the current developments with
respect to the International Space Station and 
the reason why essential research needs to be 
performed in space and not on the ground.
Gain experience in constructing models of
lightweight, deployable devices for space-type
applications.
Gain an understanding of the skills and back-
ground required of an astronaut or scientist.
Identify examples of SHM and damped SHM in
the natural world.

Equations

F � �
GM

r2

m
�

Ep� �
�G

r
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�
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1
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�mv2
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�
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�G

2
M
r

m
� (orbit)

�
T
r 3

2� � K

a � ���
m
k
��x

F � �kx

Ep � �
1
2

�kx2

ET � �
1
2

�kA2

kA2 � mv2 � kx2

S U M M A R Y
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E X E RC I S E S

Conceptual Questions

1. Why do we not require the more general form
of Newton’s law of universal gravitation
when we are calculating the force of gravity
in our classroom?

2. Explain the difference in launch requirements
if a spacecraft was launched westward instead
of eastward. Assume that it will achieve the
same orbit.

3. Why does only one side of the Moon face
Earth at all times?

4. Explain the relationship between the force of
gravity and gravitational potential energy.

5. If a spacecraft jettisoned a large piece of itself
into space, making its new mass about 26% of
its original mass, what happens to the orbit of
the smaller section?

6. During a space rendezvous, two spacecraft
have to match orbits very carefully before one
of them can move in to dock. If an astronaut
in the shuttle simply points at the other dock-
ing craft in the distance and then rockets
toward it, the docking spacecraft will move
farther away! Why?

7. In a Jules Verne novel, a spacecraft is “shot”
to the Moon in a large cannon. Suppose the
barrel is 80 m long. If the spacecraft experi-
enced constant acceleration for the entire
80 m, determine
a) if this mission would be survivable.

Explain the reasons carefully.
b) the force of the cannon’s recoil.

8. Assume that our knees can absorb the impact
from a fall of 2 m without damage. If we
attach springs to our feet that have 500-N/m
spring constants and 0.45 m of travel, from
what maximum height could we survive a fall?

9. Using the same “spring boots” as in question 8,
if the spring completely compresses and our
knees absorb their maximum amount of energy,
would we bounce off the ground? Explain.

10. Identify three SHMs in your daily experience.
Explain how you are convinced that the
motion is in fact typical of SHM.

11. Find three examples of damping in oscillatory
systems (it need not be exactly SHM). Is the
damping desired or undesired? Why?

12. Design a device that could be used for meas-
uring the mass of Canadian astronaut Roberta
Lynn Bondar while in orbit. Due to continual
free fall, she appears weightless, thus rendering
conventional scales useless.

Problems

6.1 Gravity and Energy

13. If a 100 000-kg shuttle enters Earth’s 
atmosphere at 4 km/s and lands at 80 m/s,
how much energy has it released to the 
atmosphere? What is its change in height if its
initial height was 100 km?

14. A 920-kg satellite is projected vertically
upward from Earth’s surface with an initial
kinetic energy of 7.0 	 109 J. Find
a) its maximum height.
b) the initial kinetic energy it would have

needed to keep going indefinitely.
c) the initial speed it would have needed to

keep going indefinitely.

15. A 550-kg satellite projected upward from
Earth’s surface reaches a maximum height of
6000 km. Find
a) its change in gravitational potential energy.
b) its initial kinetic energy.



16. A 20 000-kg meteorite from outer space is
headed directly toward Earth with a speed of
3.0 km/s. Find its speed when it is 200 km
above Earth’s surface.

17. The escape speed at the event horizon of a
black hole is defined as the speed of light, c.
What would the size of Earth have to be for it
to be compressed to a back hole?

18. At what location from Earth are the gravita-
tional fields of Earth and the Moon balanced?

19. Find the energy per kilogram required to
move a payload from Earth’s surface to the
Moon’s surface.

6.2 Orbits

20. Find the speed of an Earth satellite in orbit
400 km above Earth’s surface. What is the
period of the orbit?

21. Find the altitude of a communications satellite
that is in geostationary Earth orbit above 
the equator.

22. When the space shuttle delivers a crew to the
International Space Station, it usually boosts
the orbit of the station from about 320 km to
350 km. How much energy does the shuttle
add to the station’s orbit?

23. a) Show that speed decreases as the radius of
a satellite’s orbit increases.

b) What effect does increasing an orbit’s
radius have on the period of the satellite?

24. Calculate the Moon’s energy in its orbit
around Earth.

25. Saturn has a mass of 5.7 	 1026 kg and a
radius of 6.0 	 107 m. What is the minimum
speed of a satellite orbiting Saturn?

26. The Apollo astronauts were typically in an orbit
100 km above the lunar surface. What is the
escape speed from the Moon at this altitude?

27. Given the orbit height in problem 26, how
long would it take for the Apollo spacecraft 
to complete one orbit around the Moon?

28. a) Calculate the speed of Mars as it moves
about the Sun. Its mean distance from
the Sun is 2.28 	 1011 m, its radius is
3.43 	 106 m, and its mass is 6.37 	 1023 kg.

b) Calculate the speed required to orbit Mars
at an altitude of 80 km.

29. Calculate the escape speed of a spacecraft
leaving the Moon’s surface.

6.3 Simple Harmonic Motion — 
An Energy Introduction

30. Three waves pass the end of a pier in every
12 s. If there is 2.4 m between the wave
crests, what is the frequency?

31. If a spring with k � 12 N/m is connected to 
a mass of 230 g and set in motion with an
amplitude of 26 cm, calculate the speed of 
the mass as it passes the equilibrium point.

32. A 2.0-kg mass on a spring is extended 0.30 m
from the equilibrium position and released.
The spring constant is 65 N/m.
a) What is the initial potential energy of 

the spring?
b) What maximum speed does the mass reach?
c) Find the speed of the mass when the

displacement is 0.20 m.

33. For the mass in problem 32, find
a) its maximum acceleration.
b) its acceleration when the displacement

is 0.20 m.

34. a) The Minas Basin in the Bay of Fundy has
the largest tides in the world (around 15 m
— see Figure 7.43a). Suppose that a device
is stretched across the mouth of the bay for
10 km. As the floats inside it rise and fall
with the tide, their motion is converted to
electricity. Suppose that the mechanical
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linkages of this proposed system are 29%
efficient. What power would be produced
if the period of the tide is 12 hours and 
32 minutes?

b) Compare the value you obtained in a) to
the output of a reactor at Ontario’s
Darlington Nuclear Station (900 MW).

35. A 100-kg mass is dropped from 12 m onto a
spring with 0.64 cm of recoil. What is the
spring constant?

36. Consider a spring of k � 16 N/m connected to
a block mass (m) and having an amplitude of
motion of 3.7 cm. What is the total energy of
this system?

37. A 5-g bullet is discharged at 350 m/s into a
mass�spring system. If the mass is 10 kg and
the spring constant is 150 N/m, how far will
the spring be compressed if the bullet stays in
the mass?

6.4 Damped Simple Harmonic Motion

38. Damped oscillators are complicated. For 
simplified cases, the amplitude of the damped
oscillator decreases exponentially according 

to the equation x � x0e
�
�

2m
bt
�

, where x0 is the 

maximum amplitude at the start of the oscil-
lation, t is the time at which you calculate the
amplitude, m is the mass on the spring, and b
is a damping constant in kg/s. If b � 0.080 kg/s,
m � 0.30 kg, and the starting amplitude is
8.5 cm, calculate the value for x at the 
following times:

a) 0.1 s
b) 1.5 s
c) 15.5 s
d) 3.0 min
e) 5.2 h

39. For problem 38, how long does it take for the
amplitude to reach one-half its initial value?

40. a) Mechanical energy also decreases exponen-
tially according to the equation 

E � �
1
2

�kx0
2e

�
�

m
bt
�

. For the oscillator in problem
38, calculate the time it takes for the
mechanical energy to drop to one-half its
initial value if k � 100 N/m.

b) Calculate the energy of the oscillator at
i) 0.1 s.
ii) 22.3 s.
iii) 2.5 min.
iv) 5.6 a.
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Purpose
To analyze the motion of a pendulum

Equipment
1 retort stand
1 test-tube clamp (rubber grips work best to hold
the string)
1-m length of string
1 hook mass set
1 stopwatch or sonic rangers

Procedure
1. Set up the pendulum so that the string is in

a V shape. This shape will permit the pen-
dulum to swing in one plane only. Tie one
end of the string to a clamp near the post
and grip the other end with the clamp to
permit quick changes of the string length.

2. Determine how to measure the release
angle of the pendulum and how much
amplitude is being attenuated by air and
mechanical friction. To accurately deter-
mine the period, let the pendulum swing 10
or 20 oscillations if the damping is not too
high, then divide the time you measure by
the number of oscillations.

3. Determine the mass dependence on the
period by swinging three or four masses.

4. Determine the dependence of the period on
the length of the string. Try at least five
different lengths.

Data
Organize your data in chart form. Use a differ-
ent chart for steps 3 and 4 of the procedure.

Analysis
1. Plot a graph of string length versus period.
2. Perform a logarithmic transformation on

the data to obtain a straight line (see
Appendix D).

3. Determine the equation of this line, then
transform it back to a curve so that you
have a relationship between L and T.

Discussion
1. Was the period of the pendulum dependent

on the mass? Was it dependent on the string
length?

2. Find the theoretical equation for a pendu-
lum. Compare your equation with this
equation and determine if the constants,
such as � and g, are reasonably correct.

3. In light of your values from question 2, dis-
cuss where uncertainties occurred in this lab
and how they directly affected your results.

4. What other possible factors affecting the
pendulum’s period could you check?

Conclusion
Summarize your results in a concluding statement.

6.1 The Pendulum
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By the end of this chapter, you will be able to
• compare angular motion to linear motion
• calculate various aspects of angular motion, such as angular displacement,

velocity, and acceleration
• calculate and discuss aspects of rotational forces, energy, and momentum
• explain everyday phenomena in terms of angular variables

Angular Motion 7

S T

S E

Chapter Outline

7.1 Introduction

7.2 A Primer on Radian Measure

7.3 Angular Velocity and

Acceleration

7.4 The Five Angular Equations 

of Motion

7.5 Moment of Inertia

7.6 Rotational Energy

7.7 Rotational Kinetic Energy

7.8 The Conservation of Energy

7.9 Angular Momentum

7.10 The Conservation of 

Angular Momentum

7.11 The Yo-yo

Gyroscopic Action — 

A Case of Angular Momentum

7.1 Rotational Motion: Finding 

the Moment of Inertia



ap
plylying

theC
o

n c e p

ts

7.1 Introduction

So far in this text, we have, for the most part, studied linear motion. We
have used Newton’s laws to describe how objects behave at rest, and in uni-
form and accelerating motion. Chapter 2 briefly touched on aspects of 
circular motion and introduced the concept of centripetal acceleration and
force. In this chapter, we will study the angular equivalents to displacement,
velocity, acceleration, force, mass, and momentum and derive the corre-
sponding angular equations. We will also learn why tops continue to spin if
no external forces act on them, why skaters spin faster when they tuck their
arms in, and why gyroscopes are used in missile guidance systems.

1. Make a list of toys that rely on angular motion to function. Do any
of them combine different angular components?

2. List kitchen aids, both manual and electric, that rely on angular
motion to perform their function.

3. List workshop tools, both manual and electric, that rely on angular
motion to perform their tasks.

7.2 A Primer on Radian Measure
Consider Projecto, the great circus duck, moving in a circular path of radius
r, as shown in Figure 7.2a. Projecto completes one cycle when the angle
through which he moves is 360°. The distance he travels is the circumfer-
ence, C � 2�r. Any part of Projecto’s travel along the circular path is called
an arc length, s, or angular displacement, �. Radian measure is the angle
through which Projecto moves in traversing an arc length, s. If we know the
arc length and the radius, we can determine the radian measure, �.
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Fig.7.1 Objects undergoing 

angular motion
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�r1
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Fig.7.2a Projecto moves 2�r or

360° to complete one cycle
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Radian measure equals �ar
r
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� or 

� � �
r
s

�

where � is the angle measured in radians (rad), s is the part of the path
subtended by the angle �, and r is the radius.

If we travel one complete cycle, then � � 360° and s � C � 2�r.
Therefore, �

r
s

� � �
2�

r
r

� � 2�. Remember that �
r
s

� � �, so a 360° angular move
results in an equivalent move of 2� radians.

To convert radians to degrees,

2� rad � 360°

so

1 rad � �
3
2
6
�

0°
� � 57.3°

Therefore, to convert an angle measured in radians to an angle measured in
degrees, we multiply the number of radians by 57.3°/rad.

The equation for arc length travelled is

s � r�

where the angle � is measured in radians.

The link between angular and linear measurement is the radius, r. We will
see it again in equations for angular velocity, acceleration, and torque.

e x a m p l e  1 Using radian measure

A CD, 12.0 cm in diameter, rotates 30° counterclockwise. How far does
a point on the outer rim of the CD move, in centimetres and radians?

Fig.7.4
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The Parameters of 

Angular Displacement

 �2 

 ��

  �r1

s1

s2

s

�1

�r2

Fig.7.2b r� � position vector, 

�� � radian measure, s � arc length

By convention, angular displacement

is positive if the motion is counter-

clockwise, and negative if the motion 

is clockwise.

�

Counterclockwise

�

Clockwise

Fig.7.3 Angular motion conventions

The radian (rad) is a unitless 

quantity and can be omitted in the

final answer. It is similar to the term

“cycles” in cycles/s. The term

“cycles” is dropped and the unit

becomes 1/s or Hz.



Solution and Connection to Theory

Given
d � 12.0 cm � � 30° s � ? r � ?

The radius of the CD is � 6.0 cm.

In radians, 30° � �
57.

3
3
0
°
°
/rad
� � 0.52 rad.

To find the distance (arc length) travelled, we substitute into the equa-
tion s � r�, where the angle is measured in radians and r is the radius:

s � (6.0 cm)(0.52 rad)
s � 3.1 cm

The point on the outer rim of the CD travels 3.1 cm (equivalent to a 30°
turn). A positive value means that the CD is rotating in a counterclock-
wise direction. Notice also that the rad unit is omitted from the final
answer for the length the point moves along the rim.

e x a m p l e  2 Orbital motion using angular measure

Earth’s average orbital radius around the Sun is 1.49 � 1011 m. If it travels
�
3
4
�
� radians, calculate

a) this angle in degrees.
b) the distance Earth has travelled in orbit.

Fig.7.5

Solution and Connection to Theory

Given

r � 1.49 � 1011 m � � �
3
4
�
� rad s � ?

12.0 cm
�

2
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Gradians

Some calculators come with a grad

mode. In Europe, gradians are 

sometimes used to measure angles.

There are 400 gradians in one 

complete cycle.

 radians

�
2

�

� radians

radians

3�
2

 0 radians
 2� radians

�



ap
plylying

theC
o

n c e p

ts

a) We don’t need to substitute the numeric value for � in �
3
4
�
� rad because

it will cancel out in the calculation:

2� rad � 360°; therefore,

� �
2
3
�

60
ra
°
d

�

� � 360°

� � 135°

Therefore, Earth has travelled 135°.

b) To calculate the distance (arc length) travelled,

s � r�

s � (1.49 � 1011 m)��
3
4
�
� rad�

s � 3.51 � 1011 m

Earth has travelled 3.51 � 1011 m when it moves 135° in its orbit.

Figure 7.6 summarizes the relationship between radians and degrees.

Fig.7.6 The Radian–Degree Connection

1. Convert the following angles to radian measure.
a) 10° b) 60° c) 90° d) 176° e) 256°

2. Convert the following angles in radian measure to degrees.
a) � rad b) �

�

4
� rad c) 3.75� rad d) 11.15 rad e) 40 rad

3. How many radians are the following quantities?
a) Earth’s rotation in 6.0 h
b) Earth’s orbit in 265 d
c) The second hand of a clock moving 25 s
d) A long-distance runner doing 25.6 laps of a track

��
3
4
�
� rad�

�
(2� rad)

�
3
4
�
� rad
�

�
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We can also convert to degrees by

multiplying the radians by 57.3°/rad:
�
3

4

�
� rad � 57.3°/rad � 135°

Circular
motion

1complete
cycle

1rad � 57.3°
 

2� radians
 

 360°
pu

tting

T
o

T
o

g e t h e
rit all



7.3 Angular Velocity and Acceleration

Angular Velocity

In linear motion,
�
�

�

d
t
� � vavg

where �d represents the distance travelled over a period of time �t. For
angular motion, this equation becomes

�
�

s
t

� � vavg

where s is the arc length. Similarly, angular velocity is the change in angular
position of an object over a time period. When an object moves from �1 to
�2 in a time period �t, �

�

�

�

t
� equals the angular velocity, given the symbol 

� (omega), with units rad/s.
The equation for angular velocity is given by

� � �
�

�

�

t
�

e x a m p l e  3 Calculating angular velocity

A merry-go-round turns through 65.0° in 3.5 s from rest. Find the aver-
age angular speed of the ride.

Solution and Connection to Theory

Given
�1 � 0° �2 � 65.0° �t � 3.5 s � � ?

We will assume a counterclockwise rotation so that the values of � are
positive.

We first convert the angles to radian measure:

65.0° � �
5
1
7
r
.
a
3
d
°

� � 1.13 rad

Substituting into the angular velocity equation,

� � �
�

�

�

t
� � �

�2

�

	

t
�1

�

� ��
1.13 ra

3
d
.5

	

s
0 rad

�

� � 0.32 rad/s

The average angular speed of the ride is 0.32 rad/s.
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Fig.7.7

65°

s

r



Note that in Example 3, we calculated the average angular speed for the
merry-go-round. It starts from rest and accelerates to a final angular speed.
We will calculate final angular speed in the next section.

Relating Angular Variables to Linear Ones

In this section, we will derive a set of fundamental relationships between
distance, speed, acceleration, and their angular equivalents. From the defi-
nition for arc length,

s � r�

we divide both sides of the equation by �t:

�
�

s
t

� � �
r
�

�

t
�

�

But 

�
�

s
t

� � vavg and   �
r
�

�

t
�

� � �avg

When we substitute into our first equation, we obtain the relationship

v � r�

We can omit the subscript avg. For small time periods, this equation relates
the instantaneous speed to the equivalent angular speed.

Similarly, if we let 


 � �
�

�

�

t
�

where 
 is the angular acceleration measured in rad/s2, then

a � r


where a is the linear acceleration in m/s2.
From the circular motion section in

Chapter 2, we found that a point moving in
an arc is really trying to move in a straight
line while experiencing an external force
acting perpendicular to its direction of
motion (see Figure 7.8a).
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Derivation of a � r�

If a rotating object’s speed changes

from v1 to v2, then the object’s 

angular velocity changes from �1 to

�2. We can thus write �v � r��.

Dividing both sides by �t, we obtain

�
�

�

v

t
� � �

r�

�

�

t
�

We know that �
�

�

v

t
� � a, the accelera-

tion. We define �
�

�

�

t
� as the angular

acceleration, 
; that is, the change in

angular velocity per unit time. Thus,

a � r
, where 
 � �
�

�

�

t
� .

(Linear motion)
(applied force 

is gone)

(Circular motion)
(applied force keeps mass turning)

�v
Velocity is tangent

to motion path

�F

�F

Fig.7.8a Tangential velocity



r2

 � v

 � v r1

The instantaneous velocity (v��) is tangential to the path at a given point. If
the object is speeding up or slowing down while moving in a circular path,
there is also a linear acceleration, which is also tangential to the path. It lies
in the same direction as the velocity vector (see Figure 7.8b).

From now on, we will refer to linear velocity (v��) and linear acceleration
(a��) as tangential velocity and tangential acceleration, respectively.

e x a m p l e  4 Finding angular acceleration

At low speed, a fan blade is turning at 80 rad/s clockwise. The fan is
turned up a notch to rotate at 125 rad/s clockwise. If the time to change
speeds is 0.73 s, find the angular acceleration of the fan blades.

Solution and Connection to Theory

Given
�1 � 	80 rad/s �2 � 	125 rad/s �t � 0.73 s 
 � ?


 � �
�2

�

	

t
�1

�


 �


 � 	61.6 rad/s2 � 	62 rad/s2

The negative sign means that the fan is accelerating clockwise. The angu-
lar acceleration is therefore 62 rad/s2 [clockwise].

e x a m p l e  5 Relating angular variables to tangential ones

A sprinkler with two arms of length 20 cm rotates at 15 rad/s. If the arms
have an angular acceleration of 6.5 rad/s2, find the initial tangential
velocity and acceleration for the tip of the sprinkler arm.

Solution and Connection to Theory

Given
�1 � 15 rad/s 
 � 6.5 rad/s2 r � 20 cm � 0.20 m

The tangential velocity is

v1 � r�1

v1 � (0.20 m)(15 rad/s)
v1 � 3.0 m/s

	125 rad/s 	 (	80 rad/s)
���

0.73 s
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Fig.7.9

 �v
�acentripetal

�a
�atangential

�acentripetal �atangential�a � �

Fig. 7.8b



r2

 � v

 � v r1

The tangential acceleration is

a � r


a � (0.20 m)(6.5 rad/s2)
a � 1.3 m/s2

Notice how the rad unit doesn’t appear in the answer. We have assumed
positive values for the angular measurements, meaning that the sprinkler
turns counterclockwise. Since there is an angular acceleration, the sprin-
kler speeds up.

Note that points along the arm of the sprinkler in Example 5 all travel at the
same angular velocity, but at different tangential velocities. If we chose to
analyze a point halfway down the sprinkler arm (see Figure 7.10), its effec-
tive radius of turn becomes 10 cm. Its tangential velocity is v � r�, or 
(0.10 m)(15 rad/s) � 1.5 m/s. Although the angular speed is constant, the
point farther down the sprinkler arm travels at a slower tangential speed
and hence covers a smaller distance.

More About Centripetal Acceleration

In Chapter 2, we were introduced to the concept of centripetal or centre-
seeking acceleration, where the motion was circular and the object moving
with a constant speed. The instantaneous acceleration always pointed to
the centre of the circle. The equation we derived was a � �

v
r

2

�, where v is the
tangential velocity of a point moving in a radius r.

Earlier in this section, we learned that v � r�. Substituting this equa-
tion into the equation for centripetal acceleration, we obtain

ac � �
(r�

r
)2

� � r�2

where ac is the centripetal acceleration in m/s2, r is the radius of rotation in
metres, and � is the angular velocity in rad/s.
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In everyday life, we don’t usually

refer to cyclic values in radians. We

usually express objects undergoing

circular motion in terms of revolu-

tions per second (rps), or their SI

equivalent, hertz (Hz). An object

moves through 2� radians in one

complete cycle. So, to convert rps to

radians, we multiply by 2�. To con-

vert radians to rps, we divide by 2�.

In Example 5, the sprinkler’s angular

velocity was 15 rad/s, which equals

� 2.4 rev/s, or 2.4 rps, 

or 2.4 Hz.

15 rad/s
��
2� rad/rev

Fig.7.10 Tangential speeds depend on the radius of

turn, whereas the angular speed remains constant
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Distance

Speed

Acceleration

s � r �

v � r �

a � r 


s

v

a

�

�

�




r

s

�v

e x a m p l e  6 Finding centripetal acceleration 

from angular variables

In the Olympic hammer-throw event, the athlete swings the hammer in
a circular arc. Assuming that the speed is constant at 1.91 rps and that
the end of the hammer moves in an arc of radius 1.32 m, find the cen-
tripetal acceleration of the hammer head.

Solution and Connection to Theory

Given
� � 1.91 rev/s r � 1.32 m ac � ?

First, we need to convert the angular velocity to radian measure:

� � (1.91 rev/s)(2� rad/rev)
� � 12 rad/s

Then, we can substitute the given values into the equation for centripetal
acceleration:

ac � r�2

ac � (1.32 m)(12 rad/s)2

ac � 190 m/s2

The centripetal acceleration is 190 m/s2.

We can also find the tangential velocity of the hammerhead from the
equation a � �

v
r

2

�:

v � �ra� � 15.8 m/s � 16 m/s

Figure 7.12 summarizes the variables and equations for angular motion.

Fig.7.12 Summary of Angular and Linear Variables
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Artificial Gravity
In the film 2001: A Space Odyssey, directed by Stanley Kubrick, the
space station generated artificial gravity by rotating with a uniform cir-
cular motion. In the future, the strength of the artificial gravitational
pull of a space station, like the one shown in Figure 7.13, will be deter-
mined by the space station’s size and speed of rotation. Astronauts and
cosmonauts require an artificial gravitational force because the human
body is built to live in an environment where the force of gravity con-
stantly acts on it. In space, the human body quickly loses bone strength
because in a zero-gravity environment, the skeletal support structure
becomes unnecessary. The artificial gravity of the space station is gen-
erated by the centripetal force (the normal force of the space station
acting on the astronaut).

1. When an astronaut stands in a rotating space station like the one in
Figure 7.13, which is essentially a hollow tube, where does the
astronaut think the floor is? Is it outside or inside the tube?

2. a) For a station of radius 1200 m, what tangential speed must the
station have in order for the astronaut to experience an acceler-
ation of 9.8 m/s2?

b) Convert the acceleration and speed in part a) to angular values.
3. a) If a space station rotates at 1.2 rpm (revolutions per minute),

what is its angular velocity?
b) If the station has a radius of 1500 m, calculate the centripetal

acceleration of the astronaut.
c) Convert the acceleration obtained in b) to an expression with

angular variables.
d) How much larger or smaller is the artificial gravity experienced

by astronauts in a space station than the gravity we experience
on Earth?

7.4 The Five Angular Equations of Motion
In Chapter 1, we used the following two equations of motion:

vavg � �
�

�

d
t
� and      �d � �

1
2

�(v1 � v2)�t

Also, 

a � �
�

�

v
t
� or      a � �

v2

�

	

t
v1

�
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Fig.7.13 Space stations will 

generate artificial gravity by 

centripetal force



We then obtained three more kinematics equations by isolating a variable in
one equation and substituting it into another equation. The five kinematics
equations for linear motion are

�d � �
1
2

�(v2 � v1)�t

a � �
v2

�

	

t
v1

�

�d � v1�t � �
1
2

�a�t2

�d � v2�t 	 �
1
2

�a�t2

v2
2 � v1

2 � 2a�d

We can derive the five equations for angular motion in a similar fashion.
From �avg � �

�

�

�

t
�, we obtain �� � ���2 �

2
�1

���t

Our two basic angular motion equations are:

�� � �
1
2

�(�2 � �1)�t and    
 � �
�2

�

	

t
�1

�

Combining the first two equations yields the following three angular motion
equations:

�� � �1�t � �
1
2

�
�t2

�� � �2�t 	 �
1
2

�
�t2

�2
2 � �1

2 � 2
��

The derivation of these equations is summarized in Figure 7.14.

Fig.7.14 Deriving the Equations for Angular Motion

Figure 7.15 shows how the linear motion equations are related to the angu-
lar motion equations.
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Derivation of �� � �1�t � �
1

2
� ��t2

From 
 � �
�2

�

	

t

�1
�, we obtain

�2 � �1 � 
�t

We substitute into

�� � �
1

2
�( �2 � �1)�t for �2 to obtain

�� � �
1

2
�( �1 � 
�t � �1)�t

�� � �1�t � �
1

2
�
�t2
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��  � �2�t 	


2

�t2

��  � �1�t �


2

�t2

�2
2 � �1

2 � 2
��

�1

�2
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Fig.7.15 Relating Linear Motion to Angular Motion

e x a m p l e  7 Finding the final angular velocity 

of our merry-go-round

Repeat Example 3 — A merry-go-round turns through 65.0° in 3.5 s from
rest. Find the final angular speed of the ride — using the equations for
angular motion.

Solution and Connection to Theory

Given
�1 � 0° �2 � 65.0° �t � 3.5 s �1 � 0 �2 � ?

In Example 3, we converted the angles to radians (�� � 1.13 rad) to find
the final angular speed. To find the final angular speed (�2), we use the
equation

�� � �
1
2

�(�1 � �2)�t

Rearranging the equation for �2 and substituting the given values, we obtain

�2 � �
2
�

�

t
�

�

�2 � �
2(1

3
.1
.5
3

s
rad)

�

�2 � 0.65 rad/s
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Circular
motion
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v1 � v2

2

d � r � 
v � r � 
a � r 
 

�t�� �1 � �2

2 ��   a �
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�t

 �

�2 	 �1

�t
            �� � �t

    �d � v2�t 	      �t2

a
2

   �d � v1�t �      �t2 

   v2
2 � v1

2 � 2a�d



2

    �� � �2�t 	     �t2
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2 � �1
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The final angular speed of the merry-go-round is 0.65 rad/s. To express
the value in SI units, we can divide the answer by 2� rad/cycle to
obtain 0.10 Hz.

e x a m p l e  8 Something a little more complicated

A blender turning counterclockwise at 400 rad/s is switched to high
power. If the blender accelerates at 1280 rad/s2 for 8.0 revolutions, find
its final angular speed.

Fig.7.16

Solution and Connection to Theory

Given
�� � ? in radians (but we know it’s 8.0 revolutions)
�1 � 400 rad/s 
 � 1280 rad/s2 �2 � ?

First we convert 8.0 revolutions to radian measure:

�� � (8.0 rev)(2� rad/rev)
�� � 50 rad

For the givens and unknown in the problem, the appropriate equation is

�2
2 � �1

2 � 2
��

�2
2 � (400 rad/s)2 � 2(1280 rad/s2)(50 rad)

�2
2 � 2.88 � 105 rad2/s2

�2 � 537 rad/s

We use the positive square root only because the blades don’t reverse their
rotation. Therefore, the final angular speed of the blender is 537 rad/s.
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Figure 7.17 summarizes how to solve problems using equations.

Fig.7.17 Problem Solving using Angular Equations

CD Players
A compact disc (CD) has spiral tracks that contain the encoded infor-
mation read by the laser (see Figure 7.18). The laser, mounted on an
arm running across the radius of the disc, moves from the centre of the
disc to the outer rim along the arm. The laser reads the music at a con-
stant tangential speed at any point on the laser disc; therefore, the
angular speed of the disc must change in order for the information to
be read at a constant rate. From the equation v � r�, we see that if v is
constant, the angular speed must increase as information toward the
inner part of the disc is being read.

1. a) Calculate the number of radians a CD turns in the length of time
it takes to play a song 2 minutes 50 seconds long given that the
CD turns on average 3.35 rev/s.

b) Calculate the average acceleration of the CD turntable given that
it takes 0.5 s for the table to reach an angular speed of 22.0 rad/s
from rest.

2. a) A roulette wheel moving at 1.75 rad/s slows to a stop with an
acceleration of 0.21 rad/s2. Find the time it took to stop.

b) How many radians did the roulette wheel travel in this time period?
c) Convert the answer for b) into cycles.
d) How much time did it take for the wheel to turn through half the

number of cycles?
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Fig.7.18 A spiral data track on a CD



3. a) A football spinning through the air in a tight spiral, with an
angular speed of 16.1 rad/s, slows to 14.5 rad/s for an angular dis-
placement of 92.2 rad. Calculate the time it takes to slow down.

b) Calculate the average acceleration of the football.

7.5 Moment of Inertia
Newton’s laws also apply to spinning or rotating objects, but the concept of
inertia becomes slightly more complicated. Recall that mass is a measure of
an object’s inertia. The more massive the object, the greater the force
required to accelerate it. For a spinning object, not only is its mass impor-
tant, but also its mass distribution about its rotational axis. The spinning
batons in Figures 7.19a and 7.19b have different spin axes. The baton in
Figure 7.19a spins about the axis along its length, so it has a small radius of
rotation with less mass distributed about the rotation axis. The baton in
Figure 7.19b spins about its centre (with the axis perpendicular to its
length). It has a large radius of rotation and therefore a greater amount of
mass outside the rotation axis. In both cases, the baton will continue to spin
unless acted upon by an external unbalanced force (Newton’s first law).

We now define the moment of inertia, I, as the angular equivalent to mass,
with units kg�m2. Moment of inertia depends on the object’s mass and its
rotation axis. For a hoop rotating about a central axis,

I � mr2

where m is the mass of the hoop and r is its radius of rotation.
Table 7.1 illustrates the moments of inertia and the corresponding equa-

tions for various common shapes. These equations were derived using calculus.
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Axis

r

Table 7.1 
Moments of Inertia of Common Shapes

Shape Description Equation

Fig.7.20a Hoop about central axis I � mr2

Fig.7.20b Hoop about any diameter I � �
1

2
�mr2

Fig.7.20c Hollow cylinder (or ring) about I � �
1

2
�m(r1

2 � r2
2)

central axis

Fig.7.20d Thin-walled hollow cylinder or hoop I � mr2

Fig.7.20e Solid cylinder or disk I � �
1

2
�mr2

Fig.7.20f Thin rod about axis through centre I � �
1

1

2
�ml2

perpendicular to length

Fig.7.20g Thin rod about axis through one I � �
1

3
�ml2

end perpendicular to length

Axis

r

r1

Axis

r2

r

r

l

Axis

l

Axis
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Table 7.1 (cont’d)
Moments of Inertia of Common Shapes

Shape Description Equation

Fig.7.20h Solid sphere about any diameter I � �
2

5
�mr2

Fig.7.20i Thin spherical shell about I � �
2

3
�mr2

any diameter

Fig.7.20j Thin rectangular sheet, axis parallel I � �
1

1

2
�ml2

to one edge and passing through 
centre of other edge

Fig.7.20k Thin rectangular sheet, axis along I � �
1

3
�ml2

one edge

Fig.7.20l Thin rectangular sheet, perpendicular I � �
1

1

2
�m(a2 � b2)

axis through centre

l

Axis

a b

Axis

Axis

2r
r

Axis

2r
r

l



Fig.7.21

(a) (b)

Newton’s second law of motion is F�� � ma��. In angular motion, the equiva-
lent of force is torque, . In Chapter 3, we learned that torque is a turning
action on a body caused by a force applied through a point relative to the
object’s rotation axis. Mathematically,

 � rF

From Section 7.3, we also know that

a � r


Substituting �


r
� for F and r
 for a in F � ma, we obtain

 � mr2


But mr2 is just the moment of inertia, I, for a hoop. The angular motion
equivalent for Newton’s second law becomes

 � I


where  represents the net torque applied. Just as net force in Newton’s sec-
ond law of motion, a net torque produces a net angular acceleration.

e x a m p l e  9 Calculating the net torque and moment 

of inertia of a bicycle wheel

A rider pushes down on the rim of her 0.60-m-diameter bicycle wheel
with a force of 30 N. Find the torque applied and the moment of inertia
if the wheel experiences an angular acceleration of 26.5 rad/s2.
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r
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 � r � F � rF sin �

� � 90°

so  � rF

The units for torque are N�m, the

same units as for energy. While the

torque unit remains N�m, the unit 

for energy becomes the joule (J).

r

�F

Fig.7.22



Solution and Connection to Theory

Given
F � 30 N d � 0.60 m; therefore, r � 0.30 m 
 � 26.5 rads/s2

 � ? I � ?

We know  � r�� � F�� � rF sin �. When the angle between the force and
the rotation axis is 90°, sin � � 1; therefore,

 � (0.30 m)(30 N)
 � 9.0 N�m
 � I
, so

I � �




�

I � �
26

9
.
.
5
0

r
N
a
�

d
m
/s2�

I � 0.34 kg�m2

The torque applied is 9.0 N�m and the moment of inertia is 0.34 kg·m2.

Bonus! Since we know the moment of inertia, we can also find the mass
of the wheel. If we consider the wheel’s mass to be concentrated at the
rim, we can assume it has the same moment of inertia as a hollow cylin-
der, which is mr2 (see Table 7.1). If the wheel’s radius is 0.30 m, then

I � mr2

m � �
r
I
2�

m � �
0
(
.
0
3
.
4
30

kg
m
�m
)2

2

�

m � 3.8 kg

The wheel’s mass is 3.8 kg.

Figure 7.23 summarizes the relationship between linear and angular vari-
ables in Newton’s first and second laws of motion.

Fig.7.23 The Rotational Equivalents of Newton’s First and Second Laws
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Extension: The Parallel-axis Theorem

In Chapter 3, we defined the centre of mass (cm) as a point at which the
entire mass of the system or body may be considered to be concentrated for
the purposes of analyzing its motion. In this chapter, we may consider the
centre of mass as a balance point around which an object’s entire mass is
equally distributed.

We learned earlier in this section that an object’s moment of inertia
depends on the location of its rotational axis. Thus far, all the rotational
axes in the examples and problems in this chapter have passed through the
object’s centre of mass (see Figure 7.24).

If an object rotates about an axis that doesn’t pass through its centre of
mass, then we can find its rotational inertia or total moment of inertia
by using the parallel-axis theorem:

Itotal � Icm � ml2

where the subscript cm stands for the centre of mass, m is the mass in kilo-
grams, and l is the perpendicular distance between the rotation axes and the
centre of mass (see Figures 7.25a and b).

(a) (b)

From Table 7.1, the moment of inertia through the centre of mass of a solid
sphere is

Icm � �
2
5

�mr2
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Fig.7.24 The rotational axes of

these objects all pass through their

centres of mass

l

Rotation axis

l

Rotation axis Fig.7.25 For each figure, l is

measured from the centre of

mass of each object



If the rotation axis is shifted, then the moment of inertia becomes

Itotal � �
2
5

�mr2 � ml2

For the sphere in Figure 7.25a, the distance from the edge of the sphere to
its centre is its radius, r. But this distance is also l, the distance between the
centre of mass and the rotation axis; therefore, l � r. The final equation for
the moment of inertia of this sphere is

Itotal � �
7
5

�mr2

1. State Newton’s first two laws of motion, as you learned them ear-
lier in your physics courses. Now restate them to apply to angular
motion. Provide an example of each law.

2. a) Before the invention of CD and cassette players, there were vinyl
record players, which rotated at speeds of 78 rpm, 45 rpm, and
33�

1
3

� rpm (Figure 7.26). If the moment of inertia of a turntable is
0.045 kg�m2, find the torque required to provide an average accel-
eration of 	1.90 rad/s2.

b) For each angular speed, how many turns does it take for the
turntable to reach its maximum speed starting from rest?

3. Find the moment of inertia of an object experiencing an angular accel-
eration of 12.2 rad/s2 due to a net torque of 8.45 N·m applied to it.

4. A disk of radius 1.22 m and mass 5.55 kg rotates about an axle pass-
ing through its centre. If a force of 15.1 N was applied to the outside
of the disk to cause it to turn, find
a) the moment of inertia of the disk.
b) the torque applied.
c) the angular acceleration of the disk.
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7.6 Rotational Energy

In Chapter 5, we learned that work is W � Fd cos �. In Section 7.5, we
found that the equivalent of force in angular motion is torque.

To derive an equation for angular work, we start with the definition for
work, W � F���d��. We now substitute the angular equivalents to force and dis-
tance and obtain

W � ��


r
��(r�), which simplifies to

WR � �

where W is measured in joules and � is measured in radians.

Turning an object requires a torque. If the object rotates through an angle,
the product of torque and the angle through which the object turns is the
angular work done on the object. As with linear work, if the applied torque
produces no turning action, then the net rotational work is zero. Thus,
when you strain against that rusted nut on a wheel (Figure 7.28a) and it
doesn’t move, you may sweat a lot but do no work!
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WO R K
Work is done when an applied force causes an object to move in the direction of the force. The

definition of work is W � F���d��. But the only component of the force that we need to consider is

the component that is in the same direction as the applied force; therefore, W � Fd cos �.

Fig.7.27

�Fapp

�
Direction of motion

�Fapp

�

F cos � 

F sin � 

Direction of motion

Does not contribute
to motion

Fig.7.28a The applied force cannot

overcome friction and the nut doesn’t

turn, so no work is done



e x a m p l e  1 0 Work done in pushing a revolving door

A revolving door of mass 360 kg with four rectangular panels is set in
motion by a person pushing on one panel. If the width of one panel is 1.1 m
(the distance from the centre post, which is the axis of rotation), calcu-
late the torque on the revolving door and the work done if the door turns
35° with an angular acceleration of 0.45 rad/s2.

Fig.7.29

Solution and Connection to Theory

Given
m � 360 kg � � 1.1 m 
 � 0.45 rad/s2

I � �
1
3

�m�2 for one panel (see Table 7.1), so

I � �
4
3

�m�2 for all four panels.

For a rotating object,

 � I


 � �
4
3

�(360 kg)(1.1 m)2(0.45 rad/s2)

 � 260 N�m
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35°

1.1m

1.1m

�Fapp

Fig.7.28b The applied force causes the

blades to turn, so work is being done



The angle for the work done is

� � �
57.

3
3
5
°
°
/rad
� � 0.61 rad

For angular work,

WR � �

WR � (260 N�m)(0.61 rad)
WR � 159 J

The torque on the revolving door is 260 N�m and the work done is 159 J.

Figure 7.30 summarizes the equations for linear and rotational work.

Fig.7.30 Summary of Rotational Energy (Work)

1. a) Calculate the work done in turning a nut off a wheel (one full
turn) if a force of 23.1 N is applied 20 cm away from the nut.

b) How much work is done over 1.5 rad?
c) How much work is done if the nut is turned 95°? 

2. a) Calculate the work done on a solid cylinder of mass 5.0 kg and
radius 55.6 cm by an applied force of 12.2 N if it turns 45°.

b) By how much does the work in a) change if the object is a ring?
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Outer wall

Inner wall

7.7 Rotational Kinetic Energy

If Ek � �
1
2

�mv2 for linear motion, then for rotational motion,

Ekrotational � �
1
2

�I�2

where I is the moment of inertia in kg�m2 and � is the angular speed in
rad/s. Rotational energy is measured in joules. Be sure to use the correct
equation for the moment of inertia for an object, which depends on its shape
and rotational axis (Table 7.1)!

e x a m p l e  1 1 Rotational energy in space stations

A 100-kg astronaut stands in the rim of a rotating ring-shaped space sta-
tion. What is his rotational velocity if his kinetic energy is 4.51 � 105 J
and the radius of the station is 1.5 � 103 m?

Fig.7.31

Solution and Connection to Theory

Given
E � 4.51 � 105 J r � 1.5 � 103 m m � 100 kg

Consider the astronaut to be a point mass rotating around the centre of
the space station. For this case, the moment of inertia is given by

I � mr2

I � (100 kg)(1.5 � 103 m)2

I � 2.25 � 108 kg�m2

We can now apply the rotational kinetic energy expression to solve for �.

Ekrotational � �
1
2

�I�2

� � ��
2
I
E
��

� � ��
� � 0.063 rad/s

The astronaut’s rotational velocity is 0.063 rad/s.

2(4.51 � 105 J)
��
2.25 � 108 kg�m2
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To derive the Ekrotational
equation, 

substitute r� for v and remember

that mr2 � I.



To get an idea of how fast the astronaut in Example 11 is moving, we use
the equation v � r�:

v � (1.5 � 103 m)(0.063 rad/s)
v � 95 m/s or 340 km/h

Compare this speed to a roller coaster ride!

Figure 7.33 summarizes the linear and rotational equations for kinetic energy.

Fig.7.33 Summary of Linear and Rotational Kinetic Energies
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The astronaut in Example 11 experiences artificial gravity due to the centripetal force of the

rotating station. The normal force supplies the force that keeps the astronaut turning. The cen-

tripetal acceleration is ac � �
v

r

2

�. If v � 95 m/s and r � 1.5 � 103 m, then

ac �

ac � 6.0 m/s2

This acceleration is 61% of the acceleration due to Earth’s gravity.

Fig.7.32
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1. Calculate the rotational kinetic energy of a 35.0-g ball of radius 3.5 cm
rotating at 165 rad/s about its centre.

2. a) Find the total rotational kinetic energy of four wheels on a car 
if the moment of inertia of each wheel is 0.900 kg�m2 and the
radius of the wheel is 0.320 m. Assume each wheel turns 
5.3 times per second.

b) Calculate the kinetic energy of the car if its mass is 1000 kg.

7.8 The Conservation of Energy
When an object both rotates and moves forward (translates), it possesses a
combination of rotational and translational kinetic energy. These two types
of energy must come from some source. If the system is closed and the object
doesn’t lose any energy to heat, sound, etc., then we can apply the law of
conservation of energy to the system. Consider the case of a ball rolling
down a hill (see Figure 7.34).

The ball at the top of the hill has no motion, but it possesses gravita-
tional potential energy, calculated by mg�h, which is its total energy, ET. As
the ball starts to roll down the hill, part of this energy transfers to transla-
tional kinetic energy ��

1
2

�mv2� and part of it transfers to rotational kinetic
energy ��

1
2

�I�2�. The total energy of the system remains the same:

ET1 � ET2

where the subscripts 1 and 2 represent initial and final total energy, respec-
tively. In the case of our ball,

mgh1 � �
1
2

�mv2 � �
1
2

�I�2 � mgh2

e x a m p l e  1 2 Rolling down a hill

A large, cylindrical duck rolls down a hill of height 8.5 m. If the speed of the
duck is 10.5 m/s at the bottom of the hill, what is its angular speed there?
The rather large duck has a mass of 25 kg and a body radius of 0.80 m.

Solution and Connection to Theory

Given
h � 8.5 m m � 25 kg vbottom � v2 � 10.5 m/s r � 0.80 m
I � ? � � ?
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Using the law of conservation of energy and assuming no energy losses
due to friction and air resistance,

ET1 � ET2, which expands to

mgh1 � �
1
2

�mv1
2 � �

1
2

�I�1
2 � �

1
2

�mv2
2 � �

1
2

�I�2
2 � mgh2

But v1 � 0, �1 � 0, and h2 � 0; so

mgh1 � �
1
2

�mv2
2 � �

1
2

�I�2
2

�
1
2

�I�2
2 � mgh1 	 �

1
2

�mv2
2

From Table 7.1, for a solid cylinder,

I � �
1
2

�mr2

I � �
1
2

�(25 kg)(0.80 m)2

I � 8 kg�m2

Rearranging �
1
2

�I�2
2 � mgh1 	 �

1
2

�mv2
2 for �2 and substituting,

�2
2 �

�2
2 �

�2 � 13.27 rad/s

�2 � 13 rad/s

The duck is rotating at 13 rad/s, or 2.1 times per second. That’s one
dizzy duck!

(25 kg)(9.8 m/s2)(8.5 m) 	 �
1
2

�(25 kg)(10.5 m/s)2

������
4 kg�m2

mgh1 	 �
1
2

�mv2
2

��
�
1
2

�I
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Figure 7.36 summarizes the equations for the conservation of energy for
translational and rotational motion.

Fig.7.36 The Conservation of Energy

1. A car moving at 25 m/s has wheels of radius 0.320 m, each with a
moment of inertia of 0.900 kg�m2.
a) Find the total rotational kinetic energy of the wheels.
b) Find the linear kinetic energy of the car if its mass is 1300 kg.
c) Find the total energy of the car.

2. A hollow cylinder, starting from rest, rolls down a 12.0-m-high
incline. The cylinder has a mass of 2.2 kg and a radius of 5.6 cm. Find
a) the cylinder’s total energy at the top of the incline.
b) the cylinder’s gravitational potential energy halfway down the

incline.
c) the cylinder’s angular speed if its translational speed was 10.8 m/s.

3. In Figure 7.37, describe the ball’s actions in terms of its various
forms of energy.

Fig.7.37
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7.9 Angular Momentum

In Chapter 4, we defined momentum as

p�� � mv��

For angular momentum,

L � I�

where L represents the angular momentum in units of kg�m2/s, I is the
moment of inertia in kg�m2, and � is the angular speed in rad/s. Once again,
remember that the object’s shape and axis of rotation determine the equa-
tion we use for the moment of inertia (Table 7.1).

e x a m p l e  1 3 Different shapes with their corresponding 

angular momenta

Compare the angular momenta of a solid cylinder and a hollow ring, each
of mass 10 kg and radius 0.52 m, if they each rotate at 3.0 rad/s.

Solution and Connection to Theory

Given
m � 10 kg r � 0.52 m � � 3.0 rad/s
Iring � mr2 Icylinder � �

1
2

�mr2

Lring � I�

Lring � mr2�

Lring � (10 kg)(0.52 m)2(3.0 rad/s)

Lring � 8.1 kg�m2/s

Lcylinder � I� � �
1
2

�mr2�, or �
1
2

�Lring. Thus,

Lcylinder � �
8.1 kg

2
�m2/s
�

Lcylinder � 4.1 kg�m2/s

The angular momentum of the ring is greater than that of the cylinder
because its mass is concentrated farther away from its axis of rotation. Thus,
it takes more energy to overcome the inertia of a ring than of a cylinder.
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Figure 7.39 summarizes the differences between linear and angular
momentum.

Fig.7.39 Momentum

1. Calculate the angular momentum of Earth rotating on its axis if its
mass is 5.98 � 1024 kg and its radius is 6.38 � 106 m.

2. Calculate the angular momentum of a diver of mass 85 kg, rotating
4.5 times in 1.1 s, if his size in the tuck position is 1.8 m.

3. Neptune moves in an elliptical orbit about the Sun (see Figure
7.40). At the closest point to the Sun (the perihelion), it’s moving
at 5.4723 km/s at a radius of 4.4630 � 109 km. At its farthest point
from the Sun (the aphelion), it’s moving at 5.3833 km/s at a radius
of 4.5368 � 109 km. Calculate its angular momentum at each point
if its mass is 1.027 � 1026 kg.

7.10 The Conservation of Angular Momentum

In Chapter 4, we learned that linear momentum is conserved; that is, the
total initial momentum equals the total final momentum. Mathematically,

�mivi � �mfvf

where i represents the initial momenta and f represents the final momenta.
Angular momentum, L, is also conserved such that

�Ii�i � �If�f

where I is the moment of inertia and � is the angular velocity.
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e x a m p l e  1 4 A spinning skater

A professional figure skater ends her program by spinning with her arms
outstretched, then with her arms tucked in. If she is originally spinning
at 1.5 rev/s with her arms outstretched, what is her angular speed after
she tucks her arms in? Assume that the length of her outstretched arms
from fingertip to fingertip is 2.2 m. When her arms are tucked in, the
length is 50 cm.

Fig.7.41

(a) (b)

Solution and Connection to Theory

Given
2r1 � 2.2 m 2r2 � 0.50 m; we now calculate half of the full length
to obtain r:

r1 � 1.1 m r2 � 0.25 m m � ? �2 � ?

When the skater tucks her arms in, her total momentum doesn’t change,
but her moment of inertia does because her radius of spin has decreased.
If we neglect losses of energy due to the friction of skates on ice as well
as air resistance, we can write the following conservation of angular
momentum statement:

I1�1 � I2�2

For the skater, I � �mr2. Her mass remains constant, so as an approxi-
mation, we will let I � mr2.

mr1
2�1 � mr2

2�2

Converting �1 to rad/s,

�1 � (1.5 rev/s)(2� rad/rev)
�1 � 9.4 rad/s
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Solving for �2,

�2 � �
m

m
r1

r

2

2

�
2

1
�

�2 � �
r1

r

2

2

�
2

1
�

�2 �

�2 � 182 rad/s

�
(2

1
�

82
ra

r
d
a
/
d
r
/
e
s
v)

� � 29 rev/s!

The skater spins faster by bringing her arms into her body. Even though
this calculation is a simplification, it clearly shows the effect of reducing
the moment of inertia on the angular speed.

Fig.7.42 A Comparison of Linear and Angular Momenta

Tides and Day Length
Tides are the diurnal rising and falling of the sea. Tidal levels vary accord-
ing to region. The greatest difference in water level in the world occurs
in the Minas Basin of the Bay of Fundy in New Brunswick, with an
impressive 15-m difference between high and low tide (see Figure 7.43a)!

Fig.7.43a High and low tide at the Bay of Fundy

(1.1 m)2(9.4 rad/s)
���

(0.25 m)2
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Tides are caused primarily by the Moon’s gravitational pull on Earth.
(The Sun also contributes to this effect, but to a lesser extent.) Earth’s
rotation about its own axis is faster than the Moon’s rotation about
Earth. As Earth rotates, it takes its water with it. Because of the fluid
properties of water and the effect of frictional forces between the
ocean floor and the water, the bulges of water on either side of Earth
become slightly asymmetric (see Figure 7.43b). The difference in mass
on either side of Earth’s axis due to the asymmetric distribution of
water causes a net torque on the Moon, which increases the Moon’s
angular momentum.
1. a) Use the law of conservation of momentum in the Earth–Moon

system to explain why the Earth day decreases because of the
gravitational attraction between Earth and the Moon.

b) Explain what happens to the length of a month because of the
effect in a). (Hint: The Moon’s angular speed is increasing.)

c) It has been found that the length of our day is decreasing at a rate
of about 20 ms per year. Dinosaurs roamed Earth about 230 mil-
lion years ago. Find the length of a day in hours during their time
on Earth.

2. A star’s size changes over time. Our Sun spins on its axis with a
period of 2.14 � 106 s and has an average radius of 6.95 � 108 m. If
we hypothetically shrink the Sun’s radius to 5.5 km (the size of a
neutron star), calculate the new angular speed and period of rota-
tion. (Note: This situation is purely hypothetical: the Sun doesn’t
possess enough mass to become a neutron star.)

3. Kepler’s second law of planetary motion, which states that a planet
sweeps out equal areas in equal time periods, is another example of
the conservation of angular momentum. Calculate Earth’s apogee
speed by applying Kepler’s second law to the planetary data for
Earth (m � 5.98 � 1024 kg; perigee distance � 1.47 � 108 km;
apogee distance � 1.52 � 108 km).
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7.11 The Yo-yo

In this section, to summarize everything we learned about rotational
motion in this chapter, we will study the yo-yo. To simplify our analysis,
let’s assume that both the mass and size of the string are negligible.

The yo-yo in Figure 7.44a has a loose string looped around its axle,
which allows it to spin. When you first throw a yo-yo, it falls and comes to
rest, spinning at the end of the string; that is, “sleeping” (see Figure 7.44b).
The string is loose enough to allow the rotation to continue. With time, the
yo-yo stops spinning due to friction between the string and the axle. When
you give it a little yank, the string snags the axle, causing the yo-yo to roll
back up the string.

Energy Analysis

Before you drop the yo-yo, it has a potential energy due to gravity. When
you drop the yo-yo, it converts this energy to translational kinetic and rota-
tional kinetic energies. According to the law of conservation of energy,

ET1 � ET2

mgh1 � mgh2 � �
1
2

�mv2 � �
1
2

�I�2

At the bottom of the drop, the translational velocity reaches zero because
the yo-yo stops falling. All the yo-yo’s energy is angular kinetic energy:

mgh1 � �
1
2

�I�2

If you give the yo-yo an initial “snap” (with your wrist) instead of just
letting it drop, the yo-yo spins and falls faster because you add extra energy
in the form of kinetic translational and kinetic rotational energies. The con-
servation of energy equation then becomes

mgh1 � �
1
2

�mv1
2 � �

1
2

�I�1
2 � mgh2 � �

1
2

�mv2
2 � �

1
2

�I�2
2

Force Analysis

Figure 7.45b is a free-body diagram of the yo-yo, with outer radius R and
axle radius r.

From Figure 7.45b,

F��net � F��T � F��g

352 unit  b :  Energy and Momentum

Fig.7.44a

Fig.7.44b Sleeping yo-yos



So

Fnet � FT 	 Fg

ma � FT 	 mg

The torque statement equivalent to the Fnet statement is

net � FTr
so

I
 � FTr

The tangential and angular accelerations are related by the equation

a � r


When we solve for 
 and substitute into the equation I
 � FTr, we obtain

FT � �
I
r
a
2� (eq. 1)

From the FBD statement ma � FT 	 mg,

FT � ma � mg (eq. 2)

Combining equations 1 and 2, we obtain

ma � mg � �
I
r
a
2�

We rearrange this equation for the yo-yo’s acceleration and obtain

a ��
m

I
r2� 	 1� � g or       a �

1. From the equation a � , what conditions must be present 

for the yo-yo to roll down the string with a large acceleration?
2. Describe the types of energy involved when

a) you spin the yo-yo downward.
b) the yo-yo comes back to your hand.
c) you swing the yo-yo out and up and it comes back to your hand.

3. Calculate the acceleration of a yo-yo with axle radius 7.0 mm and
disk radius 4.0 cm.

4. The yo-yo analysis has been simplified. List the approximations and
how they qualitatively affect the yo-yo’s motion.

g
��
��

m
I
r2� 	 1�

g
��
��

m
I
r2� 	 1�
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S T

S E

S c ience—Technology—S ociety—
Environmental  Interrelat ionships

Gyroscopic Action — 
A Case of Angular Momentum

What do a football spiraling down the field and the missile guidance system
in a launched missile have in common? The answer lies in the gyroscope, or
spinning mass (Figure STSE.7.2). The greater the mass of the gyroscope, the
greater its angular or rotational inertia. A gyroscope maintains its angular ori-
entation with respect to external coordinates. Instead of tipping over, it moves
in a circle in a fixed direction given by its original spin axis.

Rotational inertia is the rotational counterpart to Newton’s first law of
motion: an object will continue to spin in a given direction unless acted upon by
an external unbalanced torque. If a force is applied to the gyroscope, it will start
to move at right angles to the applied force. This motion is called precession.
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Fig.STSE.7.1 The gyroscopic

action of a spiraling football
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Fig.STSE.7.2b If the gyroscope

didn’t spin, it would fall over

Fig.STSE.7.2a
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When a football flies through the air, the air hitting the surface of the ball
would normally cause the football to tumble (rotate end over end), thus
increasing the air resistance as the broad sides of the ball encounter the wall
of air. If the thrower puts a spin in the ball (hence giving the ball angular
momentum), the ball behaves much like a gyroscope. Instead of tumbling
when encountering the resistive force of the air, it wobbles slightly, thus keep-
ing its original trajectory. The tip of the ball remains pointed in the direction
of motion, reducing air resistance and increasing the distance travelled.

The same principle is used in navigation. When a wheel spins at a high
speed, its angular momentum and rotational inertia increase. By fixing the
wheel in a set of circular frames, called gimbals, which themselves move
around the spinning gyroscope, the orientation of the gyroscope remains fixed
(no net torque). The airplane, missile, ship, submarine, or spacecraft can now
orient relative to this unchanging axis (see Figure STSE.7.3).

Gyrostabilizers are devices used in ships and planes to reduce the side-
to-side rolling effect by creating a stable direction due to their rotation axis. If
the ship pitches or rolls, the gyroscope feels a net force acting on it due to the
change in position of its axis of rotation relative to Earth’s gravity. However,
because it is spinning, it resists this movement, causing the ship attached to it
to resist the “urge” to roll.

Earth spinning on its axis also acts much like a gyroscope. The north axis
continues to point to the North Star in spite of the gravitational pull of the
Sun and Moon (although there is a slight precession due to the unequal dis-
tribution of Earth’s mass).

Fig.STSE.7.3a A gyroscope from a ship’s

navigation system

Fig.STSE.7.3b The three gyroscopes

provide reference frames for the three

possible motions (yaw, pitch, and roll)

of the rocket

Roll

Pitch

Yaw
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Design a Study of  Societal  Impact

Gyroscopic action is behind today’s high-tech missile guidance sys-
tems. Research the history of guidance systems, from the first early
versions used in torpedoes in the 1890s, to the gyroscope invented by
Hermann Anschultz Kampfe in 1908 and refined by Elmer A. Sperry
in 1911, to the laser-guided gyros of today. Discuss how their invention
has changed the way wars are fought. Also discuss the pros and cons
of pilotless planes during war and peace.

Design an Activ ity  to Evaluate

Attach a series of masses to the circumference of a bicycle wheel. See
if you can design it in such a way as to allow for the possibility of
changing the amount of mass you put on so that you can investigate
the moment of inertia. Add a set of freely sliding masses to the spokes.
Research the history of racing bicycle wheels and use your modified
wheel to verify design changes made to the racing wheel. How is gyro-
scopic action exhibited when riding a bicycle?

Bui ld a Struc ture

Build a rotating turntable, large enough to support a person (see Figure
STSE.7.4). The structure must minimize friction and be able to rotate
freely. Try using recycled materials only, such as old Rollerblade
wheels, broken Formica-top tables, or old desktops. Also, modify an old
bicycle wheel so that it can be held with handles while spinning. Use this
setup to study the moment of inertia and conservation of angular
momentum. Relate your findings to gyroscopic properties.

� �i

Rotating platform

Fig.STSE.7.4 A rotating platform
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S P E C I F I C  E X P E C TAT I O N SS U M M A R Y

You should be able to

Understand Basic Concepts:

Explain radian measure and relate it to degree
measure.
Describe in qualitative terms the angular equiva-
lents to distance, speed, acceleration, mass, force,
energy, and momentum.
Write variables for angular distance, speed, accel-
eration, mass, force, energy, and momentum.
Write equations for angular distance, speed, accel-
eration, mass, force, energy, and momentum.
Calculate various aspects of angular motion using
the angular equations.
Relate tangential variables to angular ones quali-
tatively and quantitatively.
Describe the equivalent angular laws of motion
(Newton’s three laws, conservation of energy,
and momentum).
Use the angular conservation laws to solve prob-
lems where you previously used linear variables
(apogee/perigee of orbits, centripetal accelera-
tion, and tangential speeds of spinning objects).
Use conservation laws to solve problems involv-
ing mixed motion (ball rolling down a hill).

Develop Skills of Inquiry and Communication:

Perform experiments to verify aspects of angular
motion.
Develop extensions to current labs and create
demonstrations to verify the conservation laws.
Discuss how problems can be solved in different
ways, depending on your reference frame and
associated variables.
Describe the interconnection between linear and
rotational variables.
Describe everyday events in terms of angular
variables.
Describe the gyroscopic principle qualitatively
and relate it to everyday events.

Relate Science to Technology, Society, 

and the Environment:

Explain how gyroscopic principles are used in
guidance systems.
Explain how rotational principles are used in the
toy industry.
Analyze the motion of a toy, such as a yo-yo, in
terms of linear and rotational motion.
Describe aspects of appliances that involve rota-
tional motion.
Explain how a compact disc system reads 
information.
Analyze how various sports use the principles of
rotational motion (with and without equipment).

Equations

s � r�

� � �
�

�

�

t
�

v � r�

a � r



 � �
�

�

�

t
�

a � r�2


 � �
�2

�

	

t
�1

�

�� � �
1
2

�(�1 � �2)�t

�� � �1�t � �
1
2

�
�t2

�� � �2�t 	 �
1
2

�
�t2

�2
2 � �1

2 � 2
��

 � r�� � F�� � rF sin �

 � I


Itotal � Icm � ml2

WR � �

Ekrotational � �
1
2

�I�2

L � I�

�Ii�i � �If�f
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E X E RC I S E S

Conceptual Questions

1. On the surface of Earth, do all objects have 
the same angular velocity? Do they all have the
same tangential velocity? Explain your answer. 

2. A differential on a car allows the wheels on
the inside of a turn to rotate at a different
angular speed than the wheels on the outside
of a turn when rounding a corner. Why is this
mechanism necessary?

3. If the CN Tower was located at the equator,
where would its tangential speed be the 
greatest? Explain your answer.

4. Does tire size (radius) make a difference in
the energy (the gas consumption rate)
required to move a car?

5. a) If an odometer is calibrated to a certain tire
size because the distance is converted from
an angular to a linear measurement of the
tire’s motion, does changing the size of the
tire affect the odometer reading?

b) Is the speedometer reading affected?

6. Our definition for linear work is F�d.
Compare it to Wrotational � ��. For circular
motion, one of these variables goes to zero.
Compare the two in light of this statement.

7. When a diver enters the water after performing
a series of somersaults in a tuck position, she
appears to enter the water straight (for a per-
fect dive). Does her entry position violate the
law of conservation of angular momentum?

8. In Figure 7.46, all the riders on the swing ride
have the same angular velocity. Are the forces
acting on all the riders the same given that their
radii of turn are different? Explain your answer.

Fig.7.46

9. In 1986, while flying by Uranus, Voyager 2 set
itself into an unwanted rotation each time the
tape recorder turned on high speed. To 
counteract this effect, thrusters had to be
fired each time. Use conservation of angular
momentum to explain this effect.

10. Which object reaches the ground first, start-
ing at rest at the top of a frictionless incline:
a) a solid cylinder or a hollow one (same-

sized objects with same masses)?
b) a solid cylinder or a rectangular solid?

Does adding friction change the problem?

11. Explain why rotational motion increases 
stability for projectiles such as rugby balls,
footballs, and bullets.

12. Given the wheel in Figure 7.47, what is the
ratio between the distance a wheel moves 
linearly (as measured from the centre of the
wheel) and the arc length along the outer part
of the wheel?

Fig.7.47
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13. What are the various possible rotation axes for
this textbook? Rank the moments of inertia.

Fig.7.48 One possible rotation axis

14. For a planet in orbit around the Sun, is there
a torque exerted on the planet? Is angular
momentum conserved?

15. Why is it easier to balance on a moving bike
than on a stationary one?

16. Why do motorcycles rotate up in mid-air if
the rear wheel is caused to turn faster?

Problems

7.2 A Primer on Radian Measure

17. Convert the following angles to radians.
a) 1°
b) 90°
c) 220°
d) 459°
e) 1200°

18. Convert the following measurements to radians.
a) 15.3 revolutions
b) �

3
4

� of a turn
c) the motion of an hour hand in 4.4 h
d) Earth’s rotation in 28.5 h

19. Convert the following radians to degrees.
a) 0 rad
b) �

2
3
�
� rad

c) 20� rad
d) 466.6 rad

20. How many cycles are in
a) 3.5 rad?
b) � rad?
c) 50°?
d) 450°?

21. How far does a person travel on a circular
track of radius 40 m if he goes
a) 2� rad?
b) 6.7� rad?
c) 124°?
d) 560°?

7.3 Angular Velocity and Acceleration

22. a) An object rotates 15 times in 3.5 s counter-
clockwise. Calculate the number of radians
it rotated.

b) Calculate the average angular speed.
c) What happens to the answer in part b) if

the object rotates in the other direction?

23. A Ferris wheel completes four cycles in 26 s.
What is its average angular speed in radians
per second?

24. a) A baseball pitcher can pitch a ball spinning
at 1700 rev/min. Calculate the angular
speed of the ball.

b) If the ball travels for 0.56 s, find the num-
ber of radians that the ball turns.

25. a) A centrifuge, used to condition astronauts
to various g forces, speeds up from rest
to 2.55 rad/s in 115 s. Find its angular
acceleration.

b) What is the frequency in hertz of the 
centrifuge?

26. A turntable playing old 45s (vinyl singles)
rotates at 45 rpm (revolutions per minute). 
If it slows down to a stop in 22.5 s, find its
angular acceleration.

27. A flywheel rotating at 18.0 rad/s slows to a
stop in 22.0 s. Find
a) its angular acceleration.
b) the number of radians it turns before 

stopping.
c) the number of cycles it completes in 

this time.
d) the angular speed after 8.7 s.
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28. A disk with angular acceleration 0.95 rad/s2

starts with an angular velocity of 	1.2 rad/s.
How fast is it going after
a) 0.30 s?
b) 1.26 s?
c) 13.5 s?

29. A fisherman uses a reel with a spool of diam-
eter 5.6 cm to reel in a fish at 12 cm/s. What
is the angular speed of the reel?

30. Calculate the angular centripetal acceleration
of a wheel that is 0.50 m in radius, rotating at
a constant 3.5 rev/s.

31. A space station, 2.50 � 103 m in diameter,
produces an artificial gravity with an accelera-
tion of 7.98 m/s2. Find
a) the station’s tangential speed.
b) the station’s angular acceleration in rad/s2.
c) the number of revolutions that the station

makes in 24 h.
d) the arc distance that a point on the sta-

tion’s rim travels in 45 minutes.

32. a) A disk with evenly spaced holes along the
edge turns such that light, which travels
through one hole, reflects off a distant 
mirror and returns through the adjacent
hole on the wheel. If the distance to the
mirror is 10.0 km and the speed of light is
3.0 � 108 m/s, find the angular speed of
the disk that has 360 evenly spaced holes
and a radius of 0.80 m (see Figure 7.49).

b) What is the tangential speed for a point on
the edge of the wheel in Figure 7.49?

Fig.7.49

33. Two cars are moving along a circular track of
radius 40 m. If they start from opposite sides
of the track and move in opposite directions,
each with an angular speed of 0.13 rad/s, how
long will it take for them to meet?

34. How long will it take the two cars in problem
33 to meet if one car’s angular speed is 
1.6 times greater than the other car’s?

7.4 The Five Angular Equations 
of Motion

35. A variable speed drill has an initial angular
speed of 4.2 rad/s. By pressing the trigger, you
accelerate the drill to a new speed. If the
angular acceleration is 1.80 rad/s2 and you
held the trigger for 2.8 s, find
a) the drill’s final angular speed.
b) the angular displacement.

36. The blades of a ceiling fan are spinning 
counterclockwise at 190 rad/s. If the blades’
angular speed is changed to 80 rad/s clock-
wise in 6.4 s, find
a) the angular acceleration.
b) the angular displacement in radians.
c) the angular displacement in degrees.
d) the time when the blades came to a

momentary rest before rotating in the
opposite direction.

37. A wheel with a constant angular acceleration of
3.8 rad/s2 in 3.5 s rotates through 110 rad. Find
a) the wheel’s initial angular speed.
b) the wheel’s final angular speed.
c) Check the value of the acceleration by

using another formula and the values you
have calculated.

d) Check the value of the angular displace-
ment using two different methods.

38. A wheel rotating on an axis with friction pres-
ent slows from an initial rate of 400 rev/min
through 10 complete turns in 1.2 s. Find
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a) the wheel’s angular displacement in radians.
b) the wheel’s final angular speed.
c) the angular rate of acceleration.

39. A dentist’s drill bit rotates through 
2.0 � 104 rad. If the drill rotating at 
3.5 � 103 rad/s increased its speed to 
2.5 � 104 rad/s, find
a) the time it took to accelerate.
b) the angular acceleration.

40. The dentist’s drill rotates 2.0 � 104 rad while
changing its angular speed from 3.5 � 103 rad/s
to 2.5 � 104 rad/s. Find the time it takes 
for the drill to reach an angular speed of 
3.5 � 104 rad/s from rest.

41. A wheel accelerates at a rate of 2.3 rad/s2

to a speed of 15 rad/s in 3.4 s. Find
a) the wheel’s angular displacement.
b) its initial angular speed.

42. The planets travel at slower tangential speeds
as they move farther from the Sun. Find the
time it would take Earth to catch Mars if they
are separated by 30°, with Earth behind
Mars. (Note: It takes Earth 3.16 � 107 s and
Mars 5.94 � 107 s to go around the Sun once.)

43. John, who is trying to catch up with Jane, is
moving at 0.380 rad/s around a circular track.
If John is 25° behind Jane, who is running at
0.400 rad/s, and he starts to accelerate at
0.080 rad/s2, how long will it take him to
overtake her? (Hint: This problem is a two-
body problem.)

7.5 Moment of Inertia

44. Rank the shapes in Figure 7.50 according to
their rotational inertias. Assume rotation
about the axle.

Fig.7.50

45. Rank the shapes in Figure 7.51 according 
to their rotational inertias. Assume that all
shapes have the same mass (m) and radius
(r), unless otherwise stated.

Fig.7.51

m � 4.1 kg

2.6 m

r � 0.8 m

m � 15 kg

m � 6 kg

3.0 m

m
rod

 � 3m

Sphere

ms � 2m

Rs �       R
I

2

(a) (d)

(b) (e)

(c)

(a)

(b)

(c)



46. A steel solid cylinder used in a steel mill has a
mass of 4200 kg and a radius of 0.3 m. Find
its moment of inertia.

47. For a constant mass of 3.5 kg, find the
moment of inertia for
a) a hoop of radius 21 cm, rotating about an

axis through the centre of the hoop, but
not touching the hoop.

b) a solid cylinder of length 5.0 m and radius
21 cm, rotating about the cylinder axis.

c) a solid sphere of diameter 50 cm.
d) a hoop of radius 50 cm, rotating about a

diameter.

48. A wheel in the shape of a uniform disk with
mass 1.4 kg has a radius of 12 cm. If it is
rotating at 60 times a second, find
a) its moment of inertia.
b) its angular velocity.

49. A thick ring with a mass of 10.0 kg has an
interior diameter of 54 cm. If the exterior
diameter is 1.4 times larger, find its moment
of inertia.

50. A hollow sphere of radius 1.5 m and mass 
2.0 kg is rotating at 200 rpm. Find
a) its moment of inertia.
b) its angular speed.
c) its moment of inertia if the sphere is solid.

7.6–7.7 Rotational Energy and
Rotational Kinetic Energy

51. Calculate the work needed to stop a 20-kg
wheel of radius 0.9 m rotating at 12.3 rev/s.

52. A cylindrical satellite, launched from a space
shuttle, is set spinning at 1.40 rad/s. Its mass is
1450 kg with a diameter of 1.35 m. Calculate
a) the rotational inertia of the satellite.
b) its rotational kinetic energy.
c) the tangential speed of a point on the 

exterior of the satellite.
d) the number of turns it makes in 6.5 s.

53. a) Calculate Earth’s rotational energy, assuming
it’s a perfect sphere of radius 6.38 � 106 m.

b) What is a person’s tangential speed at the
equator?

54. An ion with a mass of 8.30 � 10	25 kg moves
in a circular path in a cyclotron of radius 3.5 m.
If it completes 1000 cycles in 1.0 s, find
a) the moment of inertia.
b) the angular speed.
c) the kinetic energy.

55. An electron of mass 9.11 � 10	31 kg moves 
in a circular orbit around a nucleus of mass
1.67 � 10	27 kg. If the radius of orbit is 
5.0 � 10	11 m and the angular momentum 
is 1.05 � 10	34 kg·m2/s, find
a) its moment of inertia.
b) its angular speed.
c) its angular kinetic energy.

7.8 The Conservation of Energy

56. A solid cylinder of radius 20 cm is released
from a 2.5-m-high incline. If it rolls down
without losing any energy to friction, find
a) the cylinder’s velocity at the bottom of the

incline.
b) the angular speed of the cylinder at the

bottom of the incline.

57. Repeat problem 56 for a hollow cylinder.

58. For a sphere of mass m and radius r, derive 

the equation v ���
1
7
0
�gh� for the speed of the

sphere at the bottom of an incline of height h.

59. A 2.8-m rod standing on its end is allowed to
fall. The falling tip traces an arc. Find the
speed of the tip when it hits the floor.
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7.9 Angular Momentum

60. A bowling ball with mass 3.9 kg and radius of
13 cm rotates at 150 rad/s on an axis through
the centre of the ball. Find
a) the ball’s moment of inertia.
b) the ball’s angular momentum.

61. A disk with mass 2.4 kg and radius of 30 cm
starts from rest and accelerates to 250 rad/s
in 3.5 s. Find
a) its moment of inertia.
b) its change in angular speed.
c) its change in angular momentum.
d) its angular acceleration.
e) the applied torque needed to cause this

acceleration.

62. A knife thrown during a circus act completes
an integral number of spins in flight before
sticking into the wall behind the target per-
son. If the knife makes 3.0 rotations over a
distance of 4.5 m and has a moment of inertia
of 1.50 � 10	3 kg�m2, find
a) the time it takes to reach the target if the

knife was thrown with an initial speed of
17.0 m/s.

b) the angular speed of the knife.
c) the angular momentum of the knife.

63. A uniform rod of length 2.5 m, radius 1.0 cm,
and mass 3.2 kg rotates 28 times in 13 s clock-
wise about an axis through its centre along its
length. Find
a) its moment of inertia.
b) its angular momentum.

64. Repeat problem 63 for a rod spinning counter-
clockwise about an axis through its centre
and perpendicular to the rod.

65. For the data in problem 63, find the total
moment of inertia (rotational inertia) for the
rod if it was rotating about an axis 0.5 m from
one end.

7.10 The Conservation of 
Angular Momentum

66. Superman is rotating on a turntable at 
6.85 rad/s with his hands at his sides. If
Superman extends his hands, his angular
speed becomes 4.40 rad/s. Find the factor 
by which Superman’s moment of inertia 
has changed.

67. If the value of the rotational inertia changes
to �

1
2

� of its original value, by how much does
the final angular speed increase or decrease?

68. a) A satellite’s orientation is altered using 
a motor mounted parallel to the probe’s
axis. If the motor’s rotational inertia is 
1.5 � 10	3 kg�m2 and the satellite’s rota-
tional inertia is 8.5 kg�m2, find the angular
speed of the motor if it causes the satellite
to rotate at 10 rad/s.

b) How many degrees does the satellite rotate
in one second?

c) How many degrees does the motor rotate
in one second?

d) How many times does the motor rotate to
cause the satellite to rotate 45°? 

69. a) A toy railway track, mounted on a rotating
platform of radius 4.3 m and mass 600 kg,
rotates at 6.4 rad/s counterclockwise. If a
train with cars is added to the platform
from rest and has a mass of 35 kg, what is
the final angular speed of the platform and
train? Assume the train circles the rim of
the platform.

b) If the train is running in the same direc-
tion as the platform with an angular speed
of 3.1 rad/s, what is the final speed of the
platform and train?

c) If the train is running at 6.4 rad/s in the
opposite direction as the platform, find the
final speed of the train and platform.



70. A wheel of mass 30 kg and radius 1.5 m is
rotating clockwise about a shaft at 12 rad/s. 
A second wheel of radius 1.0 m and mass 
20 kg is suddenly coupled to the first wheel.
a) Find the final angular speed of the combi-

nation of wheels.
b) If the second wheel rotates at 12 rad/s in

the same direction as the first wheel, find
the angular speed of the wheel combination.

c) If the second wheel rotates at 12 rad/s 
in the opposite direction as the first 
wheel, find the angular speed of the 
wheel combination.

d) Find the angular speed necessary to stop
the whole system from turning.

71. A 40-kg duck (wow!) walks from the outside
to the inside of a rotating circular table of
mass 100 kg. If the rotational inertia of the
table is 250 kg·m2 and the duck moves from a
radius of 2.5 m to 1.5 m, find the final angu-
lar speed of the table if it rotates at 2.0 rad/s
at the moment the duck starts to move.

7.11 The Yo-yo

72. A yo-yo rests on a level surface with friction.
If you give the yo-yo a horizontal pull (see
Figure 7.52), describe what happens in terms
of its motion, forces, and torque.

Fig.7.52

73. A yo-yo has a rotational inertia of 
8.50 � 10	5 kg�m2 and a mass of 135 g. 
It has a central axis of radius 3.0 mm and 
a 110-cm-long string. If the yo-yo rolls from
rest down to the bottom of the string, assum-
ing the string has zero thickness, find
a) the acceleration of the yo-yo.
b) the time taken to reach the bottom.
c) the linear speed at the bottom of the string.
d) the angular speed at the bottom of the

string.
e) the linear kinetic energy at the bottom.
f) the angular kinetic energy at the bottom.
g) the total energy at the top of the string.

74. Repeat problem 73 for a yo-yo with an initial
speed down of 1.0 m/s.
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Purpose
To find the moment of inertia by determining
the angular acceleration and torque

Equipment
Known mass with string
Tickertape apparatus or photo-gate pulley appa-
ratus or programmable calculator sensor
Wheel or pulley

Fig.Lab.7.1 Use tickertape or photo 

gates to obtain speed

Procedure
Finding the Angular Acceleration
1. Set up the wheel so that it can freely rotate

on the side of the table, as illustrated in
Figure Lab.7.1.

2. Wrap a length of string around the wheel
and attach a mass to the end of it.

3. Set up the measuring system you are using. 
a) Tickertape: Attach the tickertape to the

mass. Position the clacker so that the tape
can move freely. You may wish to use
large retort stands to hold the clacker ver-
tically, or have a group member hold it.

b) Photo-gate pulley: Set up the photo-
gate pulley to produce a position–time
graph for the falling mass.

c) Programmable calculator: Place the
sensor directly above the mass using a

retort stand clamped to the table. Make
sure it’s high enough so that the reading
lies in the sensitive range of the instru-
ment. Set the calculator up so that it
records displacements and times.

4. Drop the mass from the table. Make sure
you are not recording data during or after
the mass hits the floor.

5. Repeat the drop 5 to 10 times.
6. Measure the radius (r) of the wheel (centre

to inner rim, where the string touches the
wheel) and its mass.

Data
Use the following data, depending on the meas-
uring system you used.
a) Tickertape: period of clacker; number of

spaces between dots; length from first dot to
last dot; radius of wheel; mass in kg.

b) Photo-gate pulley: printout of the d–t
graph; radius of wheel; mass in kg.

c) Programmable calculator: printout of the
d–t graph; radius of wheel; mass in kg.

Calculations
Part 1: Angular Acceleration
1. Find the linear acceleration of the system.

a) Tickertape: Use the equation a � �
2
�

�

t
d
2�,

where �t � (number of spaces)(period
of clacker)

b) Photo-gate pulley and
c) Programmable calculator: Find the

slope of the best-fit line on the v–t graph
generated by the system.

2. Average your acceleration values. Find the
standard deviation of the mean (see
Appendix B).

3. Multiply the value of the average accelera-
tion you obtained by the radius of the
wheel. This number is the angular accelera-
tion of the wheel.

7.1 Rotational Motion: Finding the Moment of Inertia

m

Fly wheel
(or smart pulley)

Axle

Mass
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Part 2: Moment of Inertia
1. Calculate the moment of inertia for each

of the trials you did by using the equation 
I � �

m(g 	

a
a)r2

�.
2. Calculate the moment of inertia using the

equation I � mr2.
3. Calculate the percent deviation between the

two sets of values from steps 1 and 2.

Analysis
1. Derive the equation I � from an 

FBD and Fnet statement for the falling mass,
and the torque applied to the wheel, 

 � rFT � I
.

(Hint: From your Fnet statement, set Fnet

equal to ma, then rearrange the equation to
solve for FT, the tension force. Use the defi-
nitions rFT �  � I
 and a � r
.)

Discussion
1. How well do the values for moment of iner-

tia calculated from the experiment and
from the equation I � mr2 agree within the
percent deviation?

2. What role does the mass of the string play
in the experiment?

3. What role does friction have on the value of
the moment of inertia?

4. What other factors affect your results?

Conclusion
State your results for the moment of inertia of 
a ring.

Extension
1. Design and perform an experiment to deter-

mine the moment of inertia of different
shapes (rings, solids, cylinders, etc.).

2. Design and perform an experiment to deter-
mine the effect of radius on the moment of
inertia.

3. Design and perform an experiment to deter-
mine the effect of mass on the moment of
inertia (the mass of a rotating object).

4. Design and perform an experiment to deter-
mine how the moment of inertia affects the
linear acceleration of a system.

m(g 	 a)r2
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580 BC                          

1600
1750

1581  1845

1864

1771

1821

1840s

1820
1840

1729   

Michael Faraday 
established a 
relationship between 
electromagnetism 
and light.

1827  

1831

Timeline: The History of Electric, Gravitational,
and Magnetic Fields

�600 �400

Thales of Miletus 

studied magnets 

and attraction to 

rubbed amber.

Robert Norman used 

a magnetic compass 

needle to show that 

Earth is magnetic.

William Gilbert 

studied static 

electricity and 

magnetism.

John Mitchell published 

theories of magnetic 

induction and the 

inverse square law for 

magnetic fields.
Michael Faraday 

built the first 

electric motor.

Michael Faraday 

discovered magnetic 

lines of force and the 

electric transformer.

Gustav Kirchhoff 

formulated his 

voltage and 

current laws for 

electric circuits.

Luigi Galvani 

discovered 

electricity 

in animals.

Hans Christian 

Oersted discovered 

that an electric 

current could deflect 

a magnetic needle.
Georg Simon 

Ohm published 

Ohm’s law.

James Joule and 

Hermann von 

Helmholtz 

discovered that 

electricity is a 

form of energy.

Stephen Gray 

studied the 

conduction of 

electricity.

1700 175016001550 1800 1850

James Clerk Maxwell 
showed theoretically 
that light is a transverse 
electromagnetic wave. 
Derived an expression 
for the speed of light.

Thus far in this text, we have explained events in terms of free-body diagrams,
kinematics equations based on observation, and Newton’s laws. In the
momentum and energy unit, the interaction of an object and its environ-
ment was explained in terms of kinematics and dynamics. But the study of
the interaction of forces with objects was omitted.

Contact forces, such as a pull or a push acting directly on an object, are easy
to visualize. But gravitational, electric, and magnetic forces can influence
objects without direct contact. These forces vary in strength with distance and
only affect objects with specific traits that respond to these forces. For example,
objects having mass can influence other objects having mass without contact.

An event such as diving off a cliff into a bay of water could not be explained
properly until Michael Faraday (1791–1867) solved the riddle of how a force
can influence an object over a distance. He introduced the idea of a field. Fields
surround objects. Mass has an associated gravitational field, positive charges
and negative charges have fields emanating outward and inward, respectively,

and magnetic fields can be mapped using
bar magnets and iron filings. In this unit,
we will study how field-creating objects
affect the motions of particles in their
fields. We will compare and contrast the
various types of fields, and investigate
the impact of field theory on the develop-
ment of new technologies and on the
advancement of scientific theories.
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1887
1926

1901
1900

1909

1934

1937
1945

1900 1950 2000

Ernest Rutherford 
measured radioactive 
half-life.

Heinrich Rudolf Hertz verified 
the existence of long-wave 
electromagnetic radiation.

Robert Millikan 
measured the 
charge on 
an electron.

James Chadwick 
measured the mass 
of a neutron.

Atomic bombs were 
dropped on Hiroshima 
and Nagasaki, Japan.

Albert Einstein said, 
“God does not play dice with 
the universe” as an objection 
to the random behaviour of 
subatomic particles proposed 
by quantum theory.

Guglielmo Marconi 
received signals at 
Telegraph Hill in St. 
John’s, Newfoundland, 
transmitted from 
Cornwall, England.

1926

Werner Heisenberg 
published the 
uncertainty principle.

1941

The Manhattan Project 
began development of 
the atomic bomb.

Albert Prebus and James Hillier, 
graduate students at the University of 
Toronto, designed and built the first 
North American electron microscope 
and used the wave nature of particles to 
extend the resolution of microscopes.
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8 Electrostatics and
Electric Fields

By the end of this chapter, you will be able to
• define the law of electric charges and apply it to the mapping of electric 

fields around charge distributions
• apply Coulomb’s law to various electric field situations, and 

compare and contrast this law with Newton’s universal law of gravitation
• apply the law of conservation of energy to charged particles moving 

in electric fields, including that of a parallel plate apparatus
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Potential Energy

8.8 Movement of Charged Particles 
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of Energy

8.9 The Electric Field Strength 
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Electric Double-layer Capacitors

8.1 The Millikan Experiment

8.2 Mapping Electric Fields



8.1 Electrostatic Forces and Force Fields

Do you realize that as you sit reading this book, your body isn’t really touch-
ing the chair? There are strong forces at work, preventing the atoms and
molecules that make up the chair and the clothes on your body from directly
contacting one another. These forces are repulsion forces. When clothes just
pulled from a clothes dryer stick together, similar forces are at work, caus-
ing your socks to cling. These forces are attraction forces. The force respon-
sible for repulsion and attraction is called the electrostatic force. In biology
and chemistry, electrostatic forces are responsible for the chemical bonds
that link atoms and molecules in living and non-living matter.

Like gravitational and magnetic forces, the electrostatic force is an
example of a force that acts at a distance.

Even though the balloon and the wall in Figure 8.1 appear to be touch-
ing, they are in fact sitting a microscopic distance apart. In this chapter and
the next, we will discuss the concept of force at a distance in our study of
field theory. We will draw parallels between electrostatic, gravitational, and
magnetic forces.

8.2 The Basis of Electric 
Charge — The Atom

All matter is made of many incredibly small particles called atoms. The
Greek philosopher Democritus postulated the existence of atoms in the
fourth century BC. He reasoned that if you cut an object into smaller and
smaller pieces, you will eventually cut it down to the smallest possible piece.
“Atom” means “uncuttable.”
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Fig.8.1 The force of attraction between charges



Figure 8.2 illustrates a simplified version of the current model we have
of an atom, which is based on a combination of the nuclear model proposed
by Ernest Rutherford and a quantum-mechanical electron model.

The atom is made of three types of components, each with their own elec-
tric state or charge. The positively charged protons are clustered together
in the atomic nucleus with neutral (no electric charge) particles called
neutrons. The negatively charged electrons move in a region at some dis-
tance around the nucleus. The transfer of these mobile electrons between
objects is the basis of electrostatic current.

Charge was observed in the fifth century BC by the Greek philosopher
Thales of Miletus who noticed that amber rubbed with fur attracted pith
and pieces of feathers. The Greek name for amber is “elektron.” Benjamin
Franklin noted the oppositely charged natures of amber and fur and desig-
nated amber as negative. When charged objects are placed near each other,
they experience forces of attraction or repulsion. These two different
charges follow the law of electric charges.

Law of Electric Charges:

Opposite charges attract each other.
Like charges repel each other.

Charged objects attract some neutral objects.

An electroscope is a simple device that allows us to detect charge and
its transfer. Figure 8.3 illustrates a typical electroscope and how it detects
charge. The signs (�) and (�) are used to represent positive and negative
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Fig.8.2 The current Bohr-Rutherford

model of the atom consists of protons

and neutrons in the nucleus surrounded

by probability clouds of electrons. The

structure of the atom will be discussed

in greater detail in Unit E.



charge, respectively. When two opposite
charges unite on the same object, they cancel
each other’s electric character. If one type of
charge is in excess, then the object is left with
an overall similar charge. For example, if posi-
tive charges are in excess, then the overall
charge of the object is positive. The positively
charged protons don’t move from the atom’s
nucleus, so the amount of positive charge it car-
ries remains constant. Any change in the overall
charge on an object is due to a deficit or excess of
electrons. As illustrated in Figure 8.4, excess
electrons lead to a negative charge, a deficit of
electrons results in a positive charge, and an
equal number of protons and electrons leaves
the object neutral.

8.3 Electric Charge Transfer

The transfer of charge from one object to another is caused by a large dif-
ference in the number of unbalanced electrons in the two objects, and hence
in their overall charge. When object A has excess electrons, the electrons
experience a force of repulsion that pushes them as far away as possible
from one another. A deficit of electrons in a nearby object B attracts the
excess electrons from object A. Both conditions (an electron excess in one
object and an electron deficit in another object) compound the forces that
cause charge transfer. During a static electric shock or a lightning strike,
electrical charges are transferred between oppositely charged regions.
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Fig.8.3 An electroscope detects the movement of negatively

charged electrons as they are forced into or out of the lower

leaves by a charged object held close to it

Fig.8.4 The overall charge on an object is the 

arithmetic sum of positive and negative charges on it



Objects are charged in three general ways: by friction, by contact, and by
induction. Friction energy produces an initial charge from two neutral
objects, creating the necessary repulsive or attractive forces to allow electrons
to flow from one object to the other when the objects are in close proximity.
Once an object has been given an intial charge by friction, it can be used to
charge other objects, either by contact or by induction.

Charging by Friction

Friction is the simplest method of charge transfer between any two objects.
The direction and amount of charge transfer depends on two complementary
properties of the atoms in an object: ionization energy and electron affinity.
Each atomic nucleus has a certain degree of attraction toward the mobile
electrons in its outermost orbitals. The stronger the force of attraction
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Fig.8.5 Lightning is a rapid
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between a nucleus and its outer electrons, the greater the energy required to
remove these electrons from the atom. When electrons are removed from
an atom, the atom becomes ionized. The energy required to remove the
outermost electron from an atom is called the ionization energy. Figure 8.6
shows the variations in ionization energy for some elements in the peri-
odic table.

If an element has a high ionization energy, we can state that it has a high
affinity for its electrons. Electron affinity is the measure of the degree of
attraction of an atomic nucleus for its electrons. Table 8.1 compares the
affinity of various materials to accept electrons.

When any two substances in Table 8.1 are rubbed together, friction
causes the more mobile outer electrons to transfer from the material with
the lower electron affinity to the material with the higher electron affinity.
Cat fur, for example, gives up electrons to a silk shirt, resulting in fur’s
characteristic but annoying attraction to many articles of clothing.
Friction is also used to charge the Van de Graaff electrostatic generator
(Figures 8.7a and b). Friction in the belt of this generator causes the great
charge buildup.

Charge is carried on the outer surface of materials, regardless of whether
they are conductors or insulators of electric charge, because repulsive
forces push excess charges as far away from one another as possible.

Charging by Contact and Induction

As stated previously, once an object is charged by friction,
it can then be used to transfer a charge to other objects 
by contact or induction. Figures 8.8a and b in Table 8.2
summarize the steps required to transfer charge by these
two methods.

chapter 8 : Electrostat ics  and E lectr ic  Fie lds 375

Table 8.1
The Electrostatic Series

Cat’s fur Low affinity
Acetate for electrons
Glass
Wool
Lead
Silk
Wax
Ebonite
Copper
Rubber
Amber
Sulphur High affinity
Gold for electrons

Fig.8.7a The hairdo is due to the excess

charges experiencing mutual repulsion

Fig.8.7b A Van de Graaff

electrostatic generator

Conductor: A material, such as metal,

with very loosely bound electrons

that can easily transfer electrons

between neighbouring atoms

Insulator: A material, such as glass,

with tightly bound electrons that

cannot be easily transferred 

between neighbouring atoms

A Van de Graaff generator builds up a

positive charge by removing electrons

from the sphere. Some people prefer

to envision the flow of electrons in

the opposite direction.
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Table 8.2
Charging by Contact and Induction

Type of Charge Transfer Description

Charging by Contact When a charged object comes into contact with a neutral
object, the excess or deficit of electrons in the charged object
causes the transfer of charge to the previously neutral
object. In Figure 8.8a, a negatively charged object transfers
some of its excess electrons to the neutral object, thereby
causing it to become negatively charged. A positively
charged rod draws electrons out of a neutral object, leaving
it with an overall positive charge.

Charging by Induction A charged object brought close to a neutral object without

contact induces a movement of electrons in the neutral
object. If the neutral object is attached to a grounding
source such as Earth, which can give or receive electrons
freely, the induced charge separation is momentarily overcome
by charge flowing to or from the ground. Removal of the
ground first and then of the charged object causes the
remaining electrons (can be excess or deficit) to redistribute
in the previously neutral object. In Figure 8.8b, a negatively
charged rod induces a positive charge in the electroscope.
Charging by induction always leaves the neutral object with
the opposite charge of the charged object.
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Fig.8.8a

Fig.8.8b

The device in Figure 8.9 is a Whimshurst machine that uses the principle
of induction to create a charge separation between the two spherical contacts.
The metal foil pieces on each disk never touch each other. Instead, each
piece induces a charge separation on its partner through the disks as they
rotate past each other.

Fig.8.9 A Whimshurst machine

charges by induction



8.4 Coulomb’s Law

We have all experienced “static cling” where two objects with opposite
electrostatic charges attract one another according to the law of electric
charges. Charles-Augustin de Coulomb (1736–1806) experimented with
the forces that exist between any two electric point charges. Point charges
are extremely small particles (i.e., they have no measurable dimensions)
that carry a charge. The magnitude of the force exerted between any two
charges depends on the magnitude of each charge and the distance between
them. Figure 8.10 illustrates how the magnitude of electrostatic forces can
be studied in a lab.

By charging spheres with different magnitudes and varying the distances
between them, Coulomb determined the relationship between distance and
magnitude of charge, and the electrostatic force. Coulomb modelled his
experiment after one performed by another scientist studying gravity,
Henri Cavendish (1731–1810), whom we mentioned in Chapter 1. Using
Cavendish’s torsion balance (Figure 8.11), Coulomb was able to measure
the torque and therefore the force applied between the charges placed
specific distances apart.
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Fig.8.10 Forces acting on charged

spheres in static equilibrium
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studying Coulomb’s law
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In the next example, we will derive Coulomb’s law.

e x a m p l e  1 Deriving Coulomb’s law

Use proportionality techniques (see Appendix D) and the data for the
electric force, F, and the charges, q1 and q2, in Table 8.3 to derive a pro-
portionality statement that summarizes the relationship between the mag-
nitudes of the force and the two charges when the distance between them
is constant.

Solution and Connection to Theory

Given

Using the multiplier method of data analysis (as described in Appendix D)
on the data in Table 8.3, we can determine that the electrostatic force is
directly proportional to each of the two charges and therefore to the
product of the magnitudes, q1 and q2, of the two point charges:

F � q1 q2

Coulomb also found that the electrostatic force was inversely proportional
to the square of the distance between the centres of the two spheres:

F � �
r
1

2�

where r is the distance between the centres of the two charged spheres.

Combining both proportionality statements, we obtain

F � �
q
r
1q

2
2

�
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Table 8.3

q1 (C) (� 10�7) q2 (C) (� 10�7) r (m) k (N·m2/C2) F (N) � 10�1

80 40 1 9.0 � 10�9 2.88

40 40 1 9.0 � 10�9 1.44

20 40 1 9.0 � 10�9 0.72

20 20 1 9.0 � 10�9 0.36

20 10 1 9.0 � 10�9 0.18

20 10 2 9.0 � 10�9 0.045

20 10 3 9.0 � 10�9 0.02

kavg 9.0 � 10�9

1
�
2

1
�
9

1
�
4

2
3

1
�
2

1
�
2

1
�
2 1

�
4

1
�
4

1
�
4



e x a m p l e  2 Using Coulomb’s law comparatively

The electrostatic force between two charges is known to be 3.0 � 10�5 N.
What effect would each of the following changes have on the magnitude
of the force if made independently of one another?

a) The distance between the charges is tripled.
b) One charge is quartered and the other is doubled.
c) What would happen to the force if both changes where

made simultaneously?

Solution and Connection to Theory

a) Given
F1 � 3.0 � 10�5 N r2 � 3(r1) F2 � ?

From Coulomb’s law, F � �
r
1

2�, which means that F and �
r
1

2� are directly
proportional. It then follows that forces and distances from two separate
cases are related by the equation

�
F
F

1

2
� � �

(
(
r
r

2

1

)
)

2

2�

F2 � �
F
(
1

r
(

2

r
)
1

2

)2

�

F2 �

F2 � (3.0 � 10�5 N)��
1
9

��
F2 � 3.3 � 10�6 N

The resulting force is one-ninth that of the original or 3.3 � 10�6 N.

b) In this example, we have two different charges, q1 and q2, that change
magnitudes. We will use q1 and q2 to represent the original charge mag-
nitudes and q1	 and q2	 to represent the new charge magnitudes.

Given
F1 � 3.0 � 10�5 N q1	 � �

1
4

�q1 q2	 � 2q2 F2 � ?

F � q1q2; therefore,

�
F
F

1

2
� � �

q
q

1	

1q
q

2

2	
�

(3.0 � 10�5 N)(r1)2

���
(3r1)2
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F2 � �
F1

q
q

1

1

q
	q

2

2	
�

F2 �

F2 � (3.0 � 10�5 N)��
1
4

�(2)� � �
3.0 �

2
10�5 N
�

F2 � 1.5 � 10�5 N

The force is one-half the initial force.

c) F � �
q
r
1q

2

2
�; therefore,

�
F
F

1

2
� � �

(
(
q
q

1	

1q
q

2

2

)
	)
r
r
2

2

1
2�

F2 � �
F1

(
(
q
q

1

1

q
	q

2)
2

r
	

2

)
2

r1
2

�

F2 �

F2 � (3.0 � 10�5 N)��
1
9

����
1
2

��
F2 � 1.7 � 10�6 N

Tripling the distance between the charges and changing their magni-
tudes results in an electrostatic force of 1.7 � 10�6 N.

Early experiments in electrostatics required quantitative measurements of
electric charge. Without the ability to define the basic unit of charge, scien-
tists grouped them into “packages” containing a consistent and reproducible
magnitude. This package of charge, q, was given the unit name of coulomb
(C), after Coulomb himself. The idea of charge is analogous to consistently
filling an egg carton with a dozen eggs but not knowing that there are 12 eggs
in a dozen. In the early 1900s, Robert Millikan performed his famous oil-
drop experiment in which he determined that one coulomb of charge equals
6.242 � 1018 electrons. We will study Millikan’s experiment in Section 8.9.

(3.0 � 10�5 N)(�
1
4

�q1)(2q2)(r1)2

����
(q1q2)(3r1)2

(3.0 � 10�5 N)��
1
4

�q1�(2q2)
���

q1q2
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1 C � 6.242 � 1018 e� or 

1 e� � 1.602 � 10�19 C

The overall charge on an object can

be determined by the equation

q � Ne

where q is the amount of charge in

coulombs, N is the total number of

electrons in either deficit or excess,

and e is the charge on an electron:

1.602 � 10�19 C.



e x a m p l e  3 Calculating total charge

Two substances transfer charge when rubbed together. If 3.7 � 1024

electrons are transferred between the two substances, what is the amount
of charge on the negative item?

Solution and Connection to Theory

Given
N � 3.7 � 1024 electrons q � ?

The excess of negative charge (3.7 � 1024 electrons) on one item is equal
to the deficit of negative charge on the other item.

q � Ne
q � (3.7 � 1024 e)(1.602 � 10�19 C/e)
q � 5.9 � 105 C

Therefore, the charge on both items is 
5.9 � 105 C.

When we combine all variables that affect the electrostatic force between
charges, the general proportionality statement, F � �

q
r
1q

2
2

�, is the basis of the
equation known as Coulomb’s law of electric forces. Adding a constant
of proportionality, our proportionality statement becomes an equation.

Fe � �
k(q

r
1
2

q2)
�

where F is the electric force, k is a constant of proportionality known as
Coulomb’s constant, q1 and q2 are the magnitudes of the charges in
coulombs (C) on the two charged spheres, and r is the distance between
their centres in metres (m).

If we rearrange the equation for the constant k, we can empirically deter-
mine its value. For example, if we use the data from our Coulomb’s law
experiment in Table 8.3, we can calculate the value of k:

k � �
F
q1

e

q
r

2

2

�

k �

k � 9.0 � 109 N·m2/C2

(2.88 � 10�1 N)(1 m)2

����
(80 � 10�7 C)(40 � 10�7 C)
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k � �
4�

1

�0

�

where �0 is the permeativity of 

free space. 

�0 � 8.854 � 10�12 C2/N·m2

Therefore,

F � ��4�

1

�0

���qr

1q
2

2
�



Déjà vu — Gravity
The equation for Coulomb’s law is very similar in form to Newton’s universal
law of gravitation equation. While the gravitational force depends on the
masses of the objects, the electrostatic force depends on their charges. The
constant of proportionality for each equation quantifies the difference
between each type of force. In both equations, the force is inversely propor-
tional to the square of the distance between the two bodies and directly pro-
portional to the product of the property of the object governed by that law
(i.e., charge or mass). Figure 8.12 compares the two laws.

Fig.8.12 A Comparison of Coulomb’s Law and Newton’s Law
of Universal Gravitation

Now let’s use the specific equation for Coulomb’s law in a few examples.

e x a m p l e  4 Using the Coulomb’s law equation

Two point charges, q1 � 4.0 � 10�6 C and q2 � 3.0 � 10�6 C, are 0.20 m
apart (Figure 8.13). What is the electrostatic force between them?
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From Chapter 1, recall Newton’s 

universal law of gravitation, 

Fg � �
Gm

r

1

2

m2
�.

Repulsive force

or attractive force

Force between two objects,

 each with key quantity of 

charge (q) or mass (m)

*For gravity, forces are attractive only 

Forces vary directly with

 the product of the key

 quantity (charge/mass) 

Equations are similar when

appropriate constant is applied.

Both constants found

using a torsion balance.
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Solution and Connection to Theory

Given
q1 � 4.0 � 10�6 C q2 � 3.0 � 10�6 C r � 0.20 m
k � 9.0 � 109 N·m2/C2 Fe � ?

Fe � �
kq

r
1
2

q2
�

Fe �

Fe � 2.7 N

Because both charges are positive, the force that each charge exerts on the
other is a repulsive force of 2.7 N. If one of these charges was negative,
then the force would have the same magnitude but the opposite sign, and
would therefore be an attractive force.

A positive (�) force represents a repulsion of two positive or two nega-
tive charges. A negative (�) force represents attraction between two
opposite charges.

e x a m p l e  5 Solving Coulomb’s law for a different variable

A small, negatively charged foam sphere is touched by a similar neutral
sphere. The two spheres experience a repulsive force of 6.4 N when they
are held 10 cm apart. What is the magnitude of the original charge on the
foam sphere?

Solution and Connection to Theory

Given

Fe � 6.4 N r � 10 cm��10
1
0

m
cm
�� � 0.10 m q � ?

The original negative charge on the first sphere must be shared between
the two spheres after they come into contact. Therefore,

q1 � q2 � �
1
2

�q

Fe � �
kq

r
1

2

q2
�

Fe �
k��

1
2

�q�
2

�
r2

(9.0 � 109 N·m2/C2)(4.0 � 10�6 C)(3.0 � 10�6 C)
������

(0.20 m)2
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q � ��
4F

k
er2

��
q � ���
q � 
5.3 � 10�6 C

The original charge on the sphere was �5.3 � 10�6 C. If the original
charge had been positive, its magnitude would have been the same.

The Vector Nature of Electric Forces between Charges

Coulomb’s law only describes the force that exists between two point
charges. For more than two charges, we must consider two charges at a
time. Once we have calculated the forces between charge pairs, we can
determine the overall force on any one charge by calculating the vector sum
of all the forces. Let’s do an example.

e x a m p l e  6 The total electric force of a charge distribution

Three point charges, q1 � 3.6 � 10�6 C, q2 � �2.7 � 10�6 C, and 
q3 � 4.5 � 10�6 C, are arranged in a one-dimensional line, as shown in
Figure 8.14. Find the total force on charge q3.

Solution and Connection to Theory

Given
q1 � 3.6 � 10�6 C q2 � �2.7 � 10�6 C q3 � 4.5 � 10�6 C 

In one-dimensional problems, the vector sum and the arithmetic sum are
the same. Therefore, the total force on q3 equals the sum of the forces
between q1 and q3, and q2 and q3:

4(6.4 N)(0.10 m)2

���
9.0 � 109 N·m2/C2
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q1 q2 q3

30 cm 20 cm

3.6 � 10�6 C �2.7 � 10�6 C 4.5 � 10�6 C
Fig.8.14

The notation r1�3 represents the 

distance, r, between the charges 

q1 and q3.



netFF��3 � 1F��3 � 2F��3

But F��2�3 is an attractive force [left].

netF3 � �
k
r
q

1�

1q

3
2

3
� � �

k
r
q

2�

2q

3
2

3
�

netF3 �

�

netF3 � 0.5832 N � 2.734 N

netF3 � �2.2 N

Therefore, the net force on q3 is 2.2 N [left].

e x a m p l e  7 The distribution of charge in

a symmetrical conductor

When a symmetrical conductor (such as the spherical ball on an electro-
scope or a single wire) is given an excess charge, the particles that make
up the excess charge exert a force on each other that repels them to the
surface of the sphere so that they are as far away as possible from similar
charges within the conductor. Figure 8.15a shows three representative
excess electrons inside a conductor with a circular cross-section at one
instant. Each electron is situated at the vertex of an equilateral triangle
with side length 0.75 cm. Use vector addition and Coulomb’s law to find
the net force, including direction, on each electron.

Solution and Connection to Theory

Given
q1 � q2 � q3 � 1.602 � 10�19 C (the charge on one electron)
r2�1 � r3�1 � r2�3 � 7.5 � 10�3 m

From Figure 8.15a, the net force, netF1, on the top charge, q1, is the vector
sum of the force of q2 on q1 and the force of q3 on q1; that is,

2F1 � 3F1 � netF1

(9.0 � 109 N·m2/C2)(�2.7 � 10�6 C)(4.5 � 10�6 C)
������

(0.20 m)2

(9.0 � 109 N·m2/C2)(3.6 � 10�6 C)(4.5 � 10�6 C)
������

(0.50 m)2
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Because the magnitudes of the charges and the distances between them
are the same, the force of q2 on q1 is the same as the force of q3 on q1:

2F1 � 3F1 � �
k
r
q

2�

1q

1
2

2
�

2F1 �

2F1 � 4.1 � 10�24 N

These forces act upward and outward, as shown in Figure 8.15b, along
the line directly connecting charges q1 to q2 and q1 to q3.

We can find the vector sum, 2F��1 � 3F��1 � TF��1, by measuring the resultant
vector from a scale diagram or by solving using the trigonometric method.
We will use the trigonometric method.

netF1
2 � 2F1

2 � 3F1
2 � 2(2F1)(3F1)cos �

netF1
2 � (4.1 � 10�24 N)2 � (4.1 � 10�24 N)2 � 2(4.1 � 10�24 N)

(4.1 � 10�24 N)cos 120°

netF1
2 � 5.0 � 10�47 N2

netF1 � 7.1 � 10�24 N

Because the three electrons are equidistant, the two forces, 2F1 and 3F1,
are symmetrical and at an angle of 30º from the vertical on each side as
shown in Figure 8.15c. The direction of TF1 is directly up, toward the
surface of the conductor. Similarly, the forces on the other two charges,
q2 and q3, also point outward, toward the surface of the conductor.

Déjà vu — Gravity
The force of gravity between three objects is calculated in the same way as we
calculated the electrostatic force between three charges in Example 7. The
force of gravity between two small masses is so tiny that it’s negligible com-
pared to the electrostatic force. Figure 8.16 compares the gravitational force
and the electrostatic force acting on three masses and charges, respectively.

(9.0 � 109 N·m2/C2)(1.602 � 10�19 C)2

�����
(7.5 � 10�3 m)2
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q
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�

q
3
�

q
1
�

 � netFg2
 � 1Fg2

 � 3Fg2

 � netFe2
 � 1Fe2
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�

�

�
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 � 1Fg2

 � 3Fg2
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0.35 m

0.42 m

� � ?

Cobweb

Wall

�q �q � �3.0 � 10 �6 C

m � 2.0 � 10�7 g

Fig.8.16 The Vector Nature of the Gravitational and Electrostatic Forces

1. What is the force between charges of �3.7 � 10�6 C and�3.7 � 10�6 C
placed 5.0 cm apart?

2. How far apart would the same two charges in problem 1 have to be
to experience a force that is twice as strong?

3. A dust cobweb is drawn from an initial vertical position toward a
nearby wall by an electrostatic force. Assume the cobweb to be like
a single dust ball of mass 2.0 � 10�7 g suspended on a massless
string of length 0.42 m connected a horizontal distance of 0.35 m
from the wall, as shown in Figure 8.17. The tethered dust ball is
drawn to the wall by another similar dust ball of opposite charge, 
�q � �3.0 � 10�6 C, as shown.

a) Draw a free-body diagram for the tethered dust ball in its final
resting position.

b) Transfer the force information from the free-body diagram to a
triangle similar to Figure 8.15c.

c) What final angle does the cobweb make to the vertical?
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8.5 Fields and Field-mapping Point Charges

Charges can be formed by an excess or deficit of a few electrons on any
object. Dust build-up on your TV screen occurs because even the lightest
charged particles of dust experience a significant attractive force near the
TV screen, which can carry an electric charge. When charges are spread
over a wide area called a charge distribution, it is impossible to calculate
the total force acting on any one piece of dust. Instead of concerning our-
selves with the individual force between a single charged dust speck and
each charge on the screen, we consider how all of the charges distributed
on the screen affect the position of the dust speck. The presence of an 
electrostatic charge or charges creates an electric field in the surrounding
space. An electric field is a region of space created by a single charge or
charge array that can produce an electrostatic force on any other charge
introduced into the region.

A field is a region in three-dimensional space in which a property or
quantity, such as a force, may be distributed. 

Force at a Distance

From Chapter 1, we know that a force is a push or pull on an object. As we
learned in Section 8.1, charged objects don’t need to be in contact with each
other in order to experience forces of attraction or repulsion; therefore, we
can say that the electrostatic force acts at a distance. According to Coulomb’s
law, the greater the distance between the charges, the weaker the force
between them.
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The picture on a TV screen is created

when high-speed electrons strike the

inside of a phosphorescent coated

screen. We will learn more about TVs

in Section 8.8.

Fig.8.18 The charges distributed on the TV screen produce an electric field in the

space around the screen’s surface. The charged dust speck verifies the existence

of the field if a force is exerted on it when it is introduced into the electric field.

The total force acting on the speck, as described hypothetically by the Newton

spring scales, is due to the strength of the field.
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Other forces that act at a distance 

are magnetic forces and the force 

of gravity. These two force fields 

are mapped using a test magnet

and a test mass, respectively, and

will be described in greater detail 

in Chapter 9.



Sniffing
test duck

Source
of field

When we wish to determine our position in relation to other geographical
areas, we use a map. A field map is used to describe the forces exerted on any
charge placed in an electric field. If we place a test charge inside an existing
electric field created by another single point charge, the two charges will expe-
rience a force of attraction or repulsion. Just as your road map helps you to
determine the direction in which you should travel, an electric field map tells
you both the relative strength and direction of an electrostatic force on a test
charge. A force field is analogous to an aroma emanating from somewhere
inside your home. In Figure 8.19, a “field of aroma” in the three-dimensional
space around a source is detected by a test object some distance away.

The closer the test object gets to the source of the field (i.e., the soup),
the stronger the field (i.e., the aroma) becomes. In an electric field map, the
relative strength of the electric field is indicated by the distance between the
field lines. The stronger the force field, the closer together the field lines. The
arrows on the field lines show the direction of the force. By convention,
the arrows on the field lines point in the direction of force on a positive (�)
test charge at that spot in the electric field.

The electric field on the TV screen, represented by field lines, is created
by a group of negative charges that are distributed across the screen. The
shape of the field is mapped by taking a positive (�) test charge, like the
dust speck, and placing it at various points near the screen to determine the
direction of the electrostatic force on the test charge. Figure 8.20a shows the
direction of the electrostatic force on any positive test charge at eight loca-
tions in a field created by a point charge.
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Fig.8.19 An “aroma field” is created by the soup.

The field lines point in to show the direction in

which the test duck is drawn.



�q

(a)

Test
charge (�)

�q

(b)
Test
charge (�)

Charges in an electric field possess electric potential energy (see Section 8.7).
We can study electric fields by examining the places in the field where the
force, and therefore the electric potential energy, is the same. These lines of
similar potential are called equipotential lines (see Figures 8.20a and b).
Equipotential lines and field lines are perpendicular to each other.

In Figure 8.20a, a positive test charge experiences a repulsive force
along any of the eight field lines. We create a field map by moving our test
charge to various points in the field, making note of the direction of the
force with a small arrow. When we have accumulated enough small arrows
on our map, we can connect all the arrows pointing tip to tail to form sin-
gular field lines. Each field line is like a road for the test charge; its direction
is determined by the “terrain” created by the charges in the field. By anal-
ogy, the direction of a boulder tumbling down a rocky hillside is determined
by the hill’s slope and the objects in the boulder’s path.

Figure 8.20b shows the field lines around a negative point charge. The
field lines have the same shape as those around a positive point charge, but
the opposite direction because the forces on the test charge (always positive)
are now attractive forces.

Rules for Drawing Electric Field Lines
1) By convention, we use a positive test charge for field mapping; there-

fore, the electric field lines always start at and point away from any posi-
tive charge producing the field. In theory, we can draw an infinite number
of field lines because there are an infinite number of places to put a test
charge. Even though fields are three-dimensional, they are usually rep-
resented by a few lines drawn in a two-dimensional plane.

2) The number of field lines emanating from a charge is proportional to the
magnitude of that charge. From Coulomb’s law, we know that
stronger forces occur at closer distances. On a field map, the stronger
field forces are represented by lines that are closer together, while
weaker fields are represented by lines that are farther apart.
Similarly, the number of field lines per unit area passing at right angles
through a surface is proportional to the strength of the electric field.

3) Fields can also be mapped by first finding equipotential lines, where forces
(and therefore electric potential) are all equal. Field lines are drawn at
right angles to the equipotential lines.

4) Field maps can take on many shapes depending on the charge distribution
that is creating them. The four basic charge distributions and their asso-
ciated fields are summarized in Table 8.4.
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An electric dipole is a system of

two separated point charges that

have the same magnitude but the

opposite charge.

Fig.8.20 Field maps around charges

with concentric equipotential lines at

right angles to field lines
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Table 8.4 
Electric Field Configurations

Configuration name Field map Description

Two point charges having Fig.8.21a Curved field lines mean that the force
opposite signs (dipole) experienced by a test charge differs 

depending on where it is placed in 
relation to the point charges that are 
creating the field. Notice that the 
electric force vector, F��e, is always 
tangent to the electric field line 
at any point. Field lines cross  
equipotential lines at right angles.

Two point charges having Fig.8.21b The curved field lines have a beginning 
the same sign but no visible end. If both charges 

were negative, the field line arrows 
would point the other way. Notice 
that there is no electric field in the 
area midway between the charges.

Parallel plates Fig.8.21c The pairs of opposite charges are 
evenly distributed on opposing 
parallel plates. In the middle of the 
two plates, the field lines have uniform 
density and therefore exert the same 
force on any charge placed between 
them. At the edges of the plates, the 
field lines curve outwards, indicating 
that their density decreases, so a test 
charge would experience a lesser 
electric force.

Single conductor Fig.8.21d Any excess charge resides on the 
surface of a conductor, so the field 
lines just outside the conductor are 
perpendicular to the surface. At the 
centre of the conductor, the field 
strength is zero because all the forces 
on a test charge are balanced.
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Déjà vu — Gravity and Magnetism
Field lines are also used to represent the direction of the force of gravity on
masses or forces between magnetic poles. As shown in Figure 8.22a, the
gravitational field lines around a massive body like Earth are very similar to
those around a single negative point charge (Figure 8.22b).

The magnetic field lines around the bar magnet in Figure 8.23a can be
observed by the way iron filings distribute themselves in the field (Figure
8.23b). The key difference between a magnetic field and a gravitational or
an electrostatic field is that the magnetic field requires two distinct poles of a
magnet, called a dipole, and cannot be created by a single magnetic pole (a
monopole). The result is that every magnetic field line is continuous with
no real origin termination point. The direction of these field lines is defined
by the direction of the north end of a compass needle that is experiencing
the field. We will discuss magnetic forces in greater detail in Chapter 9.
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Test mass

�

Fig.8.22a The direction of Earth’s

gravitational field lines

Fig.8.22b The direction of field lines

around a single negative point charge

N S

Test compasses pointing
in direction of force NS

(b)(a)

Fig.8.23 Magnetic field lines around a bar magnet



Figure 8.24 compares the field shapes of the electrostatic, magnetic, and
gravitational fields.

Fig.8.24 A Comparison of Electric, Magnetic, 
and Gravitational Field Shapes

The strength of the force that a test charge experiences in an electric field
created by a single point charge depends on three factors: 1) the magnitude
of the test charge, 2) the magnitude of the source or point charge, and 3) the
distance between them. When many charges create a field in a charge distri-
bution, the last two items are difficult to quantify. Field theory helps to
resolve this limitation by examining the field’s influence on the test charge.

1. On a separate piece of blank paper in your notebook, sketch the charge
distribution and its associated electric field for each of the following.
a) Three positive charges at the vertices of an equilateral triangle

with sides measuring 5 cm each
b) A positive point charge at a 5-cm perpendicular distance from a

5-cm-long negatively charged plate
c) Create field maps for Figures 8.25a, b, and c using field-map

simulation software (see <www.irwinpublishing.com/students>).

d) Figure 8.25c is a schematic of the coaxial cable shown in Figure
8.25d. How does the outer conductor protect the cable from stray
electric fields?

2. Extremely close-range electrostatic forces, such as those between the
pages of this textbook, are repulsive forces. What evidence supports
this argument? Which aspect of current atomic theory supports the
idea that the atoms comprising two bodies never come into contact,
even during the most forceful collision?
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8.6 Field Strength

When we use field theory, we can consider the force on a single test charge,
qt, in a field (like that illustrated in Figure 8.26) to be dependent on two fac-
tors: the magnitude of the test charge and the field strength. Field strength
is the force available to influence a test charge. At a particular point, the
field strength is the result of all the charges in the region that are creating
the field. The field in Figure 8.26 is created by only one charge..

We can simplify the multiple forces of a charge distribution by considering
them to cause an electric field with field strength ��. The electric force
created by the field, F��e, is the product of the magnitude of the test charge,
qt, and the field strength. Therefore, F��e � q��. Both F��e and �� are vector quan-
tities. Rearranging this relationship for ��,

�� �

where F��e is the electric force in newtons (N) at a particular point in the
electric field, qt is a charge in coulombs (C) experiencing the electric force,
and �� is the field strength in newtons per coulomb (N/C). The field
strength, ��, is the force, F��e, experienced by a unit positive charge.

Déjà vu — Gravity
Recall that all objects gravitate toward each other, regardless of their mass.
But the forces of attraction between small objects are negligible compared
with the force they each experience toward the massive Earth. In electrostatics,
the forces exerted on other charged objects are all significantly large. The
charges occur in such quantity that they must be considered individually, or
as a group in field theory. Electric fields are generally composed of many
smaller fields created by point charges, each having a different strength and
orientation. Electric field strength at a point must be determined specifically
for that point because it depends on the magnitude and location of all the
charges that create it. If qt (magnitude of the test charge) is known and F��e is
measured (direction too), then �� can be determined by �

F�

q

�

t

e
�.

Figure 8.28 compares the parameters of the basic equations for gravita-
tional and electric forces.

F��e
�
qt
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Fig.8.27 Hypothetically, we 

can determine the field strength 

anywhere in an electric field by

inserting a known charge, qt, 

tethered to a Newton spring scale

The Direction of �� 
The convention for the direction of

the field strength depends on the

direction of the electric force on a

positive (�) test charge in the field

at a particular point. A positive (�)

 represents the direction of the

repulsive force on a positive (�)

charge at that point in space. A neg-

ative (�)  represents the direction

of the attractive force on a positive

(�) test charge.



Fig.8.28 A Comparison of F��g � mg�� and F��e � qt���

We have used a hypothetical Newton spring scale to measure the electric
force, F��e. In practice, dynamics may be used to find the electric force, as
shown in Figure 8.29.

e x a m p l e  8 Calculating field strength

A small foam pith ball carrying a charge of 1.5 � 10�6 C experiences a
force of 3.0 N to the left. What is the electric field strength at this point?
Assume that left is positive.

Solution and Connection to Theory

Given
q � �1.5 � 10�6 C F��e � 3.0 N [left] �� � ?

F��e � q��; therefore, �� � �
F�

q

�
e

�

 �

 � 2.0 � 106 N/C

Therefore, the electric field strength is 2.0 � 106 N/C to the left.

Coulomb’s Law Revisited

One way to think of Coulomb’s law is to consider
the electric force, F��e, acting on a test charge, qt, in a
field created by a master point charge, qm.

3.0 N
��
�1.5 � 10�6 C
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Coulomb’s law becomes

Fe � �
kq

r
t
2

qm
�

But the force experienced by the charge qt due to the field created by qm is

Fe � qt

qt � �
kq

r
t

2

qm
�

Therefore,  � �
k
r
q
2

m
�

This equation also describes the field strength, but this time from the point of
view of the point charge that is creating the field. Figure 8.31 shows the rela-
tionship between the two equations for magnitude of the electric field strength.

Fig.8.31 Field Strength from Two Points of View

From Figure 8.31, we can see that the field strength, ��, can be calculated in
terms of the test charge, qt, experiencing the force in the field as well as in
terms of the charge, qm, creating the field a distance, r, away from the charge
creating the field. The second equation for field strength,  � �

k
r
q
2
m

�, can only
be applied to fields created by single point charges. Like Coulomb’s law, it
can be applied to fields created by multiple charges in a charge distribution.
Because electric field strength is a vector quantity, calculating the field
strength for multiple charges requires vector addition.

  Fe
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kqm

Electric field strength
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(works for charge distributions)

Requires a point charge, qm, that is creating
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q1 q2

30 cm 20 cm

3.6 � 10�6 C �2.7 � 10�6 C
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 �
2t

 �
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e x a m p l e  9 The total electric field produced 

by a charge distribution

Two point charges, q1 � 3.6 � 10�6 C and q2 � �2.7 � 10�6 C, are
arranged as shown in Figure 8.32.

Fig.8.32

a) Find the net electric field strength at point A due to the combined elec-
tric fields of both charges. (In one-dimensional problems, the vector
sum and the arithmetic sum are the same.)

b) What force is exerted on a charge of 4.5 � 10�6 C placed at point A?

Solution and Connection to Theory

Given
q1 � 3.6 � 10�6 C q2 � �2.7 � 10�6 C �� � ?

a) The net electric field strength at point A is the sum of the electric field
strengths from each of the two charges at point A. Let’s assign right to
be the positive direction.

net��A � 1��A � 2��A

netA � 1A � 2A

netA � �
r
k

1�

q

A

1

2� � �
r
k

2�

q

A

2

2�
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netA � �
(9.0 � 109 N·m2/C2)(�2.7 � 10�6 C)
�����

(0.20 m)2

(9.0 � 109 N·m2/C2)(3.6 � 10�6 C)
����

(0.50 m)2

netA � �4.8 � 105 N/C

Therefore, the total electric field strength at point A is
�4.8 � 105 N/C. The negative sign is the direction of the field strength
on a positive test charge in Figure 8.32, indicating a field strength
pointing left.

b) F��e � q��

Fe � (4.5 � 10�6 C)(�4.8 � 105 N/C)

Fe � �2.2 N

Therefore, the force on this charge is 2.2 N [left].



Example 9 is a duplicate of Example 6 (the total electric force of a charge
distribution), only it is done using the vector addition of field strengths
instead of the vector addition of forces. All problems involving point-charge
distributions can be solved in a similar fashion.

Figure 8.33 summarizes when to use which equation to solve for the
electric field strength.

Fig.8.33 Calculating Electric Field Strength

Electricity, Gravity, and Magnetism: 
Forces at a Distance and Field Theory

We learned in Section 8.1 that electric, magnetic, and gravitational forces all
act at a distance. In Section 8.5, we explained how they do so in terms 
of field theory. We can classify the parameters of the three field types as
either quantities of matter or quantities of field. Charge and mass are both
considered quantities of matter because they are measurable properties of
tangible objects. �� and g��, the electric and gravitational field strengths, are
both quantities of field. In Chapter 9, we will study the nature and creation
of magnetic fields. For electric and gravitational fields, the forces F��e and F��g

are consequences of matter interacting with a field. Note the similarities
between the equations for Coulomb’s law and Newton’s universal law of
gravitation in terms of field strength (see Figure 8.34).

Even though gravitational fields are created by the presence of any mat-
ter in mass distributions, earthbound humans need only consider the field
created by one single mass, Earth (mE � 5.98 � 1024 kg). By comparison, the
gravitational pull of all other masses on us is negligible.
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1. a) What force is exerted on a charge of �1.0 � 10�6 C in a field of
strength 1.7 � 106 N/C [right]?

b) If the field strength is doubled, what force is exerted on a
charge of �1.0 � 10�6 C?

2. F��e can be determined using an object such as a ping-pong ball that
has a measurable mass. Referring to Figure 8.29, draw a diagram of
a ping-pong ball on a string along with a free-body diagram to cal-
culate the electrostatic force in problem 1.

3. A single point charge of �3.0 � 10�6 C creates an electric field with
radiating field lines.
a) Draw a simple sketch of the electric field. Which way are the

field lines pointing in relation to the charge?
b) What is the field strength 2.0 cm to the right of the field-creating

charge? 4.0 cm away? 6.0 cm away?
c) What happens to the field strength when the distance from the

master charge is doubled or tripled?
d) Write a proportionality statement describing how the field

strength varies with distance r away from the source charge.
e) What force does a point charge of �1.0 � 10�6 C experience if

placed 8.0 cm to the right of another point charge of 3.0 � 10�6 C?
4. Two charges of 1 � 10�6 C each are placed 20 cm apart, as shown in

Figure 8.35.

a) What is the field strength at points A, B, and C?
b) Explain your answer for the field strength at B.
c) What conditions must exist in order for the effect in b) to occur?
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For calculations, we consider Earth’s mass to be
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8.7 Electric Potential and 
Electric Potential Energy

From our studies of dynamics, we have learned that forces may cause
objects to move or even accelerate by doing work on them. Forces applied at
a distance also do work on objects and are responsible for transferring
energy. When we move a mass in a gravitational field by lifting it up, we are
doing work on the mass by transferring gravitational potential energy to it
(see Figure 8.36).

The concepts of work and potential energy also apply to electric forces. An
electric force that displaces a charged particle from point A to point B does
work on the particle. As a result, the charged particle has an increased
ability to do work, or increased electric potential energy, Ee. The work
done in pushing the charge against the electric field is equal to the differ-
ence in the electric potential energy between point A and point B.

W12 � Ee2 � Ee1

W12 � Fe(d2 � d1)

W12 � q(d2 � d1)

By forcing the charge through a distance, work done increases the electric
potential energy of the charge and creates an electric potential energy differ-
ence as the charge moves between its initial and final positions. This energy
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and electrostatic potential energy

Like the gravitational analogy, this

simplification works only where the

electric field strength, ��, is uniform,

such as between two parallel plates

(see Figure 8.21c). It does not apply

to field strengths created by single

point charges.



difference depends on the magnitude of the charge, q, that is forced through
the field: the greater the charge, the greater the difference in electric
potential energy. On a work done per unit charge basis, the equation 
W12 � Ee2 � Ee1 becomes

�
W

q
12
� � �

E

q
e2
� � �

E

q
e1
� � �

�

q
Ee
�

Electric potential energy per unit charge is referred to as electric potential or
just potential.

The electric potential, V, at any given point in an electric field is the
electric potential energy, Ee, of a point charge, q, at that point divided
by the magnitude of the charge:

V � �
E
q

e
�

The concepts of electric potential energy and electric potential are closely
related. Electric potential energy, Ee, is the energy associated with a charged
object, whereas electric potential, V, is the amount of energy that any unit
charge possesses at a point in an electric field. Therefore, electric potential
energy, Ee, is measured in joules and potential, V, is measured in joules per
coulomb of charge, or volts. If the magnitude of the potential in an electric
field changes, then the potential difference can be determined as follows:

V2 � V1 � �
E

q
e2
� � �

E

q
e1
�

V2 � V1 � �
W

q
12
�

�V � V2 � V1

�V � �
�

q
Ee
� � �

W
q

12
�

We can determine the potential difference or voltage if we can measure the
work done (force through a distance) in moving a charge from one point 
to another.

A volt is the electric potential at a point in an electric field if 1 J of energy
is expended to bring 1 C of charge from infinity to that point.
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The SI unit for potential, the volt

(V), is derived from the electric

energy per unit charge: 1 V � 1 J/C.

The volt commemorates the scientist

Alessandro Volta (1745–1827). The

potential difference between two 

different positions in a field may 

also be referred to as voltage.

Electric potential energy can be 

considered to be a quantity of 

matter (the charge), whereas the

potential is a quantity of field.



e x a m p l e  1 0 Electric potential versus potential energy

The work done on a test charge of magnitude q � �1.0 � 10�6 C in moving
it a distance �d against an electric field is 2.5 � 10�5 J.

a) What is the change in electric potential energy of the charge for this
displacement?

b) What is the potential difference between these two positions?

Solution and Connection to Theory

Given
q � �1.0 � 10�6 C W � 2.5 � 10�5 J �Ee � ?

a) The difference in electric potential energy is caused by the work done
on the charge:

�Ee � Ee2 � Ee1

�Ee � W12

�Ee � 2.5 � 10�5 J

The difference in electric potential energy of the test charge between
its final and initial positions is 2.5 � 10�5 J.

b) �V � V2 � V1

�V � �
Ee2 �

q

Ee1
�

�V � �
1
2
.
.
0
5

�

�

1
1
0
0

�

�

6

5

C
J

�

�V � 25 V

The electric field’s potential is greater at its final position by 25 V.

In video display terminals, computer monitors (CRTs), and televisions, elec-
trons are accelerated from the back projection of the picture tube through an
electric field. These energized electrons strike the coloured red, green, and
blue phosphors on the inside of the television screen, as shown in Figure
8.37. The path of the electron beam across the screen is controlled by mag-
netic fields (Chapter 9), but their energy is provided by an electric field.

From the basic definition of a volt, one joule of electric energy is 
sufficient to move one coulomb of charge across a potential difference of
one volt. When dealing with the energy of small, discrete particles such as
electrons, a more convenient unit for energy is used. The electron volt, eV,
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is the energy of one electron after it has been accelerated through a poten-
tial difference of one volt. If potential energy is q(�V), then the energy 
of 1 eV is

1 eV � (1.602 � 10�19 C)(1.00 V) � 1.602 � 10�19 VC � 1.602 � 10�19 J

1. A positive test charge of 1.5 � 10�6 C is placed in an electric field
10 cm from another charge of magnitude �5.0 � 10�6 C that is
anchored in place.
a) What is the electric potential energy of the test charge?
b) What is the electric potential 10 cm away from the negative charge?
c) What is the potential difference between the test charge’s initial

position and a point 5.0 cm closer to the negative charge?
2. Two masses (each 5.0 � 10�9 g) with charge magnitude 

q1 � 4.0 � 10�10 C and q2 � 1.0 � 10�10 C are accelerated through
the same 50-V potential difference in a vacuum.
a) How much work is done on each charged particle?
b) Find the ratio of the final velocities of the two masses ��

v
v

1

2
�� after the

50-V potential difference is completed.
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If the soccer ball in Figure 8.36 is

released from h2, its potential energy

decreases as it falls. The falling

object accelerates as it moves from

an area of higher potential energy to

an area of lower potential energy.

The same occurs for any charge, q.

Positively charged particles like

protons will accelerate from an area

of high electric potential energy

(high potential) to an area of low

electric potential energy (low

potential). Conversely, negatively

charged particles like electrons will

accelerate from an area of low

potential to an area of high potential.

un
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�Fe
�Fe2

A
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2A

1B 2B
Anodes

Fig.8.37 Electrons are accelerated from a cathode

by positively charged anodes in an electron gun
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Recall that 1 V � 1 J/C, 
so 1 VC � 1 �

C

J
�(C) � 1 J

Even though all charges create fields,

for the sake of simplicity, we consider

test charges as only experiencing fields

created by other charges.



Intensive and Extensive Properties
Many physical properties that we observe in the physics lab depend on
the size or magnitude of the sample being studied. Extensive properties
are properties such as mass and volume that are proportional to the
size or amount of the object being observed. Intensive properties,
such as temperature or density, are independent of how much of the
substance is present. We can illustrate the difference between exten-
sive and intensive properties by visiting the grocery store. The price of
an item, such as toilet paper, is an extensive property: the larger the
package, the more it will cost. But what brand of toilet paper is the best
value? To answer this question, we look at the product’s intensive 
property, the unit price; that is, the price per sheet of paper. If all toilet
paper was created equal, the best value would be the toilet paper with
the lowest unit price. Customers of bulk grocery stores must decide
between the extensive property of raw cost and the intensive property
of unit cost. Should we buy the 20-L tub of ketchup just because of the
low unit price?
3. a) Identify the extensive and intensive properties of the following

quantities: electric force, field strength, potential energy, and
electric potential.

b) For each extensive property in a), discuss the quantity that
affects this property.

c) Brainstorm examples of extensive and intensive properties in the
scientific community or in your everyday life. List them in your
notebook in a table such as the one below.

8.8 Movement of Charged Particles in a
Field — The Conservation of Energy

The law of conservation of energy states that the total amount of energy
in a closed system always remains the same. Once provided with some initial
energy, the system expresses that energy in various combinations of the
different types of energy shown in Figure 8.38. Like all the other forms of
energy that we have studied, the energy of charged objects in an electric
field is also conserved.
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Fig.8.38 Total Energy

We learned in Section 8.7 that small charged particles can accelerate in the
presence of an electric field. In doing so, electric potential energy is trans-
ferred to kinetic energy. If no energy is transferred to heat or light, then we
can apply the law of conservation of energy to charged particles.

e x a m p l e  1 1 Electric potential and electric potential energy

A small particle of mass 1.0 � 10�5 kg and charge �1.5 � 10�5 C is
released from rest at position 1, which has a potential that is 12 V higher
than the potential at position 2, as shown in Figure 8.39.

a) What will happen to the particle upon release?
b) What is the speed of the particle at position 2?

Solution and Connection to Theory

Given
m � 1.0 � 10�5 kg q � �1.5 � 10�5 C �V � 12 V v2 � ?

a) The particle will accelerate from position 1 toward position 2 because
positive charges always accelerate from an area of high potential to an
area of low potential.

b) As the particle accelerates, energy is transferred to it as work done by
the electric field. The total amount of energy transferred is conserved;
therefore, the total energy at position 1 is the same as the total energy
at position 2, or

ET1 � ET2
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Translational
and rotational
kinetic energy,

Gravitational
potential,

Electric potential, Ee

Elastic potential energy, EEl

Total energy

ET � Ee � Eg � Ek 
� Ekrot 

� EEl EgEk, Ekrot

�Fe
q

q � �1.5 � 10�5 C
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q
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Most of the charges in this chapter

are so small that they have no 

rotational kinetic energy.



The particle’s electric potential energy is transferred to kinetic energy of
translation only. Our simplified expression becomes:

Ek1 � Ee1 � Ek2 � Ee2

�
1
2

�mv1
2 � qV1 � �

1
2

�mv2
2 � qV2

But v1 � 0 because the particle was released from rest; therefore,

�
1
2

�mv2
2 � q(V1 � V2)

v2 � ��
2q(V1

m� � V2)
��

V1 � V2 � �12 V because the potential at position 1 is greater than the
potential at position 2.

v2 � ���
v2 � 6.0 m/s [right]

At position 2, the speed of the particle is 6.0 m/s.

If our electric field is in a closed system (i.e., free from the effects of gravity,
air resistance, and rotation), we can use the following simple relationship
for the law of conservation of energy:

��Ee � �Ek

where any decrease in the electric potential energy of the charged object is
expressed as an increase in its kinetic energy.

So far, our calculations of electric potential using the law of conserva-
tion of energy have been quite simple because we have been considering
electric fields located between parallel plates. Because these fields are uni-
form, the force experienced by a charge is independent of the charge’s posi-
tion. Work is the dot product of the applied force vector, F��e, and the
displacement vector, �d��. The graph of the electric force applied to a charge
located between parallel plates versus the charge’s position (Figure 8.40) is
therefore a horizontal straight line with a constant slope of zero. Work done
in moving a charge between these plates equals the area underneath this
graph; that is, the product of the length and width of the rectangle, or Fe�d.

The other electric field configurations illustrated in Table 8.4, such as those
created by point charges, have a non-uniform field strength. Therefore, the
force on charges and the potential in the field vary depending on the position
of the test charge. Figure 8.41a shows the force on a test charge at various dis-
tances away from a field-creating point charge.

2(�1.5 � 10�5 C)(12 V)
���

1.0 � 10�5 kg
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Force is 
constant throughout

Parallel-plate apparatus

� � �

� Fe 

�d�

Fig.8.40 Electric force versus

charge position

Work is the dot product of force and

displacement, or W � Fe �d cos �,

where � is the angle between the two

vectors. If the displacement of the

charge is always in the same direc-

tion as the applied force, then the

angle between them is zero and 

cos 0° � 1. The dot product is

reduced to the equation for the 

area of a rectangle, W � Fe �d.



The graph in Figure 8.41a is based on the force–distance relationship
between point charges as described by Coulomb’s law. The shape of this
graph is similar to that of the force–distance relationship between two masses
in Newton’s universal law of gravitation (see Figure 8.41b). Work done to
move the test charge from position 1 to position 2 is the area under the 
F��e–r�� graph, which can be found using integral calculus. The result is that the
work done or the potential energy increase in moving the charge from posi-
tion 1 (r1 distance from the point charge) to position 2 (a distance r2 away)
is given by the equation

W12 � Ee2 � Ee1 � �
kq

r
1

2

q2
� � �

kq
r
1

1

q2
�

Factoring out all constants, the relationship becomes

Ee2 � Ee1 � kq1q2��
r
1

2
� � �

r
1

1
��

As r2 moves farther and farther away from the master charge, approaching
infinity, the term �

r
1

2
� becomes zero. Therefore, Ee2 also equals zero. Our equa-

tion now simplifies to

Ee2 � Ee1 � kq1q2��
r
1

2
� � �

r
1

1
��

Ee � �
kq

r
1q2
�

where Ee is the potential energy stored between two point charges of 
magnitude q1 and q2, r is the distance between them, and k is Coulomb’s 
constant, 9.0 � 109 N·m2/kg2.
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Fig.8.41a Change in electric force with 

distance from master charge

Fig.8.41b Change in force of gravity (weight) with

distance from Earth’s centre (1rE � 6.4 � 106 m)
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In calculus, the approximation for �
r

1

2

�

approaching the value of zero when

r2 approaches infinity is called the

limit and is written as

lim
r2→ �

�
r

1

2

� � 0  



The graph of electric potential energy with respect to position from a
point charge is shown in Figure 8.42. Unlike gravity, the electric force can
be either attractive or repulsive, depending on the sign of the product of the
two charges involved (positive for repulsion and negative for attraction). In
Figure 8.42, the graph in the lower quadrant represents attraction between
two opposite charges, and the graph in the upper quadrant represents repul-
sion between two like charges.

e x a m p l e  1 2 Electric potential energy and point charges

An electron with an initial speed 103 m/s is aimed at an electron held
stationary 1.0 � 10�3 m away. How close to the stationary electron
will the moving electron approach before it comes to a stop and reverses
its direction?

Solution and Connection to Theory

Given
ve � 103 m/s r1 � 1.0 � 10�3 m q1 � q2 � e � 1.602 � 10�19 C
r2 � ?

Ee1 � �
kq

r
1

1

q2
� � �

k
r
e

1

2

� and Ee2 � �
k
r
e

2

2

�
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(Positive, for repulsion
when q1 and q2 have

the same sign)

(Negative, for attraction
when q1 and q2 have
the opposite sign)

Potential energy stored by
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Potential energy stored by
moving farther apart

Ee
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Ee � k 
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r

Ee � k 
q1 q2

r

Fig.8.42 A graph of electric potential

energy versus charge separation

We can calculate the area under the

Fe�r curve for an attraction between

oppositely charged particles using

the geometric average for the 

electric force, �Fe1
Fe2

�

Area � �Fe1
Fe2

� (r2 � r1)

Area � ���kq

r1

1

2

q2
�����kq

r2

1

2

q�2
���(r2 � r1)

Area � � �(r2 � r1)

Area � � � � � �
If we compare this equation to our

equation for �Ee, we obtain

�Ee � Ee2
� Ee1

�Ee � � � � � �
�Ee � � � � � �
If �Ee � � � � � �
then Ee between opposite charges at

any separation distance r becomes

Ee �

For like charges, the product q1q2 is

positive, so the equation for electric

potential energy is

Ee �
kq1q2
�

r

�kq1q2
�

r

�kq1q2
�

r1

�kq1q2
�

r2

�kq1q2
�

r1

�kq1q2
�

r2

kq1q2
�

r2

kq1q2
�

r1

kq1q2
�

r2

kq1q2
�

r1

kq1q2
�
r1r2

MASSES OF ATOMIC PARTICLES
Proton: 1.67 � 10�27 kg

Neutron: 1.67 � 10�27 kg

Electron: 9.11 � 10�31 kg



The change in the electron’s potential energy equals the change in its
kinetic energy.

�Ek � ��Ee

�
1
2

�mv2
2 � �

1
2

�mv1
2 � ���

k
r
e

2

2

� � �
k
r
e

1

2

��
But v2 � 0; therefore,

��
1
2

�mv1
2 � �ke2��

r
1

2
� � �

r
1

1
��

�
1
2

�mv1
2 � ke2��

r
1

2
� � �

r
1

1
��

Solving for r2,

�
r
1

2
� � �

m
2k

v
e
1
2

2

� � �
r
1

1
�

r2 � ��m2k
v
e
1
2

2

� � �
r
1

1
��

�1

r2 � � � �
1.0 �

1
10�3 m
���1

r2 � 3.4 � 10�4 m

The closest these two electrons will approach each other is 3.4 � 10�4 m
or 0.34 mm.

The Electric Potential around a Point Charge

Recall that the electric potential or voltage is the electric potential energy
that any unit test charge possesses:

V � �
E
qt

e
�

So, the electric potential at a separation distance r from a master charge
creating a field is

V � �
E
qt

e
� � � �

kq
r

m
�

�
kq

r
mqt
�

�
qt

(9.11 � 10�31 kg)(103 m/s)2

�����
2(9.0 � 109 N·m2/C2)(1.602 � 10�19 C)2
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The equation for electric potential becomes

V � �
kq

r
m

�

where V is the electric potential in volts (V) at a distance r in metres from
a point charge of magnitude qm that is creating the charge.

Let’s use this equation in some examples.

e x a m p l e  1 3 Calculating the electric potential around 

a point charge

What is the electric potential 4.0 cm from a point charge of �3.20 � 10�19 C?

Solution and Connection to Theory

Given

r � 4.0 cm��10
1
0

m
cm
�� � 4.0 � 10�2 m qm � �3.20 � 10�19 C V � ?

V � �
kq

r
m

�

V �

V � 7.2 � 10�8 J/C or 7.2 � 10�8 V

The potential at 4.0 cm from this charge is 7.2 � 10�8 V.

e x a m p l e  1 4 Relating work done on a charge through 

a potential difference

How much work must be done to increase the potential of a charge 
q (2.5 � 10�7 C) by 100 V?

Solution and Connection to Theory

Given
q � 2.5 � 10�7 C �V � 100 V (the potential difference) W � ?

The work changes the electric potential energy of the charge.

W � �Ee

W � q�V
W � (2.5 � 10�7 C)(1.00 � 102 V)
W � 2.5 � 10�5 J

The work required to increase the potential energy of the charge is 
2.5 � 10�5 J.

(9.0 � 109 N·m2/C2)(�3.20 � 10�19 C)
�����

4.0 � 10�2 m
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e x a m p l e  1 5 An alternative solution to Example 12

Example 12 could have been completed using the concept of potential and
potential difference. The first electron, with a speed of 103 m/s, is aimed
at a stationary electron from a distance of 1.0 � 10�3 m. How close does
the mobile electron come to the stationary electron before stopping and
reversing direction?

Solution and Connection to Theory

Given
ve � 103 m/s r1 � 1.0 � 10�3 m q1 � q2 � e � 1.602 � 10�19 C
r2 � ?

The mobile electron moves between two positions having two different
potentials; therefore, it passes through a potential difference, �V, due to
its decrease in kinetic energy.

�V � Ve2 � Ve1 � �
�

q
Ek
�

Ve2 � �
�

q
Ek
� � Ve1

Ve2 � �
1
2

� �

Ve2 � 2.84 � 10�6 V � 1.44 � 10�6 V

Ve2 � 4.28 � 10�6 V

But Ve2 � Ve1 � �
k
r
q

2

m
�

r2 �

r2 � 3.4 � 10�4 m

The closest distance between the two electrons is 3.4 � 10�4 m or 0.34 mm.

(9.0 � 109 N·m2/C2)(1.602 � 10�19 C)
�����

4.28 � 10�6 V

(9.0 � 109 N·m2/C2)(1.602 � 10�19 C)
�����

1.0 � 10�3 m
(9.11 � 10�31 kg)(103 m/s)2

����
1.602 � 10�19 C
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Rutherford’s Gold-foil Experiment
One of the most famous experiments of all time used the concept of
charges moving in an electric field. Ernest Rutherford’s gold-foil exper-
iment (1911–1913), depicted in Figure 8.43, used a positively charged
particle to probe the structure of heavy gold atoms.

In the gold-foil experiment, Rutherford fired positively charged alpha
particles (helium nuclei) with kinetic energies of 7.7 MeV at a thin
gold foil. Knowing the thin nature of the foil and the large kinetic
energy of the particles, he expected most of the particles to pass
through the gold foil. He observed, however, that some of the particles
were deflected at wide angles and, in some cases, scattered backward.
Rutherford commented that this result was analogous to a large
artillery shell being fired at a piece of tissue paper, then rebounding.
The only model of the atom that could account for these results was
one that postulated a small but heavy nucleus at the centre of the atom
having a net positive charge, with negatively charged electrons rela-
tively far away from it. The current model of the atom (discussed in
Chapter 14) is partly based on the results of this experiment.
1. In Rutherford’s gold-foil experiment, alpha particles with charge

�2e and a kinetic energy of 7.7 MeV were beamed at gold foil. The
nucleus of a gold atom contains 79 protons, giving it a charge of
�79e. What is the closest distance that an alpha particle can get to
a gold nucleus when it approaches head on?

2. Explain the results of Rutherford’s gold-foil experiment in terms of
the concepts you have learned in this section: charge, fields, electric
forces, potential energy, potential difference, and the law of conser-
vation of energy.

3. In Figure 8.39, what is the speed of a charge of �1.5 � 10�5 C at
position 1 if it is released from rest at position 2, keeping all other
parameters the same?
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The gold-foil experiment was 

performed by two other scientists,

Hans Geiger and Ernest Marsden, 

in 1911 at Rutherford’s suggestion.

From 1898 to 1907, Rutherford

worked at McGill University in

Montreal, Canada. Geiger is more

famous for his radiation detection

apparatus, the Geiger counter.

�

� �
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

Electron

Incident alpha particles

Metal atoms in
foil according to

Rutherford model

Positive nucleus

Scattered
alpha

particles

Scattered
alpha

particle

Fig.8.43 A close-up of Rutherford’s

gold-foil experiment
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4. A set of parallel plates with potential difference 1.5 � 103 V is used
to accelerate alpha particles (m� � 6.68 � 10�27 kg, q� � 2e, where 
e � 1.602 � 10�19 C).
a) What is the velocity of the alpha particles at the negative plate if

they are released from rest at the positive plate? (Ignore the
effects of gravity and air resistance.)

b) What is the speed of the particles halfway between the two plates?
c) How does the electric potential between two parallel plates vary

with the position from one plate to the other?

The Cathode-ray Tube
A cathode-ray tube (CRT) (Figure 8.44) was originally invented to
study the nature of cathode rays, which we now know to be beams of
electrons. In this device, cathode rays are created by accelerating elec-
trons through a potential difference.

Fig.8.44

The electron beam begins at a negative source plate, the cathode, and
passes through an evacuated area (created with a vacuum pump) to a
positive plate, the anode. An accelerating anode, a focusing cylinder,
and horizontal and vertical deflection plates were later added to the CRT
to direct and control the beam to a phosphorescent screen (Figure 8.45).

Fig.8.45

When the electrons hit the phosphorescent screen, they produce light
in the visible part of the spectrum. This technology is the basis for
devices such as the simple oscilloscope (Figure 8.46) and the standard
TV picture tube (Figure 8.47).
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5. A potential difference of 20 kV is used to accelerate electrons in the
electron gun of a cathode ray tube.
a) How much kinetic energy do these electrons have when they

leave the gun?
b) What is the speed of these electrons?

8.9 The Electric Field Strength of 
a Parallel-plate Apparatus

Recall from Section 8.6 that electric field strength can be determined from
the electric force experienced by a charge, q, in an electric field. In Figure
8.48, a charge q is being forced against the electric field from the negative
plate to the positive plate.

Fe � q

The work done to push this charge against the field is

W � Fed � qd

The change in electrical potential energy is �E � qV � W

Therefore,
qd � qV

and the magnitude of the uniform field strength anywhere within a parallel-
plate apparatus is given by the equation

 � �
V
d

�

where  is the field strength in N/C, V is the potential difference applied
across the two plates, in volts, and d is the distance between the plates,
in metres. The direction of the field strength is from the positive plate to
the negative plate.
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Fig.8.48 The movement of a

charge in a parallel-plate apparatus

Fig.8.47 A TVFig.8.46 An oscilloscope



This equation illustrates that the field strength is independent of the
charge’s position between the plates. The parallel-plate apparatus is used in
situations requiring uniform field strength, such as an electrical microbal-
ance, used to measure elementary charge.

Elementary Charge

Early researchers of electricity, like Benjamin Franklin and
Charles Augustin de Coulomb, thought that objects obtained their
charge by transferring particles to other objects. Franklin consid-
ered electricity to be the flow of positive charge through a con-
ductor. The coulomb was the unit of charge assigned to represent
a reproducible amount of elementary charge units and was widely
adopted in the scientific community. But it wasn’t until an exper-
iment performed by Robert A. Millikan (1868–1953) that anyone
had been able to verify the existence of elementary charges, let
alone decide how many of them constituted one coulomb of
charge. Millikan’s experiment was performed over a seven-year
period (1906–1913) and is a perfect example of how different
aspects of physics can be combined to solve a problem.

Millikan’s experiment consisted of two parts. In the first part, Millikan
used an oil-drop apparatus (Figure 8.49) to determine the charge, in
coulombs, on an oil droplet (a small charged particle). In the second part,
Millikan tried to determine the smallest possible charge that an oil droplet
could have. He did so by measuring the charges of a great many oil droplets
to show that they were multiples of the smallest discrete unit of charge,
called the elementary charge.

Figure 8.50 illustrates how the basic principle of the balance of forces
lies at the heart of this experiment. Any charged particle experiences a
downward force of gravity, Fg, due to its mass, and an electric force, Fe,
when it exists inside an electric field. By applying a specific electric field,
the upward electrostatic force can be adjusted to balance the downward
gravitational force such that F��e [up] � F��g [down].

Fe � Fg

But Fe � q and Fg � mg

Therefore,

q � �
m


g
�

From this equation and using the method summarized in Table 8.5,
Millikan calculated the charge on a single oil droplet.
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From the equation  � �
V

d
�, another

possible unit for field strength in a

parallel-plate capacitor is V/m.

Fig.8.49 Millikan’s oil-drop apparatus

Vb

dmq

�Fg

�Fe

Fig.8.50 Millikan used a horizontally

oriented parallel-plate capacitor to

create the electric force because of

its uniform electric field and the ease

of controlling and calculating the

electric field strength



But the charge on an oil droplet isn’t necessarily the smallest possible
charge. The second part of Millikan’s experiment consisted of determining
the elementary charge from a statistical analysis of a series of charges. He
looked for the smallest charge he had calculated, and theorized that all
the other charges were integral multiples of this value. Table 8.6 illustrates
a simplification of his analysis.

Based on Millikan’s work, and other more precise experiments since
then, the accepted value for the elementary charge, e, is

e � 1.602 � 10�19 C

416 unit  c :  E lectr ic ,  Grav itat ional ,  and Magnet ic  Fie lds

Table 8.5
Millikan’s Method

Equation Have Need Strategy

q � �
m


g
� g � 9.8 N/kg m,  Find  from parallel-plate apparatus.  � �

V

d
�, where V is  

the potential difference between the plates and r is the 
plate separation.

q � �
m

V

gd
� g, V, d m The mass of an oil droplet can be determined from its 

density (�oil) and volume (V) (sphere): 

m � �oilV

The volume of a sphere is determined from Stokes’ law, 
which identifies the terminal velocity (vt) of a small sphere 
in a fluid. vt � ��

2

9
����

r

�

2g
��(�oil � �air) where r is the radius of the 

spherical oil droplet, g is the gravitational field strength, 
� is the viscosity of the fluid (air), and �oil and �air are the 
densities of oil and air, respectively. Stokes’ law rearranged 
for radius is

r � ��
9

2
���

�

g

vt
��(��oil � ��air)�

The volume of a sphere is V � �r3, so the mass becomes

m � �oilV

m � �oil� �r3�

m � ��oil [�
9

2
� ��

�

g

vt
��(�oil � �air)]

q � ��oil [�
9

2
� ��

�

g

vt
��(�oil � �air)] �

g

V

d
� g, V, d, �oil, �air, �, � vt To find the terminal velocity, vt, of an oil droplet in free fall, 

Millikan devised a way of timing the free fall of the oil 
droplet through a specified distance:

vt � �
d

tf

f

a

a

l

l

l

l
�

q � ��oil [�
9

2
� ��

�

g

vt
��(�oil � �air)] �

g

V

d
� Knowing g, d, �oil, �air,�, �, Millikan balanced the forces on an oil droplet in his electrical 

microbalance and recorded the potential across the plates (V). Then he turned off the electric 
field and watched the oil droplet fall to determine its terminal velocity in air. Finally, he substituted
all the parameters into the equation at left to solve for q, which enabled him to determine the 
charge on any oil droplet.
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�
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We can think of this number as a conversion factor between the charge, in
coulombs, and the particle unit that carries charge, the electron. The con-
version factor 1.602 � 10�19 C/e is a way of determining the number of
elementary charge units, e, given any charge in coulombs.

The number of elementary charges on a charged object is given by the
equation

N � �
q
e

�

where N is the number of elementary charges (protons or electrons), q is the
charge in coulombs, and e is the elementary charge (1.602 � 10�19 C).

1. 2.4 � 10�4 J of work is required to move 6.5 � 10�7 C of charge
between two points in an electric field. What is the potential differ-
ence between these two points?

2. What is the magnitude of the electric field strength between a 
parallel-plate apparatus of dimensions 0.75 cm with a potential 
difference of 350 V?

3. An oil droplet with a mass of 2.166 � 10�15 kg requires a potential
difference of 530 V to just balance it against the force of gravity
between two parallel plates 1.2 cm apart. What charge must the oil
droplet have if the upper plate is negative?
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Table 8.6
Millikan’s Charge Analysis

Charge Integral number of charges

8.0 � 10�19 C 5

1.4 � 10�18 C 9

4.8 � 10�19 C 3

1.6 � 10�19 C 1

6.4 � 10�19 C 4

3.2 � 10�19 C 2

1.6 � 10�18 C 10
1.6 � 10�18 C
��
1.6 � 10�19 C

3.2 � 10�19 C
��
1.6 � 10�19 C

6.4 � 10�19 C
��
1.6 � 10�19 C

1.6 � 10�19 C
��
1.6 � 10�19 C

4.8 � 10�19 C
��
1.6 � 10�19 C

1.4 � 10�18 C
��
1.6 � 10�19 C

8.0 � 10�19 C
��
1.6 � 10�19 C

Charge
���
Proposed elementary charge

The source of elementary charge, e,

is either the electron (�1e) or the

proton (�1e).

One electron has a charge of

�1.602 � 10�19 C and one proton

has a charge of �1.602 � 10�19 C.

ap
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S c ience—Technology—S ociety—
Environmental  Interrelat ionships

Electric Double-layer Capacitors

A capacitor is a device that is used to store electric charge. In its simplest
form, it is made of two parallel metal plates separated by some dielectric
material (an insulating material that transfers an electric field but not charge).
(See Figure STSE.8.1.)

As electrons pass onto plate 1 from the negative terminal of a direct-
current (DC) power supply, the negative charge repels the electrons through the
dielectric out of the opposite plate (2), making it positive. The positive plate,
connected to the positive terminal of the power supply, also helps to extract
electrons from itself as it attracts more electrons onto the original plate (1)
through the dielectric, thereby storing charge.

Once the charge is stored by a mutual attraction of charge through the
dielectric, it may be used to supply current to small applications, such as elec-
tronic camera flashes or small power supplies, as well as larger equipment
requiring high-voltage and short-duration current pulses.

For a parallel-plate capacitor, capacitance, C, is calculated using the
equation 

C � �
k
d
A
�

where k is the dielectric constant of proportionality, A is the area of the 
parallel charged plates, and r is the distance between them. Capacitance is
measured in farads, F.

When an electric potential is applied across the conductive plates, capac-
itors store charge according to the equation

Q � CV
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Two
conductors

1

2

Schematic symbol

Separated by
a dielectric

Current

�     �

C

Vs

Current

�     �

C

Vs

Fig.STSE.8.1 A capacitor consists

of two parallel plates separated by 

a dielectric

Fig.STSE.8.2a A charging capacitor Fig.STSE.8.2b A discharging capacitor
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Fig.STSE.8.3 A diagram of a

double-layer capacitor

Fig.STSE.8.4 A flow-through

capacitor

Fig.STSE.8.5 A Sabrex EWP device
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where Q is the charge and V is the voltage. Substituting C from the first equa-
tion into the second equation, we obtain

Q �

The first capacitor was called a Leyden jar, named after a town in the
Netherlands. The Leyden jar was invented in 1746 by Pieter Van
Musschenbroek, a professor of mathematics. He placed de-ionized water (a
dielectric) into a metal jar that acted as one electrode, covered the jar with
a cork, and pushed a brass wire (a second electrode) through the cork into
the water.

Electric double-layer capacitors (Figure STSE.8.3) store electrical
energy as electric charge in the double layer formed in the phase boundary
between the electrolyte and the electrodes. The use of new electrodes with
a large surface area, such as activated carbon, has increased the energy stor-
age capability of these capacitors so much that they are now used in electric
vehicle design and electrochemistry. For example, a flow-through capacitor
(Figure STSE.8.4) is now being used in water treatment applications. When
water flows through the capacitor, the strong electric field draws the ionic
materials (chemicals with an ionic charge) in the water, such as calcium and
carbonate ions, toward the carbon electrodes. A short circuit then momen-
tarily neutralizes the electrodes, allowing the contaminants to be released into
a waste stream. The company Sabrex of Texas has designed and is marketing
a device that uses a flow-through capacitor in electronic water purification
(EWP) (see Figure STSE.8.5). This simple, low-power device ��

1
2

� kWh of
energy per US gallon (3.8 L)� can be used instead of other water purification
systems like reverse-osmosis or ion-exchange systems. Ion-exchange systems
remove ions from hard water, but end up softening the water by adding
other ions such as sodium. This side effect is not evident with EWP systems.

Design a Study of  Societal  Impact

Research the health effects of drinking water softened using traditional
salt-ion-exchange resin water softeners. Is soft water or other mineral-
reduced water a healthy drinking alternative, or does it leach essential
minerals out of the bodies of those who drink it? What beneficial effects
does softened water have on the longevity of water heaters and piping,
as well as on environmentally sensitive soaps and detergents?

kAV
�

d
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Design an Activ ity  to Evaluate

Evaluate commercially available capacitors for the amount of charge
they can hold. Carefully dismantle an electronic camera flash from an
inexpensive or disposable camera. Use the batteries supplied to charge
the capacitor. Measure the electrical parameters of potential across the
plates, as well as the capacitance, and determine the charge storage
capacity of this capacitor. 

Build a simple circuit that uses a capacitor. Use your circuit to
explain how the capacitor works in a camera flash. Research capacitor
circuits and experiment with circuit design to see how factors such as
resistance affect the discharge time and current-generating capabilities
of a capacitor.

Bui ld a Struc ture

Build a capacitor using the Leyden jar or another type of capacitor as
your model. Attempt to safely charge your capacitor. Build another
device that is capable of producing a charge separation, such as a Van
de Graaff electrostatic generator or a Whimshurst machine. You may
use prepared electronic equipment such as hobby kits.
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You should be able to

Understanding Basic Concepts:

Define and describe the concepts and units
related to electric and gravitational fields, includ-
ing electric and gravitational field strengths and
potential energy.
State Coulomb’s law and Newton’s universal law
of gravitation qualitatively and compare them.
Apply Coulomb’s law and Newton’s universal law
of gravitation quantitatively in specific situations.
Compare and contrast the properties of electric,
gravitational, and magnetic fields by describing
and illustrating the source and direction of the
field in each case.
Compare the characteristics of electric potential
energy with those of gravitational potential
energy, and apply the concept of electric poten-
tial energy in a variety of situations.
Illustrate, using field and vector diagrams, the
electric field and the electric forces produced by a
single point charge, two point charges, and two
oppositely charged parallel plates.
Analyze, in quantitative terms, the electric force
required to balance the gravitational force on an oil
drop, or on latex spheres between parallel plates.
Describe and explain, in qualitative terms, the
electric field that exists inside and on the surface
of a charged conductor, such as a coaxial cable.

Developing Skills of Inquiry and Communication:

Demonstrate the balancing of electrostatic and
gravitational forces on charged latex spheres, and
collect, analyze, and interpret the quantitative
data to demonstrate the presence of a smallest
unit of charge.
Explain the properties of electric fields and demon-
strate how an understanding of these properties
can be applied to control or alter the electric field
around a conductor, such as a coaxial cable.

Relating Science to Technology, Society, 

and the Environment:

Explain how the concept of a field developed into
a general scientific model that could be used to
explain force at a distance in electrostatic and
gravitational situations.
Describe how scientific theories, such as the struc-
ture of the atom or the existence of a minimum
electric charge, evolved from experimentation
involving many different scientific principles.
Evaluate the social and economic impacts of new
technologies, such as a flow-through capacitor.

Equations
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E X E RC I S E S

Conceptual Questions

1. Explain why a neutral object can be attracted
to a charged object. Why can this neutral
object not be repelled by a charged object?

2. What is the function of an electroscope?

3. When you rub a balloon against your hair on
a dry day, you can stick the balloon to the
ceiling. Explain what happens in terms of
charge separation, using a diagram.

4. When two substances, such as acetate and
silk, are rubbed together, electrons move from
one substance to the other. Explain what 
happens in terms of basic atomic theory.

5. A new solid material is being tested for its
electrostatic properties. Describe how you
would test this material to determine its place
in an updated electrostatic series.

6. A computer technician always touches the
metal body of a computer before touching any
of its electronic parts. Why? Explain using
your knowledge of electrostatics.

7. Use the table below to compare and contrast
Newton’s universal law of gravitation and
Coulomb’s law.

8. Why can’t electric field lines cross?

9. In which direction do charges always move in
an electric field?

10. An insulating rod has a charge of �q at one
end and a charge of �q at the other end.
What will the rod tend to do when placed
inside a uniform electric field oriented
a) perpendicular to the rod?
b) parallel to the rod?

11. Eight negative point charges of equal magni-
tude are distributed evenly around a circle.
Sketch the electric field in the region around
and within this charge distribution. Explain
how this charge distribution can be used to
model the electric field inside a coaxial cable.

12. If a test charge is moved from one area in 
an electric field to another area along an
equipotential line, how much work is done
on the charge? If a constant force is applied
to move the test charge, what happens to the
charge’s speed?

13. Why do we use the term “point charge” when
studying electric fields? How would our study
be affected if we used charged bodies with
large dimensions?

14. Figure 8.51 shows two sets of electric field
lines. Use a table like the one below or another
means of recording your answer to summarize
the given true-or-false statements. Explain
your reasoning in each case.

Fig.8.51

(a) (b)

Newton’s law of

Criterion universal gravitation Coulomb’s law

Equation

Constant of 
proportionality

Type of force(s)

Conditions for use
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15. Although there are similarities between elec-
tric and gravitational fields, electric fields are
more complicated to work with. Support this
statement with evidence from the textbook.

16. Describe the field shape around a single 
negative point charge.

17. If you were to double the magnitude of a test
charge used to map an electric field, what
would happen to the strength of the electric
field that you were mapping?

18. How can you tell the difference between a
weak electric field and a strong electric field?

19. Compare and contrast the various aspects of
an electric field and a gravitational field.

20. What is the direction of an electric field
between a positive and a negative charge?

21. Explain why the electric potential energy
between two like charges is greater than for
two unlike charges the same distance apart.

22. If a high-voltage wire falls onto a car, will the
people inside be safe from electrocution?
Under what conditions would electrocution
not occur?

23. When a parallel-plate apparatus is connected
to a power supply, one plate becomes positively
charged and the other plate becomes negatively
charged. What is the net charge on the
apparatus? Explain your answer.

24. What would happen to the uniform field
strength inside a parallel-plate capacitor if the
following changes were made independently
of each other?
a) The distance between the plates is doubled.
b) The charge on each plate is doubled.
c) The plates are totally discharged and neutral.

25. What point charges of similar magnitude
should be placed side by side so that both the
electric field strength and the potential are
zero at the midpoint of the distance between
them? Where would the field strength and
potential be zero if one of the two charges
was twice the magnitude of the other?

26. No electric field means a field strength and 
a potential of zero. Use your discussion of
question 25 to describe the conditions 
necessary for both the field strength and the
potential to be zero at a point in the presence
of electric fields.

27. A proton and an electron are released from
rest a distance apart and allowed to accelerate
toward each other. Just before collision, which
particle is travelling faster? Explain.

Statement True? False? Reasoning

In each case the field
gets stronger as you 
proceed from left 
to right.

The field strength in 
(a) increases from left 
to right but in (b) it 
remains the same 
everywhere.

Both fields could be 
created by a series of 
positive charges on the 
left and negative ones 
on the left.

Both fields could be 
created by a single 
positive point charge 
placed on the right.



28. A parallel-plate capacitor is mounted 
horizontally and a charge is released into 
it at a constant speed of 5.0 � 10�2 cm/s, as
shown in Figure 8.52.

Fig.8.52

In your notebook, sketch the path of the 
moving charge as it passes between the plates.
Where do we see this type of motion around us?

29. Does a parallel-plate capacitor have uniform
potential as well as field strength? If not, is
there any path that a charge can take where
the potential is uniform (does not change)? 
If so, what is the path called?

30. Match each charge distribution in Figure 8.53
with the appropriate set of equipotential lines
below. Use the equipotential lines as clues 
to drawing the field lines for each charge 
distribution.

Fig.8.53

31. One of the simplest chemical bonds is a 
covalent bond between two hydrogen 
atoms to make the molecule H2. 
Figure 8.54 illustrates the electric 
potential energy between two separate 
hydrogen atoms.

Fig.8.54

a) What electrostatic interactions cause the
large increase in Ee when the two nuclei
are brought very close together?

b) Why does this increase in Ee cause design
problems for engineers in the nuclear
energy industry?

c) Pushing these atoms together increases
their potential energy, but so does pulling
them apart. What electrostatic interactions
cause this smaller increase in Ee?

d) How would you use the concepts of potential
energy and forces to explain why two
hydrogen atoms can form a stable bond at
a distance of 75 pm apart?

32. A potential-energy curve is like a topographic
map of a mountain or valley road that a charge
could “roll” on. What topography would be
analogous to a positive test charge moving along
a line between two identical negative point
charges? How would the topography change
a) if the two point charges were positive?
b) if a negative test charge was placed

between these two charges?
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Problems

8.2 The Basis of Electric Charge — 
The Atom

33. Which part of the atom is represented by 
positive signs? by negative signs?

34. What is the charge on each of the following?
a) A neutral oxygen atom
b) An electron
c) A nucleus
d) A neutron
e) A proton

8.3 Electric Charge Transfer

35. State which of the two items listed below 
is left with an overall positive or negative
charge:
a) A piece of rubber rubbed with silk
b) The silk from part a)
c) An acetate sheet rubbed with cat’s fur
d) Glass rubbed with wool

36. A piece of amber is rubbed with fur.
a) What type of charge is on the amber?
b) What particles are transferred between 

the amber and the fur?

37. A suspended glass rod is rubbed with a piece
of silk.
a) What type of charge is on each material

after rubbing?
b) What happens if the silk is brought close 

to the glass rod?

38. State whether each of the following is an 
electric conductor or an insulator. Give a 
reason for your answer.
a) Plastic food wrap
b) A lightning rod
c) A plastic comb
d) A party balloon stuck to a wall
e) A car’s tire during a lightning storm
f) The rubber belt on a Van de Graaff 

electrostatic generator

39. A silk shirt is removed from a clothes dryer
along with several pairs of wool socks. If the
shirt attracts loose dog hair, what is the
charge on the dog hair?

40. A metal-leaf electroscope is touched by a 
positively charged rod.
a) What is the charge on the electroscope?

Explain how the electroscope got this
charge. What phenomenon causes this
process to occur?

b) What happens to the leaf (or leaves) of 
the electroscope? Explain.

c) What happens to the leaves of the 
electroscope if the system is grounded?

41. A wire passes a charge of 15.0 C. How many
electrons pass through the wire?

42. Small charges are measured in microcoulombs
(�C). A shock of 1.1 �C is passed from one
student to another in a dry physics classroom.
How many electrons were transferred?

43. What is the charge on an electroscope that
has a deficit of 4.0 � 1011 electrons?

44. A metal ball with a charge of 5.4 � 108 elec-
trons is touched to another metal ball so that
all the excess electrons are shared equally.
What is the final charge on the first ball?

45. A nucleus has a charge of �2.4 � 10�12 C.
How many electrons does this neutral 
atom have?

8.4 Coulomb’s Law

46. Two small oppositely charged spheres 
experience a force of attraction of 1.4 � 10�2 N.
What would happen to this force if
a) the distance between the charges 

is quadrupled?
b) the magnitude of the charge on each 

is doubled?
c) both (a) and (b) occurred simultaneously?



47. Two small, similarly charged foam spheres
experience a force Fe1 when separated by a
distance r1. Both spheres are touched with
identical, electrically neutral spheres that are
then removed. Where must these two spheres
be moved in relation to each other in order to
regain their initial force of repulsion?

48. What force of repulsion exists between two
electrons in a molecule that are 100 pm apart?
(The charge on an electron is 1.602 � 10�19 C.)

49. Two small, identical foam spheres repel each
other with a force of 2.05 � 10�4 N when
they are 25.0 cm apart. Both spheres are
forced to touch an identical, neutral third
sphere that is then removed (see Figure 8.55).
The two charged spheres now experience a
force of 1.29 � 10�4 N when returned to their
initial 25.0-cm separation.

Fig.8.55

a) What is the charge on each sphere after
contact with the neutral sphere? 

b) What was the initial charge on each sphere
before touching the neutral sphere? Does it
matter if the charge is positive or negative?

50. Two small, identical spheres, with an initial
charge of �q and �3q, respectively, attract
each other with a force of Fe1 when held a 
distance r apart. The two spheres are allowed
to touch and are then drawn apart to the
distance r. Now they repel with a force of Fe2.
Find the ratio �

F
F

e

e

2

1

� of the two forces. Describe
what this ratio means in terms of magnitude
and direction of the two forces, Fe1 and Fe2.

51. A stationary proton holds an electron in 
suspension underneath it against the 
force of gravity (melectron � 9.1 � 10�31 kg).
a) Draw a free-body diagram of this situation.
b) How far below the proton would the electron

be suspended?

52. A point charge of �3.8 � 10�6 C is
placed 0.20 m to the right of a charge of 
�2.0 � 10�6 C. What is the force on a third
charge of �2.3 � 10�6 C if it is placed
a) 0.10 m to the left of the first charge?
b) 0.10 m to the right of the second charge?
c) halfway between the first two charges?
d) Where would the third charge experience a

net force of zero?

53. Prove that a charge of �q would come to rest
with no net force on it �

1
3

� of the way between
two charges, �q and �4q, that are held some
distance apart.

54. Three charges of �1.0 � 10�4 C form an 
equilateral triangle with side length 40 cm.
What is the magnitude and direction of the
electric force on each charge?

55. A square with side length 2.0 cm has a charge
of �1.0 � 10�6 C at every corner.
a) What is the magnitude and direction of the

electric force on each charge? (Hint: Use
the symmetry of the figure to simplify 
the problem.)

b) What is the force on a fifth charge placed
in the centre of this square?

c) Does the sign of the fifth charge affect the
magnitude or direction of force on it?

8.5 Fields and Field-mapping 
Point Charges

56. In your notebook, draw two small circles, about
5 cm apart, and label them with positive (�)
signs. Use the concept of placing test charges
on the page to map what the electric field
around these charges would look like.
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q1 q2

25 cm

Neutral

Before 

Fe � 2.05 � 10�4 N

Before 

Fe � 2.05 � 10�4 N

After

1.29 � 10�4 N

After

1.29 � 10�4 N
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57. How would the field map in problem 56
change if the charge on the left was tripled?

58. In your notebook, draw two parallel lines 
representing metal plates, one positive and
one negative, and a circle (negative) with a 
positive conductor in the centre (coaxial cable).
Map the electric field around the two plate
configurations.

8.6 Field Strength

59. A positive charge of 2.2 � 10�6 C experiences
a force of 0.40 N at a distance r from another
charge, qm. What is the field strength at this
position?

60. What is the magnitude of a test charge that
experiences a force of 3.71 N in a field of
strength 170 N/C?

61. Two charges of �4.0 � 10�6 C and 
�8.0 � 10�6 C are placed 2.0 m apart. 
What is the field strength halfway 
between them?

62. A point charge of 2.0 � 10�6 C experiences an
electric force of 7.5 N to the left.
a) What is the electric field strength at this

point?
b) What force would be exerted on a 

�4.9 � 10�5 C charge placed at the 
same spot?

63. What is the electric field strength (magnitude
and direction) 0.5 m to the left of a point
charge of 1.0 � 10�2 C?

64. What is the electric field strength (magnitude
and direction) at point P between the two
charges in Figure 8.56?

Fig.8.56

65. In a hydrogen atom, the electron and the 
proton are separated by an average distance 
of 5.3 � 10�11 m. What is the field strength
from the proton at the position of the electron?

66. Two charges of �1.5 � 10�6 C and 
�3.0 � 10�6 C are 0.20 m apart. Where is 
the electric field between them equal to zero?

67. Four charges of �1.0 � 10�6 C are at the
corners of a square with sides of length 0.5 m.
Find the electric field strength at the centre of
the square.

68. What is the electric field strength at the vertex
of an equilateral triangle with sides of 0.50 m
if the charges at the other vertices are 
�2.0 � 10�5 C?

8.7 Electric Potential and Electric
Potential Energy

69. A particle with a charge magnitude 0.50 C is
accelerated through a potential difference of
12 V. How much work is done on the particle?

70. A 6.0-V battery does 7.0 � 102 J of work
while transferring charge to a circuit. How
much charge does the circuit transfer?

71. A charge of 1.50 � 10�2 C experiences a force
of 7.50 � 103 N over a distance of 4.50 cm.
What is the potential difference between the
initial and final position of the charge?

72. How much work is done by a system in which
a field strength of 130 N/C provides a force of
65 N through a potential difference of 450 V?

73. What is the electric potential 0.30 m from a
point charge of �6.4 � 10�6 C?

74. A small mobile test charge of magnitude 
�1.0 � 10�6 C is forced toward a stationary
charge of �5.0 � 10�6 C.
a) How much electric potential energy does

the test charge have 0.25 m away from the
stationary charge?

q1 q2

40.0 cm 30.0 cm

4.0 � 10�6 C �1.0 � 10�6 C

P



b) How much work was done on the charge
to move it from an original distance of 
1.00 m away?

8.8 Movement of Charged Particles 
in a Field — The Conservation 
of Energy

75. What is the electric potential two-fifths of the
way through a parallel-plate apparatus (from
the positive plate) if the plates have a total
separation of 5.0 cm and a field strength of
5.0 � 103 N/C?

76. A particle carrying a charge of 10�5 C starts
moving from rest in a uniform electric field 
of intensity 50 N/C.
a) What is the force applied to the particle?
b) How much kinetic energy does the particle

have after it has moved 1.0 m?
c) If the particle’s speed is 2.5 � 104 m/s at

this point, what is its mass?

77. Two electrons are 10�9 m apart when they are
released. What is their speed when they are
10�8 m apart?

78. How does doubling the accelerating voltage
of the electron gun in a cathode ray tube
affect the speed of the electrons that reach
the screen?

79. The electron gun of a TV picture tube has an
accelerating potential difference of 15 kV and
a power rating of 27 W.
a) How many electrons reach the 

screen per second?
b) What speed does each electron have?

80. The electrodes in a neon sign (Figure 8.57)
are 1.2 m apart and the potential difference
across them is 7.5 � 103 V.

a) What is the acceleration of charge (�e) of a
neon ion of mass 3.3 � 10�26 kg in the field?

b) How much energy does the ion gain if it 
is released from a positive electrode and
accelerates directly to the negative electrode?

c) Do you think an ion would really gain this
much energy? Explain your reasoning.

Fig.8.57

81. To start a nuclear fusion reaction, two 
hydrogen atoms of charge �1e and mass 
1.67 � 10�27 kg must be fired at each other. 
If each particle has an initial velocity of 
2.7 � 106 m/s (Figure 8.58) when released,
what is their minimum separation?

Fig.8.58

82. An alpha particle with a speed of 6.0 � 106 m/s
enters a parallel-plate apparatus that is 
15 cm long and 3.0 cm wide, with a potential 
difference of 500 V (see Figure 8.59).

Fig.8.59

a) How close is the particle to the lower plate
when it emerges from the other side?

b) What is the magnitude of the velocity of
the alpha particle as it leaves the plates?
(Hint: Find the vertical and horizontal
components of velocity first.)
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H� H� H� H�

Minimum 
separation

m � 1.67 � 10�27 kg m � 1.67 � 10�27 kg

v � 2.7 � 106 m/s v � 2.7 � 106 m/s

�

�
500 v3.0 cm

15 cm

�
6.0 � 106 m/s
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8.9 The Electric Field Strength of 
a Parallel-plate Apparatus

83. A set of parallel plates, separated by a distance
of 0.050 m, has a potential difference of 39.0 V.
What is the field strength?

84. The electric field strength between two plates
6.35 cm apart is 2.85 � 104 N/C. What is the
potential difference between them?

85. a) How strong an electric field is required to
support an alpha particle (a 2� charged
helium nucleus with two protons and two
neutrons) against the force of gravity?
(mproton � mneutron � 1.67 � 10�27 kg)

b) If the alpha particle is suspended between
a set of parallel plates 3.0 cm apart, what
potential must be provided across the plates?

86. What is the electric field strength of a parallel-
plate apparatus that has a plate separation of
0.12 m and a potential difference of 92 V?

87. An electric field stronger than 3 � 106 N/C
causes a spark in air. What maximum 
potential difference can be applied across
two metal plates 1.0 � 10�3 m apart before
sparking begins?

88. A potential difference of 50 V is applied
across two parallel plates, producing an
electric field strength of 104 N/C. How far
apart are the plates?

89. The potential difference applied to an
adjustable parallel-plate capacitor is 120 V.
What is the plate separation if the field
strength is 450 N/C?

90. An oil droplet of mass 2.2 � 10�15 kg is 
suspended between two horizontal parallel
plates that are 0.55 cm apart. If a potential
difference of 280 V is applied,

a) what is the charge on the droplet?
b) how many electrons, in excess or deficit,

does the droplet have?

91. An electron is released from rest from the
negative plate of a parallel-plate apparatus.
a) At what speed will the electron hit the

positive plate if a 450-V potential difference
is applied?

b) What is the electron’s speed one-third of
the way between the plates?

92. A foam pith ball is supported by two small
springs (k � 6.0 � 10�3 N/m) between two
vertical parallel plates 10 cm apart, as shown
in Figure 8.60. When the potential across the
plates is 450 V, the pith ball moves 1.0 cm to
the right before coming to rest. Ignoring any
effects due to gravity and friction,

Fig.8.60

a) what is the field strength between the 
two plates?

b) what force changes the length of the 
two springs?

c) what is the magnitude of the force acting
on the foam pith ball?

d) what is the charge on the pith ball?

10 cm

 �V � 450 V

��

1.0 cm

Pith ball

Parallel plates

ks � 6.0 � 10�3 N/m



430 unit  c :  E lectr ic ,  Grav itat ional ,  and Magnet ic  Fie lds

Introduction
In this lab, we will study small, discrete
units of charge and statistically analyze the
number of elementary charges on small
latex spheres. We will assume that small
latex spheres reach terminal velocity
quickly when moving through a fluid such
as air, and that the terminal velocity of each
sphere is directly proportional to the total
force acting on the sphere. Figure Lab.8.1
shows the three different force situations
that each sphere will experience.

Fig.Lab.8.1

Purpose
To measure the smallest unit of electrical charge
and to compare this experimental value with the
one accepted by the scientific community

Equipment
A Millikan apparatus that uses latex spheres
(available from most scientific supply companies)
(Figure Lab.8.2)
Supply of latex spheres of known diameter
High-voltage reversible power supply
Stopwatch

Fig.Lab.8.2 A Millikan apparatus

Safety Consideration
This apparatus uses a high-voltage power supply
(about 200 V). Be sure that the power supply is
unplugged and in the “off” position before con-
necting the wires of the apparatus to it.
Working with the power supply turned on could
cause sparking.

L
A

B
O

R
A

T
O

R
Y

 
E

X
E

R
C

I
S

E
S

8.1 The Millikan Experiment

q

�Fg

VT

q

�Fg

�Fe

VT

q

�Fg
�Fe VT

Neutral plates Switch up Switch down

Hole Light

Focus knob

Polarity switching
rocker switch

Digital
voltmeter

Atomizer

Variable
power supply

Millikan cell

Injection needle

Telescope

Draft shield

Light source

Atomizer

Table Lab.8.1

Trial # Timeg�e vg�e Timeg�e vg�e vg�e � vg�e vg�e � vg�e Number of 

(s) (spaces/s) (s) (spaces/s) (spaces/s) (spaces/s) elementary 

charges

1

20

Fig.Lab.8.3
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Procedure
1. Set up the Millikan apparatus so that looking

through the telescope for an extended period
of time won’t cause you discomfort. Be sure
that your data table (like Table Lab.8.1),
stopwatch, latex spheres, and the controls to
the power supply are within reach.

2. With the power supply turned off and
unplugged, connect the low-voltage line of
the power supply to the viewing light of
the apparatus, and the two high-voltage
lines to the proper terminals on the polarity-
reversing switch of the Millikan apparatus.
This switch controls whether the plates
are neutral or charged. Fill the latex sphere
reservoir with the properly diluted solu-
tion and verify all set-up parameters
against the written instructions provided
with your equipment.

3. Turn on the light bulb and adjust the fila-
ment so that it sits vertically as it illumi-
nates the field of view. With the light tilted
slightly up over the apparatus, adjust it so
that a sharp image of the filament forms on
your finger if you hold it above and off-cen-
tre of the apparatus. Point the light back
down. Bring the sphere injection needle
into view while adjusting the final focus of
the viewing telescope.

4. With the stopwatch ready and the polarity
switch in the centre position (neutral),
squeeze the bulb of the latex sphere reser-
voir once very quickly to inject a cloud of
latex spheres into the apparatus. The
spheres should appear to rise because of the
inverted image from the telescope. Select
one sphere to watch consistently over the
next few moments. Time this sphere for one
trial only with the stopwatch as it falls
under the influence of gravity over about
10 spaces.

Tip: Choose the spheres that are slow-moving
because they have a very small charge on
them. You can eliminate the highly charged
spheres after injection by moving the polar-
ity switch quickly from the neutral to the up
position, then to the down position before
returning it to the neutral setting.

5. Place the switch in the up position and time
the sphere over about 10 spaces. Turn the
switch to the down position (reverse the
plate polarity) and time it again over the
same number of spaces.

6. Squeeze the bulb again to inject another
cloud of spheres. Choose another sphere
and repeat the same two measurements.
Repeat steps 5 and 6 for a minimum of 20
different spheres.

Data
1. Time one of the spheres as it falls through

10 spaces under the influence of the force of
gravity only (plates neutral).

2. For each trial, measure and record the
time it takes for each sphere to move
about 10 spaces
i) up with the gravitational and electric

forces in the same direction 
(top plate negative).

ii) up or down with the gravitational and
electric forces in opposite directions
(bottom plate negative).

Record both times in the data table. Then
calculate the speed for each motion, in
spaces per second, using the equation v � �

d
t
�.

For example, if the sphere travelled 10 spaces
in 3.5 s, then v � �

10
3
s
.
p
5
a
s
ces

� � 2.8 spaces/s.

Uncertainty
The only uncertainty for this lab is the time
recorded using the stopwatch. Assign an appro-
priate reflex and instrumental uncertainty for
the time measurement. For this lab, all time
measures should have the same uncertainty.
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Analysis
1. Calculate the sum and difference of the two

sets of terminal velocities you measured for
each trial sphere (vg�e � vg�e and vg�e � vg�e),
including the uncertainty. Using spread-
sheet software will speed up your data
analysis and graphing.

2. Recall that the terminal velocities directly
relate to the forces applied to the sphere.
vg�e � Fg � Fe

vg�e � Fg � Fe

Adding these two proportionality state-
ments gives
vg�e � vg�e � (Fg � Fe) � (Fg � Fe)
Therefore,
vg�e � vg�e � 2Fg

The mass of each sphere, and therefore the
force of gravity on it, should always be con-
sistent. If a trial sphere has an inconsistent
value for vg�e � vg�e, omit it from your
analysis and mark it accordingly in your
data table.

3. vg�e � vg�e � (Fg � Fe) � (Fg � Fe)
Therefore,
vg�e � vg�e � 2 Fe

Fe is dependent on charge, so vg�e � vg�e can
be used to measure the charge on the
spheres. Rank the 20 (experimentally 
significant) trials from the lowest value of 
vg�e � vg�e to the highest value of vg�e � vg�e.

4. Draw a bar graph with the trial number
along the horizontal axis, and scaled values
of vg�e � vg�e along the vertical axis.

Discussion
1. You determined two terminal velocities for

each trial sphere, one with the top plate neg-
ative and one with the top plate positive; but
you measured the terminal velocity once
only for the force of gravity (no potential,
with the switch in neutral position) acting
on the sphere. Why was only one measure-
ment required for gravity?

2. Why must a minimum of 20 trials be done
for this lab?

3. What evidence in this lab supports the exis-
tence of a small, discrete unit of charge?

4. For the shortest bar on the bar graph, what is
the smallest number of elementary charges
that were measured within experimental
uncertainty? For the tallest bar, what was
the largest number of elementary charges?

5. For every valid trial sphere, calculate the
total number of elementary charges on
each. Enter this number in your data table.

Conclusion
Summarize your findings in this lab. Were you able
to produce evidence of a smallest discrete charge?
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Introduction
Unlike magnetic fields that are easy to demon-
strate using iron filings, electric fields are very
difficult to visualize or to represent. This lab uses
conductive carbon paper and paint to set up and
map electric fields. Instead of measuring forces
on charges, an impossible task, we will examine
the electric potential, which is measurable with a
voltmeter at various places in the field.

Electric field lines may be plotted indirectly
by first examining the equipotential lines
around the array of charges that are contributing
to the electric field. Equipotential lines, like
those illustrated in Figure Lab.8.4, are lines in
three-dimensional space that mark positions
where the electric potential is the same.

Fig.Lab.8.4

Field lines may be drawn at 90° (Figure Lab.8.5)
to any equipotential line. To use an analogy, an
equipotential line is like a wavefront and the
field lines show the direction in which each part
of the wave travels.

Fig.Lab.8.5

Purpose
To map out the shape and structure of electric
fields created by different charge distributions

Safety Consideration
Keep the power supply in a safe location and at
a low voltage setting. Ensure that all the wires
are undamaged and fully insulated to prevent a
short circuit.

Equipment
Variable- or constant-voltage power supply
2 alligator connectors
Carbon paper
Conductive ink
Metallic poster tacks
Digital voltmeter

Fig.Lab.8.6

Procedure
1. Use the conductive ink to paint different

charge distributions on a piece of carbon
paper, according to the manufacturer’s
instructions. Some suggestions are a two-
point source, two parallel plates or a single
point surrounded by a circle (coaxial cable).
Your teacher may have some other sugges-
tions for the shape of conductors or hand
out pre-made carbon paper sheets.

2. Connect the power supply, wires, and volt-
meter to the carbon paper, as shown in
Figure Lab.8.6. Trace an image of the charge
distribution on a blank worksheet.

3. Set the power supply voltage to 3–5 V for
the remainder of the lab. This voltage can
be verified with the voltmeter by touching
the red test probe to the positive (�) termi-
nal of the power supply at the point where
it contacts the field map.

8.2 Mapping Electric Fields

Equipotential lines

��

Field lines

Equipotential line

A

B

C

A

B

C

Points A, B, and C all have the same voltage

90°

90°

90°

Field lines

��

Carbon paper with charge array
Power supply

Voltmeter
1.20 V

� �

��

Charges

Test 
probeConnector wires

� �
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4. Map the field by touching the test probe to
the carbon paper and then taking note of the
potential difference on the voltmeter. Keep
moving the test probe around the paper until
you find the same potential at a different
point. Find consistent places of equal poten-
tial all over the field map. Transfer an image
of the equipotential line to your blank work-
sheet of the field map.

5. Start from one section of the field and work
radially out to other charges. Find as many
equipotential lines as possible and transfer
them to your worksheet. Note: Trial and
error is the key.

6. Connect all positions of equal potential by
drawing best-fit curves on your worksheet.
Trace at least ten equipotential lines in the
centre of the field.

7. On each equipotential line, draw several
short lines that cross at 90°.

8. Using your imagination and different
colours than the ones you used to draw
your field lines, draw field lines for the
charge array such that they cross all the
equipotential lines at 90°.

Questions
1. On your field map, indicate with a W or an

S the two areas where the electric field is
strongest (S) and weakest (W).

2. Show that your field map is correct by
choosing any point on a field line and draw-
ing an estimated free-body diagram of the
force that a positive test charge would expe-
rience at that point.

3. Describe what would happen to the field
diagram if the voltage of the power supply
was increased.

Extension
Code the co-ordinates that represent your field
shape into field-mapping software. This soft-
ware is available to download from the Irwin
Publishing Web site at<www.irwinpublishing.
com/students>. Print out the field map gener-
ated by the computer and use it to complete your
own field map.
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By the end of this chapter, you will be able to
• define the law of magnetic poles and apply it to mapping magnetic fields

as another example of force at a distance
• quantitatively analyze the forces involved in the magnetic field of various

magnets and electromagnets
• describe and apply the concepts described by scientists such as Oersted,

Ampere, Faraday, and Maxwell in an attempt to unify the theories relating
electricity, electromagnetism, and gravity

Magnetic Fields 
and Field Theory

9

9.1 Magnetic Force — 

Another Force at a Distance

9.2 Magnetic Character — 

Domain Theory

9.3 Mapping Magnetic Fields

9.4 Artificial Magnetic Fields —

Electromagnetism

9.5 Magnetic Forces on 

Conductors and Charges —

The Motor Principle

9.6 Applying the Motor Principle

9.7 Electromagnetic Induction —

From Electricity to Magnetism

and Back Again

Magnetic Resonance 

Imaging (MRI)

9.1 The Mass of an Electron
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9.1 Magnetic Force — Another Force 
at a Distance

The term “magnetism” comes from Magnesia, a Greek province where nat-
urally magnetic iron ore material is found. The ancient Greeks discovered
magnetic forces when shepherds unknowingly magnetized the metallic tips
of their shepherding staffs by contact with naturally occurring magnets in
rock they called lodestone. Magnetic force, as illustrated by the floating
magnets in Figure 9.1, is another example of a force that acts at a distance.

There are two characteristics that distinguish magnetic fields from elec-
trostatic and gravitational fields. First, magnetic fields occur naturally in
substances that have a magnetic character, such as iron, nickel, and cobalt.
Magnetic character is created from within matter as a result of the internal
make-up of a substance rather than by the mere presence of matter, as gravity
is created by the presence of mass. Second, magnetic forces are more versatile
than the other two types of forces because they can affect magnetic substances
as well as electric charges.

In Chapter 8, we used field theory to describe and predict how forces at
a distance act on objects. All force fields (gravitational, electrostatic, and
magnetic) have two objects in common: an object that creates the field and
another object that responds to the field. For electric fields, these objects are
charges and for gravitational fields, they are masses. For magnetic fields, the
objects are magnetic dipoles. Dipoles will be discussed in the next section.
Figure 9.2 illustrates the connection between field creation and response for
electrostatic and gravitational forces.
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Fig.9.1 Repulsion by like magnetic

poles makes the magnets float

�
Charge �

Mass m

�Fe

�Fg

A charge creates
an electric field

A mass creates
a gravitational field

A charge is required
to experience the 
force of the field

A mass is required
to experience the 
force of the field

Fig.9.2 Each field is created by an

object, and an object of similar character

experiences a force due to the field



9.2 Magnetic Character — Domain Theory

What gives a substance its magnetic character? Although this process is not
entirely understood, it is related to a condition within the atoms that make
up the magnetic material, which we will study in Section 9.4. We attribute
the overt magnetic character of a substance to the presence of many smaller
regions of magnetic character, called domains. As with positive and nega-
tive charges in electric fields, there are two opposite magnetic elements, nei-
ther of which can exist without the other. Domains are in turn made up of
even smaller individual elements that are polar and exist as a unit called a
dipole. By convention, the poles of the magnetic dipole are called north and
south because of their opposite magnetic character (see Figure 9.3a).

Domain Theory: All large magnets are made up of many magnetic
regions called domains. The magnetic character of domains comes from
the presence of even smaller unit magnets called dipoles. Dipoles interact
with their neighbouring dipoles. If they align with all the poles in one
direction, then a larger magnetic domain is produced.

The north and south dipoles of large magnets are created by many micro-
scopic dipoles, all acting in unison; that is, aligned in the same direction (see
Figure 9.3b). Materials made of domains that can be readily aligned to create
a larger object of magnetic character are called ferromagnetic materials, such
as iron, nickel, and cobalt. Domains also experience a force in a magnetic
field, described by the law of magnetic forces.

The Law of Magnetic Forces
Similar magnetic poles (north and north or south and south) repel one
another with a force, even at a distance apart.

Dissimilar poles (north and south or south and north) attract one
another with a force, even at a distance apart.

Figure 9.4a illustrates how magnets act according to the law of magnetic forces.
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states that the cell is the basic struc-

tural and functional unit of life, but it

doesn’t explain how the individual

cell functions.
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Fig.9.4a The law of magnetic forces



A dipole not only creates a magnetic field, but also responds to the field by
experiencing a magnetic force. Dipoles align by rotating with the magnetic
force, as shown in Figure 9.4b.

Table 9.1 explains various magnetic phenomena in terms of domain theory.

9.3 Mapping Magnetic Fields
Recall from Chapter 8 that to map an electric or gravitational field, we use
a test charge or test mass, respectively. To map a magnetic field, we use a
dipole that is large enough to respond to the magnetic field. A compass is a
very small magnetic dipole that is allowed to freely rotate in a horizontal
plane (Figure 9.5). It is used to detect the presence of a magnetic field by
applying the law of magnetic forces. The north end of the compass is
repelled by the north pole of any magnet creating the field.

In Figure 9.6, the test compass maps the field lines around a simple bar
magnet by rotating its dipole to indicate the direction of force that its north
end experiences in the magnetic field at that particular point in space.
Magnetic field lines are drawn tangent to the compass needle at any point.
The number of lines per unit area is proportional to the magnitude of the
magnetic field. The direction of the magnetic field is defined as the direction
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Table 9.1
Magnetic Phenomena and Domain Theory

Observation Explanation using domain theory

Magnetic induction: Ferromagnetic Domains pointing in random directions can be aligned 
materials can be magnetized. Earth’s if they are placed in a large magnetic field with a
magnetic field magnetizes railroad fixed direction.
tracks and construction girders.

Permanent and temporary Pure ferromagnetic material such as iron has domains
magnetism: Some materials such that are easily manipulated, whereas the impurities of
as soft iron demagnetize very easily, the harder steel alloys lock the domains, preventing
but hard steel magnets maintain them from changing position.
their magnetic character indefinitely.

Demagnetization: Ferromagnetic Domains can lose their alignment and point in different
materials can lose their magnetic directions, causing a dilution and overall weakening
strength. of the magnet.

Reverse magnetization: The polarity A large external magnetic field pointing in the opposite
of magnets can be reversed. direction of a particular magnet may cause all the

domains to line up with the new field, reversing the 
magnet’s overall polarity.

Breaking a large magnet: A large Each piece of a broken magnet still possesses the
magnet can be broken into smaller aligned domains, allowing each domain to act as an
active magnets. independent magnet.

Maximum strength: There is a Once all or most of the domains are aligned, the
fundamental limit to how strong magnet’s strength cannot be increased any further.
an individual magnet can be.

Fig.9.5 The north end of this

compass will point away from a

north pole of a magnetic dipole

that is creating the magnetic field
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in which the north pole of a test magnet (compass) would point when
placed at that location.

Figure 9.7 explains how to draw magnetic, electrostatic, and gravita-
tional field maps.

Fig.9.7 Drawing Field Maps

Magnetic fields are so intricate that it is easier to map them by distributing
some ferromagnetic material, such as iron filings, around the magnet. Using
iron filings is equivalent to using many tiny compasses with undefined poles.
Figures 9.8a and b show examples of magnetic fields, mapped using iron filings.
Notice how the magnet is a dipole because each field line begins at one pole
and flows to the corresponding point on the opposite pole. The law of magnetic
forces dictates the convention that field lines flow from the north pole to the
south pole of the field-creating magnet.
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Holding a compass horizontally away from any strong magnets allows
the compass to align with Earth’s magnetic field, as shown in Figure 9.9a.
In 1600, English physicist Sir William Gilbert suggested that Earth’s magnetic
field is created by the flowing motion of hot liquid metals under Earth’s
crust, as shown in Figure 9.9b. This notion led scientists to a better under-
standing of the cause of magnetic character at the atomic level (see Section 9.4).
The interaction between a compass (a free-spinning permanent magnet)
and Earth’s magnetic field has been of great importance for navigators
around the world. Early exploration and cartography of Earth was made
possible by using the compass to locate the cardinal directions: north, south,
east, and west.
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By examining how solid iron from lava

flow is magnetized, geologists have

determined that the direction of

Earth’s magnetic field has changed in
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Fig.9.8b Field lines around a horseshoe magnet

Fig.9.9a Earth’s magnetic field Fig.9.9b Earth’s molten core creates Earth’s magnetic field



9.4 Artificial Magnetic Fields —
Electromagnetism

In Section 9.1, we learned that magnets and their associated fields can be
created by aligning naturally occurring magnetic dipoles (domain theory).
In this section, we will study the atomic origin of the magnetic dipole.

The similarities of force at a distance between electrostatics and mag-
netism directed the research of many scientists such as William Gilbert
(1540–1603) and Hans Christian Oersted (1777–1851). They spent much
of their time trying to link these two forces together. Oersted is credited
with the accidental discovery of the link between electricity and magnetism.
During a lecture at the University of Copenhagen, he discovered that mov-
ing electric charges in a straight conductor create a magnetic field in the
region around the conductor, as shown in Figures 9.10a and b.

Oersted’s Principle: The Magnetic Field around a Straight Conductor
Charge moving through a straight conductor produces a circular magnetic
field around the conductor. The field is represented by concentric rings
around the conductor.

Figures 9.11a and b illustrate the shape and direction of the magnetic field
around a straight conductor, as described by Oersted’s principle.

We now know that magnetic fields can be created in other ways besides
the presence of a magnet with aligned dipoles and regional domains. Charge
moving through a conductor produces a circular magnetic field around the
conductor even in the absence of dipoles. Experimentation by Oersted led
to the development of a series of hand signs that help us predict the directions
of magnetic fields and forces. They are called right-hand rules because they
require use of the right hand. Figure 9.12 summarizes the first right-hand
rule for a straight current-carrying conductor.

chapter 9 : Magnet ic  Fie lds  and Fie ld Theory 441

(b)

Conventional (�) current flow

Magnetic
field(a)

Left-hand rules are applied when
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Fig.9.10 The compass aligns with

the magnetic field around a current-

carrying conductor

Fig.9.11 Oersted’s principle: The shape and direction

of the magnetic field around a straight conductor



Right-hand rule #1 (RHR #1): Grasp the con-
ductor with the thumb of the right hand pointing
in the direction of conventional, or positive (�)
current flow. The curved fingers point in the direc-
tion of the magnetic field around the conductor.
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Fig.9.12 Right-hand rule #1 (RHR #1)

Magnetic Character Revisited

Oersted made the connection between moving charge and the creation of a
magnetic field. We have deliberately avoided the discussion of the real basis
for the existence of magnetic fields, the magnetic dipole, until we reviewed
Oersted’s principle. Even Earth’s magnetic field can be explained in terms
of Oersted’s principle of charge flow creating magnetic dipoles. The dipoles
created deep within Earth act like a giant electromagnet because of the flow
of molten metals below its surface; the turning motion of the molten mate-
rial produces a charge flow, similar to current passing through a coil of wire
to produce the magnetic field.

Today, scientists believe that magnetic character (magnetic dipole) in
solid ferromagnetic material is related to Oersted’s principle and the
movement of charge. A magnetic dipole is created by the movement (spin-
ning) of electrons in individual atoms. According to quantum theory (see
Chapter 12), electrons spin about their central axis very much like a spin-
ning top, as shown in Figure 9.13. When an electron spins, it gives rise to a
changing electric field that acts like a small electron current. An electron can
spin in only one of two directions: clockwise and counterclockwise. An elec-
tron spinning by itself in an orbital sub-shell creates a magnetic field around
the atom, causing the atom to become a magnetic dipole. Materials with
unpaired electrons exhibiting a small magnetic field are called paramagnetic.

At the time of Gilbert, Oersted, and

Faraday, electric current was still 

considered to be the result of the

flow of positive electric charge, as

suggested by Benjamin Franklin. In

materials such as solid metallic 

conductors, the positive entities

(protons) are locked in a stationary

lattice while the negatively charged

electrons flow. The early chemistry 

of voltaic cells (batteries—the first

known sources of current) involved

liquid electrolytes in which both 

positive and negative charges flowed.

Today, engineers and scientists still

use the convention of positive

charge flow, even when working 

with charge flow in a solid metallic

conductor. It is equally correct to

assume that positive charges flow

from the positive terminal to the

negative terminal of a power supply.

Rotation

S

N

Fig.9.13 A spinning electron

creates an electron current

Fig.9.14 Oxygen is paramagnetic

and responds to an external magnetic

field at low temperatures. At higher

temperatures, it doesn’t respond to 

a magnetic field because the dipole

attraction is very weak.



Paramagnetic materials such as iron, nickel, and cobalt are attracted to a mag-
netic field. Naturally occurring dipoles are actually atoms of ferromagnetic (para-
magnetic) materials. The alignment of dipoles and their associated domains is
responsible for the overt magnetic character of larger magnets.

For an electron pair, the second electron must spin in the opposite direc-
tion of the first electron in order to cancel out the overall magnetic charac-
ter of the atom. Diamagnetic materials have paired electrons that produce no
measurable magnetic field because of opposite spin cancelation. These materi-
als are weakly repelled by a magnetic field.

A Magnetic Field around a Coiled Conductor (a Solenoid)

When the shape of a straight conductor is changed to form a coil (solenoid), the
resulting magnetic field also changes shape, as shown in Figures 9.15a and b.

If the wire is coiled, the individual circular field lines from each looped
conductor interact as shown in Figure 9.15c. In Figure 9.15c, the opposite
magnetic fields between the loops mutually cancel, but inside and outside
the coil, the fields are aligned. Outside the coil, the field is circular (around
the coil). Inside the coil, the alignment of circular fields around each loop is
so prevalent that the internal magnetic field is strong and
linear. The pattern of the field looks very similar to that
produced by a simple bar magnet.

A current-carrying coiled conductor is called an electro-
magnet. But which end of the electromagnet acts like the
north or south end? Figure 9.16 summarizes a second
right-hand rule that predicts the relationship between the
direction of charge flow in a coil and the direction of the mag-
netic field emerging from the ends of the electromagnet.
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Figure 9.17 summarizes the first and second right-hand rules for conductors.

Fig.9.17 Creation of Magnetic Fields around Current-carrying Conductors

The strength of the magnetic field created by an electromagnet depends on
four factors that are summarized in Table 9.2.

444 unit  c :  E lectr ic ,  Grav itat ional ,  and Magnet ic  Fie lds

Conventional
current flow

N S

Fig.9.16 Right-hand rule #2 (RHR #2) Right-hand rule #2 (RHR #2) for conventional current
flow: Grasp the coiled conductor with the right hand such
that the curved fingers point in the direction of conven-
tional, or positive (�), current flow. The thumb points in
the direction of the magnetic field within the coil. Outside
the coil, the thumb represents the north (N) end of the
electromagnet produced by the coil.

Current
forced

through
conductor

Right-hand rule #1
straight thumb

along conductor

Fingers show
circular (curved)

magnetic field lines

Right-hand rule #2
curved fingers

around conductor

Thumb shows
straight magnetic

field lines
(at coil ends)

Coiled

conductor

Straight

conductor

�

�

method

p
ro c e ss

of

Table 9.2
Factors that Determine the Strength of an Electromagnet

Factor Description

Current in the coil The greater the current flow, the greater the field strength.
Strength varies directly as the current in the coil. 

Number of turns in the coil The greater the number of coils, the greater the field strength.
Strength varies directly as the number of turns in the coil if
the current is constant.

Size of coil The smaller the diameter of the coil, the stronger the 
magnetic field.

Type of material in the  The more ferromagnetic the material within the coil, the
coil’s centre greater the magnet’s strength. Iron is one of the better 

materials to use.

Strength varies directly as the measure of the ferromagnetic 
properties (magnetic permeability, �) of the core material.



If the coil is wrapped around a ferromagnetic core such as iron, the mag-
netic field can be made much stronger because the ferromagnetic domains
of the core align when current is applied. Different ferromagnetic sub-
stances have the ability to alter the strength of magnetic fields when used as
a core material in an electromagnet. The magnetic permeability, �, of a
material is the ratio of the magnetic field strength of the electromagnet with
the core present to the field strength of the coil only. Table 9.3 lists the mag-
netic permeabilities of some common substances. Soft iron metal is usually
the material of choice as an electromagnetic core because, unlike other
materials, the domains randomize their direction when the current is shut
off, causing the metal to lose its magnetic character.

Electromagnets have many practical applications, some of which are
summarized in Table 9.4.
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Table 9.3
Magnetic Permeability (�)

Permalloy 10 000
Iron 6100
Steel 2000
Nickel 1000
Cobalt 170
Aluminum 1.000 02
Oxygen 1.000 002
Vacuum 1.000 000
Water 0.999 999
Copper 0.999 99

Table 9.4
Applications of Electromagnets

Application and Description Schematic diagram Photo

Lifting electromagnets lift 
large ferromagnetic materials.
Electromagnetic clutches are 
used to lower neutron-absorbing
control rods into the calandria of 
a CANDU nuclear reactor.

In a relay, the electromagnet
closes another switch that operates
in some remote location. Turning
on high-current circuits, such as a
bank of lighting in the Sky Dome
(Toronto, ON), with a single switch
requires the use of relays.

An electric bell is a self-switching
electromagnet. The design makes
the magnet oscillate on and off,
ringing the bell.
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1. Copy the following images into your notebook. For each current-
carrying conductor, sketch a view of the magnetic field, based on
the direction of current flow shown.

a) Fig.9.21a b) Fig.9.21b c) Fig.9.21c

d) Fig.9.21d e) Fig.9.21e

2. Copy the following images into your notebook. For each current-
carrying conductor, show the direction of current flow, based on the
structure of the magnetic field shown.

a) Fig.9.22a b) Fig.9.22b c) Fig.9.22c

d) Fig.9.22d e) Fig.9.22e f) Fig.9.22f

3. Copy the following images of a solenoid into your notebook. For each
current-carrying coil, sketch a view of the magnetic field around the
coil, based on the direction of current flow shown. On each, label the
polarity (north and south) of the electromagnet.
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a) Fig.9.23a b) Fig.9.23b

c) Fig.9.23c d) Fig.9.23d

4. Copy the following images of solenoids into your notebook. For
each coil, show the direction of current flow that would cause the
labelled magnetic polarity.

a) Fig.9.24a b) Fig.9.24b

9.5 Magnetic Forces on Conductors 
and Charges — The Motor Principle

Electromagnets are extremely versatile because they provide a magnetic
force that can be varied in strength and direction or even shut off when
desired. The development of electromagnets provided the perfect opportu-
nity for scientists such as Oersted and Michael Faraday to begin research on
the forces exerted between two magnetic fields.

When two different magnets interact, a force of attraction or repul-
sion occurs (recall Figure 9.4a). The application of a magnetic force gen-
erated between two magnets is called the motor principle. An electric
motor is a device designed to continuously provide a magnetic force in a
particular direction.

chapter 9 : Magnet ic  Fie lds  and Fie ld Theory 447

N S

NS



The Motor Principle: When two magnetic fields interact, they produce a
force. If a current-carrying conductor cuts through a uniform magnetic
field, it experiences a force directed at 90° to both the direction of the
charge flow and to the uniform external magnetic field (Figure 9.25). The
strength of this force depends on the strength of the uniform external mag-
netic field and on the strength of the magnetic field around the conductor.

Figure 9.25 shows the interaction of two magnetic fields and the resulting force.

The direction of the force on a current-carrying conductor is important to
the application of the motor principle in practical devices. Right-hand rule
#3 allows us to predict the direction of the resulting magnetic force on the
conductor if we know the direction of current flow in the conductor and the
direction of the external uniform magnetic field (see Figure 9.26).

Right-hand rule #3 (RHR #3) for conventional current flow
The motor principle: Open the right hand so that the fingers point in
the direction of the magnetic field, from north to south. Rotate the
hand so that the thumb points in the direction of conventional, or 
positive (�), current flow. The orientation of the palm indicates the
direction of the force produced.

What parameters affect the force resulting from the interaction of two mag-
netic fields? Like electrostatic and gravitational fields, a magnetic field has
a field strength, B. The force, F, varies directly as the magnetic field strength
(B), the length of the conductor (L) in the field, and the current (I) flowing
through the conductor.

The magnetic force is at a maximum when the conductor is perpendicular
to the external magnetic field, and zero when it is parallel to the external
magnetic field. If � is the angle between the conductor and the magnetic
field, then the force is proportional to sin �. Combining these variables, we
obtain the proportionality statement

F � BIL sin �
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The initial equation for the magnetic force is

F � kBIL sin �

Rearranging the magnetic force equation for the magnetic field strength,

B � �
kIL

F
sin �
�

If one ampere of current in a one-metre-long wire produces a maximum
force of one newton, then k � 1 and the field strength is defined as one tesla
(T), where

1 T � 1 �
A

N
·m
�

The equation that describes the force experienced by a current-carrying
conductor in a uniform external magnetic field then becomes

F � BIL sin �

where F is the magnetic force in newtons (N), B is the magnetic field
strength in tesla (T), I is the current in the conductor in amperes (A), L
is the length of the conductor in the magnetic field in metres (m), and �
is the angle between the conductor and the magnetic field, in degrees.

A few examples will illustrate how to use the magnetic force equation.

e x a m p l e  1 Calculating the change in magnetic 

force using proportions

What happens to the strength of the magnetic force on a conductor if the cur-
rent through the conductor and the length of wire exposed to the field are
doubled while the conductor is rotated 30° from perpendicular to the field?

Solution and Connection to Theory

Given
I2 � 2I1 L2 � 2L1 �1 � 90° �2 � 90° � 30° � 60°

Using the proportionality relationship for the parameters given,
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The unit for magnetic field strength

is the tesla (T), named after

American engineer Nikola Tesla

(1856–1943).

Recall that a current of one ampere

(1 A) is equivalent to one coulomb

(1 C) of charge (6.25 	 1018 positive

charges) passing through a point in a

conductor every second. Some sources

give the unit for the magnetic field, T,

in terms of charge and charge speed:
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But B1 � B2; therefore,
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F2 � 3.46F1

Therefore, the new magnetic force is 3.46 times stronger than the 
initial force.

e x a m p l e  2 Calculating the magnetic force directly

A wire carrying a direct current of 10.0 A is suspended 5.0 m east
between a house and a garage (see Figure 9.27) through Earth’s magnetic
field (5.0 	 10�5 T). What is the magnitude of the force that acts on the
conductor? What is the direction of this force in relation to the horizon-
tal wire?

Fig.9.27

Solution and Connection to Theory

Given
I � 10.0 A L�� � 5.0 m [E] B�� � 5.0 	 10�5 T [D] F � ?

The conductor is perpendicular to the magnetic field because the east–
west wire cuts the northbound magnetic field line at 90°.

F � BIL sin �

F � (5.0 	 10�5 T)(10.0 A)(5.0 m)sin 90°

F � 2.5 	 10�3 N

The magnetic force on this conductor is 2.5 	 10�3 N. From the RHR #3,
we know that the magnetic force acts 90° to the wire and to the direction
of the magnetic field. The magnetic field would cross the horizontally
running electrical line at the same angle as the angle at which it contacts
Earth’s surface.
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Figure 9.28 summarizes the right-hand rule for the motor principle.

Fig.9.28 Right-hand Rule #3: The Motor Principle

The Field Strength around a Current-carrying Conductor

In Section 9.4, we learned that moving electric charges create magnetic fields,
and that the motor principle describes the force created when two magnetic
fields interact. But what affects the strength of the magnetic field around a
conductor? As with electrostatic and gravitational fields, the strength of a
magnetic field around a field-creating conductor decreases with, or varies
inversely as, the distance, r, from the source. From Table 9.3, we also know
that different materials have different magnetic permeability, �, which affects
the overall field strength, B, of the electromagnet. The value for B at any point
around a current segment is directly proportional to the current, I, the
length of segment, 
L, sin �, and the magnetic permeability, �, and is
inversely proportional to the square of the distance
away from the current segment (see Figure 9.29). This
relationship is known as Biot’s law: magnetic field
strength changes (
B) with the conductor length (
L).

The mathematical expression for Biot’s law is


B � �
�I


4
L
πr

si
2

n �
�
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This statement shows that the field strength changes with the current and
with the length of the current segment. The 4� refers to the circular geometry
of the field lines about the current segment and is part of the constant of
proportionality.

We can simplify the Biot’s law equation by using Ampère’s law, named
after French scientist André Marie Ampère (1775–1836).

Ampère’s Law: Consider any closed path around a current-carrying
conductor that is made up of many short segments of length 
L, as
shown in Figure 9.30. If we add all the products of each line segment and
the parallel component of B, the sum is �I, where � is the magnetic per-
meability and I is the current through the enclosed path; that is,

(B
L)1 + (B
L)2 + (B
L)3 + …+ (B
L)n = �I or

�B
L � �I

If the magnetic field, B, around the straight conductor is constant, we can
factor it out:

B(
L1 � 
L2 �
L3� …� 
Ln) � �I

The sum of all segments, �
L, equals the circumference of the circle, 2πr, as
shown in Figures 9.30a and b, so

B(2πr) � �I

Rearranging the equation for B, we obtain the simplified equation for
Biot’s law,

B � �
2
�

�

I
r

�

where B is the field strength in tesla (T), � is the magnetic permeability
of the substance in T·m/A, I is the current in amperes (A), and r is the
perpendicular distance away from the conductor in metres (m).

The field strengths for conductors having more complex shapes can also be
derived from Ampère’s law, but their derivations are beyond the scope of
this course. The equations for the magnetic field strengths of loops and coils
of current-carrying conductors are summarized in Table 9.5.
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the perpendicular distance is r and

sin � � 1, then

B � �
4

�

�

I
� �L2

L1

�
si

r

n
2

�
� dL

B � �
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�

�
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r
�

Closed path made up of 
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Area enclosed
by the path

I

I(a) I

I

P
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(b)Fig.9.30 The field strength at 

a point P along a straight conductor

is related to I, �, and r
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The Unit for Electric Current (for Real this Time)

In previous studies of current electricity, we learned that current is the rate
of charge flow through a conductor, measured in amperes, where one
ampere is one coulomb of charge passing a point in a conductor every sec-
ond. Although this unit is convenient for studying current electricity, it is
easier to picture than to measure. It is very difficult to obtain a given
amount of charge precisely, let alone its rate of flow through a conductor.
The accepted definition of the ampere is actually based on the magnetic
field created by current flowing in two straight parallel conductors. The
force experienced by one conductor depends on the magnetic field, B��, cre-
ated by the other conductor (see Figure 9.32). 

Table 9.5
Equations for Field Strength around Various Conductor Configurations

Solenoid Equation Parameters

Fig.9.31a Magnetic field strength around a � � magnetic permeability
straight conductor: I � current

B � �
2

�

�

I

r
�

r � the perpendicular distance from the single
straight conductor

Fig.9.31b Magnetic field strength in the centre of a � � magnetic permeability
flat loop of wire with N turns: I � current

B � �
�

2

N

r

I
�

N � the number of loops in a flat coil of radius r

Fig.9.31c Magnetic field strength in the centre of a � � magnetic permeability
long solenoid of length L with N turns: I � current

B � �
�

L

NI
�

N � the number of loops
L � the length of the solenoid 
The radius of the coil isn’t important as long 
as it is much smaller than its length.

r

I
Straight conductor

r

N

I

Flat coiled conductor

L

N

I

I1 I2

d

�F2

�B1

Fig.9.32



The magnetic force on the first conductor is given by the equation

F � BLI sin �

where B � �
2
�

π
I
r

� and sin � � 1; therefore,

F � �
�

2
I
π

2

r
L

�

where L is the length of the two conductors in metres (m), r is the distance
between them in metres (m), and I is the current flowing through each wire
(must be the same for both wires) in amperes (A). If I � 1 A, L � 1 m, and
�air � 4π 	 10�7 T·m/A, then the force on every 1 m of wire is

F � �
2
�

π
I
r

2

�

F �

F � 2 	 10�7 N/m

One ampere (1 A) is the current flowing through two parallel conduc-
tors, placed one metre apart in air, that exert a force of 2 	 10�7 N/m on
each other for each metre of their length.

e x a m p l e  3 Calculating the field strength around 

a straight conductor

Find the magnetic field strength in air 1.0 cm away from a straight 
conductor passing a current of 1.0 A.

Solution and Connection to Theory

Given
r � 1.0 cm � 1.0 	 10�2 m I � 1.0 A
�air � 4π x 10�7 T·m/A B � ?

B � �
2
�

π
I
r

� (from Table 9.5)

B �

B � 2.0 	 10�5 T

The field strength 1.0 cm away from this conductor is therefore 2.0 	 10�5 T.

(4π 	 10�7 T·m/A)(1.0 A)
����

2π(1.0 	 10�2 m)

(4π x 10�7 T·m/A)(1 A)2

���
2π(1 m)
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From our new definition of the

ampere, we can define one coulomb as

the charge transported by a current of

one ampere in one second:

1 C � 1 A·s
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e x a m p l e  4 Calculating magnetic field strength 

around a single flat loop

The conductor from Example 3 is coiled once into a single flat loop of
radius 3.0 cm. What is the magnetic field strength at the centre of this loop?

Solution and Connection to Theory

Given
r � 3.0 cm � 3.0 	 10�2 m I � 1.0 A N � 1
�air � 4π 	 10�7 T·m/A B � ?

B � �
�

2
N
r

I
� (from Table 9.5)

B �

B � 2.1 	 10�5 T

The field strength at the centre of this flat loop is 2.1 	 10�5 T.

e x a m p l e  5 The force between two conductors

How far from a conductor carrying 3.0 A of current is a second wire with
a current of 9.5 A if the force between the two wires is 4.0 	 10�4 N/m?

Solution and Connection to Theory

Given
I1 � 3.0 A I2 � 9.5 A F � 4.0 	 10�4 N/m

The current in these two parallel wires is not the same; therefore, the cur-
rent term is the product of I1 and I2 instead of I2.

F � �
�

2
I
π

2

r
L

� � �
�

2
I1

π
I
r
2L

�

Isolating r,

r � �
�

2
I
π
1I

F
2L

�

r �

r � 1.4 	 10�2 m

The wires are 1.4 	 10�2 m apart.

(4π 	 10�7 T·m/A)(3.0 A)(9.5 A)(1 m)
�����

2π(4.0 	 10�4 N)

(4π 	 10�7 T·m/A)(1)(1.0 A)
����

2(3.0 	 10�2 m)



Magnetic Force on Moving Charges

In Section 9.4, we learned that the force experienced by a conductor in a
magnetic field is due to the flow of charge through it. Without moving
charge, there would be no magnetic force. But moving charges need not be
bound by a conductor in order to experience a magnetic force as they move.

The charged particle q (see Figure 9.33) moving with a velocity v�� at an
angle � to the magnetic field B�� constitutes a current if n particles pass a certain
point in a given time 
t. The current, I, of the charges is given by the equation

I � �
n



q
t

�

The distance L (similar to the length of a conductor) is given by the equation

L � v
t

so the equation for the magnetic force becomes

F � BIL sin �

F � B��
n



q
t

��(v
t)sin �

For a single charge, n � 1; therefore,

F � qvB sin �

The magnetic force on an individual moving charge is given by 
the equation

F � qvB sin �

where B is the magnetic field strength in tesla (T), q is the magnitude of
charge in coulombs (C) that is moving at a velocity v in m/s, and � is the
angle between v�� and B��.

As with charges moving in a conductor, the force on charges moving freely
in a field is strongest when the current is perpendicular to the magnetic field
and weakest (zero) when it is parallel to the magnetic field. We can use the
right-hand rule #3 for the motor principle to determine the direction of
the force applied to each moving charge. Notice from Figure 9.34 that the
magnetic force is always perpendicular to the velocity vector. In the case of
electric fields, the force is parallel to the electric field lines and could at
some point be parallel to the velocity vector.
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q

L

�B

�
q�v

Fig.9.33 A charge q cuts through a

magnetic field B at an angle � while

moving a distance L

The magnetic force, F��, is the cross

product qv� 	 B��.



e x a m p l e  6 Calculating the force on an electron moving 

in a magnetic field

Figure 9.35 shows a magnetic field of strength 0.30 T emerging from the
page (shown by the series of dots). An electron with a negative charge of
1.602 	 10�19 C enters this magnetic field at 6.0 	 106 m/s [right].

What is the force (magnitude and direction) on this electron at point A?

Solution and Connection to Theory

Given
B�� � 0.30 T [out] q � �1.6 	 10�19 C v�� � 6.0 	 106 m/s [right]

Because we’re using the right-hand rule, the current direction must be that
of a positive charge. We can consider our charge as positive as long as its
direction of motion is considered in reverse; that is, q � �1.602 	 10�19 C
as long as v�� � 6.0 	 106 m/s [left]. For the magnetic force,

F � qvB sin �
F � (1.602 	 10�19 C)(6.0 	 106 m/s)(0.30 T)sin 90°
F � 2.9 	 10�13 N

The magnitude of the magnetic force is 2.9 	 10�13 N. Now we can apply
the right-hand rule #3 to determine its direction. With fingers pointing
out of the page in the direction of the magnetic field and the thumb point-
ing to the left (for conventional (�) current flow), the force (palm) is
directed towards the top of the page. Therefore, F�� � 2.9 	 10�13 N [up].
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Fig.9.34 The magnetic force is always

perpendicular to the velocity vector
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e x a m p l e  7 Calculating the magnetic field 

affecting a moving charge

Electrons are not the only charged particles affected by a magnetic field.
A proton with a charge of �e and a velocity of 1.0 	 106 m/s [down]
enters a magnetic field and is pushed by a force of 4.5 	 10�14 N [right].
What is the magnitude and direction of the magnetic field experienced by
this charge?

Solution and Connection to Theory

Given
q � 1.602 	 10�19 C v�� � 1.0 	 106 m/s [down]
F�� � 4.5 	 10�14 N [right]

B � �
qv s

F
in �
�

B �

B � 0.28 T

Using the right-hand rule #3, the thumb (current) points down the page
and the palm (force) faces right, so the fingers (magnetic field) point into
the page. Therefore, the magnetic field strength B � 0.28 T [into the page].

1. What force is experienced by a 30-cm wire carrying a 12-A current
perpendicular to a uniform magnetic field of strength 0.25 T?

2. What current runs through a 0.15-m-long conductor that’s at right
angles to a magnetic field of strength 3.5 	 10�2 T if the magnetic
force is 9.2 	 10�2 N?

Are electrical transmission lines safe?
Recently, there has been much controversy over the safety of electric
and magnetic fields produced by above-ground electrical transmission
lines. Through the wide-open space of a typical countryside, the fields
produced are not cause for concern. Because these electricity lines feed
urban centres, they must pass through more densely populated areas,
as shown in Figure 9.36.

The open space under transmission lines may not be used for hous-
ing, but it may be a prime location for park green space or even school
yards and sports playing fields. A report from the U.S. National
Council on Radiation Protection, released in October, 1995, implied that
even very low exposure to electromagnetic radiation has detrimental

4.5 	 10�14 N
�����
(1.602 	 10�19 C)(1.0 	 106 m/s)sin 90°
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Fig.9.36 Power lines produce 

electromagnetic field lines



long-term effects on health. The study also showed that extremely 
low-frequency (ELF) electromagnetic fields (EMFs) can disturb the
production of the hormone melatonin (linked with sleep patterns),
and might even be a factor in the occurrence of sudden infant death
syndrome (SIDS). Children exposed to ELF EMFs may also be at a
higher risk of leukemia. ELF EMFs may also cause increased estrogen
levels in adults, which is linked with estrogen-sensitive cancers like
breast cancer in both women and men.

Transmission lines pass an alternating current (AC) at voltages
between 10 kV and 500 kV, so the field oscillates back and forth.
Therefore, when we calculate field strength for electrical transmission
lines, we will use direct current (DC) as a simplification.
3. What is the magnetic field strength around an electrical transmis-

sion line suspended between two towers 50 m apart that carries a
current of 100 A west? In Canada, the dip angle for the magnetic
field is 45° and the net magnetic force on the wire is 0.25 N.
a) What is the magnitude of Earth’s magnetic field strength?
b) Sketch the direction of the magnetic field with respect to the ori-

entation of the power line. Use the right-hand rule for the motor
principle to determine the direction of the 0.25-N force on the wire.

4. A high-school student wants to construct a solenoid that will 
balance Earth’s magnetic field (i.e., have equal magnitude but the
opposite direction) of 3.0 	 10�5 T at its centre. If the student has
just enough wire conductor to make the solenoid 20 cm long and
4.0 cm in diameter with 200 turns, what current must be passed
through the coil?

5. An electrical transmission line that carries a DC of 100 A west is
suspended between two towers 50 m apart. The dip angle is 45°and
the magnetic field strength is 3.0 	 10�5 T.
a) How far from the high-voltage power lines do you have to be 

in order for the artificial magnetic field to balance Earth’s mag-
netic field?

b) If the transmission lines are 25 m above the ground and all the
physical parameters (current, dip angle, and field strength)
remain the same, calculate the exact location of this cancellation.
(Hint: Find how far below the transmission lines and how far to
the north or south you must stand.)

6. a) The two wires in a typical household extension cord are 2.4 mm
apart. What force per metre pushes them apart when 13.0 A of
direct current flows to power a hair dryer? (Hint: Consider the
rubber insulation to have the same permeability as that of air,
where �o � 4π 	 10�7 T·m/A.)

b) Does the fact that household current is AC make a difference for
this problem? Explain your answer.
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7. A bullet travelling at 400 m/s picks up a charge of 20 C. What is the
maximum force exerted on the bullet by Earth’s magnetic field 
(4.5 	 10�5 T)?

8. What is the magnitude and direction of the magnetic force on a pro-
ton moving vertically upward at 4.3 	 104 m/s in a 1.5-T magnetic
field pointing horizontally to the west?

9.6 Applying the Motor Principle
The motor principle implies that a charge moving at a constant speed at
right angles to a magnetic field will experience a force at right angles to the
direction of motion and to the magnetic field; that is, the moving charge will
constantly experience a force at 90° to its motion.

Magnetohydrodynamics

One practical application of the motor principle is
magnetohydrodynamics (MHD). MHD is the appli-
cation of forces to charges (in this case, ions in seawater)
by the application of a magnetic and an electric field. The
Yamato 1 (Figure 9.37) is a watercraft that uses the tech-
nology of MHD for propulsion.

A magnetohydrodynamic force is produced on the
charged ions in seawater when an electric field is applied
between two horizontally placed parallel plates that cut
a magnetic field pointing upward at 90°. The force 
produced moves the boat, as described in Figure 9.38.

Electric current

Moving
seawater

To DC electrical
generator

Seawater 
enters

MHD propulsion unit

Electrode �

�

Seawater 
expelled

�B

�F

Fig.9.37 Yamato 1 is a ship that uses 

magnetohydrodynamics (MHD) for propulsion

Fig.9.38 The right-hand rule #3

(the motor principle) as it applies 

to MHD propulsion

I

�B

�F



Centripetal Magnetic Force

A particle moving at a constant speed and experiencing a constant magnetic
force at 90° to its motion traces a circular path, as illustrated in Figure 9.39.

According to the RHR #3, the magnetic force, always at right angles to the
particle’s motion, provides the centripetal force to keep the particle moving
in a circle of radius r. If the mass m on a charged particle q is moving at a
velocity v�� at right angles to a magnetic field B, then

F��net � F��magnetic

Fmagnetic � Fcentripetal

qvB � �
m

r
v2

�

r � �
m
Bq

v
�

This equation allows us to calculate the radius of the circular path traced
out by charged particles injected into magnetic fields. The aurora borealis is
a breathtaking example of electrons spiraling in Earth’s magnetic field (see
Figure 9.40).
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e x a m p l e  8 Calculating the velocity of charged particles

a) What is the velocity of an alpha particle moving in a circular path of
radius 10.0 cm in a plane perpendicular to a 1.7-T magnetic field?

b) If this alpha particle is accelerated by the application of an electric
field over a set of parallel plates, what voltage is required to accelerate
the alpha particle from rest?

Solution and Connection to Theory

a) Given
r � 1.0 cm��10

1
0

m
cm
�� � 1.0 	 10�2 m B � 1.7 T

q � 2(�1.602 	 10�19 C) � 3.204 	 10�19 C m� � 6.68 	 10�27 kg
v � ?

v � �
r
m
Bq
�

v �

v � 8.1 	 105 m/s

The velocity of the alpha particle is 8.1 	 105 m/s in a circular path.

b) From Chapter 8, recall the equation for the conservation of energy of
charges moving in an electric field,

qV � �
1
2

�mv2

V � �
m
2

v
q

2

�

V �

V � 6.8 	 103 V

The voltage required to accelerate the alpha particle from rest is 
6.8 	 103 V.

The Mass of an Electron and a Proton

From the equation r � �
m
Bq

v
�, we can see that if the charge (q) and velocity (v��)

of a particle are kept constant in a magnetic field (B), then even the slight-
est difference in mass will result in a different radius of motion for the par-
ticle as it passes through the field. As we learned in Section 8.8, cathode rays
were streams of electrons that were accelerated between two electrodes by
a large potential difference. J. J. Thomson (1856–1940), a British scientist,

(6.68 	 10�27 kg)(8.1 	 105 m/s)2

����
2(3.204 	 10�19 C)

(1.0 	 10�2 m)(1.7 T)(3.204 	 10�19 C)
�����

6.68 	 10�27 kg
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studied these cathode rays by subjecting them to electric and magnetic fields
in a cathode-ray tube, like the one illustrated in Figure 9.41.

If we inject an electron that has been accelerated by an electric field into
a magnetic field, then we can apply electric and magnetic field theory as
well as uniform circular motion to find the electron’s mass. Recall that the
centripetal force on the charge is provided by the magnetic force:

F��B � F��c

qvB � �
m

r
v2

�

We can replace q with e to represent the charge of an electron:

evB � �
m

r
v2

�

where e and v are the charge and the velocity of the electron, respectively.
When we isolate e/m (the charge-to-mass ratio of the electron), we obtain

e/m � �
B
v
r
�

We can determine the strength of the magnetic field, B, from the current
through and the configuration of the coils, and r can be measured experi-
mentally. As we studied in Chapter 8, Thomson determined the speed of the
electron, v, when he accelerated electrons through an electric field created
by parallel plates (see Figure 9.41). In an electron tug-of-war, Thomson
adjusted the electric field between the two parallel plates to cancel the
effects of the magnetic field he was creating with the coils so that electrons
would pass through to the screen in an unaltered path; therefore,

F��magnetic � F��electric

Bev � e

v � �

B

�

where  is the electric field strength between the two parallel plates.
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From these equations, Thomson was able to express the charge-to-mass
ratio for electrons.

Substituting v � �

B

�, the charge-to-mass ratio for electrons is given by

e/m � �
B
v
r
� � �

B


2r
�

Thomson calculated the e/m value to be 1.76 	 1011 C/kg.

As we learned in Chapter 8, in the early 1900s, Robert Millikan performed
his oil-drop experiment in which he determined the charge e on an electron
to be 1.602 	 10�19 C. From Thomson’s and Millikan’s results, we can cal-
culate the mass of a single electron.

To find the mass of a single electron,

e/m � 1.76 	 1011 C/kg

m ��
1.76 	 1

e
011 C/kg
�

m ��
1
1
.
.
7
6
6
02

	

	

10
1

1

0
1

�

C

1

/

9

k
C
g

�

m � 9.11 	 10�31 kg

The Mass Spectrometer

Thomson’s technique for the e/m ratio was soon used to measure the mass of
almost any charged particle in a device known as the mass spectrometer
(Figure 9.42a). In a mass spectrometer, the particles are ionized, accelerated,
then injected into a uniform magnetic field. The radius of the particles’ cir-
cular path reveals their mass (see Figure 9.42b). The parallel plates (S1 and
S2) increase the kinetic energy of the particles according to the equation

�
1
2

�mv2 � qV

v � ��
2

m
qV
�� (eq. 1)

where v is the velocity at which the particles enter the magnetic field.
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The magnetic force provides the centripetal force according to the equation

FB � Fc

qvB � �
m

r
v2

�

so that

v � �
q
m
Br
� (eq. 2)

Equating equations 1 and 2, we obtain

�
q
m
Br
� � ��

2
m
qV
��

�
q2

m
B2

2

r2

� � �
2

m
qV
�

m � �
q
2
B

V

2r2

�

where m is the mass of the particle.
The more massive the ion, the larger the radius it traces in the magnetic

field. Therefore, the mass spectrometer will detect a more massive ion at a
different position than a smaller ion. Modern mass spectrometers are sensitive
enough to detect mass differences between isotopes (different particles of
the same substance that have the same number of protons and electrons but
a different number of neutrons).

e x a m p l e  9 Calculating the charge-to-mass ratio

A charged particle enters a uniform magnetic field of strength 3.2 	 10�2 T
at a speed of 6.0 	 106 m/s. When the charge enters the field perpendi-
cular to the field lines, it traces a circular path of radius 0.018 m. What is
the charge-to-mass ratio for the particle?

Solution and Connection to Theory

Given
B � 3.2 	 10�2 T v � 6.0 	 106 m/s r � 0.018 m e/m � ?

e/m � �
B
v
r
�

e/m �

e/m � 1.0 	 1010 C/kg

The charge-to-mass ratio for this particle is 1.0 	 1010 C/kg.

6.0 	 106 m/s
���
(3.2 	 10�2 T)(0.018 m)

Larger voltages can impart a kinetic

energy sufficient for some charges to

reach relativistic speeds. The technique

for compensating for relativistic

effects is covered in Chapter 13.



e x a m p l e  1 0 Calculating the velocity and circular path

of an accelerated plutonium ion

A singly ionized 239
94 Pu ion of mass 4.0 	 10�25 kg is accelerated through

a potential difference of 1.0 	 105 V.

a) What is the maximum speed of the ion?
b) What is the radius of the ion’s path if it is injected perpendicular to a

uniform magnetic field of strength 0.12 T?

Solution and Connection to Theory

Given
m � 4.0 	 10�25 kg V � 1.0 	 105 V B � 0.12 T

a) v � ?

�
1
2

�mv2 � qV

v � ��
2

m
qV
��

v � ���
v � 2.8 	 105 m/s

The ion’s maximum speed is 2.8 	 105 m/s.

b) r � ��
2
q
m
B

V
2��

r � ���
r � 5.9 m

The radius of the ion’s path in the magnetic field is 5.9 m.

2(4.0 	 10�25 kg)(1.0 	 105 V)
����

(1.602 	 10�19 C)(0.12 T)2

2(1.602 	 10�19 C)(1.0 	 105 V)
����

4.0 	 10�25 kg
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9.7 Electromagnetic Induction — From
Electricity to Magnetism and Back Again

In 1831, Michael Faraday discovered a concept that complimented Oersted’s
principle that moving charge produces a magnetic field.

Faraday’s Law of Electromagnetic Induction:
A magnetic field that is moving or changing in intensity in the region
around a conductor causes or induces charge to flow in the conductor.

Figure 9.43 illustrates how a changing magnetic field near a 
conductor causes a very faint current to flow in the conductor.

Figure 9.44 summarizes the relationship between Oersted’s 
principle and Faraday’s principle.

Fig.9.44 Oersted’s and Faraday’s Principles 
Complement Each Other

Coiling the conductor into a helix with a smaller cross-sectional area makes
a big difference in the amount of current produced in the presence of a 
magnetic field because the conductors cut the magnetic field closer to the
magnet where the field is stronger. In Figure 9.45, when the magnet is
plunged into or pulled out of a coil of wire, it causes current to flow. What
determines the direction of current flow?

In 1835, German physicist Heinrich Lenz formally noted the relation-
ship between the direction of movement of the inducing magnetic field and
the direction of induced charge flow. Applying the law of conservation of
energy to electromagnetic induction, Lenz considered that the electrical
energy induced in a conductor must originate from the kinetic energy of the
moving magnetic field. The increase in the electric potential energy of the
charges in the induced current results in a decrease in the kinetic energy of
the moving magnetic field. This loss in kinetic energy is felt as an opposition
to the moving field. Lenz reasoned that the opposition to the motion of the
external magnetic field is from an induced magnetic field created by the
induced charge flow.
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Lenz’s Law: The direction of the induced current creates an induced
magnetic field that opposes the motion of the inducing magnetic field.

Lenz’s law allows us to predict the direction of current flow by determining
the direction of the induced magnetic field and then using the right-hand
rule #2 to predict the direction of conventional current flow. The electric
potential or electromotive force (EMF) created as a result of the induced
current depends on the speed and strength of the inducing magnetic field,
and on the number of turns and the cross-sectional area of the induction coil.

e x a m p l e  1 1 The direction of induced current flow

Use Lenz’s law to predict the direction of induced conventional current
flow in the coils in Figures 9.46a and 9.46b.

Fig.9.46

Solution and Connection to Theory

In Figure 9.46a, Lenz’s law predicts that to oppose the motion of an out-
going north magnet, a south pole must be induced at the end of the coil.
Applying the RHR #2 for solenoids, we grasp the coil with the thumb of
the right hand pointing to the left. Conventional current flow is up the
front of the coil, as shown in Figure 9.47a.
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In Figure 9.46b, Lenz’s law predicts that to oppose an incoming north
magnet, a north pole must be induced at the end of the coil. Applying the
RHR #2, we grasp the coil with the thumb of the right hand pointing to
the right. Conventional current flow is down the front of the coil, as shown
in Figure 9.47b. This direction is exactly opposite to that in Figure 9.47a.

Figure 9.48 Summarizes Lenz’s law and the second right-hand rule 
for solenoids.

Fig.9.48 Lenz’s Law and RHR #2
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We have come almost full circle in our studies of electric and magnetic fields.
Electrostatics, electric fields, current, and potential gave Oersted the means
to study charge flow and to discover the link between current and magnetic
fields. J.J. Thomson used magnetic and electric fields and circular dynamics
to further study charge flow and the nature of the small particles that com-
prise it. Faraday completed the circle by discovering how simple conductors,
forces, and moving magnetic fields can be used to create charge flow.

Sir Isaac Newton (1642–1727) stated, “If I have seen a little further, it
is by standing on the shoulders of giants.” The work of the “giants” Oersted
and Faraday was brought to fruition in 1864 by Scottish physicist James
Clerk Maxwell (1831–1879) in his theories about electromagnetic fields.
Originally known as Maxwell’s equations of electromagnetism, his the-
ories involved four basic premises, the main concepts of which are captured
in the following four statements.

The Four Premises of Maxwell’s Equations
1) The distribution of electric charges in space is dictated by the electric

field that the charges produce.
2) Magnetic and electric field lines are similar except for the fact that

magnetic field lines are continuous; they don’t begin or end the way
electric field lines do on charges. Magnetic fields are dipolar, so there
is no such thing as magnetic monopoles in the same way that a single
electric field is created by charges.

3) Electric fields are created by changing magnetic fields.
4) Magnetic fields can be produced by changing electric fields or by mov-

ing electric charges (current).

The discovery that magnetic fields can produce electric fields and vice
versa in free space led Maxwell to conclude that oscillating magnetic and
electric fields could self-propagate through space as an electromagnetic
wave (see Figure 9.49).
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Figure 9.50 shows how the self-propagation of the electromagnetic wave in
Figure 9.49 takes place.

Fig.9.50 The Self-propagation of Electromagnetic Waves

Maxwell succeeded in unifying the components of electric and magnetic
fields with his electromagnetic field theory. Since 1955, scientists have been
trying to come up with a way to unify all field theories; that is, the funda-
mental forces of nature (the weak force, the strong force, gravity, and
electromagnetism). This theory is known as unified field theory. A theory
that brings order to the seemingly chaotic and diverse aspects of physics
might bring us closer to an understanding of the origin of the universe.
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S c ience—Technology—S ociety—
Environmental  Interrelat ionships

Magnetic Resonance Imaging (MRI)

One beneficial and practical application of the magnets and related technology
is magnetic resonance imaging (MRI) in medical diagnosis. MRI, shown in
Figure STSE.9.1, a relatively new form of diagnostic imaging, is an improve-
ment on standard x-rays or computed axial tomography (CAT) scans because it
doesn’t require the use of ionizing radiation, which damages human DNA.

An MRI works by placing the subject inside a very strong uniform mag-
netic field of strength up to two tesla. The nuclei of atoms in human tissue,
especially hydrogen, respond to this field because of their magnetic dipole.
Hydrogen nuclei, with their single positive proton, spin and produce their
own magnetic field, according to Oersted’s principle. These hydrogen dipoles
line up with the external magnetic field until a radio-frequency (RF) electro-
magnetic wave is applied that specifically targets the hydrogen atoms. Like a
radio receiver, these nuclear magnetic dipoles are tuned to the RF waves,
absorbing some of their energy and causing them to spin off axis (Figure
STSE.9.2) in a process called precessing. When the RF waves are turned off,
the precessing nuclei return to their original aligned positions in the magnetic
field and radiate some of their stored energy. This radiating electromagnetic
energy is picked up by detectors, computer reconstructed, and displayed
(Figure STSE.9.3) for analysis by the medical community.

An MRI provides incredibly detailed images of very small areas from any
axis. A traditional CAT scan can only capture vertical sections of the subject,
like slices from a loaf of bread. With its adjustable magnets, an MRI can 
capture sections from any of the axes shown in Figure STSE.9.4.

Used for almost any medical imaging, from infections and torn ligaments
to tumours, cysts, or herniated discs, MRI nevertheless has some disadvan-
tages. The strong magnetic field poses a safety hazard if even the smallest
piece of loose ferromagnetic metal is present in the room. That’s why all jewellery,
watches, and metal-capped teeth need to be removed before the scan. Mops,
buckets, paper clips, and fire extinguishers are examples of objects that have
mistakenly been attracted into the bore of an MRI. Even metallic fragments
inside an eye (not covered by scar tissue) left from long-standing injuries can
be hazardous in this strong magnetic field because these fragments may
damage eye tissue as they experience extreme forces. The fine resolution of
an MRI requires that the patient remain perfectly still for the duration of the
scan. An expensive scan needs to be redone if a patient moves even slightly at
an inopportune time.
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Design a Study of  Societal  Impact

Although no ionizing radiation is used for MRIs, they may not be rou-
tinely performed on pregnant women unless doctors decide that the
benefit of performing the scan outweighs any risk to the fetus and the
mother. An MRI is performed only after a case-by-case review of a
patient’s situation.

Research at least three types of medical diagnostic imaging tech-
niques, such as x-ray, ultrasound, CAT scan, and MRI. Rank the types
of imaging in order of most risk to least risk. Write a short paper on
the following topic: “You are a family member of a young pregnant
woman who has been hospitalized for a rare viral infection of the
brain. Do you allow the use of an MRI?” What other information
would you wish to have before making an informed decision?

Design an Activ ity  to Evaluate

a)Build a potential-energy hill or well using plaster or some other
material. Use a mathematical relationship such as the inverse-square
law or the potential-energy equation to dictate its shape. Use a marble
rolling on the sculpted surface to model the behaviour of a charge
moving in a magnetic or electric field. Build a marble launcher that
can roll projectiles toward a potential-energy hill in order to model
Rutherford’s gold-foil experiment. Evaluate the shape of the field or
surface that must be present to achieve marble scattering. 

b)Use a simple electromagnetic field strength monitor to measure the
magnetic field strength in your classroom, other school area, or even
your home. Organize your results in a table and try to find an expla-
nation for the cause of these local fields.

Bui ld a Struc ture

Some amateur physicists have taken up a hobby of building high-current
pulsed electromagnets. See <www.irwinpublishing.com/students> for
Web sites that describe powerful electromagnets able to sustain a huge
current generated by way of energy stored in a parallel-plate capacitor
(see the Chapter 8 STSE). These magnetic fields are able to crush cans
and “shrink” coins with the forces they generate.

Build your own lifting electromagnet from a model-building kit or
using everyday objects such as nails, wire, and batteries. Hold a competi-
tion to see which design can lift the greatest weight. Construct a trans-
former to determine the greatest alternating current that can be generated
from standard household current. 

Take appropriate safety precautions

when working with high currents. 

Less than 1 A can be fatal.
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S P E C I F I C  E X P E C TAT I O N S

You should be able to

Understand Basic Concepts:
Define and describe the concepts and units related to magnetic fields.
State Oersted’s principle of electromagnetism and apply the right-hand
rules for straight conductors and coils to predict the direction of mag-
netic fields around electromagnets.
Derive and apply the equations that relate the magnetic field strength to
the forces that these fields apply to other magnets and electric charges.
Use the concepts of electromagnetism to give an alternative definition of
an ampere for electric current.
Compare and contrast the properties of electric, gravitational, and mag-
netic fields by describing and illustrating the source and direction of the
field in each case.
Illustrate using field and vector diagrams, the magnetic fields and the
magnetic forces produced by a single conductor, coiled conductors and
other uniform magnetic fields.
Analyze in quantitative terms the magnitude and the direction of the
magnetic force applied to electric charges including ions in a uniform
magnetic field.

Develop Skills of Inquiry and Communication:
Demonstrate the technique of field mapping using iron filings and a bar
magnet and compare the field characteristics to those of electric and
gravitational fields.
Perform an experiment that calculates the mass of a single charged particle
such as that of an electron.

Relate Science to Technology, Society, and the Environment:
Explain how the concept of a field developed into a general scientific
model that could be used to explain force at a distance in both electro-
static and gravitational situations.
Describe how scientific theories such as those of Oersted, Ampère,
Faraday, and Lenz can be adapted or related to develop certain scientific
principles and drive further research.
Evaluate, using their own criteria, the social and economic impact of new
technologies such as MRI for medical imaging and magnetohydrodynamics
in propulsion.

Equations
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E X E RC I S E S

Conceptual Questions

1. Summarize the law of magnetic forces.

2. Why do magnets attract other non-magnetic
materials?

3. What do you call a material that is attracted
to a magnet or that can be magnetized? Give
at least two examples of this type of material.
What is responsible for the magnetic character
of this material?

4. In terms of domain theory, explain why 
magnets can lose their strength over time.

5. In terms of domain theory, explain what 
happens to a magnet when it is dropped 
or heated up.

6. Sketch the field lines around the cross-section
of two parallel wires when the current in
each wire flows
a) in the same direction.
b) in opposite directions.

7. When you’re facing a computer screen, what
is the direction of the magnetic field relative
to the electron beam?

8. A current is running through a power line
from west to east. What is the direction of the
magnetic field on the north and south sides of
the wire?

9. A current is passed through an insulated
spring, creating a magnetic field of strength B.
What happens to the field strength if the spring
is compressed to one-half its original length?

10. A magnetic field is applied to a current-
carrying conductor.
a) What angle should the wire make with the

field for the force to be a maximum?
b) What should the angle be for the force to

be a minimum?

11. A current is flowing east through a conductor
when it enters a magnetic field pointing verti-
cally down. What is the direction of the force
on the conductor?

12. An electron is moving vertically down when it
enters a magnetic field directed north. In what
direction is the electron forced at that instant?

13. What is the direction of an electron along the
axis of a current-carrying solenoid?

14. A cathode-ray tube aims electrons parallel to a
nearby wire that carries current in the same
direction. What will happen to the cathode
rays in terms of deflection?

15. Would anything happen to the length of a 
helical spring when a current is passed
through it? Explain.

16. If current is passed through a highly flexible
wire loop, what shape does the loop assume?
Why?

17. State Faraday’s principle and describe at least
three things that could be done to improve the
electromotive force induced in a conductor.

18. What conditions must be met in order to
induce current flow in a conductor?

19. Explain how the law of conservation of
energy is related to Lenz’s law.

20. Faraday’s principle implies that an induced
current in a coil (created by a moving magnet)
creates an induced magnetic field. Explain 
why the induced magnetic field can’t boost the
induction process by moving the inducing 
magnet as in a “motor principle scenario.”

21. One suggestion for a new automobile brake
design is to use modified electromagnetic 
generators as brakes.
a) Explain how this type of brake might work

in terms of the law of conservation of energy.
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b) What would be the environmental or 
monetary benefits for using this type 
of brake in an electric car?

Problems

9.4 Artificial Magnetic Fields —
Electromagnetism

22. How far from a long conductor passing a 
current of 12.5 A is the magnetic field of
strength 3.1 	 10�5 T?

23. Power lines 12 m from the ground carry 
4.50 	 103 A of current across a farmer’s
field. What magnetic field strength do the 
cattle directly underneath experience?

24. A current of 8.0 A is passed through a 
single wire loop, producing a magnetic field 
of 1.2 	 10�3 T at the loop’s centre. What is
the radius of the loop?

25. A circular coil with 12 turns and a radius of
2.5 cm carries a current of 0.52 A. What is
the magnetic field strength at the centre of
this coil?

26. A long solenoid has 35 turns/cm. With a 
current of 4.0 A, what is the field strength 
at the core?

27. Two parallel conductors each carry 10 A of
current in the same direction.
a) What is the magnetic field strength at the

midpoint between these wires?
b) What is the field strength at the same point

if the current ran in opposite directions?

28. A student winds a 10-cm-long toilet paper
tube with one layer of 400 turns of wire, then
overlays it with a second layer of the same
wire with 200 turns in the opposite direction.
If the student applies a current of 0.1 A to the
coil, what is the field strength in the interior
of the tube?

29. A single wire loop of radius 2.0 cm is covered
with another solenoid wound with 15 turns/cm,
passing a current of 0.4 A. What current 
must be supplied to the inner loop in order 
to just cancel out the solenoid’s field right 
at the centre?

9.5 Magnetic Forces on Conductors and
Charges — The Motor Principle

30. A horizontal 6.0-m-long wire that runs from
west to east is in a 0.03-T magnetic field with
a direction that is northeast.
a) If a 4.5-A current flows east through the

conductor, what is the magnitude and
direction of the force on the wire?

b) What is the magnitude and direction of the
force if the current direction is reversed?

31. Copper metal wire has a linear density of
0.010 kg/m. A sample of this wire is stretched
horizontally in an area where the horizontal
component of Earth’s magnetic field of
strength 2.0 	 10�5 T passes through the 
wire at right angles.
a) What current must be applied to the wire if

the weight of the entire wire is supported
by the magnetic force?

b) If this current is applied, what might 
happen to the wire?

32. The voice coil of a loudspeaker has a diameter
of 2.2 	 10�2 m and contains 60 turns of wire
in a 0.12-T magnetic field (see Figure 9.51). 
A current of 2.2 A is applied to the voice coil.
a) What is the force that acts on the cone and

on the coil?
b) What is the acceleration of the voice coil and

cone if their combined mass is 0.025 kg?
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Fig.9.51

33. An electron is injected into a magnetic field of
strength 0.02 T at a speed of 1.5 	 107 m/s in a
direction perpendicular to the field. What is the
radius of the circle traversed by this electron?

34. What is the minimum radius of curvature for
an alpha particle, 4

2He2�, moving at 2 	 106 m/s
in a magnetic field of 2.9 	 10�5 T?

35. Some particles, such as electrons, are affected
by both gravitational and magnetic fields. An
electron in a television picture tube travels at
2.8 	 107 m/s. Which force has more influ-
ence on the electron: the gravitational force 
or the magnetic force?

36. A charge of 1.5 	 10�6 C moves at 450 m/s
along a path parallel to and 0.15 m away from
a straight conductor. With a current of 1.5 A
flowing in the same direction as the charge,
what is the magnitude and direction of force
on the charge?

37. An electron moves at 5 	 107 m/s at a distance
of 5 cm from a long, straight wire carrying a
current of 35 A. Find the magnitude and
direction of the force on the electron when 
it is moving parallel to the wire
a) in the opposite direction of the current.
b) in the same direction as the current.

38. The Bohr model of the atom describes 
an electron circling a proton at a speed 
of 2.2 	 106 m/s in an orbit of radius 
5.3 	 10�11 m.
a) What is the magnetic field strength at 

the proton?
b) A scientist wishes to simulate the same

electron orbit artificially by applying a
magnetic field to the electron. What field
strength must be applied to the electron to
keep it in this orbit?

39. An electron moving through an electric field
of 475 V/m and a magnetic field of 0.1 T
experiences no force. If the electron’s direc-
tion and the directions of the electric and
magnetic fields are all mutually perpendicular,
what is the speed of the electron?

40. The velocity selector of a mass spectrometer
uses a magnetic field of strength 5.0 	 10�2 T
and parallel plates that are 1.0 cm apart to 
produce a perpendicular magnetic field. What
potential difference should be applied to the
plates to permit singly charged ions only of
speed 5 	 106 m/s to pass through the selector?

41. An electric power transmission line has 
two wires 3.5 m apart that carry a current 
of 1.5 	 104 A. If towers are 190 m apart,
how much force does each conductor exert 
on the other between the towers?
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42. Figure 9.52 shows conductors of length 
L � 0.65 m and current I � 12 A lying in 
a plane that’s perpendicular to a magnetic
field B � 0.20.

Fig.9.52

What is the magnetic force (both magnitude
and direction) on the wire shown?

9.6 Applying the Motor Principle

43. An electron moves at a speed of 5.0 	 106 m/s
perpendicular to a uniform magnetic field.
The path of the electron is a circle of radius
1.0 	 10�3 m.
a) What is the magnitude of the magnetic field?
b) What is the magnitude of the electron’s

acceleration in the field?
c) Sketch the magnetic field and the electron’s

path in the conductor.

44. A beam of protons moves in a circle of radius
0.22 m at right angles to a 0.35-T magnetic field.
a) What is the speed of each proton?
b) What is the magnitude of the centripetal

force acting on each proton?

45. A charged particle with a charge-to-mass ratio
of 5.7 	 108 C/kg travels in a magnetic field
of strength 0.75 T in a circular path that’s
perpendicular to the magnetic field. What is
the period of revolution for this particle?

46. A particle of mass 6.0 	 10�8 kg and charge
�7.2 	 10�6 C is travelling west. The particle
enters a magnetic field of magnitude 3.0 T,
where it completes one-half of a circle before
exiting the field moving east. How much time
does this charge spend inside the magnetic field?

9.7 Electromagnetic Induction — 
From Electricity to Magnetism 
and Back Again

47. A bar magnet is dropped with its south end
down through a horizontal wire loop. Looking
down on the loop, what is the direction of the
current in the loop? What is the direction of
the current as the magnet falls out through
the bottom of the coil?

48. In the “Drop Zone” ride at Paramount
Canada’s Wonderland, riders are dropped from
a great height and then decelerated safely to 
a stop before hitting the ground. One possible
technological application of Faraday’s principle
and Lenz’s law is the ride’s braking mecha-
nism. Figure 9.53 simulates the ride by using 
a magnet dropped into an open copper pipe.

Fig.9.53

a) What is the direction of conventional 
current flow in the pipe?

b) What is the shape and direction of the
induced magnetic field?

c) Does this situation result in decreased
acceleration of the magnet/amusement
park ride? Explain.

d) Would this situation be any different if 
the north end of the magnet was dropped
down? Explain.

49. A long loop of copper wire is rotated in a
magnetic field around an axis along its 
diameter. Why does the loop resist this type 
of motion? Would an aluminum loop make
any difference to the resistance of rotation 
of one of these loops? Explain.
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Purpose
To determine the mass of an electron

Background Information
The magnetic force applied to an electron, 
FB � qvB, provides the centripetal force, 
Fc � �

m
r
v2

�, required to keep the electron moving
in a circle, where q and m are the charge and
mass on an electron, respectively, v is its
velocity, B is the magnetic field strength, and r
is the radius of curvature.

If FB � Fc

then qvB � �
m

r
v2

�

v � �
q
m
Br
�

An increase in kinetic energy is due to the
applied voltage, V.
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where m is the required mass in kilograms (kg),
q is 1.602 	 10�19 C, B is the magnetic field in
tesla (T), r is the radius of curvature in metres
(m), and V is the potential between electrodes in
volts (V).

Safety Consideration
This lab uses high voltages. To avoid all shock
hazards, be sure that the circuit is set up prop-
erly before turning the power on.

Equipment
Vacuum tube, 6E5 (RCA)
Socket base with leads (for vacuum tube)
Air core solenoid
Variable resistor (5 A)
Power supply (100–250 VDC) for vacuum tube
Power supply (6 VDC) for cathode heater (vac-
uum tube)
Power supply (5 VDC, 5 A) for solenoid
Ammeter (5 A)
Connecting wires

Ruler
Wood dowels (various diameters) or circular
templates

Procedure
Note: Most of these procedures are very specific
for the type of solenoids and vacuum tubes that
are being used in this lab. This lab is based 
on equipment from The Science Source
(Waldoboro, Maine 04572).
1. Set up the equipment as shown in Figures

Lab.9.1, Lab.9.2a, and Lab.9.2b.

Fig.Lab.9.1

9.1 The Mass of an Electron

Solenoid Rheostat

�

�

Mass of electron apparatus
(RCA vacuum tube)

V

A

Fig.Lab.9.2 The proper wiring of the solenoid

(a)

(b)
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Fig.Lab.9.3 The proper wiring of the 6E5 RCA vacuum tube

2. Turn on the 6-V power supply to the air
solenoid as well as the power supply to both
the cathode heater and the parallel plates in
the vacuum tube.

3. Adjust the voltage across the plates and the
rheostat to the solenoid in order to set the
circular path of electrons (looking through
the top of the tube) to an equivalent radius of
curvature as the dowel or circular template.

4. Measure the radius r of the beam path (by
comparing it with the wooden dowels or
templates), the solenoid current, and the
potential across the plates in the vacuum tube.

5. Measure the solenoid current from the
ammeter and the plate potential from the
voltmeter mounted on the power supply.

Uncertainty
Adjust the rheostat to higher and lower settings
to measure an acceptable range for the solenoid
current. The radius should have a precision of 
� 0.50 mm. Assign acceptable uncertainty values
for all measurements.

Analysis
1. Find the magnetic field, B, from the written

materials that came with your solenoid; for
example, B � 0.0036 Tesla/amp(I).

2. Calculate the magnetic field and the mass of
an electron using the equation m � �

q(
2
B
V
r)2

�.
3. Compare your answer for electron mass 

as calculated in this lab to the accepted
value by finding the percent difference from
9.11 	 10�31 kg.

Discussion
1. What happens to the radius of curvature of

the electron beam when the voltage across
the parallel plate is increased?

2. What is the radius of curvature if the mag-
netic field strength is increased by increasing
the solenoid current?

Conclusion
Write a concluding statement that summarizes
your results. Include a sample calculation. Did
you verify the accepted value for mass of the
electron, within experimental uncertainty?
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Timeline: The Wave Nature of Light
  

1000

Pythagoras theorized 

that light is made of a 

stream of particles.

Aristotle believed that 

light moves like a wave.

Ali Al-hazen used a 

simple pinhole camera to 

demonstrate that light 

travels in a straight line, 

known as the principle 

of the rectilinear 

propagation of light.

Hans Lippershey 

developed the 

optical telescope.

Francesco Grimaldi 

improved our 

understanding of the 

interference and 

diffraction of light.

René Descartes 

worked to understand 

refraction, rainbows, 

and clouds.

Hans and Zacharias 

Jannsen constructed a 

compound microscope.

Willebrord Snell 

published the sine 

law of refraction.

 Johannes Kepler published 

Dioptrice in which he 

documented total internal 

reflection and outlined the 

operation of the Keplerian 

and Galilean telescopes.

James Gregory and 

Isaac Newton did work 

on the concept of a 

reflecting telescope.

Robert Hooke, Curator 

of Experiments for the 

Royal Society, London, 

published the first studies 

of thin-film interference 

in Micrographia.

Johannes Kepler 

worked to improve 

mirrors and lenses.

Hero of Alexandria 

discovered the laws 

of reflection of light.

�600 �400 �200 1600 1625 1650 1675

What is light? This question has been posed for centuries. Even though
light has been studied extensively, its fundamental nature is still a mystery.
In the sixth century BC, Pythagoras postulated that light was a particle. In
the 1600s, the wave theory of light was being developed by Christian
Huygens, while Isaac Newton was formulating corpuscular theories as to the
particle nature of light. In the early 1900s, photon (particle) theory was
being developed by scientists like Max Planck and Albert Einstein. Physicists
like Thomas Young and Augustin Fresnel used the effects of refraction,
interference, and diffraction to support their view that light was a wave.

Light seemed to behave like both a particle and like a wave, depending on
the experiment used to study it. Experiments involving the interference of
light through single and double slits indicated that light was a wave. Einstein
showed that light also behaved like a particle, or photon. In the photoelectric

effect, photons knocked electrons out of metal in a manner
that could only be explained by particle theory. In fact, it can
be said that light is both a particle and a wave, and neither!
In this unit, we will investigate aspects of the wave nature of
light and the aspects that corroborate the theory that light is
a wave. We will also explain how various technological
devices work in terms of the wave theory. From spectro-
scopes to Polaroid sunglasses to CD technology, the wave
nature of light is the basis of much of our technology today!
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1676

1704

1821

1849

1850

1887
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1967
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1670s

1815

1917

Ignace Pardies gave a 

wave explanation for 

the refraction of light.

Isaac Newton 

published the 

corpuscular theory 

of light that 

described light as a 

stream of particles.

Olaf Romer determined 

that the speed of light is 

finite (2 114 000 km/s) 

from the position of one 

of Jupiter’s moons.

Joseph von Fraunhofer 

produced a diffraction 

grating.

Jean Bernard Leon Foucault 

reported to the Academy of 

Sciences that the speed of 

light is less in water than air. 

This observation was in direct 

conflict with Newton’s ideas.

Michael Faraday 

established a 

relationship between 

electromagnetism

and light. 

James Clerk Maxwell 

showed theoretically

that light is a transverse 

electromagnetic wave and 

derived an expression for 

the speed of light.

 

Einstein postulated 
photons and 
stimulated emission.

Heinrich Rudolf 

Hertz verified the 

existence of  long-wave 

electromagnetic radiation.

Armand Hippolyte Fizeau 

performed the first 

land-based measurement

of the speed of light

(315 300 km/s).

The new standard 

metre was defined 

in terms of the 

wavelength of light.

T.H. Maiman 

invented the 

first optical 

laser.

The standard second 

was defined in terms of 

the vibrations of a 

specific wavelength of 

light emitted by a 

cesium–133 atom.

Christian Huygens 

supported the wave 

theory of light and 

published work on the 

polarization of light.

Thomas Young’s 

double-slit experiment 

demonstrated the 

ability of light waves 

to interfere with each 

other like sound and 

water waves.

Augustin Fresnel 

published a theory 

to explain the 

diffraction of light.

C.H. Townes and

A.L. Shawlow 

invented the first 

microwave laser.

1800 1825 1850 1875 1900 19501700 2000
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10 The Wave Nature 
of Light

Chapter Outline

10.1 Introduction to Wave Theory

10.2 Fundamental Wave Concepts

10.3 Electromagnetic Theory

10.4 Electromagnetic Wave Phenomena: Refraction

10.5 Electromagnetic Wave Phenomena: Polarization

10.6 Applications of Polarization

10.7 Electromagnetic Wave 

Phenomena: Scattering

Microwave Technology: 

Too Much Too Soon? 

10.1 Investigating Simple 

Harmonic Motion

10.2 Polarization

10.3 Malus’ Law

By the end of this chapter, you will be able to
• use wave theory and refraction to explain how light behaves like a wave
• explain the various methods of polarizing light
• use the polarization of light to explain how light behaves like a wave
• explain where refraction and polarization are used in industry as well as where

they occur in nature
• describe the various characteristics of different electromagnetic waves
• describe possible effects of using cell phones

S T

S E



10.1 Introduction to Wave Theory

Definitions

A stone is dropped into a still lake, a person shouts to someone across the
room, a string is plucked and vibrates visibly, and oscillating electrons in
an antenna send out radio waves to stereo receivers. These effects are all
examples of wave motion. In general, waves are a travelling disturbance;
that is, they carry energy from one location to another. We can break up
waves into three broad categories: mechanical waves, electromagnetic
waves (see Figure 10.1), and matter waves.

Mechanical waves are waves that are governed by Newton’s laws. They
require a physical medium in which to travel. Examples include water
waves, sound waves, vibrating air columns in musical instruments, and
waves travelling in springs.

Electromagnetic waves are waves that can travel through a vacuum, such
as outer space. Electromagnetic waves all travel at 299 792 458 m/s, better
known as the speed of light. Visible light is an example of this type of wave,
along with infrared, ultraviolet, radio, and cosmic rays. Electromagnetic
waves will be studied in depth in the next two chapters. 

Matter waves are a model that amalgamates the particle and wave theories
of energy and matter. Particles such as electrons, protons, neutrons, and
other subatomic particles can all behave like waves. Many aspects of tech-
nology use these concepts. An example is electrons producing interfer-
ence patterns similar to those of visible light or x-rays. The wave nature
of matter will be covered in Chapter 12.
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Fig.10.1c A radio-wave receiverFig.10.1b A sound-wave collectorFig.10.1a Water waves



Types of Waves

There are two general types of waves: transverse and longitudinal. Both
types are generated from the action of an oscillating source. The repetitive
motion of the source is called simple harmonic motion (SHM).

Each type of wave can be illustrated using the mechanical motion of a
spring, as shown in Figures 10.2a and 10.2b. These figures show the rela-
tionships between the direction of motion of the particle and the direction
of wave travel for each type of wave.

Notice in both cases that it’s not the particle itself that travels down the
line. It’s energy that is transmitted. The regular interaction between con-
secutive particles causes the wave to propagate. The relative position of
two particles on the wave is called their phase.

In transverse waves, the particle motion is perpendicular to the direction
of wave velocity. In longitudinal waves, particle motion is parallel to the
direction of wave velocity. Both types of waves are called travelling
waves because their energy travels from one point to another. They are
also periodic waves because their cycles or patterns are repeated by the
action at the wave source.
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Direction of wave motionDirection of wave motion
Hand
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�
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�

Transverse wave production Longitudinal wave production

Fig.10.2a,b The action of sideways

motion produces wave formation

down the slinky. This motion is typi-

cal of transverse waves. The periodic

pushing and pulling of the coils 

produces a compressed region that

travels down the slinky, producing a

longitudinal wave.

Direction of wave

Longitudinal 
component

Transverse 
component

Water particle 
motion

Particles have 
longitudinal and 

transverse components

Water Waves

Fig.10.4 Water waves are a combination of the action of both

kinds of waves, transverse and longitudinal. The particles of water

move in circular paths, so sometimes they are parallel to the direc-

tion of wave motion, and at other times they are perpendicular to

the direction of wave motion. People sitting in a boat find them-

selves moving in a circular clockwise path, in the direction of wave

motion (see Figure 10.4).

Fig.10.3 Fans doing The Wave



An example of a longitudinal wave is sound. When a
person speaks, the air is pushed out of the person’s mouth
(modulated by the mouth and vocal cords), causing com-
pressions and rarefactions in the surrounding air. These
pressure differences travel to the receiver of the sound, as
illustrated in Figure 10.5.

An example of a transverse wave is light. Light is com-
posed of oscillating electric (E��) and magnetic (B��) fields that
are perpendicular to each other and to the direction of the
wave’s motion. Figure 10.6 illustrates this relationship. We
will discuss the properties of light further in Section 10.3.

1. Find examples of the three categories of waves.
2. Explain how a water wave is both a longitudinal and a transverse wave.
3. Tsunamis are waves generated by earthquakes in the sea. Sometimes

they are referred to as tidal waves, even though tides have nothing
to do with these mechanical waves. Research and find the wave-
length and speed of these waves, along with historical examples of
when they have occurred. Why are they so devastating? 
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Fig.10.6 Light is a transverse wave
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10.2 Fundamental Wave Concepts 

Terminology

In order to describe the periodic wave and all its properties, we use the sine
(or cosine) function to represent this wave mathematically. Because both
longitudinal and transverse waves are cyclic or periodic, we use the sine and
cosine functions to represent both types of waves. These functions indicate
the maximum and minimum displacements of the particle as well as the
time periodicity of wave motion. Figure 10.9 illustrates the motion of a
transverse wave. The particles transmitting the wave action are all moving
perpendicular to the direction of motion, as indicated by the small arrows.

The period of a wave (T) is the amount of time (t) it takes a wave to 
complete one cycle. The SI units for the period are seconds (s).
Mathematically, T � �

N
t
�, where t is the total time and N is the total number

of cycles.

The frequency of a wave (f) is the number of these cycles that can occur
in a given time period, usually one second. The SI unit for frequency is
hertz (Hz), which means “cycles per second” and is written as �

1
s

� or s�1.
Mathematically, f � �

N
t
�

The wavelength (�) is the length of one complete cycle. The SI unit for
wavelength is the metre (m) and its symbol is the Greek letter lambda.

The amplitude of a wave is the maximum disturbance of the wave from
its zero point. Waves have a positive and a negative amplitude.
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Note: The difference between the sine

and cosine functions in Figure 10.8

lies in their starting points. At t � 0,

the sine of zero is zero whereas the

cosine of zero is one (sin 0° � 0 and

cos 0° � 1). Thus, the wave starts at

a different place in its cycle. When

viewed together, the two waves are

said to be phase-shifted.
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Fig.10.9 When the amplitude of the wave is a maximum (crest or trough),

the particle is momentarily at rest because it is changing direction



By examining the units, we can see that period and frequency are recipro-
cals of each other. Thus, we can write

T � �
1
f
� and f � �

T
1

�

e x a m p l e  1 Calculations involving T and f

Calculate the period and frequency of a propeller on a plane if it completes
250 cycles in 5.0 s.

Solution and Connection to Theory

Given
t � 5.0 s, the total time of the event
N � 250, the total number of cycles

f � �
N
t
�

f � �
250

5.
c
0
y
s
cles

� � 50 s�1 � 50 Hz

To calculate the period,

T � �
1
f
� � �

50
1
s�1� � 0.02 s

Figure 10.10 summarizes the different types of cyclic-action waves.

Fig.10.10 Summary of Wave Types
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Phase Shift

Many kinds of periodic motion are also harmonic motion. The type of
motion that can be represented by the sine or cosine wave is called simple
harmonic motion and is represented by the equations 

y � A sin � or x � A cos �

where y and x are displacements in the vertical and horizontal directions,
respectively, and A represents the wave’s amplitude. A wave’s displacement
is the same as in kinematics; that is, it indicates how far in a given direction
the wave has travelled. By changing the angle �, the starting point of the
wave also changes and the wave is said to be phase-shifted. A phase shift
of 180° causes the crests and troughs to change position (i.e., a trough
becomes a crest and vice versa). When the angle is shifted by a full 360°,
the wave has completed one full cycle and once again looks like the original.
The phase shift can also be expressed in terms of wavelength. A series of
possible shifts is illustrated in Figure 10.11.
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Fig.10.11 Possible phase shifts.

Notice that the shift can be

expressed in terms of wavelength,

degrees, and radians.

RA D I A N  M E A S U R E
In radian measure (see Chapter 7),

a phase shift of 360° is equal to

2� radians. Thus, one radian is

about 57.3°.



Simple Harmonic Motion: A Closer Look

To help us understand wave motion, and thus the properties of light, let’s
review the behaviour of mechanical waves. Consider Hooke’s law, which we
studied in Chapters 3 and 5. It states that the restoring force on a spring
varies directly as the displacement of the spring (F � kx). In accordance
with Newton’s third law, the more you pull on a spring, the more the force
trying to bring the spring back to equilibrium increases. This law holds true
until the spring is deformed too much and thus cannot return to its original
shape. In the ultimate stretch, the spring becomes a wire! 

The spring chest expanders used by body builders are an example of this
kind of force in action. In Figure 10.12a, the wannabe muscle-duck finds
the pull easy at the beginning of the stretch. However, as the spring coils are
pulled farther apart, the effort required becomes greater.

To illustrate how vibrating motion (up and down) can generate a sine
wave, imagine a vertical spring with a pen attached to it horizontally. When
you pull the spring down and then let go of it, the pen records the motion
of the spring on a moving roll of paper. Figure 10.13 shows that the pattern
produced by this imaginary device would be a sine wave. The wave action
is caused by the inertia of the spring and pen. Inertia pulls the pen beyond
the equilibrium position down the page, then the restoring force of the
spring pushes the pen back up the page. The resulting repetitive movement
illustrates simple harmonic motion.
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Simple Harmonic Motion in Two Dimensions

In the last section, we introduced the equations 

y � A sin � and x � A cos �

that represent the vertical and horizontal displacements, respectively, of
simple harmonic motion. In two dimensions, x and y are perpendicular to
each other. By combining the two displacements vectorially, we can calcu-
late the resultant vector’s magnitude using Pythagoras’ theorem:

x2 � y2 � A2cos2� � A2sin2�

x2 � y2 � A2(cos2� � sin2�) 

But cos2� � sin2� � 1; therefore,

x2 � y2 � A2

This equation shows that the magnitude of the wave’s net displacement
is constant, no matter what the angle is. For amplitudes that are equal in
each direction, the result is circular motion. Therefore, the equations 
y � A sin � or x � A cos � represent the components of circular motion
in the y and x directions, respectively, as shown in Figure 10.14.

Figure 10.14 is a hypothetical setup that shows a small sphere rotating
clockwise on a turntable. The lights shining on the turntable in the x and y
directions cast shadows of the sphere onto two sheets of paper, labeled 
x and y, placed opposite each light on the other side of the turntable. As the
sphere rotates, it undergoes simple harmonic motion in the x and y directions.
Its two shadows trace a sine wave on each sheet of paper in both the x and y
directions. When the wave on sheet x is a maximum, the wave on sheet y is a
minimum and vice versa. Therefore, we can say that the shadow in the x direc-
tion traces a cosine wave, and the shadow in the y direction traces a sine wave.
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e x a m p l e  2 Aspects of simple harmonic motion

What happens to the sine wave representation in Figure 10.15a if 
a) the amplitude is increased? 
b) the frequency is doubled? 
c) the phase is changed by 90° (�

�

2
� radians)? 

Solution and Connection to Theory

Fig.10.15b

1. Calculate the period in seconds for the following cyclical events. 
a) 5 classes every 375 minutes
b) 10 swings of a pendulum in 6.7 s
c) 33�

1
3

� turns of a turntable in 1 minute
d) 68 sit-ups in 57 s

2. Calculate the frequency in Hz for the following cyclical events. 
a) 120 oscillations in 2.0 s
b) 45 revolutions of a turntable in one minute
c) 40 pulses in 1.2 hours
d) 65 words keyed every 48 s

3. Convert the period to a frequency for question 1, and the frequency
to a period for question 2, above.

4. Draw a wave of amplitude 2 cm and wavelength 4 cm. Redraw the
wave for 
a) a period change of �

T
4

�. 
b) a phase change of 180° (� radians).
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where 	 is the angular velocity. Thus
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x � A cos 	t. Also, r	 � v, where 

v is the linear speed and r is the

radius of the circle. For circular

motion, v � �
2

T

�r
�. Then,

	 � �
v

r
� � � �

2

T

�
�. 

The equation x � A cos �
2

T

�t
� is an

expression for simple harmonic motion.

If you know both the period, T, and

the time, t, at which you look at the

oscillating object, you can calculate its
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5. Find the distance of a spring, undergoing SHM from its rest position,
if the defining equation is x � 30 cos �, x is measured in centi-
metres, and the phase angle is
a) 30°. b) 180°. c) 270°. d) 360°. e) �

�

4
� rad.

6. Explain why uniform motion in a circle is really simple harmonic
motion.

7. Research the simple pendulum. Relate the pendulum’s motion to
simple harmonic motion. Find an expression for the period of the
pendulum’s swing.

10.3 Electromagnetic Theory

Properties of Electromagnetic Waves

Electromagnetic waves have the following properties, illustrated in Figure 10.16:

1) Electromagnetic waves are made up of alternating oscillating electric
and magnetic fields.

2) The electric and magnetic fields are perpendicular to each other.
3) The vibration of the electric and magnetic fields is perpendicular to

the direction of the wave’s motion; therefore, electromagnetic waves
are transverse waves.

4) The electric and magnetic fields vary sinusoidally in phase with each
other; that is, they maintain the same sine-wave phase with respect to
each other.

5) Electromagnetic waves travel at c (the speed of light) in a vacuum. In
other mediums, they travel at different speeds, which causes refraction.

The Speed of Electromagnetic Waves

The speed of a wave is obtained from the equation v � �






d
t
�. Substituting wave

variables for kinematics variables, we can replace 
d with � (wavelength) and
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t with T (period). When a wave travels a distance equivalent to �, it takes
a time T to do so. Substituting these new variables into the speed equation,
we obtain

v � �
T
�

�

We also know that T � �
1
f
�, where f is the frequency. Therefore, 

v � �f

This equation is known as the universal wave equation.

The Speed of Light

The term “electromagnetic wave” was born when James Clerk Maxwell
proved in 1865 that light was a travelling wave of electric and magnetic
fields. In Maxwell’s time, the only known electromagnetic waves were
infrared, visible, and ultraviolet. Shortly after, Heinrich Hertz added radio
waves to the list. Today, the list includes all the waves that comprise the
electromagnetic spectrum, illustrated in Figure 10.17.

Maxwell proved theoretically that electromagnetic waves travel through
a vacuum at the speed of light, c, or 3.0 � 108 m/s. His theory involved wave
mechanics, and it corroborated the idea that light is a wave. It was found
that electromagnetic waves could be encoded with information through
modulation of their amplitudes (amplitude modulation or AM), their fre-
quencies (frequency modulation or FM), or pulse code modulation (PCM)
for digital transmission, then sent at the speed of light to antennae that
intercept the waves. The electrons in the antennae are forced into oscilla-
tions corresponding to the radiation frequencies sent, which create chang-
ing magnetic and electric fields in the antennae. These field frequencies can
then be decoded back to the original information so you can hear the top-40
hits on the radio. The wave theory of light has led to the development of our

chapter 10: The Wave Nature of  L ight 495

The equation for the speed of light

derived by Maxwell was

c � �
��

1

00�
� where

�0 � 8.85 � 10�12 �
(N

C

·m

2

2)
�

and is called the permittivity of free

space (the electric field part of the

equation), and 0 � 4� � 10�7 �
T

A

�m
�

and is called the permeability of free

space (the magnetic field part of

the equation).

The Electromagnetic Spectrum
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The currently accepted value for the

speed of light is 299 792 458 m/s.



whole communications field, from the wireless telegraph, to radio, to TV, to
satellite communications.

e x a m p l e  3 Just how fast is c?

Calculate the time it would take for light to reach us from the Sun, which
is 1.49 � 1011 m away. Compare it to the time it would take a supersonic
plane to fly the same distance at Mach 3.

Solution and Connection to Theory

Given
Distance to the Sun � 1.49 � 1011 m (average orbital radius since Earth’s
orbit is elliptical), c � 3.0 � 108 m/s, vplane � Mach 3 � 3 times the speed
of sound � 332 m/s � 3 � 996 m/s (assuming 0°C)

For light:
Using the equation for speed, v � �







d
t
�, we substitute c for v:

c � �






d
t
�


t � �



c
d
�


t �


t � 497 s

This time is equal to 8.3 minutes.

For the plane:
Using the same equation for speed, we obtain


t � �



v
d
�


t �


t � 1.50 � 108 s

This time is equal to 1730 days, or almost five years.

Compare this time to the time it takes to get to the Moon from Earth! The
first lunar landing mission left Earth at 9:32 a.m. on July 16, 1969 and went
into lunar orbit at 1:28 p.m. on July 19. This trip took just over three days.
At the speed of light, this trip takes 1.3 s! (The mean radius of the Moon’s
orbit around Earth is 3.8 � 108 m.)

1.49 � 1011 m
��

996 m/s

1.49 � 1011 m
��
3.0 � 108 m/s
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Mach number is a relative measure-

ment of speed in terms of a multiple

of the speed of sound.



The Production of Electromagnetic Radiation

The whole range of electromagnetic radiation is described as a spectrum, as
illustrated in Figure 10.17. Another version of this diagram, shown in Figure
10.19, shows that the spectrum is continuous: the distinctions between the
wave categories are blurred at the boundaries between different waves. Wave
catagories are named according to how waves are produced, as shown in
Table 10.1. The “visible range” designation applies only to the range human
beings can see naturally. Animals and insects  “see” in different frequency
ranges. They have their own defined visible light regions. Today, human
beings can use infrared sensors to view objects in the dark, thus extending
our range of vision. The next time you look up at the night sky, imagine the
view if you could see all the frequencies of the electromagnetic spectrum!
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Fig.10.20

Measuring the Speed of Light

Albert A. Michelson measured the

speed of light using an accurate 

distance measurement between 

Mt. Wilson and Mt. San Antonio,

California. Without the rotating

eight-sided mirror spinning, the posi-

tion of the reflected light was meas-

ured at the observer position. The

mirror was then set rotating and

timed accurately. The rotational

speed was adjusted in such a way as

to have side B now reflecting the

light to the observer rather than side

A. Thus, the light now travelled to

Mt. San Antonio and back in �
1

8
�th 

of the period of rotation of the

octagonal mirror. Knowing the 

distance and the time, a value of

2.997928 � 108 m/s was obtained

for the speed of light.



e x a m p l e  4 Calculating the frequency range of a band 

from the electromagnetic spectrum

Infrared light is invisible to the human eye except through special sen-
sors. Given the range of wavelengths of infrared light, calculate their 
corresponding frequencies.

Solution and Connection to Theory

Given
The wavelength range for infrared light is from 1 � 10�3 m to about 
7 � 10�7 m.

f � �
�

c
� � �

3
1
.0

�

�

1
1
0
0

�

8

3

m
m

/s
� � 3 � 1011 Hz. 

This frequency is for one end of the range. For the other end,

�
3.

7
0

�

�

1
1
0
0
�

8

7

m
m

/s
� � 4.3 � 1014 Hz.

The frequency of infrared light is 3 � 1011 Hz–4.3 � 1014 Hz.

The delicate interactions between Earth, Earth’s atmosphere, and electro-
magnetic waves determined how life evolved on this planet and the manner
in which life continues to exist on it. The main source of electromagnetic
waves on Earth is the Sun. (We also receive radiation from other celestial
bodies, but it is much weaker than the radiation from the Sun.) The Sun
generates the whole range of electromagnetic waves. The wavelengths in
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Table 10.1
Electromagnetic Waves

Formation method Generator Wave type Typical uses Detection

Electrons oscillate the length  Electric circuits Radio waves Carry AM signals in 1000 kHz Antenna, crystal
of an antenna, driven by range, FM in 100 MHz range, TV  
electronic circuitry in 50 MHz and 500 MHz range

High-frequency vibrations Klystron Microwaves Microwave ovens and Electrical circuits
in small cavities weather radar

Electron transitions

in outer orbits of atoms Hot bodies Infrared Heat waves from the Sun Thermopile (thermocouples)

in outer orbits of atoms Lamps Visible Vision and laser communications Eye

in inner orbits of atoms Sparks, lasers Ultraviolet Cause sunburn and skin cancer Photoelectric photomultiplier

in innermost orbits of atoms X-ray tubes X-rays Penetrate soft tissue. Used in Ionization chamber 
medical examinations and Photographic plates
diagnostics

Part of nuclear transformations Accelerators/ Gamma rays High penetrating power. Used Geiger and scintillation counters
and energy transitions in reactors to destroy malignant cells in  Bubble chambers
nucleus cancer patients



the ultraviolet region and longer penetrate to Earth’s surface. Earth
acts like a black-body radiator, absorbing the Sun’s energy and
re-emitting it mainly as heat in the infrared region of the spec-
trum. The air acts like an insulating blanket, capturing the
Sun’s energy for our use. Unfortunately, we are increasing
this heating effect by adding gases, such as carbon dioxide,
to the air. These gases increase the air’s ability to reflect
heat back to Earth’s surface, which creates an overall
warming effect termed “global warming.”

The upper atmosphere, including the ozone layer, blocks harmful short-
wave radiation, like cosmic rays, and reduces the intensity of ultraviolet rays.
The upper atmosphere is also changing due to contamination. The holes that
have formed in it cause it to transmit more harmful radiation than before. 

Human beings generate a fair amount of electromagnetic waves through
the use of modern telecommunications and electronic devices, especially in
the radio end of the electromagnetic spectrum: telephones, radio, television,
and satellites. Power lines and electronic equipment also create extra elec-
tric and magnetic fields in our environment. Use of these devices increases
our total radiation exposure. It is a heavily debated subject as to how harm-
ful this excess radiation is. 

All the electromagnetic transmissions we send from Earth, including tele-
vision shows, will travel to the far reaches of outer space. If aliens ever pick up
our transmissions, they may get an interesting perspective of our civilization!

Microwaves and Microwave Ovens

Microwaves and water molecules are partners in one of the most common of all
modern appliances — the microwave oven. A magnetron produces microwave
radiation with a rapidly oscillating electric field (about 2.4 � 109 Hz). A metal
fan distributes the waves by reflecting them (Figure 10.22b). Water molecules
are polar (i.e., they have a positive and a negative pole) and are therefore
attracted to and bonded to one another by weak intermolecular forces called
hydrogen bonds. The rapidly oscillating electric field in the oven causes the
polar water molecules in the food to change orientation billions of times a sec-
ond. The net torque on the water molecules causes them to rotate and align
their dipole moments with the electric field.
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When the water molecules absorb energy from the microwaves, the hydro-
gen bonds are broken (Figure 10.23) and the water molecules are free to
find other partners. When new groups of water molecules are formed, the
energy they gained from the microwaves is transferred into thermal energy
or heat. The food cooks because the water in it is being heated. 

1. Why does a ceramic dish with no food on it not heat up in a
microwave oven, yet when food is prepared on it, it comes out hot?

2. Calculate the wavelength of microwaves.
3. What is the function of the metal grid on a microwave oven’s door?
4. Calculate the frequency of 

a) red light with wavelength 640 nm.
b) radio waves with wavelength 1.2 m.
c) x-rays with wavelength 2 � 10�9 m.

5. Calculate the wavelength of 
a) infrared light of frequency 1.5 � 1013 Hz.
b) microwaves of frequency 2.0 � 109 Hz.
c) gamma rays of frequency 3.0 � 1022 Hz.

10.4 Electromagnetic Wave 
Phenomena: Refraction

The Refractive Index, n — A Quick Review

Refraction is a phenomenon of light that strongly supports the wave theory.
Recall that light changes its speed when travelling through different optical
mediums. If light enters the medium at an angle to the medium boundaries,
it is bent either toward or away from the normal, depending on the refrac-
tive index of the material. (See Figure 10.24.)

500 unit  d :  The Wave Nature of  L ight

�
�

�

��
�

Oxygen

Hydrogen

Torque on 
molecule due 
to microwave

Microwave

��
�

Fig.10.23 Intermolecular

bonds form between water

molecules because water 

molecules are polar. Torque

exerted on a water molecule

by a microwave causes a bond

to break, releasing energy.

ap
plylying

theC
o

n c e pts

Hydrogen bonds are not connections

between the hydrogen and oxygen

atoms within the water molecule.

Rather, they are a close-proximity

attraction between water molecules

that inhibits the molecules’ translan-

tional and rotational motion.



�2

�1

Away from normal
(more dense to
less dense case)

Toward normal
(less dense to

more dense case)

No refraction
case

Normal

Medium 1

Medium 2

Direction of Refraction

The refractive index, n, is a measure of how much light slows down
when it enters an optical medium. The greater the refractive index, the more
the light slows down. Thus, n is defined as the ratio of the speed of light in
a vacuum to the speed of light in a given medium. The equation for n is

n � �
v
c

�

where c is the speed of light in vacuum and v is the speed of light in a
medium. We can see from this equation that the minimum value of n is 1.
If n could be less than 1, then light could travel faster than the speed of light,
which is impossible, according to Einstein. 

e x a m p l e  5 The refractive index of diamond

Calculate the index of refraction of a diamond if the speed of light in a
diamond is 1.24 � 108 m/s.

Solution and Connection to Theory

Given
c � 3.00 � 108 m/s v � 1.24 � 108 m/s n � ?

n � �
v
c

�

n ��
3
1

.

.
0
2

0
4

�

�

1
1
0
0

8

8

m
m

/
/
s
s

� � 2.42

The refractive index of a diamond is 2.42. Notice that the units have 
canceled out. Because n is a ratio, it is a unitless value.
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Fig.10.24 The normal is an imaginary line drawn 

perpendicular to the boundary between the mediums. 

All angles are measured from the normal.

Einstein postulated that the speed 

of light is constant, regardless of the

reference frame in which it is meas-

ured. In fact, Einstein thought that it

was the fastest speed at which an

object could transmit information.

This topic is further covered in

Chapter 13.

The phase velocity of a wave can

exceed the speed of light, c. However,

no information carried by the wave

can exceed c. For example, if an inch

worm’s linear motion along the

ground corresponds to the speed c

(also called group velocity), its up-

and-down motion for propelling itself

is faster than its linear speed. This

speed is analogous to phase velocity.



e x a m p l e  6 Warp drive?

Calculate the speed of light in a hypothetical material you have discov-
ered and named in honour of yourself. Its refractive index is 0.90.

Solution and Connection to Theory

Given
c � 3.00 � 108 m/s n � 0.90 v � ?

n � �
v
c

�

v � �
n
c
� � �

3.00 �

0.9
1
0
08 m/s
�

v � 3.3 � 108 m/s

The speed of light in our hypothetical medium is greater than the speed
of light in a vacuum! 

Snell’s Law: A More In-depth Look

The relationship between the angles of incidence and angles of refraction is
given by Snell’s law,

n1 sin �1 � n2 sin �2

where the subscripts 1 and 2 refer to the incident and refracted mediums,
respectively. The derivation of this law assumes that light behaves like a wave.
If we consider light to possess wavefronts much like the ripples produced by
a disturbance in water (Figure 10.25), then light waves will bend as they enter
a different medium as long as they enter that medium at an angle.
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Table 10.2
Index of Refraction

Substance n

Vacuum 1.000

Air 1.000 29

Water 1.33

Ethyl alcohol 1.36

Glycerin 1.47

Crown glass 1.50

Flint glass 1.91

Diamond 2.42

�

Wavefront 
motion

Plane waves

(a) Circular wave (b) Plane waves refracting

WavefrontsFig.10.25



For a proof of Snell’s law, see Figure 10.26. This proof involves wavefronts.
To illustrate Snell’s law, the ray diagram superposition with which we are
familiar is shown in Figure 10.27. 

Fig.10.26 Fig.10.27

e x a m p l e  7 Using Snell’s law

Find the angle of refraction for light travelling from air to diamond if the
angle of incidence in air is 20°. 

Solution and Connection to Theory

Given
n1 � 1.00 n2 � 2.42 (from Table 10.2) �1 � 20° �2 � ?

The equation is 

n1 sin �1 � n2 sin �2.

sin �2 � sin �1 �
n
n

1

2
�

sin �2 � sin 20° �
1
2

.

.
0
4

0
2

� � 0.342 � 0.413 � 0.141

�2 � sin�1(0.141)

�2 � 8.1°

The angle of refraction is 8.1°. The ray of light went from a less dense to
a more dense medium. Therefore, the angle of refraction is less than the
angle of incidence and the light is bent towards the normal.
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e x a m p l e  8 Calculating the index of refraction 

using Snell’s law

Calculate the index of refraction for a substance where the angle of inci-
dence is 30.0°, the angle of refraction is 50.0°, and the index of refraction
of the second substance is 1.50.

Solution and Connection to Theory

Given
n2 � 1.50 �1 � 30.0° �2 � 50.0° n1 � ?

n1 sin �1 � n2 sin �2

n1 � �
n

s
2

i
s
n
in

�1

�2
�

n1 � 1.50 � �
s
s
i
i
n
n

5
3

0
0

.

.
0
0

°
°

�

n1 � 1.50 � 1.53 � 2.30

The index of refraction of the first substance is 2.30.

Refraction in an Optical Medium

Refraction in an optical medium is a complex effect. For the sake of simplicity,
let’s consider the optical medium to be made up of many simple electron oscil-
lators. In this model, electron shells are held in place by springs attached to a
positive stationary nucleus (Figure 10.28). When light enters the medium, its
electric field interacts with the electron clouds, causing the electron oscillators
to resonate in harmonic motion at the same frequency as the wave. 

The oscillators then reradiate energy in the form of elec-
tromagnetic radiation, which has the same frequency as
the incoming light. These created wavefronts travelling
within the medium, called secondary waves, interfere with
the incident primary wave to produce a net refracted wave-
front. Figure 10.29 is a simplified representation of a
wavefront entering a medium of regularly spaced atoms
and creating scattered waves. The waves then add together
to produce the net wavefront that moves through the
medium at speed v � �

n
c
�. The phase relationship between

the wavefronts determines how much light slows down.
The greater the phase lag (retarding of one wavefront),
the greater the speed reduction. In general, the index of
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refraction is greater for shorter wavelengths due to the ability of the electron
oscillators to absorb their energy more readily.

Any material that allows the electric and magnetic fields of a light wave
to exist inside it also allows light to pass through it, hence making the
medium transparent. According to the electron-oscillator model, light doesn’t
stimulate the oscillators because its frequency lies outside their natural
frequency range. Substances like glass, quartz, diamond, and plexiglass all
exhibit these properties.

Dispersion 

When white light travels through a prism, a “rainbow” appears on the other
side. This effect, shown in Figure 10.30a, is called dispersion. Dispersion
is a method of demonstrating that white light is composed of many differ-
ent wavelengths (colours) of light.

Dispersion occurs because refractive indices are wavelength-dependent
(see Figure 10.30a). Notice that the difference in the refractive index
varies across the spectrum. In fact, the refractive index for crown glass
ranges from 1.698 for violet light to 1.662 for red light. This 2% difference
occurs each time the light refracts across the glass boundary. As you can
see in Figure 10.30b, two refractions occur when light travels through a
prism because light travels across two sets of boundary changes. The sur-
faces of the prism cause the light to bend in the same direction twice. This
effect enhances the 2% difference in the indices of refraction and allows
the different wavelengths to separate enough to be seen by the naked eye.

Another method of breaking white light into its component colours uses
a diffraction grating. Diffraction gratings will be covered in Chapter 11. 
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The Spectroscope

The spectroscope is a device that produces spectra from a given source in
terms of the wavelength of light it disperses. The spectroscope collects the
light from a source, such as an incandescent lamp or a star, and then focuses
it through a prism so we can study the resulting spectrum.

Incandescent sources, such as a bulb filament, produce continuous spec-
tra that show all the colours in sequence flowing into each other (see Figure
10.33a). Line spectra (also referred to as emission spectra) consist of dis-
crete vertical lines of different wavelengths, separated by dark bands (Figure
10.33b). Line spectra are formed by exciting atoms in gases, which we will
study in Chapter 12. Each gas has its own “fingerprint” line spectrum.
Absorption spectra are continuous spectra with gaps, or thin black lines, and
are a characteristic of the Sun’s radiation. The black lines represent light from
the hot interior of the Sun that has been absorbed by the Sun’s cooler exterior.
Sometimes, we refer to these lines as Fraunhofer lines (see Figure 10.33c).

Fig.10.33a

Fig.10.33b

Fig.10.33c The absorption 

spectrum of the Sun (Fraunhofer lines)
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Spectra are distributions of energy

emitted by radiant sources arranged

in an order based on the wavelengths

of the energy.

All colours of light together combine 
to produce white

Bright Filament Lamp

With a high electric current, the whole 
spectrum of visible light is produced

All three types of cones are stimulated 
and lamp appears white

Lamp produces certain colours in each 
part of the spectrum

Fluorescent Lamp

In a fluorescent lamp, chemicals 
called phosphors produce colours 
in many parts of the spectrum

Table 10.3
Visible Light Wavelength

violet
blue

green
yellow
orange

red

400–450
450–500
500–570
570–590
590–610
610–750

Colour
Wavelength

(nm) (approximate)

Solar spectrum

A a B C D E b F G h H2H1

80 75 70 65 60 55 50 45 40

Fig.10.32 A spectroscope



1. Make a list of everyday examples of refraction. (Hint: Think of
examples of light passing through a transparent medium.) 

2. Find examples of partial reflection and refraction. Look at situa-
tions when you view a medium at an angle.

3. What can you tell about a medium from the direction of the bend of
the refracted ray relative to a normal?

4. Calculate the speed of light for the following mediums:
a) Water (n � 1.33)
b) Diamond (n � 2.42)
c) Plexiglass (n � 1.51) 

5. Calculate the refractive index for a substance if the speed of light in
the medium is 
a) 2.1 � 108 m/s.
b) 1.5 � 108 m/s.
c) 0.79c.

6. Calculate the angle of refraction for light as it passes from air into each
of the mediums in problem 4 above at an angle of 25° (nwater � 1.33).

10.5 Electromagnetic Wave 
Phenomena: Polarization

In Section 10.3, we learned that electromagnetic radiation is
a transverse wave made up of mutually orthogonal electric
and magnetic fields that, under normal circumstances, are
oriented randomly with respect to the propagation direction
of the wave. In this section, we will only consider the electric
field that occupies a two-dimensional plane (Figure 10.34).

From Chapter 2, we know that a vector can be broken
into components (see Figure 10.35). If we remove one of the
components of the electric field, we produce polarized elec-
tromagnetic waves. If both components are present, then
the wave is said to be unpolarized. Polarization is the
removal of one component of the electric field.

If one of the components of the electric field gets
absorbed by a medium, then only one component remains.
Now the electric field lines oscillate in one plane only, regard-
less of their original orientation. This type of electromag-
netic wave is said to be plane polarized or linearly
polarized. The effect is shown in Figure 10.36. It is anal-
ogous to a skipping rope vibrating up and down, side to
side, and in all other possible directions. However, if the
skipping rope is fed through a narrow slot in a wall (can be
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Fig.10.35 Any vector can be broken down to two

components (x, y) that are perpendicular to each other.

Two component vectors added together always produce
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Fig.10.34 The electric field of electromagnetic waves
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in any direction), the skipping rope can vibrate in the direction of the slot
only. All the other directions hit the sides of the slot’s walls and are damp-
ened. Thus, the electric field of a polarized electromagnetic wave vibrates in
one plane only. 

Polarization of Light using Polaroids (Polarizing Filters)

Because light is an electromagnetic wave, it can be polarized (normally, it is
unpolarized). Light is produced by electrons oscillating in random direc-
tions in atoms (i.e., the oscillating electrons act like miniature antennae)
and sending out light with random electric field orientations.

A Polaroid is a trade-marked name for an object created by Edwin Land
in the early 1930s. In a sheet of clear plastic, he embedded tiny crystals of an
iodine compound aligned in regular rows, much like a picket fence. As light
passes through this polarizing material, one of its electric field components is
absorbed. The other component moves through unhindered. Thus, the
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(a) (b) Horizontally polarized wave does not fit through the vertical slitVertically polarized wave passes through a vertical slit

(a) (b) Transverse waves on a rope polarized in a horizontal planeTransverse waves on a rope polarized in a vertical plane

Fig.10.36

For radio waves, the direction of the antenna

determines the direction of polarization. VHF

television in North America uses horizontally

polarized electromagnetic waves. The antennae

are oriented horizontally so that the electrons

can be driven in the same direction as the

incoming wave (Figure 10.37). However, in

Great Britain, the polarizing direction is vertical

and the antennae are oriented vertically

(Figure 10.38).

Fig.10.37 Fig.10.38

Dichroism is the name given to 

the method of polarizing light by

absorbing one component of the

electric field.



Polaroid has a preferential direction of transmission. It is like the slot in
a wall that allows a skipping rope to vibrate in one direction only (Figure
10.36). If you place two Polaroids with their transmission directions perpen-
dicular to each other, virtually no light will pass through them, as shown in
Figure 10.39a. Two Polaroids with their transmission directions oriented par-
allel to each other allow light to pass through both of them (Figure 10.39b).

M E T H O D  O F  P RO D U C I N G  P O L A RO I D S
A sheet of polyvinyl alcohol (plastic) is warmed and rapidly stretched in one direction, causing

the long-chained molecules to align in the direction of the stretch. The sheet is then cemented

to a rigid plastic sheet to prevent shrinkage and distortion. Later, the sheet, including the rigid

plastic, is dipped into an iodine solution where the iodine atoms diffuse into the plastic, aligning

themselves in long chains with the long-chained molecules of the polyvinyl. The alignment of the

polyvinyl and iodine produces the polarizing effect.

Malus’ Law: The Intensity of Transmitted Light

As unpolarized light passes through one Polaroid, it not only gets polarized
in that direction, but it also loses some of its intensity. By removing one
component of the electric field, we also decrease the intensity of the light by
one-half. Thus, I1 � �

1
2

�I0, where I0 is the
intensity of the incident light and I1 is
the intensity of the ray exiting the polar-
izing filter. This effect is shown in
Figure 10.40.

Now consider the situation in
Figure 10.41. Here, the already polar-
ized beam enters another Polaroid. This
filter can be rotated in any direction. We
will refer to the first Polaroid as the
polarizer, and to the second Polaroid as
the analyzer.
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Fig.10.39a A pair of “crossed” Polaroids with

their transmission directions 90° to each other.

No light is transmitted where they overlap.

Fig.10.39b Two Polaroids with parallel

transmission directions. Each Polaroid

appears grey because it absorbs roughly

half of the incident light. Light is

transmitted where they overlap.
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The polarizer produces polarized light. Rotating it doesn’t affect the
intensity of light. The emerging light’s intensity is always �

1
2

�I0.

The analyzer determines the plane of polarization. Rotating the analyzer
causes the intensity of the emerging light to vary. 

The emerging light is once again reduced in intensity. However, the inten-
sity this time is angle-dependent. If the two Polaroids are aligned in the
same direction, a maximum transmission of light occurs. If the Polaroids
are 90° to each other, no light is transmitted. From Figure 10.42, we can
see that the emerging electric field, E2, is equal to E1 cos � because the
cosine component of the electric field lies along the transmission axis. 
By definition, intensity is proportional to the square of the amplitude of the
wave. In our case, the amplitude is E1 cos �, so we can write 

E2
2 � E1

2 cos2� which becomes

I2 � I1 cos2�

I2 is the intensity of the ray of light emerging from the analyzer (the second
Polaroid), and I1 is the intensity of light emerging from the polarizer (the
first Polaroid) and entering the analyzer. This equation is Malus’ law.

e x a m p l e  9 Using Malus’ law 

If two Polaroids are crossed with an angle of 60° between their polarizing
directions, what percentage of light is transmitted through both Polaroids?

Solution and Connection To Theory

Given

� � 60° �
I
I

2

1
� � ?

I2 � �
1
2

� I0 cos2�

I2 � �
1
2

� I0 cos2 60°

I2 � �
1
2

�(0.25) I0

Therefore, �
I
I

2

0
� � 0.125

This value is 12.5% (0.125 � 100%). Thus, 12.5% of the light travels
through both Polaroids.

If we wish to find the intensity of the light transmitted through the 
polarizer, we use the relationship I1 � �

1
2

�I0 or I1 � 0.5I0. Then,
I2 � (0.5)I0 cos2 60° � (0.5)I0(0.5)2 � 0.125 I0.

510 unit  d :  The Wave Nature of  L ight

y

x
Ex

Ey E1
�

Fig.10.42 Polarizing direction

E2 � E1 cos �

If E1 is the entering amplitude, 

then E2 � Ey � E1 cos �.

If we wish to write the intensity 

in terms of I0, the incident light 

coming into the polarizer, then we

use the equation I1 � �
1

2
� I0 to obtain

I2 � �
1

2
�I0 cos2 �.



Polarization by Reflection

Partial polarization also occurs when light reflects off a shiny surface. After
reflection, the component of the electric field parallel to the surface is
unchanged. The other component is partially absorbed, causing the light to
become partially polarized. Figure 10.43 shows a ray diagram representa-
tion of this situation.

Most reflections create partially polarized light. However, 100% polariza-
tion can occur at a special angle of incidence. This angle is called Brewster’s
angle. At this angle, the reflected and refracted rays are 90° apart and the
reflected ray is completely polarized. The conditions necessary for complete
polarization by reflection are shown in Figure 10.43b. The main change from
Figure 10.43a is that the refracted and reflected rays are separated by 90° and
the reflected ray then has only one polarization component.

We can calculate Brewster’s angle using the equation

tan �B � �
n
n

2

1
�

where n1 is the refractive index of the incident medium, n2 is the refractive
index of the refraction medium, and �B is Brewster’s angle.
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e x a m p l e  1 0 Brewster’s angle for air–water boundary

Calculate the angle at which all of the reflected light is 100% polarized if
light reflects from water.

Solution and Connection to Theory

Given
n1 (air) � 1.00 n2 (water) � 1.33

tan �B � �
n
n

2

1
�

�B � tan�1 �
1
1

.

.
3
0

3
0

� � 53°

At an incident angle of 53°, the reflected light is totally polarized.

The transmitted (refracted) ray is partially polarized because it now con-
tains all of one component and some of the other component of the electric
field. Thus, you could produce almost 100% polarized refracted light by
using a series of reflection plates, where each subsequent reflection removes
a little more of one component of light.

Light scattered from the sky is also polarized. If you look at the sky
while wearing Polaroid sunglasses, tilting your head from side to side will
make the sky appear to change its tint (darker or brighter). The particles
in the air preferentially scatter blue wavelengths over the other colours, so
the sky appears blue. The scattering is like a reflection and thus produces
some polarization.

Polarization by Anisotropic Crystals 

In 1669, Swedish physician Erasmus Bartholinus noticed that a piece of
crystal, known as Icelandic spar (calcite), produced two images when light
refracted through it. The cause of this phenomenon is the crystal’s ability
to separate the two components of the electric field. Each image is therefore
100% polarized. Figure 10.44 shows the two images of the text the crystal
sits on. By rotating the crystal, one of the images rotates around the other.
You can check the polarization of the images by placing a Polaroid filter on
top of the crystal. One of the images will vanish. If the Polaroid is rotated,
the other image will appear and the original one will vanish.

The two rays are named appropriately. The o ray is the ordinary ray,
which means that it does nothing special. It obeys Snell’s law and its speed
is not changed as it travels through the crystal. The e ray, or extraordinary
ray, on the other hand, obeys Snell’s law in a more complicated way. Its
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Fig.10.44 The calcite crystal 

produces two images. Each is 100%

polarized. When a Polaroid is placed

on top of the crystal, one image 

disappears. A Polaroid rotated 90° 

to the first Polaroid causes the other

image to disappear.



speed varies depending on the angle at which it enters the crystal. This angle
is measured relative to an optic axis, which is an imaginary line through the
crystal. The e ray has a refractive index that is dependent on an angle. 

Materials exhibiting different refractive indices are said to be birefringent.
What makes the optic axis special is that when unpolarized light enters
along it, only one ray emerges. The representation of the different rays is
given in Figure 10.45. Note that the optic axis is not a visible line in the
crystal, but rather a measured direction.

To understand this effect better, let’s study the term “anisotropic.” This
term indicates that certain properties of the crystal differ according to the
direction of the measurement (such as the refractive index). The atoms that
make up the crystal are arranged differently in different directions. When a
ray of light enters the crystal, its electric fields line up differently relative to
the electron positions in the atom for different incident angles. The rela-
tionship between the direction of the field and the electrons determines
whether or not the electrons will vibrate (remember our electron oscillators
from Section 10.4). In some cases, the electron will vibrate and absorb
energy, and in other cases, it won’t, depending on the alignment of the crys-
tal’s electrons and the light’s electric fields.

1. a) Describe polarized light in terms of the rope analogy. Think of 
another analogy to explain polarization.

b) Describe how polarization is produced by reflection, birefringent
materials, and anisotropic crystals.
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In calcite, the o ray has a speed of
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has speeds varying from 
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“Birefringence” means “refracting
twice.” The word “refringence” used
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stems from the Latin word frangere,
meaning “to break.” Many crystals
are birefringent. Other examples of
crystals are mica, sugar, and quartz.
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2. Describe what happens when a polarizing material is used to look
at light coming from
a) a doubly refracting crystal. 
b) a reflection from a glass window.
c) the blue sky.
d) a friend standing in a pool. 
e) an LCD readout.

3. Research the following terms: wave plates, half and quarter, circular
and elliptical polarization. Will Polaroids work on this type of light?
Can the circular polarization of light be right-handed and left-handed?

4. The anisotropic crystals we studied are uniaxial (i.e., having only
one optic axis). Research biaxial crystals and their effects.

5. a) Calculate the speeds of the o ray and e ray if no ray � 1.658 and 
ne ray � 1.486.

b) What is the percent difference between the two speeds relative to
the o ray?

10.6 Applications of Polarization

Polarizing Filters in Photography 

Like sunglasses, polarizing filters are used to remove the “visual noise” of
glare from photos for cleaner and sharper-looking images. Many types of
cameras have a coating on the lens that automatically polarizes light. Other
polarizing filters on cameras can be rotated to change the polarizing axis rel-
ative to the view. The degree of rotation of the filter increases or reduces the
amount of light that reaches the photographic film.

Polarizing filters improve images of the sky by deepening their hues.
They also improve images taken through reflective surfaces like water and
glass, such as photos of fish and animals at the zoo, or photos taken
through windows.
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Fig.10.46 Polarizing filters remove glare



3-D Movies

In the animal world, there are many different kinds of eyes. Their struc-
ture and location create different types of images and different ways of
viewing the world. As illustrated in Figure 10.47, humans have eyes that
are close together and side by side, which gives us binocular-type vision.
Each eye picks up slightly different information from its surroundings.
Our eyes produce the 3-D effect by blending two slightly different
images together in the brain. To see this effect, try closing one eye, then
the other eye while looking at a pencil held at arm’s length. The image
of the pencil shifts each time you look at it with the other eye. Our visual
cortex produces the 3-D image by combining the similarities between
the images of the two eyes, then adding in the differences.

In order to produce 3-D movies, two specially positioned cameras
are used to film the scenes. The space between them duplicates the
separation of our eyes. Two projectors are used to project the images
on the screen, each using a polarizing filter. By placing the two polar-
izing filters in orthogonal orientations (90°) to each other, the images
on the screen are also polarized in opposite directions. The scene on the
screen appears doubled and blurry. When you put the special Polaroid sun-
glasses on, provided to you by the theatre, you see in 3D. The lenses of the
3-D glasses have their polarizing directions oriented at 90° to each other.
The left eye receives images from the left projector only, and the right eye
receives images from the right projector only. We thereby fool the brain into
thinking that it’s receiving two images of the same object, one from each eye.
The brain puts the “two images” together to produce stereoscopic images.
Although this technique produces superb results, the effect is diminished if
the viewers tilt their heads, unless they are wearing achromatic, circularly
polarized filters.
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Fig.10.48 Viewing a 3-D movie



Radar

When viewing a radar screen, all possible information provided by the radar
is important. The faint “blips” on a screen may be blocked out by light
reflected off the surface of the oscilloscope screen. By placing a polarizing
filter over the screen, any unwanted reflection is eliminated, so faint signals
are able to come through and be seen on the screen. The light intensity of
the screen is decreased by one-half as a result of polarization, but it is bet-
ter than the reflected glare coming from a full light intensity. 

The next time you are watching a movie showing a radar (or sonar)
room, note the amount of light in the scene. Notice that it is usually dark in
order to provide better contrast to view the radar screen and to remove any
possible sources for reflection.

Fig.10.49 A radar screen 

Liquid Crystal Displays (LCDs)

In calculators and other devices with numerical readouts, polarizing agents are
used to create the various shapes on the readout screen. A series of liquid crys-
tal grid-blocks is aligned across the screen. Each grid-block is sandwiched
between transparent electrodes (see Figure 10.50). When a voltage is applied
to it, the liquid crystal rotates the polarizing direction by 90°.

The liquid crystal grid-blocks are sandwiched
between two polarizing filters. One filter acts as the
polarizer while the other is the analyzer. Light passes
from the polarizer through the liquid crystal to the ana-
lyzer. When there is no voltage, the direction of the
polarized light is the same as that of the analyzer. The
light passes through the analyzer, but its colour matches
the background of the screen and nothing appears on
the display. When the voltage is turned on, the direction
of polarized light is 90° to the analyzer. No light passes
through and we see a dark segment (Figure 10.51). 
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With radar, polarizing agents create
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Fig.10.50 The LCD on a calculator



You can experiment with the polarizing filters in a calculator. Obtain a
cheap calculator (one that does basic arithmetic only) with an LCD readout.
View the readout through a Polaroid. Rotate the Polaroid and see the effect.
Carefully dismantle the readout display and look for the various parts
described in this subsection. Try removing the analyzer and rotating it 90°.
Then try operating the calculator to see what happens to the readout. 

Photoelastic Analysis

As we learned in Chapter 3, when building any structure consisting of parts
that undergo great stresses, it’s essential for engineers to know the limits
and areas of weakness of the structure’s components. The girders at the bot-
tom of a 50-storey building, for example, support tremendous weight. If a
hole was required in the girder to create a channel for wiring, would it cause
excessive weakness in the building’s structure? To study these types of
stresses and strains, engineers use the birefringence properties of plastics
to determine the areas of stress and strain of any object under a load. 

To do so, a model of the object is made out of material such as lucite,
which becomes birefringent when placed under stress. The amount of bire-
fringence varies directly as the amount of stress on the object. When
viewed between two crossed polarizing sheets, a series of coloured fringes
appears. The closer the fringes, the higher the stress level on the object. In
the lucite model of a prosthetic hip joint in Figure 10.52, the stress is 
distributed evenly over the whole structure and the weaknesses occur at
the bases. Using birefringence, we can obtain a numeric value for the stress
or strain that relates the number of fringes to the spacing created by the
stress or strain acting on the object. 
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Fig.10.52 Lucite is used to study

stress on a prosthetic hip joint 

Table 10.4

Applied voltage Liquid crystal Emerging ray What’s seen

Yes No rotation of light None (absorbed Dark band
by analyzer)

No Rotates light 90° Not absorbed Nothing; light blends 
(passes through) in with background

Fig.10.51 How an LCD works



Polarization in the Insect World

The eyes of certain insects, such as ants and bees, consist of ommatidia
(Figure 10.54a), which are the repeated units that make up an insect’s com-
pound eye. The ommatidia allow insects to detect polarized light, which
enables them to navigate by using the scattered sunlight from the sky. 

To simulate what the insect sees, a series of eight triangular Polaroids is
arranged in an octagon in Figure 10.54b. When the sky is viewed through
this arrangement, a series of patterns is seen, which can be used to deter-
mine direction. Some airplanes are equipped with similar polarization indi-
cators to help with navigation.

Polarized Light Microscopy

Polarized light microscopy is mainly used for studying birefringent objects.
In this type of light microscope, one filter is placed in the microscope head
and another is placed over the lamp or condenser, usually at the base of the
instrument. The slide, which rests on the mounting stage between the light
source and the head, is between the two polarizing filters. By rotating either
one of the filters, various aspects of the studied sample can be viewed.
Birefringent material between crossed polarizing filters produces a coloured
interference pattern. Different organelles or structures in the cells have dif-
ferent birefringent properties that become more apparent and in better con-
trast depending on the polarizing filter’s angle of rotation. As the polarizing
filter is rotated, one organelle or structure fades into the background while
another comes into view.

Measuring Concentrations of Materials in Solution

Optical activity is the property of certain substances in solution, such as
sugar, to rotate the plane of polarization without changing any other aspect
of light. The amount of rotation varies with the concentration of the solution
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and the distance the light must travel through it. By injecting a solution
into a cell of known length and then shining polarized light through it, the
angle of rotation of the polarizing plane can accurately determine the con-
centration of the solution. Industries involved in food chemistry and
organic biochemical analysis use this technique to obtain high-precision
concentration measurements.

1. Why does tilting your head while viewing a 3-D movie through
linearly polarized glasses decrease the 3-D effect?

2. Research other methods used to produce the 3-D effect. Include the
effect shown on TV during a Super Bowl intermission with special
glasses using coloured filters and vectography.

3. Research how a circular polarizing filter works to block out unwanted
glare. Relate reflection and the orientation of the E vector in your
explanation.

4. Postulate how a bee can use the Sun’s position in the sky to navigate.
5. Research the life and work of scientist Karl von Frisch, who inves-

tigated the ability of bees to navigate by using the Sun and polar-
ization directions. 

6. Describe a Frisch experiment that proved that bees use polarized
light to navigate. 

7. Research polarization directional equipment, and general methods
and areas of use.

8. Research the types of materials studied using polarized light
microscopy in the field of medicine and explain why birefringent
materials are visible using this method.

10.7 Electromagnetic Wave 
Phenomena: Scattering 

In Section 10.5, we mentioned that light scattered by air particles is polar-
ized. This section explains the scattering process of light. As the sunlight
passes through the atmosphere, it gets randomly redirected by air. This redi-
rection of light gives the sky its colour.

Scattering is similar to a bobber in the water. In Figure 10.55, as waves
go by the bobber, they cause it to start moving up and down with the same
frequency as that of the original wave. This motion causes more waves to
emanate from the bobber. Now imagine thousands of bobbers all doing the
same thing. The ordered wave that first came in is now a mass of ripplets
moving in all different directions.
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Like the bobber, air molecules absorb and then re-emit light waves. The
shortest wavelengths are scattered more easily than the longer ones because
the electrons in molecules are able to absorb energies of the shorter wave-
lengths more easily. Objects tend to absorb energy readily if it causes them
to vibrate at their natural resonant frequency. The natural resonance of
electrons in air molecules is closest to the ultraviolet end of the spectrum.
Therefore, the longer the wavelength of light, the less energy is absorbed by
the electrons and the less scattering of light occurs.

In Figure 10.56, when the Sun is at solar noon (directly overhead), the
distance the light travels through the atmosphere is a minimum. At sunset,
this distance is a maximum.
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Table 10.5
Extent of Scattering

Colour red orange yellow green blue violet

Wavelength (m) 0.70 0.60 0.58 0.52 0.48 0.40

Relative number of scattered waves 1 2 3 4 5 10

Shortest distance to observer

Solar noon

Sunset

Fig.10.56 Light travels a greater

distance through the atmosphere 

at sunset than at noon

S C AT T E R I N G
The extent of scattering of light by

air molecules is proportional to �
�

1
4
�.

The wavelengths of visible light

range from about 0.70 m (red) to

0.40 m (violet). Table 10.5 shows

the relative amounts of various

colours that are scattered.
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At solar noon, the sky is blue because it is a mixture of the colours of light that
scatter best: an unequal mixture of violet, blue, green, and yellow light. At sun-
set, the light has to travel the extra distance through the atmosphere. By the
time it nears the surface of Earth, most of the short wavelengths have been
scattered. The remaining longer wavelengths, which are in the red end of the
spectrum, reach our eyes and we see a red Sun at sunset. The atmosphere near
Earth’s surface has more dust particles and, near cities, more pollutants, which
are of the right size to scatter red wavelengths better. Thus, on nights when
pollution is high, we see red sunsets (see Figure 10.57). However, in some
areas of Earth, the pollution level is so high, that no Sun is seen at all. In the-
ory, you could then create whatever colour of sky you wish by putting parti-
cles in the atmosphere that are most suited to scatter that particular
wavelength of light.

1. Describe the scattering effect in terms of wavelength of light and
colours as seen by a person looking at the sky.

2. How could you use the scattering effect of light to measure the 
pollution count in the air?
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Fig.10.57 The colours of the sky

are caused by the scattering of light
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S c ience—Technology—S ociety—
Environmental  Interrelat ionships

Microwave Technology: Too Much Too Soon?

With the proliferation of cellphone technology, studies are abounding on
how microwaves affect human cells. The proximity of the phone to the head
poses possible problems with electromagnetic radiation penetrating our
skulls. Microwaves (with a frequency of 2450 MHz) break covalent bonds
when molecules absorb their energy. Many studies dispute whether
microwaves are capable of disrupting cellular activity through bond break-
ing because the microwave has an energy of 10�5 eV, whereas it takes 10 eV
to break a covalent bond.

How could such low energies cause any harm to DNA? Microwaves have
a heating effect. Polar molecules such as water (Figure STSE.10.2) rotate in
the electromagnetic field of the wave due to a net torque produced on the mol-
ecule. The angular momentum of the atoms breaks the bonds and releases the
energy in the form of heat, which is transferred to molecules in the form of
kinetic energy, thus raising the temperature of the material. Microwaves cook
food using this method. However, this effect is not the one that causes the
breaking of DNA bonds.

A current theory suggests that the energy of the microwave accumulates
in water molecules bound to the DNA (see Figure STSE.10.3). The disrup-
tion of the intermolecular hydrogen–oxygen bond creates oxygen radicals that
can dissociate DNA bonds. Thus, a smaller amount of microwave energy can
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damage living material than was earlier believed possible. If this theory is
true, then using even low-energy cellphones may be harmful in the long term.

There is a historical similarity developing between microwave studies
and studies of low-dose nuclear radiation on people. Where once only short-
term large doses were thought to be harmful, further studies done as a result
of data accumulated over the years have shown that the cumulative effect of
low doses is also dangerous.

Design a Study of  Societal  Impact

Cellphones use microwave technology. Since the phone piece has to be
positioned close to the ear, the energy of the microwave is inadver-
tently directed toward the brain. Research the current debate about the
possible harmful effects of using cellphones on a regular basis.

Design an Activ ity  To Evaluate

Intensity Drop of Radio Waves with Distance: Use a radar oscil-
lator and a receiver–amplifier to study the effect of distance between a
transmitter and a receiver on the strength of the signal. Use a log plot
(see Appendix I) of intensity versus distance to obtain a relationship
between the two. If radar equipment is not available, design a similar
experiment using light and a light meter.

Research and compare the variations in intensity of microwaves
emanating from cellphones. Design an experiment to determine
whether the medium through which waves travel affects the rate at
which their intensity decreases.

Bui ld a Struc ture

Polarization of Electromagnetic Waves: Use a radar-transmitting dipole
focused by a parabolic reflector to beam radio waves through a grid
made from wires to a receiver. The wires must run in one direction
only. Rotate the wire grid to different angles and measure the intensity
of the wave. Relate your findings to the polarization of light using
polarizing materials.
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S P E C I F I C  E X P E C TAT I O N SS U M M A R Y

You should be able to

Understand Basic Concepts:

Define and explain the concepts and units related
to the wave nature of light.
Describe the different types of waves and their
properties.
Explain dispersion, polarization, and refraction
in general wave terms.
Describe what the electromagnetic spectrum is
and provide specific examples of the different
types of radiation.
Describe simple harmonic motion and relate it to
the generation of electromagnetic radiation.
Provide examples of electromagnetic energy
interacting with matter.
Provide descriptions of how different types of
radiation are created.
Describe different methods of polarizing light.
Define and explain the terms “anisotropic prop-
erties,” “birefringence,” “plane,” and “circularly
polarized light.”

Develop Skills of Inquiry and Communication:

Use the phenomena of dispersion, polarization,
and refraction to develop the theoretical basis of
light behaving like a wave.
Make predictions based on the wave model of
light about what to expect in experiments involv-
ing polarization, dispersion, and refraction.
Predict what happens to light as it is transmitted
through more than two polarizing filters.
Perform experiments relating the wave model of
light to refraction, dispersion, and polarization.
Expand and develop new extensions to current
labs in studying the aspects of the wave nature 
of light.

Analyze and interpret experimental evidence
indicating that light has similar characteristics
and properties to those of mechanical waves 
and sound.
Describe how the conceptual models and theories
of light changed scientific thought.

Relating Science to Technology, Society 

and the Environment:

Describe how the conceptual models and 
theories of light have led to the development 
of new technologies.
Describe the contribution of physicists involved
in the area of electromagnetic radiation to
devices and instrumentation we use today.
Describe how researchers working on electro-
magnetic wave theory have influenced the scien-
tific processes and ideas of the era they lived in.
Describe and explain the design and operation of
the prism spectrometer.
Describe the applications of polarized light 
in areas such as the military, photography, 
and leisure.

Equations

T � �
1
f
� and f � �

T
1

�

v � �f and c � �f

y � A sin � or x � A cos �

n � �
v
c

�

n1 sin �1 � n2 sin �2

I1 � �
1
2

�I0

I2 � I1 cos2�

tan �B � �
n
n

2

1
�
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E X E RC I S E S

Conceptual Questions

1. Relate the motion of a spring vibrating back
and forth to the motion of a light wave.

2. Speculate as to what happens to the magnetic
field when the electric field of an electromag-
netic wave decreases.

3. Why is “visible light” a relative term?

4. Illustrate reflection of light using wavefronts.

5. Why can’t you put metallic objects in a
microwave oven?

6. In an arcade shooting gallery, a row of ducks
moves back and forth across the target area. In
any direction, the speed is constant. Explain
why this motion isn’t simple harmonic motion.

7. Galileo stated that simple harmonic motion is
uniform circular motion viewed edge-on.
Explain this statement (you may use diagrams
to help in the explanation).

8. Explain refraction in terms of electron
oscillators and speed changes.

9. Newton postulated that the refraction of light,
as it passed from air to a more optically dense
medium, was caused by gravity. In his opinion,
light was a particle that was drawn toward
the masses in the denser medium. Which
aspect of his theory of refraction is correct
and which aspect is incorrect for light enter-
ing the medium at an angle?

10. For an object to be invisible, what has to be
true about its refractive index?

11. What can you tell about optical densities,
using a laser?

12. Explain dispersion in terms of refraction.

13. Why is the prism shape optimal for creating
dispersion?

14. Can sound waves be polarized? Explain.

15. What is the difference between a polarizer
and an analyzer? What happens to light if 
the light path is reversed and it enters the
analyzer first?

16. Your friend plays a trick on you by rotating
the polarizing filters in your circular sun-
glasses 90°. What effects will you experience?

17. Does the effectiveness of Polaroid sunglasses
vary throughout the day? Explain.

18. Are Polaroid sunglasses effective on circularly
polarized light?

19. How could you use the scattering effect of light
to measure the pollution count in the air?

20. Summarize the wave effects of polarization,
scattering, and refraction. 

Problems 

10.2 Fundamental Wave Concepts

Fig.10.58

21. Copy the diagram of a wave into your note-
book (Figure 10.58). From measurements and
information taken directly from the diagram,
find the
a) wavelength.
b) amplitude.
c) period.
d) frequency.
e) the speed of the wave.

10
5

�5
�10

42 6 8 10 12 14 16

21 3 4 5 6 7 8

t (s)

A (cm)

d (m)
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22. A plastic fish at the end of a spring is pulled
down and released. If the fish moves up and
down 10 times in 3.2 s, find the period and
frequency of oscillation.

23. What is the period and frequency of a person’s
heart if it beats 72 times in one minute?

24. An electric shaver blade vibrates at 60 Hz.
What is its period of vibration?

25. A piston moves up and down in a car engine
150 times per minute (150 rpm). Find
a) the frequency in Hz (rps).
b) the period of vibration. 

26. In the olden days, there were three rotational
“speeds” used in playing vinyl records,
namely, 78 rpm, 45 rpm, and 33 �

1
3

� rpm.
Convert each of these values to Hz and then
find the period of rotation.

27. Find the displacement of a spring with a maxi-
mum amplitude of A � 1 from equilibrium for
phase angles of
a) 10°. b) 95°. c) �

3
4
�
� rad.   d) 2� rad.

28. For the SHM displacement of a spring, 
x � A cos �, the velocity of the wave varies
directly as (�sin �). Sketch the velocity and
displacement curves, drawing the velocity
wave under the displacement wave. Discuss
how the two curves are related in terms of 
the motion of the spring (compare maximum
displacement and velocity).

29. The acceleration of the spring varies directly
as (�cos �). Draw this wave under the two
waves you drew in problem 28. Discuss what
the object is doing in terms of its acceleration
and the motion of the spring (e.g., is it speed-
ing up, changing direction, or slowing down?).

Problems 30–33 pertain to Lab 10.1

30. Calculate the period for the following objects: 
a) A pendulum of length 2.1 m with a mass

of 1.3 kg at the end of it. 

b) A bungee cord jumper of mass 100 kg,
swinging from a cord 80 m long.

c) A pendant of mass 30 g, on a chain 15 cm
in length.

31. Repeat problem 30, only pretend that you 
are on 
a) the Moon, where the gravitational field

constant is 1.6 m/s2. 
b) Jupiter, where the gravitational field 

constant is 24.6 m/s2.

32. Calculate the period for the following: 
a) A spring with constant k � 23.4 N/m,

with a 0.30-kg mass hanging from it.
b) A spring pulled down 20 cm from equilib-

rium, with a spring constant of 20 N/m,
and a 0.40-kg mass hanging from it.

c) A spring on the Moon (g � 1.6 m/s2), 
with a spring constant of 2.0 N/cm, pulled
down 1.0 m, with a 0.21-kg mass hanging
from it.

33. a) Calculate the spring constant for a spring
with a hanging mass of 402 g and a 
frequency of 12 Hz.    

b) How much force is required to pull the
spring down 35 cm?

10.3 Electromagnetic Theory

34. For the following wavelengths of light, 
calculate the corresponding frequency.
a) Red: 650 nm
b) Orange: 600 nm
c) Yellow: 580 nm
d) Green: 520 nm
e) Blue: 475 nm
f) Violet: 400 nm

Note that these wavelengths are representative
values: each colour has a range of frequencies
associated with it.

35. Calculate the time it would take light leaving
Earth to reach
a) the Sun (1.49 � 1011 m away).
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b) the Moon (3.8 � 108 m away).
c) Pluto (5.8 � 1012 m away).
d) Mercury (9.1 � 1010 m away). 
Convert the times to minutes and hours 
as well.

36. Find the distance light travels in one year.
This distance is referred to as a light year. 

37. If we see light coming from a galaxy 100 light
years away, how long ago did the light leave
the galaxy?

38. A light bulb is turned on at one end of a foot-
ball stadium. How much time elapses before the
light reaches you? Assume a distance of 160 m.

39. Calculate the time it would take light to travel
around the world once (rEarth � 6.38 � 106 m).

40. UV light is invisible to the human eye, unless
we use special sensors. Given the range of
wavelengths of UV light (4 � 10�7 m to about
8 � 10�8 m), calculate the corresponding 
frequencies.

41. British Columbia is about a 50-h drive from
Southern Ontario. Assume a distance of 
4000 km. How much faster would it be to
travel this distance at the speed of light?

10.4 Electromagnetic Wave 
Phenomena: Refraction

42. For the following angles, find the sine of 
the angle.
a) 30°
b) 60°
c) 45°
d) 12.6°
e) 74.4°
f) 0°
g) 90°

43. For the following inverse sine values (sin�1),
find the corresponding angle.
a) 0.342
b) 0.643

c) 0.700
d) 0.333
e) 1.00

44. Calculate the speed of light in a material with
a refractive index of 0.90. Comment.

45. Find the angle of refraction for light travelling
from air to a medium (n � 1.98), if the angle
of incidence in air is 2.0 times the angle of
refraction. 

46. Calculate the index of refraction for a 
substance where the angle of incidence in
a material with n � 1.5 is 30° and the 
angle of refraction is 50°. Comment.

47. Sketch a light ray passing through a rectangular
piece of glass. The exiting ray should be parallel
to the incident ray. Draw the wavefronts.

48. Calculate the speed of light in
a) diamond (n � 2.42).
b) crown glass (n � 1.52).
c) water (n � 1.33).
d) ice (n � 1.30).

49. Calculate the relative index of refraction for
light travelling from the material to air for the
substances listed in problem 48. 

50. Given that the refractive index of water is
1.33, how long does it take light to travel from
one shore of a lake to the opposite shore if the
lake is 12 km long?

10.5 Electromagnetic Wave 
Phenomena: Polarization

51. A beam of light is reflected from a surface that
has an index of refraction of 1.42. If the reflected
beam is 100% polarized, what is the angle of
a) incidence?
b) refraction?
c) reflection?

52. What should be the Sun’s angle of elevation
over a lake in order for Polaroid sunglasses to
be the most effective?



53. What percentage of light intensity is transmitted
through a polarizer–analyzer combination if
the angle between their axes is
a) 30°?
b) 50°?
c) 70°?

54. Describe the image you would see through a
doubly refracting crystal. What would you see
if another crystal was placed on top of the
first crystal and rotated?

55. How can you determine if light is polarized,
unpolarized, or partially polarized?

56. Calculate the angle at which light reflected off
water is 100% polarized.

57. Calculate Brewster’s angle for the following
combination of mediums:
a) Air–water (nwater � 1.33)
b) Air–glass (nglass � 1.50)
c) Glass–water
d) Ice–water (nice � 1.30)

58. What is the refractive index of a medium that
has a Brewster’s angle of 60°?

59. Two Polaroids are crossed such that no light 
is transmitted. Now a third Polaroid is placed
in between and at an angle to the first two
Polaroids. Why is light once again transmitted?

60. Calculate the percentage of light travelling
through two crossed polarizing filters if the
angle between the polarizing directions is
a) 10°.
b) 30°.
c) 70°.
d) 85°.

61. At what angle should two polarizing filters 
be positioned to reduce the intensity of light
by 60%?

62. Three polarizing filters are placed on top of
one another. If the angle between the first
two filters is 60° and the angle between the
first and third filter is 70°, find the percent-
age of light exiting the last polarizing filter.
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Purpose
To investigate the factors affecting the period of
a pendulum undergoing simple harmonic motion

Equipment
Various lengths of string
Various masses
Retort stand plus clamp
Timing device (photo gates or stopwatch)
Log paper

Fig.Lab.10.1

Procedure A: Length Dependence
1. Set up the experiment as shown in Figure

Lab.10.1.
2. Draw back the pendulum from the zero

position and measure the amplitude, as
shown in Figure Lab.10.1.

3. Release the pendulum. Record the time it
takes to complete 10 cycles.

4. Repeat steps 1–3 for at least 5 more lengths
of string. Make sure that the pendulum is
drawn back the same distance each time.

Procedure B: Amplitude Dependence
1. Release the pendulum from a different

measured zero position. Measure the time it
takes to complete 10 cycles. 

2. Repeat step 1 using a different starting
point. Perform this step at least 6 times.

Procedure C: Mass Dependence
1. Release the pendulum with a known

recorded mass from a standard position rel-
ative to the zero position.

2. Record the time it takes to complete 10 cycles.
3. Repeat for 5 more different masses from the

same starting position.

Data
Record the data in chart form.

Analysis (see Appendix D for log analysis)
1. Calculate the period of oscillation for each trial.
2. Plot graphs of T versus length, T versus

amplitude, and T versus mass.
3. For any graph that is not a straight line, plot a

log T versus log length, amplitude, or mass
graph. If using log paper, then there is no need
to plot the logarithms of T or the other vari-
ables; use the values recorded in the chart.

4. From the log graph, determine the equation
of the line, hence the relationship between
T and the x-axis variable.

5. Assign tolerances (uncertainties) to your
time and length measurements.

Discussion 
1. Which factors affect period?
2. Derive as well as look up the derivation for

T � 2���
g
l
��1/2. State all your assumptions.

3. Does your experimental relationship match
the theoretical one? If not, why not?

4. Find the percent deviation between your
constant and 2�. Are the two values in
agreement? Compare them to your uncer-
tainties in measurements.

5. How does this experiment show simple har-
monic motion?

Conclusion 
Summarize your results and draw a conclusion
from your observations.

Extension

Purpose
To study the harmonic motion of a mass oscil-
lating on a spring

Procedure
1. Design an experiment to study the factors

affecting the period of oscillation of a mass
on a spring pulled down from an equilib-
rium position.

2. Experimentally determine the equation for
the period of an oscillating mass.

3. Derive or look up the theoretical equation for
the period of a mass oscillating on a spring.

4. Research the oscillator model for atoms.
Compare the qualitative features of the
oscillating spring and the oscillating atom
(or electron).
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Purpose
To study various aspects of polarization

Equipment
3 Polaroids per group
Calcite crystal
Crumpled cellophane
Thin piece of mica
Unstained sample slides 
Light microscope
Calculator
Lucite ruler with holes of various shapes (or a
broken piece of lucite ruler)

Procedure
Record your observations for the following:
1. Take two Polaroids and cross them. Hold

them up to the light and rotate one of the
Polaroids around.

2. Position two Polaroids in a manner such
that no light gets through. Put a third
Polaroid in between them at an angle to the
first two.

3. Place a calcite crystal on a page of written
text. Rotate the crystal around.

4. Place one Polaroid on top of the crystal.
5. Rotate the Polaroid over top of the crystal.
6. Sandwich the mica between the Polaroids,

hold them up to a light, and rotate the
Polaroids.

7. Repeat step 6 for the ruler piece.
8. Place a Polaroid on top of a calculator LCD

readout and rotate the Polaroid.
9. If it is a sunny day, look out the window

through a Polaroid. Either tilt your head or
rotate the Polaroid.

10. Stand to one side of a reflection in the win-
dow, such as that of the window in a class
door. Observe the reflection in the window.
Put a Polaroid in front of your eyes. Rotate
the filter and adjust your position slightly
until the image disappears.

11. Have a group member measure the angle
relative to a normal to the glass. Use a pro-
tractor and metre stick.

12. Sandwich the sample slide between two
Polaroids and view this combination under
the microscope. Rotate one Polaroid and
note any changes to the viewed object.

Analysis
Create a chart summarizing your results using
the following headings: Method of Polarization,
Expected Result, Viewed Result.

Discussion
1. Why does the intensity of the transmitted

light change as you rotate the Polaroids
around?

2. What law calculates the amount of light
transmitted?

3. Why does light pass through three Polaroids
positioned in the manner described in the
procedure, but no light passes through with
two Polaroids?

4. Why does the calcite crystal produce two
images such that one image rotates around
the other? Which image is produced by the
o ray?

5. Why does a Polaroid cut only one image at
a time from the calcite crystal?

6. Why are colours produced in the mica and
the LCD readout when a polarizing filter is
put on top of them?

7. How do you know where the stressed areas
or points are when viewing the broken
lucite ruler between polarizing filters?

8. Why does the blue sky change its tint with
polarizing filters and not with ordinary
sunglasses?

9. Find the refractive index of glass and calcu-
late Brewster’s angle. Compare it to the
measured angle from the experiment.

10. Did you see any colour changes in the
object you were looking at when one
Polaroid was rotated?

Conclusion
Summarize the characteristics of polarized light
and the phenomena that prove its existence.
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10.3 Malus’ Law

Purpose
To study the effect of angle on the intensity 
of transmitted light through a polarizer–
analyzer setup

Equipment
Light meter 
2 Polaroids mounted on stands. One Polaroid
mount should allow the Polaroid to rotate.
Protractor
Incandescent light source

Procedure A: Setting Polaroid
Transmission Directions
1. Place the two Polaroids together and rotate

one of them until the maximum amount of
light is transmitted. 

2. Mark each Polaroid with an arrow indicat-
ing its relative axis.

3. Set the Polaroids into the mounts such that
the polarizer direction is either vertical or
horizontal.

Procedure B: Proving Malus’ Law
1. Measure the light intensity of the source

directly and record the measurement.
2. Measure the light intensity of the light exiting

the polarizer and record the measurement.
3. Align the analyzer transmission direction

parallel to the polarizer. Measure and record
the light intensity exiting the analyzer.

4. Align the analyzer 90° to the polarizer.
Measure and record the light intensity exit-
ing the analyzer.

5. Align the analyzer parallel to the polarizer.
Measure the light intensity for the follow-
ing angles of the analyzer relative to the
polarizer: 10°, 30°, 60°, 80°, 120°, 160°.

Analysis
1. Calculate the expected transmitted intensity

for one Polaroid.
2. Calculate the expected transmitted intensities

for the angles in step 5 above.
3. Calculate percent deviations in all cases.

Discussion
1. By how much was the intensity of the light

decreased through one Polaroid? 
2. How much light was transmitted through

the polarizer–analyzer combination? 
3. Were your results consistent for the various

angle measurements? If not, provide a reason
for the discrepancy.

4. Within the deviations, did your results 
corroborate Malus’ law?

Conclusion
Summarize your findings and draw a conclusion
from your analysis.
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11 The Interaction of
Electromagnetic Waves

By the end of this chapter, you will be able to
• describe the wave theory of light using interference and diffraction phenomena
• compare single-slit, double-slit, and diffraction patterns of light
• use equations related to interference and diffraction of light
• describe how various technologies use the theories associated with interference

and diffraction of light
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11.4 Finding the Wavelength of Light

using Single Slits, Double Slits,

and Diffraction Gratings



11.1 Introduction

In Chapter 10, the wave nature of light was demonstrated through phe-
nomena such as refraction, polarization, and Maxwell’s electromagnetic
theorems. Two more aspects of the wave nature of electromagnetic radia-
tion will be covered in this chapter: interference and diffraction.

From our studies of sound in Grade 11, we have
already encountered these two aspects of waves. The
interference of waves produces the characteristic stand-
ing wave patterns seen in strings (Figure 11.1a). It is
also responsible for the variations in sound intensities
you hear when walking around a room in which two
speakers are sending out sound waves. In Figure 11.1b,
the loud areas are spots where the sound waves inter-
fere constructively, and in the quieter areas, the waves
interfere destructively.

Diffraction is the bending of waves. We are sur-
rounded by its effects. When we hear a person around
a corner or from behind an obstacle, the effect is caused
by waves bending around objects (Figure 11.2).

Fig.11.2 Waves diffract around obstacles
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We will use mechanical waves such as water waves to show the effects of
interference and diffraction. The next time you are in a pool or close to a
body of water, look for interference and diffraction patterns in the water
(see Figure 11.3a and Figure 11.3b).

1. Review the concepts of interference and diffraction of sound.
2. Find specific examples of interference and diffraction effects. Include

the production of different musical notes and the shapes of waves
produced by various instruments.

11.2 Interference Theory
Combining two or more waves to produce a single wave is called the princi-
ple of superposition. As the waves meet, they occupy the same space at the
same time. At this point, the amplitudes of the waves combine in one of two
ways, as illustrated in Figure 11.4. When the amplitudes are both in the same
direction, they are added together. This combination is called constructive
interference. When the amplitudes are in opposite directions, they cancel
out, or subtract. This combination is called destructive interference.
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Path Difference

In Figure 11.5, waves from two different sources travel a different distance
to the observer. The waves may arrive at the same point shifted relative to
one another. In Section 10.2, this effect was called a phase shift.

When the two waves add according to the principle of super-
position, a net shifting effect occurs. Figure 11.7 shows a series of
possible shifts. The possibilities for degrees of shifts are endless:
the wave can move an extra distance of 1.0�, 0.1�, 0.1101�, etc.
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The net shape of the resultant wave is complex in most cases. These com-
plexities balance out when there are large numbers of paired waves and we
see a net effect. In our study, we will focus on the two extremes of wave
interaction, constructive and destructive interference.

When two waves arrive at one spot in phase (shifted by m�, where m is
an integer), the net effect is constructive interference and a maximum
occurs (pl. maxima).

When two waves arrive out of phase (shifted by �m � �
1
2

���, where m is an
integer), the net effect is destructive interference and a minimum
occurs (pl. minima).

The term node is sometimes used to refer to a minimum.

Two-dimensional Cases

Interference is also visible in two dimensions. In Figures 11.8a and b, we use
the wavefront representation of waves (see Section 10.4) to see the effect of two
sources producing waves at the same time. Where two crests or two troughs
overlap, maxima occur. Where a crest and a trough overlap, minima occur.

1. Sketch the waves in Figure 11.7 into your notebook. Add the shifted
wave to the reference wave, one at a time, and draw the resultant wave.

2. Sketch a series of concentric half-circles from a point (source 1),
about 1 cm apart. From another point (source 2), about 1–2 cm
away from source 1, sketch another series of concentric half-circles.
Mark the maxima and minima. Find the central maximum and label
it zero. Number the maxima on either side of the central maximum.

3. Describe the shapes of the maxima and minima in problem 2.
Where do you see such patterns in everyday life?
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11.3 The Interference of Light

In the early 1800s, Thomas Young, an English scientist, performed a series
of experiments using light, which at the time could only be explained using
wave theory. Using two opaque cards, Young punched a small hole in one of
the cards, and two small pinholes placed close to each other in the other
card. The single-holed card was placed in the direct path of a light source,
with the double-holed card a certain distance behind it. A screen was then
placed behind the double-holed card. When light was shone on the cards, an
interference pattern was produced on the screen (see Figure 11.9). Using
the wave equation (v � �f), Young calculated a value for the wavelength of
light. The pattern in Figure 11.9 shows the characteristic light and dark
areas associated with wave interference.

Fig.11.10 A water-wave representation of Young’s experiment

Figure 11.11 shows a fringe pattern for an experiment using slits instead of
pinholes. Notice how the bands are numbered on each side from the central
maximum, denoted as a zero. The integers are called order numbers. Two
characteristics of this pattern are its regular spacing and the gradual drop-
off in intensity of light as the order number increases.
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Fig.11.9 The two openings act as 

in-phase (coherent) light sources.

The light from these sources travels

to the screen and interferes in a

manner similar to the water waves

illustrated in Figure 11.10. The single

opening collimates the original beam,

creating a sharper image.
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Fig.11.11 Intensities of the

double-slit pattern

CO H E R E N C E
In order to see the effects of interference, the light sources must be coherent. The waves of both
sources must maintain a constant phase relationship at all times. In the double-slit experiment, if
two incandescent or fluorescent light bulbs were used, there would be no interference pattern
because each light bulb emits light in random orientations. There is no stable relationship
between the two waves arriving at any given point. Therefore, they cannot establish either a max-
imum or a minimum. Coherence can be achieved by placing one light bulb behind a barrier with
two small openings. You could also use two lasers as long as one laser is tunable. The tunable
laser can be set to the same phase as the other laser.



11.4 Young’s Double-slit Equation

Figure 11.12b represents Young’s experiment viewed from above. The dis-
tance between slits is labeled d, and Pm is a point on any maximum, where
m is the order number. For example, a point on the second-order maximum
would be labeled P2. S1 and S2 represent the positions of the two slits and
hence the two light sources.

The distances from slit 1 and slit 2 to the point Pm are PmS1 and PmS2, respec-
tively. The path difference (the difference in length between the two distances)
is |PmS2 � PmS1|. Recall from Section 11.2 that for a maximum (constructive
interference), the path difference must be a whole number of wavelengths, m�,
where m is the order number and � is the wavelength. Therefore, for construc-
tive interference, the first equation for Young’s double-slit experiment is

m� � |PmS2 � PmS1|

e x a m p l e  1 Using the path-difference equation

Light from a red monochromatic source is shone through a pair of slits,
creating an interference pattern. At the second-order maximum, light
travels 0.800 000 1 m from slit 1 and 0.800 001 4 m from slit 2. Find the
wavelength of light used.

Solution and Connection to Theory

Given
m � 2 PmS1 � 0.800 000 1 m PmS2 � 0.800 001 4 m 

m� � |PmS2 – PmS1|

� ��
|PmS2 �

m
PmS1|
�

� �

� � �
1.3 �

2
10�6 m
�

� � 6.5 � 10�7 m or 650 nm

The wavelength of light used is 650 nm.

To derive the second and most common double-slit equation, we construct
an isosceles triangle, as in Figure 11.13. The base of the isosceles triangle is
the adjacent side of a right-angle triangle, where the hypotenuse is the dis-
tance between the midpoints of the two slits, d.

|0.800 001 4 m � 0.800 000 1 m|
����

2
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d

If the distance to the pattern at point Pm is much greater than the distance
d between the slits, then d is approximately the same length as the adjacent
side of the right-angle triangle in Figure 11.13. Thus,

sin � ��
path di

d
fference
� or d sin � � path difference

The angle � depends on the order number (i.e., the maximum we select): the
farther our chosen maximum is from the central maximum, the greater the
angle �. Therefore, the angle can be written as �m. For constructive inter-
ference, the path difference is m�, as we noted above. The second equation
for Young’s double-slit experiment is

m� � d sin �m

e x a m p l e  2 Young’s double-slit experiment calculation

A monochromatic source of 450 nm illuminates two slits that are 
3.0 � 10�6 m apart. Find the angle at which the first-order maximum
occurs. For a screen that is 1.0 m away from the slit, how far will the first-
order maximum be from the centre line?

Solution and Connection to Theory

Given
m � 1 d � 3.0 � 10�6 m � � 450 � 10�9 m � 4.50 � 10�7 m �1 � ?

m� � d sin �m

�m � sin�1 �
m
d
�
�
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Path difference � d sin �   

Pm

�
d

Isosceles triangle
�

�

Fig.11.13 Young’s double-slit equation

The approximation that the shaded 

triangle is a right-angle triangle is like

looking at railroad tracks into the

distance from d (Figure 11.14). The

rails appear to converge, even though

we know that they are parallel. In the

case of light interference, the light

rays actually converge, but extremely

slowly, so they appear parallel close

to the slits.

Fig.11.14



�1 � sin�1 �
1(4

3
.
.
5
0

0
�

�

1
1
0�

0
6

�7

m
m)

�

�1 � 8.6°

For the screen 1.0 m away, the distance from the centre line for the first-
order maximum is given by sin 8.6° � �

1.0
x1

m
� . Therefore, the maximum is

0.15 m or 15 cm from the centre line.

The third equation for Young’s double-slit experiment involves a linear
measurement from the centre of the pattern to the bright band at point Pm

(Figure 11.15). In this case, we have a triangle formed from the bright band
to the halfway point between the slits. From this triangle, sin �m � �

L
x

�. We
substitute this expression into m� � d sin �m to obtain the third equation
for Young’s double-slit experiment,

m� � �
d

L
xm
�

We have added a subscript m to the distance x because x depends on which
bright band is selected.

e x a m p l e  3 Using m� � �
d

L

xm
�

A monochromatic light source of wavelength 450 nm illuminates two
slits that are 6.0 � 10�6 m apart. Find the distance to the third-order max-
imum if the screen is 1.3 m away.

Solution and Connection to Theory

Given
m � 3 d � 6.0 � 10�6 m � � 4.50 � 10�7 m L � 1.3 m x3 � ?

We can approximate L to be simply 1.3 m because the slit separation
d � 6.0 � 10�6 m is insignificant compared to the perpendicular distance
to the screen. Using Young’s third equation

m� � �
d

L
xm
�

and substituting for the third maximum, we obtain

3� � �
d
L
x3
�
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L
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Pm

Centre of maximum
m � 0

Fig.11.15 An alternative double-slit

equation: xm is the distance from the

central maximum to the mth maximum.

The angle �m in Figure 11.15 is the

same as � in Figure 11.13. Using

geometry, can you prove that they

are equal?



Isolating x3 and substituting the given values,

x3 � �
3�

d
L
�

x3 �

x3 � 0.29 m � 29 cm

This distance is equivalent to an angle of 13°, where � � sin�1��01
.2
.3

9
m
m

��.

If we wish to solve the problem using nodal lines (minima) instead of
maxima, then the path difference must be an integral number of half-
wavelengths, or �m � �

1
2

���, instead of m�.

e x a m p l e  4 Using minima instead of maxima

Find the wavelength of light used if the second-order minimum is located
21 cm from the central maximum on a screen 90 cm away. The separa-
tion between the double slits is 6.0 � 10�6 m.

Solution and Connection to Theory

Given
m � 2 x2 � 21 cm � 0.21 m d � 6.0 � 10�6 m 
L � 90 cm � 0.90 m � � ?

Because we wish to find the minimum, we use the equation

(m � �
1
2

�)� � �
d

L
xm
�

Isolating � and substituting the given values, we obtain

� �

� �

� � 5.6 � 10�7 m or 560 nm

The wavelength of light is 560 nm.

(6.0 � 10�6 m)(0.21 m)
���

(0.90 m)�2 + �
1
2

��

dxm
��
L�m � �

1
2

��

3(4.50 � 10�7 m)(1.3 m)
���

6.0 � 10�6 m
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m � 0

x1

	x

x2

x3

x4

  5 4 3 2 1    1 2 3 4 5

	x

	x

Fig.11.16 The spacing in a 

double-slit pattern is constant

If we choose the third and fourth

lines corresponding to x3 and x4,

then their difference, x4 � x3, is 

the distance between them, 	x.

Fig.11.17 A double slit separates

white light into its component colours 

One of the characteristics of double-slit patterns is the equal spacing
between the bands. The distance between any two consecutive bands can be
obtained by using the equation

m� � �
d

L
xm
�

If we choose the mth and (m � 1)st lines corresponding to the distances xm

and xm�1, respectively, between two maxima (or two minima because the
spacing in a pattern is regular) and subtract the distance between them, we
obtain the distance between two consecutive lines, 	x.

Thus,

(m � 1)� – m� � �
dx

L
m�1
� � �

d
L
xm
�

m� � � – m� � ��
L
d

��(xm�1 � xm)

which simplifies to

� � �
d	

L
x

�

From this equation, we can see that the spacing, 	x, is proportional to the
wavelength of light used. Thus, bands of red light will be spaced farther
apart than bands of violet light. If we shine white light through a double slit,
the slit separates the different colours of light and we observe the pattern
shown in Figure 11.17.

e x a m p l e  5 Checking the spacing of different colours

passing through a double slit

Compare the band-spacing patterns of red light (650 nm) to those of violet
light (450 nm) when both colours of light are shone through slits sepa-
rated by 6.0 
m from a distance of 1.0 m.

Solution and Connection to Theory

Given
�1 � 6.50 � 10�7 m �2 � 4.50 � 10�7 m d � 6.0 � 10�6 m 	x � ?

For red light,

� � �
d	

L
x

�

To calculate the band spacing, we isolate 	x and substitute the given values:

	x � �
L
d
�
�



	x �

	x � 0.11 m

For violet light,

� � �
d	

L
x

�

	x � �
L
d
�
�

	x �

	x � 0.08 m

The spacing between red bands is 11 cm, whereas the violet bands are
only 8 cm apart.

Figure 11.18 summarizes Young’s double-slit equations.

Fig.11.18 Summary of Double-slit Equations

1. When white light is shone through a double slit, which colour has
the greatest spacing, 	x? Which colour of light occurs first after the
central maximum?

2. Calculate the wavelength of light used in a double-slit experiment
with a slit separation of 5.6 
m and a spacing of 28 cm between
three light bands if the screen is 1.1 m away.

3. In problem 2, what would be the spacing (	x) for light of wave-
length 510 nm?

4. In problem 2, what is the distance from the centre to the third 
maximum?

(1.0 m)(4.50 � 10�7 m)
���

6.0 � 10�6 m

(1.0 m)(6.50 � 10�7 m)
���

6.0 � 10�6 m
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11.5 Interferometers

In Section 11.4, we learned that because of the wave nature of light, two
light rays travelling different distances can interfere to produce characteris-
tic dark and bright bands. The magnitudes of their path differences are
approximately 10�7 m, or the range of visible light (400 nm–700 nm). Based
on this principle, we should be able to measure the sizes of objects with
lengths in this range.

In 1881, Albert A. Michelson used the interference properties of light to
create such a measuring instrument, the interferometer. Figure 11.19
shows a simplified schematic representation of his instrument.

Light of unknown wavelength leaves the source, S, and travels to a fixed
mirror, M1, through a beam splitter. The beam splitter is a piece of glass with
a thin silver coating. The thin coating causes some of the light to be trans-
mitted and the rest of it to be reflected; that is, it splits the original beam into
two beams. The reflected beam then hits the adjustable mirror, M2, and reflects
back through the beam splitter to the observer, O. The light transmitted
through the beam splitter reflects off M1 and the beam splitter to the
observer. The two beams combine in a telescope, where the observer can
then compare the path SM1O to the path SM2O. From Section 11.4, we
found that if the paths differ by m�, we see a bright band (a maximum) and
if the paths differ by �m � �

1
2

���, we observe a dark band (a minimum). By
shifting the adjustable mirror, M2, we can shift the interference pattern we
observe. By counting the number of maxima we see, we can obtain an
extremely precise measurement of the distance mirror M2 has moved. 
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Fig.11.19 The optics of an interferometer



e x a m p l e  6 The interferometer

The adjustable mirror of an interferometer is moved back
a distance of �

�

4
�. What pattern is observed in the telescope?

Solution and Connection to Theory

From Figure 11.20, we can see that the light now travels
an extra �

�

4
� twice between the original and second positions

of M2. The extra distance produces a total shift of �
�

2
�, or

destructive interference and a minimum. The observer
therefore sees a dark band and the fringe pattern moves
by half a band.

Extension: Measuring Thickness 
using an Interferometer

If a piece of material with refractive index nm and thickness
t is placed into an interferometer, the number of wave-
lengths of light in the material is �

�

2

m

t
�. From Figure 11.21, we

can see that light travels through the material twice. The
number of wavelengths of light in a comparable amount of
air is �

�

2

a

t

ir
�. We can omit the subscript “air” because the wave-

length in air is the standard wavelength. Therefore, we can
write the expression as �

2
�

t
�. The path difference (in wave-

lengths) caused by inserting the material can be calculated
using the expression �

�

2

m

t
� � �

2
�

t
�. From the sidebar (Adjusted

Wavelength), we know that �m � �
n
�

m
�. From this equation, we

can calculate the path difference, 	PD, in terms of wave-
length, which allows us to accurately measure the thickness
of a material:

	PD � ��
2
�

t
��(nm � 1)

When measuring the thickness of a material using an
interferometer, the observer counts the shift in the number
of light or dark bands when the material is inserted, and
compares it with the original pattern before the material was
inserted. The shift corresponds to the path difference in
terms of the number of wavelengths. If the refractive index
of the material is known, its thickness can be calculated
using the path difference equation. Interferometers are used
to obtain extremely precise measurements of properties of
materials related to their molecular and atomic structures.
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n � �
v
c

� (where c is the speed of light in vacuum and v is

the speed of light in a medium) and v � �f. The frequency 

of light doesn’t change across a medium boundary, so 

n � �
�

�

m

f
f

� or �m � �
�

n
�.



Holography

A special case of interference is the production of three-dimensional
photographs or holograms. Figure 11.22 illustrates an arrangement
for producing holograms. A laser beam is directed at a half-silvered
mirror, which splits it into two beams. One beam illuminates the
object, reflecting off it toward the photographic plate. The other
beam is transmitted through the mirror to the photographic plate.
Because laser light is coherent, the phase relationship between the
two beams remains constant. Coherence allows the two beams to
create a complex interference pattern when they combine. This
pattern is recorded on the film. The principle of interference is
similar to that described in Section 11.4.

A laser is a device that produces a coherent light beam. Inside
the laser, electrons in gas molecules are excited to high-energy
states. As they come back to ground state, they emit light. The
light bounces back and forth between two mirrors in the reso-
nance cavity of the laser, creating constructive interference and
amplifying the beam. The processes of excitation and emission are
enhanced by stimulating the electrons to higher-energy states,
causing the rapid build-up of light. The mirror at one end of the
laser is partially transmitting, which allows part of the beam to
escape (see Figure 11.23).

Notice in Figure 11.24 that, when viewing the holographic film directly,
only a fancy interference pattern is observed. In order to see the image, we
must use a laser beam to illuminate the plate. Laser light is shone through
the interference pattern, which acts similarly to a diffraction grating
(described in Section 11.9). The pattern on the film splits the light according
to the spacing in the interference pattern. The image forms at the points of
intersection of the emerging light rays (see Figure 11.25).
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Because the interference pattern was created from rays
of light travelling different distances to the plate, the
information from both beams is contained in the holo-
gram. Thus, depending on your perspective, you’ll see a
different image. Different angles produce different
views (see Figure 11.26).

1. Derive the equation 	PD � ��
2
�

t
��(nm � 1), where 	PD is the path

difference in wavelengths.
2. If a shift of three bright bands is noticed when glass with refractive

index 1.52 is inserted into an interferometer, find its thickness
when viewed with light of wavelength 624 nm.

The Length of the Standard Metre

Michelson determined the length of the standard metre (the distance
between two lines scratched on a platinum–iridium bar, kept at 0°C and
stored at Sèvres, near Paris, France) to be 1 553 163.5 wavelengths of red
cadmium light. In 1907, Michelson was awarded the Nobel Prize in
physics for this measurement. Scientists saw the advantage of having a
length standard not based on a solid object; there was no fear that the
object, and therefore the standard, could be destroyed. A definition of
length based on a wavelength was also portable, and thus available to
everyone around the world. In 1961, the platinum–iridium bar was
replaced by a multiple of the wavelength of the orange-red light of
krypton-86 (1 650 763.73 wavelengths).

3. Research the history of the metre from the platinum–iridium bar to
its current standard definition in terms of the speed of light.

4. Research how holograms, including those on credit cards, are pro-
duced. (They can be viewed with regular white light.) Why are they
included on the credit card?
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5. Research how laser scanners are used for product identification
(such as checkout counters in stores).

6. Research how and why holograms are used in fighter planes (pilots
view the controls on the panel beyond the windshield of the plane).
Some car manufacturers have experimented with this technology.
Why hasn’t it been adopted?

7. Research other uses of the laser, such as in eye surgery (Figure 11.27).

11.6 Thin-film Interference

The colours we see on soap bubbles and films, as well as on gas and oil
slicks on water, are caused by the interference of light (Figure 11.28). The
film’s thickness and the refractive index of the medium play important roles
in causing this effect.

Path Difference Effect

Light hits the surface of the film and partially reflects. It also partially enters
the film, reflects off the lower surface, comes out again, and combines with
the light reflected from the upper surface to produce interference. The path
difference in the film in terms of number of wavelengths determines the rel-
ative phase difference between the two waves. For example, consider the sit-
uation in Figure 11.29. If the thickness of the film is 2�, then the total path
the light travels in the film is 4�. The light wave looks the same as the orig-
inal wave and should interfere constructively. Similarly, if the total path dif-
ference is a multiple of �

�

2
�, destructive interference is produced. Since each

wavelength obeys these rules, the thickness of the film will cause construc-
tive interference for some colours and destructive interference for others.

In the cases we have just described, we must remember to compensate
for the refractive index when using the wavelength of light. The adjustment
to the wavelength is given by �medium � �nm

�

e

a

d

i

i

r

um
�.
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The Refractive Index Effect

The other effect that plays a role in thin-film interference has to do with 
the incident medium’s refractive index compared to the refractive index of
the soap or oil slicks.

When light travels from a less optically dense to a more optically dense
medium, the reflected ray undergoes a phase shift equivalent to �

�

2
�. When

light travels from a more optically dense to a less optically dense medium,
no phase shift occurs in the reflected wave.

We have seen this effect when studying wave motion using springs in Grade 11.
When a pulse on a spring reflects from a fixed end, it inverts (flips over).
(See Figure 11.30a.) By analogy, a fixed end for a spring represents a more
optically dense medium for light. When light passes from a less optically
dense to a more optically dense medium, its phase shifts by 180° (it flips
over). When the spring is attached to another spring or string that is free to
move (i.e., a free end), the pulse doesn’t flip over, as in Figure 11.30b. By
analogy, a free end for light represents a less optically dense medium. When
light passes from a more optically dense to a less optically dense medium,
no phase shift occurs (i.e., the light wave doesn’t flip over).

Combining the Effects

When a phase-shifted light ray combines with a non-phase-shifted light ray,
net interference occurs. If the net effect is constructive interference, a bright
colour is seen. If the net effect is destructive interference, no colour is seen.
We also need to remember that the wavelength of light changes when it
enters a new medium.
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e x a m p l e  7 Film thickness in wavelengths

A film of gasoline of thickness 510 nm formed on water is illuminated by
light of wavelength 476 nm. The refractive index of gasoline is 1.40.

a) How thick is the film, in wavelengths of light?
b) How many wavelengths does the light travel in the film?
c) Is a bright band or a dark band produced?

Solution and Connection to Theory

Given
n1 � 1.00 (air) n2 � 1.40 (gasoline) n3 � 1.33 (water), 
�air � 476 nm � 4.76 � 10�7 m �gas � ? twavelengths � ?

a) First we calculate the wavelength of light in gasoline.

�gas � �
�

n
a

2

ir
�

�gas � �
4.76 �

1.4
1
0
0�7 m
�

�gas � 3.40 � 10�7 m � 340 nm

The thickness of the gasoline film is 510 nm. Therefore, the number of
wavelengths of light in the gasoline medium � �

3
5
4
10

0
n
n

m
m

� � 1.5.
b) Because the path of light in the film is twice the thickness of the film

(i.e., light enters the film and is reflected at the bottom of the film), the
total number of wavelengths travelled by the light is 2(1.5�) � 3.0�.
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nair � 1.00 

ngas � 1.40 

nwater � 1.33

Incident
light

1
2

t � 340 nm

Fig.11.31

From the wave equation, c � f�, the

frequency of the light is constant and

v1 � c � f�1

v2 � f�2

Dividing the first equation by the

second equation,

�
v

c

2

� � �
f

f

�

�1

2

�

�
v

c

2

� � �
�

�1

2

�

but �
v

c

2

� � n2

so n2 � �
�

�1

2

�

where v2 is the speed of light in the

new medium, �1 and �2 are the wave-

lengths of light in air and the second

medium, respectively, and n2 is the

index of refraction of the material.
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c) The light wave reflects off a gasoline–water boundary at the bottom of the
thin film. Since this reflection is between a more optically dense and a less
optically dense medium, no phase shift occurs. However, the incident
light that reflects off the surface of the gas film undergoes a �

�

2
� shift because

it is going from a less optically dense medium (air) to a more optically
dense medium (gas). The �

�

2
� shift from the top of the film combines with

the 3� shift from the bottom of the film to produce a dark band.

For constructive interference in Example 7, we would need a film thickness
that, when doubled (because the light travels down and back up through the
material), is an odd number of half-wavelengths of light. Thus, the minimum
film thickness is �

�

4
� because when doubled, it becomes �

�

2
�. In Example 7, this

thickness is �
1
4

� � 5.10 � 10�7 m � 1.28 � 10�8 m. The two waves are now
both shifted by �

�

2
� and will interfere constructively.

Figure 11.32 summarizes how to solve problems involving interference
of light.

Fig.11.32 Method of Solving Thin-film Problems
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Air Wedges
We can measure the thickness of a thin object (like a strand of hair) by
using an air wedge. 

Fig.11.33b An air wedge 

In Figure 11.33a, a hair is sandwiched between two glass plates, at one
end. Consequently, the air between the plates forms a wedge shape
(Figure 11.33b). When light enters the wedge, it travels different path-
lengths, depending on the thickness of the air wedge. When the wedge
is viewed from above using monochromatic light, a series of dark and
light bands appears. The light bands occur at points of constructive
interference where light travels a net multiple of half-wavelengths in
relation to the thickness of the air wedge, such that 2t � �m � �

1
2

���. The
dark bands occur at points of destructive interference where light trav-
els a net multiple of whole wavelengths in relation to the wedge’s
thickness such that 2t � m�, where t represents the thickness of the
air wedge and m is the number of bands encountered at that point. If
we know the number of bands and the wavelength of light, we can
determine the thickness of the hair.

1. Explain how the two equations were obtained.
2. Find the thickness of a strand of hair if 22 dark bands were seen

using light of wavelength 625 nm.
3. Find the total number of bright bands seen if a sheet of paper

1.75 � 10�5 m thick is wedged between two glass plates.
4. Research how Newton’s rings are formed (shown in Figure 11.34).

Explain their appearance.
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Non-reflective Coatings
Non-reflective plastic (many are scratch-resistant) coatings are evapo-
rated onto the lenses of eyeglasses and camera lenses. The index of
refraction of the non-reflective coating is less than that of the lens, so
both medium surfaces reflect light with a phase change. The thickness
of the coating is �

�

4
�, so the path difference is �

�

2
�.

5. How does the non-reflective coating eliminate reflection from a lens?
6. Research multiple lens coatings and their effectiveness. Which

colours do these coatings affect the most?

11.7 Diffraction
Shadows form because light travels in straight lines, the property called the
rectilinear propagation of light. Yet, when a solid, thin object is illuminated
by a monochromatic source of light, instead of producing the expected outline
of the object, a shadow with a series of fringes appears (see Figure 11.36).

In 1666, Francesco Grimaldi at the University of Bologna postulated
that the fringes were caused by light bending around corners, much as
sound waves do. He called this effect diffraction. In the 1800s, French
mathematician Augustin Fresnel suggested that light diffraction isn’t easily
seen because it depends on the ratio of the wavelength of the wave to the
width of the opening it passes through. Simon Poisson, another famous
French mathematician, objected to Fresnel’s idea. Poisson argued that if the
wave theory of light was correct, then a bright spot should be seen behind
an opaque object in the centre of the shadow region. Fresnel set the exper-
iment up, and to the disbelief of many, a bright spot was indeed observed
(see Figure 11.37). This experiment confirmed Fresnel’s theory and there-
fore the wave nature of light.

There is a somewhat arbitrary distinction between interference and
diffraction. We usually define interference as a superposition effect orig-
inating from two or more discrete sources of waves. Diffraction, on the
other hand, is the interference effect from waves originating from a single
source or wavefront.

Wavelength Dependence

When water waves bend around solid obstacles, the amount of bending
depends on the size of the object. In Figure 11.38, observe how the amount
of bending increases as the size of the object gets closer to the wavelength
of the wave. Similarly, sound waves can bend around corners and large
objects such as trees because their wavelengths are comparable to the size of
these objects.
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are caused by the diffraction of light

Fig.11.35 Non-reflective coatings
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Because water waves and sound waves are macroscopic, we can easily
observe their diffraction directly. Light waves, on the other hand, are micro-
scopic; light has a wavelength in the range of 10�7 m. The only way we can
observe the diffraction of light waves is through experimentation. Figure 11.39
shows a series of progressively narrower slits through which a parallel beam of
monochromatic light is shone. As the slit narrows, it approaches the wave-
length of the light, creating a diffraction pattern similar to that observed with
long water waves and sound waves diffracting around obstacles. Diffraction is
one of the most convincing arguments for the wave theory of light.

1. Find examples of the diffraction of light.
2. How does diffraction support the wave theory of light?

11.8 Single-slit Diffraction

When shining light through a single slit (opening) comparable in size to the
wavelength of light, the pattern illustrated in Figure 11.40 is seen. The main
features of the diffraction pattern are shown in Figure 11.41. 
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They are summarized as follows:
1) The central maximum has a width double the size of a single maximum.
2) Away from the centre, the bright and dark bands are equally spaced.
3) The intensity of bright bands decreases rapidly the farther away they are

from the slit.

The Single-slit Equation

In order to obtain a quantitative expression
for the behaviour of light passing through a
single slit, let’s consider the circular wave-
front shown in Figure 11.42a. According to
Christian Huygens, we can consider a wave-
front to be made up of a series of points,
where each point acts like a new source of
circular waves. These new sources produce a
series of wavelets (new waves) that move
forward. The whole wave then advances to a
surface created by the overlap of all the
Huygens wavefronts. Huygens’ wavelets are
illustrated in Figure 11.42b.

Similarly, when a light beam is shone
through a slit, the waves that pass through the
slit are tiny new sources of light that generate
wavelets. Figure 11.43 illustrates the propaga-
tion directions (rays) of the wavelets.
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Fig.11.40 Single-slit diffraction Fig.11.41 The characteristics of single-slit diffraction

Fraunhofer/Fresnel Diffraction

When the screen is far away from the

slit, the rays hitting the screen are

effectively parallel and the effect is

referred to as a Fraunhofer diffrac-

tion. These waves appear as plane

waves. If the screen is close to the slit,

the curvature of the wavefronts

becomes significant and the waves hit

the screen obliquely. In this case, the

term Fresnel diffraction is used. We

can state that Fresnel diffraction is the

general case. As the screen is moved

farther away (lenses can be used to

create the same effect), the effect

changes to Fraunhofer diffraction.

Wavelets

Original source

“New” sources
of waves

Wavefronts spreading out from a disturbance

New wavefront
(moves wave)

(a)

(b)

Fig.11.42 Huygens’ principle



In Figure 11.43, the light rays travel in phase in the same direction to the
screen. Therefore, they interfere constructively, producing the bright double
maximum on the screen.

In Figure 11.44, let’s select an angle, �1, such that the top ray travels a
path difference of � through the slit. Then, the path difference of the ray
passing through the centre of the slit is �

�

2
�. When the central ray and the bot-

tom ray combine, they cancel each other out to produce a minimum. The
same is true of the top and central rays. Similarly for any pair of rays equi-
distant from the central ray passing through the slit. If a ray passing through
the bottom half of the slit combines with the corresponding ray passing
through the top half of the slit, their path difference is �

�

2
� and they cancel

each other out. The net effect is a minimum, or destructive interference at
the point P1 on the screen.

From Figure 11.45, we can derive the equation for the minimum at
point P1:

� � w sin �1

where w is the width of the slit, � is the wavelength of the light, and �1 is
the angle of the path difference.
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Fig.11.44 Condition for destructive interference Fig.11.45 The single-slit equation
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�
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�
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far away

w
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third
of rays

Bottom
third
of rays

In Figure 11.46, a wider angle, �2, gives the top ray and the bottom ray
a path difference of 2�. Notice in this case that corresponding ray pairs on
either side of the central ray have path differences of �

�

2
�. Once again, even

with a larger angle, all rays through the slit cancel to produce another mini-
mum (destructive interference). From Figure 11.46, we generate the equation

sin �2 � �
2
w
�
�

or

2� � w sin �2

In general, we can state that when the path difference is an even-number
multiple of �

�

2
�, the result is a minimum, and the single-slit equation for

destructive interference is

m� � w sin �m

where m � 1, 2, 3, …

Now, let’s consider Figure 11.47, where the path difference between the
top and bottom rays is �

3
2
�
�. If we pair rays from the bottom third of the slit

with the rays from the middle third of the slit, each pair cancels out because
their phases differ by a half-wavelength, as we saw in Figure 11.44. However,
if the rays passing through the bottom two-thirds of the slit cancel, then the
rays passing through the top one-third of the slit don’t have any matching
pairs left to cancel with. These rays reach the screen as a maximum. But since
only a fraction of the light passing through the slit reaches the screen, its
intensity is reduced. From the shaded triangle in Figure 11.47, we can derive
the equation

�
3
2
�
� � w sin �1

for the first-order maximum (excluding the central maximum). If we
increase the angle from the slit, we can create a path difference between the
top and bottom rays of �

5
2
�
�, �

7
2
�
�, �

9
2
�
� … to (m � �

1
2

�)�, where m  I. When the path
difference is an odd-number multiple of �

�

2
�, the rays passing through the slit

don’t all cancel out with corresponding rays that are shifted by �
�

2
�, producing

higher-order maxima. In general, the single-slit equation for constructive
interference is

(m � �
1
2

�)� � w sin �m

Using our knowledge of constructive and destructive interference, we can
now understand why there is a bright spot behind the solid object illuminated
by a point source (Poisson’s bright spot in Figure 11.37). The light diffracts
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around the edges of the opaque object. At the bright spot in the centre, all the
paths of light are the same length, causing constructive interference. This
phenomenon is an example of Fresnel diffraction, and a strong argument for
the wave theory of light.

Figure 11.48 summarizes the difference between interference and 
diffraction.

Fig.11.48 Interference versus Diffraction

e x a m p l e  8 Calculating the angle of the second 

nodal line for a single slit

A slit with a width of 2.0 � 10�5 m is illuminated by red light of wave-
length 620 nm. At what angle does the third-order minimum occur?

Solution and Connection to Theory

Given
w � 2.0 � 10�5 m m � 3 � � 620 nm � 6.20 � 10�7 m �3 � ?

m� � w sin �m

sin �m � �
m
w
�
�

�3 � sin�1 �
3(6

2
.
.
2
0

0
�

�

1
1
0�

0
5

�7

m
m)

�

�3 � 5.3°

If we wish to solve for a maximum instead of a minimum, we need only
change m� to �m � �

1
2

���.
The effects of light diffraction are not commonly seen by us because they

are only present in situations where the size of the obstacle or aperture is com-
parable to the wavelength of light (too small for us to notice).
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More Single-slit Equations (but they should look familiar)

If we wish to calculate distances from the centre of the pattern, we use the
diagram in Figure 11.49. In Figure 11.49, consider the distance L (slit to
screen) to be the same for any point on the pattern. This statement is true
if L >> w.

From Figure 11.49, �
x
L

m
� � sin �. We know that for destructive interference,

m� � w sin �m. When we combine these two equations, we obtain an alter-
native form of the single-slit equation for destructive interference:

m� � �
w

L
xm
�

Similarly,

�m � �
1
2

��� � �
w

L
xm
�

is an alternative form of the single-slit equation for constructive
interference, where m is the order number of the dark and light bands,
respectively, w is the width of the slit, x is the width of the band, and L is
the distance from the slit to the screen.
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If x �� L, then L � L�

and tan � � sin �  

Fig.11.50 The approximation used

in the single-slit equation

If L is the perpendicular distance,

then tan � � sin � because the angle

is small. (Try this approximation for

an angle of 5°.) Therefore, a small

shift in angle has no effect on L.

Example:

If x � 0.030 m and L � 1.50 m,

then tan�1 �
0

1

.0

.5

3

0

0

m

m
� � 1.146°

Thus, L� � �
sin 1

x

.146°
�

L� � 1.49998 m � 1.50 m

Therefore, L � L�.



e x a m p l e  9 Using the alternative form

of the single-slit equation

A single slit of width 9.5 � 10�6 m is illuminated by a monochromatic
source of light of � � 640 nm. If the screen is 1.3 m away, find the dis-
tance from the centre of the pattern to the first-order minimum.

Solution and Connection to Theory

Given
m � 1 L � 1.3 m w � 9.5 � 10�6 m
� � 640 nm � 6.40 � 10�7 m w � ?

Because we need to find the distance to the minimum, we use the equation

m� � �
w

L
xm
�

For a first-order minimum,

� � �
w

L
x1
�

x1 � �
L
w
�
�

x1 �

x1 � 8.8 � 10�2 m 

The first minimum is 8.8 cm from the centre of the central maximum.

e x a m p l e  1 0 The width of the central maximum

From Example 9, what is the width of the central maximum?

Solution and Connection to Theory

In Figure 11.49, we can see that the central maximum is framed by the
first-order minima. From the last example, we calculated the first-order
minimum to be 8.8 cm from the centre of the pattern, so the width of the
central maximum must be two times 8.8 cm or 17.6 cm.

To calculate the angle subtended by the central maximum, we can use the
equation m� � w sin �m and set m � 1. This equation gives us the angle sub-
tended by half the central maximum. To find the whole angle, we multiply
our answer by two. From Example 10, the total angle turns out to be 7.7°.
Try to obtain this value yourself.

(1.3 m)(6.40 � 10�7 m)
���

9.5 � 10�6 m
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Figure 11.51 summarizes the main concepts of single-slit diffraction.

Fig.11.51 Summary of Single-slit Diffraction

Resolution

When we view two objects that are close together from far away (like two
stars or two letters on a distant sign), sometimes they look like one object.
As we move closer or as the objects move farther apart, it becomes easier to
distinguish them (see Figure 11.52a). The apparent overlapping between
object images is caused by diffraction patterns from each object overlapping
and creating a smeared image. Satellite photos rely on computerized cleaning
to remove such diffraction effects (Figure 11.52b).

Lord Rayleigh (1842–1919) suggested that two images are resolvable if
the central maximum of one image lies on the first-order minimum of the
other image. This concept is known as the Rayleigh criterion. The
Rayleigh criterion can be calculated using the equation 

�R � �
1.2

d
2�
�

where d is the diameter of a circular aperture and �R is the minimum angle,
measured in radians, between the two objects that are at the Rayleigh crite-
rion. Objects separated by this angle are resolvable. Although this definition
is only an approximation, it is still useful in determining the limits of reso-
lution in optical devices, including the eye.
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Fig.11.53 summarizes the difference between single- and double-slit diffraction.

Fig.11.53 Comparison of Single- and Double-slit Patterns
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1. A single slit of width 5.5 � 10�6 m is illuminated by light of wave-
length 550 nm. If the screen is 1.10 m away, find
a) the angle of the second-order minimum.
b) the distance from the centre of the pattern to the second-order

minimum.
2. For problem 1 above, what is the width of the central maximum in

a) centimetres?
b) degrees?

3. What is the spacing between consecutive maxima for the slit in
problem 1?

4. What other factors can affect the resolvability between two objects?
5. In designing a telescope, use the words “largest,” “smallest,” “wave-

length,” and “aperture” to describe the optimum conditions for
resolvability.

6. a) If �R for the Hubble Telescope is 1 � 10�7 rad and its collector
mirror is 2.4 m in diameter, what wavelength of light and what
type of light does the telescope use?

b) If two objects are 1.0 mm apart, how far away can you observe
them using the value of the resolvability in part a) above?

11.9 The Diffraction Grating
By measuring spacings (distances between dark and light bands) in an inter-
ference or diffraction pattern, we have learned that we can calculate the
wavelength of light. If we could sharpen the distinction between the light
and dark areas in an interference pattern, we could measure the spacings
between them more accurately. We do so by increasing the number of slits.
The effect of shining light through 20 000 slits (in one centimetre!) produces
sharper and more intense maxima. A comparison of double- and multiple-slit
patterns is illustrated in Figure 11.54. The term used for an arrangement of
multiple-spaced parallel slits is a diffraction grating.
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Transmission gratings are the kinds

of gratings referred to in this chapter.

If patterns are formed by reflection

from a series of ruled grooves (like

off a CD), the grating is referred to

as a reflection grating, shown in

Figure 11.55.
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(multiple-slit pattern)

Fig.11.54 A multiple-slit pattern is

sharper than a double-slit pattern

Fig.11.55 A CD acts

like a reflection grating



The Diffraction-grating Equation

In Figure 11.54, the pattern produced by multiple slits is similar to that pro-
duced by a double slit. The diffraction grating is much like a composite of
many double slits. Thus, it is no surprise that the diffraction-grating equa-
tion is the same as the double-slit equation,

m� � d sin �m

where d represents the slit separation. To calculate the slit separation for a
diffraction grating, we divide the grating width (w) by the total number of
slits (N) to obtain

d � �
N
w

�

where d is the slit separation.

e x a m p l e  1 1 Finding the spacing between slits

For a given diffraction grating, there are 4500 slits in 3.6 cm. Find the 
slit separation.

Solution and Connection to Theory

Given
w � 3.6 cm � 3.6 � 10�2 m N � 4500 d � ?

d � �
N
w

�

d � �
3.6 �

45
1
0
0
0

�2 m
�

d � 8.0 � 10�6 m

Note that the spacing approaches the wavelength of visible light.

The derivation of the equation m� � d sin �m for a diffraction grating is sim-
ilar to that for double-slit interference. In Figure 11.56, the rays reaching a
point P on a screen far away from the grating are approximately parallel. We
pair up the slits and use the same logic as for the double-slit pattern. The
pattern sharpens and brightens as more pairs of slits contribute to the max-
ima. The minima also become sharper because more pairs of rays cancel
each other.
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e x a m p l e  1 2 The diffraction grating

What are the angular positions of the first-order maxima for violet light
(450 nm) and red light (650 nm) when using a diffraction grating with
5400 slits over 2.8 cm?

Solution and Connection to Theory

Given
�violet � 4.50 � 10�7 m �red � 6.50 � 10�7 m m � 1 
w � 2.8 � 10�2 m N � 5400 d � ? �1 � ?

First we find the slit separation, d:

d � �
N
w

�

d � �
2.8 �

54
1
0
0
0

�2 m
�

d � 5.2 � 10�6 m
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For violet light,

m� � d sin �m

For first-order maxima, m � 1; therefore,

� � d sin �1

sin �1 � �
�

d
�

sin �1 � �
4
5
.5
.2

0
�

�

1
1
0
0
�

�

6

7

m
m

�

sin �1 � 0.087

Therefore, �1 � 5.0°

For red light, we use the same equation as for violet light, so

sin �1 � �
6
5
.5
.2

0
�

�

1
1
0
0
�

�

6

7

m
m

�

sin �1 � 0.125

Therefore, �1 � 7.2°

e x a m p l e  1 3 More diffraction-grating calculations

Which maximum occurs closest to the central axis if the diffraction grat-
ing used has 12 678 lines in 2.40 cm: the second-order red (730 nm) max-
imum, the third-order violet (400 nm) maximum, or the second-order
green (510 nm) maximum?

Solution and Connection to Theory

Given
N � 12 678 w � 2.40 � 10�2 m �red � 7.30 � 10�7 m 
�violet � 4.00 � 10�7 m �green � 5.10 � 10�7 m mred � 2
mviolet � 3 mgreen � 2

First we find d, the spacing between the slits:

d � �
N
w

�

d � �
2.40

1
�

2 6
1
7
0
8

�2 m
�

d � 1.89 � 10�6 m
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Now we can apply the equation m� � d sin �m to all three wavelengths of
light and substitute the given values:

Red:

2� � d sin �2

�2 � sin�1��
2
d
�
��

�2 � sin�1 �
2(

1
7
.8
.3

9
0

�

�

1
1
0
0
�

�

6

7

m
m)

�

�2 � sin�1(0.772)

�2 � 50.6°

Violet:

3� � d sin �3

�3 � sin�1��
3
d
�
��

�3 � sin�1(0.635)

�3 � 39.4°

Green:

2� � d sin �2

�2 � sin�1��
2
d
�
��

�2 � sin�1(0.540)

�2 � 32.7°

Since the angle of the green wavelength of light is the smallest, the green
second-order maximum occurs closest to the centre.

Notice from the different angles in Example 13 that the spacing between
bands is different for each wavelength. So, when white light is used to illu-
minate the grating, each spectral colour will appear in the pattern (see
Figure 11.58a). 
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Fig.11.58a First- and second-order

spectra of white light produced by a

diffraction grating



If the composition of the light is a series of discrete frequencies, the result-
ing pattern is called a line spectrum (Figure 11.58b). If the range of fre-
quencies is extensive, then the pattern is called a continuous spectrum
(Figure 11.58c).

Figure 11.59 summarizes the main concepts for a diffraction grating.

Fig.11.59 Diffraction Grating Summary

1. Given a diffraction grating with 8500 slits in 2.2 cm, illuminated by
monochromatic light of wavelength 530 nm, find the angles at
which the first three maxima occur.

2. For the diffraction grating in problem 1, find the maximum order
number for the following wavelengths:
a) 650 nm
b) 550 nm
c) 450 nm

3. If the second-order maximum occurs at 8.41° for red light of wave-
length 614 nm,
a) what is the slit spacing?
b) how many slits are in the grating if it is 1.96 cm long?
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Fig.11.58c A continuous spectrum

(produced by a bright filament lamp)

Fig.11.58b A line spectrum 

(produced by a fluorescent lamp)



11.10 Applications of Diffraction

A Grating Spectroscope

Any source emitting light consists of a set of wavelengths making up that light.
Different sources, such as incandescent bulbs, fluorescent lamps, fireflies, and
the Sun, have different signature patterns or spectra (see Figure 11.58).
Spectra can be viewed through a grating spectroscope, which separates the
different wavelengths of emitted light. The patterns are characteristic of the
specific processes and substances involved in producing the light from a par-
ticular source (Figures 11.60a and b).

Extension: Resolution — What makes 
a good spectrometer?

The resolution of a diffraction grating is the minimum separation between
adjacent spectra that the grating is able to distinguish. As the number of
lines in a diffraction grating is increased, the maxima become sharper. The
finer the maxima, the more accurate the measurement that can be obtained.
If two adjacent lines in the spectrum are separated by a distance of 	� (i.e.,
� and � � 	�), the resolution of the diffraction grating may be too low to
separate the two lines. 
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Fig.11.60a A spectroscope is used

to view a spectrum. If the spectrum

from the source is recorded (on film),

the device is called a spectrometer.

Fig.11.60b A diffraction-grating spectroscope



The resolution of a grating can be calculated by using the following equation:

�
�

	

a

�

vg
� � �

N
1
m
�

where 	� is the difference in wavelength between the two lines, N is the
number of slits in the diffraction grating, and m is the order number of the
maxima. We now let R � Nm, where R is the resolving power of the dif-
fraction grating. The equation then simplifies to

R � Nm � �
	

�

�
�

where � represents �avg. Thus, the resolution of a grating is the inverse of its
resolving power.

e x a m p l e  1 4 Sodium d lines

How many slits in a spectrometer’s grating does it take to be able to
resolve the sodium doublets, 589.00 nm and 589.59 nm, when viewing
light from sodium in a flame?

Solution and Connection to Theory

Given
�1 � 5.8900 � 10�7 m �2 � 5.8959 � 10�7 m

�avg � � � � 5.89295 � 10�7 m

We can substitute the given values into the equation for resolving power,

R � Nm � �
	

�

�
�

�
	

�

�
� �

�
	

�

�
� � 999 lines, or approximately 103 lines.

5.89295 � 10�7 m
�����
(5.8959 � 10�7 m � 5.8900 � 10�7 m)

5.8900 � 10�7 m � 5.8959 � 10�7 m
�����

2
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Lamp appears orange

Sodium lamp

In a sodium lamp, an electric current excites 
electrons in sodium vapour, giving them extra 
energy. The electrons give the energy out as light.

Two colours of light very close 
together in the orange part of 
the spectrum are produced

Fig.11.61



For the first-order maximum, m � 1; and since Nm � R, we obtain

Nm � N(1) � 103 slits

N � 1000 slits

Therefore, we need a diffraction grating with 1000 slits.

The quality of a diffraction grating also depends on its ability to separate or
spread out the spectral lines. The effect is called dispersion. It is different
from the resolving power, which is a measure of the thicknesses of spectral
lines. Dispersion depends on slit separation, while resolving power depends on
the number of slits. Figure 11.62 illustrates the difference between dispersion
and resolving power for two spectral lines. The ability of a spectrometer to
create a clear spectrum depends on the number of slits in the grating and on
the spacing between them.

X-ray Diffraction

The patterns created by interference and diffraction of visible
light may also be observed in other types of electromagnetic
waves as long as the object or opening creating the pattern is
of comparable size to the wavelength of the wave. For visible
light, the openings must be in the range of 10�7 m. For x-rays,
the openings must be in the range of 10�10 m. The spacing
between layers of atoms in a regular crystalline structure
(such as table salt) is in this range, so the crystal acts like a
diffraction grating for x-rays.

Figure 11.64 shows a schematic diagram of two possible
reflecting planes in a salt crystal (NaCl).
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Fig.11.63 Production of x-rays

Fig.11.64 Two possible reflecting

planes in the NaCl crystal



Figure 11.65a is a simplified diagram of how the salt crystal simulates a dif-
fraction grating. The crystal planes don’t actually reflect the x-rays, but the
net effect produced on the x-rays through the crystal is similar to the dif-
fraction grating and can be explained mathematically using this analogy. 

Figure 11.65a illustrates one plane of the salt crystal. For the sake of sim-
plicity, Figure 11.65b shows only two surfaces of the crystal. Ray 1 enters the
crystal and reflects off the bottom surface. Ray 2 reflects off the upper sur-
face. Notice that ray 1 has travelled an extra distance given by 2d sin �

(because the ray travels into and back out of the crystal). This effect is simi-
lar to thin-film interference (Section 11.6), where one ray of light reflects off
the top surface of a thin film while the other ray travels an extra distance of
2t, where t is the thickness of the film. For constructive interference, the two
rays must be in phase (i.e., shifted by m�, where m is a whole number) when
they exit the film. Similarly for x-ray diffraction: for a maximum to occur, the
path difference of the two x-rays travelling through the crystal equals 2d sin �
and their phase shift equals m�. The expression

m� � 2d sin �

is known as Bragg’s law.

1. Which spectrometer produces the best resolution: one with 
3000 lines/cm or one with 20 000 lines in 20 cm?

2. a) Research the effect of spreading lines in a spectrum by a diffrac-
tion grating (dispersion). What factor(s) does it depend on?

b) Compare dispersion to the concept of resolving power.
c) Look up the equation for dispersion (D � �

d c
m
os �
�). Use this equa-

tion to find the dispersion for a grating with 10 000 slits and a
slit separation of 2500 nm.

d) What does R equal for this grating?
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In 1915, British physicist W.L. Bragg

(along with his dad) received the

Nobel Prize in physics for his work

on the applications of x-rays in the

study of crystalline structures.
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Fig.11.65 X-ray diffraction through

an NaCl crystal



3. For Example 13, find the sequence of colours up to the fourth order for
each colour. What happens to the fourth-order green and red maxima?

4. Research the experimental setup for x-ray diffraction. Why is the
crystal structure rotated during the experiment using a beam of con-
tinuous x-rays (more than one wavelength)? What are Laue spots?

5. X-rays are beamed at an NaCl crystal with a planar spacing of 
2.5 � 10�10 m at an angle of 12°. What wavelength of x-rays will
produce a pattern? Assume m � 2.

6. For problem 5, find two other possible angles at which diffraction
can occur.

7. Research possible uses of x-ray diffraction in research and industry.
8. The electron microscope uses beams of electrons that behave like

waves. (The wave-like behaviour of particles is covered in Chapter
12.) High-energy electrons have wavelengths 10�5 times the wave-
length of light. Light microscopes, with a maximum magnification
of about �500, are used to look at objects in the 250-nm range.

Explain why using the electron microscope allows you to study smaller
structures. Relate the reason to the size of the waves used by the
instrument, the size of the object, and diffraction.
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Fig.11.66 An ant seen through an electron microscope



S T

S E

S c ience—Technology—S ociety—
Environmental  Interrelat ionships

CD Technology

We have come a long way in storing information: from analog recordings on
vinyl records, to bits and bytes stored in computers the size of large rooms, to
our current micro-technology. The CD (compact disc) has changed the way
we store information.

A CD is made of a plastic substrate that has a series of pits and flats
burned into it. The substrate is covered by a thin aluminum layer, which is
then covered by a protective plastic coating. When viewed from the underside
(the topside is the side with the label), the pits of the disc appear as bumps to
the laser reading the disc (Figure STSE.11.1).

In general, the bump or pit is only about 0.5 
m wide and 0.83 
m long.
The series of pits and flats represents zeros and ones (off and on) in binary
code. They are grouped together to form bytes of information. A typical 12-cm
CD holds 783 megabytes! The pits and flats are burned into the CD in a spi-
ral arrangement (Figure STSE.11.2). The plane spiral of data on the CD
winds from inside to outside. If we could stretch it out in a straight line, it
would be about 5 km long!

As the disc spins, a laser scans the underside of the
disc, running along the radius of the disc from centre to
edge (Figure STSE.11.3). In Chapter 7, we learned that
as an object’s radius of rotation increases, its tangential
velocity increases. Therefore, the pits and flats on the
outside edge of the disc move by the laser faster than
the pits and flats along the disc’s inside edge. Typically,
the disc spins at 200–500 revolutions per minute
(rpm). In order to keep the data collection rate of the
laser constant, the speed of the rotating disc is slowed
as the laser scans across the disc, away from the centre.

Reading the Disc

The laser light reflects off the disc into a light-sensitive photodiode. When
reflecting from a pit, the path difference is such that the light shifts �

�

2
� in the

coating. As a result, destructive interference occurs between this ray and the
ray reflecting from the flat, and the signal is weakened. When the laser reflects
off a flat, the signal is stronger. The net effect is a series of fluctuations in
intensity of laser light as it passes over the pits and flats. The photodiode con-
verts the amplitude fluctuations to electrical signals, thus generating the on/off
signals, which are sent on to amplifiers and into a computer processor.

574 unit  d :  The Wave Nature of  L ight

Plastic substrate

Underside of disk

1.25 mm

1.20 mm

Aluminum coating

Acrylic protective covering
Label

p

Laser

Data track

Moves 
across CD

Fig.STSE.11.2 The spiral data 

track on a CD

Fig.STSE.11.1a The cracked plastic

surface of a CD reveals the musical

layer beneath (magnified �1000)

Fig.STSE.11.1b A pit on a CD
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Fig.STSE.11.3 A laser scans the CD from centre

to edge as the disc spins
Design a Study of  Societal  Impact

Is privacy important?
Because of today’s amazing capabilities of collecting and storing
data, various organizations, such as government departments,
employers, and commercial companies, have access to more and
more information about their constituents. Research the vari-
ous methods of data collection: contest applications, govern-
ment questionnaires, Internet use, phone technology, spy
satellites, etc. How has access to personal information about us
affected business, marketing, and international trade?

Information technology has opened up many new job pos-
sibilities. Research what they are.

Design an Activ ity  to Evaluate

Tracking System: 1.6 
m separates the data tracks. Investigate
how a three-beam tracking system works using the flats between
the data tracks.
Optical System: In many CD systems, the laser light is polar-
ized. Find out why. Draw a schematic arrangement of a playback
system or build a model of it.
Storage Devices: Compare the old flexible floppy disc to the
current CD-ROM and hard-drive methods of storing and retriev-
ing data, as well as data storage capacities and speed of retrieval.

Bui ld a Struc ture

Research the physics of a photodiode. Use a set of photodiodes
and a laser to send messages in binary code. Use the voltage
drop in the diode to represent ones (on) and zeros (off).

Investigate the wave nature of radio waves. Use a radio-
wave generator and two dipole antennae hooked up in parallel
to generate two waves. Use a radio receiver and antennae to
investigate maxima and minima, depending on the position of
the receiving antennae and the separation of the transmitting
antennae. Extend the experiment to obtain single- and double-
slit patterns by placing metal sheets with openings cut in them
in front of the sources (transmitting antennae). You will need
to amplify the signals from the receiving antennae.

Use a laser, a viewing scope, and beam splitters to con-
struct a simple interferometer.

Focussing lens

Prism or semi-
transparent mirror

Reading zero

Depth

Photodiode
detector

Cancellation occurs
(produces weak signal)

Pit

1
4

�

Reading one

No cancellation
(strong signal produced)

Fig.STSE.11.4 Reading binary code from a CD
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S P E C I F I C  E X P E C TAT I O N SS U M M A R Y

You should be able to

Understand Basic Concepts:

Define and explain the concepts and units related
to the wave nature of light.
Explain diffraction and interference in general
wave terms.
Use diffraction and interference to further
develop the wave model of light.
Explain how Young’s experiments furthered the
wave model of light.
Describe wave interference of light in qualitative
and quantitative terms using diagrams and 
equations.
Explain the reasoning behind the interference
equations.
Describe and explain wave diffraction of light in
quantitative terms using diagrams.
Explain the reasoning behind the diffraction
equations.
Describe resolving power.

Develop Skills of Inquiry and Communication:

Use interference and diffraction to develop the
theoretical basis for light behaving like a wave.
Make predictions based on the wave model of light
about what to expect in experiments involving
diffraction and interference.
Predict diffraction and interference patterns 
produced in ripple tanks based on the wave
model of light.
Predict the effect of shining a laser onto a fine
structure such as a human hair or razor edge.
Identify and compare patterns produced by light
passing through a single slit, a double slit, and a
diffraction grating.
Analyze quantitatively aspects of single-slit, 
double-slit, and diffraction-grating patterns.

Describe the consequences of the Rayleigh 
criterion.
Compare the dispersion of light by a grating 
and a prism.
Explain how soap film colours are another exam-
ple of the wave nature of light.
Predict whether a colour or dark band will
appear when viewing a thin film.
Analyze and interpret experimental evidence
indicating that light has characteristics and prop-
erties that are similar to those of mechanical
waves and sound.
Conduct experiments to test aspects of single-slit,
double-slit, and diffraction-grating interference
patterns.
Develop extensions to Lab 11.1–Lab 11.4 and
devise other labs to test the aspects of interfer-
ence in thin films as well as single slits, double
slits, and diffraction gratings.

Relating Science to Technology, Society, 

and the Environment:

Analyze phenomena involving light and colour,
and explain how the wave model of light 
provided a basis for the development of various
technological devices.
Describe how changes in scientific theories led to
the development of devices such as the electron
microscope, the x-ray spectrometer, and various
types of interferometers.
Use the principles of colour separation by way of
diffraction gratings and thin films to explain
instruments based on these principles (such as
lens coatings and spectroscopes).
Describe the technology behind holograms.
Describe how information is stored and retrieved
using compact discs and laser beams.
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Equations
Double Slit and Diffraction Grating

m� �|PmS2 � PmS1| (constructive interference)

m� � d sin �m

m� � �
d

L
xm
�

(m � �
1
2

��) (destructive interference)

� � �
d	

L
x

�

R � Nm � �
	

�

�
�

�m � �
n
�

m
�

	PD � ��
2
�

t
��(nm � 1)

Single Slit

m� � w sin �m (destructive interference)

m� � �
w

L
xm
�

�m � �
1
2

��� (constructive interference)

� � �
w

L
	x
�

�R � �
1.2

d
2�
�

m� � 2d sin �
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E X E RC I S E S

Conceptual Questions

1. Which aspects of light indicate that it is a wave?

2. Which aspects of the wave nature of light can
and cannot be demonstrated using water waves?

3. Why do the colours of a soap bubble floating
in the air or the soap film on a child’s plastic
hoop change continually?

4. A gasoline spill on water starts to evaporate.
How does its evaporation affect which colours
are seen?

5. Why do glass camera lenses appear a certain
colour when viewed in sunlight, but the
windshield of your car doesn’t?

6. Young’s wave model of light seemed to explain
the nature of light better than Newton’s particle
model, yet Newton’s model was still accepted.
Henry Brougham, a British politician and
amateur scientist, severely criticized Young
and his results in the Edinburgh Review in
1803. He was quoted as saying: “We wish to
raise our feeble voice against innovations
that can have no other effect than to check
the progress of science.” Even though some
of Newton’s ideas were incorrect, the
majority of scientists believed his theories.
a) Research Newton’s ideas on the nature of

light and compare them to Young’s. Include
Fresnel’s (1818), Foucault’s (1850), and
Fizeau’s (1850) contributions to the argu-
ment of whether light is a wave or a particle.

b) Discuss why innovation sometimes scares
people.

c) How can old accepted ideas and laws 
hinder innovation and knowledge 
breakthroughs?

7. How can a dominating person affect scientific
progress? Research other examples of this
occurrence.

8. Do headlights from a car form interference
patterns? Why?

9. Air wedges require glass plates that are 
optically flat. Why?

10. Why can you hear but not see around corners?

11. In the distance, you see a single headlight. As
it approaches, you realize it’s two headlights.
Explain.

12. Can an object be resolved further by using a
magnifying glass if it has reached the resolu-
tion limit set by diffraction?

13. Compare the grating spectroscope to the 
prism spectroscope.

14. What is the difference between continuous spec-
tra and line spectra? Give an example of each.

15. A hologram can be cut into smaller pieces.
Each piece produces a complete holographic
image. Why can’t you do the same with a 
normal photograph?

16. How is the diffraction grating similar to an
interference grating?

17. What is the benefit to having a grating with
close spacing?

18. If you have researched resolving power, explain
why gratings have large numbers of slits.

19. Is there a limit to increasing the number of
slits in a diffraction grating to produce a 
better spectrometer?

20. Describe the relationship between the relative
intensities of fringes through a diffraction
grating and a single-slit pattern.

21. You draw a duck on a page using dots instead 
of lines. As you move back to admire your work 
of art, the dots become indistinguishable and
create a beautiful “continuous” normal sketch.
Why? Assume the pupil of the eye is circular.
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(a) (b)

(c) (d)

S1

S2

S1

S2

22. Why is the electron microscope so much 
better at magnifying small objects than 
the conventional optical microscope?

Problems

11.2 Interference Theory

23. For the wave pairs in Figure 11.67, determine
if the interference is constructive, destructive,
or partial.

Fig.11.67

24. Sketch the two-dimensional pattern in Figure
11.68 in your notebook. Draw in the maxima
and label the order numbers.

Fig.11.68

25. Sketch the two-dimensional pattern in Figure
11.69 in your notebook. Draw in a series of
minima. Draw in the nodal lines and label the
order numbers.

Fig.11.69

11.4 Young’s Double-slit Equation

26. Calculate the angle of the second-order maxi-
mum for monochromatic light of wavelength
550 nm if it illuminates 
a) a double slit with a slit separation of 

2.0 � 10�6 m.
b) a diffraction grating with 10 500 slits 

in 1.0 m.

27. For problem 26, given that the screen is 1.0 m
away from the slits, find the distance of the
second-order maximum from the centre.



28. Sketch the wave interference pattern in
Figure 11.70 into your notebook. Label the
nodal lines and maxima with the appropriate
order number. Use measurements from the
figure to calculate the wavelength.

Fig.11.70

29. In Young’s double-slit experiment, a mono-
chromatic source of wavelength 560 nm illu-
minates slits that are 4.5 � 10�6 m apart. Find
a) the angle at which the first-order 

maximum occurs.
b) the angle at which the first-order 

minimum occurs.
c) the angle at which the third-order 

maximum occurs.
d) the angle at which the third-order 

minimum occurs.

30. For light of wavelength 610 nm, hitting a dou-
ble slit, the second-order maximum occurs at
23°. What is the slit separation?

31. Two slits are 0.15 mm apart, the second-order
maximum is 7.7 m away from the centre line,
and the screen is 1.2 m away. What is the
wavelength of light used?

32. In an interference experiment, yellow light of
wavelength 585 nm illuminates a double slit.
If the screen is 1.25 m away and the distance
between the centre line and the ninth-order
dark spot is 3.0 cm, find the slit separation.

33. What is the maximum order number possible
for red light (630 nm) illuminating a double
slit with separation 3.0 � 105 m?

11.5 Interferometers

34. Refer to the interferometer diagram in Figure
11.20. Explain what happens to the observed
pattern if M2 is shifted back

a) �
�

4
�.

b) �
�

2
�.

c) �
3
4
�
�.

d) �.

35. A shift of four bright bands occurs when a
material of refractive index 1.42 is inserted
into an interferometer. Find the thickness of
the material if the pattern is created by using
light of wavelength 600 nm.

36. What is the refractive index of a material 
that causes a shift of 12 bright bands if the
thickness of the material is 3.60 microns 
and the wavelength of light used is 640 nm 
(1 micron � 10�6 m)?

37. Calculate the wavelength of light used in 
an interferometer if 10 bright bands shift 
for a material in which the speed of light 
is 1.54 � 108 m/s and the thickness is 
2.80 microns.

11.6 Thin-film Interference

38. A thin film of gasoline on water, with a thick-
ness of 364 nm, is illuminated by light of
wavelength 510 nm. If the refractive index 
of gas is 1.40 and that of water is 1.33, will
constructive or destructive interference occur
for light falling perpendicular to this surface?
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39. For the thin-film reflections in Figure 11.71,
state whether the interference is constructive
or destructive.

Fig.11.71

40. Light reflects off a thin film of gas (n � 1.40)
on water (n � 1.33). If the wavelength of
light is 560 nm and the thickness of the 
film is 4.80 � 10�6 m, will a bright or dark
area result?

41. For light of wavelength 500 nm, what is the
minimum thickness of a film that will pro-
duce a maximum if the refractive index of 
the film is
a) 1.44?
b) 1.23?
Assume the film is on top of water (n � 1.33).

42. Light of wavelength 580 nm strikes a soap film
(n � 1.33), which is surrounded by air. What
is the minimum thickness needed to produce
a) a dark spot?
b) a bright spot?

11.7 Diffraction

43. Calculate the wavelengths for
a) sound travelling at 350 m/s with 

frequency 250 Hz.
b) light travelling at 2.50 � 108 m/s with a 

frequency of 4.81 � 1014 Hz.
c) radio waves travelling at c with a frequency

of 1.20 � 108 Hz.

44. Calculate the frequency of
a) gamma rays with a wavelength of 

2.0 � 10�12 m.
b) water waves moving at 14 km/h with a

crest-to-crest separation of 1.2 m.

45. In your notebook, draw apertures of 0.5 cm,
1.0 cm, 2.0 cm, and 5.0 cm. For each aperture,
draw approaching plane waves of wavelength
1.5 cm. Sketch the possible diffraction pattern
through the aperture.

11.8 Single-slit Diffraction

46. a) Calculate the angle of the second-order
maximum for monochromatic light of
wavelength 580 nm if it illuminates a 
single slit of width 2.2 � 10�5 m.

b) Calculate the angle of the second-order
minimum for monochromatic light of
wavelength 550 nm if it illuminates a 
single slit of width 2.2 � 10�5 m.

47. Monochromatic light illuminates a single slit
of width 1.2 � 10�2 mm. If the first-order
minimum occurs at 4°, what is the wave-
length of light used?

48. For problem 47, given that the screen is 1.0 m
away from the slit, find the distances of the
second-order minimum and maximum from
the centre of the pattern.

49. For a single slit of width 1.1 � 10�5 m illumi-
nated by red light of wavelength 620 nm, find
the angle at which
a) the second-order minimum occurs.
b) the second-order maximum occurs.

n � 1.0

n � 1.6

n � 1.5

n � 1.5

n � 1.4

n � 1.5

n � 1.0

n � 2.0

n � 1.0

n � 2.0

n � 1.0

n � 1.5

11/4�

31/2�

�
2

�
4

(a)

(b)

(c)

(d)



50. For a single-slit pattern, the width of the 
central maximum is 6.6°. Given that violet
light of wavelength 400 nm was used, find 
the width of the slit.

51. Light of angular wavelength 585 nm passes
through a slit of width 1.23 � 10�3 cm. Given
that the screen is 1.2 m away, calculate the
position relative to the centre line of
a) the third-order minimum.
b) the second-order maximum.

52. What is the angular width of the central 
maximum produced by a single slit of width
1.10 � 10�3 cm if illuminated by blue light 
of wavelength 470 nm?

53. Light of wavelength 493 nm shines on a 
single opening 5.65 � 10�4 m wide. If the
screen is 3.5 m away and the first nodal line
is 3.1 mm from the centre of the pattern, 
find the width of the central maximum
a) in millimetres.
b) in degrees.

54. What is the minimum slit width at which no
interference pattern occurs for light of wave-
length 450 nm?

11.9 The Diffraction Grating

55. Green light of wavelength 530 nm is beamed
at a diffraction grating with 10 000 slits per
centimetre. Find the angle at which the first-
order maximum occurs.

56. Red light of wavelength 650 nm is beamed at
a diffraction grating with 2000 slits per cm.
Find the order number of the nodal line
occurring at 11.25°.

57. What is the distance to the second-order 
maximum for a diffraction grating with 
2.3 � 104 slits/mm if the screen is 0.95 m
away and orange light of wavelength 
610 nm is used?

58. For a diffraction grating with 10 000 slits 
in 1.2 cm, calculate the maximum order 
number for
a) red light (600 nm).
b) violet light (440 nm).

59. For a diffraction grating of 1000 slits/cm, 
how many orders of the entire spectrum are 
produced for wavelengths in the range of 
400 nm–700 nm?

60. For a diffraction grating with a slit separation
of 1.0 microns, what is the maximum order
number possible for
a) red light (610 nm)?
b) yellow light (575 nm)?
c) violet light (430 nm)?

11.10 Applications of Diffraction

61. If sodium d lines are 589.00 nm and 589.59 nm,
what is their angular separation for a grating
spectrometer with 104 slits in 2.5 cm?

62. How many slits are required to resolve the
sodium doublet for the second-order number?

63. How many orders of green light are visible in
a spectrometer with 106 slits in 2.5 cm? 
(�green � 520 nm)

64. When observing a gas mixture of hydrogen
and deuterium through a grating with 
4000 slits, will a red first-order doublet
(656.30 nm and 656.48 nm) be resolved?

65. X-rays of wavelength 0.55 nm illuminate a
grating with 2.5 � 106 slits/m. At what 
angle will the first-order maximum occur? 
Is diffraction apparent?

66. Given a crystal with spacing 0.40 nm, at what
angle will a beam of 0.20-nm x-rays produce a
third-order maximum?
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Purpose
To investigate characteristics of diffraction,
refraction, and interference

Equipment
Ripple tank apparatus
Hand strobe
Wood or wax barriers
Glass or clear plastic plates

Fig.Lab.11.1

Procedure A:

Measuring Frequency
1. Set up the ripple tank such that plane waves

are generated. Use lower frequencies (about
5 Hz).

2. Look at the waves through the hand strobe
while rotating the hand strobe. Practise
turning the hand strobe at a speed such that
the waves in the tank appear to stop.

3. When you are comfortable using the hand
strobe, have a partner time 10 rotations of
the hand strobe. The frequency of the waves
is then (number of slots � 10 turns)/time.

Measuring Wavelength
1. Place two straight edges on the viewed pat-

tern, roughly in line with the wavefronts.
2. Look through the hand strobe and turn it at

a rate such that the waves appear to stop.
3. While viewing the “stopped” waves through

the hand strobe, direct a group member to
move the rulers such that they each line up
with a bright wavefront. Count the number
of wavelengths between the rulers. (If you
see three bright bands, then you have two
wavelengths. See Figure Lab.11.2.)

4. Measure the distance between rulers. Use the
number of wavelengths you counted to find
the observed wavelength. Apply the equation 

� �.

Fig.Lab.11.2

distance between rulers
���
number of wavelengths

Viewing
paper

Bright line

Trough

Water

Power
supply

Light
source

Light source

�

Screw

Axle

Solid metal
wheel

Motor

8�

�

11.1 Analyzing Wave Characteristics using Ripple Tanks
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Procedure B: Diffraction

Fig.Lab.11.3a

Fig.Lab.11.3b

1. From your knowledge of the wave properties
of light, predict what will happen to the inter-
ference pattern as the gap between the barri-
ers is altered (see Figures Lab.11.3a and b).

2. Measure the observed wavelength as per
Procedure A: Measuring Wavelength to get
an idea of the wavelength of the water wave.

3. Adjust two barriers so that they are far apart;
that is, much greater than the wavelength.

4. Move the barriers closer and observe the
diffraction pattern. Sketch the amount and
location of the bending of the waves.
Record an estimate of the ratio of the size of
the opening to the wavelength.

5. Remove one of the barriers and adjust the
frequency of the waves from large to small
wavelengths. Observe the amount of bend-
ing occurring at the corner of the barrier.
Sketch the diffraction patterns. Record an
estimate of the ratio of the wavelength to
the barrier width.

Procedure C: Interference

Fig.Lab.11.4

1. Set up the ripple tank so that two point
sources are in the water (see Figure Lab.11.4).
Practise generating interference patterns.
Observe the relationship between frequency
and number of maxima and minima.

2. The three equations you derived in Section
11.4 are m� � path difference, 
m� � d sin �m, and m� � �

d
L
xm
�. In this lab,

you will calculate wavelength using these
equations by first choosing a point on a
maximum near the wave sources and then a
point on the maximum far from the wave
sources. Predict and explain which point
will produce better results.

3. For a pattern with at least three visible
orders of maxima, sketch the pattern seen
on the  viewing paper. Make sure you locate
the sources. You can draw a line down the
centre of each maximum.

4. Measure the wavelength of the waves using
Procedure A: Measuring Wavelength.

Procedure D: Refraction (optional)

Fig.Lab.11.5
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1. In this experiment, the different depths of
water represent different refractive indices.
Thus, the water waves will adjust as they
pass from one depth to another (see Figure
Lab.11.5). Predict what happens to the wave-
length, frequency, and speed of the wave as it
passes from a deep end to a shallow end.

2. Set up a depth boundary using a plastic
plate. Place the plate at an angle to the plane
wave generator. Make sure there is a mini-
mum amount of water on the plate (so little
that some dry spots may appear).

3. Adjust the frequency until you see a bend-
ing occurring at the boundary.

4. Using the hand strobe and Procedure A:
Measuring Wavelength, sketch the bound-
ary and the set of wavefronts on each side
of the boundary.

5. Measure the frequency of the waves on
each side of the boundary using Procedure
A: Measuring Frequency.

Data and Analysis B: Diffraction
1. Organize your observations so that you can

see the trend in the amount of diffraction com-
pared to the ratio opening/wavelength.

2. For the barrier observations, use the ratio
width of barrier/wavelength. (Unless you
have actual measurements, you can give
estimates: much greater than 1, greater than
1, about 1, less than 1.)

Data and Analysis C: Interference
1. Mark a point near the sources and a point

far from the sources on one of the maxima.
2. Calculate the wavelength from the near point

using the three equations. Make appropriate
measuring diagrams for each equation.

3. Repeat step 2 for the far point.
4. Calculate percent deviations of the wave-

lengths you measured.
5. Average the results for each set of three 

calculations.

Data and Analysis D: Refraction (optional)
1. Record the frequency, wavelength, and

angle relative to the boundary for deep and
shallow water.

2. Calculate the ratios of the sines of the

angles � �, the speeds ��
v
v
sh

d

a

e

l

e

lo

p

w
��, and the 

wavelengths ��
�

�
sh

d

a

e

l

e

lo

p

w
��.

Discussion B: Diffraction
1. In theory, what are the necessary condi-

tions for producing maximum diffraction?
2. Did your results agree with the theoretical

expectations? If not, find possible reasons
and repeat the procedure if necessary.

3. Relate your results to the diffraction of
light. Think of everyday examples when
light behaves this way.

Discussion C: Interference
1. In theory, which of the three equations

used should be the best? Explain why.
2. In theory, which point should produce

more consistent results? Explain why.
3. Do your percent deviations confirm the

aspects discussed in questions 1 and 2 above?
4. Relate your observations of water waves to

patterns that light produces when shone
through two slits.

Extension
Repeat the calculations using a minimum
instead of a maximum.

Discussion D: Refraction (optional)
1. What is the theoretical value of the ratios

you have calculated?
2. Do your results corroborate the theoretical

ratios? If not, why not?
3. By analogy to light, which depth of water

represents the less optically dense medium?
Relate the speeds in each depth to light
passing from one medium to another.

4. Superimpose a ray representation for refrac-
tion on your sketch.

Conclusion
Summarize your results in terms of the wave
theory of light.

sin �shallow
��
sin �deep
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Purpose
To study the qualitative aspects of the diffrac-
tion and interference of light

Equipment
Laser
Showcase lamp
Colour filters
Biconcave and biconvex lenses
Variable widths of single slits, double slits, dif-
fraction gratings (if available; if not, use a
painted (opaque) glass slide and 2 razor blades)
Wire loop
Soap solution

Procedure to Make Slits
If commercial slits are not available, use the
razor blade to make a single stroke to cut the
painted slide. To make a double slit, put the
blades together and tape them together. In a sin-
gle stroke, run the pair of blades down a painted
slide. Note: Use extreme caution when han-
dling the razor blades. You will be able to do
the single- and double-slit parts of this lab.

Procedure A: Single-slit Diffraction
1. Shine a laser through the single slit. Observe

and sketch the pattern. Note the number and
intensity of the maxima.

2. Use different widths of slits to observe what
happens to the pattern. Correlate the width
of the slit to the number and spacing of the
maxima observed.

3. Repeat steps 1 and 2 using a showcase lamp.
4. Repeat steps 1 and 2 using various coloured

filters in front of the slits.

Procedure B: Double-slit Diffraction
Repeat Procedure A using a double slit.

Procedure C: Diffraction Gratings
Repeat Procedure A using diffraction gratings.

Procedure D: Observing Diffraction
along Edges of Obstacles
Arrange a convex lens, a concave lens, a razor
blade or a strand of hair, and a screen in a row,
as shown in Figure Lab.11.6. Shine a laser
through this series of objects to the screen.
Adjust the positions of all the elements to maxi-
mize the effect. Describe what you see.

Procedure E: Observing Thin Films
1. Darken the room.
2. Dip the wire loop into the soap solution. If

the bubbles do not last long, add a touch of
glycerine to the solution. Hold the loop in a
vertical position.

3. Use the laser or the showcase lamp plus a
colour filter to illuminate the soap film.
Observe light reflected from the soap film as
it drains.

4. Repeat step 3 using the showcase lamp
without any filters.

Procedure F: Poisson’s Bright Spot
1. Paste the edge of a small opaque disk onto a

drinking straw or any kind of holder (looks
like a lollipop now).

2. In a very dark room, shine a laser through
the concave–convex lens arrangement
(Figure Lab.11.6) onto the disk with a
screen behind it.

3. Observe the shadow region carefully, espe-
cially in the centre. If you have a photo-
diode, use it to scan the shadow region.
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11.2 Qualitative Observations of the Properties of Light
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sharp edges
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lens

Fig.Lab.11.6
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Observations
For each section, create a summary chart indi-
cating what you studied, what you expected, and
what you saw.

Discussion
1. How does the width of the single slit affect

the number and spacing of the maxima in
the interference pattern?

2. How does the separation of the two slits
affect the number and spacing of the max-
ima in the interference pattern?

3. How does the diffraction grating spacing
affect the number and spacing of the max-
ima in the interference pattern?

4. Compare the three patterns in terms of gen-
eral shape, clarity, and intensity.

5. Why do colours appear in the pattern pro-
duced by the diffraction grating?

6. Which colour has the greatest spacing? Why?
7. What causes the lines to appear around the

hair or other object illuminated by the laser?
Why don’t we normally see these lines?

8. What happens to the pattern in the soap
over time? What is causing this pattern?

9. Describe what causes a maximum (light
band) to become a minimum (dark band) in
the pattern.

12. Why is there a bright spot on the screen
behind the opaque disc?

13. How does each of these experiments show
that light behaves like a wave?

Conclusions
Summarize your arguments supporting the wave
theory of light.

Complete a chart with various aspects of wave
theory described in general terms. For each
aspect, find an experiment or observation that
demonstrates this feature for each type of wave
(light, sound, and mechanical). For example, in
earlier labs, you demonstrated interference
between two sources using light waves and
mechanical waves. Now come up with a demon-
stration for the interference of sound waves.

The lab write-up is essentially a summary
chart. If a wave type doesn’t exhibit certain char-
acteristics or you can’t demonstrate them using
school resources, then state the reasons why.

Possible categories for your chart: Refraction,
two-source interference, single-slit diffraction,
diffraction grating, polarization, Doppler effect.

11.3 Comparison of Light, Sound, and Mechanical Waves
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Sliding
markers

Fig.Lab.11.7

Purpose
To study the wavelength of light using single
slits, double slits, and diffraction gratings

Equipment
Single slit, double slit, diffraction grating (with
known values of w and d)
Showcase bulb plus red filter
Screen
String
Metre stick clamped horizontally onto 
a retort stand
2 position markers (paper or paperclips, etc.)

Procedure
1. Working in groups of four, hold one of the

optical instruments (slit or grating) while
standing 1–2 m away from the bulb–ruler
arrangement (Figure Lab.11.7).

2. Look at the light source through the filter
and optical instrument. Observe the fringe
pattern.

3. Have two group members position markers
at the maxima. Count the number of fringes
between the two markers.

4. Record the distance between the two 
markers.

5. Use the string to measure the distance of
the slit(s) to the metre stick (L).

6. Repeat this procedure with the other two
optical instruments.

Analysis
1. Calculate the separation distance between

consecutive maxima by dividing the total
distance between the markers and the total
number of maxima seen between the mark-
ers minus 1. Call this value 	x.

2. Use the equation 	x � �
L
d
�
� to find the wave-

length of red light used.

Discussion
1. For which of the three elements used was it

easiest to obtain values? Why?
2. Look up the range of wavelengths of red

light. Did your values fall within this range?
If not, give possible reasons.

3. Did the three values agree within a reason-
able range? Which value do you think is the
most reliable?

4. If you know the value of the wavelength of
light your filter transmits, use the equation
	x � �

L
d
�
� to check the slit separation values.

5. Red is the easiest colour of light to use in
this experiment. Why?

Conclusion
Summarize your findings. Is the equation derived
from the wave theory of light valid?

11.4 Finding the Wavelength of Light using Single Slits, 
Double Slits, and Diffraction Gratings
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Timeline: The History of 
Matter–Energy Interface

Michael Faraday 
established a 
relationship between 
electromagnetism 
and light.

Gustav Robert Kirchhoff
and Robert Wilhelm Bunsen 
established that each kind of 
atom had its own signature 
with a characteristic array of 
spectral lines.

James Clerk Maxwell 
showed theoretically 
that light is a tranverse 
electromagmetic wave.

Wilhem Roentgen 
discovered x-rays.

Max Karl Ernst Ludwig 
Planck introduced the 
concepts leading to 
quantum mechanics.

 James Franck and Gustav 
Hertz investigated how 
atoms absorb energy in 
quantized packages from 
free electrons.

Robert Millikan 
showed that Einstein’s 
explanations and 
theories of the 
photoelectric effect 
were correct.

Ernest Rutherford 
presented his atomic 
model of the atom. 
Charles Wilson 
invented the cloud 
chamber.

Antoine Henri Becquerel 
discovered radioactivity 
in pitchblend.

Jules Henri Poincare 
questioned the 
existence of ether, 
which led to new 
theories on the 
propagation of light.

Albert Einstein 
introduced his special 
theory of relativity and 
the concept of photons 
or particles of light.

Geoffrey Taylor 
postulated the 
wave–particle 
duality of light.

 Neils Henrik Bohr 
used quantum theory 
to successfully predict 
the wavelengths of the 
emission spectrum
of hydrogen.

Einstein published 
his general theory 
of relativity.

Heinrich Rudolf Hertz verified 
the existence of long-wave 
electromagnetic radiation. 
Albert Abraham Michelson
and E.W. Morely disproved
the existence of ether.

1840 1910 192019001860 1880

As the 19th century drew to close, so did a chapter in physics. Newtonian
physics explained the motion of objects on Earth as well as the motion of
heavenly bodies. Christian Huygens, Thomas Young, Augustin Fresnel, and
others explained the nature of light in terms of the wave theory. James Clerk
Maxwell completed “classical” physics by amalgamating electricity and mag-
netism and, in the process, bringing light into the electromagnet family. It
seemed as though the world around us was fully explained. Physics as a field
of study seemed complete with only a few minor problems left to solve.

Then came the discoveries that brought the classical physics era to a close
and ushered in the modern age. In December, 1895, two events occurred that
changed the world forever. Louis Lumière invented the first motion-picture
camera, and Wilhelm Roentgen discovered x-rays. These mysterious rays could
not be explained by any laws of physics known at the time. A host of other dis-
coveries followed: black-body radiation curves, light behaving like a particle 
in the photoelectric effect, x-ray photons with momentum, and particles
exhibiting wave properties. In 1905, the most famous of all theories was born
— special relativity. Where once we assumed such steadfast principles as a fixed
reference point in the universe, absolute time, and relative speeds (speed of
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1925

1927

1939

G.N. Lewis coined 
the word “photon” 
in the publication 
Nature.

Paul Dirac predicted 
the existence of 
positrons (antimatter).

Erwin Schrodinger 
devised a mathematical 
equation for atomic 
particles, known as the 
Schrodinger equation.

 Ernest Lawrence and 
M.S. Livingston created 
the first cyclotron at 
Berkeley in California.

 Hideki Yukawa proposed 
the existence of pions, 
which mediate the strong 
nuclear force.

Fission was achieved 
experimentally by 
Otto Hahn and Lise 
Meitner.

 Pions were 
 discovered.

Neutrinos were 
discovered.

M. Gell-Mann and G. 
Zweig independently 
postulated quark 
theories.

The electroweak theory 
was verified with the 
discovery of W and Z 
particles by Carlo 
Rubbia and Simon van 
de Meer.

Louis de Broglie postulated 
that matter can have an 
associated wavelength, 
which became known as de 
Broglie’s wavelength.

A.H Compton 
performed an 
experiment where
x-ray photons are 
observed to have 
momentum (the 
Compton effect).

C.J. Davisson and L.H. 
Germer performed 
experiments with high-
energy electrons, showing 
their wave nature.

Wolfgang Pauli 
postulated the 
existence of 
the neutrino.

 Irene Joliot Curie 
and Frederic Joliot 
Curie determined the 
conditions necessary 
for the formation of 
electrons and 
positrons.

The Stanford Linear 
Accelerator (SLAC) 
was completed: 
3.2 km long.

Dr. Harold Johns used 
cobalt-60 as a cancer 
treatment at the University 
of Saskatchewan Hospital 
(called the Cobalt Bomb).

Wolfgang Pauli 
formulated the 
Pauli exclusion 
principle.

1930 1940 1960 20001980

S.H. Neddermayer 
and C.D.  Anderson
discovered the muon.

Albert Prebus and James 
Hillier, graduate students at 
the University of Toronto, 
designed and built first 
North American electron 
microscope.

medium adds to object speed), Einstein turned the known scientific world
upside down with the new concepts of relative time, length contraction, a con-
stant speed of light in all reference frames, and mass that increased with speed. 

The theory of the atom evolved quickly. Ernest Rutherford’s plane-
tary model with an orbiting electron around a central nucleus replaced
J.J. Thomson’s plum-pudding model. Rutherford’s model led to Bohr’s
quantization of electron orbits, which in turn led to a quantum-mechanical
explanation of the atom based on wave mechanics. 

In this unit, we will study the
development of these theories and
how they came together to form what
is now called the modern age of physics.
Technologies involving lasers and
electron microscopes are a direct result
of these theories. This unit discusses
the transition from long-standing
Newtonian physics to the age of
Albert Einstein, Niels Bohr, and
Stephen Hawking.
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12 Quantum Mechanics

By the end of this chapter, you will be able to
• outline the experimental evidence that supports the quantum energy idea and 

a particle model for light
• describe the Bohr model of the atom as a synthesis of classical and early

quantum mechanics
• explain why probability is needed to describe photon diffraction
• understand that neither particles nor waves alone are an adequate model for light

S T

S E

Chapter Outline

12.1 Introduction

12.2 The Quantum Idea

12.3 The Photoelectric Effect

12.4 Momentum and Photons

12.5 De Broglie and Matter Waves

12.6 The Bohr Atom

12.7 Probability Waves

12.8 Heisenberg’s Uncertainty Principle
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12.1 Introduction

Thus far, our study of physics has kept the ideas of matter and energy
separate. We have learned that neither matter nor energy can be created or
destroyed. We have also learned that they are very different phenomena.
However, we need to consider what happens when matter and energy interact
and if they are ever indistinguishable. Quantum theory (also known as
quantum or wave mechanics) is the theory of how atoms, matter, and
energy are interrelated.

Problems with the Classical or Wave Theory of Light

At the end of the 19th century, there were a number of characteristics of
light and properties of subatomic particles that the wave theory of light
could not explain. Some of them were:

1) According to the wave theory of light, the energy of a system can be of
any value, but this phenomenon is not observed; the spectra of atoms and
electrons have very specific and consistent energy values (see Sections 12.2
and 12.6).

2) In some experiments, light exhibits particulate properties, such as momen-
tum, a phenomenon that can’t be explained in terms of the wave theory
of light alone because a wave doesn’t have mass (see Section 12.4).

3) Electrons, protons, and neutrons are particles and therefore should not
exhibit wave characteristics. Yet, diffraction of all three types of particles
was observed in laboratory experiments (see Sections 12.5 and 12.7).

4) If moving charged particles produce electromagnetic radiation, then elec-
trons orbiting an atom should lose energy as they emit this radiation and
fall into the nucleus, which doesn’t occur (see Section 12.6).

This chapter is an introduction to quantum theory, which addresses these
problems with the wave theory of light and allows us to make accurate pre-
dictions about the behaviour of atoms and photons.
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Fig.12.1 What is light?



12.2 The Quantum Idea

According to the wave theory of light, the energy of a system can be of any
value. For mechanical waves, increasing the amplitude of a wave increases
the amount of energy transferred. Is the same true of light; that is, is the
amplitude or brightness of a wavelength of light related to the amount of
energy it transfers?

If we don’t wear sunscreen or protective clothing when outside on a
summer day, we get a sunburn (Figure 12.3).

Similarly, welders must look away from the arc or wear protective goggles,
and cover any exposed parts of skin (see Figure 12.4) to avoid receiving a
painful burn that’s very similar to sunburn. Why do sunlight and light from
a welding torch affect our skin in a way that other bright lights don’t?

Sunlight and welder light are harmful because they contain ultraviolet
(UV) light that is more energetic than visible light, which is why it pene-
trates skin cells instead of reflecting off them. The brightness of a light source
is therefore not related to its penetrating power.
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Fig.12.2 According to the wave

model of light, waves with higher

amplitude have more energy
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Fig.12.5 Bright stage lights don’t

cause sunburn



Hot metal atoms produce some red light Steel bar

Object heated to about 900 K (627°C) 
give out a range of radiation, mainly 
infrared.  The graph shows how much of 
each wavelength
is radiated.

Cooler atoms radiate
invisible infrared

In 1900, German physicist Max Planck suggested that light travels in
packets called quanta. These packets define the amount of energy transferred
by a given wavelength of light. Planck suggested that the smallest possible
packet that can be associated with a given wavelength is given by the equation

E� � hf
where E is the energy of a given quantum in joules (J), h is Planck’s constant
(6.626 � 10�34 J�s), and f is the frequency of the light in hertz (Hz or s�1).

Substituting the wave equation for frequency,

c � f � where f � �
�

c
�

into Planck’s equation, we obtain

E� � �
h
�

c
�

where E� is the smallest amount or quantum of energy (in joules) that can
be transferred for a given wavelength of electromagnetic radiation. This
idea is the main postulate of quantum mechanical theory.

Black-body Radiation

Any opaque object that has a temperature above absolute zero radiates pho-
tons. We can feel the warmth of a fireplace, a stove element, or the Sun
without touching them. This effect is known as black-body radiation.
The spectrum of any of these radiating objects is a continuous spectrum,
like that of the rainbow (see Figure 12.7).
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Fig.12.6 Max Planck

Often, energy is expressed in terms

of electron volts (eV), where

1 eV � 1.6 � 10�19 J

Fig.12.7 The spectrum of a radiating body



Wave theory predicted that radiation emitted by a hot object could be due to
the oscillation of electric charges in the molecules of the material. Even
though wave theory explained where the light came from, it didn’t correctly
predict the spectrum of the emitted light. A theoretical equation based on
wave theory, developed by Lord Rayleigh and later modified by James Jeans,
became known as the Rayleigh-Jeans law. It correctly predicted the intensity
of visible light, but as the wavelength decreases (i.e., for UV light), it predicted
that the energy of the wave approaches infinity, which was not observed
(see Figure 12.8a). This problem was known as the UV catastrophe. Using
his quantum hypothesis to modify the Rayleigh-Jeans equation, Planck was
able to make it agree with all experimental observation, thereby solving the
UV catastrophe. This modification of an earlier theory was very strong
evidence for the correctness of Planck’s idea.

The Black-body Equation

The graph of light emitted from a black body (Figure 12.8b) shows a definite
peak in the most common wavelength of electromagnetic radiation (EMR)
emitted. The equation that predicts the maximum intensity of the wave-
length of EMR is called Wien’s law,

�max � �
2.898

T
� 10�3

�

where �max is the wavelength associated with the most common photons in a
black-body curve, in metres, and T is the temperature in Kelvin. For visible
light, the wavelength of this peak is seen as the dominant colour of the light.
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used wave theory to describe the flux
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F LUX
If we look at a 100-W light bulb, the filament (a small piece of tungsten wire heated to incandes-

cence by the electricity flowing through it) is dazzling. If a larger piece of material radiates the

same amount of energy (100 W), the light appears progressively dimmer as the surface area of

the radiating object is increased. The smaller the object, the greater the energy flow per unit area,

or flux. Flux allows scientists to compare energy flow rates from any object. If we consider more

hazardous photons, such as x-rays, then experiments can be done to determine a safe level of flux.

For a given emitter of x-rays, the inverse-square law determines how close we can safely come to

the source and how much time we can spend at a certain distance from the source.
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e x a m p l e  1 Black bodies and their characteristics

If a metal bar is heated in a shop so that the peak wavelength in its
spectrum is 2.6 	m long, determine

a) its temperature.
b) the energy in the photons at the peak wavelength, in joules and

electron volts.
c) In which part of the electromagnetic spectrum are the peak pho-

tons found?

Solution and Connection to Theory

Given
� � 2.6 	m � 2.6 � 10�6 m h � 6.626 � 10�34 J�s c � 3.0 � 108 m/s

a) Using Wien’s law, we solve for the temperature:

T � �
2.898

�

� 10�3

�

T � �
2
2
.
.
6
89

�

8 �

10�

1
6

0�

m

3

�

T � 1115 K

The temperature of the metal bar is 1115 K or 842°C.

b) Using Planck’s equation,

E� � �
h
�

c
�

E� � � 7.64 � 10�20 J

E� � � 0.48 eV

The energy of the photons at the peak wavelength is 7.64 � 10�20 J or
0.48 eV.

c) � � 2.6 	m � 2600 nm, which is found in the infrared (IR) region of
the electromagnetic spectrum.

7.64 � 10�20 J
���
1.609 � 10�19 J/eV

(6.626 � 10�34 J·s)(3.0 � 108 m/s)
����

2.6 � 10�6 m
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1. The star Rigel has a surface temperature of about 12 000 K.
a) What is its peak wavelength, and which part of the electromagnetic

spectrum is it in?
b) What colour would the star appear to be if observed through a

telescope? Why?
c) Could this star harbour planets with life? Would Earth have life

if it orbited this star?
2. a) In a light bulb, if the tungsten filament has a temperature of 900 K,

what is the peak wavelength?
b) In which part of the spectrum is this wavelength?
c) Why does a light bulb have to produce so much heat?

3. If light energy is quantized, why is a black-body curve continuous?

12.3 The Photoelectric Effect
The photoelectric effect is a phenomenon that occurs when light shone
on a metal surface causes electrons to be emitted from the surface.
Experiments revealed that for a given frequency of light, the kinetic energy
of the electrons ejected from a metal surface was the same. Also, even
though increasing the brightness of the light caused more electrons to be
ejected, their individual energies remained the same. However, if only a
small amount of light of a higher frequency (different colour) was used, the
kinetic energy of the electrons immediately increased as the wavelength of
light decreased. This effect completely contradicted the wave theory of light;
that is, that the energy in a wave is a function of its amplitude. Increasing
the wave’s amplitude, or brightness, should increase the energy of the
ejected electrons.

Albert Einstein decided to undertake an explanation of the photoelec-
tric effect from a theoretical point of view using Planck’s quantum idea. For
all his work, Einstein received the Nobel Prize in physics in 1921.

The Apparatus

The photoelectric effect apparatus consisted of a shiny metal surface enclosed
in a vacuum tube to prevent oxidation. When light was shone on the metal
surface, some electrons were ejected from it. The metal being struck by the
light was negative (the cathode) and the terminal collecting the electrons
was made positive (the anode), so the electrons zipped from one terminal to
the other as soon as they were liberated by the photons of light. The anode
and cathode were connected via a power supply providing a potential, and an
ammeter that measured the amount of current. Then the potential was
reversed so that the anode became negatively charged, causing electrons to be
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Fig.12.9 Albert Einstein (1879–1955),

born in Ulm, Germany, was one of the

most profound thinkers of his age
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Fig.12.10a A diagram of the

photoelectric effect apparatus



repulsed from the anode. The kinetic energy of the electrons could then be
measured by finding the minimum potential required to prevent electrons
from being ejected from the metal surface. This potential energy is equal to
the kinetic energy of the electrons and is called the stopping potential, Vstop.
If the anode is positive, the electrons are attracted to the anode, causing cur-
rent to flow. If the potential is reversed, the liberated electrons are repelled
from the anode and no current flows (see Figure 12.10b).

Experiment 1: The Energy of Ejected Electrons 
Compared to the Intensity of Incident Light
If the quantum idea is valid, then the energy of the ejected photons shouldn’t
change when the intensity of light is increased. From the definition of
electric potential,

V � �
E
q

�

so
E � Vq

Since we are considering electrons only, then

E � Ve

where e is the elementary charge (1.6 � 10�19 C). 

If we change the potential so that the current on the ammeter in our circuit
is zero, then the potential across the boundary is just enough to keep the
electrons from passing to the anode. Since the kinetic and potential energies
have to balance in order for the ejected electrons to stay away from the
anode, then we can measure the kinetic energy of the ejected electrons
very accurately.

By placing filters in front of the light source that have varying
amounts of translucency (such as smoked glass), the level of light intensity
can be varied. However, the energy of the electrons remains the same,
regardless of the intensity of a given wavelength or colour of light. Einstein
interpreted this result as evidence that radiant energy was transmitted in
bundles or quanta, each with a specific energy. While more of these bundles
impinging on the metal liberated more electrons, the energy imparted to
each electron was the same, or at least within the distribution of incident
photon energies.

Experiment 2: Changing the Colour of the Light
The second photoelectric effect experiment involved maintaining a constant
intensity level of light while varying the colour of the incident light. Special
filters designed to transmit only a small part of the EMR spectrum were used.
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If we choose a longer wavelength of light, such as red light, then no 
matter how bright the light source is, the photoelectric effect doesn’t occur
because photons of red light don’t have enough energy to liberate any 
electrons from the metal surface (see Figure 12.11a). Einstein suggested that
each metal used for the cathode has a specific minimum energy that 
permits electrons to be ejected from it. Energy is required to do the work of
liberating electrons. Einstein therefore called this specific minimum energy
the work function, W0.

If we apply Planck’s equation for the energy of a photon,

E � hf or E � �
h
�

c
�

to the energy of an electron, we obtain

�
h
�

c
� � hf � Ekmax
 W0

where hf is the energy of the incident photon, Ekmax is the maximum amount
of energy of the liberated electron, and W0 is the work function (all in joules).
Thus, the kinetic energy of the electron as measured by the photoelectric
effect is slightly less than the incident photon’s energy because some of the
photon’s energy becomes the work function that liberates the electron:

Ekmax � Ephoton � W0

Therefore, in order for the photoelectric effect to occur, the energy of the
incident photon must be greater than the work function: Ephoton � W0.
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Table 12.1
Work Functions of Some

Common Metals

Metal W0 (eV)

Silver 4.65

Aluminum 4.28

Gold 5.37

Copper 4.65

Nickel 5.15

Platinum 5.65

Note: If energy is expressed in 

electron volts (eV), then Planck’s

constant becomes 

� 4.14 � 10�15 eV�s.

6.63 � 10�34 J�s
��
1.60 � 10�19 J/eV

Electrons are
liberated from
the metal when
struck by photons

)

Fig.12.11a Lower-energy photons don’t possess enough

energy to liberate electrons from a metal surface

Fig.12.11b If a higher-energy photon hits the metal 

and is not reflected, it interacts with the electrons in 

the metal and transfers its energy to an electron. If the

energy transferred by the photon is greater than the

minimum energy required to evict the electron from the

metal, then the electron will be emitted. The electron’s

kinetic energy is the energy of the photon minus the

energy required to liberate the electron.

Photons are
absorbed by
the metal



To properly analyze the energy required to liberate the electron, we
need to measure the work function value for a given material. In the equation
Ephoton � Ekmax 
 W0, the kinetic energy of the electrons equals the stopping
potential times the electron charge:

Ekmax � eVstop

From the filter we are using, we know the energy of the photons incident
on the cathode, so we can plot the stopping potential versus the frequency
for different incident photon energies:

If
hf � Ek 
 W0

then
hf � eVstop 
 W0

and
eVstop � hf � W0

Vstop � ��
h
e
�� f � �

W
e

0
�

This graph is a straight line with slope �
h
e
� (see Figure 12.12a).

Since the only unknown variable for a new material is W0, we can calculate
it by letting Vstop � 0. The frequency of light used, f0, can either be measured
or is known from the type of filter being used. Then,

0 � hf0 � W0

W0 � hf0
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Fig.12.12a A graph of the photoelectric effect

Fig.12.12b
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e x a m p l e  2 The photoelectric effect

A material with a known work function of 2.3 eV is shone with incident
light of wavelength 632 nm (typical HeNe laser).

a) Will this light cause the metal to exhibit the photoelectric effect?
b) If not, then what maximum wavelength will cause the photoelectric

effect?

Solution and Connection to Theory

Given
W0 � 2.3 eV � � 632 nm Ephoton � ?

a) Using the photoelectric effect equation,

Ephoton � eVstop 
 W0

If Ephoton � W0, then the material will exhibit the photoelectric effect.

Ephoton � �
h
�

c
�

Ephoton �

Ephoton � 3.143 � 10�19 J � 1.96 eV

1.96 eV � 2.3 eV

Therefore, the electron cannot be liberated by the photoelectric effect.

b) To determine the maximum wavelength of the light that will force
an electron to escape, we set the photon energy equal to that of the
work function:

W0 � 2.3 eV � 3.68 � 10�19 J

Then using Ephoton � �
h
�

c
�, we obtain

� � �
Ep

h

h

c

oton
�

� �

� � 510 nm

Thus, it would take a photon with a wavelength shorter than 510 nm
to demonstrate the photoelectric effect on this material.

(6.626 � 10�34 J·s)(3.0 � 108 m/s)
����

3.68 � 10�19 J

(6.626 � 10�34 J·s)(3.0 � 108 m/s)
����

6.32 � 10�7 m
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significantly affected by the photo-

electric effect. The vacuum of space
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ation ensure that all spacecraft will

become positively charged. This

positive charge can result in a static

discharge when the spacecraft dock.
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Figure 12.13 summarizes the conditions required for the photoelectric
effect to occur.

Fig.12.13 Incident Photon Energy and the Work Function

1. Using the equation V � ��
h
e
�� f0 
 �

W
e

0
�, calculate the values of h and W0

given the data in Table 12.2. Assume that e � 1.9 � 10�19 C. Plot a
graph of Vstop versus f0.

2. If the work function of a material was 1.5 times the amount you
calculated in 1.a),
a) how would this change affect the data from the table?
b) would the slope of the line in 1.a) change?

3. From the equation you derived in 1.a), what is the maximum
permissible kinetic energy of an electron liberated by a photon with
a wavelength of 230 nm?

4. Explain the following graphs.

12.4 Momentum and Photons

To determine how photons react with matter, their properties had to be ana-
lyzed both experimentally and theoretically. In a series of experiments per-
formed by Arthur Holly Compton (Figure 12.15a) in St. Louis in 1923, a beam
of x-rays was directed at a thin foil and a target made of carbon (see Figure
12.15b). By arranging detectors behind the target, he found that the x-rays were
deflected in many directions as they hit the carbon. In atomic situations, this
effect is called scattering. Compton analyzed the energies of these photons and
found that they were different from the energy of the incident x-ray.

Recall from Section 10.4 that if an electromagnetic wave interacts with a
particle such as an electron, the particle oscillates at the same frequency as
the wave (see Figure 12.15c).
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Fig.12.15a Arthur Compton

f f

fo

P
h
o

to
el

ec
tr

ic
cu

rr
en

t 
I 

P
h
o

to
el

ec
tr

ic
cu

rr
en

t 
I Intensity 2

Intensity 1

Vstop

Vo

E
k

Different
materials

(a) (b) (c)

Fig.12.14



e/m radiatio
n

However, if the particle absorbs the wave, then the wave cannot be scattered.
More importantly, if photons are entirely energy, then they should not expe-
rience changes to their energy during collisions because they have no mass.

Compton thought that if the photons could be treated as particles that
were colliding with the electrons, he could analyze the observed scatter
using the same techniques used to handle ordinary collisions, which obey
the laws of conservation of energy and of linear momentum. But using this
technique requires that photons possess momentum. How could a photon of
energy with no mass possess momentum? Compton used Einstein’s theory
of special relativity to determine a mass-like property for a photon.

If the law of conservation of energy is valid, then the energy of the ini-
tial incident x-ray equals the kinetic energy given to the electron plus the
energy of the emitted photon:

Ex-ray � hff 
 �
1
2

�mv2

where �
1
2

�mv2 represents the kinetic energy imparted to the electron that
interacted with the x-ray photon (in joules) and the value of ff reflects the
new lower-energy frequency of the emitted x-ray photon.

Besides energy, momentum is also conserved during collisions (recall
Chapter 4):

p��x-rayi � p��electron 
 p��x-rayf

To calculate the momentum of photons, Compton returned to Einstein’s
famous equation relating mass and energy,

E � mc2

Rearranging for mass,

m � �
c
E

2�
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with kinetic energy
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Fig.12.15b Compton’s experiment Fig.12.15c When an electron oscillates

at a certain frequency, it emits electro-

magnetic radiation of that frequency

Fig.12.16 Photons have momentum



The right side of this equation, �
c
E

2�, is known as the mass equivalence.
Recall from Chapter 4 that in classical physics, linear momentum (p) is
given by the equation

p � mv (magnitude only)

where m is the object’s mass in kilograms and v is its velocity in m/s. To calcu-
late the momentum of the photon, Compton substituted the mass equivalence
from Einstein’s equation into the equation for linear momentum to obtain

p � ��
c
E

2��v

Substituting Planck’s equation for the energy of a photon as a function of
wavelength, we obtain

p � ��
�

h
c
c
2��v

The velocity, v, can be replaced with c because all photons travel at the
speed of light. Our final equation for the momentum of a photon is

p � �
�

h
�

where h is Planck’s constant and � is the wavelength, in metres, associated
with the photon. Note that momentum is a vector quantity.

Compton’s work showed that photons collide and exchange energy with
particles according to the law of conservation of energy, that they possess
momentum, and that their momentum is conserved during collisions. His
work lent support to the idea that light possessed both wave and particle
properties at a fundamental level. It indicated that investigations of these
phenomena were at the interface between what is considered matter and
what is considered energy.

e x a m p l e  3 Photon momentum in one dimension

A 25-eV x-ray photon collides with an electron. What is the momentum
of the original photon?

Solution and Connection to Theory

Given
E � 25 eV p � ?

For photon momentum,

p � �
�

h
�
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Solving Planck’s equation E � �
h
�

c
� for �,

� � �
h
E
c
�

Substituting into the momentum equation, we obtain

p � �
E
h

h
c
� � �

E
c
�

p �

p � 1.3 � 10�26 N�s

The momentum of the original photon is 1.3 � 10�26 N�s in the same direc-
tion as the photon’s motion.

1. Why did Compton use x-rays and carbon in his experiment?
2. An 85-eV x-ray photon collides with an electron. The resultant

photon is deflected 60° from the original line of travel and has a
wavelength of 214 nm.
a) What is the momentum of the original photon?
b) What is the momentum of the resultant photon?
c) How much energy was imparted to the electron?
d) How much has the energy calculated in c) above increased the

electron’s speed?
e) What implications does this speed have for the electron?

12.5 De Broglie and Matter Waves
In 1924, Louis de Broglie (pronounced “de Broy”), a  French graduate student,
decided to expand on Compton’s idea of photon momentum. He suggested
that since photons have detectable linear momentum, a property of matter,
then matter might be explained in terms of waves. His argument was based
on the supposition that so many concepts in physics are reversible. For
example, changing electric fields produce changing magnetic fields and vice
versa. So, if photons exhibited the property of momentum even though they
are apparently massless, then perhaps objects with mass have wave properties.

De Broglie extended the momentum equation for photons,

� � �
h
p

� or � � �
m
h

v
�

to matter.

(25 eV)(1.6 � 10�19 J/eV)
���

3.0 � 108 m/s
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e x a m p l e  4 Using de Broglie’s equation

Find the wavelength of a 1-g steel bearing, moving at 10 m/s.

Solution and Connection to Theory

Given
m � 1 g � 0.001 kg v � 10 m/s h � 6.626 � 10�34 J�s �bearing � ?

The ball’s momentum is
p � mv
p � (0.001 kg)(10 m/s)
p � 0.01 N�s

Applying de Broglie’s equation, we obtain

�bearing � �
h
p

�

�bearing ��
6.62

0
6

.0
�

1
1
N
0
�

�

s

34 J�s
�

�bearing � 6.626 � 10�32 m

The wavelength of the bearing is 6.626 � 10�32 m. Compare this wave-
length to that of visible light, which has a wavelength of about 550 nm or
5.50 � 10�7 m.

In Chapter 11, we learned that for interference and diffraction, the size of
the slits must be close to the wavelength of incident light. Consider a cruise
ship of length 300 m. Waves with wavelengths of 3 cm won’t cause the ship
to rock (Figure 12.19a). However, if these waves had wavelengths of around
30 m, the boat would begin to rock (Figure 12.19b). By analogy, if matter
has wave properties, as de Broglie suggested, then the wavelengths calcu-
lated for common macroscopic objects are so tiny that we can’t observe their
effects. Experiments have corroborated this theory.
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Electron Diffraction
In 1927, Clinton J. Davisson and L.H. Germer at Bell Labs in New Jersey
and George Thomson in Scotland independently tried to determine whether
matter had wave properties by beaming electrons at a nickel crystal. By
rotating the nickel crystal, they were able to measure the angles at which
the electrons were scattered. They found that at certain angles, there was a
peak intensity of electron scattering. From these results, they inferred that
the electrons were diffracted by the regular atomic structure of the nickel
crystal and that the pattern appeared to be a double-slit diffraction pattern.
This experiment supported de Broglie’s theory that matter has wave proper-
ties. More recently,  objects the size of Buckminsterfullerene (C60), also
exhibited a diffraction pattern when beamed through a double slit.

1. What is the de Broglie wavelength of an electron moving at 1 km/s?
2. Explain how beaming electrons at a nickel plate produces the same

results as beaming them through a double slit.

12.6 The Bohr Atom
In Section 12.2, we learned that hot, opaque objects produce continuous
spectra. To properly understand what is happening to an individual atom,
scientists conducted experiments on only a few atoms of the same element
(i.e., a rarefied gas) and at the same temperature using a non-ionized gas at
a low enough temperature. When they examined the spectrum emitted by
this gas, they found that instead of being continuous, the spectrum con-
sisted of distinct lines that appeared grouped in various sets. In 1884, Johann
Balmer, a Swiss high-school teacher and mathematician, invented an empiri-
cal relationship that predicted the energy levels of the set of spectral lines that
could be seen in visible light. This set was named the Balmer series. 

This observation was a mystery until 1913, when Danish scientist Niels
Bohr introduced a new model of the hydrogen atom based on Rutherford’s
planetary model that explained the spectral lines produced by hydrogen gas
at various temperatures (see Figure 12.21b). In Bohr’s model of the hydrogen
atom, an electron emits energy (a photon) when it drops from a higher
energy level to a lower energy level. In Figure 12.22a, notice that the hydro-
gen atom emits photons at very specific energies. This effect suggests that
energy at the atomic level is quantized. What causes these spectral lines?

In the Rutherford (planetary) model of the hydrogen atom, the electron
orbits the nucleus at high speed. The electron is accelerating because its
direction is constantly changing as it circles the atom’s nucleus (see Figure
12.22b); therefore, it should lose energy and spiral into the nucleus. But this
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Fig.12.21b Bohr’s model of the atom

Fig.12.21a Niels Bohr

Fig.12.20 The lattice structure of a

Buckminsterfullerene (C60) molecule

(bucky ball)



effect isn’t observed, otherwise all atoms would be neutrons! Bohr reasoned
that electrons maintain their distance from the atomic nucleus because of
the laws of conservation of energy and of angular momentum.

The Conservation of Energy

An electron orbiting a nucleus has two kinds of energy: kinetic and potential,
such that

Ee � Ek 
 Ep

Ee � �
1
2

�meve
2 
 �

k
r
e2

�

But the electron’s potential energy is negative because the electron is in an
energy well or an electric field created by the attraction of the nucleus to
the electron. (Gravity acts on a mass in a similar way, as we learned in
Chapter 6.) The total energy of the electron, Ee, is therefore

Ee � �
1
2

�meve
2 � �

k
r
e2

�

But the centripetal force causing the electron to “orbit” equals the electro-
static force if the “orbit” is circular; so,

Fc � �
me

r
ve

2

� � �
k
r
e
2

2

�

Fc � meve
2 � �

k
r
e2

�

Therefore, the electron’s total energy is

Ee � �
k
2
e
r

2

� � �
k
r
e2

�

Ee � �
�

2
k
r
e2

�
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Balmer predicted that
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Fig.12.22a The spectra produced by hydrogen gas
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Fig.12.22b The electron doesn’t 

spiral into the atom’s nucleus because

of the laws of conservation of energy

and momentum



The Conservation of Angular Momentum

The other fundamental quantity that needs to be conserved is angular
momentum, L. In Chapter 7, we learned that

L � I � mr2 and  � �
v
r

�

L � mvr

In creating his model of the hydrogen atom, Bohr assumed that angular
momentum could be quantized because it is related to energy. (Recall from
Chapter 5 that the momentum of a particle is �2mEk�.) But to quantize L, he
had to quantize the speed (v) and the radius (r) because if even one of the
terms in the equation could have any random value, then the result using
the equation would also be a random value and thus would not be quantized.
The equation for angular momentum was modified as follows:

Ln � mvnrn

where n is a positive integer that represents the energy level of the electron.
Bohr then had to determine the smallest possible division or quantum of L.
Planck had defined the smallest unit of energy to be h. Bohr suggested that
the limit on L was �

2
h
�
�. It has the short form �, which is called “h bar.” Thus

we have

Ln � mvnrn � n�

Solving for vn, we obtain

vn � �
m
n�

rn
�

This expression is the quantization of v, the velocity of the electron. We can
substitute this equation into the force equation, where centripetal force is
caused by the electric force:

Fc � �
me

r
ve

2

� � �
k
r
e
2

2

�

meve
2 � �

k
r
e2

� and v � �
m
n�
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�

�
m
m

e

e

n
2r

2�

n
2

2
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e
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2

�

Simplifying and solving for rn, we obtain

rn � �
m
�2

ek
n
e

2

2�
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Angular Momentum

When you spin a bicycle wheel, you

know that the effort to slow it down

depends on its speed, on the radius

of the wheel, and on the mass. It is

always easier to stop smaller-diameter

wheels than larger ones of equal mass.

The resistance of the wheel to change

in its rotational motion is known as

angular momentum.

I is the moment of inertia, the rota-

tional equivalent to mass.

In 1923, de Broglie came up with an

explanation for Bohr’s assumption

that mvn rn � �
2

n

�

h
�. If we consider the

electron to be a standing wave (i.e.,

an integer number of wavelengths,

n�) around the atom’s nucleus, then

its total length is the circumference

of its orbit:

2�r � n�.

But � � �
p

h
� (de Broglie’s equation),

where p � mv. Therefore,
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h
�
�� � n�

The electron’s standing-wave pattern

results in resonance. No energy is

lost, so the electron doesn’t spiral

into the nucleus.



Since the values of �, m, k, and e are constant, this equation can be simplified
by substituting their values. Therefore,

rn �

rn � (5.29 � 10�11 m)n2

where r is the theoretical radius of the orbit of an electron in metres, and 
n is the quantum number. The electron’s orbit has the smallest radius 
when n � 1. This radius is known as the Bohr radius. For hydrogen, 
r1 � 5.29 � 10�11 m.

e x a m p l e  5 The radius of an energy level

What is the orbital radius of an electron in a hydrogen atom

a) in the fourth energy level?
b) in the fifth energy level
c) What is the difference in radius between these two energy levels?

Solution and Connection to Theory

Given
rn � (5.29 � 10�11 m)n2

a) n � 4
r4 � (5.29 � 10�11 m)(4)2

r4 � 8.46 � 10�10 m � 0.846 nm

The orbital radius at the fourth energy level is 0.846 nm.

b) For n � 5,

r5 � 1.323 � 10�9 m � 1.323 nm

The orbital radius at the fifth energy level is 1.323 nm.

c) �r � r5 � r4 � 1.323 nm � 0.846 nm � 0.477 nm

The difference between the two orbital radii is 0.477 nm.

(1.0546 � 10�34 J·s)2 n2

������
(9.11 � 10�31 kg)(9 � 109 N·m2/C2)(1.602 � 10�19 C)2
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Electron Energy

Since the nature of spectral lines is a function of photon energy, we can
derive an expression for the energy of electrons and how this energy is
quantized in Bohr’s model of the atom.

Recall that the total energy of the electron is given by the equation

E � �
�

2
k
r
e2

� or En � �
�

2
k
rn

e2

�

rn � �
m
�2

k
n
e

2

2�

Therefore,

En � �
�

2
k
(
e
n

2

2

m
�2

k
)
e2

�

En � �
�

2
k
n

2

2

e
�

4m
2�

In this equation, �, e, m, and k are constants; so,

En ��
�2.18 �

n2

10�18 J
�

where En is the energy of an electron in joules (J). 
In electron volts, 

En � �
�13

n
.6
2

eV
�
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1 eV � 1.9 � 10�19 J

If n � 1, then 

E1 � �2.18 � 10�18 J 

�
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��
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e x a m p l e  6 Electron energies in the hydrogen atom

What is the energy of an electron in a hydrogen atom in the fourth and
fifth energy levels?

Solution and Connection to Theory

Given

En � �
�2.18

n
�
2

10�18

�

E4 ��
�2.18

(
�

4)2

10�18 J
�

E4 � �1.36 � 10�19 J � �0.85 eV

E5 ��
�2.18

(
�

5)2

10�18 J
�

E5 � �8.72 � 10�20 J � �0.545 eV

The electron energies in the fourth and fifth energy level are �0.85 eV
and �0.545 eV, respectively.

Bohr’s work allowed scientists to predict the energies of the photons emitted
from hydrogen gas perfectly! Bohr was awarded the 1922 Nobel Prize in
physics for his work.

Photon Wavelength

Now that we have defined the energies of electrons at various energy levels,
we can study how the photons emitted by electrons appear as different
wavelengths in a spectrum. If an electron moves from a higher energy level
to a lower energy level (i.e., closer to the nucleus), it releases energy
according to the equation En � �2.18 � 10�18 J/n2, as we saw in the pre-
vious subsection.

Let us first consider photons in the visible range of the electromagnetic
spectrum since they were the first to be analyzed by Balmer. The wave-
lengths in the visible spectrum range from 400 nm to 700 nm. This range of
wavelengths corresponds to photon energies from 1.8 eV to 3.1 eV, calcu-
lated using Planck’s equations. From Table 12.3, a photon jumping from 
n � 2 to n � 1 has an energy of 10.2 eV, which is in the UV range; so, elec-
trons dropping from n � 3 or higher down to n � 2 radiate photons that
have wavelengths in the visible range of the electromagnetic spectrum. The
jump from energy level n � 3 to n � 2 releases 1.89 eV of energy, which cor-
responds to the wavelength of red light. An electron jumping from n � 5 to
n � 2 emits a 2.86-eV photon, which is in the blue region of the spectrum.
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Table 12.3
The Energy Levels of a Hydrogen

Atom (n � 1 to n � 5)

n En (eV)

1 �13.6

2 �3.40

3 �1.51

4 �0.85

5 �0.54



Ionization Energy

If a hydrogen atom is ionized by having its electron removed, then after
removal, the electron’s energy level, n, is infinity and En � 0. By sub-
tracting the energy of the lowest energy level (n � 1) from the new
energy of the electron, we find that the energy of the ground state is also
the ionization energy (see Figure 12.23b).

Bohr’s Model applied to Heavier Atoms

For nuclei having more than one proton, Bohr’s model requires only a few
simple modifications to the above equations. However, the atoms can have
only one electron because Bohr’s model doesn’t consider the effects of other
electrons orbiting the nucleus. Therefore, the only other atoms (ions) to
which Bohr’s model can be applied are He
 and Li2
.

The Wave–Particle Duality of Light

Light is not a wave and it is not a particle; it is some kind of combination of
the two that we cannot model or visualize. Physicists have come to the con-
clusion that this duality of light is a fact of life. It is referred to as the
wave–particle duality. Neils Bohr suggested a principle of complemen-
tarity. It states that to understand a given experiment, we must use either
the wave or the photon theory of light but not both, and we must be aware of
both models of light if we are to fully understand light. Figure 12.24 lists some
characteristics of light and the part of the model that best explains them.

Fig.12.24 Summary of the Wave–Particle Duality of Light
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1. Choose three electron transfers between energy levels not discussed
in this section and calculate the wavelengths of the resultant photons.
Compare your answers with the values of the hydrogen spectra at
the beginning of this section.

2. Astronomers spend a great deal of time studying spectra of stars
and other objects. They call the accumulation of spectral lines at the
end of a series a “forest.” Using the Lyman and Balmer series only,
compute the wavelength separation of the last two spectral lines
from n � 8 and n � 7 jumping down to n � 1 and n � 2, respectively.

3. Calculate the boundaries of the four spectral series (Balmer has
been given to you).
a) Is there any overlap of series?
b) If so, are any spectral lines coincident?

12.7 Probability Waves
Probability is a very important concept in quantum mechanics because we
are dealing with matter so tiny that we can’t directly observe its behaviour.
At best, we can know roughly where it is. To illustrate the role of probability
and statistics in quantum mechanics, recall Young’s double-slit experiment
(Section 11.3) and the interference pattern produced by the two point
sources of light (Figure 11.5). If we consider light as a waveform, like water,
then the pattern observed is expected. However, in this chapter, we have
learned that light is emitted in discrete packets called photons. We now need
to reconcile the observed interference pattern with quantum theory.

If we had a source of single photons and a photographic detector, and emit-
ted the photons slowly over time, would we see the pattern in Figure 12.25?
Surprisingly, the answer is yes: a photographic plate would yield an image of
an interference pattern even though the photons were emitted one by one and
had no other photons to interfere with! Why? How can a single photon
“know” which slit to go through and to hit the screen at a particular point?

The answer first has to consider the minuscule scale of subatomic particles.
When we measure a tabletop, its length doesn’t change in an unpredictable
manner while we are measuring it. When we measure photons, we know
that they are small packets of energy that can be observed discretely (a char-
acteristic of a particle). If we wish to measure something with the photons,
then the wavelength associated with them limits the precision of our meas-
urement. Thus, observations of photons have to consider both photon
aspects (energy and wavelength).

For example, if we were to scale the wavelength of a green-light photon
(around 550 nm) to 1 m long, then proportionally, a millimetre would be about
1.8 km long! We cannot shine a light into the region around the slits to see what
is going on because if a single photon from our light interacts with the light
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Fig.12.25 Particles as well as

waves exhibit diffraction patterns.

In this experiment, when a suffi-

cient number of electrons was

beamed through a double slit, a

diffraction pattern was observed



Double
slit

Moving 
photons

passing through the slits, then its path will be changed. If the photons from our
light don’t interact with the photons creating the diffraction pattern, we won’t
obtain any information about the diffraction pattern. What we are measuring is
comparable in size to what we are attempting to measure with (a photon). Since
photons can interact, the measuring instrument affects the thing measured.
This concept is known as determinacy.

To draw an analogy, suppose we wish to measure the amount of pitching
(up-and-down motion) of a large cruise ship. If we use the wavelength of
light as our measuring instrument, then we can arrive at a very accurate
measurement because the wavelength of light is a factor of 109 less than the
length of the ship. If we measure the ship’s motion with mechanical waves
having wavelengths of about a metre, the measurement of how much the
boat moves relative to the water becomes less accurate. If we use water
waves that are about the same length as the boat, these waves will make the
boat move and thus interfere with our measurement.

At the macroscopic level, we don’t experience determinacy to an extent
that will cause any precision problems. From de Broglie’s work, we see that
the wavelength of a baseball let alone a ship is incredibly small compared to
light, so these waves don’t interact and produce any measurable effects for us.

In Figure 12.27, because of determinacy, we can’t know what is happen-
ing between the source of the photons and the detector screen. We can only
look at the screen and state that it is quite probable that the photons will arrive
at this or that location (i.e., the bright bands) and much less probable that they
will arrive in another location (i.e., the dark bands). Thus, the location of a
photon (or any subatomic particle) in an interference pattern can be deter-
mined by using wave equations, which predict the probability of a photon land-
ing in a particular spot; that is, the photon’s probability distribution.

The probabilistic approach to photon behaviour led to one to the most
important theories of modern physics: the uncertainty principle.
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Fig.12.26 The accuracy of a measurement depends on how much the measuring

instrument interferes with the object being measured. The waves don’t change the

boat’s length but by moving the boat, they change our ability to measure it accurately.
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12.8 Heisenberg’s Uncertainty Principle

In Section 12.7, we learned that the diffraction pattern produced by photons
can be described as a probability distribution at the target. Let’s consider
two examples of probability distributions, one using mechanical forces and
materials; and the other, a similar approach to the diffraction pattern.

A Hypothetical Mechanical Example of Diffraction

Suppose we set up a device such as the one shown in Figure 12.30.

Let’s imagine that the distance from the slit to the target is much greater
than the width of the slit. In this experiment, the marbles are dropped from
a stationary box one by one into channels on the target. If a typical marble
has a diameter of 1 cm and the slit has a width of 1 m, then very few of
the marbles will strike the edge of the slit and be deflected. As the width of the
slit is reduced, a greater percentage of the marbles will be deflected by impacting
on the edges of the slit, changing the distribution pattern (i.e., the number of
marbles collected in each bin of the target). The narrower the slit, the greater
the deflection and distribution of marbles.

Returning to photons, we know from the Compton effect that a photon
can excite an electron and be scattered. If we set up a slit of width close to
the wavelength of light, then many photons will interact with the electrons
in the material at the edge of the slit, causing the photons to scatter. Since
most of the collisions will be glancing, the effects on the photons will be
very slight and we would see a diffraction pattern similar to the marble
experiment. Because we cannot observe the path of the photon from source
to detector (due to determinacy), we can only know the probability of where
most photons will land. This situation has important implications.

When the particles are sent from the source, they have momentum in the
x direction only (i.e., straight ahead). If they are deflected, then they acquire
momentum in the y direction as well (i.e., to either side). Considering the
bright region in the centre of the diffraction pattern only, where about 85% of
the photons land, we can determine a mathematical relationship that takes
into account the uncertainty of where the photons will land (see Figure 12.31).
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If the particles are scattered (deflected), then the particles that are scattered
the most will have a larger y component of momentum py. Thus, any pho-
ton can have a py from zero to some maximum at the extreme end of the pat-
tern. We know that the width of the slit coupled with the distance from the
slit to the target determines the width of the diffraction pattern. After a pho-
ton is scattered, its momentum can be defined as

p � (px, py) � m(vx, vy)

p � �px
2 
�py

2�

� � tan�1��
p
p

x

y
��

where � is the angle measured from the original photon path central to the
slit and the scatter path the photon took. These angles are typically quite
small, and so we can approximate that

� � �
p
p

x

y
� � �

v
v

x

y
�

where � is measured in radians (see Figure 12.32).

In Section 11.8, we learned that the first-order minimum in a diffraction
pattern can be located using the equation

� � w sin �1

where � is the wavelength of light passing through the slit, w is the width of
the slit, and �1 is the angle of the path difference. Again, since � is small, we
can approximate that

� � �
w
�

�

�
p
p

x

y
� � �

w
�

�
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Substituting de Broglie’s equation, px � �
�

h
�, we obtain

py � �
w
h

�

To incorporate the uncertainty aspects, we must consider that the photon
can pass through any part of the slit, of width w. For diffraction to occur,
the uncertainty in the y position at the slit is �y � w. The uncertainty in y
leads to uncertainty in the momentum, py, since h is constant; therefore,

�py�y � h

Heisenberg did a more rigorous analysis and obtained

�py�y � �

For a photon to experience maximum diffraction, it must be near the
edge of the slit to interact with the electrons in the particles of the edge (see
Figure 12.33). Even though we know its location with some certainty, there
is greater uncertainty in where it might go (its momentum). In the marble
example, the marbles deflect if they hit the edge of the slit with any amount
of their mass. Even the slightest change in their position changes the deflection
angle greatly.

This idea can also be incorporated into energy considerations using the
ideas of Planck and de Broglie. Recall from Planck that E � �

h
�

c
�.

�py�y � h

But �y � w; therefore,

�py � �
w
h

�

But h � ��
E
c
���; therefore,

�py�y � ��
E
c
����

w
�

��w

The ws cancel and �
�

c
� is time, so

�E�t � h

Heisenberg’s actual expression was

�E�t � �
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Fig.12.33 Depending on the location

of the ball when it hits the slit edge,

its scattering angle can change a

great deal. A slight change in the

impact location results in a large

change in the scattering angle.



The Uncertainty Principle: If we know the position of a particle, we
cannot know its momentum and vice versa. Similarly, if we know the
energy of the particle, we cannot know the length of time it has that
energy and vice versa.

This phenomenon isn’t observed with macroscopic objects since the speeds
of the all the particles that comprise them oscillate in all directions. Your
position isn’t uncertain because it is the average of the 1023 bonded atoms
that constitute you on any given day.

e x a m p l e  7 Electron diffraction and uncertainty

In a diffraction pattern, an electron is deflected with a speed of 1000 m/s
in the y direction. How precisely do we know its position in the slit?

Solution and Connection to Theory

Given
� � 1.0546 � 10�34 J�s m � 9.11 � 10�31 kg v � 1000 m/s

From �py�y � �, we solve for �y:

�p � m�v

�y � �
m

�

�v
�

�y �

�y � 0.11 	m

The uncertainty in the electron’s position is greater than or equal to
0.11 	m.

e x a m p l e  8 The uncertainty principle — 

position of an alpha particle

An alpha particle (ionized helium nucleus) is emitted from the decay of
U238. If this particle has an energy of 34 keV, what is the uncertainty in
its position?

Solution and Connection to Theory

Given
E � 34 keV m� � 6.7 � 10�27 kg

1.0546 � 10�34 J�s
����
(9.11 � 10�31 kg)(1000 m/s)
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First we need to calculate the momentum of this particle from its 
kinetic energy,

Ek � �
1
2

�mv2

v2 � �
2
m

E

�

�

v2 �

v2 � 1.63 � 1012 m2/s2

v � 1.27 � 106 m/s

For momentum,
�p � mv

�p � 2(6.7 � 10�27 kg)(1.27 � 106 m/s)

�p � 8.5 � 10�21 N�s

To find the uncertainty in position,
�py�y � �

�y � �
�

�

p
�

�y ��
1
8
.0
.5
55

�

�

10
1

�

0
2

�

1

3

N

4 J
�s
�s

�

�y � 1.24 � 10�14 m

The uncertainty in the particle’s position is 1.24 � 10�14 m.

Heisenberg’s Uncertainty Principle and Science Fiction

Heisenberg’s uncertainty principle is the reason why some of the devices in
science fiction movies are impossible in practice. Consider the transporter
beams in the television series Star Trek that take a person apart molecule by
molecule, keep all the molecules organized, beam them somewhere, and then
put them all back together in the same manner. According to the uncertainty
principle, it’s impossible to identify individual particles and keep track of them.

Another aspect of science fiction that is currently restricted to us is time
travel. While relativistic travel might be possible for going into the future,
going back in time is theoretically impossible. To do so would require an
undoing of the random events, including random atomic oscillations, which
is impossible, because the information is lost and could not be obtained with
sufficient precision due to the uncertainty principle. Thus, we have an
“arrow of time,” where time progresses in one direction only.

2(34 000 eV)(1.6 � 10�19 J/eV)
����

6.7 � 10�27 kg
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1. A particle’s velocity is known to an uncertainty of 1 	m/s. What is
the uncertainty of the particle’s position? Put this quantity into
macroscopic perspective.

2. What are the units of the time-based version of the uncertainty
principle? Do these units balance with the units of �? What quan-
tity do these units represent? What is the significance of this
quantity in interactions?

3. Discuss the marble analogy at the beginning of this section. Is it a
reasonable approximation of what is observed with light? Why or
why not?

4. Why did it take so long to discover the uncertainty principle?
5. Research and explain an observation from elementary chemistry

suggesting the randomness of atomic behaviour.
6. What is the uncertainty in position of a proton with mass 

1.673 � 10�27 kg and kinetic energy 1.2 keV?
7. Current research suggests that time is indeterminate at subatomic

levels. What effect, if any, does this indeterminacy have on macro-
scopic objects?

12.9 Extension: Quantum Tunnelling
According to the uncertainty principle, we cannot know for certain the exact
speed, location, or energy of the particle, only average values. The consequence
of this principle is that particles that should be unable to cross given energy
boundaries, based on the amount of energy they possess, can cross these bound-
aries because the given energy of the particles isn’t known exactly.

Suppose we have an electron contained by a potential barrier such as an
electric or magnetic field. In classical physics, this electron would have to
remain there until the potential barrier was reduced or the kinetic energy of
the electron was increased so that it could bounce out. In quantum mechan-
ics, an electron’s location cannot be known with certainty, so it is described
by a probability function (Figure 12.34).
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Fig.12.34 The probability of an electron’s location between two

potential barriers (classical physics). The particle is bound.

Fig.12.35 The probability of an electron’s location between two

potential barriers (quantum mechanics). The particle can extend

beyond the barrier and escape.



In Figure 12.35, the curved line represents the probability of the particle’s
position. The two rectangles at the end of the particle’s probability plot are
potential barriers, such as an electric field. In this classical plot, the particle
must remain between the potential barriers. The application of the uncer-
tainty principle, however, requires that the positions of the particle be per-
mitted into the potential barriers. If the barrier is sufficiently narrow, the
particle can pass through it.

When we throw a baseball against a wall, we would be very surprised if
it passed through the wall! Why don’t larger objects tunnel through barriers?
Large particles can tunnel; however, the probability is so small that for practical
purposes, it’s impossible. For a large object to
tunnel, all the particles in the object would have
to have exactly the same probability function at
the same time, so when they arrive at the poten-
tial barrier, they all would have the same ran-
dom chance to proceed into the barrier at the
same instant. Even for small atoms consisting
of only a few particles, the likelihood of all the
particles having the same probability function is
very small. If one of the particles tunnelled, the
other particles would bounce off the potential bar-
rier and the bonds connecting them would pull
the tunnelling particle back. Considering that the
average person consists of about 1023 atoms, you
shouldn’t be running into any brick walls with
the hope of tunnelling through!

A Demonstration of Quantum Tunnelling
You can demonstrate the tunnelling effect by using a glass of water.
Place your hands on either side of the glass, without touching it. When
you view the glass from the top, you can’t see your hands through the
glass because the internal reflections of the light rays at the boundary
between the water and the glass don’t allow any light from your hands
to reach your eyes. When you grip the glass firmly with your hand, you
can now see your hand faintly through the glass. Although the major-
ity of photons are reflected internally in the glass, some light waves are
transmitted through the water–glass boundary and dissipate quickly.
Some of them are reflected back into the glass and water by your hand
to your eyes. You can see your hand because it reflects the photons that
had tunnelled through the glass.
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S c ience—Technology—S ociety—
Environmental  Interrelat ionships

The Scanning Tunnelling Microscope

Some of the most impressive images in our new technological era are super-
high-magnification, 3-D images of surfaces that reveal the locations of indi-
vidual atoms. These images are produced by a special device called a
scanning tunnelling microscope or STM, which operates on the principle
of quantum tunnelling. To increase the probability of quantum tunnelling,
the object being studied and the probe of the STM must be placed very close
together, a distance measurable in picometres (1 pm � 10�12 m). The probe
is located near the object’s surface and moved around to scan a small area.
To avoid contamination from the atmosphere and other materials in the air,
scanning tunnelling is usually done in a vacuum.

The problem of positioning an incredibly small probe with atomic
precision was solved by using a unique property of crystals, called piezo-
electricity. When a crystal, typically of quartz, has a small voltage applied
across it, the dimensions of the crystal change slightly. These changes are
linear and controllable by the electric field set up by the external potential.
One polarity causes the crystal to increase its length, while the other polarity
causes it to contract. If the voltage is applied to the piezoelectric arms care-
fully and in small increments, then the probe of the STM can be located
quite reliably and made to follow the contour of any atomic-scale surface by
this incredibly accurate positioning technique.

Three piezoelectric crystalline rods, each in one of the x, y, z directions,
support the probe. Changing the potential difference across one crystal will
move the probe in the desired direction. The z rod moves the probe up and
down, making sure that the conducting tip is located at a proper distance
from the material.

A potential difference of about 10 mV is applied to the tip of the STM.
Electrons from the object being studied are able to quantum tunnel across
the small distance to the tip. The voltage applied to the tip causes an elec-
tric field that reduces the potential barrier for electrons from the target to
tunnel up through the probe, creating a probe current. The current is
extremely sensitive with respect to distance (due to the sensitivity of
tunnelling and distance), which allows us to map the surface of the object
in remarkable resolution. The bumps in the image that look like round balls
(Figure STSE.12.2) represent the locations where the probability functions
of the atoms on the object and the tip overlap most strongly.
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The STM has many commercial applications. Its ability to image crys-
talline structures and to look for impurities or variations in bond structure
is of great use to semiconductor manufacturers. The STM is used to observe
large molecules such as proteins and other genetic material. It is also used
to scan the surfaces of metals in order to determine the conformation and
size of aggregates and molecules, to characterize surface roughness, and to
observe defects.

Design a Study of  Societal  Impact

Research applications of the STM not mentioned here. Evaluate its con-
tribution to research and to our society. The STM is reasonably new, so
innovative techniques for using its capabilities are still being developed. 

Research the history of this device and when it was invented.
Compare its performance to that of the electron or other powerful
microscopes. Discuss the differing theories of its operation and its ability
to image small items.

Design an Activ ity  to Evaluate

Find out the approximate size of the atoms in an STM image and also
the size of the smallest detail in the image.

Investigate piezoelectricity and determine what potential differences
might be used to shunt the tip around very short distances. Which
crystals would work best? Why?

Bui ld a Struc ture

We can simulate an STM’s operation using magnets. Construct a
device using permanent magnets to represent atoms and an electro-
magnet to represent the STM probe. Support the vertical (z) axis of this
probe by a spring with a scale on it so that you can observe the force.
The magnetic probe needs to be held secure in the x and y directions until
it is moved to map the object. You can calculate the spring’s force by
reading a properly calibrated spring scale or by using force-sensing
technology like CBL-type equipment. This exercise can also be
extended to map the size and shape of an object.

Fig.STSE.12.4 The tip of the STM



You should be able to

Understand Basic Concepts:

Explain why classical physics was inadequate to
explain observed phenomena.
List and describe three or four of the major
developments in the birth of quantum mechanics.
Describe the photoelectric effect experiment and
its significance.
Understand how photons have momentum and
how it is computed.
Explain why de Broglie made the suggestion of
matter waves.
Understand how single photon diffraction exper-
iments cannot be physically explained and why
we need a probability function.
State the mathematical description of the
uncertainty principle and state its significance.
Explain how quantum tunnelling occurs, and the
principle behind the STM.

Develop Skills of Inquiry and Communication:

Carry out experiments to simulate quantum
tunnelling in action.
Describe and carry out experiments related to the
photoelectric effect.
Using computer technology, create models of
wave packets and, if possible, animate them.

Relate Science to Technology, Society, 

and the Environment:

Describe the benefits of the STM to the techno-
logical world.
Describe how only certain types of light give us
sunburn.
Explain why sunburn occurs at a molecular level.
Explain the significance of randomness at the
atomic level.

Equations
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E X E RC I S E S

Conceptual Questions

1. How would you explain a photon of electro-
magnetic radiation to a person not versed 
in physics?

2. Explain why we find sunburn painful. What is
the actual cause?

3. Using concepts learned in this chapter, explain
why we don’t get a sunburn from visual light.

4. How would the universe as we know it be
different if h � 0?

5. Investigate how the electron volt was created
and why it was given this particular name. 

6. How is Wien’s law related to a black-body
spectrum?

7. What is the meaning of the work function, W0?

8. Why do you think mass equivalence is valid
for photons when considering momentum
conservation in the Compton effect?

9. What is an empirical relationship?

10. What is determinacy? Give an example of an
everyday event that would be affected if deter-
minacy existed at the macroscopic level.

11. Why doesn’t Heisenberg’s uncertainty principle
affect how we observe objects’ positions and
speeds in the macroscopic world?

12. What other device besides the STM operates
using the principle of quantum tunnelling?

13. Why do the spectral lines in the hydrogen
atom become closer together farther away
from the nucleus?

14. As a black body, a mercury lamp emits much
of its light in the visible spectrum. 
a) Why is this type of lamp hazardous to use?
b) What might be done to reduce this hazard?

15. What would be the implication of two particles
of radically different mass having the same de
Broglie wavelength?

16. Explain why it was necessary to quantize angu-
lar momentum in Bohr’s model of the atom.

17. Suppose an x-ray photon strikes a carbon atom
as described in Section 12.4 and the scatter
angle is observed. Does knowing both the
speed of light and the scatter angles violate the
uncertainty principle? Explain your answer. 

18. Research Brownian motion. How much 
does the uncertainty principle affect this 
phenomenon?

Problems

12.2 The Quantum Idea

19. You observe a hot piece of metal. Your spectro-
scope indicates that the brightest wavelength is
597 nm. What is the temperature of the metal
in degrees Celsius? 

20. In 1965, Arno Penzias and Robert Wilson dis-
covered cosmic background radiation (CBR).
This radiation is thought to be an afterglow 
of the Big Bang when the universe was much
denser than today. CBR indicates a temperature
of 2.7 K. What is the peak wavelength associ-
ated with this temperature?

21. Jupiter’s cloud tops have been measured to
have a temperature of about 125 K. What is
the peak wavelength for this radiation and to
which part of the electromagnetic spectrum
does it belong?

22. A 2-W laser emits a coherent light beam at 
a wavelength of 632.4 nm. Assuming that all
the power is radiated, how many photons
leave the laser tube every second?



12.3 The Photoelectric Effect

23. If you were performing the photoelectric
effect experiment on a surface that is covered
with gold, what stopping potential would you
expect if the incident photons had an energy
of 4.5 eV?

24. If light of wavelength 440 nm is shone on a
nickel plate, will the nickel plate exhibit the
photoelectric effect? Why or why not?

25. If the headlight of a car radiates at 30 W and
the peak wavelength of the emitted light is
540 nm, how many photons per second does
this light radiate?

26. If the work function of a particular metal is
3.0 eV and the incident radiation has a wave-
length of 219 nm, 
a) what is the cut-off frequency for this 

material? 
b) what is the maximum energy of any

ejected photons? 

27. Controllers of satellites have to be watchful 
of the photoelectric effect because satellites
are covered with metal and are in a vacuum.
If too many electrons are liberated, the bonding
structure of the satellite skin can change or
create unwanted electrical currents. 
a) How does the work function of a given

metal influence your choice of the material
to use to build a satellite?

b) What is the longest wavelength that could
affect this satellite?

28. What is the longest wavelength of a photon
that could generate the photoelectric effect on
a piece of platinum?

29. What would be the significance of the photo-
electric-effect graph if it
a) passed through the origin? 
b) had a positive y intercept?

12.4 Momentum and Photons

30. A photon has a wavelength of 400 pm. 
a) What is its frequency? 
b) What is its momentum? 
c) What is its mass equivalence?

31. What is the momentum of a photon with an
energy equal to the rest energy of a proton? 

32. An electric stove produces many infrared pho-
tons. If the peak wavelength of the radiation
coming from a stove element is 10 	m, what
is the momentum of the released photons? 

33. X-rays of wavelength 1 nm are scattered from
a carbon target at an angle of 43° to the original
path of the x-ray beam. What is the difference
between the original wavelength and the one
observed from the scattered photons? (This
effect is known as the Compton shift.)

34. An electron at rest is struck by an x-ray photon.
If the scatter angle is 180° and the final speed
of the electron is 7.12 � 105 m/s, what was
the wavelength of the incident photon?

35. If a photon with an incident wavelength of 
18 pm loses 67% of its energy, what is the
corresponding Compton shift as a percentage?

12.5 De Broglie and Matter Waves

36. A 45-g golf ball is struck and leaves the club
at a speed of 50 m/s. What is the de Broglie
wavelength associated with this ball? 

37. In some scattering experiments, the speed of
the particles is tuned so that their de Broglie
wavelength has a specific value. If a wavelength
of 0.117 nm is required, how fast must a neu-
tron be travelling to achieve this wavelength? 

38. How fast would a proton have to travel to
possess the same de Broglie wavelength of the
golf ball in problem 37? Is this speed possible? 
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39. a) What is the de Broglie wavelength of an 
electron with a kinetic energy of 50 eV? 

b) How does this wavelength compare with
the size of a typical atom? 

12.6 The Bohr Atom

40. What wavelength is released if a photon drops
from energy level n � 5 to energy level n � 2?
In which part of the spectrum is this wave-
length? If it is in the visible part of the spec-
trum, what is its colour?

41. Using the equations given in this chapter, 
calculate the energy in eV required to cause
an electron’s transition from 
a) n � 1 to n � 4.
b) n � 2 to n � 4.

42. What is the difference in radius between 
the second and third energy levels of the 
Bohr atom?

43. Calculate the centripetal force required to
maintain an electron in the first energy level.

44. How often does the electron in problem 43
“orbit” the nucleus?

45. Compare the frequency you calculated in
problem 44 with the frequency of a photon
emitted by a drop to this energy level. 

46. We know that electrons “orbit” the atom in
strange paths or zones called orbitals. Orbitals
don’t have the shape of simple planetary orbits
as in the Bohr model. How can this discrepancy
in the location of electrons be reconciled with
Bohr’s model given that Bohr’s model predicts
energy levels very accurately? 

47. Research the significance of the width of the
emission or absorption lines generated by the
Balmer series. 

12.8 Heisenberg’s Uncertainty Principle

48. If an electron is travelling at 1 km/s, how
uncertain is its position?

49. An air bubble in a glass of water has a diameter
of 1 mm. What is the maximum speed of an
O2 molecule that is in 0.1 mm of the bubble? 
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12.1 Hydrogen Spectra

Collimator

Telescope

Adjustable
slit screw

Objective 
lens

Diffraction
grating

Eyepiece

Light
source

Purpose
To measure the emission lines of hydrogen and
compare them to those predicted by the Bohr
model of the atom

Equipment
Hydrogen vapour lamp
Spectroscope (calibrated)

Procedure
1. Assemble all pieces of equipment as shown

in Figure Lab.12.1.
2. Switch on the hydrogen lamp and turn off

all other sources of light. (Remember that
incandescent lights produce a continuous
spectrum and fluorescent lights produce
large bands of emission. Both types of illu-
mination will affect what you see through
the spectroscope.)

3. Observe the light from the hydrogen vapour
lamp through the spectroscope.

4. Record the wavelengths of all the emission
lines visible in the spectroscope. 
Optional: Using a Web cam or other digital
equipment, attempt to image the lines
through the spectroscope. (The spectral lines
may be too dim for most devices, but using
digital equipment would permit the creation
of an actual spectrum during image process-
ing.) Imaging should be done in black and
white, if possible.

5. Switch your spectroscope with two other
groups and repeat step 4 each time.

6. Determine your best estimate of the value
for each emission line and the distance
between each line.

7. Calculate the uncertainty of these 
observations.

8. If available, attempt this experiment on
singularly ionized helium (He II or He
).

Fig.Lab.12.1

Discussion
1. How did the measured wavelengths compare

to the expected values?
2. Were the values within the uncertainty of

the measurement? Why or why not?
3. How wide were the spectral lines? What is

the significance of this width? What prop-
erties of the vapour might be inferred from
this information?

4. How many Balmer lines were present? 
If some of the lines were missing, give a
reason why.

5. Does the width of the lines affect the ability to
discern the Balmer lines from n � 5, 6, 7, etc.?

6. Do the lines vary in brightness?
7. Optional: If you used a digital camera, do

not manipulate the image digitally because
doing so will change the relative intensities
of the light seen. Using suitable image pro-
cessing software, take a profile of the image
through the spectrum. Use the intensity val-
ues of your profile as your data. Combine
your data from five different images to
obtain a representative spectrum. 

Conclusion
Explain how your observations of emission
spectra confirm Balmer’s and Bohr’s predictions
of the spectra for the hydrogen atom. Discuss
your ability to make these observations with
precision and the significance of the line width. 
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12.2 The Photoelectric Effect I

UV source
ClipWire

Gold leaves are
negatively charged.

Zinc plate in insulating holder

−− −−
−−−−−−

Purpose
To observe the photoelectric effect

Equipment
Arc lamp or shielded UV light
Electroscope
Polished piece of zinc

Safety Consideration
Arc lamps are sources of UV light. Keep some
distance from them, wear protective goggles, and
do not stare at the arc. The use of this device
should be kept to a minimum.

Procedure
1. The photoelectric effect releases electrons

from the surface of a metal when it is struck
by sufficiently energetic photons. This
release of electrons tends to make the piece
of metal increasingly positive. If the electro-
scope is positively charged, then we need
only observe what happens to it. If the elec-
trons are leaving the plate, then the positive
charge will be dissipated. If the net charge
on the zinc plate is not changing, then the
electroscope will not move. Make sure that
the electroscope is positively charged.

2. A standard piece of glass prevents the trans-
mission of UV light. Hold a piece of glass
between the arc lamp and the zinc plate. Start
the arc lamp and observe the electroscope.

3. Now remove the piece of glass and observe
the effect on the electroscope.

Fig.Lab.12.2

Discussion
1. What other explanation could be given for

the photoelectric effect phenomenon?
2. Why was zinc chosen as the metal?
3. Why does it have to be polished?
4. What type of light emanates from a 

carbon lamp?
5. What methods might you use to measure the

current flow from the metal? These methods
would have to measure the amount of charge
on the electroscope without discharging it.

Conclusion
Explain the photoelectric effect in your own
words as based on the collection of data from
this experiment. Discuss how this experiment is
strong evidence for the quantum model com-
pared to the classical model of light propagation. 
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12.3 The Photoelectric Effect II

Vacuum tube
Filter

Galvanometer

�

�

A

Cathode
Anode

Ammeter

Purpose
To measure the photoelectric effect and analyze
the data to determine the value of Planck’s
constant

Safety Consideration
This experiment uses UV light. To reduce the
amount of exposure to the skin and eyes, stand
a short distance away from the light source and
wear protective goggles. 

Fig.Lab.12.3a  A photoelectric effect apparatus

Fig.Lab.12.3b  In the vacuum tube, the cathode emits electrons

when struck by light. The anode collects the electrons.

Equipment 
A photoelectric effect apparatus 

Procedure 
1. Set up the photoelectric effect apparatus as

shown in Figure Lab.12.3a.
2. Choosing the reddest line filter, expose the

vacuum tube to the various possible inten-
sities of incident light. Record the values
registered on the galvanometer for each

intensity of light. Adjust the stopping
potential to obtain the maximum current.
Optional: If you have voltage-sensing
equipment and know how to amplify volt-
ages, the readings of the current as the
stopping potential is adjusted can be stored
in the computer or calculator for an even
more careful analysis. 

3. Repeat step 2 with each available line filter.
4. If you have another vacuum tube contain-

ing a different material, repeat steps 2 and 3
using this vacuum tube. 

5. Determine the uncertainty in all your meas-
urements and calculations. 

Discussion
1. Using the data from the experiment, plot a

graph of the energy of the photons versus
the stopping potential. Extend the line back
to the y axis and determine the significance
of all the coefficients. What type of regres-
sion is appropriate here? 

2. Determine the work function, W0, of the
material inside the tube. Does this value agree
with the accepted value for this substance?

3. Repeat step 2 for any other tubes you used.
4. Derive the value of Planck’s constant (h)

from your measurements, given the work
function of the material you calculated. 

5. Interpret the consequences if your graph in
step 1 had
a) no y intercept.
b) a positive y intercept. 

Conclusion
Explain the photoelectric effect in your own
words based on what you have learned in this
experiment. Discuss how this experiment is
strong evidence for the quantum model as com-
pared to the classical model of light propagation. 
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By the end of this chapter, you will be able to
• explore abstract ideas through thought experiments
• describe the influence of special relativity on science and technology
• solve relativistic mass, time, and length problems 
• apply E � mc2 to the laws of conservation of mass and energy

The World of 
Special Relativity

13 

Chapter Outline

13.1 Inertial Frames of Reference 

and Einstein’s First Postulate 

of Special Relativity

13.2 Einstein’s Second Postulate 

of Special Relativity

13.3 Time Dilation and Length

Contraction

13.4 Simultaneity and Spacetime

Paradoxes

13.5 Mass Dilation

13.6 Velocity Addition at Speeds

Close to c

13.7 Mass–Energy Equivalence

13.8 Particle Acceleration

The High Cost of High Speed

13.1 A Relativity Thought Experiment
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13.1 Inertial Frames of Reference 
and Einstein’s First Postulate 
of Special Relativity

For several centuries, Newton’s laws of motion seemed to describe nature
perfectly. Then, in 1905, a 26-year-old scientist named Albert Einstein
(Figure 13.1) showed that Newton’s second law was invalid at speeds
close to that of light, c. Prior to Einstein, when net force was equated to
mass times acceleration (F��net � ma��), it was assumed that mass didn’t
change. However, using two basic postulates that we will study in this
chapter, Einstein was able to show that mass depends on the speed of the
object. When travelling at highway speeds (v � 30 m/s), the increase in
mass is too small to measure. It works out to be only one part in a trillion
because this speed is only a tiny fraction of the speed of light. This cor-
rection is so minute for speeds less than c, that the Newtonian laws of
mechanics accurately describe a wide range of basic phenomena, from
planetary to atomic physics. 

In Figure 13.2, do you see a vase or two silhouettes of Albert the duck’s
profile? Is only one viewpoint correct? Each of us has our own point of view
or frame of reference based on our perception and past experience. In
physics, a frame of reference is the point of view from which we observe
motion. For example, eating a dinner at home is about the same as eating
dinner in an airplane as long as the plane flies at a steady velocity and doesn’t
hit an air pocket, which jolts everything. If food happens to slip off your
fork, it will fall straight to the floor because your velocity relative to your
dinner is the same at home or on the plane; that is, your frame of reference
with respect to your dinner is the same in both situations.

Consider the perspective of two objects moving side by side, in opposite
directions to one another. For example, you are sitting by the window in a
Via Rail train waiting to depart from the station and right beside you is a
commuter train that appears to start moving backward. Or perhaps your
train is starting to move forward? Sometimes, it’s hard to tell. In physics, we
say that your velocity with respect to, or relative to, the commuter train is
the opposite of the train’s velocity relative to you. Algebraically,

yvt � �tvy

Now consider watching an object fall while you are moving sideways at a
constant velocity. A conductor standing in the moving commuter train
drops his watch and it falls to the floor. From his perspective, he correctly
states that the vertical velocity of the watch increased as the watch fell,
while its horizontal velocity was zero. From the stationary Via Rail train,
you observe that the watch’s motion is parabolic, accelerating downward
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Fig.13.1 Albert Einstein

Fig.13.2 Vase or ducks?

Relative Motion

You moving away from me at 4 m/s

[W] is the same as me moving away

from you at 4 m/s [E].

yvm � �mvy, or

4 m/s [W] � �4 m/s [E]



while travelling at a uniform horizontal velocity away from you. The laws
of physics for you and the conductor are the same, but the path of the watch
described by each of you is different (see Figure 13.3).

Since both you and the conductor have uniform velocities, there is no unbal-
anced force acting on either of you. Both your frames of reference or view-
points satisfy Newton’s first law of motion. Such non-accelerating
viewpoints are called inertial frames of reference.

Einstein’s First Postulate of Special Relativity: The laws of physics
are the same for observers in all inertial frames of reference.

Let’s examine how the laws of physics are the same for a stationary and a
moving observer, both witnessing the same event.

e x a m p l e  1 Turkey trouble

Nadia is sitting at the dinner table when her overstuffed 6.0-kg turkey
suddenly explodes into two equal pieces. One piece moves 2 m/s [L] and
the other travels 2 m/s [R]. At that very moment, Jerry walks by the table
at 2 m/s [L]. Find the change in kinetic energy, �Ek, of the turkey from
both Nadia’s and Jerry’s points of view. Refer to Figure 13.4.
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 �wvc

(a) The conductor sees the 
watch fall vertically

Fig.13.3 The fall of a watch from

two inertial frames of reference

 �wvc  �wvy

 �      wvy �  �      wvc �  �   cvy 

 �   cvy 

(b) You see the conductor 
move horizontally, as the 
watch falls parabolically

Fig.13.4 The change in kinetic

energy in two inertial reference frames

(a) Nadia’s viewpoint

        LvNadia �2 m/s � 

           JerryvNadia �2 m/s � 

        RvNadia � 2 m/s

3.0 kg 3.0 kg

(b) Jerry’s viewpoint

         RvJerry � 4 m/s      LvJerry 0 � 

             NadiavJerry � 2 m/s

3.0 kg3.0 kg



Solution and Connection to Theory

Given
m0 � mL � mR � 3.0 kg � 3.0 kg � 6.0 kg

0vNadia � 0 m/s

RvNadia � 2 m/s [R]

LvNadia � 2 m/s [L] � JerryvNadia

�Ek � ?

Nadia’s stationary reference frame:
Using the equation Ek � �

1
2

�mv2, we find the change in kinetic energy of
the turkey by subtracting its original kinetic energy, Ek � 0, from the
kinetic energy after it explodes. After the explosion, the kinetic energy of
the turkey, Ek�, is

Ek� � �
1
2

�(3.0 kg)(2 m/s)2 � �
1
2

�(3.0 kg)(2 m/s)2 � 12 J
�Ek � Ek� � Ek

�Ek � 12 J � 0 J
�Ek � 12 J

Jerry’s moving reference frame: 
Since Jerry is moving 2 m/s [L], then relative to Jerry, the turkey is mov-
ing 2 m/s [R]. From his reference frame, the initial kinetic energy of the
turkey is

Ek � �
1
2

�(6.0 kg)(2 m/s)2 � 12 J

After the explosion, the 3-kg half going left has a speed of 0 m/s relative
to Jerry, while the other half has a speed of 4 m/s away from him. Thus,

Ek� � �
1
2

�(3.0 kg)(0 m/s)2 � �
1
2

�(3.0 kg)(4 m/s)2 � 24 J 
�Ek � Ek� � Ek

�Ek � 24 J � 12 J
�Ek � 12 J

Since the laws of physics are the same in all inertial reference frames,
Nadia and Jerry agree that 12 J of energy have been transferred, even
though they disagree on the initial and final values of Ek.

1. In Example 1, show that momentum is conserved in both Nadia’s
and Jerry’s frames of reference.

2. In society, conflicting points of view often lead to complex legal 
trials. Think of a situation, real or imagined, involving differing
points of view.
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3. Find or create an image of an optical illusion (similar to Figures 13.2
or 13.5), or an image expressing contrary points of view to share
with the class.

13.2 Einstein’s Second Postulate 
of Special Relativity

When a friend calls out to you on a windy day, does she seem to be farther
away than she really is when she shouts into the wind? Recall from Chapter
2 that in Newtonian physics, we use the relative additions of wind and
sound velocities to show the velocity of sound with respect to the ground: 

sv��g � sv��w � wv��g

where sv��g is the velocity of sound with respect to the ground, sv��w is the veloc-
ity of sound with respect to the wind, and wv��g is the velocity of the wind
with respect to the ground (see Figure 13.6).

As we learned in Unit D, light also has a wave nature. Like sound, should
it not therefore have a speed relative to the ground when it travels through a
moving medium? In the late 1900s, most scientists thought that all waves
required a medium in which to travel. They postulated that the medium
through which light travelled was a universal, incompressible, viscous, trans-
parent medium that they named ether. They reasoned that if the Sun was at
rest relative to the ether, then the velocity of sunlight relative to Earth, Lv��E,
would depend on both the velocity of light from the Sun, Lv��S, and the veloc-
ity of Earth through the ether about the Sun, Sv��E. The following example
illustrates their calculations of the relative velocity of light through ether.
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Fig.13.5 A spatial illusion by

M.C. Escher (1898–1972)

Object
moving forward

(sound)

Frame of
reference
(ground)

s g  �v

Fig.13.6



e x a m p l e  2 The velocity of light in the ether wind

Find the speed of light relative to Earth if Earth is moving at right angles
to the Sun at a speed equal to its orbital velocity about the Sun. 

Solution and Connection to Theory

Given 
LvS � 3.0 � 108 m/s (speed of light relative to the Sun)
rE-S � 1.50 � 1011 m (orbital radius of Earth about the Sun)
TE-S � 3.16 � 107 s (orbital period of Earth about the Sun)

To find the velocity of Earth relative to the Sun, we need to divide Earth’s
orbital circumference by one year, the period of Earth’s motion. Then the
velocity of the Sun relative to Earth is

SvE � �
2

T
	

E

r

-

E

S

-S
�

SvE �

SvE � 2.98 � 104 m/s 

From Figure 13.7, we can calculate the speed of light relative to Earth,

LvE, using velocity addition in two dimensions:

Lv��E � Lv��S � Sv��E � 3.0 � 108 m/s [outward] � 2.98 � 104 m/s [tangentially]

LvE � �(3.0 �� 108 m�/s)2 �� (2.98� � 104� m/s)2�
LvE � 299 999 998 m/s 

The scientists calculated that the difference between the speed of light rel-
ative to the Sun and the speed of light from the Sun through the ether was 

LvS � LvE � 3.0 � 108 m/s � 299 999 998 m/s � 2 m/s 

If scientists could measure this small difference of 2 m/s, they could prove
that ether existed. When Einstein was eight years old, the great experimen-
talists A.A. Michelson and E.W. Morley tried to determine if there was a
solar ether through which Earth moved (see Figure 10.18). Using an inter-
ferometer (see Figures 13.8a and b), a beam of light was split into two 
separate beams, one of which travelled perpendicular to Earth’s motion and
the other of which travelled parallel to Earth’s motion. Both beams travelled
the same distance and were reflected by mirrors back to the place where
they separated. Depending on the travel time difference (if any), the waves
meet crest to crest (constructive interference) or crest to trough (destructive
interference). (See Section 11.5 to review how an interferometer works.) 

2(3.14)(1.50 � 1011 m)
���

3.16 � 107 s
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Observations were made during the day and at night (as Earth spins on
its axis) and through all seasons of the year (as Earth orbited the Sun). Even
though their interferometer was about 40 times more sensitive than neces-
sary, Michelson and Morley couldn’t detect any difference in travel times
between the perpendicular and parallel cases. They concluded that there
was no ether at all; therefore, light can travel through a vacuum! In 1907,
Michelson was awarded the Nobel Prize in physics for his experimental work.

The null result of the Michelson-Morley experiment was a blow to
those who believed light needed a medium through which to travel. Based
on Michelson’s null result and his conviction that the laws of physics are
the same in all inertial systems, Einstein came up with his second postulate
of special relativity.

Einstein’s Second Postulate of Special Relativity: The speed of light
in a vacuum has the same value, c (3.0 � 108 m/s), in all inertial systems;
that is, the speed of light is absolute!

A passenger in the space shuttle and a person sitting on Earth both meas-
ure the same value for the speed of light. We know from Chapter 10 that
light can be slowed down when it enters a refractive medium such as water,
but c is the ultimate speed of our universe. Nothing can travel faster than c! 

Einstein’s second postulate has been experimentally corroborated. For
example, electrons accelerated through a potential difference of one million
volts (1 MV) have a speed of 0.9411c (see Figure 13.10). When the poten-
tial is increased to 4 MV, their speed doesn’t double to 1.8822c, as we might
expect from Newtonian physics, but increases to 0.9936c — a change of
only 5.58%! The addition of energy doesn’t cause the expected increase in
speed of the electron. Some of this energy must be converted to another
form. We will discuss what happens to this energy in Section 13.5.
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Fig.13.8a The Michelson interferometer Fig.13.8b A.A. Michelson at his interferometer
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Fig.13.10 The speed of electrons acceler-

ated through an electric potential difference

Classical Electron Acceleration
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1. From the kinetic energy-versus-speed graph of electrons in Figure
13.10, at what speed do the effects of special relativity begin to appear?

2. Captain Picard is travelling through the universe in his starship at a
velocity of 0.6c [L]. A Klingon warship is approaching head-on with
a velocity equal to 0.5c [R]. Use classical kinematics to find the
speed of the Klingons relative to Picard. Which postulate of special
relativity do these moving masses contradict? 

3. Find the speed of an electron accelerated from rest through a potential
difference of one million volts (using Newtonian physics). How
does this value compare to c? 

13.3 Time Dilation and Length Contraction

Moving Clocks Run Slow

One of the effects on objects travelling at speeds approaching the speed of
light is time dilation. Using Einstein’s two postulates of special relativity
and Pythagoras’ theorem, we can show that the measurement of time
depends on how fast you are going!

Thought Experiment 1: The Relationship between Time and Speed 
Phillip, a physicist, is travelling at a speed v in his personal boxcar while
performing a physics experiment. He transmits a pulse of light from the
floor up to the ceiling, where the pulse reflects off a mirror and travels back
to the floor. Knowing that the height of the ceiling is h and the speed of light
is c, from v � �

d
t
�, he is able to calculate the time, t0, for the experiment: 

t0 � �
2
c
h
� (see Figure 13.11a). 
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Meanwhile, his friend Barb, a bystander, observes Phillip’s experiment as he
rides by. Barb’s view of the experiment is a little different than Phillip’s (see
Figure 13.11b). From Barb’s point of view, while the light travels up to the
ceiling, the vehicle moves sideways. Therefore, Barb observes the light to
travel farther than Phillip does, and she measures a time t greater than t0.
Because the laws of physics must be the same for both Phillip’s and Barb’s
inertial frames of reference (Einstein’s first postulate of special relativity)
and light travels at a speed c (Einstein’s second postulate) in each frame,
Barb and Phillip each measure a different time for the experiment.

From Figure 13.11c,

t � 2�
d
c
� �

But h � �
c
2
t0
�

Therefore, t �

or (c2 � v2)t2 � c2t0
2

Thus, the time measured by Barb is given by the equation

t �

where t is relativistic time, measured in a frame of reference where the
beginning and end of the experiment occur at two different points in space;
and t0 is proper time, which is the time interval measured in a reference
frame where the beginning and the end of the experiment occur at the same
point in space. Notice in Figure 13.11a that Phillip’s vehicle needed only one
clock at one place to measure the time, t0. In Figure 13.11b, Barb needed two
synchronised clocks for accuracy — at the points where she saw the exper-
iment begin and end. Her time is therefore labeled t. 

For Newtonian speeds, the values of t and t0 are much the same, but at
speeds comparable to c, they are quite different. In 1937, while studying
cosmic radiation entering our atmosphere, scientists discovered the muon.
Although it has the same charge as an electron, it is 207 times more mas-
sive. The muon is unstable, having an average lifetime at rest of 2.2 �s.
However, travelling at high speed in the upper atmosphere, the measured
lifetime of the muon is found to be somewhat longer, as we will see in the
following example. 

t0
�

�1 � �
v
c2

2

��

2���
v
2
t
��

2
�� ��

c
2
t0
��

2�
��

c

2���
v
2
t
��

2
�� h2�

��
c
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e x a m p l e  3 The extended lifetime of cosmic muons

What is the mean lifetime of a muon, measured by scientists on Earth, if
it is moving at a speed of v � 0.70c through the atmosphere? Assume that
its lifetime at rest is 2.2 �s

Solution and Connection to Theory

Given
t0 � 2.2 � 10–6 s v � 0.70c c � 3.0 � 108 m/s t � ?

t �

t �

t � �
2.2 �

0.7
1
1
0–6 s

�

t � 3.1 � 10–6 s � 3.1 �s

The lifetime of the muon is therefore extended by 0.9 �s. This time dif-
ference means that the muon travels farther than would have been
predicted by Newtonian mechanics. In fact, it would decay long before
reaching Earth if it were not for the time dilation effect. 

2.2 � 10–6 s
��

�1 � �
(0�.7

c2

0c)2

��

t0
�

�1 � �
v
c2

2

��
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The time interval measured by an observer in relative motion to an event
is longer than proper time. Time is relative. Absolute time does not exist!

Our experience is governed by a time that is proper to our own frame of ref-
erence and we cannot rely blindly on clocks that are moving at high speeds
relative to us! 

Moving Objects Appear Shorter 

From the relationship between time and speed, we can see that at speeds
close to c, time is relative. Using this relationship, we can easily show that
length measurements are also relative. Like time dilation, this effect, known
as length contraction in the direction of travel, appears insignificant at
everyday speeds, but becomes significant at speeds approaching c.

Thought Experiment 2: The Relationship between Length and Speed
Katrina the cosmonaut is travelling via spacecraft at a speed v from Earth to
Mars, which we will assume are at rest relative to each other and located a
distance L0 apart. 

For Tanya, a technician on Earth, the time taken for this trip is t � �
L
v

0
�

(where L0 � d � vt). Proper length, L0, is the rest length or the length
measured in a reference frame in which the observed object (in this case, the
distance between the two planets) is at rest. For Katrina, proper time t0

(measured with the one clock in her spaceship) is less because time dilates

according to the equation t0 � t�1 � �
v
c2

2

��. From Katrina’s point of view, she

sees herself at rest with Mars approaching at speed v. Thus, Katrina calculates

the relativistic length, L, of her trip to be vt0 � vt�1 � �
v
c2

2

��. 
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Using vt � L0, we find the distance in Katrina’s direction of motion is con-
tracted or decreased according to the equation for relativistic length

L � L0�1 � �
v
c2

2

��
Just as the cosmonaut measures shorter interplanetary distances, a station-
ary observer measures the length of a moving object to be shorter in the
direction of travel than when it is at rest. Again, we must be careful to dis-
tinguish between L and L0. In Tanya’s case, the ends of the observed length
(Earth and Mars) were at rest relative to her. Her distance is therefore the
proper length, L0. 

The length of a moving object in the direction of travel is shortened. Length
is a relative, not an absolute, concept. Absolute length does not exist! 

e x a m p l e  4 Our shrunken sky

A muon, created 12 km above Earth, travels downward at a speed of 0.98c.
Determine the contracted relativistic length the muon experiences as it
travels to Earth.

Solution and Connection to Theory

Given
L0 � 12 000 m v � 0.98c L � ?

L � L0�1 � �
v
c2

2

��
L � (12 000 m)�1 � (0�.98)2�
L � 2.4 � 103 m

To the muon, 12 km of our atmosphere seems like only 2.4 km!

e x a m p l e  5 Like ships passing in the night

Two identical spacecraft, each 400 m long when measured at rest, pass
each other while heading in opposite directions (Figure 13.14). Captain
Janeway, piloting one of the vehicles, measures a proper time interval of
1.80 � 10–6 s for the second ship to pass her. Find the relative speed of
the two ships. 
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Solution and Connection to Theory

Given 
L0 � 400 m t0 � 1.8 � 10–6 s c � 3.0 � 108 m/s v � ?

v � �
t
L

0
�

But L � L0�1 � �
c
v2

2��; therefore,

v �

v � (400 m)

v2 � �4.94 � 1016 m2/s2��1 � �
9.0 � 1

v
0

2

16 m2/s2��
v2 � 3.189 � 1016 m2/s2

v � 1.8 � 108 m/s

The relative speed of the two ships is therefore 1.8 � 108 m/s. 

�1 � �9.�0 � 1
v
0

2

1�6 m2/s2��
���

1.8 � 10–6 s

L0
�1 � �

v
c2

2

��
��

t0
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1. In Example 3, calculate how much farther the muon travelled than
Newtonian physics predicts.

2. In Thought Experiment 1, find the time, t0, that Phillip measured
for the light pulse to travel from the floor to the ceiling and back if
the height is 3.0 m. Find the time t that Barb measured if Phillip’s
vehicle is travelling at a speed v � 0.6c.

3. Marc Garneau is orbiting Earth in an ultra-fast space shuttle. His heart
is pulsing at a rate of 52 beats per minute. If the shuttle is travelling at
a speed of 0.28c, how many beats per minute will a sensitive detector
on Earth measure?

4. On another trip from Mars to Saturn, Katrina measures the distance,
L, to be exactly one-half of its proper length. What is her speed, v?

5. In Example 5, why is Janeway’s time the proper time?
6. If you wanted to travel from Earth to Pluto in one hour (by your

watch), what would be your speed? The Earth–Pluto distance is
5.75 � 1012 m.

Women in Physics

Einstein met his first wife, Mileva, in Zurich, where they were both
studying physics. Some historians of science feel that at a time when few
women studied physics, Mileva may have made significant contributions
to the theory of special relativity through her relationship with Albert. 
7. Investigate women’s contributions to physics in the early 1900s,

and in particular, the evidence related to Mileva’s possible contri-
butions to special relativity.

13.4 Simultaneity and Spacetime Paradoxes

Simultaneity

In Section 13.3, we learned that a stationary observer will have a different
experience of space and time than an observer travelling at relativistic
speeds, even though the laws of physics are the same in both their (inertial)
reference frames. In other words, events occurring at the same time or place
from your viewpoint may not be doing so for someone else in relative
motion. Let’s look at a situation involving two people in relative motion. 

Thought Experiment 3: Relativity Can Make You Cross-eyed
Ted and Jane are moving toward each other at a relative speed, v. For a
moment, their paths cross, and at that instant, they both send off a flash of
light. A short time later, they both have quite a different view of what took
place (see Figures 13.16a and b). 
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From Jane’s point of view (Figure 13.16a), Ted has moved a distance vt
to the right. The spherical shell of light expanding outward from Jane has a
radius AJ � ct. Since Ted emitted a flash of light centred about himself, Jane
knows that the radius of Ted’s sphere TB � ct�. It’s smaller than the radius of
Jane’s shell, ct, because both spheres of light were emitted at the same place
and time and thus reach point B at the same time. According to Figure 13.16b,
Ted has a similar view, but in reverse. He knows the radius of the shell of light
expanding from Jane has a radius ct, the distance from Jane to point A. From
his viewpoint, the distance from him to A is greater and equals ct�. He thinks
that t� 
 t, but Jane sees t 
 t�. Is t 
 t� or is t� 
 t? We could go cross-eyed
trying to decide which viewpoint is correct. For an observer at rest, the light
from both Jane and Ted would reach points A and B simultaneously!

An event that is simultaneous for one observer isn’t necessarily simultane-
ous for another observer. Simultaneity is a relative, not an absolute, concept.

The concept of simultaneity is summarized in Figure 13.17.

Fig.13.17 Simultaneity

Paradoxes 

A paradox is a situation in which people reach contradictory conclusions
using valid deductions from premises that are acceptable to everyone. In
special relativity, even though thought experiments can have the same
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beginning, sometimes our analysis can lead each of us on different paths
of thought to contradictory outcomes that seem irresolvable. The twin
paradox is one of the most famous paradoxes in relativity.

e x a m p l e  6 Stacey and her travelling twin, Tracy

Tracy the astronaut travels at a speed of 0.95c to a star that is 8.00 light
years away, then immediately turns around and returns to Earth. She greets
her twin sister Stacey, who had stayed on Earth, and now appears much
older than Tracy! Find the age difference of the sisters when they reunite.

Fig.13.18 Tracy the traveller meets her “older” twin, stay-at-home Stacey

Solution and Connection to Theory 

Given
L0 � 8.00 ca v � 0.95c t0 � ? t � ?

For Stacey, the total time for the trip is

t � �
2

v
L0
� � �

2(8
0
.
.
0
9
0
5c

ca)
� � 16.8 a 

For Tracy, the total time is

t0 � �
2
v
L
�, where L � L0�1 � �

v
c2

2

�� � (8.00 ca)�1 � (0�.95)2� � 2.50 ca

t0 � �
2(2

0
.
.
5
9
0
5c

ca)
� � 5.26 a

The twins’ age difference when Tracy returns is 16.8 a � 5.26 a � 11.6 a!

Perhaps you think it is unfair that Stacey ages more than Tracy. Many stu-
dents feel that way. Others argue that, from Tracy’s point of view, Stacey’s
clock should run slow because she is moving relative to Tracy. We would
have an unresolved paradox unless we note that Tracy is not always in an
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inertial reference frame. She must accelerate to leave Earth, turn around
when she reaches the star, and brake upon her return to Earth. For this rea-
son, it is Tracy’s and not Stacey’s clock that runs slow. She isn’t getting
more out of life than her sister; she is just experiencing 5.26 years of living
while Stacey experiences 16.8 years.

When scientists questioned Einstein about this paradox, he argued that
even though both observers need only one clock, the proper time, t0, was the
time measured by the traveller. Experiments measuring the dilated average
lifetimes of unstable particles, such as muons travelling at relativistic speeds
in particle accelerators, have since confirmed his conclusion. The effects of
time dilation were also experimentally corroborated in 1977, when atomic
clocks were carried around the world on commercial airline flights, once
eastward and once westward. When the travelling clocks (like Tracy’s)
were compared to those that stayed home (like Stacey’s), the ones that were
flown were slower!

Spacetime Invariance

If space and time are both related to speed, then
space and time must be related to each other. From
geometry, we know that Euclidian space has three
dimensions: x, y, and z. In relativity, on the other
hand, spacetime is a framework that has four
dimensions: x, y, z, and t (time).

To see how length and time are joined in rela-
tivity, consider Orson, the international gourmet,
travelling on the high-speed Occident Express. His
train is travelling at a speed of 0.69c, while he eats a
meal in 21 minutes from a 29-cm plate (Figure 13.19).
Yet for Tory the timer, at rest relative to Earth, the
plate is contracted to a diameter of

L � L0�1 � �
v
c2

2

��
L � (29 cm)�1 � (0�.69)2�

L � 21 cm 

and the time is dilated to 

t �

t �

t � 29 min 

(21 min)
��
�1 � (0�.69)2�

t0
��

�1 � �
v
c2

2

��
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 � v  � v

Fig.13.19 Tory measures a longer time

but a shorter plate than Orson

Speed Time (min) Length (cm) 

Orson 0.69c 21 29 

Tory 0 29 21



Thus to Tory, what the food loses in size it gains in time! Even though
length contracts and time dilates, length and time together are invariant. 

The spacetime interval is the interval between two events in space
and time, here and now and there and then. We can show that the spacetime
interval is the same for observers in all inertial reference frames. If two
flashes of lightning occur a distance �x and a time �t apart, then �x and �t
are linked in an unusual way. The equation 

(�s)2 � c2(�t)2 � (�x)2

is called the square of the spacetime interval for one dimension. It is
constant or absolute in all inertial reference frames. An observer travelling
at high speed may measure different �x and �t values than an observer at
rest, but both observers will get the same value for (�s)2! Let’s look at this
invariant quantity by revisiting Orson and Tory.

e x a m p l e  7 Spacetime invariance

Show that the spacetime interval for Orson is the same as for Tory.

Solution and Connection to Theory

Given
�t (Orson) � 21 min �t� (Tory) � 29 min v � 0.69c
c � 3.0 � 108 m/s (�s)2 � ?

For Orson, 
�t � (21 min)(60 s/min) � 1.26 � 103 s 
�x � 0 (He sat at the table.) 
(�s)2 � c2(�t)2 � (�x)2

(�s)2 � (3.0 � 108 m/s)2(1.26 � 103 s)2 � 0 
(�s)2 � 1.4 � 1023 m2

For Tory, 
�t� � (29 min)(60 s/min) � 1.74 � 103 s 
�x� � v�t�
�x� � (0.69)(3.0 � 108 m/s)(1.74 � 103 s) 
�x� � 3.6 � 1011 m
(�s)2 � (3.0 � 108 m/s)2(1.74 � 103 s)2 � (3.6 � 1011 m)2

(�s)2 � 1.4 � 1023 m2

Therefore, the squares of the spacetime intervals for Orson and Tory are
both equal to 1.4 � 1023 m2.
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When we wish to calculate the distance between two points in Euclidean
space, we use the equation 

�d � �(�x)2�� (�y�)2 � (��z)2�

Notice that this equation is quite similar to the spacetime inter-
val (for three spatial dimensions), except for the negative signs:

�s � �c2(�t)�2 � [(��x)2 ��(�y)2�� (�z�)2]� or

�s � �c2(�t)2� � (�x�)2 � (��y)2 ��(�z)2�

To calculate the distance between two points in spacetime, sci-
entists use ct instead of t to represent the time axis so that it will
have the same units (m) as the position coordinates.

From the spacetime graph in Figure 13.20, we can see that
if the span along the ct axis is squared, then it will have the same
units as �x2, namely m2. From the vertical (�ct � 2 m) and hor-
izontal (�x � 1 m) displacements, we can find the spacetime
interval, in metres:

�s � �c2(�t)2� � (�x�)2�
�s � �22 � 1�2�
�s � 1.73 m

1. Find the speed of a rocket that takes three years longer than light
(according to the rocket’s clock) to travel a distance of 7.0 ca.

2. Find Tracy’s speed if the twins were 20 years old when Tracy left,
and were 5.0 years apart in age when Tracy returned from a round
trip to a star that is 5.0 ca away.

3. If you vacation to a star 200 ca away by travelling at a speed of
0.9986c, will you get there before you are 60 years old? How long
will it take?

4. Research the average speed of commercial aircraft. Using time dila-
tion, determine how much shorter a trip around the globe is for the
passenger in the plane than for a stationary observer. Find infor-
mation on the type of clocks that have been developed to measure
extremely small intervals of time.

5. Today, people are travelling more than ever. In terms of relativity,
do travellers age differently than people who stay home?

6. While travelling in a high-speed boxcar, Rashad hits a ping-pong
ball against a wall. The ball bounces back to him in 1.5 s. For
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Kareem, who is standing beside the tracks when Rashad zooms by,
the ball takes 2.0 s to return to Rashad. What space interval did
Kareem measure for this event?

7. During fission in nuclear reactor cores, emitted high-speed beta ()
particles travel into the surrounding water, causing a glowing blue
light to be emitted. Investigate the phenomena of Cerenkov radiation
to explain why the blue glow occurs and to possibly explain
whether or not particles can travel faster than light.

13.5 Mass Dilation
Until the turn of the 19th century, the fastest observed object was consid-
ered to be the planet Mercury, with an average speed that is 0.016% the
speed of light. At this speed of 4.8 � 104 m/s, the difference between the
relativistic and the classical (Newtonian) mass was only one part in 79 million.
However, technology was becoming more precise and exacting. If a theoretical
physicist hadn’t discovered special relativity in 1905, it is likely that within
the decade, an experimentalist would have. 

In a 1909 experiment, H. Bucherer showed that electrons
emitted from the beta-decay of radioactive particles and
travelling at a speed of 0.69c had a significantly smaller
charge-to-mass (e/m) ratio than expected. Bucherer
claimed that the best fit to his e/m data was given by
Einstein’s (then recent) equation for mass dilation.
Another possible explanation for this observation was that
the electron charge decreases as the velocity increases, but
this idea was discarded and mass dilation theory was uni-
versally accepted by 1916.

The Cyclotron
Advances in electrical engineering led to particle accelera-
tors such as E.O. Lawrence’s first cyclotron in 1932 (see
Figure 13.21), used for nuclear studies. In the cyclotron, a
beam of particles is bent into a circular path by a magnetic
field. The particles orbit inside two semicircular metal
chambers called “dees” (because they are shaped like the
letter D). Inside the dees, the particles experience no elec-
tric force, but in the gap between the dees, they are given
an accelerating voltage, thus gaining a little energy with
each cycle. By the end of the 1930s, the speed to which
particles could be accelerated in a cyclotron reached its
limit, beyond which there was no possible way to compensate
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for the effect of mass dilation. In 1947, scientists at Berkeley overcame this
problem by building a frequency-modulated cyclotron (synchrocyclotron)
that was about ten times more energetic.

Thought Experiment 4: The Dilated Bohr Electron
We can combine the ideas of circular motion and electrical force (studied
in Chapter 8) with that of relativistic length contraction to support the
idea that mass is relative, and that at high speeds, it appears dilated. Recall
from Chapter 12 that when an electron travels in a circular orbit around
a proton, as in early models of the hydrogen atom, we say that the electron’s
centripetal force,

Fc � �
m

r
v2

�

is provided by the electron’s electrostatic attraction towards the proton,

Fe � �
k
r
e
2

2

� (Coulomb’s law)

When we equate these two forces 

�
m

r
v2

� � �
k
r
e
2

2

�

and isolate the mass, we obtain the equation 

m � �
v
k

2

e
r

2

�

At low speeds, the mass of a moving object is negligibly different from its
stationary or rest mass, m0. This equation suggests that as the radius, r,
becomes contracted at high speeds, the mass of the electron becomes dilated.
For relativistic mass, we substitute the equation for length contraction for r
such that 

m �

Substituting the rest mass, m0 � �
r
k

0

e
v

2

2�, into this equation, we obtain the equa-
tion for mass dilation:

m �
m0

�

�1 � �
v
c2

2

��

ke2

��

v2r0 �1 � �
v
c2

2

��
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Figure 13.23 summarizes the derivation of the equation for relativistic mass.

Fig.13.23 Understanding Mass Dilation

Einstein’s second postulate of special relativity can be linked to key aspects
of Newton’s second law of motion. As an object accelerates, its inertia, or
resistance to change, increases. In other words, we observe the mass of an
object in motion to be greater than when it is at rest. In classical mechanics,
if we apply a constant unbalanced force to an object, the object accelerates;
that is, its speed increases by the same amount per second; for example,
from 500 m/s to 600 m/s at one stage. If a sufficient force is applied, this
increase continues until the object accelerates from 300 000 000 m/s to 
300 000 100 m/s in the same time interval. At this speed, the object exceeds
the speed of light, c, which violates Einstein’s second postulate of special
relativity! (Recall our discussion of the electron in Figure 13.10.) As an object
approaches the speed of light, its inertia or mass increases as described by
mass dilation so that the object never travels faster than the speed of light.
The unbalanced force is no longer sufficient to cause the same acceleration
because the mass is increasing (see Figure 13.24). As higher speeds are
reached, the mass increases, making it harder to accelerate further. 

The mass of a moving object is dilated. Mass is relative. Absolute mass
does not exist!

In 1947, cosmic rays colliding with atomic nuclei in Earth’s upper atmos-
phere were observed to create short-lived high-speed particles called pions,
	, that have an average rest life of 2.6 � 10�8 s. The pion decays into a
muon, �, and a particle called a neutrino, v. Let’s use the pion in an example
to show mass dilation.
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e x a m p l e  8 The mass of the cosmic pion

Find the dilated mass of a pion of rest mass m0 � 2.5 � 10�28 kg if it is
travelling at a speed of 0.99c.

Solution and Connection to Theory

Given
m0 � 2.5 � 10�28 kg v � 0.99c m � ?

Applying the mass dilation equation and substituting,

m �

m �

m � �
2.5 �

0.
1
1
0
4

�28 kg
�

m � 1.8 � 10�27 kg

The dilated mass of the pion is 1.8 � 10�27 kg, or over seven times its
rest mass. 

Infinitesimal mass increases are happening all around us. They occur
whenever macroscopic objects move. A simple application of the binomial
theorem allows a very close approximation to the exact answer when
v �� c (relatively slow speeds).

e x a m p l e  9 Low-speed mass

Determine the increase in mass of a car travelling at 25 m/s if its rest
mass is 2000 kg.

Solution and Connection to Theory

Given 
v � 25 m/s c � 3.0 � 108 m/s m0 � 2000 kg �m � m � m0 � ?

�m � � m0

m0
��

�1 � �
v
c2

2

��

2.5 � 10�28 kg
��

�1 � (0�.99)2�

m0
��

�1 � �
v
c2

2

��
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�m � m0� � 1�
�m � m0�1 � �

2
v
c

2

2� � 1�
�m � �

1
2

� �
m

c
0
2

v2

�

�m � �
1
2

�(2000 kg)��3.0
2
�

5
1
m
0
/
8

s
m/s

��2

�m � 6.9 � 10�12 kg

Therefore, the mass of the car increases 6.9 � 10�12 kg. Because this
increase is so small, Newtonian mechanics is more than adequate for
most everyday situations.

Electrons Moving in Magnetic Fields

The electron has been the easiest atomic particle for scientists to accelerate
to high speeds because it has a mass that is about 1800 times less than the
mass of the proton. Since mass dilates at relativistic speeds, we should 
re-examine the movement of electrons in magnetic or electric fields. From
Chapter 9, we know that the centripetal force, 

Fc � �
m

r
v2

�

of an electron moving in a circular path is provided by the magnetic force, 

FB � qvB

where q is the charge, v is the speed, and B is the magnetic field strength.
Now we must also include mass dilation, 

m �

Combining these three equations, we can derive the equation for the orbital
radius of an electron, as shown in Figure 13.25.

m0
��

�1 � �
v
c 2

2

��

1
��

�1 � �
v
c 2

2

��

656 unit  e :  Matter–Energy Inter face

Binomial Theorem Derivation 

In mathematics, the binomial 

expansion of

�1 � �
c

v2

2
�� � 1 � �

2

v

c

2

2
� � �

8

v

c

4

4
� � ...
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�1 � �
c

v2

2
�� 	 1 � �

2

v

c

2

2
�

is a good estimate for length 

contraction because the higher-

order terms like �
c

v4

4
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For mass and time dilation, we use

.

The binomial expansion of this

expression is approximately

	 1 � �
2

v

c

2

2
�

for the same reason.

Note the minus sign for length 

contraction and the plus sign 

for mass and time dilation. 

1
��

�1 � �
c

v2

2
��

1
��

�1 � �
c

v2

2
��



Fig.13.25 The Orbital Radius of a High-speed Charge in a Magnetic Field

e x a m p l e  1 0 The curved path of electrons

An electron travels at 0.69c in a circle at right angles to a uniform mag-
netic field of strength 2.0 T. Find the radius of the circle and compare it
to the radius calculated without considering mass dilation.

Solution and Connection to Theory

Given 
m0 � 9.11 � 10�31 kg v � 0.69c B � 2.0 T
q � 1.602 � 10�19 C c � 3.0 � 108 m/s r � ?

Without considering mass dilation: 

When electron motion is perpendicular to the magnetic field, the 
centripetal force is

Fc � �
m

r
v2

� � qvB, where m � m0; thus,

r � �
m
qv

0

B
v2

�
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r � �
m
qB

0v
�

r �

r � 5.9 � 10�4 m

Considering mass dilation:

When the mass is dilated, m � , so

r �

r �

r � 8.1 � 10�4 m

With mass dilation, the electron’s radius of orbit is larger. 

In Bucherer’s 1909 experiment, the observed radius of the electrons in the
magnetic field was 37% larger than that predicted by Newtonian mechanics.

Figure 13.27 summarizes the three relativistic effects predicted by Einstein. 

Fig.13.27 Relativistic Effects

1. Find the dilated mass of Earth if its rest mass is m0 � 5.98 � 1024 kg
and its orbital speed is 2.96 � 104 m/s.

2. Which increase in speed represents the greater gain in mass for a
proton: accelerating from 0.90c to 0.99c, or accelerating from 0.99c
to 0.999c? Explain.

3. Find the increase in mass of Tomiya, a sprinter running at 10 m/s,
if his rest mass is 60 kg. (Hint: Use the low-speed binomial approx-
imation.)

(9.11 � 10�31 kg)(0.69)(3.0 � 108 m/s)
�����
(1.602 � 10�19 C)(2.0 T)�1 � (0�.69)2�

m0v
��

qB�1 � �
v
c2

2

��

m0
��

�1 � �
v
c2

2

��

(9.11 � 10�31 kg)(0.69)(3.0 � 108 m/s)
�����

(1.602 � 10�19 C)(2.0 T)
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4. The cost of building larger cyclotrons scales roughly as the size of
the magnet used or as the cube of the energy. In 1980, a 500-MeV
cyclotron cost about $100 million. Show why building a cyclotron
of 5 GeV (1 GeV � 1000 MeV) is unrealistic. Investigate how the
scientists at CERN are able to build a 7-TeV (1 TeV � 1000 GeV)
accelerator, due for completion in 2006.

5. Moving at right angles to a magnetic field, how would the radius of
curvature of a high-speed electron’s path compare to that of a low-
speed electron?

6. If a proton and an electron were each travelling at 0.69c perpendi-
cular to a uniform magnetic field, which particle would have a
greater radius of curvature? Explain.

7. A cosmic-ray proton travelling at 0.996c enters the upper atmos-
phere in the plane of the equator at right angles to Earth’s magnetic
field of 5.0 � 10�5 T. Use relativistic considerations to calculate the
radius of its curved path in this region. 

13.6 Velocity Addition at Speeds Close to c
Einstein’s second postulate of special relativity states that the speed of light
in a vacuum is c, regardless of the speed of the light’s source or of the
observer. If the classical addition of velocities were valid at high speeds,
then a serious contradiction would occur. For example, when a radioactive
nucleus of tellurium-128 decays by a process of double-beta emission to
xenon-128, it emits two electrons with equal speeds of 0.55c but in opposite
directions. What is the speed of one electron relative to the other? 

When we add these two velocities using the method of classical mechanics,
we obtain

Lv��R � Lv��A � Av��R

Lv��R � Lv��A � Rv��A

LvR � �0.55c � 0.55c

Lv��R � �1.1c � 1.1c [L]

In Newtonian physics, the electron on the left in Figure 13.28 sees the one
on the right travelling away at 1.1c! The Newtonian relative velocity
exceeds the speed of light — a violation of Einstein’s second postulate! We
need a new equation for velocity addition that gives an answer similar to
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the answer obtained using classical vector addition at low speeds, but that
also yields an answer that is less than c at high speeds. This equation for
relativistic velocity addition in one dimension is 

Av��C �

where the numerator, Av��B � Bv��C, is the Newtonian solution to the velocity of
A relative to C at low speeds. The relativistic correction is found in the
denominator, 

1 � �
Av��B

c
�
2
Bv��C
�

which keeps the resultant velocity, Av��C, always less than c. 
We will practise using this equation in the following example.

e x a m p l e  1 1 Relative velocities in particle decay

A 128Te radioactive nucleus at rest emitted two electrons with equal
speeds of 0.55c but in opposite directions. What was the speed of one
electron relative to the other?

Solution and Connection to Theory

Given 
The velocity of the left electron relative to the Te nucleus � LvT � �0.55c

The velocity of the right electron relative to the Te nucleus � RvT � 0.55c

The velocity of the right electron relative to the left electron � RvL � ?

Rv��L �

RvL �

RvL �

RvL � �
1.

1
3
.
0
1
2
c
5

�

RvL � 0.84c

Therefore, the speed of the two electrons relative to each other is 0.84c. In
relativistic addition, like in vector addition, 1 � 1 may no longer equal 2!

1.1c
��
1 � �

0.30
c2

25c2

�

0.55c � 0.55c
��
1 � �

(0.55c
c
)(

2

0.55c)
�

Rv��A � Av��L
��
1 � �

Rv��A

c
�
2
Av��R
�

Av��B � Bv��C
��
1 � �

Av��B

c
�
2
Bv��C
�
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When studying the velocity of remote galaxies, astronomers measure the
cosmological red shift caused by the Doppler effect. The amount of shift
toward the redder wavelengths indicates the speed at which the galaxy is
receding from us. Let’s look at such a case.

e x a m p l e  1 2 Receding galaxies

From its red shift, quasar 3C9 is determined to be receding from us at a
speed of 0.80c. In line with 3C9 but closer to us is quasar 3C147. It is
receding from us at a speed of 0.41c. How fast is 3C9 receding from
3C147? (See Figure 13.29.) 

Solution and Connection to Theory

Given
9vE � 0.80c Ev147 � �0.41c 9v147 � ?

In Newtonian physics, we would calculate the speed of 3C9 relative to
3C147 to be 0.80c � 0.41c � 0.39c, but we have seen that this approach
is inadequate at high speeds. Instead, we use the equation

Av��C �

9v��147 �

9v147 �

9v147 � �
0
0
.
.
6
3
7
9
2
c

�

9v147 � 0.58c

The two quasars are receding from each other at a speed of 0.58c. 

0.80c � 0.41c
��
1 � �

(0.80c)
c
(�

2

0.41c)
�

9v��E � Ev��147
��
1 � �

9v��E�

c
E
2

v��147
�

Av��B � Bv��C
��
1 � �

Av��B

c
�
2
Bv��C
�
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Astronomers have found that the farther a star is from us, the faster it is reced-
ing. This evidence is used to support the theory that the universe is expanding.

1. If Albert holds a mirror in front of his face while travelling at the
speed of light, will he be able to see himself in the mirror, or will the
light from his face never reach the mirror? (See Figure 13.30.)

2. A high-speed nuclear particle travelling at a velocity of  Nv��L � 0.999c
away from a lab observer emits a gamma ray with a velocity of 
 �v��N � c toward the observer. Find the speed of the gamma ray rel-
ative to the lab.

3. As seen from Earth, cosmic police are travelling at 0.5c [N] while
pursuing bandits travelling at 0.75c [N] (see Figure 13.31). In order
to stop the criminal, the police fire a bullet that travels at �

3
c
� [N] rel-

ative to the police. Will the bullet ever reach the bad guys? 

Fig.13.31 Cosmic cops and robbers

4. The expansion of our universe is described by Hubble’s law, v � Hr,
where v is the velocity of receding galaxies, H � 1.7 � 10�2 (m/s/ca),
and r is the distance to the galaxy in light years (ca). Using v � c,
use Hubble’s law to find a limit to the radius of our universe.
Investigate the larger speeds that astronomers have discovered for
certain celestial bodies and discuss the dilemma or contradictions
that may arise in extreme cases. 

13.7 Mass–Energy Equivalence
In switching from Newtonian physics to relativistic physics, we needed to
alter our concepts of space, time, and mass. Now we must also change the
way we think about momentum (since it involves mass) and energy (since
work involves force � distance).
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Relativistic Momentum

In the case of momentum, our definition p�� � mv�� is only valid for classical
physics. Once again, the Newtonian concepts and equations that relate to
momentum need to be generalized for all velocities to include relativistic
ones. If we replace the mass m with the equation for dilated mass, then the
relativistic momentum equation becomes

p�� �

We use this equation when the law of conservation of momentum is applied
to relativistic situations. To see how the relativistic conservation of momen-
tum applies to our lives, we need look no further than the television set.

e x a m p l e  1 3 TV tube electrons

In many ways, a television is like a particle accelerator. Both devices need
a source of charged particles, an electric field to accelerate them, focusing
devices to keep the beam sharp, deflectors to aim the beam, a target for
the beam to strike, and a high vacuum chamber to house all the compo-
nents. TV electrons in a beam reach speeds of about 9.2 � 107 m/s.
Determine the momentum of TV electrons
a) using classical mechanics (valid for low speeds only).
b) using relativity (valid for all speeds less than c).

Solution and Connection to Theory

Given 
me � 9.11 � 10�31 kg v � 9.2 � 107 m/s 

a) Classical case:
Here, we simply substitute the values for mass and velocity into the
momentum equation:

p � mv
p � (9.11 � 10�31 kg)(9.2 � 107 m/s)
p � 8.37 � 10�23 kg�m/s

The momentum of each electron is 8.37 � 10�23 kg�m/s.

m0v��
�

�1 � �
c
v2

2��
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b) Relativistic case:
To save time, we can simply divide the classical result by �1 � �

v
c2

2

��
p �

p �

p �

p � 8.79 � 10�23 kg�m/s

The momentum of each electron is now 8.79 � 10�23 kg�m/s.

If we use the classical equation, p�� � mv��, our answer has an error of only
about 5%. This error would be significantly greater at higher velocities. 

Relativistic Energy 

Recall from Chapter 5 that a change in the mechanical energy of a particle,
�E, is work. We know that the work done on an object by the net force (or
rate of change in momentum) can result in a change in the object’s kinetic
energy. Since the momentum equation was modified for relativistic speeds,
we also need to modify our equation for energy. Knowing that mass is
dilated at high speed, it is easy to assume that we can modify the classical
kinetic energy equation, Ek � �

1
2

�mv2, by simply substituting the equation for

mass dilation, m � . Instead, however, we use Einstein’s famous

equation for mass–energy equivalence, E � mc2. 
From the mass dilation equation,

m �

If E � mc2, then mc2 �
m0c2

��

�1 � �
v
c2

2

��

m0
��

�1 � �
v
c 2

2

��

m0
��

�1 � �
v
c2

2

��

8.37 � 10�23 kg�m/s
���

�1 � (0�.307)2�

8.37 � 10�23 kg·m/s
���

�1 � �
(
(
9
3�.

.
2
0

�

�

1
1
0
0

7

8�m
m

/
/
s
s
)
)

2

2

��

m0v
��

�1 � �
v
c2

2

��
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Fig.13.32 The rise and fall 

of humanity



But � 1 � �
2
v
c

2

2� � �
3
8

v
c4

4

� � … (binomial expansion)

Therefore, mc2 � m0c2�1 � �
2
v
c

2

2� � �
3
8

v
c4

4

� � …�
mc2 � m0c2 � �

1
2

�m0v2 � …

But relativistically, Ek � �
1
2

�m0v2

Therefore, 

mc2 � m0c2 � Ek or    E � m0c2 � Ek

Einstein called the term m0c2 the energy that an object has when it is at rest,
or rest energy. It is the energy that makes up the internal structure of that
object. The term mc2 is called the total energy, E, and is the sum of the rest
energy and the kinetic energy:

total energy � rest energy � kinetic energy

In Section 13.4, we learned that in special relativity, the concepts of
space and time can no longer be separated; they must be considered together
as spacetime. Similarly, energy and mass must also be considered together.
An increase in energy is accompanied by an increase of mass (or inertia). If
mass is equivalent to energy, then we should be able to transform it into
energy and vice versa (see Figure 13.33). 

The transformation of mass to energy has been observed in radioactive
decay, such as the decay of muons in the upper atmosphere. New particles
of smaller mass are created and pure electromagnetic energy is emitted. The
power provided by CANDU nuclear reactors comes from the energy
released by the fission of uranium-235. The Sun radiates about 1.23 � 1034 J
of energy each year, causing its mass to continually decrease. In all these
cases, if a system changes its energy by an amount �E, the mass of the sys-
tem will also change by an amount �m given by 

�E � (�m)c2

1
��

�1 � �
v
c2

2

��
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e x a m p l e  1 4 Our Sun’s life

The mass of our Sun is continually decreasing due to the energy it radiates
outward through the process of fusion. Its current mass is about 
2.0 � 1030 kg, and it transfers energy to the solar system at a rate of 
3.9 � 1026 W. If 35% of the Sun’s core (by mass) is hydrogen, the fuel
responsible for this energy output, how long will it take for all the hydro-
gen to be converted into radiant energy?

Solution and Connection to Theory

Given 
mS � 2.0 � 1030 kg P � 3.9 � 1026 J/s 1 a � 3.16 � 107 s
mH � 0.35mS �t � ?

First, we need to convert the Sun’s mass of hydrogen to its equivalent
energy using the equation E � mHc2: 

E � (2.0 � 1030 kg)(0.35)(3.0 � 108 m/s)2 � 6.3 � 1046 J

Next, we use the equation for power, P � �
E
t
�, to find the time t:

t � �
3
6
.9
.3

�

�

1
1
0
0
26

46

J/
J
s

�

t � 1.6 � 1020 s

Finally, to convert this time to years, we divide by 3.16 � 107 s/a:

t � �
3.

1
1
.
6
6

�

�

1
1
0
0

7

20

s
s
/a

�

t � 5.1 � 1012 a 

Therefore, it will take about 5.1 � 1012 years to burn all the Sun’s hydrogen.

This span of time is much longer than we need to worry about. Many other
changes in solar processes will occur long before then. Of course, only a
small part of the hydrogen is converted to energy. The “embers” of this fire
are helium. 

Often, the change in mass corresponding to a change in energy is too
small to measure, such as in chemical reactions, where heat is lost or gained.
The difference between the reactant and the product masses is so small that
we may state that mass is conserved during most chemical reactions. 
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e x a m p l e  1 5 Is tea fattening?

Have you ever considered that boiling water for a cup of tea actually
causes an equivalent increase in the mass of tea because energy has been
added? Binder, desiring to brew some tea, heats 250 g of water at 10°C
up to the boiling point at 100°C. Find the increase in mass, �m, due to
this increase in energy, �E. 

Solution and Connection to Theory

Given 
m � 250 g c � 3.0 � 108 m/s T1 � 10°C, T2 � 100°C
cwater � 4.2 � 103 J/kg°C

First, we need to find the thermal energy increase in the 250 g of water
by using the specific heat of water, the temperature change, and the aver-
age mass of water:

�EH � mcwater�T
�EH � mcwater(T2 � T1) 
�EH � (0.250 kg)(4.2 � 103 J/kg°C)(100°C � 10°C)
�EH � (0.250 kg)(4.2 � 103 J/kg°C)(90°C)
�EH � 9.5 � 104 J

Next, we equate the energy change, �E, to the corresponding mass
change, �m. Using the equation �E � (�m)c2, we obtain

�m � �
�

c
E
2�

�m �

�m � 1.1 � 10�12 kg

The mass increase in our cup of tea is therefore 1.1 � 10�12 kg, so eating
our food hot or cold doesn’t affect our mass intake noticeably! At the
same time, with this amount of energy, we could lift a 250-g cup of tea to
a height of 39 km! 

9.5 � 104 J
��

�3 � 108 m/s�
2
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The two graphs in Figure 13.34 illustrate what we have learned in Sections
13.3, 13.5, and 13.7: as objects approach the speed of light, their length
decreases in the direction of motion, while their mass and energy increase
and time dilates.

1. Explain why a proton gains more momentum when accelerating
from 0.5c to 0.8c than from 0.2c to 0.5c.

2. Which particle has the greater rest mass: particle A with E � 125 J
and Ek � 87 J, or particle B with E � 54 J and Ek � 15 J?

3. How many grams of matter are equivalent to the energy needed to
power an 80-W light bulb for one year? 

4. Abdullah of mass 65 kg is beamed up as pure electromagnetic
energy while onboard the starship Enterprise. Calculate the energy
equivalent to his mass.

13.8 Particle Acceleration 

The Van de Graaff generator was invented in 1931. It allowed positive
charges to build up on a metal sphere to very high voltages. When two gen-
erators are used in tandem, particles are accelerated through 30 MV. By
1960, the Van de Graaff generator had become the workhorse of low-energy
nuclear physics.

At such high voltages, the classical equation for change in kinetic
energy, �Ek � �

1
2

�m0(�v)2 � qV, is no longer valid because the electrons travel
at very high speeds. Using this equation, the electrons’ speed works out to
be 3.2 � 109 m/s, which exceeds the speed of light. If we use the equation
for relativistic energy, E � m0c2 � Ek, and substitute Ek � qV when the elec-
trons are accelerated from rest, we obtain the equation

E � m0c2 � qV
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Fig.13.35 A 250-kV Van de Graaff

generator

Fig.13.34 Effects on length, time, mass, and energy

as an object approaches the speed of light
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Scientists use this equation to determine the high-speed velocities of charges
in particle accelerators such as the Stanford Linear Accelerator Center
(SLAC) (see Figure 13.36), which accelerates electrons numerous times
through a series of hollow tubular electrodes. The purpose of linacs (linear
accelerators) is to move ions in a straight path at energies high enough to
penetrate deeply into a target nucleus in order to produce elementary parti-
cles, to learn about nuclear structure, and to study particle collisions.

e x a m p l e  1 6 The three-kilometre accelerator 

Fig.13.37 A schematic diagram of the inside of the Stanford Linear Accelerator 

The SLAC accelerates electrons from rest through a potential of 50 GV 
(5.0 � 1010 V) over a distance of 3 km. Determine the speed of these
electrons.

Solution and Connection to Theory

Given 
m0 � 9.11 � 10�31 kg q � 1.602 � 10�19 C V � 5.0 � 1010 V
c � 3.0 � 108 m/s v � ?
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Fig.13.36 The Stanford Linear

Accelerator Center (SLAC)
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To calculate the total energy, E, we substitute our given values for m0 and
c into the equation

E � � m0c2 � qV

E �

� (9.11 � 10�31 kg)(3.0 � 108 m/s)2 � (1.602 � 10�19 C)(5.0 � 1010 V)

� (8.19 � 10�14 J) � (8.00 � 10�9 J)

Bringing the �1 � �
v
c2

2

�� up to the right side of the equation and squaring
both sides, we obtain

� �2

� 1 � �
v
c2

2

�, or

1.048 � 10�10 � 1 � �
v
c2

2

�

We can simplify the last part of the solution by using a simple mathe-
matical trick to obtain a very accurate answer for the particle velocity as
it approaches the speed of light.

Since the electrons have a speed very close to the speed of light, we can
approximate �1 � �

v
c 2

2

�� � 2�1 � �
v
c

��. Our equation becomes

1.048 � 10�10 � 2�1 � �
v
c

�� or 

5.24 � 10�11 � 1 � �
v
c

�

Multiplying both sides of the equation by c (using c � 3.0 � 108 m/s),
we obtain

3.0 � 108 m/s � v � (3.0 � 108 m/s)(5.24 � 10�11)
v � 3.0 � 108 m/s � 0.016 m/s 

The electrons are travelling only 1.6 cm/s slower than light!

For particle physicists, there is a more convenient unit of mass to use than
the kilogram. Since mass and energy are equivalent, they are given the unit
of MeV/c2 �from Einstein’s equation m � �

c
E

2��, where eV is the electron volt,
or the work done in accelerating an electron from rest through a potential
of one volt. 

8.19 � 10�14 J
��
8.00 � 10�9 J

8.19 � 10�14 J
��

�1 � �
v
c2

2

��

(9.11 � 10�31 kg)(3.0 � 108 m/s)2

����

�1 � �
v
c 2

2

��

m0c2

��

�1 � �
v
c2

2

��
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Converting kg to MeV/c2

E � mc2

m � �
c

E
2
�

E � qV, where q is the elementary

charge, e; therefore, 

m � �
e

c

V
2
�

m � ���
e

c

V
2
��� �

m � �
M

c

e
2

V
�

MeV
��
1 � 106 eV

High-speed Approximation

Since 1 � �
c

v2

2
� � �1 � �

c

v
���1 � �

c

v
��,

when v 	 c, then �1 � �
c

v
�� 	 2.

Thus, 1 � �
c

v2

2
� 	 2�1 � �

c

v
��



When working on relativistic energy problems, using MeV/c2 units
instead of kilograms is usually more convenient, especially if we make use
of the E � mc2 triangle (Figure 13.38), as we will do in Example 17. 

e x a m p l e  1 7 The 10-MeV electron linac

Hospitals use 10-MeV electron linacs to treat tumours (see Figure 13.39).
Determine the final speed of these electrons.

Solution and Connection to Theory 

Given 
m0 � 0.511 MeV/c2 qV � 10 MeV

Using the E � mc2 triangle (Figure 13.40), we substitute the given value
for m0 into a trigonometric function, cos � � �

hy
a
p
d
o
ja
t
c
e
e
n
n
u
t
se

�, and use the equa-
tion Ek � qV to obtain the angle �. 
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Fig.13.38 The energy triangle of special relativity

Deriving the Energy Triangle

mc2 �

(mc2)2 �

(mc2)2 � (mvc)2 � (m0c2)2

(m0c2)2 � (mvc)2 � (mc2)2

Compare this equation with

Pythagoras’ theorem,

a2 � b2 � c2

(m0c2)2

�
1 � �

c

v2

2
�

m0c2

��

�1 � �
c

v2

2
��

Fig.13.39 A 10-MeV electron linac



cos � � �
m0c

m
2

0

�

c2

qV
�

cos � �

cos � � �
1
0
0
.
.
5
5
1
1
1
1

M
M

e
e
V
V

�

cos � � 0.0486

� � cos�1(0.0486) � 87.21°

Once we know the angle, we can calculate the electrons’ speed:

sin � � �
hy

o
p
p
o
p
t
o
e
s
n
it
u
e
se

� � �
m
m

v
c
c
2�

�
v
c

� � sin 87.21°

�
v
c

� � 0.9988

v � 0.9988c
v � 0.9988(3.000 � 108 m/s) 
v � 2.996 � 108 m/s

The speed of the electrons is 2.996 � 108 m/s. These high-speed electrons
penetrate deeper than alpha particles. They ionize cellular water mole-
cules, creating free radicals that attack proteins, enzymes, and nucleic
acids, thereby killing cells, including cancerous ones.

In this chapter, we learned that in order for all the laws of physics, the speed
of light, and the spacetime interval to be absolute in all inertial frames of ref-
erence, then space, time, mass, and energy must be relative; that is, we find
their magnitude by comparing them to something similar, such as “how big
is it (compared to what)?” or “what time is it (compared to when)?” 

Figure 13.41 summarizes all the concepts we have studied in this chap-
ter and how they are related.

0.511 MeV
���
0.511 MeV � 10 MeV
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Pion Poetry

A pion that sped close to c

On a path that seemed longer to me

Had a half-life inflated,

And a mass quite dilated.

Its Ek was mega eVs.
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Fig.13.41 Summary of Special Relativity

1. Convert the rest mass of a muon (m0 � 106 MeV/c2) to kilograms.
2. Express the rest mass of a proton (mp � 1.67 � 10�27 kg) in MeV/c2.
3. If the kinetic energy of a proton is five times its rest energy, find the

proton’s speed. (Hint: Use the energy triangle.)
4. A future linac accelerates protons such that their mass becomes 

4 � 106 times their rest mass. How many metres per second less
than c are these protons travelling? 
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S T

S E

S c ience—Technology—S ociety—
Environmental  Interrelat ionships

The High Cost of High Speed  

The publication of Einstein’s theory of special relativity in 1905 not only dra-
matically altered society’s traditional perception of spacetime (see Figure
STSE.13.1), but also the direction of technological development in the cen-
tury that followed. By 1916, the theory was firmly established and today, it is
the foundation of pure and applied research in nuclear and particle physics.

According to Einstein’s equation E � mc2, a few eV/c2 of atomic mass
are converted to energy during ionization. During nuclear decay, a few
MeV/c2 s of nuclear mass are converted to energy. Scientists trying to under-
stand the nature of the most elementary constituents of matter are looking
to the next level of energy, where particle interactions in the TeV (1012 eV)
range will reveal the rules governing their behaviour. Energizing ions to
these immense energy levels requires innovative ideas and careful planning
because the cost of construction can be astronomical.

In California, at the SLAC lab where high-energy electron beams have
provided useful information about nuclear structure, scientists are now busy
building a $177-million upgrade. By colliding beams of 9.1-GeV electrons
with beams of 3-GeV anti-electrons, they hope to explain why we have mat-
ter in the universe rather than antimatter. The present-generation 500-MeV
cyclotrons, such as TRIUMF in Vancouver, British Columbia (see Figure
STSE.13.2), cost about $100 million. The TRIUMF cyclotron is used for
nuclear reaction experiments involving pi (	) mesons. The cost to extend this
design to a high-energy 5-GeV cyclotron would approximate the U.S. gross
national product! At CERN, near Geneva, Switzerland, a new system called
the Large Hadron Collider (LHC) is scheduled for completion in 2005 at a
cost of over $1.8 billion (see Figure STSE.13.3). One of LHC’s magnets is as
massive as the Eiffel Tower in Paris, France! The LHC will be used to study
collisions among ions with energies in the TeV range in an effort to detect the
Higgs boson, the particle that is believed to give mass to subatomic particles.
It seems that as the speed of the accelerated ions approaches ever closer to c,
the cost of the particle accelerator approaches societies’ financial limits!
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Fig.STSE.13.1 “People slowly 

accustomed themselves to the idea

that the physical states of space

itself were the final physical reality.”

—Professor Albert Einstein

Fig.STSE.13.2 TRIUMF, Canada’s national

laboratory for particle and nuclear physics

Fig.STSE.13.3 The new LHC at CERN will share

the 27-km LEP tunnel in order to cut costs
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Fig.STSE.13.4 A radiation detector

Fig.STSE.13.5 A homemade 

electrostatic generator

Design a Study of  Societal  Impact 

Research one of the modern particle accelerator labs, such as the linac
facility in Darmstadt, Germany, or the Tevatron at Fermilab in
Batavia, Illinois. Describe the purpose of the research the lab is under-
taking. Determine the financial costs of constructing and maintaining
the lab. Comment on any innovative techniques that were used to
economize on construction or maintenance costs. Find some of the
useful or beneficial spin-offs of the lab’s research. Argue for or against
whether such huge expenditures for research are justified in view of
other pressing societal concerns, such as adequate funding for educa-
tion, healthcare, or environmental protection.

Design an Activ ity  to Evaluate

The intensity of naturally occurring radiation from the interaction of
cosmic rays with Earth’s upper atmosphere increases with altitude. In
Canada, the average amount of exposure to cosmic radiation that a per-
son receives almost doubles for every 2000-m increase in elevation.
Use a Geiger detector/counter to perform a correlation study on the
amount of background radiation at ground level to that obtained at
higher elevations such as nearby mountains. Investigate ways in which
airline pilots protect themselves against the harmful effects of high-
altitude radiation exposure.  

Bui ld a Struc ture

Demonstration of high-speed particles need not be restricted to multi-
billion-dollar colliding-beam accelerators. By researching electrostatic
generators, you can construct a low-cost, effective, manually powered,
reliable device similar to a Van de Graaff generator or a Whimshurst
machine (see Figure STSE.13.5). Conduct a variety of experiments, such
as estimating the efficiency of your electrostatic generator by measuring
and comparing the energy input and the resultant electrical potential
energy, or investigating the conductivity of air through measurements of
the maximum discharge distance. During construction, remember that
smooth, round metal components are better than sharp ones.
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You should be able to

Understand Basic Concepts:

Define and describe inertial and non-inertial
frames of reference relative to a person at rest or
moving at low or high speeds.
Describe Einstein’s first and second postulates of
special relativity and how they revolutionized
physics in the early 1900s.
Use basic kinematic equations and relativity prin-
ciples to derive the formulas of high-speed physics.
Describe qualitatively and calculate quantita-
tively the mass, time, and length effects of special
relativity.
Apply relativistic velocity addition to astronomy
and particle physics.
Recognize the equivalence of mass and energy
and quantitatively apply E � mc2.

Develop Skills of Inquiry and Communication:

Use analogies from other areas of physics to illus-
trate the concepts of special relativity.
Illustrate, through examples, the relative concept
of simultaneity.
Carry out thought experiments based on your
understanding of special relativity.

Relate Science to Technology, Society, 

and the Environment:

Identify benefits arising from the development of
expensive particle accelerators.

Equations

t �

L � L0�1 � �
v
c2

2

��

m �

p �

E � mc2 � � m0c2 � Ek

E � m0c2 � qV (linacs)

Energy triangle: (mvc)2 � (m0c2)2 � (mc2)2

Relative velocity: Av��c �

Spacetime interval: (�s)2 � c2(�t)2 � (�x)2

Cyclotron: r �
m0v

��

Bq�1 � �
v
c2

2

��

Av��B � Bv��C
��

1 � �
Av��B

c
�
2
Bv��C
�

m0c2

��

�1 � �
v
c2

2

��

m0v
��

�1 � �
v
c2

2

��

m0
��

�1 � �
v
c2

2

��

t0
��

�1 � �
v
c2

2

��

S U M M A R Y
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E X E RC I S E S

Conceptual Questions

1. When is your car in an inertial frame of refer-
ence and when is it in a non-inertial frame?
Give examples of each. 

2. At the Edmonton World Games, Donovan is
running the 100-m dash while Leah is com-
peting in the 1500-m race. 

Fig.13.42

If they both run at a constant speed, will they
both be in inertial reference frames during
their respective events? Explain your answer.

3. If you were riding inside the closed cabin of 
a steadily moving luxury cruise ship (no 
windows), could you devise a simple physics
experiment to see if you were truly moving 
or not? Explain your answer.

4. Which would take the least time: to swim
upstream (parallel to the current) and back
down, or to swim the same distance across the
stream (perpendicular to the current) and back?

5. Explain why the failure of the Michelson-
Morley experiment was a benefit for science.

6. If you were driving toward an intersection at a
speed close to the speed of light and the traffic
light suddenly turned amber, would it appear

redder or more yellowish than normal? (Hint:
Think of the Doppler effect for sound.)

7. Changing the magnetic field inside a coil of
wire by inserting a magnet induces electrons
to flow in the loops. Use the first postulate of
special relativity to argue that moving elec-
trons across a magnetic field should also
force the electrons to flow in the loops. See
Figure 13.43. (Inserting the magnet induces
current according to Faraday’s law, while
moving the coil forces current according to
the motor principle.)

Fig.13.43

8. For a high-speed atmospheric muon, why is
the proper time, t0, for its average lifetime
measured in a reference frame moving with
the muon, and not in the reference frame of
the observing scientist on Earth? 

9. In terms of real numbers, use the relativity
equation for length or time to explain why the
speed, v, of an object must always be less than c.

10. If you were moving north, parallel to a sta-
tionary copper wire in which the electrons
were moving south (and the protons are at
rest), from your point of view, would the wire
seem positively charged (have a greater con-
centration of protons) or negatively charged
(have a greater concentration of electrons)?
Explain your answer.

SN

SN

(a)

(b)
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11. If you travelled to a star that was 5 ca away in a
time of one year according to your watch, have
you travelled faster than the speed of light?

12. Based on what you have learned in this 
chapter, is it possible to go back in time?

13. Does it matter if an observer approaches a
stationary source of sound, or if the source
approaches a stationary observer with an
equal speed? Will the Doppler shift to a
higher frequency be the same in each case?
Does your answer seem to contradict the first
relativity postulate? (The perceived frequen-
cies are given by the equations f2 � �

vs

f
�

1vs

v0
� and

f2 � �
f1(vs

v
�

s

v0)
�, respectively.)

14. In Thought Experiment 1, both Barb and
Phillip would be correct in saying that the
other person’s clocks ran slow. Explain. 

15. How do we know that the charge of an 
electron is constant and not changed by 
its motion in the same way as its mass is?

16. What happens to the radius of the orbit 
of a proton travelling at right angles to a 
uniform magnetic field if the magnetic 
field is increased?

17. As an object speeds up, does its density dilate
at the same rate as its mass? Explain.

18. If you are in a rocket moving with a speed
0.7c toward a star, at what speed will the
starlight pass you?

19. As stationary observers, we would see the 
relativistic effects of length contraction, mass
dilation, and time dilation when observing a
spacecraft go by at 0.90c. What would the
occupants of the spacecraft say that they
observed about us?

20. Light from your camera flash reflects off the
mirror of a car moving with a speed v away
from you. Is the speed of the returning light 
c � v? Explain.

21. What if a particle could travel faster than c?
Describe the unusual properties of these
hypothetical particles (known as tachyons) 
in terms of our understanding of physics.

22. Which particle would have the greater speed:
particle A whose kinetic energy is twice its
rest energy, or particle B whose total energy
equals twice its rest energy? Why?

23. Does one kilogram of ice have the same rest
energy as one kilogram of water? Explain
your answer.

24. Is it possible for light (electromagnetic 
radiation) to carry inertia (or mass) between
emitting and absorbing bodies? Explain.

25. Explain why a 100-eV electron is described as
a classical particle but a 100-MeV electron is
called a relativistic particle.

26. What does it mean when we say that the rest
mass of a muon is 106 MeV/c2?

27. Is it more accurate to state that particle accel-
erators speed electrons up to high speeds or
that they increase the mass of electrons?

Problems

13.1–13.2 Einstein’s Postulates 
of Special Relativity

28. What fraction of the speed of light does each
of the following represent?
a) The rate of continental drift (3 cm/year)
b) The drift speed of electrons in a current-

carrying wire (0.1 mm/s)
c) The speed of a human sprinter (10.8 m/s)
d) The speed of a fast aircraft (Mach 6.54)
e) The orbit speed of the electron in the Bohr

model of the hydrogen atom (2.2 � 106 m/s)

29. Two airplanes hold a Michelson-Morley race.
With respect to the ground, Snoopy flies from
north to south and back, while the Red Baron
flies from east to west and back, each one 
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covering a total of 200 km. Both planes fly 
at 130 km/h in still air. However, during 
the race, the wind blows 50 km/h [W]. 

Fig.13.44 A Michelson-Morley race

Determine
a) Snoopy’s speed with respect to the ground

while going north as well as south.
b) the Red Baron’s speed with respect to the

ground while travelling east as well as west.
c) Who wins the race and by how many 

seconds?
d) Show that �R

S
ed

no
B
o
a
p
r
y
o
’
n
s
’s
tim

tim
e

e
� � �1 � �

w
v2�

2

��, where

w � wind speed and v � plane speed.

13.3 Time Dilation and Length
Contraction

30. A rod lying parallel to and moving parallel 
to the x axis with a speed of 0.80c has a
proper length of 1.0 m. What is its length 
in the rest frame?

31. A spaceship appears to be shortened to 
one-third of its proper length. What is its 
relative speed?

32. A moving stopwatch reads zero as it passes
the origin of a co-ordinate frame at rest. What
time does it read when it passes the 180-m
mark of the rest frame if it travels at 0.7c?

33. Muons (�) are produced from the decay of
pions (	) that have an average rest frame
half-life of 2.6 � 10�8 s and travel at 0.998c in
the upper atmosphere. Calculate how far they
travel into our atmosphere before decaying.

34. In Thought Experiment 2, find the length L
Katrina would measure, if the distance from
Earth to Mars is L0 � 7.83 � 1010 m and she
is travelling at a speed of v � 0.25c.

35. Henry is driving his car at 35 m/s to take his
girlfriend to see a movie. He thinks he arrived
on time, but she thinks he is late. Find the dif-
ference in their two times if the distance from
Henry’s house to his girlfriend’s house is 35 km.

36. A high-speed muon in the CERN storage ring
makes one complete orbit during its lifetime,
which scientists in the lab measure to be 
2.8 � 10�6 s. Find the radius of its orbit. The
muon’s average lifetime at rest is 2.2 � 10�6 s. 

Fig.13.45 Inside the ring at CERN

Wind

Start

�                                   WvE  � 50 km/h [W]10
0

 k
m

100 km



37. While travelling to Mars, Katrina the cosmo-
naut holds a 1.00-m stick at an angle of 30°
from the direction of motion. A stationary
observer, Tanya, measures the angle to be 45°
as Katrina passes by (see Figure 13.46). How
fast is Katrina moving? (Hint: Length is con-
tracted in the direction of travel only.) 

Fig.13.46 Tanya’s viewpoint

38. If an airplane travelled once around Earth 
(rE � 6.38 � 106 m) at 300 m/s, how far
behind would its clock be, compared to a
clock left behind at the airport? (Hint: Use
the binomial approximation.)

13.4 Simultaneity and 
Spacetime Paradoxes

39. Calculate the length of one light year (ca) 
in metres.

40. In Jane’s inertial reference frame, event 
Y occurs 1.0 �s after event X, 600 m away. 
In Ted’s reference frame, the events occur
simultaneously (�t� � 0). Find the distance
between events X and Y from Ted’s view-
point. (Hint: Use the equation for (�s)2.)

41. In problem 40, find Ted’s speed relative 
to Jane. 

42. A soccer ball is kicked the length of a 12-m
boxcar and bounces off the far wall, returning
to the player after a time of 4.0 s. A stationary
observer on the outside, watching the train fly
by at supersonic speed, records a time of 5.0 s
for the soccer ball event. According to the sta-
tionary observer, how far did the train travel
in 5.0 s?

43. In problem 42, determine the speed of the
train relative to the stationary observer. 

44. Trevor travels at a speed of 0.95c to a distant
planet and immediately returns to Earth. On
landing, he finds that his twin sister is one year
older! How far is it from Earth to the planet?

13.5 Mass Dilation

45. Find the radius, r, of the circular path of an
electron with speed v � 0.8c, travelling at right
angles to a uniform magnetic field strength of
1.5 T. (Use the relativistic mass equation.)

46. In Thought Experiment 4, if the electron
orbits the proton with a speed of 0.6c, what is
the orbital radius, r? (Use the relativistic mass
equation.) How does this radius compare to
the size of a proton? (rproton 	 1.2 � 10�15 m)

47. Determine the mass increase of a 60-kg 
student when travelling at the speed of 
Earth in its orbit, v � 3.0 � 104 m/s. 

48. What is the mass of an electron at SLAC that
has a speed of 0.999 999 999 67c? (Use the
high-speed approximation.)

49. Find the magnetic field strength required 
to keep an anti-electron with a speed 
of 0.999 999 986c orbiting in a circle of 
radius 450 m. The anti-electron rest mass is 
9.1 � 10�31 kg and its charge is 1.6 � 10�19 C.
(Use the relativistic mass equation.)

50. At what speed is the density of an object
dilated twice as much as its density at rest?
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13.6 Velocity Addition at 
Speeds Close to c

51. A duck, standing by the side of the road at
night, sees a car approaching at a speed of
0.2c. If the driver is shining a flashlight for-
ward as the car advances, find the speed of
the light from the flashlight relative to the
duck. (See Figure 13.47.) 

Fig.13.47 Relative velocity of light

52. An astronomer observing stellar red shifts
finds star A receding at a speed of 0.2c and
star B receding at 0.3c in the exact opposite
direction. Find the speed of star A relative 
to star B.

53. If rocket A moves with a velocity of u�� � 0.8c
[N] relative to rocket B, and rocket B moves
with a velocity of v�� � 0.7c [N] relative to Earth,
find the velocity of rocket A relative to Earth.

54. A positron with a speed of 0.95c collides
head-on with an electron going 0.85c in the
opposite direction. Find the speed of the
positron relative to the electron.

55. Officer Bob travels at a speed of 0.3c while 
pursuing Nicole Felon, who is escaping at a
speed of 0.9c. Bob fires a phaser bullet at Nicole
with a speed of X relative to himself, and it just
manages to reach Nicole. Find the value of X. 

56. Captain J. Kirk of the SS Enterprise measures
Earth receding from him at the same speed at
which he fires an explorer module in the for-
ward direction. If the speed of the explorer
module relative to Earth is 0.80c, then find
the speed of the Enterprise relative to Earth.
(See Figure 13.48.) 

13.7 Mass–Energy Equivalence

57. In a chemical reaction, 3.2 � 104 J of heat
energy are released when 1.0 g of coal is
burned. Find the mass equivalence of this
energy. 

58. In a nuclear reaction, 9.2 � 1010 J of energy
are released when 1.0 g of deuterium is fused.
Find the mass equivalence of this energy.

59. Bananas cost $1.29/kg. If we could convert
1.0 kg of bananas into energy, how many 
kilowatt-hours would we get? How does this
banana rate of energy compare to a typical
hydro consumer rate of $0.08/kWh? 

�Lvc  � c

�cvg  � 0.2c

Earth

Enterprise

Module �MvE � x

�MvEarth � ?

�EvEarth  � �x

�MvEarth  � 0.8c

Fig.13.48



60. Does it take more work to increase an electron’s
speed from 0.5c to 0.9c, or from 0.9c to 0.95c?

61. If 8.19 � 10�14 J of energy were transformed
into an object, would it have the mass of an
electron or a proton?

62. Find the difference between the classical
momentum of a 125-kg meteorite travelling
75 km/s and its relativistic momentum.

63. Mercury of mass 3.28 � 1023 kg moves
along its solar orbit at an average speed of
4.78 � 104 m/s. How much mass converted
to energy could accelerate Mercury from
rest to this speed?

13.8 Particle Acceleration

64. The meson, meaning “in the middle,” was
first discovered in cosmic rays and has a rest
mass of 135 MeV/c2. Convert this mass to
kilograms and show that it is between the
mass of an electron and a proton.

65. Through what potential difference must an
electron be accelerated from rest so that its
mass equals that of a proton (938.3 MeV/c2)? 

66. Which particle has the greater speed: particle
A with m0c2 � 21 J and Ek � 8 J, or particle B
with m0c2 � 22 J and Ek � 7 J? (Use the
energy triangle.)

67. A cosmic-ray proton has a speed of 0.996c.
Express its total energy in units of MeV. 

68. What is the speed of the 3.1-GeV positrons
used in the PEP II ring at Stanford? 
(Ek � 3.1 GeV, where 1 GeV � 109 eV)

69. Which particle has the greater speed: particle
A with a momentum of 4 � 10�8 N�s and a
rest energy of 20 J, or particle B with momen-
tum 5 � 10�8 N�s and total energy � 30 J?

682 unit  e :  Matter–Energy Inter face
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Purpose
To explore the daily observable effects of special
relativity in a hypothetical world where the
speed of light is 30 m/s

Equipment
Since this lab is a thought experiment (or
Gedanken experiment, as Einstein would call
it), you will need to be equipped with the equa-
tions and concepts of special relativity. 

Fig.Lab.13.1 Albert Einstein

Procedure
Imagine a world where the speed of light was only
30 m/s. Newtonian mechanics would no longer
be valid over a wide range of speeds and the
effects of relativity would be very pronounced.
a) Based on the classical definition of density,

perform a thought experiment to determine
the relativistic equation for density. 

b) Using your equation, complete Table Lab.13.1
below for various values of speed by calculat-
ing the density. Remember: c � 30 m/s.

c) From the values calculated in the table, plot a
graph of density versus speed for 0 � v � c.
Use �0 � 1.0 g/cm3. 

d) Assuming your rest density is 1.0 g/cm3,
determine from your graph, the speed at
which you would need to move in order to
appear as dense as gold (�gold � 19.3 g/cm3).

Discussion
Remember: c � 30 m/s.
1. If you were standing upright, facing for-

ward but moving at a relativistic velocity to
your right, which of the following quanti-
ties would change: height, width, pulse rate,
number of atoms in your body, mass, tem-
perature, rate of ageing, girth (waistline), or
net electrical charge?

2. If you spent 10% of your time travelling at
a speed of 15 m/s and the other 90% of
your time at rest, how would your life
expectancy be affected? Calculate how long
you would live from the viewpoint of sta-
tionary people who have an average lifetime
of 75 years.

3. a) As the head traffic engineer for the
department of highways, you are in
charge of setting a safe but fuel-efficient
speed limit on cars. Calculate a speed
limit using relativistic equations and
explain your reason for your choice of
speed limit. Keep in mind that collisions
cause changes in kinetic energy.

b) If you wished to store your valuable 
5.0-m-long Rolls Royce in your tiny 
4.0-m-long garage, at what speed would
you need to drive it into the garage?
What paradox can arise from this situa-
tion involving relative motion?
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13.1 A Relativity Thought Experiment

Table Lab.13.1
Density versus Speed 

Speed (m/s) 0 0.50c 0.70c 0.85c 0.93c 0.96c 0.98c 0.99c

Density (g/cm3) 1.0
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c) While driving through an intersection at
the posted speed limit, the traffic light
was blue and you proceeded through. A
patrol officer pulled you over and gave
you a ticket for going through a red light!
Explain what happened.

d) You resume driving and decide to pass the
lady in the car ahead by speeding up to 
20 m/s. Her speedometer reads 15 m/s,
but you are closing in on her at 7.5 m/s!
How is that possible?

4. a) While wearing an electronic heart moni-
tor, you sprint around a circular track at a
speed of 10 m/s. You observe a pulse rate
of 100 beats/min but your coach, resting
at the centre of the stadium, records a dif-
ferent rate. What is the difference?

b) Hungry after jogging, you decide to buy
some “fast” food that costs $5.00 per
“quarter pounder,” but the bill comes to
$10.00! Calculate just how fast that
quarter pounder was! 

5. a) Aliens visiting your planet from another
quadrant of the galaxy, where the speed
of light is 3 � 108 m/s, say your food
seems relatively cold. Explain.

b) According to these aliens (called Homo
sapiens), lots of other unusual effects are
occurring on your planet — everyone is
constantly resetting their watches! Can
you explain to them why it’s necessary
to do so on your planet?

Conclusion
Describe other everyday phenomena that would
seem different to these alien visitors, and
explain why they occur.
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By the end of this chapter you will be able to
• describe the concepts of radioactivity, quantum electrodynamics,

and the Standard Model
• compare alpha, beta, and gamma radiation and their applications
• apply E � mc2 to elementary-particle interactions
• describe how quantum theory has led to technological advances

benefiting our society

Nuclear and 
Elementary Particles

14

Chapter Outline

14.1 Nuclear Structure 

and Properties

14.2 Natural Transmutations

14.3 Half-life and Radioactive Dating

14.4 Radioactivity

14.5 Fission and Fusion

14.6 Probing the Nucleus

14.7 Elementary Particles

14.8 Fundamental Forces and

Interactions — What holds 

these particles together?

Positron Emission 

Tomography (PET)

14.1 The Half-life of a Short-lived

Radioactive Nuclide

S T
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14.1 Nuclear Structure and Properties

All matter is composed of atoms that are in turn composed of a heavier, cen-
tral, positively charged core surrounded by a less massive negatively charged
cloud of electrons. The nucleus, or positively charged core of the atom, 
is composed of neutrons that have no charge, and positively charged 
protons. Protons and neutrons have about the same mass and are known
as nucleons. An element or atom, and in particular the composition of its
nucleus, is described using the notation

A
Z X

where Z is the atomic number (number of electrons or protons), A is the
atomic mass number (number of protons � number of neutrons � number
of nucleons), and X is the generic symbol for the atom or element. The
number of neutrons, N � A � Z.

e x a m p l e  1 Particles in a nucleus

An atom has a mass number of 109 and an atomic number of 47. Find the
name of the element, its symbol, the number of protons (or electrons), and
the number of neutrons using a periodic table.

Solution and Connection to Theory

Given
A � 109 Z � 47 element name � ? X � ? N � ?

First, we can look in the periodic table (see Appendix I) and find the ele-
ment with an atomic number of 47. It is silver, with symbol Ag.

The number of protons, Z, is 47 and the number of electrons is also 47.

For the number of neutrons,
N � A � Z
N � 109 � 47 � 62 

Silver has 47 protons, 47 electrons, and 62 neutrons. It can be written as

47
109Ag or just 109Ag.
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Fig.14.1 Model of an atom of

lithium (7
3Li). The nucleus is greatly

enlarged to show its three protons 

( 1
�1p) and four neutrons (1

0n). The 

neutral atom has three electrons 

( 0
�1e) in two shells to balance the

charge on the nucleus.



Isotopes

You may have noticed in the periodic table that the atomic mass, A, of silver
was 107.9 instead of 109. Silver is composed mainly of two types of atoms,
called isotopes. In nature, 48% of all silver atoms have 62 neutrons while
the remaining 52% have only 60 neutrons. Finding the weighted average of
the two types of silver yields a mean value of

0.48 � 109 � 0.52 � 107 � 107.9

These two silver isotopes have similar chemical properties. Many elements
have two or more isotopes. For example, hydrogen has three isotopes: hydrogen
(1H), deuterium (2H), and tritium (3H).

Unified Atomic Mass Units

Nuclear masses are specified in unified atomic mass units, u. Unified
atomic mass units are based on a mass scale that defines the mass of the
neutral carbon isotope, 12C, to be exactly 12 u. The masses of other basic
particles are given in Table 14.1.
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(a) (b) (c)

Fig.14.2 
Three isotopes of hydrogen:

(a) 1
1H is normal hydrogen

(b) 2
1H is deuterium

(c) 3
1H is tritium

Isotopes of elements have been 

discovered using mass spectrometers.

The atomic masses of nuclei can be

determined by measuring the radius

of the path of high-speed nuclei

moving at right angles to a magnetic

field. In Chapter 9, we learned that

the motor principle equates the

magnetic force, FB, to the centripetal

force, Fc. Since heavier nuclei travel 

a path of greater radius, the spectro-

meter can separate the different 

isotopes.

Table 14.1
Rest Masses in Kilograms, Unified Atomic Mass Units, and MeV/c2

Particle kg u MeV/c2

Electron 9.1164 � 10�31 0.000 549 0.511

Proton 1.672 62 � 10�27 1.007 276 938.27

Neutron 1.674 93 � 10�27 1.008 665 939.57

Hydrogen 1.673 53 � 10�27 1.007 825 938.78

Deuterium 3.344 49 � 10�27 2.014 102 1876.12

Tritium 5.008 27 � 10�27 3.016 049 2809.43

Helium 6.646 48 � 10�27 4.002 603 3728.40

As we saw in Chapter 13, mass can also be expressed in MeV/c2, a unit used
by particle physicists.



Mass Defect and Mass Difference

When we consider the mass of a stable nucleus, it is always less than the
sum of the masses of the individual protons and neutrons that compose it.
The difference between the actual atomic mass (in u) and the atomic number
(A) is known as the mass defect. In nuclear processes, a mass difference
corresponds to an energy difference or transformation.

e x a m p l e  2 The mass difference between fluorine 

and its nucleons

Compare the mass of the fluorine nucleus to that of its constituent
protons and neutrons.

Solution and Connection to Theory

Given
Atomic mass (including electrons) � 18.9984 u A � 19 Z � 9
mn � 1.008 665 u m(1H) � 1.007 825 u
N � A � Z � 19 � 9 � 10

The mass of 10 neutrons and 9 protons (including 9 electrons) is
10mn � 10 � 1.008 665 u � 10.086 65 u
9m(1H) � 9 � 1.007 825 u � 9.070 425 u

The total mass of all the neutrons, protons, and electrons is
10.086 65 u � 9.070 425 u � 19.157 0751 u

Therefore, the mass difference between 19F and its components is
19.1571 u � 18.9984 u � 0.1587 u

Nuclear Binding Energy and Average 
Binding Energy per Nucleon

In Chapter 13, we learned from Einstein’s energy equation, E � mc2, that the
mass difference between a nucleus and the sum of its constituent particles
(i.e., the mass defect) is equivalent to a difference in energy, or �E � (�m)c2.
The lost mass appears as another form of energy, such as radiation.

In the converse process of breaking a nucleus into protons and neutrons,
energy must be supplied from the outside. The amount of energy needed,
equivalent to the mass difference, is called the total binding energy of the
nucleus. It is this energy deficiency of the nucleus that keeps it together.
The total binding energy is the work required to “unglue” the components
of the nucleus. The average binding energy per nucleon (proton or neu-
tron) is a measure of how tightly each nucleon is bound in the nucleus. We
calculate it by dividing the total binding energy of the nucleus by the total
number of nucleons it comprises.
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When using the masses of neutral

atoms, we need to keep track of the

electron masses, which is why the mass

of 1H is used instead of the proton

mass alone.

EQ U I VA L E N T  M A SS  U N I TS
1 u
931.5 MeV/c2

1.661 � 10�27 kg



e x a m p l e  3 The average binding energy of fluorine

Find the average binding energy per nucleon in the fluorine nucleus.

Solution and Connection to Theory

Given
From Example 2, we know that the mass difference of the fluorine nucleus
is 0.1587 u.

The energy associated with this mass difference (expressed in MeV) is
E � (0.1587 u)(931.5 MeV/u) � 147.8 MeV

In order to break up a fluorine atom’s nucleus into its constituent nucleons,
147.8 MeV of energy are needed. In the case of fluorine, the average binding
energy per nucleon is �1

1
9
47

n
.
u
8
c
M
leo

e
n
V

s
� � 7.78 MeV per nucleon.

The atomic binding energy of the orbiting electron in the hydrogen atom is
13.4 eV due to the electrical force of attraction between the proton and the
electron. Compared to this energy, the average binding energy for the nucleons
in a fluorine nucleus is 7.78 MeV. In this case, the ratio of atomic energy to
nuclear energy is about 1:106, indicating that the nuclear force of attraction
between nucleons is much greater than the force of attraction between the
nucleus and the surrounding electrons. While it takes only a few electron
volts to remove an electron from an atom, it takes a few million electron
volts to remove a nucleon from a nucleus. We should therefore be able to
obtain about a million times more energy from a nuclear process of energy
extraction such as fission (see Section 14.5) than from a chemical process,
such as burning coal.

1. What do the different isotopes of a given element such as hydrogen
have in common? In what ways do they differ?

2. In the periodic table, the atomic masses of most elements are not
whole numbers. Why not?

3. a) What is the total binding energy of the deuterium nucleus (in MeV)?
b) What is the average binding energy per nucleon of the deuterium

nucleus (in MeV)?
4. If the isotope 35Cl occurs naturally 75.8% of the time and 37Cl occurs

24.2% of the time, determine the average atomic mass of chlorine.
Compare your answer with the value found in the periodic table.

5. In 1992, the newly discovered 109th element, meitnerium, was
named in honour of Lise Meitner, who in 1939, as a refugee from
Nazi Germany, was the first to explain the process of nuclear fission.
Research why Meitner declined to have any part in the building of
nuclear weapons at the Manhattan Project and why she was denied
the Nobel Prize in physics.
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14.2 Natural Transmutations

Nuclear Stability

The strong nuclear force (i.e., the attractive force between nucleons:
proton–proton, proton–neutron, and neutron–neutron) is very short-range
(1.5 � 10�15 m). In a sense, nucleons are “glued” to their neighbours only.
On the other hand, the electrical force of proton–proton repulsion, although
weaker at shorter nucleon distances, is unlimited in range. It can overcome
the strong nuclear force at larger nuclear distances (in nuclei where Z � 82)
because all the nuclear protons repel one another. Heavy nuclei can become
unstable if the localized nucleon attractive forces are unable to overcome the
overall electrical proton–proton repulsion.

When the number of neutrons, N, is plotted against the number of protons,
Z, for the various isotopes, we observe a pattern of nuclear stability. Stable
nuclei tend to have the same number of protons and neutrons (N � Z) for the
first 20 elements. Larger stable elements contain more neutrons than protons
to counteract the increasing overall electrical proton–proton repulsion.
Above Z � 82, no number of neutrons can produce the force required to
form a stable nucleus. In Figure 14.3, the blue line represents the stable
nuclei. The red areas represent naturally unstable nuclei. The pink region
represents artificial unstable isotopes.

Radioactivity is the spontaneous disintegration of atomic nuclei through
the emission of radiation or particles. At the end of the 19th century, Henri
Becquerel, a French physicist, discovered that uranium salts are sponta-
neously radioactive. By 1898, Marie and Pierre Curie discovered and isolated
two unknown and highly radioactive elements called radium and polonium.
In an attempt to find out more about the process of radioactivity, scientists
tried reacting radium with other chemicals, and also heating it to high
temperatures. They concluded that the process of radiation originated from
the nucleus.

Ernest Rutherford and other scientists revealed that the radiation from
radium consisted of three types of emissions: alpha (�) particles, beta (�)
particles, and gamma (�) rays. When a particle is emitted from a nucleus,
the ratio of neutrons to protons (the �

N
Z

� ratio) changes and the nucleus of the
new element tends to be more stable. The changing of one element into
another is called a transmutation.

Table 14.2 summarizes the characteristics of alpha, beta, and gamma
emissions.
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When a magnetic field is applied to a beam or stream of emitted
alpha particles, they are deflected in one direction, and a beam of
beta particles is deflected in the opposite direction, whereas
gamma rays are not deflected at all. The direction of deflection
indicates that alpha and beta particles have opposite charges and
gamma rays are uncharged (see Figure 14.4). Alpha particles have
the highest relative ionizing ability (ability to strip electrons
from atoms) because they have the greatest mass and charge.

In a cloud chamber, alpha particles leave short, fat tracks, beta
particles leave longer, skinny tracks, and gamma rays leave very long
tracks with so few ions produced that they are difficult to detect.

Alpha Decay

During alpha decay, a nucleus emits an alpha (	) particle, which
consists of two protons and two neutrons, which is equivalent to
a helium nucleus. The new element formed is called the daugh-
ter nucleus. Many of the heavy nuclei (where Z > 82) decay
through alpha emission (see Figure 14.5).

The general equation for alpha decay can be written as

A
ZX → A

Z
�4
�2Y � 4

2He(	)

In Figure 14.5, alpha decay is equivalent to moving down two
squares and left two squares, as two protons and two neutrons are
emitted by the nucleus. Alpha emission increases the �

N
Z

� ratio of a
nucleus, as illustrated in the following example.
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Table 14.2
Radioactive Emissions

Rest Mass Penetrating Relative Ionizing

Emission Description (in u) Charge power ability

Alpha Helium nuclei  4.002 603 �2 Stopped by a sheet  Highest
(two protons and of aluminum foil
two neutrons)

Beta Electrons 0.000 549 �1 Several millimetres Medium
of aluminum

Gamma Short-wave 0 0 30 cm of lead or Lowest
electromagnetic radiation 2 km of air
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Fig.14.5 Chart of the nucleons (nuclear

particles) of the isotopes of elements from

mercury to thorium. Blue nuclides are stable,

red nuclides are naturally radioactive, pink

nuclides are artificial and radioactive.



e x a m p l e  4 The �
N

Z
� ratio in decay processes

Find the ratio of neutrons to protons in the radon nucleus and compare
it with the neutron/proton ratio in the daughter nucleus (after the alpha
particle has been emitted).

Solution and Connection to Theory

Given
ZRn � 86 ARn � 222 ZHe � 2 AHe � 4 �

N
Z

� � ?

The neutron number for radon is
N � A � Z
N � 222 � 86
N � 136

The �
N
Z

� ratio for radon is

�
N
Z

� � �
1
8
3
6
6

� � 1.581

The neutron number of helium is
N � 4 � 2
N � 2

Radon emits an alpha particle, which carries away two protons and two
neutrons from the nucleus. In the remaining nucleus,
N � 136 � 2 � 134 and Z � 86 � 2 � 84

The new �
N
Z

� ratio is

�
N
Z

� � �
1
8
3
4
4

� � 1.595

From the periodic table and from Z � 84, we know that the new element
formed is polonium-218. This isotope of polonium is also unstable and
spontaneously decays by emitting an alpha particle.

Note that the mass of the daughter polonium nucleus (218.008 966 u) and
the alpha particle (4.002 603 u) have a sum (222.011 569 u) that is slightly
less than the mass of the original radon nucleus (222.015 353 u). From
Section 14.1, we know that the missing mass represents a transformation of
mass into energy, given by the equation �m � �

�

c
E
2�. Much of this energy

becomes the kinetic energy of the emitted alpha particle.
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e x a m p l e  5 The kinetic energy of an alpha particle

From 1899 to 1906 at McGill University in Montreal, QC, Ernest Rutherford
and Frederick Soddy studied the radioactive alpha decay (m � 4.002 602 u)
of radium (m � 226.025 402 u) to radon (m � 222.017 571 u). Find the
energy released, available as kinetic energy, for the alpha particle and
the daughter nucleus.

Solution and Connection to Theory

Given
m	 � 4.002 602 u mradon � 222.017 571 u mradium � 226.025 402 u

The total mass of the final alpha particle and radon is
4.002 602 u � 222.017 571 u � 226.020 172 u

The mass available as kinetic energy when radium decays to radon is
226.025 402 u � 226.020 172 u � 0.005 23 u

Since 1 u � 931.5 MeV, �E, available as kinetic energy, Ek, is
�E � (0.005 23 u)(931.5 MeV/u) � 4.87 MeV

This energy is given to the alpha particle and to the daughter nucleus.
Since momentum is conserved during the decay, the momenta of the
alpha particle and the daughter nuclei are equal and opposite (p	 � pd).
However, their kinetic energies �Ek � �

2
p
m

2

�� are different. The alpha particle
receives most of the kinetic energy because its mass is much smaller. In
this case, the energy of the alpha particle is about 4.86 MeV.

Beta Decay

There are two basic kinds of beta decay: �� decay in which electrons are
emitted, and �� decay in which positrons are emitted. Since the mass of
the beta particle (0.000 548 u) is extremely small compared to a proton’s
mass (1.007 276 u), the daughter nucleus has the same atomic mass as the
parent nucleus.

�� Decay (Electron Emission)

The unstable isotopes to the left of the blue line in Figure 14.6 have too
many neutrons in the nucleus. One way for such isotopes to achieve greater
stability is for a neutron to become a proton. When a neutron decays to a
proton, it emits an electron (e�). When �� emission takes place, a contin-
uous spectrum of kinetic energy of the emitted electrons is observed. In
other words, the electron’s kinetic energy is often less than we would expect
from the laws of conservation of mass and energy. In 1930, Wolfgang Pauli
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�

suggested that the remaining energy is given to a second particle that became
known as the neutrino, a neutral particle that has a very small, or zero, rest
mass. Its antiparticle is the antineutrino. When a neutron decays to a proton,
it emits an electron and an antineutrino (�). (Neutrinos and antineutrinos
will be discussed further in Section 14.7.) This process of spontaneous
electron emission is called �� decay and is described by the equation

A
Z X → Z � 1

AY � �1
0 e (��) � 0

0�

Notice that in �� decay, the atomic number of daughter nucleus (Z � 1) is
one greater than that of the parent nucleus. In both alpha and beta decay, one
element becomes changed into another; that is, it undergoes a transmutation.

e x a m p l e  6 The missing mass

During the lifetime of a plant or animal on Earth’s surface, a certain
amount of the isotope carbon-14 is absorbed by the organism through 
the process of respiration. The unstable carbon-14 nucleus decays by 
�� emission to nitrogen-14. Find the mass difference for the �� decay of
carbon-14 to nitrogen-14, and its energy equivalent.

Solution and Connection to Theory

Given
mC � 14.003 242 u mN � 14.003 074 u

14
6C → 14

7N � �1
0 e (��) � 0

0 � (antineutrino)

To find the mass difference,
�m � mC � mN

�m � 14.003 242 u � 14.003 074 u
�m � 0.000 168 u

To find the energy equivalent of the mass difference,
�E � (�m)c2

�E � (0.000 168 u)(931.5 MeV/uc2)c2

�E � 0.156 MeV � 156 keV

The mass difference of the �� decay of carbon-14 to nitrogen-14 is 
0.000 168 u, which is equivalent to 156 keV of energy.
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�� Decay (Positron Emission)

Positron decay is like the mirror image of electron decay. The unstable
isotopes to the right of the blue line in Figure 14.6 do not have enough neu-
trons to glue the protons together. To achieve greater stability, a proton
decays to a neutron by emitting a positron (e�) and a neutrino () according
to the statement

1
1 p → 1

0n � 1
0 e (��) � 0

0 (neutrino)

In positron or �� emission, the atomic number of the nucleus becomes
one less, as in the following equation for the �� decay of sodium:

22
11Na → 22

10Ne � 1
0 e (��) � 0

0 (neutrino)

Positron emission was first observed in 1934 by Irene Curie and Pierre
Joliet during the �� decay of phosphorus-30.

Electron Capture and Gamma Decay

Although related to �� decay, electron capture is different in that a particle
is taken into the nucleus rather than emitted from it. In electron capture, an
atomic electron strays too close to the nucleus and is absorbed, causing a
proton to change into a neutron. Again, as in �� decay, a neutrino is emitted.
A typical electron capture equation for the isotope argon-38 is

38
18Ar � �1

0 e → 38
17Cl � 0

0 � 


As the innermost electron shell of the atom becomes empty, a higher-energy
electron drops down to fill this lower energy level, and an x-ray or a gamma
ray is emitted:

A
Z X � �1

0 e → Z�1
AY � 0

0 (neutrino)� 
 (photon)

As we learned in Chapter 12, excited electrons in the atom emit photons
of light when they drop from a higher to a lower energy level. In a similar
way, radioactive gamma emissions occur when the nucleus decays to a
lower energy state. The quantized energy levels of nuclei are much farther
apart than the energy levels of electrons in atoms. Gamma emission is
observed in all nuclei of atomic mass greater than 5. It usually occurs dur-
ing alpha and beta decay as the daughter nucleus is led into an excited state.

Table 14.3 summarizes the different types of spontaneous radio-
active decays (natural transmutations).

chapter 14: Nuclear  and E lementary Part ic les 695



696 unit  e :  Matter–Energy Inter face

Table 14.3
Summary of Spontaneous Radioactive Decays

Emission Unstable parent nucleus Daughter nucleus

Fig.14.8a

Fig.14.8b

Fig.14.8c

Fig.14.8d
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1. Assume that nucleons can only bond with neighbouring nucleons.
In this model, determine the maximum number of attractive bonds
a nucleon can have. See how many tennis balls you can attach to a
central ball.

2. For the following parent nuclei undergoing alpha decay, determine
the daughter nucleus.
a) 238

92U b) 248
96Cm c) 223

86Rn d) 244
94Pu e) 64

29Cu
3. For the following parent nuclei undergoing �� decay (electron

emission), determine the daughter nucleus.
a) 32

15P b) 23
10Ne c) 35

16S d) 45
20Ca e) 64

29Cu
4. For the following parent nuclei undergoing �� decay (positron

emission), determine the daughter nucleus.
a) 19

10Ne b) 22
11Na c) 46

24Cr d) 239
93Np e) 64

29Cu
5. Research and report on how cloud chambers show tracks from

radioactive emissions.
6. Scientific discoveries can arise from an unexpected result during

experimentation. Becquerel expected the emission of x-rays to
decrease in uranium salts that had not been exposed to sunlight, but
this effect was not observed. Find other examples of important find-
ings in science that arose unexpectedly or by chance.

14.3 Half-life and Radioactive Dating

Half-life

The time it takes for one-half of the nuclei of a sample
of a radioactive isotope to decay by spontaneous
emission is called the half-life of that isotope. For
carbon-14, one-half of the radioactive nuclei will
decay in 5730 a. At the end of two half-life intervals
or 11 460 a, one half of the remaining nuclei will
decay, leaving �

1
2

� � �
1
2

� � �
1
4

� of the original sample. After
three half-life intervals, �

1
8

� of the original will be left,
and so on. It’s as if you had a new car-rental business
where you started out with 128 cars, but after three
years, half the cars were scrapped, leaving you with 64
cars. After six years, again half of the remaining 64
cars were scrapped and now you have only 32 cars to
rent. We can therefore state that the half-life of a car
rental is three years. In Figure14.9, we see a plot of
this pattern on a graph for the decay of radium-226.
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Table 14.4
Half-lives of Common Radioactive Isotopes

Radioisotope Symbol Decay Half-life

beryllium-8 8
4Be 	 2 � 10�16 s

polonium-214 214
84Po 	 1.64 � 10�4 s

oxygen-19 19
8O �� 29 s

magnesium-29 29
12Mg �� 9.5 min

lead-212 212
82Pb �� 10.6 h

iodine-131 131
90I �� 8.04 d

argon-39 39
18Ar �� 5.26 a

cobalt-60 60
27Co �� 5.3 a

strontium-90 90
38Sr �� 28.8 a

radium-226 226
88Ra 	 1.62 � 103 a

carbon-14 14
6C �� 5.73 � 103 a

americium-243 243
95Am 	 7.37 � 103 a

plutonium-239 239
94Pu 	 2.44 � 104 a

uranium-235 235
92U 	 7.04 � 108 a

uranium-238 238
92U 	 4.45 � 109 a



Mathematically, the radioactive decay curve can be drawn from the
function 

N � N0��
1
2

��
where N0 is the initial number of nuclei (or initial concentration) and N is
the number remaining (or final concentration) after a time interval t. T�

1
2

� is the
half-life of the particular isotope. The number of nuclei decaying per second
is called the activity and is measured in becquerels (Bq). Activity is propor-
tional to the number of nuclei present and is described by the equation

A � A0��
1
2

��
where A0 represents the initial activity and A is the activity after a time t.

e x a m p l e  7 Radioactive gas

Radon-222 is a colourless, odourless, inert gas that is a daughter product
of uranium-238. If the half-life of radon-222 is 3.8 days, how long does it
take for a sample to decay to 10% of its original concentration?

Solution and Connection to Theory

Given
T�

1
2

� � 3.8 d N0 � 100% N � 10% t � ?

Substituting into our decay equation,

10% � 100%��
1
2

��
Dividing by 100%, we get

0.1 � ��
1
2

��
Taking the log of each side,

log(0.1) � �
3.8

t
d

� log(0.5) 

Solving for t,

t � ��ll
o
o

g
g
(
(
0
0

.

.
1
5

)
)

��(3.8 d) � 12.6 d

A sample of radon-222 takes 12.6 days to decay to 10% of its original
concentration.

t
�
3.8 d

t
�
3.8 d

t
�
T�

1
2

�

t
�
T�

1
2

�
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Radioactive Dating

Carbon-14 is a radioactive isotope that is used by archaeologists to determine
the age of certain artifacts. Carbon-14 is created in the upper atmosphere
when a neutron from cosmic radiation interacts with nitrogen, creating a
daughter nucleus of carbon-14 and a hydrogen atom:

14
7N � 1

0 n → 14
6C � 1

1H

Eventually, the unstable carbon �� decays back to nitrogen according to
the equation

14
6C → 14

7N � �1
1 e

These two competing reactions create an atmospheric equilibrium concen-
tration of carbon-14, which can react with oxygen to form carbon dioxide,
14CO2. Since the half-life of 14C is 5730 a, it is long-lasting and pervasive.
During photosynthesis, carbon-14 is incorporated into plant sugars along
with the stable carbon isotope 12C. Thus, all biological organisms contain a
specific ratio of 14C to 12C. However, when an organism dies, it no longer
takes in new 14C; so the ratio of 14C to 12C in the dead organism begins to
decrease as its supply of 14C decays. By determining this ratio in an organic
relic, archaeologists are able to determine its age.

e x a m p l e  8 Viking relics

The Norse settlement of L’Anse aux Meadows of Northwest Newfoundland
and Labrador is the oldest known European colony in Canada. Two thou-
sand four hundred Norse objects have been excavated at this site. If these
early Norse colonies were built in 1006, find the percentage ratio of 14C to 12C
found in these relics compared to the ratio in organic matter presently alive.

Solution and Connection to Theory

Given
N0 � original number of nuclei in the relic
t � 2000 � 1006 � 994 a T�

1
2

� � 5730 a N � ?

Using our decay equation and substituting the 
given values, we obtain

N � N0��
1
2

�� � N0(0.5)0.1735 � N0(0.8867)

The concentration is about 88.7% of the 
present-day ratio of 14C:12C in living organisms.

994 a
�
5730 a
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Meadows in Newfoundland and Labrador



One problem with carbon-14 dating is the assumption that the condition
of the upper atmosphere hasn’t changed over the centuries. Also, it’s possible
that relics become contaminated with other organisms during the decay of
the original 14C. However, carbon dating is still considered an adequate and
fairly accurate means for approximating the age of organic relics.

Similar to the way the ratio of 14C:12C is used for dating organic relics,
the ratio of 235U:238U can be used to find the age of geological formations.

1. You bake a round cake, cut it in half, and eat one side. Still hungry,
you then cut the remaining piece in half and eat one of the quarters.
If you ate 8 pieces in all, what fraction of the cake is left?

2. Traces of potassium-40 are found in some salts sold at your grocery
store. If the half-life of 40K is 1.28 � 109 a, determine the time it
would take for a 5-mg sample to decay to 1 mg of 40K.

An Ancient Natural Nuclear Reactor
Normally, 0.72% of all uranium is 235U, whether it is found on Earth,
in Moon rocks, or in meteorites. However, the uranium extracted from
a West African mine in Oklo, Republic of Gabon, contains only 0.44%
235U, while the rest is 238U. The reason for this low concentration of 235U
is believed to be due to a natural radioactive process that occurred in the
distant past, which consumed a lot of the 235U. For this process to occur,
scientists estimate that a concentration of about 3.0% 235U is needed.
3. Find how long ago the natural concentration of 235U was 3.0% if it

is 0.44% today.
4. What environmental changes could have been caused by the natural

fission reactor in West Africa 1.7 billion years ago?
5. Data collection from the rings of long-lived trees (more than 1000 years

old) indicate the carbon-14–carbon-12 ratio has changed with time.
Describe some human activities that could be altering this ratio.

14.4 Radioactivity

Artificial Transmutations

A transformation of one element into another can also occur when a
nucleus is struck by another particle. In 1919, Rutherford bombarded nitrogen
with alpha particles (emitted from radium) and found that oxygen was
created. As the alpha particles from radioactive decay travelled through
nitrogen gas, some of them were absorbed and protons were emitted according
to the reaction statement

14
7N � 4

2He (	) → 17
8O � 1

1H (proton)
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In Section 14.3, we learned that 14C becomes 14N. This natural transmutation
occurs in the upper atmosphere when high-speed neutrons interact with
14N. Prior to 1932, artificial (or human-made) transmutations of elements
were restricted to the available energies of alpha particles emitted during
alpha decay; that is, 4 MeV to 8 MeV of energy. In 1932, John Cockcroft and
Ernest Walton were able to produce the nuclear transformation of lithium-7
into beryllium-8 by means of a 400 000-V accelerator that accelerated protons
up to speeds of 8.8 � 106 m/s. The unstable 8Be then decayed into two alpha
particles (see Figure 14.11).

In that same year, James Chadwick discovered the neutron. When he
bombarded beryllium with alpha particles from polonium decay, he found
that the high-energy emission had no detectable charge. When he aimed
these emissions at a block of paraffin, they collided with the hydrogen
protons in the wax. By analyzing the ejected protons, he discovered that
the emissions were about the same mass as a proton, only neutral in
charge. Thus, the neutron became a tool for physicists to probe further
into the positively charged nucleus. Unlike alpha particles, which are
positive and repelled by the nucleus, the neutron could approach the
nucleus without repulsion.

None of the elements with more than 83 protons in their nucleus are
stable. When a heavy, naturally occurring element such as uranium is
bombarded with neutrons, a transient element called neptunium (93Np),
with a half-life of 2.4 days, is created. In general, when heavy elements are
bombarded by high-energy ions in a cyclotron, it is possible for even more
massive elements to form that may not occur naturally.

e x a m p l e  9 The search for element 118

In 1999, the Lawrence Berkeley Lab announced that three atoms of the
element 118 (ununoctium, Uuo) had been synthesized by accelerating a
beam of krypton-86 ions to an energy of 449 MeV and directing it onto a
target of lead-208. Write the nuclear reaction statement for this interaction
if one neutron is also produced.
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Fig.14.11 In the Cockcroft–Walton
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Solution and Connection to Theory

Given
From the periodic table, krypton is 86

36Kr and lead is 208
82Pb.

Since Pb and Kr provide 208 � 86 � 294 nucleons (on the left side),
there must be the same number, 293 � 1 � 294, for the Uuo and neutron
(on the right side). In this manner, the nucleon number is conserved.
Also, the amount of charge, Z � 82 � 36 �118, on the right must be the
same (118 � 0) on the left. In this way, charge is also conserved. From
these considerations, we obtain

208
82Pb � 86

36Kr → 293
118Uuo � 1

0n

Using an 88-inch (224-cm) cyclotron, the team of scientists took 11 days to
find the heaviest transuranic (Z � 92), or human-made, element of the
time. Two years later, they retracted their announcement after several con-
firmation experiments failed to reproduce the results! However, these man-
ufactured elements have extended the periodic table to at least 112 elements.
For example, in 1996, lead and zinc atoms were fused to create ununbium,
which quickly decayed to ununnilium. Ununnilium decays to hassium,
which in turn decays to seaborgium. The nuclear reactions are as follows:

208
82Pb � 70

30Zn → 277
112Uub � 1

0n

277
112Uub → 273

110Uun � 	 : T�
1
2

� � 0.24 ms

273
110Uun → 269

108Hs � 	 : T�
1
2

� � 0.1 ms

269
108Hs → 265

106Sg � 	 : T�
1
2

� � 9.3 s

A succession of such decays is called a decay series. In
the above series, 277Uub and 273Uun are very short-lived and
would not normally exist in nature because they would not be
around long enough to be detected. On Earth, 235U decays nat-
urally to the stable lead isotope 207Pb through a series of seven
alpha decays and four beta decays, as shown in Figure 14.12.

Since Earth is believed to be over 4.5 billion years old,
many radioactive isotopes having short half-lives should
have disappeared long ago. But certain other isotopes, such
as 235U, 238U, and 323Th, have long half-lives. These isotopes
continually replenish the isotopes in their decay series that
have short half-lives. For example, 235U alpha-decays to
231Th. The half-life of 231Th is only 25.5 hours. 231Th would
not exist on Earth today if it were not replenished by the
decay of 235U.
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Detecting Radiation

Regardless of our daily activities, we are exposed to radiation whether we
realize it or not. Low-level radiation can be found in rocks, water, air, and
in the food we eat. By far the largest contributor to our daily radiation expo-
sure is the natural world.

To detect radiation, a variety of instruments is used, including a Geiger
counter (see Figures 14.13a and b). This instrument consists of a metal tube
filled with halogen gas such as argon at low pressure. A thin insulated wire
is mounted in the centre of the tube. The potential difference between the
wire and the outside of the tube is almost large enough to ionize the argon.
When radiation enters the mica end window, it ionizes the gas, creating an
ion pair. The negative ion (electron) accelerates toward the wire, reaching a
high velocity and producing a large number of additional ion pairs due to
repeated collisions. The new electrons also accelerate, thus creating an ava-
lanche of negative charges upon the wire. The resulting current through the
circuitry produces a voltage pulse that can be amplified and counted elec-
tronically. The voltage pulse can also drive a speaker, so we may hear the
clicking noise associated with the detection of radioactivity.

The absorbed dosage through exposure to radiation is measured in
units called grays (Gy). One gray is the amount of radiation that deposits
energy at a rate of one joule per kilogram in an absorbing material; that is,

1 Gy � 1 J/kg

Alpha particles lose energy more rapidly, depositing all their energy over a
much shorter path compared to beta particles and gamma rays. For this rea-
son, the biological effect from a dose of 1 Gy of alpha radiation can be up to
20 times more damaging than from the same dose of beta or gamma radia-
tion. Since the biological effect depends both on the type of radiation and on
the dose (D), a dose equivalent (DE), measured in sieverts (Sv), is
found by using a quality factor (QF) from 1 to 20. For example, a 2-Gy
dose of low-energy kilo-electron-volt neutron radiation with a quality factor
of 4 would have an equivalent dose of

DE � D � QF � 2 � 4 � 8 Sv
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The Measure of Nuclear Activity

Recall from Section 14.3 that the

amount of activity of a radioactive

source equals the number of nucleon

disintegrations per second, measured

in becquerels (Bq).
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Metal tube

To counter
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� Voltage

� Voltage

Glass enclosure

1000 V

Fig.14.13a The Geiger counter

Fig.14.13b Detecting radiation

using a Geiger counter



e x a m p l e  1 0 Energy of an equivalent dose

A short-term dose equivalent (DE) of 4 Sv of gamma radiation will cause
death to about 40% of the people exposed to it. If the quality factor (QF)
of gamma radiation is 1, determine the amount of energy that a 70-kg person
would absorb from such a dose.

Solution and Connection to Theory

Given
m � 70 kg    QF � 1    1 Gy � 1 J/kg    DE � 4 Sv

D � �
D
Q

E
F
�

D � �
4

1
Sv
� � 4 Gy � 4 J/kg

Thus, 1 kg of body mass absorbs 4 J of energy. A 70-kg person will absorb
an energy, E, given by

E � mass � dose
E � (70 kg)(4 J/kg)
E � 280 J � 300 J

The person would absorb 300 J of energy.

This amount of energy would only raise the temperature of a person by
0.001°C. Thus, it is not the heat, but rather the absorption of the radiation
by water molecules in the cells of the body that causes damage. The gamma
rays cause water molecules to dissociate into very reactive ions that attack
the organic molecules, the basic building blocks of the cell. Fortunately, the
average annual radiation dose per person is about 2 mSv, which is below
the 360-mSv “no observable effect” level for mammals.
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Table 14.5 
Measuring Radiation

Quantity Measure of Unit

Activity (A) Decay rate becquerel (Bq)

Absorbed dose (D) Energy absorption gray (Gy)

Dose equivalent (DE) Biological effectiveness sievert (Sv)



1. Which element has the most massive stable isotope?
2. If the average whole-mouth dental x-ray is a dose of 0.20 mSv, then

how many dental x-rays could we have each year to still be under
the 0.36-Sv “no observable effect” level?

3. In general, radioactive elements are bound to minerals in rocks deep
within Earth and present no hazard to our health. However, all the
radioactive series emit the radioactive gas radon. When rocks frac-
ture or are used in construction materials, the gas may escape from
the surface and enter the water we drink and the air we breathe.
Table 14.6 shows the average levels of radon gas emissions in
schools of British Columbia. Some places are close to exceeding the
Canadian guideline recommendation to take action if the activity
per cubic metre reaches 800 Bq/m3.
a) Comment on the irony of the present trend to conserve energy

through the construction of well-insulated and tightly sealed
homes and buildings.

b) Research the potential for earthquake prediction that radon gas
detection may have in areas close to fault or fracture lines
within Earth.

Decay Series and the Food Chain

Scientists are concerned about the radiation levels found in the
wildlife of Northern Canada. Animals receive higher doses from
radioactive isotopes in their food than do humans because they ingest
more soil with their meals. Also, by living outside, they are exposed to
more external cosmic and gamma radiation.

238U, 235U, 232Th, and 40K (found in 0.01% of all potassium) are the
main sources of naturally occurring radioisotopes that animals are
exposed to through the decay series. Polonium-218, though short-lived
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Table 14.6
Comparison of Radon Levels in Homes and in Schools 

School district Mean radon in Mean radon in % of schools % of homes % of schools % of homes

schools (Bq/m3) homes (Bq/m3) above 150 Bq/m3 above 150 Bq/m3 above 750 Bq/m3 above 750 Bq/m3

Kelowna 26 85 4 7.8 0 0

South Okanagan 81 107 14 16.4 0 1.4

Penticton 38 107 5.6 16.4 0 1.4

Castlegar 100 240 38 41 15 6

Prince George 30 89 4.5 29 0 0

North Thompson 137 159 70 53 0 11

Vernon 57 74 5 9.2 0 0

Nelson 164 122 45 19.7 5 1.4

Trail 57 111 13 16.4 0 0

ap
plylying

theC
o

n c e pts



(3.8 days), delivers the greatest radiation doses to caribou that breathe
radon-222 gas oozing out of the soil. Caribou ingest high levels of
polonium-210 because of their diet of moss-like lichen. As radon gas
decays in the atmosphere, rainfall washes lead-210 (further down the
decay series) to the ground, where it is absorbed by plants. People who
eat caribou show elevated concentrations of 210Po in the liver and kidneys.
Small burrowing creatures, such as voles living near the uranium tailing
facilities in Northern Saskatchewan, have shown particularly high
concentrations of radium-226.

Artificial radioisotopes can get into the environment from processes
like nuclear weapons testing and nuclear reactor accidents. Iodine-131,
with a half-life of eight days, presents a hazard right after an accident
because it can accumulate in the thyroid gland, causing cancer. Many
of the beta-emitting isotopes decay after five years, but strontium-90
and cesium-137 have longer half-lives (28 to 30 years) and have found
their way into all of the world’s populations. This effect is due, in part,
to the 1000 megatons of nuclear explosives released into the atmosphere
between 1945 and 1963 as a result of nuclear testing. Cesium-137 is
particularly hazardous in the tundra. Levels reached as high as 1100 Bq/kg
in caribou of Northern Quebec after the 1986 Chernobyl nuclear power
plant accident in the Ukraine. People eating this meat ran a significant
health risk. Monitoring the amount of radiation in the environment and
in the food chain helps scientists affect international policy.
4. If the quality factor (QF) of a 1.3-MeV gamma-ray emission is 1 and

the activity per kilogram in Scandinavian reindeer due to this radi-
ation is 29 000 Bq/kg, determine the annual dose these reindeer
could be receiving in sieverts.

5. Research the history of nuclear weapons testing from 1945 until the
1963 Atmospheric Test Ban Treaty. Determine the societal and
political factors that led countries to ban such testing and briefly
discuss the main terms of the treaty.

14.5 Fission and Fusion
When two nucleons are within 1 fm or 2 fm (10�15 m) from each other, they
experience a binding nucleon force of attraction. At such small distances,
this attractive force, called the strong nuclear force, is more powerful than the
electrostatic force of repulsion between protons. Strong forces are associated
with large energies. Compared to exothermic chemical reactions (involving
electric forces), the energy released in nuclear reactions can be 4 � 107

times greater per mole. The attainment (or hope of attainment) of such
large energy releases has made the processes of fission and fusion important
to nuclear engineers. As we will see, each of these processes takes place
with nuclei that reside at opposite ends of the periodic table.
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Avogadro’s number

One mole represents 6.02 � 1023

of anything

Fig.14.14 The caribou in Northern

Canada receive higher doses of 

radiation than humans



Fission

Fission is a nuclear process whereby heavier nuclei split into two smaller
nuclei. This spontaneous decay occurs because the binding energy of massive
nuclei is less than that of stable isotopes having atomic mass numbers
between 36 and 56. The binding energy graph of Figure 14.16 shows the
energy of nuclear fission. An isotope with a mass number of 240 and a bind-
ing energy of 750 GJ/mol breaks into two isotopes, each having a binding
energy of about 850 GJ/mol for each nucleon in the nucleus.

The difference in energy between the parent and daughter nuclei means
that, potentially, 100 GJ/mol of energy is released! To break radioactive
isotopes such as 235U into two, scientists bombard them with slow or thermal
neutrons. If a neutron is moving slowly enough, then the uranium nucleus
can absorb it. If the neutron is too fast, then it skips on by, like a rock skip-
ping across a pond’s surface. The deformed uranium-235 nucleus stretches
to an elliptical shape, becoming unstable and splitting apart as it elongates.
In Figure 14.17, it looks almost like biological fission or cell division as the
electrical repulsion overcomes the strong nuclear force holding it together.

An example of a fission reaction is one that occurred in the first
atomic bomb:

235
92U � 1

0n → 236
92U → 134

54Xe � 100
38Sr � 21

0n

The fission fragments, 134Xe and 100Sr, are roughly half the mass of 236U.
They are just one combination of the many possible product nuclei. The
number of neutrons produced can also vary. Regardless of the combination
of product nuclei, the sum of the A and Z values balances on each side of
the reaction statement. The excited 236U nucleus lasts only 10�12 s, so the
process is very quick (see Figure 14.18).
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If there is enough uranium available, then the two product
neutrons could bombard two more nuclei, releasing energy.
Then, the four new neutrons could interact with four more 235U
nuclei, releasing more energy and eight neutrons, and so on. This
process is called a chain reaction. Each step in the process takes
only about 10 ns, and the number of disintegrations quickly 
adds up as the sum of a geometric series: 1 � 2 � 4 � 8 �…. 
For example, in a chain reaction involving 80 steps, the num-
ber of uranium nuclei disintegrating is enormous! Since 
S80 � 280 � 1 � 1 � 2.4 � 1024, the number of moles of uranium
undergoing fission would be 

� 4.01 mol

Expressed in mass units, this value represents

(4.01 mol)(235 g/mol) � 0.942 kg of 235U

In atomic bombs, some neutrons escape through the surface
of the material before they can cause further fission reactions.

The chain reaction only becomes self-sustaining when there is enough mass
to slow down or moderate enough of the neutrons, causing them to interact
with, rather than escape, the radioactive material. This amount of material
is called the critical mass. In Figure 14.20, the smaller purple circles rep-
resent uranium nuclei, and the red arrows show the paths that the neutrons
could take after fission.

2.4 � 1024 nuclei
���
6.02 � 1023 nuclei/mol
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The Sum of a Geometric Series

For 1 � 2 � ... � 2n,

the sum is 

Sn � 2n � 1 � 1

In the case where n � 5,

S5 � 25 � 1 � 1 � 63

Fig.14.19 Atomic bombs at the Russian Nuclear

Weapons Museum at Arzamas-16, now known as Sarov



The lengths of the arrows represent the distances the neutrons travel before
capture. If the amount of material is too small, as in Figure 14.20a, then
many of the neutrons exit through the surface of the material. A smaller
amount of material therefore has less chance of capturing a neutron than a
larger amount of material (Figure 14.20b). Depending on the material being
used, critical mass is typically a few kilograms.

e x a m p l e  1 1 The power of the atomic bomb

If 0.942 kg of 235U undergoes fission in a chain reaction, find the approx-
imate power of the explosion. Assume from the previous geometric example
that the number of fission steps for 0.942 kg of 235U is 80 and that each
step takes about 10 ns.

Solution and Connection to Theory

Given
�E/mol � 100 GJ/mol

0.942 kg of 235U � �
23

9
5
4
g
2
/m

g
ol

� � 4.01 mol
n (number of geometric steps) � 80 �t � 10 ns/step P � ?

To find the power, P, we need �E as well as the total time, t � n�t, for
the 4.01 mol to undergo fission through a chain reaction.

First, the energy released is
�E � (100 GJ/mol/nucleon)(4.01 mol)(235 � 1 nucleons)
�E � 95 TJ

Power is energy per unit time (J/s), so

P � �
n
�

�

E
t

�

P �

P � �
9
8
.5

�

�

1
1
0�

0
7

13

s
J

�

P � 1.2 � 1020 W

This example illustrates the tremendous power that was unleashed, first as
a test over a desert of New Mexico in July, 1945, then later during the Second
World War over the Japanese cities of Hiroshima and Nagasaki. Compared
to a lightning flash where 1 GJ of energy is delivered in a time of 0.2 s, the
atomic bomb is 19 000 times more powerful!

95 TJ
���
(80 steps � 10 ns/step)
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Fig.14.20 In a sub-critical mass at

(a), too many neutrons escape before

colliding; in the critical mass of (b),

enough neutrons encounter other

nuclei to maintain a chain reaction.

(a)

(b)

Fig.14.21 A 61-kiloton fusion

device, detonated on June 4, 1953,

called Climax at the Nevada Test Site



Fission Reactors

In a nuclear reactor, the fission chain reaction takes place under controlled
conditions where the number of neutrons is kept constant instead of
increasing geometrically. To maintain this chain reaction, the (fast) fission
neutrons must be slowed down by using an effective moderator such as
heavy water. Slow neutrons are less likely to be absorbed by 238U and they
trigger the fission of 235U more readily than fast neutrons. A good moderator
must absorb the kinetic energy of the neutrons, but not the neutrons them-
selves. Heavy water (D2O) is a very efficient moderator because it contains
nuclei that have about the same mass as neutrons. In collisions between
particles of equal mass, more of the kinetic energy can be transferred to the
stationary mass.

e x a m p l e  1 2 Comparing moderators

In a fission reactor, compare the effectiveness of two different moderators
in slowing down fast neutrons to thermal speeds. Assume the fast neutron’s
speed is 2 � 107 m/s and that it collides head on with either a deuterium
nucleus or a carbon nucleus at rest.

Solution and Connection to Theory

Given
v1o � 2 � 107 m/s    mn � 1.0 u    mD � 2.0 u    mC � 12.0 u    v1f � ?

Recall from Chapter 5 (see sidebar) that the final speed of the neutron
is given by the equation

v1f � v1o�
(
(
m
m

n

n

�

�

m
m

x

x

)
)

�

For the deuterium nucleus,

v1f � (2 � 107 m/s)�
(
(
1
1

.

.
0
0

u
u

�

�

2
2

.

.
0
0

u
u

)
)

� � �6.7 � 106 m/s
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(b) Heavy water, D20

Collision Dynamics

If a neutron of mass mn and velocity v1o

strikes a proton of mass mp at rest in

a head-on collision, the laws of conser-

vation of energy and of momentum

(Chapter 5) tell us that the particle

of mass mn will move off with a 

velocity v1f
given by

v1f
� v1o

�
(

(

m

m

n

n

�

�

m

m

p

p

)

)
�



For the carbon nucleus,

v1f � (2 � 107 m/s)�
(
(
1
1

.

.
0
0

u
u

�

�

1
1

2
2

.

.
0
0

u
u

)
)

�� �1.7 � 107 m/s

Therefore, deuterium is much more effective in slowing down the neutrons.
It reduces the speed of the neutron by �1 � �

6
2
.
0
7
�� � 67%, whereas carbon

reduces the speed by only �1 � �
1
2

7
0
�� � 15%.

The CANDU Reactor

Deuterium or heavy water, 2H2O, is the moderator used in
the CANDU reactor, designed and built by Atomic Energy of
Canada. The word CANDU is an acronym that stands for
CANada Deuterium Uranium. It is unique in that it can be
refuelled while on full-power operation.

In the CANDU reactor, the reactor core, or calandria,
is composed of horizontal pressure tubes containing the
fuel bundles. The heavy-water moderator flowing through
the fuel bundles, shown in Figure 14.24, absorbs the
energy released during the fission process. Heavy water
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transfers heat via a heat exchanger, in which ordinary water is heated to
steam. The steam drives a turbine connected to a generator. The steam is
condensed by cooling it with nearby lake water, and is returned to the sys-
tem in liquid form.

The heavy water in the calandria also acts as a moderator to slow down
the (fast) fission neutrons. In the event of problems, a moderator dump system
can be employed. Draining the moderator stops the reaction. There is also a
neutron-absorbing boron solution that can be injected into the core through
a “poison pipe” that, besides stopping the reaction, can also serve to cool the
core. Other safety features include insertable cadmium rods to absorb slow
core neutrons, and a low-pressure vacuum building to draw out radioactive
steam and condense it. For safety, the entire structure housing the reactor
core is encased in a second larger concrete containment enclosure with one-
metre-thick walls.

Figure 14.25 summarizes the neutron cycle in nuclear fission.

Fig.14.25 The Neutron Cycle in Nuclear Fission

Fusion

Fusion is a nuclear process of building larger nuclei by bringing together
smaller nuclei. From Figure 14.16, we see that the binding energy per
nucleon per mole increases up to a maximum at A � 60, where the nuclei
are most tightly bound. From this graph, we can infer that we can gain
energy by fusing smaller nuclei into larger, more stable nuclei. Fusion reac-
tions are important in thermonuclear weapons, in powering the Sun, and in
possible nuclear reactors.
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e x a m p l e  1 3 Fusion reactor energy

Find the energy released in creating one mole of helium in a reaction
between deuterium (1

2H) and tritium (1
3H) according to the following reac-

tion statement:
2
1H + 3

1H → 4
2He + 1

0n + 0
0


Solution and Connection to Theory

Given
From Table 14.1,
mD � 2.014 102 u mT � 3.016 049 u mn � 1.008 665 u
mHe � 4.002 602 u 1 u � 1.661 � 10�27 kg �m � ?

To find the mass difference, �m, we subtract the mass before the reaction
from the mass after the reaction:
�m � (mD � mT) � (mHe � mn)
�m � (2.014 102 u � 3.016 049 u) � (4.002 602 u � 1.008 665 u)
�m � 0.018 884 u

Then we convert the mass to kilograms and use the mass–energy
equivalence equation to find the energy released for a helium nucleus:
�E � (�m)c2

�E � (0.018 884 u)(1.661 � 10�27 kg/u)(3.0 � 108 m/s)2

�E � 2.82 � 10�12 J

Last, we convert this energy to energy per mole using Avogadro’s number:
Energy/mol � (2.82 � 10�12 J/nucleus)(6.02 � 1023 nuclei/mol) 
Energy/mol � 1699 GJ/mol

Therefore, the creation of one mole of helium releases 1700 GJ of energy.
In theory, fusion can provide 340 GJ per gram of reactants compared to
about 86 GJ per gram for fission reactions.

The successful development of fusion reactors could benefit society greatly.
To power a city of about one million people for 12 hours, the proponents of
fusion power claim that it would take 3.5 million kg of coal, 2.5 million kg
of oil, 250 kg of uranium (through fission), or 1 kg of fusion material!

In 2001, Clarington on Lake Ontario was proposed as the site for the
International Thermonuclear Experimental Reactor (ITER), an international
research facility to develop fusion energy (see Figure 14.28). At a cost of
about $12 billion, it may be the largest international research and development
investment next to the International Space Station (see Chapter 6 STSE). It
is to be the crucial last step before the world builds its first demonstration
fusion power plant.
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1n0

Fig.14.27 The fusion of deuterium

(2H) and tritium (3H)



In the fusion process, a few grams of deuterium and radioactive tritium
are fed into the machine’s core. This fuel is heated to a temperature of at
least 2 � 108 °C. The positively charged nuclei will fuse only if they collide
violently, and the high temperature provides enough kinetic energy for
them to overcome electrostatic repulsion. At this temperature, atoms are
ionized into a plasma gas, a fluid composed of high-energy ions as we see
in the Sun or in a flame. Superconducting magnets around a large toroidal
or tire-shaped vessel confine the reacting plasma to keep it from touching
the walls (see Figure 14.29). They also induce a current in the plasma that
heats it to ignition. Upon ignition, the deuterium and tritium fuse to produce
fusion energy. The resulting heat is removed using a water cooling system.
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In the deuterium–tritium fusion reaction,

2
1H � 3

1H → 4
2He � 1

0n � :


the alpha particle (4
2He) deposits its energy within the fuel,

thereby contributing to its heating. The neutron, unconfined
because of its charge neutrality, carries away 80% of the
energy and is captured by a surrounding blanket-like struc-
ture of cool liquid lithium through the reaction

6
3Li � 1

0n → 4
2He �3

1H

The energetic helium and tritium heat up the lithium,
which drives a steam generator that in turn runs a turbine
for electrical power generation. The tritium is extracted
from the lithium to produce (or breed) new tritium fuel for
the reactor.

Fusion reactions have been produced for about the last
60 years. At first, there were small-scale studies in which
only a few fusion reactions actually occurred. Presently, the
world’s largest fusion experiment is the Joint European Torus machine
(JET) in England. It has shown that fusion power can be generated safely
and effectively on a small scale. The larger ITER machine is needed to sim-
ulate the operation of a real power station.

The major safety feature of the fusion process is that it cannot get out
of control. The process requires a precise, tightly controlled environment. If
conditions are not ideal, the whole process simply stops. It cannot escalate
out of control and cause a “core melt,” as in nuclear fission reactors.

Outside of experimental fusion reactors, fusion for the smaller nuclei 
(A � 60) doesn’t occur under natural conditions on Earth because of the
large amount of energy needed to bring two positively charged nuclei close
together. The electrostatic force of repulsion between them becomes enor-
mous as they come together. It’s only when they are squeezed very close to
one another that they feel the short-range strong nuclear force. At that
point, the electrostatic repulsion is overcome and they fuse.

Creating the Heavy Elements

Stellar fusion reactions have been going on for billions of years. The process
of fusion in stars originally created many of the elements. In a way, stars are
huge factories converting hydrogen into helium, then helium into heavier
elements, and so on, while emitting a huge amount of energetic radiation.
When we feel the Sun’s warmth and see by its light, we are sensing a product
of fusion. We can say that fusion is the basis for all life on Earth.

chapter 14: Nuclear  and E lementary Part ic les 715

Fig.14.30 The Tokamak Fusion Test Reactor



When a star is formed, it initially consists of hydrogen and helium.
Under high temperatures and great gravitational pressure, hydrogen isotopes
collide in a star and fuse. Thus begins a sequence of fusion reactions called
the proton–proton cycle, which leads to the creation of helium and the
output of energy:

1
1H � 1

1H → 2
1H � 0

1 e � 
1
1H � 2

1H → 3
2H � 


3
2H � 3

2H → 4
2H � 21

1H

From the third reaction, helium nuclei could be involved in forming heavier
elements. In general, lighter elements fuse and form heavier elements. The
mass of the elements that form inside a star depends on the star’s tempera-
ture; the hotter the star, the heavier the elements it can create. These reactions
continue within the star until the nuclei reach the mass numbers where the
binding energy is at a maximum.

In Figure 14.16, we see that the maximum binding energy occurs around
A � 60, or the element iron. At that stage, the fusion process slows down
because the higher elements have less binding energy; therefore, the mass dif-
ference in the reaction would require inputting energy instead of releasing it
(an endothermic reaction). Once a star has converted a large fraction of its
core’s mass to iron, it has almost reached the end of its life. Since the chain of
fusion reactions begins to ebb, the energy output of the star begins to wither
and it shrinks until it becomes a relatively cool iron sphere. As the tempera-
ture drops, the force of gravity can collapse the star (if it has enough mass).
A tremendous, brilliant explosion can occur. The star will suddenly expand
and produce, in a very short time, more energy than our Sun will produce in
its lifetime! When a star explodes, we say that it has become a supernova.
The supernova remnant may become a rapidly rotating neutron star or a
pulsar. A black hole may form if the collapse of the burned-out star is so
dense that it traps anything near it, including light (see Figure 14.31).

While a star is in the supernova phase, many important reactions occur.
As the star collapses, the nuclei are accelerated to much higher velocities
than the nuclei in fusing stars. With the added energy caused by their speed,
nuclei can fuse and produce elements that are higher in mass than iron. The
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Fig.14.31 Phases of stars in the 

universe: a neutron star (arrow), 

a supernova, and a black hole as

seen through the Hubble Telescope



extra energy in the explosion is necessary to overcome the energy barrier of
a higher-mass element. Elements such as lead, gold, and silver found on
Earth are the remnants of supernova explosions.

Comparing Energy Sources — A Debate

Long-range projections of energy use show that the total world energy demand
by the year 2050 will be two or three times the 1990 level. As fossil fuels
become depleted, proponents of fusion power argue that harnessing fusion
power is one of the best options for a long-term, safe, and sustainable energy
supply for future generations. On the other hand, proponents of fission power
argue that fission is a relatively safe and inexpensive way to generate
electricity. Both systems have risks and costs associated with them. Table 14.7
outlines some of the advantages of fission and fusion in a variety of areas.

chapter 14: Nuclear  and E lementary Part ic les 717

Table 14.7 
Fusion Development versus Fission Investment

Fission Fusion

Fuel availability Uranium is indigenous to Canada, which makes us less Tritium is a waste product of the CANDU nuclear reactor.
dependent on importing expensive oil and natural gas. Deuterium is extracted from common water. One water
By using more nuclear energy, Canada becomes more molecule in 6000 has one 2H atom. Initially, only one or 
self-reliant and free from world market price fluctuations. two kilograms of fuel will be needed per year. The supply
The diminishing supply of oil can then be reserved for is inexhaustible.
transportation fuels and chemical feedstocks, not the 
generation of electricity.

Safety History has shown that nuclear power isn’t risk free. The risk is in making it work. This new technology is 
CANDU reactors have three safety systems: the based on the successful JET project that now needs the
moderator dump, the cadmium control rods, and the technology developed on a larger scale to be economically
boron-filled moderator “poison” pipe. The safety of the viable. The human safety risk is minimal; there are no
CANDU has been proven. Compared to other daily runaway reaction possibilities, such as occurred at the
activities, like driving a car, the risks of nuclear power fission plants at Three Mile Island and Chernobyl.
to society are extremely small given the power that is 
generated for everyone.

Environment Fossil fuels (mainly coal) increase global warming through Fusion creates no greenhouse gases. The very small 
CO2 emissions and contribute to the acid rain problem. amount of tritium that may be found in the air or in the
Compared to using fossil fuels, CANDU reactors are cooling water of the power plant will be recycled as fuel.
much more environmentally friendly. The operation of a The amount of radioactive waste is similar to that of a 
reactor has a negligible impact on background radiation hospital, and would be disposed of in the same way.
levels. The highly radioactive waste produced doesn’t Fusion has the least environmental impact of any current
take up much volume. Therefore, it can be isolated method of energy production.
and contained.

Cost High capital costs at the outset are offset by a plenitude Initial research costs are high, but the inexhaustible 
of safe and inexpensive power for years to come. power is immense. One kilogram of fusion fuel is 
Maintenance costs and extensive safety regulations comparable to 250 kg of fission fuel. The ITER machine
are other factors affecting profitability. will supply about 450 MW of power to the power grid. 

The development of Canada’s expertise as a world leader 
in robotics and fuel processing is an added spin-off of 
fusion technology.



1. In a collision with (fast) fission neutrons, why would heavy-water
molecules of tritium (T2O) be less likely to absorb neutrons than
ordinary water?

2. Calculate the effectiveness of a tritium nucleus in slowing down a
(fast) fission neutron that is traveling at 2 � 107 m/s. (Hint: See
Example 12.)

3. What are some good reasons for locating a fusion research facility
in Clarington on Lake Ontario?

4. If 400 g of deuterium and 600 g of tritium are needed to fuel a city
like Edmonton for 12 hours, calculate the power output of an ITER-
type fusion plant. (Hint: Use the results of Example 13.)

5. In the solar proton–proton cycle, how many neutrinos are produced
for every helium-4 nucleus?

6. As the leader of an interest group in the year 2025, you must choose
and research arguments in favour of the type of new power generator
you want to advocate for your small city. Viable fusion power tech-
nology has just become available. Hold a class debate on the method
of power generation that you prefer. Begin by defining the demo-
graphical and geographical characteristics of your chosen city.

7. Research how lake water that is used to cool equipment in nuclear
power plants and returned to the lake at a higher temperature
affects the environment.

14.6 Probing the Nucleus

In the early 1950s, scientists discovered that if the incoming particle in a
nuclear reaction had sufficient speed, new types of particles could be produced
from the interaction energy, and new interaction rules could be observed.
Various particle accelerators have been constructed, such as synchrotrons
and linear accelerators. Sometimes, they are used to probe the nucleus.
Often electrons are used as probing particles because they are much smaller
than nucleons, are easier to accelerate, and are not affected by the strong
nuclear force. The electron is accelerated to a great enough velocity such
that its de Broglie wavelength (recall Chapter 12),

� � �
m
h

v
�

is smaller than the size of a nucleus. The probe (electron) can then interact
with objects inside the nucleus. If its matter (de Broglie) wavelength is too
long, it will not be sensitive to the finer structures in the nucleus. For example,
a 10-GeV electron has a de Broglie wavelength of about 0.1 fm, or small
enough to interact with objects inside a nucleon. The faster the probing
particle travels, the finer the details it can reveal about the nucleus.
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Fig.14.32 The Pep II facility at 

SLAC, where energetic electrons 

and positrons circulate in opposite 

directions in two separate storage

rings and collide with one another at a

single crossing point. This experiment

will produce mesons, or particles

involved with the strong nuclear force.



e x a m p l e  1 4 The wavelength of a gigavolt electron

An electron with a rest mass of 0.511 MeV is accelerated to a kinetic
energy of 22 GeV. Find its de Broglie wavelength.

Solution and Connection to Theory

Given
Ek � 22 GeV � 2.2 � 104 MeV    m0 � 0.511 MeV    � � ?

Using the mass–energy triangle from Chapter 13 (Figure 14.33),
(mvc)2 � (m0c2 � Ek)2 � (m0c2)2

we substitute for Ek and m0c2:
(mvc)2 � (0.511 MeV � 22 000 MeV)2 � (0.511 MeV)2

(mvc)2 � 4.84 � 108 MeV2

mvc � 22 001 MeV
mvc � (22 001 MeV)(1.6 � 10�13 J/MeV) � 3.52 � 10�9 J

Dividing both sides by c yields the term for momentum:

mv � �
3
3
.
.
0
52

�

�

10
1

8

0
m

�9

/
J
s

�

mv � 1.17 � 10�17 N·s

The de Broglie wavelength of the electron is

� � �
m
h

v
�

� ��
1
6
.
.
1
6
7
3

�

�

1
1
0
0

�

�

1

3

7

4

N
J·

·
s
s

�

� � 5.65 � 10�17 m

The result suggests that electrons of this energy could be used to probe
target nucleons for objects that are 10 to 100 times smaller than a proton
(1.2 � 10�15 m). Indeed, linear accelerators have been used to scatter
electrons from nuclei in order to determine nuclear shapes and sizes.
Presently, the 3-km-long accelerator at Stanford, California, is being
used to collide a 9.0-GeV beam of electrons head-on with a 3.1-GeV
beam of positrons.

The more massive protons take longer than electrons to accelerate to
enormous speeds. As we learned in Section 13.5, cyclotrons are a good way
to accelerate ions up to non-relativistic speeds (or energies of 10 MeV). As
proton energies rise above 10 MeV to 400 MeV, the particle’s mass
increases (due to relativistic mass dilation). Correspondingly, the cyclotron
frequency drops (from 32 MHz to 20 MHz). One solution to counteract the
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Fig.14.33 The mass–energy triangle
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Fig.14.34 The BaBar particle detec-

tor at the Stanford Linear Accelerator

Center. Here colliding beams are

focused to a width comparable to a

strand of human hair in order to

improve the chance of a collision.
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frequency drop, used in the cyclotron of the TRIUMF project in
Vancouver, is to increase its magnetic field as the protons approach speeds
up to 75% of the speed of light. Another solution, used at the European
Centre for Nuclear Research (CERN), is to increase the accelerator’s size.
The radius of the new Large Hadron Collider (LHC) is 4.3 km. In this 
27-km-long superconducting ring, protons will be accelerated to energies of
7 TeV (1000 GeV � 1 TeV). Two beams will collide head-on in an attempt
to discover the Higgs boson, a subatomic particle that explains the mecha-
nism by which particles (such as electrons) are endowed with mass.

1. Find the de Broglie wavelength of a SLAC positron with a kinetic
energy of 3.1 GeV. (Use the mass–energy triangle.)

2. Find the cyclotron frequency for the LHC (of radius 4.3 km) at
CERN. (Assume v � c and use f � �

2
v
πr
�.)

3. a) What is the velocity of a proton with 10 MeV of kinetic energy?
b) What is the cyclotron radius of a 10-MeV proton orbiting with a

frequency of 32 MHz? (Use the cyclotron frequency equation.)

14.7 Elementary Particles
We have learned in this chapter that there is more to matter than simply
atoms arranged into molecules. Atoms consist of positive nuclei surrounded
by negative electron clouds. Some nuclei appear to be stable, while other
nuclei are unstable and decay to other forms of matter. We also learned that
neutrons are a kind of glue that prevents proton–proton repulsion within
the nucleus. In this section, we will learn about current theories of matter
and the forces that hold it together. These theories explain or predict much
of the behaviour of matter in high-energy physics experiments.

What is matter?

Since ancient times, humans have wanted to know what matter is and what
it is made of. In the 5th century BC, the Greek philosopher Empedocles 
proposed that there were four primary elements: earth, air, fire, and water.
In the 19th century, our list of elements expanded to eventually become the
periodic table (see Appendix I), where each element is the smallest particle
of its kind that still retains the properties of that substance. Dmitri Mendeleev
(1834–1907), a Russian chemist, arranged the 63 known elements in
ascending order of atomic mass.
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Matter versus Antimatter

At SLAC, scientists search through 

the collision debris of electrons with

their antimatter opposite (positrons)

for evidence of short-lived subatomic

particles known as B mesons. From

the collision studies, they are

beginning to understand one of

Nature’s great secrets — why the

universe has a preponderance of

matter over antimatter.



What is matter composed of?

We now know that the smallest particle of each element is the atom. But
what is the atom composed of? Figure 14.35 summarizes the evolution of
the model of the atom, from ancient times to the present day.

What are the most fundamental particles of matter and how are they
held together? Our studies now turn to the latest model of matter and
forces, the Standard Model of fundamental particles and interactions.

The Standard Model

The Standard Model of fundamental particles and interactions attempts to
explain and predict particle interactions within the atom’s nucleus and during
nuclear decay processes. This model describes the atom as being made up of
combinations of smaller, more fundamental particles called leptons and
quarks. According to the Standard Model, the atom looks like Figure 14.36.

Leptons

The electron is a member of a family of fundamental particles called leptons.
There are six leptons, all of which are so fundamental that they are believed
to not possess any internal structure. Table 14.8 summarizes the characteristics
of leptons.
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Fig.14.35 The evolution of the model of the atom
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Leptons are particles that are totally unaffected by the strong nuclear
force. Rather, they interact by way of the weak nuclear force. Leptons are
grouped into three pairs, each containing one charged (positively or negatively)
particle and one neutrino, which has no charge. The pairs are: the electron and
the electron neutrino (e� and �e), the muon and the muon neutrino (�� and ��),
and the tauon and the tauon neutrino (�� and ��). Each particle has an
associated mass and charge as well as a quantum-mechanical spin. 

Neutrinos, one for each of the three main leptons, have an extremely small
rest mass (possibly zero) and no charge. They travel at speeds very close to the
speed of light. Even though billions of them pass through our body each
second, they are extremely elusive and hard to detect. Experimental detection
of neutrinos from nuclear reactor studies was first achieved in 1956. Presently,
the Sudbury Neutrino Observatory detects about 8 to 10 neutrinos daily. 

There was also evidence of particles similar to each lepton in every way
but with the opposite charge. These particles, called antiparticles, are
detected by the tracks they leave in a magnetic field (see Figure 14.37a).
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Fig.14.37b Bubble chamber 

detectors were used extensively from

1953 until the 1970s. Charged 

particles injected into a superheated

liquid leave tracks of photo-ready

bubbles (see Figure 14.37a). The

curved path of measurable radius is

due to the action of an external

magnetic field on the charges. From

the radius, known strength of the

magnetic field, and energy of the

particles, we can calculate their

charge and mass.

Table 14.8
Leptons 

Mass

Particle Symbol Antiparticle (MeV/c2) Charge Spin

Electron e� e� 0.511 �1 �
1

2
�

Electron neutrino �e ��e � 0 0 �
1

2
�

Muon �� �� 105.7 �1 �
1

2
�

Muon neutrino �� ��� � 0 0 �
1

2
�

Tauon �� �� 1784 �1 �
1

2
�

Tauon neutrino �� ��� � 0 0 �
1

2
�

The spin quantum number describes

the particles’ spin direction. When

many of these particles were 

discovered and identified, the 

divisions and categories of particles

were based on their masses. However,

as the number and complexity of the

particles increased, spin became an

important part of the classification

system for subatomic particles.

Fig.14.37a A bubble chamber

photograph shows the tracks

(coloured in magenta) of a particle

and its antiparticle. Their tracks

show that they spin off in opposite

directions, indicating that they have

opposite charges.



The positron (the antiparticle of the electron) was discovered in 1932. After
that, scientists predicted that other particles also have antiparticles.
Antiprotons were first observed in 1955 using the large Bevatron accelera-
tor at the University of California in Berkeley. All the subatomic particles
have an associated antiparticle of the same mass but opposite charge. Neutral
particles, such as photons, neutral pions (�0), and eta particles (�0), are
considered to be their own antiparticles (see Appendix J). 

Besides the electron, the two other leptons, the muon and the tauon, are
found in weak and electromagnetic interactions. They have the same charge
as the electron but have larger masses. 

Leptons make up only a small portion of the matter that effects our daily
life. All other matter is made up of other subatomic particles called quarks.

Quarks

Particle physicists observed that leptons seemed to be elementary particles
because they didn’t break down into smaller particles. But other particles,
called hadrons, did. In 1964, M. Gell-Mann and G. Zweig proposed that all
remaining matter not classified as leptons is made up of a group of six
smaller, more fundamental particles called quarks. Gell-Mann chose the
name “quarks,” (pronounced “kworks”) after a nonsense word used by
James Joyce in his novel Finnegan’s Wake. Physicists have given the quarks
fanciful and somewhat arbitrary names that help remember their interaction
properties. Table 14.9 summarizes the characteristics of quarks. 

Hadrons (Baryons and Mesons)

Hadrons are subatomic particles that are made up of quarks. There are
two kinds of hadrons: baryons and mesons. All baryons are made up of
three quarks. There are about 120 different types of baryons, all made up
of different quark combinations, some of which are outlined in Table 14.10.
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Strange was named after the

“strangely” long lifetime of the K

particle, the first composite particle

found to contain this quark.

Charm was named on a whim and 

was discovered in 1974 almost 

simultaneously at both the Stanford

Linear Accelerator Center (SLAC) and

at Brookhaven National Laboratory.

Bottom was discovered at Fermi

National Laboratory (Fermilab) in 1977,

in a composite particle called upsilon.

Top was discovered in 1995 at

Fermilab. Top, the most massive

quark, had been predicted for a long

time before it was finally observed.

Top and bottom were initially called

truth and beauty. The names up,

down, strange, charm, top, and bottom

have no real connection with our

ordinary understanding of these words.

Table 14.9
Quarks

Name Mass (GeV/c2) Symbol Charge

Up 0.004 u �
2

3
�

Down 0.008 d ��
1

3
�

Strange 0.15 s ��
1

3
�

Charm 1.5 c �
2

3
�

Bottom 4.7 b ��
1

3
�

Top 176 t �
2

3
�

When a particle meets its antiparticle,

they annihilate or destroy each

other. The lost mass is converted to

energy in the form of gamma radiation

and/or a number of smaller particles

according to the equation E � mc2.

For example, in pair annihilation, an

electron and a positron combine to

form a 1.022-MeV gamma ray. To

find the energy of the gamma ray,

substitute the mass of the electron

into the equation E � mc2 and convert

your answer to electron volts.

For every quark, there is also an

antiquark (such as antiup, antidown,

etc.) that has the same mass but the

opposite charge.



Examples of baryons are protons and neutrons. A proton is made up of two
up (u) quarks and one down (d) quark, or p� � uud. Since the charge of a
proton is 1e, we assign a fractional electrical charge of ��

2
3

�e to up and ��
1
3

�e to
down. The proton’s total charge is then

��
2
3

�e� � ��
2
3

�e� � ���
1
3

�e� � e

All mesons are made up of one quark and one antiquark. There are about
140 of them, some of which are outlined in Table 14.11. The quark combi-
nation for the positive pion (��) is one up quark and one down antiquark, or 

�� � ud�

Since the meson’s discovery in 1947, many more subatomic particles
have been detected in high-energy nuclear collision experiments carried out
using particle accelerators.

Figure 14.39 summarizes the connections between elementary particles
and atoms and molecules.
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Table 14.11
Mesons

Quark Electric Mass 

Symbol Name content charge (GeV/c2) Spin

�� Pion ud� �1 0.140 0

�� Kaon su� �1 0.494 0

�� Rho ud� �1 0.770 1

�0 B-zero db� 0 5.279 0

�c Eta-c cc� 0 2.980 0

In 1935, Hideki Yukawa, a Japanese

scientist, hypothesized the existence

of the meson (meaning “middle”)

because it had a mass that was midway

between the mass of a proton and

that of an electron. Twelve years

later, the short-lived � or pi meson

(or pion) was finally discovered in

upper atmospheric cosmic-ray

interactions.

Table 14.10
Baryons and Antibaryons

Quark Electric Mass 

Symbol Name content charge (GeV/c2) Spin

p Proton uud 1 0.938 �
1

2
�

p� Antiproton u�u�d� �1 0.938 �
1

2
�

n Neutron udd 0 0.940 �
1

2
�

� Lambda uds 0 1.116 �
1

2
�

�� Omega sss �1 1.672 �
3

2
�

u2
3

u2
3

d�1
3

Fig.14.38 Baryons are made up of

three quarks. The three quarks of a

proton are two up and one down.
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Fig.14.39 Elementary Particles

The binding energy of quarks in nucleons is so strong that physicists
can only speculate on their masses by experimentation. Comparing infor-
mation from Tables 14.9 and 14.10, we can see that the mass of the proton
(938.3 MeV/c2) is much greater than the sum of the masses of the three
quarks (4 MeV/c2 � 4 MeV/c2 � 8 MeV/c2 � 16 MeV/c2). This difference
suggests that the proton has a mass “defect” of 

938.3 MeV/c2 � 16 MeV/c2 � 922.3 MeV/c2.

e x a m p l e  1 5 The charge on a pion 

Calculate the total charge on a pion that has a quark combination of ud�,
as shown in Figure 14.40.

Solution and Connection to Theory

From Figure 14.40, the total charge of the pion is q� � ��
2
3

�e� � ��
1
3

�e� � e. 

Therefore, this particle is a positive pion, ��.

The Enigmatic Neutrino
In the early days of nuclear physics, scientists calculated that some
energy seemed to be missing during beta decay. It was suggested that
the missing energy was carried off by an unseen particle called the
neutrino. Neutrinos were not detected until 1956, mainly because they
only interact with particles through the weak force, are neutral, and
have a very small mass, if any. 

Two kilometres below the ground, in a nickel mine near Sudbury,
Ontario, a neutrino observatory (SNO) has been constructed at a cost
of $73 million. About 100 scientists from Canada, the U.S., and the
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Fig.14.40 The quark combination

of ud� in a pion



Neutrino

Neutrino

Electron
cloud

Electron

Oxygen

Deuterium

U.K. measure the flux of electron neutrinos (�e) and the total flux of
neutrinos, including the tau (��) and muon (��) neutrinos. From the
nine or ten events recorded each day, researchers have found that the
observed percentage of neutrinos flowing from the Sun is less than they
predicted. Now they suspect that the electron neutrinos can change type
during their travels, something that is not quite in agreement with the
Standard Model. The scientists at Sudbury will be adding salt to $300
million worth of heavy water on loan from Atomic Energy of Canada in
order to make their experiment more sensitive. It is hoped that new
research will lead to further extension or adaptation of the Standard
Model to take into account these new-found characteristics of neutrinos.

1. It seems as though the boundaries of contemporary experimentation
into the world of particle physics will only be pushed back if major
expensive projects such as the Sudbury Neutrino Observatory (SNO),
the Vancouver TRIUMF sector-focused cyclotron, or the proposed
Clarington ITER project are undertaken. Write a short reflection paper
to discuss how the magnitude and financial cost of primary scientific
research has been of benefit or detriment to the human condition.

2. Calculate the overall charge of the following hadrons:
a) uud
b) u�u�d�
c) ud�
d) udd
e) su�

3. For each hadron in problem 2 above, give the name of the hadron
and state whether it is a baryon or a meson.

4. Show that the three-quark combination for the neutron gives an
overall charge of 0.

5. If the rest mass of a �0 meson is 527.9 MeV/c2, calculate its mass
“defect.”
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Fig.14.42 A neutrino knocks an

electron loose from an oxygen atom.

A “sonic boom” of light is created 

by the energetic electron as it slows

down to the local speed of light 

in the fluid. 

Fig.14.41 The photomultiplier bank

used to discover the neutrino in 1956



14.8 Fundamental Forces and Interactions
— What holds these particles together?

The Standard Model postulates that matter is made up of complex combina-
tions of six quarks and six leptons. But how are these particles held together? 

Forces or interactions?

The four fundamental forces of nature are the gravitational force, the elec-
tromagnetic force, the strong nuclear force, and the weak nuclear force.
All other forces, such as friction and magnetism, are caused by one of
these four fundamental forces. In Chapters 8 and 9, we explained these
forces at a macroscopic level in terms of field theory. Masses attract one
another by way of the gravitational force, whereas electrons and protons,
along with the atoms and molecules they comprise, interact by way of the
electromagnetic force. 

Recall from Chapter 9 that in terms of field theory, a mass or charge
creates the field that causes a force to be exerted on any other mass or
charge placed in the field (action at a distance). In terms of quantum
mechanics and the Standard Model, forces are considered to be the process
of interactions between fundamental particles exchanging force-carrying
particles. Masses and charges are continuously emitting and absorbing force-
carrying particles that carry momentum and energy between the masses and
charges. These force-carrying particles are called bosons. Each of the four
fundamental forces has its own specific boson that mediates the force. Table
14.12 lists the four fundamental forces and their respective bosons, along
with their characteristics.

In general, each subatomic particle is surrounded by a cloud of swarming
bosons that determine its interactions with other subatomic particles. For
example, electrons are surrounded by virtual photons that mediate the elec-
tromagnetic force (see Figure 14.43).
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Table 14.12 
Bosons and the Four Forces of Nature

Relative Field particle Decay

Force strength (boson) Symbol lifetimes

Gravitational 10�39 Gravitons ? ?

Electromagnetic 10�2 Photons 
 10�16 � 10�18 s

Strong (pion–nucleon) 1 Gluons g 10�20 � 10�23 s

Weak (beta decay) 10�15 W�, W�, and Z0 W�, Z0 10�8 � 10�10 s

As yet, there is no evidence to 

support the existence of the graviton,

but there has a been a great deal of

success through high-energy particle

physics experimentation in describing

the characteristics of the other three

force bosons.

Force-carrier interactions follow the

laws of conservation of energy and

momentum. They cannot violate the

law of conservation of energy (�E) for

a time (�t) longer than is permitted

by Heisenberg’s uncertainty principle, 

�E�t � �
2

h

�
�

Electron
beehive

Fig.14.43 Virtual “photon” bees

buzzing around an “electron” beehive

Bosons are named after Satyendra

Nath Bose, an Indian physicist who,

along with Albert Einstein, derived 

a statistical theory for them in 

the 1920s. 



Boson Exchange

How can we explain effects of the fundamental forces in terms of the
exchange of bosons? For electrostatic repulsion between two like-charged
particles such as electrons, we know from Table 14.12 that photons are the
bosons or force-carrying particles that mediate the electromagnetic force.
When two electrons interact, photons carry momentum and energy
between the two electrons. When a photon from one electron travels to
another electron, it is absorbed by the second electron. Imagine two hockey
players on an icy pond passing a hockey puck back and forth, as illustrated
in Figure 14.44. Every time the puck is sent, conservation of momentum
makes the sender recoil. Similarly, every time the puck is received, conser-
vation of momentum pushes the receiver farther from the sender. Since a
photon is absorbed by the second charge very shortly after it is emitted by
the first charge, it is not detectable. For this reason, it is called a virtual photon
(compared to a photon that is free to be detected, like a photon of light).  

It is more difficult to envision the attraction of opposite charges by
exchanging photons. Imagine watching a football game from high above the
stadium. Any players not involved in throwing the ball back and forth
appear to move about the stadium in a random fashion and may even leave
the field of view. The two players throwing the football back and forth
appear to remain within a fixed range of interaction relative to each other
and therefore appear to be attracted to each other (see Figure 14.45). 
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r

“Proton”
duck

“Electron”
duck

Fig.14.45 A “electron” and

“proton” duck remain within a

fixed range while exchanging a

virtual “photon” football

Recoil of
sender

Virtual photon puck

RS

Fig.14.44 Two “electron” ducks recoil

while exchanging a virtual “photon” puck

Bosons are virtual particles if they

are emitted and absorbed within

such a short time interval that they

are undetectable. Virtual particles

may not appear in real space.



If the players decided to throw a more massive object like a bowling ball,
they would have to decrease their radius of interaction (move closer to each
other) in order to throw and catch the ball, meaning that there is a stronger
force of attraction between them.

The ideas of quantum mechanics combined with electromagnetism create
the more encompassing theory of quantum electrodynamics.

Feynman Diagrams

Richard Feynman, an American physicist, developed a visual way to show
the exchange of virtual particles in spacetime graphs. In a Feynman diagram,
time is the vertical axis and space is the horizontal axis. Table 14.13
summarizes the common elements of Feynman diagrams.

Figures 14.46a and b illustrate how to read Feynman diagrams. Notice in
Figure 14.46b that the meson is not a horizontal line, which means that the
meson exchange is not instantaneous but takes place over space and time.
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Table 14.13
Elements of Feynman Diagrams

Particle Symbol

Real particle

Virtual particle 

Photon

Gluon

A

A  The plane sits at Toronto airport.
B  The plane flies to Ottawa.
C  The plane sits at Ottawa airport.

B

C

t

x

A

A  A neutron and proton approach.
B  At a close distance, they exchange
    a virtual meson.
C  A new proton and neutron recoil.

B

C

t

p�

p�

n

n

x

��

Fig.14.46a A Feynman diagram is

read horizontally and vertically

Fig.14.46b A Feynman diagram of

the strong-force interaction via the

exchange of a virtual meson

t

x

   0
�1e

   0
�1e




Fig.14.47 A Feynman diagram of the

interaction of two electrons via the

exchange of a virtual photon



e x a m p l e  1 6 Reading Feynman diagrams

Describe the interactions that are taking place in Figure 14.48. 

Fig.14.48

Solution and Connection to Theory

Figure 14.48 is a Feynman diagram showing an electron–proton electro-
magnetic interaction (solid lines) via the exchange of virtual photons
(wavy lines). 

The electromagnetic force explains how the attraction between elec-
trons and protons in an atom neutralizes charge and how the residual
force, illustrated in Figure 14.49, forms a mutual attraction between oppo-
site charges in nearby atoms in a bound molecule. But how does the short-
range strong nuclear force and gluon exchange work to overcome the
seemingly overwhelming tendency of the positive protons (baryons) to
repel? (Recall that gluons are the bosons that mediate the strong nuclear
force.) The answer lies in another theory, quantum chromodynamics
(QCD) and colour charge.

Quantum Chromodynamics (QCD): Colour Charge 

and the Strong Nuclear Force

We know that baryons are composed of three quarks. It is possible to have
baryons with the quark combinations of uuu, ddd, and sss (the �� baryon
in Table 14.10). But three quarks in the same configuration violates the
Pauli exclusion principle.  Also, the charges of oppositely charged par-
ticles, like the proton and the electron, add up to zero. The photon, which
mediates the interaction between them and itself has no charge, doesn’t
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e�

e�

e�e�

p�p�

Fig.14.49 The residual electro-

magnetic force: the atoms are 

electrically neutral, but the electrons

in one atom are attracted to the 

protons in the other atom, and 

vice versa

t

x

   0
�1e
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1p

The Pauli Exclusion Principle

No two particles can be in the 

same state or configuration at 

the same time.



affect their respective charges during the interaction. However, when two
quarks, such as up ��

2
3

�� and down ���
1
3

��, interact, the gluon, which medi-
ates their interaction, would have to have a charge of ��

1
3

� in order for the
overall charge of this interaction to be conserved. But the gluon is a neu-
tral particle. The theory of electrostatic charges is therefore inadequate
for explaining how gluons mediate the interaction of quarks. We need a
theory that has three different “charges” instead of two so that charge can
be conserved during the interaction. 

In 1965, Moo-Young Han and Yoichiro Nambu at Duke University
suggested that quarks could be described as possessing colour charge. All
quarks come in the three primary colours: red (R), green (G), and blue (B).
Three secondary colours, cyan (antired, R�), yellow (antiblue, B�), and magenta
(antigreen, G�), are assigned to all antiquarks. All baryons have one quark of
each primary colour, a combination that makes them colour-neutral in a manner
analogous to additive colour theory. For example, �� can be written as
sRsBsG. Quark colour assignment is summarized in Table 14.14. Note that these
colour assignments are conceptual only, for the purposes of explaining particle
interactions: subatomic particles don’t have colours as we understand them.

These colour assignments, along with a few simple rules, allow us to use the
colour-charge theory to predict possible quark combinations of hadrons and
what goes on during gluon exchange (see Table 14.15).

Recall that molecules are clusters of atoms that are bound together
by the residual electromagnetic forces between adjacent neutral atoms
(see Figure 14.49). Similarly, baryons (neutrons and protons) in a nucleus
are bound together by the residual strong nuclear force between quarks in
adjacent colour-neutral baryons (see Figure 14.50), despite the repulsive
electromagnetic force.

The Weak Nuclear Force — Decay and Annihilations

In Section 14.2, we learned that heavy nuclei decay into lighter nuclei by
emitting alpha particles, beta particles, and gamma rays. Similarly, massive
leptons and quarks decay to lighter leptons and quarks. This decay is
caused by weak nuclear interactions. When a subatomic particle decays,
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Table 14.14
Quark and Antiquark Colours

Quark colours Antiquark anticolours

Red (R) Cyan (R�)

Green (G) Magenta (G�)

Blue (B) Yellow (B�)

� �

u

u
d

u

du

Fig.14.50 The positively charged

protons in a nucleus are held

together by the residual strong

nuclear force between quarks in 

adjacent colour-neutral baryons

At short (nuclear) distances, nucleon

attraction can overcome the Coulomb

(electrostatic) repulsion of protons

in the nucleus. At long atomic 

distances, the strong force is negligibly

small — some particles (electrons)

don’t feel the nuclear force at all.
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Table 14.15 
The Implications of Colour Theory 

Theory Implication

Quarks in a hadron exchange gluons (the strong-force bosons). A colour force field keeps the quarks together 
in the hadron. Gluons carry a colour and an 

anticolour. During a quark–quark interaction, 
a gluon takes colour away from the emitting 
quark and carries it to the absorbing quark. 
Thus, the quark colours (but not the quark type) 
are exchanged. Gluon colours are the difference
between the interacting quarks’ colours. 

Colour charge is always conserved. Hadrons consist of either three quarks 
(baryons) or two quarks (mesons) that are 
colour neutral. In hadrons, gluons are 
continuously exchanging the colours of the 
quarks. Therefore, the quarks exchanging
gluons always remain bound in a colour-
neutral state so that the overall colour charge 
of the hadron is conserved. A proton (uud) 
that is a quark composite of ud or uddd

cannot exist because it isn’t colour neutral. 

Colour-charged particles cannot be found individually. The colour force can be described as elastic 
bands holding the quarks together. When the 
quarks are close together, they are free to 
move, but when stretched during an interaction, 
the elastic bands quickly pull them back. In a 
violent collision, the band may break. Energy 
transferred by breaking a quark–quark bond 
can be converted into the mass of the new 
quark–antiquark pair (E � mc2). For this reason,
it’s impossible to have an isolated quark. 

New quark pairs can be created. 

Fig.14.51a The gluon leaving the quark at

left has the colour forces of blue and antired.

During the exchange of the virtual gluon, 

the emitting quark loses its blue–antired

property and becomes a red quark, while 

the red quark gains a blue–antired property

and becomes blue.

Fig.14.51c The string of the lower

charm quark stretches to restrain it, while

the two upper quarks are unrestrained

14.51b In a proton, the continual

exchange of colours by gluons holds 

the quarks together
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Fig.14.51d An s–s� quark pair form

where a violent interaction breaks the

lower charm string. A new baryon and

a new meson are created.



it is replaced by two or more new particles. During the decay process, the
total mass and energy of the system is conserved, but some of the original
particle’s mass is converted into kinetic energy. As a result, the product
particles always have less mass than the original particle that has decayed.
The stable matter that we observe is made up of the smallest leptons and
quarks, which cannot decay any further; that is, electrons, and up and down
quarks (for protons and neutrons). (To compare the masses of these parti-
cles with those of more massive leptons and quarks, refer to Tables 14.8
and 14.9.)

When a massive quark or lepton decays to a less massive quark or lepton
(e.g., when a muon decays to an electron), it is said to change flavour.
Changes in flavour are due to the weak force. From Table 14.12, the force-
carrying particles (bosons) for the weak interaction are the W�, W�, and
Z0 particles. W particles are electrically charged (� and �) and Z0 particles
are neutral. 

In 1979, the Nobel Prize was awarded to S. Glashow, A. Salam, and S.
Weinberg, who were able to show that the weak and electromagnetic forces
were two aspects of the same force. In the Standard Model, the electromag-
netic and weak interactions are combined into one unified interaction
called the electroweak force. Many examples of decays involve the weak
or the electroweak interactions. Figure 14.54 shows the decay of a cosmic-
ray pion. Another decay that has been observed is that of the kaon meson
(see Figure 14.55).
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W� and Z0 particles are not 

detected directly, but rather 

through their decays:

W� → e� �  (see Figure 14.52) 

Z0 → e� � e�

Fig.14.52 An electronic display

from a detector at CERN showing the

decay of a W boson into an electron

(blue track going toward the bottom)

and a neutrino (reconstructed blue

track upward), with the other particle

tracks in red and yellow

t

W�

x

   0
�1e

 1
1
p

1
0
n

ve
�

Fig.14.53 The beta decay of a 

neutron via the weak-force W boson



There is still much work being done to further our understanding of mat-
ter and the fundamental particles that make it up. After the unification of the
weak and electromagnetic interactions, scientists have new hope of completing
the grand unified theory linking the electroweak and quantum chromody-
namic (QCD) theories. To see experimental evidence of this unified theory,
scientists believe that energies of 1015 GeV will be required. This amount of
energy is far beyond any accelerator presently contemplated. Two essential
elements of the Standard Model that have yet to be discovered are the Higgs
boson, which interacts with particles to give them mass, and the graviton. 

Other questions still unanswered include: Why are there three types of
quarks and leptons of each charge? Do they have a substructure or are they
truly fundamental? Do neutrinos have a mass that can account for the missing
dark matter of the universe? These questions and a host of others await
answers from the curious physicists of the future. 

Fig.14.56 A Summary of the Fundamental Forces 
and the Elementary Particles
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Fig.14.55 The first observed decay

of a kaon (meson), coming in from

top right, into three pions (mesons)

at A. One pion moves slowly, leaving

a dense track until it interacts at B,

25 �m farther up and left. The other

two pions are faster and leave faint

tracks (to top right and bottom left).

The kaon contains strange quarks. AB

C

Fig.14.54 The decay of a cosmic-ray

pion (entering at top) into a muon

(travelling down) and a neutrino

(invisible). At the bottom of the 

picture, the muon decays into an

electron (going right) and another

neutrino. This pion–muon–electron

decay chain was photographed in

1948 using an emulsion photograph.
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1. For each of the following Feynman diagrams, describe the interactions
that are taking place.

Fig.14.57a Fig.14.57b

Canadian Contributions to Physics

Canadians have made a significant contribution to many aspects of
modern physics. The following are some of the major players in this area.

2. Choose a Canadian physicist who you think made the most interesting
contribution to modern physics. Write a short report on his or her
area of interest and the latest developments in that field.
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Bertram Brockhouse conducted
experiments at Chalk River, Ontario in

the field of solid-state physics. Using the
neutron spectrometer, he was able to look
inside the crystalline structure of solids to
find out how solids like rocks and gems
are held together. For his work, he was
awarded a Nobel Prize in physics in 1994.

Werner Israel used mathematical tech-
niques to show that black holes are the
simplest big objects in the universe. “The
surface of a black hole is as smooth as a
soap bubble.” Israel is currently working
on several projects involving the internal
geometric structure of black holes using
superstring theory.

Ian Affleck’s early work was in elementary
particle theory. Affleck’s theories bridge
the behaviour of elementary particles, such
as the proton, neutron, and quark, with
theories concerned with condensed matter
such as semiconductors.

William Unruh applied quantum mechan-
ics to study gravity and the forces that
existed at the moment of creation according
to the Big Bang theory. His other areas of
study include black hole evaporation and
quantum computation: using quantum
laws to design computers that can solve
certain problems billions of times faster
than traditional equipment. 

Harriet Brooks was the first female
Canadian nuclear physicist. She graduated
from McGill University, Montreal, in 1898,
with a BA in Mathematics and Natural
Philosophy. In 1899, she began research
with Ernest Rutherford. In 1901, she
became the first woman to study at the
Cavendish Laboratory at Cambridge
University, England. She also worked at
Marie Curie’s lab in France. She was the
first person to realize that one element can
change into another, and was one of the
discoverers of radon. 

Richard Taylor studied mathematics and
physics at the University of Alberta in
Edmonton. While at Stanford University
in California, he joined the High Energy
Physics Laboratory. Together with Jerome
Friedman and Henry Kendall of MIT, he
used the new linear accelerator (SLAC) to
smash protons and neutrons to pieces and
discovered that they are made up of
quarks. Taylor, Friedman, and Kendal
were awarded the Nobel Prize in physics
in 1990.

Planet
Sun

Sun
Planet

Graviton

Fig.14.57c
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Positron Emission Tomography (PET)

Positron emission tomography (PET) is a form of medical diagnostic imaging
based on the detection of the concentrations of positron-emitting radioisotopes
within the tissue of living subjects. In this form of tomography, the subject
ingests a radioactive nuclide that decays by positron emission. A particular
radioactive substance is selected to “label” a specific element or compound
that takes part in the body’s own natural processes, such as oxygen in cellular
respiration. The concentration of the labeled substance is detected by a series
of gamma detectors, as illustrated in Figure STSE.14.1. 

The gamma detectors don’t detect the positron-emitting radioisotope
directly, but rather the gamma rays that are released 180° to each other in
the annihilation reaction of an emitted positron (e�) with an existing elec-
tron (e�), as shown in Figure STSE.14.2, according to the reaction 

15
8O → 15

7N + e�

e� � e� → 
 � 
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Fig.STSE.14.1 The doughnut- 

shaped scanner is composed of many

gamma detectors to register any

annihilation events from the subject.

Figure STSE.14.1a shows a PET 

scanner manufactured in Knoxville

Tennessee by CTI Inc. 

Particle Love

A positron, while zipping through air,

Met an electron that oh was so fair.

It was love at first sight.

They embraced with delight 

And presto! a 
-ray was there.

Fig.STSE.14.2 Simultaneous 

detection of two of these photons 

by detectors on opposite sides of an

object places the site of the annihila-

tion on or about a line connecting

the centres of the two detectors. The

computer maps the distribution of

positron annihilations for later display. 
Detector

Detector

Oxygen-15

positronelectron

positronelectron







0.51-MeV
gamma photon

0.51-MeV
gamma photon

Rest mass of each
is 0.51 MeV

Before

After
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The tracers can label oxygen for respiration or simple sugars like glucose
when they decay. High glucose metabolism detected by a PET scan can be due
to the presence of a Hodgkin’s lymphoma (malignant cancer tumour), as
shown in Figure STSE.14.3.

The risks of PET scans are similar to those of other forms of computed
tomography, such as CAT scans or MRI and nuclear medicine. Patients ingest
a short-lived radioactive isotope, but the dose is so small, it is unlikely to cause
cancer. The small risk is generally accepted by patients when they consider the
benefits of the information that this procedure can provide. 

All short-lived positron-emitting radioisotopes, or tracers, used in PET,
such as 15O (traces oxygen in cell respiration) must be generated by a
cyclotron or other particle accelerator. Because the radioisotopes are short
lived, this facility must be nearby. Such facilities are extremely expensive and,
as a result, may only be funded by joint medical research and university facilities,
such as McMaster University Medical Centre in Hamilton, Ontario. It has a
cyclotron than generates radioisotopes for medical purposes.

Design a Study of  Societal  Impact

Most people don’t realize how the invisible particles released during
radioactive decay affect their quality of life. Research an application of
nuclear physics that affects the average Canadian, such as: 

• What are natural sources of radiation, like radon in the basement
of homes?

• How does upper-atmospheric cosmic radiation affect airline pilots? 
• How does a smoke detector work? What is the proper way to discard it?
• How are isotopes produced? How are these isotopes used to treat

illness in nuclear medicine?
• How useful is irradiation in the food industry to treat food 

contamination?
• How has nuclear weapons/isotope use affected the environment? 
• How do biologists use nuclear chemistry in their studies?

Design an Activ ity  to Evaluate

Use a Geiger counter or scalar timer to perform a correlation study on
the amount of background radiation in your home or school. Evaluate
different house or building conditions for background radiation levels.
For a more long-term study, see if there is any seasonal fluctuation in
the amount of background radiation.

Fig.STSE.14.3 Places of high glucose

metabolism can be identified as areas

of tumour growth, such as this 

brain tumour (image on right)
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Bui ld a Struc ture

Construct a cloud chamber that makes visible the paths of particles
emitted as a result of radioactive decay. You will need to find a rela-
tively safe radioactive sample, such as luminous watch or clock hands
or alpha particle source, or some luminous paints. (Ask at a scientific
supply store or your physics teacher.) Other materials you will need
are black felt, dry ice, and rubbing alcohol. Construct your cloud chamber
as shown in Figure STSE.14.4. To view the paths of particles, turn off
the lights and use a flashlight to illuminate the area in front of the
source above the velvet. Check the Internet for lots of different ideas
on this project.

Fig.STSE.14.4 A cloud chamber

Velvet

Lid

Radioactive
source

Blotter 
(glued in, soaked 
with alcohol)

Dry ice

Toweling



You should be able to 

Understand Basic Concepts:

Describe nuclear components and how they relate to mass number, atomic
number, and isotopes.
Understand nuclear stability in terms of binding energy and calculations
using mass defect with E � mc2.
Describe the basic types of radioactive decay and the characteristics of
the particles emitted.
Explain decay processes relative to the region of stability on a neutron–
proton isotope graph.
Understand the process behind the decay of carbon-14 and apply age
dating to Canadian historical and geological events.
Appreciate how the creation of a series of transuranic isotopes depends
on nuclear interactions.
Understand how human-made and natural radiation affects us personally
and as world citizens.
Identify the basic elements of nuclear fusion and fission in power generation
and nuclear warfare.
Determine energy available in nuclear fusion and fission reactions, and
also estimate the underlying chain reaction times and the velocity mod-
eration of fast neutrons.
Describe how quantum theory explains both radioactive decay and 
virtual particle exchange.
Apply quantitatively the uncertainty principle and de Broglie’s wave-
length to estimate the size and range of the elementary particles and their
associated forces.
Describe the Standard Model of elementary particles in terms of the 
characteristic properties of quarks, leptons, and bosons, and identify 
the quarks that form familiar particles such as the proton and the neutron.

Develop Skills of Inquiry and Communication:

Collect experimental data to determine the half-life of a short-lived
radioactive nuclide.
Analyze images of the trajectories of elementary particles in terms of
their mass and charge.
Illustrate elementary particle concepts and interactions using Feynman
diagrams.
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Relate Science to Technology, Society, and the Environment:

Debate the pros and cons of nuclear fusion and fission power plants 
compared to the more traditional forms of power generation.
Identify the radiation, both natural and human-made, to which we are
exposed, and its affect on us and on the environment.
Outline the historical development of nuclear and elementary particle
experiments and theory, and how it led to the present Standard Model of
matter and energy.

Equations

�m � �
�

c
2

E
� (mass defect)

A
Z X → A � 4

Z � 2Y � 4
2 He (alpha decay)

r � �
kq

E
1

k

q2
� (stopping distance)

A
Z X → Z � 1

AY � �1
0e � v� (electron, �� decay)

A
Z X → Z � 1

AY � 1
0e � v (positron, �� decay)

A
Z X � �1

0e → Z � 1
AY � v (electron capture)

N � N0��
1
2

�� (radioactive half-life)

r � 1.2�3 A� (fm) (radius of nucleus)

Activity � (disintegrations/s)

E2 � p2c2 � m0
2c4 � m2c4 � (m0c2 � EK)2 (Mass–energy)

v1f � v1o�
(
(
m
m

a

a

�

�

m
m

b

b

)
)

� (moderated velocity)

1 � 2 � … 2n � 2n � 1 � 1 (geometric series)

� � �
m
h

v
� (de Broglie wavelength)

�E�t � �
2
h
�
� (uncertainty principle)

r � �
m
Bq

v
� and f � �

2
q
�

B
m
� (cyclotron radius and frequency)

0.693N
�

T�
1
2

�

t
�
T�

1
2

�
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Conceptual Questions

1. Why can two atoms of the same element be
chemically identical but physically different?

2. If the atomic mass number, A, equals the
number of neutrons plus protons, then why
do most of the elements in the periodic table
have a non-integer value?

3. If carbon-12 has a mass of exactly 12 u, why
does boron-10 have a mass of 10.012 936 u? 

4. The sum of the masses of a proton and a
neutron is more than the mass of a deuterium
atom. Where did the missing mass go?

5. Discuss whether your body has more protons
or neutrons. 

6. When balancing a nuclear reaction, why is
the atomic mass number, A, conserved but
not the nuclear mass?  

7. Is the average binding energy per nucleon
greater in the more stable nuclear isotopes or
in the less stable isotopes? Why? 

8. During alpha decay of larger isotopes, such as
uranium, the �

N
Z

� ratio of the daughter nucleus
becomes greater, but during beta decay, it
becomes smaller. Why?

9. During alpha decay, which particle gets most
of the available kinetic energy: the alpha particle
or the daughter nucleus? Explain your answer.

10. If an alpha particle contacted the nucleus of a
gold atom, would it be deflected?

11. Write the symbols used to describe 
the following:
a) proton b) alpha particle
c) beta particle d) neutrino
e) gamma ray

12. In what ways does the strong nuclear force dif-
fer from the Coulomb force of static electricity?

13. What early experimental evidence suggested
that radioactivity was a nuclear process rather
than a chemical one?

14. Why do larger stable isotopes require a
greater ratio of neutrons to protons?

15. Is an alpha particle an ion or an atom of helium?

16. If 50% of the population lives past 76 years,
then what age would you expect 25% of the
population to reach? Why is human life
expectancy not a good analogy for 
radioactive decay?

17. What isotope is the daughter of the beta decay
of carbon-14?

18. Describe possible changes that have occurred
to our atmosphere in the last century that
could affect the ratio of 14C to 12C in the air
we breathe.

19. Potassium-42 has a half-life of 12.4 h and is
used in medicine to locate brain tumours.
Think of two reasons why this isotope is 
suitable for diagnostic tests.

20. Why can’t the remains of aquatic creatures be
carbon dated?

21. Why can’t relics over 60 000 years old be 
carbon dated?

22. Why can alpha and beta rays penetrate about
10 times farther into water than into lead?

23. Gamma decay does not involve transmutation
of the elements, but alpha and beta decays do.
Why?

24. Why are alpha particles 20 times more dangerous
to mammals than beta or gamma particles?

25. Would an alpha particle with 4.2 MeV of
kinetic energy go fast enough to cause a 
transmutation of nitogen-14 to oxygen-14?
(See problem 72.)
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26. Match the four states of matter: gases, liquids,
plasmas, and solids, with the four ancient
Greek elements of earth, wind, fire, and water.

27. Why is it that nuclear fission does not 
take place in naturally occurring deposits 
of uranium?

28. What force confines the plasma in that huge
fusion reactor known as the Sun, and why
can we not use this method of plasma 
confinement on Earth?

29. Why do we not have to worry about 
disastrous meltdowns or runaway reactions 
in a fusion reactor?

30. Why are high temperatures needed to start a
fusion reaction but not a fission reaction?

31. Why is a critical mass needed for fission but
not for fusion?

32. It has been said that using natural uranium to
start a chain reaction is like using waterlogged
wood to start a fire. Comment on this analogy.

33. Why do neutrons not make a track in a bubble
chamber like alpha and beta particles do?

34. Why are high-energy accelerators needed for
the creation of massive elementary particles?

35. The cyclotron at TRIUMF is called a meson
factory because it is so efficient at creating
pions (also called pi-mesons). With which
fundamental force is a pion associated?

36. Why is beta decay described as a weak
interaction ?

37. Why do you think the graviton or messenger
of the gravitational force is so elusive or difficult
to detect?

38. In what ways do the weak and electromagnetic
forces differ?

39. Which process takes less time: a nuclear, a
weak, or an electromagnetic interaction?

40. Why does a high-energy particle that lasts
only 10�23 s not make a track in a bubble
chamber?

41. Are all baryons more massive than all leptons?

42. If each gluon has a colour and an anticolour,
then how many possible kinds of gluons do
you think there are?

Problems

14.1 Nuclear Structure and Properties

43. Which elements are represented by 
a) 35

17X ? b) 222
86 X ? c) 9

4 X ?
d) 238

92 X ? e) 256
101 X ?

44. Determine the number of protons and neutrons
in each of the isotopes listed in problem 43.

45. Find the rest mass of a fluorine atom, in
MeV/c2.

46. A muon has a mass of 106 MeV/c2. What is
this mass in atomic mass units (u)?

47. An element has two naturally occurring 
isotopes. The first isotope, with an atomic
mass of 62.9296 u, occurs 69% of the time,
and the second isotope has an atomic mass of
64.9278 u and occurs 31% of the time. What is
the element and what is its mean atomic mass?

48. Determine the average binding energy per
nucleon of 14C in MeV. (The mass of 14C is
14.003 242 u.)

14.2 Natural Transmutations

49. Calculate the change in the nuclear �
N
Z

� ratio
during the beta decay of carbon-14 into 
nitrogen-14.

50. Calculate the binding energy of the last neutron
in a He-4 nucleus (in MeV). (Hint: Compare
the 4He mass with that of 3He [3.0160 u] �
neutron.)



chapter 14: Nuclear  and E lementary Part ic les 743

51. Calculate the kinetic energy created 
during the alpha decay of uranium-232 
(m � 232.037 131 u) into thorium-228 
(m � 228.028 716 u). Express your answer 
in MeV. 

52. In a head-on collision of a 5.3-MeV alpha 
particle with a uranium-232 nucleus, determine
the closest distance of the alpha particle
before it is deflected back. 

53. Thorium-231 is radioactive. It emits a beta
particle and is also the product of alpha decay.
Write the reaction showing the product of
231Th decay as well as the reaction statement
that shows the mother isotope of 231Th. 

54. Find the mass difference for the beta decay of
a neutron into a proton. (Use Table 14.1.)

55. If the kinetic energy of the electron emitted
during the beta decay of a neutron is equivalent
to about �

1
3

� the mass difference, find the energy
of the neutrino that is also emitted.

56. Boron-12 decays by beta emission. The electron
and neutrino are emitted at right angles to
one another. The electron’s momentum is
2.64 � 10�21 N·s and the neutrino’s momentum
is 4.76 � 10�21 N·s. Find the momentum of
the recoiling carbon-12 nucleus.

57. What is the kinetic energy of the recoiling
carbon-12 nucleus in problem 56? 
(Use Ek � �

2
p
m

2

�.)

58. If the alpha particles in Example 5 were 
accelerated to a kinetic energy of 449 MeV 
in the 88-inch (2.24-m) cyclotron at 
Berkeley, how close would they now get 
to the gold nucleus? 

14.3 Half-life and Radioactive Dating

59. An injured athlete is given an injection of
technetium-99m, which has a half-life of six
hours. It collects in areas where bones have a
high growth rate, like a stress fracture, and
will show up under bone imaging. Plot a
graph of percentage of the original dose that is
still radioactive versus time for a total of 20 h.
From the graph, find the percentage of tech-
netium-99m remaining after 8 h.

60. The Shroud of Turin has been carbon dated
to the year 1350. What is the ratio of 14C to
12C in a relic that is 2000 years old compared
to a relic from 1350?

61. Polonium-210, present in tobacco, has a half-
life of 138 days, while polonium-218 that clings
to tobacco smoke has a half-life of 3.1 minutes.
If a smoker had 1 �g of each isotope in his
lungs to start with, how much radioactive Po
would there be in total, after 7.0 minutes?

62. A phosphorus-32 solution is injected into the
root system of a plant. A Geiger counter is
used to detect the movement of the phosphorus
throughout the plant. After 30 days, the
radioactivity level is down to 23% of its 
original level. Determine the half-life of 32P.

63. Assume that a rock originally had no lead-207,
only 235U. If uranium-235 decays through a
series into 207Pb in a half-life of 7.1 � 108 a,
find the age of the rock if it presently contains
5.12 mg of 235U and 3.42 mg of 207Pb.

64. A 1.00-g sample of carbon from a living tree
has a carbon-14 activity of 900 disintegrations/s
compared to a 1.00-g sample of an ancient
Viking axe handle that has 750 disintegrations/s.
How old is the axe handle?



14.4 Radioactivity

65. Lead-208 is a doubly stable nucleus because
both its neutron number (N � 126) and its
proton number (Z � 82) are “magic” nuclear
shell numbers: 2, 8, 20, 28, 50, 82, and 126
(analogous to electron shell numbers). Find
the other three doubly stable isotopes.

66. The fallout from nuclear weapons testing
includes 137Cs, which has a half-life of 30.2 a
before it beta decays into 137Ba. Find the
energy released during this decay. 
(Use mCs � 136.9071 u and mBa � 136.9058 u.)

67. In the average person of mass 70 kg, there 
is an activity of about 3700 Bq due to 
potassium-40 in the food we eat. If 5% of
these beta emissions are absorbed by the body
and have energy of 1.0 MeV each, determine
the amount of grays absorbed per year.

68. The exposure to cosmic radiation doubles
with every 2000-m increase in elevation. An
airline pilot, while flying 20 h/week at an 
altitude of 10 000 m, receives a cosmic 
radiation dose of about 7.0 � 10�6 Sv/h. 
How many times greater is this amount than
the average annual overall dose of 2 mSv 
per person?

69. A uranium-238 nucleus, in a series of decays,
becomes lead-206. How many alpha and beta
particles are emitted in this series?

70. If lead-208 is the end of a series of six alpha
decays and four beta decays, find the isotope
of the original nucleus.

71. The radius of a nucleus (in fm or 10�15 m) is
given by r � 1.2�3 A�, where A is the atomic
mass number. Find the distance separating
their centres if an alpha particle and a 
nitrogen-14 nucleus are just touching.  

72. Find the Ek needed, in MeV, for an alpha
particle to just touch a nitrogen-14 nucleus in
a head-on collision before being deflected by
Coulomb repulsion. (Use the separation 
distance from the previous problem.)

73. During radioactive decay, the activity in Bq 

is given by the equation Activity � , 

where N is the initial number of atoms. Use
this equation to calculate the number of 
disintegrations/s occuring in a 1.0-mg sample 
of pure hassium-269 with a half-life of 9.3 s.
How close is your answer to one you would
get by using the radioactive decay equation?

14.5 Fission and Fusion

74. In the solar proton–proton cycle, use Table
14.1 to determine the energy released during
the second stage where hydrogen and 
deuterium fuse to make helium-3. 
(The mass of 3He is 3.016 029 u.)

75. During a period of two years, a CANDU reactor
produced 700 MW of power from the fission
of 235U and consumed one-half of its fuel.
How much 235U did it start with? 

76. Find the percent of fission energy that creates
700 MW of electrical power if 2.5 kg of pure
uranium-235 is fissioned daily in a CANDU
nuclear reactor

77. If the earlier atomic bombs required a critical
mass of about 50 kg of 235U, and if all of this
mass underwent fission during the explosion,
how much energy would have been released?  

78. If a fast 5.0-MeV neutron emitted in a fission
reaction loses 90% of its kinetic energy in
each collision with the moderating deuterium
nuclei, how many collisions must it undergo
before becoming a thermal or slow neutron of
energy 0.050 eV?

0.693N
�

T�
1
2

�
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79. Find the speed of a fast 3.5-MeV fissioned
neutron after it undergoes an elastic head-on
collision with a stationary hydrogen nucleus.
(Use mH � 1.007276 u, mn � 1.008665 u.)

80. Find the missing daughter isotope in the 
following fission reaction: 
235

92U � 1
0n → 141

56Ba � ___ � 31
0n

14.6 Probing the Nucleus

81. How fast does a lead-207 ion travel when it is
accelerated to a kinetic energy of 7.0 TeV in
the LHC at CERN? (Use the E � mc2 triangle.)

82. Find the de Broglie wavelength of the lead
ions in the previous problem.

83. The TRIUMF cyclotron accelerates negative
hydrogen ions to speeds of 0.75c. Find the 
de Broglie wavelength of one of these ions.

84. What is the strength of the magnetic field
used in the TRIUMF cyclotron of problem 83
if the negative hydrogen ions make 
23 � 106 rev/s? (Hint: Use f � �

2
q
�

B
m
�.)

85. A 9.0-GeV electron has the same de Broglie
wavelength as a high-energy proton. What is
the kinetic energy of the proton?  

86. In a cyclotron, a proton of kinetic energy 
400 MeV is orbiting at a cyclotron frequency
of 20 MHz. Find the strength of the
cyclotron’s magnetic field, B. (Hint: First 
calculate the dilated mass.)

14.7 Elementary Particles

87. Calculate the overall charge of the following
hadrons:
a) uds
b) ud�
c) db�
d) cc�

88. For each hadron in problem 87, give the name
of the hadron and state whether it is a baryon
or a meson.

89. Find the antiquark combination representing
an antineutron.

90. Using 1 u � 931.5 MeV/c2, determine the
element on the periodic table whose atomic mass
number is closest to the mass of the top quark.

91. Using only up or down quarks (or antiquarks),
find the combination for a �� meson (its
charge is �e).

14.8 Fundamental Forces and
Interactions — What holds 
these particles together?

92. If the diameter of a nucleon is 2.4 � 10�15 m,
use a velocity of 3 � 108 m/s to determine the
typical time for a nuclear interaction involving
the strong force.

93. Describe the interaction taking place in each
of the following Feynman diagrams.

a) Fig.14.58a

b) Fig.14.58b

c) Fig.14.58c

p

p

p

p

��

Atom

Atom

Photon

��

��

�v�



94. Figure 14.59 shows the Feynman diagram 
for the decay of the proton via the W�

weak boson. The end products are a neutron,
an electron, and an antineutrino. Draw 
the Feynman diagram for the decay of 
an antiproton.

Fig.14.59 Proton decay via the W� weak boson

95. Figure 14.60 shows the Feynman diagram of a
proton–neutron interaction. The proton, p,
recoils as a neutron, n, after giving up a virtual
�� meson. The incoming neutron absorbs the
�� meson to become a proton. Draw the
Feynman diagram for an interaction of two
nucleons where a virtual �0 meson is
exchanged.

Fig.14.60 Proton–neutron interaction via the �� meson

96. In the decay 1
1p → 0

1n � ��, the energy, E, for
the �� meson comes from the mass differ-
ence between the proton and the neutron. It
is given by E2 � p2c2 � m0

2c4, according to
Einstein’s energy equation. Use mp � 938.3,
mn � 939.6, and m� � 139.6 (all in MeV/c2)
to show that the momentum, p, is imaginary,
and thus that the meson is a virtual particle. 

97. If a meson consisted of a strange quark and
an antistrange quark connected by a string,
what kinds of particles (consisting of two
quarks) can be created if the string breaks?

98. A meson is made up of a strange quark and
an anticharm quark. What is its charge?

99. A baryon is made up of two top quarks and a
bottom quark. What is its charge?

Fig.14.61 A red quark–green quark interaction

100. The Feynman diagram in Figure 14.61 shows
the exchange of a gluon between two quarks.
The force holding them together involves a
change of colour via a red–antigreen gluon.
Show the Feynman diagram for a blue-to-
green quark colour-force exchange.
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Purpose
To calculate the half-life of a radioactive isotope

Safety Consideration
1. Wear latex rubber gloves when working

with any radioactive substance.
2. All students must wash their hands at the

end of this lab.
3. Any spillage of the radioactive eluant must

be reported immediately to the teacher.
4. All eluant must be collected in a central

container for proper handling and disposal.

Equipment
Cesium-137/barium-137 minigenerator or another
source that produces a short-lived radioisotope 
(T

�
1
2� 
� �

1
4

� of lab time)
Geiger counter (scalar timer), 10 mL beaker

Fig.Lab.14.1

Procedure
1. Prepare a lab data table similar to the one

provided.
2. Set up the lab equipment as illustrated in

Figure Lab.14.1.
3. With the detector area free of any radioactive

source, set the voltage of the scalar timer to
zero and turn the detector on.

4. Start the detector and slowly increase the
voltage until you see it begin to detect some
of the background radiation.  You have it set
correctly if it registers about 5 counts in
every 10 seconds.  Note: If the voltage is too
high, the detector will “avalanche.” This
occurs when one event causes a burst of
counts that are obviously increasing the
visible counts very quickly. Too low a volt-
age will mean very few events are registered
and the lab will take too long to perform.

5. Determine the background radiation level 
by counting the events that occur in 300 s 
(5 minutes). Record these values in your
data table, noting that a second background
count will be taken at the end of the lab.

6. Elute the minigenerator by collecting about 
3 mL of the radioactive eluant into a 10-mL
beaker.

7. Place the 10-mL beaker under the counter
and record the count rate for one-minute
intervals. Record the information for one-
minute periods in the data chart as shown,
being sure that you only measure for the
odd-numbered time periods. Use the even-
numbered time periods to record your
previous data and reset the counter.

8. Repeat this procedure for at least four
readings.

9. Return all the eluant to the container pro-
vided by your teacher, including any rinse
water that you used to clean the beaker.

Uncertainty
The absolute uncertainty in statistical measure-
ments of this nature is found by taking the
square root of the count. For example, a count of
4000 would have an absolute uncertainty of
�63 counts ��4000� � 63�. If this count was
registered in 60 s, the count rate would be 67�1
counts/s  ��40

6
0
0

0
� � 67 and �

6
6

3
0
� � 1�. 

14.1 The Half-life of a Short-lived Radioactive Nuclide

Retort stand

Scalar-timer

Mini-generator

Eluted
radioisotope

Planchet 3785
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Analysis
1. Calculate all of the raw count rates and

record their values in counts per second.
Depending on the strength of your source
and the absorbers you used, you may want to
record the count rates in counts per minute.

2. Subtract the count rate for the background
radiation and record those values, including
the uncertainty.

3. Plot a graph of the corrected activity versus
time. Be sure that you plot your activity at a
time value that is halfway through the first,
third, and fifth minute. Draw the best fit
curve for all the data points.

Discussion
1. Why did you have to plot your count rate at

the half-time of any given interval?
2. Look up the half-life for the parent radioac-

tive isotope used in this lab and compare it
to the one that you calculated in this lab 
(T

�
1
2�

� 2.6 min for 137Ba).

Conclusion
Write a concluding statement that summarizes
how your experimental half-life value compared
with the accepted value for your isotope, consid-
ering experimental uncertainty.
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X
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E
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Background Radiation

Background counts Time(s) Count rate (c/s)

Average count rate

Half-life Data

Counting Count Count rate (c/s)
Time (h) Counts period (s) rate (c/s) Background rate (c/s) (corrected for background)

60

60

60

60

60

60

60
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APPENDIX A: Experimental Fundamentals

Introduction

The reason for performing experiments lies in the need to test theories. In
the research world, the experiment tests the ideas put forth by theoreticians.
It can also lead to new ideas and subsequent laws as a result of the data
obtained. In order to perform experiments safely, the proper use of equip-
ment must be adhered to. The following sections outline safety concerns
and the formal method of writing a scientific lab report.

Safety

In any situation involving the use of chemicals, electrical apparatuses, burn-
ers, radioactive materials, and sensitive measuring devices, the role of safety
and proper use of instrumentation is of primary importance when per-
forming labs. There is a system, developed Canada wide, which tries to ensure
workplace safety standards. WHMIS stands for Workplace Hazardous Materials
Information System. This system has formulated a set of rules and symbols that rec-
ognize potential hazards and appropriate precautions when using chemicals, haz-
ardous materials, and equipment. The following symbols, illustrated and described in
Table A.1, are the standard set of warning labels set out by WHMIS.

As well, there are a set of safety warning labels associated with house-
hold products. The symbols are referred to by the abbreviation HHPS, or
hazardous household product symbols.

Table A.1
WHMIS Symbols

Symbol Risks Precautions

Compressed gas Materials that are normally gaseous. Ensure container is always secured.
Kept in a pressurized container

Flammable and combustible Materials that will continue to burn Store in properly designated areas.
after being exposed to a flame Work in a well-ventilated area.
or other ignition source

Oxidizing Materials that can cause other materials Store in areas away from combustibles.
to burn or support combustion Wear body, hand, face, and eye protection.

Toxic, immediate, and severe Poisons/potentially fatal materials Avoid breathing dust or vapours. 
that cause immediate and severe harm Avoid contact with skin or eyes.

Toxic, long term, concealed Materials that have harmful effects Wear appropriate personal protection.
after repeated exposures or over Work in a well-ventilated area.
long periods of time

Biohazardous infectious Infectious agents or biological toxins Special training required. Work in
causing a serious disease or death designated biological areas with

appropriate engineering controls.

Corrosive Materials that react with metals Wear body, face, and eye protection.
and living tissue Use a breathing apparatus.

Dangerously reactive Materials that may have Handle with care, avoiding vibration,
unexpected reactions shocks, and sudden temperature changes.



In physics at the high-school level, the use of chemicals is minimal.
However, the use of high- and low-voltage supplies as well as measuring and
timing devices is common. Pertinent exerpts from the safety manual include:
• Fused and grounded 110–120 V outlets should be used.
• Outlets should be away from sources of flammable gases.
• A master cutoff switch should be available and accessible.
• An appropriate fire extinguisher and fire blanket should be in the room.
• High-voltage sources should be clearly marked.
• Electrical cords should be free of cuts.
• Radioactive sources should be stored in a locked cupboard.

When performing experiments, the following safety practices should be
adhered to:

Experiments involving an open flame:
• Long hair should be tied back.
• Loose clothing should not be worn on experimental days. Sleeves should

be rolled up.
• Do not leave the candle or burner unattended.
• Always have something under the candle to catch the wax.
• Have a beaker of water nearby in case of emergency when using candles.

Experiments involving power supplies:
• Never short out the supply.
• Keep water and wet hands away from electrical equipment, especially

when using ripple tanks.
• Be aware of wires connected to high-voltage supplies. Make sure they are

securely attached and not touching grounded objects.
• Always have the supply turned off when connecting it to the experi-

mental components.
• If you’re not sure, ASK!
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APPENDIX B: Lab Report

Lab Report

The following outline is for a general lab report. Some sections may be omit-
ted or modified by the teacher, depending on the type of experiment and the
level of experimental expertise you have developed.

Purpose: A statement(s) that encompasses the aim or goal of the experiment.

Theory: (optional) This section briefly describes the theoretical back-
ground to the experiment. It can develop or state equations to be used in the
analysis as well as possible logic outcomes that are being tested. It may 
predict certain ideal, theoretical outcomes that will be used as comparative
values against the ones obtained from the experiment.

Diagram: (optional) A sketch or schematic of what the experiment looks
like. It can include electrical representations of set-ups, circuit drawings,
and labelled diagrams of the actual physical set-up.

Materials (Equipment): A list of equipment and support material needed
to run the experiment.

Procedure: (optional) In many instances, the procedure is already provided and
thus need not be recopied. In cases where you have designed the experiment, the
procedure becomes an important part of the lab report because it clarifies the
method and reasoning behind what the experiment is set up to accomplish.

Data: The data section should be organized and clear. Multiple data results
should be organized in a chart.

Charts: The standard chart is a tool for recording and reading results. The
chart proper should contain data values only, without the units. Units are
indicated with the headings. No calculations should be done in the chart.
The start of a sample chart is shown.

Trial # m1 (kg) m2 (kg) m3 (kg) mtotal (kg) Fapplied (N) d (m) t(s)

1 1.2 2.0 4.1 7.3 71.5 0.6 0.34

2 1.2 2.0 5.0 8.2 80.4 0.6 0.44

A rough chart should be created before doing the experiment. This step helps
organize your results as the experiment proceeds and allows you to easily refer
back to them at a later date. A neat copy is then made for the actual report.

Uncertainty: This section defines the limits of the precision of the data you
are collecting. It is an indicator of how accurately you can measure any
event. The value is specified by the “�” sign. In some books, it is referred
to as the experimental error. This term is somewhat misleading because it
implies that you are making some kind of mistake while doing the lab. The
uncertainty in a data measurement is only an indicator of the accuracy of
the measuring device and the manner in which it is used.

Fig.A.1 Outline for a lab report
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Normally, uncertainty has two components. The instrumental part indi-
cates the precision of the instrument. In the case of an instrument with divi-
sions marked on it, the estimation uncertainty is �.5 of a division if the
divisions are very close together and hard to see in between. If there is ample
space between divisions, allowing you to estimate between the lines, then �.1
of a division is used. In some cases, you may use �.2 of a division if the spac-
ing between markings does not allow you to easily estimate between them. For
digital readouts, the uncertainty is provided by the manufacturer.

The procedural part of the uncertainty lies in the manner you use the
instrument. A 30 cm long ruler marked in mm divisions has an instrumen-
tal uncertainty of �.5 mm. If you were to measure the length of the football
field with it, the uncertainty would be far greater than 0.5 mm. The reason
is because you must lift the ruler and place it back down. For each lift of the
ruler, a repositioning or alignment uncertainty occurs, which must be taken
into account. A value of 0.5 mm up to 1 mm may be assigned per lift.
Timing and reflexes fall into the same category. Even though a stop watch
can indicate hundredths of a second, timing an object dropped from a height
of 10 cm will not have a value accurate to 0.01 s. Your reflexes are good to
only 0.2 s–0.3 s because it takes a finite amount of time to press the start
and stop buttons on the watch.

The total uncertainty is the addition of the two component uncertainties.

Statistical Deviation of the Mean

This calculation is used to obtain a scatter indicator of values that should,
in theory, be the same, but are not because of factors that cannot be con-
trolled in the experiment. For instance, if you were to roll a ball from a ramp
off a table many times and measure its range from the edge of the table, you
would find that the ball will land at slightly different places, even though
you have made every attempt to keep the action of releasing the ball the
same each time. The slight imperfections in the ball, ramp, and table all con-
tribute to this effect. The standard deviation of the mean indicates how
reproducible the event is. The value is given the Greek letter sigma (�). The
formula for standard deviation of the mean is:

� � ��

n
�

i � 1

n

�2
i

��
where �i � �data value 	 average value �

n is the number of data values

When the � (uncertainty) is quoted with the average for a set of data, the
uncertainty combined with the mean will encompass 68% of the data values.
If the � is quoted as 2�, then the range encompasses 95% of the data values.
If the � is quoted as 3�, then the range encompasses 99.7% of the data values.



754 Phys ics :  Concepts and Connect ions Book Two

Example: Given the following five distances, find the average value and
quote the scatter of the data in terms of one standard deviation (�).

d (m) 2.003 2.008 2.000 2.005 2.005

Average value �

� 2.004 m

� �2
5

�
i � 1

�2
i �

5

�
i � 1

5

�2
i

� ��

5

�
i � 1

5

�2
i

��
� 2.003 	 2.004 � � .001 1 
 10	6 4.4 
 10	5 8.8 
 10	6 .003

� 2.008 	 2.004 � � .004 1.6 
 10	5

� 1.999 	 2.004 � � .005 2.5 
 10	5

� 2.005 	 2.004 � � .001 1 
 10	6

� 2.005 	 2.004 � � .001 1 
 10	6

� � 0.003 m and we quote our average value as 2.004 � .003 m

Analysis and Sample Calculations: In many experiments, a set of calcu-
lations is repetitive. In these cases, the values obtained from the calculations
are summarized in table form. A sample calculation is then shown in full.

Discussion: In early lab reports, this section answers lab questions posed
by the teacher. These questions are used to lead to an analysis and assess-
ment of the validity of the experimental results. In cases where a compari-
son is made between two values or an accepted value and the experimental
value, the percent deviation is used. This equation is


 100

or, for two values that should be the same,


 100

If the percent deviation lies inside the accepted range of values based on your
uncertainty assignments, then the values can be stated as being the same.

Not all experiments work successfully each time. If your results do not
match the theoretical expectations, then in this section, you would discuss
possible reasons for this discrepancy.

Conclusions: This last section is a summarizing statement of the results
arrived at in the experiment. It is the bookend for the opening introductory
section, the Purpose. This section brings together the whole intent of the
experiment in terms of its degree of success.

�value 1 	 value 2�
���

� larger value�

�accepted value 	 experimental value �
�����

�accepted value�

(2.003 m � 2.008 m � 1.999 m � 2.005 m � 2.005 m)
�������

5



APPENDIX C: Uncertainty Analysis

Accuracy versus Precision

When a value is measured, there are two parameters that affect the quality
of the measurement: accuracy and precision. Accuracy is the amount that
a measurement is removed from the true value. However, we rarely know
what the true value is; it can only be predicted theoretically. Most values in
nature have accepted values based on the results of repeated experiments.
For example, the local acceleration due to gravity is 9.80 m/s2. 

Precision is how closely subsequent measurements can be repeated. If
you measure the length of a table to be 2.3 m the first time and 1.4 m the
second time, your measurements would show a definite lack of precision!
Your goal as an experimenter is to obtain the greatest possible precision
from your equipment. All equipment has limited precision. Clever design of
your experiment will permit better and more reliable data collection. 
Note: A measured variable has a stated uncertainty, not an error.

Working with Uncertainties 

To assess how precisely a parameter can be stated, we must consider
two aspects:
1) How precise are the measurements? Have they been done using a procedure

that other scientists will accept?
2) What is the procedure for combining variables that have stated uncertainties?

Making Measurements with Stated Uncertainties

No scientist is ever satisfied with one observation. A single observation is
referred to as anecdotal. Determining the average of many measurements
gives the most reliable value because scientists assume that the uncertainty
in the measurements is due to random interpretations of the most precise
reading possible of an instrument. For example, if you measure the length
of a table using a ruler calibrated in millimetres, to obtain the most precise
value, you will have to estimate fractions of a millimetre by eye. A number
of such estimates will introduce variations in your values. 

After averaging many numbers together, an additional observation does
very little to change the average. The theory of large numbers suggests that
30 observations is a maximum and 5 is a minimum. The best experimenters
calibrate their equipment very carefully in order to ensure that any anom-
alies observed are those of the phenomenon being investigated.
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Manipulation of Data with Uncertainties

We first define two ways of stating uncertainty.

Absolute uncertainty is the actual value of the relative and instrumental
uncertainties added together. The uncertainty associated with a measure-
ment carries the same units as the measurement.

Relative uncertainty is the absolute uncertainty expressed as a percent of
the data value.

Your answer should always include the number and its uncertainty: z � �z

Addition and Subtraction of Data

When adding or subtracting data, 
ALWAYS ADD the absolute uncertainties of the measurements.

Example: 4.5 � .5 m � 1.5 � .5 m � 6.0 � 1.0 m
4.5 � .5 m 	 1.5 � .5 m � 3.0 � 1.0 m

The answer always carries the largest possible uncertainty associated with it.

Alternative Method:

Let z � x1 � x2 � … xn

z � �
n

k�1 
xk

Then �z � ��1
2 ���2

2 ��... �n
2�

�z � ��
n

k�1
�k

2�



Multiplication and Division of Data

When multiplying and dividing data, 
ALWAYS ADD the relative or percentage uncertainties of the measurements.

However, before we state our final answer for a calculation, the relative or
percentage uncertainty is converted back into an absolute uncertainty by
multiplying it by the answer itself.

Example: (5.0 � .5 m) 
 (2.5 � .5 m) � ( 5.0 � 10% m) 
 ( 2.5 � 20% m)
� 12.5 � 30% m2 � 12.5 � 3.8 m2

Example: Combining absolute and relative uncertainties; calculating the
uncertainty of a slope.

Note: When the two types of calculations are combined, such as in a slope
calculation, follow the order of operations.

Given: v1 � 10.0 � 1 m/s v2 � 30 � 3 m/s t1 � 5.0 � .4 s
t2 � 10.0 � .1 s, find acceleration.

a � �
v2

�

	

t
v1

� �

� �
2
5
0
.0

�

�

4
.1
m
5
/
s
s

� ��
(2

(
0
5.

�

0 �

20
3
%
%

)m
)s

/s
�� 4.0 � 23% m/s2

� 4.0 � .9 m/s2

Alternative Method:

Let z � (x1)(x2) ... (xn)

Then �z � z��
�

x1

1
2

2

� �� �
�

x2

2
2

2

� ..�. �
�

xn

n
2

2

��

(30 � 3 m/s) 	 (10 � 1 m/s)
����

(10.0 � .1 s) 	 (5.0 � .5 s)
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Fig.A.2

APPENDIX D: Proportionality Techniques

In physics, like in any science, we observe nature in order to seek regulari-
ties or patterns. The patterns in our observed data form the basis for theo-
ries and laws that explain observed events. If the regularities that we
observe follow mathematical functions, then we can derive equations that
accurately model the behaviour of natural events. 

Proportionality techniques involve data analysis from controlled exper-
iments to examine the way in which two experimental quantities, the inde-
pendent and the dependent variables, may be correlated. A proportionality
statement is a simple expression that describes how one variable varies in
relation to another, which allows us to predict an object’s behaviour with-
out our needing to understand why the object behaves that way. For exam-
ple, scientists don’t completely understand how the gravitational force
works, but their predictions based on experimental data of the action of
gravity have enabled them to send astronauts to the Moon and back!

The simplest proportion is a direct proportion in which a change in one
quantity by some multiple is met by a similar change in the other quantity. 

Proportionality description Proportionality Statement

The variable y is directly proportional to the variable x y � x

All direct proportionalities are straight-line graphs when their quantities are
plotted. (See Table A.2 and Figure A.3.)

Creating an Equation from a Proportionality

The generic equation for a straight line is y � mx � b, where m represents
the slope of the straight line and b represents the y intercept. From the con-
stant slope of the line in Figure A.3 and the intercept of the graph at 0 N,
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Table A.2
Normal force Frictional force

Fn (N) Ff (N)

0.0 0.0

1.0 0.2

2.0 0.4

3.0 0.6

4.0 0.8

5.0 1.0

6.0 1.2

7.0 1.4

8.0 1.6

9.0 1.8

10.0 2.0

Fig.A.3 Friction versus the normal force
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the equation of the relationship is Ff � 0.20Fn. This equation can be used
to predict what force of friction will result from any particular normal force.
For example, the equation allows us to predict that a normal force of 7.0 N
will result in a force of friction of Ff � (0.20)(7.0 N) � 1.4 N.

To form an equation from this direct proportionality (straight-line graph),
we replace the proportionality sign, �, with an equal sign and the slope of the
straight-line graph, which is the constant of proportionality, k.

y � x → y � kx

A proportionality statement describes a direct proportion between any
two entities, including algebraic manipulations of data. For example, the data
from a simple inverse relationship like frequency and period (see Table A.3),
plotted in Figure A.4, are not directly proportional.

If the quantities of frequency and �
T
1

� (inverse period) are plotted in Figure
A.5, a straight-line graph results.

The inverse of the period is directly proportional to the frequency: f � �
T
1

� or
f � �

T
k

�. In this case, the slope is 1, so the true equation is f � �
T
1

�.

Finding the Correct Proportionality Statement 

The Multiplier Method
A proportionality is the tracking of how quantities vary with respect to each
other. In a direct proportionality, both quantities are related by the same
multiplier. We find multipliers by dividing each data point by the first
data point and recording the relationship, as shown in Table A.4.
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Fig.A.4 Frequency versus period

Fig.A.5 Frequency versus inverse period
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Table A.3
Reciprocal 

Period Frequency of Period

T (s) F (Hz) T	1 (s	1)

10 0.100 0.100

20 0.050 0.050

30 0.033 0.033

40 0.025 0.025

50 0.020 0.020

60 0.017 0.017

70 0.014 0.014

80 0.012 0.012

90 0.011 0.011

100 0.010 0.010

0.02 0.04 0.06 0.08 0.10 1.12Fr
eq

ue
n
cy

, f
 (

H
z) 0.15

0.10

0.05

0

Inverse period,      (1/s)
1
T
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In Table A.4, the multipliers from the y data do not equal the x multipliers;
therefore, the two quantities, x and y, are not directly proportional.
However, we can manipulate the x multiplier by trial and error. If we find
a relationship where the x and y multipliers are equal, then there is a direct
proportionality for the data in Table A.4. 

If we take the inverse of the x multiplier, then �
1
x

� � �
1
2

� � 0.5, which does
not equal 0.25 (the y multiplier), so x and y are not related inversely. If we 

square the inverse of the x multiplier, then ��
1
2

��
2

� 0.25. In this case, the y

multiplier equals the x multiplier; therefore, we have found the correct pro-
portionality: y is directly proportional to �

x
1

2� or y � �
x
1

2�. The resulting graph is
a straight line (see Table A.5 and Figure A.6).  

Most of the time, we will be trying to find relationships between data
gathered during an experiment that will have an associated level of uncer-
tainty. Uncertainty will make it more difficult to find multipliers. For
example, the multiplier 0.248 may actually indicate an inverse square 

relationship ��
x
1

2�� from a y multiplier of 2 ��
2
1

2� � �
1
4

��. In this case, compare the 

shape of the graph of your data with one of the four graphs in Figure A.7 to
give you an idea of what the proportionality might be.

Table A.5

y

1 10

0.25 2.5

0.11 1.1

0.06 0.6

1
�
x2

Fig.A.6 Y versus manipulated x data

Fig.A.7 The shape of the graph can suggest

an appropriate proportionality for the data
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Table A.4

y

xLinear
y � x

y

xPower
y � xn

(n  1)

y

xRoot

y �   

y

xInverse
1
xny ��		n x

(n  1)
(n  0)
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y 
d

at
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Finding the Constant of Proportionality 
in a Proportionality Statement

Once the correct proportionality statement is known, then the constant of pro-
portionality and the final equation can be easily determined. The slope of the
straight-line graph from the manipulated data is the constant of proportionality. 

To determine the constant of proportionality without graphing any
data, rearrange the generic equation for the constant of proportionality and
selectively substitute the data points. Using our friction example, the pro-
portionality statement is Ff � Fn and the generic equation is Ff � kFn. So
k � �

F
F

n

f
�. We can calculate the constant of proportionality, k, by substituting

any data points, including units:

k = �
F
F

n

f
�

k = �
0
4
.8

N
N

�

k = 0.2

For data that has an associated uncertainty, calculate k for each set of
data points, then calculate the average of all your values of k to determine the
representative value for all the data. This method is called the multiple k
method. The final equation can be determined by substituting the average
k value into the equation. 

Other Methods of Finding Equations from Data 

The Log–Log Method
Typical data proportionalities can be described by the exponential
proportionality, y � kxn, where k is the constant of proportionality
and n is the specific proportionality between the independent and the
dependent variables. Table A.6 summarizes the relationship between
n and the type of proportionality. Taking the logarithm of both
sides of the generic proportionality y � kxn, we obtain

y � kxn

log(y) � log(kxn)
log(y) � log(xn) � log(k)
log(y) � nlog(x) � log(k)

Note the similarities between this equation and the generic linear
equation, y � mx � b.
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Graphing calculators are invaluable
for plotting quick graphs to test pro-
portionalities and determine slopes.

Table A.6
Type of 

N proportionality Example

n � 1 Linear y � 3x

n  1 Power y � 2x2 (parabolic)

0 � n � 1 Root y � 2x1/2 � 2�x�
(square root)

n � 	1 Inverse y � 2x	1 � �
2

x
�

	1 � n � 0 Inverse root y � 2x	1/2 � �
�
2

x�
�

(inverse square root)

n � 	1 Inverse power y � 2x	2

(inverse square)
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Check your calculator manual to see

if it can perform two-dimensional

statistical calculations, such as 

linear or power regression.

Regression can also be done with the

spreadsheet program Microsoft®

Excel by highlighting the two

columns of data and then accessing

the Regression Tool from the Data

Analysis option in the Tools menu.

Any data can be made linear by

taking the logarithm of both quan-

tities. Taking the logarithms of the

experimental data first will allow

linear regression to be used in all

circumstances.

Lost your calculator’s instruction

manual? Web links to various calculator

manufacturers are available at

<www.irwinpublishing.com/students>.

Find the manufacturer’s Web site and

download a printable set of instruc-

tions for your calculator.

Plotting the logs of the variables x and y always produces a straight-line
graph with a slope n and a y intercept of log k, as illustrated in Figure A.8.

Calculating the slope and the y intercept of this graph will yield both n
and log k (k can be determined by finding the inverse log). Both n and k can
then be directly substituted into the general proportionality equation y � kxn.

Computed Regression

Most scientific calculators and computer spreadsheets have built-in
algorithms that perform statistical regression on data. These functions
on a calculator allow you to input two columns of data and find the
equation that describes the relationship between the two quantities.
Once the data has been entered, the calculator provides the user with
two key pieces of information:
1) The correlation coefficient, r, is a number that varies from 	1 to �1

and is a measure of how well the two quantities correlate. In linear
regression mode, r measures how well the data resembles a linear pro-
portion. In exponential regression mode or logarithmic regression
mode, r measures whether the data fits an exponential or logarithmic
proportionality. The better the fit, the closer r is to 1. 

2) A and B determine the equation that best describes the relationship
between the two quantities, x and y. Table A.7 summarizes the meaning
of the parameters A and B for each regression mode.

Table A.7
Mode General equation A B

Linear y � A � Bx y intercept of Slope of a
regression straight line straight line

Exponential y = AxB Constant of Power of 
regression proportionality, k exponent, n

Linear regression works when you know that the data you have input is
linear, whereas exponential regression works for every set of data.

The General Method for Using Regression 

1) Set your calculator to linear regression mode (two-dimensional statis-
tics), as described in your calculator’s instruction manual.

2) Input all the experimental data as ordered pairs (x1, y1… x2, y2… 
x3, y3… xn, yn, etc.) according to the calculator manual’s instructions.

3) Display the correlation coefficient (r). If r is very close to 1 (0.997  r � 1),
then the data are linearly proportional.

4) Display the A and B values for the regression. A represents the y intercept
and B represents the slope of the line. 

Fig.A.8 The plot of log x and 

log y is a straight line of slope n

and intercept log k.

log k

�log x

�log y
log y

log x

Slope �
�log y
�log x

� n
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The same type of regression analysis can be done with a computer spread-
sheet such as Corel Quattro® Pro or Microsoft® Excel. The software pro-
duces a statistics table that provides the correlation coefficient, slope, and y
intercept of the graph, as illustrated in Table A.8.

Table A.8   Regression Output from Microsoft® Excel

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.999995
R Square 0.999989
Adjusted R Square 0.999984
Standard Error 0.012649
Observations 4

ANOVA
Df SS MS F Significance F

Regression 1 30.40578 30.40578 190036.1 5.26E-06

Residual 2 0.00032 0.00016

Total 3 30.40610

Coefficients Standard t Stat P-value Lower Upper Lower Upper 
Error 95% 95% 95.0% 95.0%

Intercept 2.006 0.010583 189.5492 2.78E-05 1.960465 2.051535 1.960465 2.051535

X Variable 1 2.466 0.005657 435.9313 5.26E-06 2.441661 2.490339 2.441661 2.490339

Slope (k value)

y intercept

(Linear regression)

The slope, y intercept, and correlation coefficient from Table A.8 yield the
equation

y � 2.5x � 2 



Figure A.9 summarizes the different methods for deriving an equation
that relates a set of experimental data. 
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APPENDIX E: Helpful Mathematical Equations
and Techniques 

Mathematical Signs and Symbols

� equals

 equals approximately
� is the order of magnitude of
� is not equal to
� is identical to, is defined as
 is greater than (� is much greater than)
� is less than (� is much less than)
� is greater than or equal to (or, is no less than)
� is less than or equal to (or, is no more than)
� plus or minus
� is proportional to
� the sum of
–x the average value of x

Significant Figures

The number of significant digits in a value is the number of digits that are
known with certainty.

These digits include
1) all non zero digits. Example: 1234 m (4 significant digits)
2) all embedded zeroes. Example: 1204 m (4 significant digits)
3) all trailing zeroes after a decimal. Example: 1.23400 m (6 significant digits)
4) any trailing zeroes without a decimal, if known to be measured.

Example: 12 000 m (5 significant digits if specified, otherwise 
2 significant digits)

In scientific notation, all the significant digits are included. Thus, point 4
above becomes more obvious. Example: 1.2000 
 104 m if all the zeroes are
significant and 1.2 
 104 m if the zeroes are not significant.

When adding and subtracting numbers, the answer carries the least
number of decimal places used in the addition or subtraction. Example:
1.2 m � 1.22 m � 1.222 m � 3.642 m, but is correctly stated as 3.6 m.

When multiplying and dividing numbers, the answer carries the least
number of significant digits used in the multiplication or division.
Example: 1.2 m 
 1.333 m � 1.5996 m2, but is correctly stated as 1.6 m2.
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The Quadratic Formula 

Given: ax2 � bx � c � 0, 

x ��
	b � �

2a
b2 	 4�ac�
�

If you are solving for �t, always select the positive square root.

Substitution Method of Solving Equations

In this method, there are two equations and two unknowns. Each equation
on its own cannot provide the answer. However, by combining them
through a common variable, we can obtain one equation in one unknown.

Given m and do, find f (di is also unknown).
The two equations to be used are 

a) m � �
	

d
d

o

i
� and b) �

1
f
� � �

d
1

o
� � �

d
1

i
�

1) Rearrange equation a): di � 	mdo

2) Substitute the expression for di into equation b) to produce the following
equation: �

1
f
� � �

d
1

o
� � �

(	m
1

do)
�

3) You now have only one unknown, so you can solve for f.

Rearranging Equations

Many times, you find the appropriate equation, but the term to the left of the
equal sign is not the one you are looking for. In this case, rearrange the equa-
tion and solve for the unknown. A guide to rearranging equations follows.
1) Move terms separated by the � and 	 first. Continue to do so until the

term you are solving for is left alone on one side of the equal sign. When
a term or group of terms in brackets moves across the equal sign, the sign
of the term changes.

2) Separate the desired variable from other variables that are attached to it
by multiplication and division. To do so, you use the opposite operation
to the one that is attaching the desired variable to another one. Then, do
the same thing to all the other terms on the other side of the equal sign.

Example: �d
→

� v→1�t + �
1
2

�a→�t2 Assume you need to solve for the acceleration.

1) Move terms first. �d
→

	 v→1�t � �
1
2

�a→�t2

2) Separate a→ from �
1
2

� and �t2 by dividing them out. � a→

Thus, the equation for a reads a→ � or

a→ � �
2(�d

→

�

	

t2

v→1�t)
�

(�d
→

	 v→1�t)
��

(�
1
2

��t2)

(�d
→

	 v→1�t)
��

(�
1
2

��t2)
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Exponents

Exponents simplify multiplications of numbers. 

Example: 10 
 10 
 10 
 10 � 104, which equals 10 000. This number can
be written in scientific notion as 1.0 
 104.
Fractions or decimals are treated the same way. 

Example: �
1
1
0
� 
 �

1
1
0
� 
 �

1
1
0
� 
 �

1
1
0
� � 0.1 
 0.1 
 0.1 
 0.1 � 10	4, which equals

0.0001. This number can be written in scientific notation as 1.0 
 10	4.

When an unknown is being multiplied, the same rules apply.

A 
 A 
 A 
 A � A4 and �
A
1

� 
 �
A
1

� 
 �
A
1

� 
 �
A
1

� � ��
A
1

��
4

, which can be writ-
ten as A	4

Multiplication and division rules show that the exponents add and subtract
respectively.

An 
 Ap � An � p Example: 103 
 105 � 108

�
A
A

n

p� � An 	 p Example: �
1
1
0
0

3

5� � 10	2. This equation could also have been
written as 103 
 10	5 � 10	2

The square root sign �� can be written as the exponent �
1
2

�. Thus, �4� can
be written as (4)1/2 � 2.

Analyzing a Graph

The graph in Figure A.10 is based on pairs of measurements of a quantity y
(measured in arbitrary units q) with x (in units p). The equation of the line is

y � mx � b

slope   y intercept

The slope of the line is

slope � �
r
r
u
is

n
e

� � �
3.

2
5
0

p
q

	

	

0
6
.5

q
p

� � �
3
1
.
4
0

q
p

�

� 4.7 q/p

The y intercept of the line is 3 q. The equation of the line is

y � �4.7 �
p
q

��x � 3 q

0 2.01.0 5.03.0 4.0

run = 3.0 p

x (p)

y 
(q

)

ri
se

 =
 1

4
 q

25

10

15

20

5

Fig.A.10 
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Equal angles

Triangles

90° Triangles

x
x

x
x

a c
b

a � b � c � 180°

Similar Triangles

A

B

C

�

Non 90° Triangles

a
c

b

A B

C

a c
bA�

B�

a cbA

B

C
C�

Adjacent side

Opposite
sideHypotenuse

�

A 

A�

B 

B�

1. Angles are equal.
2. Ratios of sides are also equal.   Example: �

C 

C�
�

A2 � B2 � C2 	 2BC cos a

B2 � C2 � A2 	 2CA cos b 

C2 � A2 � B2 	 2AB cos c  

Sine law
sin a 

A
sin b 

B
sin c 

C
� �

B

A

C

A

C

B

� cos �             
ADJ
HYP ��

� sin �             
OPP
HYP� ��

� tan �             
OPP
ADJ ��

A2 � B2 � C2

�

�

�

Cosine law

sin(90° 	 �) � cos �

cos(90° 	 �) � sin �

�
c
s
o
in

s
�

�
� � tan �

sin2� � cos2� � 1

sec2� 	 tan2� � 1

csc2� 	 cot2� � 1

sin 2� � 2 sin � cos �

cos 2� � cos2� 	 sin2� � 2 cos2� 	 1 � 1 	 2 sin2�

sin(� � �) � sin � cos � � cos � sin �

cos(� � �) � cos � cos � � sin � sin �

tan(� � �) � �
1
ta
�

n
t
�

an
�

�

ta
ta
n
n
�

�
�

sin � � sin � � 2 sin �
1
2

�(� � �) cos �
1
2

�(� � �)

cos � � cos � � 2 cos �
1
2

�(� � �) cos �
1
2

�(� 	 �)

cos � 	 cos � � 	2 sin �
1
2

�(� � �) sin �
1
2

�(� 	 �)

Trigonometric Identities
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Area of triangle with base b and
altitude h

� �
h

2

b
�

Perimeter of square with side a

� 4a

Perimeter of any other parallelo-
gram with sides a and b

� 2(a � b)

Area of rectangle with sides a and
b of unequal length

� ab

Area of square with side a

� a2

Area of any parallelogram with side
b and with h as perpendicular 
distance from b to side parallel to b

� bh

Area of rhombus with diagnostic
c and d

� �
c

2

d
�

Area of trapezoid with parallel
sides a and b and altitude h

� �
h(a

2

� b)
�

Circumference of circle with
radius r

� 2�r

Area of circle with radius r and
diameter d (2r)

� �r2 � �
1

4
��d2

Volume of regular prism 
with a as area of base  
and h as altitude

� ah

Surface of sphere with radius r
and diameter d (2r)

� 4�r2 � �d2

Volume of sphere with radius r
and diameter d (2r)

� �
4

3
��r3 � �

1

6
��d3

Volume of right cylinder with r
as radius of base and with h as
altitude

� �r2h

h

b

a

b
a

b

a

ba

b

a

Lengths, Areas, and Volumes

a

h

b

b

a

c

d

b

h

a

r

d

h h h

a a a

r

d

h

r
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SI Base Units

Quantity Name Symbol Definition of Unit

Length metre m Length of 1 650 763.73 wavelengths in vacuum of the 

radiation corresponding to the transition between the 

levels 2p10 and 5d5 of the krypton 86 atom.

Mass kilogram kg The mass of the international prototype of the kilogram 

kept at the International Bureau of Weights and Measures.

Time second s Duration of 9 192 631 770 periods of the radiation 

corresponding to the transition between the two hyperfine

levels of the ground state of the cesium-133 atom.

Electric current ampere A Current in two straight parallel conductors of infinite 

length and negligible circular cross-section placed 1 m 

apart in a vacuum that would produce between those 

conductors a force equal to 0.2 �N/m of length.

Thermodynamic temperature kelvin K 1/273.16 of the thermodynamic temperature of the 

triple point of water — the equilibrium temperature 

between pure ice, airfree water, and water vapour 

(0.01°C � 273.16 K).

Amount of substance mole mol Amount of substance of a system containing as many

elementary entities as there are atoms in 0.012 kg of 

carbon 12.

Luminous intensity candela cd Luminous intensity perpendicular from a surface of 

1/600 000 m2 of a black body (full radiation) at the 

temperature of solidifying platinum at a pressure of 

101.325 kPa.
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SI Derived Units

Quantity Name Symbol Description

(a) Units with special names

Frequency hertz Hz cycle per second s	1

Force newton N kilogram metre per second squared kg·m/s2

Pressure and stress pascal Pa newton per square metre N/m2

Energy, work, quantity of heat joule J newton metre N·m

Power watt W joule per second J/s

Electric charge, quantity of electricity coulomb C ampere second A·s

Electric potential difference volt V joule per coulomb J/C

Electric resistance ohm � volt per ampere V/A

Electric conductance seimens S reciprocal ohm �	1

Flux of magnetic induction, magnetic flux weber Wb volt second V·s

Inductance henry H volt second per amp V·s/A

Activity of radionuclides becquerel Bq emission per second s	1

Dose equivalence sievert Sv joule per kilogram J/kg

Absorbed dose of radiation gray Gy joule per kilogram J/kg

(b) Without special names

Area square metre m2

Volume cubic metre m3

Speed metre per second m/s

Acceleration metre per second squared m/s2

Density kilogram per cubic metre kg/m3

Torque, moment of force newton metre N·m

Angular velocity radian per second rad/s

Angular acceleration radian per second per second rad/s2

Electric field strength volt per metre V/m

newton per coulomb N/C

Entropy joule per kelvin J/K

Specific heat joule per kilogram kelvin J/kg�K

joule per kilogram celsius degree (J/kg�°C)
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The Greek Alphabet

Alpha � � Iota � � Rho  !

Beta " � Kappa # $ Sigma � �

Gamma % & Lambda ' ( Tau ) *

Delta � + Mu , � Upsilon - .

Epsilon / 0 Nu 1 2 Phi 3 4, 5 

Zeta 6 7 Xi 8 9 Chi : ;

Eta < = Omnicrom > ? Psi @ A

Theta � � Pi B � Omega � C

SI Prefixes
Multiplying Name of Symbol for 

Factor Prefix Prefix

1018 exa E

1015 peta P

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecto h

101 deca da

10	1 deci d

10	2 centi c

10	3 milli m

10	6 micro �

10	9 nano n

10	12 pico P

10	15 femto f

10	18 atto a

Some Units Permitted for Use with SI
Quantity Name Symbol Definition

Time minute min 1 min � 60 s
hour h 1 h � 3600 s
day d 1 d � 86 400 s
year a 1 a � 365.24 d (approx.)

Volume litre L 1 L � 1 dm3 (10	2 m3)

Temperature degree °C 0°C � 273.15 K
Celsius

(However, for intervals, 1°C � 1 K)

Mass tonne t 1 t � 1000 kg

Energy electron eV 1 eV � 0.160 219 aJ (approx.)
volt

Mass of an atom unified u 1 u � 1.660 565 5 
 10	27 kg
atomic (approx.)
mass
unit
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APPENDIX H: Some Physical Properties

Air (dry, at 20°C and 1 atm)
Density 1.21 kg/m3

Specific heat at constant pressure 1010 J/kg·K
Ratio of specific heats 1.40
Speed of sound 343 m/s
Electrical breakdown strength 3 
 106 V/m
Effective molar mass 0.0289 kg/mol

Water
Density 1000 kg/m3

Speed of sound 1460 m/s
Specific heat at constant pressure 4190 J/kg·K
Heat of fusion (0°C) 333 kJ/kg
Heat of vaporization (100°C) 2260 kJ/kg
Index of refraction (( � 589 nm) 1.33
Molar mass 0.0180 kg/mol

Earth
Mass 5.98 
 1024 kg
Mean radius 6.37 
 106 m
Free-fall acceleration at the Earth’s surface 9.8 m/s2

Standard atmosphere 1.01 
 105 Pa
Period of satellite at 100-km altitude 86.3 min
Radius of the geosynchronous orbit 42 200 km
Escape speed 11.2 km/s
Magnetic dipole moment 8.0 
 1022 A·m2

Mean electric field at surface 150 V/m, down

Distance to:
Moon 3.82 
 108 m
Sun 1.50 
 1011 m
Nearest star 4.04 
 1016 m
Galactic centre 2.2 
 1020 m
Andromeda galaxy 2.1 
 1022 m
Edge of the observable universe ~1026 m



APPENDIX I: The Periodic Table

774 Phys ics :  Concepts and Connect ions Book Two



APPENDIX J: Some Elementary Particles
and Their Properties

Family Particle Particle Antiparticle Rest Energy Lifetime (s)

Symbol Symbol (MeV)

Photon Photon & Self* 0 Stable

Lepton Electron e	or �	 e� or �� 0.511 Stable

Muon �	 �� 105.7 2.2 
 10	6

Tau *	 *� 1784 10	13

Electron neutrino .e .�e 
0 Stable

Muon neutrino .� .�� 
0 Stable

Tau neutrino .* .�* 
0 Stable

Hadron

Mesons

Pion �� �	 139.6 2.6 
 10	8

�0 Self* 135.0 0.8 
 10	16

Kaon K� K	 493.7 1.2 
 10	8

K0
S K�0�S 497.7 0.9 
 10	10

K0
L K�0�L 497.7 5.2 
 10	8

Eta =0 Self* 548.8 �10	18

Baryons

Proton p p� 938.3 Stable

Neutron n n� 939.6 900

Lambda '0 '�0� 1116 2.6 
 10	10

Sigma �� ��	 1189 0.8 
 10	10

�0 ��0 1192 6 
 10	20

�	 ��� 1197 1.5 
 10	10

Omega �	 �� 1672 0.8 
 10	10

*The particle is its own antiparticle.
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Numerical Answers to Applying the Concepts

1.3
1. 2.6 � 106 s
2. 1.4 km
3. 5.5 � 102 ml

1.4
1. 14 m/s [N]
2. a) 1.6 km/h

b) 0.40 km/h [E]
3. a) 1.1 m/s [E]

b) 0

1.6
1. 9.4 � 103 m
2. 1.7 � 10�2 m/s
3. a) 1.8 s

b) 4.4 m
4. �7.7 � 105 m/s2

5. 14 m/s
6. 4.9 s
7. a) 2.7 s

b) 43 m/s

1.7
1. a) 330 m

b) 8.16 s
c) 16.3 s

2. a) 2.1 s
b) 2.9 s

3. 7.2 m/s [up]

1.8
1. a) 2.0 m/s2, 0 m/s2, 12 m/s2

b) 455 m
2. a) S.D. Sr.: 6 s, S.D. Jr.: 5 s

b) S.D. Junior by 1 s
c) S.D. Senior by 1.5 s

3. a) 2.5 m/s, 0 m/s, �1.25 m/s, 1.5 m/s
b) 0.65 m/s

1.12
1. a) 5.0 m/s2

b) 2.5 m/s2

c) 2.5 m/s2

2. 270 N
3. �2000 N
4. Fengine � 4.66 � 103 N, 

Ff � �1.94 � 103 N
5. �280 N

1.13
3. a) 2.25 � 104 N

b) 1.35 � 104 N, 6.0 � 103 N
4. a) 0.83 m/s2

b) 350 N

1.14
1. a) �6.7 � 103 N

b) 0.17 m/s2

2. b) 1.5 m/s2

3. 42 m

1.15
1. 5.5 � 10�67 N
2. 2.1 � 1020 N
3. a) �

1
8

�F

b) �
2
9

�F

c) F
4. 2.6 � 106 m
5. 24 m/s2

2.1
2. a) 49 m [S] � 12 m [E]

b) 100 m/s [S] � 173 m/s [W]
c) 12 m/s2 [N] � 8.4 m/s2 [E]

3. vx � 4.5 m/s, vy � �2.1 m/s
4. 5.0 m/s [up 53° forward]
5. a) 26 m/s [N78°E]

b) 49 m [W18°N]
c) 30.1 N [N53°W]

6. 26 m/s [N87°W]

2.2
1. a) [S76°E]

b) 19 km/h [E]
c) 5.2 h

2. a) [N9.6°E]
b) tgirl � 169 s, tboy � 167 s
c) 83 m
d) girl

3. 12 km/h [N59°E]
4. a) [S76°E]

b) 2.6 s

2.3
1. a) 1.7 s

b) 44 m
2. a) 2.3 s

b) 120 m

3. a) 89 m
b) 163 m/s 23° to vertical

4. 66 m/s 17° above horizontal

2.4 
1. 1.8 m/s2 [N56°W]
2. a) 15.8 N [N80°W]

b) 0.20 m/s2 [N80°W]
3. 104 N [S3.3°W]
4. 1.38 m/s2

2.5
1. 1.6 s
2. 1.2 s
3. 9.8 m
4. (3.36)(mass) N

2.6 
1. a) 5.1 m/s2 [right], 71 N

b) 3.5 m/s2 [right], 32 N
c) 1.1 m/s2 [left], 1.8 � 102 N
d) 0.82 m/s2 [left], T1 � 122 N, 

T2 � 106 N

2.7
1. 21 m/s2

2. 8.9 m/s2

3. a) increases by 4
b) halved
c) doubled

4. a) 2.7 � 10�3 m/s2

b) toward Earth
5. 0.31 m/s
6. 2724 rotations per day

2.8
1. a) 3.5 m/s

b) 24 N
2. 972 N
3. 3.4 m/s
4. b) 19 m/s
5. 22.8 days
6. 7.57 � 103 m/s
7. 7.4 � 104 s

3.3
1. Fh � 5.0 � 103 N, Fv � 8.7 � 103 N
2. 68.4 N
3. b) 0.39 m

c) 0.45 kg
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4. a) 20.7 N
b) 6.71 N
c) 19.6 N [down]

6. 1.11 � 103 N

3.4 
1. b) 425 N·m
2. a) 1.3 � 103 N
3. a) 98.0 N

b) B
c) 1.7 � 102 N·m

3.5 
1. 0.332 m
2. a) 147 N·m

b) 2.63 m
c) 2.6%

3. a) 24.5 N
b) 24.5 N [left], 49 N [up]

4. left: 919 N [up], right: 306 N [up]

3.6 
1. 41.6 N�m [clockwise]
2. 5.3 � 102 N
3. a) T � 5.57 � 103 N, 

Fh � 5.55 � 103 N [right], 
Fv � 1.05 � 103 N [up]

3.7
1. a) 49.8 cm

b) 36.5 cm
2. a) 3-wheel: 13.3°, 4-wheel: 31.0°

3.8 
1. a) 3.0 � 10�2 N

b) 1.11 � 101 m/s2

2. 8.0 � 10�2 m
3. 36.0 N

3.9
1. 1.83 � 10�3 m
2. a) 9.8 � 104 N/m2

b) 2.0 � 10�5

c) 3.0 � 10�4 m
3. a) 4.4 � 104 kg

4.2
1. 1.3 � 102 kg�m/s [W20°N]
2. 4.5 � 103 kg
3. c) 38.5 kg·m/s [N]

4.3
1. a) 4.2 � 103 N·s [forward]

b) 6.0 N·s
c) 15 N·s [down]

2. 2.4 � 103 N·s [up]
3. a) 1.3 � 104 N

b) 3.3 m
4. a) 62.5 N·s [S]

b) 1875 N·s [W]
c) 45 N·s [E]

4.4
1. 2.5 m/s [forward]
2. 11.8 m/s [back]
3. 2.0 m/s [forward]
4. 6.9 � 10�23 kg
5. �

5
9

� v

4.5
1. 4.1 m/s [S37°W]
2. 8.3 m/s [N16°E]
3. 1.7 m/s [R47°D]
4. 10 m/s [S5°W]

4.6
1. a) 1.5 m

b) 17 cm (from the 5 kg ball)
c) 6.7 km (from the larger satellite)

2. a) p1o
� 0.22 kg·m/s [S20°E], 

p2o
� 0.17 kg·m/s [S10°W], 

p1f
� 0.26 kg·m/s [S5°W], 

p2f
� 0.15 kg·m/s [S30°E], 

pcm � 0.39 kg·m/s [S8°E] 

5.2
1. a) 6.0 J

b) 9.6 � 102 J
c) 4.4 � 102 J

2. 1.6 � 105 J
3. 4.5 � 102 J
4. 1.1 � 107 J
5. a) 9625 J

b) 0.80 J
6. 16 m

5.3
1. a) 5.6 � 1011 J

b) 5.6 m/s, 15.4 J
c) 2.4 � 103 J

2. 5.6 m/s
3. 6.5 kg
4. 4.2 � 10�23 N·s
5. �5.1 � 103 J
6. a) 1.1 � 102 J

b) 1.1 � 102 J
c) 4.6 � 103 N

5.4 
1. a) 4.1 � 101 J

b) 0 J
c) 3.7 � 104 J

2. a) 23 m/s
b) 23 m/s

3. a) 60 m/s
b) 1.8 � 102 m
c) Ek � 2.4 � 103 J, 

Ep � 3.0 � 103 J
4. 3.0 � 105 N/m

5.5 
1. a) 2.0 � 102 N/m

b) 1.0 J
c) 7.0 � 10�2 J

2. 2.45 N/m
3. a) 4.4 � 10�2 J

b) 2.7 � 10�1 J
4. 8.0 m/s
5. 9 cm
6. 0.49 m

5.6
1. 6.9 � 104 J
2. a) 590 W

b) 10 600 J
3. 2 � 107 W
4. 4.6 � 105 J

5.7
3. a) 30 m/s [W]

c) 4.5 � 105 J
4. a) p � 16.5 kg·m/s, Ek � 270 J; 

p � 0, Ek � 0
b) �12 m/s
c) 36 J, 3.4 J

5. v1f
� �3.3 m/s, v2f

� 1.7 m/s
6. v1f

� �68.8 cm/s, v2f
� 15.2 cm/s

8. a) 1.0 J
b) 0.425 J

9. a) � 28 J
b) � 10 J
c) 64%

6.1
1. a) 2.64 � 1033 J

b) �5.26 � 1033 J
c) �2.63 � 1033 J

2. 7.323 m/s2

3. b) 4.7 � 106 m

6.2
1. a) 2.7 � 1011 m 

b) 0.97
c) 55 000 m/s

2. 56 000 m/s 
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3. a) 423 m/s 
b) 3.84 � 1028 J 

5. 297.2 days

6.3 
1. a) 0.872 85 J

b) 0
c) 1.9 m/s

2. a) 51.83 s
b) 1.32 m/s 
c) 0.4224 J 

7.2 
1. a) 0.17 rad

b) 1.0 rad
c) 1.6 rad
d) 3.07 rad
e) 4.47 rad

2. a) 180°
b) 45°
c) 675°
d) 639°
e) 2.3 � 103°

3. a) 1.57 rad
b) 4.56 rad
c) 2.62 rad
d) 161 rad

7.3 
2. a) 1.1 � 102 m/s

b) 5.0 � 10�5 rad/s2, 
0.090 rad/s

3. a) 0.13 rad/s
b) 24 m/s2

c) 0
d) 2.4

7.4 
1. a) 3.58 � 103 rad

b) 44 rad/s2

2. a) 8.3 s
b) 7.3 rad
c) 1.2 cycles
d) 5.9 s

3. a) 6.03 s
b) �0.266 rad/s2

7.5 
2. a) �0.086 N·m

b) �2.8 turns, �0.93 turns, 
�0.51 turns

3. 0.693 kg·m2

4. a) 4.13 kg·m2

b) 18.4 N·m
c) 4.46 rad/s2

7.6 
1. a) 29 J

b) 6.9 J
c) 7.7 J

2. a) 5.3 J
b) 0

7.7 
1. 0.23 J
2. 2.0 � 103 J

7.8 
1. a) 1.1 � 104 J

b) 4.1 � 105 J
c) 4.2 � 105 J

2. a) 2.6 � 102 J
b) 10.8 m/s
c) 1.9 � 102 rad/s

7.9 
1. 1.94 � 1031 kg·m2/s
2. 7.1 � 102 kg·m2/s
3. 1.003 � 1042 kg·m2/s, 

1.003 � 1042 kg·m2/s

7.10 
2. 4.69 � 104 rad/s, 1.34 � 10�4 s
3. 29.3 km/s

7.11 
3. 0.56 m/s2

8.4 
1. 49 N 
2. 3.5 � 10�2 m
3. c) 56°

8.6 
1. a) �1.7 N [right]

b) 3.4 N [right]
2. �1.7 N [left]
3. b) 6.8 � 107 N/C, 1.7 � 107 N/C,

7.5 � 106 N/C
c) decreases �

1
4

�, decreases �
1
9

�

e) 4.2 N [right]
4. a) 3.7 � 106 N/C [left], 

0, 3.2 � 106 N/C [left]

8.7 
1. a) �6.8 � 10�1 J

b) �4.5 � 105 V
c) �4.5 � 105 V

2. a) q1: 2.0 � 10�8 J, q2: 5.0 � 10�9 J
b) 2

8.8 
1. 3.0 � 10�14 m
3. 6.0 m/s [left]
4. a) 3.8 � 105 m/s

b) 2.7 � 105 m/s
5. a) 3.2 � 10�15 J

b) 8.4 � 107 m/s

8.9  
1. 3.7 � 102 V
2. 4.7 � 104 N/C
3. 4.8 � 10�19 C

9.5
1. 0.90 N
2. 18 A
3. a) 7.1 � 10�5 T
4. 2.4 � 10�2 A
5. a) 0.66 m

b) 4.7 � 10�1 m [S], 4.7 � 10�1 m
below wire

6. a) 1.4 � 10�2 N/m
7. 0.36 N
8. 1.0 � 10�14 N [into page]

10.2
1. a) 75 min

b) 0.67 s
c) 1.80 s
d) 0.838 s

2. a) 60 Hz
b) 0.75 Hz
c) 0.009 23 Hz
d) 1.35 Hz

3. a) i) 2.22 � 10�4 Hz
ii) 1.49 Hz

iii) 0.556 Hz
iv) 1.19 Hz

b) i) 0.0167 s
ii) 1.33 s

iii) 108 s
iv) 0.74 s

5. a) 26 cm
b) �30 cm
c) 0 cm
d) 30 cm
e) 21 cm

10.3
4. a) 4.7 � 1014 Hz

b) 2.5 � 108 Hz
c) 1.5 � 1017 Hz

5. a) 2.0 � 10�5 m
b) 0.15 m
c) 1.0 � 10�14 m
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10.4
4. a) 2.3 � 108 m/s

b) 1.24 � 108 m/s
c) 2.0 � 108 m/s

5. a) 1.43
b) 2.0
c) 1.27

6. a) 18°
b) 10°
c) 16°

10.5
5. a) 1.81 � 108 m/s, 

2.02 � 108 m/s
b) 11.6%

11.4 
2. 713 nm
3. 20 cm
4. 42 cm

11.5 
2. 1.8 �m

11.6 
2. 6.9 �m
3. 55

11.8 
1. a) 11.5°

b) 22 cm
2. a) 22 cm

b) 11.5°
3. 11 cm
6. a) 197 nm

b) 5 km

11.9 
1. 12°, 24°, 38°
2. a) 4

b) 4
c) 5

3. a) 8.40 �m
b) 2334 slits

11.10 
1. 3000 lines/cm
3. 	red � 22.7°, 	violet � 12.2°, 

	green � 15.6°
5. 52 pm
6. 168°, 192°

12.2
1. a) 2.4 � 10�7 m
2. a) 3.2 � 10�6 m

12.3
1. a) 8 � 10�34 J·s, 2.9 eV
3. 5.79 � 10�19 J

12.4
2. a) 4.53 � 10�26 N·s

b) 3.1 � 10�27 N·s
c) 1.27 � 10�17 J
d) 5.27 � 106 m/s

12.5
1. 7.27 � 10�7 m

12.6
2. 3.05 � 10�7 m
3. Lyman: 10.2 eV, 13.6 eV; 

Balmer: 1.89 eV, 3.4 eV; 
Paschen: 0.66 eV, 1.51 eV 

12.8
1. 6.3 � 10�2 m
6. 1.32 � 10�13 m

13.2
1. 1.5 � 108 m/s
2. 1.1c [R]
3. 5.93 � 108 m/s

13.3
1. 189 m
2. 2 � 10�8 s (Phillip), 

2.5 � 10�8 s (Barb)
3. 49.9 bpm
4. 2.60 � 108 m/s
6. 2.95 � 108 m/s

13.4
1. 0.7c
2. 0.8c
3. 10.59 a
6. 3.97 � 108 m

13.5
1. 5.980 000 03 � 1024 kg
3. 3.33 � 10�14 kg
7. 6.98 � 105 m

13.6
2. c
4. 1.76 � 1010 ca

13.7
2. B
3. 2.8 � 10�5 g
4. 5.85 � 1018 J

13.8
1. 1.88 � 10�28 kg
2. 939.4 MeV/c2

3. 2.96 � 108 m/s
4. 9.38 � 10�6 m/s

14.1
3. a) 2.23 MeV

b) 1.12 MeV/nucleon
4. 35.48 u

14.2
2. a) 234

90Th
b) 244

94Pu
c) 219

84Po
d) 240

92U
e) 60

27Co
3. a) 32

16S
b) 23

11Na
c) 35

17Cl
d) 45

21Sc
e) 64

30Zn
4. a) 19

9F
b) 22

10Na
c) 46

23V
d) 239

92U
e) 64

28Ni

14.3
1. �

2
1
56
�

2. 2.97 � 109 a
3. 1.7 � 109 a

14.4
1. Bi
2. 1800 doses
4. 191 mSv

14.5
2. 50% effective
4. 7.87 GW
5. 2

14.6
1. 4.0 � 10�16 m
2. 11 kHz
3. a) 4.35 � 107 m/s

b) 0.216 m

14.7
2. a) 1

b) �1
c) 1
d) 0
e) �1

5. 57.1 MeV/c2
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Numerical Answers to End-of-chapter Problems

Chapter 1
16. a) 200 m

b) 0 m 
17. a) 23 m

b) 11 m [E]
18. 32 ft/s2

19. a) 18.5 km/h
b) 5.14 m/s

20. 9.5 � 1017 cm
21. 6.5 m/s, 7.1 m/s
22. a) 2.1 � 10�3 m/s 

b) 2.1 � 10�3 m/s [left]
23. a) 5.3 s

b) 17 s
24. 5.0 m/s
25. 6.6 s
26. 400 m/s2 [E]
27. 9.5 s
28. a) 6.0 s

b) 50 m
c) 12.0 s

30. a) 107
31. 3.7 m
32. a) 9.8 m/s2 [down]

c) 2.3 m
33. 1.4 s
34. �

v
h

1
�

35. a) B, C, D
b) A
c) 5 m/s, 0 m/s, �10 m/s
d) 9.1 m/s
e) 0 m/s
g) 30 m

36. a) 1 m/s2, 2 m/s2, �2.0 m/s2

c) 73 m
37. a) 0�5 s

b) 5�10 s
d) 5 s
e) �10 m/s2

38. a) Curly: 0 m/s2, Larry: 2.5 m/s2,
Moe: 5.0 m/s2

b) Curly: 100 m, Larry: 20 m,
Moe: 40 m

c) Moe
44. 16.4g
45. 6.2 � 104 N
40. 0.25 s
47. 3.4 m/s2

48. 4.7 N, �4.7 N
49. 9800 N

50. a) 39.2 m/s2

b) 6.1 � 103 N, 2.9 � 103 N
51. �3.1 N
52. 68 cm
53. 4.2 � 103 N
54. 6.0 � 10�6 N, 2.0 � 10�11 m/s2

55. �19.6 m/s2

56. 6.16 � 1017 N
57. 894 N

Chapter 2
14. a) 8.6 km [N] � 23 km [E]

b) 8.7 N [S] � 5 N [E]
c) 21 m/s2 [S] � 21 m/s2 [W]
d) 42 kg·m/s [N] � 2.2 kg·m/s

[W]
15. a) 7.7m

b) 6.4 m
16. ax � 3.3 m/s2, ay � �2.3 m/s2

17. 4.9 km [W12°N]
18. 22 m/s, 63° to horizontal
19. 83 cm [S49°W]
20. 56 m/s [N15°W]
21. 33 m/s2 [N2°W]
22. a) 0.44 h

b) 0.22 km
c) 1.9 km/h [N16°E]

23. a) [N16°W]
b) 1.7 km/h [N]
c) 0.46 h

24. 83 m
25. [E7.7°N]
26. [N38°E]
27. a) toward stern: v � 0.5 m/s [S];

toward port: v � 0.5 m/s [W]
b) toward stern: v � 2.3 m/s [N];

toward port: v � 2.8 m/s
[N10°W]

28. a) 4.8 m
b) 1.2 s
c) 6.4 m/s [E51°N]

29. a) [W37°N]
b) 3.3 s
c) 3.0 m/s [N]

30. 4.2 m
31. a) 19.6 m

b) 28 m/s, 44.4° below horizontal
32. 95 m
33. a) 0.52 s

b) At tourist’s feet
c) 26 m

34. 59 m
36. 36 m/s, 45° above horizontal
37. a) 32 N [N72°E]

b) 51 N [S49°W]
c) 22 N [S42°E]

38. a) 106 N [S8.5°E]
b) 0

39. 1.4 m/s2

40. 229 m/s [N26°E]
41. a) 4.9 � 102 N

b) 6.4 m/s
42. 0.68 m
43. 9.6 kg
44. 19°
45. a) 4.9 m/s2

46. a) 0.14 m/s2

b) 7.6 m/s
c) 53 s

47. 57 m
48. 17 s
49. a) 4.9m/s2, 98 N

b) 3.9 m/s2 [right]; 137 N, 176 N
c) 4.2 m/s2 [right], 84 N

50. 3.8 m/s2

51. 0.80
52. 2.4 s
54. a) 78 m/s2

55. 6.0 � 10�3 m/s2

56. 21 m/s
57. 19 m/s
58. 9.9 m/s
59. a) 4.9 N

b) 9.7 N
60. 49 N, 9.4 N
61. a) 5.9 � 103 N

b) 95 m
62. a) 2.0 � 1030 kg

b) �S � �
1
4

��E

Chapter 3
21. 20 N
22. 17 N
23. 566 N
24. 128 kg
25. 5.01 � 103 N, 1.04 � 103 N
26. a) 617.4 N

b) 2.4 m
27. 3.56 � 103 N
28. 1.1 kg
29. 75 N [left]
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31. a) 0.5 m from m1, 1.5 m from m2

b) 39.2 N
32. F1 � 1.1 � 103 N [down], 

F2 � 1.6 � 103 N [up]
33. 0.75 m [right], 1.25 m [up]
34. 1.25 m
35. 3.3 � 102 kg
36. 0.95 m from centre on 

17.0-kg side
37. 29.4 N, 39.2 N
38. Front legs: 1.05 � 102 N each,

back legs: 4.4 � 101 N each
39. a) 196 N [up]

b) 34.2 N [out horizontally]
40. 2.7 � 102 N
41. a) 3.1 � 102 N 

b) 1.2 m
42. 7.8 � 102 N [up]
43. 0.29 m
44. 1.9 � 103 N [up], 

2.5 � 103 N [down]
45. 0.75 N, 0.25 N
46. 9.5 � 102 N
47. 26º
48. 1.73 m
49. 5.2 cm (21.8º)
50. 26.6º
51. 1.6 � 103 N/m
52. 1.88 � 104 N/m
53. 25.4 kg
54. a) 7.5 � 102 N

b) 1.7 � 10�2 m
55. a) 9.8 � 10�8

b) 2.0 � 10�7 m
c) 1.7 � 106 kg

56. 8.32 � 104 N
57. 3.95 � 107 N/m
58. 7.1 � 108 N·m
59. a) 2.5 � 10�2 m

b) 3.01 � 10�4

60. a) Stress: 6.67 � 105 N/m2,
strain: 6.67 � 10�5

b) 2.0 � 10�4 m
61. 22.000 0775 m 

Chapter 4
16. 9.0 � 105 kg·m/s
17. 7.5 � 10�2 kg·m/s
18. 6.3 � 10�1 kg·m/s
19. 165.6 kg (glider)
20. 6.0 � 1026 m/s
23. 15 m/s
24. a) 1.2 � 103 kg·m/s

b) 1.2 � 103 kg·m/s

25. a) 1.86 s
b) 14.7 N
c) 27.3 kg·m/s

26. a) 66.5 kg·m/s
b) 66.5 kg·m/s 

27. 9 kg·m/s
30. a) 7.5 � 102 kg·m/s

b) 3.7 � 10�2 s
31. a) �5.3 � 105 N

b) �2.7 � 104 N
32. a) 1.1 � 101 kg·m/s

b) �1.3 � 107 m/s2

c) �3.9 � 105 N
d) 2.8 � 10�5 s
e) �1.1 � 101 kg·m/s

33. b) 6.0 � 107 N·s
34. 24.75 N·s [forward]
35. 1.4 � 103 N·s
36. 5.6 � 103 m/s
37. 2.5 m/s [S]
38. 4.8 m/s
39. 1.5 m/s
40. 0.33 m/s
41. 0 m/s
42. 4.8 � 104 kg
44. 4.4 � 106 m/s
45. �

3
7

�v
46. 2 � 103 s
47. b) 763 kg·m/s [E24.7°N]
48. 17 m/s [N1.4°W]
49. 35 m/s [E]
50. 6.7 � 10�25 kg, 1.7 � 107 m/s

[S32°W]
51. 3.3°
52. 1.058 � 103 kg
53. 5.63 m/s [U40°R]
54. 7.7 m/s [R20°U]
55. a) v1o

� 23 mm/s, v2o
� 0, 

v1f
� v2f

� 23 mm/s
b) v1o

� 23 mm/s [E], v2o
� 0, 

v1f
� 23 mm/s [E45°S], 

v2f
� 23 mm/s [E45°N]

c) pTo
� 0.0069 N·s [E], 

pTf
� 0.0098 N·s [E]

d) p1oh
� �0.0069 N·s, 

p1ov
� 0, p2oh

� 0, p2ov
� 0, 

p1fh
� p2fh

� p2fv
� �0.0049 N·s,

p1fv
� �0.0049 N·s

e) 0.0098 N·s [E]
56. 24.1 m/s [S26.6°W]
57. a) 15 000 kg

b) 133 m away from the 
larger mass 

59. 0.0069 N·s [E], 0.0098 N·s [E]

Chapter 5
11. a) 2.0 � 104 J 

b) 46 J
c) 2.7 � 10�18 J

12. a) 2.7 � 103 J
b) 2.5 � 103 J
c) 9.1 � 102 J

13. 18 m, 36°
14. 1.4 � 108 J
15. 2100 J
16. 0 J
18. a) 3.4 � 102 N

b) 5.8 � 102 N
c) 1.2 � 102 N

19. 5.4 � 104 J
20. a) 8.5 � 102 J

c) 3.8 m/s
21. a) 2.3 � 103 J

b) 3.9 � 10�4 J
c) 5.8 � 106 J

22. 1.4 � 102 kg
23. 3.0 � 104 m/s
24. 2.9 � 104 J
26. 14%
27. a) �2.8 � 105 N

b) 2.8 � 105 N
28. 1 m, 50 J, 8 m/s; 2 m, 225 J, 

17 m/s; 3 m, 425 J, 24 m/s
29. 55 N·s
30. a) 5 m/s

b) 12.5 J
d) 4.2 N

31. a) 38 J
b) 1.5 J
c) 9.2 � 105 J
d) 0 J

32. a) 4.5 � 102 kg
b) 1.5 � 104 J

33. 7.6 m/s
34. 20 cm
35. 4
36. a) A, F

b) 38 m/s
c) 19 m/s
d) 1.4 � 105 N

37. 17 m
38. 5.8 cm
39. 1.7 m
40. 1.1 � 103 m
41. 5.3 � 102 N/m
42. a) 50 J

b) 1.4 � 102 J
43. 2.7 m/s
44. 1.8 � 104 N/m
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45. 34 m/s
46. a) 0.77 m/s

b) 30 cm
47. 1.1 m/s
48. 6.0 � 102 N
49. 1.4 � 103 N/m
50. 2.3 � 102 m
51. 1.7 � 107 J, 4.8 kWh
52. a) 4.3 � 104 W

b) 58 hp
54. a) 1.6 � 105 W 
55. 511 W
57. a) 2 m/s, 5 m/s

b) 38 J
58. 5.8 m/s, 26 m/s
59. a) 7.0 kg·m/s, 7.7 J

b) 1.1 m/s
c) 3.8 J

60. 0.45 m/s
61. 5 m/s [W], 3 m/s [E]
62. a) 2.5 m/s

b) 7.5 m/s
63. a) 52 m/s
64. a) 1.7 m/s

b) 70 m/s

Chapter 6
13. 7.9968 � 1011 J
14. a) 776.4 km

b) 5.75 � 1010 J
c) 1.11 � 104 m/s

15. a) 1.66 � 1010 J
b) 1.66 � 1010 J

16. 1.1 � 104 m/s
17. 8.92 � 10�3 m
18. 1.91 � 108 m from Earth’s centre
19. 5.87 � 107 J/kg
20. 7671 m/s, 5552 s (92.5 min)
21. 35 872 km
22. 1.48 � 1010 J
23. b) T � r

�
3
2

�

24. �3.84 � 1028 J
25. 2.5 � 104 m/s 
26. 2.31 � 103 m/s
27. 7086 s or 1 h 58 min
28. a) 24 000 m/s

b) 3500 m/s
29. 2370 m/s
30. 0.25 Hz
31. 0.87 s
32. a) 2.93 J

b) 1.71 m/s
c) 1.27 m/s

33. a) 9.75 m/s2

b) 6.5 m/s2

34. a) 6.53 kW 
35. 5.7 � 108 N/m
36. 0.011 J
37. 3.3 � 10�4 m
38. a) 8.39 cm 

b) 6.96 cm 
c) 1.08 cm 
d) 3.41 � 10�10 cm 
e) 0 cm

39. 5.2 s
40. a) 5.2 s 

b) i) 0.357 J 
ii) 0.0186 J 

iii) 7.828 � 10�10 J 
iv) 0

Chapter 7
17. a) 0.0175 rad

b) �
	

2
� rad

c) 3.84 rad
d) 8.01 rad
e) 20.9 rad

18. a) 96.1 rad
b) �

3
2
	
� rad

c) 2.3 rad
d) 7.46 rad

19. a) 0°
b) 120°
c) 3600°
d) 2.67 � 104°

20. a) 0.56 cycles
b) �

1
2

� cycle
c) 0.14 cycles
d) 1.25 cycles

21. a) 80	 m
b) 268	 m
c) 86 m
d) 3.9 � 102 m

22. a) 30	 rad
b) 27 rad/s

23. 0.97 rad/s
24. a) 178.0 rad/s

b) 1.0 � 102 rad
25. a) 0.0222 rad/s2

b) 0.406 Hz
26. �0.21 rad/s2

27. a) �0.818 rad/s2

b) 198 rad
c) 31.5 cycles
d) 11 rad/s

28. a) �0.92 rad/s
b) �3.0 � 10�3 rad/s
c) 12 rad/s

29. 4.3 rad/s
30. 2.4 � 102 m/s2

31. a) 99.9 m/s
b) 0
c) 1.10 � 103 rev
d) 2.70 � 105 m

32. a) 2.6 � 102 rad/s
b) 2.1 � 102 m/s

33. 1.2 s
34. 0.93 s
35. a) 9.2 rad/s

b) 19 rad
36. a) �42 rad/s2

b) 3.5 � 102 rad
c) 2.0 � 104°
d) 4.5 s

37. a) 25 rad/s
b) 38 rad/s

38. a) 20	 rad
b) 63 rad/s
c) 17 rad/s2

39. a) 1.4 s
b) 1.5 � 104 rad/s2

40. 2.3 s
41. a) 38 rad

b) 7.2 rad/s
42. 5.63 � 106 s 
43. 3.56 s
44. c, a, b
45. a, b and c, e, d
46. 189 kg·m2

47. a) 0.15 kg·m2

b) 0.077 kg·m2

c) 0.088 kg·m2

d) 0.44 kg·m2

48. a) 0.010 kg·m2

b) 377 rad/s
49. 1.08 kg·m2

50. a) 3.0 kg·m2

b) 20.9 rad/s
c) 1.8 kg·m2

51. �4.8 � 104 J
52. a) 330 kg·m2

b) 3.24 � 102 J
c) 0.945 m/s
d) 1.4 

53. a) 1.92 � 1024 J
b) 1.27 m/s

54. a) 1.0 � 10�23 kg·m2

b) 6.3 � 103 rad/s
c) 2.0 � 10�16 J

55. a) 2.3 � 10�51 kg·m2

b) 4.6 � 1016 rad/s
c) 2.4 � 10�18 J

56. a) 5.7 m/s
b) 29 rad/s
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57. a) 4.9 m/s
b) 25 rad/s

59. 6.4 m/s
60. a) 0.0264 kg·m2

b) 4.0 kg·m2/s
61. a) 0.108 kg·m2

b) 250 rad/s
c) 27 kg·m2/s
d) 71.4 rad/s2

e) 7.7 N·m
62. a) 0.26 s

b) 71 rad/s
c) 0.11 kg·m2/s

63. a) 1.6 � 10�4 kg·m2

b) 2.2 � 10�3 kg·m2/s
64. a) 1.7 kg·m2

b) 22 kg·m2/s
65. 3.5 kg·m2

66. 1.56
67. increases by 4
68. a) 5.7 � 104 rad/s

b) 10 rad
c) 5.7 � 104 rad
d) 7.1 � 102 rotations

69. a) 5.7 rad/s
b) 6.0 rad/s
c) �0.96 rad/s

70. a) �9.2 rad/s
b) �12 rad/s
c) �6.5 rad/s
d) 40 rad/s

71. 2.6 rad/s
73. a) 0.138 m/s2

b) 3.99 s
c) 0.551 m/s
d) 184 rad/s
e) 0.0205 J
f) 1.43 J
g) 1.46 J

74. a) 0.138 m/s2

b) 1.03 s
c) 1.14 m/s
d) 380 rad/s
e) 0.0880 J
f) 6.16 J
g) 6.24 J

Chapter 8
34. a) 0

b) �

c) �

d) 0
e) �

35. a) �

b) �

c) �

d) �

36. a) �

b) e�

37. a) glass �, silk �
39. �

40. a) �

41. 9.38 � 1019

42. 6.9 � 1012

43. 6.4 � 10�8 C
44. �4.3 � 10�11 C
45. 1.5 � 107 electrons
46. a) �

1
1
6
�

b) 4 times 
c) �

1
4

�

47. �
1
2

�r
48. 2.3 � 10�8 N
49. a) 3.00 � 10�8 C

b) 4.5 � 10�8 C
50. �

�

3
1
�

51. b) 5.1 m 
52. a) 3.3 N [right]

b) 7.4 N [right]
c) 12 N [left]
d) 0.29 or 0.15 m [left of 

left charge]
54. 8.9 � 102 N [90° away from line

connecting other charges]
55. a) 43.1 N [out from centre 

of square]
b) 0 N

59. 1.8 � 105 N/C
60. 2.2 � 10�2 C
61. 3.6 � 104 N/C toward 

smaller charge
62. a) 3.8 � 106 N/C [left]

b) �1.86 � 102 N
63. 3.6 � 108 N/C [left]
64. 3.25 � 105 N/C [right]
65. 5.1 � 1011 N/C
66. 1.2 � 10�1 m 

[from larger charge]
67. 0 N/C
68. 1.1 � 106 N/C [90º from line

connecting other charges]
69. 6.0 J
70. 1.2 � 102 C
71. 2.3 � 104 V
72. 2.3 J
73. 1.9 � 105 V
74. a) 0.18 J

b) 0.14 J
75. 2.5 � 102 V
76. a) 5.0 � 10�4 N

b) 5.0 � 104 J
c) 1.6 � 10�4 kg

77. 4.78 � 105 m/s
78. 1.41 times faster
79. a) 1.1 � 1016

b) 7.3 � 107 m/s
80. a) 3.0 � 1010 m/s2

b) 1.202 � 10�15 J
81. 1.9 � 10�14 m
82. a) 2.5 cm

b) 6.0 � 105 m/s
83. 7.80 � 102 N/C
84. 1.81 � 103 V
85. a) 2.04 � 10�7 N/C

b) 6.1 � 10�9 V
86. 7.7 � 102 N/C
87. 3 � 103 V
88. 5.0 � 10�3 m
89. 2.67 � 10�1 m 
90. a) 4.2 � 10�19 C

b) � 3e�

91. a) 1.26 � 107 m/s
b) 7.26 � 106 m/s

92. a) 4.5 � 103 N/C
b) 1.2 � 10�4 N
c) 1.2 � 10�4 N
d) 2.7 � 10�8 C

Chapter 9
22. 8.1 � 10�2 m
23. 7.5 � 10�5 T
24. 4.2 � 10�3 m
25. 1.6 � 10�4 T
26. 1.8 � 10�2 T
27. a) 0

b) 4.0 � 10�4 T
28. 2.5 � 10�4 T
29. 24 A
30. a) 0.57 N [up]

b) 0.57 N [down]
31. a) 4900 A
32. a) 6.8 � 10�2 N

b) 2.7 N/kg
33. 4.3 � 10�3 m
34. 1.4 � 103 m
36. 1.3 � 10�9 N
37. a) 1.12 � 10�15 N 

[toward wire]
b) away from wire

38. a) 0
b) 2.36 � 105 T

39. 4750 m/s
40. 2500 V
41. 2.44 � 103 N
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42. 1.56 N [perpendicular to wire],
0.78 N [at 30º]

43. a) 2.8 � 10�2 T
b) 2.5 � 1016 m/s2

44. a) 7.4 � 106 m/s
b) 4.2 � 10�13 N

45. 1.5 � 10�8 s
46. 8.7 � 10�3 s 
47. a) clockwise

b) counterclockwise
48. a) clockwise (from top)

b) linear (at south end)

Chapter 10
21. a) 4 m

b) 5 cm 
c) 8 s
d) 0.1 s�1

e) 0.4 m/s
22. 3.125 cycles/s, 0.32 s/cycle
23. 1.2 cycles/s, 0.83 s/cycle
24. 0.017 s/cycle
25. a) 2.5 Hz

b) 0.4 s/cycle
26. i) 1.3 Hz, 0.77 s/cycle

ii) 0.75 Hz, 1.33 s/cycle       
iii) 5/9 Hz, 1.8 s/cycle 

27. a) 0.98 m
b) �0.087 m 
c) �0.71 m
d) 1 m

30. a) 2.9 s /cycle
b) 18 s/cycle
c) 0.78 s/cycle

31. a) i) 7.2 s/cycle 
ii) 44 s/cycle 

iii) 1.9 s/cycle
b) i) 1.8 s/cycle 

ii) 11 s/cycle 
iii) 0.49 s/cycle

32. a) 0.711 s/cycle 
b) 0.889 s/cycle 
c) 0.204 s/cycle

33. a) 2.3 � 103 N/m  
b) 8.0 � 102 N

34. a) 4.62 � 1014 Hz 
b) 5.00 � 1014 Hz
c) 5.17 � 1014 Hz
d) 5.77 � 1014 Hz
e) 6.32 � 1014 Hz
f) 7.50 � 1014 Hz

35. a) 8.28 min (0.138 h)
b) 2.1 � 10�2 min (3.5 � 10�4 h)
c) 3.2 � 102 min (5.4 h)
d) 5.1 min (8.4 � 10�2 h) 

36. 9.46 � 1015 m
37. 100 a
38. 5.33 � 10�7 s
39. 0.314 s
40. 8 � 1014 Hz�4 � 1015 Hz
41. 1.8 � 107 times
42. a) 0.5

b) 0.866
c) 0.707
d) 0.218
e) 0.963
f) 0
g) 1

43. a) 20°
b) 40°
c) 44.4°
d) 19.5°
e) 90°

44. 3.3 � 108 m/s
45. 8.1°
46. 0.98
48. a) 1.24 � 108 m/s

b) 1.97 � 108 m/s
c) 2.26 � 108 m/s
d) 2.31 � 108 m/s

49. a) 0.413
b) 0.658
c) 0.752
d) 0.769

50. 5.31 � 10�5 s
51. a) 54.9°

b) 35.2°
c) 54.9°

52. 36.9°
53. a) 37.5%

b) 20.7%
c) 5.85%

56. 53°
57. a) 53.1°

b) 56.3°
c) 40.9°
d) 45.7°

58. 1.73
60. a) 48.5%

b) 37.5%
c) 5.85%
d) 0.380%

61. 26.6°
62. 6.06%

Chapter 11
26. a) 33.4°

b) 0.662°
27. 0.55 m

29. a) 7.14°
b) 10.8°
c) 21.9°
d) 25.8°

30. 3.12 
m
31. 481 
m
32. 0.23 mm
33. 4.76 � 1011

35. 2.86 
m
36. 2.07
37. 531 nm
41. a) 86.8 nm

b) 203 nm
42. a) 218 nm

b) 109 nm
43. a) 1.40 m

b) 520 nm
c) 2.5 m

44. a) 1.5 � 1020 Hz
b) 3.2 Hz

46. a) 3.78°
b) 2.87°

47. 837 nm
48. 140 mm, 174 mm
49. a) 6.47°

b) 8.10°
50. 6.95 
m
51. a) 171 mm

b) 143 mm
52. 4.90°
53. a) 6.1 mm

b) 0.10°
54. 450 nm
55. 0.304°
56. 1
57. 27 m
58. a) 2

b) 2
59. 11
60. a) 1

b) 1
c) 2

61. 1.39 � 10�2°
62. 500
63. 0
65. 7.9 � 10�2°
66. 49°

Chapter 12
19. 4581.27°C
20. 1.07 � 10�3 m
21. 2.32 � 10�5 m, infrared
21. 6.36 � 1018 photons/s
23. 0
25. 8.15 � 1019 photons/s
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26. a) 2.83 � 1052 Hz
b) 4.28 � 10�19 J

28. 2.2 � 10�7 m
30. a) 7.5 � 1017 Hz

b) 1.66 � 10�24 N·s
c) 5.53 � 10�33 kg

31. 5.02 � 10�19 N·s
32. 6.63 � 10�29 N·s
33. 4.48 � 10�12 m 
34. 2.04 � 10�9 m
35. increases by 202%
36. 2.9 � 10�34 m
37. 3371 m/s
38. 1.37 � 1027 m/s
39. a) 1.73 � 10�10 m
40. 4.34 � 10�7 m, violet
41. a) �12.75 eV

b) �2.55 eV
42. 2.64 � 10�10 m
43. 8.22 � 10�8 N
44. 6.56 � 1015 Hz
48. 7.27 � 10�7 m
49. 1.98 � 10�5 m/s

Chapter 13
28. a) 3.16 � 10�18

b) 3.3 � 10�16

c) 3.6 � 10�8

d) 7.28 � 10�6

e) 7.33 � 10�3

29. a) 120 km/h 
b) 180 km/h [W], 80 km/h [E]
c) Snoopy by 0.139 h

30. 0.60 m
31. 2.83 � 108 m/s
32. 6.12 � 10�7 s
33. 1.04 � 102 m
34. 7.58 � 1010 m
35. 6.81 � 10�12 s
36. 82.7 m
37. 2.45 � 108 m/s
38. 6.68 � 10�8 s
39. 9.47 � 1015 m
40. 500 m
41. 1.66 � 108 m/s
42. 9 � 108 m

43. 1.8 � 108 m/s
44. 0.691 ca
45. 1.52 � 10�3 m
46. 7.81 � 10�15 m
47. 3.00 � 10�7 kg
48. 3.67 � 10�26 kg
49. 2.26 � 10�2 T
50. 2.6 � 108 m/s
51. 3.00 � 108 m/s
52. 1.42 � 108 m/s
53. 2.88 � 108 m/s
54. 2.99 � 108 m/s
55. 2.47 � 108 m/s
56. 1.50 � 108 m/s
57. 3.56 � 10�13 kg
58. 1.02 � 10�6 kg
59. $2 � 109

60. 0.5c�0.9c
61. electron
62. 2.9 � 10�1 N·s
63. 4.16 � 1015 kg
64. 2.4 � 10�28 kg
65. 937.8 MV
66. A 
67. 10 501 MeV
68. 2.999 999 96 � 108 m/s
69. A 

Chapter 14
43. a) Cl

b) Rn
c) Be
d) U
e) Md

44. a) 17 p�, 18 n
b) 86 p�, 136 n
c) 4 p�, 5 n
d) 92 p�, 146 n
e) 101 p�, 155 n

45. 17 697 MeV/c2

46. 0.114 u
47. Cu, 63.55 u
48. 7.5 MeV/nucleon
49. 4/3 : 1/1
50. 20.55 MeV
51. 5.41 MeV

52. 5.0 � 10�14 m
54. 0.789 MeV
55. 0.546 MeV
56. 5.44 � 10�21 N·s
57. 7.42 � 10�16 J
58. 5.07 � 10�16 m
59. 39.7%
60. 0.85:1
61. 0.79 � 10�6 g
62. 14 d
63. 5.78 � 108 a
64. 1507 a
65. 4

2He, 16
8O, 48

20Ca, 40
20Ca, 78

28Ni, 132
50Sn

66. 0.6996 MeV
67. 0.013 mG
68. 3.64 
69. 8 alpha, 6 beta
70. 232

90Th
71. 4.8 fm
72. 4.2 MeV
73. 1.67 � 1017 Bq, 1.61 � 1017 Bq
74. 5.49 MeV
75. 883 kg
76. 24.2%
77. 5 � 1015 J
78. 8
79. 1.782 � 104 m/s
80. 92

36Kr
81. 0.999639c
82. 1.73 � 10�19 m
83. 1.16 fm
84. 2.28 T
85. 8.0 GeV
86. 1.87 T
87. a) 0

b) 1
c) 0
d) 0

89. u�d�d�, u�u�d�
90. Os
91. u�d
92. 8 � 10�24 s
96. p2 � �2.165 � 10�13 N2·s2

98. �1
99. 1
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Glossary

Additive colour theory—the combination of red, green,
and blue that results in a neutral (white) colour
Angular acceleration—the change in angular velocity of
an object over a period of time
Antiparticle—an elementary particle having the same mass
as a given particle but the opposite charge
Antiquark—the antiparticle of the quark
Apogee—the point in a celestial body’s orbit where it is far-
thest from Earth
Atoms—small particles that make up all matter

Balanced forces—equal forces acting in opposite directions,
canceling each other out 
Barycentre—the centre of mass in any system of celestial
objects moving under mutual gravity
Beams—the main horizontal supports of buildings
Beta decay—Radioactive disintegration with the emission
of an electron or positron accompanied by an antineutrino
or neutrino
Binding energy—the energy required to break a nucleus
into its smaller component particles
Black hole—a region of spacetime from which matter and
energy cannot escape; a star or galactic nucleus that has
collapsed in on itself to the point where its escape velocity
exceeds the speed of light 
Black-body radiation—the characteristic radiation re-radiated
by an object or system that absorbs all radiation incident
upon it 
Black-body radiator—a body or surface that can absorb
all the radiation that falls on it and re-radiate at a charac-
teristic spectrum
Bohr radius—the mean distance of an electron from the
nucleus in the ground state of the hydrogen atom
Bone marrow—a soft fatty substance in the cavities of
bones, of major importance in blood cell formation
Bound system—a system in which work must be done to
separate the constituents 
Breed—create by means of nuclear reaction
Brewster’s angle—a special angle of incidence at which
100% polarization can occur
Buckminsterfullerene (C60)—an extremely unstable form
of carbon whose molecule consists of 60 carbon atoms 
Bulk modulus (B)—the ratio of the change in pressure
applied on a body to the corresponding fractional change in
volume that this pressure produces
Buttress—a structure built against a wall or building to
strengthen and support it

Cathode rays—beams of electrons emitted from the cath-
ode of a vacuum tube
Cathode-ray tube—a vacuum tube in which cathode rays
produce a luminous image on a fluorescent screen, such as a
television screen or computer monitor

Centre of mass—a single point at which the entire mass of
a body is considered to be concentrated for the purpose of
analyzing its motion
Centripetal force—the force required to give the centripetal
acceleration that moves a body along a curved path
Chain reaction—a reaction during which the number of
subsequent fission reactions increases at a geometric rate
Cherenkov radiation—Radiation emitted by a massive
particle that is moving faster than light in the medium
through which it is travelling
Chromatic aberration—the failure of different wave-
lengths of electromagnetic radiation to come to the same
focus after refraction
Closed system—an isolated system having no interaction
with an environment
Coefficient of friction—the ratio of two forces, the frictional
force and the normal force
Coefficient of kinetic friction (�k)—the ratio between the
force of friction and the normal force when the object is moving
Coefficient of static friction (�s)—the ratio between the
force of friction and the normal force when the object is at
rest; �s � �k

Colour charge—the charge carried by gluons that bind
quarks together in hadrons by way of the strong nuclear
force. There are three colour charges and three corresponding
anti-colour (complementary colour) charges. Quarks con-
stantly change their colour charge as they exchange gluons
with other quarks.
Colour force field—the force field created when two or
more quarks close to each other rapidly exchange gluons that
bind the quarks together 
Compton effect—the increase in wavelength of x-rays after
collision with electrons, providing evidence for the
wave–particle duality of light
Contact—touch
Continuous spectrum—electromagnetic radiation at all
wavelengths 
Coulomb (C)—the SI unit of electric charge
Critical mass—the minimum mass of nuclear material
needed for a self-sustaining chain reaction to take place

Dark matter—hypothetical non-luminous material in space,
not detected, but predicted by many cosmological theories
Diffraction grating—a large number of closely spaced
parallel slits
Displacement—the net travel of an object as measured
from its starting point to its end point in a straight line,
with direction
Dose equivalent—the product of absorbed dose and the
quality and distribution factors compensating for variations
in biological effectiveness of different types of radiation
Dynamic equilibrium—see Uniform motion 



Elastic modulus (E)—see Young’s modulus
Elastic potential energy (Eg)—energy stored in elastic
materials as the result of their stretching or compressing
Electric field—the space around a single charge or an array
of charges in which electric forces act
Electric potential energy—energy stored when static elec-
tric charges are held at a certain distance apart
Electromotive force (EMF)—the electric potential difference
(voltage) between two points where no external current flows
Electroweak force—the combined interaction of the electro-
magnetic and weak interactions 
Energy well—a region where an object has a low energy
relative to surrounding regions; extra energy is needed to
remove an object from such a region
Equilibrium—a condition of balance in which opposing
forces equal each other
Equipotential lines—lines along which the potential (elec-
tric field strength) is equal at all points
Escape trajectory—a parabolic path where an object has
just enough energy to depart a system
Ether—a medium formerly assumed to permeate space and
fill the gaps between particles of matter, and conduct light,
electric waves, etc.
Event horizon—the boundary of a black hole where the
force of gravity is so strong that light cannot escape it

Field map—a set of lines that represent the shape of a mag-
netic, electric, or gravitational field around a body
Flavour—type of quark (i.e., up, down, strange, etc.)
Flow-through capacitor—a capacitor through which
water flows
Fluorescent—exhibiting the radiation produced from certain
substances as a result of incident radiation of a shorter wave-
length, such as x-rays, ultraviolet light, etc.
Flux—the rate of flow of mass, volume, or energy per unit
cross-section normal to the direction of flow
Footprint—the support base of a structure
Force—any cause that produces, changes, or stops the
motion of an object
Friction—a force produced from contact between two surfaces

Gimbal—a device, usually composed of rings and pivots, for
keeping objects, especially instruments such as a compass,
horizontal aboard a ship or aircraft
Glancing collision—a collision during which the objects
involved are deflected in more than one dimension
Grand unified theory (GUT)—a theory that would show the
interdependence of the electromagnet, weak, and strong forces
Gravitational potential energy (Eg)—the energy stored in
an object as the result of its vertical position (i.e., height) due
to gravitational attraction 
Gravitational well—a region of lower gravitational potential
energy relative to some other region
Gravity—the force that attracts a body toward the centre of
any body having mass
Group velocity—the linear velocity of a wave

Half-life—the amount of time required for half the number
of unstable nuclei in an isotope to decay
Hydrogen bonds—weak intermolecular forces that attract
and bond the positive and negative poles of water molecules 
Hydroxyapatite—crystals containing calcium that provide
strength to bone tissue 

Induce—to cause a change without contact
Induction—the process by which electrical or magnetic
properties are transferred from one circuit or object to
another without direct contact
Inelastic—pertaining to a spring that has been stretched
past its elastic limit
Inelastic collision—a collision during which there is an
overall loss of translational kinetic energy
Instantaneous velocity—velocity of an object at a spe-
cific time
Intensity—the amount or degree of strength of heat, light,
or sound per unit area or volume
Ionized—converted to an ion (charged particle) by having
(an) electron(s) removed 
Isotopes—atoms of the same element type that have different
numbers of neutrons

Kinematics—a sub-branch of mechanics dealing with
motion only, without regard to any underlying causes
Kinetic friction—the force that acts in a direction opposite
to that of the object’s motion

Leptons—a class of fundamental particles that consists of
the electron, muon, tauon, and three types of neutrino
Leyden jar—a device for collecting and storing electric charge
Line spectrum—a set of wavelengths at which the excited
atoms or molecules in the source emit electromagnetic radia-
tion consisting of characteristic emission lines 
Linear momentum—the product of a body’s mass and velocity 
Linearly polarized—see Plane polarized
Lodestone—iron oxide (magnetite) that is naturally magnetic
Longitudinal wave—a wave where particles of the medium
vibrate parallel to the direction of wave motion

Macroscopic—visible by the naked eye 
Magnetic domain—the effect produced when dipoles of a
magnet line up
Magnetron—an electronic tube that oscillates microwaves 
Mechanics—the study of motions and forces
Members—constituent parts of a complex structure
Metabolize—to build up food into living matter and use living
matter so that it is broken down into simpler substances or
waste matter, giving off energy
Metric—a decimal system of weights and measures based on
the metre, litre, and kilogram
Microscopic—visible only by looking through a microscope
Moderate—to slow down
Modulus—a constant indicating the relation between the
physical effect and the force producing that effect
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Moment of inertia (I)—the sum of all the products formed
by multiplying the magnitude of each element of mass by the
square of its distance from the axis
Monochromatic—having one wavelength or frequency
of light

Neutral equilibrium—an object’s state when any disruptive
force acts horizontally but the vertical height of the centre of
mass remains unchanged 
Neutron star—a compact stellar object that is supported
against collapse under self-gravity by the pressure of the
neutrons of which it is primarily composed; formed as the end
product of the evolution of stars of mass greater than 4–10
solar masses
Newton’s law of universal gravitation—two bodies
attract each other with equal and opposite forces; the magni-
tude of this force is proportional to the product of the two
masses and to the inverse square of the distance between
their centres 
Normal force (Fn)—the reaction force pressing back on the
object exerting an action force; perpendicular to the surface
on which the action force acts 
Nucleons—the particles that make up an atom’s nucleus
(i.e., protons and neutrons)
Null result—the result obtained regardless of the way an
experiment is done

Open system—an entity with a boundary that is not closed

Parallel-axis theorem—if the moment of inertia of a body
of mass M about an axis through its centre of mass is I0, then
the moment of inertia about a parallel axis a distance l from
it is (I0 + Ml2)
Pauli exclusion principle—no two identical particles in a
system, such as electrons in an atom, can have an identical
set of quantum numbers
Perigee—the point in a celestial body’s orbit where it is
nearest Earth
Periodic wave—a wave occurring at regular intervals
Phase—the relationship of position and time between two
points on a wave
Phase shift—the relative position of the wave compared to
a standard representation
Phase velocity—the speed of propagation of a pure sine wave
Phosphors—synthetic fluorescent or phosphorescent sub-
stances used in cathode ray tubes that emit light when subjected
to radiation
Plane polarized—light that has had one of the components
of its electric field absorbed, so its electric field oscillates in
one plane only
Point of insertion—the end of a muscle that is attached to
the part of the bone that moves when a muscle contracts 
Polaroid—a material that polarizes light that passes through
it (i.e., removes a component of its electric field)
Positron—the antiparticle of an electron
Posts—the main vertical supports of buildings

Post-stressed—having the  reinforcement in a concrete
beam pulled after the concrete has been placed
Potential energy—the stored energy of position of an object
Precessing—the slow movement of the axis of a spinning
body around another axis
Preferential direction of transmission—a characteristic
of a Polaroid that causes it to absorb one component of light’s
electric field, allowing only one component to pass through
Pre-stressed—having the reinforcement in a concrete beam
pulled before the concrete has been placed
Principle of complementarity—a given system cannot
exhibit both wave-like and particle-like behaviour at the
same time
Probability distribution—a mathematical function that
describes the probabilities of possible events in a sample space
Propagate—transmit, as in a wave through a medium
Proton–proton cycle—a sequence of fusion reactions
within a star that leads to the creation of helium and energy
Pulsar—see Neutron star

Quality factor—a number by which the absorbed dose is
multiplied to reflect the relative biological effectiveness of
radiation. The result is the dose equivalent.
Quanta—discrete quantities of energy proportional to the
frequency of radiation they represent; the smallest amount of
energy capable of existing independently
Quantum electrodynamics—the study of the properties of
electromagnetic radiation and the way in which it interacts
with charged matter in terms of quantum mechanics
Quark—a particle that is the fundamental constituent of
hadrons and that interacts via the strong force, which is
mediated by gluons

Radioactive decay—the continuous disintegration of the
nuclei of unstable elements 
Recoil velocity—the speed at which a device or object
moves backwards after firing a projectile
Rectilinear propagation of light—light travelling in a
straight line
Relativistic length—the length measured in a reference
frame in which the observed object is moving at a speed close
to the speed of light
Residual force—the strong force that protons and neutrons
exert on each other due to the colour charge of the quarks
that comprise them
Resolving power—a measure of the ability of a lens or opti-
cal system to form separate and distinct images of two
objects with small angular separation
Rest mass—the mass of a stationary object 
Restoring force—a force that acts in an equal and opposite
way to another force in order to restore a displaced system to
the equilibrium position
Retrograde motion—the apparent backward motion of a
celestial body
Rotational inertia—the inertia of an object rotating on an
axis that does not pass through its centre of mass
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Scalar—a quantity specified by a value (magnitude) only
and no direction
Sedimentation—deposition of material in the form of a
sediment, as a geological process, or as a liquid in a tank,
centrifuge, etc.
Shape—the pattern, strength, and direction of a field (electric,
magnetic, gravitational) 
Shear modulus (G)—the strength factor for a material under
shear stress, expressed by the relationship of the shear force
applied to it to the change in position produced by this force 
Sieverts (Sv)—the derived SI unit of dose equivalent,
defined as the absorbed dose of ionizing radiation multiplied
by internationally agreed-upon dimensionless weights
Simple harmonic motion—a form of periodic motion in
which a point or body oscillates along a line about a central
point in such a way that it ranges an equal distance on either
side of the central point that is always proportional to its dis-
tance from it
Sinusoidally—in a way that maintains the same sine-
wave phase
Snell’s law—the ratio of the sines of the angles of incidence
and refraction of a wave is constant when it passes between
two given media
Spacetime—a geometry that includes the three dimensions
of space and a fourth dimension of time where an event is
identified by a point in a four-dimensional continuum 
Spin quantum number—a number that describes an elemen-
tary particle’s spin direction
Stable equilibrium—the state of an object when the vertical
line from the centre of mass remains inside the area of the
base of the body
Static equilibrium—an object’s state of no motion when all
the forces acting on it are balanced
Static friction—the force that tends to prevent a stationary
object from starting to move
Stress—the force per unit area on a body that tends to cause
it to deform; a measure of the internal forces in a body
between particles of the material of which it consists as they
resist separation, compression, or sliding in response to
externally applied forces
System—an object or group of objects considered as a separate
entity for the purpose of restricted study

Tangential acceleration—the tangential, linear acceleration
of a point on a rotating object at a distance r from the axis
of rotation
Tangential velocity—the linear velocity of a point on a
rotating rigid object at a distance r from the axis of rotation
Tendons—cords or strands of fibrous tissue that connect
bones to muscles, thereby giving one mobility
Tensile forces—forces that pull
Terminal velocity (vt)—velocity reached when the upward
frictional force on a falling object balances the downward
force of gravity
Test charge—a small charge used to check for the presence
of an electric field

Test compass—a small compass used to check for the presence
of a magnetic field
Test magnet—a small magnet used to check for the presence
of a magnetic field
Test mass—a small mass used to check for the presence of a
gravitational field
Thrust—the force exerted by a high-speed jet of gas, etc.,
ejected to the rear of a vehicle, producing forward motion
Time dilation—the change in the rate time passes as an
object approaches the speed of light
Total mechanical energy—the sum of an object’s kinetic
and potential energies
Total moment of inertia—see Rotational inertia
Transuranic elements—elements having a higher atomic
number than uranium
Transverse wave—a wave the direction of which is perpendi-
cular to the direction of vibration of the particles of the medium
Travelling wave—a wave in which the medium moves in
the direction of propagation
Truss—a metal or wooden structural framework consisting
of rafters, posts, and struts, supporting a roof or bridge, etc.
Twin paradox—a paradox resulting from the special theory
of relativity; if one of a pair of twins remains on Earth while
the other twin makes a journey to a distant star at close to
the speed of light and subsequently returns to Earth, the twins
will have aged differently. The twin remaining on Earth will
have aged more than the twin who travelled to a star

Unified field theory—a theory that unifies all field theo-
ries; that is, the fundamental forces of nature (the weak
force, the strong force, gravity, and electromagnetism)
Uniform motion—motion at a constant speed in a straight line
Uniform velocity—See Uniform motion
Unstable equilibrium—an object’s state when a disruption
moves the vertical line from the centre of the mass outside of
the base 
UV catastrophe—a shortcoming of the Rayleigh-Jeans law,
which attempted to describe the radiancy of a black body at
various frequencies of the electromagnetic spectrum

Vector—a quantity that is specified by both a magnitude and
a direction
Viscosity—the property of a fluid that tends to prevent it
from flowing; the frictional resistance of a fluid to the
motion of its molecules

Wave–particle duality—the principle of quantum mechanics
that implies that light sometimes acts like a wave and some-
times like a particle, depending on the experiment you are
performing 
Weight—the gravitational pull on an object toward Earth’s
centre 

Young’s modulus (E)—an inverse constant of the ratio of
the longitudinal stress applied to a body to the strain produced;
indicates how much the length of an object will change when
subjected to a certain force
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Symbols and numbers
3-D movies, 515

A
Absorbed dose, 703, 704 table
Absorption spectra, 506
Acceleration, 9, 10

analysis in a yo-yo, 353
centripetal, 100, 325
due to gravity, 20
graphical derivation of, 27
linear vs. angular, 323, 326 
tangential, 324

Achromatism, 515
Action–reaction forces, 39–42
Additive colour theory, 731
Affleck, Ian, 735
Air bags, 267
Air wedges, 552
Al-hazen, Ali, 482
All-terrain vehicles, 158, 159
Alpha decay, 691, 696 illus.
Alpha particles, 690–693
Ampere, A, 455
Ampère, André Marie, 453
Ampère’s law, 453
Amplitude modulation, 495
Amplitude of a wave, 488
Analyzer of a Polaroid, 510
Angle of magnetic inclination 

(also Dip angle), 450
Angular acceleration, 323
Angular displacement, 318, 319
Angular momentum, 347–350, 610
of a gyroscope, 354, 355
Angular motion conventions, 319 illus.
Angular velocity, 322
Angular work, 339–341
Anisotropic crystals, 512, 513
Annihilation, 723, 732–734
Anode, 413
Antibaryons, 724 table
Antigravity, 285
Antimatter, 720
Antineutrino, 694
Antiparticle, 694, 722
Antiquark, 723–725 illus.

colours of, 731 table
Apocynthion, 301
Arc length, 318, 319

Arch, 171
Archimedes, 2
Aristotle, 2, 186, 482
Artificial gravity, 327
Atom, 725 illus

Bohr-Rutherford model, 372
electrical charge, 373–375
nuclear structure of, 686

Atomic bombs, 707–709
Atomic mass number, 686
Atomic number, 686
Average speed, 8
Average velocity, 8, 26
Avogadro’s number, 706

B
Bacon, Francis, 186
Balanced forces, 33

and centre of mass, 130–132
problem solving, 85, 86

Balmer series, 608, 609
Balmer, Johann, 608
Banked curves, 106
Bartholinus, Erasmus, 512
Barycentre, 300
Baryons, 723–725
Beam splitter, 544
Beams, 170
Becquerel, Bq, 703, 704 table
Bessemer, henry, 171
Beta decay, 693–696, 733
Beta emission, 695
Beta particles, 690, 693–696
Binding energy, 297, 298

of nucleons, 688, 689
Biot’s law, 452, 453
Birefringence, 513, 517, 518
Black hole, 716
Black-body radiation, 595, 596
Black-body radiator, 499
Bohr atom, 608–614
Bohr radius, 611
Bohr, Niels, 608 illus.
Bohr’s principle of complementarity,

614
Bohr-Rutherford model of the atom,

372 illus., 721 illus.
Bose, Nath, 727
Bosons, 727, 728
Bound system, 301
Bragg, W.L., 572
Bragg’s law, 572
Brahe, Tycho, 2
Breeding in fusion reactions, 715

Brewster’s angle, 511, 512
Bright filament lamp, 506 illus.
Brockhouse, Bertram, 735
Brooks, Harriet, 735
Bubble chamber, 722 illus.
Bucherer, H., 652
Bulk modulus, 165 table
Buttress, 171

C
Calandria, 711
Calcite crystals, 512, 513
CANDU reactor, 711
Capacitance, 418
Capacitors, 418, 419
Carbon dating, 698–700
Cartesian coordinate system, 79
Cathode, 413
Cathode rays, 413

and motor principle, 462
Cathode-ray tube, 413
Cavendish, Henry, 48, 49, 377
Cavendish’s torsion balance, 377 
Centre of mass (also Centre of 

gravity), 128, 129, 130
and linear momentum, 211, 212
and parallel-axis theorem, 337

Centrifugation, 107–109
Centrifuge, 107–109
Centripetal acceleration, 100, 325
Centripetal force, 103–110, 295
Centripetal magnetic force, 461, 462
Chadwick, James, 701
Chain reaction, 708
Change in potential energy (�Ep), 289
Charge (Q), 372

equation for, 380
of an elementary particle, 415–417 
of capacitors, 418, 419

Charge distribution, 388
Charge-to-mass ratio, 463–465
Charging capacitor, 418
Chromatic aberration, 515
Circle, equation of, 492
Circularly polarized light, 516
Classical physics, 2
Closed (isolated) system, 199, 230,

231 illus.
Cockcroft, John, 701
Coefficient of friction, 44
Coefficient of kinetic friction, 45
Coefficient of static friction, 45

on an inclined plane, 91



Coherence, 537
and holography, 546

Collision
graphical representations of, 264

table, 266 table
momentum in, 199
of snow mobiles, 214, 215
safety during, 267
one and two dimension problems,

265 illus.
Collision dynamics of nuclear 

particles, 710
Colour charge, 731
Colour theory, 731, 732 table
Compact discs (CD) players, 331, 

574, 575
Components of a force, 235, 236
Compression, 486 illus.

in sound waves, 487 illus.
Compressive strength, 169 table
Compressive stress, 162 table, 165 table
Compton effect, 603–605

and linear momentum, 210, 
211 illus.

Compton, Arthur Holly, 210, 603 illus.
Conductor, 375
Construction, stress and strain in,

170, 171
Constructive interference, 534, 536
in single-slit diffraction, 557–561
single vs. double slit patterns, 562 illus.
Contact, in transfer of charge, 375,

376 table
Contact forces, 32
Continuous spectrum, 506, 568
Copernicus, Nicolas, 2, 186
Cosine law, 67, 206
Cosine wave, 488 illus., 490, 492
Coulomb (C), 380
Coulomb, Charles Augustin de, 377
Coulomb’s constant, 381
Coulomb’s law, 377–387

and field strength, 395–398
Crest, 534 illus.
Critical damping, 308
Critical mass, of fission, 708, 709 illus.
Critical tipping angle, 157
Crystals, x-ray diffraction on, 572
Curie, Irene, 695
Curie, Marie, 690
Curie, Pierre, 690
Current-carrying conductor

field strength around, 452–454
magnetic fields in, 444 illus.

Curved pitch, in baseball, 112
Cusanus, Nicolas, 186
Cyclotron, 652

D
Dalton, John, 721 illus.
Damped simple harmonic motion,

308, 309
Dark matter, 734
Daughter nucleus, 691
Davisson, Clinton J., 608
de Broglie wavelength, 718
de Broglie, Louis, 606 illus., 610
de Broglie’s equation, 606
Decay, 732–734
Decay series, 702

and the food chain, 704, 705
Degrees, converting from radians,

319, 321
Demagnetization, 438 table
Democritus, 371, 721 illus.
Derived unit, 9
Descartes, René, 482
Destructive interference, 534, 536

in single-slit diffraction, 556–561
Determinacy, 616
Deuterium, 687

in fusion reaction, 713, 715
Diamagnetism, 443
Dichroism, 508
Diffraction, 553–562

applications of, 569–572
single vs. double slit patterns, 

562 illus.
Diffraction grating, 505, 563–568
Diffraction-grating equation, 564, 565
Dimensional unit analysis, 

for work, 237
Dipole, 392

in magnetism, 437
Direction

convention for field strength, 394
conventions for current flow, 442
conventions for rotation, 136, 
conventions for torque, 140
defining, 7
of centripetal motion, 101
of magnetic fields, 441–444
right-hand rule for torque, 

135 illus.
Discharging capacitor, 418
Dispersion, 505, 571
Displacement, 5, 6, 7

graphical derivation of, 28
Distance, 5, 6, 7

linear vs. angular, 325, 326 illus.
Domain theory, 437, 438
Dose, 703
Dose equivalent,703, 704 table
Double-slit equations (see Young’s

three double-slit equations)

Drag, 112
Dynamic equilibrium, 128
Dynamics, 5, 32, 33

E
Eccentricity, 301
Eiffel tower, 171
Einstein, Albert, 483, 501, 598 illus.,

634 illus., 683 illus.
Elastic collision, 260, 264 table

equation for one-dimensional cases,
260–263

Elastic modulus (see Young’s modulus)
Elastic object, 250
Elastic potential energy (Ee), 251–253
Elasticity, 159, 160
Electric bell, 445 table
Electric charges

transfer of, 373–376 
vector nature of forces between,

384–386
Electric dipole, 390
Electric double-layer capacitors, 419
Electric field, 388

of a transverse wave, 487
polarization of, 507

Electric field configurations, 391 table
Electric field lines, rules for 

drawing, 390
Electric field strength, of a parallel-plate

apparatus, 414, 415
Electric force, vs. charge position, 406
Electric potential, around a point

charge, 409–411
Electric potential energy (Ee), 400–403

vs. charge separation, 408 illus.
Electrical emission lines, safety of,

451, 452
Electromagnet, 443
Electromagnetic fields, safety of, 

451, 452
Electromagnetic induction, 466–471
Electromagnetic spectrum, 495 illus.,

497 illus.
Electromagnetic strength, factors

determining, 444 table
Electromagnetic waves, 485

generation of, 499
properties of, 494 illus., 495
waves, self-propagation of, 

471 illus.
sources and uses, 498 table

Electromagnetism, 441–445
Electromagnets, applications of, 

445 table
Electromotive force, 467

in elementary particles, 728
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Electron, 372
acceleration, 639
affinity, 375
capture, 695, 696 illus.
charge of, 380
charge-to-mass ratio, 463
circular motion of, 653
conservation of energy of, 609
conservation of momentum of, 610
determining the mass of, 462–464
dilated, 653
emission in beta decay, 693, 

696 illus.
energy vs. light intensity, 599
energy, En, 612, 613
in magnetic field, 656, 657
mass of, 408
oscillators, 504 illus.
volt, eV, 403, 595, 670

Electronic water purification 
device, 419

Electroscope, 372, 373 illus.
Electrostatic force, 371

vs. gravitational force, 285, 
387 illus.

Electrostatic series, 375 table
Electroweak force, 733
Elementary charge, 415–417
Elementary particles, 720–726

fundamental forces of, 734 illus.
Elliptical orbit, 299 illus.

total energy of, 301, 302
Emission spectra (see Line spectra)
Empedocles, 720
Energy

analysis in a yo-yo, 352
and gravity, 285–294
conservation of, 344–346
fusion vs. fission sources, 717 table
history of, 186, 187
levels, 610, 613, 614 illus.
relativistic, 664–667
transfer and escape speed, 294 illus.
transfer in systems, 230–231

Energy triangle of special relativity, 671
Energy well, 285
Equilibrium

and stability, 155–158
in a spring, 249
types of, 155 table

Escape speed, 292–294
Escape trajectory, 302
Ether, 637
Euclid, 2
Extensive properties, 404
Extraordinary (e) ray, 512, 513

F
Faraday, Michael, 466, 483
Faraday’s law of electromagnetic

induction, 466, 467
Ferromagnetic materials, 437
Feynman diagrams, 729, 730
Feynman, Richard, 729, 730
Field, 388–393
Field map, 388

drawing, 439 illus.
Field shapes, electric vs. gravitational

vs. magnetic, 393 illus.
Field strength, 394–399

around a current-carrying 
conductor, 452–454

Coulomb’s law vs. Newton’s 
gravitational law, 399 illus.

equations for various conductor
configurations, 454 table

Field theory, 494
First ionization energy, 374 illus., 375
Fission reactors, 710–712
Fission, 707–709, 712 illus.
Fizeau, Armand Hippolyte, 483
Flat of a CD, 575
Flavour change in particle decay, 733
Flight data recorders, 232, 233
Flow-through capacitor, 419
Fluorescent lamp, 506 illus.
Flux, 596
Footprint, for stability, 156
Force, 32

analysis in a yo-yo, 352, 353
at a distance, 388, 436
field, 389
gravitational vs. electrical, 395 illus.
points on the human body, 

148 table, 149 table
Foucault, Jean Bernard Leon, 483
Frame of reference, 35, 634

and relative motion, 70, 71
Franklin, Benjamin, 372
Fraunhofer diffraction, 555
Fraunhofer lines, 506
Free fall, 19–23
Free-body diagrams, 33
Frequency modulation (FM), 495
Frequency of a wave, 488
Frequency of rotation, 102
Fresnel diffraction, 555
Fresnel, Augustin, 483, 553
Friction, 44–47

and tires, 52
in transfer of charge, 374, 375
calculation of force, 37

Fusion, 712–715
Fusion reactors, 713–715

G
Galilei, Galileo, 2, 3, 19 illus., 186
Galileo’s guinea and feather demon-

stration, 19, 20 illus.
Gamma decay, 695, 696 illus.
Gamma ray wavelength, 495 illus.,

497 illus., 498 table
Gamma rays, 690
Geiger counter, 703 illus.
Geiger, Hans, 412
Gell-Mann, M., 723
Geosynchronous Earth orbit (GEO)

(also Geostationary orbit), 109, 110
Germer, L.H., 608
Gilbert, Sir William, 440, 441
Gimbals, 355
Glancing collision, 203
Glashow, S, 733
Gluon, 727 table, 731

and colour theory, 732 table
Gradians, 320
Grand unified theory, 734
Graphs

acceleration–time analysis, 28
of linear motion, 24–31
position–time analysis, 24, 25
velocity–time analysis, 27–31

Grating spectroscope, 569
Gravitational constant, 244
Gravitational potential energy (Eg),

243–248
Gravitational well, 285
Graviton, 734
Gravity, 20, 33, 48

and Coulomb’s laws, 382
and energy, 285–294
and field strength, 394
and magnetism, 390
artificial, 327

Gravity spot (see Centre of mass)
Grays, Gy, 703, 704 table
Gregory, James, 482
Grimaldi, Francesco, 482, 553
Group velocity of a wave, 501
Gyroscopes, 354, 355
Gyrostabilizers, 355

H
Hadrons, 723, 724, 725 illus.

and colour theory, 732 table
Half-life, 697, 698
Han, Moo-Young, 731
Heavy elements, creating, 715–717
Heavy water, 710 illus., 711
Heisenberg, Werner, 617 illus.
Heisenberg’s uncertainty principle,

619–620
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Helium, nuclear fusion of, 716
Helmets, 267
Hero of Alexandria, 482
Hertz, Heinrich, 495
Hertz, Hz, 488
Higgs boson, 734
Holograms, 546, 547
Hooke, Robert, 187, 250, 482
Hooke’s law, 159, 160, 250

and acceleration of mass on a
spring, 304

and simple harmonic motion,
305, 491

Horizontal plane
and Newton’s laws in two 

dimension, 87
centripetal force in, 104

Human body
and power, 259
and static equilibrium, 148–153
centre of mass of, 147
force and pivot points in, 148 table,

149 table
stress and strain on, 169, 170

Huygens, Christian, 3, 483, 555
Huygens’ principle, 555
Huygens’ wavelets, 555, 556
Hydrogen bonds, 499, 500 illus.
Hydrogen, isotopes of, 687

I
I-beams, 171
Impulse, 191–197 
Inclined plane, 89–92
Induction, 375, 376 table
Inelastic collision, 260, 266 table
Inelastic object, 250
Inertial frame of reference, 35

and special relativity, 634–636
Infrared wavelength, 495 illus., 

497 illus., 498 table
Instantaneous acceleration, graphical

derivation of, 27
Instantaneous velocity, 8
Insulator, 375
Intensity, 510
Intensive properties, 404
Interference, 534–537, 553

in a thin film, 548–552
of light, 537–543

Interferometers, 544, 545, 639
Intermolecular forces, microwave

effects on, 500 illus.
International Space Station, 310, 311
International Thermonuclear

Experimental Reactor (ITER), 
713, 714

Ionization energy, 614

Ionizing ability, 691
Isolated system, 230
Isotopes, 465, 687

decay series, 702
half-lives of, 697 table

Israel, Werner, 735

J
Jannsen, Hans, 482
Jannsen, Zacharias, 482
Jeans, James, 596
Joliet, Pierre, 695

K
Keplar’s laws of planetary motion,

298–300
Kepler, Johannes, 2, 3, 298, 482
Kepler’s third law for large masses, 300
Kinematics, 5
Kinematics equations

applied for uniform linear 
acceleration, 10–19

derivations of, 10, 11, 12
Kinetic energy (Ek), 239, 240, 241

and gravity, 290, 291
and momentum, 241, 242
linear vs. rotational, 343 illus.
rotational, 342, 343

Kinetic friction, 45

L
Land, Edwin, 508
Large Hadron Collider (LHC), 674, 720
Laser, 546, 547
Laser light in CD players, 574, 575
Law of conservation of energy, 199,

253, 254
and movement of charged particles,

404–413
Law of conservation of linear 

momentum, 199
Law of electric charges, 372
Law of inertia (see Newton’s first law

of motion)
Law of magnetic forces, 437
Lawrence, E.O., 652, 653
Leibniz, Gottfried, 187
Length contraction, 643–645
Lenz, Heinrich, 467
Lenz’s law, 467–469
Leptons, 721, 722 table

decay, 733
Leyden jar, 419
Lifting electromagnets, 445 table
Light, 487

and thin-film interference, 548–552
classical wave theory of, 593

diffraction of, 553–562
dispersion of, 505
interference of, 537–543
polarization, 507–513
quantum theory, 594–598
rectilinear propagation of, 553
scattering of, 519–521
speed of, 495, 497
the photoelectric effect, 598–603
wavelengths of visible region, 506
wave–particle duality of, 614

Light year, ca, 648
Line spectra (also Emission spectra),

506, 568
Linear accelerators (Linacs), 668–672
Linear momentum, 189, 190

and centre of mass, 211, 212
and impulse, 190–197
conservation in one dimension,

199–202
conservation in two dimensions,

203–210
Linear motion

algebraic description of, 10–19
graphical analysis of, 24–31

Linear polarization (see Plane polar-
ization)

Lippershey, Hans, 482
Liquid crystal displays (LCDs), 516, 517
Lithium

atomic model of, 686 illus.
in nuclear fusion, 715

Lodestone, 436
Longitudinal waves, 486
Long-wave radio wavelength, 497 illus.
Lord Rayleigh, 561, 596

M
Mach number, 496
Macroscopic waves, 554
Magnetic domains, 437
Magnetic field

electrons moving in, 656, 657
in current-carrying conductors,

444 illus.
in solenoids, 443, 444
lines, 392 illus.
maps, 438–440
of a transverse wave, 487

Magnetic flux, 439
Magnetic forces, 436

law of, 437
on conductors and charges,

447–459
on moving charges, 457–459 

Magnetic induction, 438 table
Magnetic permeability, 445
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Magnetic Resonance Imaging (MRI),
472

Magnetism and gravity, 390
Magnetohydrodynamics, 460
Magnetron, 499
Magnitude of centripetal motion, 101
Maiman, T.H., 483
Malus’ law, 509, 510
Maric, Mileva, 646 illus.
Marsden, Ernest, 412
Mass, 33

defect, 688
difference, 688
dilation, 652–658
equivalence, 605
of atomic particles, 408
of electrons and protons, 462–464 

Mass spectrometer, 464, 465
Mass–energy equivalence, 662–668
Matter waves, 485, 606–608
Maximum lines, 536–542

in single-slit diffraction, 557–561
Maxwell, James Clark, 469, 483, 495
Maxwell’s equation of electro-

magnetism, 469, 470
Mechanical energy, 248 illus.
Mechanical waves, 485
Mechanics, 2, 3, 5
Medium-wave radio wavelength, 

497 illus.
Members, 171
Mendeleev, Dmitri, 720
Mesons, 724, 725 illus.
Metre, standard length of, 547
Metric system, 3 (see also SI units)

prefixes of, 7 table
Metric unit, 6, 7
Michelson, Albert A., 497, 544, 547,

638, 639
Michelson-Morley null result, 639
Microscopic waves, 554
Microwave oven, 499 illus.
Microwave safety, 522, 523
Micro-wavelength, 495 illus., 497 illus.,

498 table
Millikan, Robert A. , 380, 415
Millikan’s elementary charge 

calculations, 416 table
Millikan’s oil-drop apparatus, 415 illus.
Minimum lines (also Nodes), 536–542

in single-slit diffraction, 556–561
Moderation of fission, 708, 710
Modulus, 165

values for various substances, 
166 table

Molecules, 725 illus.
Moment of force (see Torque)

Moment of inertia, 332–338
Momentum (see also Linear 

momentum), 190
and kinetic energy, 241, 242
conservation of, 202 illus.
history of, 186, 187
linear vs. angular, 348 illus., 

350 illus.
of photons, 603–606
relativistic, 663, 664

Monopole, 390
Morley, E.W., 638, 639
Motion

angular equations of, 327, 328,
331

linear vs. angular, 329 illus.
states of, 35 illus.
uniform, 9

Motor principle, 447, 448
applying, 460–466

Muon, 641

N
Nambu, Yoichiro, 731
Natural resonance frequency, 520
Negative force and electric charges, 383
Negative time, 82
Net force, 36

and static equilibrium, 130
Neutral equilibrium, 155 table
Neutrino, 654, 694, 722, 725, 726
Neutron cycle, 712 illus.
Neutron star (also Pulsar), 716
Neutrons, 372, 686

mass of, 408
Newton, Sir Isaac, 2, 3, 186, 187, 189,

469, 482, 483
Newton spring scale, 394 illus.
Newton’s first law of motion (also

Law of inertia), 34, 35, 42, 128
rotational equivalent, 336 illus.

Newton’s law of universal gravitation,
48–51

vs. Coulomb’s law, 382 illus.
Newton’s laws in two dimension,

85–88
Newton’s second law of motion,

36–38, 42, 192 illus.
rotational equivalent, 336 illus.

Newton’s third law, 39–42
and simple harmonic motion, 491

Nodal lines (see Minimum of waves)
Non-inertial frame of reference, 35
Non-isolated system, 230
Non-perpendicular vectors, problem

solving, 74–77
Non-reflective coatings, 553

Normal force, 44–47
Nuclear activity, measure of, 703, 

704 table
Nuclear binding energy, 688
Nuclear force, 690
Nuclear stability, 690, 691
Nucleic acids, microwave effects on,

522, 523
Nucleons

binding energy of, 688, 689
probing of, 718, 719

Nucleus, 686

O
Objects

moments of inertia of, 333 table,
334 table

physical effects as speed
approaches c, 668 illus.

Oersted, Hans Christian, 441
Oersted’s principle, 441

vs. Faraday’s principles, 467 illus.
Ommatidia, 518
Open system, 231 illus.
Optic axis, 513
Optical activity, 518, 519
Orbital elements, 301 illus.
Orbital period, 301
Orbital shapes, 302 illus.
Orbital speed, equation for, 296
Orbits, 295–302
Order numbers, 537
Ordinary (o) ray, 512, 513
Overdamping, 308
Ozone layer, 499

P
Paradoxes, 647–649
Parallel-axis theorem, 337
Paramagnetism, 442
Pardies, Ignace, 483
Partial polarization, 511, 512
Particle acceleration, 668–672, 674, 718
Path difference, 538

effect on thin-film interference,
548, 549

Pauli exclusion principle, 730
Pendulums, 306, 307
Pericynthion, 301
Period of a wave, 488
Period of rotation, 102
Periodic waves, 486
Permanent magnetism, 438 table
Perpendicular vectors, 74 illus.
Phase, 486

lag, 504
shift, 490, 535, 536
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Phase velocity of a wave, 501
Phosphors, 506 illus.
Photoelastic analysis, 517
Photoelectric effect, 598–603
Photon wavelength, 613
Photons, 595, 599

and momentum, 603–606
energy of, 600, 601, 603
position uncertainly in diffraction,

617– 619
probability distribution, 616

Pi meson, 724, 725 illus.
Piezoelectric crystals, 624
Pions, 654, 655
Pit, of a CD, 575
Pivot point, 135

on the human body, 148 table,
149 table

Planck, Max, 595
Planck’s black-body equation, 596
Planck’s constant, in eVs, 600
Planck’s equation, 595
Plane polarization (also Linear 

polarization), 507
Planetary motion, 298–300
Plasma gas, 714
Plato, 186
Point charges, 377

electric potential around, 409–411
field lines around, 392 illus.
force–distance relationship

between, 407
Points of insertion, for tensile 

forces, 148
Poisson, Simon, 553
Polarization, 507–513

applications of, 514–519
in insect eyes, 518

Polarized light microscopy, 518
Polarizer, of a Polaroid, 510
Polarizing filters, 514
Polaroid, 508, 509 illus.
Position, 6
Positive force, 383
Positron, 723

emission in beta decay, 695, 
696 illus.

Positron emission tomography (PET),
736, 737

Posts, 170
Post-stressed concrete, 171
Potential (also Electric potential),

401–403
Potential energy (Ep), 249

and gravity, 287, 288
between point charges, 407
change in, 244

gravitational vs. electrostatic, 
400 illus.

vs. change in potential energy
(�Ep), 289, 290

Power, 255–258
and the human body, 259

Precessing, 472
Pressure, 161, 165 table
Pre-stressed concrete, 171
Principle of superposition, 534
Probability waves, 616, 616
Projectile motion, 78–84
Projectiles, elliptical path of, 302, 303
Proper length, 643
Proper time, 641
Proton, 372, 686

mass of, 408
Proton-proton cycle, 716
Ptolemy, 2
Pulsar (see Neutron star)
Pythagoras, 2, 482
Pythagoras’ theorem, 64

Q
Quadratic equation, 14
Quality factor, 703
Quanta, 595
Quantum chromodynamics, 730, 731
Quantum electrodynamics, 729
Quantum theory, 593–598
Quantum tunnelling, 622, 623
Quarks, 723–725

colour charge of, 731, 732 
decay, 733

R
Radar, 516
Radian measure, 318–321, 490
Radiation detection, 703, 704
Radio wavelength, 495, 498
Radioactive dating, 698–700
Radioactive decay curve, 698
Radioactive emissions, 691 table
Radioactivity, 690
Range, 74

of projectiles, 302
Range equation, 83, 112
Rarefaction, 486 illus., 487 illus.
Rayleigh criterion, 561
Rayleigh-Jeans law, 596
Re-bars, 171
Recoilless rifle, 43
Rectilinear propagation of light, 553
Reflection

and polarization, 511, 512
in a thin film, 548 

Reflection grating, 563

Refraction, 500–506
of optical medium, 504, 505

Refractive index, 501, 502 table
effect on thin-film interference, 549

Relative motion, 70–77, 634
Relativistic effects, 658
Relativistic energy, 664–667
Relativistic length, 643

equation for, 644 
Relativistic momentum, 663, 664
Relativistic time, 641
Relativistic velocity addition, 660
Relays, 445 table
Residual force, 730
Resolution, 561, 562

by spectrometry, 569, 570
Resolving power, 570, 571 illus.
Rest energy, 665
Rest mass, m0, 653
Retrograde motion, 298 illus.
Reverse magnetization, 438 
Right-hand rule #1, 442 illus.
Right-hand rule #2

and Lenz’s law, 467–469
for conventional current flow,

444 illus.
Right-hand rule #3

and magnetohydrodynamics
propulsion, 460 illus.

for convention current flow, 448
and force direction of a moving

charge, 458, 459
Right-hand rule for torque, 135
Romer, Olaf, 483
Rotation direction conventions, 136
Rotational energy, 339–341
Rotational equilibrium, 137
Rotational inertia, 337
Rotational kinetic energy, 342, 343
Rudolf, Heinrich, 483
Rutherford, Ernest, 372, 412, 721 illus.
Rutherford’s gold-foil experiment, 412

S
Salam, A, 733
Satellite orbits, 297
Satellites, 109, 110
Scalar, 6
Scanning tunnelling microscopy, 

624, 625
Scattering, 519–521
Schrödinger, Erwin, 721 illus.
Scientific method, 2
Seat belts, 267
Secondary waves, 504
Sedimentation, 107
Semimajor axis, 301
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Shawlow, A.L., 483
Shear modulus, 165 table
Shear strength, 169 table
Shear stress, 162 table
Shock absorbers, 267, 309
Short-wave radio wavelength, 497 illus.
SI units (Système International

d’Unités), 3, 6
for acceleration, 9
for circular motion, 325
for electric field strength in a 

parallel-plate capacitor, 415
for electric potential, 401
for energy, 335
for force, 32
for mass, 33
for power, 255
for pressure, 161
for stress, 161
for torque, 136, 335
for work, 136, 233

Sieverts, Sv, 703, 704 table
Simple harmonic motion, 303–307,

486, 491
damped, 308, 309
equations of, 490, 493
in two dimensions, 492

Simultaneity, 646, 647
Sine law, 67, 206, 488 illus., 490, 

491, 492
Single-slit diffraction, 554–562
Single-slit equations, 555–561
Snell, Willebrord, 482
Snells’ law, 502–504
Snow mobiles, 214, 215
Sodium lamp, 570 illus.
Solenoids, 443, 444
Sound, 487
Sound waves, 554
Spacetime interval, 650
Spacetime invariance, 649–651
Special relativity

Einstein’s first postulate, 634–636
Einstein’s second postulate,

637–639
energy triangle of, 671 illus.

summary of, 673 illus.
Spectra, 506, 569

of hydrogen gas, 609 illus.
Spectroscope, 506
Speed

average, 8
linear vs. angular, 323, 326 
of electromagnetic waves, 494, 495
relation to length, 643
tangential vs. angular, 325 

Speed of light, c, 495, 497

Spin quantum number, 722
Spine structure, 170 illus.
Spring constant, 160, 251
Springs

solving energy of, 252, 253
simple harmonic motion of,

303–307
total energy of system, 305

Square of the spacetime interval, 650
Stability, 155

and equilibrium, 155–158
Standard model, 721
Stanford Linear Accelerator Center,

669, 674, 719 illus.
Static equilibrium, 128

and centre of mass, 130–132,
145, 146

balancing forces and torque,
139–145

conditions for, 139 table
of human body, 148–153

Static friction, 45
Statics, 128
Stopping potential, Vstop, 599
Strain, 163

in construction, 170, 171
parameters of, 164 illus.

Strength of building materials, 169 table
Stress, 161–170

building collapse from, 172
in construction, 170, 171

String-and-pulley, 93–98
Sub-critical mass, in fission, 709 illus.
Sudbury neutrino observatory (SNO),

725, 726
Sun, electromagnetic waves from, 

498, 499
Supercrest, 534 illus.
Supernova, 716
Supertrough, 534 illus.
Systems, 199, 230–232

T
Tangential acceleration, 323
Tangential velocity, 324
Taylor, Richard, 735
Telsa, Nikola, 449
Temporary magnetism, 438 table
Tensile forces, 148
Tensile strength, 169 table
Tensile stress, 162, 165 table
Tension force 

and centripetal force, 105, 106
of tendons, 169

Test charge, 388
Test magnet/mass, 389
Thales of Miletus, 372

Thermal neutrons, 707
Thin-film interference, 548–552
Thomas, J.J., 462
Thompson, Benjamin, 187
Thomson, George, 608
Thomson, J.J., 721 illus.
Thomson, William (Lord Kelvin), 187
Thrust, 201
Tides, 350, 351
Time dilation, 640–643
Tires, 52
Torque (also Moment of force),

134–136
analysis in a yo-yo, 353
and moment of inertia, 335, 336
direction conventions, 140
problem solving, 145 illus.

Total energy, 405 illus , 665
of an elliptical orbit, 301, 302

Total moment of inertia, 337, 338
Townes, C.H., 483
Translation equilibrium, 132 
Transmission grating, 563
Transmutation

artificial, 700–702
of nuclear particles, 690

Transuranic, 702
Transverse waves, 486
Travelling waves, 486
Tritium, 687

in fusion reaction, 713, 715
TRIUMF cyclotron, 674, 720
Trough, 534 illus.
Truss, 171
Twin paradox, 648

U
Ultracentrifuge, 108
Ultraviolet wavelength, 495 illus., 

497 illus., 498 table
Unbalanced forced, 33
Underdamping, 308
Unified atomic mass units, 687
Unified field theory, 471
Uniform circular motion, 98–102
Uniform motion, 9
Uniform velocity, 9
Unit analysis, 7, 194

for elastic potential energy, 252
for kinetic energy, 240
for moment of inertia, 336
for work, 234

Unit conversion, 7
of kg to MeV/c2, 670

Unit
for electric current, 454, 455
for electrical power, 257
for magnetic field strength, 449
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Universal gravitation constant, G, 48
Universal gravitation equation, 285
Universal wave equation, 495
Unruh, William, 735
Unstable equilibrium, 155 table
Uranium, in fission, 707, 708
UV catastrophe, 596

V
Van de Graaff generator, 668 
Van Musschenbroek, Pieter, 419
Vector, 6

arrow, 8
direction, 64 illus.

Vector addition, 64–68
by component method, 207 illus.

Vector subtraction, 69
Vectors in two dimensions, 64–70
Velocity

addition at speeds close to c,
659–661

average, 8
graphical derivation, 24, 25
instantaneous, 8
tangential, 324
uniform, 9

Vertical plane

and Newton’s laws in two 
dimension, 86 

centripetal force in, 104
Very-high-frequency (VHF) radio

wavelength, 497 illus.
Viscosity, 45
Visible wavelength, 495 illus., 497 illus.,

498 table
Volta, Alessandro, 401
von Fraunhofer, Joseph, 483

W
Wallis, John, 186
Walton, Ernest, 701
Water waves, 486 illus., 554
Wave propagation, 486
Wave theory of light, 593, 594
Wavefronts, 502 illus., 503
Wavelength, 488
Wave–particle duality, 614
Waves, 485
Weight, 33
Weinberg, S, 733
Whimshurst machine, 376 
Wien’s law, 596
Wobble, 300
Work, 233–238

and rotational energy, 339–341
by gravity, 286–288
determining graphically, 237, 238
dimensional unit analysis, 237
moving a charge between plates,

406, 407
of a charge in an electric field, 401

Work function, W0, 600, 601, 603
Work–energy theorem, 240, 241

X
X-ray diffraction, 571, 572
X-ray wavelength, 495 illus., 497 illus.,

498 table

Y
Young, Thomas, 165, 483, 537
Young’s double-slit experiment, 537,

538 illus.
Young’s modulus (also Elastic modulus),

164, 165
Young’s three double-slit equations,

538–543
Yukawa, Hideki, 494

Z
Zweig, G., 723
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