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Preface

This book aims to elucidate the current status of research in phase transition dynamics.
Because the topics treated are very wide, a unified phenomenological time-dependent
Ginzburg–Landau approach is used, and applied to dynamics near the critical point. Into
the simple Ginzburg–Landau theory for a certain order parameter, we introduce a new
property or situation such as elasticity in solids, viscoelasticity in polymers, shear flow in
fluids, or heat flow in 4He near the superfluid transition. By doing so, we encounter a rich
class of problems on mesoscopic spatial scales. A merit of this approach is that we can
understand such diverse problems in depth using universal concepts.

The first four chapters (Part one) deal with static situations, mainly of critical phen-
omena, and introduce some new results that would stand by themselves. However, the main
purpose of Part one is to present the definitions of many fundamental quantities and intro-
duce various phase transitions. So it should be read before Parts two and three which deal
with dynamic situations. Chapter 5 is also introductory, reviewing fundamental dynamic
theories, the scheme of Langevin equations and the linear response theory. Chapter 6 treats
critical dynamics in (i) classical fluids near the gas–liquid and consolute critical points
and (ii) 4He near the superfluid transition. Chapter 7 focuses on rather special problems
in complex fluids: (i) effects of viscoelasticity on composition fluctuations in polymer
systems; and (ii) volume phase transitions and heterogeneity effects in gels. Chapters 8
and 9 (in Part three) constitute the main part of this book, and consider the kinetics of
phase ordering, spinodal decomposition, and nucleation. Motions of interfaces and vortices
are examined in the Ginzburg–Landau models. Chapter 10 focuses on dynamics in solids,
including phase separation, order–disorder and martensitic transitions, shape instability in
hydrogen–metal systems, and surface instability in metal films. These problems have hith-
erto been very inadequately studied and most papers are difficult to understand for those
outside the field, so it was important to write this chapter in a coherent fashion, though it has
turned out to be a most difficult task. I believe that many interesting dynamical problems
remain virtually unexplored in solids, because such phenomena have been examined either
too microscopically in solid-state physics without giving due respect to long-range elastic
effects or with technologically-oriented objectives in engineering. Chapter 11 is on shear
flow problems in fluids, a topic on which a great number of theoretical and experimental
papers appeared in the 1980s and 1990s. This book thus covers a wide range of phase
transition dynamics. Of course, many important problems had to be omitted.

I have benefited from discussions with many people working in the fields of low-
temperature physics, statistical physics, polymer science, and metallurgy. Particularly

ix



x Preface

useful suggestions were given by H. Meyer, Y. Oono, K. Kawasaki, T. Ohta, M. Doi,
T. Hashimoto, H. Tanaka, M. Shibayama, T. Miyazaki, T. Koyama, and Y. Yamada. Thanks
are due to R. Yamamoto, K. Kanemitsu, and A. Furukawa for drawing some of the figures.
It is with deep sadness that I record the deaths of T. Tanaka and K. Hamano. It is a
great pleasure to be able to acknowledge their memorable contributions to Chapters 7
and 11, respectively. Finally, I apologize to my students, colleagues, and family, for any
difficulty they may have experienced because I have been so busy with this extremely
time-consuming undertaking.

Akira Onuki
Kyoto, Japan



Part one

Statics
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Spin systems and fluids

To study equilibrium statistical physics, we will start with Ising spin systems (here-
after referred to as Ising systems), because they serve as important reference systems
in understanding various phase transitions [1]–[7].1 We will then proceed to one- and
two-component fluids with short-range interaction, which are believed to be isomorphic
to Ising systems with respect to static critical behavior. We will treat equilibrium averages
of physical quantities such as the spin, number, and energy density and then show that
thermodynamic derivatives can be expressed in terms of fluctuation variances of some
density variables. Simple examples are the magnetic susceptibility in Ising systems and
the isothermal compressibility in one-component fluids expressed in terms of the corr-
elation function of the spin and density, respectively. More complex examples are the
constant-volume specific heat and the adiabatic compressibility in one- and two-component
fluids. For our purposes, as far as the thermodynamics is concerned, we need equal-time
correlations only in the long-wavelength limit. These relations have not been adequately
discussed in textbooks, and must be developed here to help us to correctly interpret various
experiments of thermodynamic derivatives. They will also be used in dynamic theories
in this book. We briefly summarize equilibrium thermodynamics in the light of these
equilibrium relations for Ising spin systems in Section 1.1, for one-component fluids in
Section 1.2, and for binary fluid mixtures in Section 1.3.

1.1 Spin models

1.1.1 Ising hamiltonian

Let each lattice point of a crystal lattice have two microscopic states. It is convenient
to introduce a spin variable si , which assumes the values 1 or −1 at lattice point i . The
microscopic energy of this system, called the Ising spin hamiltonian, is composed of the
exchange interaction energy and the magnetic field energy,

H{s} = Hex +Hmag, (1.1.1)

where

Hex = −
∑
<i, j>

Jsi s j , (1.1.2)

1 References are to be found at the end of each chapter.
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4 Spin systems and fluids

Hmag = −H
∑

i

si . (1.1.3)

The interaction between different spins is short-ranged and the summation in Hex is taken
over the nearest neighbor pairs i, j of the lattice points. The interaction energy between
spins is then −J if paired spins have the same sign, while it is J for different signs. In the
case J > 0 the interaction is ferromagnetic, where all the spins align in one direction
at zero temperature. The magnetic field H is scaled appropriately such that it has the
dimension of energy. At zero magnetic field the system undergoes a second-order phase
transition at a critical temperature Tc. The hamiltonian H mimics ferromagnetic systems
with uniaxial anisotropy.

In the case J < 0, the interaction is antiferromagnetic, where the neighboring paired
spins tend to be antiparallel at low temperatures. Let us consider a cubic lattice, which
may be divided into two sublattices, A and B, such that each lattice point and its nearest
neighbors belong to different sublattices. Here, we define the staggered spin variables Si

by

Si = si (i ∈ A), Si = −si (i ∈ B). (1.1.4)

Then, Hex in terms of {Si } has the positive coupling |J | and is isomorphic to the ferromag-
netic exchange hamiltonian.

The Ising model may also describe a phase transition of binary alloys consisting of atoms
1 and 2, such as Cu–Zn alloys. If each lattice point i is occupied by a single atom of either
of the two species, the occupation numbers n1i and n2i satisfy n1i +n2i = 1. Vacancies and
interstitials are assumed to be nonexistent. If the nearest neighbor pairs have an interaction
energy εK L (K , L = 1, 2), the hamiltonian is written as

H{n} =
∑
<i, j>

∑
K ,L

εK LnK i nL j −
∑

i

∑
K

µK nK i , (1.1.5)

where µ1 and µ2 are the chemical potentials of the two components. From (1.1.4) we may
introduce a spin variable,

si = 2n1i − 1 = 1 − 2n2i , (1.1.6)

to obtain the Ising model (1.1.1) with

J = 1

4
(−ε11 − ε22 + 2ε12), H = 1

2
(µ1 − µ2)− z

4
(ε11 − ε22), (1.1.7)

where z is the number of nearest neighbors with respect to each lattice point and is called
the coordination number.

1.1.2 Vector spin models

Many variations of spin models defined on lattices have been studied in the literature [8].
If the spin si = (s1i , . . . , sni ) on each lattice point is an n-component vector, its simplest
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hamiltonian reads

H{s} = −
∑
<i, j>

J si · s j − H
∑

i

s1i . (1.1.8)

The first term, the exchange interaction, is assumed to be invariant with respect to rotation
in the spin space. The magnetic field H favors ordering of the first spin components s1i .
The model with n = 2 is called the xy model, and the model with n = 3 the Heisenberg
model. It is known that the static critical behavior of the three-dimensional xy model is
isomorphic to that of 4He and 3He–4He mixtures near the superfluid transition, as will be
discussed later. However, there are many cases in which there is some anisotropy in the spin
space and, if one direction is energetically favored, the model reduces to the Ising model
asymptotically close to the critical point. Such anisotropy becomes increasingly important
near the critical point (or relevant in the terminology of renormalization group theory). As
another relevant perturbation, we may introduce a long-range interaction such as a dipolar
interaction.

1.1.3 Thermodynamics of Ising models

Each microscopic state of the Ising system is determined if all the values of spins {s} are
given. In thermal equilibrium, the probability of each microscopic state being realized is
given by the Boltzmann weight,

Peq({s}) = Z−1 exp(−βH{s}), (1.1.9)

where

β = 1/T . (1.1.10)

In this book the absolute temperature multiplied by the Boltzmann constant kB = 1.381 ×
10−16 erg/K is simply written as T and is called the temperature [1], so T has the dimension
of energy. The normalization factor Z in (1.1.9) is called the partition function,

Z =
∑
{s}

exp(−βH{s}), (1.1.11)

where the summation is taken over all the microscopic states. The differential form for the
logarithm ln Z becomes

d(ln Z) = −〈H〉dβ + β〈M〉d H = −〈Hex〉dβ + 〈M〉dh, (1.1.12)

where the increments are infinitesimal,

h = βH = H/T, (1.1.13)

and M is the sum of the total spins,2

M =
∑

i

si . (1.1.14)

2 In this book the quantities, H, M, N , . . . in script, are fluctuating variables (dependent on the microscopic degrees of
freedom) and not thermodynamic ones.
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Hereafter 〈· · ·〉 is the average over the Boltzmann distribution (1.1.9). The usual choice of
the thermodynamic potential is the free energy,

F = −T ln Z , (1.1.15)

and the independent intensive variables are T and H with

d F = −SdT − 〈M〉d H, (1.1.16)

where S = (〈H〉 − F)/T is the entropy of the system.
We also consider the small change of the microscopic canonical distribution in (1.1.9)

for small changes, β → β + δβ and h → h + δh. Explicitly writing its dependences on β

and h, we obtain

Peq({s};β + δβ, h + δh) = Peq({s};β, h) exp
[−δHexδβ + δMδh + · · ·], (1.1.17)

where δHex = Hex − 〈Hex〉 and δM = M − 〈M〉. To linear order in δβ and δh, the
change of the distribution is of the form,

δPeq({s}) = Peq({s})
[−δHexδβ + δMδh + · · ·]. (1.1.18)

Therefore, the average of any physical variable A = A{s} dependent on the spin configu-
rations is altered with respect to the change (1.1.18) as

δ〈A〉 = −〈AδHex〉δβ + 〈AδM〉δh + · · · . (1.1.19)

We set A = M and Hex to obtain

Vχ = ∂2 ln Z

∂h2
= ∂〈M〉

∂h
= 〈(δM)2〉, (1.1.20)

∂2 ln Z

∂β2
= −∂〈Hex〉

∂β
= 〈(δHex)

2〉, (1.1.21)

∂2 ln Z

∂h∂β
= ∂〈M〉

∂β
= −∂〈Hex〉

∂h
= −〈δMδHex〉, (1.1.22)

where V is the volume of the system, χ is the isothermal magnetic susceptibility per unit
volume, h and β are treated as independent variables, and use has been made of (1.1.12).
Another frequently discussed quantity is the specific heat CH at constant magnetic field
defined by3

CH = T

V

(
∂S

∂T

)
H
= 1

V

(
∂〈H〉
∂T

)
H
. (1.1.23)

Here we use −(∂〈H〉/∂β)H = (∂2 ln Z/∂β2)H to obtain

CH = 〈(δH)2〉/T 2V . (1.1.24)

3 In this book all the specific heats in spin systems and fluids have the dimension of a number density.
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Namely, CH is proportional to the variance of the total energy. We also introduce the
specific heat CM at constant magnetization 〈M〉 by

V CM = T

(
∂S

∂T

)
M

= V CH − T

(
∂〈M〉
∂T

)2

H

/(
∂〈M〉
∂H

)
T
. (1.1.25)

From (∂〈M〉/∂β)H = −〈δHδM〉 we obtain

CM = [〈(δH)2〉 − 〈δHδM〉2/〈(δM)2〉]/V T 2, (1.1.26)

where δH may be replaced by δHex because δH−δHex = −HδM is linearly proportional
to M. It holds the inequality CH ≥ CM . These two specific heats coincide in the disordered
phase at H = 0 where 〈δHδM〉 = 0. We shall see that CM in spin systems corresponds to
the specific heat CV at constant volume in one-component fluids.

Positivity of CM

Combinations of the variances of the form,

CAB = 〈(δA)2〉 − 〈δAδB〉2/〈(δB)2〉 ≥ 0, (1.1.27)

will frequently appear in expressions for thermodynamic derivatives. Obviously CAB is the
minimum value of 〈(δA− xδB)2〉 = 〈(δA)2〉 − 2x〈δAδB〉 + x2〈(δB)2〉 ≥ 0 as a function
of x , so it is positive-definite unless the ratio δA/δB is a constant. Thus we have CM > 0.

1.1.4 Spin density and energy density variables

We may define the spin density variable ŝ(r) by4

ψ̂(r) =
∑

i

siδ(r − ri ), (1.1.28)

where ri is the position vector of the lattice site i . Then M = ∫
drψ̂(r) is the total spin

sum in (1.1.14). Through to Chapter 5 the equilibrium equal-time correlation functions will
be considered and the time variable will be suppressed. For the deviation δψ̂ = ψ̂ − 〈ψ̂〉
of the spin density, the pair correlation is defined by

g(r − r′) = 〈δψ̂(r)δψ̂(r′)〉, (1.1.29)

which is expected to decay to zero for a distance |r − r′| much longer than a correlation
length in the thermodynamic limit (V → ∞). The Fourier transformation of g(r) is called
the structure factor,

I (k) =
∫

drg(r) exp(ik · r), (1.1.30)

4 Hereafter, the quantities with a circumflex such as ψ̂, m̂, n̂, . . . are fluctuating quantities together with those in script such as
H,A,B, . . .. However, the circumflex will be omitted from Chapter 3 onward, to avoid confusion.
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which is expected to be isotropic (or independent of the direction of k) at long wavelengths
(ka � 1, a being the lattice constant). The susceptibility (1.1.20) is expressed as

χ =
∫

drg(r) = lim
k→0

I (k). (1.1.31)

However, in the thermodynamic limit, χ is long-range and the space integral in (1.1.31) is
divergent at the critical point. We may also introduce the exchange energy density ê(r) by

ê(r) = −
∑
<i, j>

Jsi s jδ(r − ri ). (1.1.32)

Then,
∫

drê(r) = Hex, and the (total) energy density is

êT(r) = ê(r)− H ψ̂(r), (1.1.33)

including the magnetic field energy. From (1.1.24) CH is expressed in terms of the devia-
tion δêT = êT − 〈eT〉 as

CH = T−2
∫

dr〈δêT(r + r0)δêT(r0)〉, (1.1.34)

which is independent of r0 in the thermodynamic limit.
Hereafter, we will use the following abbreviated notation (also for fluid systems),

〈â : b̂〉 =
∫

dr〈δâ(r)δb̂(r′)〉, (1.1.35)

defined for arbitrary density variables â(r) and b̂(r), which are determined by the micro-
scopic degrees of freedom at the space position r. The space correlation 〈δâ(r)δb̂(r′)〉 is
taken as its thermodynamic limit, and it is assumed to decay sufficiently rapidly for large
|r − r′| ensuring the existence of the long-wavelength limit (1.1.35). Furthermore, for any
thermodynamic function a = a(ψ, e), we may introduce a fluctuating variable by

â(r) = a +
(
∂a

∂ψ

)
e
δψ̂(r)+

(
∂a

∂e

)
ψ

δê(r), (1.1.36)

where a is treated as a function of the thermodynamic averages ψ = 〈ψ̂〉 and e = 〈ê〉. From
(1.1.19) its incremental change for small variations, δβ = −δT/T 2 and δh, is written as

δ〈â〉 = 〈â : ê〉δT

T 2
+ 〈â : ψ̂〉δh + · · · . (1.1.37)

From the definition, the above quantity is equal to δa = (∂a/∂T )hδT +(∂a/∂h)Tδh. Thus,

T 2
(
∂a

∂T

)
h
= 〈â : ê〉,

(
∂a

∂h

)
T
= 〈â : ψ̂〉. (1.1.38)
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The variances among ψ̂ and ê are expressed as

χ =
(
∂ψ

∂h

)
T
= 〈ψ̂ : ψ̂〉, T 2

(
∂e

∂T

)
h
= 〈ê : ê〉,

T 2
(
∂ψ

∂T

)
h
=

(
∂e

∂h

)
T
= 〈ψ̂ : ê〉. (1.1.39)

The specific heats are rewritten as

CH = 1

T 2
〈êT : êT〉, CM = 1

T 2

[〈ê : ê〉 − 〈ê : ψ̂〉2/〈ψ̂ : ψ̂〉]. (1.1.40)

1.1.5 Hydrodynamic fluctuations of temperature and magnetic field

In the book by Landau and Lifshitz (Ref. [1], Chap. 12), long-wavelength (or hydrody-
namic) fluctuations of the temperature and pressure are introduced for one-component
fluids. For spin systems we may also consider fluctuations of the temperature and magnetic
field around an equilibrium reference state. As special cases of (1.1.36) we define

δT̂ (r) =
(
∂T

∂ψ

)
e
δψ̂(r)+

(
∂T

∂e

)
ψ

δê(r), (1.1.41)

δĥ(r) =
(
∂h

∂ψ

)
e
δψ̂(r)+

(
∂h

∂e

)
ψ

δê(r). (1.1.42)

We may regard δT̂ and δ Ĥ = T δĥ + hδT̂ as local fluctuations superimposed on the
homogeneous temperature T and magnetic field H = T h, respectively. Therefore, (1.1.38)
yields

〈ĥ : ψ̂〉 = 1

T 2
〈T̂ : ê〉 = 1, 〈ĥ : ê〉 = 〈T̂ : ψ̂〉 = 0. (1.1.43)

More generally, the density variable â in the form of (1.1.36) satisfies

〈â : T̂ 〉 = T 2
(
∂a

∂e

)
ψ

, 〈â : ĥ〉 =
(
∂a

∂ψ

)
e
. (1.1.44)

In particular, the temperature variance reads5

〈T̂ : T̂ 〉 = T 2/CM . (1.1.45)

The variances among δĥ and δT̂ /T constitute the inverse matrix of those among δψ̂ and
δê/T . To write them down, it is convenient to define the determinant,

D = 1

T 2

[〈ψ̂ : ψ̂〉〈ê : ê〉 − 〈ψ̂ : ê〉2] = χCM . (1.1.46)

5 In the counterpart of this relation, CM will be replaced by CV in (1.2.64) for one-component fluids and by CVX in (1.3.44)
for binary fluid mixtures.
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The elements of the inverse matrix are written as6

Vττ ≡ 1

T 2
〈T̂ : T̂ 〉 = 1

CM
, Vhh ≡ 〈ĥ : ĥ〉 = 〈ê : ê〉/T 2D,

Vhτ ≡ 1

T
〈T̂ : ĥ〉 = −〈ψ̂ : ê〉/TD. (1.1.47)

In the disordered phase with T > Tc and H = 0, we have no cross correlation 〈ψ̂ : ê〉 =
0, so that Vττ = 1/CH , Vhh = 1/χ , and Vhτ = 0. For other values of T and H , there is
a nonvanishing cross correlation (Vhτ �= 0). The following dimensionless ratio represents
the degree of mixing of the two variables,

Rv = 〈ψ̂ : ê〉2/[〈ψ̂ : ψ̂〉〈ê : ê〉]
= T 2

(
∂ψ

∂T

)2

h

/(
∂ψ

∂h

)
T

(
∂e

∂T

)
h
, (1.1.48)

where 0 ≤ Rv ≤ 1 and use has been made of (1.1.39) in the second line. From (1.1.40) we
have

CM = CH (1 − Rv), (1.1.49)

for h = 0 (or for sufficiently small h, as in the critical region). In Chapter 4 we shall see
that Rv ∼= 1/2 as T → Tc on the coexistence curve (T < Tc and h = 0) in 3D Ising
systems.

In the long-wavelength limit, the probability distribution of the gross variables, ψ̂(r)
and m̂(r), tends to be gaussian with the form exp(−βHhyd), where the fluctuations with
wavelengths shorter than the correlation length have been coarse-grained. From (1.1.39),
(1.1.43), and (1.1.46) the hydrodynamic hamiltonian Hhyd in terms of δψ̂ and δT̂ is
expressed as

Hhyd = T
∫

dr
{

1

2χ
[δψ̂(r)]2 + 1

2T 2
CM [δT̂ (r)]2

}
. (1.1.50)

Another expression for Hhyd can also be constructed in terms of δê and δĥ.

1.2 One-component fluids

1.2.1 Canonical ensemble

Nearly-spherical molecules, such as rare-gas atoms, may be assumed to interact via a
pairwise potential v(r) dependent only on the distance r between the two particles [4]–[6].
It consists of a short-range hard-core-like repulsion (r � σ ) and a long-range attraction
(r � σ ). These two behaviors may be incorporated in the Lenard-Jones potential,

v(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
. (1.2.1)

6 These relations will be used in (2.2.29)–(2.2.36) for one-component fluids and in (2.3.33)–(2.3.38) for binary fluid mixtures
after setting up mapping relations between spin and fluid systems.
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This pairwise potential is characterized by the core radius σ and the minimum −ε attained
at r = 21/6σ . In classical mechanics, the hamiltonian for N identical particles with mass
m0 is written as

H = 1

2m0

∑
i

|pi |2 +
∑
<i, j>

v(ri j ), (1.2.2)

where pi is the momentum vector of the i th particle, ri j is the distance between the particle
pair i, j, and <i, j> denotes summation over particle pairs. The particles are confined in
a container with a fixed volume V and the wall potential is not written explicitly in (1.2.2).

In the canonical ensemble T , V , and N are fixed, and the statistical distribution is
proportional to the Boltzmann weight as [1]–[3]

Pca(�) = 1

Z N
exp[−βH], (1.2.3)

in the 2d N -dimensional phase space � = (p1 · · · pN , r1 · · · rN ) (sometimes called the
�-space). The spatial dimensionality is written as d and may be general. The partition
function Z N of N particles for the canonical ensemble is then given by the multiple
integrations,

Z N = 1

N !(2π h̄)d N

∫
dp1 · · ·

∫
dpN

∫
dr1 · · ·

∫
drN exp(−βH)

= 1

N !λd N
th

∫
dr1 · · ·

∫
drN exp(−βU), (1.2.4)

where h̄ = 1.054 57×10−27 erg s is the Planck constant. In the second line the momentum
integrations over the maxwellian distribution have been performed, where

λth = h̄(2π/m0T )1/2 (1.2.5)

is called the thermal de Broglie wavelength, and

U =
∑
<i, j>

v(ri j ) (1.2.6)

is the potential part of the hamiltonian.
The Helmholtz free energy is given by F = −T ln Z N . The factor 1/N !(2π h̄)d N

in (1.2.4) naturally arises in the classical limit (h̄ → 0) of the quantum mechanical
partition function [2]. Physically, the factor 1/N ! represents the indistinguishability be-
tween particles, which assures the extensive property of the entropy. That is, a set of
classical microscopic states obtainable only by the particle exchange, i → j and j → i ,
corresponds to a single quantum microscopic state.7 The factor 1/(2π h̄)d N is ascribed to
the uncertainty principle (�p�x ∼ 2π h̄).

7 The concept of indistinguishability is intrinsically of quantum mechanical origin as well as the uncertainty principle. It is not
necessarily required in the realm of classical statistical mechanics. Observable quantities such as the pressure are not affected
by the factor 1/N !.



12 Spin systems and fluids

1.2.2 Grand canonical ensemble

A fluid region can be in contact with a mass reservoir characterized by a chemical potential
µ as well as with a heat reservoir at a temperature T . As an example of such a system,
we may choose an arbitrary macroscopic subsystem with a volume much smaller than the
volume of the total system. In this case we should consider the grand canonical distribution,
in which T , µ, and V are fixed and the energy and the particle number are fluctuating
quantities. To make this explicit, the particle number will be written as N and, to avoid too
many symbols, the average 〈N 〉 will be denoted by N which is now a function of T and
µ. The statistical probability of each microscopic state with N particles being realized is
given by [1]–[3]

Pgra(�) = 1

�
exp[−βH+ βµN ]. (1.2.7)

The equilibrium average is written as 〈· · ·〉 = ∫
d�(· · ·)Pgra(�), where∫

d� =
∑
N

1

N !(2π h̄)dN

∫
dp1 · · ·

∫
dpN

∫
dr1 · · ·

∫
drN (1.2.8)

represents the integration of the configurations in the �-space. The normalization factor or
the grand partition function � is expressed as

� =
∑
N

ZN exp(Nβµ). (1.2.9)

In this summation the contribution around N ∼= N = 〈N 〉 is dominant for large N , and
the logarithm � ≡ ln� satisfies

� = ln Z N + Nβµ = pV/T, (1.2.10)

in the thermodynamic limit N → ∞. Use has been made of the fact that G = Nµ is the
Gibbs free energy.

We may choose � as a thermodynamic potential dependent on β and

ν = βµ = µ/T . (1.2.11)

Then, analogous to (1.1.12) for Ising systems, the differential form for � is written as
[9, 10]

d� = −〈H〉dβ + 〈N 〉dν, (1.2.12)

where

〈H〉 = 3

2
〈N 〉T + 〈U〉 (1.2.13)

is the energy consisting of the average kinetic energy and the average potential energy.
Notice that (1.2.12) may be transformed into the well-known Gibbs–Duhem relation,

dµ = 1

n
dp − sdT, (1.2.14)



1.2 One-component fluids 13

where n = 〈N 〉/V is the average number density and s = (〈H〉 − F)/N T is the entropy
per particle.

We then find the counterparts of (1.1.20)–(1.1.22) among the thermodynamic derivatives
and the fluctuation variances of δN = N − 〈N 〉 and δH = H− 〈H〉 as

∂2�

∂ν2
= ∂〈N 〉

∂ν
= 〈(δN )2〉, (1.2.15)

∂2�

∂β2
= −∂〈H〉

∂β
= 〈(δH)2〉, (1.2.16)

− ∂2�

∂ν∂β
= −∂〈N 〉

∂β
= ∂〈H〉

∂ν
= 〈δN δH〉, (1.2.17)

where all the quantities are regarded as functions of β, and ν = βµ and the volume V is
fixed.

The isothermal compressibility is expressed as

KT = 1

n

(
∂n

∂p

)
V T

= β

n2

(
∂

∂ν

〈N 〉
V

)
β

, (1.2.18)

where n = 〈N 〉/V is the average number density and use has been made of (1.2.14). The
fluctuation variance of δN = N − 〈N 〉 is expressed in terms of KT as

〈(δN )2〉 = V n2T KT (grand canonical). (1.2.19)

As for CM in (1.1.26), the constant-volume specific heat CV = (∂〈H〉/∂T )VN/V per unit
volume can be calculated in terms of the fluctuation variances as

CV = [〈(δH)2〉 − 〈δHδN 〉2/〈(δN )2〉]/V T 2 (grand canonical), (1.2.20)

where use has been made of

(∂〈H〉/∂T )N = (∂〈H〉/∂T )ν + (∂〈H〉/∂N )T(∂N/∂T )ν.

Field variables and density variables

Following Griffiths and Wheeler [10] and Fisher [11], we refer to T (or β) and h in
spin systems and T (or β), p, ν, . . . in fluids as fields, which have identical values in
two coexisting phases. We refer to the spin and energy densities in spin systems and
the densities of number, energy, entropy, . . . in fluids as densities. In spin systems, the
average spin is discontinuous between the two coexisting phases, but the average energy is
continuous. In fluids, the density variables usually have different average values in the two
coexisting phases, but can be continuous in accidental cases such as the azeotropic case
(see Section 2.3). In this book the density variables (even the entropy and concentration)
have microscopic expressions in terms of the spins or the particle positions and momenta.
Their equilibrium averages become the usual thermodynamic variables, and their equi-
librium fluctuation variances can be related to some thermodynamic derivatives in the
long-wavelength limit.
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Shift of the origin of the one-particle energy

It would also be appropriate to remark on the arbitrariness of the origin of the energy
supported by each particle. That is, let us shift the hamiltonian as

H → H+ ε0N (1.2.21)

and the chemical potential from µ to µ + ε0. Then, ε0 vanishes in the grand canonical
distribution and hence measurable quantities such as the pressure p should remain invariant
or independent of ε0 as long as they do not involve the origin of the one-particle energy.
We can see that the terms involving ε0 cancel in the variance combination (1.2.20), so CV

is clearly independent of ε0.

Lattice gas model

In the lattice gas model [12], particles are distributed on fixed lattice points in evaluating
the potential energy contribution to �. The lattice constant a is taken to be the hard-core
size of the pair potential, so each lattice point is supposed to be either vacant (ni = 0) or
occupied (ni = 1) by a single particle. Then � is approximated as

� =
∑
{n}

exp(−βH{n}), (1.2.22)

with

H{n} = −
∑
<i, j>

εni n j − (µ+ dT ln λth)
∑

i

ni , (1.2.23)

where the summation in the first term is taken over the nearest neighbor pairs and ε

represents the magnitude of the attractive part of the pair potential. Obviously, if we set
si = 2ni − 1, the above hamiltonian becomes isomorphic to the spin hamiltonian (1.1.1)
under J = ε/4 and

H = 1

2
µ+ d

2
T ln λth − 1

4
zε = 1

2
µ− d

4
T ln T + const., (1.2.24)

z being the coordination number. The pressure p in the lattice gas model is related to the
free energy FIsing of the corresponding Ising spin system by

p = −V−1 FIsing + a−d
(

H + 1

8
zε

)
. (1.2.25)

1.2.3 Thermodynamic derivatives and fluctuation variances

Analogously to the spin case (1.1.18), the grand canonical distribution function Pgra(�) in
(1.2.7) is changed against small changes, β → β + δβ and ν → ν + δν, as [9]

δPgra = [−δHδβ + δN δν]Pgra, (1.2.26)
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where only the linear deviations are written. Because the choice of β and ν as independent
field variables is not usual, we may switch to the usual choice, T and p. Here δT = −T 2δβ

and

δp = nT (δν − H̄δβ), (1.2.27)

where

H̄ = µ+ T s (1.2.28)

is the enthalpy per particle and should not be confused with the magnetic field in the spin
system, and s is the entropy per particle. Then (1.2.26) is rewritten as

δPgra =
[

nδS δT

T
+ δN δp

nT

]
Pgra, (1.2.29)

where

δS = 1

nT
[δH− H̄δN ] (1.2.30)

is the space integral of the entropy density variable to be introduced in (1.2.46) below.
Thus, the thermodynamic average of any fluctuating quantity A changes as

δ〈A〉 = −〈AδH〉δβ + 〈AδN 〉δν + · · · ,

= 〈AδS〉n δT

T
+ 〈AδN 〉 δp

nT
+ · · · . (1.2.31)

Note that δS is invariant with respect to the energy shift in (1.2.21) because the enthalpy
H̄ is also shifted by ε0.

The familiar constant-pressure specific heat C p = nT (∂s/∂T )p per unit volume is
obtained from V C p = nT limδT→0 〈δS〉/δT with δp = 0. From the second line of (1.2.31)
C p becomes

C p = n2〈(δS)2〉/V = 〈(δH− H̄δN )2〉/V T 2 (grand canonical). (1.2.32)

In terms of δS, the constant-volume specific heat CV is also expressed as

CV = n2[〈(δS)2〉 − 〈δSδN 〉2/〈(δN )2〉]/V (grand canonical), (1.2.33)

which is equivalent to (1.2.20). It leads to the inequality C p ≥ CV . Use of the
thermodynamic identity C p/CV = KT /Ks yields the adiabatic compressibility Ks =
(∂n/∂p)s/n in the form

Ks =
[〈(δN )2〉 − 〈δSδN 〉2/〈(δS)2〉]/V n2T (grand canonical). (1.2.34)

The sound velocity c is given by c = (ρKs)
−1/2, ρ = m0n being the mass density.
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1.2.4 Gaussian distribution in the long-wavelength limit

We next consider the equilibrium statistical distribution function for the macroscopic
gross variables, H and N , for one-component fluids, which we write as P(H,N ). The
entropy S(E, N ) as a function of E and N is the logarithm of the number of microscopic
configurations at H = E and N = N . It may be written as

exp[S(E, N )] =
∫

d�δ(H− E)δ(N − N ), (1.2.35)

where d� is the configuration integral (1.2.8). This grouping of the microscopic states
gives

P(H,N ) = 1

�
exp[S(H,N )− βH+ νN ], (1.2.36)

with the grand canonical partition function,

� =
∫

dH
∫

dN exp[S(H,N )− βH+ νN ]. (1.2.37)

Each thermodynamic state is characterized by β and ν or by E = 〈H〉 and N = 〈N 〉. We
then expand S(H,N ) with respect to the deviations δH = H− E and δN = N − N as

S(H,N ) = S(E, N )+ βδH− νδN + (�S)2 + · · · , (1.2.38)

where (δS)2 is the bilinear part,

(�S)2 = 1

2

(
∂2S

∂E2

)
(δH)2 +

(
∂2S

∂E∂N

)
δHδN + 1

2

(
∂2S

∂N 2

)
(δN )2. (1.2.39)

In the probability distribution (1.2.36) the linear terms cancel if (1.2.38) is substituted, so
the distribution becomes the following well-known gaussian form [1, 3, 7]:

P(H,N ) ∝ exp[(�S)2]. (1.2.40)

From this distribution we can re-derive (1.2.15)–(1.2.17) by using the relations,

αee ≡ V
∂2S

∂E2
= ∂β

∂e
, αnn ≡ V

∂2S

∂N 2
= −∂ν

∂n
,

αen ≡ V
∂2S

∂N∂E
= ∂β

∂n
= −∂ν

∂e
, (1.2.41)

where β and ν are regarded as functions of n = N/V and e = E/V . The three coefficients
in (1.2.41) divided by −V constitute the inverse of the matrix whose elements are the
variances among H and N .

Weakly inhomogeneous cases

The above result may be generalized for weakly inhomogeneous cases as follows. Let us
consider a small fluid element whose linear dimension is much longer than the correlation
length. Because the thermodynamics in the element is described by the grand canonical
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ensemble, the long-wavelength, number and energy density fluctuations, δn̂(r) and δê(r),
obey a gaussian distribution of the form (1.2.40) with

(�S)2 =
∫

dr
[

1

2
αee(δê(r))2 + αenδê(r)δn̂(r)+ 1

2
αnn(δn̂(r))2

]
. (1.2.42)

Thermodynamic stability

It has been taken for granted that the probability distribution (1.2.36) is maximum for the
equilibrium values, which results in the positive-definiteness of the matrix composed of the
coefficients in (1.2.41). In thermodynamics [2, 13] this positive-definiteness (implying the
positivity of CV , KT , etc.) follows from the thermodynamic stability of equilibrium states.
In this book, because we start with statistical–mechanical principles, their positivity is an
obvious consequence evident from their variance expressions.

1.2.5 Fluctuating space-dependent variables

The number density variable n̂(r) and the energy density variable ê(r) have microscopic
expressions,

n̂(r) =
∑

i

δ(r − ri ), (1.2.43)

ê(r) =
∑

i

1

2m0
|pi |2δ(r − ri )+ 1

2

∑
i �= j

v(ri j )δ(r − ri ), (1.2.44)

in terms of the particle positions and momenta. As in (1.1.36) we may introduce a fluctu-
ating variable by

â(r) = a +
(
∂a

∂n

)
e
δn̂(r)+

(
∂a

∂e

)
n
δê(r), (1.2.45)

for any thermodynamic variable a given as a function of the averages n = 〈n̂〉 and e = 〈ê〉.
The nonlinear terms such as (∂2a/∂n2)(δn̂)2 are not included in the definition. From ds =
(de − H̄dn)/nT the space-dependent entropy variable is introduced by

ŝ(r) = s + 1

nT

[
δê(r)− H̄δn̂(r)

]
, (1.2.46)

where H̄ = µ+T s = (e+ p)/n is the enthalpy per particle. The space integral of δŝ(r) =
ŝ(r) − s is equal to δS in (1.2.30). In terms of these density variables, the incremental
change of the grand canonical distribution in (1.2.26) and (1.2.29) is expressed as

δPgra = Pgra

∫
dr[−δê(r)δβ + δn̂(r)δν]

= Pgra

∫
dr

[
nδŝ(r)

δT

T
+ δn̂(r)

δp

nT

]
, (1.2.47)
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where δp is the pressure deviation defined in (1.2.27). With these two expressions we may
express any thermodynamic derivatives in terms of fluctuation variances of n̂, ê, and ŝ in
the long-wavelength limit. Using the notation 〈 : 〉, as in (1.1.35), we have

KT = (n2T )−1〈n̂ : n̂〉, C p = n2〈ŝ : ŝ〉, αp = −T−1〈ŝ : n̂〉, (1.2.48)

where αp = −(∂n/∂T )p/n is the thermal expansion coefficient. From (1.2.20) and
(1.2.33) the constant-volume specific heat is expressed as

CV = T−2[〈ê : ê〉 − 〈ê : n̂〉2/〈n̂ : n̂〉]
= n2[〈ŝ : ŝ〉 − 〈ŝ : n̂〉2/〈n̂ : n̂〉]. (1.2.49)

The first line was obtained by Schofield [see Ref. 18]. From (1.2.34) the adiabatic com-
pressibility is expressed as

Ks = (ρc2)−1 = [〈n̂ : n̂〉 − 〈n̂ : ŝ〉2/〈ŝ : ŝ〉]/
n2T . (1.2.50)

These expressions are in terms of the long-wavelength limit of the correlation functions.
Hence, to their merit, they tend to unique thermodynamic limits, whether the ensemble is
canonical or grand canonical, as N , V → ∞ with a fixed density n = N/V .

More generally, for any density variable â in the form of (1.2.45), we obtain

〈â : ê〉 = T 2
(
∂a

∂T

)
ν

, 〈â : n̂〉 = nT

(
∂a

∂p

)
T
, 〈â : ŝ〉 = 1

n
T

(
∂a

∂T

)
p
. (1.2.51)

It then follows that(
∂p

∂T

)
a
= −

(
∂a

∂T

)
p

/(
∂a

∂p

)
T
= −n2〈â : ŝ〉/〈â : n̂〉. (1.2.52)

Finally, we give some thermodynamic identities,

ρc2CV = T

(
∂p

∂T

)
s

(
∂p

∂T

)
n
= T

(
∂p

∂T

)2

s
(1 − CV /C p), (1.2.53)

CV /C p = Ks/KT = 1 −
(
∂p

∂T

)
n

/(
∂p

∂T

)
s
. (1.2.54)

These are usually proved with the Maxwell relations but can also be derived from the
variance relations (1.2.48)–(1.2.54).

1.2.6 Density correlation

In the literature [4]–[6] special attention has been paid to the radial distribution function
g(r) defined by

n2g(|r − r′|) =
∑
i �= j

〈δ(r − ri )δ(r′ − r j )〉

= 〈n̂(r)n̂(r′)〉 − nδ(r − r′), (1.2.55)
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where the self-part (i = j) has been subtracted and g(r) → 1 at long distance in the
thermodynamic limit.8 The structure factor is expressed as

I (k) =
∫

dreik·r〈δn̂(r)δn̂(0)〉 = n + n2
∫

dreik·r[g(r)− 1]. (1.2.56)

An example of I (k) can be found in Fig. 2.3. The isothermal compressibility (1.2.18) is
expressed as

KT = (n2T )−1 lim
k→0

I (k) = (nT )−1 + T−1
∫

dr[g(r)− 1]. (1.2.57)

The physical meaning of g(r) is as follows. We place a particle at the origin of the reference
frame and consider a volume element dr at a position r; then, ng(r)dr is the average
particle number in the volume element. In liquid theories another important quantity is
the direct correlation function C(r) defined by

g(r) = C(r)+
∫

dr′C(|r − r′|)ng(|r′|). (1.2.58)

Its Fourier transformation Ck satisfies

I (k) = n/(1 − nCk). (1.2.59)

Let us assume naively that C(r) decays more rapidly than the pair correlation function g(r)
at long distances and Ck can be expanded as Ck = C0 −C1k2 +· · · at small k with C1 > 0
[14]. Then, (1.2.59) yields a well-known expression called the Ornstein–Zernike form,

I (k) ∼= n/(1 − nC0 + nC1k2), (1.2.60)

at small k. Notice that C0 = limk→0 Ck approaches to n−1 as the critical point (or the
spinodal line more generally) is approached. The direct correlation functions for binary
mixtures will be discussed at the end of Section 1.3.

1.2.7 Hydrodynamic temperature and pressure fluctuations

As in the book by Landau and Lifshitz [1], we introduce the temperature fluctuation δT̂ as
a space-dependent variable by

δT̂ (r) =
(
∂T

∂e

)
n
δê(r)+

(
∂T

∂n

)
e
δn̂(r)

= nT

CV

[
δŝ(r)+ 1

n2

(
∂p

∂T

)
n
δn̂(r)

]
, (1.2.61)

where the energy density ê(r), the number density n̂(r), and the entropy density ŝ(r) are
defined by (1.2.45)–(1.2.47), and use has been made of (∂s/∂n−1)T = (∂p/∂T )n . We as-
sume that these density variables consist only of the Fourier components with wavelengths

8 In a finite system, the space integral of (1.2.55) in the volume V would become N (N − 1)/V , in apparent contradiction to
(1.2.57).
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much longer than any correlation lengths (q � ξ−1, near the critical point, ξ being the
correlation length). Then â in the form of (1.2.45) satisfies

〈â : T̂ 〉 = T

n

(
∂a

∂s

)
n
= T 2

CV

(
∂a

∂T

)
n
. (1.2.62)

This relation gives [1]

〈n̂ : T̂ 〉 = 0, 〈ŝ : T̂ 〉 = T/n, (1.2.63)

〈T̂ : T̂ 〉 = T 2/CV , (1.2.64)

The long-wavelength fluctuations obey a gaussian distribution ∝ exp[−βHhyd]. The
hydrodynamic hamiltonian is written as

Hhyd =
∫

dr
{

CV

2T
[δT̂ (r)]2 + 1

2n2 KT
[δn̂(r)]2

}
, (1.2.65)

which is analogous to (1.1.50) for Ising systems.
We may also introduce a hydrodynamic pressure variable δ p̂(r) by

δ p̂(r) =
(
∂p

∂e

)
n
δê(r)+

(
∂p

∂n

)
e
δn̂(r)

= ρc2
[

1

n
δn̂(r)+ n

(
∂T

∂p

)
s
δŝ(r)

]
, (1.2.66)

where ρ is the mass density and use has been made of (∂n−1/∂s)p = (∂T/∂p)s . For â(r)
in the form of (1.2.45) we obtain

〈â : p̂〉 = T n

(
∂a

∂n

)
s
= Tρc2

(
∂a

∂p

)
s
. (1.2.67)

Substituting â = p̂ and T̂ yields

〈 p̂ : p̂〉 = ρc2T, (1.2.68)

〈 p̂ : T̂ 〉 = Tρc2
(
∂T

∂p

)
s
= T 2

CV

(
∂p

∂T

)
n
. (1.2.69)

By setting â = ŝ and n̂ we also notice

〈ŝ : p̂〉 = 0, 〈n̂ : p̂〉 = nT . (1.2.70)

The Hhyd may be rewritten in another orthogonal form,

Hhyd =
∫

dr
{

1

2ρc2
[δ p̂(r)]2 + n2T

2C p
[δŝ(r)]2

}
. (1.2.71)

It goes without saying that (�S)2 in (1.2.42) coincides with −βHhyd.
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1.2.8 Projection onto gross variables in the hydrodynamic regime

The pressure fluctuation variable δ p̂(r) in (1.2.66) may be interpreted as the projection of
the microscopic stress tensor �̂αβ(r) (α, β = x, y, z) onto the gross variables δê (or δŝ)
and δn̂.9 In the hydrodynamic regime, for any fluctuating variable â(r) dependent on space,
the projection operator P is defined as

P â(r) = 〈â〉 + Aenδê(r)+ Aneδn̂(r). (1.2.72)

The two coefficients Aen and Ane are determined such that the right-hand side and δâ have
the same correlations with δê and δn̂. Then P2 = P . If â is of the form (1.2.45), we have
P â = â. We neglect nonlocality in (1.2.72) assuming that δê and δn̂ consist of the Fourier
components with an upper cut-off wave number � much smaller than the inverse thermal
correlation length. The calculation of the coefficients is simplified if the above relation is
rewritten in terms of δ p̂ and δŝ as

Pδâ(r) = Apsδ p̂(r)+ Aspδŝ(r). (1.2.73)

Using 〈ŝ : p̂〉 = 0, we find

Aps = 〈â : p̂〉/〈 p̂ : p̂〉, Asp = 〈â : ŝ〉/〈ŝ : ŝ〉. (1.2.74)

From (1A.11) and (1A.12) in Appendix 1A, we may derive the following variance
relations,

〈n̂ : �̂αβ〉 = nT δαβ, 〈ê : �̂αβ〉 = (e + p)T δαβ. (1.2.75)

Then, from the definitions of ŝ in (1.2.46) and p̂ in (1.2.66) we obtain

〈ŝ : �̂αβ〉 = 0, 〈 p̂ : �̂αβ〉 = ρc2T δαβ. (1.2.76)

Hence, we arrive at

Pδ�̂αβ(r) = δαβδ p̂(r). (1.2.77)

This leads to the inequality

ρc2 ≤ K∞ ≡
〈∑

α

�̂αα :
∑
β

�̂ββ

〉/
d2T . (1.2.78)

See (1.2.84) below for K∞ [18]. In fact, at the gas–liquid critical point the sound velocity
c goes to zero but K∞ remains finite. These are consistent with the inequality in (1.2.78).

1.2.9 Pressure, energy, and elastic moduli in terms of g(r)

In Appendix 5E we will give the space-dependent microscopic expression for the stress
tensor �̂αβ(r). Its space integral has the following microscopic expression [5, 6],∫

dr�̂αβ(r) =
∑

i

piα piβ

m0
−

∑
<i, j>

v′(ri j )
1

ri j
xi jαxi jβ, (1.2.79)

9 As will be discussed in Chapter 5, the projection operator method has been developed in the study of irreversible processes.
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where v′(r) = dv(r)/dr , xiα (α = x, y, z) are the cartesian coordinates of the particle
position ri , and xi jα = xiα − x jα . The pressure is then expressed in terms of the radial
distribution function g(r) in (1.2.55) as

p = nT − 1

2d
J1, (1.2.80)

with

J1 =
∫

drn2g(r)rv′(r), (1.2.81)

where d in (1.2.80) is the spatial dimensionality. In addition, the internal energy density is
expressed as

e = 〈ê〉 = d

2
nT + 1

2

∫
drn2g(r)v(r). (1.2.82)

In an isotropic equilibrium state the variances among the stress tensor �̂αβ in the long-
wavelength limit are written as

1

T
〈�̂αβ : �̂γ δ〉 = (δαγ δβδ + δαδδβγ )G∞ + δαβδγ δ

(
K∞ − 2

d
G∞

)
. (1.2.83)

Here K∞ and G∞ are called the elastic moduli of fluids [6], [15]–[18]. Although elastic
deformations are not well defined in fluids, they were interpreted as the infinite-frequency
elastic moduli of fluids [17].10 Interestingly, they can be expressed in terms of g(r) as
[17, 18]

K∞ = 1

d2T

〈∑
α

�̂αα :
∑
β

�̂ββ

〉
=

(
1 + 2

d

)
nT − d − 1

2d2
J1 + 1

2d2
J2, (1.2.84)

G∞ = 1

T
〈�̂xy : �̂xy〉 = nT + 1

2d(d + 2)

[
(d + 1)J1 + J2

]
, (1.2.85)

where J1 is defined by (1.2.81) and

J2 =
∫

drn2g(r)r2v′′(r), (1.2.86)

with v′′(r) = d2v(r)/dr2. Elimination of J1 and J2 yields a general relation,

K∞ −
(

1 + 2

d

)
G∞ = 2(p − nT ). (1.2.87)

It is not trivial that K∞ and G∞ can be expressed in terms of the radial distribution
function, although they involve correlations among four particles. We will present a general
theory for calculating correlation functions involving the stress tensor in Appendix 1A.

Schofield calculated more general wave number-dependent correlation functions among

10 In highly supercooled fluids, a shear modulus becomes well defined and measurable. It is smaller than G∞ but larger than
nT . See Fig. 11.33 and its explanation in Section 11.4.
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the stress components [18]. He considered the projection of the time derivative of the
Fourier component �̂αβ(k) of the stress tensor,

P
[
∂

∂t
�̂αβ(k)

]
=

∑
γ δ

Cαβγ δ(k)εγ δ(k), (1.2.88)

onto the Fourier component of the strain tensor, εαβ(k) ≡ ikα Jβ(k)+ ikβ Jα(k), where J is
the mass current. Then the coefficients Cαβγ δ(k) become the correlation functions among
�̂αβ(k), and their small-k limits are linear combinations of K∞ and G∞ introduced above.
Numerical analysis of these nonlocal elastic moduli was performed subsequently [19].

Generalization to the binary fluid mixture case

For binary fluid mixtures interacting with the pair potentials vi j (r), the expressions for p,
K∞, and G∞ are still given by (1.2.80), (1.2.84) and (1.2.85), respectively, in terms of J1

and J2 if we re-define

J1 =
∫

dr
∑

i, j=1,2

ni n j gi j (r)rv
′
i j (r),

J2 =
∫

dr
∑

i, j=1,2

ni n j gi j (r)r
2v′′i j (r). (1.2.89)

Here i, j = 1, 2 represent the particle species, and gi j (r) are the radial distribution
functions defined in (1.3.12) below. The expression for e is obtained if n2g(r)v(r) is
replaced by

∑
i, j=1,2 ni n j gi j (r)vi j (r) in (1.2.82).

1.3 Binary fluid mixtures

The thermodynamics of binary fluid mixtures composed of two species 1 and 2 interacting
with short-range pair potentials will be considered. Although it is a straightforward gen-
eralization of that for one-component fluids, it becomes much more complicated and has
rarely been discussed in detail [16]. We will show that its structure can be elucidated using
variance relations among the density variables. Readers who do not work on fluid binary
mixtures may skip this section now and return to it later when the information is needed in
Chapters 2 and 6.

1.3.1 Grand canonical ensemble

As in the one-component fluid case, we choose � = pV/T = ln� as the thermodynamic
potential, where � is the grand canonical partition function. The independent field vari-
ables are β, ν1 = µ1/T , and ν2 = µ2/T , where µ1 and µ2 are the chemical potentials per
particle. The incremental change of � is written as [20]

d� = −〈H〉dβ + 〈N1〉dν1 + 〈N2〉dν2, (1.3.1)
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where N1 and N2 are the particle numbers treated as fluctuating variables in the grand
canonical ensemble. This relation is equivalent to the Gibbs–Duhem relation,

1

n
dp = sdT + n1

n
dµ1 + n2

n
dµ2, (1.3.2)

where ni = 〈Ni 〉/V (i = 1, 2), and n = n1 + n2. The entropy s per particle satisfies
s = (e + p − n1µ1 − n2µ2)/nT , where e = 〈H〉/V . Sometimes µ2 is treated as the
potential; then, (1.3.2) is rewritten as

dµ2 = 1

n
dp − sdT − Xd∆, (1.3.3)

where the independent field variables [10, 20] are p, T , and the chemical potential differ-
ence,

∆ = µ1 − µ2. (1.3.4)

The energy density variable ê(r) and the number density variables n̂i (r) have well-
defined microscopic expressions, as in the one-component fluid case (1.2.43) and (1.2.44).
Using the notation (1.1.35), the counterparts of (1.2.15)–(1.2.17) are of the forms [21]–[23]

∂2

∂νi∂ν j

(
p

T

)
= ∂ni

∂ν j
= 〈n̂i : n̂ j 〉, (1.3.5)

∂2

∂β2

(
p

T

)
= − ∂e

∂β
= 〈ê : ê〉, (1.3.6)

− ∂2

∂νi∂β

(
p

T

)
= −∂ni

∂β
= ∂e

∂νi
= 〈n̂i : ê〉. (1.3.7)

As an application of the above results, let us consider the specific heat CVX = (∂e/∂T )VNX

at constant volume V and concentration X . Since V is fixed,

CVX =
(
∂e

∂T

)
n1n2

= −1

/[
T 2

(
∂β

∂e

)
n1n2

]
. (1.3.8)

We should note that −(∂β/∂e)n1n2 is equal to the 33 element I 33 of the inverse of the
matrix {Ii j } defined by

Ii j = 〈n̂i : n̂ j 〉, I3i = 〈n̂i : ê〉, I33 = 〈ê : ê〉, (1.3.9)

with i, j = 1, 2. Then we may express CVX as

CVX = det I/T 2[I11 I22 − I 2
12], (1.3.10)

where

det I = det {Ii j } = ∂(n1, n2, e)

∂(ν1, ν2,−β)
(1.3.11)

is the determinant of the 3×3 matrix {Ii j }. This expression is much more complicated than
(1.2.49) for CV in one-component fluids.
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1.3.2 Fluctuating density variables

The radial distribution functions gi j (r) defined from the density correlation functions,

〈n̂i (r)n̂ j (r′)〉 = ni n j gi j (|r − r′|)+ δi j niδ(r − r′), (1.3.12)

have been studied in liquid theories [4]–[6]. Their numerically calculated profiles will be
given in Fig. 11.24 for a supercooled state. The Fourier transformation yields the 2 × 2
matrix of the structure factors,

Ii j (k) = δi j ni + ni n j

∫
dreik·r[gi j (r)− δi j ]. (1.3.13)

Their long-wavelength limits are 〈n̂i : n̂ j 〉 in (1.3.9):

Ii j ≡ lim
k→0

Ii j (k) = 〈n̂i : n̂ j 〉 = (∂ni/∂ν j )T = (∂n j/∂νi )T. (1.3.14)

As in (1.2.45) for the one-component case, we may introduce a fluctuating variable â by

â(r) = a +
(

∂a

∂n1

)
en2

δn̂1(r)+
(

∂a

∂n2

)
en1

δn̂2(r)+
(
∂a

∂e

)
n1n2

δê(r), (1.3.15)

for any thermodynamic variable a = a(n1, n2, e) given as a function of the averages
n1 = 〈n̂1〉, n2 = 〈n̂2〉, and e = 〈ê〉. We may define fluctuating entropy and concentration
variables as [23]

ŝ(r) = s + 1

nT

[
δê(r)− T sδn̂(r)− µ1δn̂1(r)− µ2δn̂2(r)

]
, (1.3.16)

X̂(r) = X + 1

n

[
(1 − X)δn̂1(r)− Xδn̂2(r)

]
, (1.3.17)

where

n̂(r) = n̂1(r)+ n̂2(r) (1.3.18)

is the (total) number density variable. The ratio X = n1/n is called the molar concentra-
tion, in terms of which the average number densities are expressed as

n1 = nX, n2 = n(1 − X). (1.3.19)

For small variations of the field variables the microscopic grand canonical distribution
Pgra changes as

δPgra = Pgra

∫
dr

[−δê(r)δβ + δn̂1(r)δν1 + δn̂2(r)δν2
]

= Pgra

∫
dr

[
nδŝ(r)

δT

T
+ δn̂(r)

δp

nT
+ nδ X̂(r)

δ∆

T

]
, (1.3.20)

where δp = nsδT + n1δµ1 + n2δµ2 is the pressure deviation. The above relations are
generalizations of (1.2.47), which is for one-component fluids. The second line of (1.3.20)
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implies that the conjugate fields of ŝ(r), n̂(r), and X̂(r) are the deviations nδT , n−1δp, and
nδ∆, respectively. As in (1.2.51), for â(r) in the form of (1.3.15), we find(

∂a

∂T

)
p∆

= n

T
〈â : ŝ〉,

(
∂a

∂p

)
T∆

= 1

nT
〈â : n̂〉,

(
∂a

∂∆

)
pT

= n

T
〈â : X̂〉. (1.3.21)

In particular, (
∂X

∂∆

)
pT

= n

T
〈X̂ : X̂〉 (1.3.22)

is called the concentration susceptibility, representing the strength of the concentration
fluctuations.

In most experiments, however, X is fixed instead of ∆. The first two equations of (1.3.21)
may then be changed to [21]–[23](

∂a

∂T

)
pX

= n

T

[〈â : ŝ〉 − 〈â : X̂〉〈ŝ : X̂〉/〈X̂ : X̂〉],
(
∂a

∂p

)
T X

= 1

nT

[〈â : n̂〉 − 〈â : X̂〉〈n̂ : X̂〉/〈X̂ : X̂〉]. (1.3.23)

Then the specific heat C pX = nT (∂s/∂T )pX , the compressibility KTX = (∂n/∂p)TX/n,
and the thermal expansion coefficient αpX = −(∂n/∂T )pX/n at fixed concentration X are
written as

C pX = n2[〈ŝ : ŝ〉 − 〈ŝ : X̂〉2/〈X̂ : X̂〉], (1.3.24)

KTX = 1

n2T

[〈n̂ : n̂〉 − 〈n̂ : X̂〉2/〈X̂ : X̂〉], (1.3.25)

αpX = − 1

T

[〈ŝ : n̂〉 − 〈ŝ : X̂〉〈n̂ : X̂〉/〈X̂ : X̂〉]. (1.3.26)

From (1.3.17) and (1.3.18) n̂ and X̂ are expressed in terms of n̂1 and n̂2. It leads to the
identity,

〈n̂ : n̂〉〈X̂ : X̂〉 − 〈n̂ : X̂〉2 = n−2[
I11 I22 − I 2

12

]
, (1.3.27)

where Ii j = 〈n̂i : n̂ j 〉. Therefore, KTX may also be rewritten as

KTX = [
I11 I22 − I 2

12

]/
n4T 〈X̂ : X̂〉. (1.3.28)

Expressions equivalent to (1.3.25) and (1.3.28) were derived by Kirkwood and Buff [21].
The positivity of C pX and KTX is evident from (1.1.27).

1.3.3 Molar and mass concentrations

So far we have used the molar concentration. However, in many experimental papers, use
has often been made of the mass concentration,

x = m01n1

m01n1 + m02n2
= m01 X

m01 X + m02(1 − X)
, (1.3.29)
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where m01 and m02 are the molecular masses. The corresponding field variable is the
chemical potential difference,

∆̄ = 1

m01
µ1 − 1

m02
µ2, (1.3.30)

per unit mass. The mass densities of the two components are ρ1 = ρx and ρ2 = ρ(1 − x),
respectively, where ρ = ρ1 + ρ2 = m01n1 + m02n2 is the (total) mass density. Because
x depends only on X as dx/d X = m01m02(n/ρ)2, there arises no essential difference
between these two choices. That is, expressions in one of these two choices are transformed
into those in the other choice with multiplication of some factors. For example, the square
of the sound velocity and the concentration susceptibilities in the two choices are expressed
as

c2 =
(
∂p

∂ρ

)
sx

= n

ρ

(
∂p

∂n

)
s X
,

(
∂x

∂∆̄

)
pT

=
(

n

ρ

)3(
m01

m02

)2(
∂X

∂∆

)
pT

. (1.3.31)

The second relation is because n1dµ1 + n2dµ2 = 0 from (1.3.2) and d∆̄ =
(ρ/m01m02n)d∆ from (1.3.30) for dT = dp = 0.

1.3.4 Hydrodynamic fluctuations of the field variables

We next introduce the fluctuating temperature and pressure variables δT̂ (r) and δ p̂(r) and
examine their statistical properties. To this end we need some matrix analysis. We define

m̂1(r) = ŝ(r), m̂2(r) = n̂(r), m̂3(r) = X̂(r) (1.3.32)

and write their fluctuation variances as Ai j = 〈m̂i : m̂ j 〉. Then, from (1.3.21) we have

A1i = T

n

∂mi

∂T
, A2i = nT

∂mi

∂p
, A3i = T

n

∂mi

∂∆
, (1.3.33)

where m1 = s,m2 = n, and m3 = X are the thermodynamic quantities regarded as
functions of T, p, and ∆. The inverse matrix of Ai j is written as Ai j . It may be expressed
as

A1i = n

T

∂T

∂mi
, A2i = 1

nT

∂p

∂mi
, A3i = n

T

∂∆

∂mi
, (1.3.34)

where T, p, and ∆ are regarded as functions of s, n, and X . In particular,

A11 = [A22 A33 − A2
23]/ det A = n2/CVX, (1.3.35)

A22 = [A11 A33 − A2
13]/ det A = ρc2/n2T, (1.3.36)

where det A is the determinant of the matrix {Ai j }. The first relation (1.3.35) may be
transformed into (1.3.10) if use is made of (1.3.27) and the relations between the two
determinants,

det A = T 3

n

∂(s, n, X)

∂(T, p,∆)
= 1

n4T 2
det I , (1.3.37)
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which follows from the definitions (1.3.16)–(1.3.18). The second relation (1.3.36) is rewrit-
ten as

ρc2 = n2T
[〈ŝ : ŝ〉〈X̂ : X̂〉 − 〈ŝ : X̂〉2]/

det A, (1.3.38)

which gives

det A = T 2C pX

(
∂X

∂∆

)
pT

/
nρc2 = T 2CVX KTX

(
∂X

∂∆

)
pT

/
n, (1.3.39)

if use is made of (1.3.22) and (1.3.24). It also follows the thermodynamic identity for the
specific heat ratio,

γX ≡ C pX/CVX = ρc2 KTX . (1.3.40)

The fluctuating temperature variable is defined by

δT̂ (r) = T

n

3∑
i=1

A1iδm̂i (r) =
3∑

i=1

∂T

∂mi
δm̂i (r). (1.3.41)

For â in the form of (1.3.15) we obtain

〈â : T̂ 〉 = T

n

(
∂a

∂s

)
n1n2

= T 2

CVX

(
∂a

∂T

)
n1n2

, (1.3.42)

where CVX is the specific heat at constant n and X per unit volume discussed in (1.3.8)–
(1.3.11). Substituting â = n̂i (i = 1, 2), ŝ, and T̂ , we obtain

〈n̂i : T̂ 〉 = 0, 〈ŝ : T̂ 〉 = T, (1.3.43)

〈T̂ : T̂ 〉 = T 2/CVX . (1.3.44)

Thus δT̂ is orthogonal to the number densities.
The fluctuating pressure variable is defined by

δ p̂(r) = nT
3∑

i=1

A2iδm̂i (r) =
3∑

i=1

∂p

∂mi
δm̂i (r). (1.3.45)

For any fluctuation variable â(r) we obtain

〈â : p̂〉 = nT

(
∂a

∂n

)
s X

= Tρc2
(
∂a

∂p

)
s X
. (1.3.46)

On the other hand, by setting â = ŝ, X̂ , and n̂ we have

〈ŝ : p̂〉 = 〈X̂ : p̂〉 = 0, 〈n̂ : p̂〉 = nT . (1.3.47)
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On the other hand, for â = T̂ and p̂, we derive

〈T̂ : p̂〉 = Tρc2
(
∂T

∂p

)
s X

= T 2

CVX

(
∂p

∂T

)
nX

, (1.3.48)

〈 p̂ : p̂〉 = Tρc2. (1.3.49)

These relations are straightforward generalizations of those in the one-component case.
We may also introduce the fluctuation of the chemical potential difference �̂ as

δ∆̂(r) = T

n

3∑
i=1

A3iδm̂i (r) =
3∑

i=1

∂∆

∂mi
δm̂i (r). (1.3.50)

For â(r) in the form of (1.3.15) we obtain

〈â : ∆̂〉 = T

n

(
∂a

∂X

)
sn
. (1.3.51)

Substitutions â = ŝ, n̂, and X̂ give

〈ŝ : ∆̂〉 = 〈n̂ : ∆̂〉 = 0, 〈X̂ : ∆̂〉 = T/n. (1.3.52)

Projection of �̂αβ onto the hydrodynamic variables

By generalizing the calculation in Appendix 1A to the binary fluid mixture case, we may
readily show that the inner products of the microscopic tensor �αβ with the hydrodynamic
variables are expressed as

〈n̂i : �̂αβ〉 = ni T δαβ, 〈ê : �̂αβ〉 = (e + p)T δαβ. (1.3.53)

Then, from the definitions of ŝ and X̂ in (1.3.16) and (1.3.17), respectively, we obtain
〈ŝ : �̂αβ〉 = 0 and 〈X̂ : �̂αβ〉 = 0, so that Pδ�̂αβ = δαβδ p̂ as in (1.2.77) for one-
component fluids.

1.3.5 The direct correlation functions and the hydrodynamic hamiltonian

We introduce the direct correlation functions Ci j (r) for binary fluid mixtures [5]. The
Fourier transformations of Ci j (r) are related to the structure factors Ii j (k) in (1.3.13) by

1

ni
Ii j (k)−

∑
"

Ci"(k)I"j (k) = δi j . (1.3.54)

The physical meaning of Ci j (r) becomes apparent if the radial distribution functions gi j (r)
are expressed as

gi j (r) = Ci j (r)+
∑
"

∫
dr′Ci"(|r − r′|)n"g"j (|r′|). (1.3.55)
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The first term represents the direct correlations, while the second term arises from superpo-
sition of the indirect correlations. In one-component fluids the direct correlation function
C(r) has been introduced in (1.2.58) and its Fourier transformation in (1.2.59).

Next, using (1.3.43) and (1.3.44), we may generalize (1.2.65) to obtain the hydrody-
namic hamiltonian for binary fluid mixtures,

Hhyd =
∫

dr
{

1

2T
CVX[δT̂ (r)]2 + T

2

∑
i j

I i jδn̂i (r)δn̂ j (r)
}
. (1.3.56)

Here {I i j } is the inverse of the matrix Ii j = 〈n̂i : n̂ j 〉 in (1.3.14), so

I i j = (∂ν j/∂ni )T = (∂νi/∂n j )T, (1.3.57)

where νi = µi/T are regarded as functions of n1, n2, and T . In the long-wavelength limit
we have

I i j = 1

ni
δi j − Ci j (0), (1.3.58)

where Ci j (0) = limk→0 Ci j (k). Using (1.3.53) and the Gibbs–Duhem relation (1.3.2) we
also notice∑

j

I i j n j = 1 −
∑

j

Ci j (0)n j = 1

T

(
∂p

∂ni

)
T
= n

(
∂νi

∂n

)
T X

, (1.3.59)

where p is regarded as a function of n1, n2, and T . Furthermore, multiplying (1.3.58) by
ni and summing over i , we may relate the compressibility KTX to Ci j (0) as

1

KTX
= n

(
∂p

∂n

)
T X

= nT − T
∑

i j

Ci j (0)ni n j . (1.3.60)

This is a generalization of the well-known compressibility relation for one-component
fluids, (1.2.57).

Appendix 1A Correlations with the stress tensor

There is a general method of calculating the correlation function between the stress tensor
�̂αβ(r, �) and any local variable A(r, �), where we explicitly write the dependence on the
phase space point � = (r1, p1, . . . , rN , pN ). For simplicity we consider the correlations
in the long-wavelength limit in one-component fluids. It is straightforward to general-
ize the following results to binary fluid mixtures. We only need to replace n2g(r) by∑

i j ni n j gi j (r) in the following expressions.
Let us slightly perturb the hamiltonian as

H′(�) = H(�)−
∫

dr
∑
αβ

�̂αβ(r, �)Dαβ(r), (1A.1)

where Dαβ = ∂uα/∂xβ is the gradient tensor of a small, slowly varying displacement
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vector u(r). We then slightly shift the momenta and positions, ri = (xi1, . . . , xid) and
pi = (pi1, . . . , pid) (i = 1, . . . , N ), as

p′iα = piα −
∑
β

Dαβ(ri )piβ, x ′iα = xiα + uα(ri ). (1A.2)

It is important that the perturbed hamiltonian H′(�) becomes of the same form as the
unperturbed hamiltonian,

H′(�) = H(�′)+ O(u2) (1A.3)

in terms of the displaced phase space point �′ = (r′1, p′1, . . . , r′N , p′N ) to first order in u.
We assume that u vanishes at the boundary of the system, so that the displaced positions
r′i are also within the same fluid container. From (1A.1) the average over the equilibrium
distribution for the perturbed hamiltonian is written as

〈A(r, �)〉′ = 1

Z ′
N

∫
d�A(r, �) exp

[
− 1

T
H′(�)

]
= 〈A(r, �)〉 + 1

T

∑
αβ

〈A : �̂αβ〉Dαβ(r), (1A.4)

where Z ′
N = ∫

d� exp[−H′(�)/T ], and 〈· · ·〉 is the equilibrium average for the unper-
turbed hamiltonian H(�). In the second line use has been made of the fact that Dαβ(r)
change slowly compared with any correlation lengths. Also, from (1A.3) we obtain

〈A(r, �)〉′ = 1

Z N

∫
d�′A(r, �) exp

[
− 1

T
H(�′)

]
, (1A.5)

where Z N = ∫
d�′ exp[−H(�′)/T ] = ∫

d� exp[−H(�)/T ] is the partition function for
the unperturbed hamiltonian. Here,

A(r, �) = A(r, �′)+
∑
αβ

DαβAαβ(r, �′)+ · · · , (1A.6)

with

Aαβ(r, �) =
∑

i

(
piβ

∂

∂piα
− xiβ

∂

∂xiα

)
A(r, �). (1A.7)

Comparing (1A.4) and (1A.5) we find the desired result,

〈A : �̂αβ〉 =
∫

dr1〈δA(r)δ�̂αβ(r1)〉 = T 〈Aαβ(r, �)〉, (1A.8)

where the integrand is assumed to decay sufficiently rapidly for large |r − r1| in the
thermodynamic limit V → ∞. An equivalent formula can be found in Ref. [24].

For example, we consider the fluctuations of the one-body distribution,

f̂ (r, p) =
∑

i

δ(r − ri )δ(p − pi ), (1A.9)
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and the pair distribution,

ĝ(r, p, r′, p′) =
∑
i �= j

δ(r − ri )δ(p − pi )δ(r′ − r j )δ(p′ − p j ), (1A.10)

in the (r, p) space. Use of (1A.8) yields11

〈 f̂ (r, p) : �̂αβ〉 = 1

m0
pα pβ f0(p), (1A.11)

〈ĝ(r, p, r′, p′) : �̂αβ〉 =
[ pα pβ + p′α p′β

m0
+ T (xα − x ′α)

∂

∂xβ

]
f0(p) f0(p′)g(|r − r′|),

(1A.12)

where f0(p) = n(2πm0T )−d/2 exp(−p2/2m0T ) is the Maxwell distribution. Note that
(1A.11) is independent of r, while (1A.12) is independent of 1

2 (r+r′) in the thermodynamic

limit. Now using the microscopic expression for �̂αβ(r) we may derive the expressions for
K∞ and G∞ as in (1.2.84) and (1.2.85), respectively. Furthermore, integrations of (1A.11)
and (1A.12) over the momenta lead to (1.2.75) with the aid of (1.2.80)–(1.2.82).
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2

Critical phenomena and scaling

General aspects of static critical behavior [1]–[5] will be summarized using fractal con-
cepts in Section 2.1. The mapping relations between the critical behavior of one- and
two-component fluids and that of Ising systems will be discussed in Sections 2.2 and 2.3.
They are useful in understanding a variety of thermodynamic experiments in fluids and will
be the basis of the dynamical theories developed in Chapter 6. As another kind of critical
behavior of xy symmetry, 4He near the superfluid transition will be treated in our scheme
in Section 2.4. Gravity effects on the critical behavior in one-component fluids and 4He
will also be discussed.

2.1 General aspects

First we provide the reader with snapshots of critical fluctuations whose characteristic
features are strikingly similar in both Ising spin systems and fluids. Figure 2.1 shows a
128 × 128 spin configuration generated by a Monte Carlo simulation of a 2D Ising spin
system in a disordered phase very close to the critical point. Figure 2.2 displays particle
positions realized in a molecular dynamics simulation of a 2D one-component fluid in
a one-phase state close to the gas–liquid critical point. In the latter simulation, the pair
potential v(r) is of the Lenard-Jones form (1.2.1) cut off at r/σ = 2.5 and characterized by
ε and σ . The temperature and average number density are T = 0.48ε and n = 0.325σ−2,
respectively. In Fig. 2.3 we plot the structure factors, 〈|n̂k|2〉/n and 〈|êk|2〉/nε2, for the
number and energy density fluctuations, respectively, in the same Lenard-Jones model fluid
with the same parameter values. We can see strong critical enhancement at small wave
numbers, which indicates large compressibility because the small-k limit of 〈|n̂k|2〉/n is
equal to nT KT from (1.2.57). We also show, in Fig. 2.4, weak critical enhancement of the
specific heat CV with the critical exponent α in oxygen measured in an early period of the
research in this field [6].1

1 In this experiment, stirring was used successfully to suppress the gravity effect. Effects of stirring on the critical behavior will
be discussed in Chapter 11. See also the last part of Section 4.3 for further discussions of CV .

34
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Fig. 2.1. Spin configuration in a 2D Ising system close to the critical point obtained by Monte Carlo
simulation (courtesy of Mr K. Kanemitsu). The correlation length is of the order of the system
dimension.

Fig. 2.2. Snapshot of particle positions in a 2D Lenard-Jones fluid close to the gas–liquid critical
point obtained by molecular dynamics simulation (courtesy of Dr R. Yamamoto). A quarter of the
total system (L = 3926σ and N = 5 × 104) is shown.
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Fig. 2.3. The structure factors of the density and energy fluctuations vs kσ for a 2D Lenard-Jones
fluid close to the gas–liquid critical point. The long-wavelength parts (kσ � 2) represent the critical
fluctuations. A line with a slope of −7/4 = −(2 − η) is included as a guide.

2.1.1 Critical exponents and correlation functions

The critical behavior of Ising systems is characterized by the two relevant field variables,
the magnetic field h and the reduced temperature,

τ = (T − Tc)/Tc. (2.1.1)

The asymptotic critical region is represented by τ < Gi for τ > 0 and h = 0, where Gi
is a (system-dependent) characteristic reduced temperature, called the Ginzburg number
(see Section 4.1). The corrections to the asymptotic critical behavior can be discussed
generally [7], but they will be neglected hereafter. At h = 0 and both for τ > 0 and τ < 0,
the magnetic susceptibility and the specific heats behave as

χ ∼ |τ |−γ , CH ∼ CM ∼ |τ |−α. (2.1.2)

In 2D, the specific-heat singularity is logarithmic (∝ ln |τ |) or α = 0 [8]. The average
energy density m (measured from the critical value) is weakly singular at h = 0 as

m = 〈m̂〉 ∼ |τ |1−α, (2.1.3)
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Fig. 2.4. Temperature dependence of the
constant-volume specific heat at the critical
density in oxygen [6].

which is consistent with the specific-heat behavior. On the coexistence line, where h = 0
and τ < 0, the average spin ψ = 〈ψ̂〉 is nonvanishing as

ψ ∼= ±B0|τ |β, (2.1.4)

where B0 is called the critical amplitude. The exponent β should not be confused with the
inverse temperature. When τ = 0 and h �= 0, ψ has the same sign as h and

|h| ∼ |ψ |δ. (2.1.5)

Between the critical exponents, γ , α, β, and δ, the following relations are well known:

α + 2β + γ = 2, (2.1.6)

δ = 1 + γ /β. (2.1.7)

In Ising spin systems the critical exponents are

γ ∼= 1.24, α ∼= 0.10, β ∼= 0.33, δ ∼= 4.75, (3D),

γ = 7/4, α = 0, β = 1/8, δ = 15 (2D). (2.1.8)
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Order parameter correlation

The structure factor I (k) = 〈|ψ̂k|2〉 asymptotically behaves as [9]

I (k) ∼= χ/(1 + k2ξ2) = χ(1 − k2ξ2 + · · ·) (kξ � 1),
∼= C∞/k2−η (kξ � 1), (2.1.9)

where ξ is called the correlation length and C∞ is a constant independent of ξ . The first
line gives the Ornstein–Zernike form for the structure factor, which has been derived for
fluids in (1.2.60). At h = 0 and for small τ , ξ can be very long as

ξ ∼= ξ+0τ
−ν (τ > 0), ξ ∼= ξ−0|τ |−ν (τ < 0), (2.1.10)

where the coefficients ξ+0 and ξ−0 are microscopic lengths. For the 2D model fluid in
Fig. 2.3 the power law k−7/4 can be seen in the wave number region ξ−1 � k � 2σ−1, as
shown in the figure. This behavior is consistent with the 2D Ising value η = 1/4 in (2.1.17)
below.

Since the two limiting behaviors in (2.1.9) should be smoothly connected at k ∼ ξ−1,
the following scaling relation holds,

γ = (2 − η)ν. (2.1.11)

The following relation is also well known:

dν = 2 − α, (2.1.12)

where d is the space dimensionality. This relation holds for d ≤ 4. With the above two
relations, β and δ may also be expressed in terms of ν and η as

β = 1

2
(d − 2 + η)ν, (2.1.13)

δ = (d + 2 − η)/(d − 2 + η). (2.1.14)

The structure factor may be written in the scaling form,

I (k) = χ I ∗(kξ), (2.1.15)

where the scaling function I ∗(x) behaves as I ∗(0) = 1 and I ∗(x) ∼ x−2+η for x � 1 from
(2.1.9). The corrections to the above scaling expression becomes negligible (or irrelevant)
close to the critical point. The pair correlation function g(r) is written as

g(r) = 1

rd−2+η
G∗(r/ξ), (2.1.16)

where G∗(x) is a constant for x � 1 and decays exponentially as exp(−x) for x � 1. In
Ising systems the critical exponents η and ν are given by

η = 0.03–0.05, ν ∼= 0.63 (∼= 5/8) (3D),

η = 1/4, ν = 1 (2D). (2.1.17)

In 3D, η is very small and is in many cases negligible.
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Energy correlation

Similar scaling relations hold for the correlation function ge(r) of the energy density m̂(r)
measured from the critical value and divided by Tc [10]:

ge(r) = 〈δm̂(r + r0)δm̂(r0)〉. (2.1.18)

For Ising spin systems we introduced the exchange energy density ê(r) in (1.1.32) and we
here have m̂(r) = [ê(r) − ec]/Tc, where ec is the critical value. Near the critical point,
ge(r) is scaled as

ge(r) = 1

rd−α/ν
G∗

e(r/ξ). (2.1.19)

Its Fourier transformation gives

Ie(k) = CH I ∗e (kξ), (2.1.20)

where CH is the specific heat written in the variance form in (1.1.24) or (1.1.34). The
scaling function I ∗e (x) tends to 1 for x � 1 and to const.x−α/ν for x � 1. It is well known
that, as far as the static properties are concerned, we can set

m̂(r) ∼= const.ψ̂(r)2, (2.1.21)

where the coefficient is a constant independent of τ . Then ge(r) becomes the correlation
function of ψ̂2. For Ising spin systems this means that the microscopic expression ê(r) in
(1.1.32) is coarse-grained in the form of const.ψ̂2 on spatial scales much longer than a.

2.1.2 Fractal dimensions

In Figs 2.1 and 2.2 we can see clusters of various sizes. If we consider the clusters with
linear dimension λa in the intermediate range,

1 � λ � ξ/a, (2.1.22)

they are self-similar with respect to appropriate scale changes. The system is assumed to
extend to infinity. The geometrical characteristics of the clusters may be understood using
the concept of fractals [11]–[13]. Following Suzuki, we introduce the Hausdorff fractal
dimension D to characterize the critical clusters.

Let us consider the spin sum Sλ in a volume Vλ = (λa)d with linear dimension λ,

Sλ =
∫

Vλ

drψ̂(r) =
∫

Vλ

drδψ̂(r)+ Vλ〈ψ̂〉, (2.1.23)

where λ satisfies (2.1.22), δψ = ψ̂ − 〈ψ̂〉 is the deviation, and the second term gives
the average 〈Sλ〉. We may then consider the probability of finding the deviation δSλ =
Sλ − 〈Sλ〉 at S. The distribution function is written as P(S) and is of the following scaling
form,

P(S) = λ−D P∗(S/λD), (2.1.24)



40 Critical phenomena and scaling

where P∗(x) is a scaling function independent of λ, and D is called the fractal dimension.
This implies that δSλ is typically of order λD . In the range (2.1.22) the variance of δSλ is
estimated as

〈δS2
λ〉 ∼

∫
Vλ

dr
∫

Vλ

dr′
1

|r − r′|d−2+η
∼ λ2d/λd−2+η ∼ λd+2−η, (2.1.25)

where use has been made of (2.1.16). Thus we can express D in terms of η as

D = 1

2
(d + 2 − η). (2.1.26)

Therefore,

D ∼= 2.5 (3D), D = 15/8 (2D). (2.1.27)

for Ising models. From (2.1.13), (2.1.14), and (2.1.26) we also obtain

D = d − β/ν = βδ/ν. (2.1.28)

In 3D, D ∼= 2.5 holds for any n-component spin system, because the exponent η is very
small for any n, and the clusters are ramified objects [13]. In 2D Ising systems, D = 15/8
is close to the geometrical dimension 2 and the clusters are rather compact objects. This
aspect is apparent in Figs 2.1 and 2.2.

We may also introduce the fractal dimension De for the energy density fluctuations m̂
[12]. We consider its space integral Eλ in a region with linear dimension λa,

Eλ =
∫

Vλ

drm̂(r) ∼
∫

Vλ

drψ̂(r)2. (2.1.29)

From (2.1.19) we estimate

〈δE2
λ〉 ∼ λ2d/λd−α/ν ∼ λ2/ν, (2.1.30)

so that δEλ is typically of order λ1/ν . This means

De = 1/ν or D/De = 1 + 1

2
(γ − α) > 1. (2.1.31)

We next compare the averages, 〈Sλ〉 = Vλ〈ψ̂〉 and 〈Eλ〉 = Vλ〈m̂〉, and the typical
fluctuation magnitudes on the coexistence curve very close to the critical point. Use of
(2.1.3), (2.1.4), and the exponent relations yields√

〈δS2
λ〉

/〈Sλ〉 ∼ √
〈δE2

λ〉
/〈Eλ〉 ∼ (ξ/λa)d . (2.1.32)

Therefore, the averages are smaller than the typical magnitudes of the fluctuations for
λa � ξ . In the reverse case, λa � ξ , the averages are much larger than the fluctuations.
This means that domains appearing in phase separation are compact (not fractal) on spatial
scales much longer than ξ . In some systems the crossover from mean field to asymptotic
critical behavior occurs at a small value of the Ginzburg number Gi, where the condition

〈Sλ〉 �
√
〈δS2

λ〉 holds at λ = ξ/a in a sizable temperature region |T/Tc − 1| � Gi on the
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coexistence curve. This is the famous Ginzburg criterion, which assures mean field critical
behavior, see Section 4.1.

Finite systems at the critical point

We have supposed infinite systems in the above arguments. However, finiteness of the
system dimension L itself gives rise to some interesting effects. In particular, it is inevitable
in simulations. If the bulk correlation length is much longer than L , the total spin sum S
obeys a distribution of the finite-size scaling form,

P(S) = L−D P̃(S/L D), (2.1.33)

which is analogous to (2.1.24) [14]–[17]. The scaling function P̃(x) depends on the space
dimensionality d and the boundary condition. In particular, in 2D at the bulk critical point
under the periodic boundary condition, Ito and Suzuki [15] observed that S evolves in time
between positive values of order (L/a)D and negative values of order −(L/a)D , resulting
in a doubly peaked distribution of S on the average. In 3D under the periodic boundary
condition, P̃(S) has a wing-like form peaked at ±(L/a)D [14, 16].

Fisher cluster model

We mention here the cluster or droplet model due to Fisher [18]. He considered the
statistical distribution of liquid clusters with " molecules which are thermally activated in a
gas phase close to the gas–liquid coexistence curve. His theory was subsequently confirmed
in computer simulations on Ising spin systems. Such clusters with linear dimensions not
exceeding ξ are fractal objects close to the critical point, as previously discussed. This
model will be mentioned again in Section 9.1 in the context of nucleation.

2.1.3 Scaling ansatz

We now argue why the relations (2.1.6), (2.1.7), (2.1.13), and (2.1.14) between the critical
exponents hold. Following Kadanoff [1, 19], we reduce the scale of the lengths by λ and
consider a coarse-grained lattice whose lattice constant is λa. The coarse-grained spin
configurations are assumed to correspond to those of the original spin system with larger
scaling fields,

τ ′ = λxτ, h′ = λyh, (2.1.34)

where x and y are exponents. The probability distributions (= the canonical distributions)
of the two sets of spin configurations should be nearly the same, so we require

h′ψ̂ ′ ∼ hSλ, τ ′m̂′ ∼ τ Eλ, (2.1.35)

where Sλ and Eλ are defined by (2.1.23) and (2.1.29), respectively. The δψ̂ ′ and δm̂′ are the
spin and energy variables in the coarse-grained lattice and their typical amplitudes should
be independent of λ. From (2.1.25) and (2.1.30) we thus obtain

x = 1/ν, y = D. (2.1.36)
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This mapping relationship also means that the singular part of the free-energy density
fsing(h, τ ) divided by T satisfies

fsing(τ, h) = λ−d fsing(λ
1/ντ, λDh). (2.1.37)

Since λ is arbitrary and may be set equal to |τ |−ν(� 1), we obtain

fsing(τ, h) = |τ |νd fsing

(
τ

|τ | ,
h

|τ |νD

)
. (2.1.38)

Differentiations of fsing(h, τ ) with respect to τ and h yield the exponent relations presented
so far. For example,

CH ∼ (∂2 fsing/∂τ
2)h=0 ∼ τ dν−2 (τ > 0, h = 0), (2.1.39)

leading to (2.1.12). As h/|τ |νD → ∞, fsing should become independent of τ and

fsing ∼ |h|d/D, (2.1.40)

which leads to another expression for δ,

1/δ = d/D − 1 or δ = D/(d − D). (2.1.41)

This relation can also be derived from (2.1.14) and (2.1.26).

2.1.4 Two-scale-factor universality

The scaling arguments themselves do not give the concrete functional form of the singular
free energy fsing. However, it is natural that the singular free energy ξd fsing/Tc divided
by Tc in the volume ξd is a universal quantity. In fact, the renormalization group theory in
Chapter 4 will confirm this expectation in the form,

fsing(τ, h) = Tcξ
−dFsing

(
x0

τ

|h|1/νD

)
, (2.1.42)

where Fsing(x) is a universal scaling function independent of material type and x0 is a
material-dependent constant. See Section 4.3 for its calculation. This form indicates that
the singular part of the free-energy density is of order T/ξd with the coefficient being
universal. This is a very natural and important consequence of the renormalization group
theory. In particular, at h = 0 and τ > 0, we have

fsing(τ, 0) = −Tc A+∞ξ−d
+0 τ

2−α, (2.1.43)

where A+∞ is a universal number of order 0.1 and ξ+0 was introduced in (2.1.10). The
specific heat CH in (1.1.24) is then written as

CH ∼= −Tc
∂2 fsing

∂T 2
∼= (2 − α)(1 − α)A+∞ξ−d

+0 τ
−α. (2.1.44)
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Therefore, we arrive at a universal number extensively discussed in the literature [5], [20]–
[26],

Rξ = lim
τ→+0

ξ(ατ 2CH )1/d = [
(2 − α)(1 − α)αA+∞

]1/d
, (2.1.45)

at h = 0 and τ > 0. It is known that Rξ
∼= 0.25 at d = 3 theoretically and experimentally.

In fluids, we will define Rξ using CV for one-component fluids in (2.2.28) [23], C pX for
binary fluid mixtures in (2.3.64) [27]–[29], and C p for 4He near the superfluid transition
in (2.4.4) [21, 30]. The above theory shows that ξ+0 can be obtained from specific-heat
measurements only. Experimentalists can compare their data with the scaling form (2.1.42)
if they have determined the scale factor for the magnetic field. Moreover, with data of ξ+0

from scattering experiments, they can check the validity of the theory when applied to a
specific material. Discrepancy very close to criticality indicates that the material might not
belong to the Ising universality class.

The two-scale-factor universality also implies that the typical magnitude of the tem-
perature fluctuations are much smaller than the reduced temperature on spatial scales
much longer than ξ . To show this we introduce the smoothed temperature fluctuation by
(δT̂ )" = "−d

∫
"d drδT̂ (r) in a finite region with length " longer than ξ . From (1.1.45) we

then obtain

〈(δT̂ )2
"〉 = T 2"−dC−1

M = α(T − Tc)
2 R−d

ξ (ξ/")d , (2.1.46)

at h = 0 above Tc. As long as " � ξ , we thus have 〈(δT̂ )2
"〉 � (T − Tc)

2.

2.1.5 Parametric representation of equations of state

Ising systems

The linear parametric model [31] provides the equation of state and thermodynamic deriva-
tives of Ising-like systems in remarkably compact forms. As illustrated in Fig. 2.5, it uses
two parametric variables, r and θ , with r ≥ 0 and |θ | ≤ 1; Parametric r represents the
distance from the critical point (the origin) and θ the angle around it. The usual field
variables h and τ are expressed as

h = aθ(1 − θ2)rβδ, (2.1.47)

τ = (1 − b2θ2)r, (2.1.48)

with

b2 = (δ − 3)/[(δ − 1)(1 − 2β)] ∼= 1.4. (2.1.49)

The average spin ψ is given by

ψ = cθrβ. (2.1.50)

Here a and c are positive constants. The case θ = 0 corresponds to τ > 0 and h = 0,
θ = ±1/b to τ = 0, and θ = ±1 to the coexistence curve (h = 0 and τ < 0). We may



44 Critical phenomena and scaling

Fig. 2.5. Parametric representation of the equation of state near the critical point. The temperature–
number-density plane is divided into several regions depending on the value of θ . The distance from
the origin (the critical point) is denoted by r .

then calculate the free energy, entropy, and magnetic susceptibility. The scaling relations
are satisfied in all these cases. Though the value of b is arbitrary within the model, the
choice of b as in (2.1.49) yields simple expressions for the critical amplitude ratios, in close
agreement with experimental values [31]. In particular, the specific heat CM at constant
magnetization does not depend on θ :

CM = (ac)
[
γ (γ − 1)

/
2αb2]

r−α. (2.1.51)

The magnetic susceptibility χ = (∂ψ/∂h)τ also simplifies as

χ = (c/a)
[
1 + (2βδ − 3)θ2/(1 − 2β)

]−1
r−γ . (2.1.52)

In these expressions the background parts are neglected.
The linear parametric model given by (2.1.47)–(2.1.50) may be verified to be a good

approximation in the scheme of the renormalization group theory. Wallace [32] showed
that it is exact up to order ε2 for Ising systems, where ε = 4− d is an expansion parameter
to be explained in Chapter 4. The two-scale-factor universality (2.1.45) furthermore shows
that the combination (ac)ξd

+0 of the coefficients is a universal number from (2.1.51), where
ξ+0 is the microscopic length appearing in (2.1.10).
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One-component fluids

Using this model the scaled equations of state of one-component fluids have been repre-
sented [33] by

µ(n, T )− µ(nc, T ) = (pc/nc)h, (2.1.53)

(T − Tc)/Tc = τ. (2.1.54)

Here h and τ are the field variables given by (2.1.47) and (2.1.48) in the corresponding
Ising system, µ(n, T ) is the chemical potential per particle regarded as a function of n
and T , and nc and pc are the critical values. The coefficient in front of h in (2.1.53) may
be taken arbitrarily. In fluids, the number density n is assumed to correspond to the spin
variable, so (2.1.50) yields

(n − nc)/nc = kθrβ, (2.1.55)

where k is a positive constant. Then the constant-volume specific heat CV in fluids cor-
responds to CM in (2.1.51) for Ising systems. The critical isochore above Tc is given by
θ = 0. The coefficients a and k are dimensionless numbers of order unity. From (1.2.47)
we require hψ = (µ− µc)(n − nc)/Tc at T = Tc, which yields c/k = pc/Tc.

The isothermal compressibility KT = (∂n/∂p)T /n = (∂n/∂µ)T /n2 is proportional to
the susceptibility χ in (2.1.52) as

n2 KT = (n2
c/pc)(k/a)

[
1 + (2βδ − 3)θ2/(1 − 2β)

]−1
r−γ . (2.1.56)

The Helmholtz free energy A per unit volume is obtained by integration of d A = −SdT +
µdp. The entropy S per unit volume consists of a background term and a singular term
(∝ r1−α), yielding

CV = (nc pc/T 2
c )(T/n)(ak)

[
γ (γ − 1)

/
2αb2]

r−α + CB, (2.1.57)

where CB is the background specific heat. The first term is proportional to CM in (2.1.51).
Therefore, in the parametric model, CV in one-component fluids corresponds to CM in
Ising systems.

2.2 Critical phenomena in one-component fluids

In Section 2.2 we have shown that the choice of � = V p/T as the thermodynamic
potential is most natural theoretically because it is the logarithm of the grand canonical
partition function. Therefore, ω = �/V = p/T corresponds to − f/T of Ising systems,
where f is the free-energy density in Ising systems. This correspondence is exact for the
lattice gas model as can be seen in (1.2.25). We may assume that ω consists of a singular
part and a regular part dependent on two relevant field variables, h and τ , as [5, 34, 35]

ω = ωsing(h, τ )+ ωreg(h, τ ), (2.2.1)

where ωsing(h, τ ) coincides with − fsing(h, τ )/T in (2.1.38) or (2.1.42). We neglect the
corrections to the asymptotic scaling behavior [7].
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2.2.1 Mapping relations

Now, how should we determine h and τ for fluids? Our postulate is that they are expressed
as regular functions of δT = T − Tc and δν = ν − νc in one-component fluids, where β

and ν should not be confused with the usual critical exponents. Near the critical point, we
have linear relations [3], [34]–[37],

h = α1δν + α2δT/Tc, (2.2.2)

τ = β1δν + β2δT/Tc. (2.2.3)

The coefficients in (2.2.2) and (2.2.3) are expressed as

α1 =
(
∂h

∂ν

)
T
, β1 =

(
∂τ

∂ν

)
T
, (2.2.4)

α2 = Tc

(
∂h

∂T

)
ν

, β2 = Tc

(
∂τ

∂T

)
ν

. (2.2.5)

Because h = 0 on the coexistence curve, we have α2/α1 = −Tc(∂ν/∂T )cx, where (∂ /∂ )cx

is the derivative on the coexistence curve in the limit T → Tc. We stress that δT/Tc on
the right-hand sides of (2.2.2) and (2.2.3) is the reduced temperature in fluids, whereas τ
is the reduced temperature in the corresponding Ising system. With the postulates (2.2.2)
and (2.2.3), we can now map the critical behavior of one-component fluids onto that of
Ising spin systems. It follows that one-component fluids belong to the Ising universality
class in static critical behavior. Note that two of the four coefficients in (2.2.2) and (2.2.3)
may be taken arbitrarily by scale changes without loss of generality. In particular, in the
original parametric model, the postulates (2.1.53) and (2.1.54) imply the special choice:
α1 = ncTc/pc, β1 = 0, and β2 = 1, while α2 is determined from α2/α1 = −Tc(∂ν/∂T )cx.
No mixing (β1 = 0) is assumed. Similar mapping relationships with β1 = 0 hold for the
lattice gas model and the van der Waals fluid model. The latter will be discussed in section
3.4.

Next, we express the deviations δê = ê− ec and δn̂ = n̂ − nc in fluids in terms of ψ̂ and
m̂ in the corresponding Ising system by requiring [3, 37]

hψ̂ + τ m̂ = δνδn̂ + T−2
c δT δê, (2.2.6)

where nc and ec are the critical values. This relation stems from (1.1.17) and (1.2.26) (or
(1.2.47)), which describe the changes of the microscopic distribution P� against variations
of the field variables. The averages of ψ̂ and m̂ are taken to vanish at the critical point (by
measuring them from the critical values). By substituting (2.2.2) and (2.2.3) into the above
relation we obtain

δn̂ = α1ψ̂ + β1m̂, (2.2.7)

T−1
c δê = α2ψ̂ + β2m̂. (2.2.8)

To support (2.2.8), Fig. 2.3 demonstrates the linear relation n̂k ∝ êk with α2/α1 ∼ 1 at
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long wavelengths for the 2D Lenard-Jones system. Similar numerical analysis was also
made in Ref. [17].

From (1.2.46) the entropy density variable may be written as

nδŝ = αsψ̂ + βsm̂, (2.2.9)

with

αs = α2 − (H/T )α1, βs = β2 − (H/T )β1. (2.2.10)

Using the pressure deviation δp = p − pc and eliminating δν, we may rewrite (2.2.2) and
(2.2.3) as

Tch = α1n−1δp + αsδT, (2.2.11)

Tcτ = β1n−1δp + βsδT . (2.2.12)

Thus we have αs = Tc(∂h/∂T )p and βs = Tc(∂τ/∂T )p. It leads to the relation

αs

α1
= −n−1

(
∂p

∂T

)
cx
. (2.2.13)

Here we note that the energy variable ê can be arbitrarily changed to ê + ε0n̂ with respect
to the shift (1.2.21). If we consider the following shifted energy variable,

δê − (Tcα2/α1)δn̂ = Tcbcm̂ (2.2.14)

it becomes proportional to m̂ from (2.2.7) and (2.2.8). The coefficient bc is given by

bc = β2 − β1α2/α1 = βs − β1αs/α1 = Tc

(
∂τ

∂T

)
h
. (2.2.15)

Therefore, by applying this energy shift, α2 may be set equal to zero from the outset in
(2.2.2) or (2.2.8).

Critical isochore

In many experimental situations, h = 0 nearly holds in the corresponding spin system. In
such cases we can eliminate δν from (2.2.2) and (2.2.3) and can relate the two reduced
temperatures as

τ = bc(T/Tc − 1), (2.2.16)

where bc is the constant defined by (2.2.15) and can be assumed to be positive. Because
of this relation, bc will frequently appear in the book. Note that it may be set equal to 1
(without loss of generality) by rescaling of m as m → b−1

c m. Let us consider the critical
isochore case above Tc (n = nc and T > Tc). Here h remains extremely small. In fact,
from (2.2.7) we have dn = α1dψ + β1dm = 0 with ψ = 〈ψ̂〉 and m = 〈m̂〉, so

h ∼ 〈m̂ : m̂〉τ/〈ψ̂ : ψ̂〉 ∼ τγ−α+1. (2.2.17)

The scaling variable h/τνD in (2.1.38) is of order τ 1−α−β � 1 and is very small.
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Coexistence-curve diameter

The relation (2.2.7) indicates that the average number density on the coexistence curve
(h = 0 and τ < 0) behaves as

n − nc = ±α1 B0|τ |β − β1(1 − α)−1 A′
0|τ |1−α + · · · , (2.2.18)

where the plus sign is for the liquid density n = n�, the minus sign is for the gas density
n = ng, and τ = bc(T/Tc − 1) as (2.2.16). Here the coefficient B0 appears in (2.1.4), and
A′

0 is the critical amplitude in CH = ∂〈m̂〉/∂τ = A′
0|τ |−α on the coexistence line. The

cross coefficient β1 is often referred to as the mixing parameter [35]–[39] and gives rise to
the second term in (2.2.19). It causes singular asymptotic behavior of the coexistence-curve
diameter,

1

2nc
(n� + ng)− 1 = A1−α(1 − T/Tc)

1−α + A1(1 − T/Tc)+ · · · , (2.2.19)

where A1−α = −β1 A′
0b1−α/(1 − α)nc. The coefficient A1−α is relatively small in simple

insulating fluids (∼ 0.2 for Ne) and is considerably larger in liquid metals (∼ 2 for Ru and
Cs) [40, 41]. However, in liquid metals and in ionic fluids [42] the effect of charges on
critical phenomena (particularly on critical dynamics) is not yet well understood.

The Clausius–Clapeyron relation

If a gas phase and a liquid phase coexist, the entropy difference �s = sg − s� and the
density difference �n = ng − n� are given by

�s = n−1
c αs�ψ, �n = α1�ψ, (2.2.20)

from (2.2.7) and (2.2.9) with �ψ = 2B0|τ |β ∝ |Tc − T |β . The above relations are
consistent with the Gibbs–Duhem relation, which relates �s and the volume difference
�n−1 = n−1

g − n−1
� via the Clausius–Clapeyron relation,

�s =
(
∂p

∂T

)
c
�n−1 ∼= −

(
∂p

∂T

)
c

�n

n2
c
. (2.2.21)

2.2.2 Thermodynamic derivatives and the two-scale-factor universality

As far as the most singular critical divergence is concerned, we may set

δn̂ ∼= α1ψ̂, δê ∼= α2ψ̂, δŝ ∼= n−1
c αsψ̂, (2.2.22)

from (2.2.7)–(2.2.9). The thermodynamic derivatives C p, KT , and αp in (1.2.48) behave
as

C p ∼= α2
s χ, n2T KT ∼= α2

1χ, nTαp ∼= −α1αsχ, (2.2.23)

where χ = 〈ψ̂ : ψ̂〉 is the magnetic susceptibility in the corresponding Ising spin system.
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Next we examine the constant-volume specific heat CV . From (2.2.7) and (2.2.8) we
obtain

〈ê : ê〉〈n̂ : n̂〉 − 〈ê : n̂〉2 = T 2
c (α1β2 − α2β1)

2D, (2.2.24)

where D = χCM is the determinant (1.1.46). Therefore, from (1.2.49) and (2.2.15) we
find a very simple result,

CV ∼= (α1β2 − α2β1)
2χCM/〈n̂ : n̂〉 ∼= b2

cCM . (2.2.25)

Using (1.2.54) and (2.2.13) we obtain

ρc2CV = C p/KT ∼= T n2
(
αs

α1

)2
∼= T

(
∂p

∂T

)2

cx
, (2.2.26)

from which the behavior of the sound velocity c is also known. On the critical isochore
above Tc we have CM = CH and

τ 2CH = (T/Tc − 1)2CV

= (p − pc)
2/Tcρc2, (2.2.27)

where bc is cancelled, T − Tc ∼= (∂T/∂p)cx(p − pc), and use has been made of (2.2.16)
and (2.2.26) in the second line. The right-hand sides of (2.2.27) consist of the quantities
in fluids on the critical isochore above Tc, while the left-hand side contains those of the
corresponding Ising system for h = 0 and τ > 0. The two-scale-factor universality (2.1.45)
in Ising systems is translated as [23]

Rξ = ξ
[
α(T/Tc − 1)2CV

]1/d
, (2.2.28)

on the critical isochore above Tc in one-component fluids. We may use c2 instead of CV if
use is made of the second line of (2.2.27).

2.2.3 Temperature and pressure fluctuations

In Section 1.1 we introduced the fluctuating variables δT̂ and δĥ in (1.1.41) and (1.1.42),
respectively, for Ising systems. In one-component fluids the temperature and pressure
fluctuations in the long-wavelength limit are expressed as

δT̂ =
(
∂T

∂h

)
τ

δĥ +
(
∂T

∂τ

)
h
δτ̂ , (2.2.29)

δ p̂ =
(
∂p

∂h

)
τ

δĥ +
(
∂p

∂τ

)
h
δτ̂ , (2.2.30)

where the coefficients constitute the inverse of the matrix composed of the coefficients in
(2.2.11) and (2.2.12), and δτ̂ = δT̂ /Tc represents the reduced temperature fluctuation in
the corresponding Ising spin system. Near the critical point the second terms (∝ δτ̂ ) in
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these relations dominate the first terms (∝ δĥ). In fact, from (1.1.47) the variances of δT̂
and δ p̂ can be expressed as

T 2

CV
=

(
∂T

∂h

)2

τ

Vhh + 2

(
∂T

∂h

)
τ

(
∂T

∂τ

)
h
Vhτ +

(
∂T

∂τ

)2

h
Vττ , (2.2.31)

Tρc2 =
(
∂p

∂h

)2

τ

Vhh + 2

(
∂p

∂h

)
τ

(
∂p

∂τ

)
h
Vhτ +

(
∂p

∂τ

)2

h
Vττ . (2.2.32)

where use has been made of (1.2.64) and (1.2.68). In the above relations the last terms are
dominant and

T 2

CV

∼=
(
∂T

∂τ

)2

h

1

CM
, Tρc2 ∼=

(
∂p

∂τ

)2

h

1

CM
, (2.2.33)

which are consistent with (2.2.25) and (2.2.26). The cross correlation 〈T̂ : p̂〉 in (1.2.69)
may also be calculated in the same manner.

Adiabatic T–p relation on the coexistence curve

As an application, we give the expansion of the adiabatic coefficient,(
∂T

∂p

)
s
= 〈T̂ : p̂〉

〈 p̂ : p̂〉 =
(
∂T

∂p

)
cx

[
1 + A

Vhτ

Vττ

+ O

(
CV

C p

)]
, (2.2.34)

where

A =
(
∂τ

∂h

)
p
−

(
∂τ

∂h

)
T
=

(
∂τ

∂T

)
h

(
∂T

∂h

)
p
= bc

αs
(2.2.35)

from (2.2.11) and (2.2.15). We are interested in the leading correction of order Vhτ /Vττ =
−〈ψ̂ : m̂〉/〈ψ̂ : ψ̂〉, although it vanishes on the critical isochore above Tc. On the coexis-
tence curve (T < Tc), we find a convenient form [37],(

∂T

∂p

)
s
=

(
∂T

∂p

)
cx

[
1 ± ac

(
CV

C p

)1/2

+ · · ·
]
, (2.2.36)

where the plus (minus) sign is for the gas (liquid) phase, and the coefficient ac is related to
the universal number Rv in (1.1.48) as

a2
c = 〈ψ̂ : m̂〉2/CMχ = Rv/(1 − Rv). (2.2.37)

In 3D, we have ac ∼= 1 near the critical point.2 We note that (∂T/∂p)n also satisfies (2.2.36)
on the coexistence curve because its difference from (∂T/∂p)s is of order CV /C p from
(1.2.53).

The above derivation of (2.2.36) might look complicated. A simpler one is to rewrite the
identity ds = (∂s/∂T )p[dT − (∂T/∂p)sdp] as(

∂T

∂p

)
s

(
∂p

∂T

)
cx
− 1 = −nT

C p

(
∂s

∂T

)
cx
. (2.2.38)

2 Let χ = �′
0|τ |−γ , CH = A′

0|τ |−α , and 〈ψ〉 = B0|τ |β below Tc on the coexistence curve; then, Rv = (βB0)
2/A′

0�
′
0 from

the second line of (1.1.48). This combination is about 0.5 [24, 26].
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Similarly, exchanging {T, s} ←→ {p, n}, we also notice(
∂p

∂T

)
n

(
∂T

∂p

)
cx
− 1 = − 1

nKT

(
∂n

∂p

)
cx
. (2.2.39)

These relations hold both in liquid and gas phases on the coexistence curve at any tem-
perature. Near the critical point we have (∂s/∂T )cx = −β(s − sc)/(Tc − T ) because
s − sc ∝ ±(Tc − T )β with the plus (minus) sign for the gas (liquid) phase. The origin of
± in (2.2.36) is then obvious. Comparison of (2.3.36) and (2.3.38) yields

ac = β

2
|�s|n/[√

CV C p(1 − T/Tc)
] = β

2
|�n|/n

[√
Ks K p(1 − p/pc)

]
, (2.2.40)

where �s and �n are the entropy and number density differences between the two coexist-
ing phases. The above relations hold in the limit T → Tc, leading to (2.2.37) with the aid
of the mapping relations (2.2.20), (2.2.23), and (2.2.25). Physically, (2.2.36) implies that
a pressure change in two-phase coexistence gives rise to a temperature difference between
the two phases. This effect will be important in studying the specific heat in two-phase
coexistence in Appendix 4F, thermal equilibration in two-phase coexistence in Section 6.3,
and nucleation and sound propagation in two phase states in Section 9.4.

2.2.4 Gravity effects in one-component fluids

In one-component fluids near the gas–liquid critical point, density stratification in gravity
becomes quite large in equilibrium due to the diverging isothermal compressibility KT

[33, 43]. The average pressure decreases with increasing height z as

dp

dz
= 1

nKT

dn

dz
= −ρg, (2.2.41)

where the local equilibrium relation between p and n at homogeneous T is assumed,
and ρ = m0n with m0 being the molecular mass. As an example, see Fig. 2.6 for
optically measured density profiles in N2O [44]. This severe stratification prevents precise
measurements of the critical behavior in one-component fluids. For example, in quiescent
fluids (without stirring), CV exhibits only a broad rounded peak at T ∼= Tc even if the
average density in the container is at the critical value.

Hohenberg and Barmatz [33] studied the equilibrium gravity effects using the parametric
model in Subsection 2.1.5 and assuming the local equilibrium relation,

dµ

dz
= −m0g or µ(n, T )− µ(nc, T ) = −m0g(z − z0), (2.2.42)

where µ(n, T ) is the chemical potential per particle given in (2.1.53), and z0 is a constant
height at which n = nc. The z axis is taken in the upward direction. They calculated the
space average of CV as a function of the experimental cell size L and examined two-phase
coexistence for T < Tc. In particular, we consider an equilibrium fluid above Tc. In gravity
the number-density deviation in the cell is of order nKT ρgL . If it is much smaller than
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Fig. 2.6. Density profiles of N2O near the critical point measured with a refractometer [44]. Here
mK = 10−3 K.

ncτ
β with τ = T/Tc − 1, the parameter θ in (2.1.55) is nearly constant as is τ . Thus, the

fluid critical behavior is nearly homogeneous in the cell when

T/Tc − 1 > (ρcgL/pc)
1/(β+γ ). (2.2.43)

The right-hand side is of order 10−4 at L = 1 cm for Xe on earth. If T/Tc − 1 is smaller
than the right-hand side, gravity-induced inhomogeneity becomes important.

Theoretically, however, it is necessary to clarify the condition of the validity of the local
equilibrium assumption (2.2.42) [43]. To this end, let us calculate the height-dependent
correlation length ξ(z) for the case T = Tc or τ = 0 using (2.2.42). The parameter θ

in (2.1.48) is equal to 1/b for z < z0 and to −1/b for z > z0. Then, from (2.1.47) and
(2.2.42), the distance from the criticality r becomes a function of z as

(pca/b)(1 − b−2)rβδ = ρcg|z − z0|, (2.2.44)

where ρc = m0nc is the critical value of the mass density. Since a ∼ 1 and b2 ∼= 1.4, we
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have rβδ ∼ ρcg|z − z0|/pc. As a result, the local correlation length behaves as

ξ ∼ ξ+0r−ν ∼ "g

( |z − z0|
"g

)−ν/βδ

, (2.2.45)

where ξ+0 is the microscopic length in (2.1.10) and "g is a characteristic length in gravity
defined by

"g = ξ+0(ξ+0ρcg/pc)
−ν/(βδ+ν), (2.2.46)

with ν/(βδ + ν) ∼= 0.28. For Xe we have "g = 4 × 10−5 cm on earth. The local
equilibrium assumption is valid if the number density change on the length scale ξ is
negligibly small compared with n−nc. This condition is expressed as ξ |dn/dz|/|n−nc| ∼
(ξ/"g)

(βδ/ν+1) � 1. Thus (2.2.44) is valid only in the region,

ξ � "g or |z − z0| � "g. (2.2.47)

Therefore, "g is the maximally attainable correlation length in gravity. In the transition
region |z − z0| � "g , nonlocal effects are crucial, where the density profile need to be
calculated in the Ginzburg–Landau scheme. We may also introduce a characteristic reduced
temperature τg by "g = ξ+0τ

−ν
g [43]. It is written as

τg = (ξ+0ρcg/pc)
1/(βδ+ν), (2.2.48)

which is 1.8 × 10−6 for Xe on earth.
It is easy to extend the above arguments for the case T �= Tc. The local equilibrium

holds in the spatial region where ξ � "g . If |T − Tc| � Tcτg , the local equilibrium
approximation is valid in the whole space region.

2.3 Critical phenomena in binary fluid mixtures

In binary fluid mixtures, there are liquid–liquid, gas–liquid, and gas–gas phase equilibria.
There are no absolute differences between these three types of phase transitions [4, 45].
Figure 2.7 shows a simple geometrical representation of a gas–liquid transition in the space
of p, T , and the fugacity f2 = exp(µ2/T ) of the second component. The geometrical
representation of coexistence surfaces and critical lines is, in general, very complicated.
If visualized in the space of three field variables, coexistence surfaces terminate at critical
lines and, on an arbitrary plane cutting a critical line, critical phenomena are believed to
be isomorphic to those of Ising systems [46, 47]. In binary fluid mixtures, however, exper-
imentally measurable quantities are mostly those at fixed concentration, and complicated
crossover effects take place. Seemingly exceptional cases have often been observed when
the critical line and the coexistence surface bear special relationship with the coordinates
of the field variables. Among various types of binary mixtures, we focus our attention
on nearly azeotropic binary mixtures along the gas–liquid critical line and nearly incom-
pressible binary mixtures along the consolute critical line. These constitute two important
classes of extensively studied binary fluid mixtures. As representative examples, we show
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Fig. 2.7. The gas–liquid coexistence surface and critical line of a binary fluid mixture in the space
of pressure p, temperature T , and fugacity f2 [5].

isobaric T –X phase diagrams of 3He–4He [48] and 3-methylpentane + nitroethane [49] in
Figs 2.8 and 2.9, respectively.

We will take a novel approach to these complicated effects by introducing a density
variable q̂ conjugate to the coordinate ζ along the critical line. We shall see that the
asymptotic critical behavior of various thermodynamic quantities is determined by the
fluctuations of q̂.

2.3.1 Mapping relations

In addition to h and τ , another field variable ζ is needed. It is convenient to take ζ to be
the coordinate along the critical line in the neighborhood of a critical point represented by
ζ = 0. As a generalization of (2.2.1), the thermodynamic potential ω = p/T is written as

ω = ωsing(h, τ )+ ωreg(h, τ )+ 1

2
Q0ζ

2, (2.3.1)

where ωsing(h, τ ) is the same as in the one-component case, ωreg(h, τ ) is a regular function
of h and τ , and Q0 is a positive constant. We neglect the corrections to the asymptotic crit-
ical behavior. Because there are three density variables conjugate to three field variables,
we may suppose the presence of a density variable q̂ conjugate to ζ .3 Then the equilibrium

3 The Ginzburg–Landau–Wilson hamiltonian for the three variables ψ̂ , m̂, and q̂ will be set up in (4.2.6).
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Fig. 2.8. Phase diagram for constant-pressure projections in nearly azeotropic 3He–4He [48], charac-
terized by narrow lens-like coexistence regions. We can see that the gas–liquid critical line intersects
the T –X loops at temperature minima given by (∂T/∂X)cx,p = 0. A similar phase diagram can
be drawn for constant-temperature projections, where the gas–liquid critical line intersects the p–X
loops at the pressure maxima.

average and variance of q̂ are

〈q̂〉 =
(
∂ω

∂ζ

)
hτ

= Q0ζ, 〈q̂ : q̂〉 =
(
∂2ω

∂ζ 2

)
hτ

= Q0. (2.3.2)

We may define q̂ such that it is statistically independent of ψ̂ and m̂ as

〈q̂; ψ̂〉 =
(

∂2ω

∂ζ∂h

)
hτ

= 0, 〈q̂ : m̂〉 =
(

∂2ω

∂ζ∂τ

)
hτ

= 0, (2.3.3)

in the vicinity of the reference critical point. The average of q̂ (as well as that of m̂) has no
discontinuity in two-phase coexistence. Derivatives with fixed h and τ are nearly equal to
those along the critical line (h = τ = 0). They will be written as (∂ · · · /∂ · · ·)c. For any
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Fig. 2.9. Coexistence curve of nearly incompressible 3-methylpentane + nitroethane (NE) [49]. In
this mixture the pressure dependence of Tc(p) is relatively weak.

thermodynamic quantities, a and b, we have(
∂a

∂b

)
hτ

∼=
(
∂a

∂b

)
c
=

(
∂a

∂ζ

)
c

/(
∂b

∂ζ

)
c
. (2.3.4)

As in the one-component case, for the field deviations δν1 = ν1 − ν1c, δν2 = ν2 − ν2c,
and δT = T − Tc we assume the following mapping relations:

h = α1δν1 + α2δν2 + α3δT/Tc, (2.3.5)

τ = β1δν1 + β2δν2 + β3δT/Tc, (2.3.6)

ζ = γ1δν1 + γ2δν2 + γ3δT/Tc. (2.3.7)

For the density deviations δn̂1 = n̂1 − n1c, δn̂2 = n̂2 − n2c, δê = ê − ec, we require

hψ̂ + τ m̂ + ζ q̂ = δν1δn̂1 + δν2δn̂2 + T−2
c δT δê (2.3.8)

to obtain

δn̂1 = α1ψ̂ + β1m̂ + γ1q̂, (2.3.9)

δn̂2 = α2ψ̂ + β2m̂ + γ2q̂, (2.3.10)

T−1
c δê = α3ψ̂ + β3m̂ + γ3q̂. (2.3.11)
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From (1.3.16)–(1.3.18) the deviations of the entropy density, number density, and concen-
tration may be defined by

nδŝ = αsψ̂ + βsm̂ + γs q̂, (2.3.12)

δn̂ = αnψ̂ + βnm̂ + γnq̂, (2.3.13)

nδ X̂ = αX ψ̂ + βX m̂ + γX q̂. (2.3.14)

The critical values nc, ec, . . . are those at the reference critical point h = τ = ζ = 0. The
coefficients αK (K = s, X, n) are linear combinations of αi (i = 1, 2, 3) as

αs = α3 − s(α1 + α2)− ν1α1 − ν2α2,

αn = α1 + α2,

αX = (1 − X)α1 − Xα2. (2.3.15)

We may express h, τ, and ζ in terms of the deviations δp, δT, and δ∆ as a generalization
of the one-component fluid version (2.2.11) and (2.2.12). We require

hψ̂ + τ m̂ + ζ q̂ = T−1
c

[
(δT )nδŝ + n−1δpδn̂ + (δ∆)nδ X̂

]
, (2.3.16)

which arises from (1.3.20) and is equivalent to (2.3.8). The deviations δp = p − pc and
δ∆ = ∆−∆c are measured from the critical values. Then we obtain

Tch = αnn−1δp + αsδT + αXδ∆, (2.3.17)

Tcτ = βnn−1δp + βsδT + βXδ∆, (2.3.18)

Tcζ = γnn−1δp + γsδT + γXδ∆. (2.3.19)

As in (2.2.13) for the one-component case, the ratios among the αK are expressed in
terms of derivatives on the coexistence surface,

αs

αn

∼= −n−1
c

(
∂p

∂T

)
∆,cx

,
αX

αn

∼= −n−1
c

(
∂p

∂∆

)
T,cx

. (2.3.20)

Along the critical line, the average entropy, density, and concentration change as

nc

(
∂s

∂ζ

)
c
= Q0γs,

(
∂n

∂ζ

)
c
= Q0γn, nc

(
∂X

∂ζ

)
c
= Q0γX , (2.3.21)

which can be known if the averages of (2.3.12)–(2.3.14) are taken along h = τ = 0.
The previous literature has used the determinant of the variances, det I in (1.3.11) or

det A in (1.3.39) (which are related by (1.3.37)), to examine the asymptotic thermodynamic
properties [47, 5]. With the linear mapping relations it is obvious that

det A = (D2
0 Q0)CMχ ∝ CMχ. (2.3.22)

The coefficient D0 is expressed in terms of the determinants of the mapping matrices as

D0 = T 3

n

∂(h, τ, ζ )

∂(T,∆, p)
= T

n2

∂(h, τ, ζ )

∂(T, ν1, ν2)
, (2.3.23)
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where use has been made of ∂(∆, p)/∂(ν1, ν2) = nT 2 at fixed T . The determinants,
(1.1.46) for spin systems and (2.2.24) for one-component fluids, and (2.3.22) for binary
fluids, all behave as const.CMχ . It is important that D0 and Q0 are insensitive to the
relationship of the coexistence surface and the critical line with respect to the axes of
the field variables. For example, they will be treated as nonvanishing constants at critical
azeotropy.

Leung and Griffiths’ theory

Leung and Griffiths [47] constructed a phenomenological model for 3He–4He mixtures,
where the potential ω = p/T is expressed in terms of the three field variables h, τ , and
ζ . Using a number of fitting parameters, it describes the global thermodynamics along the
critical line which connects the two critical points of pure 3He and 4He as in Fig. 2.7. In
particular, they set

ζ = 1
/[

1 + A0 exp(∆/T )
]
, (2.3.24)

where A0 is a constant. Then 0 ≤ ζ ≤ 1; ζ = 1 for pure 3He and ζ = 0 for pure
4He, because ν1 ∼= ln X (or ν2 ∼= ln(1 − X)) in the dilute limit X → 0 (or X → 1).
However, such a global parametrization is feasible only in nearly azeotropic binary fluids,
as explained below [45]. Our local parametrization is much simpler but is valid only in a
narrow region around a particular critical point in the three-dimensional space of the field
variables.

2.3.2 Concentration fluctuations

With the above relationship it is straightforward to examine the critical behavior of various
thermodynamic derivatives. For example, the variances among δŝ, δn̂, and δ X̂ diverge
strongly as χ on approaching the critical line. A consolute critical point is characterized by
|αX/αn| � 1, and in its vicinity the concentration fluctuations are strongly enhanced as

δ X̂ ∼= αXψ, (2.3.25)

with the concentration susceptibility (1.3.22) of the form,

〈X̂ : X̂〉 = T

n

(
∂X

∂∆

)
pT

∼= α2
Xχ. (2.3.26)

We have neglected the background part. However, in azeotropic cases where αX is small,
this approximation is allowable only very close to the critical line, as will be shown in
(2.3.50).

If αX is not small or if the mixture is non-azeotropic, (2.3.26) holds in a sizable
temperature region and C pX , KT X , and αpX in (1.3.24)–(1.3.26) behave as

C pX ∼= β̄2
s CM + CB, (2.3.27)

T KT X ∼= B2
c (β̄

2
s CM )+ A2

cCB, (2.3.28)

TαpX ∼= Bc(β̄
2
s CM )+ AcCB, (2.3.29)
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Fig. 2.10. C pX in a nearly incompressible binary mixture of 3-methylpentane + nitroethane at the
critical concentration [29].

where the first terms are weakly divergent, the second terms are nonsingular, and

β̄s = Tc

(
∂τ

∂T

)
hp
, CB = T 2

c

(
∂ζ

∂T

)2

hp
Q0. (2.3.30)

The two coefficients Ac and Bc will appear in many relations below and are defined by

Ac =
(
∂T

∂p

)
hζ
, Bc =

(
∂T

∂p

)
hτ

=
(
∂T

∂p

)
c
. (2.3.31)

See Appendix 2A for the derivation of (2.3.27)–(2.3.29). In Fig. 2.10 we show an example
of C pX in a critical binary mixture of 3-methylpentane + nitroethane [29]. See (2.3.59) and
Fig. 2.13 for data of other thermodynamic derivatives of this mixture.

Moreover, the thermodynamic identities in (1.3.39) yield

C pX/ρc2 = CV X KT X = const.χCM

/(
∂X

∂�

)
pT

∼= const.CM . (2.3.32)

The first line are the identities and the second line holds under (2.3.26).

2.3.3 Temperature and pressure fluctuations

From (1.3.38) and (1.3.39) with the aid of (2.3.22), CV X and ρc2 are known to tend to
finite constant values on the critical line. However, their behavior can be more conveniently
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examined by introducing the temperature and pressure fluctuations in the long-wavelength
limit as in Section 1.3. Generalizing (2.2.29) and (2.2.30) we express them as

δT̂ =
(
∂T

∂h

)
τζ

δĥ +
(
∂T

∂τ

)
hζ
δτ̂ +

(
∂T

∂ζ

)
hτ
δζ̂ , (2.3.33)

δ p̂ =
(
∂p

∂h

)
τζ

δĥ +
(
∂p

∂τ

)
hζ
δτ̂ +

(
∂p

∂ζ

)
hτ
δζ̂ , (2.3.34)

in terms of the fluctuations of τ , h, and ζ , where

δζ̂ = Q−1
0 q̂ − ζ, 〈ζ̂ : ζ̂ 〉 = 1/Q0 (2.3.35)

The variable δζ̂ is nonsingular and is uncorrelated to δĥ and δτ̂ . We can see that these are
the inverse relations of (2.3.17)–(2.3.19) (if the circumflex is put on all the field variables).
Using (1.1.47) we readily obtain the variances among δT̂ and δ p̂ given in (1.3.44), (1.3.48),
and (1.3.49):

〈T̂ : T̂ 〉 = T 2

CV X

∼=
(
∂T

∂ζ

)2

c

1

Q0
+

(
∂T

∂τ

)2

hζ

1

CM
, (2.3.36)

〈 p̂ : p̂〉 = Tρc2 ∼=
(
∂p

∂ζ

)2

c

1

Q0
+

(
∂p

∂τ

)2

hζ

1

CM
, (2.3.37)

〈T̂ : p̂〉 = nT

(
∂T

∂n

)
s X

= n−1T

(
∂p

∂s

)
nX

∼=
(
∂T

∂ζ

)
c

(
∂p

∂ζ

)
c

1

Q0
+

(
∂T

∂τ

)
hζ

(
∂p

∂τ

)
hζ

1

CM
. (2.3.38)

The first terms in these relations are the fluctuation contributions along the critical line
unique to fluid mixtures and remain nonvanishing on the critical line, while the second
terms are weakly singular and common to one- and two-component fluids. The leading
terms we have not written are of order Vhh ∼ 1/χ in one-phase states at h = 0 and are of
order Vhτ ∼ (χCM )−1/2 on the coexistence curve from (1.1.47). The critical-point values
of CV X and ρc2 are expressed as

(CV X )c = T 2
c

(
∂ζ

∂T

)2

c
Q0 = (1 − Ac/Bc)

2CB, (2.3.39)

ρcc2
c =

(
∂p

∂ζ

)2

c

1

Tc Q0
= Tc(Ac − Bc)

−2C−1
B , (2.3.40)

where CB is defined by (2.3.30) and Ac and Bc by (2.3.31). Here Q0 (or CB) is eliminated
in the product,

(CV X )cρcc2
c = Tc B−2

c = Tc

(
∂p

∂T

)2

c
, (2.3.41)
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which is a well-known relation [46]. The differences, 1/CV X − 1/(CV X )c and ρc2 −ρcc2
c ,

behave as C−1
V or ρc2 in one-component fluids. In particular, when (2.3.27) holds in non-

azeotropic mixtures, we find a simple relation,

(ρc2 − ρcc2
c )/ρcc2

c
∼= CB/(C pX − CB), (2.3.42)

using (2.3.30) and (2.3.37). From the cross correlation (2.3.38) we also obtain(
∂T

∂p

)
s X

= 〈T̂ : p̂〉
〈 p̂ : p̂〉

∼= Ac + (Bc − Ac)
ρcc2

c

ρc2
, (2.3.43)

(
∂p

∂T

)
nX

= 〈 p̂ : T̂ 〉
〈T̂ : T̂ 〉

∼= 1

Ac
+

(
1

Bc
− 1

Ac

)
CV X

(CV X )c
. (2.3.44)

Thus, we conclude (
∂T

∂p

)
s X

→
(
∂T

∂p

)
c
,

(
∂p

∂T

)
nX

→
(
∂p

∂T

)
c
, (2.3.45)

on approaching the critical line [46]. The first relation (2.3.43) characterizes the tempera-
ture variation against pressure changes in adiabatic conditions (see Chapter 6). The second
relation (2.3.44) can be important in measurements at a fixed volume. In deriving the above
relations use has been made of the fact that the coefficients Ac and Bc defined by (2.3.31)
satisfy (

∂ζ

∂T

)
c

(
∂T

∂ζ

)
hp

=
(
∂p

∂τ

)
hT

(
∂τ

∂p

)
hζ

= 1 − Ac

Bc
,

(
∂ζ

∂p

)
c

(
∂p

∂ζ

)
hT

=
(
∂T

∂τ

)
hp

(
∂τ

∂T

)
hζ

= 1 − Bc

Ac
, (2.3.46)

where the second line follows from the first line by exchange of T and p.
There are some exceptional cases in which one of the coefficients in the relations

(2.3.36)–(2.3.38) vanishes. In some mixtures such as CH4–C2H6, the critical pressure Pc as
a function of the concentration has a maximum or minimum or (∂p/∂T )c = 0 [46], where
c2 ∝ 1/CM as in one-component fluids. The reverse case in which (∂T/∂p)c is small is
encountered in many binary mixtures, which we will discuss in the vicinity of (2.3.55).

2.3.4 Azeotropy and the dilute limit

A gas–liquid critical line is characterized by |αX/αn| � 1 in terms of the coefficients
αn and αX in (2.3.13) and (2.3.14), respectively. Here the concentration fluctuations are
relatively small. As an extreme case, αX = 0 is realized at a critical point in a number
of binary fluid mixtures such as CO2–C2H4 [46, 50]. This leads to the critical azeotropy,
where (∂X/∂∆)pX diverges only weakly with the critical exponent α (if βX �= 0) and
hence C pX and KT X diverge strongly with the critical exponent γ along the critical line.
However, in contrast to the one-component fluid case, the specific heat CV X and the sound
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Fig. 2.11. Coexistence curves of gas and liquid phases in the temperature–concentration plane at
fixed pressure. At the extremum points the azeotropic condition holds.

velocity c tend to constants at azeotropic criticality owing to the fluctuations of ζ̂ along the
critical line.

Technologically, a line of azeotrope on the coexistence surface is of great importance,
along which there is no composition difference between the two coexisting phases [51]. If
it intersects the critical line, an azeotropic critical point is realized. On that line, because
Xg = X�, the thermodynamic relation (1.3.3) yields(

1

ng
− 1

n�

)
dp − (sg − s�)dT = 0, (2.3.47)

when a gas phase (g) and a liquid phase (�) coexist. As shown in Fig. 2.11, if T (or p)
is plotted vs X at fixed p (or T ) in two-phase coexistence, the two curves in the gas and
liquid phases (T vs Xg and T vs X�) touch and assume an extremum at an azeotropic point
[51].

In general, if two components are alike, we expect small αX . The degree of azeotropy is
represented by [52]

εaz = αX

αn
= −1

n

(
∂p

∂∆

)
T,cx

(2.3.48)

where (∂ · · · /∂ · · ·)T,cx is the derivative on the coexistence surface at fixed T .4 In two-
phase coexistence, (1.3.3) gives

εaz = nc(Xg − X�)/(ng − n�) (2.3.49)

in terms of the differences between the two phases. This parameter has been recognized to
conveniently characterize the nature of critical lines for a number of binary fluids [45]. If
εaz is small, the concentration susceptibility behaves as

T

(
∂X

∂∆

)
T p

∼= AX + n−1α2
Xχ, (2.3.50)

4 In Refs [52, 45] α1 is taken to be 1, so α2 is the degree of azeotropy.
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where AX is the background part. We may introduce a crossover reduced temperature τs1

by

τ
γ

s1 ∼ ε2
az/AX . (2.3.51)

From (1.3.22), (1.3.24), and (1.3.25) we can see that C pX and KT X increase strongly with
the exponent γ for T/Tc − 1 � τs1 and increase weakly with the exponent α (or nearly
saturate) for T/Tc − 1 � τs1.

3He–4He mixtures near the gas–liquid critical line

As a typical example, 3He–4He mixtures are nearly azeotropic at any X since εaz ∼=
− 1

3 X (1 − X) along the gas–liquid critical line (0 < X < 1), while AX ∼= X (1 − X) [52].
Thus, τγs1 ∼ ε2

az/X (1− X) ∼ 0.1X (1− X), which explains the observed behavior of KT X

[48] and C pX [53]. In addition, in CV X given by (2.3.36), the first constant term is smaller
than the second weakly singular term except very close to the critical line. Comparison of
these two terms gives another crossover reduced temperature τs2 as ταs2 ∼ 0.2X (1 − X).
Thus τs2 is extremely small (< 10−12 for any X ), so the saturation of CV X cannot be
observed in realistic conditions [54]. Such an extremely slow crossover of CV X is expected
in many binary mixtures near the gas–liquid critical line.

Dilute mixtures

In the dilute case X � 1, αX and βX in (2.3.14) are both of order X and the concentration
fluctuations become much suppressed. To examine this case, we set ζ = exp(∆/T ) +
const. along the critical line as in the Leung–Griffith parametrization (2.3.24), for which
the derivatives with respect to ζ have well-defined limits as X → 0. Then, because
δ X̂δ∆/T ∼= q̂ζ from (1.3.20), we obtain

q̂ ∼= 1

X
δ X̂ , Q0 ∼= 1

nX
. (2.3.52)

Note that 〈X̂ : X̂〉 → X/n as X → 0. From (2.3.36), (2.3.37), and (2.3.50) we obtain the
small-X behavior,

1/CV X = a1 X + a2/CM ,

ρc2 = b1 X + b2/CM ,

T

(
∂X

∂∆

)
pT

= X + c1 X2χ, (2.3.53)

where a1, a2, b1, b2, and c1 are constants independent of X . Therefore, (CV X )cx ∝ X−1

and cc ∝ X1/2 on the critical line. From the first line of (2.3.32) we can also find the
behavior of C pX and KT X in dilute mixtures. With the above formulas, two crossover
reduced temperatures τs1 and τs2 may be introduced by [36]

τ
γ

s1 ∼ X, ταs2 ∼ X, (2.3.54)

where τs2 � τs1 � 1. In most cases τs2 is inaccessibly small.
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2.3.5 Incompressible limit

In non-azeotropic binary mixtures, the compressibility KT X (∝ CM asymptotically) is
already much more suppressed than in one-component fluids (where KT ∝ χ ). Moreover,
it is usual along a consolute critical line that the critical temperature Tc(p) depends only
weakly on p. The degree of compressibility, εin is then represented by [4, 36, 55]

εin = nc Bc = nc

(
∂T

∂p

)
c
. (2.3.55)

If |εin| � 1, the singular parts of n2T KT X and nTαpX are smaller than that of C pX by
ε2

in and εin, respectively, from (2.3.27)–(2.3.29). Therefore, even when C pX grows as CM ,
KT X remains close to its small background value. On the other hand, (2.3.32) indicates
CV X ∝ CM approximately. Using (2.3.46) their explicit expressions are known to be

KT X ∼= (1 − Bc/Ac)
−2/ρcc2

c , (2.3.56)

CV X ∼= (1 − Bc/Ac)
2(C pX − CB) (2.3.57)

except extremely close to the criticality. The asymptotic critical value (CV X )c grows as
B−2

c from (2.3.39) and cannot be reached in practice, whereas ρc2 behaves as (2.3.42).
Furthermore, we expect that Bc/Ac is of order εin and is small except for accidental cases.
Then, 1 − Bc/Ac may be replaced by 1 in the above expressions to give

KT X ∼= 1/ρcc2
c , CV X ∼= C pX − CB. (2.3.58)

Using (2.3.42) we can see the relation γX = C pX/CV X ∼= ρc2/ρcc2
c . Thus the specific-

heat ratio remains close to 1 near the critical point.
Anisimov and coworkers [4, 36, 55] observed singular enhancement of CV X in such

incompressible mixtures. There, εin ∼= 0.03 for methanol + cyclohexane and of order 10−3

for iso-octane + nitroethane. Figure 2.12 shows their data of C pX and CV X in the latter
mixture, which indicate (2.3.58) or C pX − CV X = const. In the context of studying adia-
batically induced spinodal decomposition, Clerke and Sengers [56] examined the adiabatic
coefficient (∂T/∂p)s X = TαpX/C pX at the critical composition for 3-methylpentane +
nitroethane and isobutyric acid + water. For the former mixture εin is expected to be of
order 0.1 and

C pX ∼= [ 1.8(T/Tc − 1)−0.11 + 9.5 ] × 1022 cm−3,

TcαpX ∼= 0.009(T/Tc − 1)−0.11 + 0.38. (2.3.59)

See Fig. 2.13 for the curve of (∂T/∂p)s X . Small εin is indicated by the small singular term
of TcαpX . These relations are also consistent with the data, (∂T/∂p)c = 3.67 mK/bar or
Bc = 5.07 × 10−25 cm3 [56]. We then find Bc/Ac ∼= 0.09 by neglecting the constant
part of β̄2

s CM as compared to CB in (2.3.27). Similar arguments can also be made for
near-critical binary mixtures of isobutyric acid + water, where (∂T/∂p)c = −55 mK/bar is
negative [56]. In incompressible binary fluids, (∂T/∂p)s X tends to the critical point value
(∂T/∂p)c only very close to the critical line due to the slow crossover of αpX .
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Fig. 2.12. Isochoric (constant-volume) and isobaric (constant-pressure) specific heats in a nearly
incompressible mixture of iso-octane + nitroethane near the consolute critical point [4]. The upper
curves are those below Tc, while the lower ones are those above Tc.

It is worth noting that a similar incompressible limit is attained in 4He near the superfluid
transition (see Section 2.4).

2.3.6 Two-scale-factor universality in the isobaric case

Many experiments of binary fluid mixtures have been performed under a constant pressure
(isobaric condition). Near a consolute critical line, it is usual to perform experiments in
the presence of a noncritical gas phase [4, 5]. In such cases, since the gas phase is highly
compressible, the pressure of the total system is kept almost constant. The consolute critical
line here meets a coexistence surface in the three-dimensional space of field variables,
giving rise to a critical end point and a three-phase coexistence line.

In these isobaric cases two field variables are independent because

ζ =
(
∂ζ

∂h

)
τp

h +
(
∂ζ

∂τ

)
hp
τ. (2.3.60)

We may write the temperature deviation as

T − Tc(p) =
(
∂T

∂h

)
τp

h +
(
∂T

∂τ

)
hp
τ. (2.3.61)

Furthermore, the condition h ∼= 0 is realized at the critical composition because the
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Fig. 2.13. The slope of (∂T/∂p)s X at the critical composition in 3-methylpentane + nitroethane as
a function of T/Tc − 1 calculated from data of C pX and αpX . At the datum point at T/Tc − 1 =
1.5 × 10−4, a quench experiment was performed [56] (see Section 8.5).

estimation (2.2.17) is also applicable here, so that

τ ∼= β̄s(T/Tc − 1), (2.3.62)

where β̄s is defined in (2.3.30). This relation is analogous to that for one-component fluids,
(2.2.16). Recall the expression for C pX in (2.3.27) for non-azeotropic binary fluids. If the
first term dominates the second term there, we have C pX ∼= β̄2

s CM , analogous to (2.2.25).
Using (2.3.62) we find

(T/Tc − 1)2C pX ∼= τ 2CM . (2.3.63)

As a result, the relation of the two-scale-factor universality (2.1.45) becomes

Rξ = lim
T→Tc

ξ
[
α(T/Tc − 1)2C pX

]1/d
, (2.3.64)

at the critical composition in the isobaric case in binary fluids [27]–[29]. Indeed (2.3.59)
and ξ = 2.16×10−8(T/Tc−1)−0.63 cm give Rξ

∼= 0.27 for 3-methylpentane + nitroethane,
in agreement with the theory.

2.4 4He near the superfluid transition

As pointed out by Anisimov [4], liquid 4He near the superfluid transition is analogous
to incompressible binary fluid mixtures, where the logarithmic specific-heat singularity is
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Fig. 2.14. The p–T phase diagram of 4He.

marked but the compressibility is nearly nonsingular. The smallness parameter is again
given by εin in (2.3.55) if the derivative is taken along the λ line for 4He (see below). We
will develop this idea to understand the static critical behavior of 4He. To this end we will
introduce a weakly singular variable m̂ and a nonsingular variable q̂ as we did in the case
of binary fluid mixtures. Then the number density deviation δn̂ nearly coincides with q̂
with a small fraction of m̂ superimposed.

2.4.1 Singular and nonsingular density variables

As shown in Fig. 2.14, when liquid 4He (He I) is cooled at a fixed pressure p below
25 atm (25 bar), it undergoes a second-order phase transition at the critical point Tλ(p)
[57, 58], below which 4He becomes a superfluid (He II). This transition has been called
the λ transition because the curve of the specific heat vs T − Tλ assumes a form of λ. The
order below the transition is characterized by a nonvanishing complex order parameter
ψ = ψ1 + iψ2 originating from quantum Bose–Einstein condensation. Its square |ψ |2
is proportional to the superfluid density ρs in the two-fluid hydrodynamic description of
superfluidity,

|ψ |2 ∝ ρs = ρs0|τ |2β, (2.4.1)
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Fig. 2.15. The superfluid fraction ρs/ρ as a function of |T/Tλ − 1|, on logarithmic scales, at SVP
or at the pressures indicated (in bar) [59].

where τ = T/Tλ − 1, 2β ∼= 2/3, and the coefficient ρs0 is of the same order as the
mass density ρ ∼ 0.1 g/cm3. In Fig. 2.15 we show ρs obtained from second-sound
measurements [59].5 In this system, the specific heat C p behaves nearly logarithmically
as

C p ∼= −A ln τ + B (T > Tλ),
∼= −A′ ln |τ | + B ′ (T < Tλ), (2.4.2)

with A′ ∼= A > 0 and B ′ ∼ −2B > 0. At saturated vapor pressure (SVP) we have
C p/nλ

∼= −0.64 ln τ − 0.9 per particle, where nλ = 0.23 × 1023 cm−3 [57]. See Fig. 2.16
for a recent precise measurement of the specific heat at SVP [60]. The critical exponent α
for the specific heat is nearly equal to zero, giving rise to the logarithmic singularity, and
C p can also be expressed as

C p = A
1

α

(
τ−α − τ−α

0

) + C p0 (T > Tλ), (2.4.3)

where τ0 is an appropriate reduced temperature (theoretically equal to the Ginzburg number
Gi for general n-component systems as will be found in Section 4.3), and C p0 = B−A ln τ0

5 The data can be excellently fitted to the form ρs/ρ = k(p)|τ |2/3(1+a(P)|τ |0.5), where k(p) and a(p) are pressure-dependent
coefficients and the correction with the exponent 0.5 agrees with a prediction of a renormalization group theory [7].
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Fig. 2.16. High-resolution specific-heat capacity results near the superfluid transition taken in the
Space Shuttle [60]. Note that the temperature is measured in units of nK, where nK = 10−9 K.

is the background. The two-scale-factor universality relation (2.1.45) for this case (α ∼= 0)
may be expressed as6

Rξ = ξ+0 A1/d . (2.4.4)

The correlation length ξ ∼= ξ+0τ
−ν above Tλ behaves as (2.1.10) with ν ∼= 2/3. In 4He,

while ξ+0 cannot be directly measured, the theoretical estimate Rξ
∼= 0.36 and the data for

A yield ξ+0 ∼= 1.4 Å at SVP [22].
The corresponding spin system is the xy model in 3D given by (1.1.8) with 〈s1i 〉 = ψ1

and 〈s2i 〉 = ψ2. In 4He, however, there is no physically realizable ordering field corre-
sponding to a magnetic field (h = 0). Thus there remains only one relevant scaling field,

τ = T

Tλ(p)
− 1 ∼=

(
T

Tλ0
− 1

)
− 1

Tλ0

(
∂T

∂p

)
λ

(p − p0), (2.4.5)

which is the expansion around a reference λ point, p = p0 and T = Tλ0 = Tλ(p0).
Hereafter (∂a/∂b)λ is the derivative along the λ line, T = Tλ(p), for any a and b.
Relationships between various thermodynamic derivatives can be understood in terms of
the Pippard–Buckingham–Fairbank relations [61, 62], which arises from the observation

6 Another form of the two-scale-factor universality [21] in terms of the superfluid density was confirmed in experiments [30].
See Section 4.3 for more discussions.
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that the derivative (∂a/∂b)τ at fixed τ is nearly equal to the derivative (∂a/∂b)λ along the
λ line. For example,

C p

T
=

(
∂s

∂T

)
p

∼=
(
∂s

∂T

)
λ

−
(
∂s

∂p

)
T

(
∂p

∂T

)
λ

, (2.4.6)

nKT =
(
∂n

∂p

)
T

∼=
(
∂n

∂p

)
λ

−
(
∂n

∂T

)
p

(
∂T

∂p

)
λ

, (2.4.7)

with (∂s/∂p)T = (∂n/∂T )p/n2 being one of the maxwellian relationships.
Recall the correlation function relations (1.2.48)–(1.2.50) for one-component fluids.

They hold in liquid 4He near the λ line. Then we may construct a singular variable m̂
and a nonsingular variable q̂ by

nδŝ = m̂ − Aλq̂, (2.4.8)

δn̂ = q̂ − εinm̂, (2.4.9)

with7

Aλ = −n

(
∂s

∂n

)
λ

, εin = n

(
∂T

∂p

)
λ

. (2.4.10)

Here δŝ is the deviation of the entropy in (1.2.46) and δn̂ is the deviation of the number
density. They are measured from the reference λ-point values. The equilibrium fluctuations
of the two variables m̂ and q̂ are independent of each other,

〈m̂ : m̂〉 = C, 〈m̂ : q̂〉 = 0, 〈q̂ : q̂〉 = Q0, (2.4.11)

where C is logarithmically dependent on |τ | and

Q0 = (1 − Aλεin)
−1nT

(
∂n

∂p

)
λ

(2.4.12)

is nonsingular. In the corresponding xy model, m̂ is the energy density (divided by T ) and
C is the specific heat. Near SVP we estimate

Aλ ∼ 0.8, εin ∼ −0.04, Q0/nλ ∼ 0.1. (2.4.13)

Thus, in 4He, (i) εin is small and is analogous to the incompressibility parameter (2.3.55)
for binary fluids and (ii) the variance Q0 of the nonsingular variable is relatively small, in
contrast to the usual nearly incompressible binary mixtures.

7 We have (∂T /∂p)ζ = 1/n Aλ from (2.4.30) below, which corresponds to Ac for binary fluid mixtures, given in (2.3.31).
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2.4.2 Thermodynamic derivatives

Now, from (1.2.48) we may express thermodynamic derivatives in terms of the parameters
defined above:

C p = n2〈ŝ : ŝ〉 = C + A2
λQ0, (2.4.14)

n2T KT = 〈n̂ : n̂〉 = ε2
inC + Q0, (2.4.15)

nTαp = −n〈n̂ : ŝ〉 = εinC + AλQ0, (2.4.16)

where αp = −(∂n/∂T )p/n is the thermal expansion coefficient. These expressions are
analogous to (2.3.27)–(2.3.29) and satisfy the Pippard–Buckingham–Fairbank relations
(2.4.6) and (2.4.7). In accord with experiments [57], the singular part of KT is very
small (∝ ε2

in) compared with the background part Q0/n2T , and αp changes its sign at
T = T0 > Tλ above the λ line (which occurs at C ∼= AλQ0/|εin|). The latter fact leads to
some interesting consequences on hydrodynamic convection in gravity.

To calculate CV we use the relation,

〈n̂ : n̂〉〈ŝ : ŝ〉 − 〈n̂ : ŝ〉2 = n−2(1 − εin Aλ)
2C Q0, (2.4.17)

which readily follows from (2.4.8) and (2.4.9). From (1.2.49) CV is then given by

CV = (1 − Aλεin)
2C

/
(1 + ε2

inC/Q0). (2.4.18)

If C tends to ∞ at the λ point (or if α > 0), CV in principle saturates to a λ-point value
(∼= Q0/ε

2
in). In realistic conditions, however, ε2

inC � Q0 holds, so that

CV ∼= (1 − Aλεin)
2C, (2.4.19)

C p − CV ∼= (εinC + AλQ0)
2/Q0, (2.4.20)

except extremely close to the critical point. In the difference C p−CV we cannot set εin = 0
in the numerator due to the small size of Q0/C , while C pX − C pV = const. in the case of
a binary mixture, as shown in Fig. 2.12. From (1.2.50) the sound velocity c behaves as

ρc2 = T n2(1 − εin Aλ)
−2

(
1

Q0
+ A2

λ

1

C

)
. (2.4.21)

This is consistent with the thermodynamic identity ρc2 KT = C p/CV in (1.2.54). The
singular part of Ks = 1/ρc2 is not small, whereas KT is almost nonsingular.

The nonsingular variable q̂ is analogous to q̂ for classical binary fluid mixtures in Section
2.3. We may also introduce a field variable ζ representing the coordinate along the λ line
by requiring

τ m̂ + ζ q̂ = (T/Tλ0 − 1)nδŝ + 1

nT
(p − p0)δn̂, (2.4.22)
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which follows from (1.2.47). Substitution of (2.4.8) and (2.4.9) yields τ given by (2.4.5)
and

ζ = 1

nT
(p − p0)− Aλ(T/Tλ0 − 1). (2.4.23)

The equilibrium averages 〈m̂〉 and 〈q̂〉 then behave as

〈m̂〉 = Cτ, 〈q̂〉 = Q0ζ. (2.4.24)

2.4.3 Temperature and pressure fluctuations

As in binary fluid mixtures we introduce the fluctuations of the field variables. Noting that
the ordering field for the order parameter identically vanishes (h = δĥ = 0), we define

δτ̂ = 1

C
δm̂, δζ̂ = Q−1

0 q̂ − ζ, (2.4.25)

which are superimposed on the homogeneous averages τ and ζ and satisfy

〈τ̂ : τ̂ 〉 = C−1, 〈ζ̂ : ζ̂ 〉 = Q−1
0 , 〈τ̂ : ζ̂ 〉 = 0. (2.4.26)

In 4He the temperature and pressure fluctuations in the long-wavelength limit are defined
as (1.2.61) and (1.2.66). They are rewritten in terms of δτ̂ and δζ̂ as

δT̂ = T (1 − εin Aλ)
−1[

δτ̂ + εinδζ̂
]
, (2.4.27)

δ p̂ = nT (1 − εin Aλ)
−1[

Aλδτ̂ + δζ̂
]
. (2.4.28)

These relations are the counterparts of (2.3.33) and (2.3.34) for binary fluid mixtures, and
they can yield the variance relations (2.4.18) and (2.4.21) as in (2.3.36)–(2.3.38). We may
also express δτ̂ and δζ̂ as T δτ̂ = δT̂ − (∂T /∂p)λδ p̂ and T δζ̂ = δ p̂/n − AλδT̂ , which are
of the same forms as (2.4.5) and (2.4.23) (with the circumflex).

With (2.4.26)–(2.4.28) it is easy to confirm the variance relations, (1.2.62)–
(1.2.64) and (1.2.68)–(1.2.70), which we derived for classical one-component
fluids in Section 1.2. In particular, the temperature variance is written as 〈T̂ : T̂ 〉 = T 2/CV

also in 4He. Theoretically however, close to the λ point, we need to show that the temper-
ature fluctuations are much smaller than the (average) reduced temperature |T − Tλ| over
spatial scales much longer than ξ . As in (2.1.46) we define the coarse-grained average
(δT̂ )" = "−d

∫
"d drδT̂ (r) where the integral is over a volume element with linear dimen-

sion "(� ξ). Above Tλ, (2.4.4) and (2.4.20) give

〈(δT̂ )2
"〉/(T − Tλ)

2 = (ξ/Rξ ")
d , (2.4.29)

which is clearly less than 1 for " > ξ/Rξ .
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2.4.4 Gravity effects in 4He

Height-dependent reduced temperature

In equilibrium on earth, the pressure depends on the height as dp/dz = −ρg with g being
the gravitational acceleration. This gives the height-dependent transition temperature,

Tλ(p) = Tλ(p0)−
(
∂T

∂p

)
λ

ρλgz. (2.4.30)

The z axis is in the upward direction with the origin taken appropriately. Then the local
reduced temperature depends on z even in equilibrium as

τ(z) ≡ T/Tλ(p)− 1 ∼= (T/Tλ0 − 1)− Gz (2.4.31)

where

G = ρλg|(∂T/∂p)λ|/Tλ (2.4.32)

is 0.6× 10−6/cm at SVP on earth. Equilibrium states on earth become noticeably inhomo-
geneous in the following temperature region [58],

|τ | � GL ∼ 10−6L , (2.4.33)

where L is the vertical cell length (in units of cm). The presently attained precision of
temperature measurements is exceedingly high for helium (∼ 10−9 deg) [58]. Therefore,
the pressure dependence of the critical temperature is the main cause preventing precise
measurements of the critical phenomena in 4He.

Gravity-induced two-phase coexistence

An interesting effect brought about by gravity is that, if τ = 0 at a middle point (z = z0) of
the container, two-phase coexistence may be realized with a superfluid in the upper region
(z > z0) and a normal fluid in the lower region (z < z0). Such coexistence is detectable
because these two regions react to an applied heat flow very differently [63]. As shown in
Fig. 2.17, a gradual change from a normal fluid to a superfluid occurs in an interface or in
a transition region (|z − z0| � "g). Its thickness "g and the typical reduced temperature τg

in the interface region are determined from the following scaling relations,

"g = ξ+0τ
−ν
g , τg = G"g. (2.4.34)

These equations are solved to give

"g = ξ+0(ξ+0G)−ν/(1+ν), (2.4.35)

τg = (ξ+0G)1/(1+ν), (2.4.36)

where ν/(1+ ν) ∼= 0.4. We notice that the local correlation length ξ(z) attains a maximum
of order "g in the transition region. On earth, we have τg ∼ 10−9 and "g ∼ 10−2 cm.
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Fig. 2.17. Dimensionless gravity-induced superfluid density ρs(z)/ρsg (solid line) in a thin film with

thickness L = 44.15"g of 4He, where ρsg = ρs0τ
2/3
g and the space is measured in units of "g . The

height-dependent reduced temperature τ(z) in (2.4.31) is also plotted in units of τg (short-dash line).
The system is a superfluid in z0 < z < L and a normal fluid in 0 < z < z0 where z0 = 20"g . At the
boundaries z = 0 and L we impose the condition ρs = 0. We compare the calculated profile with the
local equilibrium profile ρsg[(z − z0)/"g]2/3 (z > z0) in (2.4.37) (long-dash line).

Outside the interface, the local equilibrium holds; namely, the thermodynamic relations
such as (2.4.1) and (2.4.2) are valid if use is made of the local reduced temperature. For
example, we have

ρs ∼= ρs0[G(z − z0)]
2/3 (z − z0 � "g). (2.4.37)

The profile in Fig. 2.17 has been calculated in the Ginzburg–Landau theory, as will be
explained below (4.2.51).

Appendix 2A Calculation in non-azeotropic cases

As an illustration, we express C pX , KT X , and αpX in terms of the variances using
(2.3.12)–(2.3.14) when the concentration fluctuations are much enhanced as in (2.3.26).
We notice that (1.3.24)–(1.3.26) remain unchanged with respect to replacements, δŝ →
δŝ − (αs/nαX )δ X̂ and δn̂ → δn̂ − (αn/αX )δ X̂ , which are linear combinations of m̂ and q̂.
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The following expressions readily follow:

C pX = β̄2
s CM + γ̄ 2

s Q0 + · · · , (2A.1)

n2T KT X = β̄2
n CM + γ̄ 2

n Q0 + · · · , (2A.2)

−nTαpX = β̄s β̄nCM + γ̄s γ̄n Q0 + · · · , (2A.3)

where β̄s = βs − αsβX/αX , γ̄s = γs − αsγX/αX , β̄n = βn − αnβX/αX , and γ̄n ≡
γn − αnγX/αX . These coefficients can also be expressed as

β̄s = T

(
∂τ

∂T

)
hp
, γ̄s = T

(
∂ζ

∂T

)
hp
, β̄n = nT

(
∂τ

∂p

)
hT

, γ̄n = nT

(
∂ζ

∂p

)
hT

. (2A.4)

From (2.3.19)–(2.3.21) the first two relations follow under h = δp = 0, while the last two
follow under h = δT = 0. We notice the relations,

β̄n

β̄s
= −n

(
∂T

∂p

)
hτ

= −nBc,
γ̄n

γ̄s
= −n

(
∂T

∂p

)
hζ

= −n Ac, (2A.5)

where Ac and Bc are defined by (2.3.31). These relations lead to (2.3.27)–(2.3.30).
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3

Mean field theories

In this chapter we will introduce the simplest theory of phase transitions, the Landau theory
[1]–[4]. It assumes a free energy H(ψ), called the Landau free energy, which depends on
the order parameter ψ as well as the temperature and the magnetic field. The thermo-
dynamic free energy F is the minimum of H(ψ) as a function of ψ . This minimization
procedure gives rise to the mean field critical behavior. Historically, a number of mean field
theories have been presented to explain phase transitions in various systems. They reduce
to the Landau theory near the critical point. Examples we will treat are the Bragg–Williams
theory [5] for Ising spin systems and alloys undergoing order–disorder phase transitions,
the van der Waals theory of the gas–liquid transition [6], the Flory–Huggins theory and the
classical rubber theory for polymers and gels. We will also discuss tricritical phenomena
in the scheme of the Landau theory. In Appendix 3A elastic theory for finite strain will be
considered, which will be needed to understand the volume-phase transition in gels.

3.1 Landau theory

3.1.1 Order parameter and constrained free energy

It is desirable to sum up the spin configurations in (1.1.9) to exactly determine the
thermodynamic limit. This attempt has not been successful for the 3D Ising model, while
it was successful for 2D and is a simple exercise for 1D [3]. Another approach is a
phenomenological one, known as the Landau theory, in which the key quantity is the order
parameter ψ .1 Assuming that the system is homogeneous on average, we define ψ as the
space average of the spins,

ψ = 1

V

∑
i

si . (3.1.1)

In Chapter 4 we will give a more appropriate definition of the order parameter taking into
account spatially inhomogeneous fluctuations. For now, we introduce a constrained free
energy H(ψ) obtained by partial summation with ψ held fixed. That is, we sum up only
the spin configurations in which (3.1.1) is satisfied:

exp[−βH(ψ)] =
∑
{s}

δ

(
ψ − 1

V

∑
i

si

)
exp[−βH{s}]. (3.1.2)

1 We have denoted the fluctuating spin variable and energy variable by ψ̂ and m̂ with the circumflex in Chapter 2. Hereafter, we
will write them as ψ and m to avoid cumbersome notation.
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Then H(ψ) is dependent on the order parameter ψ as well as on the temperature field T
and the magnetic field H . It will be called the Landau free energy. From the definition,
exp[−βH(ψ)]/Z is the equilibrium distribution of the order parameter fluctuations. For
sufficiently large systems ψ may be treated as a continuous variable and then the true
thermodynamic free energy F is given by

exp[−βF] =
∫

dψ exp[−βH(ψ)]. (3.1.3)

For simplicity, let H(ψ) have a single minimum at ψ = ψ∗. Then it is expanded around
the minimum as

H(ψ) = H(ψ∗)− V
T

2χ
(ψ − ψ∗)2 + · · · , (3.1.4)

where χ is the magnetic susceptibility. For large systems, the integration from the narrow
region |ψ − ψ∗| � (χ/V )1/2 is dominant in (3.1.3), leading to

F ∼= H(ψ∗)− 1

2
T ln(2πχ/V ) ∼= H(ψ∗). (3.1.5)

The logarithmic correction is negligible in the limit V → ∞. Thus, the thermodynamic
Helmholtz free energy F is obtained by minimization of H(ψ) with respect to ψ . This is
a very important step in the Landau theory.

3.1.2 Regular expansion of the Landau free energy

The assumption Landau made is that H(ψ) is an analytic function of the order parameter
ψ near the critical point, τ = 0 and h = 0, where τ = T/Tc − 1 and h = H/T ∼= H/Tc

are the two relevant field variables. Then the free-energy density f (ψ) ≡ H(ψ)/V may
be expanded as

f (ψ) = freg + Tc

[
1

2
rψ2 + 1

4
u0ψ

4 − hψ

]
+ · · · , (3.1.6)

where the coefficient r is proportional to the reduced temperature τ as

r = a0τ. (3.1.7)

The coefficient a0 will be assumed to be positive2 as well as the coefficient u0. The first
term is a regular function of τ expanded as

freg = fc − Tcscτ − 1

2
TcC0τ

2 + · · · . (3.1.8)

The coefficients fc and sc are the critical values of the free-energy density and the entropy
density, respectively, and C0 is the background specific heat. From the definition (3.1.2),
f (ψ) + Hψ is an even function of ψ , so the cubic term does not appear in the Landau

2 However, in some fluid mixtures such as lutidine + water, the coexistence curve at fixed p is inverted with the critical point
located at the minimum in the temperature–concentration phase diagram. In such cases, a0 is negative.
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Fig. 3.1. The Landau free-energy density f (ψ) near the critical point for typical cases.

Fig. 3.2. The equation of state obtained from (3.1.9) with u0 = 1. The (bold) parabolic curve on the
surface represents the coexistence curve.

expansion (3.1.6). Figure 3.1 illustrates the Landau free-energy density f (ψ) in typical
cases.

We have shown that the equilibrium value ψ∗ is given by minimization of f (ψ) for each
given T and H (or τ and h). Therefore, at ψ = ψ∗, we require

β f ′(ψ) = rψ + u0ψ
3 − h = 0, (3.1.9)

β f ′′(ψ) = r + 3u0ψ
2 > 0, (3.1.10)

where f ′ = ∂ f/∂ψ and f ′′ = ∂2 f/∂ψ2. Hereafter, the equilibrium value ψ∗ will be
written as ψ for simplicity. When h = 0, the equilibrium is attained at ψ = 0 for r > 0,
while

ψ = ±(|r |/u0)
1/2 ∝ ±(Tc − T )1/2 (3.1.11)
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Fig. 3.3. The scaling function &(x) determined from (3.1.13).

for r < 0. As shown in Fig. 3.1, these two ordered states have the same value of f (ψ).
Figure 3.2 then illustrates how ψ is discontinuous between the two phases at h = 0 for
r < 0. If h �= 0, the degeneracy disappears and the equilibrium value ψ has the same sign
as that of h. We may express it in terms of a scaling function &(x) as

ψ = h

r
&

(
r

(u0h2)1/3

)
. (3.1.12)

From (3.1.9) &(x) satisfies

&(x)+ 1

x3
&(x)3 = 1 or x = &(x)/[1 −&(x)]1/3, (3.1.13)

so &(x) behaves as (i) &(x) ∼= 1 for x � 1, (ii) &(x) ∼= x for |x | � 1, and (iii) &(x) ∼=
−|x |3/2 for x < 0 and |x | � 1, as shown in Fig. 3.3. In case (i), where r � (u0h2)1/3, the
temperature is so high that the gaussian approximation for the Landau free energy is valid.
In case (ii), where |r | � (u0h2)1/3, the effect of the temperature deviation is negligible
and

ψ ∼= h/(u0h2)1/3 ∝ |h|1/3. (3.1.14)
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In case (iii), where r � −(u0h2)1/3, the system is almost on one side of the coexistence
curve and (3.1.11) is reproduced.

3.1.3 Thermodynamic derivatives in the Landau theory

To calculate the thermodynamic derivatives, we use the relations,

χ =
(
∂ψ

∂h

)
r
= 1

r + 3u0ψ2
, (3.1.15)

(
∂ψ

∂r

)
h
= − ψ

r + 3u0ψ2
= −ψ

(
∂ψ

∂h

)
r
, (3.1.16)

which follow from (3.1.9). The χ/T is the spin susceptibility. If h = 0, χ is readily
calculated as

χ = 1

r
(r > 0), χ = 1

2|r | (r < 0). (3.1.17)

With the variance relation (1.1.20) we recognize that the order parameter fluctuations are
strongly enhanced near the critical point.

The average energy 〈H〉 = ∂(βF)/∂β may be calculated from (3.1.6). Its density is
written as

1

V
〈H〉 ∼= ( fc + Tcsc)+ TcC0τ − 1

2
Tca0ψ

2 (3.1.18)

where the first two terms arise from freg in (3.1.8) and the coefficient a0 is defined in
(3.1.7). Thus the energy density consists of a regular part and a term proportional to ψ2

with a constant coefficient.3 This will still be the case even in a more sophisticated theory
in Chapter 4. Differentiation of (3.1.18) with respect to T gives the specific heat at constant
H ,

CH = C0 +
a2

0ψ
2

r + 3u0ψ2
, (3.1.19)

where use has been made of (3.1.16). The two relations (1.1.24) and (3.1.19) indicate that
the energy fluctuations are larger in the ordered phase than in the disordered phase. While
CH has no critical divergence in the Landau theory, it is non-analytic at the critical point.
In fact, for h = 0, it is discontinuous as

�CH = (CH )T<Tc − (CH )T>Tc = a2
0/2u0. (3.1.20)

Next, differentiation of 〈H〉/V in (3.1.18) with respect to T at fixed ψ gives

CM = C0, (3.1.21)

The above result also follows from (1.1.26) with the aid of (3.1.15) and (3.1.16). Therefore,
CM has no singularity for any r and h in the Landau theory.

3 The last term (∝ ψ2) in (3.1.18) is much larger than the magnetic field energy density −Hψ near the critical point.
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We have thus obtained singular or non-analytic behavior of the free energy F and
its derivatives, starting with the analytic Landau free energy H(ψ) given by (3.1.8). It
is important that the critical singularity has arisen from the minimization procedure of
the Landau free energy with respect to ψ . In the Landau theory, the critical exponents
introduced in Section 2.1 are given by

γ = 1, β = 1

2
, α = 0, δ = 3. (3.1.22)

3.1.4 Landau free energy including the energy variable

We use the notation m to denote the energy density measured from the critical value and
divided by Tc. In equilibrium, (3.1.18) suggests that it is expressed in terms of ψ as

m = C0τ − 1

2
a0ψ

2, (3.1.23)

where τ = T/Tc − 1 is the reduced temperature. In dynamics, however, the above relation
holds only for quasi-static processes, because ψ and m are governed by different dynamic
equations. We thus need to treat ψ and m as independent variables. The Landau free-energy
density including m is of the form,

f (ψ,m) = f (ψ)+ 1

2C0
Tc

[
m − C0τ + 1

2
a0ψ

2
]2

, (3.1.24)

where the first term is given by (3.1.6). Some further calculations yield

f (ψ,m) = fc − Tcscτ + Tc

[
1

4
ū0ψ

4 + a0

2C0
ψ2m + 1

2C0
m2 − hψ − τm

]
, (3.1.25)

where fc and sc are the critical values in (3.1.8), the term proportional to ψ2 cancels to
vanish on the right-hand side, and

ū0 = u0 + 1

2C0
a2

0 . (3.1.26)

Notice that the last two terms in the brackets of (3.1.25) linearly depend on τ and h and
fulfill the requirement that their space integral coincides with −Mh − Hexτ/T which
appears in the microscopic canonical distribution (1.1.9) (as can be known from (1.1.18)).

We may introduce the reduced temperature fluctuation by4

δτ̂ = 1

Tc

∂

∂m
f (ψ,m) = 1

C0

[
m + 1

2
a0ψ

2
]
− τ, (3.1.27)

which is superimposed on the homogeneous average τ = T/Tc − 1. Then, m may be
removed from the Landau free-energy density in favor of δτ̂ as

f (ψ,m) = f (ψ)+ 1

2
TcC0(δτ̂ )

2. (3.1.28)

4 The circumflex is retained here.
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The above expression is consistent with the first variance relation for δT = Tcδτ̂ in
(1.1.47). Neglecting the temperature fluctuation (δτ̂ = 0) or, equivalently, minimizing
f (ψ,m) with respect to m leads to the usual free-energy density f (ψ) and the equilibrium
relation (3.1.23).

3.2 Tricritical behavior

As suggested by (3.1.26), when an order parameter and subsidiary variables are coupled,
the coefficient u0 of the quartic term in the Landau expansion (3.1.6) is reduced. In some
cases, u0 can be very small or even negative in a certain region of control parameters,
leading to tricritical phenomena [7]–[19]. A symmetrical tricritical point is realized in
metamagnets and 3He–4He mixtures, where there is no physically realizable ordering field
(h = 0) conjugate to the order parameter and the Landau free-energy density f (ψ) is
a function of |ψ |2. The point in the phase diagram at which r = u0 = 0 is called a
tricritical point. A more complicated, unsymmetrical tricritical point is realized in three-
and four-component fluids, where the Landau free energy is not invariant with respect to
ψ → −ψ . Generally, at a multicritical point a sudden change of ordinary critical lines is
encountered. We may mention tricritical, bicritical, Lifshitz, and tetracritical points, for
which see Ref. [16].

3.2.1 Symmetrical tricriticality

(i) In antiferromagnets with nearest and next nearest neighbor exchange couplings (metam-
agnets), the order parameter ψ is the staggered magnetization. The subsidiary variables are
the energy variable and the usual magnetization M . Note that these variables are eliminated
in usual static theories. The control parameters are the temperature T and the magnetic
field H , which are the fields conjugate to the energy density and the magnetization,
respectively. A tricritical point connects a critical line T = Tc(H) and a coexistence line
T = Tcx(H) separating paramagnetic and antiferromagnetic phases [15]. A representative
phase diagram for FeCl2 is shown in Fig. 3.4 [17]. (ii) Another notable example is 3He–4He
mixtures at low temperatures, where the order parameter ψ is a complex number. For each
pressure p a critical line of the superfluid transition T = Tλ(∆, p) (the λ line) meets a
first-order transition line T = Tcx(∆, p) at a tricritical point T = Tt(p) with an increase in
the chemical potential difference ∆ = µ3 −µ4 or in the 3He composition X , as illustrated
in Fig. 3.5 [9, 19]. (iii) We will examine order–disorder phase transitions in solids to find
symmetrical tricritical points in (3.3.20)–(3.3.24) below. (iv) In Subsection 10.4.7 we will
investigate tricritical behavior of structural phase transition in cubic solids under uniaxial
compression.

In the vicinity of a symmetrical tricritical point we need to retain the sixth-order term in
the Landau expansion,

1

T
[ f (ψ)− freg] = 1

2
r |ψ |2 + 1

4
u0|ψ |4 + 1

6
v0|ψ |6 + · · · , (3.2.1)
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Fig. 3.4. The phase diagram of a metamagnet FeCl2 [17]. M/M0 is the reduced magnetization.
There are antiferromagnetic (AF), paramagnetic (Para), and mixed states.

Fig. 3.5. The phase diagram of 3He–4He in the T –X plane at constant p. Here T+
σ and T−

σ are
temperatures on the coexistence curve.

where the ordering field h is assumed to be absent. The subsidiary variables, such as the
magnetization in metamagnets or the 3He concentration in 3He–4He mixtures, have been
eliminated. The tricritical point in metamagnets is given by T = Tt and H = Ht. In its
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vicinity, the two coefficients r and u0 may be expanded with respect to T −Tt and H−Ht as

r ∼= a0
[
T − Tt − c1(H − Ht)

]
,

u0 ∼= c2(T − Tt)+ c3(H − Ht), (3.2.2)

where c1, c2, and c3 are the expansion coefficients. In particular, c1 = [∂Tc(H)/∂H ]t is
the slope of the critical line at the tricritical point, and u0 ∼= (c1c2 + c3)(H − Ht) close to
the critical line r = 0. For 3He–4He mixtures, H in (3.2.2) should be replaced by ∆. The
coefficient v0 in (3.2.1) is assumed to tend to a positive constant near the tricritical point.
The equilibrium value of ψ is obtained by minimizing f (ψ). The equation of nonvanishing
ψ at h = 0 is given by

r + u0|ψ |2 + v0|ψ |4 = 0. (3.2.3)

(i) In the case u0 > 0, the system is disordered (ψ = 0) for r > 0. An ordered phase
appears for r < 0 with

|ψ |2 = u0

2v0

[
(1 − q)1/2 − 1

]
, (3.2.4)

where

q = 4rv0/u2
0. (3.2.5)

Close to the tricritical point we may set

q ∼ [
T − Tt − c1(H − Ht)

]/
(H − Ht)

2. (3.2.6)

The inverse 1/|q| measures closeness to the tricritical point. For |q| � 1 the usual mean
field critical behavior (3.1.11) is obtained. The region |q| � 1 is a new tricritical region,
where

|ψ |2 ∼= (−r/v0)
1/2 ∝ (−r)2βt , βt = 1/4, (3.2.7)

where the quartic term in f (ψ) is negligible and the mean field theory is valid for d ≥ 3
[11]. The magnetic susceptibility χ = (∂2 f/∂ψ2)−1 of the order parameter5 is calculated
as

χ−1 = r (r > 0), χ−1 = u2
0

v0

[
1 − q −

√
1 − q

]
(r < 0). (3.2.8)

If r < 0, χ−1 ∼= 2|r | for |q| � 1 and χ−1 ∼= 4|r | for |q| � 1. Thus, we have χ ∼ |r |−1

as long as u0 > 0 in the mean field theory. In Section 4.4 we shall see that the correlation
length ξ is given by (Kχ)1/2 ∝ |r |−1/2 in the mean field theory where K is a constant.
Thus we have

γt = 1, νt = 1/2, (3.2.9)

in the tricritical region q � 1.

5 This is the longitudinal susceptibility χL in ordered phases of many-component systems (n ≥ 2), for which see Section 4.3.
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Fig. 3.6. The Landau free-energy density f (ψ) near the tricritical point for (reading from top down)
r = 0.24, 3/16, and 0.17. Here ψ and r are scaled such that we have u0 = −1 and v0 = 1. There is
no ordering field conjugate to ψ .

(ii) For u0 < 0 we display f (ψ) as a function of |ψ |2 in Fig. 3.6 for three typical cases. If
q < 1, a nonvanishing solution of (3.2.3) giving a local minimum of f (ψ) is obtained as

|ψ |2 = |u0|
2v0

[√
1 − q + 1

]
. (3.2.10)

For q < 0 and |q| � 1, ψ becomes independent of u0, leading to the tricritical result
(3.2.7) again. The free energy at the local minimum is given by

fmin − freg = T
|u0|3
24v0

[
3

2
q − 1 − (1 − q)3/2

]
, (3.2.11)

where the right-hand side is positive for q > 3/4 and negative for q < 3/4. Thus the
disordered phase is stable for q > 3/4 and the ordered phase is stable for q < 3/4. The
coexistence line in the phase diagram is determined by q = 3/4 or

r = 3

16

u2
0

v0
, u0 < 0. (3.2.12)

On the coexistence curve the absolute value of the order parameter in the ordered phase is
written as

ψcx = (3|u0|/4v0)
1/2 ∝ |H − Ht|1/2 ∝ |T − Tt|1/2. (3.2.13)

The magnetic susceptibility in equilibrium is given by

χ−1 = r (q > 3/4), χ−1 = u2
0

v0

[
1 − q +

√
1 − q

]
(q < 3/4). (3.2.14)
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Therefore, on the coexistence curve χ behaves in the two phases as

χ−1 = 3

16

u2
0

v0
(ψ = 0), χ−1 = 3

4

u2
0

v0
(ψ �= 0), (3.2.15)

which are proportional to (H − Ht)
2 or (T − Tt)

2. In Section 4.4 we will use the above
result to calculate the correlation length ξ in (4.4.22), which grows as |T −Tt|−1 as T → Tt

on the coexistence curve. The free-energy density (3.2.1) on the coexistence line is of the
form,

f (ψ)− freg = 1

6
T v0|ψ |2(|ψ |2 − ψ2

cx)
2. (3.2.16)

In the T –H plane, the coexistence line determined by (3.2.12) and the critical line r = 0
with u0 > 0 are smoothly connected at the tricritical point. In Ising-like systems (n = 1),
three phases with ψ = 0,±ψe can coexist on the line of (3.2.12). In 3He–4He mixtures,
where n = 2, the phase variable of the complex order parameter remains arbitrary in the
ordered phase.

Nonvanishing ordering field

When the ordering field h conjugate to the order parameter ψ is nonvanishing, we should
add the term −hψ on the right-hand side of (3.2.1). Here ψ is treated as a scalar variable.
Then, from ∂2 f/∂ψ2 = ∂3 f/∂ψ3 = 0, we find another critical line passing through the
tricritical point in the region u0 ≤ 0 [11], on which

ψ = ±
√

3

10

|u0|
v0

, h = 8

3
v0ψ

5, r = 9

20

u2
0

v0
. (3.2.17)

We also have a coexistence surface terminating at this critical line and including the first-
order phase transition line (3.2.12) for h = 0 in the r–u0–h (or T –H–h) space. This
field-induced critical line was observed in ferroelectric KH2PO4 near a tricritical point in
an applied electric field [20].

3.2.2 Scaling theory around a symmetrical tricritical point

It is straightforward to develop a scaling theory near a symmetrical tricritical point [7, 9].
The singular part of the free-energy density fsing as a function of r , u0(∝ H−Ht or T −Tt),
and the ordering field h satisfies

fsing(r, u0, h) = "−φ(2−αt) fsing("
φr, "u0, "

φ�t h), (3.2.18)

for any positive values of ", where φ, αt, and �t are new exponents. By setting " = |u0|−1

we obtain

fsing(r, u0, h) = |u0|φ(2−αt)F±(r/|u0|φ, h/|u0|φ�t), (3.2.19)



3.2 Tricritical behavior 89

where F±(x, y) = fsing(x,±1, y) are defined for u0 > 0 and u0 < 0, respectively. By
differentiating fsing with respect to h and then setting h = 0, we obtain

ψ = |u0|φ(2−αt−�t)(±(r/|u0|φ),
χ = |u0|φ(2−αt−2�t)�±(r/|u0|φ). (3.2.20)

Here (±(x) = [∂F±(x, y)/∂y]y→0 and �±(x) = [∂2 F±(x, y)/∂y2]y→0. Comparing the
above scaling forms and the mean field results (3.2.4)–(3.2.15) for |q| � 1, we find that
the scaling variable x = r/|u0|φ should be identified with q in (3.2.5), so that

φ = 2, αt = 1/2, �t = 5/4. (3.2.21)

It is well known that the mean field theory is valid for small u0 in the region |q| � 1 for
d ≥ 3, which can be concluded on the basis of the Ginzburg criterion [11]. Because the
upper critical dimensionality is 3, there are logarithmic corrections in 3D [12], but they are
usually negligible.

Furthermore, we may examine the singular behavior of the subsidiary variable m which
is coupled to ψ (but has been eliminated in (3.2.1)). From (3.2.18) its average 〈m〉 deviates
from the tricritical value mt as

〈m〉 − mt = |u0|φ(1−αt)M±(r/|u0|φ)+ (�m)reg, (3.2.22)

where the second term is the regular part arising from freg. The variance of m consists of
the background and singular parts,

C = 〈m : m〉 = C0 + |u0|−φαtM′
±(r/|u0|φ), (3.2.23)

which is either the specific heat or the usual magnetic susceptibility in metamagnets, or
the concentration susceptibility in 3He–4He. For |x | = |r |/|u0|φ � 1, C should be
independent of u0 and the tricritical specific-heat singularity follows as

C ∝ |r |−αt , αt = 1/2. (3.2.24)

On the coexistence curve (3.2.12) we have

〈m〉 − mt ∼ H − Ht ∼ T − Tt, C ∼ |H − Ht|−1 ∼ |T − Tt|−1, (3.2.25)

for d ≥ 3. These results are in good agreement with experiments on metamagnets [16] and
3He–4He [18]. In addition, we shall see ξ ∼ |T − Tt|−φνt with φνt = 1 on the coexistence
curve in (4.4.22) below.

3.2.3 Unsymmetrical tricriticality

We discuss more complicated unsymmetrical tricritical points [10, 14]. For example,
in three-component fluid mixtures, three-phase coexistence may be realized on a two-
dimensional surface in the space of four independent field variables, and two phases be-
come identical on a line of critical end points. Therefore, by choosing unique temperature,
pressure, and two chemical potentials (or, equivalently, two mole fractions), there can be
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a tricritical point where all the three phases become indistinguishable and exhibit critical
opalescence. More generally, in four-component fluid mixtures, we have a line of tricritical
points. Around such a point, however, there is no invariance of the free energy with respect
to a change of the sign, ψ → −ψ , of the order parameter. Therefore, we need to add odd
terms in the Landau expansion. Supposing a scalar order parameter ψ , we have [10]

f (ψ) = freg + a1ψ + a2ψ
2 + a3ψ

3 + a4ψ
4 + a5ψ

5 + a6ψ
6 + · · · , (3.2.26)

where the coefficients ak are functions of the field variables T , p, . . .. All the subsidiary
variables coupled to the order parameter have been eliminated from the minimum con-
ditions. Here the fifth-order term vanishes if ψ ′ = ψ + a5/6a6 is redefined as a new
order parameter, but the third-order term cannot be removed at the same time. Three-phase
coexistence is realized if f (ψ) is expressed as

f (ψ) = a6(ψ − c1)
2(ψ − c2)

2(ψ − c3)
2 + const. (3.2.27)

In three-component fluids, we obtain lines of critical end points if two of c1, c2, and c3

coincide, and a tricritical point if c1 = c2 = c3. However, it is highly nontrivial how
the critical surface and the tricritical point can be approached with changing experimental
parameters.

3.3 Bragg–Williams approximation

3.3.1 Ising systems

We now discuss the phase transition in ferromagnetic Ising spin systems (J > 0) in the
simplest mean field theory [2]. Let N+ be the number of the up-spins (si = 1) and N− =
� − N+ the number of the down-spins (si = −1), where � is the total number of lattice
sites. For a binary alloy forming a simple cubic lattice, N+ and N− are interpreted as the
numbers of A and B atoms, respectively [5]. The order parameter ψ is defined by

ψ = (N+ − N−)/�. (3.3.1)

Then N+ = �(1 + ψ)/2 and N− = �(1 − ψ)/2. If we neglect the correlations
among the spins, the probability that a neighboring pair has the same spin direction
is (N+/�)2 + (N−/�)2 and the probability that a neighboring pair has different spin
directions is 2N+N−/�2. The exchange energy Hex between nearest neighbor pairs is
approximated by the average

Ē = − z J

2�

[
N 2
+ + N 2

− − 2N+N−
] = −1

2
�z Jψ2, (3.3.2)

where z is the coordination number. Replacing H in the partition function Z in (1.1.11) by
Ē −�Hψ , we obtain the approximate partition function,

Z = �!

N+!N−!
exp

[
�β

(
1

2
z Jψ2 + Hψ

)]
. (3.3.3)
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By taking the logarithm of Z and using the Stirling formula ln M! ∼= M ln M −M for large
M � 1, we obtain the Landau free energy F(ψ) in this approximation. The free-energy
density fsite = F(ψ)/� per site becomes

1

T
fsite = 1

2
(1 + ψ) ln

1 + ψ

2
+ 1

2
(1 − ψ) ln

1 − ψ

2
− z J

2T
ψ2 − hψ, (3.3.4)

where h = H/T and the regular part is omitted. The first two terms are the en-
tropy contributions and are of the same form as the minus of the translational entropy
ln(V N+/N+!) + ln(V N−/N−!) of ideal gas mixtures [2]. (The space-filling condition
N+ + N− = � is not necessarily needed for fluids, however.)

The minimization of fsite yields the equilibrium value:

1

2
ln[(1 + ψ)/(1 − ψ)] − (z J/T )ψ = h, (3.3.5)

which may also be transformed into

ψ = tanh[h + (z J/T )ψ]. (3.3.6)

For this free energy the critical temperature is given by

Tc = z J. (3.3.7)

In fact, the susceptibility χ = (∂ψ/∂h)T behaves as

χ = T (1 − ψ2)
/[

T − z J (1 − ψ2)
]
, (3.3.8)

which diverges as (T − Tc)
−1 at ψ = 0. Near the critical point, fsite assumes the Landau

expansion form,

1

T
fsite = 1

2
(1 − z J/T )ψ2 + 1

12
ψ4 + · · · − hψ. (3.3.9)

Moreover, for T � Tc and h = 0, (3.3.5) is solved to give

ψ ∼= ±[
1 − 2 exp(−2Tc/T )

]
. (3.3.10)

3.3.2 Order–disorder phase transitions in bcc alloys

Let us consider an A–B binary alloy forming a body-centered-cubic (bcc) lattice such as
Fe–Be and Cu–Zn [21]–[24]. The lattice may be divided into two sublattices as shown in
Fig. 3.7. The concentrations of A atoms on the two sublattice sites are written as

c1 = c + 1

2
η, c2 = c − 1

2
η, (3.3.11)

where c is the concentration of A atoms averaged over the two sublattices and η is the
order parameter of the order–disorder phase transition (often called the long-range order
parameter). The concentrations of B atoms are 1 − c1 and 1 − c2 on the two sublattice
sites. We may assume 0 < c ≤ 1/2 without loss of generality; then, |η| ≤ 2c. The lattice



92 Mean field theories

Fig. 3.7. The L10 structure on a bcc
lattice.

structure in the ordered phase (η �= 0) is called L10 or B2. The system is invariant with
respect to a change of the sign of η, because the two sublattices are symmetrical, so the
free energy is an even function of η. Assuming the interactions between the nearest and
next nearest neighbor pairs, we obtain the free-energy density per lattice point in the form
[21, 23, 24],

fsite = T

2

[(
c + η

2

)
ln

(
c + η

2

)
+

(
c − η

2

)
ln

(
c − η

2

)
+

(
1 − c + η

2

)
ln

(
1 − c + η

2

)
+

(
1 − c − η

2

)
ln

(
1 − c − η

2

)]
− w0c2 − w1η

2, (3.3.12)

where w0 and w1 are combinations of the pair interaction energies. The term linear in
c is not written explicitly because c is a conserved variable. Obviously, fsite is of the
same form as (3.3.4) with c = (1 + ψ)/2 if there is no order (η = 0). The phase
behavior is determined by the two parameters, w0 and w1, in a complicated manner, as
illustrated in Fig. 3.8 for the case w1 > 0 [23]. Generally, increasing w0 favors phase
separation, while increasing w1 favors structural ordering. Instability curves are determined
by (∂2 fsite/∂c2)(∂2 fsite/∂η

2) = (∂2 fsite/∂c∂η)2, below which homogeneously ordered
or disordered states are unstable against long-wavelength perturbations of c and η. This
condition is expressed as[

T −2w0

(
c−c2− 1

4
η2

)][
T −8w1

(
c−c2− 1

4
η2

)]
= 4w0w1(2c−1)2η2. (3.3.13)

In the simple case of c = 1/2 or η = 0, the right-hand side of (3.3.13) vanishes, and
we obtain two spinodal points, T = 2w0(c − c2 − η2/4) with respect to clustering and
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Fig. 3.8. Calculated phase diagrams of bcc alloys for w1 > 0 on the basis of (3.3.12) [23]. The
parameter R is defined by w0/w1 = 4(R − 1)/(R + 1). The temperature is scaled by Tc0 = 2w1.
The ce1 and ce2 are the solubility (coexistence) lines, and cs1 and cs2 are the spinodal lines. The
instability line T/Tc0 = 4c(1 − c) against ordering is also shown (broken line).

T = 8w1(c − c2 − η2/4) with respect to ordering. The equation to determine η follows
from ∂ fsite/∂η = 0 at fixed c as

ln

[(
c + η

2

)(
1 − c + η

2

)/(
c − η

2

)(
1 − c − η

2

)]
= 8

w1

T
η. (3.3.14)

The solution η = η(c), which gives the minimum of fsite(c, η) at each c, needs to be
calculated. It can be nonvanishing only for w1 > 0, so we will assume w1 > 0. Then
fsite(c, η(c)) becomes a function of c only. To find two-phase coexistence we introduce

g(c) = fsite(c, η(c))− µcxc (3.3.15)
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and require that g(c) takes a minimum at two concentrations, g(c1) = g(c2) = gmin.
The chemical potential µcx = f ′site(c1) = f ′site(c2) is common between the two phases.
Depending on the ratio w0/w1, the coexisting two phases are both disordered (η1 = η2 =
0), both ordered (η1 �= 0, η2 �= 0), or one of them is ordered (η1 �= 0, η2 = 0).

Let us derive some analytic results.

(i) At low temperatures where T � w1 and w1 > 0, (3.3.14) yields

η = 2c

[
1 − 2

1 − 2c
exp

(
−16c

w1

T

)
+ · · ·

]
. (3.3.16)

Unless c is very close to 0 or 1/2, we may set η = 2c in ordered phases with c < 1/2.
Thus,

g(c) = T

[
c ln(2c)+

(
1

2
− c

)
ln(1 − 2c)

]
− (w0 + 4w1)c

2 − µcxc. (3.3.17)

The resultant ordered phase is linearly unstable or g′′(c) < 0 for cs1 < c < cs2, where the
concentrations cs1 and cs2 on the spinodal lines are given by

cs1 ∼= 1

2
− cs2 ∼= T

2w0 + 8w1
. (3.3.18)

Here we assume w0 + 4w1 � T . Spinodal decomposition subsequently takes place in this
concentration range. We notice that a disordered phase with a very small concentration
c = ce1(� 1) and an ordered phase with a nearly saturated c = ce2 ∼= η/2(∼= 1/2) can
coexist. Because fsite(c, 0) − c f ′site(c, 0) ∼= T ln(1 − c) is small in the disordered phase,
we have g(c)− cg′(c) ∼= 0 in the ordered phase. Thus,

ce1 ∼= 1 − 2ce2 ∼= exp

[
− 1

2T
(w0 + 4w1)

]
� 1. (3.3.19)

Disordered states in the range ce1 < c < cs1 and ordered states in the range cs2 < c <

ce2 are metastable with respect to clustering. Nucleation of the other phase triggers phase
separation, as will be discussed in Chapter 9.

(ii) If η is small under w1 > 0, we expand fsite with respect to η as

1

T
fsite = c ln c+ (1− c) ln(1− c)− w0

T
c2 + 1

2
r(c)η2 + 1

4
ū0η

4 + 1

6
v0η

6 + · · · , (3.3.20)

where

r(c) = 1

4c(1 − c)
− 2

w1

T
, ū0 = 1

48

[
1

c3
+ 1

(1 − c)3

]
, v0 = 1

320

[
1

c5
+ 1

(1 − c)5

]
.

(3.3.21)
The concentration fluctuation δc = c − c̄ from the average c̄ = 〈c〉 plays the role of the
energy variable in Ising systems. In fact, the composition dependence of r(c) gives rise to
a coupling term T γ0δcη2 in the free-energy density, as in (3.1.25), while c in ū0 and v0
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Fig. 3.9. Identification of atom sites in a
fcc unit cell.

may be replaced by c̄ for small η. Expanding fsite with respect to δc, we have

γ0 = 1

2
r ′(c) = 2c̄ − 1

8c̄2(1 − c̄)2
, C−1

0 = 1

c̄(1 − c̄)
− 2

w0

T
. (3.3.22)

If δc is eliminated, we obtain (3.2.1) with u0 = ū0 − 2C0γ
2
0 , similar in form to (3.1.26).

The critical line exists in the region ct < c < 1 − ct, where [21]

ct = 1

2
−

√
1

12
· 4w1 − w0

4w1 + w0
, (3.3.23)

where we assume w1 > |w0|/4. The critical temperature depends on c as

Tc(c) = 8w1c(1 − c) (3.3.24)

and takes the highest value 2w1 at c = 1/2. There can be two symmetrical tricritical points
at c = ct and 1 − ct [21, 22]. The tricritical temperature is

Tt = Tc(ct) = 8w1(2w1 + w0)

3(4w1 + w0)
. (3.3.25)

The critical line is connected to lines of first-order phase transition in the regions, c < ct

and c > 1−ct. However, we have only lines of first-order phase transition for 4w1−w0 < 0
and only a critical line for 2w1 + w0 < 0.

3.3.3 Order–disorder phase transitions in fcc alloys

We next consider a binary alloy such as Al–Li or a number of Ni-based alloys having a
face-centered-cubic (fcc) lattice, as in Fig. 3.9. The concentration of A atoms on the corner
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sites (denoted with the subscript 1) and those on the face sites (denoted with the subscripts
2, 3, 4) are expressed as [1, 21, 25]

c1 = c + η1 + η2 + η3, c2 = c + η1 − η2 − η3,

c3 = c + η2 − η3 − η1, c4 = c + η3 − η1 − η2, (3.3.26)

where c is the average concentration of A atoms and (η1, η2, η3) constitutes a three-
component order parameter. The concentrations of B atoms are given by 1 − ck if no
defects are present. If the order parameter vanishes, we have a disordered alloy. Picking up
the nearest and next nearest neighbor pair interactions, we obtain a simple expression,

fsite = T

4

4∑
k=1

[
ck ln ck + (1 − ck) ln(1 − ck)

] − w0c2 − w1

3∑
k=1

η2
k , (3.3.27)

where w0 and w1 are appropriate combinations of the interaction energies. Because two
atoms at the sites 1 and 2 (corner–face) and those at the sites 2 and 3 (face–face) are equally
separated, they interact with the same potentials and the nearest neighbor interaction energy
becomes proportional to c1(c2 + c3 + c4)+ (c2c3 + c3c4 + c4c2), leading to the last term
of (3.3.27). The Landau expansion of fsite in powers of ηk becomes

fsite

T
= c ln c + (1 − c) ln(1 − c)− w0

T
c2

+
[

1

2c(1 − c)
− w1

T

] 3∑
k=1

η2
k +

2c − 1

2c2(1 − c)2
η1η2η3

+ 1

12

[
1

c3
+ 1

(1 − c)3

][ 3∑
k=1

η4
k + 6(η2

1η
2
2 + η2

2η
2
3 + η2

3η
2
1)

]
+ · · · .

(3.3.28)

The free energy is isotropic up to the second-order terms. The instability curve at homo-
geneous c and ηk = 0 (k = 1, 2, 3) is given by T = 2w1c(1 − c) for w1 > 0, below
which small fluctuations of ηk grow. The usual spinodal is given by T = 2w0c(1 − c) for
w0 > 0, below which disordered homogeneous solutions are unstable against fluctuations
of c. More phenomenologically, we may set up the Landau expansion up the sixth-order
terms from symmetry requirements of the fcc structure as [25, 26]

fsite

T
= f0(c)

T
+ a2

3∑
k=1

η2
k +

(
a3 + a5

3∑
k=1

η2
k

)
η1η2η3

+
(

a41 + a62

3∑
k=1

η2
k

) 3∑
k=1

η4
k

+ a42
(
η2

1η
2
2 + η2

2η
2
3 + η2

3η
2
1

) + a61

3∑
k=1

η6
k + a63η

2
1η

2
2η

2
3 + · · · ,

(3.3.29)
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Fig. 3.10. The L12 structure of Al3Li,
Ni3Cr, etc., on a fcc lattice (Al:•, Li:◦).
For Al–Li, domains of this structure appear
in an Al-rich metastable, disordered phase
as T is lowered or the Li concentration is
increased.

where the coefficients, a2, a3, . . ., are functions of c and T . Depending on the values of
these coefficients at each c, ordered states with the form (η1, η2, η3) = (±η, 0, 0) can be
stable, where we have c1 = c2 = c + η1 and c3 = c4 = c − η1. Then the free-energy
density (3.3.27) assumes the same form as that in (3.3.12), leading to an L10 structure.
Equivalently, we may set (η1, η2, η3) = (0±η, 0) or (0, 0,±η). Thus there are six variants
with the L10 structure emerging in phase-ordering processes. In real fcc crystals, however,
such atomic displacements in a preferred direction cause a cubic-to-tetragonal change of
the lattice structure, as will be discussed in Section 10.3.

The L12 structure in Fig. 3.10 is realized for isotropic ordering η1 = η2 = η3 = η. For
a perfect L12 crystal we have c = η = 1/4. In this case, the free-energy density becomes
[27, 28]

fsite = T

4

[
(c + 3η) ln(c + 3η)+ (1 − c − 3η) ln(1 − c − 3η)

+ 3(c − η) ln(c − η)+ 3(1 − c + η) ln(1 − c + η)
] − w0c2 − 3w1η

2.

(3.3.30)

Equivalently, we may set (η1, η2, η3) = (η,−η,−η), (−η, η,−η), or (−η,−η, η) from
the fcc symmetry [26]. Note that (3.3.27) and (3.3.28) are invariant with respect to the
change (η1, η2, η3) → (−η1,−η2, η3) etc. Thus there are four equivalent ordered variants.
As can be seen from (3.3.27), if fsite is expanded in powers of η, the cubic term (∝ η3)

remains nonvanishing here, suggesting a first-order phase transition [1]. The equation to
determine η follows from ∂ fsite/∂η = 0 as

ln
[
(c + 3η)(1 − c + η)

/
(c − η)(1 − c − 3η)

] = 8
w1

T
η. (3.3.31)
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Fig. 3.11. The metastable two-phase region in Al–Li in the Bragg–Williams theory [27]. The dis-
ordered phase is stable in region α, while the δ′ (Al3Li) phase is stable in region δ′. The dashed
curve represents the spinodal curve of a homogeneous disordered phase. A solution quenched into
regions A and D is metastable. A solution quenched from α into region C below the dashed curve is
unstable against ordering and then decomposes through a secondary spinodal. A solution quenched
into region B from α is metastable with respect to ordering, but undergoes spinodal decomposition
after ordering.

The instability curves are determined by

[
T − w1

2
(3A1 + A2)

][
T − w0

2
(A1 + 3A2)

]
= 12w0w1η

2(1 − 2c − 2η)2, (3.3.32)

where A1 = (c + 3η)(1 − c − 3η) and A2 = (c − η)(1 − c + η). In the disordered case
η = 0 we have A1 = A2 = c(1 − c) and obtain the instability curves mentioned below
(3.3.28). The resultant phase behavior is complicated and contains a rich variety of phases,
depending on T , the overall composition, w0, and w1. Khachaturyan et al. [27] examined
the consequences of the mean field free energy (3.3.30) setting w0 = −2535 K (< 0) and
w1 = 2030 K (> 0) for Al–Li, as illustrated in Fig. 3.11. As in the bcc case, ordering can
first take place without appreciable change of large-scale composition fluctuations and the
resultant order can then induce spinodal decomposition for relatively deep quenching. In
Al–Li the elastic effects to be discussed in Chapter 10 are suppressed because of very small
lattice mismatch, where δ′-phase precipitates have in fact been observed to be spherical.
See Ref. [29] for experiments.
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As in the bcc case, we give analytic results at low temperatures. We assume T � w1,
|w0|/w1 � 1, and c < 1/4. From (3.3.31) we then obtain

η = c

[
1 − 4

1 − 4c
exp

(
− 8c

w1

T

)
+ · · ·

]
. (3.3.33)

Unless c is very close to 0 or 1/4, we may set η = c in ordered states to obtain

g(c) = T

[
c ln(4c)+

(
1

4
− c

)
ln(1 − 4c)

]
− (w0 + 3w1)c

2 − µcxc. (3.3.34)

The resultant ordered phase is unstable for cs1 < c < cs2, where

cs1 ∼= 1

4
− cs2 ∼= T

2w0 + 6w1
, (3.3.35)

where w0 + 3w1 � T is assumed. Spinodal decomposition then takes place as indicated
in Fig. 3.11. If a disordered phase with c = ce1 and an ordered phase with c = ce2 ∼= η

coexist, we have

ce1 ∼= 1 − 4ce2 ∼= exp

[
− 1

4T
(w0 + 3w1)

]
� 1. (3.3.36)

Disordered states in the range ce1 < c < cs1 and ordered states in the range cs2 < c < ce2

are metastable with respect to clustering. With these results, we can easily understand Fig.
3.11.

3.4 van der Waals theory

3.4.1 Thermodynamics of one-component fluids

We reconsider the van der Waals theory for one-component fluids in 3D. The pairwise
potential has a hard-core volume v0 = σ 3 and a relatively long-range attractive tail of
order ε. See the Lenard-Jones potential given in (1.2.1) as a representative example. In
calculating the partition function, we make two drastic approximations [3, 6, 30]. (i) We
account for the hard-core interaction by reducing the free volume, in which each particle
can move, from V to V − Nv0. (ii) We estimate the number of particle pairs in contact
(where |ri − r j | ∼ σ ) as v0 N 2/V and hence the total attractive potential energy as
−εv0 N 2/V . Then, the partition function for N particles in (1.2.4) is written as

Z N = 1

N !λ3N
th

(V − v0 N )N exp
(
βεv0 N 2/V

)
, (3.4.1)

where λth = h̄(2π/m0T )1/2 is the thermal de Broglie length (1.2.5). Therefore, the
Helmholtz free energy F is given by

F = N T [ln(λ3
thn)− 1] − N T ln(1 − v0n)− εv0nN , (3.4.2)



100 Mean field theories

where n = N/V is the number density. The thermodynamic relation p = −(∂F/∂V )T N

yields the van der Waals equation of state,

p = T n

1 − v0n
− εv0n2. (3.4.3)

From 〈H〉 = (∂βF/∂β)V N , the internal energy density is written as

e = 3

2
nT − εv0n2. (3.4.4)

The entropy per particle s = −(∂F/∂T )V N/N is calculated as

s = − ln(λ3
th/v0)+ ln(1/v0n − 1)+ 5

2
. (3.4.5)

We notice that the attractive part of the potential (∝ ε) contributes to e and not to s, whereas
the hard-core part (∝ v0) contributes to s and not to e. The specific heats and the isothermal
compressibility are then calculated as

CV = 3

2
n,

Cp = CV + nT /[T − Ts(n)],

nKT = (1 − v0n)2/[T − Ts(n)], (3.4.6)

where Ts(n) is the spinodal temperature dependent on n as

Ts(n) = 2εv0n(1 − v0n)2

= 9

4
Tc(n/nc)(1 − n/3nc)

2. (3.4.7)

The second line is the expression in terms of Tc and nc, given in (3.4.16) below. In this
mean field theory, KT and Cp increase near the critical point and the spinodal curve, while
CV remains constant in a manner similar to CM in Ising systems.

Landau free energy

The order parameter is the particle number density n measured from its critical value nc. Its
statistical distribution is given by the grand canonical ensemble. The form of the Landau
free-energy density can be found from f (n) = (F −µN )/V . It is convenient to introduce
the volume fraction,

φ = v0 N/V = v0n. (3.4.8)

Then (3.4.2) yields a simple expression,

v0

T
f (n) = φ lnφ − φ ln(1 − φ)− βεφ2 − ν̄φ, (3.4.9)

where

ν̄ = µ/T − ln(λ3
th/v0) = µ/T + 3

2
ln T + const. (3.4.10)
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From (1.2.9) the partition function for the grand canonical distribution is written as
�(T, µ) = ∫ 1

0 dφ exp[−βV f (n)]. From (1.2.10) the quantity −T ln� = −V p in fluids
corresponds to the Helmholtz free energy F in Ising systems. As in (3.1.5) we have
p = − f (n) at the minimum point φ = φ(T, µ) at which ∂ f /∂φ = 0 and

ν̄ = ln[φ/(1 − φ)] + 1/(1 − φ)− 2βεφ. (3.4.11)

We notice that ν̄ is removed in the combination,

p = n
∂

∂n
f (n)− f (n), (3.4.12)

which turns out to be the van der Waals equation of state (3.4.3) in terms of T and n.
Usually, ν̄ (or µ) is not measured and is treated as a dependent variable determined from
the minimum condition as (3.4.11). In addition, in two-phase coexistence, ν̄ in (3.4.11)
and p in (3.4.12) are common for the gas and liquid densities, n = ng and n�. At low T
considerably smaller than ε, we find

v0n�
∼= 1 − T/ε, v0ng ∼= (ε/T )e−ε/T . (3.4.13)

As in (3.1.24) we may construct a more general Landau free-energy density f (n, e) for
the number and energy densities. Using CV = 3n/2 we obtain

f (n, e) = f (n)+ 1

2T CV

(
e − 3

2
nT + εv0n2

)2

= f (n)+ 1

2T
CV (δT̂ )2, (3.4.14)

where f (n) is given by (3.4.9). In a manner similar to that in (3.1.27), the temperature
fluctuation δT̂ is defined by

δT̂ = T
∂

∂e
f (n, e) = 1

CV

(
e + εv0n2) − T . (3.4.15)

Clearly, ∂ f (n, e)/∂e = 0 gives (3.4.4). Obviously, f (n, e) becomes consistent with
(1.2.65) in the bilinear order of the deviations δn and δT̂ because ∂2 f (n)/∂n2 =
(∂p/∂n)T /n. The well-known formula (1.2.64) for the temperature variance can then be
obtained.

Critical behavior

The usual way of finding the critical point from the van der Waals equation of state is to
set ∂p/∂φ = ∂2 p/∂φ2 = 0 at the critical condition φ = φc and T = Tc. In the Landau
approach we may, equivalently, require ∂ f/∂φ = ∂2 f/∂φ2 = ∂3 f/∂φ3 = 0 at fixed T and
ν to obtain φc, Tc, and νc. Both methods lead to the critical volume fraction (or density),
temperature, and pressure,6

φc = v0nc = 1

3
,

Tc

ε
= 8

27
,

pc

ncTc
= 3

8
. (3.4.16)

6 For 4He, Ne, Ar, Kr, Xe, CO2, pc/ncTc is equal to 0.317, 0.305, 0.292, 0.290, 0.278, 0.287, respectively [2]. These values are
systematically smaller than the van der Waals value 3/8 = 0.375.
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If the free-energy density f in (3.4.9) is expanded in the Landau form (3.1.6), the coeffi-
cients a0 = r/τ in (3.1.7) and u0 in (3.1.6) are given by

v0a0 = 27

4
, v0u0 = 243

16
. (3.4.17)

The order parameter ψ and the reduced temperature are defined by

ψ = φ − φc = v0(n − nc), τ = T/Tc − 1. (3.4.18)

The quantities KT and Cp grow strongly as

Cp ∼ KT ∼
(
∂ψ

∂h

)
τ

∼
[
(T/Tc − 1)+ 27

4
ψ2

]−1

. (3.4.19)

As discussed in Section 2.2, there should be a mapping relationship between fluids and
Ising systems near criticality. From (2.2.3), (2.2.7), and (2.2.10) we find the coefficients in
the mapping relations,

α1 = v−1
0 , β1 = 0, β2 = βs = 1. (3.4.20)

The field h corresponding to the magnetic field is of the form,

v0h = ν − νc − 3

4

(
T

Tc
− 1

)
= 3v0

Tc
(p − pc)− 3

2

(
T

Tc
− 1

)
, (3.4.21)

which vanishes along the critical line near the critical point, so (∂ν/∂T )cx = 3/4Tc and
(∂p/∂T )cx = 1/2v0. From (2.2.2) and (2.2.11) we now find

α2 = −3

4
v−1

0 , αs = −3

2
v−1

0 . (3.4.22)

From (3.4.4) the energy deviation from the critical value is written in the form of (2.2.8) as

(e − ec)/Tc = C0(T/Tc − 1)− 3

4
v−1

0 ψ − 1

2
a0ψ

2 + · · · , (3.4.23)

where C0 = 3nc/2 = 1/2v0 is the critical value of CV . As in (2.2.14) the variable m may
be defined as

m = T−1
c (e − ec)+ 3

4
(n − nc) = C0(T/Tc − 1)− 1

2
a0ψ

2, (3.4.24)

which is of the same form as (3.1.23). In agreement with (2.2.6), it leads to the relation
(e − ec)T−1

c (T/Tc − 1)+ (n − nc)(ν − νc) = ψh + mτ .

Gradient free energy

The density n(r) = v−1
0 φ(r) can be space-dependent and the particles can interact via an

effective pair potential v(r) extending beyond the hard-core size σ = v
1/3
0 . These aspects

can be taken into account by expressing the free energy as [6, 30]

F = T
∫

drv−1
0 φ ln[φ/(1 − φ)] + 1

2

∫
dr

∫
dr′v(|r − r′|)n(r)n(r′). (3.4.25)
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The long-range part (r � σ ) of v(r) can be treated separately from the short-range part
(r � σ ) by rewriting (3.4.25) as

F =
∫

dr f (n)− 1

4

∫
dr

∫
dr′v(|r − r′|)[n(r)− n(r′)

]2
, (3.4.26)

where f (n) is of the form of (3.4.9) (except for the term linear in n). If we set n(r)−n(r′) ∼=
(r − r′) · ∇n, we obtain a free energy including the gradient term,

F =
∫

dr
[

f (φ)+ 1

2
C |∇φ|2

]
, (3.4.27)

where C = −(6v2
0)

−1
∫

drr2v(r) is assumed to be positive. Consequences of the gradient
free-energy term will be discussed in the next chapter.

3.4.2 Extension to binary fluid mixtures

The van der Waals theory can be extended to mixtures of two components, 1 and 2, with
N1 and N2 particles. Writing their hard-core volumes as v01 and v02, we assume that the
free volume is

V f = V − v01 N1 − v01 N2, (3.4.28)

commonly for the two species. As in (3.4.2) the Helmholtz free energy is

F = T
∑
α

Nα ln(Nαλ
3
th/V f )− T N −

∑
αβ

wαβ NαNβ/V, (3.4.29)

where N = N1 + N2 and wαβ represent the strengths of the attractive interactions between
αβ pairs. The λth is assumed to be common (with the masses of the two species being the
same). The van der Waals equation (3.4.3) is modified as

p = −
(
∂F

∂V

)
T N1 N2

= T N/V f −
∑
αβ

wαβ NαNβ/V 2. (3.4.30)

The internal energy E and the total entropy S are

E = 3

2
N T −

∑
αβ

wαβ NαNβ/V, (3.4.31)

S =
∑
α

Nα ln(V f /Nαλ
3
th)−

1

2
N . (3.4.32)

Our model system can have a consolute critical line as well as a gas–liquid critical line
in the three-dimensional space of appropriate field variables. To examine the former we
assume symmetry, v01 = v02 and w11 = w22, between the two components, for simplicity.
The free energy is then expressed as

F = N
{
T ln[nλ3

th/(1 − v01n)] − T − w11n
} + N fmix, (3.4.33)
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where n = N/V . The first term is of the same form as the free energy for one-component
fluids. The second term depends on the composition X = N1/N as

fmix = T
[
X ln X + (1 − X) ln(1 − X)

] + 2n(w11 − w12)X (1 − X). (3.4.34)

The chemical potential difference in (1.3.4) is expressed as ∆ = (∂ fmix/∂X)T . The
concentration susceptibility in (1.3.22) becomes(

∂X

∂∆

)
pT

= X (1 − X)
/[

T − 4n(w11 − w12)X (1 − X)
]
. (3.4.35)

Here fmix coincides with the mixing free-energy density (3.3.4) for binary alloys if we set
X = (1 + ψ)/2. Therefore, if w11 − w12 > 0, demixing can occur. The consolute critical
line is characterized by the critical composition X = 1/2 and the critical temperature T ′

c
given by

T ′
c = n(w11 − w12), (3.4.36)

which depends on the number density n. As T → T ′
c at X = 1/2, (∂X/∂∆)pT diverges as

(T − T ′
c)

−1 from (3.4.35).7

3.5 Mean field theories for polymers and gels

First, we will introduce the Flory–Huggins theory for polymer solutions and polymer
mixtures (blends) [31]–[33]. Second, by introduction of the classical rubber theory [31], we
will discuss volume–phase transition in gels. Third, we shall see that coil–globule transition
in a single chain may be understood in the same theoretical scheme as that for gels. The
content here will be a basis for more advanced discussions on static critical behavior in
Chapter 4, dynamics in Chapters 7–9, and nonequilibrium effects in shear flow in Chapter
11.

3.5.1 Polymer solutions

We first consider a mixture of polymer chains and low-molecular-weight particles (solvent)
in 3D. The Flory–Huggins theory supposes a cubic lattice with a lattice constant a [31, 33].
The total number of lattice sites will be denoted by �, and then the total volume is V =
v0� with v0 = a3. A polymer chain consists of N beads (monomers), where N , called
the polymerization index, is much larger than unity. Each lattice point is occupied by a
single bead or a solvent molecule as in the Bragg–Williams approximation for A–B binary
alloys. Then the configuration entropy of Np (polymer) chains and Ns (solvent) molecules
is expressed as

S̄ = Npsp − Np ln(Np/�)− Ns ln(Ns/�). (3.5.1)

7 We confirm that the parameter εin in (2.3.55) decreases as T ′
c(∂n/∂p)T X � 1 or the degree of incompressibility increases at

high densities along the consolute critical line.
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Here sp is the configuration entropy of a single chain calculated with one of its ends pinned
at a lattice site and is a large number of order N [2, 31]. (If the conformations of each
chain are those of gaussian random walks, we simply obtain sp ∼ N ln z in terms of the
coordination number z of the lattice.) As in the Bragg–Williams approximation, the two-
body interaction energy is estimated as

Ē = − z

2�

[
εpp(N Np)

2 + 2εps(N Np)Ns + εss N 2
s

]
, (3.5.2)

where εpp, εps, and εss are the attractive interaction energies between the polymer–polymer,
polymer–solvent, and solvent–solvent pairs. Furthermore, it is usual to assume the space-
filling condition,

N Np + Ns = �. (3.5.3)

Namely, we do not allow the presence of vacant lattice points. Then the polymer volume
fraction φ = N Np/� is a convenient order parameter, in terms of which

Np = �φ/N , Ns = �(1 − φ). (3.5.4)

The free-energy density fsite = (Ē − T S̄)/� per lattice site is written as

1

T
fsite = 1

N
φ lnφ + (1 − φ) ln(1 − φ)+ χφ(1 − φ)− ∆

T
φ

∼= φ

N
lnφ +

(
1

2
− χ

)
φ2 + 1

6
φ3 − ∆

T
φ, (3.5.5)

where the second line holds for φ � 1. The temperature-dependent coefficient,

χ = z

T
(εpp + εss − 2εps), (3.5.6)

is called the interaction parameter (which should not be confused with the susceptibility in
spin systems). The tendency for phase segregation increases with increasing χ . In the last
term in (3.5.5), ∆ = (sp + ln N )/N + z(εpp − εss)/2T is the chemical potential difference
between a bead and a solvent molecule, but it is usually omitted in the literature. The
above site free-energy density reduces to that in (3.3.4) for binary alloys if we set N = 1
and φ = (1 − ψ)/2. In our system, the parameter χ is related to the temperature. From
(3.5.6), the simplest dependence is χ = B/T . More generally, the following form has been
assumed [31]:

χ = A + B/T, (3.5.7)

where A and B are constants independent of N . The temperature at which χ = 1/2 is
called the theta temperature Tθ. The second line of (3.5.5) shows that the strength of the
two-body interaction is represented by [33]

ε = 1 − 2χ = 2B(1/Tθ − 1/T ). (3.5.8)

We assume Tθ ∼ B; then, ε decreases from of order 1 at high temperatures to negative
values for T < Tθ.
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Fig. 3.12. The coexistence curve (solid line) and the spinodal curve (dashed line) for polymer solu-
tions obtained from the second line of (3.5.5) in the plane of N 1/2(1 − 2χ) and φ/φc. Approximate
expressions for the curves are given in (3.5.25)–(3.5.28).

The phase diagram of polymer solutions below the critical point is shown in Fig. 3.12.
The critical point values of χ and φ are

χc = 1

2
(1 + N−1/2)2 ∼= 1

2
+ N−1/2, φc = N−1/2. (3.5.9)

The critical value of ε is 2N−1/2. If we assume (3.5.7), we find8 B(1/Tc −1/Tθ) = N−1/2

and N 1/2(χc − χ) = (1 − Tc/T )/(1 − Tc/Tθ). The Landau expansion near the critical
point is of the form,

1

T
fsite ∼= c0 + (χc − χ)(φ − φc)

2 + 1

12
N 1/2(φ − φc)

4 − heff(φ − φc), (3.5.10)

where c0 and heff are constants. This expansion holds for |φ − φc| � φc and |χ − χc| �
N−1/2. The latter condition can also be written as |ε| � N−1/2.

Solvent quality and semidilute solutions

For |ε| � N−1/2, the solvent will be referred to as theta solvent, where the chains assume
a gaussian form with radius R = aN 1/2. The solvent quality will be said to be good for

8 Experimentally, data of Tc have been fitted to the form 1/Tc = a1 + a2 M−1/2 where a1 and a2 are constants and M is the
molecular weight [34].
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Fig. 3.13. Crossover from dilute to semidilute polymer solutions with increasing φ [33].

ε � N−1/2 and poor for ε � −N−1/2. As ε is increased above N−1/2, a chain becomes
more expanded than in theta solvent due to the excluded volume interaction. In good
solvent with ε ∼ 1, a single chain has the Flory radius R = aN 3/5 [31, 33].9 As illustrated
in Fig. 3.13, semidilute solutions are characterized by

φ∗ < φ � 1, (3.5.11)

where φ∗ = ε−3/5 N−4/5 in good solvent and φ∗ = N−1/2 in theta solvent. Above the
theta temperature, a semidilute polymer solution is in theta solvent for φ � ε, but in good
solvent for φ � ε [33, 35]. The dynamics of a semidilute solution is severely influenced
by entanglements among chains, as will be discussed in Chapter 7.

Chemical potentials

The chemical potentials of the two components can be defined unambiguously if the
system has a finite but very small compressibility KT .10 Let the total number density
n = Nnp + ns be slightly smaller than the close-packed value v−1

0 , with np and ns

being the chain and solvent densities, respectively. This assumption means that there are
a small number of vacant sites. The quantity φ may be re-interpreted as the composition
Nnp/n = N Np/(N Np + Ns). When a small deviation δn is created, the excess free energy
of the solution is11

F = V

2n2 KT
(δn)2 + V

v0
fsite(φ). (3.5.12)

9 For |ε| < 1 let us take a region (blob) with length ξb = a/|ε| on a single chain. The chain conformations within this region
are gaussian, so the monomer number in this region is gb = |ε|−2. For N > gb and ε > 0 the blobs are under strong excluded
volume interaction, leading to the Flory radius R = ξb(N/gb)

3/5 = aε1/5 N3/5. We determine φ = φ∗ by φR3 = a3 N .
10 Recently, highly compressible, supercritical fluids, such as CO2, have been used as solvents.
11 We may change the second term in (3.5.12) to (N Np + Ns) fsite as another choice. Then we should add fsite to µs and µp and

delete the second term in (3.5.16), but the fundamental relations, (3.5.15) and (3.5.17)–(3.5.20), remain unchanged.
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Then, the chemical potential µp of a monomer and that µs of a solvent molecule are

µp = 1

N

(
∂F

∂Np

)
NsV

= 1

n2 KT
δn + (1 − φ) f ′site, (3.5.13)

µs =
(
∂F

∂Ns

)
NpV

= 1

n2 KT
δn − φ f ′site, (3.5.14)

where f ′site = ∂ fsite/∂φ. Here, µp and µs are measured from the values in pure polymer
and solvent at a given pressure p0. The chemical potential difference is simply of the form,

µp − µs = f ′site. (3.5.15)

The pressure deviation δp = p − p0 is calculated as

δp = −
(
∂F

∂V

)
Np Ns

∼= 1

nKT
δn − v0

−1 fsite, (3.5.16)

where use has been made of δV/V ∼= −δn/n at constant Np and Ns. Then we may
eliminate δn in favor of δp in the chemical potentials. That is,

µs = v0δp + fsite − φ f ′site. (3.5.17)

The µp is also expressed in terms of δp and φ if use is made of (3.5.15). It is now easy to
check the Gibbs–Duhem relation (1.3.2) for infinitesimal changes of p, µp, and µs ,

dp = d(p − p0) = Nnpdµp + nsdµs, (3.5.18)

where T and the reference pressure p0 are fixed. This is because (3.5.13) and (3.5.14) yield
dµp = v0dp + (1 − φ) f ′′sitedφ and dµs = v0dp − φ f ′′sitedφ in the differential forms.

Osmotic pressure and bulk modulus

Let a polymer solution be in contact with a nearly pure solvent through a planar boundary.
Such two phase coexistence can happen after phase separation far from the critical point,
or when the two regions are separated by a semipermeable membrane. In such cases, the
solvent chemical potential µs should be continuous through the two-phase boundary. The
osmotic pressure � = �(φ, T ) is defined as the pressure difference between these two
regions. Here, µs ∼= n−1δp0 on the solvent side generally in the presence of a pressure
deviation δp0, while (3.5.17) holds on the solution side. The continuity of µs between the
two regions gives

� = δp − δp0 = v−1
0 (φ f ′site − fsite). (3.5.19)

The solvent chemical potential in polymer solutions is thus expressed as

µs = v0(δp −�). (3.5.20)
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The osmotic pressure is positive in the presence of a semipermeable membrane and is
nearly zero on the coexistence curve far from the critical point. The isothermal osmotic
bulk modulus Kos = φ(∂�/∂φ)T is expressed as

Kos = v−1
0 φ2 f ′′site = v−1

0 φ2 ∂

∂φ
(µp − µs). (3.5.21)

We may relate Kos to the concentration susceptibility χφ = 〈φ : φ〉 (= variance of the
fluctuations of φ) as

χ−1
φ = (v0T )−1 f ′′site = T−1φ−2 Kos. (3.5.22)

This relation is analogous to (1.3.22) for binary fluid mixtures. Note that φ and µp − µs

in polymer solutions correspond to X and � in binary fluid mixtures. The second line of
(3.5.5) gives explicit expressions for � and Kos for φ � 1:

� = T v−1
0

[
1

Nφ
+

(
1

2
− χ

)
φ2 + 1

3
φ3

]
, (3.5.23)

Kos = T v−1
0

[
1

N
φ + (1 − 2χ)φ2 + φ3

]
. (3.5.24)

Coexistence and spinodal curves

As shown in Fig. 3.12, if φ is considerably larger than φc = N−1/2, the coexistence curve
φ = φcx is given by

� ∼= 0, φcx ∼= 3(χ − 1/2), (3.5.25)

and the spinodal curve φ = φsp by

Kos = 0, φsp ∼= 2χ − 1. (3.5.26)

The volume fraction φdcx on the solvent-rich branch of the coexistence curve is obtained
from f ′site(φdcx) = f ′site(φcx) and turns out to be extremely small as

φdcx ∼ exp

[
−3

8
N (2χ − 1)2

]
, (3.5.27)

whereas the solvent-rich branch φ = φdsp of the spinodal curve is obtained from Kos = 0
as

φdsp ∼= [N (2χ − 1)]−1 ∼= (Nφsp)
−1. (3.5.28)

3.5.2 Polymer blends

The lattice theory may also be applied to mixtures of two species of polymers (polymer
blends). It follows a famous expression for the free-energy density per lattice point [31, 33],

1

T
fsite = 1

N1
φ lnφ + 1

N2
(1 − φ) ln(1 − φ)+ χφ(1 − φ)− �

T
φ, (3.5.29)
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where φ1 = φ and φ2 = 1 − φ are the volume fractions of the two components, and
N1 and N2 are the polymerization indices of the two polymers. If we set N2 = 1, the
solution free energy (3.5.5) is reproduced. If both N1 and N2 are larger than unity, the
entropic contribution, the first two terms in (3.5.29), becomes very small. This is because
we are supposing chain conformations which maximize the entropy (gaussian chains). As a
result, two polymers are demixed even for very small positive χ . In deriving the following
calculations we may use the fact that N2 fsite/T is of the same form as fsite/T in (3.5.5) if
N and χ there are replaced by Ñ ≡ N1/N2 > 1 and χ̃ ≡ N2χ , respectively.

As in polymer solutions, we may define the chemical potentials µ1 and µ2 per monomer
of the two components. They take the same forms as (3.5.13) and (3.5.14) if the subscripts
p and s are replaced by 1 and 2. As in (3.5.15) the chemical potential difference is simply
of the form,

µ1 − µ2 = f ′site. (3.5.30)

The chemical potentials may be expressed in terms of δp and φ. As in (3.5.17) µ2 is of the
form,

µ2 = v0δp + fsite − φ f ′site. (3.5.31)

The inverse susceptibility becomes

χ−1
φ = (v0T )−1 f ′′site = (v0T )−1 ∂

∂φ
(µ1 − µ2)

= v−1
0

[
1

N1φ
+ 1

N2(1 − φ)
− 2χ

]
. (3.5.32)

The critical values of χ and φ are given by

χc = 1

2N1 N2
(N 1/2

1 + N 1/2
2 )2, φc =

N 1/2
2

N 1/2
1 + N 1/2

2

. (3.5.33)

Note that χc is very small for high-molecular-weight polymers. The Landau expansion of
the free-energy density near the critical point is obtained in the form,

1

T
fsite ∼= c0 + (χc − χ)(φ − φc)

2 + 1

3

√
N1 N2χ

2
c (φ − φc)

4 − heff(φ − φc), (3.5.34)

where c0 is independent of φ and heff is appropriately defined. This expansion is valid for
|χ̃ − χ̃c| � (N2/N1)

1/2 or

|χ − χc| � (N1 N2)
−1/2, (3.5.35)

under which the two phases have compositions close to φc on the coexistence curve.
However, in the region |χ − χc| � (N1 N2)

−1/2, one of the two phases consists mostly of
shorter chains for N1 > N2 and both phases are in strongly segregated states for N1 = N2.
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Symmetric case

The coexistence and spinodal curves become simple for the symmetric case N1 = N2 = N .
Phase separation occurs for χ > χc = 2/N and the coexistence curve φ = φcx is obtained
from

ln[φcx/(1 − φcx)] = Nχ(2φcx − 1). (3.5.36)

For Nχ � 1 we have strong segregation, where

φcx ∼= 1 − 2 exp(−Nχ) or 2 exp(−Nχ). (3.5.37)

The spinodal curve φ = φsp is explicitly calculated as

φsp = 1

2

[
1 ±

√
1 − 2

Nχ

]
. (3.5.38)

3.5.3 Polymer gels

Gels are network systems composed of crosslinked polymers. They are usually in contact
with solvent at zero-osmotic pressure and can swell enormously [31, 33]. It is known
that gels undergo a first-order phase transition with a discontinuous change of the vol-
ume (volume-phase transition) [36]. It was predicted by Dus̆ek and Patterson [37] and
afterwards was observed by Tanaka and coworkers [38, 39] and Ilavsky [40] in ionic
gels, and in non-ionic poly-N-isopropylacrylamide (NIPA) gels [41]. Here, if we consider
homogeneous deformations, the polymer volume fraction φ and the volume V are related
by

φ = φ0V0/V, (3.5.39)

where φ0 and V0 are the volume fraction and the volume at the network formation.
Obviously, the total number of monomers forming the network is a constant and is written
as

� = φ0V0/v0. (3.5.40)

In Fig. 3.14 the chain configurations by which a gel is prepared are illustrated. The left and
right diagrams show the states just before and just after network formation, respectively.
The latter state will be chosen as a special reference state of a gel.

Supposing either a theta or a poor solvent, we hereafter construct the free energy F as
follows.

(i) Because there is no translational entropy of the network, we may set N = ∞ in the
first line of (3.5.5) to obtain the Flory–Huggins mixing free energy Fmix for a gel in the
form

Fmix = v−1
0 V T

[
(1 − φ) ln(1 − φ)+ χφ(1 − φ)

]
. (3.5.41)

(ii) Classical rubber theory [31, 42, 43] gives the elastic free energy. For simplicity, let
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Fig. 3.14. Schematic representation of crosslinking among polymer chains [31].

a homogeneous isotropic gel with an initial cubic shape be deformed into a rectangular
shape with linear dimensions along the three principal axes being elongated or compressed
by α1, α2, and α3. Then the volume fraction after the deformation is

φ = φ0/(α1α2α3). (3.5.42)

The elastic free energy needed is of the form [31],

Fel = V0ν0T

[
1

2
(α2

1 + α2
2 + α2

3)− B log(α1α2α3)

]
, (3.5.43)

where ν0 is the effective crosslink number density in the reference state and B is a
coefficient. The effective polymerization index N may be defined by

N = φ0/v0ν0 or ν0 = φ0/v0 N . (3.5.44)

Usually N is much larger than unity, which ensures the soft elasticity characteristic of
gels. To derive the above form, we start with the equilibrium distribution of the end-to-end
vector R of a single gaussian chain [33]:

W (R) = (2πNa2)−3/2 exp
(−|R|2/2Na2)

. (3.5.45)

We set R = N 1/2a(α1, α2, α3) and sum −T ln W from all the chains to obtain the term
proportional to α2

1 + α2
2 + α2

3 in (3.5.43). The coefficient B of the logarithmic term was
originally predicted to be 1 [31], but there has been some controversy and several theories
predict different values of B [44, 45]. It is easy to extend the above form to more general
affine deformations [46]–[48]. To this end, we represent a gel point by x0 = (x01, x02, x03)

in the reference state and by x = (x1, x2, x3) after deformation using appropriate cartesian
coordinates. We introduce the deformation tensor,

�i j = ∂

∂x0 j
xi . (3.5.46)
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The polymer volume fraction is related to the determinant of �i j as

φ = φ0/ det{�}. (3.5.47)

Then the elastic free energy reads

Fel = V0ν0T

[
1

2

∑
i j

�2
i j + B ln(φ/φ0)

]
. (3.5.48)

This quantity is invariant with respect to rotations, r0 → →←
U0 · r0 and r → →←

U · r, for
any orthogonal matrices

→←
U0 and

→←
U . See Appendix 3A for a general theory of nonlinear

elasticity [47].

(iii) In polymer solutions and gels it is often the case that dissociation results in charged
monomers and low-molecular-weight counterions. In weakly charged gels the most im-
portant free-energy contribution arises from the translational entropy of the counterions
[38],12

Fion = −T V0νI ln(V/V0) = T V0νI ln(φ/φ0), (3.5.49)

where νI is the counterion density measured in the reference state. The counterions are
confined within the gel to satisfy the overall charge neutrality of the gel. The resultant
osmotic pressure T νI favors gel swelling at osmotic equilibria with solvent. Following
Tanaka and coworkers [38, 39], we write the number of counterions per chain as

f = νI/ν0, (3.5.50)

which should not be confused with the free-energy density.

(iv) For neutral gels [41] the presence of a first-order phase transition itself is a subtle
issue. Erman and Flory [44] showed that the φ dependence of the interaction parameter in
the expression of the osmotic pressure,

χ = χ1 + χ2φ, (3.5.51)

can give rise to discontinuous volume changes in neutral gels.

The total free energy F in the isotropic case is the sum of the above three contributions,

F = Fmix + Fion + Fel = �T

[
1

φ
g(φ)+ 1

2N

∑
i j

�2
i j

]
. (3.5.52)

Here we define a dimensionless free-energy density g(φ) by

g(φ) = (1 − φ) ln(1 − φ)− χ1φ
2 − 1

2
χ2φ

3 + f + B

N
φ ln(φ/φ0). (3.5.53)

In the simplest isotropic case, we have ∂xi/∂x0 j = δi j (φ0/φ)
1/3 to obtain the usual result

12 As will be shown in Appendix 7F, the Debye–Hückel theory yields a free-energy contribution, (�F)DH ∝ κ3
Db, due to the

charge density fluctuations, where κ−1
Db is the Debye screening length [1]. This theory holds in the weakly charged case,

νIφ/φ0 � κ3
Db, where (�F)DH is much smaller than Fion in (3.5.49).
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in the literature [31]. We may furthermore add a small shear deformation represented by
∂xi/∂x0 j = (φ0/φ)

1/3[δi j + γ δi1δ j2]. Then the increase of the elastic free energy may be
written as �Fel = 1

2 Vµγ 2, where µ has the meaning of the shear modulus expressed as

µ = T

v0 N
φ

2/3
0 φ1/3 = ν0T (φ/φ0)

1/3. (3.5.54)

In gels with good solvent as well as most rubber-like materials, µ is much smaller than the
(osmotic) bulk modulus Kos whose explicit form will be given in (3.5.57) below. For poor
solvent, however, Kos decreases and even becomes negative (in unstable states), leading to
negative values of the (osmotic) Poisson ratio (Kos − 2µ/3)/2(Kos + µ/3) [49, 50] in the
vicinity of the transition.

Isotropically swollen gels

If a gel is swollen isotropically in a solvent, the differential form of F reads

d F = −SnetdT −�dV, (3.5.55)

where Snet is the entropy supported by the network and � is the osmotic pressure. From
(3.5.52) � and Kos = φ(∂�/∂φ)T are expressed as

� = v−1
0 T

[
φg′ − g − 1

N
φ

2/3
0 φ1/3

]
, (3.5.56)

Kos = v−1
0 T

[
φ2g′′ − 1

3N
φ

2/3
0 φ1/3

]
, (3.5.57)

where g′ = ∂g/∂φ and g′′ = ∂2g/∂φ2. We here impose � = 0 and Kos ≥ 0 and hence
minimize F . For Kos < 0 the gel becomes unstable against macroscopic volume changes.

If φ � 1, we rewrite F in (3.5.52) in terms of ( ≡ φ/φ0 as

F = �

N
T

[
τ

2
(+ w

6
(2 + ( f + B) ln(+ 3

2
(−2/3

]
. (3.5.58)

where �/N = V0ν0 and

τ = Nφ0(1 − 2χ1), w = Nφ2
0(1 − 3χ2). (3.5.59)

The critical point can be sought by requiring ∂2 F/∂(2 = ∂3 F/∂(3 = 0. A first-order
phase transition occurs for

( f + B)/w1/4 > (4/3)(5/3)3/4 ∼= 2 or f > fc = 2w1/4 − B. (3.5.60)

At the critical point we have f = fc and w > 0, so that the critical values are given by

(c = φc/φ0 = (5/3w)3/8, τc = Nφ0(1 − 2χ1c) = −(32/9)(−5/3
c . (3.5.61)

Even for neutral gels ( f = 0) a first-order phase transition occurs for w < wc = 0.07B4.
In Fig. 3.15 we plot the curves of � = 0, K = 0, and K + 4µ/3 = 0 in the plane of
the reduced temperature (∝ τ ) and the volume (∝ φ−1). In (a), (b), and (c), f is smaller
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Fig. 3.15. Reduced temperature (∝ τ) in (3.5.59) vs volume (∝ φ−1) in ionized gels, where �, K ,
and µ are defined by (3.5.56), (3.5.57), and (3.5.54), respectively, and are calculated using (3.5.58)
[48]. The two instability curves of Kos = 0 and Kos + 4µ/3 are close near the critical volume
fraction, but are much separated at large volume or swelling.

than, equal to, and larger than the critical value fc, respectively. In (c) a first-order phase
transition occurs along the curve of � = 0. Below the curves of K = 0 the system is
unstable against macroscopic volume changes, while below the curves of K + 4µ/3 = 0
spinodal decomposition occurs in the bulk region. See Chapters 7 and 8 for the dynamics
of these instabilities.

In the vicinity of the critical point the Landau expansion of F becomes

F = �

N
T

[
−h((−(c)+ 1

2
( fc − f )((/(c − 1)2 + 10

81
((−(c)

4 + · · ·
]
, (3.5.62)

where w in (3.5.59) is treated as a constant and

h = 1

2
(τc − τ)−(−1

c ( f − fc). (3.5.63)

Here h and fc − f play the role of a magnetic field and a reduced temperature in Ising
spin systems. Thus, if f is fixed at a value unequal to fc in experiments, the critical point
can be reached just by varying the temperature.13 However, if f is close to fc, the osmotic
bulk modulus Kos becomes small around ( ∼= (c as

Kos = T ν0(c

[
fc − f + 40

27
(2

c((−(c)
2
]
. (3.5.64)

From (3.5.55) we may also calculate the specific heat of the network at zero-osmotic

13 If the solvent is a binary mixture, we may reach a critical point by changing the composition and the temperature [51].
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pressure in the form,

C� = CV ++V T

(
∂�

∂T

)2

φ

1

Kos
. (3.5.65)

Thus C� ∼ 1/Kos near the critical point because CV and (∂�/∂T )φ are nonsingular in
the mean field theory.

Gels under a constant uniaxial stretching force

Hirotsu and Onuki [52] induced a macroscopic instability of a rod-like gel immersed in
solvent under a constant uniaxial stretching force fex. The deformed state is characterized
by the elongation ratios,

α‖ = (φ0/φ)
1/3λ, α⊥ = (φ0/φ)

1/3λ−1/2, (3.5.66)

in the parallel and perpendicular directions, respectively, λ being the degree of stretching.
The system volume V and the length L in the force direction are expressed in terms of α‖
and α⊥ as

V/V0 = φ0/φ = α‖α2
⊥, L/L0 = α‖, (3.5.67)

V0 and L0 being the values in the relaxed, reference state. From (3.5.52) we obtain the total
free energy G = F − fexL in the form,

G = �T

[
1

φ
g(φ)+ 1

2N
(α2

‖ + 2α2
⊥)

]
− fexL . (3.5.68)

We minimize F with respect to α‖ and α⊥ (or φ and α‖ more conveniently). The first
relation is obtained by differentiation with respect to α‖ with fixed φ:

fex = S0T ν0α‖(1 − 1/λ3) = Sµ(λ2 − 1/λ), (3.5.69)

where S0 = V0/L0 and S = S0α
2
⊥ are the surface area of the end plate before and after the

deformation, respectively, and µ is defined by (3.5.54). The above relation is well known in
the classical rubber theory [31, 42, 43]. For sufficiently long experimental times, osmotic
equilibration will be achieved on the side boundary, where

�⊥ = −
(

∂

∂V
F

)
Tα‖

= v−1
0 T

[
φg′ − g − φ0/Nα‖

] = 0. (3.5.70)

With these relations we may examine the macroscopic phase transition. Here, for simplic-
ity, we only calculate the (isothermal) Young’s modulus,

ET = L

S

(
∂ fex

∂L

)
T
= µ

[
λ2 + 2

λ
− µ

λ2(Kos + µ/3)

]
, (3.5.71)

where Kos is expressed as (3.5.57). The adiabatic or constant-volume Young’s modulus is
given by EV = µ(λ2 + 2/λ), which is measured before the osmotic equilibrium at the
side boundary is attained. As λ → 1, (3.5.71) becomes consistent with the well-known
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expression E = 3µK/(K + µ/3) for the Young’s modulus in usual elastic theory [46].
The macroscopic instability is triggered for ET < 0 or

Kos + 1

3
µ− 1

λ(λ3 + 2)
µ < 0. (3.5.72)

This reduces to Kos < 0 in the isotropic case (λ = 1).

One-dimensionally constrained gels

Dus̆ek and Patterson [37] examined a phase transition in a constrained gel which has a
fixed length in one direction and is allowed to swell in the perpendicular directions. In this
case α‖ is a constant, and α⊥ or φ = (φ0/α‖)/α2

⊥ is the order parameter. The free energy
becomes

F = �T

[
1

φ
g(φ)+ φ0

Nα‖
1

φ

]
, (3.5.73)

where the constant term is omitted. The zero-osmotic pressure condition on the side
boundary is again written as (3.5.71). The perpendicular bulk modulus reads

K⊥ = φ

(
∂

∂φ
�⊥

)
Tα‖

= v−1
0 Tφ2g′′ = Kos + 1

3
µ. (3.5.74)

A macroscopic instability thus occurs for Kos + 1
3µ < 0. In this case the phase behavior

can easily be calculated [48]. For the same g(φ) in (3.5.53), a first-order phase transition
exists under the condition,

f + B > (9w)1/3α
−2/3
‖ . (3.5.75)

The critical value of α‖ is written as

α‖c = 3w1/2/( f + B)3/2. (3.5.76)

First-order changes are favored by large α‖ > α‖c, where equilibrium coexistence of
shrunken and swollen phases can be realized.

Remarks

At macroscopic first-order phase transitions, gels can change their shape but still remain
transparent for very small and slow temperature changes. Notice that such macroscopic
changes are not possible if the gel boundary is clamped to a solid wall. However, if the
temperature is changed rapidly by quenching deep into an unstable region (Kos + 4µ/3 <

0), gels become opaque, indicating the occurrence of spinodal decomposition on short
spatial scales. Phase transitions in gels are thus very unlike those in simple fluids. We
stress that unique aspects arise from soft elasticity or a finite, small shear modulus µ, as
will be discussed in Chapter 7 in more detail.
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Fig. 3.16. Collapsing process of a chain [55]. Phase separation between elongated and contracted
regions occurs transiently on a chain.

Fig. 3.17. Long-axis chain lengths of DNA with varying concentration of solvent [55]. The shaded
region indicates a metastable coil with lifetime longer than 1 h. The open and closed circles are the
results at 0.5 h and 6 h after sample preparation, respectively.

3.5.4 Coil–globule transition in a single chain

Much attention has been paid to the problem of coil–globule transition between elongated
coils and compacted globules in a single linear chain, which is illustrated in Fig. 3.16.
Theoretically, it can be either continuous or discontinuous as in gels [53]. As demonstrated
in Fig. 3.17, Yoshikawa and co-workers observed a first-order phase transition of individual
DNA molecules by fluorescence microscopy [54]. Let α = RG/R0 be the linear expansion
ratio of a chain with gyration radius RG. The reference state corresponds to an ideal
gaussian chain with radius R0 ∝ N 1/2. We set up the free energy of a single chain as

1

T
Fone = τ

2
α−3 + w

6
α−6 + 3

2
α2 − 3B lnα + 1

T
Fion. (3.5.77)



Appendix 3A Finite-strain theory 119

The first and second terms account for the two- and three-body interactions between the
monomers, respectively. The third and fourth terms represent the elastic free energy.14 A
simple theory for the ion free energy Fion is to set Fion = −3T f lnα [55], as in weakly
charged gels. In this case f counterions are assumed to be localized in the volume ∼ R3

G
which the chain occupies. Then, if we set ( = α−3 and N = �, (3.5.77) takes the same
form as the free energy (3.5.58) for gels. In theories of counterion condensation [56, 57],
however, counterions are assumed to be trapped to the monomers of a chain (localized
along the chain contour) and their translational entropy becomes smaller than in the weakly
charged case. Furthermore, a fraction of counterions can escape from the chain [55, 57].
Our previous discussions for gels suggest that a first-order phase transition can occur for
w < wc even without ions, but the discontinuity is much amplified in the presence of ions.

We may also examine the transition when a chain is stretched in one direction and has a
fixed length. Then α‖(> 1) is a constant and the relevant free energy is obtained if 3α2/2
in (3.5.77) is replaced by α2

⊥ = φ0/α‖φ as in (3.5.73). The criterion of a first-order phase
transition is again (3.5.75) for the weakly charged case. It might be satisfied even in neutral
chains for sufficiently large extension α‖ � 1. Furthermore, if α‖ is a control parameter
and can be set equal to its critical value in (3.5.76), the critical point will be reached just
by varying the temperature. If α‖ > α‖c, coil and globule regions can coexist in a single
chain as an equilibrium state.

Appendix 3A Finite-strain theory

Finite-strain theory is well known but is only incompletely presented in textbooks on elas-
ticity [46]. It is a Lagrange description of finite-size deformations, where the displacement
vector u = x − x0 is regarded as a function of the original position vector x0. We may
suppose isotropic rubbers or gels as examples which can sustain large strains. Note that
x0 in our notation is usually written as x in the finite-strain theory. In nonlinear elasticity,
we should be careful as to whether a theory is in the Lagrange description or in the Euler
description. Note that two nearby points, x0 and x0 + dx0, are mapped into x0 + u and
x0 +dx0 +u+du after a deformation. The distances between these points is changed after
the deformation according to

ds2 = |dx0 + du|2 =
∑

i j

gi j dx0i dx0 j , (3A.1)

where the metric tensor gi j is defined in terms of the deformation tensor �i j in (3.5.46) as

gi j =
∑

k

�ki�k j . (3A.2)

In the finite-strain theory the elastic free-energy density fel in the Lagrange description
is assumed to be determined by the tensor gi j . In the literature the nonlinear Lagrangian

14 In the theoretical interpretation [54], another term of the form 3α−2/2 was assumed in place of −3B lnα. This does not
change the essential aspect of the transition.
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strain tensor ηi j has been defined as

ηi j = gi j − δi j = ∂ui

∂x0 j
+ ∂u j

∂x0i
+

∑
k

∂uk

∂x0i

∂uk

∂x0 j
. (3A.3)

If the elastic body is isotropic before deformations, it is natural to assume fel to be a
function of the following three strain invariants with respect to space rotation,

I1 = g1 + g2 + g3, I2 = g1g2 + g3g1 + g2g3, I3 = g1g2g3, (3A.4)

where g1, g2, and g3 are the eigenvalues of the tensor gi j [47]. Note the relations,

I3 = det →←g = (det
→←
�)2, (3A.5)

det{λ→←
I − →←g} = λ3 − I1λ

2 + I2λ− I3. (3A.6)

In the classical rubber theory we have Fel = const.I1 + const. ln I3 as in (3.5.48). The total
elastic free energy is the space integral of its density,

Fel =
∫

dx0 fel =
∫

dxI−1/2
3 fel, (3A.7)

where I−1/2
3 is the jacobian ∂x0/∂x.

The stress tensor σi j is intrinsically a field variable defined in the deformed space or in
the Euler representation. We add an infinitesimal deformation to a given deformed state as
x → x + δu. Then the elastic free energy is changed as

δFel =
∫

dx
∑

i j

σi j
∂

∂x j
δui , (3A.8)

where u is regarded as a function of x. Thus,(
δ

δxi
Fel

)
x0

= −I 1/2
3

∑
j

∂

∂x j
σi j . (3A.9)

where Fel is regarded as a functional of x = x(x0) and σi j as a function of x. Thus the
extremum condition of Fel is equivalent to the mechanical equilibrium condition. In (3A.8)
we have ∂δui/∂x j =

∑
"(∂x0"/∂x j )δ�i", so that

σi j = I−1/2
3

∑
"

� j"
∂

∂�i"
fel. (3A.10)

If fel is a function of gi j , we obtain the symmetry σi j = σ j i . Furthermore, if fel is a
function of the three rotational invariants only, it follows the Finger form of the stress
tensor [58, 47],15

σxx = 2√
I3

[
Wxx C1 + (W 2

yz − Wyy Wzz + I2)C2 + I3C3
]
, (3A.11)

15 For example, to derive the last term in σxx , we may use the following mathematical formula: the determinant of an arbitrary

matrix
→←
A = {Ai j } (1 ≤ i, j ≤ n) is a function of its n2 elements. It generally holds that ∂(det

→←
A )/∂Ai j = (det

→←
A )A ji where

{Ai j } is the inverse matrix.
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σxy = σyx = 2√
I3

[
WxyC1 + (Wzz Wxy − Wyz Wzx )C2

]
, (3A.12)

where Cα = ∂ fel/∂ Iα (α = 1, 2, 3) and we define the symmetric tensor (the Finger tensor),

Wi j =
∑
"

�i"� j". (3A.13)

The other stress components can be obtained by cyclic permutation of x , y, and z. Notice
that Wi j has tensor properties with respect to rotation in the deformed space.

Representative situations are as follows. (i) For isotropic expansion x = λx0 we have

gi = λ2 and σi i = −p(λ) where

p(λ) = −2(C1/λ+ 2λC2 + λ3C3). (3A.14)

(ii) If a rod-like sample is uniaxially stretched as x = λx0, y = λ−1/2 y0, and z = λ−1/2z0

without volume change, we have I1 = λ2 + 2/λ, I2 = 2λ+ λ−2, and I3 = 1 so that

σxx − σyy = 2(λ2 − λ−1)(C1 + λ−1C2). (3A.15)

The total stretching force is fex = (σxx − σyy)S where S = S0λ
−1 is the surface area of

the end plates after the deformation. Data of fex for rubbers have been fitted to this form
with C1 and C2 being constants independent of λ, which is known as the Mooney–Rivlin
form [31, 42, 43].

(iii) For shear deformation x = x0 + γ y0, y = y0, and z = z0, we have I1 = I2 = γ 2 + 2
and I3 = 1 so that

σxy = 2γ (C1 + C2). (3A.16)

If the displacement u = x − x0 is small, the usual results in isotropic linear elasticity
[46] should be reproduced from (3A.11) and (3A.12). The linear stress tensor is expressed
as

σi j = −p0δi j + K∇ · uδi j + µ

(
∇i u j + ∇ j ui − 2

3
∇ · uδi j

)
+ O(u2), (3A.17)

where p0 = p(1) is the pressure in the undeformed state, ∇i = ∂/∂xi in the Euler
representation, and K = −(∂p(λ)/∂λ)λ=1 and µ = 2(C1 + C2)λ=1 are the bulk and
shear moduli, respectively. The elastic free energy up to the bilinear order reads

Fel = const.+
∫

dx
[(

K

2
− µ

3

)
(∇ · u)2 + µ

4

∑
i j

(∇i u j + ∇ j ui
)2

]
+ O(u3).

(3A.18)

Note that (3A.17) and (3A.18) are written in the Euler representation, although there is no
essential difference between the two descriptions in the lowest-order theory.
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4

Advanced theories in statics

In this chapter we will present the Ginzburg–Landau–Wilson (GLW) hamiltonian and
briefly explain the renormalization group (RG) theory in the scheme of the ε = 4 − d
expansion [1]–[12]. As unique features in this book we will introduce a subsidiary energy-
like variable in addition to the order parameter, discuss GLW models appropriate for
fluids, and derive a simple expression for the thermodynamic free energy consistent with
the scaling theory and the two-scale-factor universality. We will try to reach the main
RG results related to observable quantities in the simplest and shortest way without too
much formal argument. In practice, such an approach is needed for those whose main
concerns are advanced theories of dynamics. Furthermore, we will discuss inhomogeneous
two-phase coexistence and the surface tension near the critical point, near the symmetrical
tricritical point, and in polymer solutions and blends. In addition, we will examine vortices
in systems with a complex order parameter. These topological defects are key entities in
phase-ordering dynamics discussed in Chapters 8 and 9.

4.1 Ginzburg–Landau–Wilson free energy

4.1.1 Gradient free energy

When the order parameter ψ changes slowly in space, the simplest generalization of the
Landau free energy is of the form,

βH{ψ} =
∫

dr
[

1

2
r0ψ

2 + 1

4
u0ψ

4 − hψ + 1

2
K |∇ψ |2

]
, (4.1.1)

which is called the Ginzburg–Landau–Wilson (GLW) hamiltonian. The first three terms
are of the same form as those in the Landau expansion (3.1.6). The last term in the
brackets, called the gradient free energy, arises from an increase of the free energy when
ψ slowly varies in space. It was first introduced by van der Waals in 1893 to describe
gas–liquid interfaces (see (4.4.1) below) [13]. In their seminal theory in 1950, Ginzburg
and Landau examined inhomogeneous profiles of a complex order parameter, such as
the interface between normal and superconductor phases in type-I superconductors in a
magnetic field [14].1 In the same scheme, Abrikosov calculated vortex lattice structures
in type-II superconductors [15] and Ginzburg and Pitaevskii calculated a vortex line in

1 In Ginzburg and Landau’s theory the free-energy density is given by α|ψ |2 + β|ψ |4 + |h̄∇ψ − i(e/c)Aψ |2/2m + H2/8π ,
where A is the vector potential and H is the magnetic field.
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superfluid helium [16], while Cahn and Hilliard investigated an interface in systems with a
single-component order parameter [17].

The order parameter ψ(r) is a coarse-grained spin variable in Ising systems defined as
follows. (i) It is natural to define it on a coarse-grained lattice with a lattice constant "
longer than the original lattice constant a:

ψ(r) = 1

"d

∑
i∈new cell

si , (4.1.2)

where r is a representative point in each new cell, "d is the volume of a new cell, and
the sum is over original lattice sites contained in each new cell. (ii) In an alternative way
we may introduce an upper cut-off wave number � of the Fourier transform of the order
parameter:

ψ(r) = M + (2π)−d
∫

k<�

dkψk exp(ik · r), (4.1.3)

where M is the average order parameter. These two definitions of a space-dependent ψ(r)
are physically equivalent, provided 2π/� ∼ ".

For n-component isotropic spin systems, where ψ = (ψ1, ψ2, . . . , ψn) and the rota-
tional invariance in the spin space holds, we should interpret

ψ2 =
n∑

j=1

ψ2
j , ψ4 =

( n∑
j=1

ψ2
j

)2

, |∇ψ |2 =
n∑

j=1

|∇ψ j |2 (4.1.4)

in (4.1.1). We will set up the GLW hamiltonians for 4He and 3He–4He with the xy-model
symmetry (n = 2), where there is no physically realizable ordering field (h = 0).

4.1.2 Gaussian approximation

We first neglect the quartic term in H assuming a small nonlinear coupling constant u0

in Ising-like systems (n = 1). In disordered states with r0 ≥ 0 and h = 0, ψ obeys the
gaussian distribution ∝ exp(−βH0) with

βH0 = 1

2

∫
dr

[
r0ψ

2 + K |∇ψ |2]
= 1

2

∫
k
(r0 + K k2)ψkψ−k. (4.1.5)

Hereafter we use the notation, ∫
k
· · · = (2π)−d

∫
dk · · · . (4.1.6)

The structure factor in this approximation is given by the Ornstein–Zernike form,

I 0(k) = 〈|ψk|2〉0 = 1

r0 + K k2
, (4.1.7)
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where 〈· · ·〉0 denotes the average over the gaussian distribution. The corresponding pair
correlation function,

g0(|r|) =
∫

k
exp(ik · r)I 0(k), (4.1.8)

decays exponentially as exp(−κ|r|) at long distances |r| � ξ , where

κ = 1/ξ = (r0/K )1/2 (4.1.9)

is the inverse correlation length. In 3D we have the famous expression

g0(|r|) = (4πK )−1 1

|r| exp(−κ|r|). (4.1.10)

Here the critical exponent ν for the correlation length is given by 1/2. In the mean field
treatment of phase transitions, we use the Landau theory for the average order parameter
and the gaussian approximation for the fluctuations.

4.1.3 Perturbation expansion and the critical dimension

Next we examine by perturbation calculations how the structure factor is changed in the
presence of the quartic term in H for n = 1. Using the expansion,

exp(−βH) = exp(−βH0)

[
1 − βH′ + 1

2
(βH′)2 + · · ·

]
(4.1.11)

with

βH′ =
∫

dr
1

4
u0ψ

4, (4.1.12)

we obtain

I (k) = I 0(k)− 3u0[I 0(k)]2
∫

q
I 0(q)+ · · · . (4.1.13)

It is more convenient to consider the inverse,

1/I (k) = r0 + K k2 + 3u0

∫
q

I 0(q)+ · · · . (4.1.14)

At the critical point, the susceptibility diverges, so 1/I (k) ∼= K k2 should tend to zero as
k → 0. This means that the coefficient r0 assumes a critical value r0c determined by

r0c = −3u0

∫
q

1

K q2
+ · · · = − 3Kd

(d − 2)
K−1u0�

d−2 + · · · , (4.1.15)

where

Kd = (2π)−d2πd/2/�(d/2) (4.1.16)

is the surface area of a unit sphere in d dimensions divided by (2π)d , �(x) being the
Gamma function, so K4 = 1/8π2 and K3 = 1/2π2. We define r by

r0 = r + r0c. (4.1.17)
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Then r vanishes at the critical point, so we may assume the linear temperature dependence
(3.1.7),

r = r0 − r0c = a0τ, (4.1.18)

in terms of the reduced temperature τ = T/Tc − 1. The coefficient a0 is assumed to be
positive. In the perturbation expansions it is convenient to replace the bare coefficient r0

in place of the shifted coefficient r in the two-body correlation function. In this manner we
can take into account the critical temperature shift due to the nonlinear fluctuation effect.
This procedure of eliminating r0 in favor of r is called mass renormalization (which was
originally a jargon in particle physics).

With this in mind, we rewrite (4.1.14) as

1/I (k) = r + 3u0

∫
q

[
1

r + K q2
− 1

K q2

]
+ K k2 + · · ·

= r
[
1 − 3Kd K−2u0 Id

] + K k2 + · · · , (4.1.19)

where

Id =
∫ �

0
dqqd−3 1

κ2 + q2
. (4.1.20)

The above q integration is divergent at large q as � → ∞ (ultraviolet divergence) for
d > 4, and at small q as κ → 0 (infrared divergence) for d < 4. As a result, the dominant
contribution arises around the upper cut-off � for d > 4 and the lower cut-off κ for d < 4.
In particular, if ε = 4 − d is small, Id behaves as

Id = 1

ε

[
κ−ε −�−ε

]
. (4.1.21)

In the limit ε → 0 and (κ/�)ε ∼= 1 + ε ln(κ/�), we have logarithmic behavior, Id ∼=
I4 = ln(�/κ). With (4.1.19) we notice that u0 appears in the perturbation expansion in the
following dimensionless combination,

g = Kdu0/(K
2�ε). (4.1.22)

For small ε we thus obtain

1/I (k) = r

{
1 − 3g

ε

[
(�/κ)ε − 1

]}
+ K k2 + · · · . (4.1.23)

The structure of the perturbation series in powers of u0 changes qualitatively at the
marginal dimensionality dc = 4. That is, if d > 4 or for ε < 0, the perturbation expansion
is well defined or convergent as long as g � |ε|. On the contrary, if d < 4 or for ε > 0,
the factor (�/κ)ε grows near the critical point and the expansion is meaningful only for

3g � ε(κ/�)ε or 3Kdu0/K 2 � εκε. (4.1.24)
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The Ginzburg number

The condition (4.1.24) is rewritten as |τ | � Gi in the absence of an ordering field (h = 0),
where

Gi = K a−1
0 (3Kdu0/εK 2)2/ε (4.1.25)

is called the Ginzburg number expressed in terms of a0 in (4.1.18) and the coefficients
in the GLW hamiltonian in (4.1.1). Using the mean field expressions for the microscopic
length ξ+0 = (K/a0)

1/2 in ξ = ξ+0τ
−1/2 and the specific-heat jump �CH in (3.1.20), we

may also express Gi as

Gi = [3Kd/2εξd
+0�CH ]2/ε. (4.1.26)

In particular, we write the 3D expression,

Gi = (3/2π2)2u2
0/(K

3a0) = (3/π2)2(ξ3
+0�CH )−2. (4.1.27)

Crossover occurs around τ ∼ Gi from the mean-field to asymptotic critical behavior,
as has been studied theoretically with renormalization group methods [4b] [18, 19] and
experimentally in various fluid systems at the critical density (or concentration) [20]–[22].
In polymer blends near the consolute critical point, Gi decreases with increasing molecular
weight and can be very small [20]. In 3He near the gas–liquid critical point, Gi is 2.5×10−3,
while in Xe it is 1.8 × 10−2 [22]. While the thermal fluctuations are asymptotically
dominant in any fluids near the gas–liquid critical point, Gi becomes small in 3He due
to large background quantum fluctuations. We note that λthn1/3

c is equal to 1.2 for 3He and
to 0.048 for CO2, where λth is the thermal de Broglie wavelength in (1.2.5) and nc is the
critical number density.

Exact relations

Because the equilibrium distribution of ψ is given by Peq{ψ} ∝ exp(−βH), we notice the
equilibrium relations, 〈

δ(βH)

δψ(r)

〉
= 0,

〈
ψ(r′)

δ(βH)

δψ(r)

〉
= δ(r − r′). (4.1.28)

The first relation can lead to the equation of state in the form of (4.3.65) below [5], while
the second one gives an equation for the pair correlation function g(r) = 〈δψ(r)δψ(0)〉,

(r0 − K∇2)g(r)+ u0〈ψ(r)3δψ(0)〉 = δ(r). (4.1.29)

The Fourier transformation gives

(r0 + K k2)I (k)+ u0

∫
dreik·r〈ψ(r)3δψ(0)〉 = 1. (4.1.30)

Decoupling the above four-body correlation at 〈ψ〉 = 0 readily yields (4.1.14).
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Fig. 4.1. The diagrammatic structure of the two-body correlation function.

4.1.4 Feynman diagram expansion

The effect of the four-body interaction βH′ can be calculated systematically using well-
defined Feynman diagrammatic rules. This technique is based on the fact that many-body
correlations 〈ψ · · ·ψ〉 can be decoupled into sums of products of two-body correlations
(because the zeroth-order distribution is gaussian). In Fig. 4.1 we display the diagrammatic
structure of the two-body correlation function I (k). Let the contribution from the self-
energy diagrams be written as +(r, k). Then we have

I (k) = 1
/[

r0 −+(r, k)+ K k2]
. (4.1.31)

Obviously, (4.1.30) gives the expression,

+(r, k) = −u0

∫
dreik·r〈ψ(r)3δψ(0)〉/I (k). (4.1.32)

The critical-point value r0c is expressed generally as

r0c = +(0, 0), (4.1.33)

which reduces to (4.1.15) at small u0. Elimination of the bare coefficient r0 yields

I (k) = 1
/{

r − [+(r, k)−+(0, 0)] + K k2}
. (4.1.34)

The inverse susceptibility at k = 0 is expressed as

χ−1 = r − [+(r, 0)−+(0, 0)]. (4.1.35)

Slightly away from the critical point (r > 0) the self-energy part is expanded in powers of
k2 as

+(r, k) = +(r, 0)− (δK )k2 + O(k4). (4.1.36)

The coefficient δK starts from the order u2
0 because there has been no correction in the

first-order calculation. By defining the renormalized coefficient KR as

KR = K + δK , (4.1.37)

we may express the structure factor at small k as

I (k) = 1/[χ−1 + KRk2 + O(k4)]. (4.1.38)

The renormalized correlation length ξ and its inverse κ are then defined as

κ = 1/ξ = (χKR)
−1/2. (4.1.39)
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Fig. 4.2. The first- and second-order contributions to the self energy function.

On the one hand, in accord with the above expression, the scaling theory in Chapter 2
suggests the power laws, χ−1 ∼ τγ ∼ κ2−η and KR ∼ κ−η. For k � κ , on the other
hand, (2.1.9) indicates

1/I (k) ∼= K k2(k/�)−η ∼= K k2[1 − η ln(k/�)], (4.1.40)

because η is very small. Therefore, for κ � k � �, we have

+(r, k) ∼= +(0, 0)+ ηK k2 ln(k/�). (4.1.41)

Let us calculate the second-order correction to the self-energy arising from the two-loop
diagram in Fig. 4.2. For n = 1 it is of the form,

+2(r, k) = 6u2
0

∫
q1

∫
q2

I (q1)I (q2)I (|q1 + q1 − k|). (4.1.42)

The reader may easily derive the factor of 6 in the above expression using the decoupling
procedure or the Feynman rules. See Appendix 4A for the calculation of the above double
integral at r = 0. We shall see that +2(0, 0) ∼ g2 K�2, which contributes to r0c, and2

+2(0, k)−+2(0, 0) ∼= 3

2
g2 K k2 ln(k/�). (4.1.43)

We now compare (4.1.41) and (4.1.43) to obtain

η = 3

2
g2 + · · · . (4.1.44)

Here η should be universal. Does the above relation mean that g takes a particular value?
This puzzle is resolved in the renormalization group theory, which shows that g tends to a
universal number g∗ with decreasing �.

4.1.5 Inclusion of the energy density

We next introduce a subsidiary variable m(r) as in Section 3.1. In Ising systems, it
is the exchange-energy density measured from the critical value and divided by Tc.

2 The calculation of +2(r, 0) − +2(0, 0) is also straightforward, but it contains a term proportional to [ln(κ/�)]2 and is more
complicated.
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Generalization of (3.1.25) leads to the GLW hamiltonian for space-dependent ψ(r) and
m(r) [23],

βH{ψ,m} =
∫

dr
[

1

2
r0cψ

2 + 1

2
K |∇ψ |2 + 1

4
ū0ψ

4 + γ0ψ
2m

+ 1

2C0
m2 − hψ − τm

]
= βH{ψ} +

∫
dr

1

2
C0(δτ̂ )

2 − 1

2
C0τ

2V . (4.1.45)

We introduce the reduced temperature fluctuation by3

δτ̂ (r) = δ

δm
βH = 1

C0
m + γ0ψ

2 − τ, (4.1.46)

which obeys the gaussian distribution independent of ψ characterized by

〈δτ̂ (r)δτ̂ (r′)〉 = C−1
0 δ(r − r′). (4.1.47)

It is important that δτ̂ is statistically independent of ψ in equilibrium. The second line
of (4.1.45) is written in terms of ψ and δτ̂ , where the first term H{ψ} is the hamiltonian
(4.1.1) for ψ only with

r = 2γ0C0τ, u0 = ū0 − 2γ 2
0 C0, (4.1.48)

and the third term, proportional to τ 2, is the mean field contribution of the energy variable
corresponding to the third term in (3.1.8). From (4.1.18) γ0 is related to a0 by

γ0 = a0/2C0. (4.1.49)

Note that the above definition of δτ̂ depends on the upper cut-off wave number � and the
hydrodynamic temperature fluctuation (1.1.41) or (3.1.27) follows in the limit � → 0.
Also we define the magnetic field fluctuation,

δĥ(r) = δ

δψ
βH = (r0c − K∇2 + ū0ψ

2 + 2γ0m)ψ − h, (4.1.50)

whose hydrodynamic expression is (1.1.42). Then the variance relations in (1.1.43) are
satisfied (if ê is replaced by m).

From (4.1.46) and (4.1.47) the variance of m(r), which is equal to the specific heat CH

at constant magnetic field, is given by

CH = 〈m : m〉 = C0 + (γ0C0)
2〈ψ2 : ψ2〉, (4.1.51)

where the second term is the singular fluctuation contribution. From (1.1.40) the specific
heat CM at constant magnetization is written as

CM = C0 + (γ0C0)
2[〈ψ2 : ψ2〉 − 〈ψ : ψ2〉2/〈ψ : ψ〉]. (4.1.52)

3 The circumflex is kept here because τ is used for the average reduced temperature.
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For τ > 0 and h = 0 there is no difference between CH and CM . For n = 1 the decoupling
of the four-body correlation yields

CH = C0 + 2Kdγ
2
0 C2

0

∫ �

0
dqqd−1 1

(κ2 + q2)2
+ · · · (4.1.53)

(see Fig. 4.4). For small ε this becomes

CH/C0 = 1 + 2v

ε

[
(�/κ)ε − 1

] + · · · = 1 + 2v ln(�/κ)+ · · · , (4.1.54)

where v is a dimensionless coupling constant defined by

v = Kdγ
2
0 C0/K 2�ε. (4.1.55)

We shall see that v tends to a universal number v∗ = α+O(ε2) with decreasing �, leading
to the ultimate scaling behavior CH ∝ τ−α if the logarithmic term is exponentiated.

4.1.6 Hydrodynamic hamiltonian for n = 1

In (1.1.50) we introduced the hydrodynamic hamiltonian Hhyd for the deviations δψ =
ψ − M and δT̂ /T for Ising-like systems, the latter being δτ̂ in the present notation. This
form can be obtained after elimination of the fluctuations with sizes shorter than ξ or in the
limit � � ξ−1. We assume the existence of the renormalized coefficient γR = lim�→0 γ0.
Then the linear relation δτ̂ ∼= δm/CM + 2γR Mδψ follows with δm = m − 〈m〉 from
(4.1.46). Thus (1.1.50) is rewritten as

1

T
Hhyd =

∫
dr

[
1

2χ
(δψ)2 + 1

2CM

(
δm + 2γRCM Mδψ

)2
]

(4.1.56)

The cross term (∝ δmδψ) appears in the presence of nonvanishing average order parameter
M . From 〈ψ : m〉 = −2γRCM Mχ we may express γR as

2γRCM = − 1

χM

(
∂M

∂τ

)
h
. (4.1.57)

For infinitesimal h with τ > 0, we have M ∼= χh and

2γRCM = γ (τχ)−1 = (γ /�0)τ
γ−1. (4.1.58)

Note that this relation is valid in general n-component systems. Here we set χ = �0τ
−γ

for τ > 0 and �′
0|τ |−γ for τ < 0 at h = 0. On the coexistence curve, where M = B0|τ |β ,

we obtain

2γRCM = β(|τ |χ)−1 = (β/�′
0)|τ |γ−1. (4.1.59)

The coefficients on the right-hand sides of (4.1.58) and (4.1.59) are nearly the same, as can
be seen from the amplitude ratio relation (4.3.83) below. From (4.1.56) we also have

CH = 〈m : m〉 = CM + 4(γRCM M)2χ. (4.1.60)
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From (1.1.49) and (4.1.59) the universal number Rv on the coexistence curve is written as

Rv = 4(γRCM M)2χ/CH = (βB0)
2/A′

0�
′
0, (4.1.61)

where we set CH = A′
0|τ |−α . This relation is consistent with (1.1.48). In addition, the

coupling parameter v in (4.1.55) approaches a universal number (∼= α) for � � κ , but in
the region � � κ it grows as

v = 1

4
αγ 2 Kd R−d

ξ (ξ�)−ε, (4.1.62)

where T > Tc and Rξ (∼= (Kd/4)1/d) is defined by (2.1.45). The above relation will be
used in (6.2.37) below. For many-component systems (n ≥ 2), we will construct Hhyd to
account for anomalous fluctuations due to broken symmetry in Section 4.3.

4.2 Mapping onto fluids

4.2.1 One-component fluids

In one-component fluids near the gas–liquid critical point, the hamiltonian is given by
(4.1.45) under the mapping relationships (2.2.2) and (2.2.3) or equivalently (2.2.7) and
(2.2.8). In this scheme the temperature and pressure fluctuations may be defined by [24]

δT̂ =
(
∂T

∂h

)
τ

δ(βH)

δψ
+

(
∂T

∂τ

)
h

δ(βH)

δm
, (4.2.1)

δ p̂ =
(
∂p

∂h

)
τ

δ(βH)

δψ
+

(
∂p

∂τ

)
h

δ(βH)

δm
, (4.2.2)

where δτ̂ = δ(βH)/δψ and δĥ = δ(βH)/δm are the temperature and magnetic field fluc-
tuations in the corresponding Ising system defined by (4.1.46) and (4.1.50), respectively.
These expressions tend to (2.2.29) and (2.2.30) in the hydrodynamic limit. Here the first
terms (∝ δĥ) have variances of order r , whereas the second terms (∝ δτ̂ ) have those of
order C−1

0 . Therefore, the second terms exhibit much larger fluctuations than the first terms
close to the critical point.

Under the mapping relations we may regard H as a functional of δn and δe or that of
δn and δs, where δs ∼= (δe − Hcδn)/ncTc from (1.2.46), Hc = (ec + pc)/nc being the
enthalpy at the critical point. As the coefficients in the mapping relations (2.2.7)–(2.2.13)
and the pressure expression (1.2.27), we use those at the critical point to obtain [24]

δT̂ = Tc

(
δH
δe

)
n
= n−1

c

(
δH
δs

)
n
, (4.2.3)

δ p̂ = nc

(
δH
δn

)
e
+ (ec + pc)

(
δH
δe

)
n
= nc

(
δH
δn

)
s
. (4.2.4)
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The following correlation function relations are satisfied between the two sets of devia-
tions, {δs, δn} and {δT̂ , δ p̂}:

〈δs(r)δT̂ (r′)〉 = n−1
c Tcδ(r − r′), 〈δn(r)δT̂ (r′)〉 = 0,

〈δn(r)δ p̂(r′)〉 = ncTcδ(r − r′), 〈δs(r)δ p̂(r′)〉 = 0, (4.2.5)

which are consistent with the thermodynamic relations (1.2.63) and (1.2.70) in the hydro-
dynamic limit.

4.2.2 Binary fluid mixtures

For binary fluid mixtures we introduced the third (nonsingular) variable q in addition to
ψ and m in Section 2.3. The field variable ζ conjugate to q is the coordinate along the
critical line. The free-energy contribution due to the fluctuation of q is simply gaussian, so
the hamiltonian for the three variables is

βH{ψ,m, q} = βH{ψ,m} +
∫

dr
[

q2

2Q0
− ζq

]
. (4.2.6)

The mapping relations are given by (2.3.9)–(2.3.11). We can see that (2.3.1)–(2.3.3) can
be derived from the above hamiltonian. Also as in (2.3.33) and (2.3.34) we express the
temperature and pressure variables as [25]

δT̂ =
(
∂T

∂h

)
τζ

δ(βH)

δψ
+

(
∂T

∂τ

)
q

δ(βH)

δm
+

(
∂T

∂ζ

)
hτ

δ(βH)

δζ
, (4.2.7)

δ p̂ =
(
∂p

∂h

)
τζ

δ(βH)

δψ
+

(
∂p

∂τ

)
hζ

δ(βH)

δm
+

(
∂p

∂ζ

)
hτ

δ(βH)

δζ
, (4.2.8)

where δζ̂ = δ(βH)/δq = q/Q0 − ζ as in (2.3.35). The second and third terms represent
weakly singular and nonsingular fluctuations. They give rise to the variance relations
(2.3.36)–(2.3.38) in the hydrodynamic limit.

We regard H as a functional of {n1, n2, e} or {n, X , s}. Similarly to (4.2.3) and (4.2.4)
the temperature and pressure variables are expressed as

δT̂ = Tc

(
δH
δe

)
n1n2

= n−1
c

(
δH
δs

)
nX

. (4.2.9)

δ p̂ =
∑

K=1,2

ncK

(
δH
δnK

)
e
+ (ec + pc)

(
δH
δe

)
n1n2

= nc

(
δH
δn

)
s X
. (4.2.10)

As in (1.3.50) we introduce the fluctuation of the chemical potential difference by

δ∆̂ =
(
δH
δn1

)
n2e

−
(
δH
δn2

)
n1e

+�c

(
δH
δe

)
n1n2

= n−1
c

(
δH
δX

)
ns
. (4.2.11)
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The two sets of deviations, {δs, δn, δX} and {δT̂ , δ p̂, δ∆̂}, satisfy the variance relations
(1.3.43), (1.3.47), and (1.3.52) as in the one-component case (4.2.5).

4.2.3 4He near the superfluid transition

For 4He near the superfluid transition we may use the above hamiltonian H{ψ,m, q} under
the mapping relations (2.4.8) and (2.4.9). Note that ψ is complex and h is zero in helium.
Although redundant, the explicit form of the hamiltonian is

βH{ψ,m, q} =
∫

dr
[

1

2
r0c|ψ |2 + 1

2
|∇ψ |2 + 1

4
ū0|ψ |4

+ γ0|ψ |2m + 1

2C0
m2 + 1

2Q0
q2 − τm − ζq

]
, (4.2.12)

where τ and ζ are defined by (2.4.5) and (2.4.23), respectively. Here m is coupled with |ψ |2
and is weakly singular, whereas q is nonsingular. They are linearly related to the entropy
and number density deviations, δs and δn, as (2.4.8) and (2.4.9). The coefficient K in the
gradient term has been set equal to 1 because the critical exponent η is virtually zero. From
(2.4.27) and (2.4.28) the temperature and pressure variables are

δT̂ = n−1 δH
δs

= (1 − εin Aλ)
−1

[
δH
δm

+ εin
δH
δq

]
, (4.2.13)

δ p̂ = n
δH
δn

= n(1 − εin Aλ)
−1

[
Aλ

δH
δm

+ δH
δq

]
. (4.2.14)

By setting δH/δm = δH/δq = 0 we may eliminate m and q to obtain H{ψ} in the form
of (4.1.1) with (4.1.49). We can derive (4.2.5) also in this case.

4.2.4 3He–4He mixtures near the λ line and the tricritical point

In 3He–4He mixtures near the superfluid transition the subsidiary variables are the entropy
deviation per particle m1 = δs, the number density deviation m2 = δn, and the 3He
concentration deviation m3 = δX as in (1.3.32). From (1.3.20) the conjugate field variables
are conveniently written as h1 = (nc/Tc)δT , h2 = (ncTc)

−1δp, and h3 = (nc/Tc)δ∆. The
hamiltonian for ψ and m j are given by [26]

βH{ψ,m1,m2,m3} =
∫

dr
[

1

2
r0c|ψ |2 + 1

2
|∇ψ |2 + 1

4
ū0|ψ |4 + 1

6
v0|ψ |6

+
∑

j

γ j0|ψ |2m j + 1

2

∑
i j

a(0)
i j mi m j −

∑
j

h j m j

]
, (4.2.15)

where the sixth-order term ∝ |ψ |6 is needed near the tricritical point and {a(0)
i j } is a constant

symmetric matrix dependent on �. The subsidiary fields may be eliminated by setting
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δ(βH)/δm j = 0. After some calculations we obtain

βH{ψ} =
∫

dr
[

1

2
(r0c + r)|ψ |2 + 1

2
|∇ψ |2 + 1

4
u0|ψ |4 + 1

6
v0|ψ |6

]
, (4.2.16)

where

r =
∑

i j

γi0b(0)i j h j , (4.2.17)

u0 = ū0 − 2
∑

i j

γi0γ j0b(0)i j , (4.2.18)

with {b(0)i j } being the inverse matrix of {a(0)
i j }. Using the Pippard–Buckingham relations

[24] we can derive

r = a0

[
T − Tλ0 −

(
∂T

∂p

)
λ∆

(p − p0)−
(
∂T

∂∆

)
λp
(∆−∆0)

]
, (4.2.19)

where p0 and ∆0 are the reference pressure and chemical potential difference, and Tλ0 =
Tλ(p0,∆0). The critical surface in the T –p–� space is represented by r = 0. The tricritical
line, where r = u0 = 0, is reached with ∆ or an increase in the average 3He concentration.

The hamiltonian (4.2.15) with three subsidiary variables is essentially the same as that in
(4.2.12) with a single subsidiary variable. In fact, we may define a weakly singular variable
by m = ∑

j γ0 j m j and two other nonsingular variables decoupled from |ψ |2. We may also
eliminate the number density variable δn or neglect the pressure fluctuations [26], retaining
δs and δX . In this case it is convenient to define new variables,

m′
1 = δs +

(
∂∆

∂T

)
λp
δX,

m′
2 = T

Cλ

(
∂s

∂T

)
λp

[
δX −

(
∂X

∂s

)
λp
δs

]
, (4.2.20)

where

Cλ = T

(
∂s

∂T

)
λp

+ T

(
∂∆

∂T

)
λp

(
∂X

∂T

)
λp
. (4.2.21)

Here the derivatives are performed along the λ line at fixed p, so the coefficients in the
above definitions are all regular. By setting δp = 0 we then have

βH{ψ,m′
1,m′

2} =
∫

dr
[

1

2
r ′0c|ψ |2 + 1

2
|∇ψ |2 + 1

4
ū′

0|ψ |4 + 1

6
v0|ψ |6

+ γ ′
0|ψ |2m′

2 +
1

2C ′
0
(m′

2)
2 + 1

2Cλ

(m′
1)

2 − h′
1m′

1 − h′
2m′

2

]
,

(4.2.22)
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where r ′0c, ū′
0, and γ ′

0 are appropriately defined coefficients. The conjugate fields h′
1 and h′

2
are linear combinations of δT and δ∆:

h′
1 = n

Cλ

(
∂s

∂T

)
λp

[
δT +

(
∂X

∂s

)
λp
δ∆

]
,

h′
2 = − n

T

(
∂∆

∂T

)
λp

[
δT −

(
∂T

∂�

)
λp
δ∆

]
. (4.2.23)

Thus h′
2 is proportional to r in (4.2.19) for δp = 0. The m′

1 is decoupled from |ψ |2 and
regular. From δX = m′

2+T (∂X/∂T )λpm′
1/Cλ, m′

2 is the singular part of δX . The variances
among m′

1 and m′
2 are written as

〈m′
1 : m′

1〉 = n−1Cλ, 〈m′
1 : m′

2〉 = 0, 〈m′
2 : m′

2〉 = C ′, (4.2.24)

where the C ′ is expressed in terms of the concentration susceptibility (∂X/∂∆)pT as

C ′ = C ′
0 + (C ′

0γ
′
0)

2〈|ψ |2 : |ψ |2〉 = T

n

[(
∂X

∂∆

)
pT

− T

Cλ

(
∂X

∂T

)2

λp

]
. (4.2.25)

If the gravity effects are neglected, (∂X/∂∆)pT behaves logarithmically close to the λ line
and as (Tt − T )−1 on the coexistence curve near the tricritical point as derived in (3.2.24)
[27].

4.2.5 Polymer solutions

We introduced the Flory–Huggins theory for polymer systems in Section 3.5, where the
order parameter is the polymer volume fraction φ. Here we add the gradient free energy
Hgra using the random phase approximation [28], as summarized in Appendix 4B [29, 30].
For the Fourier components of φ with wave number q smaller than the inverse of the
gyration radius RG ∼ aN 1/2, Hgra is approximated as

βHgra =
∫

dr
1

36aφ(1 − φ)
|∇φ|2, (4.2.26)

where a = v
1/3
0 is the monomer size. In the reverse case q RG � 1, however, the random

phase approximation gives the structure factor 〈|φq|2〉 = 12aφ(1−φ)/q2 [29]. This means
that the factor 1/36 in (4.2.26) should be replaced by 1/24 at high q as

βHgra =
∫

dr
1

24aφ(1 − φ)
|∇φ|2. (4.2.27)

We will use (4.2.26) near the critical point and (4.2.27) in calculating the interface profile
away from the critical point.

Let a polymer solution be near the critical point. From (3.5.9), (3.5.10), and (4.2.26) the
coefficients in the Landau expansion are

r0 = 2v−1
0

(
1

2
+ N−1/2 − χ

)
, u0 = 1

3
v−1

0 N 1/2, K = 1

18
a−1 N 1/2. (4.2.28)
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If the temperature dependence (3.5.7) is assumed, we have a0 = 2v0 B/Tc. Now we may
calculate the Ginzburg number in (4.1.26) as

Gi ∼ (N 1/2a0v0)
−1 ∼ 1 − Tc/Tϑ ∼ N−1/2. (4.2.29)

The asymptotic critical behavior should be observable when

|T/Tc − 1|/Gi ∼ N 1/2|T/Tc − 1| � 1. (4.2.30)

At the initial point of our theory, we set the upper cut-off wave number � equal to the
inverse gyration radius (aN 1/2)−1; then, the initial coupling constant g in (4.1.22) is
estimated as

g = (28 K3/3)(aN 1/2�)−1 ∼ 1, (4.2.31)

indicating strong nonlinear coupling among the critical fluctuations. This means that there
is no appreciable mean field critical behavior, in contrast to the polymer blend case, and
simple scaling behavior is expected near the critical point. The correlation length ξ at the
critical composition is scaled as

ξ = aN 1/2 fco
(
(T/Tc − 1)/Gi

)
. (4.2.32)

For |x | � 1, fco(x) ∼ |x |−ν with ν ∼= 0.63, so

ξ+0 ∼ ξ−0 ∼ aN (1−ν)/2. (4.2.33)

Similarly, the volume fraction difference �φ between the two coexisting phases is scaled
as [31]–[34]

�φ = N−1/2 fvo
(
(1 − T/Tc)/Gi

)
, (4.2.34)

where fvo(x) ∼ xβ with β ∼= 0.33 for x � 1 and fvo(x) ∼ x−1 for x � 1. Thus,
�φ ∼ N (β−1)/2(1−T/Tc)

β near the critical point, while �φ ∼ 1−T/Tc is independent of
N away from the critical point. Similarly, the osmotic modulus Kos = φ(∂�/∂φ)T given
in (3.5.21) behaves as the inverse susceptibility near the critical point and its asymptotic
behavior is characterized by the critical exponent γ ∼= 1.24 as

Kos ∼ T v−1
0 N (γ−3)/2|T/Tc − 1|γ . (4.2.35)

4.2.6 Polymer blends

The Landau expansion holds under the condition (3.5.35) for polymer blends. From
(3.5.32)–(3.5.34) we have

r0 = 2v−1
0 (χc − χ), u0 = 1

3
v−1

0 (N1 N2)
1/2χ2

c , K = 1/[18aφc(1 − φc)], (4.2.36)
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where φc and χc are given in (3.5.33). Setting r0 ∼= a0(T/Tc − 1) we obtain

a0Gi ∼ (N 1/2
1 + N 1/2

2 )2/(N1 N2)
3/2. (4.2.37)

(T/Tc − 1)/Gi ∼ (N1 N2)
1/2(1 − χ/χc). (4.2.38)

If N1 and N2 are both large, the asymptotic critical behavior is expected only very close to
the critical point [20]. When N1 ≥ N2 � 1, we obtain a well-defined mean field critical
region given by

(N1 N2)
−1/2χc � |χc − χ | � (N1 N2)

−1/2, (4.2.39)

where χc � 1, the lower bound arises from T/Tc − 1 � Gi, and the upper bound from
(3.5.35). The correlation length at the critical composition behaves as

ξ/a ∼ (N1 N2)
1/2|(T/Tc − 1)/Gi|−1/2 (1 < |T/Tc − 1|/Gi < χ−1

c ),

∼ (N1 N2)
1/2|(T/Tc − 1)/Gi|−ν (|T/Tc − 1|/Gi < 1). (4.2.40)

Therefore, N 1/2
1 + N 1/2

2 < ξ/a < (N1 N2)
1/2 in the mean field critical region, while

ξ/a > (N1 N2)
1/2 in the asymptotic critical region. These results will be used in Sections

4.4 and 9.6.

4.2.7 Gravity effects

In the presence of gravity we should include the potential energy,

Hg =
∫

dr ḡzδρ, (4.2.41)

where ḡ is the gravitational acceleration4 and z is the vertical coordinate in the upward
direction. From (2.2.7), (2.3.9) and (2.3.10), and (2.4.9), the mass density deviation δρ is
expressed in terms of ψ , m, and q as

δρ = m0(α1ψ + β1m) (one-component fluids)

=
∑

K=1,2

m0K (αKψ + βK m + γK q) (binary fluids)

= m4(−εinm + q) (4He), (4.2.42)

where m0, m01, and m02 are the particle masses in one- and two-component fluids and m4

is the 4He mass. The equilibrium distribution of the gross variables is

Peq ∝ exp[−β(H+Hg)]. (4.2.43)

From (4.2.41) we notice that, on the one hand, the definitions of the temperature fluctuation
δT̂ in (4.2.3), (4.2.9), and (4.2.13) are unchanged even if H is replaced by the total
hamiltonian H + Hg. On the other hand, we still define the pressure fluctuation δ p̂ in

4 Here we use the notation ḡ for the gravitational acceleration to avoid confusion with g in (4.1.22).
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terms of the functional derivatives of H without Hg as in (4.2.4), (4.2.10), and (4.2.14). In
equilibrium we thus obtain

〈δT̂ 〉 = 0, 〈δ p̂〉 = −ρcḡz. (4.2.44)

Here ρc should be interpreted as the λ point value ρλ for 4He. Particular cases are as
follows.

(i) For one-component fluids, we may set

m = C0(τ − γ0ψ
2 − m0β1ḡz) (4.2.45)

to obtain the GLW hamiltonian for ψ only in the form of (4.1.1). As a result, the parameters
r = r0 − r0c = a0τ and h are replaced by

r(z) = a0(τ − m0β1ḡz),

h(z) = h − m0α1ḡz, (4.2.46)

where β1 is the mixing parameter discussed in Section 2.2 and is zero in the parametric
model for a one-component fluid presented in (2.1.53)–(2.1.55).

(ii) For binary fluids, r and h in the GLW hamiltonian for ψ depend on z as

r(z) = a0[τ − (m10β1 + m20β2)ḡz],

h(z) = h − (m10α1 + m20α2)ḡz. (4.2.47)

It is interesting to consider a binary fluid mixture with m10α1 +m20α2 ∼= 0, where the two
phases after phase separation have the same mass density. Its critical behavior is influenced
only through the z dependence of r(z).

(iii) In 4He near the superfluid transition, we have

m = C0(T/Tλ0 − 1 − Gz − γ0|ψ |2), (4.2.48)

q = Q0(ζ − βm4ḡz), (4.2.49)

where G is defined by (2.4.32). Elimination of m and q yields the GLW hamiltonian for
ψ , where the coefficient r depends on z as

r(z) = a0τ(z) = a0(T/Tλ0 − 1 − Gz), (4.2.50)

in agreement with (2.4.31). The ordering field h remains zero.

Gravity-induced interface

Gravity can gives rise to coexistence of a normal fluid and a superfluid, as discussed in
Section 2.4. In terms of r(z) in (4.2.50) the mean field order parameter profile in 4He is
obtained from [35]

δ

δψ∗ βH =
[

r(z)+ u0|ψ |2 − d2

dz2

]
ψ = 0. (4.2.51)
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We can see that ψ ∼= 0 in the region r(z) > 0 and ψ �= 0 in the region r(z) < 0.
There is no variation of the phase because no heat input is assumed. In the numerical
result for ρs(z) ∝ |ψ(z)|2 in Fig. 2.17, the renormalization effect is taken into account
by replacements, r(z) → r(z)|ξ(z)/ξ+0|−1/2 and u0 → u∗|ξ(z)/ξ+0|−1, where u∗ is a
universal constant (to be discussed in Section 4.3) and ξ(z) is the local correlation length.
Because ξ(z) should not exceed "g in (2.4.35), we have assumed the simple extrapolation
form, ξ(z) = "g tanh[ξ+0|τ(z)|−2/3/"g]. With these changes the local equilibrium result
(2.4.37) follows in the bulk superfluid region.

4.2.8 Electric field effects in non-ionic fluids

The electric field effects on the density fluctuations have also been discussed in the
literature [36]–[53]. We apply an electric field to a non-ionic fluid without free charges,
where the static dielectric constant ε depends locally on the order parameter as

ε = εc + ε1ψ + 1

2
ε2ψ

2 + · · · . (4.2.52)

The fluid is in contact with conductors α (= 1, 2, . . .) which have surface charges Qα

and electric potentials (α . The electric field is expressed as E = −∇( in terms of the
electric potential (, while the electric induction is given by D = εE with ∇ · D = 0.
In this case we may fix either the charges Qα or the potentials (α [36]. Physically, these
two boundary conditions should lead to essentially the same physical effects on the critical
fluctuations [49]. Mathematically, the fixed potential condition is simpler than the fixed
charge condition, so we will choose the former. That is, on the surface of the conductor α,
( is fixed at (α and the surface integral of n · D is equal to −4πQα and is a fluctuating
quantity, where n is the normal unit vector pointed outward from the fluid region to the
conductor α. The electrostatic free energy of the fluid is written as

He = − 1

8π

∫
drE · D = −1

2

∑
α

Qα(α, (4.2.53)

where the space integral is within the fluid region. Then He is a functional of ε(r) or ψ(r)
and its functional derivative is calculated as

δ

δε
He = − 1

8π
|E|2 or

δ

δψ
He = − 1

8π
|E|2

(
∂ε

∂ψ

)
T
, (4.2.54)

because
∫

drD · δE = − ∫
drD · ∇δ( = 0 in the fixed potential condition for small

variations. In the fixed charge condition, the electrostatic energy of the fluid is the minus
of (4.2.53), but its functional derivative with respect to ε is the same as (4.2.54) because∫

drE · δD = 0.
We assume that the average 〈E〉 over the thermal fluctuations changes slowly in space

and is nearly homogeneous on the scale of ξ . Then the electric field is written as E = E0 −
∇δ(, where E0(∼= 〈E〉) is the unperturbed electric field for the homogeneous dielectric
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constant ε̄ = 〈ε〉 and δ( is the deviation of the electric potential induced by δε = ε − 〈ε〉.
From the charge-free condition ∇ · D = 0 inside the fluid, we have

ε̄∇2δ( = E0 · ∇δε, (4.2.55)

which is integrated as

ε̄δ((r) = −
∫

dr′G(r, r′)E0 · ∇′δε(r′). (4.2.56)

The Green function G(r, r′) = G(r′, r) satisfies ∇2G(r, r′) = −δ(r − r′) and vanishes as
r approaches the surface of the conductors. Then He = He0 + Hdip is composed of two
parts up to order O(δε2) [49]. The first part is written as

He0 = − 1

8π

∫
drE2

0ε = − 1

8π

∫
drE2

0

(
εc + ε1ψ + 1

2
ε2ψ

2
)
. (4.2.57)

The second part is a long-range interaction of the form,

Hdip = 1

8π

∫
drE0δε · ∇δ(

= 1

8πε̄

∫
dr

∫
dr′

[
E0 · ∇δε(r)

]
G(r, r′)

[
E0 · ∇′δε(r′)

]
, (4.2.58)

which is positive-definite for the fluctuations varying along E0 and vanishes for those
varying perpendicularly to E0.

Shift of the critical temperature

Let the capacitor consist of two parallel plates separated by L with the normal direction
taken along the x axis. Then E0 is homogeneous between the plates. The surface charges
of the lower and upper plates are Q and −Q, respectively, and we have He = −Q(/2 =
−QE0L/2, where ( is the potential difference. First, from He0 in (4.2.57), we notice that
there arises a small shift of the critical temperature of the form [49],

(�τ)c = (8πa0)
−1ε2 E2

0 . (4.2.59)

Here we consider the fluctuations varying perpendicularly to E0 because Hdip = 0 for
them. This result is consistent with Landau and Lifshitz’s mean field calculation of the
shift (�T )c in one-component systems [36]. However, Debye and Kleboth obtained a shift
of the critical temperature in the reverse direction (= the minus of (4.2.59)) for binary fluid
mixtures [37].5 We should note that it is very difficult to detect the shift unambiguously,
because a very high field is needed in one-component fluids and ohmic heating due to an
electric current is usually inevitable in binary fluid mixtures [52].

5 A recent experiment [46] on near-critical polymer solutions detected large electric field effects, apparently supporting Debye
and Kleboth’s prediction. An explanation of their finding is needed.
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Effects on the critical fluctuations

When E0 is homogeneous, the interaction Hdip in (4.2.58) becomes simple in the Fourier
space as [48],

Hdip = 1

2
Tcge

∫
q

1

q2
q2

x |ψq|2, (4.2.60)

where q is much larger than the inverse cell width and

ge = (4πTcεc)
−1ε2

1 E0
2. (4.2.61)

A dipolar interaction with the same form is well known in uniaxial ferromagnets [50]
and ferroelectrics [51]. It can nonlinearly influence the critical fluctuations in the case
χ−1 < ge or |T/Tc − 1| < τe, where τe is the crossover reduced temperature. Thus
τe ∝ g1/γ

e . If K = ξ2/χ is regarded as a constant (or the exponent η is neglected), τe is
expressed as

τe = (ξ2
+0ge/K )1/2ν . (4.2.62)

The wave number characterizing the anisotropy is thus (ge/K )1/2 = ξ−1
+0 τ

ν
e . For example,

τe ∼ 10−8 and (ge/K )1/2 ∼ 103 cm−1 for typical binary fluid mixtures like aniline +
cyclohexane at E0 = 1 kV/cm.6 The structure factor in the presence of Hdip becomes
uniaxial as

I (q) = (χ−1 + geq2
x /q2 + K q2)−1. (4.2.63)

This anisotropic form has not yet been measured by light scattering, but it can be detected,
even for τe � τ , using high-sensitivity optical techniques in electric birefringence (the
Kerr effect) [43]–[45] and dichroism [47]. That is, if the local dielectric constant εop

at optical frequencies weakly depends on ψ , we may calculate the electric field within
the fluid and the fluctuation contribution to the macroscopic dielectric tensor at optical
frequencies. It has slightly different xx and yy components [48]. In particular, when
kξ � 1 and ξ(ge/K )1/2 � 1, it has been predicted that

�εop ∝ ge E2
0 ∝ E2

0ξ
1−2η, (4.2.64)

to linear order in ge. Experimentally, however, �εop ∝ (T/Tc − 1)−& with & ∼= 0.84 was
obtained [45]. Note that �εop generally takes a complex value, and its imaginary part is
detectable in the effect of form dichroism [48]. Further discussions on this topic will be
given in Section 6.1.

The macroscopic dielectric constant εeff is determined by εeff(/L = 4π〈Q〉/S, where
S is the surface area of the parallel plates. As E0 → 0, we have [40, 48],

εeff = εc + C1(T/Tc − 1)1−α + C2(T/Tc − 1)+ · · · , (4.2.65)

where C1 and C2 are constants.

6 At E = 1 kV/cm we have E2/4π = 0.9 erg/cm3.
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Critical electrostriction

Finally, we consider equilibrium in which 〈E〉 ∼= E0 varies slowly in space. From (4.2.54)
the functional derivative of the total GLW hamiltonian H + He with respect to ψ should
be homogeneous on average. Thus,〈

δ

δψ
H

〉
− 1

8π

〈
|E|2

(
∂ε

∂ψ

)
T

〉
= const., (4.2.66)

where the first term is nearly equal to the thermodynamic chemical potential (difference)
without an electric field, µ(T, M), in one-component fluids (binary mixtures) for ge �
χ−1. We are led to the well-known relation for the chemical potential in an electric field
[36],

µ(T, M, E0) ∼= µ(T, M)− 1

8π
E2

0ε1, (4.2.67)

which is constant in space. For one-component fluids in equilibrium, an inhomogeneous
average mass-density variation is induced as

〈δρ〉 = KT
〈ρ〉
8π

E2
0ε1 + const., (4.2.68)

where KT is the isothermal compressibility. In binary fluid mixtures we also expect a
similar relation for an inhomogeneous average composition variation, but the equilibration
process is diffusive and slow. Experimentally, (4.2.68) was confirmed optically for SF6

around a wire conductor [52], and (4.2.67) was used to determine µ(T, M) for 3He in a
cell within which a parallel-plate capacitor was immersed [53].

4.3 Static renormalization group theory

We have seen that the fluctuation contributions in the normal perturbation theory increase,
leading to its breakdown at long wavelengths for d < 4, as the critical point is approached.
However, a more elaborate perturbation scheme can be devised, in which the fluctuation
effects are taken into account in a step-wise manner. That is, in the equilibrium distribution
∝ exp(−βH), we take the thermal average of the fluctuations in a thin shell region in the
wave-vector space,

�− δ� < k < �, (4.3.1)

with those in the long-wavelength region k < � − δ� held fixed. Let H> be the part
of H involving the fluctuations in the shell region and H< be that containing only the
long-wavelength fluctuations with k < � − δ�. The functional integration of ψk in the
shell region is expressed as

exp(−βH′ − βδF) =
∫ >

[dψ] exp(−βH)

= exp(−βH<)

∫ >

[dψ] exp(−βH>). (4.3.2)



4.3 Static renormalization group theory 145

Here H′ = H< + δH is a new coarse-grained hamiltonian, where δH is the fluctuation
contribution. The increment δF is independent of ψ , so it is the fluctuation contribution to
the thermodynamic free energy and satisfies

δF =
[

∂

∂�
F(�)

]
δ�, (4.3.3)

where F(�) = − ∫ ∞
�

d�′[∂F(�′)/∂�′] is the contribution to the free energy from the
fluctuations with wave numbers larger than �. Thus,

F = lim
�→0

F(�) = −
∫ ∞

0
d�

[
∂

∂�
F(�)

]
(4.3.4)

is the thermodynamic free energy. The coefficients in H = H(�) depend on � and obey
differential equations, called renormalization group (RG) equations [1]–[12]. It is crucial
that, if ε = 4 − d is regarded as a small expansion parameter, the RG equations can be
constructed analytically in perturbation series with respect to the coupling constants g in
(4.1.22) and v in (4.1.55) which can be regarded to be of order ε. This ε expansion is easily
handled, at least to first order in ε, and is unambiguously performed even at higher orders
in ε in statics.7

We shall see that the coupling constants g and v tend to universal numbers of order ε as
� is decreased sufficiently close to the critical point. The effect of the coarse-graining is
then to give rise to multiplicative factors �w of the coefficients in the GLW free energy. The
exponent w is expanded as w = w1ε+w2ε

2+· · · in powers of ε. This multiplicative effect
stops when � is decreased down to the order of the inverse correlation length κ , giving
rise to the hydrodynamic hamiltonian Hhyd in (4.1.56). The coefficients thus obtained are
renormalized and can be related to experimentally observable quantities. The renormalized
coefficients, denoted with the subscript R, behave as

rR ∼= 2γRCRτ ∼ κ2−η,

uR ∼ κε−2η, KR ∼ κ−η,

γR ∼ κ(ε+α/ν)/2−η, CR = CH ∼ κ−α/ν. (4.3.5)

The first line holds in disordered states at h = 0, where rR is equal to the inverse of the
susceptibility χ . Note that the first relation can be rewritten as γRCR ∼ κ(γ−1)/ν , leading
to the behavior of γR in the third line with the aid of (2.1.11) and (2.1.12). The nonlinear
coupling constants u0 and γ0 decrease with the coarse-graining and saturate to the values
given above.8

4.3.1 Renormalization group equations for r and g (n = 1)

We will set up the RG equations valid to leading order in ε at h = 0 and r ≥ 0 in Ising-like
systems. Generalization to n-component systems will be presented in Appendix 4C. To

7 Abe developed another approach in which the inverse of the spin component number is treated as an expansion parameter (the
1/n expansion) [54].

8 The strong cut-off dependence of γ0 will turn out to be crucial in the calculation of the bulk viscosity in Section 6.2.
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Fig. 4.3. The contributions to the four-body coupling u0.

examine the behavior r and g, we may start with the GLW hamiltonian in (4.1.1) without
the energy variable. We may treat the coefficient K as a constant to first order in ε in
disordered states with 〈ψ〉 = 0.9 We thus set

K = 1. (4.3.6)

Using the integration in (4.1.19), we pick up the contribution from the shell region (4.3.1)
to obtain

δr = −3rg�δ�/(r +�2)+ · · · , (4.3.7)

where g is defined by (4.1.22). It is convenient to introduce " by

� = �0e−". (4.3.8)

The parameter " increases from 0 (at the starting point of the RG procedure) to ∞ (in
the hydrodynamic limit). The initial wave number �0 should be considerably smaller than
the inverse lattice constant to assure the coarse-grained hamiltonian (4.1.1). Because δ" =
δ�/�, the differential equation for r becomes

∂

∂"
r = −3gr/(X + 1), (4.3.9)

where

X = r/�2 = re2"/�2
0 (4.3.10)

is small initially (" = 0) but grows eventually (" → ∞).
It is crucial that the coupling constant u0 changes as � is decreased. Taking only the

leading order correction (∝ g2) in Fig. 4.3, we obtain

δu0 = −9u0g�3δ�/(r +�2)2 + · · · . (4.3.11)

The incremental change of g ∝ u0/�
ε is written as

δg = [
εg − 9g2�4/(r +�2)2 + · · · ]δ�/�. (4.3.12)

The differential renormalization group equation for g up to order O(g2) becomes

∂

∂"
g = εg − 9g2/(X + 1)2. (4.3.13)

9 For 〈ψ〉 �= 0 this is not the case, as can be seen in (4.3.97) below.
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Solution for X (") � 1

For r � �2
0 (or very close to the critical point) the region 0 < " < ln(�0/

√
r) has a

sizable width, in which we may set X � 1 to obtain

∂

∂"
r = −3gr,

∂

∂"
g = εg − 9g2. (4.3.14)

To solve this equation we define

Q(") = eε" + g∗/g0 − 1, (4.3.15)

where g0 = g(0) is the initial value and

g∗ = 1

9
ε + · · · . (4.3.16)

is the fixed-point value. Then,

g(") = g∗ exp(ε")/Q("), (4.3.17)

r(") = a00τ exp

[
−3

∫ "

0
d"′g("′)

]
= a00τ

[
1 + (eε" − 1)g0/g∗]−1/3 (4.3.18)

where a00 = a0(0) = r(0)/τ is the initial coefficient.

Mean field critical behavior

In the weak coupling case g0 � g∗ the mean field critical behavior can be realized. This
occurs if u0(") ∼= u0(0) and r(") ∼= r(0) = a00τ even at X (") = 1 or e−" = r1/2/�0. In
terms of the quantities at " = 0 this condition becomes

e−ε" = (a00τ/�
2
0)

ε/2 � g0/g∗ or g∗(a00τ)
ε/2 � Kdu0, (4.3.19)

which is equivalent to the Ginzburg criterion (4.1.24) and is rewritten as τ � Gi. The
coefficient a0 does not change from a00.

Asymptotic critical behavior

For τ � Gi there appears a sizable region of " in which X (") < 1 and

g(") ∼= g∗, r(") = a0(")τ ∼= a00(g
∗/g0)

1/3τe−ε"/3. (4.3.20)

The fluctuations in this wave number region give rise to the asymptotic critical behavior,
as given by (4.3.5). However, as " is increased such that X (") > 1, the remaining
fluctuations are weakened and may be treated with a normal perturbation scheme, giving
rise to corrections to the critical amplitudes and not to the exponents. We thus encounter
a crossover at " = "∗, where X ("∗) = 1 and the lower cut-off is the inverse correlation
length,

κ = ξ−1
+0 τ

ν = �0 exp(−"∗) or exp("∗) = �0ξ+0τ
−ν . (4.3.21)
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We then consider the post-crossover behavior realized in the region " > "∗. The dimen-
sionless coupling parameter g starts to grow as

g(") ∼= g∗ exp[ε("− "∗)], (4.3.22)

which means that the coefficient u0 saturates to the renormalized value determined by

u0(") → uR ∼= K−1
d g∗κε. (4.3.23)

As a result, r(") saturates at the inverse susceptibility as

r(") → rR = a00(g
∗/g0)

1/3τ exp(−ε"∗/3). (4.3.24)

Here we are in the hydrodynamic regime, where κ is determined by rR = κ2. The critical
exponents ν and γ are expanded as

ν =
(

2 − 1

3
ε + · · ·

)−1

= 1

2
+ 1

12
ε + · · · ,

γ = (2 − η)ν = 1 + 1

6
ε + · · · , (4.3.25)

to first order in ε. The microscopic length ξ+0 in the relation κ = ξ−1
+0 τ

ν is also changed
by the fluctuation effect as

ξ−1
+0 = �1−2ν

0 [a00(g
∗/g0)

1/3]ν = aν
00(g

∗/Kdu0)
ν/3, (4.3.26)

which is different from the mean field expression ξ+0 = a−1/2
0 (valid in the region Gi <

τ < 1 if Gi � 1). Eliminating a00 from rR in favor of ξ+0 we have

aR = rR/τ = ξ−2
+0 τ

γ−1. (4.3.27)

4.3.2 Renormalization group equation for v (n = 1)

We next start with the hamiltonian (4.1.45) which includes the energy density m in
Ising-like systems. See Appendix 4C for the RG results in n-component systems. The
two coefficients γ0 and C0 may be expressed in terms of v in (4.1.55) and a0 = 2γ0C0 as

γ0 = 2K−1
d �εK 2v/a0, (4.3.28)

C0 = 1

4
Kd�

−εa2
0/K 2v, (4.3.29)

where we may set K = 1 to first order in ε. We will set up the RG equation for C0("),
γ0("), and v(") for X (") � 1 and examine the asymptotic critical behavior.

From (4.1.53) or from the contribution represented by the diagrams in Fig. 4.4, we obtain
the incremental increase of C0 as

δC0 = 2C0vδ�/�+ · · · (4.3.30)
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Fig. 4.4. The contributions to the correlation function of the energy variable m or to the specific heat
(4.1.51). The wavy lines on the right-hand side represent the bare two-body correlation function of
m or the first term on the right-hand side of (4.1.51).

Fig. 4.5. The contributions to the three-body coupling γ0.

leading to
∂

∂"
C0 = 2vC0. (4.3.31)

The diagrams in Fig. 4.5 give rise to two contributions to γ0 in the form,

δγ0 = −(3g + 2v)γ0δ�/�+ · · · . (4.3.32)

Its differential form is
∂

∂"
γ0 = −(3g + 2v)γ0. (4.3.33)

Up to second order in g and v, the RG equation for v becomes

∂

∂"
v = εv − 2(3g + v)v. (4.3.34)

Using (4.3.9), (4.3.31), and (4.3.33) we may derive the relation,

∂

∂"
(2γ0C0) = 1

τ

∂

∂"
r, (4.3.35)

for X � 1. The relation 2γ0C0 = r/τ holds for � � κ to all orders in ε in the asymptotic
limit. In the limit � → 0 we have 2γRCR = γ r/τ in (4.1.58) including the effect of the
fluctuations with wave numbers on the order of κ .

Solution at criticality

From (4.3.34) v tends to a fixed-point value,

v∗ = 1

6
ε + · · · . (4.3.36)

However, the approach of v to v∗ is much slower than that of g to g∗. In fact, if (4.3.17) is
used, (4.3.34) is exactly solved to give [55]10

v(") = v∗ exp(ε")
/[

Q(")+ w0 Q(")2/3]
, (4.3.37)

10 From (4.3.15) we have Q(") > g∗/g0, from which the denominator of (4.3.37) is positive-definite even for w0 < 0.
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where Q(") is defined by (4.3.15), v0 = v(0) is the initial value, and

w0 = (g0v
∗/v0g∗ − 1)(g∗/g0)

1/3. (4.3.38)

Then (4.3.31) and (4.3.33) yield

C0(") = C00(v0/v
∗)(g∗/g0)

2/3[
Q(")1/3 + w0

]
, (4.3.39)

γ0(") = γ00(v
∗/v0)(g0/g∗)1/3/[

Q(")2/3 + w0 Q(")1/3]
, (4.3.40)

where C00 = C0(0) and γ00 = γ0(0) are the initial values. The coefficient in C0(") may be
rewritten in terms of ξ+0 as

C00(v0/v
∗)(g∗/g0)

2/3 = Kdξ
−d
+0 (ξ+0�0)

−ε/3/4v∗, (4.3.41)

using the initial relation C00v0 = Kda2
00/4�ε

0 arising from (4.3.29) at " = 0 and the
expression (4.3.26) for ξ+0.

Furthermore, in the " region where Q(") ∼= exp(ε"), v(") and C0(") behave as

v(") = v∗/(1 + w0e−ε"/3), (4.3.42)

C0(") = 1

4v∗
Kdξ

−d
+0 (ξ+0�0)

−ε/3(eε"/3 + w0). (4.3.43)

If w0 is not small, these quantities exhibit slow transient behavior even in the region where
g ∼= g∗.

Crossover at small, positive τ

For " > "∗, C0(") saturates into the specific heat CH (= CM ) at zero magnetic field, which
is obtained if we set " = "∗ in (4.3.43). We thus find the critical behavior,

CH = A0τ
−α + CB, (4.3.44)

with

α = 1

6
ε + · · · . (4.3.45)

If use is made of (4.3.21), the critical amplitude A0 becomes

A0 = 1

4v∗
Kdξ

−d
+0 . (4.3.46)

Now the relation (2.1.45) of the two-scale-factor universality is derived in the form [56],

Rξ = lim
τ→+0

ξ(ατ 2CH )1/d =
(

1

4
Kd

)1/d

. (4.3.47)

This result is valid only to leading order in ε. Nevertheless, if we set d = 3, we have
Rξ = (8π2)−1/3 ∼= 0.23 close to the reliably estimated value 0.25 (see the discussions
below (2.1.45)). The background specific heat CB is expressed as

CB = C00
(
1 − g∗v0/v

∗g0
)
. (4.3.48)



4.3 Static renormalization group theory 151

In terms of Rξ and the Ginzburg number Gi defined by (4.1.25), CH can also be expressed
as

CH = Rd
ξ ξ

−d
+0

1

α

(
τ−α − Gi−α

) + C00. (4.3.49)

The above form holds for τ � Gi in general n-component systems, as will be evident from
results in Appendix 4C.

4.3.3 Perturbation theory at g = g∗ and v = v∗

Exponentiation of logarithmic terms (n = 1)

If g = g∗ from the starting point (" = 0), it does not change with the coarse-graining until
the crossover at " = "∗ is reached. For this special choice, logarithmic terms in the usual
perturbation series near four dimensions may be exactly exponentiated to give the correct
critical behavior [5]. With this in mind, we can derive the correct asymptotic results using
naive perturbation expansions. Here it is important that the upper cut-off � is fixed (so it
may be set equal to 1 in the actual calculations). For example, (4.1.23) gives

χ−1 = r
[
1 − 3g ln(�/κ)+ O(ε2)

]
∼= r(κ/�)3g. (4.3.50)

The exponentiation in the second line is clearly correct at g = g∗. Also we notice that
(4.1.40) should hold just at g = g∗, resulting in the ε expansion of the critical exponent η
for n = 1,

η ∼= 3

2
(g∗)2 = 1

54
ε2. (4.3.51)

In the same manner, if we set v = v∗ from the starting point and exponentiate logarith-
mic terms in the simple perturbation expansions, we can obtain the correct critical behavior.
As such an application, let us consider the thermodynamic free energy F for h = 0 and
τ > 0 using this strategy. Note that the gaussian integration of exp(−βH0) with respect
the Fourier component ψk gives rise to the factor (2π)1/2/(r+k2)1/2. From (4.3.2)–(4.3.4)
this gives rise to

F/TcV = −1

2
C0τ

2 + 1

2

∫
k

ln(r + k2)+ · · · . (4.3.52)

The first term is the mean field contribution arising from the last term in the second line
of (4.1.45). The second term is the fluctuation contribution in the leading order. If use is
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made of (4.3.29), the singular free-energy density is of the form,11

1

Tc
fsing ∼= −1

2
C0τ

2 + 1

8
K4r2[

ln(r/�2)+ const.
]

∼= −1

2
C0τ

2[
1 − v∗ ln(r/�2)

]
. (4.3.53)

We recognize that the fluctuation contribution is higher by ε than the mean field contribu-
tion and that the exponentiation at v = v∗ yields

1

Tc
fsing ∼= −1

2
C0τ

2(κ/�)−ε/3

∼= − 1

8v∗
Kdκ

d , (4.3.54)

where the second line follows from (4.3.29) at g0 = g∗ and v0 = v∗. This result is
consistent with the singular specific-heat behavior in (4.3.44) and (4.3.46). The constant
specific-heat contribution CB in (4.3.48), which gives rise to the regular term −TcCBτ

2/2
in the free-energy density, vanishes for g/v = g∗/v∗ and is nonexistent in the above
calculation.

Higher-order perturbation calculations in n-component systems

The above exponentiation procedures can be extended to higher orders in ε for special
values of g = g1ε + g2ε

2 + · · · [57] and v = v1ε + v2ε
2 + · · ·. Technically, efficient ε

expansion calculations to higher orders can be performed without imposing a sharp cut-off
in the wave number integrations but by adding the following higher-order gradient term
(smooth cut-off) to the hamiltonian (4.1.1) [5, 57, 58]

βHcut-off =
∫

dr
1

2
�−2|∇2ψ |2 =

∫
k

1

2
�−2k4|ψk|2. (4.3.55)

With this term the zeroth-order two-body correlation becomes 1/(r0 + k2 + k4/�2) ∼=
1/(r0 + k2)− 1/(�2 + k2), which decays to zero rapidly for k > �. With this method, g∗

is calculated as

g∗ = ε

n + 8

{
1 +

[
9n + 42

(n + 8)2
− 1

2

]
ε

}
+ O(ε3), (4.3.56)

up to order ε2 for n-component systems. If the sharp cut-off method is used, g∗ is not given
by (4.3.56), though the leading term of order ε is unchanged [59]. However, the observable
quantities such as the critical exponents and amplitude ratios should be independent of the
method used to introduce the upper cut-off. In the same manner, v∗ was calculated (in the
context of critical dynamics) as [23]

v∗ = α

2nν

(
1 − 1

2
ε

)
+ O(ε3) = g∗

(
4 − n

2n
− 2

n
ε

)
+ O(ε3). (4.3.57)

11 The second derivative of the second term of (4.3.52) with respect to r is equal to 4−1 K4 ln(�2/r) at d = 4. Its integration
gives (4.3.53). Here there arises a term linear in r ∝ τ , but it is incorporated into the regular part of the free energy. In fact, it
gives only a constant contribution to the average energy density and no contribution to the specific heat.
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We will use the expansion of v∗/g∗ up to order ε in (4.3.77) below. The second-order
corrections of the critical exponents can be known from

η = n + 2

2(n + 8)2
ε2 + O(ε3), (4.3.58)

α

2ν
= 4 − n

2(n + 8)
ε − (n + 2)(13n + 44)

2(n + 8)3
ε2 + O(ε3)

= g∗
(

4 − n

2
− n + 4

4
ε

)
+ O(ε3), (4.3.59)

if use is made of the exponent relations in Section 2.1.

4.3.4 Singular free energy for general h and τ in n-component systems

So far we have assumed h = 0 and τ > 0 in Ising systems. Here we generalize our argu-
ments for general h and τ in n-component spin systems. We perform simple perturbation
calculations by setting g = g∗ and v = v∗. The upper cut-off � is fixed here, so it will be
set equal to 1. In isotropic n-component systems the average order parameter Mi = 〈ψi 〉
and the magnetic field hi are vectors related by

Mi = ĥi M(h), (4.3.60)

where ĥi = hi/h and h = |h|. Differentiation with respect to h j gives the spin correlation
functions,

〈ψi : ψ j 〉 = ∂

∂h j
Mi = (δi j − ĥi ĥ j )

1

h
M + ĥi ĥ j

∂

∂h
M (4.3.61)

where 〈 : 〉 is the variance defined by (1.1.35). Thus, by setting 〈ψi 〉 = Mδi1, we find
general expressions for the longitudinal and transverse susceptibilities,

χL = 〈ψ1 : ψ1〉 = ∂

∂h
M,

χT = 〈ψ2 : ψ2〉 = 1

h
M. (4.3.62)

We notice that χT should tend to ∞ as h → 0 with τ < 0. In fact, we shall see that the
structure factor IT(k) of ψ2 behaves as k−2 at small wave number k.

It is almost trivial to set up the singular free energy including the leading order correc-
tions in ε. In the mean field approximation we have the relations, IL(k) = 〈|ψ1(k)|2〉 ∼=
1/(rL + k2) and IT(k) = 〈|ψ2(k)|2〉 ∼= 1/(rT + k2) , with

rL = r + 3u0 M2, rT = r + u0 M2. (4.3.63)

The integrations of the Fourier components with wave vector k give the multiplicative
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factor [IL(k)IT(k)(n−1)]−1/2 to the partition function. As will be shown in Appendix 4D,
we may then derive the singular free-energy density,

1

Tc
fsing = 1

2
r M2 + 1

4
u0 M4 − hM − 1

2
C0τ

2

+ 1

8
K4

[
r2

L

(
ln rL + 1

2

)
+ (n − 1)r2

T

(
ln rT + 1

2

)]
, (4.3.64)

where r = a0τ with τ = T/Tc − 1. The right-hand side may be regarded as an expansion
with respect to ε if we regard r ∼ ε0, M ∼ ε−1/2, u0 ∼ ε, h ∼ ε−1/2, C0 ∼ ε−1.
Here, the logarithmic terms in the parentheses are the most important corrections, while
the non-logarithmic terms proportional to r2

L or r2
T in the brackets depend on the method

of introducing the upper cut-off �. Note that we have used the smooth cut-off introduced
by Hcut-off in (4.3.55), because the ε expansions of g∗ and v∗, (4.3.56) and (4.3.57), up to
order ε2 will be used in calculating the universal amplitude ratios.

Equation of state

We determine M from the minimum condition (∂ fsing/∂M)hτ = 0. By setting K4u0 = g
we obtain [5, 59]

h

M
= r + u0 M2 + 3

2
g

[
rL ln(erL)+ 1

3
(n − 1)rT ln(erT)

]
=

[
r + u0 M2 + 3

2
grL ln(erL)

][
1 + 1

2
(n − 1)g ln(erT)

]
. (4.3.65)

The first and second lines coincide up to first-order corrections. The second line is conve-
nient for the case h → 0 and r < 0. We examine some typical cases as follows.

(i) As h → 0 with τ > 0, h/M tends to the inverse susceptibility,

χ−1 = ξ−2 = r

[
1 + n + 2

2
g ln(er)

]
= r(er)(n+2)g/2, (4.3.66)

from the first line of (4.3.65). At g = g∗ this leads to the ε expansion,

γ = 1 + n + 2

2(n + 8)
ε. (4.3.67)

(ii) We set r = 0 to obtain

h = u0 M3
[

1 + n + 8

2
g ln(eu0 M2)+ 9

2
g ln 3

]
∝ M3(u0 M2)(n+8)g/2, (4.3.68)

which yields

δ = 3 + (n + 8)g = 3 + ε. (4.3.69)
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(iii) When h → 0 with r < 0, we have rL = 2|r | as ε → 0 and the second line of (4.3.63)
yields

u0 M2 = |r | − 3

2
grL ln(erL) = |r ||2er |−3g, (4.3.70)

so we have

β = 1

2
(1 − 3g) = 1

2
− 3

2(n + 8)
ε. (4.3.71)

Specific heat

The singular average energy density (divided by Tc) is given by 〈m〉 = −(∂ fsing/∂τ)h =
−(∂ fsing/∂τ)M from (∂ fsing/∂M)hτ = 0 in (4.3.65). Therefore,

〈m〉 = C0τ − a0

{
1

2
M2 + 1

4
K4

[
rL ln(erL)+ (n − 1)rT ln(erT)

]}
= C0

a0

{
r − 2v

g
u0 M2 − v

[
rL ln(erL)+ (n − 1)rT ln(erT)

]}
, (4.3.72)

where we have set v = K4a2
0/4C0 on the second line.

(i) At h = 0 with τ > 0, we obtain

〈m〉 = C0a−1
0 r

[
1 − nv ln(er)

] = C0a−1
0 r(er)−nv, (4.3.73)

which yields the specific heat at constant magnetic field,

CH =
(
∂〈m〉
∂τ

)
h
= (1 − nv)C0(er)−nv, (4.3.74)

so

α = nv = 4 − n

2(n + 8)
ε. (4.3.75)

(ii) When h → 0 with r < 0, we use the first line of (4.3.65) to eliminate the logarithmic
term ∝ rT ln(erT) to obtain

〈m〉 = C0a−1
0

[
(1 + 2v/g)r + 2vrL ln(erL)

]
. (4.3.76)

From (4.3.56) and (4.3.57) we have v/g = (4 − n)/2n − 2ε/n up to first order in ε at the
fixed point, so that

〈m〉 = C0a−1
0 r

[
4

n
(1 − ε)− 4v ln(erL)

]
= C0a−1

0
4

n(1 + ε)
r |2er |−nv. (4.3.77)

Thus,

CH = C0
4

n(1 + ε)
(1 − nv)|2er |−nv. (4.3.78)
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Let us write CH at h = 0 as A0τ
−α for τ > 0 and as A′

0|τ |−α for τ < 0. Then, we derive
a well-established formula for the ratio of critical amplitudes [4, 8, 12], [60]–[62],

A0/A′
0 = 2α−2n(1 + ε). (4.3.79)

The right-hand side of (4.3.79) can give a good estimate of the amplitude ratio at ε = 1.
In fact, it is about 0.5, 1, and 1.5 for n = 1, 2, and 3 in 3D from experiments and reliable
theories [12, 62].

4.3.5 Results for Ising-like systems

For n = 1 there is no contribution of the transverse spin fluctuations. The equation of state
and the inverse susceptibility 1/χ = (∂h/∂M)τ are obtained after exponentiation as

h/M = [
r + u0 M2(erL)

ε/3]
(erL)

ε/6, (4.3.80)

χ−1 = [
r + (3 + ε)u0 M2(erL)

ε/3]
(erL)

ε/6, (4.3.81)

for any h and τ . The susceptibility at h = 0 behaves as χ ∼= �0τ
−γ for τ > 0 and as

χ ∼= �′
0|τ |−γ for τ < 0 with

�0/�
′
0 = (2 + ε)2ε/6, (4.3.82)

to first order in ε. This is consistent with a more elaborate expression,

�0/�
′
0 = 2γ−1(γ /β)(1 + 0.112ε3 + · · ·), (4.3.83)

which is valid up to order ε3 [12, 60]. The above ratio is estimated to be about 4.9 for 3D
Ising models.

The specific heat CM = (∂〈m〉/∂τ)M at constant magnetization is readily calculated as

CM ∼=
(

1 − ε

6

)
C0(erL)

−ε/6, (4.3.84)

which is valid for any h and τ . The critical amplitudes of CM at h = 0, which behaves as
AM0τ

−α for τ > 0 and as A′
M0|τ |−α for τ < 0, satisfy

AM0/A′
M0 = 2α ∼= 1. (4.3.85)

The correction to the above result is of order ε3 [5]. The parametric model in Section 2.1
gives CM in the simple form (2.1.51) and leads to AM0/A′

M0 = (b2 − 1)−α [24], where
b is defined by (2.1.48). This agrees with (4.3.85) because b2 = 3/2 + O(ε2) [5]. On the
coexistence curve we also have

CM/CH = 1 − Rv = A′
M0/A′

0 = 1

4
(1 + ε), (4.3.86)

where Rv is defined by (1.1.48) and behaves as (3 − ε)/4. This result also follows from
Rv = (∂M/∂τ)2

h/CHχ using (4.3.70), (4.3.78), and (4.3.81). It is known that Rv ∼= 0.5
and hence a2

c = Rv/(1 − Rv) ∼= 1 in 3D Ising systems (see footnote 2 below (2.2.37)).
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The correlation length ξ can be determined from the small wave number behavior of
the structure factor I (k) as in the first line of (2.1.9). In Appendix 4E we will derive the
following expression, valid for kξ � 1,

1/I (k) = χ−1 + k2
(

1 + ε

6
u0 M2χ

)
, (4.3.87)

where χ is given by (4.3.81). Thus,

ξ2 = χ

[
1 + ε

6
u0 M2/(r + 3u0 M2)

]
. (4.3.88)

The amplitude ratio ξ+0/ξ−0 is equal to 21/2 in the mean field theory, and its ε expansion
follows from (4.3.70) and (4.3.81) as

ξ+0/ξ−0 = 2ν
(

1 + 5

24
ε + · · ·

)
. (4.3.89)

Its reliable estimate is 1.91 in 3D Ising models.

4.3.6 Specific heats in classical fluids

In fluids, the usually measured specific heats, CV in one-component fluids and C pX in
two-component fluids, correspond to CM in Ising systems as shown in (2.2.25) and (2.3.27)
(or (2.3.63)), respectively. If we write CV as A(T/Tc −1)−α on the critical isochore above
Tc and as A′(1 − T/Tc)

−α on the coexistence curve below Tc, (4.3.85) yields

A/A′ = AM0/A′
M0

∼= 1. (4.3.90)

The same result also follows from (2.1.51) in the parametric model scheme [24]. Dahl and
Moldover [63] measured CV of 3He in a single phase of liquid states near the coexistence
curve and indeed found A/A′ ∼= 1 in agreement with (4.3.90). In other experiments on the
coexistence curve, however, the specific heat has been measured in two-phase coexistence
at a constant volume of the total system [64]–[69],12 where the volume fraction of each
phase adjusts to change such that the pressure and temperature stay on the coexistence
curve. The critical behavior of the resultant specific heat (CV )cx was first considered by
Fisher [70]. In Appendix 4F we will show that it behaves as

(CV )cx ∼= (1 + a2
c )CV (4.3.91)

and asymptotically corresponds to CH , where ac is the universal number defined by
(2.2.37). Thus, if we write (CV )cx ∼= Acx(1 − T/Tc)

−α , we obtain

Acx/A = A′
0/A0 ∼= 2. (4.3.92)

12 See Section 6.3 for discussions of CV measurements in two-phase coexistence [65, 66]. Voronel’s group [68] stirred near-
critical fluids to measure CV . See Section 11.1 for the effects of stirring.
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This result has been reported widely in the literature [62, 69] as an evidence of corre-
spondence between fluids and Ising systems, but the above delicate issue has not been
recognized.

We also comment on the background specific heat in one-component fluids. In particular,
on the critical isochore above Tc, CV can be written as

CV = A
[
(T/Tc − 1)−α + B

]
. (4.3.93)

The constant B is about −0.5, −0.9, and 0.3 for 4He [64], CO2 [67], and SF6 [69],
respectively, whereas it is nearly zero for 3He [65, 66]. If use is made of (1.2.53), the
sound velocity can be written as

ρc2 = Tc

(
∂p

∂T

)2

cx
A−1[

(T/Tc − 1)−α + B
]−1

. (4.3.94)

We have derived the above form for CH in (4.3.44) for Ising systems (and will do so in
(4C.11) for n-component systems). The CV and CH are related by CV = b2

cCH from
(2.2.25) on the critical isochore above Tc, where τ = bc(T/Tc −1) with bc = Tc(∂τ/∂T )h

from (2.2.15) and (2.2.16) , so B is expressed as

B = CBbαc /A0, (4.3.95)

in terms of A0 in (4.3.46) and CB in (4.3.48). In Chapter 6 we shall see that the background
specific heat CB crucially influences the behavior of critical acoustic attenuation [71].

4.3.7 Broken symmetry for n ≥ 2

As h → 0 with τ < 0 in non-Ising systems (n ≥ 2), interesting effects arise due
to the fluctuations of the transverse part ψT = (ψ2, . . . , ψn) of the order parameter.
Let GT(r) = 〈ψ j (r)ψ j (0)〉 ( j = 2, . . . , n) be the transverse correlation function. The
transverse structure factor grows at small wave numbers as

IT(k) =
∫

dreik·rGT(r) ∼= 1

h/M + KRk2
. (4.3.96)

As h → 0 the coefficient KR behaves as

KR =
[

1 + 1

2
g + O(ε2)

]
r−ην

L
∼= 1 + 1

2(n + 8)
ε, (4.3.97)

as will be shown in Appendix 4E. As h → 0 we have a Coulombic correlation,

GT(r) ∼ 1

rd−2
(d > 2). (4.3.98)

It is believed that the deviation of the longitudinal part δψ1 = ψ1 − M is determined at
long wavelengths by ψT as

δψ1 ∼= − 1

2M

(|ψT|2 − 〈|ψT|2〉
)
, (4.3.99)
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which follows if the amplitude deviation is neglected as |ψ |2 = M2 + 2Mδψ1 + δψ2
1 +

|ψT|2 ∼= const. For the xy model (n = 2) this is equivalent to introducing the phase θ ,

ψ1 ∼= M cos θ ∼= M

[
1 − 1

2
θ2 + 1

2
〈θ2〉

]
, ψ2 ∼= M sin θ ∼= Mθ. (4.3.100)

We recognize that the transverse fluctuations are those of the angle or phase variables (for
any n ≥ 2), which exhibit slowly varying modulations without appreciable free-energy
penalty. The longitudinal correlation function GL(r) = 〈δψ1(r)δψ1(0)〉 thus behaves as
[62], [72]–[74]

GL(r) ∼= 1

2
(n − 1)M−2GT(r)

2 ∼ 1

r2d−4
, (4.3.101)

which follows from (4.3.99) if ψT obeys the gaussian distribution at long wavelengths. In
the presence of small positive h the tails of GT(r) and GL(r) are cut off at r ∼ "h , where

"h = (h/M KR)
−1/2. (4.3.102)

Thus the longitudinal susceptibility grows for small h as [5, 7, 72, 73]

χL ∼
∫

r<"h

dr
1

r2d−4
∼ |h|−ε/2. (4.3.103)

We shall see in (4.3.114) below that the longitudinal structure factor IL(k) grows as k−ε at
small k for h = 0.

Transverse correlation length and the superfluid density

In the literature [56, 62] a transverse correlation length ξT at h = 0 below Tc has been
introduced in terms of the transverse structure factor (4.3.96) by

ξd−2
T = lim

k→0
IT(k)k

2/M2 = (KR M2)−1. (4.3.104)

The right-hand side is proportional to (1−T/Tc)
−(d−2)ν to all orders in ε from the exponent

relation (2.1.13). Thus we may set

ξT = ξT0(1 − T/Tc)
−ν . (4.3.105)

For n = 2, slow modulations of the phase variable θ give rise to the following free-energy
density increase,

� fphase = 1

2
T ξ−d+2

T |∇θ |2. (4.3.106)

In 4He the superfluid velocity is given by vvvs = (h̄/m4)∇θ (where m4 is 4He mass) and
� fphase should coincide with the kinetic energy of the superfluid component, so that the
superfluid mass density turns out to be of the form,

ρs = T m2
4h̄−2ξ−d+2

T = T m2
4h̄−2 KR M2, (4.3.107)

which leads to ξT0 ∼= 3.4 Å at SVP from data of ρs along the λ line [75].
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As an example of the two-scale-factor universality for the case α ∼= 0, we may construct
a universal number [21],

R−
ξ = ξT0 A′1/d , (4.3.108)

where A′ is the amplitude of the logarithmic term in C p below Tλ in (2.4.2). This universal
relation is analogous to that in (2.4.4), but both ξT0 and A′ are measurable here. Indeed,
R−
ξ from experimental data agreed with the theoretical value ∼= 0.85 along the λ line [75].

It is easy to derive the following ε expansion,

(ξ+0/ξT0)
d−2 = (KR M2)r<0(χ

(d−2)/2)r>0

= 2−3ε/(n+8)(n + 8)Kd

[
1

ε
− 17n + 76

2(n + 8)2
+ O(ε)

]
, (4.3.109)

where we can find KR in (4.3.97), u0 M2 = gM2/Kd in (4.3.70) with g being expanded as
(4.3.56), and χ in (4.3.66). The expansion up to O(ε) was performed in Ref. [58].

4.3.8 Hydrodynamic hamiltonian for n ≥ 2

We have presented the hydrodynamic hamiltonian in (4.1.56) for the Ising case. Here it
is devised in ordered states at small h for n ≥ 2. The fluctuations with wave numbers
larger than ξ−1

T ∼ |τ |ν give rise to multiplicative factors of rL as in the disordered state.
The problem is then the nonlinear interaction among the transverse fluctuations with wave
numbers smaller than ξ−1

T . It is convenient to introduce the following variable,

ϕ = ψ1 − M + 1

2M

(|ψT|2 − 〈|ψT|2〉
)
. (4.3.110)

From the assumption (4.3.99), ϕ is decoupled from the transverse part ψT and should have
a well-defined variance χR ∝ |r |−γ at long wavelengths. Setting the upper cut-off wave
number at ξ−1

T , we propose a hydrodynamic hamiltonian for smooth variations of the order
parameter deviation δψ = (ψ1 − M, ψT) and the energy deviation δm,

1

T
Hhyd = 1

2

∫
dr

[
1

χR
ϕ2 + h

M
|ψT|2 + KR|∇ψT|2 + 1

C̃
(δm + ARϕ)

2
]
, (4.3.111)

where topological singularities are neglected.13 The term (h/2M)|ψT|2 arises from the
magnetic field energy −hψ1 = −h(ϕ−|ψT|2/2M)+const. and the cross term ARC̃−1δmϕ

from the coupling γ0m|ψ |2 in the original GLW hamiltonian. The coefficient AR is thus
related to the renormalized value of γ0 by

AR/C̃ = 2MγR. (4.3.112)

13 This form is analogous to the Ginzburg–Landau free energy for smectic A liquid crystals [76] in terms of the layer displace-
ment u(z, rT), where the lateral undulation ∇Tu corresponds to ψT and the dilational change ∇zu − |∇Tu|2/2 to ϕ. Note
also that anomalous fluctuations of the director orientation in the nematic phase are analagous to those of the transverse
components in the spin systems we are discussing in this chapter [76].
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Because ϕ and ψT obey gaussian distributions independently of each other, the long-
itudinal susceptibility is written as

χL = χR + (2M)−2〈|ψT|2 : |ψT|2〉

= χR + π(n − 1)(2 − ε)

8KR sin(πε/2)
Kdξ

2−ε
T

[(
h

KR M

)−ε/2

− ξεT

]
, (4.3.113)

where we assume 2 < d < 4. For h = 0, as in 4He below Tλ, we should consider the
longitudinal structure factor with nonvanishing wave number. For k � ξ−1

T it is expressed
at d = 3 as

IL(k) ∼= 3

64
(n − 1)K−1

R ξT
1

k
(h = 0). (4.3.114)

Here we should check the consistency between the result (4.3.113) derived from (4.3.111)
and the ε expansion of the equation of state (4.3.65), from which we have

χ−1
L = ∂h

∂M
= [

r + (3 + ε)u0 M2(erL)
3g]

(erL)
3g/2

[
1 + 1

2
(n − 1)g ln(erT)

]
, (4.3.115)

where the terms ∝ ln(erL) have been exponentiated. After some manipulations this expres-
sion is rewritten as

χL = χR + χR(n − 1)
g

ε

[
(rL/rT)

ε/2 − 1
]
. (4.3.116)

As h → 0, we have

χ−1
R = (2 + ε)|r |(2e|r |)(n+2)g/2 ∼ |r |γ . (4.3.117)

If we set n = 1 in the above expression, it becomes of the same form as χ−1 in (4.3.81)
for Ising systems. We can see that (4.3.113) and (4.3.116) are consistent for small ε if
use is made of (4.3.70) and (4.3.97). The other two coefficients C̃(∝ |τ |−α) and AR(∝
|τ |(γ−α)/2) in Hhyd are determined by

CH = 〈m : m〉 = C̃ + A2
RχR, (4.3.118)

∂M

∂τ
= 〈m : ψ1〉 = −ARχR. (4.3.119)

From M ∝ |τ |β we find

AR = βM/|τ |χR, C̃ = CH − β2 M2/|τ |2χR. (4.3.120)

As in the Ising case in (1.1.48), (2.2.37), and (4.3.86), we introduce the ratio,

Rv = A2
RχR/CH = β2 M2/(|τ |2CHχR). (4.3.121)

Then C̃ = CH (1 − Rv) holds and Rv < 1 is required. Its ε expansion is of the form,

Rv =
(

1 − n

4

)
− n

4
ε + O(ε2). (4.3.122)

For n = 2, however, the sum of the first two terms in the ε expansion vanishes at ε = 1.
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For 4He we obtain Rv ∼= 0.7(�0/�
′
0)nλ/C p by setting χ = �0τ

−γ for T > Tλ and
χR = �′

0|τ |−γ for T < Tλ. If �0/�
′
0 = (2 + ε)2γ−1 + O(ε2) is not much different from

the Ising value ∼ 5, Rv turns out to be considerably smaller than 1 for |τ | � 1.
Finally, we examine the singular part of the thermodynamic free energy due to the

transverse fluctuations. From (4.3.111) the long-wavelength fluctuations of ψT give rise
to the following free-energy density increase in the presence of h,

f (h, τ )− f (0, τ ) = T

2
(n − 1)Kd

∫ 1/ξT

0
dkkd−1[

ln(h/KR M + k2)− ln(k2)
]

∼= const.|τ |βh + π(n − 1)Kd T ξ2
T

2d sin(πε/2)KR

[
h2 − (KR M/ξ2

T)
ε/2hd/2]

,

(4.3.123)

where h > 0 is assumed. This expression is valid for h/KR M � ξ−2
T and τ < 0. The free

energy thus contains the term ∝ hd/2, which gives rise to the average order parameter,

M = − 1

T

(
∂ f

∂h

)
τ

= B0|τ |β + π(n − 1)Kd

4 sin(πε/2)
(ξd−2

T /KR)
d/4h(d−2)/2 + O(h), (4.3.124)

and χL ∝ h−ε/2 in (4.3.113). We note that the singular free energy ∝ |h|d/2 is present even
far below Tc for 2 < d < 4. In addition, if the last term in (4.3.123) is expanded in powers
of ε, we recover the term ∝ r2

T ln rT in the naive ε expansion of the singular free energy
(4.3.64).

4.4 Two-phase coexistence and surface tension

In his theory of gas–liquid coexistence in 1893 [see Ref. 13], van der Waals introduced the
gradient free energy and derived the equation,

∂

∂n
f (n) = T

[
ln

(
φ

1 − φ

)
+ 1

1 − φ

]
− 2εφ − T ν̄∞ = K

d2

dx2
n, (4.4.1)

for the number-density profile n = n(x) near a gas–liquid interface, where f (n) is the
free-energy density in the form (3.4.9), φ = v0n(x) is the effective volume fraction, and
ν̄∞ is a constant related to the chemical potential and the number density via (3.4.10) and
(3.4.12) far from the interface. The coefficient K is assumed to be independent of n. The
above equation can also be rewritten as

n
∂

∂n
f (n)− f (n) = T

n

1 − φ
− εv0n2 = K n

d2

dx2
n − K

2

(
d

dx
n

)2

+ p∞, (4.4.2)

where p∞ is the pressure in the bulk region. From the van der Waals equation of state
(3.4.3) the above quantity may be regarded as a local pressure. If K depends on n, the right-
hand sides of (4.4.1) and (4.4.2) should be appropriately changed as can be known from
(4.4.16) and (4.4.17) below. Near the critical point, van der Waals found that the surface
tension σ is proportional to (Tc − T )3/2, which is the mean field result to be explained
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below. In 1958 Cahn and Hilliard [17] re-derived the same results in the presence of the
gradient free energy. We will follow and extend their approach. However, the systems we
will treat are very limited.

4.4.1 Interface profile and surface tension near the critical point

Let us note that two phases can coexist macroscopically in Ising-like systems at h = 0 and
τ < 0. We consider a planar interface whose normal direction is in the x direction. The
mean field profile ψ = ψint(x) is calculated from

δ

δψ
(βH) = rψ + u0ψ

3 − K
d2

dx2
ψ = 0, (4.4.3)

where use has been made of (4.1.1) and ψ depends only on x . We replace r0 in (4.1.1) by
r in (4.1.17) assuming that the fluctuations with wave numbers larger than ξ have already
been coarse-grained. We multiply (4.4.3) by dψ/dx and integrate over x to obtain

1

2
rψ2 + 1

4
u0ψ

4 − 1

2
K

(
d

dx
ψ

)2

= −|r |2
4u0

. (4.4.4)

The value on the left-hand side is determined from the boundary condition ψ → ±M
where M = (|r |/u0)

1/2. Some manipulations yield

M2(ψ2/M2 − 1)2 = 4ξ2
(

d

dx
ψ

)2

, (4.4.5)

where

ξ = (K/2|r |)1/2 (4.4.6)

is the correlation length below Tc determined from the first line of (2.1.9). We then obtain
the well-known interface solution,

ψint(x) = M tanh(x/2ξ) = −M + 2M
/[

1 + exp(−x/ξ)
]
. (4.4.7)

The surface tension is the excess free energy stored in the interface region per unit area and
is given by the following integral:

σ = T
∫ ∞

−∞
dx

[
1

2
rψ2 + 1

4
u0ψ

4 + 1

2
K

(
d

dx
ψ

)2

+ r2

4u0

]
= T

∫ ∞

−∞
dx K

(
d

dx
ψ

)2

, (4.4.8)

where the free-energy density −r2/4u0 at x = ±∞ has been subtracted in the integrand
on the first line and use has been made of (4.4.4) in the second line. Substitution of (4.4.6)
gives14

σ = 2

3
T K M2ξ−1 = T K 1/2 |2r |3/2

3u0
. (4.4.9)

14 Use is made of the relation
∫ x

0 dx1/4 cosh−4 x = tanh x − 1
3 tanh3 x .
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Therefore, σ ∝ |τ |3/2 in the mean field theory, where τ = T/Tc − 1 is the reduced
temperature. It is instructive to express σ in terms of the Ginzburg number Gi given in
(4.1.25); in 3D, we have

σ ∼ 0.1T ξ−2|τ/Gi|1/2, (4.4.10)

which holds for |τ | > Gi.
In the asymptotic critical region, |τ | � Gi, the renormalization group theory indicates

that u0 should be replaced by the renormalized value uR = K−1
d g∗κε in (4.3.23) and

|2r |1/2 by K 1/2ξ−1 sufficiently close to the critical point. Then we find the scaling behavior
[77, 78],

σ = Aσ T ξ−d+1, (4.4.11)

where

Aσ = 1

3g∗ Kd [1 + O(ε)]. (4.4.12)

The coefficient Aσ is a universal number and is known to be about 0.09 in 3D Ising-
like systems [79, 80]. We note that (4.4.12) roughly gives Aσ ∼ 9/(3 · 2π2) ∼ 0.1,
consistent with 0.09 mentioned above. We notice that the two limiting expressions, (4.4.9)
and (4.4.11), are smoothly connected at |τ | ∼ Gi from (4.4.10). The relation σ ∝ ξ−d+1

in the asymptotic scaling regime is analogous to that in (2.1.42) or (4.3.54).

Instability of the interface solution in many-component systems

In many-component systems (n ≥ 2), isotropic in the spin space, two ordered states cannot
be separated by a stable localized interface if these two states can be changed over only
by a gradual phase variation. Let us consider a system with a complex order parameter
(n = 2), such as 4He near the superfluid transition. If we impose the boundary condition
ψ = M at x = 0 and ψ = −M at x = L , the order parameter profile which minimizes the
free energy (4.1.1) at h = 0 is given by

ψ = M exp(iπx/L). (4.4.13)

In 4He this is the case in which a superfluid current is induced with the velocity vs =
π h̄/m4L in the x direction, where m4 is the 4He mass. The free-energy increase is
ρsv

2
s L/2 = π2T K M2/2L per unit area in the yz plane, as stated in (4.3.106) and

(4.3.107). For the interface solution (4.4.7), however, it is equal to σ in (4.4.10) inde-
pendent of L per unit area. To see how the localized solution becomes unstable, we
superimpose a small imaginary perturbation as ψ = M tanh(x/2ξ) + iδψ2(x), where
δψ2 is real and dependent only on x . The free energy change is written as

βδH =
∫

drδψ2

[
−K

2

d2

dx2
− |r |

2 cosh2(x/2ξ)

]
δψ2. (4.4.14)

We notice that the integrand becomes −|r |(δψ2)
2/4 < 0 if δψ2 ∝ 1/ cosh(x/2ξ). Thus

amplification of this eigenmode serves to decrease the free energy.
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It is worth noting that if 4He is in contact with a solid surface at x = 0, we should
impose the boundary condition ψ = 0 at x = 0. The boundary profile of ψ is given by
(4.4.7) in the region x > 0 in the mean field theory [35].

4.4.2 Surface tension for the general free-energy density

We need the surface tension expression for the general form of the free-energy density
f (ψ) [17], because the Landau expansion may not be a good approximation away from
criticality. Let the hamiltonian be of the form,15

βH{ψ} =
∫

dr
[

f (ψ)+ 1

2
K (ψ)|∇ψ |2

]
, (4.4.15)

where f (ψ) has two minima at ψ = ψ
(1)
cx and ψ

(2)
cx with the same minimum value fmin.

The coefficient of the gradient term is allowed to depend on ψ as K = K (ψ). The interface
solution, which tends to ψ

(1)
cx as x → ∞ and to ψ

(2)
cx as x → −∞, satisfies

∂ f

∂ψ
+ 1

2

∂K

∂ψ

(
dψ

dx

)2

− d

dx
K

dψ

dx
= 0. (4.4.16)

Multiplying dψ/dx and integrating over x we find

f (ψ)− fmin = 1

2
K

(
dψ

dx

)2

. (4.4.17)

This may be integrated to give

x =
∫ ψ

ψ0

dψ

√
K (ψ)

2[ f (ψ)− fmin]
, (4.4.18)

where ψ0 is the value of ψ at x = 0. At large |x |, we have f (ψ)− fmin ∼= 1
2 f ′′(ψ(α)

cx )(ψ−
ψ

(α)
cx )2 with α = 1, 2, so that

ψ(x)− ψ(α)
cx ∼ e−|x |/ξα , (4.4.19)

where ξα = [K (ψ
(α)
cx )/ f ′′(ψ(α)

cx )]1/2 is the correlation length defined for the two phases.
Note also that the structure factors in the two phases are of the Ornstein–Zernike form
∝ (k2 + ξ−2

α )−1. Because of (4.4.17) the surface tension is expressed as

σ = T
∫ ∞

−∞
dx K (ψ)

(
dψ

dx

)2

= T
∫ ψ

(1)
cx

ψ
(2)
cx

dψ
√

2K (ψ)( f (ψ)− fmin), (4.4.20)

where ψ
(2)
cx < ψ

(1)
cx is assumed in the second line.

15 Here T f is the free-energy density.
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4.4.3 Interface in symmetrical tricritical systems

In Section 3.2 we discussed tricritical behavior. Here let us consider the coexistence of
a disordered phase and an ordered phase near a symmetrical tricritical point in general
n-component systems [81, 82]. Namely, the amplitude ψ = |ψ | depends on space; ψ → 0
as x → −∞ and ψ → ψcx as x → ∞, where ψcx is given by (3.2.13). The free-
energy density divided by T is the sum of the expression in (3.2.16) and the gradient term
K |∇ψ |2/2. Then (4.4.17) becomes

1

6
v0ψ

2(ψ2 − ψ2
cx)

2 = 1

2
K

(
d

dx
ψ

)2

. (4.4.21)

From (3.2.14) the correlation length in the ordered phase is obtained from K ξ−2 = χ−1 =
3u2

0/4v0. Thus,

ξ = 2(Kv0/3)1/2/|u0|. (4.4.22)

Because u0 ∝ T − Tt, we have ξ ∝ |T − Tt|−1 for d ≥ 3. It is easy to solve (4.4.21) in the
form,

ψ(x) = ψcx
/[

1 + exp(−x/ξ)
]1/2

. (4.4.23)

The surface tension is written as

σ = T Kψ2
cx/8ξ =

√
3

16
T (K/v0)

1/2ξ−2. (4.4.24)

Thus, σ ∝ (Tt − T )2 for d ≥ 3, which was indeed confirmed for 3He–4He mixtures near
the tricritical point [83].

4.4.4 Interface in polymer systems

We consider two-phase coexistence in polymer systems using the Flory–Huggins theory
introduced in Section 3.5 and the gradient free energy (4.2.26) or (4.2.27) [85]–[88]. In all
the representative cases we will study, the interface profile of the volume fraction φ(x) of
the first component can be approximated by

φ(x) = φ(2)
cx + (φ(1)

cx − φ(2)
cx )

/[
1 + exp(−x/")

]
, (4.4.25)

where " is a suitably defined interface thickness. The solution tends to φ
(1)
cx as x → ∞ and

φ
(2)
cx as x → −∞. It obeys the differential equation,

(φ(1)
cx − φ(2)

cx )"
dφ

dx
= (φ − φ(2)

cx )(φ(1)
cx − φ). (4.4.26)
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Semidilute polymer solutions

The phase diagram of polymer solutions is displayed in Fig. 3.12. The surface tension in
polymer solutions behaves as (4.4.11) close to the critical point with ξ being scaled as
(4.2.32), so it depends on N and T − Tc as [32]

σ ∼ T ξ−2 ∼ T a−2 N ν−1(1 − T/Tc)
2ν . (4.4.27)

Away from the critical point, a semidilute polymer solution with φ = φcx > N−1/2 and
a nearly pure solvent with φ = φdcx ∼= 0 can coexist. The surface tension arises from a
transition region of thickness ξ ∼ a/φcx and is estimated as [29, 84]

σ ∼ T ξ−2 ∼ T a−2φ2
cx. (4.4.28)

In the semidilute case, we use the second line of (3.5.5) as the free-energy density and
set K = 1/(12aφ) from (4.2.27). Then (4.4.17) becomes

φ

N
lnφ +

(
1

2
− χ

)
φ2 + 1

6
φ3 − �

T
φ − 1

T
( fsite)∞ = a2

24φ

(
d

dx
φ

)2

, (4.4.29)

where the two constants �/T and ( fsite)∞/T are determined such that the left-hand side
and its first derivative with respect to φ vanish as x → ±∞. On the polymer-rich side,
φ → φcx ≡ 3(χ − 1/2) for x � ξ with the correlation length,

ξ = 1

2
aφ−1

cx = 1

6
a(χ − 1/2)−1. (4.4.30)

If φcx is considerably larger than φc, the volume fraction φdcx in the dilute region becomes
very small as shown in (3.5.27). Then, we find

�/T ∼= −3

8
(2χ − 1)2, ( fsite)∞/T ∼= 0. (4.4.31)

It is obvious that the surface tension contribution arises from the spatial region where
φ(x) � φdcx. We may then neglect the first and last terms on the left-hand side of (4.4.29)
as

φ2(φ/φcx − 1)2 ∼= ξ2
(

d

dx
φ

)2

, (4.4.32)

which is solved to give

φ(x) = φcx
/[

1 + exp(−x/ξ)
]
. (4.4.33)

Now, from (4.4.20), the surface tension is calculated as

σ = 1

24
Tφcx(aξ)

−1 = 1

12
T a−2φ2

cx, (4.4.34)

in agreement with (4.4.27). Note that (4.2.27) has been used for the gradient free energy
because ξ < RG. Instead, if (4.2.26) had been used, σ would be multiplied by 1.5−1/2 to
give σ = 6−3/2T a−2φ2

cx.
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Symmetric polymer blends

We first consider a symmetric polymer blend with N1 = N2 = N . In the mean field critical
region N−1 < χ/χc − 1 < 1 in (4.2.39), the formula (4.4.10) gives [85]

σ = 2

3
T N−1/2(χ/χc − 1)3/2a−2. (4.4.35)

The right-hand side is estimated as (4.4.10) in terms of the Ginzburg number. In the
asymptotic critical region χ/χc − 1 < N−1 it is of the form,

σ ∼ T ξ−2 ∼ T N 2ν−2(χ/χc − 1)2νa−2. (4.4.36)

In the strongly segregated case Nχ � 1, φcx is very close to 0 or 1 as shown in (3.5.37).
Using (3.5.29) for the free-energy density and (4.2.27) for the gradient free energy, we
rewrite (4.4.17) as

1

N

[
φ lnφ + (1 − φ) ln(1 − φ)

] + χφ(1 − φ)− 1

T
( fsite)∞ = a2

24φ(1 − φ)

(
d

dx
φ

)2

,

(4.4.37)
Here ( fsite)∞/T is determined such that the right-hand side vanishes for φ = φcx, but it is
estimated as −2 exp(−Nχ)/N and is virtually zero. In this case we may omit the first and
last terms on the left-hand side of (4.4.37) as [88]

χφ2(1 − φ)2 = a2

24

(
d

dx
φ

)2

. (4.4.38)

The interface profile is of the form,

φ(x) = 1
/[

1 + exp(−x/")
]
, (4.4.39)

where

" = 1√
24

χ−1/2a (4.4.40)

is the interface thickness. The above expression is valid in the region |x | � Nχ", because
the first term in (4.4.37) is smaller than the second in this region. If use is made of the
second line of (4.4.20), σ is easily calculated as

σ = T
∫ 1

0
dφ

√
2K (φ)v−1

0 χφ(1 − φ) = 1√
6

Tχ1/2a−2, (4.4.41)

which agrees with the result of Helfand and Tagami [86]. If we were to use (4.2.26) as the
gradient free energy, we would have σ = χ1/2a−2/3 [87].
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Asymmetric polymer blends

It is not difficult to examine σ in the asymmetric case 1 � N2 � N1 using the results so
far. We summarize its behavior:

a2σ

T
∼ χ1/2 (χ − χc > 1/N2),

∼ (χ − χc)
2 N 3/2

2 (
√

N1/N2 >
√

N1 N2(χ − χc) > 1),

∼ (χ − χc)
3/2 N−1/4

1 N 5/4
2 (1 >

√
N1 N2(χ − χc) > 1/N2),

∼ N ν−1
1 N 3ν−1

2 (χ − χc)
2ν (1/N2 >

√
N1 N2(χ − χc)), (4.4.42)

where χ ∼= 1/2N2. (i) In the first line, the strong segregation limit is realized and (4.4.40)
and (4.4.41) can be used. (ii) In the second line, " exceeds the gyration radius aN 1/2

2 of the
shorter chains. Then, the shorter chains act as solvent for the longer chains. As a result, the
phase rich in the longer chains is analogous to the semidilute phase of polymer solutions.
The correlation length there is ξ = aN−1/2

2 /(χ − χc). (iii) In the third line, the mixture
is in the mean field critical region, where (4.4.10) can be used. (iv) In the fourth line,
|T/Tc − 1| < Gi holds and asymptotic critical behavior is realized.

4.4.5 Thermal interface fluctuations

Surface undulations of a planar interface require only small free-energy cost and can be
large at long wavelengths in equilibrium. We examine how βH in (4.1.1) is increased due
to the deviation δψ(r) = ψ(r)− ψint(x). To the bilinear order we obtain

βδH =
∫

drδψ
[−∇2

⊥ + L̂(x)
]
δψ, (4.4.43)

where ∇2
⊥ = ∇2 − ∂2/∂x2 is the laplacian operator in the yz plane. For the ψ4 theory the

operator,

L̂(x) = −K
∂2

∂x2
+ |r |[3 tanh2(x/2ξ)− 1

]
, (4.4.44)

is analogous to the Schrödinger operator in quantum mechanics. It is a nonnegative-definite
hermitian operator, and its eigenvalues and eigenfunctions are completely known [77]. In
particular, it has two discrete (or localized) eigenfunctions,

f0(x) = (3/8ξ)1/2sech2(x/2ξ), (4.4.45)

f1(x) = (3/4ξ)1/2sech(x/2ξ) tanh(x/2ξ), (4.4.46)

with the eigenvalues 0 and 3|r |/2, respectively. The eigenfunctions with the continuous
spectrum have eigenvalues larger than 2|r |. Here notice that f0(x) ∝ ψ ′

int(x) where
ψ ′

int(x) = dψint(x)/dx . In fact, differentiation of (4.4.3) with respect to x yields

L̂(x)ψ ′
int(x) = 0. (4.4.47)
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Let the interface position be slightly displaced by ζ(r⊥) in the x direction, where ζ(r⊥)
varies slowly on the surface. Then,

δψ(r) = ψint(x − ζ )− ψint(x) ∼= −ψ ′
int(x)ζ. (4.4.48)

Substitution of this form into (4.4.43) gives

δH = 1

2
σ

∫
dr⊥|∇⊥ζ |2. (4.4.49)

Therefore, we obtain the well-known formula for the surface displacement fluctuations,∫
dr⊥ exp(ik · r⊥)〈ζ(r⊥)ζ(0)〉 = 〈|ζk|2〉 = T

σk2
. (4.4.50)

Here r⊥ = (y, z) is the position vector on the surface, k is the two-dimensional wave
vector, and ζk is the Fourier component.

The formula (4.4.50) has been derived near the critical point, but it holds even away
from the critical point, as can be seen in the following argument. Regarding the surface as
infinitesimally thin, the surface free energy is proportional to the surface area,

H = σ

∫
dr⊥

√
1 + |∇⊥ζ |2

∼= σ

∫
dr⊥

[
1 + 1

2
|∇⊥ζ |2

]
. (4.4.51)

The first line is obtained because the angle θ between the surface normal and the yz plane
is cos θ = 1/(1 + |∇ζ |2)1/2 and the surface element is dr⊥/ cos θ . The second line holds
for small deformations.

In fluids, the gravity g is known to suppress the surface fluctuations with sizes longer
than the so-called capillary length ag. Let the x axis be in the reverse direction of gravity.
Then the potential energy density per unit area is∫ ζ

0
dxg(�ρ)x = 1

2
g(�ρ)ζ 2, (4.4.52)

where �ρ > 0 is the mass density difference between the lower and upper phases. Thus
(4.4.49) is modified as

δH = 1

2

∫
dr⊥

[
g(�ρ)ζ 2 + σ |∇⊥ζ |2

]
. (4.4.53)

The correlation length on the surface is given by the capillary length,

aca =
√
σ/g(�ρ). (4.4.54)

As is well known, this length provides the spatial scale on which the interface is deformed
by gravity. It is a macroscopic length (say, 1 mm in water) far from the critical point on
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earth, while it decreases as ξ−1+β/2 near the critical point but stays much longer than ξ in
realistic experiments. The surface structure factor becomes

〈|ζk|2〉 = T

σ(a−2
ca + k2)

. (4.4.55)

As a result the surface position fluctuation at each point is

〈ζ(r⊥)2〉 = 1

2π

∫
dkk〈|ζk|2〉 = T

2πσ
ln(aca/ξ), (4.4.56)

where the upper limit of the k-integration is the inverse interface thickness ξ−1. From
(4.4.11) it follows that 〈ζ 2〉/ξ2 ∼ ln(aca/ξ) near the critical point.

4.4.6 Quantum interface fluctuations

The classical formulas (4.4.55)–(4.4.56) indicate that the interface fluctuations are weak-
ened at low T . At very low temperatures the surface displacement ζk fluctuates quantum-
mechanically. As a result, the surface structure factor Sk = 〈|ζk|2〉 is nonvanishing even for
T → 0. Here we assume that the low-temperature motion of ζk is described as a collective
mode with the capillary-wave dispersion relation,

ωk = [σk3/ρca]1/2, (4.4.57)

where ρca is an appropriately defined mass density and gravity is neglected. The surface
tension σ is assumed to tend to a constant as T → 0. We cite three observed examples.

(i) When a 4He superfluid and a gas phase are separated by an interface, the capillary wave
is also called ripples or ripplons [89]. In this case ρca is nearly equal to the mass density
of 4He.

(ii) On a rough crystal–liquid surface of 4He, crystallization and melting alternatively
occur as the interface oscillates. This unusual oscillation is possible owing to the absence
of latent heat and is called a crystallization wave [90, 91]. Here ρca = (ρ1 − ρ2)

2/ρ2,
where ρ1 and ρ2 are the mass densities of the solid and liquid phases, respectively.

(iii) Two liquid phases can coexist macroscopically in 3He–4He mixtures. For T < 0.15
K the 3He-rich phase is virtually pure 3He, while the 4He-rich phase is a solution with the
3He molar concentration X less than the upper limit X", where 0.0637 < X" < 0.094
depending on the pressure. Here ρca is nearly equal to the sum of the mass densities of the
two coexisting phases as in the case of usual capillary waves on a fluid–fluid interface.

In this kind of problem, we should consider collective quantum motion, in which many
particles participate. In the harmonic approximation, the hamiltonian is written in the
Fourier space as [92]

H = 1

2

∫
k

[
ρca

k
ζ̇kζ̇−k + σk2ζkζ−k

]
, (4.4.58)
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where ζ̇k = ∂ζk/∂t is the velocity of the surface displacement. Obviously, the kinetic
energy is supported by incompressible flow induced around the interface. The Fourier
component ζk is thus a harmonic oscillator with an effective mass mk = ρca/k, and its
eigenfrequency is the capillary-wave frequency ωk . The corresponding momentum pk is
defined by

pk = ∂

∂ζ̇−k
H = ρca

k
ζ̇k. (4.4.59)

The equation of motion is given by

∂

∂t
pk = − ∂

∂ζ−k
H = −σk2ζk. (4.4.60)

These equations lead to the capillary-wave frequency (4.4.57). The quantization is to
replace the momentum by

pk = h̄

i

∂

∂ζ−k
. (4.4.61)

This procedure is analogous to that for phonons in low-temperature solids. In the canonical
distribution the excited state with the energy (n + 1

2 )h̄ωk of the harmonic oscillator is
realized with the probability Pn ≡ exp(−βnh̄ωk)/[1 − exp(−βh̄ωk)], so that the equi-
partition of the energy between the kinetic and potential parts gives

1

2
mkω

2
k 〈ζkζ−k〉 = 1

2

∞∑
n=0

(n + 1

2
) h̄ωk Pn . (4.4.62)

Some further calculations yield the structure factor in the form [93],

Sk = 〈ζkζ−k〉 = h̄ωk

2σk2
coth

(
h̄ωk

2T

)
. (4.4.63)

In the high-temperature limit h̄ωk � T the classical formula (4.4.50) is reproduced, while
in the low-temperature limit h̄ωk � T we find

Sk = h̄

2
√
ρcaσ

1√
k
, (4.4.64)

which is the quantum fluctuation in the ground state. It is convenient to introduce a
classical–quantum crossover wave number kQ by h̄ωkQ = T . Then,

kQ = (ρcaT 2/h̄2σ)1/3, (4.4.65)

which is 3×104T 2/3 cm−1 for a solid–liquid interface of 4He and 6×105T 2/3 cm−1 for a
liquid–liquid interface of 3He–4He with T in mK. For k � kQ the quantum effect is crucial
and Sk is given by (4.4.63). The classical formula holds at long wavelengths k � kQ . If
a−1

ca � kQ holds, the surface position fluctuation at one point, which has been measured
in scattering experiments [94], is written as

〈ζ(r⊥)2〉 ∼= h̄

6π
√
ρcaσ

�3/2 + T

2πσ
ln(kQaca). (4.4.66)



4.5 Vortices in systems with a complex order parameter 173

The first term represents the zero-point vibration amplitude, and � is the upper cut-off
wave number (∼ 108 cm−1) assumed to be larger than kQ . Because the ratio of the first to
second term is of order (�/kQ)

3/2, the quantum contribution dominates over the thermal
one (∝ T ) at sufficiently low temperatures where � � kQ .

4.5 Vortices in systems with a complex order parameter

In systems with a complex order parameter (n = 2) below the transition temperature
(r < 0), a famous topological singularity is a vortex line (point) in 3D (2D) [11, 95]. In
particular, in 2D xy models, vortex binding can cause the Kosterlitz and Thouless transition
[11, 96]. In Section 8.10 we will examine vortex motion on the basis of the results in the
present section. There can be a number of other topological defects in many-component
systems (n ≥ 2) with broken continuous symmetry for each set of n and d [11]. They play
crucial roles in phase-ordering processes, as will be studied in Section 8.1.

4.5.1 Fundamental vortex solutions

Let us consider a rectilinear vortex aligned along the z direction in 3D and a vortex point
in 2D. The vortex solution is written as [35, 16]

ψv(x, y) = f (ρ)ei"ϕ, (" = ±1, . . .), (4.5.1)

where ρ = (x2 + y2)1/2 (which should not be confused with the mass density) and
ϕ = tan−1(y/x). The integer " will be called the charge here, while it is called the
winding number in the literature. From the minimum condition δ(βH)/δψ∗ = 0 of the
GLW hamiltonian (4.1.1), we obtain

(−κ2 + u0|ψv|2)ψv −
(

∂2

∂x2
+ ∂2

∂y2

)
ψv = 0, (4.5.2)

where we have set r = −κ2, K = 1, and h = 0. We notice that the amplitude f = |ψv| is
scaled as

f = M A0(κρ), (4.5.3)

where M = κ/u1/2
0 is the equilibrium average order parameter. Then A0(s) satisfies[

d2

ds2
+ 1

s

d

ds
− "2

s2
+ 1 − A2

0

]
A0 = 0. (4.5.4)

It is easy to check the behaviors, A0 ∼ s|"| for s � 1 and A0 ∼= 1 − "2/s2 for s � 1.
In Fig. 4.6 we plot A0(s) for " = 1 obtained numerically. As a result, the increase in the
free-energy density decays as ρ−2 far from the vortex center, and the free-energy increase
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Fig. 4.6. The dimensionless amplitude A0(s)(∝ ρ
1/2
s ) and superfluid current A0(s)

2/s(∝ |Js|)
around a vortex for " = 1, where s = (x2 + y2)1/2/

√
2ξ is the dimensionless distance from the

vortex center. Here A0 ∼= 0.58s for s � 1 and A0 ∼= 1 − 1/s2 for s � 1. The dashed line represents
1/s(∝ |vs|).

per unit length is logarithmically dependent on the upper cut-off Rmax as

Ev" = πT
∫ Rmax

0
dρρ

[
1

2
u0(M2 − f 2)2 + "2

ρ2
f 2 +

(
∂ f

∂ρ

)2]

= πT M2
[
"2 ln

(
C�Rmax√

2ξ

)
+ O(ξ2/R2

max)

]
, (4.5.5)

where ξ = (
√

2κ)−1, and C1/
√

2 = 1.46/
√

2 ∼= 1 for " = 1 [35, 97]. If there is a single
rectilinear vortex, Rmax is of the order of the system dimension. However, if there are other
vortices with opposite charges in 2D or with different directions of the tangential vector in
3D, the cut-off length becomes the characteristic distance among vortices. In 3D, the free
energy for an assembly of weakly curved vortex lines with " = ±1 may be approximated
as

H(0)
v = Ev1LT = πT M2 ln(Rmax/ξ)LT, (4.5.6)

where LT is the total length of the lines. The interaction among different line elements will
be taken into account later.
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In 4He, the superfluid density ρs is expressed as (4.3.107) and the superfluid velocity vvvs

is equal to (h̄/m4)∇θ . Around a rectilinear vortex they are of the forms,

ρs = ρ̄s A0(κρ)
2, (4.5.7)

vvvs = h̄"

m4ρ
eϕ, (4.5.8)

where ρ̄s = (m2
4/h̄2)T M2 is the superfluid density far from the vortex center, m4 be-

ing the 4He mass, and eϕ = (−y/ρ, x/ρ, 0) is the unit vector perpendicular to eρ =
(x/ρ, y/ρ, 0). The superfluid current is given by

Js = ρsvvvs = "ρ̄s(A2
0/ρ)eϕ, (4.5.9)

whose profile can be seen in Fig. 4.6. The kinetic energy E (s)
K of the superfluid component

is the space integral of ρsv
2
s /2. Around a single vortex we have E (s)

K
∼= πM2"2 ln(Rmax/ξ),

so Ev" ∼= E (s)
K for Rmax � ξ .

We next examine the circulation around a vortex line. From (4.5.8) we have

rotvvvs = 2π h̄

m4
"δ(2)(r⊥)ez, (4.5.10)

where r⊥ = (x, y) is the 2D vector, δ(2) is the 2D δ-function, and ez = (0, 0, 1) is the unit
vector along the z axis, so that16∮

dr · vvvs =
∫ 2π

0
dϕρeϕ · vvvs = 2π h̄

m4
". (4.5.11)

Vortex ring

In real 3D systems vortices appear either in the form of lines with ends attached to the
boundary wall or in the form of closed rings. Figure 4.7 illustrates a vortex ring. If its
radius R is much larger than the core radius (∼ ξ) and " = 1, the free energy needed to
create such a vortex ring is expressed as [98]

Ering = 2π2T M2 R
[
ln(8R/

√
2ξ)− 1.62

]
. (4.5.12)

For vortex rings in ideal incompressible fluids we obtain nearly the same result but with
1.62 being replaced by 7/4. In Chapter 8 we shall see that generation of vortex rings leads
to a decay of superfluid flow in 4He.

4.5.2 Interaction between vortices

Because the phase modulation around vortices is far-reaching, the interaction
between vortices is very long-ranged.

16 In the literature 2π h̄/m4 ∼= 10−3erg s/g is usually written as κ .
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Fig. 4.7. A vortex ring with radius R in a superfluid. Here t is the tangential unit vector, n is the
normal unit vector, and b = t × n is orthogonal to t and n.

(i) We first consider 2D xy-like systems with Nv vortices with charges ±1 at R j =
(X j , Y j ) ( j = 1, 2, . . . , Nv). Because the phase modulation due to vortices is

θv =
∑

j

" j tan−1[
(y − Y j )/(x − X j )

]
(4.5.13)

far from the vortex cores, the free energy (∼= T M2
∫

dr|∇θ |2/2) may be written as [96, 11]

Hv = −πT M2
∑
i �= j

"i" j ln(|Ri − R j |/ξ)+ Ec Nv, (4.5.14)

where Ec is the core (free) energy playing the role of a chemical potential of the vortices.
Note that we may superimpose an arbitrary smooth, nonsingular phase modulation θs as
θ = θv + θs. Then the total free energy becomes the sum of Hv and M2

∫
dr|∇θs|2/2

without the cross term (∝ θvθs). Because of this fact, we have neglected the smooth part
in (4.5.14). Kosterlitz and Thouless [96] developed a renormalization group theory on the
vortex hamiltonian (4.5.14) in 2D, in which small vortex pairs are coarse-grained in a
step-wise manner giving rise to renormalization of M2 and Ev in the long-wavelength
limit.

(ii) In 3D systems, the vortices are represented by the lines R j (s), where s is the arclength
and j (= 1, 2, . . .) indicates the j th vortex. To avoid cumbersome notation we will
suppress j , but the summation over different lines is implied in the following expressions.
In the notation for 4He the vorticity vector is defined by

ωωω(r) = 2π h̄

m4

∫
dst(s)δ(3)(r − R(s)), (4.5.15)

where t(s) = dR(s)/ds is the tangential unit vector at the point r(s).17 Generalization of

17 For ideal incompressible fluids, 2π h̄/m4 should be replaced by the circulation of vortex lines.
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the circulation theorem (4.5.10) yields

rotvvvs = ωωω. (4.5.16)

With the aid of the Biot–Savart law in electromagnetic theory the superfluid velocity due
to vortices is obtained as

vvvs(r) = 1

4π

∫
dr′

1

|r − r′|3ωωω(r
′)× (r − r′)

= h̄

2m4

∫
ds′

1

|r − R(s′)|3 t(s′)× (r − R(s′)). (4.5.17)

The superfluid kinetic energy is written as

E (s)
K = 1

2
ρ̄s

∫
dr|vvvs|2 = 1

8π
ρ̄s

∫
dr

∫
dr′

1

|r − r′|ωωω(r) ·ωωω(r
′), (4.5.18)

where ρ̄s = (m2
4/h̄2)T M2 and use has been made of ∇ · ωωω = 0. The total vortex free

energy Hv is the sum of E (s)
K and the core free energy. After some calculations we obtain

Hv = π h̄2

2m2
4

ρ̄s

∫
ds

∫
ds′

1

|R(s)− R(s′)| t(s) · t(s′)+ EcLT, (4.5.19)

where LT = ∫
ds is the total line length, and the line integrations should be performed in

the regions |Ri (s)−R j (s′)| > ξc. The lower cut-off ξc is taken to be a few times larger than
ξ . Then, if only a single vortex is present, we have Hv = LT[πT M2 ln(Rmax/ξc) + Ec].
Comparing this expression with (4.5.5) we may estimate the core free energy as

Ec ∼= πT M2 ln(ξc/ξ) = π h̄2

m2
4

ρ̄s ln(ξc/ξ), (4.5.20)

under which Hv becomes insensitive to the choice of ξc.

4.5.3 Fluid velocity at a vortex point

We are interested in the superfluid velocity at a point R(s) on a vortex line,

vvvs1(s) = lim
r→R(s)

vvvs(r). (4.5.21)

The vortex moves with this velocity if there is no friction (in ideal incompressible fluids or
in 4He at nearly zero temperature). It is not difficult to derive the following general relation,

δ

δR(s)
Hv = 2π h̄

m4
ρ̄st(s)× vvvs1(s), (4.5.22)

which follows from (4.5.19). The derivation of this relation becomes easier if each curve is
parameterized in terms of a parameter ζ such as the coordinate along an appropriate axis
rather than the arclength s. Then ds = dζ(∂s/∂ζ ). For example, with respect to a small
deformation of a curve, R → R+δR, the line length L = ∫

ds = ∫
dζ |dR/dζ | changes as
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δL = ∫
dζ t · d[δR]/dζ = − ∫

dsKn · δR. With this relation, if R is regarded as a function
of s (not ζ ), we find

δ

δR(s)
L = −Kn. (4.5.23)

The functional derivative of the first term (4.5.19) can also be performed similarly, though
somewhat complicated, leading to (4.5.22).

Arms–Hama approximation

Although the general nonlocal form (4.5.17) for vvvs looks formidable, Arms and Hama [99]
noticed that most important region is the line portion close to R(s) in the s′-integration
in (4.5.17). That is, in the second line of (4.5.17) we set |R(s) − R(s′)| ∼= |s′ − s| and
R(s′) = R(s) + (s′ − s)t(s) + 1

2 (s
′ − s)2Kn(s) + · · ·, assuming small s′ − s, where n

is the normal unit vector and K is the line curvature. Then the integral is logarithmically
divergent and we get the local self-induced velocity,

vvvs1 ∼= h̄

4m4

∫
ds′

1

|s − s′| t(s)×K(s)n(s)

∼= h̄

2m4
ln(Rmax/ξ)Kb, (4.5.24)

where b = t×n. This approximation is valid with errors of order 10%, but much simplifies
the calculation of vortex motion, as will be shown in Section 8.10. Here we should note
that if Hv in (4.5.22) is replaced by H(0)

v in (4.5.6), we may readily reproduce (4.5.24).
It is obvious that the Arms–Hama approximation is equivalent to neglecting the vortex
interaction among distant line elements and setting Hv = H(0)

v in (4.5.22).

Appendix 4A Calculation of the critical exponent η

We calculate the following integral at d = 4,

φ(k) =
∫

q1

∫
q2

1

q2
1 q2

2 |q1 + q2 − k|2 , (4A.1)

where q1 < �, q2 < �, and |q1 + q2 − k| < �. Using
∫
"""

exp(i""" · m) = δ(m) for any m,
we rewrite this integral as

φ(k) = (2π)4
∫

q1

∫
q2

∫
q3

δ(q1 + q2 + q3 − k)

q2
1 q2

2 q2
3

= (2π)4
∫
"""

ei"""·kϕ(")3, (4A.2)

where

ϕ(") = (2π)−4
∫

q<�

dq
1

q2
exp(−i""" · q) = 2K4

"2

[
1 − J0(�")

]
. (4A.3)
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Hereafter, Jn(z) (n = 0, 1, . . .) represents the Bessel function of the nth order. After the
angle integration of " we obtain

φ(k) = 4K 2
4

∫ ∞

0
d"

J1(k")

k"4

[
1 − J0(�")

]3
. (4A.4)

In particular, because J1(z) = 1
2 z − 1

16 z3 + · · · for |z| � 1, we have φ(0) = 0.214K4�
2

as k → 0, and

φ(0)− φ(k) = 2K 2
4

∫ ∞

0
d"

1

"3

[
1 − 2J1(k")/k"

][
1 − J0(�")

]3
. (4A.5)

In the region �−1 � " � k−1 the integrand of (4A.5) may be set equal to k2/8", so that

φ(0)− φ(k) = 1

4
K 2

4 k2 ln(�/k)+ · · · , (4A.6)

which leads to (4.1.43).

Appendix 4B Random phase approximation for polymers

Let us first consider a gaussian chain with polymerization index N . Because the monomer
positions Ri (1 ≤ i ≤ N ) on the chain satisfy 〈|Ri − R j |2〉 = |i − j |a2, the single-chain
structure factor (per volume v0) becomes

I0(q) = 1

N

∑
i j

exp

(
−1

6
a2q2|i − j |

)
= N fD(Na2q2/6), (4B.1)

where

fD(X) = 1

X

[
1 − 1

X
(1 − e−X )

]
(4B.2)

is called the Debye function [28]. Next we consider a mixture of two species of chains with
volume fractions φ1 = φ and φ2 = 1 − φ and polymerization indices N1 and N2. If we set
N2 = 1, the results for polymer solutions are obtained. The random phase approximation
gives the inverse of the structure factor in the form [29, 30],

I (q)−1 = [
φ1 N1 fD(N1a2q2/6)

]−1 + [
φ2 N2 fD(N2a2q2/6)

]−1 − 2χ. (4B.3)

Because fD(X) ∼= 1 − X/3 for X � 1, the small-q behavior is given by

I (q)−1 ∼= 1

φ1 N1
+ 1

φ2 N2
− 2χ + a2

18φ1φ2
q2. (4B.4)

Because fD(X) ∼= 2/X for X � 1, the large-q behavior becomes

I (q)−1 ∼= a2

12φ1φ2
q2 − 2χ. (4B.5)

These expressions yield the structure factor from the Flory–Huggins theory supplemented
with the gradient term in the form of (4.2.26) at small q and (4.2.27) at large q.
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Appendix 4C Renormalization group equations for n-component systems

We extend the calculations in Section 4.3 to n-component systems. It is easy to check the
following RG equations at the critical point:

∂

∂"
ln r = ∂

∂"
ln(γ0C0) = −(n + 2)g, (4C.1)

∂

∂"
g = εg − (n + 8)g2, (4C.2)

∂

∂"
C0 = 2nvC0, (4C.3)

where � = �0e−". We may solve (4C.2) in the same form as (4.3.17), with Q(") being
defined by (4.3.15). Then (4C.1) is integrated as

r(") = a00τ
[
1 + (eε" − 1)g0/g∗]−(n+2)g∗/ε

. (4C.4)

The RG equation for v is obtained from (4C.1) and (4C.3) as

∂

∂"
v = εv − 2(n + 2)gv − 2nv2. (4C.5)

This equation is solved in the form [55],

v(") = v∗eε"
/[

Q(")+ w0 Q(")1−α/νε
]
, (4C.6)

where

w0 = (g0v
∗/g∗v0 − 1)(g∗/g0)

α/νε. (4C.7)

Substitution of the above result into (4C.3) gives

C0(") = C00(v0/v
∗)(g∗/g0)

1−α/νε
[
Q(")α/νε + w0

]
, (4C.8)

where C00 = C0(�0). At " = 0, the right-hand sides of (4C.6) and (4C.8) are clearly
equal to v0 and C00, respectively, from Q(0) = g∗/g0. If g0 is not very small, we may set
Q(") = eε" to obtain

v(") = v∗
/[

1 + w0e−α"/ν
]
, (4C.9)

C0(") = 1

4v∗
Kdξ

−d
+0 (ξ+0�0)

−α"/ν
[
eα"/ν + w0

]
, (4C.10)

where C00 is eliminated in favor of ξ+0 as in (4.3.43). When τ is very small, the crossover
occurs at � = κ , leading to the critical behavior,

CH = A0τ
−α + CB, (4C.11)

with

A0 = n

4α
Kdξ

−d
+0 , CB = C00(1 − g∗v0/v

∗g0). (4C.12)
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The two-scale-factor universality (2.1.45) becomes

Rξ = lim
τ→0

ξ(ατ 2CH )1/d =
(

n

4
Kd

)1/d

. (4C.13)

We can see that (4.3.49) holds for general n.

4He near the superfluid transition

In Section 2.4 we explained critical behavior of 4He near the superfluid transition. From
(2.4.2) and (2.4.14) C is related to C p as C = C p − A2

λQ0 = A ln(τ0/τ), where C is equal
to CH in the present notation and τ0 is a constant. With this experimental result, let us take
the limit α → 0 in the above RG results. Comparison of (2.4.2) and (4C.11) gives

A = A0α ∼= 1

2
Kdξ

−d
+0 , A ln τ0 = B − A2

λQ0 = A0 + CB, (4C.14)

above Tλ. The first relation agrees with the two-scale-factor universality relation (2.4.4).
We also examine the "-dependence of C0(") and v(") because such results will be needed
in (6.6.71) below. For � � κ we use (4C.9) and (4C.10) to obtain

C0(") = ν−1 A ln(�0/�), v(") ∼= 1

4
[ln(�0/�)]−1, (4C.15)

where �0 = τ ν0 /ξ+0. For � � κ the general formula (4.1.58), which is valid for any n,
yields

v(") = γ 2 Kdτ
2(γ−1)/4�2

0C�ε ∼= 1.28

4ν ln(τ0/τ)
(ξ�)−ε . (4C.16)

where we use �0 ∼= ξ−2
+0 and Rξ = ξ+0 A1/d ∼= 0.36 at d = 3.

Appendix 4D Calculation of a free-energy correction

To derive (4.3.64) we calculate the following integral at d = 4,

J (r) =
∫

k
ln[(r + k2 +�−2k4)/(k2 +�−2k4)], (4D.1)

where we impose a smooth cut-off using Heff in (4.3.55). The fluctuation contribution to
the free-energy density is given by [J (rL) + (n − 1)J (rT)]/2. Differentiating twice with
respect to r , we obtain

∂2

∂r2
J (r) = −

∫
k
(r + k2 +�−2k4)−2 = 1

2
K4[ln(r/�2)+ 2]. (4D.2)

Integrating with respect to r we find two contributions,

J (r) = Acr + 1

4
K4r2 ln(e1/2r/�2), (4D.3)

where Ac = 〈ψ2
1 〉 at r = 0. The first term in (4D.3) gives rise to the contribution Acnr/2−

r0c M2/2 to the free-energy density, where r0c = −Ac(n + 2)u0 is the shift of the (scaled)
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critical temperature as given by (4.1.15) for n = 1. Here the term linear in r is regular, as
stated in footnote 11 at (4.3.53), while the term proportional to r0c is canceled to vanish
in (4.3.64) from the mass renormalization (4.1.17). (Notice that the Landau free-energy
density is written as r0 M2/2 + · · · with r0 = r + r0c.) We thus obtain the second line
of (4.3.64). Instead, if a sharp cut-off at � is assumed, the argument of the logarithm in
(4D.3) is changed to r/(e1/2�2).

Appendix 4E Calculation of the structure factors

We calculate the structure factor I (k) for general M = 〈ψ〉 in Ising-like systems. The
correlation function on the right-hand side of (4.1.30) is rewritten as

〈ψ(r)3ϕ(0)〉 = 3M2〈ϕ(r)ϕ(0)〉 + 3M〈ϕ(r)2ϕ(0)〉 + 〈ϕ(r)3ϕ(0)〉, (4E.1)

where ϕ = ψ − M is the deviation. To first order in ε we may set

〈ϕ(r)3ϕ(0)〉 = 3〈ϕ(r)2〉〈ϕ(r)ϕ(0)〉, (4E.2)

〈ϕ(r)2ϕ(0)〉 = −6u0 M
∫

dr′〈ϕ(r)ϕ(r′)〉2〈ϕ(r′)ϕ(0)〉. (4E.3)

Note that the free-energy density contains the cubic term u0 Mϕ3, which leads to (4E.3).
After some calculations we obtain

1/I (k) = r0 + 3u0 M2 + k2 + 3u0〈ϕ2〉 − 18gu0 M2 Js(k), (4E.4)

where rL = r + 3u0 M2 and

Js(k) = K−1
4

∫
q

1

(q2 + rL)(|q − k|2 + rL)

= −1

2
(ln rL + 1)− 1

12
r−1

L k2 + · · · . (4E.5)

The second line is the expansion valid for k2 � rL. Substitution of (4E.5) into (4E.4) gives
(4.3.87).

Next we consider a many-component system. Let us calculate the structure factor for the
transverse component φ2. Analogous to (4E.4), we obtain

1/IT(k) = r0 + u0 M2 + k2 + u0
(〈δψ2

1 〉 + (n − 1)〈ψ2
2 〉

) − 4gu0 M2 J (k), (4E.6)

where

J (k) = K−1
4

∫
q

1

q2(|q − k|2 + rL)

= −1

2
(ln rL + 1)− 1

4
r−1

L k2 + · · · , (4E.7)

for small k. The second term ∝ k2 leads to the correction to KR in (4.3.97).
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Appendix 4F Specific heat in two-phase coexistence

We examine the specific heat when liquid and gas regions macroscopically coexist in a cell
with a fixed total volume V [24] The mass densities, ρ� = m0n� and ρg = m0ng, and the
masses, M� and Mg, are related to the volume V as

1

ρ�
M� +

1

ρg
Mg = V . (4F.1)

Here quantities with the subscript � (g) are those of the liquid (gas) phase. We then change
the temperature T infinitesimally to T + δT . When V is fixed, M� and Mg change as
M� → M� + δM� and Mg → Mg + δMg. Here δM� + δMg = 0 and

δV =
(

1

ρ�
− 1

ρg

)
δM� + M�δ

(
1

ρ�

)
+ Mgδ

(
1

ρg

)
= 0. (4F.2)

This mass conversion occurs at the interface and takes a long time. In the final stage, the
pressure change is given by δp = (∂p/∂T )cxδT , because the final state is again on the
coexistence curve. We are interested in the total entropy change,

δStotal = (s� − sg)δM� + M�δs� + Mgδsg, (4F.3)

where s� and sg are the entropies per unit mass. The specific heat in two-phase coexistence
per unit volume is defined by

V (CV )cx = T

(
δStotal

δT

)
. (4F.4)

After some calculations we obtain [24]

(CV )cx = φ�CV �[1 + Z ′
�] + φgCV g[1 + Z ′

g], (4F.5)

where φ� = M�/ρ�V and are φg = Mg/ρgV = 1 − φ� are the volume fractions of the
two phases, and CV � and CV g are the constant-volume specific heats per unit volume. The
quantities Z ′

� and Z ′
g are the liquid and gas values of Z ′ defined by [70]

Z ′ =
(

C p

CV
− 1

) [(
∂T

∂p

)
ρ

(
∂p

∂T

)
cx
− 1

]2

= T

ρ2CV KT

(
∂ρ

∂T

)2

cx
, (4F.6)

where use has been made of (1.2.53), (1.2.54), and (2.2.39). Note that (4F.5) and (4F.6) are
applicable at any temperature. The positive-definiteness of (CV )cx is assured by the mass
conversion arising from δV = 0.

Because the thermodynamic quantities in the two phases become identical as T → Tc,
(1.2.54), (2.2.36), and (2.2.37) give

Z ′ → a2
c = Rv/(1 − Rv), (4F.7)

as T → Tc. Thus (4F.5) becomes

(CV )cx ∼= (1 + a2
c )CV = CV /(1 − Rv), (4F.8)
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where the difference of CV in the two phases is neglected, and Rv is the universal number
in (1.1.48), which has a value close to 0.5 on the coexistence curve in 3D. Experimentally,
if we apply a fixed amount of heat to a cell containing a near-critical fluid in two-phase
coexistence, the fluid heat capacity will appear to be V CV in an early stage but will
be increased to V (CV )cx = V (1 + a2

c )CV ∼= 2V CV after the mass conversion. If the
cell (boundary wall + fluid) is thermally isolated from the outside after a heat input, an
overshoot of the boundary temperature will occur on the timescale of the thermal diffusion,
as will be illustrated in Fig. 6.14.
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Part two

Dynamic models and dynamics in fluids and polymers





5

Dynamic models

Slow collective motions in physical systems, particularly those near the critical point,
can be best described in the framework of Langevin equations. We may set up Langevin
equations when the timescales of slow and fast dynamical variables are distinctly separated.
This framework originates from the classical Brownian motion and is justified microscopi-
cally via the projection operator formalism. First, in Sections 5.1–5.2, these general aspects
will be discussed with a summary of the projection operator method in Appendix 5B.
Second, in Section 5.3, we will examine simple Langevin equations in critical dynamics
(models A, B, and C) and introduce dynamic renormalization group theory. These models
have been used extensively to study fundamental problems in critical dynamics and phase
ordering. Third, in Section 5.4, we will review the general linear response theory, putting
emphasis on linear response to thermal disturbances.

5.1 Langevin equation for a single particle

5.1.1 Brownian motion

Most readers will be aware of the zig-zag motions of a relatively large particle, called a
Brownian particle, suspended in a fluid. When its mass m0 is much larger than those of
the surrounding particles, appreciable changes of the velocity of the Brownian particle can
be caused as a result of a large number of collisions with the surrounding molecules. Its
velocity u(t) in one direction (say, in the x direction) is governed by the Langevin equation
[1]–[9],

∂

∂t
u(t) = −γ u(t)+ θ(t). (5.1.1)

If the Brownian particle is suspended in an incompressible fluid governed by the Navier–
Stokes equation under the no-slip boundary condition, the relaxation rate γ may be ex-
pressed by the Stokes formula [10],

m0γ = 6πη0a, (5.1.2)

where m0 is the mass of the Brownian particle, η0 is the shear viscosity of the fluid, and a is
the radius of the particle. The quantity m0θ(t) is the rapidly varying (random) force arising
from the numerous collisions taking place on a microscopic duration time tcoll. As the
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mathematical idealization of tcoll → 0, its statistical properties are usually characterized
by

〈θ(t)〉 = 0, (5.1.3)

〈θ(t1)θ(t2)〉 = 2Lδ(t1 − t2), (5.1.4)

where 〈· · ·〉 is the stochastic average and the probability distribution of θ(t) is assumed to
be independent of u(t). The coefficient L characterizes the strength of the random force
(noise) and will be related to γ in (5.1.17) below.

A precise mathematical definition of the random force can be made by specifying
stochastic properties of a time integral of θ(t) [3],

W (t, t +�t) =
∫ t+�t

t
dt ′θ(t ′). (5.1.5)

Physically, the time interval �t should be taken to be much longer than the duration time
tcoll but much shorter than γ−1 [4],

tcoll � �t � γ−1. (5.1.6)

Then W (t, t + �t) consists of numerous microscopic impulses, so it obeys a gaussian
distribution characterized by 1

〈W (t, t +�t)2〉 = 2L�t. (5.1.7)

Furthermore, we assume that if two time intervals, [t1, t2] and [t3, t4], are disjoint (t1 <

t2 < t3 < t4 or t3 < t4 < t1 < t2), the two random impulses W (t1, t2) and W (t3, t4) are
independent of each other or have no correlation between each other. Thus,

〈W (t1, t2)W (t3, t4)〉 = 0. (5.1.8)

This means that the random force does not remember previous random events. The stochas-
tic process obeyed by the time-dependent variable,

w(t) ≡ W (0, t) =
∫ t

0
dt ′θ(t ′), (5.1.9)

is called the Wiener process [7], in terms of which we have W (t, t +�t) = w(t +�t)−
w(t). If random source terms in stochastic differential equations satisfy the above two
properties, we will call them gaussian and markovian noises (or random forces).

Because u(t) no longer has well-defined time derivatives in the limit tcoll → 0, as can be
known from (5.1.7), it is more appropriate to rewrite the original equation (5.1.1) in terms
of the incremental change �u(t) ≡ u(t +�t)− u(t) as

�u(t) = −γ

∫ t+�t

t
dt ′u(t ′)+ W (t, t +�t)

∼= −γ u(t)�t + W (t, t +�t). (5.1.10)
1 It would be natural to expect that a sum of many independent random variables with similar probability distributions and finite

variances should obey a gaussian distribution. This asymptotic law can readily be obtained using their characteristic function
expressions. A rigorous mathematical expression of this property is known as the central limit theorem.
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In the second line use has been made of the fact that u(t) is continuous with probability 1
[3].2 The above Langevin equation may be written in the differential form as

du(t) = −γ u(t)dt + dw(t). (5.1.11)

The stochastic differential equation in this form is sometimes called the Itô equation [7].

5.1.2 Fokker–Planck equation for the velocity

Recall that u(t) is a stochastic variable obeying (5.1.1) or (5.1.10). Another equivalent
description is to follow the time evolution of the probability distribution,

P(v, t) = 〈δ(u(t)− v)〉, (5.1.12)

which is the probability that u(t) is equal to v at time t . In Appendix 5A we shall see that
P(v, t) obeys the Fokker–Planck equation,

∂

∂t
P(v, t) = LFP P(v, t) = ∂

∂v

[
γ v + L

∂

∂v

]
P(v, t), (5.1.13)

where LFP is called the Fokker–Planck operator. The second-order differentiation ∂2/∂v2

on the right-hand side arises from the random force θ(t). The conditional distribution
P(v, v0, t) in which u(0) at t = 0 is fixed at v0 is formally written as

P(v, v0, t) = exp(tLFP)δ(v − v0). (5.1.14)

It satisfies the markovian property,

P(v1, v2, t1 + t2) =
∫

dv3 P(v1, v3, t1)P(v3, v2, t2). (5.1.15)

If the equilibrium distribution is maxwellian,

Peq(v) = (m0/2πT )1/2 exp
(
−m0

2T
v2

)
, (5.1.16)

it follows a fluctuation–dissipation relation,

γ = (m0/T )L , (5.1.17)

which relates the relaxation rate to the noise strength. The Langevin equation (5.1.1) may
now be expressed in the standard form (see (5.2.1) for a general form),

∂

∂t
u(t) = −L

∂

∂u
(βH)+ θ(t), (5.1.18)

where H is the free energy of the Brownian particle,

H(u) = −T log Peq(u) = 1

2
m0u2 + const. (5.1.19)

2 Note that �u(t) is mostly of order (�t)1/2 and u(t) is not differentiable with probability 1.
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We note that the average 〈u(t)〉 relaxes exponentially with the relaxation rate γ . The
variance σ(t) = 〈(u(t))2〉 − 〈u(t)〉2 obeys

d

dt
σ(t) = d

dt

∫
dvv2 P(v, t)+ 2γ 〈u(t)〉2 = −2γ

[
σ(t)− T

m0

]
. (5.1.20)

Thus σ(t)− T/m0 exponentially goes to zero with the relaxation rate 2γ .

5.1.3 Langevin equation for the position

We now follow the space position of the Brownian particle. When there is no potential
energy such as the gravity field or an electric field, the x coordinate of the Brownian particle
X (t) obeys

∂

∂t
X (t) = u(t). (5.1.21)

Because we are assuming the linear Langevin equation (5.1.1), the displacement

�X (t) = X (t)− X (0) =
∫ t

0
dt ′u(t ′) (5.1.22)

obeys a gaussian distribution, whose variance in equilibrium is

〈(�X (t))2〉 = 2
∫ t

0
dt ′ (t − t ′) 〈u(t ′)u(0)〉

= 2(T/m0γ ) [t − (1 − e−γ t )/γ ]. (5.1.23)

In the short- or long-time limit, the particle motion is ballistic or diffusive, respectively, as

〈(�X (t))2〉 ∼= (T/m0) t2 (t � γ−1),

∼= 2(T/m0γ ) t (t � γ−1). (5.1.24)

The diffusion constant D turns out to be given by D = T/m0γ . If use is made of the
hydrodynamic expression (5.1.2), it follows the Einstein–Stokes formula [10],3

D = T/6πη0a. (5.1.25)

On timescales much longer than γ−1, u(t) in (5.1.21) plays the role of a gaussian and
markovian random force acting on X (t). To show this, we integrate (5.1.1) as

u(t) = u(0) exp(−γ t)+
∫ t

0
dt ′ exp[−γ (t − t ′)] θ(t ′). (5.1.26)

If t � γ−1, the first term, representing the initial memory, decays exponentially to zero
and the second term becomes a stationary gaussian random variable. Neglecting the first
term, we calculate the time correlation of u(t) as

〈u(t1)u(t2)〉 = Lγ−1 exp(−γ |t1 − t2|), (5.1.27)

3 This formula is known to give a fair estimation of the diffusion constant of a tagged particle in a fluid even if the particle size
is microscopic. However, this formula breaks down in highly supercooled liquids, as will be discussed in Section 11.4.
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where t1 and t2 are both much longer than γ−1. For t1 = t2 the equilibrium time-correlation
function is obtained, while in the limit γ−1 → 0 we obtain

〈u(t1)u(t2)〉 ∼= 2Lγ−2δ(t1 − t2) = γ−2〈θ(t1)θ(t2)〉. (5.1.28)

In this mathematical idealization, u(t) and γ−1θ(t) are equivalent gaussian and markovian
noises with the same variance. This formally follows from (5.1.1) if we set ∂u/∂t = 0
there. However, this equivalence is not trivial, because u(t) and γ−1θ(t) are physically
very different with very different timescales. The displacement �X (t) is then a Wiener
process with its variance linearly growing as the second line of (5.1.24).

The effect of a potential U (X) dependent on the particle position X can be easily
incorporated in the above arguments. We change (5.1.1) as

∂

∂t
u(t) = − 1

m0

∂

∂X
U (X)− γ u(t)+ θ(t). (5.1.29)

As has been stated below (5.1.28), we are allowed to set ∂u/∂t = 0 in (5.1.29) even in the
presence of the potential in describing phenomena taking place on timescales much longer
than γ−1. It then leads to a Langevin equation for X (t),

∂

∂t
X (t) = −D

∂

∂X
βU (X)+ θ̄ (t), (5.1.30)

where D is defined by (5.1.25). The noise term θ̄ (t) ≡ γ−1θ(t) satisfies the fluctuation–
dissipation relation,

〈θ̄ (t1)θ̄(t2)〉 = 2Dδ(t1 − t2), (5.1.31)

which follows from (5.1.17). The Fokker–Planck equation for the probability distribution
P(x, t) ≡ 〈δ(X (t)− x)〉 is given by

∂

∂t
P(x, t) = D

∂

∂x

[
β
∂U (x)

∂x
+ ∂

∂x

]
P(x, t), (5.1.32)

whose stationary solution is Peq = const. exp[−βU (x)].

Diffusion constant in general

We may consider diffusive motion of any tagged particle, whose size may be of the same
order as those of the surrounding particles, in fluids or even in solids. The simplest linear
Langevin equation (5.1.1) is not applicable in many situations. Nevertheless, both in fluids
and solids, the translational diffusion constant of such a tagged particle is expressed in
terms of the time integration of its velocity-correlation function,

D =
∫ ∞

0
dt〈u(t)u(0)〉. (5.1.33)

The diffusion behavior 〈(�X (t))2〉 ∼= 2Dt follows at sufficiently long times, as long as the
above integral is convergent.
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5.1.4 Compound–poissonian noise

A noise term consisting of pulse-like impacts should be treated to be poissonian rather than
gaussian if even a single impact causes appreciable influence on the dynamic variable.4 If
the distribution of a dynamic variable obeys a Master equation, each sample process of
the variable evolves under the influence of a compound-poissonian noise, in which the
time integral of the noise term is a linear combination of independent poissonian random
variables [6]–[9]. The Boltzmann equation for dilute gases may also be regarded as a
Langevin equation with a compound-poissonian noise [6, 11].

As a simple example, let us consider motion of a particle caused by thermally activated
jumps or hoppings in a solid or glass. The time integral of the random velocity (the particle
displacement vector), �X(t) = ∫ t+�t

t dt ′u(t ′), in a small time interval �t consists of
jumps with size """ as

�X(t) =
∑
"""

N (�t, """)""", (5.1.34)

where N (�t, """) is the number of the """-jumps obeying a poissonian distribution with
average Ŵ (""")�t independently of one another. In this case it is easy to calculate the time
evolution of the van Hove time-correlation function G(q, t) = 〈exp[iq · (X(t)− X(0)]〉.
To this end we note the relation,

G(q, t +�t) = 〈exp[iq ·�X(t)]〉G(q, t)

=
∏
"

exp
[
(eiq·""" − 1)Ŵ (""")�t

]
G(q, t). (5.1.35)

As �t → 0 we find

∂

∂t
G(q, t) =

[ ∑
"""

(eiq·""" − 1)Ŵ (""")

]
G(q, t), (5.1.36)

which is integrated to give

G(q, t) = exp

[ ∑
"""

(eiq·""" − 1)Ŵ (""")t

]
. (5.1.37)

We notice that the tagged particle density P(x, t) = 〈δ(x − X(t))〉 is governed by the
master equation [12],

∂

∂t
P(x, t) =

∑
"""

Ŵ (""")
[
P(x − """, t)− P(x, t)

]
. (5.1.38)

Furthermore, let the second moments
∑

""" Ŵ (""")"α"β = Dδαβ be convergent and diagonal.
Then the linear relation,

〈�Xα(t)�Xβ(t)〉 = 2Dδαβ t, (5.1.39)

4 If X is a poissonian random variable, the probability of X = n (= 0, 1, 2, . . .) is given by e−〈X〉〈X〉n/n!.
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holds for any t and the diffusion equation ∂P/∂t = D∇2 P is obtained on long timescales
in which the jump number t

∑
""" Ŵ (""") greatly exceeds 1 [12].

However, the particle may jump over large distances such that the second moments
diverge. As such an example, let the jump distribution Pjump(""") = Ŵ (""")/

∑
m Ŵ (m) obey

the Lèvy distribution [8]. It has a tail at large " and its characteristic function behaves as∑
""" eiq·"""Pjump(""") = exp(−C |q|σ ), with σ ≤ 2. In this case, the van Hove time-correlation

function behaves as

G(q, t) = exp(−tC |q|σ ), (5.1.40)

at long times or at small |q|. The displacement-distribution function obeys

∂

∂t
P(x, t) = −C(−∇2)σ/2 P(x, t). (5.1.41)

We can define the fractional power of the laplacian in this manner.

5.1.5 Long-time tail

To be precise, a Brownian particle in a fluid does not obey the simple markovian Langevin
equation (5.1.1) due to reaction of the flow field (backflow effect). As a result, it is known
that the time-correlation function of the velocity φ(t) = 〈u(t)u(0)〉 has a long-time
tail ∼ t−d/2 [13, 14]. We assume that a Brownian particle should be convected by the
fluctuating velocity field vvv(r, t) at the particle position r = R(t) on long timescales.
Because the long-wavelength velocity field has long lifetimes, we have

φ(t) ∼=
∫

dr(4πDt)−d/2 exp(−r2/4Dt)〈vx (r, t)vx (0, 0)〉

∼ T

ρ

∫
k

exp[−(D + ν)k2t] ∼ T

ρ
[(D + ν)t]−d/2, (5.1.42)

where the diffusion of the particle is also taken into account. In the second line we have
neglected the longitudinal velocity and retained the transverse velocity because the latter
decays diffusively as exp(−νk2t) with ν = η0/ρ at small wave numbers. In 2D, we then
have 〈(�X (t))2〉 ∼ t ln t at long times. This means that the usual diffusion constant is not
well defined in 2D. The other transport coefficients, such as the shear viscosity, also have
logarithmic dependence on the frequency, wave number, or system size in 2D.

This flow effect can be studied analytically if the fluid particles are treated as an incom-
pressible continuum obeying the linearized Navier–Stokes equation [10, 14]. Generally,
the drag force on a sphere oscillating periodically with a small amplitude and arbitrary
frequency (∝ eiωt ) is written as −m0Re[γ̂ (ω)u]. In 3D, under the no-slip boundary
condition, the frequency-dependent friction constant γ̂ (ω) is calculated as

m0γ̂ (ω) = 6πη0a + 2π

3
ρa3iω + 6πa2(iωρη0)

1/2. (5.1.43)
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This means that φ(t) obeys a non-markovian equation [14],

meffφ̇(t) = −6πη0aφ(t)− 6a2(πρη0)
1/2

∫ t

0
ds(t − s)−1/2φ̇(s), (5.1.44)

where φ̇(t) = ∂φ(t)/∂t and

meff = m0 + 2π

3
ρa3 (5.1.45)

is the effective mass. The Laplace transformation of φ(t) is expressed as∫ ∞

0
dte−iωtφ(t) = T

m0

1

iω + γ̂ (ω)
= D

i�+ 1 + 3(iα�)1/2
, (5.1.46)

where D = T/6πη0a, � = (meff/6πη0a)ω, and

α = 1 − m0/meff = 2πρa3/(3m0 + 2πρa3). (5.1.47)

The flow effect is thus important in liquids (where 2πρa3/3 ∼ m0) and small in dilute
gases (where 2πρa3/3 � m0)). The inverse Laplace transformation of (5.1.46) reproduces
the long-time tail φ(t) ∼ (T/ρ)(νt)−3/2, which is consistent with (5.1.42) for D � ν.
Note the relation limt→0 φ(t) = T/meff is obtained from (5.1.46), whereas φ(0) = T/m0

is exact. This difference arises from the continuum approximation in deriving (5.1.43).
Similar long-time tails (∝ t−d/2) can be found generally in the flux time-correlation

functions in the long-wavelength limit whose time integration gives transport coefficients.
They originate from nonlinear mode coupling between the hydrodynamic fluctuations.

5.2 Nonlinear Langevin equations with many variables

The theory of Brownian motion can be generalized for cases with many variables [15]–
[20]. Let a set of variables A(t) = {Ai (t)} relax slowly compared with the other degrees
of freedom which constitute random forces acting on A(t). They are called the gross
variables [15]. The subscript i denotes the variable species and the wave vector q if A(t)
are fields composed of long-wavelength Fourier components (q < �). This framework has
been widely used to study fundamental features of phase transition dynamics in various
systems. Particularly for near-critical systems, the upper cut-off wave number � should
be chosen in the region ξ−1 � � � a−1 at the starting point of the theory, where ξ

is the correlation length and a is a microscopic length such as the lattice constant. As in
statics in Chapter 4, decreasing � is equivalent to coarse-graining of the short-wavelength
fluctuations, resulting in dynamic renormalization group theory.
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5.2.1 General theory

Using the projection operator method [16]–[18], which will be explained in Appendix 5B,
we may construct a formal theory leading to general nonlinear Langevin equations,

∂

∂t
Ai (t) = vi (A)−

∑
j

Li j (A)Fj (A)+ θi (t), (5.2.1)

in the markovian form originally presented by Green [15]. Here,

Fj (A) = ∂

∂A j
βH(A) (5.2.2)

are called the thermodynamic forces [21]–[24]. The potential or hamiltonian H(A) is
formally defined by

Peq(a) =
〈∏

j

δ(A j − a j )

〉
= const. exp[−βH(a)], (5.2.3)

which is the probability of finding A at a in equilibrium (equilibrium distribution). Here-
after 〈· · ·〉 denotes the equilibrium average, and the conditional average in which A is fixed
at a may be defined by

〈· · · ; a〉 =
〈
· · ·

∏
j

δ(A j − a j )

〉/
Peq(a). (5.2.4)

with this preliminary understanding, we will now explain the physical meanings of the
terms in (5.2.1).

(i) The first terms vi (A), sometimes called the streaming terms, represent the reversible,
instantaneous changing rate of Ai expressed as

vi (a) = 〈 Ȧi ; a〉, (5.2.5)

where Ȧi is the microscopic time derivative of Ai (see Appendix 5B). The linear parts of
vi (A) give rise to oscillatory modes such as spin waves in magnets, sounds in fluids, or
second sounds in 4He [17]. The nonlinear parts of vi (A), called the mode coupling terms,
lead to enhancement of the kinetic coefficients in the long-wavelength limit [25, 26]. The
form of vi (A) can be determined from conservation laws or poissonian bracket relations
[27], see (5B.2).

(ii) In the second terms, the kinetic coefficients Li j (A) can be shown to satisfy Li j (A) =
εiε j L ji ( Ã) from the formal theory in Appendix 5B, where Ã = {εi Ai } denotes the time-
reversed gross variables (see (5.2.8) below). Here we assume that Li j (A) are nonvanishing
only for pairs i and j with εiε j = 1 and are even functions of A" with ε" = −1. Then we
may set

Li j (A) = L ji ( Ã) = L ji (A). (5.2.6)

Note that Li j here are bare or background coefficients, because the nonlinear terms in
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the dynamic equations serve to renormalize them into those observable in experiments
[19, 25, 26].

(iii) With these assumptions we may impose the gaussian–markovian stochastic property
on the last terms θi (t) characterized by the fluctuation–dissipation relations,5

〈θi (t)θ j (t
′); a〉 = 2Li j (a)δ(t − t ′). (5.2.7)

Many phenomenological dynamic equations can be treated as Langevin equations in
the general form (5.2.1) if appropriate thermal noise terms satisfying (5.2.7) are added. A
notable example is the usual hydrodynamic equations supplemented with random stress
tensor, random energy current, and random diffusion current [10]. The symmetry of the
kinetic coefficients (in the linear response regime in the original papers) is known as the
Onsager reciprocal theorem, valid for various coupled transport processes [21]–[24].

Time reversal and anti-symmetric kinetic coefficients

Let Ai be changed to

Ãi = εi Ai (εi = ±1) (5.2.8)

with respect to the time reversal (which is the change (r j , p j ) → (r j ,−p j ) for classical
fluids). Then vi (A) are changed to −εivi (A), so that the streaming terms in (5.2.1) are
reversible. However, Fi (A) (= Fi ( Ã) if H(a) = H(ã)) are changed to εi Fi (A). Thus, for
εiε j = 1, the terms involving Li j (A) in (5.2.1) are dissipative and the kinetic coefficients
are symmetric. For εiε j = −1, they are reversible and the kinetic coefficients are anti-
symmetric [15, 22, 23], although this possibility is neglected in (5.2.6). The existence of
reversible or anti-symmetric kinetic coefficients was first pointed out by Casimir [22]. We
will encounter a situation in the critical dynamics of 4He in Section 6.4, where the coarse-
graining gives rise to anti-symmetric renormalized kinetic coefficients. This can happen
when both reversible and dissipative nonlinear terms are present in the Langevin equations.

5.2.2 Probability distribution and Fokker–Planck equation

The Langevin equations (5.2.1) can be presented in a mathematically precise manner in the
Itô scheme as

Ai (t +�t)− Ai (t) ∼= Vi (A(t))�t + Wi (t, t +�t), (5.2.9)

as in (5.1.10). The last terms are gaussian random variables with variances,

〈Wi (t, t +�t)W j (t, t +�t); a〉 = 2Li j (a)�t, (5.2.10)

5 This expression is misleading when Li j depend on a, however. Rigorous stochastic characterization of the equations will be
given in (5.2.9).
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dependent on the initial A(t) = a.6 Then the first term Vi (a) in (5.2.9) as a function of a
is given by7

Vi (a) = vi (a)−
∑

j

Li j (a)Fj (a)+
∑

j

∂

∂a j
Li j (a). (5.2.11)

The probability distribution P(a, t) of finding A(t) at a = {a j } is then governed by

∂

∂t
P(a, t) = LFP{a}P(a, t) (5.2.12)

with the Fokker–Planck operator [15, 16],

LFP{a} = −
∑

i

∂

∂ai
vi (a)+

∑
i, j

∂

∂ai
Li j (a)

[
∂

∂a j
+ Fj (a)

]
. (5.2.13)

This can be derived by straightforward generalization of the simplest example in Appendix
5A. The first term on the right-hand side of (5.2.13) is reversible, while the second term is
dissipative. Because LFP{a}Peq = 0, the streaming terms should satisfy

∑
j

v j (a)Fj (a) =
∑

j

∂

∂a j
v j (a), (5.2.14)

which follows from the microscopic expression (5.2.5) and is called the potential condition.
The statistical average of any quantity Q(A(t)) determined by A(t) at time t is expressed

as

〈Q〉t =
∫

daQ(a)P(a, t), (5.2.15)

where 〈· · ·〉t is the average at time t and da = ∏
" da". Its changing rate is

∂

∂t
〈Q〉t =

〈 ∑
i

vi
∂Q
∂Ai

+
∑

i j

(
∂

∂Ai
− Fi

)
Li j

∂Q
∂A j

〉
t
. (5.2.16)

For example, the equal-time variance Ii j (t) = 〈Ai A j 〉t in nonequilibrium obeys

∂

∂t
Ii j (t) =

〈
vi A j + Li j −

∑
"

A j

(
Li"F" − ∂

∂A"

Li"

)〉
t
+ (i ←→ j), (5.2.17)

where the last term is obtained by exchange of i and j in the first term. This is a gener-
alization of (5.1.20) and will be used in calculating the time-dependent structure factor in
(5.3.25) below.

6 Some analytic and numerical studies were made on Langevin equations with multiplicative noise of the form g(A(t))θ(t),
where θ(t) is a gaussian–markovian noise. See Ref. [28] for example.

7 Here the last term
∑

j ∂Li j/∂a j arises because the Itô scheme is used [7].
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5.2.3 Time-correlation functions

Let us consider the equilibrium time-correlation function between Q1[t] = Q1(A(t)) and
Q2[0] = Q2(A(0)), where Q1(A) and Q2(A) are arbitrary functions of A. If the gross
variables A are fixed at a0 at t = 0, the subsequent distribution is given by P(a, a0, t) =
exp(LFP{a}t)δ(a − a0), in terms of which we have

〈Q1[t]Q2[0]〉 =
∫

da
∫

da0Q1(a)Q2(a0)P(a, a0, t)Peq(a0)

=
∫

daQ1(a)e
LFP{a}tQ2(a)Peq(a). (5.2.18)

As will be shown in Appendix 5C, the time reversal symmetry yields

〈Q1[t]Q2[0]〉 = 〈Q̃2[t]Q̃1[0]〉 =
∫

daQ̃2(a)e
LFP{a}tQ̃1(a)Peq(a), (5.2.19)

where Q̃1(A) ≡ Q1( Ã) and Q̃2(A) ≡ Q2( Ã) with Ã being the time-reversed gross
variables (5.2.8). The time-correlation functions Gi j (t) = 〈Ai (t)A j (0)〉 (t > 0) of the
gross variables evolve as

∂

∂t
Gi j (t) =

〈(
vi [t] −

∑
"

Li"F"[t]

)
A j (0)

〉
. (5.2.20)

We differentiate the above equation with respect to t again to obtain

∂2

∂t2
Gi j (t) = −

〈(
vi [t] −

∑
"

Li"F"[t]

)(
v j [0] +

∑
"

L j"F"[0]

)〉
. (5.2.21)

Here use has been made of the fact that the reversible and irreversible terms change
differently with respect to the time reversal, so the latter terms appear with different signs
at time t and 0.

More specifically, we consider the case in which the changing rate is divided into linear
and nonlinear parts as

vi (A)−
∑
"

Li"F"(A) = −γi Ai + Xi (A), (5.2.22)

where we assume 〈Xi (A)A j 〉 = 0. As will be shown in Appendix 5C, the Laplace
transformation of Gi j (t) can be expressed as∫ ∞

0
dte−�t Gi j (t) = 〈Ai A j 〉

�+ γi
+ 1

(�+ γi )(�+ γ j )

∫ ∞

0
dte−�t 〈Xi [t]X̄ j [0]〉, (5.2.23)

where Xi [t] = Xi (A(t)) and X̄ j [0] = ε j X j ( Ã). The above relation will be used to set
up dynamic renormalization group equations for the kinetic coefficients in some dynamic
models below.
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5.2.4 Approach to equilibrium

If there is no externally applied perturbation such as heat flow or shear flow, the system
tends to equilibrium with the distribution (5.2.3) owing to the fluctuation–dissipation
theorem (5.2.7) and the potential condition (5.2.14). Let us define the total entropy [15]
by

S(t) = −
∫ (∏

"

da"

)
P(a, t) ln[P(a, t)/Peq(a)] = −〈

ln[P(A, t)/Peq(A)]
〉
t . (5.2.24)

Its changing rate is nonnegative-definite as

∂

∂t
S(t) =

〈 ∑
i, j

Li j

[
∂

∂Ai
(ln P + βH)

] [
∂

∂A j
(ln P + βH)

] 〉
t
≥ 0, (5.2.25)

where the terms proportional to vi vanish due to (5.2.14). Therefore, S̃(t) monotonically
decreases with time until the equilibrium P(a, t) = Peq(a) is attained as t → ∞.

In phenomenological transport equations such as the usual hydrodynamic equations, the
noise terms are usually neglected and the entropy production rate is nonnegative-definite
without flow from outside [23]. Note that the entropy deviation (�S)2 in the bilinear order
in (1.2.39) or (1.2.42) corresponds to −βH in the gaussian approximation from (1.2.40).
So, let us consider the changing rate of βH neglecting the noise terms:

∂

∂t
βH(A) =

∑
i

∂vi

∂Ai
−

∑
i j

Li j Fi Fj . (5.2.26)

The right-hand side is nonnegative-definite in the purely dissipative case vi = 0 or in the
divergence-free case

∑
j ∂vi/∂Ai = 0 more generally. The latter condition holds for fluid

hydrodynamics and for dynamic models of phase transitions assembled in Ref. [27]. (This
can be checked unambiguously in the coarse-grained lattice representation, see the next
section.) In these cases βH tends to be minimized as t → ∞.

5.3 Simple time-dependent Ginzburg–Landau models

First, we will construct purely dissipative Langevin equations, where a single-component
order parameter ψ(r, t), called the spin variable, depends on space and time. The subscript
j in the previous section is now the wave vector k with k < �, � being the upper cut-
off wave number. We may equivalently suppose a coarse-grained lattice with mesh size
" = 2π/�, as we have introduced in (4.1.2). Then ψ(r, t) may be written as ψ j (t) for r in
the j th cell. The time t is explicitly written hereafter. Second, we will examine the linear
dynamics. Third, we will show how the nonlinear term in the thermodynamic force serves
to renormalize the kinetic coefficient near the critical point.
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5.3.1 Nonconserved systems: model A

The simplest Langevin equations for {ψ j (t)} ( j representing the lattice sites) are given by

∂

∂t
ψ j (t) = −L0

∂

∂ψ j
(βH)+ θ j (t), (5.3.1)

and no streaming term is assumed. The random noise terms θ j (t) are independent of one
another, gaussian, and markovian, characterized by

〈θ j (t)θ"(t
′)〉 = 2L0δ(t − t ′)δ j,". (5.3.2)

In the continuum limit, ∂/∂ψ j is replaced by the functional derivative δ/δψ(r) and the
above two equations are rewritten as

∂

∂t
ψ(r, t) = −L0

δ

δψ
(βH)+ θ(r, t), (5.3.3)

〈θ(r, t)θ(r′, t ′)〉 = 2L0δ(r − r′)δ(t − t ′), (5.3.4)

which is called model A in Ref. [27]. The GLW hamiltonian (4.1.1) yields the thermo-
dynamic force,

δ

δψ
βH = (r + r0c + u0ψ

2 − K∇2)ψ − h. (5.3.5)

The Fokker–Planck equation for the distribution P({ψ}, t) is

∂

∂t
P =

∫
dr

δ

δψ(r)
L0

[
δ

δψ(r)
+ δ

δψ(r)
(βH)

]
P. (5.3.6)

This model describes purely dissipative dynamics of a nonconserved order parameter.

5.3.2 Conserved systems: model B

When a binary alloy consisting of A and B atoms is cooled, it phase-separates into A-rich
regions and B-rich regions. If each lattice point is occupied by either an A or a B atom, the
order parameter may be taken to be the concentration or density of the species A. Its local
conservation law requires a continuity equation,

∂

∂t
ψ(r, t) = −∇∇∇ · Jψ(r, t), (5.3.7)

where Jψ(r, t) represents the flux of the component A. If there is no flow from outside, the
space average of the order parameter M is constant in time. Therefore, it is convenient to
characterize the state of the system in terms of the reduced temperature τ and the average
M , because h, representing the chemical potential difference, is not usually a controllable
parameter. The simplest expression for Jψ(r, t) is

Jψ(r, t) = −L0∇ δ

δψ
(βH)+ G(r, t), (5.3.8)
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where G(r, t) is the random flux. Its strength is characterized by

〈G j (r, t)Gk(r′, t ′)〉 = 2L0δ jkδ(r − r′)δ(t − t ′), (5.3.9)

where j, k = x, y, z. Thus we obtain the Langevin equation (model B [27]),

∂

∂t
ψ(r, t) = L0∇2 δ

δψ
(βH)+ θ(r, t). (5.3.10)

Here

θ(r, t) = −∇ · G(r, t) (5.3.11)

is the noise term and its correlation is formally expressed as

〈θ(r, t)θ(r′, t ′)〉 = −2L0∇2δ(r − r′)δ(t − t ′). (5.3.12)

The corresponding Fokker–Planck equation can be obtained if we replace L0 in (5.3.6) by
−L0∇2.

5.3.3 Coupled systems: model C

It is usual that the order parameter ψ is coupled to a conserved variable m in the GLW
hamiltonian H = H{ψ,m} as (4.1.45). Then slow relaxation of m can influence the
dynamics of the nonconserved ψ . The simplest dynamic equations, called model C [27],
are provided by (5.3.3) for ψ and

∂

∂t
m(r, t) = λ0∇2 δ

δm
βH+ ζ(r, t) (5.3.13)

for m. The coefficient λ0 is the thermal conductivity if m is the energy variable. The noise
term ζ satisfies (5.3.12) with L0 being replaced by λ0. In this model there are no mode
coupling terms, but ψ and m are coupled dissipatively because the functional derivative,

δ

δψ
βH = (r0c + 2γ0m + ū0ψ

2 − K∇2)ψ − h, (5.3.14)

contains the nonlinear term 2γ0mψ . Furthermore, we may use the above model to describe
tricritical dynamics in metamagnets by adding the sixth-order term v0ψ

6 in the free-energy
density as in (3.2.1) [29].

Steady states under a temperature (chemical potential) gradient

In this coupled model we may apply a constant heat flow with a constant temperature
gradient,

a = ∇
〈
δ

δm
H

〉
ss
. (5.3.15)

From (3.1.27) or (4.1.46), δH/δm is the temperature (or chemical potential) fluctuation.
We expect the existence of a steady-state distribution Pss{ψ,m}, which is the solution
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of LFP Pss = 0 under (5.3.15), LFP{ψ,m} being the Fokker–Planck operator. The aver-
age 〈· · ·〉ss in (5.3.15) is taken over Pss. In our system, without the mode coupling terms,
Pss is simply of the local equilibrium form,

Pss = Plocal ∝ exp(−βHlocal), Hlocal = H−
∫

dr(a · r)m(r). (5.3.16)

Then 〈· · ·〉ss =
∫

dψdm(· · ·)Plocal and 〈δHlocal/δm〉ss = 〈δH/δm〉ss − a · r = 0, leading
to (5.3.15). Because the distribution of m is gaussian for each fixed ψ , we may determine
m by

δ

δm
βHlocal = C−1

0 m + γ0ψ
2 − τ − βa · r = 0, (5.3.17)

neglecting its fluctuations. Then Plocal becomes a steady-state distribution for ψ only, in
which the temperature coefficient r linearly depends on space as

r = a0(τ + βa · r). (5.3.18)

In this case the hamiltonian under heat flow is well defined. It is of the same form as that
for 4He under gravity in (4.2.50). In Chapter 6 we shall see that the steady-state distribution
deviates from Plocal in the presence of the mode coupling terms near the gas–liquid critical
point, leading to critical enhancement of the thermal conductivity.

5.3.4 Mean field theory and thermodynamic stability

Models A and B

We examine the linearized dynamic equation for the deviation δψ = ψ − M for models A
and B, where M = 〈ψ〉 is assumed to be homogeneous. The thermodynamic force (5.3.5)
is given to first order in the deviation as

δ

δψ
(βH) ∼= (reff − K∇2)δψ, (5.3.19)

where

reff = r + 3u0 M2. (5.3.20)

The shift r0c is neglected in the mean field calculation. From (5.3.3) and (5.3.10) we obtain
a linearized Langevin equation,

∂

∂t
δψ = −L0(−∇2)a(reff − K∇2)δψ + θ. (5.3.21)

Here the exponent a is 0 for the nonconserved case and 1 for the conserved case. In the
Fourier space, ψk(t) are independent of one another as

∂

∂t
ψk = −L0k2a(reff + K k2)ψk + θk, (5.3.22)
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with

〈θk(t)θk′(t
′)〉 = 2L0k2aδ(k + k′)δ(t − t ′). (5.3.23)

The decay rate is thus

�k = L0k2a(reff + K k2). (5.3.24)

The system is stable in the case reff ≥ 0 with respect to small plane-wave fluctuations. If
reff < 0, the fluctuations grow for k < |reff/K |1/2. We write the equation for the equal-time
structure factor Ik(t) ≡ 〈|ψk(t)|2〉,

∂

∂t
Ik(t) = −2�k Ik(t)+ 2L0k2a, (5.3.25)

which follows from (5.2.17) and is of the same form as (5.1.20). If reff ≥ 0, Ik(t) tends to
the Ornstein–Zernike form,

IOZ(k) = 1/(reff + K k2), (5.3.26)

as t → ∞. The spinodal point is given by reff = 0 or

a0(T/Tc − 1) = −3u0 M2, (5.3.27)

which forms the spinodal curve in the T –M plane placed below the mean field coexistence
curve a0(T/Tc − 1) = −u0 M2. In the present analysis, in which the nonlinear coupling
between the fluctuations is neglected, the system is linearly unstable below the spinodal
curve against long-wavelength fluctuations. Phase-ordering processes then proceed, as will
be treated in Chapter 8. Between the coexistence and spinodal curves, nucleation processes
are expected to take place, for which see Chapter 9.

Model C

In a disordered phase with 〈ψ〉 = 0 the fluctuations of ψ and m are decoupled in the linear
analysis. If the nonlinear coupling is neglected, ψ behaves as in model A and δm relaxes
diffusively with the diffusion constant D0 = λ0/C0. Let us then assume M = 〈ψ〉 �= 0,
where r M + u0 M3 = h with r = a0τ . The Fourier components ψk and mk obey [29]

∂

∂t
ψk = −L0

[
(r1 + K k2)ψk + 2γ0 Mmk

] + θk, (5.3.28)

∂

∂t
mk = −λ0k2[

2γ0 Mψk + C−1
0 mk

] + ζk. (5.3.29)

Using u0 = ū0 − 2γ 2
0 C0 from (4.1.48) the coefficient r1 is written as

r1 = 2γ0〈m〉 + 3ū0 M2 = a0τ + 3u0 M2 + 4γ 2
0 C0 M2, (5.3.30)

where a0 = 2γ0C0 and r0c is neglected. We note that the reduced temperature τ in (4.1.18)
may be related to the average energy density 〈m〉 as C−1

0 〈m〉 + γ0 M2 = τ in the mean
field theory. The Fourier components relax in the form of A1 exp(−�1t)+ A2 exp(−�2t)
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(if the noise terms are neglected). The linear stability (�1, �2 ≥ 0) is assured by the
nonnegativity of the following combination,

reff = r1 − a2
0 M2 = a0τ + 3u0 M2. (5.3.31)

The spinodal is given by reff = 0. Interestingly, as reff → 0 and k → 0, the relaxation rates
behave as

�1 ∼= L0r1, �2 ∼= (λ0/Ceff)k
2, (5.3.32)

where Ceff is the specific heat at constant h written as

Ceff = C0 + a2
0 M2/reff = C0r1/reff. (5.3.33)

For M �= 0 the diffusive mode first undergoes slowing down as reff → 0, where the
relaxation of ψ is governed by the slow diffusive motion of m. In fact, we may set ∂ψ/∂t =
θ = 0 in (5.3.28) as k → 0 to obtain ψk ∼= −(2γ0 M/r1)mk. Substitution of this result into
(5.3.29) gives the diffusion equation with the diffusion constant λ0/Ceff.

5.3.5 Critical dynamics in model A

We have studied the effect of the quartic term in the GLW hamiltonian in statics. However,
the way it affects the purely dissipative dynamics governed by (5.3.3) is not trivial [30]–
[32]. It is known that, although the dynamical effect is subtle, the kinetic coefficient L0

is renormalized with a multiplicative factor smaller than 1 for ε = 4 − d > 0. The upper
critical dimensionality remains 4 also in dynamics. We are interested in the time-correlation
function in equilibrium,

G(k, t) = 〈ψk(t)ψ−k(0)〉. (5.3.34)

For simplicity, we assume h = 0 and τ > 0. Following Kawasaki [33], we rewrite (5.3.3)
in the Fourier space as

∂

∂t
ψk = −γkψk − J̃k + θk. (5.3.35)

Here γk is the linear relaxation rate defined by

γk = L0/χk, (5.3.36)

where χk ≡ 〈|ψk|2〉 is the static structure factor. The nonlinear part

J̃k = L0
∂

∂ψ−k
βH− γkψk (5.3.37)

is orthogonal to ψ or 〈 J̃kψk′ 〉 = 0 from the Fourier transformation of the second relation
of (4.1.28). Therefore,

∂

∂t
G(k, t) → −γkχk (5.3.38)



5.3 Simple time-dependent Ginzburg–Landau models 209

as t → 0. From (5.2.23) the Laplace transformation of G(k, t) is written as

1

χk

∫ ∞

0
dte−iωt G(k, t) = 1

iω + γk
+ γk

(iω + γk)2
φ(k, ω), (5.3.39)

where

φ(k, ω) = 1

L0

∫ ∞

0
dte−iωt 〈 J̃k(t) J̃−k(0)〉. (5.3.40)

Kawasaki defined the true lifetime τk of the fluctuations by

τk = 1

χk

∫ ∞

0
dtG(k, t). (5.3.41)

In the limit ω → 0, (5.3.39) becomes

τk = 1

γk
+ 1

γk
φ(k, 0) = χk

L0

[
1 + 1

L0

∫ ∞

0
dt〈 J̃k(t) J̃−k(0)〉

]
. (5.3.42)

The lifetime becomes longer than γ−1
k if the nonlinearity is purely dissipative.

Dynamic renormalization group theory

Because J̃k(t) is the Fourier transformation of u0ψ
3 to leading order in u0, the function

φ(k, ω) is already of order ε2 in the scheme of the ε expansion. As will be shown in
Appendix 5D, it is given by [30]–[32]

φ(k, 0) = 9 ln(4/3)g2 ln(�/k) (5.3.43)

for kξ � 1 and in the limit ω → 0, � being the upper cut-off wavenumber. The expression
for kξ � 1 is obtained if k is replaced by κ = ξ−1. The parameter g is defined by (4.1.22)
and may be assumed to take the fixed-point value g∗ = ε/9 in (4.3.16). We thus find the
renormalized kinetic coefficient,

LR = L0
[
1 − φ(k, 0)

] ∼= L0(κ/�)z̄ (5.3.44)

with

z̄ = 1

9
ln(4/3)ε2 = 6 ln(4/3)η. (5.3.45)

The dynamic exponent z is determined from τk = χk/LR ∼ ξ z at k ∼ ξ−1. Up to order ε2

we have

z = 2 − η + z̄ = 2 + [6 ln(4/3)− 1]η, (5.3.46)

where η is in (4.3.51). The increase of z from the mean field value 2 is of order η and is
very small in 3D.

To be precise, we need to justify the exponentiation of the logarithmic term in (5.3.41)
by setting up the renormalization group equation for L0(�). Obviously, the fluctuations in
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the shell region (� − δ� < q < �) give rise to the contribution δφ = 9 ln(4/3)g2δ�/�

to φ(k, ω) at small k and ω. Because

1

iω + γk
+ γk

(iω + γk)2
δφ ∼= 1

iω + γk(1 − δφ)
, (5.3.47)

we find L0(�− δ�) = L0(�)(1 − δφ), so that by setting � = �0e−" we obtain

∂

∂"
L0(�) = −9 ln(4/3)g2L0(�), (5.3.48)

which is integrated to give L0(�)�−z̄ = LRκ
−z̄ or (5.3.44) at g = g∗.

Yahata and Suzuki’s calculation

Yahata and Suzuki [34] studied the kinetic Ising model [35, 36] numerically in 2D and
found that the lifetime τ(T ), which is τk in (5.3.41) in the limit k → 0, behaves as

τ(T ) ∝ (T − Tc)
−�, (5.3.49)

as T → Tc. They obtained � ∼= 2.00 ± 0.05, which is larger than γ = (2 − η)/ν = 7/4
for the 2D Ising model. If we write 1/τ(T ) = LR/χ , the renormalized kinetic coefficient
has a relatively large critical singularity at d = 2 as

LR ∝ κ(�−γ )/ν, (5.3.50)

with (�− γ )/ν ∼= 1/4 ∼= η. Note that η is not very small in 2D.

5.3.6 Critical dynamics in model C

Let us consider another purely dissipative dynamics, model C, governed by (5.3.3) and
(5.3.13) for ψ and m in a disordered phase with 〈ψ〉 = 0 [37]. In this case, J̃k in (5.3.35)
contains another relevant term,

J̃k = 2L0γ0

∫
q

mqψk−q + · · · , (5.3.51)

which arises from 2γ0mψ in (5.3.14). The fluctuation contribution to φ(k, ω) in (5.3.40)
from the shell region can be calculated using the decoupling approximation as

δφ ∼= 4L0γ
2
0 (Kd�

d−3δ�)C0χ�/(λ0C−1
0 + L0), (5.3.52)

where � � κ is assumed and χ� ∼= 1/�2 is the variance at the cut-off. The RG equation
for L0 becomes

∂

∂"
L0 = −Kd(2γ0C0L0)

2/[�ε(λ0 + C0L0)]. (5.3.53)

There is no fluctuation contribution to λ0 in the long-wavelength limit, so λ0 is a constant.
The ratio of the timescales of ψ and m is represented by

w = C0L0/λ0. (5.3.54)
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For Ising-like systems (n = 1), C0 = C0(�) obeys the RG equation (4.3.31) with v being
defined by (4.1.55). Its explicit form is given by (4.3.39) or (4.3.43). It is easy to rewrite
(5.3.53) as

∂

∂"
w = 2vw(1 − w)/(1 + w). (5.3.55)

This equation is solved to give

w(�)/[1 − w(�)]2 = AiniC(�), (5.3.56)

where Aini is a constant determined from the initial condition at � = �0. If C0(�) can
grow such that AiniC(�) � 1, then w(�) approaches 1 or

LR ∼= λ0C0(κ)
−1 ∝ κα/ν. (5.3.57)

This renormalization effect can thus be sensitive to the critical behavior of the specific
heat. As a result, it can be effective in 3D Ising-like systems, whereas it is expected to be
negligible in 2D Ising systems (where α = 0). For many-component systems (n ≥ 2) the
effect becomes more delicate than in single-component systems [37].

5.4 Linear response

Linear response of various physical quantities to a weak applied field represented as a
small perturbation in the hamiltonian can be expressed in very compact forms in terms
of the appropriate time-correlation functions [38]–[40]. Representative examples are the
frequency-dependent response to a weak magnetic or electric field. Similar expressions are
well known also for transport coefficients in fluids, as will be explained below. However,
thermal disturbances such as spatial gradients of the velocity field and the temperature,
which inevitably drive fluids away from equilibrium, cannot be expressed as perturbations
in the hamiltonian. This means that nonequilibrium ensemble distributions deviate from
local equilibrium forms for thermal disturbances.

5.4.1 Transport coefficients in fluids

Historically, transport coefficients were first systematically calculated for dilute gases on
the basis of the Boltzmann equation [41, 42]. There, the one-body distribution function
f (r, p, t) in the (r, p) space is expanded around the local equilibrium maxwellian distri-
bution in powers of gradients of the velocity field and temperature (the Enskog–Chapman
expansion) [43]. Such a small deviation of the one-body distribution evolves in time with
the linearized Boltzmann operator LLB and gives rise to transport coefficients with ex-
pressions involving the inverse L−1

LB from the time integration. The kinetic theory for dilute
gases and the Enskog theory for non-dilute hard-sphere fluids [44] are instructive examples
of nonequilibrium theories in which transport coefficients are analytically calculable.

In this subsection we will give general microscopic expressions for the shear viscosity,
bulk viscosity, and thermal conductivity of fluids in terms of appropriate time-correlation
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functions [15]–[24], [45]–[50]. It is important that the transport coefficients naturally
appear as the kinetic coefficients in the dynamics of the long-wavelength hydrodynamic
variables in the scheme of linear Langevin equations [17]. As will be discussed in
Appendix 5B, linear Langevin equations can be systematically derived using the linear
projection operator P onto such gross variables. Recall that the linear projection onto the
hydrodynamic variables has already been introduced at the end of Section 1.2.

Actual calculations of the transport coefficients in dense fluids can be performed via
molecular dynamics simulations on the basis of the molecular expressions presented here
[51, 52].

Viscosities

From (1.2.76) the random part of the stress tensor �αβ(r) (α, β = x, y, z) is given by

�R
αβ(r) = (1 − P)�αβ(r) = �αβ(r)− (p + δ p̂(r))δαβ, (5.4.1)

where p is the average thermodynamic pressure and δ p̂(r) is the pressure fluctuation
variable defined by (1.2.66) or (1.3.45) in the long-wavelength limit (� → 0). The
microscopic expression for �αβ can be found in Appendix 5E. As (5B.9) will show, this
variable evolves in time as

�R
αβ(r, t) = e(1−P)iLt�R

αβ(r)

∼= eiLt�R
αβ(r), (5.4.2)

where iL is the Liouville operator (5B.1) in the � space. In actual calculations such as in
molecular dynamics [51], the modified time evolution realized by (1 − P)iL is replaced
by the usual newtonian time evolution realized by iL as in the second line of (5.4.2). This
is allowable in fluids in the long-wavelength limit (� → 0) of disturbances where the
gross variables tend to constants of motion [20, 49]. Using the rotational invariance of the
system, the frequency-dependent complex viscosities, η∗(ω) and ζ ∗(ω), are given by

1

T

∫ ∞

0
dt

∫
dre−iωt 〈�R

αβ(r, t)�R
γ δ(0, 0)〉

= (δαγ δβδ + δαδδβγ )η
∗(ω)+ δαβδγ δ

[
ζ ∗(ω)− 2

d
η∗(ω)

]
, (5.4.3)

where d is the spatial dimensionality. In particular, the following expressions are conve-
nient:

η∗(ω) = 1

T

∫ ∞

0
dt

∫
dre−iωt 〈�xy(r, t)�xy(0, 0)〉, (5.4.4)

ζ ∗(ω) = 1

d2T

∫ ∞

0
dt

∫
dre−iωt

〈∑
α

�R
αα(r, t)

∑
β

�R
ββ(0, 0)

〉
. (5.4.5)

In (5.4.4) we have used �R
αβ = �αβ for α �= β. Furthermore, if �xy is replaced by �R

xx ,

we have the expression for the combination ζ ∗(ω) + (2 − 2
d )η

∗(ω), which serves as the
viscosity for one-dimensional fluid flows.
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Thermal conductivity

We consider the thermal conductivity in the limit ω → 0. It is expressed in terms of the
time-correlation function of the random heat current. The orthogonal part of the energy
current Je(r) with respect to the momentum density J(r) reads

JR
e (r) = (1 − P)JR

e (r) = Je(r)− e + p

ρ
J(r), (5.4.6)

which may be called the heat current. Here e is the average energy density, p is the
pressure, and ρ is the average mass density. From the microscopic expression for Je in
Appendix 5E we obtain

〈Jeα : Jβ〉 = δαβT (e + p), (5.4.7)

where 〈 : 〉 denotes the correlation in the long-wavelength limit defined by (1.1.35). As in
the case of the random stress in (5.4.2), the time evolution of the random heat current may
be assumed to be governed by newtonian dynamics,

JR
e (r, t) ∼= exp(iLt)JR

e (r). (5.4.8)

The thermal conductivity is then expressed as

λ = 1

T 2

∫ ∞

0
dt

∫
dr〈J R

ex(r, t)J R
ex(0, 0)〉. (5.4.9)

Dissipative coupling in diffusion and heat conduction

In a binary fluid the momentum densities JK (r) of the two components (K = 1, 2) are
decomposed as

J1(r) = ρ1

ρ
J(r)+ IR(r), J2(r) = ρ2

ρ
J(r)− IR(r), (5.4.10)

where ρK are the average mass densities with ρ = ρ1 + ρ2. The orthogonal part IR(⊥
J) gives rise to relative motion. In addition to the thermal conductivity (5.4.9), we have
additional kinetic coefficients,

L12 = 1

T

∫ ∞

0
dt

∫
dr〈J R

ex(r, t)I R
x (0, 0)〉,

L21 = 1

T

∫ ∞

0
dt

∫
dr〈I R

x (r, t)J R
ex(0, 0)〉,

L22 =
∫ ∞

0
dt

∫
dr〈I R

x (r, t)I R
x (0, 0)〉. (5.4.11)

Here the relation L12 = L21 follows from the microscopic time reversal invariance and is
an example of the Onsager reciprocity relations. These kinetic coefficients, together with
the thermal conductivity L11 = λ, determine diffusion and heat fluxes driven by gradients
of the temperature and chemical potential difference. In Section 6.3 they will appear in
coupled diffusion equations for the entropy and concentration.
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In the dilute limit ρ2 → 0 of the second component, the correlations among the particles
of the species 2 become negligible and

L22 → m20ρ2 D, (5.4.12)

where m20 is the particle mass of the species 2 and D is the diffusion constant of an isolated
particle of the species 2 expressed in terms of the time-correlation function of the velocity,
(5.1.33).

5.4.2 General linear response to thermal disturbances

Attempts have been made to seek linear response of any general dynamic variables to ther-
mal disturbances [24, 47, 48, 53] as in the case of linear response in which the perturbation
is a part of the time-dependent hamiltonian [40].8 In this case the microscopic (� space)
distribution P(�) is expanded around a local equilibrium distribution Plocal(�) in powers
of gradients of the velocity and temperature. This is analogous to the Enskog–Chapman
expansion in the kinetic theory [43]. Unlike the case of perturbations which can be included
in the hamiltonian [40], a set of the gross variables {A j } needs to be specified at the
starting point of the theory (see Appendix 5B); these are long-wavelength parts of the five
conserved variables in a one-component fluid. For example, let a fluid be slightly disturbed
with small average velocity gradients ∂vα(r, t)/∂xβ varying slowly in space and time. The
nonequilibrium average 〈· · ·〉t at time t of any local variable B(r) dependent on space is
written as [53]

〈B(r)〉t ∼= 〈B(r)〉�(t)−
1

T

∫ t

−∞
dt ′

∫
dr′

∑
αβ

〈BR(r, t − t ′)�R
αβ(r

′)〉∂vα(r
′, t ′)

∂x ′β
. (5.4.13)

In the first term, 〈· · ·〉�(t) is the average over a local equilibrium distribution of the form,

Plocal(t) ∝ exp

[
−βH+

∑
j

A j& j (t)

]
∝

[
1+

∑
j

δA j& j (t)+· · ·
]

exp(−βH), (5.4.14)

where δA j = A j − 〈A j 〉 and the coefficients & j (t) are determined such that

〈A j 〉t = 〈A j 〉"(t)
∼= 〈A j 〉 +

∑
k

〈δA jδAk〉&"(t) (5.4.15)

hold for the gross variables. In the linear regime, the averages 〈· · ·〉 in (5.4.13)–(5.4.15) are
those in equilibrium, and

BR(r, t) ≡ e(1−P)iLt (1 − P)B(r) (5.4.16)

in terms of the linear projection operator P onto {A j }, so the second term in (5.4.13)
identically vanishes for B = A j . We notice that Plocal is analogous to the local equilibrium

8 Formal theory in nonlinear response regimes is very complicated. Nonlinear response against shear flow in fluids has been
studied via molecular dynamics simulations [52].
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maxwellian distribution flocal = n(2πm0T )−d/2 exp(−|p − m0vvv|2/2m0T ) in the kinetic
theory of dilute gases, where the density n, the temperature T , and the velocity field vvv

slowly depend on space and time.
Now the substitution B = �αβ gives rise to the viscosities in (5.4.3). In particular, for a

simple shear flow ∂vα(r, t)/∂xβ = γ̇ (t)δαxδβy , we obtain a well-known form,

〈�xy(r)〉t = −
∫ t

−∞
dt ′G(t − t ′)γ̇ (t ′), (5.4.17)

where

G(t) = 1

T

∫
dr〈�xy(r, t)�xy(0, 0)〉 (5.4.18)

is called the stress relaxation function. Its Laplace (one-sided Fourier) transformation is the
frequency-dependent shear viscosity η∗(ω). In the literature the complex shear modulus is
defined by

G∗(ω) = iω
∫ ∞

0
dte−iωt G(t) = iωη∗(ω). (5.4.19)

The real and imaginary parts of this quantity have been measured in various materials. In
many polymeric systems and supercooled liquids, G(t) decays on very slow timescales
and G∗(ω) exhibits singular behavior at small ω.

In the presence of a small temperature gradient, the counterpart of (5.4.13) reads

〈B(r)〉t ∼= 〈B(r)〉"(t)− 1

T 2

∫ t

−∞
dt ′

∫
dr′

∑
α

〈BR(r, t − t ′)J R
eα(r

′)〉∂T (r′, t ′)
∂x ′α

. (5.4.20)

The substitution B = Je gives rise to the thermal conductivity (5.4.9) in the steady-state
limit. In a binary fluid mixture, the gradient of the chemical potential is also a thermo-
dynamic force. In the same manner as above, we may derive the microscopic expressions
(5.4.11) for L12 = L21 and L22. An example of deriving (5.4.20) near the gas–liquid
critical point will be given in Appendix 6C in the Ginzburg–Landau scheme.

Response to sound wave

As an interesting but not well-known example, let us consider linear response to a sound
wave propagating in the x direction, where ∂vx/∂x ∼= −(∂ρ1/∂t)/ρ in terms of the density
deviation ρ1(x, t) induced by the sound. From (5.4.13) the local equilibrium average is

〈B(r)〉�(t) ∼= b +
(
∂b

∂ρ

)
s
ρ1 +

(
∂b

∂s

)
ρ

s1, (5.4.21)

where b is the equilibrium average of B. The last term, proportional to the entropy deviation
s1 is very small at long wavelengths and will be neglected here. Assuming that all the
deviations depend on time as exp(iωt) and that the acoustic wavelength is much longer
than any correlation lengths of the fluid, we obtain

〈B(r)〉t − b ∼=
[
ρ

(
∂b

∂ρ

)
s
+ iωK̂B(ω)

]
ρ1

ρ
, (5.4.22)
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where

K̂B(ω) =
1

T

∫ ∞

0
dt

∫
dr′e−iωt 〈BR(r, t)�R

xx (r
′)〉. (5.4.23)

If B = �αα , a fundamental relation of acoustics follows,9

〈�αα(r)〉t − p ∼=
[
ρc2 + iωζ ∗(ω)+

(
2δαx − 2

d

)
iωη∗(ω)

]
ρ1

ρ
, (5.4.24)

in terms of the sound velocity c and the frequency-dependent viscosities. In fluids, the
normal stress difference 〈�xx −�yy〉 is equal to 2iωη∗(ω)ρ1/ρ for finite frequencies
(which becomes the elastic relation 2G0ρ1/ρ if iωη∗(ω) is replaced by a shear modulus
G0). We may define the frequency-dependent adiabatic compressibility Ks(ω) by

Ks(ω)
−1 = [〈�xx (r)〉t − p

]/
(ρ1/ρ) = ρc2 + iω

[
ζ ∗(ω)+

(
2 − 2

d

)
η∗(ω)

]
. (5.4.25)

The usual adiabatic compressibility is obtained in the low-frequency limit. These relations
can be used to calculate the time-dependent response of various quantities against adiabatic
volume or pressure changes. Such effects become anomalously enhanced near the critical
point, as will be discussed in Chapter 6.

5.4.3 Long-range correlations in steady states

When the velocity and temperature gradients tend to be stationary, (5.4.13) and (5.4.20)
can be used to study steady-state fluctuations in the linear response regime. It is known
that pair correlations among various quantities have a Coulombic long-range tail (∝ 1/r
in 3D and ∝ ln(1/r) in 2D) in the steady state [53]–[58]. Its origin is the nonlinear mode
coupling among the hydrodynamic fluctuations in the steady state as for the long-time tail
(5.1.42) near equilibrium. For example, let us assume steady, homogeneous, incompress-
ible velocity gradients Dαβ = ∂vα/∂xβ with

∑
α Dαα = 0 and set B = Jα(r)Jβ(0), where

Jα(r) is the momentum density. From (5.4.13) the momentum correlation in the steady
state reads

〈Jα(r)Jβ(0)〉ss = ρT δαβδ(r)−
∑
γ δ

Dγ δGαβγ δ(r), (5.4.26)

where 〈· · ·〉ss is the steady-state average and

Gαβγ δ(r) = 1

T

∫ ∞

0
dt

∫
dr′〈Jα(r, t)Jβ(0, t)�R

γ δ(r
′)〉. (5.4.27)

The second term on the right-hand side of (5.4.26) is the nonequilibrium correction. The
Fourier component of J is decomposed into a longitudinal part (‖ k) and a transverse part
(⊥ k); the former depends on time as exp(ickt − 1

2�sk2t) and the latter as exp(−νk2t) at

9 If we retain the entropy deviation and neglect the frequency dependence of the thermal conductivity λ, we should add
iωρ(1/CV − 1/C p)λ in the brackets of (5.4.24) for one-component fluids [10]. The acoustic dispersion relation is given

by ωk = ck + 1
2 i�sk2 + · · · with the sound attenuation coefficient �s = (ζ + 4η/3)/ρ + λ(1/CV − 1/C p) as k → 0.
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long wavelengths, where �s is the sound attenuation coefficient and ν = η/ρ is the kinetic
viscosity. Therefore, the time integration in (5.4.27) gives rise to terms proportional to
1/k2 in the Fourier transformation of Gαβγ δ(r). The calculations are straightforward if use
is made of the general correlation function expressions in Appendix 1A. The 3D long-range
tail is of the form [55],

Gαβγ δ(r) =
(
ρT

16π

)[
1

ν
I+αγ I+βδ +

1

�s
I−αγ I−βδ −

1

2

(
1

ν
+ 1

�s

)
I−αβ x̂γ x̂δ

]
1

r
, (5.4.28)

where I+αβ ≡ δαβ + x̂α x̂β and I−αβ ≡ δαβ − x̂α x̂β depend on the direction x̂α ≡ xα/r .
Similar long-range correlations appear also in a temperature gradient. Originally, these
steady-state long-range correlations were found via kinetic theory beyond the Boltzmann
equation in the particle correlations in the (r, p) space [55]. In 2D, the steady-state pair
correlations behave as ln(1/r), which indicates breakdown of the gradient expansion in
the steady state.

Appendix 5A Derivation of the Fokker–Planck equation

We derive the Fokker–Planck equation from the stochastic differential equation (5.1.1). Let
�t be a time interval which satisfies (5.1.6). Then the incremental change of u is governed
by (5.1.10). We introduce the characteristic function, the Fourier transformation of P(v, t),

Q(ζ, t) = 〈exp[iζu(t)]〉 =
∫

dvP(v, t) exp(iζv). (5A.1)

At time t +�t , it is written as

Q(ζ, t +�t) = 〈exp[iζu(t)+ iζ�u]〉
= 〈exp[iζ(1 − γ�t)u(t)− Lζ 2�t]〉, (5A.2)

where the random part W (t, t +�t) has been averaged out in the second line using the fact
that it is gaussian, characterized by (5.1.7). Expanding the second line with respect to �t ,
we obtain

∂

∂t
Q(ζ, t) = −

(
γ ζ

∂

∂ζ
+ Lζ 2

)
Q(ζ, t), (5A.3)

whose inverse Fourier transformation becomes (5.1.13).

Appendix 5B Projection operator method

The Zwanzig–Mori theory of the projection operator method [16, 17] is the statistical–
mechanical basis of Langevin equations. A first idea of the method was presented by
Nakajima [46]. With this scheme we may formally divide any dynamic variable into
a slowly varying part and a rapidly varying part. In the following, a one-component
classical fluid will be taken as a reference system. Quantum-mechanical generalization
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is straightforward. Any dynamic variable X = X (�), dependent on the particle momenta
and positions � = (p1, . . . pN , r1, . . . , rN ), changes in time as

∂

∂t
X =

N∑
"=1

[
∂H
∂p"

· ∂X
∂r"

− ∂H
∂r"

· ∂X
∂p"

]
≡ iLX , (5B.1)

where H is the microscopic hamiltonian. The i is introduced to make L hermitian in the �
functional space. The iLX is expressed in terms of the Poisson bracket { , }PB as

iLX = −{H,X }PB. (5B.2)

Then, by setting X (0) = X , we solve the time evolution formally as

X (t) = eiLtX (0). (5B.3)

In the following we choose a set of slowly varying dynamic variables A = {A j }. In one-
component fluids they are long-wavelength Fourier components of the number, energy, and
momentum densities.

Linear projection

We first define the linear projection operator P acting on any dynamic variable B as [17]

PB =
∑

jk

〈B A j 〉χ jk Ak, (5B.4)

where 〈B A j 〉 is the equilibrium equal-time correlation and χ jk is the inverse matrix of
χ jk ≡ 〈Ai A j 〉. Here we set 〈A j 〉 = 0. The orthogonal part is written as

QB = B − PB, (5B.5)

where Q = 1 − P . We have P2 = P , PQ = PQ = 0, and QQ = Q.
We next use the operator identity valid for any iL and P ,

∂

∂t
eiLt = eiLtPiL+

∫ t

0
dt ′eiL(t−t ′)PiLeQiLt ′QiL+ eQiLtQiL, (5B.6)

from which the dynamic equation for A j (t) = exp(iLt)A j (0) with A j (0) = A j is written
as

∂

∂t
A j (t) =

∑
k

i� jk Ak(t)−
∫ t

0
dt ′

∑
k

� jk(t − t ′)Ak(t
′)+ Fj (t). (5B.7)

In the first term,

i� jk =
∑
"

〈 Ȧ j A"〉χ"k (5B.8)

is called the frequency matrix with Ȧ j ≡ iLA j . The last term is supposed to change
relatively rapidly in time and is formally defined by

Fj (t) = exp(QiLt)Q Ȧ j , (5B.9)
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and the memory kernel is expressed as

� jk(t) =
∑
"

〈Fj (t)F"(0)〉χ"k . (5B.10)

Because 〈Fj (t)Ak〉 = 0 or PFj (t) = 0 from the definition (5B.9), the matrix of the
time-correlation functions � jk(t) ≡ 〈A j (t)Ak(0)〉 satisfies

∂

∂t
� jk(t) =

∑
"

i� j"�"k(t)−
∫ t

0
ds

∑
"

� j"(t − s)�"k(s). (5B.11)

The Fourier–Laplace transformation,

�̂ jk(ω) =
∫ ∞

0
dte−iωt� jk(t), (5B.12)

is the solution of the matrix equation,∑
"

[
iωδ j" − i� j" + �̂ j"(ω)

]
�̂"k(ω) = χ jk, (5B.13)

where

�̂ jk(ω) =
∫ ∞

0
dte−iωt� jk(t). (5B.14)

When the timescales of � jk(t) are much faster than those of A j (t), we may replace
� j"(ω) by its zero-frequency limit (markovian approximation),

γ jk = �̂ jk(0) =
∫ ∞

0
dt� jk(t). (5B.15)

Then � j"(t) are linear combinations of exp(−pkt) with pk being the eigenvalues of the
matrix −i� j"+γ j". In the linear hydrodynamic equations, γ jk are proportional to the usual
transport coefficients, but the frequency dependence of �̂ jk(ω) (or the memory effect)
cannot be neglected in some anomalous cases.

General symmetry relations can be derived using the invariance of the microscopic
dynamics with respect to the time reversal [17, 40].10 If A j is changed to ε j A j (ε j = ±1),
we have

〈A j (t)Ak(0)〉 = ε jεk〈Ak(t)A j (0)〉,
〈Fj (t)Fk(0)〉 = ε jεk〈Fk(t)Fj (0)〉. (5B.16)

After the Fourier–Laplace transformation we obtain

�̂ jk(ω) = ε jεk�̂k j (ω),∑
"

�̂ j"(ω)χ"k = ε jεk

∑
"

�̂k"(ω)χ"j . (5B.17)

Note that the frequency matrix i� j" are nonvanishing only among the pairs A j and A"

10 If a static magnetic field is present, it is changed from H to −H with respect to the time reversal, so the left- and right-hand
sides of (5B.16)–(5B.20) should be defined under opposite magnetic fields [23, 40].
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which have the opposite signs (ε jεk = −1) with respect to the time reversal. If the pairs
A j and Ak have the same sign (ε jεk = 1), then the symmetric relations,∑

"

γ j"χ"k =
∑
"

γk"χ"j , (5B.18)

hold for the damping coefficients (5B.15). In this case � jk(t) = � jk(−t) are even functions
of t , nonvanishing at t = 0. If their timescales are distinctly shorter than the lifetimes of A,
the markovian approximation (5B.15) can well be justified. Conversely, if A j and Ak have
opposite signs, � jk(t) = −� jk(−t) are odd functions of t , vanishing at t = 0. Then, the
integral (5B.15) is usually negligibly small.11

Nonlinear projection

To derive the nonlinear Langevin equations (5.2.1) for A = {A j } [16, 18], we set

g(A, a) ≡
∏

j

δ(A j − a j ). (5B.19)

Then,

Peq(a) = 〈g(A, a)〉 (5B.20)

is the equilibrium distribution of A. For any dynamic variable B = B(�), its conditional
average in which A is fixed at a may be defined as

〈B; a〉 = 〈Bg(A, a)〉/Peq(a). (5B.21)

Replacing a in the above expression by A = A(�), we may introduce a nonlinear
projection,

Pnl B = 〈B; A〉 =
∫

d�′Pgra(�
′)B(�′)g(A(�′), A(�))

/
Peq(A(�)), (5B.22)

where Pgra(�) is the grand canonical distribution (1.2.7) for fluids.12 Obviously, Pnl B is a
functional of A, or equivalently Pnl B = B if B is a functional of A.

Mori and Fujisaka [19] noticed that the nonlinear projection Pnl onto A is the linear
projection P onto g(A, a). That is, by choosing g(A, a) as the gross variables, we may
rewrite the formal definition (5B.4) as

PB =
∏

j

(

∫
da j )〈Bg(A, a)〉 1

Peq(a)
g(A, a) = Pnl B, (5B.23)

where use has been made of 〈g(A, a)g(A, a′)〉 = δ(a − a′)Peq(a). Therefore, we will
write Pnl as P in the following. The counterpart of (5B.7) may then be considered for
g(t, a) ≡ g(A(t), a) as [19]

∂

∂t
g(t, a) =

∫
da′i�aa′g(t, a′)−

∫ t

0
dt ′

∫
da′&aa′(t − t ′)g(t ′, a′)+ Fa(t), (5B.24)

11 However, this integral can be appreciable in 4He near the superfluid transition, see Chapter 6.
12 In the original paper [16], the microcanonical distribution was used.
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where

i�aa′ = 〈iLδ(A − a) · δ(A − a′)〉/Peq(a
′) = −

∑
j

∂

∂a j
[v j (a)δ(a − a′)]. (5B.25)

Here v j (a) is the streaming velocity defined by

v j (a) = 〈 Ȧ jδ(A − a)〉/Peq(a) = 〈 Ȧ j ; a〉. (5B.26)

In terms of Q = 1 − P , the random force is defined by

Fa(t) = −
∑

j

∂

∂a j
exp(QiLt)

[
(Q Ȧ j )δ(A − a)

]
. (5B.27)

Assuming that A is a well-defined set of gross variables, we apply the markovian
approximation. Namely,

θ j (t) ≡ exp(QiLt)Q Ȧ j (5B.28)

is assumed to change much more rapidly than A. Then,

Fa(t) ∼= −
∑

j

∂

∂a j

[
θ j (t)δ(A(0)− a)

]
, (5B.29)

where A(0) = A. The time integral of the memory kernel becomes∫ ∞

0
dt&aa′(t) ∼=

∑
jk

∂

∂a j

∂

∂a′
k

[
L jk(a)Peq(a)δ(a − a′)

]
, (5B.30)

with

L jk(a) =
∫ ∞

0
dt〈θ j (t)θk(0); a〉. (5B.31)

The integrand here is assumed to tend to zero rapidly while t is much shorter than
the timescales of A(t). The microscopic time reversal invariance leads to the symmetry
relations [15, 23],

L jk(a) = ε jεk Lk j (ã). (5B.32)

If a steady magnetic field is present, it should also be reversed on the right-hand side [23,
40]. In (5.2.6) we have retained only the pairs j and k with ε jεk = 1. See the discussion
below (5B.18) to support this assumption. We now obtain the Langevin equations (5.2.1) if
we multiply (5B.24) by a j and integrate over a. Equivalently, the average of (5B.24) over
a nonequilibrium ensemble gives the Fokker–Planck equation (5.2.12) with the Fokker–
Planck operator (5.2.13) for the distribution P(a, t) = 〈g(A(t), a)〉.
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Appendix 5C Time reversal symmetry in equilibrium time-correlation functions

First, we derive (5.2.19). To exchange Q1 and Q2 in (5.2.18), we rewrite it as

〈Q1[t]Q2[0]〉 =
∫

daQ2(a) exp(L̃FP{a}t)Q1(a)Peq(a). (5C.1)

The operator L̃FP{a} is defined as

L̃FP{a} = PeqLFP{a}† P−1
eq =

∑
i

∂

∂ai
vi (a)+

∑
i, j

∂

∂ai
Li j (a)

[
∂

∂a j
+ Fj (a)

]
. (5C.2)

The superscript † denotes taking the transposed operator. Note that the first term in L̃FP{a}
is the minus of the first term in LFP{a} in (5.2.13), while the second terms of the two
operators coincide. After changing a to ã in the a integration of (5C.1) we find (5.2.19).

Second, we derive (5.2.23). From (5.2.20) and (5.2.22) we have(
∂

∂t
+ γi

)
Gi j (t) = 〈Xi [t]A j (0)〉 = εiε j 〈A j (t)X̄i [0]〉. (5C.3)

We again differentiate the above equation with respect to t to derive(
∂

∂t
+ γ j

)(
∂

∂t
+ γi

)
Gi j (t) = εiε j 〈X j [t]X̄i [0]〉 = 〈Xi [t]X̄ j [0]〉. (5C.4)

The Laplace transformation of the above equation leads to (5.2.23) if use is made of the
relation (∂/∂t + γi )Gi j (t) → 0 as t → 0.

Appendix 5D Renormalization group calculation in purely dissipative dynamics

We calculate φ(k, ω) in (5.3.40) for ω = 0 and d = 4 at the critical point. By decoupling
the time-correlation function of the nonlinear part of δ(βH)/δψ(∝ ψ3), we obtain

φ(k, 0) = 6u2
0(2π)

4
∫

p1

∫
p2

∫
p3

δ(p1 + p2 + p3 − k)

p2
1 p2

2 p2
3(p2

1 + p2
2 + p2

3)

= 6u2
0(2π)

4
∫
"""

∫ ∞

0
dt ei"""·kϕ(", t)3 (5D.1)

In the second line we have used
∫
"""

exp(i""" · m) = δ(m) and
∫ ∞

0 dt exp(−t A) = 1/A with
m = p1 + p2 + p3 − k and A = p2

1 + p2
2 + p2

3. Then,

ϕ(", t) =
∫

q

exp(i""" · q − tq2)

q2
= 2

π

∫ �

0
dqq

∫ π

0
dθ sin2 θ exp(iq" cos θ − tq2),

(5D.2)
where � is the upper cut-off wave number. In the limit � → ∞ the above integration can
be performed to give

ϕ(", t) = (2π")−2[
1 − exp(−"2/4t)

]
. (5D.3)
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We substitute the above expression into the second line of (5D.1). The t-integration there
can first be performed if use is made of

∫ ∞
0 dt[1 − exp(−X/t)]3 = 3 ln(4/3)X2, leading

to

φ(k, 0) = 9

2
ln(4/3)u2

0(2π)
−2

∫
"""

ei"""·k 1

"4
. (5D.4)

Here the integration at large " (∼ k−1) gives K4 ln(1/k) with K4 = 1/8π2, whereas it is
logarithmically divergent at small ". However, this divergence has arisen because we have
used (5D.3). If a finite � is used, the divergence is removed as

φ(k, 0) = 9 ln(4/3)(K4u0)
2 ln(�/k). (5D.5)

Appendix 5E Microscopic expressions for the stress tensor and energy current

We give microscopic expressions for the stress tensor
→←
���(r, t) = {�αβ(r, t)} (α, β =

x, y, z) and the energy current Je(r, t) in terms of the particle positions and momenta,
(ri , pi ), (i = 1, . . . , N ). For simplicity, we consider one-component classical fluids inter-
acting with a two-body potential v(r). We define the stress tensor such that the momentum
density

J(r, t) =
∑

i

piδ(r − ri ) (5E.1)

exactly satisfies

∂

∂t
J(r, t) = −∇ · →←

���(r, t). (5E.2)

Then we have

�αβ(r, t) =
∑

i

piα piβ

m0
δ(r − ri )−

∑
i �= j

v′(ri j )
xi jαxi jβ

2ri j
δs(r; ri , r j ), (5E.3)

where we suppress the time dependence of (ri , pi ). Here m0 is the particle mass, v′(r) =
dv(r)/dr , ri j = |ri − r j |, and xi jα = xiα − x jα are the cartesian components of ri − r j .
We have introduced a symmetrized δ-function,

δs(r; ri , r j ) =
∫ 1

0
dλ δ(r − λri − (1 − λ)r j ), (5E.4)

which is nonvanishing only on the line segment connecting ri and r j . Its Fourier transfor-
mation is

δs(k; ri , r j ) = [exp(−ik · ri )− exp(−ik · r j )]/ ik · (r j − ri ). (5E.5)

We may readily prove (5E.2) by using the identity,

(ri − r j ) · ∇δs(r; ri , r j ) = −δ(r − ri )+ δ(r − r j ). (5E.6)

We also confirm that the space integral of the stress tensor becomes (1.2.79).
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Next we define the energy density e(r, t) as

e(r, t) =
∑

i

p2
i

2m0
+ 1

2

∑
i �= j

v(ri j )δ(r − ri ). (5E.7)

The energy conservation law,

∂

∂t
e(r, t) = −∇ · Je(r, t), (5E.8)

is satisfied if we set

Jeα(r, t) =
∑

i

(
p2

i

2m0
+ 1

2

∑
j �=i

v(ri j )

)
piα

m0
δ(r − ri )

−
∑
i �= j

v′(ri j )
∑
β

xi jαxi jβ

2ri j

piβ

m0
δs(r; ri , r j ). (5E.9)

With the aid of the average pressure expression (1.2.80) supplemented with (1.2.81), this
expression yields (5.4.7) in equilibrium.
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6

Dynamics in fluids

In the dynamics of one- and two-component fluids near the critical point and 4He and
3He–4He near the superfluid transition, the dynamic equations of the gross variables are
nonlinear Langevin equations with reversible nonlinear mode coupling terms. These terms
represent nonlinear dynamic interactions between the fluctuations, which cause critical di-
vergence of the kinetic coefficients. We will give intuitive pictures of the physical processes
leading to such enhancement of transport and review the mode coupling and dynamic
renormalization group theories. New results are presented on various adiabatic processes
including the piston effect and supercritical fluid hydrodynamics near the gas–liquid criti-
cal point and on nonequilibrium effects of heat flow near the superfluid transition.

6.1 Hydrodynamic interaction in near-critical fluids

In the dynamics of nearly incompressible binary fluid mixtures it is usual to take the
concentration deviation δX as the order parameter ψ . In one-component fluids it is con-
venient to take the entropy deviation δs (per unit mass) as ψ , because δs is decoupled
from the sound mode in the hydrodynamic description. In these fluids, the dynamics of the
order parameter is slowed down but the kinetic coefficients are enhanced near the critical
point. These features originate from random convection of the critical fluctuations by the
transverse velocity field fluctuations [1]–[7].

6.1.1 Intuitive picture of random convection

The order parameter undergoes diffusive relaxation resulting from convective motion due
to the velocity field fluctuations. To see this intuitively, let us examine how clusters of the
critical fluctuations with linear dimension " smaller than ξ are convected by the velocity
field fluctuations. They are fractal objects as discussed in Chapter 2. We use the following
correlation function relation for the momentum density J = ρvvv,

〈Ji (r, t)J j (r′, t)〉 = ρT δ(r − r′)δi j , (6.1.1)

where ρ is the mass density. This relation readily follows from (5E.1). We integrate both
sides of this relation over a volume V" ∼ "d with respect to r and r′ and determine the
typical magnitude v(") of the velocity field fluctuations on the scale of " as

v(") =
〈(

1

ρV"

∫
V"

drJ
)2〉1/2

∼
(

T

ρ"d

)1/2

. (6.1.2)
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At long wavelengths we will confirm that the cluster lifetime is much longer than that of
the transverse velocity fluctuations,

τv(") ∼ (ρ/η0)"
2. (6.1.3)

For the time being, the shear viscosity η0 is assumed to be a constant. The longitudinal
part of the velocity fluctuations oscillates with much faster timescales of sound and does
not affect the order parameter fluctuations. The clusters then undergo diffusive motion as
a result of convection by the rapidly varying velocity field fluctuations with the diffusion
constant

D(") = v(")2τv(") ∼ T

η0
"2−d , (6.1.4)

which follows from the general formula (5.1.33). From k ∼ 2π/" � ξ−1, the resultant
relaxation rate �k with wave number k is of the form,

�k ∼ D(")"−2 ∼ T

η0
kd , (6.1.5)

which is much smaller than that of the velocity field if

�kτv(") ∼ (ρT/η2
0)k

d−2 � 1. (6.1.6)

The length "∗ ≡ ρT/η2
0 is microscopic in usual binary fluid mixtures,1 but it is much

longer in polymer blends. To characterize the induced velocity field on the scale of ", we
introduce the Reynolds number,

Re(") = ρ"v(")/η0 ∼ (ρT/η2
0"

d−2)1/2. (6.1.7)

Then �kτv(") ∼ Re(")2, and Re(") � 1 holds for " � "∗.
The long-wavelength thermal fluctuations with k � ξ−1 may be regarded to consist of

clusters with sizes of order ξ . Hence the diffusion constant in the hydrodynamic regime is
that of a cluster with size ξ ,

D(ξ) ∼ (T/η0)ξ
2−d , (6.1.8)

which is analogous to the Einstein–Stokes formula (5.1.25) for the diffusion constant of a
Brownian particle. The kinetic coefficient for the order parameter relaxation in the long-
wavelength limit thus grows as

LR ∼ Dχ ∝ ξ4−d , (6.1.9)

where the susceptibility χ behaves as ξγ/ν ∼ ξ2. Therefore, the hydrodynamic interaction
is relevant for d < 4, and the critical dimensionality dc of fluids remains 4 in dynamics as
well as in statics. We also note that the reaction of ψ back on the transverse velocity vvv is
neglected in the above picture. That is, the interaction between them is nearly one-sided.
This is because the latter relaxes on much faster timescales, as has been confirmed in
(6.1.6). However, a small reactive effect exists, leading to a nearly logarithmic dependence

1 If we set ρ ∼ 1 g/cm3, T ∼ 300 K, and η0 ∼ 0.01 poise, we find "∗ ∼ 10−10 cm.
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(∝ ln ξ ) of the shear viscosity. The total viscosity, consisting of the background η0 and the
fluctuation contribution, will be written as ηR and called the renormalized viscosity.

It is worth noting that the dynamics of polymer solutions is also decisively governed
by the hydrodynamic interaction [8, 9], as will be shown in (7.1.26)–(7.1.28) in the next
chapter. Moreover, in polymer blends with large molecular weights, the hydrodynamic
interaction is operative only at very long wavelengths and there are complicated dynamical
crossover effects [8, 10].

6.1.2 Model H

The minimal model which describes the above dynamical behavior is given by the nonlin-
ear Langevin equations,

∂

∂t
ψ = −∇ · (ψvvv)+ L0∇2 δ

δψ
βH+ θ, (6.1.10)

ρ
∂

∂t
vvv = −

(
ψ∇ δH

δψ

)
⊥
+ η0∇2vvv + (ζζζ )⊥, (6.1.11)

which is called model H [11]. The equilibrium distribution for ψ and vvv is of the form
exp(−βH̃) with

H̃{ψ,vvv} = H{ψ} + 1

2

∫
drρvvv2, (6.1.12)

where the first term is the GLW hamiltonian (4.1.1). The noise terms θ and ζζζ are related to
the bare kinetic coefficients L0 and η0 by

〈θ(r, t)θ(r′, t ′)〉 = −2L0∇2δ(r − r′)δ(t − t ′), (6.1.13)

〈ζi (r, t)ζ j (r′, t ′)〉 = −2Tη0δi j∇2δ(r − r′)δ(t − t ′). (6.1.14)

We treat the mass density ρ as a constant in (6.1.10) and (6.1.11) and neglect the long-
itudinal part of vvv:

∇ · vvv = 0. (6.1.15)

The notation (· · ·)⊥ in (6.1.11) denotes taking the transverse part of the vectors (which
is perpendicular to the wave vector in the Fourier space). The first terms on the right-
hand sides of (6.1.10) and (6.1.11) are the nonlinear streaming terms or the mode coupling
terms. The first term in (6.1.10) is simply the convection term, while that in (6.1.11) is a
nontrivial reversible force density. We confirm that both sides of the potential condition
relation (5.2.14) vanish for the total hamiltonian H̃ in (6.1.12). It is worth noting that the
first term in (6.1.11) can be derived only from this requirement.2 To examine its physical

2 Let the reversible force density be written as f with the trivial convection term in (6.1.10) being assumed. The potential
condition requires that the space integral of (δH/δψ)∇ · (ψvvv) − ρvvv · f vanishes for any transverse velocity field vvv, which
determines f as given in (6.1.11).
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meaning further, we set [12]

−ψ∇ δH
δψ

= −∇ · →←
���. (6.1.16)

In Appendix 6A we shall see that
→←
��� is the stress tensor induced by ψ ,

�i j (r, t) = δ p̃δi j + T K (∇iψ)(∇ jψ), (6.1.17)

where ∇i = ∂/∂xi . Here δ p̃ in the first diagonal part is a pressure dependent on ψ ,
but its form is not important under the incompressibility condition (6.1.15). The second
off-diagonal part gives rise to the weak singurality of the shear viscosity in one-phase
states, whereas it will lead to a large viscosity increase in phase-separating fluids, as will
be discussed in Section 11.1.

6.1.3 Mode coupling theory

Relaxation of the order parameter

As has been discussed in Section 5.4, the transport coefficients of fluids in the linear
response regime can be expressed as the time integral of flux time-correlation functions.
Near the critical point, the nonlinear part of the reversible flux can give rise to enhancement
of the transport coefficients. In the present case, the renormalized kinetic coefficient for ψ
is expressed as [13, 14]

LR(k) = L0 +
∫ ∞

0
dt

∫
dreik·r〈ψ(r, t)vx (r, t)ψ(0, 0)vx (0, 0)〉, (6.1.18)

where the first term, the background kinetic coefficient, is much smaller than the second
singular term near the critical point. We retain the k dependence (nonlocality) and the
direction of k is taken to be along the x axis. The thermal relaxation rate is expressed as

�k = LR(k)k
2/χk = LR(k)k

2(1 + k2ξ2)/χ, (6.1.19)

where χ = limk→0 χk(∝ ξγ/ν) is the susceptibility.
In the original mode coupling theory the above four-body time-correlation function is

decoupled into the product of the two-body time-correlation functions as

LR(k) = L0 +
∫ ∞

0
dt

∫
dreik·r〈vx (r, t)vx (0, 0)〉g(|r|). (6.1.20)

Because the timescale of ψ(r, t) is much slower than that of vvv(r, t), g(|r|) =
〈ψ(r, 0)ψ(0, 0)〉 is the static pair correlation function. In Appendix 6B the relaxation rate
will be calculated for general k as

�k = LR(k)k
2/χk = L0k2/χk + T

6πηR
ξ−3 K0(kξ), (6.1.21)
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where ηR is the renormalized shear viscosity and K0(x) is called the Kawasaki function of
the form [2],

K0(x) = 3

4

[
1 + x2 + (x3 − x−1) tan−1 x

]
. (6.1.22)

Here K0(x) ∼= x2 for x � 1 and (3π/8)x3 for x � 1. The ratio of the first term to
the second term in the right-hand side of (6.1.21) is expressed as (L0/χ)6πηRξ

3/T ∼=
AB(T/Tc − 1)(1−η)ν for kξ � 1 at the critical concentration, where AB ∼ 13 for
trimethylpentane + nitroethane [15]. If this ratio is much smaller than 1, we may neglect
L0 to obtain

�k ∼= (T/6πηR)ξ
−1k2 (kξ < 1),

∼= (T/16ηR)k
3 (kξ > 1). (6.1.23)

The long-wavelength expressions read

D = T

6πηRξ
∝ ξ−1, LR(0) = Dχ ∝ ξ, (6.1.24)

while �k is nearly independent of ξ for kξ � 1. These results agree with (6.1.5), (6.1.8),
and (6.1.9) and confirm the intuitive picture of the random convection. The average lifetime
of the critical fluctuations is given at kξ = 1 as

tξ = D−1ξ2 ∝ ξ3

= t0(T/Tc − 1)−1.9, (6.1.25)

where the second line holds at the critical isochore or concentration, and t0 = 6πηRξ
3
+0/T

is a microscopic frequency. The dynamic exponent z in the scaling relation tξ ∝ ξ z is equal
to 3 in the mode coupling theory in 3D. The notation �ξ = 1/tξ will also be used. The
lifetime can easily be of order 1 s in usual binary fluid mixtures close to the critical point.
Figure 6.1 demonstrates remarkable agreement between the theoretical formula (6.1.21)
and dynamic light scattering data [15].

Frequency-dependent shear viscosity

The shear viscosity has a weak critical singularity in one- and two-component fluids. As
an example, Fig. 6.2 shows data of the shear viscosity in 3He in the low-frequency limit
[16]. From (5.4.4) the renormalized shear viscosity is written in terms of the off-diagonal
stress time-correlation function as

η∗R(ω) = η0 + 1

T

∫ ∞

0
dt

∫
dre−iωt 〈�xy(r, t)�xy(0, 0)〉, (6.1.26)

where the first term is the background shear viscosity. The frequency dependence is
retained because it can be important in experiments of oscillatory shear flow, whereas the k
dependence is neglected. The xy component of the nonlinear stress tensor arises from the
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Fig. 6.1. Plot of the reduced relaxation rate �q/Dq2 as a function of qξ for various one- and two-
component fluids. The solid line represents with the Kawasaki form (6.1.21) [15].

second term of (6.1.17) in the form �xy = T K (∂ψ/∂x)(∂ψ/∂y). Again the decoupling
approximation yields

η∗R(ω) = η0 + T
∫

q

q2
x q2

y

(q2 + ξ−2)2

1

iω + 2�q
, (6.1.27)

where
∫

q = (2π)−d
∫

dq. This integral is logarithmically divergent at large q for any d

below 4 because �q ∼ qd at large q. Using (6.1.23) we obtain [4]–[6]

η∗R(ω)
η0

∼= 1 + (8/15π2) ln(ξ/ξ+0) ∼= (ξ/ξ+0)
x̄η (ωtξ � 1)

∼= 1 − (8/45π2) ln(iωt0) ∼= (iωt0)
−x̄η/3 (ωtξ � 1), (6.1.28)

where the upper cut-off wave number is ξ−1
+0 , and t0 in the second line has appeared in

(6.1.25). After the angle average of q, q2
x q2

y in (6.1.27) is replaced by q4/15 in 3D, yielding
the small coefficients of the logarithmic terms. They may well be exponentiated with the
small exponent [4],

x̄η = 8/15π2 ∼= 0.054. (6.1.29)

At high frequencies ωtξ � 1, the complex dynamic viscosity is independent of ξ and the
ratio of the imaginary and real parts tends to a small universal number,

Im[η∗R(ω)]
/

Re[η∗R(ω)] ∼= − tan(π x̄η/6), (6.1.30)
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Fig. 6.2. The normalized shear viscosity η vs ρ/ρc−1 for various reduced temperatures ε = T/Tc−
1 in 3He near the gas–liquid critical point [16].

which is equal to −0.028 from (6.1.29). We conclude that near-critical fluids are weakly
viscoelastic due to the slow critical fluctuations. They can also be weakly non-newtonian
in stationary shear flow, as will be discussed in Section 11.1. As shown in Fig. 6.3, the
logarithmic ω dependence and the imaginary part of the shear viscosity were detected in
a near-critical mixture of nitrobenzene + n-hexane [17]. Similar measurements of η∗R(ω)
have recently made for Xe [18].

6.1.4 Dynamic renormalization group theory

In the dynamic renormalization group (RG) theory the fluctuations in the shell region �−
δ� < k < � are coarse-grained. The incremental changes δL0 and δη0 of the kinetic
coefficients are readily calculated slightly below four dimensions. The correlation function
expressions (6.1.18) and (6.1.26) give

δL0 = 3

4

T

η0
χ�δV, (6.1.31)

δη0 = 1

24
T K 2 1

��

χ2
�δV, (6.1.32)

where δV = Kd�
d−1δ� is the volume of the shell region with Kd being defined by

(4.1.16), and χ� = 1/K�2 is the structure factor. Here vvvk and ψk at k = � are assumed to
decay exponentially as exp(−tη0�

2/ρ) and exp(−t L0 K�4), respectively. The factor 3/4
in (6.1.31) arises from selecting the transverse part in the velocity, while the factor 1/24
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Fig. 6.3. Real and imaginary parts of the complex viscosity in nitrobenzene + n-hexane showing
weak viscoelasticity of near-critical fluids. Here, �η′(ω) − i�η′′(ω) = η∗R(ω) − η0 at ω/2π =
0, 2.87, and 51 kHz [17]. The solid lines are the theoretical results from (6.1.27).

in (6.1.32) from the angle average of k2
x k2

y in 4D. By setting � = �0e−" we find the RG
equations at the critical point,

∂

∂"
L0 = 3

4
T Kd

/
(Kη0�

ε) = 3

4
f L0, (6.1.33)

∂

∂"
η0 = 1

24
T Kd

/
(K L0�

ε) = 1

24
f η0. (6.1.34)

We notice that the following dimensionless number,

f = T Kd
/(

Kη0L0�
ε
)
, (6.1.35)

tends to a fixed-point value f ∗ of order ε. In fact, it is governed by

∂

∂"
f = ε f − 19

24
f 2, (6.1.36)

so that the fixed-point value of f is given by

f ∗ = 24

19
ε + · · · . (6.1.37)

It is easy to solve (6.1.36) in the form,

f (") = f0eε"/[F0(e
ε" − 1)+ 1] (6.1.38)
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where f0 is the initial value of f and F0 = f0/ f ∗. Then (6.1.33) and (6.1.34) are solved
to give

L0(�) = L0(�0)[F0(e
ε" − 1)+ 1]18/19, (6.1.39)

η0(�) = η0(�0)[F0(e
ε" − 1)+ 1]1/19. (6.1.40)

For large " we have

L0(�) ∝ �−xλ , η0(�) ∝ �−xη , (6.1.41)

with

xλ = 18

19
ε + · · · , xη = 1

19
ε + · · · . (6.1.42)

In the coupled RG equations of L0 and η0, f is a unique expansion parameter tending to
a universal number even in higher orders in ε. The coefficient K in the gradient free energy
becomes proportional to �−η with decreasing �, where η is the Fisher critical exponent
(not the shear viscosity). Thus, from (6.1.35) the exponent relation,

xλ + xη = ε − η, (6.1.43)

holds exactly or to all orders in ε [7, 11]. Slightly away from the critical point the above
multiplicative effect stops at � = ξ−1, yielding the renormalized kinetic coefficients,

LR ∼ ξ xλ , ηR ∼ ξ xη . (6.1.44)

Because tξ = ξ2/D with D = LR(0)/χ , the dynamic exponent z is expressed as

z = 4 − η − xλ = d + xη. (6.1.45)

The above scaling law is realized when LR exceeds the background (∼ L0 at � ∼ ξ−1
+0 ).

For classical fluids, the predictions of the mode coupling theory in 3D and those of the
dynamic RG theory (even to leading order in ε) are in good agreement, obviously because
the mode coupling between ψ and vvv is nearly one-sided. In particular, the exponent 0.054
in (6.1.29) from the mode coupling theory happens to be very close to that of xη = 0.053
to first order in ε from the dynamic RG theory. To interpolate the two theories, Kawasaki
and Gunton [19] developed the mode coupling theory slightly below four dimensions to
obtain results identical to those from the dynamic RG theory (to first order in ε). In this
way the relationship between the two theories is well understood.

6.1.5 The Stokes–Kawasaki approximation

The velocity field fluctuations relax much more rapidly than the order parameter fluctua-
tions, so we may set ∂vvv/∂t = 0 in (6.1.11) as in the derivation of (5.1.30) from (5.1.29)
[20]. The velocity field is determined by

−η0∇2vvv =
(
−ψ∇ δ

δψ
H+ ζζζ

)
⊥
, ∇ · vvv = 0. (6.1.46)
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In colloidal systems, the velocity field is usually determined in the same manner (the Stokes
approximation). In our case it is composed of the velocity field vvvψ(r, t) induced by ψ and
the random part, vvvR(r, t). In 3D, the above equation is solved

vvvψ(r, t) = −
∫

dr′
→←
T (r − r′) · ψ(r′)∇′ δH

δψ(r′)
, (6.1.47)

vvvR(r, t) =
∫

dr′
→←
T (r − r′) · ζζζ (r′, t), (6.1.48)

where
→←
T (r) is called the Oseen tensor of the form,

Ti j (r) = 1

8πη0

(
δi j

r
+ xi x j

r3

)
. (6.1.49)

We can check that the Oseen tensor becomes

Ti j (k) = 1

η0

(
δi j

k2
− ki k j

k4

)
(6.1.50)

after the Fourier transformation. The time dependence of ψ on the right-hand side of
(6.1.47) is suppressed for simplicity. The random part vvvR(r, t) is characterized by

〈vR
i (r, t)vR

j (r
′, t ′)〉 = 2Ti j (r − r′)δ(t − t ′). (6.1.51)

From (6.1.10) we obtain

∂

∂t
ψ(r, t) = −

∫
dr′L(r, r′)

δ

δψ(r′)
βH+ θR(r, t), (6.1.52)

where the new kinetic coefficient,

L(r, r′) = ∇ψ(r) · →←
T (r − r′) · ∇′ψ(r′)− L0∇2δ(r − r′), (6.1.53)

is nonlocal and nonlinearly dependent on ψ . The random source term,

θR(r, t) = −vvvR(r, t) · ∇ψ(r, t)+ θ(r, t), (6.1.54)

satisfies the fluctuation–dissipation relation,

〈θR(r, t)θR(r′, t ′)〉 = 2L(r, r′)δ(t − t ′). (6.1.55)

The above model was numerically solved in 3D to examine the effect of the hydrodynamic
interaction in spinodal decomposition [21], as will be discussed in Section 8.5. In such
applications, the fluctuations under consideration are those with spatial scales longer than
ξ so that the renormalized kinetic coefficients LR and ηR should be used in place of L0 in
(6.1.53) and η0 in (6.1.49) with the upper cut-off wave number at ξ−1.
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6.1.6 Transient electric birefringence (Kerr effect)

Fluids become optically anisotropic or birefringent in the presence of an electric field, a
magnetic field, a velocity gradient, or a sound wave. If constituent particles are optically
anisotropic, their alignment is precisely measurable as intrinsic birefringence. As another
origin, the critical fluctuations or chain molecules take anisotropic shapes, giving rise to
form birefringence, even if they consist of optically isotropic particles [22, 23]. In near-
critical fluids the form contribution grows near the critical point, while in polymer solutions
birefringence arises from both of these two origins. Moreover, the applied field can be
made to be time-dependent, and then the dynamic response can be investigated with high
precision. As one example, transient electric birefringence �n(t) has been measured in a
near-critical binary fluid mixture by applying a rectangular pulse of electric field [24]–[26].
In terms of �εop in (4.2.64), we have

�n(t) = nxx − nyy = 1

2
√
ε

Re(�εop). (6.1.56)

Transient birefringence was measured after an electric field was switched off at t = 0 [27].
If the laser wave number k in the fluid is much smaller than ξ−1, the relaxation obeys

�n(t)

�n(0)
= G(t/tξ ) = 4

π

∫ ∞

0
dy

y2

(1 + y2)2
exp[−2K0(y)t/tξ ], (6.1.57)

in the time region t � 1/Dk2, where K0(x) is the Kawasaki function (6.1.22). The scaling
function G(x) behaves as

G(x) ∼= 1 − 2.3x1/3 (x � 1),
∼= 0.2x−3/2 (x � 1). (6.1.58)

At t ∼ 1/Dk2, G(t/tξ ) becomes a very small number of order 0.2(kξ)3. In the later time
region t � (Dk2)−1, the fluctuations with wave numbers of order (Dt)−1/2 give rise to
the following signal,

�n(t)

�n(0)
∼= 0.2(t/tξ )

−3/2(Dk2t)−1. (6.1.59)

In Fig. 6.4 data on butoxyetbaranol + water [25] are best-fitted to (6.1.57) for t < tξ . As
another theory, Piazza et al. [24] derived a stretched exponential decay of �n(t) from a
phenomenological picture based on the distribution of large clusters. Afterwards �n(t)
was measured over three decades of t [26], but such data have not yet been compared with
(6.1.59). Transient electric dichroism3 (relaxation of Im�εop) should also be measurable
for kξ ∼ 1.

6.2 Critical dynamics in one-component fluids

In one-component fluids near the gas–liquid transition, model H is a minimal model cor-
rectly describing critical slowing down of the entropy relaxation as observed by Rayleigh

3 An experimental setup to measure dichroism is illustrated in Ref. [22].
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Fig. 6.4. Comparison for butoxyetbaranol
+ water of the theoretical decay function
(solid line) defined by (6.1.57) and data
(filled circles) taken from Ref. [25].

scattering, strong enhancement of the thermal conductivity, and the weak shear viscosity
anomaly. However, one-component fluids are highly compressible near the critical point.
As a result, a number of unique adiabatic effects can be predicted, in which the fluid
internal state is changed by compression or expansion under constant-entropy conditions.4

In this section we will first identify a nonlinear pressure p̂nl (∝ ψ2) whose slow relaxation
gives rise to a large frequency-dependent bulk viscosity ζ ∗R(ω). Then we may predict
anomalous critical sound propagation, which has been extensively studied theoretically
[28]–[38] and experimentally in one-component fluids [39]–[43] and two-component fluids
[44]–[49]. Furthermore, slow relaxations can be predicted in various quantities such as the
pressure, temperature, or structure factor after a macroscopic volume or pressure change.
Next we will examine the effect of a thermal diffusion layer, which appears after a change
in the boundary temperature and is crucial in macroscopic thermal equilibration (the piston
effect) [50]–[60]. Adiabatic effects in phase separation will be discussed in Chapters 8
and 9. These effects are of fundamental importance but have not yet attracted enough
attention.

6.2.1 Dynamic equations of compressible fluids

In one-component fluids near the gas–liquid critical point, the deviations of the number
and energy densities, δn and δe, are linear combinations of the spin and energy densities,
ψ and m, in the corresponding Ising system as given in (2.2.7) and (2.2.8), with the
GLW hamiltonian H = H{ψ,m} in the form of (4.1.45). The temperature and pressure
fluctuations, δT̂ and δ p̂, are given by (4.2.1)–(4.2.4) in the Ginzburg–Landau scheme.

4 Hydrodynamically, the energy-density change 〈δe〉 (averaged over the thermal fluctuations) is created by the local average
number-density change 〈δn〉 as 〈δe〉 = (e + p)〈δn〉 ∼= (ec + pc)〈δn〉.
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With these preliminaries, we construct the dynamic equations for the mass and momentum
densities,

ρ = m0n, J = ρvvv, (6.2.1)

and the energy density e, where m0 is the molecular mass and vvv is the velocity field. We
may set vvv ∼= ρ−1

c J hereafter, because J is already a small quantity. We set up the nonlinear
Langevin equations [36],

∂

∂t
ρ = −∇ · (ρvvv), (6.2.2)

∂

∂t
e = −∇ · (evvv)− pc∇ · vvv + λ0Tc∇2 δH

δe
+ θ, (6.2.3)

∂

∂t
J = −∇ · →←

� + η0∇2vvv +
[
ζ0 +

(
1 − 2

d

)
η0

]
∇(∇ · vvv)+ ζζζ . (6.2.4)

The total hamiltonian is the sum of H{ψ,m} and the kinetic energy 1
2

∫
drρ−1

c J2.

(i) First, we explain the reversible parts. In (6.2.3) the second term on the right-hand side
represents adiabatic energy changes caused by volume changes. In (6.2.4)

→←
� = {�i j } is

the reversible stress tensor arising from the fluctuations of δρ and δe and can be expressed
in the form

�i j = (δ p̂ + δ p̃)δi j + T K (∇iψ)(∇ jψ). (6.2.5)

The first pressure term δ p̂ is defined by (4.2.2) or (4.2.8) and is the largest term in (6.2.5).
The second pressure term δ p̃ is nonlinearly dependent on δρ and δe and is small, so its
explicit form will be given in Appendix 6A. The force density takes a rather simple form,

∇ · →←
� = ρ∇ δH

δρ
+ (e + pc)∇ δH

δe

= ∇δ p̂ + ψ∇ δH
δψ

+ m∇ δH
δm

, (6.2.6)

where H is regarded as a functional of δρ and δe in the first line and that of ψ and m in the
second line. The nonlinear inertia part ρvvvvvv in the stress is neglected, because the Reynolds
number is very small on relevant spatial scales in critical dynamics.

(ii) Second, we explain the dissipative parts. The λ0, η0, and ζ0 are the background
thermal conductivity, shear viscosity, and bulk viscosity, respectively. The random noise
term θ(r, t) in (6.2.3) satisfies (6.1.13) with L0 being replaced by λ0T 2

c , while ζζζ (r, t) in
(6.2.4) is characterized by

〈ζi (r, t)ζ j (r′, t ′)〉 = −2T

[
η0δi j∇2 +

(
ζ0 + η0 − 2η0

d

)
∇i∇ j

]
δ(t − t ′)δ(r − r′). (6.2.7)
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Gravity effects

In gravity, (4.2.41) suggests that H should be replaced by

HT = H+Hg = H+
∫

drgzδρ, (6.2.8)

where g is the gravitational acceleration. The force density −∇ · →←
� on the fluid in (6.2.4)

is increased by −ρg in the z direction by this replacement, which is nothing but the
buoyancy force in gravity. In equilibrium, we obtain the pressure gradient in (4.2.44)
and the gravity-induced density stratification discussed in Section 2.2. A deviation from
this pressure profile induces a velocity field which drives the system towards the final
equilibrium.

Slow dynamics

The full dynamic equations (6.2.2)–(6.2.4) are needed to adequately describe sound prop-
agation. However, if we are interested in slow thermal diffusion processes, the equations
may be simplified as follows. We introduce the dynamic variable representing the entropy
fluctuation per particle as

δs = (ncTc)
−1[

δe − Hcδn
]
, (6.2.9)

where Hc = (ec + pc)/nc is the enthalpy per particle at the critical point. The coefficients
here are those at the critical point. Then δT̂ and δ p̂ can be expressed as (4.2.3) and (4.2.4),
resulting in the correlation function relations in (4.2.5). The dynamic equation for δs is of
the form

∂

∂t
δs = −∇ · (δsvvv)+ (ncTc)

−1λ0∇2δT̂ + (ncTc)
−1θ. (6.2.10)

Furthermore, for slow motions (slower than the acoustic time L/c, L being the system
dimension and c the sound velocity) we may assume homogeneity of the following com-
bination,

p1(t) ≡ δ p̂(r, t)+ ρcgz. (6.2.11)

Then the temperature deviation is expressed as

δT̂ =
(
∂T

∂p

)
cx

p1(t)+ α−1
s

δ

δψ
HT. (6.2.12)

The time dependence of p1(t) is then determined from the macroscopic boundary condi-
tion. After such acoustic relaxation, the transverse velocity remains nonvanishing and we
may set ∇ · vvv = 0.

Close to equilibrium at fixed pressure, we may set p1 = 0 and hence δHT/δm =
(∂τ/∂h)pδHT/δψ from (4.2.2), which means that the deviation of m is much smaller
than that of ψ by (Cχ)−1 and ψ ∼= ncδs/αs ∼= δn/α1 from (2.2.7) and (2.2.9). Thus
the dynamic equations for the entropy δs and the transverse velocity vvv constitute model H.
In accord with this conclusion, the decay rate of δs measured by dynamic light scattering
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Fig. 6.5. The thermal conductivity λ vs the density for various temperatures in CO2 near the gas–
liquid critical point [28].

and the shear viscosity anomaly are well predicted by model H. In Section 6.3, however,
we shall see that the time dependence of nonvanishing p1(t) is crucial in nonequilibrium
thermal equilibration in a cell at fixed volume.

6.2.2 Cluster convection and enhanced heat conduction

As shown in Fig. 6.5, the thermal conductivity near the gas–liquid critical point has been
observed to increase markedly near the critical point. We will examine the physical process
enhancing heat conduction in more detail. In Chapter 2 the critical fluctuations were shown
to emerge as large clusters. They may also be viewed as enhanced heterogeneities of the
entropy (per particle) because of the linear relation ncδs ∼= αsψ in (2.2.9). If we apply a
small temperature gradient, the clusters with δs < 0 will have a tendency to move down
the gradient, whereas those with δs > 0 will tend to move in the reverse direction. This
counterflow mechanism, illustrated in Fig. 6.6, should enhance heat transport.

Let a near-critical fluid be in a steady state under a small temperature gradient and a
homogeneous pressure (without gravity):

a ≡ ∇〈δT̂ 〉ss, ∇〈δ p̂〉ss = 0, (6.2.13)

where 〈· · ·〉ss is the steady-state average. From (4.2.1) and (4.2.2) (or from (2.2.11) and
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Fig. 6.6. Cluster convection under a small temperature
gradient near the gas–liquid critical point. Entropy-poor
clusters (δs < 0) move in the gradient direction, while
entropy-rich clusters move in the reverse direction.

(2.2.12)) the average gradients of δH/δψ and δH/δm are expressed as

∇
〈
δ

δψ
H

〉
ss
= αsa, ∇

〈
δ

δm
H

〉
ss
= βsa, (6.2.14)

where αs = Tc(∂h/∂T )p and βs = Tc(∂τ/∂T )p. Then the force density on the right-hand
side of (6.2.4) contains a term linear in ψ of the form, αsψa, from the second line of
(6.2.6), which induces a transverse velocity field vvvind determined by the force balance

−αs(ψa)⊥ + ηR∇2vvvind = 0. (6.2.15)

Its Fourier transformation is written as

vvvind(q) = − αs

ηRq2

[
a − (q̂ · a)q̂

]
ψq, (6.2.16)

where q̂ = q−1q. See Appendix 6C to justify the above arguments.
If the fluctuations on the scale of ξ are picked up, vvvind may be approximately expressed

as

vvvind ∼= −1

6πηRξ
(Sξαsa)⊥, (6.2.17)

where Sξ (r) ≡
∫
|r′|<ξ

dr′ψ(r + r′) is the space integral of ψ around the position r over a
spatial region with dimension ξ as defined in (2.1.23), at η = ξ . From (6.2.10) the heat
current bilinear with respect to the gross variables is Tcncδsvvv, so that the average excess
heat current due to the cluster convection is

Tcnc〈δsvvvind〉ss = −(�λ)a. (6.2.18)

Substitution of (6.2.17) gives the excess thermal conductivity,

�λ = Tcα
2
s 〈ψSξ 〉

/
(6πηRξ)

= TcC p/(6πηRξ), (6.2.19)

where χ is the susceptibility in the corresponding spin system and C p = α2
s χ

from (2.2.23). The second line follows if use is made of the estimation, 〈ψSξ 〉 =∫
ξ

dr′〈ψ(r)ψ(r + r′)〉 ∼= χ. Near the critical point, �λ dominates over the background
λ0 and λR ∼= �λ. For example, λ0/�λ ∼= 20(T/Tc − 1)ν for CO2 on the critical isochore
[15]. Then thermal diffusivity D = λR/C p is again given by the Einstein–Stokes formula
in (6.1.24). In this counterflow process the clusters transfer heat from a warmer to a cooler
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boundary, while they have finite lifetimes of order tξ . Molecular dynamics simulations
to confirm this picture should be informative but, to our knowledge, have not yet been
performed.

6.2.3 Nonlinear pressure and temperature fluctuations

From (4.2.1) and (4.2.2) the pressure and temperature fluctuations δ p̂ and δT̂ contain the
following bilinear terms [36],

p̂nl =
(
∂p

∂τ

)
h
γ0ψ

2, T̂nl =
(
∂T

∂τ

)
h
γ0ψ

2 =
(
∂T

∂p

)
cx

p̂nl, (6.2.20)

which arise from δτ̂ = δ(βH)/δm. The nonlinear terms in δĥ = δ(βH)/δψ are very
small. We will show that p̂nl gives rise to a strongly growing contribution to the frequency-
dependent bulk viscosity. From the general formula (5.4.5) it can be written as

ζ ∗R(ω) = ζ0 + 1

T

∫ ∞

0
dt

∫
dre−iωt 〈δ p̂nl(r, t)δ p̂nl(0, 0)〉, (6.2.21)

where δ p̂nl = p̂nl − 〈 p̂nl〉 is the deviation. The background bulk viscosity ζ0 and the
frequency-dependent shear viscosity η∗R(ω) are much smaller than the singular bulk vis-
cosity near the critical point.

We consider a sound wave in which the average deviations depend on space and time as
exp(iωt − ikx). From the general linear response formula (5.4.24) the pressure deviation
p1 = 〈δ p̂〉 in a sound is related to that of the mass density ρ1 = 〈δρ〉 as

p1 = ρ1

Ks(ω)ρ
= [

ρc2 + iωζ ∗R(ω)
]ρ1

ρ
, (6.2.22)

where Ks(ω) is the frequency-dependent adiabatic compressibility in (5.4.25). The acous-
tic dispersion relation is given by

ω2/k2 = 1/Ks(ω)ρ = c2 + iωζ ∗R(ω)/ρ. (6.2.23)

In usual experiments, ω is externally applied; then, the wave number k = Re k + i Im k
is a complex number and the frequency-dependent sound velocity and the attenuation per
wavelength are expressed as

c(ω) = ω/Re k, αλ = −2π Im k/Re k. (6.2.24)

In the low-frequency limit, ωtξ � 1, αλ is of the form,

αλ = πωζ ∗R(0)/ρc2. (6.2.25)

The contributions from the shear viscosity and the thermal conductivity in the usual
hydrodynamic expression are negligible near the critical point (see footnote 9 on p. 216).

Before proceeding to the detailed calculation, we examine the magnitude of p̂nl on the
critical isochore above TC. Note that the coefficient γ0 = γ0(�) strongly depends on the
upper cut-off wave number �, as discussed in Section 4.3. We first seek the renormalized
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form of p̂nl by setting � � κ = ξ−1. We note the relations, 2γRCH τ = γ /χ from
(4.1.58), τ 2CH = (T/Tc − 1)2CV from (2.2.27), and τ = (∂τ/∂T )h(T − Tc) from
(2.2.15) and (2.2.16), where CH and χ are the specific heat and the susceptibility in the
corresponding Ising system. They readily yield [36]

p̂nl = Tc Apψ
2/2χ (� � κ). (6.2.26)

The coefficient,

Ap = γ Tc

(T − Tc)CV

(
∂p

∂T

)
cx

= A∗(T/Tc − 1)−1+α, (6.2.27)

grows strongly as T → Tc with A∗ of order 1. The fluctuations with wave numbers smaller
than κ give rise to a strongly divergent contribution to the zero-frequency bulk viscosity,

ζ ∗R(0) ∼ Tc A2
p Kdκ

d tξ ∼ αρc2tξ ∝ ξ z−α/ν, (6.2.28)

where Kdκ
d is the volume of the wave number space and use has been made of the

thermodynamic relation (1.2.53) and the two-scale-factor universality relations (2.2.28)
and (4.3.47). At the other extreme, for � � κ , p̂nl or γ0 should be independent of T − Tc.
Assuming smooth crossover at � = κ , we have

p̂nl ∼= 1

2
(ξ�)(γ+α−1)/νTc Apχ

−1ψ2

∼= 1

2
Tc Bp�

(γ+α−1)/νψ2, (6.2.29)

where the coefficient Bp is of order A∗ξ (γ+α−1)/ν
+0 /�0 with χ = �0(T/Tc − 1)−γ /ν .

Projection operator method revisited

The general linear response theory in Section 5.4 shows that the bulk viscosity is expressed
in terms of the time-correlation function of the quantity,

δPR ≡
∫

dr(1 − P)δ�xx (r), (6.2.30)

where P is the hydrodynamic linear projection operator and δ�xx is the deviation of the
xx component of the microscopic stress. In our Ginzburg–Landau theory, δPR should
correspond to the space integral of p̂nl(r). The original mode coupling theories [1, 31]
supposed the following expansion form,

δPR =
∫

q
Vqψqψ−q + · · · , (6.2.31)

where ψq is the Fourier transformation of ψ(r), and Vq is called the vertex function.
Kawasaki and Tanaka [30] confirmed microscopically that the projection of δ�xx onto
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the bilinear products of ψ is very small at long wavelengths (namely, 〈δ�xxψψ〉 ∼= 0). In
fact, for the density fluctuation nk (∼= α1ψk), (1A.12) gives

〈|nk|2 : �αβ〉 = T I (k)δαβ − T kα
∂

∂kβ
I (k), (6.2.32)

I (k) being the structure factor (1.2.56). However, (1.2.67) with the aid of (1.2.76) gives

〈|nk|2 : P�αβ〉 = Tρc2
(
∂ I (k)

∂p

)
s
δαβ. (6.2.33)

Clearly, the latter quantity (6.2.33) is much larger than the former (6.2.32) near the critical
point. We notice that this remains the case in our Ginzburg–Landau theory. That is, because
δH/δm is statistically independent of ψ in equilibrium, the pressure fluctuation δ p̂ is
nearly orthogonal to any powers of ψ (and hence 〈δ p̂ψψ〉 ∼= 0), whereas (1−P)δ p̂ ∼= p̂nl

is bilinear in ψ .
With this finding the calculation of Vq is straightforward. Multiplying (6.2.30) by ψqψ−q

and taking the thermal average we obtain

2χ2
q Vq ∼= −〈ψqψ−qPδ�xx 〉 = −Tρc2

(
∂

∂p
χq

)
s
, (6.2.34)

where χq = 〈|ψq|2〉 and use has been made of the general thermodynamic relation (1.2.67)
and (1.2.76). For q � κ use of the Ornstein–Zernike form χq ∝ 1/(κ2 + q2) yields a
q-independent vertex function,

Vq ∼= 1

2
Tρc2

(
∂

∂p
χq

−1
)

s

∼= γ Tc

2(T − Tc)
ρc2

(
∂T

∂p

)
cx

1

χ
, (6.2.35)

where the derivative at constant s has been replaced by that at constant h = 0. The above
result turns out to coincide with our result, (6.2.26) and (6.2.27), as can be known from
(1.2.53). The original Kawasaki theory [31] is based on the hydrodynamic expression
(6.2.35) for the vertex function in the whole wave number region under nonlinear pressure
(6.2.31). However, the vertex function strongly depends on the upper cut-off � as in
(6.2.29) for � > κ . As a result, the Kawasaki theory is not a good approximation for
high-frequency sounds.

6.2.4 The frequency-dependent bulk viscosity

In calculating the bulk viscosity in (6.2.21), we should take into account the strong �

dependence of the coefficient γ0 = γ0(�). As in (6.1.31) and (6.1.32) we pick up the
fluctuation contribution in the shell region � − δ� < k < � and use the decoupling
approximation:

δζ ∗R(ω) =
2

Tc

(
∂p

∂τ

)2

h
γ 2

0 Kd�
d−1δ�

/[
χ2
�(2�� + iω)

]
, (6.2.36)
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where χ� = 1/K (κ2 + �2) and �� is the decay rate at the cut-off. Here we have the
relation Kdγ

2
0 = v�εK 2/C0 from (4.1.55). For x ≡ ξ� � 1, v and C0 behave as (4.3.37)

and (4.3.39). For x � 1, γ0 and C0 tend to the renormalized values γR and CR(= CH on
the critical isochore), respectively, so that v grows as �−ε . These limiting behaviors can
be taken into account by the following parametrization:

v = v∗(1 + x−2)ε/2/(1 + Qxα/ν), (6.2.37)

C0 = CH (1 + Q)−1(1 + x2)−α/2ν(1 + Qxα/ν), (6.2.38)

where v∗ = α/2ν + O(ε2) from (4.3.57) and

Q = (CB/A0)τ
α = B(T/Tc − 1)α (6.2.39)

is the ratio of the background to singular parts of CV = b2
cCH (∝ (T/Tc − 1)−α(1 + Q))

in (4.3.93). The experimental values of the coefficient B were given for four fluids below
(4.3.93). We further use the thermodynamic relations,

1

T

(
∂p

∂τ

)2

h
C−1

H = T

(
∂p

∂T

)2

cx
C−1

V = ρc2, (6.2.40)

which follows from (2.2.26). Now integration with respect to
→←
� or x = ξ� yields

ζ ∗R(ω) = v∗ρc2(1 + Q)tξ

∫ ∞

0
dx

x3−ε

(1 + x2)(1−α)/ν[�∗(x)+ iW ](1 + Qxα/ν)2
, (6.2.41)

where the decay rate �q is scaled as

�q = t−1
ξ �∗(qξ), (6.2.42)

and W is a dimensionless frequency,

W = ωtξ /2. (6.2.43)

Here tξ = t0(T/Tc − 1)−zν is the order parameter lifetime defined by (6.1.25); then,
�∗(x) ∼= x2 for x � 1 and �∗(x) ∼= xd for x � 1.

Low-frequency limit

In the low-frequency limit ωtξ � 1 on the critical isochore above Tc, the bulk viscosity
behaves as

ζ ∗R(0) = RBρc2tξ /(1 + Q) ∝ ξ z−α/ν/(1 + Q)2, (6.2.44)

including the correction Q. The coefficient RB is a universal number of order α and its ε
expansion is

RB = 1

24
ε + · · · . (6.2.45)

Low-frequency data of the acoustic attenuation in 3He suggest RB ∼= 0.03 [36, 43]. Re-
markably, the zero-frequency bulk viscosity ζ ∗R(0) ∝ ξ2.8 diverges more strongly near the
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critical point than any other transport coefficient. For example, in 3He at T/Tc − 1 = 10−4

on the critical isochore, it is about 50 poise while the shear viscosity is 17 × 10−6 poise
[43].

High-frequency limit including the background specific heat correction

In the high-frequency case ωtξ � 1, the wave number region � � ξ−1 or x � 1 (where
�� ∼ ω) is most important. Thus we may replace 1 + x2 and �∗(x) in (6.2.41) by x2 and
xz , respectively. Then,

iωζ ∗R(ω)
ρc2(1 + Q)

= 2v∗
∫ ∞

1
dx

iW

x1−α/ν(xz + iW )(1 + Qxα/ν)2

=
∫ ∞

1
dx

iW

xz + iW

∂

∂x

(
xα/ν

1 + Qxα/ν

)
. (6.2.46)

We may calculate the dominant contribution for small α/ν by deforming the integration
path in the complex x plane. Namely, by setting y = (iW )−1/z x we obtain

iωζ ∗R(ω)
ρc2(1 + Q)

= (iW )α/νz
∫ ∞

y∗
dy

1

yz + 1

∂

∂y

(
yα/ν

1 + Q(iW yz)α/νz

)
, (6.2.47)

where the lower bound y∗ = (iW )−1/z is complex, but the integration path for |y| > 1
may be along the real axis in the complex y plane. For small α/ν the upper bound and
(yz + 1)−1 may be replaced by 1, so that

iωζ ∗R(ω)/ρc2 = (1 + Q)
/[

(iW )−α/νz + Q
] − 1. (6.2.48)

For Q = 0 or B = 0, which is the case for 3He, the right-hand side simply becomes
(iW )α/νz − 1. Following Ferrell and Bhattacharjee [33, 34], we may interpret the above
result in terms of the frequency-dependent specific heat defined by

C∗
V (ω)

∼= A(iωt0)
−α/νz + B, (6.2.49)

where t0 is defined by (6.1.25). This expression simply follows if T/Tc−1 in CV is replaced
by (iωt0)1/νz . In terms of C∗

V (ω) we have

ζ ∗R(ω) =
ρc2

iω

[
CV /C∗

V (ω)− 1
]
, (6.2.50)

ρω2/k2 = T

(
∂p

∂T

)2

cx
C∗

V (ω)
−1. (6.2.51)

Because k ∝ √
C∗

V (ω), (6.2.24) leads to the attenuation per wavelength [34],

αλ = −2π Im[
√

C∗
V (ω)]/Re[

√
C∗

V (ω)]

= 0.27/(1 + X), (6.2.52)
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Fig. 6.7. Sound attenuation per wavelength αλ at the critical point vs X . The parameter X defined
by (6.2.53) is dependent on ω and the ratio B of the background to critical components of CV .
The solid line shows the theoretical formula (6.2.52) [33]. Experimental frequencies (in MHz) and
[references]: � 3He, 0.5 and 1 [42]; • 4He, 0.5 [41]; × Xe, 1 [40]; ◦ Xe, 3 [40]; ) Xe, 440 [39].
The universal relation αλ ∼= 0.27 is confirmed for 3He.

where we have set i−α/νz ∼= 1 − iπα/2νz and π2α/2zν ∼= 0.27, and the second line
follows from the first line from | Im[C∗

V (ω)]| � Re[C∗
V (ω)]. The parameter,

X = QWα/νz = B(ωt0)
α/νz, (6.2.53)

is dependent on ω but independent of T/Tc − 1. If the background B is negative, it serves
to increase αλ above 0.27, as illustrated in Fig. 6.7. It is worth noting that the acoustic
relation (6.2.52) is analogous to (6.1.30) for the frequency-dependent shear viscosity. The
effective sound velocity is expressed as

c(ω) = c(tξω/2)α/2νz[(1 + Q)/(1 + X)]1/2 ∝ ωα/2νz(1 + X)−1/2, (6.2.54)

where use has been made of c2 ∝ ξ−α/ν/(1 + X) from (4.3.94). The dispersion relation
at high frequencies is thus asymptotically independent of ξ . The correction X arising
from the background specific heat is also independent of ξ and remains noticeable in real
experiments except for 3He on the critical isochore above Tc.

Overall behavior on the critical isochore

If we neglect the background specific heat (B = 0), the frequency-dependent bulk viscosity
is asymptotically scaled as

iωζ ∗R(ω) = ρc2F(W ) or ω2/c2k2 = 1 + F(W ), (6.2.55)

where W is the scaled frequency (6.2.43). We have found that F(W ) ∼= 2RBiW for |W | �
1 and F(W ) ∼= (iW )α/νz − 1 for |W | � 1. If we calculate the scaling function F(W ) to
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Fig. 6.8. c(ω)/c − 1 vs ωtξ /2 on the critical isochore above Tc obtained from (6.2.57) and (6.2.24)
on a semi-logarithmic scale. It is compared with the data for 3He of Ref. [42].

first order in ε, we obtain the ε expansion, F(W ) = v∗F(W ) with [33, 35]

F(W ) = −1 + 1

2

(
1 − 1

iW

)
ln(iW )+ 1

�

(
3

2
− 1

2iW

)
ln

(
1 +�

1 −�

)
, (6.2.56)

where � ≡ (1 − 4iW )1/2. For |W | � 1, F(W ) ∼= 1
2 ln(iW ) and 1 + F(W ) = 1 +

1
2v

∗ ln(iW ) ∼= (iW )v
∗/2. To reproduce the Ferrell–Bhattacharjee form (6.2.49) we thus

replace v∗ by 2α/νz (not by its ε expansion form) and exponentiate the logarithmic term
[35] as

F(W ) = −1 + (1 + iW )α/νz
{

1 + α

νz

[
2F(W )− ln(1 + iW )

]}
. (6.2.57)

This form leads to the low-frequency result (6.2.44) with RB = α/2νz = 0.028 and the
high-frequency result (6.2.48) with B = 0. Figures 6.8 and 6.9 display the sound velocity
c(ω) and the attenuation per wavelength αλ in (6.2.24) derived from the above formula
with α/νz = 0.057 . They are compared with data of Roe and Meyer for 3He on the
critical isochore at 1 MHz [42]. Another theoretical formula in agreement with the data
was also proposed in Ref. [38].
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Fig. 6.9. αλ vs ωtξ /2 on the critical isochore above Tc obtained from (6.2.57) and (6.2.24) on a
semi-logarithmic scale. It is compared with the data for 3He of Ref. [42].

6.2.5 Adiabatic linear response

The time-correlation function expression (5.4.5) indicates anomalously slow relaxation of
the diagonal component of the stress tensor near the critical point. The stress relaxation
function is defined by

T Gxx (t) =
∫

dr〈�R
xx (r, t)�R

xx (0, 0)〉 ∼=
∫

dr〈δ p̂nl(r, t)δ p̂nl(0, 0)〉. (6.2.58)

The Laplace (one-sided Fourier) transformation of Gxx (t) is equal to the frequency-
dependent bulk viscosity ζ ∗R(ω). If we neglect the background specific-heat correction,
the following function,

Ĝ(t) = 1

ρc2
Gxx (t) =

∫
dω

2π iω
eiωtF

(
i

2
ωtξ

)
, (6.2.59)

is a universal function of t/tξ as displayed in Fig. 6.10 [37].

(i) For t � tξ the high-frequency expression (6.2.48) with B = 0 yields the short-time
behavior,

Ĝ(t) ∼= (t/tξ )
−α/νz − 1. (6.2.60)
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Fig. 6.10. The stress relaxation function Ĝ(t) defined by (6.2.59) near the critical point on a semi-
logarithmic scale. It is calculated by the inverse Laplace transformation of (6.2.41) for Q = 0. It
decays nearly logarithmically for t < tξ and as t−3/2 for t > tξ .

(ii) For t > tξ use of (6.2.26) yields a long-time tail,

Ĝ(t) ∼= 2αξd
∫ κ

0
dqqd−1 exp(−2Dq2t) ∼= α�(d/2)(2�ξ t)−d/2 ∝ t−d/2, (6.2.61)

where the two-scale-factor universality relations are used as in (6.2.28). This tail arises
from the diffusive relaxation of the hydrodynamic fluctuations with q < κ . Note that
(6.2.41) can correctly produce this tail from the small-x integration. In 3D it gives rise to a
higher-order correction of order (iωtξ )1/2 to the low-frequency bulk viscosity,

ζ ∗R(ω) = ρc2tξ

[
RB − 1

2
πα

√
iωtξ /2 + · · ·

]
, (6.2.62)

which leads to the low-frequency attenuation per wavelength,

αλ = πωtξ

[
RB − 1

4
πα

√
ωtξ + · · ·

]
. (6.2.63)

In terms of Ĝ(t) we rewrite the acoustic relation (6.2.22) for general time-dependent
pressure and density deviations, p1(t) and ρ1(t), as

p1(t) = c2
[
ρ1(t)+

∫ 0

−∞
dt ′Ĝ(t − t ′)ρ̇1(t

′)
]
, (6.2.64)

where ρ̇1(t) = ∂ρ(t)/∂t . The above relation holds in the adiabatic condition with vanishing
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entropy deviation (s1 = 0). We may rewrite the above relation in terms of the deviations of
ψ and m, which are expressed as

ψ1 = 1

Tc

(
∂p

∂h

)
τ

ρ1

ρ
, m1 = 1

Tc

(
∂p

∂τ

)
h

ρ1

ρ
, (6.2.65)

from the mapping relations (2.2.7) and (2.2.9) in the adiabatic condition. In the correspond-
ing Ising system, the adiabatic deviation of the reduced temperature τ1(t) = 〈δ(βH)/δm〉
in nonequilibrium is expressed in terms of m1(t) as

CMτ1(t) = m1(t)+
∫ t

−∞
dt ′Ĝ(t − t ′)ṁ1(t

′), (6.2.66)

where ṁ1(t) = ∂m(t)/∂t and CM is the constant-magnetization specific heat. The relation
(6.2.66) is a universal one independent of the mapping relationship. We shall see that the
same relation holds in binary fluid mixtures, while a similar one holds in 4He near the
superfluid transition.

6.2.6 Adiabatic change of the structure factor

An interesting application of the general linear response formula (5.4.21) is the adiabatic
change of B ≡ δn(r)δn(0) in a sound, which may be calculated using (6.2.32) and (6.2.33).
Its Fourier transformation with respect to r yields the structure factor I (q, t) = I (q) +
Re[I1(q, ω)ρ1/ρ], where the density deviation ρ1 oscillates as eiωt and propagates in the
x direction. Assuming an exponential relaxation of nq(t) with the relaxation rate �q , we
have [49]

I (q, ω) ∼= ρ

(
∂ I (q)

∂ρ

)
s

2�q

iω + 2�q
+

[
I (q)− qx

∂

∂qx
I (q)

]
iω

iω + 2�q
. (6.2.67)

The low-frequency limit gives the thermodynamic response (∂ I (q)/∂ρ)s ρ1 in (1.2.67).
The linear response theory holds for |I (q, t) − I (q)| � I (q) for any q. If ωtξ � 1 and
ρ = ρc, this criterion becomes

|ρ1|/ρ � |T/Tc − 1|1−α or |p1|/pc � |T/Tc − 1|, (6.2.68)

where p1 = c2ρ1. The nonlinear regime |p1|/pc � |T/Tc − 1| is then of great interest,
where we expect the occurrence of periodic spinodal decomposition at low frequencies
ωtξ � 1, to be discussed in Section 8.8. In addition, we note that there has been no
measurement of the anisotropic part (∝ qx∂ I (q)/∂qx ∝ q2

x ) in (6.2.67) in scattering or
form birefringence and dichroism [49]. Similar calculations can also be made for binary
fluid mixtures, and for 4He near the superfluid transition.

6.3 Piston effect

One-component fluids near gas–liquid criticality are highly compressible and extremely
sensitive even to a very small change of the pressure, as well as to that of the temperature.
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We will also now show that thermal equilibration processes drastically depend on whether
the pressure or the volume of the fluid is fixed [50]. We will show that the thermal diffusion
layer near the boundary wall of the fluid container is a crucial entity in the fixed-volume
condition, and that the layer acts as a piston causing instantaneous adiabatic changes in
the interior (bulk) region. This piston is so effectively operative because of the enhanced
thermal expansion that it decisively influences thermal relaxations at fixed volume. Some
new predictions will be made on the resonant response of the interior temperature against
oscillation of the boundary (wall) temperature.

6.3.1 Critical speeding-up at a fixed volume

Let us prepare a single-phase, near-critical fluid in a cell with a fixed volume V made
of a metal with high thermal conductivity. We then change the boundary temperature
by a small amount T1b at t = 0 and keep it constant for t > 0. We consider only
hydrodynamic variations slowly changing in space (� ξ ) and time (� tξ ) neglecting
the thermal fluctuations. Pressure variations propagate very rapidly on the scale of L/c,
which is the traversal time of a sound over the system length L , and can be regarded as
homogeneous on much slower scales.5 Near the boundary there arises a thermal diffusion
layer with thickness,

"D(t) =
√

Dt, (6.3.1)

which is larger than ξ for t > tξ . Hereafter D = λ/C p is the thermal diffusion constant
and λ is the thermal conductivity. In the isobaric condition, equilibration is achieved only
for "D(t) ∼ L or after an exceedingly long relaxation time of order tD ≡ L2/D.

The entropy variation s1(r, t) ≡ 〈δs〉−(δs)0 is nonvanishing only within the layer, where
(δs)0 is the initial, homogeneous entropy deviation from the critical value. It depends on t
and the distance from the boundary in an early stage in which "D(t) stays much shorter than
the system length L . Its space integral in the cell gives the heat QT (t) supplied through the
boundary,

QT (t) = nT
∫

drs1(r, t) = nT V s̄1(t), (6.3.2)

where s̄1(t) is the space average of s1(r, t). Simultaneously, a homogeneous pressure
variation is produced throughout the cell,

p1(t) =
(
∂p

∂s

)
n
s̄1(t) =

(
∂p

∂T

)
n
T̄1, (6.3.3)

where use has been made of the fact that the space integral of the density deviation vanishes
in the fixed-volume condition. We write the temperature variation as T1(r, t) and its space

5 At the end of this section we will discuss how pressure homogeneity is attained.
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average as T̄1. Using (6.3.3) we also have

T1(r, t) =
(
∂T

∂s

)
p
s1(r, t)+

(
∂T

∂p

)
s

p1(t)

= nT

C p
s1(r, t)+

(
nT

CV
− nT

C p

)
s̄1(t), (6.3.4)

where use has been made of the thermodynamic identity (∂p/∂T )n(∂T/∂p)s = 1−CV /C p

given in (1.2.54). The first term in (6.3.4) is localized in the thermal diffusion layer,
while the second term is homogeneous and is equal to the adiabatic, interior temper-
ature variation T1in(t) (the temperature deviation outside the thermal diffusion layer).
In the isobaric condition, we have the first term only. Interestingly, the space average
T̄1(t) = V−1

∫
drT1(x, t) is related to QT (t) in terms of CV as

T̄1(t) = (1 − 1/γs)
−1T1in(t)

= nT

CV
s̄1(t) = 1

V CV
QT (t). (6.3.5)

The second line is a natural consequence at fixed volume. The specific-heat ratio,

γs = C p/CV ∼ (T/Tc − 1)−γ+α, (6.3.6)

grows strongly near the critical point, so the second homogeneous part in the second line of
(6.3.4) is amplified as compared to the first localized part. Because s̄1(t) ∼ s1b(t)"D(t)/L
with s1b(t) being the boundary value of the entropy deviation, the ratio of the second term
to the first term in (6.3.4) is of order (γs − 1)"D(t)/L at the boundary. Thus T1(x, t)
will become everywhere close to T1b for (γs − 1)"D(t) � L . The time t1 of this quick
temperature equilibration is determined by (γs − 1)"D(t1) = L/2 and is expressed as

t1 = L2/[4D(γs − 1)2] ∝ L2ξ−2.7. (6.3.7)

As will be shown in Appendix 6D, analytic calculations of the temperature and density
profiles are straightforward for the 1D geometry (0 < x < L). The interior temperature
deviation T1in(t) = (1 − γ−1

s )T̄1(t) can be written in the following scaling form for t �
tD = L2/D,

T1in(t) = T1b
[
1 − Fa(t/t1)

]
. (6.3.8)

The scaling function Fa(s) is shown in Fig. 6.11 and is defined by

Fa(s) = 2

π

∫ ∞

0
du

1

1 + u2
exp(−su2) = es[

1 − erf(
√

s)
]
, (6.3.9)

where erf(x) = 2π−1/2
∫ x

0 dze−z2
is the error function. Therefore, Fa(s) = 1 −

2(s/π)1/2 + · · · for s � 1 and Fa(s) = (πs)−1/2 + · · · for s � 1; hence, the short-
and long-time expressions for T1in(t) are written as

T1in(t)/T1b ∼= 2(t/π t1)
1/2 (t � t1)

∼= 1 − (t1/π t)1/2 (t1 � t � tD). (6.3.10)
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Fig. 6.11. The scaling function Fa(s)
defined by (6.3.9).

The pressure deviation is written as p1(t) = (∂p/∂T )sT1in(t). The temperature profile may
be expressed in terms of a normalized temperature variation defined by

G(x, t) = [
T1b − T1(x, t)

]/[
T1b − T1in(t)

]
, (6.3.11)

which is zero at x = 0 and tends to 1 in the interior region. Some further calculations [50]
yield

G(x, t) ∼= erf(x̂) (t � t1)
∼= 1 − e−x̂2 + x̂e−x̂2

(t1/t)1/2 (t1 � t � tD), (6.3.12)

where x̂ ≡ x/
√

4Dt . Figure 6.12 displays the profile 1 − T1(x, t)/T1b [51]. In the final
stage t � tD , a temperature variation of order γ−1

s T1b relaxes exponentially. Its profile is
written as

1 − T1(x, t)/T1b ∼= 2

γs

[
1 − cos(2πx/L)

]
exp(−4π2 Dt/L2). (6.3.13)

It is worth noting that, if γs ∼= 1 or with no adiabatic effect, we have the exponential
relaxation 1 − T1(x, t)/T1b ∼ sin(πx/L) exp(−π2 Dt/L2) with a relaxation time four
times longer than the final relaxation time in (6.3.13).

The density variation ρ1(x, t) can also be calculated in the linear regime. In terms of
G(x, t) in (6.3.12) the density profile can be written as

ρ1(x, t)− ρ1in(t) =
(
∂ρ

∂T

)
p

[
T1 − T1in(t)

][
1 − G(x, t)

]
, (6.3.14)

where ρ1in(t) = (∂ρ/∂T )sT1in(t) is the interior density deviation. The boundary density
deviation is induced at nearly constant pressure as (∂ρ/∂T )pT1b for t � t1 and slowly
relaxes as (∂ρ/∂T )pT1b(t1/t)1/2 for t1 � t � tD . The density in the thermal diffusion
layer can thus be strongly disturbed for a long time interval.
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Fig. 6.12. Curves of 1 − T1(x, t)/T1b near the boundary. The curves are for t/t1 = 1/16, 1/4, 1, 4,
and 16. The distance x from the boundary is measured in units of L/(γs −1). Note that the thickness
of the thermal diffusion layer is L/(γs − 1) at t = t1 [51].

We recognize that the above heat transport mechanism is generally present in any
compressible system. It is noticeable in gaseous systems and is exaggerated near the
gas–liquid critical point. Notice that the heat transport equation nT ∂s1/∂t = λ∇2T1 in
one-component fluids may be rewritten as

∂

∂t
T1 =

(
∂T

∂p

)
s

d

dt
p1 + D∇2T1

=
(

1 − 1

γs

)
d

dt
T̄1 + D∇2T1. (6.3.15)

In the first line p1 is assumed to be homogeneous. The second line follows under the
fixed-volume condition and constitutes a simple modified diffusion equation, which takes
into account the adiabatic, homogeneous temperature change due to the global constraint
of fixed volume. As ought to be the case, the integration of (6.3.15) over the cell gives the
equation for the average temperature deviation,

V CV
d

dt
T̄1 = λ

∫
dan · ∇T1 (6.3.16)

The right-hand side represents the heat supply from the boundary surface, da being the
surface element and n being the outward surface normal. The time integration of (6.3.16)
leads to the second line of (6.3.5).
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Fig. 6.13. Heating up a cell containing SF6 at the critical density in a ballistic rocket flight [52]. The
wall temperature Twall was heated at a constant ramp from T − Tc = −0.4 K to 0.4 K within 6 min
of microgravity. The temperature at the center Tcenter quickly followed Twall due to the piston effect.
There should have been no change of Tcenter based on the thermal diffusion mechanism only.

Experiments

Because t1 becomes increasingly shorter as T → Tc, the adiabatic heating leads to critical
speeding-up, whereas the isobaric equilibration time tD ≡ L2/D is usually extremely long,
leading to critical slowing-down. For example, in CO2 with �T = T − Tc > 0 on the
critical isochore,6 we have D ∼= 10−5(�T )0.625 cm2/s, tξ ∼= 2.6 × 10−8(�T )−1.9 s with
�T in units of K, so that the two equilibration times are expressed as t1 ∼ 0.2(�T )1.67 s
and tD ∼ 105(�T )−0.625 s for L = 1 cm. As shown in Fig. 6.13, rapid thermal equi-
libration, which can now be ascribed to the piston effect, was first observed by Nitsche
and Straub in their CV measurement in a microgravity condition free from gravity-induced
convection [52]. A number of experiments have subsequently followed [53]–[58]. In par-
ticular, we mention that the piston effect has also been used to induce phase separation in
one-component fluids [55], as will be discussed in Section 8.6.

Piston effect in two-phase coexistence

In contrast to the critical speeding-up in one-phase states, long-duration thermal relaxations
were reported even at fixed volume in the presence of an interface separating gas and liquid
regions [59, 60]. This is caused by slow heat and mass transport through the interface [50].

6 For CO2, we use ξ+0 = 1.5 Å, Tc = 304 K and η = 3.8 × 10−4 poise [15].
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Fig. 6.14. (a) Temperature profiles along the height of a one-dimensional sample of CO2 in two-
phase coexistence in a cell with thickness L = 4 mm. It exhibits a temperature step of +10 mK at
the sample wall at the reduced initial temperature T0/Tc − 1 = −10−2 [57]. (b) Time evolution of
temperature recorded by a thermometer before, during, and after a heat pulse to a calorimetric cell
containing a near-critical fluid in two-phase coexistence [61].

Recall that the adiabatic coefficient (∂T/∂p)s was calculated as (2.2.36) on the coexistence
curve, which indicates that a homogeneous pressure change p1 produces a temperature
difference across the interface given by

(�T )gl = 2ac√
γs

(
∂T

∂p

)
cx

p1, (6.3.17)

where ac(∼= 1) is a universal number defined in (2.2.37). As a result, there appears a dif-
fusive heat flux and a temperature inhomogeneity extending over "D(t) near the interface.
For t � tD the interior temperature deviations far from the boundary wall and the interface
are given by

T1in ∼= T1b
[
1 − Fa(t/t1)

][
1 ± ac√

γs

]
, (6.3.18)

where the plus sign is for the gas phase and the minus for the liquid phase. Because
T1in/T1b − 1 ∼= −(t1/π t)1/2 ± acγ

−1/2
s for t1 � t � tD , the main temperature

inhomogeneity exists near the interface for t � γs t1 ∼ tD/γs . Recent experiments have
also confirmed slow relaxations in two-phase states [56]–[58]. Figure 6.14(a) illustrates
calculated temperature profiles in two-phase coexistence [57], where the distance from the
critical point is not very small and the temperature inhomogeneity is apparent. As shown
schematically in Fig. 6.14(b), even if a fluid is very close to the critical point, there appears
significant slow thermal relaxation on a timescale of tD in two-phase coexistence [61].
Some discussions on this effect have already been presented in Appendix 4F.
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Comments

(i) In the above example, the energy transport from the boundary to the interior takes place
in the form of sound. Immediately after heating of the boundary, several traversals of sound
are sufficient to heat up the interior [62]. This is analogous to the heat transport mechanism
in the form of second sound in superfluid 4He. Here we are assuming that the acoustic time
L/c (typically 10−4 s for L = 1 cm) is much shorter than t1. That is,

L/ct1 = (γs − 1)2 D/cL < 1. (6.3.19)

(ii) It is worth noting that the above linear response arguments are valid only for t1 � tξ
or L � ξγs . The reverse case L � ξγs can well be realized, although the physics remains
unclear. We also note that the thermal diffusion layer can easily be driven away from the
linear response regime, which is suggested by the large density perturbation (6.3.14). The
effect of the bulk viscosity is also neglected.

6.3.2 Relaxation after a volume change

Another impressive example of a thermal piston effect would be a simple experiment in
which the volume of the cell is changed from V to V + δV at t = 0 by a mechanical
piston with the boundary temperature unchanged. For t ∼ L/c the interior temperature
is adiabatically changed by (∂T/∂ρ)s(δρ)0 with (δρ)0 = −ρδV/V . Then there should
appear a thermal diffusion layer acting as a thermal piston. The homogeneous pressure
variation in this case is given by p1(t) = c2(δρ)0 + (∂p/∂s)ns̄1(t), instead of (6.3.3). The
temperature deviation vanishes at the boundary and the entropy deviation is localized near
the boundary. For t � L/c the problem becomes essentially the same as the previous one
by the replacement T1 → T1 + T1b with T1b = −(∂T/∂ρ)s(δρ)0. The interior temperature
variation relaxes to zero on the timescale of t1 as

T1in(t) =
(
∂T

∂ρ

)
s
(δρ)0 Fa(t/t1), (6.3.20)

where Fa(s) is defined by (6.3.9). The pressure deviation p1(t) decays as (∂p/∂T )sT1in(t)
for t � tD and tends to the final value (∂p/∂ρ)T (δρ)0 for t > tD . The process is adiabatic
for L/c � t � t1, but becomes nearly isothermal for t � t1 by the counterbalance of the
effects of the mechanical and thermal pistons.

6.3.3 Rapid heat transport

We may also examine situations in which the top and bottom walls have different temper-
atures in the fixed-volume condition. In such cases, the heat fluxes at the two boundaries
quickly become close on the timescale of t1, whereas a relaxation time of order tD is needed
in the isobaric condition. The effective thermal conductivity in such transient states can be
of order (γs − 1)λ ∼ (T − Tc)

−1.77.
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(i) For example, we switch on a heater attached to the top boundary at x = L at t = 0 and
apply a small constant heat flux Q into a fluid in a one-phase state for t > 0, while we keep
the bottom (x = 0) temperature unchanged [58, 61, 63, 64]. In the time region t � tD ,
we have thermal diffusion layers at the two boundaries, one being expanded and the other
being contracted. After some calculations in Appendix 6D we find that the temperature
deviation T1in(t) in the interior and that T1top(t) at the top are obtained as

T1in(t) = 2Q√
πλ

√
Dt Fb(t/4t1), T1top(t) = 2Q√

πλ

√
Dt

[
1 + Fb(t/4t1)

]
. (6.3.21)

The scaling function Fb(s) is defined by

Fb(s) = 1 − (π/4s)1/2[1 − Fa(s)], (6.3.22)

which behaves as (πs)1/2 + · · · for s � 1 and as 1 − (π/4s)1/2 for s � 1. Note that
the results in the isobaric condition are obtained if Fb in (6.3.21) is replaced by 0. In the
present fixed-volume condition, T1in(t) tends to a half of T1top(t) for t1 � t � tD . The
heat flux at the bottom is written as

Qbot(t) = Q
[
1 − Fa(t/4t1)

]
. (6.3.23)

For t1 � t � tD we have Qbot(t) ∼= Q. In this transient time region we may define the
effective thermal conductivity by

λeff(t) = QL/T1top(t) ∼=
√
π

4
(γs − 1)λ(t/t1)

−1/2, (6.3.24)

which changes from a value of order (γs − 1)λ at t ∼ t1 to λ at t ∼ tD . This high rate
of heat conduction realized for γs � 1 is carried by sound waves propagating through the
interior region.

(ii) We may also change the top temperature by T1b at t = 0 with the bottom temperature
unchanged. As will be shown in Appendix 6D, the interior temperature deviation for t �
tD is written as

T1in(t) = 1

2
T1b

[
1 − Fa(t/t1)

]
. (6.3.25)

Thus T1in(t) → T1/2 for t1 � t � tD . The bottom and top heat fluxes are calculated as

Qbot(t) = λT1b

L
(γs − 1)Fa(t/t1), Qtop(t) = λT1b√

πDt
− Qbot(t). (6.3.26)

For t1 � t � tD , both Qbot(t) and Qtop(t) approach λT1b/2
√
πDt . The effective thermal

conductivity λeff(t) is twice that in (6.3.24). Interestingly, we can see that Qbot(t) →
(γs − 1)λT1b/L for t � t1 from (6.3.26), but this is valid only for t � L/c because
homogeneity of the pressure has been assumed. If the fast acoustic process is accounted
for, Qbot(t) should grow from 0 to this high value with a few traversals of sound. Finally we
consider the energy �E(t) ≡ S

∫ t
0 dt ′Qbot(t ′), where S is the surface area of the parallel

plates. It is the energy transferred from the top to the bottom in the time interval [0, t] and
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is of order �E(t) ∼ V CV T1b(t/t1)1/2 for t � t1. Thus an energy of order V CV T1b can
be transported through a macroscopic distance on the timescale of t1.

6.3.4 Resonance induced by boundary temperature oscillation

So far we have been interested in slow motions occurring on timescales much longer than
the acoustic time L/c. Here we examine sound modes in a one-dimensional geometry
(0 < x < L) with frequency ω in the intermediate range,

c/L � ω � t−1
ξ . (6.3.27)

The wavelength 2πc/ω of the sound is much longer than the thickness of the thermal
diffusion layer. In this case, dissipation in the thermal diffusion layer (due to the thermal
conductivity) dominates over that in the interior region (due to the bulk viscosity).

We assume that all the deviations depend on time as eiωt . If the bulk viscosity is
neglected, the deviations ρ1, p1, and s1 of the density, pressure, and entropy, respectively,
satisfy

ω2ρ1 = −∇2 p1 = −c2∇2
[
ρ1 −

(
∂ρ

∂s

)
p
s1

]
. (6.3.28)

Close to the bottom x = 0, we set

s1 = A0e−κD x . (6.3.29)

Then (6.3.28) is integrated as

c2ρ1 = A cos(kx)+ B sin(kx)− κ2
D

k2 + κ2
D

(
∂p

∂s

)
ρ

s1, (6.3.30)

where k = ω/c and κD = (iω/D)1/2 with Re κD > 0 and k � |κD|. The coefficients,
A0, A, and B, are proportional to eiωt . If the boundary wall at x = 0 does not move,
iωρv = −∂p1/∂x should vanish as x → 0. Then B is determined as

B = − k

κD

(
∂ρ

∂s

)
p

A0. (6.3.31)

The pressure deviation thus becomes

p1 = A cos(kx)+
(
∂p

∂s

)
ρ

A0

[
κD

k
sin(kx)+ e−κD x

]
. (6.3.32)

The temperature deviation at x = 0 is written as

T1b =
(
∂T

∂p

)
s

[
A −

(
∂p

∂s

)
T

A0

]
. (6.3.33)

If the boundary temperature is constant or T1b = 0, the pressure and temperature variations
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in the interior region (x � |κD|−1) become

p1 =
(
∂p

∂T

)
s
T1in = A

[
cos(kx)− as sin(kx)

]
, (6.3.34)

where

as = (γs − 1)k/κD = e−iπ/4bs
√

kL. (6.3.35)

The coefficient bs sensitively depends on T − Tc as

bs = (γs − 1)
√

D/cL = (L/4ct1)
1/2. (6.3.36)

Typically, bs ∼ 10−4(T/Tc − 1)−0.87 for L = 1 cm on the critical isochore. The
term proportional to sin(kx) in p1 grows on approaching the critical point. Note that the
condition bs < 1 is equivalent to (6.3.19).

Eigenmodes

Now we can seek the eigenmodes of sound in a one-dimensional cell at a fixed boundary
temperature. In this case ω is a complex number with Imω > 0. Even modes are expressed
in the interior region as

p1 =
(
∂p

∂T

)
s
T1in ∝ eiωt cos[k(x − L/2)]. (6.3.37)

From (6.3.34) the dispersion relation is determined by

tan(kL/2) = −as. (6.3.38)

This equation is solved as ω = ωe
n (n = 1, 2, . . .) with Imωe

n > 0, where

ωe
n L/c = 2nπ − 2(1 − i)

√
nπbs + · · · (bs � 1),

= (2n − 1)π +
√

2(1 + i)√
(2n − 1)π

b−1
s + · · · (bs � 1). (6.3.39)

The first line holds not very close to the critical point, while the second line holds very
close to the critical point. Odd modes are expressed as

p1 =
(
∂p

∂T

)
s
T1in ∝ eiωt sin[k(x − L/2)], (6.3.40)

with

tan(kL/2) = a−1
s . (6.3.41)

This equation is solved as ω = ωo
n (n = 1, 2, . . .) with

ωo
n L/c = (2n − 1)π − (1 − i)

√
2(2n − 1)πbs + · · · (bs � 1),

= 2nπ + 1 + i√
nπ

b−1
s + · · · (bs � 1). (6.3.42)
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The imaginary part, Imωe
n or Imωo

n , represents the damping rate and is much smaller than
the real part for bs � 1 and bs � 1, but they are of the same order for bs ∼ 1. This
damping arises from heat conduction in the thermal diffusion layer and has been assumed
to be much larger than that due to the bulk viscosity (∼ RBω

2tξ from (6.2.25) and (6.2.45)).

Resonance

It is well known that a system which supports (first) sound resonates to mechanical vibra-
tion of the boundary wall when the applied frequency matches one of the eigenfrequencies
of the system. We predict similar resonance when the boundary temperature is oscillated at
such high frequencies (∼ c/L). It is easy to expect that this effect becomes enhanced near
the gas–liquid critical point with increasing γs −1, because the thermal diffusion layer can
effectively transform temperature variations at the boundary wall into sound in the interior
region. Analogously, Peshkov realized standing second sound in superfluid 4He resonantly
induced by periodic temperature perturbations at a boundary plate [65].

(i) If the top and bottom temperatures are equal and depend on time as T0 + T1b cos(ωt),
the temperature in the interior region is expressed as

T1in(x, t)/T1b = Re
[
Ze(ω)e

iωt ] cos[k(x − L/2)], (6.3.43)

with

Ze(ω) = 1/[cos(kL/2)+ a−1
s sin(kL/2)], (6.3.44)

where k = ω/c and as(∝ e−iπ/4ω1/2) is defined by (6.3.35). In Fig. 6.15(a) we plot
the absolute value |Ze(ω)| as a function of ωL/πc for various bs. The peaks arise from
resonance with the eigenmodes given by (6.3.39). Near the peak ω ∼= Reωe

n , we obtain
Ze ∼= 2(−1)ncRn/L(ω − ωn

e ), where Rn ∼= as for bs � 1 and Rn ∼= 1 for bs � 1. Thus
the peak heights are much enhanced as the critical point is approached.

(ii) If the bottom temperature at x = 0 is kept at a constant T0 and the top temperature at
x = L is oscillated as T0 + T1b cos(ωt), we obtain the interior temperature variation in the
form

T1in(x, t)/T1b = 1

2
Re

[
Ze(ω)Zo(ω)e

iωt [cos(kx)− as sin(kx)]
]
, (6.3.45)

where

Zo(ω) = 1/[cos(kL/2)− as sin(kL/2)]. (6.3.46)

At the middle point x = L/2, only the even modes are involved in the form

T1in(L/2, t)/T1b = 1

2
Re

[
Ze(ω)e

iωt ], (6.3.47)

as in the previous symmetric case. At other points, we can observe resonance also with the
odd modes. For example, close to the bottom, where

√
D/ω � x � L , we obtain

lim
x→0

T1in(x, t)/T1b = 1

2
Re

[
Ze(ω)Zo(ω)e

iωt ]. (6.3.48)
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Fig. 6.15. (a) |Ze(ω)| vs ωL/c for bs = 0.01, 0.1, 1, 10 from below. This represents the maximum
of T1in(L/2, t)/T1b when the top and bottom temperatures oscillate as T0 + T1b cos(ωt). Here bs

is defined by (6.3.36) and grows on approaching the critical point. (b) 1
2 |Ze(ω)Zo(ω)| vs ωL/c for

bs = 0.01, 0.1, 1, 10 from below. This represents the maximum of T1in(x, t)/T1b near the bottom,
(D/ω)1/2 � x � L , when the top temperature is oscillated with amplitude T1b and the bottom
temperature is fixed.
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In Fig. 6.15(b) we plot the absolute value 1
2 |Ze(ω)Zo(ω)|, which is the maximum of

T1in/T1b near the bottom, as a function of ωL/πc for various bs. The complex response
functions Ze(ω) and Zo(ω) have poles at ω = ωe

n and ωo
n , respectively, in the upper

complex ω plane from (6.6.39) and (6.6.42).

Linear response and pressure homogenization

We may now calculate the linear response to general, small time-dependent variations of
the boundary temperatures using the above results. In the symmetric case, in which the top
and bottom temperatures are equal and depend on time as T0 + T1b(t), the temperature
variation in the interior region is expressed as T1in(x, t) = ∫ t

−∞ dt ′ϕe(x, t − t ′)T1b(t ′),
where ∫ ∞

0
dte−iωtϕe(x, t) = Ze(ω) cos[(x − L/2)ω/c]. (6.3.49)

For a step-wise variation, in which T1b(t) is equal to 0 for t < 0 and to a constant T1b for
t > 0, we obtain T1in(x, t)/T1b = ∫ t

0 dt ′ϕe(x, t ′) for t > 0. In this case, after a relaxation
time thomo, the sound-wave oscillation decays to zero, resulting in a homogeneous pressure
deviation p1(t). From (6.3.39) we find

thomo ∼ L/cbs = bst1 (bs < 1), (6.3.50)

∼ Lbs/c = b3
s t1 (bs > 1). (6.3.51)

Thus thomo < t1 for bs < 1 or under (6.3.19), but thomo > t1 for bs > 1. For bs � 1,
however, the effect of the bulk viscosity will become important.

6.4 Supercritical fluid hydrodynamics

As the critical point is approached in supercritical fluids, the compressibility and thermal
expansion grow, and hence thermal and mechanical disturbances are inseparably coupled.
In such fluids the thermal diffusion constant D is small (typically less than 10−5 cm2/s),
while the pressure propagation is rapid. As a result, adiabatic processes are of great im-
portance. A characteristic feature not expected in incompressible fluids is that the density
heterogeneity is much more exaggerated than that of the temperature due to strong en-
hancement of the isobaric thermal expansion coefficient αp = −(∂n/∂T )p/n(∼ C p/nT ).
Together with the experiments cited so far, these new features have also been revealed by
simulations [62].

In the following, we will assume that a fluid is sufficiently above the critical point such
that phase separation does not occur. In Sections 8.6 and 9.4, however, we will show that
phase separation can easily be triggered in a thermal diffusion layer when a fluid close to
the coexistence curve is heated or cooled through a boundary.
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Fig. 6.16. Thermal plumes in CO2 in a cell with 1 cm thickness in an initial stage of the
Schwarzschild instability. The darkness in the figure may be interpreted to represent |T (r, t) −
Tcenter(t)| where Tcenter(t) is the temperature at the center. (The original figure in [67] is in color
and represents T (r, t)−T0.) The temperature inhomogeneity is of order 0.5 mK and is much smaller
than the average deviation T − Tc = 1 K.

6.4.1 Thermal plumes

Let us consider an expanded region with excess entropy created around a heater placed
within a fluid. It will eventually rise due to gravity as a thermal plume [66]. If its linear
dimension R is sufficiently large, such a plume has a long lifetime of order R2/D if not
deformed by the velocity field. If a plume is warmer than the ambient fluid by T1, it has a
density lower than ambient by ραpT1. As a result, the upward velocity due to buoyancy is
estimated as

vplume ∼ (gραp/η0)T1 R2, (6.4.1)

where the transverse velocity field is responsible for the drag force. The plume moves
upward appreciably in the adiabatic condition if R/vplume < R2/D or7

T1 R3 > Dη0/(gραp). (6.4.2)

The right-hand side behaves as (T/Tc−1)ν+γ on the critical isochore due to the singularity
of D/αp.

As an illustration, we show a numerical simulation in 2D in Fig. 6.16 [67]. It demon-
strates that thermal plumes can appear even when a flat bottom boundary is heated ho-

7 The Reynolds number of the flow around the plume is given by Re = ρvplume R/η0. Since Pr � 1 in near-critical fluids, the
condition Re < 1 holds near the convection onset, as will be shown in (6.4.11).
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mogeneously. The fluid was initially in equilibrium at T = T0 with T0 − Tc = 1 K and
ρ = ρc in a cell with thickness 1 cm. At t = 0 the bottom boundary temperature is raised
by 0.5 mK with the upper boundary temperature kept fixed. Then the thermal diffusion
layer at the bottom is expanded with thickness

√
Dt = 3× 10−3t1/2 cm (t in s), while that

at the top is contracted by the same thickness. The figure illustrates plumes at t = 36.33 s,
where the expanded warmer plumes rise from the bottom and the contracted cooler plumes
sink from the top. We can also see that the temperature differences between the plumes
and the surrounding fluid become smaller far from the boundaries. In this simulation this is
because a plume is adiabatically cooled (warmed) by (∂T/∂p)sρg(∼ 0.3 mK/cm for CO2)
per unit length as it goes upward (downward). Note that nearly the same phenomenon can
be expected when the top boundary is cooled with the bottom temperature fixed.

6.4.2 Convection in supercritical fluids

Rayleigh and Schwarzschild criteria

Let a supercritical fluid column be under a temperature gradient in the downward direction
or heated from below. Note that the condition of convection onset for incompressible fluids
is given by Ra > Rac (the Rayleigh criterion), where Ra ≡ (αpρcgL3)�T/η0 D is the
Rayleigh number and Rac ∼= 1708 is the critical value. However, in compressible fluids
another instability is well known (the Schwarzschild criterion) [68]–[70]. That is, if the cell
thickness L is sufficiently large or the fluid is close to the critical point, convection sets in
when the temperature gradient |dT /dz| is larger than the adiabatic temperature gradient

ag ≡ (∂T /∂p)sρg. (6.4.3)

This is the condition that the entropy per particle decreases with height as ds/dz =
(C p/nT )[dT /dz + ag] < 0, under which fluid elements adiabatically convected upward
are less dense than the surrounding fluid. A sufficiently large plume generated at z = 0 and
moving upward will have a density lower than that of the surrounding fluid by

(�ρ)plume = ρ(s(0), p)− ρ(s(z), p) = −ραp[|dT /dz| − ag]z. (6.4.4)

The temperature is higher inside the plume than in the surrounding fluid by T1 =
[|dT /dz| − ag]z, while there is no pressure difference. This instability is well known for
large compressible fluid columns such as those in the atmosphere. Gitterman and Steinberg
[69] found that the convection onset for compressible fluids is given by Racorr > Rac,
where Racorr is a corrected Rayleigh number defined by

Racorr = Ra(1 − ag L/�T ). (6.4.5)
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At the convection onset we thus have

(�T )onset = ag L + Rac Dη0/(gραp L3). (6.4.6)

The crossover between the two criteria is observable in near-critical fluids due to enhanced
thermal expansion.8 After its first observation in SF6 from velocity measurements [71],
it has recently been investigated with precision in 3He as shown in Fig. 6.17(a) [73].
Moreover, unique transient behavior has also been observed in 3He [73], which will discuss
below.

Hydrodynamic equations for slow motions

In a supercritical fluid at a fixed volume in the Rayleigh–Bénard geometry, we assume that
the temperature disturbance T1(r, t) = T (r, t) − Ttop measured from the temperature Ttop

at the top boundary is much smaller in magnitude than the distance from the critical point
Ttop − Tc (written as T − Tc hereafter) and that the gravity-induced density stratification
is not too severe such that the thermodynamic quantities are nearly homogeneous in
the cell. To assure the latter condition we assume the temperature range (2.2.43). The
bottom and top plates are made of metals with high thermal conductivity and the boundary
temperature deviations are independent of the lateral coordinates. We also note that the
gravity induces a pressure gradient given by dpeq/dz = −ρg ∼= −ρcg along the z axis
in equilibrium. Even in nonequilibrium we may assume homogeneity of the combination
p1(t) ≡ p(r, t) − peq(0) + ρcgz as in (6.2.11) [50], where peq(0) is the pressure at
z = 0 in equilibrium. Using the condition that the space average of the density deviation
vanishes, we have p1(t) = (∂p/∂T )n T̄1 as in (6.3.3). The entropy s(r, t) per particle
consists of the equilibrium part seq(z) with dseq/dz = −(∂s/∂p)T ρg = (nT )−1C pag and
the nonequilibrium deviation,

s1(r, t) = (nT )−1C p
[
T1(r, t)− (∂T/∂p)s p1(t)

]
. (6.4.7)

With the aid of the thermodynamic identity (1.2.54) the heat conduction equation is
rewritten as (

∂

∂t
+ vvv · ∇

)
T1 =

(
1 − 1

γs

)
d

dt
T̄1 + D∇2T1 − agvz . (6.4.8)

On the right-hand side, the first term gives rise to the piston effect, while the third term
arises from dseq/dz and plays the role of suppressing upward (downward) motions of
heated (cooled) plumes.

On long timescales (� L/c), sound waves decay to zero and the incompressibility
condition ∇ · vvv = 0 becomes nearly satisfied. The timescale of the velocity field is then
given by L2ρ/η0 in convection. Another characteristic feature is that the Prandtl number
Pr ≡ η0/ρD increases in the critical region; for example, Pr = 350 at T/Tc − 1 = 10−3

in 3He. This means that the timescale of the thermal diffusion is much longer than that

8 In near-critical conditions very large Rayleigh numbers can be realized. See experiments in SF6 [71] and in 4He [72].
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Fig. 6.17. (a) Experimental data of the temperature difference �Tonset vs ε = T/Tc−1 (symbols) at
convection onset measured in 3He in a cell of 1 mm thickness [73]. They are compared with theory
in [69] (GS) and [70] (CU). Main figure: linear plot. Inset: semi-logarithmic plot in the region where
the adiabatic temperature gradient (Schwarzschild) criterion is dominant. (b) Comparison between
the numerical curve (solid line) [74] and the data (+) [73] of �T (t) vs time at Q = 45.8 nW/cm2

in the fixed-volume condition with γs = 22.8. The upper broken curve represents the analytic result
in (6.3.21). The dot-dash curve represents the numerical curve in the fixed-pressure condition.
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of the velocity. In the low-Reynolds number condition Re < 1 we may use the Stokes
approximation,

η0∇2vvv = ∇ p + gρez ∼= ∇ pinh − αpρcgδT ez, (6.4.9)

where ez is the unit vector along the z axis and pinh is the inhomogeneous part of the
pressure induced by δT . We note that an inhomogeneity of δT changing perpendicularly
to the z axis induces an incompressible flow. Let k be the typical wave number (or 2π/k be
the typical length) of the fluid motion and (δT )c be the typical temperature variation in the
xy plane. Then the magnitude of the velocity field vvv is of order (αpρcg/η0k2)(δT )c and

Re ∼ ρ|vvv|/η0k ∼ (αpρ
2
c g/η2

0k3)(δT )c. (6.4.10)

For convection, we set kL ∼ 2π and (δT )c ∼ �T − (�T )onset. The condition Re < 1
becomes

Racorr/Rac − 1 < Pr. (6.4.11)

Thus the Stokes approximation (6.4.9) is applicable considerably above the convection
onset for Pr � 1. In addition, (6.4.9) yields inhomogeneous pressure deviation pinh ∼
αpρcgL(δT )c ∼ (T/Tc − 1)−γ ρcgL(δT )c/Tc. Recall the assumption (2.2.43), under
which we have pinh � |p1(t)| unless T̄1 is much smaller than δT .

We consider convective flow using (6.4.8) and (6.4.9). First, for steady patterns, we may
set

T1/�T = 1 − z/L + F(L−1r)/Ra. (6.4.12)

The scaled temperature deviation F and V ≡ (L/D)vvv both vanish at z = 0 and L and
obey

V · ∇̄F = ∇̄2F + RacorrVz, (6.4.13)

∇̄2V = ∇̄Pinh − Fez, ∇̄ · V = 0, (6.4.14)

where ∇̄ = L∇ is the space derivative in units of L . These equations are characterized by
the corrected Rayleigh number Racorr in (6.4.6), leading to Racorr = Rac at the convection
onset [69, 70]. The efficiency of convective heat transport is represented by the Nusselt
number defined by Nu ≡ QL/λ�T , where Q = −λ(∂δT/∂z)z=0 is the heat flux through
the cell. For steady convection we have

Nu = 1 + Ra−1 fλ(Racorr), (6.4.15)

where fλ = −L(∂F/∂z)z=0 is a function of Racorr. Consistent with this result,9 experi-
mental curves of Ra(Nu − 1) vs Racorr/Rac − 1 were fitted to a single universal curve for
various densities above Tc [72] and for various T/Tc − 1 on the critical isochore [73].

Now we show numerical analysis of (6.4.8) and (6.4.9) [74]. We consider 3He at
T/Tc − 1 = 0.05 on the critical isochore, where γs = 22.8, Tαp = 26.9, D =
9 For the case of finite Pr , fλ in (6.4.15) also depends on Pr . Its dependence should become weak once Pr considerably

exceeds 1.



6.5 Critical dynamics in binary fluid mixtures 271

5.42 × 10−5 cm2/s, and Pr = 7.4. The cell height is set equal to L = 1.06 mm, but
the periodic boundary condition is imposed in the lateral direction with period 4L . Using
the experimental conditions [73], we apply a constant heat flux at the bottom for t > 0
with a fixed top temperature Ttop;10 then, the bottom temperature Tbot(t) is a function of
time. In this case we have Racorr/Rac = 0.90(�T/ag L − 1) where ag L = 3.57 µK.
Figure 6.17(b) shows the numerically obtained curve of �T (t) = Tbot(t) − Ttop vs time
for Q = 45.8 nW/cm2 (solid line). It exhibits an overshoot and a damped oscillation. In
particular, the time between the maximum (point B) and the minimum (close to D) is of
order L2/D(Racorr/Rac − 1) in accord with the experiment. This is because the arrival of
thermal plumes at the top boundary causes an excess heat transfer to the boundary wall,
leading to an overall temperature change, as suggested by (6.3.4). In the isobaric condition,
in which the first term on the left-hand side of (6.4.8) is absent, the fluid motion approaches
the final steady pattern nearly monotonically.

6.5 Critical dynamics in binary fluid mixtures

The critical dynamics of binary fluids is usually described by model H at constant pressure
and in the incompressible limit. However, because the order parameter is a linear combi-
nation of the deviations of the density, entropy, and concentration, there are a number of
complicated dynamical effects which are beyond the scope of model H. We will discuss (i)
dissipative coupling between diffusion and heat conduction, (ii) the frequency-dependent
bulk viscosity, and (iii) adiabatic relaxations.

6.5.1 Dynamic equations and renormalized kinetic coefficients

The GLW hamiltonian H{ψ,m, q} in (4.2.6) can be used for binary fluid mixtures with the
linear mapping relations (2.3.12)–(2.3.14) between {δs, δX, δn} and {ψ,m, q}, where q is
the nonsingular variable introduced in Section 2.3 (not the wave number). All the variables
are measured from their critical value at a reference critical point on the critical line. From
(1.3.16) and (1.3.17) δs and δX are defined as

δs = [
δe − H1δn1 − H2δn2

]
/ncTc, (6.5.1)

δX = [
(1 − Xc)δn1 − Xcδn2

]
/nc, (6.5.2)

where Hi = Tcsc + µic (i = 1, 2). In addition to the fluctuations of the temperature and
pressure introduced by (4.2.7) and (4.2.8), we introduce the fluctuating variable δ∆̂ for
the chemical potential difference by (4.2.11). Regarding H as a functional of δs, δX , and
δρ = m̄0δn (m̄0 being the average mass), we may express them as

δT̂ = n−1
c

δH
δs

, δ p̂ = ρc
δH
δρ

, δ∆̂ = n−1
c

δH
δX

. (6.5.3)

10 This boundary condition is usual in cryogenic heat conduction experiments. See Ref. [75] for analysis of convection onset in
this case.
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The dynamic equations for δs and δX are

∂

∂t
δs = −∇ · (δsvvv)+ L011∇2δT̂ + L012∇2δ∆̂+ θ1, (6.5.4)

∂

∂t
δX = −∇ · (δXvvv)+ L021∇2δT̂ + L022∇2δ∆̂+ θ2. (6.5.5)

The symmetric background kinetic coefficients L0i j = L0 j i are related to the noise terms
as

〈θi (r, t)θ j (r′, t ′)〉 = −2n−1
c TcL0i j∇2δ(r − r′)δ(t − t ′). (6.5.6)

As in (6.1.18) the renormalized kinetic cofficients are expressed as the time-integrals of the
correlation functions of the nonlinear fluxes δsvvv and δXvvv, where we may set δs ∼= n−1

c αsψ

and δX ∼= n−1
c αXψ in terms of the order parameter ψ . The coefficients αs and αX are

defined in (2.3.15) and satisfy (2.3.20). It is convenient to write ᾱ1 ≡ αs and ᾱ2 ≡ αX .
Then (2.3.20) gives

ᾱ1/ᾱ2 = αs/αX = −(∂∆/∂T )p,cx. (6.5.7)

Because the reversible fluxes of δs and δX are ᾱ1ψvvv and ᾱ2ψvvv, respectively, we may
express the k-dependent renormalized kinetic coefficients as [76]–[78]

LRi j (k) = L0i j + (ncTc)
−1ᾱi ᾱ j LR(k), (6.5.8)

where LR(k) is the renormalized kinetic coefficient (6.1.20) for model H.

6.5.2 Diffusive relaxation and Rayleigh scattering

In the long-wavelength limit and in the isobaric condition, we write

δT̂ = A11δs + A12δX, δ∆̂ = A12δs + A22δX, (6.5.9)

where Ai j are the thermodynamic derivatives at fixed p. Substituting these relations into
(6.5.4) and (6.5.5) and using the renormalized kinetic coefficients, we obtain diffusive
equations for slowly varying disturbances of δs and δX ,

∂

∂t
δs = ∇2[

HR11δs + HR12δX
] + θR1, (6.5.10)

∂

∂t
δX = ∇2[

HR21δs + HR22δX
] + θR2, (6.5.11)

where HRi j =
∑2

"=1 LRi"A"j . No macroscopic flow field is assumed. The noise terms θR1

and θR2 are related to LRi j via the fluctuation–dissipation relations.
We next calculate the time-correlation functions around equilibrium,

G11(k, t) = 〈sk(t)s−k(0)〉, G12(k, t) = 〈sk(t)X−k(0)〉,
G22(k, t) = 〈Xk(t)X−k(0)〉, (6.5.12)
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which undergo double-diffusive relaxations. Their expressions in the hydrodynamic regime
kξ � 1 can be obtained from (6.5.10) and (6.5.11). They may readily be extended to the
case kξ � 1 if we use the Ornstein–Zernike form for 〈|ψk|2〉 and �k in (6.1.21) for the
order parameter relaxation. Some further calculations yield [77]–[79]

Gi j (k, t) =
(
ᾱi ᾱ j

χ

1 + k2ξ2
+ C (1)

i j

)
exp(−�k t)+ C (2)

i j exp(−D2k2t). (6.5.13)

Here C (1)
i j and C (2)

i j are nearly nonsingular coefficients. The two diffusion constants D1 =
limk→0 �k and D2 are the eigenvalues of HRi j . Here D1 ∼= T/6πηRξ as in model H,
whereas D2 is nearly nonsingular, so D1 � D2 near the critical point. The slow mode may
be identified with the concentration mode for nearly incompressible binary fluid mixtures
and the entropy mode for nearly azeotropic binary fluid mixtures.

In particular, if the electric polarizabilities of the two components are nearly the same,
as is the case in 3He–4He [80], dynamic light scattering detects Sk(t) = 〈nk(t)n−k(0)〉
for the density fluctuation δn = (∂n/∂s)X pδs + (∂n/∂X)spδX + (∂n/∂p)s Xδp. Here δs
and δX give rise to Rayleigh scattering, while the pressure fluctuation leads to Brillouin
scattering. From (6.5.13) we obtain

Sk(t) = nT KT�

1 + k2ξ2
exp(−�k t)+ Creg exp(−D2k2t)+ T

ρc2
cos(ckt) exp

(
−1

2
�s

k t

)
,

(6.5.14)
where KT∆ = (∂n/∂p)T∆(∝ χ) is the compressibility at fixed T and ∆, and Creg is
a nearly nonsingular coefficient. In the last term the sound-wave dispersion is written as
ωk = ±ck + 1

2 i�s
k with k being real. Notice that the amplitude of the slowly decaying part,

the first term in (6.5.13) or (6.5.14), increases markedly near the critical point, whereas
the second term is insensitive to T − Tc. Some experiments detected double-exponential
relaxation not very close to the critical point [81, 82].

6.5.3 Heat conduction and mass diffusion

We consider nonequilibrium situations in which the deviations T1 = 〈δT̂ 〉 and ∆1 = 〈δ∆̂〉
are weakly inhomogeneous, where the averages are taken over the thermal noises. The
average heat and diffusion fluxes Q and i are written in terms of the renormalized kinetic
coefficients as

Q = −ncTc
[
LR11∇T1 + LR12∇∆1

]
, (6.5.15)

i = −LR21∇T1 − LR22∇�1. (6.5.16)

In usual heat conduction experiments in a finite cell, there is no diffusive flux (i = 0) in a
steady state, so

∇�1 = −L−1
R22LR21∇T1. (6.5.17)
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Then, elimination of ∇∆1 gives the effective thermal conductivity of the form,

λeff = −Q/∇T1 = ncTc
[
LR11 − L2

R12/LR22
]
. (6.5.18)

We notice that the divergent parts in LRi j ∝ ᾱi ᾱ j are canceled in the above expression,
leading to a finite thermal conductivity λc at the critical point. It is convenient to express
λeff as

1

λeff
= 1

λR
+ 1

λc
, (6.5.19)

where

λR ∼= (Tc/6πηRξ)C p∆ + ncTcL011 (6.5.20)

is divergent with C p∆ = α2
s χ as in the one-component case, and

λc = ncTc

[(
ᾱ1

ᾱ2

)2

L022 − 2

(
ᾱ1

ᾱ2

)
L012 + L011

]
(6.5.21)

is the critical-point value determined by the background kinetic coefficients L0i j .
Usually, however, the chemical potential difference is not measurable and is eliminated

in favor of the concentration with the aid of the linear relation ∆1 = (∂∆/∂T )pX T1 +
(∂∆/∂X)pT X1, where X1 is the average concentration deviation. We express the two
fluxes in the familiar forms,

Q = −λeff∇T1 − Ah i, (6.5.22)

i = −DT [∇X1 + T−1kT∇T1]. (6.5.23)

The isothermal diffusion constant is defined by

DT = LR22(∂∆/∂X)pT . (6.5.24)

The cross coefficients Ah and kT are defined by

Ah = nT
LR12

LR22
= n

[
kT

(
∂∆

∂X

)
pT

− T

(
∂∆

∂T

)
pX

]
, (6.5.25)

kT = T

(
∂X

∂∆

)
pT

(
LR12

LR22

)
− T

(
∂X

∂T

)
p∆

. (6.5.26)

In particular, kT is called the thermal diffusion ratio, because it is the ratio of the two
gradients in the absence of a diffusion current. Delicate cancellation of the diverging terms
also occurs in kT . For non-azeotropic mixtures its asymptotic behavior is

kT ∼= D−1Tc
[
L012 − (αs/αX )L022

]
, (6.5.27)

where D = T/6πηRξ , so kT ∝ ξ . The predictions that λeff → λc and kT ∝ ξ are in
agreement with measurements in binary fluid mixtures near consolute critical points, such
as nitrobenzene + hexane [83] and aniline + cyclohexane [84]. Figure 6.18 shows data of
D and kT for the latter system, which agree with the above results.
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Fig. 6.18. The diffusion constant D and the thermal-diffusion ratio kT at the critical composition
in aniline + cyclohexane [84]. Here D ∝ ξ−1 was obtained from a macroscopic thermal relaxation
and represents the smaller diffusion constant. In the lower panel the product kT D is shown to be
independent of T − Tc.

Dynamic crossover in nearly azeotropic fluid mixtures

As discussed in Section 2.3, nearly azeotropic binary mixtures are characterized by small
αX , where the concentration fluctuations are weaker than those of the entropy as expressed
by (2.3.50). In this case �L22 = LR22−L022 ∝ α2

X in (6.5.8) and λc ∝ α−2
X from (6.5.21).

They are related by

λR

λc

∼= �L22

L022
∼ T

6πηRξD0
τ
γ

s1 ∼ τ
γ

s1(T/Tc − 1)−ν, (6.5.28)

where τs1 is the static crossover reduced temperature defined by (2.3.51) and

D0 = L022 AX/T (6.5.29)

is the background diffusion constant (of order 10−5 cm2/s in 3He–4He). The AX is the
background part of T (∂X/∂∆)T p as in (2.3.50). A dynamic crossover reduced temperature
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Fig. 6.19. (a) The singular part of the thermal conductivity λsing = λobs − λreg in pure 3He and
two 3He–4He mixtures, where the background part λreg is subtracted from the observed part λobs in
the steady state. (b) The thermal diffusion ratio kT for the two mixtures [85]. Here λsing ∝ ξ and
kT ∝ ξ2, which is the behavior in the range T/Tc − 1 > τD before the dynamic crossover.

τD may thus be introduced by [77]

τ νD ∼ τ
γ

s1. (6.5.30)

Roughly, we have τD ∼ τ 2
s1. In terms of τD the crossover of λeff and kT are expressed as

λeff/ξ ∝ −kT /ξ
γ/ν ∝ {

1 + [
τD/(T/Tc − 1)

]ν}−1
. (6.5.31)

Apparent critical divergence of the thermal conductivity has been reported in a number of
fluid mixtures such as 3He–4He [85] and methane–ethane [86]. Very recently its saturation
has also been observed in methane–ethane [87]. In Fig. 6.19 we show data of the singular
part of the thermal conductivity and kT in 3He–4He with the 3He molar concentration
at 0.80 and 0.66. The thermal conductivity behaves as in pure 3He. In this temperature
range the dynamic crossover was not reached, while τD ∼ 10−4 for such concentrations
theoretically [77].

6.5.4 The frequency-dependent bulk viscosity

It is straightforward to calculate the frequency-dependent bulk viscosity in binary fluid
mixtures. From (4.2.7) and (4.2.8) the pressure and temperature fluctuations contain the
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following nonlinear parts [37],

p̂nl =
(
∂p

∂τ

)
hζ
γ0ψ

2, T̂nl =
(
∂T

∂τ

)
hζ
γ0ψ

2, (6.5.32)

which arises from the terms ∝ δ(βH)/δm. It is obvious that the bulk viscosity expres-
sion for one-component fluids remains valid if (∂p/∂τ)h is replaced by (∂p/∂τ)hζ . The
thermodynamic relations (2.3.37) and (2.3.40) give

ρc2 − ρcc2
c =

(
∂p

∂τ

)2

hζ

1

TcCM
. (6.5.33)

Therefore, replacing ρc2 in the formulas for one-component fluids by ρc2 − ρcc2
c , we

obtain those for binary fluid mixtures. For simplicity, we consider a binary fluid mixture
at the critical concentration and in the one-phase state. We also neglect the background
specific-heat correction. From (6.2.55) we find [37, 38],

ζ ∗R(ω) = (ρc2 − ρcc2
c )

1

iω
F(W ), (6.5.34)

where W = ωτξ/2. The scaling function F(z) is approximately given by (6.2.57). Thus
the pressure variation p1 and the density variation ρ1 in a sound wave are related by

p1 = [
ρc2 + (ρc2 − ρcc2

c )F(W )
]ρ1

ρ
. (6.5.35)

We examine some representative cases.

(i) In the low-frequency limit the bulk viscosity grows as

ζ ∗R(0) = (ρc2 − ρcc2
c )RBtξ ∝ ξ z−α/ν, (6.5.36)

as in one-component fluids, RB ∼= 0.03 being a universal number. The resultant attenuation
per wavelength is of the form

αλ = πRB

ρc2
(ρc2 − ρcc2

c )tξω. (6.5.37)

(ii) From (6.2.48) and (6.2.57) the dispersion relation in the high-frequency limit ωtξ � 1
becomes

ρω2/k2 = ρcc2
c + (ρc2 − ρcc2

c )(iW )α/νz, (6.5.38)

which is independent of ξ as ought to be the case. Let us set

Z(ω) = 1

ρc
(ρc2 − ρcc2

c )W
α/νz, (6.5.39)

which is asymptotically independent of T − Tc. Then, at the critical point we have

αλ = 0.27
[
Z(ω)

/
(c2

c + Z(ω))
]1/2

, (6.5.40)

c(ω) = [
c2

c + Z(ω)
]1/2

. (6.5.41)
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The above formulas reduce to those of one-component fluids at the critical point as cc → 0.
As the average concentration is decreased, the critical behavior of acoustic propagation
crosses over from that of binary fluid mixtures to that of one-component fluids.

(iii) In particular, c2 − c2
c can be much smaller than c2

c in many nearly incompressible
binary mixtures.11 In this case, because the bulk viscosity may be treated as a perturbation
in the acoustic dispersion relation, the sound attenuation per wavelength is written as

αλ ∼= π(ρc2/ρcc2
c − 1) Im

[
F(W )

]
∼= πα

ν
(ρc2/ρcc2

c − 1)
∫ ∞

0
dx

x3−ε�∗(x)W
(1 + x2)(1−α)/ν[�∗(x)2 + W 2]

, (6.5.42)

for small α/ν in our scheme. As W → ∞, the high-frequency behavior is given by αλ →
αλc ≡ 0.27Z(ω)1/2/cc in accord with (6.5.40). Therefore, the ratio of αλ to its critical
value αλc becomes a universal function of W as

αλ

αλc
= 2zW

π

∫ ∞

0
dx

x3−ε�∗(x)
(1 + x2)2−ε/2[�∗(x)2 + W 2]

, (6.5.43)

which increases from 0 to 1 with increasing W . Ferrell and Bhattacharjee proposed an
approximate expression for αλ/αλc [33], which is obtained if the integrand in (6.5.43) is
replaced by x3�∗(x)/(1+ x2)2[�∗(x)2 + W 2] with �∗(x) = x2(1+ x2)1/2. Alternatively,
we may set ε = 1 and use their �∗(x) in (6.5.43). In Fig. 6.20 the two theoretical curves
thus obtained are compared with some experimental data.

Frequency-dependent specific heat

As in one-component fluids, we introduce the frequency-dependent specific heat C̃ p(ω)

for nearly incompressible binary mixtures where c2 − c2
c � c2

c and ρ ∼= ρc. From (6.5.35)
we may express the dispersion relation as

ω2/c2
c k2 = 1 + ĝ2ρcc2

c/TcC̃ p(ω), (6.5.44)

where C̃ p(ω) tends to the thermodynamic specific heat C pX (per unit volume) as ω → 0
and behaves as C pX (iωtξ )−α/νz for ωtξ � 1 as in (6.2.49). In our theory the coefficient ĝ
may be expressed in the form

ĝ = ρcTc

[(
∂s

∂p

)
c
−

(
∂s

∂X

)
pT

(
∂X

∂p

)
c

]
, (6.5.45)

where s is the entropy per unit mass and use has been made of (∂T/∂p)s X = (∂T/∂p)c −
(∂T/∂s)pX (∂s/∂p)c−(∂T/∂X)ps(∂X/∂p)c with the aid of (2.3.40), (2.3.42), and (2.3.43).
When the second term in the brackets of (6.5.45) is small compared to the first, we are
led to Ferrell and Bhattacharjee’s expression ĝ = ρcTc(∂s/∂p)c [33]. Their expression
was confirmed to be consistent with data of acoustic attenuation in trimethylpentane +
nitroethane (where the pressure dependence of Xc is small) [47].

11 In this case ρc2/ρcc2
c − 1 ∼= CB/C pX from (2.3.42), CB being related to ρcc2

c as (2.3.40) [46].
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Fig. 6.20. Attenuation per wavelength relative to the critical-point value vs W = ωtξ /2 in binary
field mixtures. The lower dashed curve was given in Ref. [33], while the upper curve follows from
(6.5.43) at ε = 1. Here the relation ρc2 − ρcc2

c � ρcc2
c holds. Experimental frequencies (in MHz)

and [references]: trimethylpentane + nitroethane, � 16.5, ) 27, � 48, • 80, ◦ 165 [45];
trimethylpentane + nitrobenzene, + 3, � 11 [44].

6.5.5 Piston effect in binary fluid mixtures

The piston effect tends to be suppressed in binary fluids, because C pX and CV X play
the roles of C p and CV in the effect and the ratio γX = C pX/CV X grows only weakly
[61]. (i) Nevertheless, in nearly azeotropic binary mixtures, the piston effect still influences
thermal equilibration. In an experiment of 3He–4He on the critical isochore [63], thermal
relaxation was measured at constant volume with a fixed bottom temperature and a fixed
heat flux at the top boundary (x = L). If the adiabatic effect is taken into account
in this geometry, the slowest relaxation rate is calculated to be �1 ≡ π2 D1/L2 with
D1 = T/6πηRξ [61], in good agreement with the experiment. At constant pressure under
the same boundary conditions, however, the slowest relaxation rate is equal to �1/4 for
T/Tc−1 � τs1 and �1 for T/Tc−1 � τs1, in disagreement with the experiment, where τs1

is defined by (2.3.51). (ii) In non-azeotropic fluids, the thickness of the thermal diffusion
layer is given by (D2t)1/2, where D2 is the nonsingular diffusion constant appearing in
(6.5.13). It can affect the interior temperature on a much longer timescale t ′1 determined by

(D2t ′1)
1/2 = L/(γX − 1). (6.5.46)

The efficiency of the piston is suppressed with a decrease in γX .
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6.5.6 Slow adiabatic relaxations

Next we will treat nonstationary, adiabatic processes in a one-phase state neglecting the
piston effect, where a density deviation, ρ1(t) = 〈δρ〉−〈δρ〉0, is present but the entropy and
concentration deviations are absent [37]. Here 〈· · ·〉 is the average in such nonequilibrium
and 〈· · ·〉0 is that in a reference equilibrium state. Here we examine relations between the
deviations of the density, pressure, and temperature.12 The following results will be used
in Section 8.7 to describe adiabatic spinodal decomposition.

The deviation ρ1 = ρ1(t) induces the average deviations of ψ , m, and q, written as
ψ1 = ψ1(t), m1 = m1(t), and q1 = q1(t). In this case (2.3.16) yields

hψ1 + τm1 + ζq1 = δpρ1/Tcρ, (6.5.47)

which holds for arbitrary h, τ , and ζ with δp being their linear combination. Thus we
obtain

ψ1 = 1

Tc

(
∂p

∂h

)
τζ

ρ1

ρ
, m1 = 1

Tc

(
∂p

∂τ

)
hζ

ρ1

ρ
, q1 = 1

Tc

(
∂p

∂ζ

)
hτ

ρ1

ρ
, (6.5.48)

which reduce to (6.2.65) in the one-component limit. We may also derive these relations
by inverting the matrix relations (2.3.12)–(2.3.14). We also consider the deviations,

τ1 =
〈
δ(βH)

δm

〉
, ζ1 =

〈
δ(βH)

δq

〉
= q1

Q0
. (6.5.49)

where Q−1
0 = ρcc2

c Tc/(∂p/∂ζ )2
c from (2.3.40). Neglecting the average of the first terms

∝ h1 = 〈δ(βH)/δψ〉 ∼ ψ1/χ in (4.2.7) and (4.2.8), we can express the average pressure
and temperature variations, p1 = 〈δ p̂〉 and T1 = 〈δT̂ 〉, as

p1 =
(
∂p

∂τ

)
hζ
τ1 + ρcc2

c
ρ1

ρ
, (6.5.50)

T1 =
(
∂T

∂τ

)
hζ
τ1 +

(
∂T

∂p

)
c
ρcc2

c
ρ1

ρ
. (6.5.51)

Eliminating τ1 we may express T1 in terms of p1 and ρ1. Explicitly writing the time
dependence, we have a fundamental relation,

T1(t) = Ac p1(t)+ (Bc − Ac)ρcc2
c
ρ1(t)

ρ
, (6.5.52)

where the two coefficients, Ac and Bc, are introduced in (2.3.31). Obviously, the above
relation reduces to the thermodynamic relation for (∂T/∂p)s X in (2.3.43) in the quasi-static
limit. It is important that (6.5.52) holds in general nonstationary adiabatic conditions.

12 We also mention a light scattering experiment which observed relaxation of the structure factor after a pressure change in
one-phase states of a critical binary fluid mixture [88].
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We recall that p1 and ρ1 are related by (6.5.35) in a sound wave or when they depend on
time as exp(iωt). For general time dependence they are related by

p1(t) = c2ρ1(t)+ ρ−1
∫ t

−∞
dt ′Gxx (t − t ′)ρ̇1(t

′), (6.5.53)

where ρ̇1(t) = ∂ρ1(t)/∂t is the time derivative. The stress relaxation function Gxx (t) is de-
fined by (6.2.58) also for binary fluid mixtures. If the background specific-heat correction
is neglected, it is related to the universal function Ĝ(t) in (6.2.59) as

Gxx (t) = (ρc2 − ρcc2
c )Ĝ(t). (6.5.54)

With (6.5.52) and (6.5.53) we may now examine temporal variations of the pressure,
temperature, and density in adiabatic conditions in one-phase states. They depend only on
time in the bulk fluid region far from the boundary. We also note that the relation (6.2.66)
between τ1 and m1 holds also in binary fluid mixtures exactly in the same form, which
follows from (6.5.53) and (6.5.54) with the aid of (6.5.32), (6.5.33), and (6.5.48).

Relaxation after a volume change

Let us change the volume of the cell by a small amount δV at t = 0 and keep it constant
thereafter. The density is then changed by ρ1 = −ρδV/V at t = 0 in a step-wise manner.
From (6.5.53) the induced pressure variation is

p1(t)/ρ1 = c2 + ρ−1(ρc2 − ρcc2
c )Ĝ(t). (6.5.55)

The temperature variation is

T1(t)/(ρ1/ρ) = [Acρc2 + (Bc − Ac)ρcc2
c ] + Ac(ρc2 − ρcc2

c )Ĝ(t), (6.5.56)

where the first term is equal to ρc2(∂T/∂ρ)s X from (2.3.43). Thus we can directly measure
the time-correlation function Gxx (t) of the stress which relaxes as in Fig. 6.10. See Ref.
[37] for the relaxation after a pressure change.

6.6 Critical dynamics near the superfluid transition

As shown in Section 2.4, 4He near the superfluid transition is nearly incompressible
as regards its static critical behavior. Most generally, the GLW hamiltonian is given by
H{ψ,m, q} in (4.2.12), where ψ is the complex order parameter, m the weakly singular
variable, and q the nonsingular variable. They are related to the density and entropy
deviations, δn and δs, via the mapping relations (2.4.8) and (2.4.9). A complete set of
the gross variables is then composed of ψ , δs, δρ = m4δn, and the momentum density J,
where m4 is the 4He mass. In the Russian literature [89]–[91], dynamic equations for ψ ,
S = ρs(= the entropy per unit volume), ρ, and J were constructed in full nonlinear forms
but without the noise terms. In the literature of critical dynamics [1, 2, 11], [92]–[95], much
simpler coupled dynamic equations for ψ and δs have been used, because their mutual
interaction is relevant in dynamics.
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Fig. 6.21. The thermal conductivity λ vs τ for 4He at SVP [98]. Inset: plot of λτ0.435 vs τ showing
the effective exponent for τ < 5 × 10−3.

Experimentally, very precise measurements have been performed on the dynamics of
4He and 3He–4He mixtures. We mention measurements of the thermal conductivity above
Tλ [96]–[98] and those of the second-sound damping below Tλ [99, 100]. As discussed in
Section 2.4, the static critical behavior in 4He is characterized by the nonclassical critical
exponents for |T/Tλ − 1| � 1, where γ = 4/3, ν = 2/3, β = 1/3, α = 0, and η = 0.
However, the dynamic renormalization effect in 4He turns out to be effective much closer
to the transition |T/Tλ − 1| � τc ∼ 10−3 or only on spatial scales longer than ξ0+t−ν

c ∼
10−6 cm. To demonstrate this, we show, for 4He, the thermal conductivity in Fig. 6.21 and
the thermal diffusivity in Fig. 6.22 [98] above Tλ.

6.6.1 Minimal model equations

Neglecting the gravity effects, we consider the coupling of ψ with the entropy deviation
δs (per particle) in statics and dynamics. Here, writing

m = nδs ∼= nλδs, (6.6.1)

the hamiltonian will be assumed to be the form of (4.1.45) without an ordering field:

βH{ψ,m} =
∫

dr
[

1

2
r0c|ψ |2+ 1

2
|∇ψ |2+ 1

4
ū0|ψ |4+γ0|ψ |2m+ 1

2C0
m2−τm

]
. (6.6.2)

The coefficient K of the gradient free energy will be set equal to 1, because its renormalized
value is equal to 1 + η ln(�ξ)+ · · · ∼= 1 above Tλ and to 1 + ε/20 + O(ε2) ∼= 1 below Tλ
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Fig. 6.22. The thermal diffusivity DT vs T/Tλ−1 for 4He in the normal fluid phase at SVP obtained
from measurements of macroscopic thermal equilibration for two cells with width h = 0.147 and
0.122 cm [98]. The solid curve is obtained from DT = λ/C p using the thermal conductivity data.
The dashed line is obtained from data of thermal equilibration times.

from (4.3.97). We will also set τ = T/Tλ−1, which is allowable without loss of generality.
Then (4.2.13) shows that the reduced temperature fluctuation is written as

δT̂ = δ

δm
H{ψ,m}. (6.6.3)

The model F equations [11, 95] are written as

∂

∂t
ψ = ig0

δ(βH)

δm
ψ − L0

δ(βH)

δψ∗ + θ, (6.6.4)

∂

∂t
m = g0 Im[ψ∗∇2ψ] + λ0∇2 δ(βH)

δm
+ ζ. (6.6.5)

The first terms (∝ g0) are the reversible mode coupling terms. The L0 is the background
kinetic coefficient for the order parameter,13 and λ0 is the background thermal conductivity
(divided by Boltzmann’s constant kB). Generally, L0 can be complex and then the term
proportional to Im L0 in (6.6.4) is reversible, because the time reversal of ψ is its complex

13 We expect Im L0 ∼ h̄/m4 from quantum mechanics. See the Gross–Pitaevskii equation (8.10.2).
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conjugate ψ∗. The θ and ζ are the random source terms related to the real part Re L0 and λ0

as

〈θ(r, t)θ∗(r′, t ′)〉 = 4(Re L0)δ(r − r′)δ(t − t ′), (6.6.6)

〈ζ(r, t)ζ(r′, t ′)〉 = −2λ0∇2δ(r − r′)δ(t − t ′). (6.6.7)

〈θθ〉 = 〈θζ 〉 = 〈θ∗ζ 〉 = 0. (6.6.8)

Hereafter we define
δ

δψ∗ = δ

δψ1
+ i

δ

δψ2
, (6.6.9)

where ψ1 = Reψ and ψ2 = Imψ . The potential condition (5.2.14), which ensures that
exp(−βH) is the equilibrium distribution, may be confirmed to hold if use is made of
Im[ψ∗δH/δψ∗] = − Im[ψ∗∇2ψ].

Should we fix the density or pressure?

As can be seen from (2.4.8) and (2.4.9), we have nλδŝ = m − Aλq and δn = q in the limit
εin → 0, so that the density deviation δn is neglected in the above model. To be precise, the
pressure deviation δ p̂ should be fixed rather than δn in dynamics. As a result, the entropy
relaxation rate is λ0k2/C p0 at wave number k in the linear approximation, where

C p0 = C0 + A2
λQ0. (6.6.10)

The constants, Aλ and Q0, are defined by (2.4.10) and (2.4.12), respectively. Although C p0

will appear in the RG equation for L0 in (6.6.62) below, the difference A2
λQ0 is relatively

small compared with the logarithmic term in C0 as shown in Section 2.4. In this sense,
model F is well justified.

Two-fluid hydrodynamics

If we write ψ = Meiθ with M = |ψ |, the phase θ in ordered states is related to the
superfluid velocity in two-fluid hydrodynamics [89]–[91], [101] by

vvvs = h̄

m4
∇θ, (6.6.11)

where h̄ is the Planck constant and m4 is the 4He particle mass. When the amplitude M is
homogeneous in space, the gradient free energy in (6.6.2) should coincide with the kinetic
energy of the superfluid component, so that

1

2
T M2|∇θ |2 = 1

2
ρsvvv

2
s . (6.6.12)

Therefore, the superfluid mass density is obtained in terms of M as14

ρs =
m2

4T

h̄2
M2. (6.6.13)

14 To be precise, ρs is defined by (4.3.107). Here we set KR = 1.
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The momentum density of the superfluid component is then written as

Js = ρsvvvs = m4T

h̄
Im[ψ∗∇ψ]. (6.6.14)

The mass density and velocity of the normal fluid component are determined by

ρ = ρs + ρn, (6.6.15)

J = ρsvvvs + ρnvvvn, (6.6.16)

where ρ and J are the total mass and momentum densities, respectively.
In the non-dissipative regime (at nearly zero temperatures or in the long-wavelength

limit), the equation for the phase θ reads [90, 101]

h̄
∂

∂t
θ ∼= −δµ ∼= sδT̂ − 1

n
δ p̂, (6.6.17)

where δµ is the chemical potential deviation per particle. If the pressure fluctuation is
neglected, there arises the first term of (6.6.4) with

g0 = sTλ/h̄ (6.6.18)

which is 2.15 × 1011 s−1 at SVP. Thus the superfluid component is accelerated by the
temperature gradient as

∂

∂t
vvvs ∼= s

m4
∇δT̂ . (6.6.19)

It is also known that the entropy is supported by the normal fluid component [90, 101], so
the entropy density S = ns per unit volume is convected by the normal fluid velocity vvvn as

∂

∂t
S ∼= −∇ · (Svvvn), (6.6.20)

in the non-dissipative regime. Using the mass conservation equation,

∂

∂t
ρ = −∇ · J, (6.6.21)

(6.6.20) is rewritten in terms of m as in (6.6.1)

∂

∂t
m ∼= −∇ · (Svvvn)+ s

m4
∇ · J ∼= s

m4
∇ · Js, (6.6.22)

leading to the first term on the right-hand side in (6.6.5).
The linear hydrodynamic equations below Tλ give rise to two kinds of sounds at long

wavelengths (k � ξ−1). That is, we linearize (6.6.17), (6.6.20), (6.6.21), and the mo-
mentum equation ρ∂vvv/∂t = −∇δ p̂ by neglecting the dissipation. The hydrodynamic
deviations are written as T1, p1, ρ1, and s1 for the temperature, pressure, density, and
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entropy, respectively. If they depend on space and time as exp(iωt − ikx), we find simple
relations,

(ω/k)2ρ1 = p1,

(ω/k)2s1 = (ρss
2/m4ρn)T1. (6.6.23)

The phase velocity u = ω/k then satisfies [101]

u4 − (
c2 + c2

I I C p/CV
)
u2 + c2c2

I I = 0, (6.6.24)

where c = √
(∂p/∂ρ)s and

cI I = (ρss
2nT/ρnm4C p)

1/2. (6.6.25)

The above relations hold at any temperature below Tλ. In particular, slightly below Tλ, the
first-sound mode is almost adiabatic as well as in the normal fluid because s1/ρ1 ∝ ρs

from the second line of (6.6.23), so that the phase velocity is given by the usual expression
c. However, the second-sound mode is almost isobaric, because p1/ρ1 ∝ ρs, and its phase
velocity is given by cI I .

6.6.2 Intuitive pictures of enhanced heat transport above Tλ

Random phase modulation

We will intuitively show that the mode coupling terms in (6.6.4) and (6.6.5) serve to
renormalize the kinetic coefficients L0 and λ0 to LR and λR. We consider the critical
fluctuations with sizes of order ξ slightly above the transition. As in (2.1.23) we define

&ξ(t) =
∫
ξ

drψ(r, t), (6.6.26)

where the space integral is within a region with size ξ . From (2.1.25) its amplitude variance
is written in terms of the fractal dimension D = (d + 2 − η)/2 as

〈|&ξ |2〉 ∼ ξ2D or 〈|ξ−d&ξ |2〉 ∼ ξ−2β/ν, (6.6.27)

where β/ν = (d − 2 + η)/2 from (2.1.13). We also note that &ξ(t) = |&ξ |eiθξ has
a well-defined phase θξ . From the dynamic equation (6.6.4) or (6.6.17) it is temporally
modulated by the temperature fluctuations as

∂

∂t
&ξ(t) ∼= i

s

h̄
(δT̂ )ξ (t)&ξ (t). (6.6.28)

To pick up temperature variations on the scale of ξ we set

(δT̂ )ξ (t) = ξ−d
∫
ξ

drδT̂ (r, t), (6.6.29)

which obeys the gaussian distribution with variance,

〈|(δT̂ )ξ |2〉 = ξ−2d
∫
ξ

dr
∫
ξ

dr′〈δT̂ (r, t)δT̂ (r′, t)〉 = ξ−d T 2
λ C−1

V , (6.6.30)
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from (1.2.64). Hereafter we use CV ∼ C p. Let us assume that the relaxation rate of the
temperature fluctuations,

�λ = λR/C pξ
2, (6.6.31)

is of the same order or larger than the order parameter relaxation rate �ξ . Then, a general
theory of random frequency modulation [102] shows that the temporal average over the
rapidly varying (random) temperature fluctuations gives rise to a damping of &ξ as

〈&ξ(t)〉temp ∼ exp(−t�ξ )&ξ (0), (6.6.32)

where

�ξ
∼= (s/h̄)2〈|(δT̂ )ξ |2〉/�λ ∼ g2

0ξ
2−d/λR, (6.6.33)

with g0 being defined by (6.6.18). The corresponding kinetic coefficient behaves as

LR = �ξχ ∼ g2
0ξ

ε/λR. (6.6.34)

For more precise estimation we should set LRλR ∼= Kd g2
0ξ

ε because a dimensionless
number f , to be introduced in (6.6.56) below, is of order 1 as T → Tλ. Thus the product
LRλR grows as ξε for ε = 4−d > 0. We recognize that the critical dimensionality remains
4 in dynamics as well as in statics.

Enhanced heat conduction due to cluster convection

In the presence of a small average temperature gradient a = 〈∇δT̂ 〉ss in the disordered
phase, (6.6.19) indicates that the critical fluctuations are accelerated in the gradient direc-
tion during their lifetimes. Here 〈· · ·〉ss is the steady-state average. As a result, the critical
fluctuations with sizes of order ξ move with an average velocity estimated by

〈vvvs〉ss ∼ s(m4�ξ )
−1a, (6.6.35)

in the steady state. Then, there arises a thermal counterflow in which the fluctuations of
the superfluid and background normal fluid components are convected in the opposite
directions under the condition of no mass flux, 〈J〉ss = 0 or 〈vvvn〉ss ∼= −ρ−1〈Js〉ss. The
resultant average heat current is estimated as

Q = 〈T Svvvn〉ss ∼= − sT

m4
〈Js〉ss ∼ − sm4T 2

h̄2
〈|ξ−d&ξ |2〉〈vvvs〉ss. (6.6.36)

Using (6.6.35) and (6.6.36) we find the renormalized thermal conductivity,

λR = −Q/a ∼ g2
0ξ

2−d/�ξ , (6.6.37)

which is equivalent to (6.6.34).
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Fig. 6.23. The second-sound damping
coefficient D2 vs 1 − T/Tλ for 4He in the
superfluid phase at SVP [99]. Data
obtained by various groups are shown.

6.6.3 Dynamic scaling behavior

Below the transition T < Tλ, the average order parameter M = 〈ψ〉 becomes nonvanish-
ing. In this case, phase variations θ1 and temperature variations T1 ∼= m1/C p varying on
spatial scales longer than ξ couple to form an oscillatory mode, called the second sound. If
the damping is neglected, they obey

∂

∂t
θ1 = g0

C p
m1,

∂

∂t
m1 = g0|M |2∇2θ1. (6.6.38)

The second-sound velocity is obtained as

cI I = g0|M |/C1/2
p ∝ (1 − T/Tλ)

1/3, (6.6.39)

which is consistent with (6.6.25). The damping arises from the renormalized kinetic
coefficients, LR and λR [96, 100, 103, 104]. That is, in (6.6.38) we add LR∇2θ1 to the
right-hand side of the first equation and (λR/C p)∇2m1 to that of the second equation to
obtain the dispersion relation ωk = cI I k − 1

2 i D2k2 + · · · with

D2 = LR + λR/C p. (6.6.40)

Here, however, the dissipative nonlinear coupling (∝ γ0) is neglected. In Fig. 6.23 [99] we
showed data for 4He of D2 vs |T/Tλ − 1|, which resemble those of the thermal diffusivity
DT vs T/Tλ − 1 in Fig. 6.22. For both these diffusivities, the background values are
relatively large, and the crossover reduced temperatures are commonly of order 10−3.

The second sound is well defined if the wave number k is much smaller than the inverse
correlation length ξ−1. If k become of order ξ−1, the mode should becomes overdamped
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with a relaxation rate of order cI I ξ
−1. In their original work of the dynamic scaling theory,

Ferrell et al. [92] assumed that the order parameter relaxation rate at large wave numbers
with k � ξ−1 is indistinguishable whether T > Tλ or T < Tλ. Then, in 3D, they predicted

LR ∝ λR ∝ cI I ξ ∝ |T/Tλ − 1|−1/3. (6.6.41)

However, precise measurements of the thermal conductivity slightly above the transition
(0 < T/Tλ − 1 � 10−3) exhibited a steeper power law [96]–[98],

λR ∼= λ∗(T/Tλ − 1)−xλ , xλ ∼= 0.43, (6.6.42)

with kBλ
∗ ∼= 125 erg/(s cm K), as shown in Fig. 6.21. The entropy relaxation rate in

(6.6.31) behaves as �λ
∼= 2 × 1011(T/Tλ − 1)2ν−xλ/(C p/nλ). From (6.6.33) and (6.6.34)

the renormalized kinetic coefficient LR and the order parameter relaxation rate �ξ are
estimated as

LR ∼= Aψ(T/Tλ − 1)−εν+xλ ,

�ξ
∼= �ψ(T/Tλ − 1)νz, (6.6.43)

where z = d − 2 + xλ/ν (∼= 1.65 in 3D). From the sentence below (6.6.34) and the value
of λ∗ in (6.6.42) we have Aψ

∼= 4 × 10−5 cm2 s−1 and �ψ
∼= 2 × 1011 s−1 ∼ g0. Thus

the ratio w between the two relaxation rates behaves as

w = �ξ/�λ
∼= (C p/nλ)(T/Tλ − 1)2xλ−ν, (6.6.44)

which becomes considerably smaller than 1 as T → Tλ because 2xλ − ν ∼= 0.2, though
C p/nλ ∼ ln(T/Tλ − 1) is larger than 1. Explanation of this apparent breakdown of the
original dynamic scaling in (6.6.41) was a challenge to specialists [104]–[108].

6.6.4 Dynamic renormalization group theory

The dynamic RG equations to first order in ε are known to be inadequate even qualitatively
(in some aspects) in 4He, while a second-order theory of model F [108] was claimed
to explain well the thermal conductivity data [96, 97]. In this book, we will present a
derivation of the dynamic RG equations only to first order in ε, because they are simple
and indicate the general trend of the dynamical fluctuation effects. From a fundamental
statistical–mechanical point of view, model F is of great interest. This is because the
simultaneous presence of the reversible and dissipative nonlinear terms in the Langevin
equation (6.6.4) gives rise to a large imaginary part, Im LR ∼ Re LR, in the renormalized
complex kinetic coefficient LR. We note that Im LR corresponds to the anti-symmetric part
of the kinetic coefficients discussed in Section 5.2.

RG equations at fixed density

We calculate the incremental contributions to the kinetic coefficients from the fluctuations
in the shell region � − δ� < q < � as in the case of classical fluids. To this end we



290 Dynamics in fluids

rewrite (6.6.4) for the Fourier component ψk(t) as

∂

∂t
ψk(t) = −�kψk(t)+ Xk(t)+ θk(t), (6.6.45)

where

�k = L0/χk ∼= L0(r + k2) (6.6.46)

is the linear relaxation rate dependent on �. Then Xk is the nonlinear part chosen such that
〈Xkψ

∗
k 〉 = 0. Its real space representation is of the form,

X = (ig0C0
−1 − 2L0γ0)mψ + · · · , (6.6.47)

where only the leading nonlinear terms are written explicitly. Now we apply the correlation
function formula (5.2.23):∫ ∞

0
dte−iωt 〈ψk(t)ψ

∗
−k(0)〉 =

2χk

iω +�k
+ 1

(iω +�k)2
φ(k, ω), (6.6.48)

where

φ(k, ω) =
∫ ∞

0
e−iωt 〈Xk(t)X̄−k(0)〉. (6.6.49)

Here the time-reversed variable of ψ is its complex conjugate ψ̄ = ψ∗, which originates
from quantum mechanics. Replacement of ψ in X (r) by ψ∗ yields

X̄ = (ig0C0
−1 − 2L0γ0)mψ∗ + · · · . (6.6.50)

We then calculate the contribution δφ from the shell region in the low-frequency and small
wave number limits (k → 0 and ω → 0):

δφ ∼= 2(ig0C0
−1 − 2L0γ0)

2 Kd�
d−3δ�C0χ�/(λ0C−1

0 + L0). (6.6.51)

Because of the relation,

2χk

iω +�k
+ 1

(iω +�k)2
δφ ∼= 2χk

iω + (L0 − δφ/2)/χk
, (6.6.52)

we find δL0 = −δφ/2 and

∂

∂"
L0 = Kd(g0 + 2iγ0C0L0)

2/[�ε(λ0 + C0L0)], (6.6.53)

where � = �0e−". The above equation reduces to (5.3.53) in the purely dissipative case
(g0 = 0).

The renormalized thermal conductivity can be expressed in terms of the time-correlation
function of the flux Jx ≡ Im[ψ∗∂ψ/∂x] = (h̄/mT )Jsx as

λR = g2
0

∫
dt

∫
dr〈Jx (r, t)Jx (0, 0)〉. (6.6.54)
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Using the decoupling approximation in the shell region, we obtain

∂

∂"
λ0 = Kd g2

0/[2�ε(Re L0)]. (6.6.55)

The above RG equations have been solved in terms of the following dimensionless
numbers,

f = Kd g2
0/[�ε(Re L0)λ0], (6.6.56)

w = C0L0/λ0, (6.6.57)

where f represents the strength of the mode coupling and w the ratio of the relaxation
rates of ψ and δs. In agreement with the original dynamic scaling, they tend to fixed-point
values [95],

f ∗ = 6

5
ε + O(ε2), (6.6.58)

w∗ = 0.732 + 0.480i + O(ε2), (6.6.59)

to first order in ε. Here we have used the results, α/ν = ε/5 and v∗ = ε/20, in
the calculation, although α is almost zero in real 3D helium (or when the higher-order
expansion terms are included).

RG equation for L0 at fixed pressure

As we have remarked near (6.6.10), the above calculation has been obtained by neglecting
the density fluctuations. We here modify (6.6.53) for the fixed pressure case. Generally, the
leading nonlinear term X is of the form,

X =
(

i

h̄
sδT̂ − 2L0γ0m

)
ψ. (6.6.60)

At fixed pressure we have δT̂ ∼= TλC−1
p0 nλδs, where C p0 is defined by (6.6.10). From

(2.4.6), (2.4.21), and (2.4.24) we also have δm = C0δT̂ /Tλ. Thus,

X = (ig0 − 2γ0C0L0)C
−1
p0 (nλδs)ψ, (6.6.61)

and these relations lead to

∂

∂"
L0 = Kd(g0 + 2iγ0C0L0)

2/[�ε(λ0 + C p0L0)], (6.6.62)

where C0 in the denominator of (6.6.53) is replaced by C p0.
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More analysis of models E and F

In the case γ0 = 0, which gives us model E [95], C0 is a constant, the dissipative coupling
vanishes, and L0 may be treated as a real number. Then the RG equations for f and w are
simplified as

∂

∂"
f = ε f −

(
1

w + 1
+ 1

2

)
f 2, (6.6.63)

∂

∂"
w = f w

(
1

w + 1
− 1

2

)
, (6.6.64)

to first order in ε from (6.6.53) and (6.6.55). We may integrate (6.6.64) in the form,

w(")/[1 − w(")]2 = [w0/(1 − w0)
2] exp

[
1

2

∫ "

0
d"′ f ("′)

]
, (6.6.65)

where w0 is the initial value of w at " = 0. We readily find w → 1 and f → ε as
" → ∞. In 4He the initial or background value of f , denoted by f0, is of order 0.02 at
� = ξ−1

+0 or for T/Tλ − 1 = 1, where we use kBλ0 ∼ 103 erg/s K (or λ0/nλ ∼ h̄/m4) and
L0 ∼ h̄/m4 = 1.6 × 10−4 cm2/s. Due to this weak initial coupling, the critical growth
of the kinetic coefficients occurs only close to the critical point, T/Tλ − 1 < τc. Because
f ∼= f0 exp(ε") before the crossover, τc is determined by τ−εν

c f0 = 1, so that τc ∼ 10−3

in agreement with the thermal conductivity data. Furthermore, the calculation of model E
up to second order in ε yielded [95], [105]–[108]

f ∗ = ε − 0.16ε2 + O(ε3), (6.6.66)

w∗ = 1 − 1.07ε + O(ε2). (6.6.67)

The correction to w∗ is rather surprising, which suggests that w∗ might vanish at d =
3, indicating breakdown of the original dynamic scaling. It is also indicated by model F
analysis up to second order [108]. We should thus treat w as a small number very close to
the λ point. This is in fact consistent with (6.6.44) obtained from the thermal conductivity
data.

In summary, the following unique features give rise to the observed dynamic critical
behavior of 4He [105]–[108]: (i) The dynamic crossover occurs at small τc ∼ 10−3 because
of the weak initial coupling, (ii) w(") decreases from w0 ∼ 0.5 to a small fixed-point value
(∼ 10−2), and (iii) f (") increases from f0 ∼ 0.02 to a fixed-point value of order 1 for
T/Tλ − 1 � τc.

6.6.5 The frequency-dependent bulk viscosity

We will examine the frequency-dependent bulk viscosity ζ ∗R(ω) near the λ point [109]–
[119]. In Fig. 6.24 we show data of the normalized attenuation αλ/αλc of first sound
above and below Tλ [117], where αλ is the attenuation per wavelength and αλc is its
high-frequency λ-point limit (for which see (6.6.80) below).
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Fig. 6.24. The normalized attenuation αλ/αλc of first sound in 4He near the λ point vs ω/|T/Tλ−1|
for various frequencies (a) above Tλ and (b) below Tλ [117]. The (original) dynamic scaling (with z =
3/2) roughly holds above Tλ. The maxima below Tλ arise from the Landau–Khalatnikov mechanism
superimposed on the fluctuation mechanism.

The fluctuation mechanism above Tλ

The calculations of ζ ∗R(ω) for τ = T/Tλ − 1 > 0 can be performed analogously to those
in classical fluids. From the expression for the fluctuating pressure δ p̂ in (4.2.14), we find
the relevant nonlinear pressure,

p̂nl =
(
∂p

∂τ

)
ζ

γ0|ψ |2, (6.6.68)
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where (∂p/∂τ)ζ = nT Aλ/(1−εin Aλ), Aλ and εin being defined by (2.4.10). As in (6.2.36)
we pick up the fluctuation contribution in the shell region � − δ� < k < � and use the
decoupling approximation. Then, integration over � gives

ζ ∗R(ω) =
4

Tc

(
∂p

∂τ

)2

ζ

∫ ∞

0
d��3v

/[
C0(κ

2 +�2)2(2 Re�� + iω)
]
. (6.6.69)

From the results in Appendix 4C the overall behaviors of C0(�) and v(�) may be de-
scribed by the approximants,

C0(�) = ν−1 A ln y, v(�) = (1 + x−2)ε/2/4 ln y, (6.6.70)

where x = ξ�, y = √
1 + x2/ξ�0, A is the coefficient of the logarithmic term in C p in

(2.4.2), and �0 is a microscopic wave number. The characteristic lifetime tξ of the critical
fluctuations is defined by

t−1
ξ = lim

q→0
Re�q = t−1

0 τ νz, (6.6.71)

where t0 is a microscopic time. The relaxation rate �ξ in (6.6.43) is of order t−1
ξ . The

counterpart of (6.2.41) is of the form,

ζ ∗R(ω) =
2

νTλ

(
∂p

∂τ

)2

ζ

tξ
A

∫ ∞

0
dx

x3−ε

(1 + x2)d/2[�∗(x)+ iW ]

{
ln

[
1 + x2

(ξ�0)2

]}−2

, (6.6.72)

where W = ωtξ /2 is the dimensionless frequency and �∗(x) = tξ Re�q is the dimension-
less decay rate.

(i) The zero-frequency bulk viscosity above Tλ at d = 3 can be expressed analogously
to the formula (6.5.36) for classical binary mixtures. Here we rewrite the thermodynamic
relation (2.4.21) as

ρc2 − ρλc2
λ = 1

Tλ

(
∂p

∂τ

)2

ζ

1

C
, (6.6.73)

where

ρλc2
λ = Tλn2

λ(1 − εin Aλ)
−2 Q−1

0 . (6.6.74)

Then we obtain [93, 111],

ζ ∗R(0) =
1

4
(ρc2 − ρλc2

λ)tξ / ln(τ0/τ). (6.6.75)

If α > 0, cλ is the sound velocity at the λ point. We note that the ratio (ρc2−ρλc2
λ)/ρλc2

λ =
A2
λQ0/C is of order 0.1nλ/C and is much smaller than 1 from (2.4.13).

(ii) At high frequencies ωtξ � 1, it is convenient to introduce the frequency-dependent
specific heat [112],

C∗(ω) = − 1

νz
A ln(iωt0/2)+ B − A2

λQ0 = − 1

νz
A ln(iω/ω0), (6.6.76)
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where t0 is defined by (6.6.72) and A ln(t0ω0) ≡ νz(B − A2
λQ0) . As in one-component

fluids, we obtain

ζ ∗R(ω) = (ρc2 − ρλc2
λ)C

[
1

C∗(ω)
− 1

C

]
1

iω

= (ρc2 − ρλc2
λ)

[
νz

ln(τ0/τ)

ln(ω0/ iω)
− 1

]
1

iω
. (6.6.77)

The dispersion relation becomes independent of τ as

ρω2/k2 = ρλc2
λ

[
1 + (A2

λQ0/A)
νz

ln(ω0/ iω)

]
. (6.6.78)

Here the second term in the brackets may be treated as a small perturbation because
A2
λQ0/A ∼ 0.1. Let us write the high-frequency limits of the attenuation per wavelength

αλ and the frequency-dependent sound velocity c(ω) as αλc and cc(ω), respectively. Then,
we have [112]

αλc = π2νz(A2
λQ0/2A)

1

[ln(ω0/ω)]2 + π2/4
, (6.6.79)

cc(ω)/cλ = 1 + νz(A2
λQ0/2A)

ln(ω0/ω)

[ln(ω0/ω)]2 + π2/4
. (6.6.80)

The above formulas are known to be in agreement with experiments [118]–[119].

The Landau–Khalatnikov mechanism below Tλ

Below Tλ we assume M = 〈ψ1〉 > 0 and 〈ψ2〉 = 0 where ψ = ψ1 + iψ2. Then the
pressure fluctuation p̂nl in (6.6.68) contains a term linear in ψ1, which leads to the Landau–
Khalatnikov mechanism of sound attenuation [109, 110, 113]. As discussed in Section
4.3, the fluctuation distribution with wave numbers smaller than the inverse correlation
length ξ−1

T ∝ |τ |ν is governed by the hydrodynamic hamiltonian Hhyd in (4.3.111). In the
long-wavelength limit, the new pressure deviation is written as

( p̂nl)1 = 2

(
∂p

∂τ

)
ζ

γR Mϕ, (6.6.81)

where ϕ is the deviation of ψ1+ψ2
2/2M as defined by (4.3.110), and γR = lim�→0 γ0(�).

Because ϕ and ψ2
2 are orthogonal at small wave numbers, we also have

lim
q→0

〈ϕq(t)ϕ−q(0)〉 = lim
q→0

〈ψ1q(t)ϕ−q(0)〉 = χR exp(−t/tξ ), (6.6.82)

where χR ∝ |τ |−γ is the variance of ϕ appearing in Hhyd and tξ is defined by
(6.6.71). Analogous to a classical internal relaxation mechanism [68], this order parameter
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relaxation gives rise to the following frequency-dependent bulk viscosity,

ζLH(ω) = 4

Tλ

(
∂p

∂τ

)2

ζ

γ 2
R M2χR

1

iω + t−1
ξ

∼= (ρc2 − ρλc2
λ)(1 − Rv)

−2 Rv
1

iω + t−1
ξ

, (6.6.83)

where Rv is the dimensionless number defined by (4.3.122) and is expected to be consid-
erably smaller than 1. The resultant attenuation per wavelength is written as

(αλ)LH = π(A2
λQ0)(1 − Rv)

−2 RvC−1 tξω

1 + t2
ξ ω

2
. (6.6.84)

Experimently, the attenuation below Tλ was suggested to consist of two contributions
arising from (i) the fluctuation mechanism and (ii) the Landau–Khalatnikov mechanism,
as can be seen in Fig. 6.24(b) [115]–[119]. The relaxation time tξ deduced from the data
was consistent with the expectation, tξ ∼ ξ+0|τ |−ν/cI I ∝ |τ |−1 [110], which is the result
of the original dynamic scaling theory [92].

6.6.6 3He–4He mixtures

A detailed theory of the transport properties in superfluid mixtures was developed by
Khalatnikov and Zharkov [120]. Some attempts have been made to extend the RG analysis
to 3He–4He mixtures near the λ line and the tricritical point [121]–[123]. There, if the
density or pressure deviation is neglected as in pure 4He, the complex order parameter is
coupled with the entropy and composition deviations in statics and dynamics. On the one
hand, see (4.2.15) or (4.2.22) for the GLW hamiltonian of 3He–4He, where we showed that
the linear combination m′

1 = δs + (∂∆/∂T )λpδX is decoupled from ψ in statics. On the
other hand, in dynamics the entropy S = ns per unit volume and the 3He density n3 = nX
are convected by the normal fluid velocity vvvn as (6.6.20) and ∂n3/∂t = −∇ · (n3vvvn),
respectively. We then find that the deviation,

c2 = −Xδs + sδX, (6.6.85)

is not convected by vvvn and hence is decoupled from the order parameter dynamically
(because Js ∼= −ρvvvn). As a result, c2 relaxes diffusively with a nonsingular diffusion
constant D2 (even below Tλ).

Dilute case

In 3He–4He mixtures, the effective thermal conductivity λeff measured in a cell without
3He flux is finite even on the λ line [120]. Slightly above the λ line, its inverse consists of
two terms as [124]

1/λeff = 1/λλ + 1/λR, (6.6.86)
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where λλ is the thermal conductivity on (and slightly below) the λ line and λR is a singular
part behaving in the same manner as the thermal conductivity in pure 4He. For simplicity,
we apply a small heat current in a superfluid state with small 3He concentration X . In
thermal counterflow with small heat flux Q, the 3He concentration becomes larger at the
cooler boundary, because 3He molecules are convected by the normal fluid velocity vvvn.
The steady concentration profile is determined by

Xvvvn + Diso∇X = 0, (6.6.87)

where Diso(∼ 10−4 cm2 s−1) is the diffusion constant of an isolated 3He molecule in 4He.
Assuming that vvvn is in the x direction, we obtain

X (x) = X (0) exp(−vnx/Diso). (6.6.88)

In the linear response regime we require |vn|h � Diso, where h is the cell thickness. In the
superfluid phase the chemical potential µ4 of 4He is constant so that

s∇X + X∇∆ = 0, (6.6.89)

where the pressure variation is neglected and

∇∆ ∼=
(
∂∆

∂X

)
T p

∇X ∼= T

X
∇X, (6.6.90)

because ∆ ∼= T ln X for small X . Thus,

vvvn ∼= (s Diso/XT )∇T . (6.6.91)

The heat flux is equal to T nsvvvn, resulting in the effective thermal conductivity,

λeff = ns2 Diso/X. (6.6.92)

This behavior was confirmed in experiments down to very small X (< 10−3) [125], though
there was disagreement in earlier measurements at such small X [126].

Crossover at X ∼= XD

It is interesting that m′
1 and c2 coincide when s + X (∂∆/∂T )λp = 0. This happens at

an intermediate concentration XD (∼= 0.37 at SVP) [122]. This means that, at X = XD,
m′

1 ∝ c2 is decoupled from ψ both in statics and dynamics and the thermal fluctuations
of ψ and m′

2 in (4.2.20) obey the model F equations. In Section 8.10 we shall see that
the Hall–Vinen mutual coefficients become divergent on the λ line at X = 0 and XD. In
heat-conduction problems, variations of m′

1 should also be taken into account depending on
the boundary condition. Let us consider a heat-conducting, steady superfluid state slightly
below the λ line, neglecting gravity and assuming homogeneous pressure. The temperature
gradient is given by dT/dx = Q/λeff, while the critical temperature gradient is

d

dx
Tλ =

(
∂T

∂∆

)
λp

d

dx
∆ = −

(
∂T

∂∆

)
λp

s

X

d

dx
T . (6.6.93)
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The chemical potential µ4 of 4He is assumed to be homogeneous. Thus,

d

dx
(T − Tλ) = Q

λeff

[
1 +

(
∂T

∂∆

)
λp

s

X

]
. (6.6.94)

If the x axis is along the temperature gradient, d(T − Tλ)/dx > 0 for X < XD and
d(T − Tλ)/dx < 0 for X > XD near the λ line in the linear regime. At X = XD, T − Tλ
is constant in the superfluid phase.

In transient cases, thermal relaxations can be very interesting. For example, if an equi-
librium normal fluid state is cooled (warmed) through a boundary wall, a superfluid region
will emerge and grow from that boundary for X < XD (X > XD). Including gravity in the
formulations will give rise to a number of intriguing, nonequilibrium effects not explored
so far.

6.7 4He near the superfluid transition in heat flow

Nonlinear effects of heat flow near the superfluid transition represent one of the most
dramatic heat-flow effects [127]–[137]. In addition to the well-known problem of vortex
generation by heat flow, which will be discussed in Section 8.10, there is another interesting
situation, in which the temperature is above Tλ at one end of the cell and below Tλ at the
other end. The temperature in a superfluid should be nearly constant, whereas it has a finite
gradient in a normal fluid. Then a HeI–HeII interface emerges separating the two phases,
across which the temperature gradient is almost discontinuous. This interface is a very
unique nonequilibrium object. It appears when 4He in a normal fluid state is cooled from
the boundary to below Tλ or when 4He in a superfluid state is warmed from the boundary
to above Tλ.

We will first clarify the condition of crossover from the linear- to nonlinear-response
regime in heat flow on the basis of the scaling relations near the λ point [129]. Then we
will illustrate two-phase coexistence of normal fluid and superfluid phases on the basis
of numerical work. An example of self-organized states will also be given, in which the
temperature gradient is equal to the transition temperature gradient in gravity.

6.7.1 Crossover between linear and nonlinear regimes

Normal fluids

On the basis of (6.6.42) we may discuss the crossover on the normal fluid side. It is
convenient to introduce a characteristic reduced temperature τ̄Q and length ξ̄Q by the heat
conduction relation,

Q = (λ∗τ̄−xλ
Q )(Tλτ̄Q/ξ̄Q), (6.7.1)
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where ξ̄Q = ξ0+τ̄−ν
Q with ξ0+ = 1.4 Å at SVP as determined below (2.4.4). Then,

τ̄Q = (Qξ0+/Tλλ
∗)1/(1+ν−xλ) ∼= 0.48 × 10−8 Q0.81, (6.7.2)

ξ̄Q = ξ0+(Qξ0+/Tλλ
∗)−ν/(1+ν−xλ) ∼= 4.9 × 10−3 Q−0.54 cm, (6.7.3)

where Q is in erg/cm2 s. The linear response to heat flow holds only for τ = T/Tλ − 1 �
τ̄Q or equivalently for ξ � ξ̄Q in normal fluid states. In terms of τ̄Q the heat conduction
equation is expressed as

ξ
d

dx
τ = τ(τ̄Q/τ)

1+ν−xλ , (6.7.4)

which is integrated to give a temperature profile in the form,

τ(x)1−xλ = τ(0)1−xλ + (1 − xλ)(τ̄
1−xλ
Q /ξ̄Q)x . (6.7.5)

The origin x = 0 is taken appropriately inside the cell. The reduced temperature τ(0) at the
origin is assumed to be much larger than τ̄Q . For Q > 0 and in the warmer region x > 0,
the system remains in the linear regime. However, in the cooler region x < 0, the reduced
temperature can be decreased below τ̄Q , where we will encounter a HeI–HeII interface.

Superfluids

In thermal counterflow, the complex order parameter ψ sinusoidally depends on x as
exp(−ikx) where the wave number k is related to vs as vs = h̄k/m4. The heat flux Q
is expressed as

Q = ρsTλ|vn| ∼= sTλρs|vs| = (h̄sTλ/m4)ρsk, (6.7.6)

where ρs = ρ∗
s |τ |ν . Thus k ∝ Q|τ |−ν . As will be discussed in Section 8.10, nonlinear

effects of heat flow become significant when k is increased to a value of order ξ−1. We
thus introduce a crossover correlation length and reduced temperature by setting

k = ξ−1
Q = ξ−1

+0 τ
ν
Q, ρs = ρ∗

s τ
ν
Q (6.7.7)

in (6.7.6). At SVP we have

τQ = (m4ξ0+/h̄sTλρ
∗
s )

1/2ν Q1/2ν ∼= 0.45 × 10−8 Q0.75, (6.7.8)

ξQ = (h̄sTλρ
∗
s ξ0+/m)1/2 Q−1/2 ∼= 5.1 × 10−3 Q−0.5 cm, (6.7.9)

with Q in erg/cm2 s. We notice τ̄Q ∼= τQ comparing (6.7.2) and (6.7.8). In practice, these
two reduced temperatures need not be distinguished. In superfluids the physical quantities
are little affected by heat flow for |τ | � τQ , while superfluidity itself is broken for |τ | �
τQ .
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6.7.2 Renormalized mean field theory in the absence of gravity

The interface profile can be calculated approximately [129] or numerically [133] on the
basis of model F for the complex order parameter ψ and the entropy deviation m. Taking
a reference reduced temperature τ̃ , we assume that the thermal fluctuations with wave
numbers smaller than the inverse of the correlation length ξ̃ = ξ+0τ̃

−ν were coarse-grained
at the starting point of the theory. The coefficients in the model are then renormalized ones
proportional to some fractional power of ξ̃ . We are interested in spatial variations varying
slower than ξ̃ . To set up the simplest theory, we first assume that τ̃ is a constant independent
of space. This treatment is allowable only when the amplitude of the reduced temperature
stays of the order of τ̃ throughout the system. In heat flow we may set τ̃ = τQ , where
τQ is defined by (6.7.8); then, the numerical results which follow are qualitatively valid in
regions where the reduced temperature is of order τQ .

We make the equations dimensionless by appropriate scale changes [129]. That is, space
and time are measured in units of ξ̃ and ω−1

ξ where

ωξ = g0ξ̃
−2(u0C0)

−1/2. (6.7.10)

We introduce a dimensionless order parameter &, temperature deviation A, and entropy
deviation M by

& = (ξ̃u1/2
0 )ψ, A = ξ̃2τ, M = (2ξ̃2γ0)m. (6.7.11)

Then A is expressed in terms of M and & as

A = M + 1

2
a2|&|2, (6.7.12)

where

a = 2γ0(C0/u0)
1/2. (6.7.13)

The parameter a is of order 1 as T → Tλ The relation (6.7.12) implies that M decreases
with ordering at fixed A. The dynamic equations are written as

∂

∂t
& = ia−1 A& − L

[
A − ∇2 + |&|2

]
&, (6.7.14)

∂

∂t
M = a∇ · Js + ∇ · λ∇A, (6.7.15)

where L and λ are the dimensionless kinetic coefficients expected to be of order 1 and

Js = Im[&∗∇&] (6.7.16)

is the dimensionless superfluid current. The random source terms are omitted.
We are interested in steady solutions of the above equations, where we may set ∂&/∂t =

ia−1 A0& with A0 being a constant. Then (6.7.14) becomes

∇2& =
[

A − i

aL
(A − A0)+ |&|2

]
&. (6.7.17)
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Fig. 6.25. Profiles of (a) temperature viewed from bottom and (b) superfluid density viewed from
top (x being the vertical direction) in two-phase coexistence in 4He in the absence of gravity. They
are calculated as a steady solution of (6.7.17) and (6.7.19) in a 2D cell, 0 < x < 66 and 0 < y < 42.
Space is measured in units of the correlation length ξ in the superfluid region.

Multiplying the above equation by &∗ and taking the imaginary part, we find

Im[&∗∇2&] = ∇ · Js = −Re

[
1

aL

]
(A − A0)|&|2. (6.7.18)

If λ is a constant, we also obtain

∇2 A = Re

[
1

Lλ

]
(A − A0)|&|2. (6.7.19)

In 1D we require the boundary conditions,

A → A0 = −1, & → (1 − K 2)1/2e−i K x (as x → −∞),

A → ∞, & → 0 (as x → ∞). (6.7.20)

The coupled equations (6.7.17) and (6.7.19) are analogous to those for an interface in
type-I superconductors in a magnetic field [138]. In the latter case, A is the vector potential
and the right-hand side of (6.7.17) is replaced by [−1 + A2 + |&|2]&. The temperature
difference T −Tλ, temperature gradient ∇T , and heat flow Q in the helium case correspond
to the vector potential A, magnetic induction B = rot A, and the externally applied
magnetic field H in the superconductor case, respectively. As for the type-I superconductor
case a possible analytic method is to introduce a GL parameter (∝ [Re(1/Lλ)]−1/2) [138]
and construct an approximate solution when it is small [129].

In Fig. 6.25 we show 2D steady profiles of two-phase coexistence numerically obtained
at a = L = λ = 1 in the region 0 < x < h = 66 and 0 < y < L⊥ = 42 [133]. Here we
are interested in the side-wall effect arising from the boundary condition & = 0 at y = 0
and L⊥. In Fig. 6.25(a) the normalized reduced temperature A, which is fixed at −1 at
x = 0 and 5.59 at x = h, has an interface structure at x ∼ 30. It turns out to be nearly
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Fig. 6.26. The cross sectional curves of Vnx , Jsx , and Jx = Vnx + Jsx as functions of y at x = 21
in the superfluid 4He phase. Here

∫ L⊥
0 dy Jx (y) = 0 due to mass conservation.

one-dimensional.15 It also exhibits a drop at x ∼ 0, corresponding to Kapitza resistance
near Tλ. In Fig. 6.25(b) the scaled superfluid density |&|2 is displayed. It has a bump at
x ∼ 5 where conversion between a superfluid and normal fluid is taking place.

Next we calculate the scaled normal fluid velocity Vn and the (total) mass current J =
Js + Vn. For given Js they satisfy

∇ · J = 0, ∇2Vn = η−1∇ p, (6.7.21)

in the bulk region and vanish at the boundary walls, where η and p are the appropri-
ately scaled viscosity and pressure, respectively. The scaled heat current is expressed as
Q = aVn − λ∇A. In a superfluid region far from the top and bottom walls, Vn is in
the x direction and assumes a parabolic profile, Vnx ∝ y(L⊥ − y), as is well known.
Figure 6.26 displays the cross sectional currents of Vnx , Jsx , and Jx at x = 21, where
the system is in the superfluid state. Interestingly, Jx is negative in the center region
10 � y � 32 and very close to the side walls within the distance of the correlation
length (∼ 1 here). The latter negative regions arise because Jsx and Vnx tend to zero
quadratically and linearly, respectively, at the side walls as functions of the distance. The
heat current strongly depends on the distance from the side walls (the y coordinate) in
superfluids.

15 However, if a heat flow is applied in the horizontal direction in gravity, the resultant interface is curved [133].
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6.7.3 Renormalized local equilibrium theory

In gravity we introduce the local reduced temperature,

ε = [T − Tλ(p)]/Tλ(p)
∼= (T/Tλbot − 1)+ G(x − h), (6.7.22)

where Tλbot is the λ temperature at the bottom wall (x = h). Here G(∝ g) is defined
by (2.4.33) and is of order 10−6 on earth, h is the cell height, and the x axis is taken
downward with the origin being at the top. In heat flow and gravity, ε can be strongly
inhomogeneous. We scale the reduced temperature by τ̃ = 2.5 × 10−8 and measure space
in units of the corresponding correlation length 1.6 × 10−3 cm. Then the dimensionless
gravity coefficient G (in the same notation as before) becomes Gξ+0/τ̃ = 0.04 on earth.
We propose the dynamic equations [134],

∂

∂t
& = ia−1 A& − L

[
εξ−1/2 − ∇2 + ξ−1|&|2

]
&, (6.7.23)

∂

∂t
M = a Im[&∗∇2&] + ∇ · λ∇A, (6.7.24)

where A = (T − Tλbot)/Tλτ̃ and

ε = A + G(x − h). (6.7.25)

The scaled entropy deviation is expressed as

M = A − 1

2
a2ξ−1/2|&|2. (6.7.26)

We define the local correlation length as

ξ = "g tanh(1/"g|ε|2/3). (6.7.27)

The coefficients in (6.7.23) and (6.7.24) are obtained by appropriate scaling of those of
model F renormalized at the local correlation length ξ . In gravity, ξ should not exceed
the characteristic length "g = G−2/5(= 3.62 on earth) introduced in (2.4.36). The scaled
kinetic coefficients are taken as

λ = bλξ
0.675, L = bψξ

0.325, (6.7.28)

where bλ and bψ are of order 1. The ratio w = L/λ is considerably smaller than 1 in
magnitude as T → Tλ, as discussed below (6.6.67). Numerical results of the above model
will be presented in Fig. 6.28 and discussed in Section 8.10.

6.7.4 Interface boundary condition and gravity effect

It is our main result that the reduced temperature τ∞ = 1 − T∞/Tλ on the superfluid side
is uniquely determined by the heat flow through the interface in the absence of gravity.16

16 This is analogous to the equilibrium relation Tc − T ∝ H in type-I superconductors in two-phase coexistence [138].
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It is obviously of order τQ in (6.7.8) or

τ∞ = R∞τQ = A∞Q1/2ν . (6.7.29)

The ratio R∞ tends to a universal number as long as Lλ ∼ ξ (insensitive to the correction
to the dynamic scaling law) [130, 132]. It is related to the dimensionless wave number
K = kξ∞ with ξ∞ = ξ+0τ

−ν∞ . We assume that ρs decreases with increasing K as ρs =
ρ∗

s τ
ν∞(1 − K 2) as in the mean field theory. Then (6.7.8) yields

K (1 − K 2) = (τQ/τ∞)2ν = R−2ν
∞ . (6.7.30)

We require the condition K < Kc = 1/
√

3 for the linear stability of superfluidity.17 Then
R∞ � 2 is needed. Rough theoretical estimates [130] and numerical analysis suggest
that K in two-phase coexistence is only slightly smaller than 1/

√
3. Then R∞ ∼ 2 and

A∞ ∼ 10−8 with Q in cgs units in (6.7.29). In early experiments, Bhagat et al. observed a
kink-like change of the temperature gradient at large Q � 104 (cgs) [128]. Subsequently,
Duncan et al. obtained τ∞ ∼= 10−8 Q0.81 for much smaller Q in the range 5 < Q < 300
(cgs) in agreement with (6.7.29) [131].

Earlier, in (2.4.30)–(2.4.37) and in Fig. 2.17, we discussed two-phase coexistence in
gravity in equilibrium. To examine competition between gravity and heat flow in the
interface region, we should compare τQ in (6.7.8) and τg in (2.4.36). They are of the same
order for

Q ∼ (g/gearth)
2ν/(1+ν) (erg/cm2 s), (6.7.31)

where gearth is the gravitational acceleration on earth. If Q is much larger than the right-
hand side, gravity is negligible in the vicinity of the interface. Of course, gravity can be
important on macroscopic scales (outside the interface region) even for much larger Q.

6.7.5 Balance of gravity and heat flow in normal fluid states

Intriguing nonequilibrium states are realized in the presence of both gravity and heat flow,
particularly when 4He is heated from above [130, 134, 136]. Hereafter we discuss one of
such examples. Other examples will be presented in Section 8.10.

In a normal fluid the heat conduction equation becomes λdT/dx = −Q in a steady
state in terms of the growing thermal conductivity λ (= λR). With the aid of (6.6.42) this
equation is rewritten in terms of ε in (6.7.22) as

d

dx
ε = G − (Q/λ∗Tλ0)ε

xλ . (6.7.32)

We notice that ε tends to a fixed-point value [130],

εc = (λ∗TλG/Q)1/xλ , (6.7.33)

17 Note that Kc = 1/
√

3 is the mean field result. More discussions on Kc can be seen below (8.10.58) and near (9.7.7).
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with increasing x (in the downward direction) as ε(x)− εc ∝ exp(−x/"c), where

"c = εc/(xλG). (6.7.34)

In this case the temperature gradient due to heat flow and the critical temperature gradient
due to gravity balance one another, i.e.,

d

dx
T ∼= d

dx
Tλ(p). (6.7.35)

The thermal conductivity spontaneously saturates into

λ ∼= Q/TλG. (6.7.36)

On earth we have

εc ∼= 2 × 10−9 Q−2.2, λ ∼= 106 Q, "c ∼= 4 × 10−3 Q−2.2 (cgs). (6.7.37)

The above results apparently suggest that εc can be made arbitrarily small with increas-
ing Q in gravity, but this is not the case [134]. To show this, let us consider the steady-state
correlation function G(r − r′) = 〈ψ(r, t)ψ∗(r′, t)〉 in the mean field theory under the
balance (6.7.35). Treating the kinetic coefficient L0 as a real quantity for simplicity, we
obtain [

i g0G(x)+ 2L0(r0 − ∇2)
]
G(r) = 2L0δ(r), (6.7.38)

where g0 is defined by (6.6.18) and r0 is the temperature coefficient. The Fourier transfor-
mation of G(r) is expressed as18

Gk = 2L0

∫ ∞

0
dt exp

[
−2L0t

(
r0 + k2 + g0Gkx t + 1

3
g2

0G2t2
)]

. (6.7.39)

This indicates that the upper bound ξM of the correlation length in the x direction is
determined by g0GξM = L0ξ

−2
M . In fact Gk → ξ−2

M as k → 0 and r0 → 0. Replacing L0

by the renormalized coefficient LR ∼ Kd g2
0ξM/λ at the cut-off ξ−1

M , we obtain

ξM = ξ+0(Kd g0/ξ
2
+0λ

∗G)ν/(2ν+xλ). (6.7.40)

The corresponding characteristic reduced temperature reads

τM = (ξ+0/ξM)1/ν = (ξ2
+0λ

∗G/Kd g0)
1/(2ν+xλ), (6.7.41)

which is estimated as τM ∼= 10−8(g/gearth)
0.56. The thermal conductivity arises from the

steady-state average 〈Jsx 〉 ∝
∫

k kx Gk [132, 137]. This yields scaling behavior,

λ = λ∗ε−xλ fso(ε/τM). (6.7.42)

18 The same expression can be obtained for superconductors in a dc electric field E (if G is replaced by E), where the fluctuation
contribution to the electrical conductivity is suppressed by the electric field [139]. This effect is relevant for superconducting
wires and films.



306 Dynamics in fluids

Fig. 6.27. The temperature difference �T = T − Tλ(p) in self-organized region in 4He [136]. For
Q � 1 erg/cm2 s, the self-organized region was in a normal fluid state with �T > 0. For larger Q, it
was in a superfluid state with �T < 0, where high-density vortices should have been produced (see
Section 8.10). The dashed line is a fit to −C Qy where y = 0.813 and C is a constant. The solid line
represents Tλεc − C Qy with εc being defined by (6.7.33).

The scaling function fso(z) for self-organized behavior tends to 1 for z � 1 and const.zxλ

for |z| � 1. Because λ cannot exceed λ∗τ−xλ
M , the balance (6.7.35) can be achieved only

for εc � τM or Q � 1 erg/cm2 s on earth. Thus τM gives the order of magnitude of the
minimum reduced temperature attainable in self-organized normal fluid states.

In their experiment in the range 0.4 < Q < 65 erg/cm2 s, Moeur et al. [136] observed
a self-organized region below the superfluid region. Figure 6.27 displays the measured
reduced temperature ε in the self-organized region. The data can be fitted to (6.7.33) for
Q � 1 erg/cm2 s, but it is more surprising that the reduced temperature was negative for
larger Q. In Fig. 6.28 we show numerically calculated profiles of T/Tλbot − 1, ε, and ρs in
their geometry, where we set a = 1, bλ = 1, and bψ = 0.2 in (6.7.22)–(6.7.27). The case
of larger heat flux will be discussed in Section 8.10.

Self-organized criticality?

We have shown that 4He can spontaneously approach a homogeneous steady state, which
is extremely close to the λ point, under gravity and heat flow in the same direction.
Therefore, such a state has been called a self-organized critical state [135, 136, 140, 141].
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Fig. 6.28. The reduced temperatures T/Tλbot − 1 and ε (in units of 2.5 × 10−8) (solid lines) and
the superfluid density ρs (broken line) in a steady state, in 4He. The lower part (x � 85) is a self-
organized normal fluid and the upper part is a superfluid. The curves are calculated from (6.7.22)–
(6.7.27) with Q = 0.77 erg/cm2 s applied from above under the earth’s gravity. Space is scaled in
units of 1.6 × 10−3 cm.

However, criticality is not reached in 4He in this geometry owing to the lower bound
εM in the normal fluid state. Therefore, it is simply called a self-organized state in this
book.

Appendix 6A Derivation of the reversible stress tensor

We derive the reversible part of the stress tensor
→←
� = {�i j } arising from the fluctuations

of the scalar gross variables for near-critical binary fluid mixtures [36]. To this end we may
neglect dissipation for simplicity. The reversible stress tensor is then equal to p

→←
I + →←

� +
ρvvvvvv ∼= pc

→←
I + →←

� . Adopting the Lagrange picture of fluid motion, we consider a small fluid
element at position r and at time t . Due to the velocity field the element is displaced to a
new position, r′ = r + u with u = vvvδt , after a small time interval δt . From the continuity
equations without diffusion, the mass densities ρK = m0K nK (K = 1, 2) are changed to
ρ′

K as

ρ′
K
∼= ρK (1 − ∇ · u). (6A.1)
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Near the critical point the stress deviation �i j is much smaller than the deviation of the
energy density δe. Therefore,

e′ ∼= e − (e + pc)∇ · u. (6A.2)

In accord with these changes the GLW hamiltonian is changed as

δH = H′ −H = −
∫

dr
∑
i, j

�i j
∂

∂x j
ui , (6A.3)

which is the definition of �i j . The free energy after displacement is written as

H′ = Tc

∫
dr′

[
f (ρ′

1, ρ
′
2, e′)+ K

2
|∇′ψ ′|2

]
. (6A.4)

From r′ = r + u we obtain dr′ = dr(1 + ∇ · u). The space derivatives are changed as

∂

∂x ′i
∼= ∂

∂xi
−

∑
j

∂u j

∂xi

∂

∂x j
. (6A.5)

Using these relations together with (6A.1) and (6A.2) we obtain

�i j =
[
ρ1

δH
δρ1

+ρ2
δH
δρ2

+(e+ pc)
δH
δe

−Tc

(
f + K

2
|∇ψ |2

) ]
δi j +Tc K

∂ψ

∂xi

∂ψ

∂x j
, (6A.6)

where H is regarded as a functional of ρK and e in the functional derivatives. From this
expression we can confirm that the deviation �i j is very small and (6A.2) is surely a
good approximation. Furthermore, under the linear relations (2.3.9)–(2.3.11) we notice the
identity,

(ρ1 − ρ1c)
δ

δρ1
+ (ρ2 − ρ2c)

δ

δρ2
+ (e − ec)

δ

δe
= ψ

δ

δψ
+ m

δ

δm
+ q

δ

δq
. (6A.7)

Thus the diagonal part of the stress tensor consists of the background pc, δ p̂ defined by
(4.2.8), and

δ p̃ =
(
ψ

δ

δψ
+ m

δ

δm
+ q

δ

δq

)
H− Tc

(
f + K

2
|∇ψ |2

)
. (6A.8)

where H is regarded as a functional of ψ , m, and q. Here we set q = 0 in one-component
fluids to obtain (6.1.17) and (6.2.5).

Appendix 6B Calculation in the mode coupling theory

We calculate (6.1.20) to reproduce Kawasaki’s function K0(x) [2]. In the Fourier space the
time-correlation function of the transverse velocity is written as

〈vvviq(t)vvv jq′(0)〉 = T

ρ
(δi j − q̂i q̂ j )(2π)

dδ(q + q′) exp[−(ηR/ρ)q
2|t |], (6B.1)
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where i, j = x, y, z and q̂ = q−1q is the direction of q. Then (6.1.20) becomes

LR(k) = Tχ

ηR

∫
q

|q × k̂|2
|q − k|4

1

1 + ξ2q2
, (6B.2)

where k̂ = k−1k and q × k̂ is the vector product. Notice that the wave vector supported
by the velocity field is taken to be k − q. The above integral is logarithmically divergent
at d = 4 and is convergent for d < 4 at large q. Therefore, the critical dimensionality
remains 4 in our dynamic problem. We perform the integration at d = 3. The first factor in
the integrand depends on q̂ and its solid angle integration is performed to give∫

d�
|q × k̂|2
|q − k|4 = π

k2

[
q2 + k2

2kq
ln

(
q + k

q − k

)2

− 2

]
. (6B.3)

By setting z = ξq and x = ξk, we obtain

K0(x) = 3

8π
(1 + x2)

∫ ∞

−∞
dz

z2

1 + z2

[
x2 + z2

2xz
ln

(
z + x

z − x

)2

− 2

]
. (6B.4)

Because the integrand goes to zero as z−3 at large |z|, we may perform the above integration
by analytic continuation of the integrand to the upper complex z plane (Im z > 0). We only
pick up a contribution from the single pole z = i using ln[(i + x)/(i − x)] = −2i tan−1(x)
to obtain (6.1.22).

Appendix 6C Steady-state distribution in heat flow

In model C, where the mode coupling terms are absent, (5.3.16) shows that the steady-
state distribution Pss in heat flow is given by the local equilibrium distribution Plocal ∝
exp(−βHlocal). In one-component fluids near the gas–liquid critical point, the Langevin
equations are given by (6.2.2)–(6.2.4) with the first terms being the mode coupling terms.
Then the steady distribution deviates from Plocal. Here we calculate the deviation δPss =
Pss − Plocal, linear with respect to the temperature gradient a in (6.2.13). The second line
of (1.2.47) gives

Hlocal = H−
∫

dr(a · r)ncδs(r). (6C.1)

Using the definition of δs in (6.2.9) we find

LFP Plocal =
∫

drβ2(a · r)
[−Hcm−1

0 ∇ · (ρvvv)+ ∇ · (evvv)+ pc∇ · vvv]
Plocal

= −
∫

drβ(a · vvv)ncδs Plocal. (6C.2)
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Because LFP Pss = LFPδPss + LFP Plocal = 0, we obtain the deviation linear in a,

δPss = L−1
FP

∫
drαsβ(a · vvv)ψPeq

= −αsβ

∫ ∞

0
dt

∫
dreLFPt (a · vvv)ψPeq, (6C.3)

where ncδs is replaced by αsψ . The linear response of any dynamic variable B(r) to a in
the steady state can then be written as

〈B(r)〉ss ∼= 〈B(r)〉� −
αs

T

∫ ∞

0
dt

∫
dr′〈B(r, t)ψ(r′, 0)vvv(r′, 0)〉 · a, (6C.4)

where the first term is the local equilibrium average and the second term is the time correla-
tion in equilibrium defined by (5.2.18). This expression is consistent with the general linear
response formula (5.4.20). Furthermore, the transverse part of vvv relaxes rapidly compared
with ψ , so that in the Fourier space we may approximate δPss as

δPss = −αs

T

∫
q

ρ

ηRq2

[
a · vvvq − (a · q̂)(q̂ · vvvq)

]
ψ−q Peq, (6C.5)

where q̂ = q−1q. We may calculate the velocity field vvvind induced by the fluctuations of
ψ by taking the conditional average of vvv over Pss with ψ held fixed. Then (6.2.16) can be
obtained.

Appendix 6D Calculation of the piston effect

Here we calculate the temperature profile in the time region t � tD in the 1D ge-
ometry (0 < x < L) [50, 51]. From (6.3.15) the Laplace transformation T (x, �) =∫ ∞

0 dte−�t T1(x, t) satisfies

�[T − (1 − γ−1
s )T̄ ] = D∇2T (6D.1)

where T̄ = ∫ L
0 dxT (x, t)/L is the space average and we have assumed T1(x, t) = 0 for

t ≤ 0. This equation is solved in the form,

T = A exp(−κDx)+ B exp[κD(x − L)] + z(A + B), (6D.2)

where κD = (�/D)1/2 and

z = γs − 1

κD L
(1 − e−κD L) = 1

2
(�t1)

−1/2(1 − e−κD L), (6D.3)

where t1 is defined by (6.3.7). If we are interested in the case (Dt)1/2 � L or t � tD =
L2/D, we may assume κD � L−1. Then the first and second terms in (6D.2) are localized
near x = 0 and L , respectively, the third term is homogeneous, and the factor exp(−κD L)
in z in (6D.3) may be neglected. We confirm (6D.1) by substituting (6D.2) using T̄ =
(γs/κD L)(A + B).
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(i) In the first example, we have T1(0, t) = T1(L , t) = T1b for t > 0, so that

A = B = (1 + 2z)−1T1b/�. (6D.4)

Because the Laplace transformation of the interior temperature deviation is z(A + B) =
2T1bz/�(1 + 2z) = Tib[1 − 1/(1 + 2z)]/�, we obtain (6.3.9) with∫ ∞

0
dse−us Fa(s) = (u +√

u)−1. (6D.5)

(ii) If the heat flux at the top is a constant Q for t > 0 and the bottom temperature is
unchanged, we have

λκD B = Q/�, A + z(A + B) = 0. (6D.6)

Then the Laplace transformations of T1in(t), T1top(t), and Qbot(t) are Bz/(1 + z), B[1 +
z/(1+ z)], and Qz/�(1+ z), respectively. The scaling function Fb(s) in (6.3.21) satisfies

2√
π

∫ ∞

0
dse−sus1/2[

1 − Fb(s)
] = 1

u(1 +√
u)

= 1

u
− 1

u +√
u
, (6D.7)

which leads to (6.3.22) in terms of Fa(s) in (6D.5).

(iii) If the top temperature is changed by T1b at t = 0 with the bottom temperature
unchanged, we have

A + z(A + B) = 0, B + z(A + B) = T1b/�. (6D.8)

Thus, A = −T1bz/�(1 + 2z) and B = T1b(1 + z)/�(1 + 2z). Then,∫ ∞

0
dte−�t T1in(t) = z

�(1 + 2z)
T1b = 1

2�

[
1 − 1

1 + 2z

]
T1b, (6D.9)

which leads to (6.3.25). The Laplace transformations of Qtop(t) and Qbot(t) are λBκD and
−λAκD , respectively, leading to (6.3.26).
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7

Dynamics in polymers and gels

We will first give a theory of viscoelastic dynamics in polymeric binary systems, where
a new concept of dynamic stress–diffusion coupling will be introduced in the scheme
of viscoelastic two-fluid hydrodynamics. A Ginzburg–Landau theory of entangled poly-
mer solutions will also be presented, in which chain deformations are represented by a
conformation tensor. The reptation theory for entangled polymers will be summarized in
Appendix 7A. We will also present a Ginzburg–Landau theory of gels to discuss dynamics
and heterogeneities inherent to gels.

7.1 Viscoelastic binary mixtures

Entanglements among polymer chains impose severe topological constraints on the molec-
ular motions. Their effects on polymer dynamics are now well described by the reptation
theory in a surprisingly simple manner [1, 2]. In such systems, the stress relaxation
takes place on a very long timescale τ (which should not be confused with the reduced
temperature in near-critical systems). This means that a large network stress arises even
for small deformations. If the timescale of the deformations is shorter than τ , the system
behaves as a soft elastic body or gel. If it is longer than τ , we have a very viscous fluid.

In polymeric mixtures, it is highly nontrivial how the network stress acts on the two
components and how it influences spatial inhomogeneities of the composition in various
situations [3]–[5]. In this section we will introduce a mechanism of dynamical stress–
diffusion coupling, which has recently begun to be recognized. In this chapter we will
investigate its consequences mainly in dynamic light scattering from polymers [6]–[11].
Furthermore, we will show its relevance in viscoelastic phase separation in Chapter 8
and under shear-induced phase separation in Chapter 11. This mechanism should also be
applicable to other highly viscoelastic binary mixtures such as dense colloidal suspensions
[12], dense microemulsions, or fluid mixtures near the glass transition.

Before presenting the theory, we mention representative experiments. Figure 7.1 shows
nonexponential relaxation of dynamic light scattering from a semidilute, aqueous borax
solution of poly(vinyl alcohol) with degree of polymerization 2600 at 2 wt% polymer
concentration [7]. For q ∼ 105 cm−1, the relaxation rate of the fast mode is diffusive
as �f = Dmq2 with the mutual diffusion constant Dm = 5.6 × 10−7 cm2 s−1, whereas
the relaxation time of the slow mode is independent of q and is about 0.3 s which is
close to the stress relaxation time. As another experimental example, Fig. 7.2 displays the
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Fig. 7.1. The normalized homodyne time-correlation function Aq (t) = 1 + const.I (q, t)2 at q ∼
105 cm−1 for a polymer solution [7]. Scattering angles are 15, 30, and 150 degrees as indicated.
The curves exhibit the presence of two dominant decay modes with decay rates �s and �f = Dmq2,
in which the faster one �f shifts to the left along the decay time axis with increasing θ or q =
2q0 sin(θ/2), while the slower one �s is nearly independent of q.

two relaxation rates measured by transient light scattering from a semidilute polystyrene
solution in theta solvent after cessation of shear flow [11].

7.1.1 The GLW hamiltonian and chemical potentials

Before discussing the dynamics, we give the expression for the GLW hamiltonian for
polymer solutions and blends using the results in Section 3.5. We assume that the mix-
ture is nearly incompressible and that the free-energy density is given by v−1

0 fsite(φ) +
(2KT )

−1(δn/n)2 as in (3.5.12). Furthermore, the monomers of the two components are
assumed to have the same volume v0 = a3 and the same mass m0. Then δn/n = δρ/ρ ∼=
δρ/ρ̄ is very small, where ρ̄ is the average mass density, and the mass fractions and the
volume fractions coincide:

ρ1/ρ = φ1 = φ, ρ2/ρ = φ2 = 1 − φ. (7.1.1)

The GLW hamiltonian for the volume fraction φ is written as

H{φ} =
∫

dr
[
v−1

0 fsite(φ)+ T

2
C(φ)|∇φ|2

]
, (7.1.2)

where fsite is the free-energy density per site given by (3.5.5) for polymer solutions and
by (3.5.29) for polymer blends. In the case of semidilute polymer solutions with φ � 1,
we treat theta or poor solvent assuming gaussian forms of chains [1]. The full hamiltonian
including δρ and the velocities of the two components will be given in (7B.10). If variations
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Fig. 7.2. A log–log plot of the relaxation rates �s and �f in a transient light scattering experiment
on a semidilute solution with theta solvent after cessation of shear flow [11]. The two modes did
not separate clearly in time until q2 � 200 µm−2. This experiment was performed in a transient
situation, where the slower of the collective modes was selectively enhanced even after decay of the
macroscopic flow.

of φ vary in space with wave numbers smaller than the inverse gyration radius R−1
G ,

(4.2.26) suggests

C = 1/[18φ(1 − φ)a]. (7.1.3)

For the fluctuations varying on spatial scales shorter than RG, we should replace the factor
18 in (7.1.3) by 12 from (4.2.27). In the presence of the gradient free energy, the chemical
potentials of the two components (per unit mass in this chapter) are expressed as

µ1 = 1

ρ̄

[
δp1 + (1 − φ)

δH
δφ

]
, µ2 = 1

ρ̄

[
δp1 − φ

δH
δφ

]
, (7.1.4)

where δp1 is a pressure contribution induced by δρ,

δp1 = (ρ̄KT )
−1δρ. (7.1.5)

The chemical potential difference is then of the form,

µ1 − µ2 = 1

ρ̄

δH
δφ

. (7.1.6)

These are generalized forms of (3.5.13)–(3.5.15), and (3.5.30). In this section we define

r = (v0T )−1 f ′′site = v−1
0

[
1

N1φ
+ 1

N2(1 − φ)
− 2χ

]
. (7.1.7)
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For semidilute polymer solutions we have N1 = N and N2 = 1 to obtain r = Kos/Tφ2,
Kos being the isothermal osmotic bulk modulus given by (3.5.24). The structure factor
Iq = 〈|φq|2〉 in disordered states is calculated in the gaussian approximation as

Iq = 1/(r + Cq2) = r−1/(1 + ξ2q2). (7.1.8)

The correlation length is defined by

ξ = (C/r)1/2. (7.1.9)

In semidilute polymer solutions ξ is of order aφ−1 close to the coexistence curve and
grows as K−1/2

os on approaching the spinodal curve in the metastable region.

7.1.2 Two-fluid model

We show that the stress can influence spatial inhomogeneities of the composition through
a dynamical coupling between stress and diffusion. This is because the stress in entangled
polymer systems does not act equally on the two components (asymmetric stress division),
and if there is an imbalance in stress, relative motion between the two components takes
place. This coupling gives rise to a variety of viscoelastic effects such as nonexponential
relaxation in dynamic light scattering [3]–[11], flow-induced polymer migration [13],
shear-induced fluctuation enhancement, etc. (See Chapter 11 for the last topic.)

To explain the dynamical coupling we consider a two-fluid model of a very viscous
two-component system [4, 5]. The mass densities, ρ1 and ρ2, of the two components are
convected by their velocities, vvv1 and vvv2, as

∂

∂t
ρK = −∇ · (ρKvvvK ), (K = 1, 2). (7.1.10)

The deviation of the total density obeys

∂

∂t
δρ = −∇ · (ρvvv) ∼= −ρ̄∇ · vvv, (7.1.11)

where ρ = ρ1 + ρ2 = ρ̄ + δρ. The average velocity vvv is defined by

vvv = ρ−1(ρ1vvv1 + ρ2vvv2) = φvvv1 + (1 − φ)vvv2. (7.1.12)

The volume fraction φ of the first component obeys

∂

∂t
φ + vvv · ∇φ = −∇ · [

φ(1 − φ)w
]
, (7.1.13)

where

w = vvv1 − vvv2 (7.1.14)

is the relative velocity between the two components. The diffusion current is given by
φ(1 − φ)w. The two velocities vvv1 and vvv2 are expressed as

vvv1 = vvv + (1 − φ)w, vvv2 = vvv − φw, (7.1.15)
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in terms of vvv and w. Considering only very slow motion and neglecting temperature
inhomogeneities, we assume the momentum equations,

ρ1
∂

∂t
vvv1 = −ρ1∇µ1 − ζ(vvv1 − vvv2)+ F1, (7.1.16)

ρ2
∂

∂t
vvv2 = −ρ2∇µ2 − ζ(vvv2 − vvv1)+ F2. (7.1.17)

In the first terms, µ1 and µ2 are the generalized chemical potentials in (7.1.4). The
second terms represent mutual friction between the two components with ζ being a friction
coefficient. In the third terms, F1 and F2 are the force densities arising from the network
stress →←

σσσ . Their sum is

F1 + F2 = ∇ · →←
σσσ . (7.1.18)

For polymer solutions, we need to retain the viscous stress tensor due to the background
viscosity, as will be shown in (7.1.34) below.

The equation for the total momentum density ρvvv = ρ1vvv1 + ρ2vvv2 is the sum of (7.1.16)
and (7.1.17):

ρ
∂

∂t
vvv = −(ρ1∇µ1 + ρ2∇µ2)+ ∇ · →←

σσσ . (7.1.19)

From (7.1.4) we derive

ρ1∇µ1 + ρ2∇µ2 = ∇δp1 − δH
δφ

∇φ. (7.1.20)

The second term arises from the concentration heterogeneity, analogously to (6.1.16)
derived for near-critical fluids. The relative velocity w = vvv1 − vvv2 is governed by

∂

∂t
w = −∇(µ1 − µ2)− ζ

(
1

ρ1
+ 1

ρ2

)
w + 1

ρ1
F1 − 1

ρ2
F2. (7.1.21)

We are interested in slow motion with frequencies much smaller than ω0 = ζ(1/ρ1+1/ρ2).
Then we may set ∂w/∂t = 0 and use (7.1.1) and (7.1.6) to obtain

w = φ1φ2

ζ

[
−∇ δH

δφ
+ 1

φ1
F1 − 1

φ2
F2

]
. (7.1.22)

The term proportional to ∇(δH/δφ) gives rise to the diffusive equation for φ in the usual
form if substituted into (7.1.13). We may thus define the kinetic coefficient L as

L = φ2(1 − φ)2/ζ. (7.1.23)

In the long-wavelength limit the mutual diffusion constant is written as

Dm = LT r = ζ−1Tφ2(1 − φ)2r. (7.1.24)

where r is given in (7.1.7). The terms proportional to FK cancel to vanish in w when the
network stress is divided between the two components symmetrically or trivially as

FK = (ρK /ρ)∇ · →←
σσσ , (K = 1, 2). (7.1.25)
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This will be the case if the two components are physically alike. In viscoelastic systems,
however, the stress division can be asymmetric between the two components.

7.1.3 Dynamical coupling in semidilute polymer solutions and gels

In semidilute solutions the friction coefficient ζ is estimated as

ζ = 6πη0ξ
−2
b , (7.1.26)

where η0 is the solvent viscosity and ξb = a/φ is the blob size in theta solvent (∼ aφ−3/4

in good solvent). Here a blob contains gb = (ξb/a)1/ν̂ monomers belonging to a single
chain, where ν̂ = 1/2 for theta solvent and ν̂ = 3/5 for good solvent [1].1 Then the
friction coefficient on a blob is ξ3

b ζ = 6πη0ξb from Stokes law (5.1.2). From (7.1.24) the
mutual diffusion constant Dm between polymer and solvent in the long-wavelength limit
is obtained as

Dm = ξ2
b Kos/6πη0. (7.1.27)

In the semidilute region we have the Stokes formula Dm ∼ T/6πη0ξb above the coexis-
tence curve, which is analogous to (6.1.24) for near-critical fluids. The characteristic time
within a blob is thus written as

τb = ξ2
b /Dm = 6πη0ξ

3
b /T, (7.1.28)

which obviously originates from the hydrodynamic interaction on the scale of ξb.
However, the rotational motion of chains and the diffusion rate of a tagged chain become

extremely slow in semidilute solutions when the molecular weight is very large and when
the polymer volume fraction φ exceeds the overlapping threshold φ∗(∼ N−1/2 for theta
solvent) [1]. The entanglement number on a chain is on the order of the blob number
N/gb = N (ξb/a)−1/ν . The newtonian solution viscosity η grows as (N/gb)

3 from the
reptation theory in Appendix 7A and as (N/gb)

3.4 from experiments. In terms of φ/φ∗ we
obtain [14, 15]

η ∼ η0(φ/φ
∗)xη , (7.1.29)

where the exponent xη is large and is of order 6–7 in theta solvent. The stress relaxation
time τ is estimated as

τ ∼ τb(φ/φ
∗)xη . (7.1.30)

In the above scaling arguments the shear modulus G = η/τ is assumed to be proportional
to ξ−3

b (∝ φ3 in theta solvent). However, for theta solvent, some authors theoretically
claimed that G depends on φ somewhat differently as G ∝ φ2 [3] or G ∝ φ7/3 [16],
while G ∝ φ2.25 in experiments [14, 15].

1 We may require φξ3
b = v0gb to obtain ξb = aφν̂/(1−3ν̂). We need not distinguish between the correlation length ξ and the

blob size ξb above the coexistence curve, but they become very different near the spinodal curve.
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In both polymer solutions and gels, even a small network deformation gives rise to a
large stress acting directly on polymer chains, so that it follows a one-sided stress division,

F1 ∼= ∇ · →←
σσσ , F2 ∼= 0, (7.1.31)

where the solvent viscosity is neglected. Here the subscript 1 denotes the quantities of
polymer and the subscript 2 denotes those of solvent. The relative velocity w becomes

w = −φ(1 − φ)

ζ

[
∇ δH

δφ
− 1

φ
∇ · →←

σσσ

]
. (7.1.32)

The diffusive equation (7.1.13) is rewritten as

∂

∂t
φ + vvv · ∇φ = ∇ · L

[
∇ δH

δφ
− 1

φ
∇ · →←

σσσ

]
, (7.1.33)

where L is defined by (7.1.23). We recognize that imbalance of the network stress (∇ · →←
σσσ �=

0) leads to relative motion between polymer and solvent. Originally, Tanaka et al. derived
a linearized version of (7.1.33) for gels, where the network stress is related to the elastic
displacement vector u, to analyze dynamic light scattering [17]. Helfand and Fredrickson
[18] used the above form for sheared polymer solutions. Some authors [19, 20] tried to
justify (7.1.33) using the projection operator method, where the Rouse dynamics was used,
however.

From (7.1.19) and (7.1.20) the average velocity vvv is governed by

ρ
∂

∂t
vvv = −∇δp1 + δH

δφ
∇φ + ∇ · →←

σσσ + η0∇2vvv. (7.1.34)

Here we have added the last term arising from the solvent viscosity η0 by neglecting the
difference between vvv and the solvent velocity vvvs owing to φ � 1. Furthermore, the Stokes
approximation and the incompressibility assumption lead to

∂

∂t
vvv = 0, ∇ · vvv = 0. (7.1.35)

On the one hand, Stokes approximation is justified if we are interested in physical processes
in which the timescale is much longer than ρ̄"2/η0 with " being a typical spatial scale such
as the domain size in spinodal decomposition. The incompressibility condition, on the
other hand, automatically determines δp1 in (7.1.34).

Constitutive equation

For small deformations the network stress can be expressed in terms of the gradient of the
polymer velocity vvvp = vvv1. That is, on spatial scales much longer than RG, the average
stress tensor in the linear response (newtonian) regime reads [2]

σi j (t) =
∫ t

−∞
dt1Gxy(t − t1)κ

(p)
i j (t1), (7.1.36)
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where κ
(p)
i j (t) is the polymer velocity gradient tensor,

κ
(p)
i j = ∇ivp j + ∇ jvpi − 2

3
δi j∇ · vvvp, (7.1.37)

which is made traceless and symmetric. Hereafter ∇i = ∂/∂xi . The function Gxy(t)
represents relaxation of shear deformations arising from disentanglements. It relaxes from
the shear modulus Gxy(0) = G on the timescale of τ . In our theory, ∇vvvp is used in
the constitutive equation rather than ∇vvv, which will lead to important consequences in
the presence of mutual diffusion. However, there can be a diagonal stress driven by the
dilation strain ∇ · vvvp and relaxing with disentanglements, but this effect will be neglected
for simplicity.

7.1.4 Dynamical coupling in polymer blends

Next we consider stress partitioning in polymer blends. The two polymers have polymer-
ization indices N1 and N2 and volume fractions φ1 = φ and φ2 = 1 − φ. For simplicity,
we assume that they have the same monomer size a and the same monomer number Ne

between two consecutive entanglement points. Then, in the entangled case N1 > Ne and
N2 > Ne, the two polymers obey reptation dynamics moving in common tubes with
diameters of order dt = N 1/2

e a. Further discussions on entangled polymer blends will
be given in Appendix 7B. We here propose an intermediate stress division,

F1 = α1∇ · →←
σσσ , F2 = α2∇ · →←

σσσ , (7.1.38)

where α1 + α2 = 1. A dynamical asymmetry parameter α may be defined by

α = ρ

(
α1

ρ1
− α2

ρ2

)
= α1

φ1
− α2

φ2
. (7.1.39)

Then,

α1 = φ1 + φ1φ2α, α2 = φ2 − φ1φ2α. (7.1.40)

In terms of α, the relative velocity in (7.1.22) becomes

w = −φ1φ2

ζ

[
∇ δH

δφ
− α∇ · →←

σσσ

]
. (7.1.41)

Similarly to (7.1.33), the diffusive equation (7.1.13) is rewritten as

∂

∂t
φ + vvv · ∇φ = ∇ · L

[
∇ δH

δφ
− α∇ · →←

σσσ

]
. (7.1.42)

In Appendix 7B we will derive the expression for α in the form,

α = N1ζ01 − N2ζ02

φ1 N1ζ01 + φ2 N2ζ02
. (7.1.43)

Here ζ01 and ζ02 are the friction coefficients of the monomers of the two polymers and can
generally be different in our theory (even if the common values of a and Ne are assumed).
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In particular, the trivial stress division (7.1.25) or α = 0 follows for N1ζ01 = N2ζ02, while
the one-sided division (7.1.31) or the limit of polymer solutions follows for N1ζ01 � N2ζ02

and N1ζ01φ1 � N2ζ02φ2, where α = 1/φ1. Furthermore, the reptation theory leads to the
expression for the friction coefficient ζ in (7.1.16) and (7.1.17),

1

ζ
= Ne

φ1 N1ζ01
+ Ne

φ2 N2ζ02
. (7.1.44)

These expressions will be derived on the basis of a concept of a tube velocity vvvt expressed
as

vvvt = α1vvv1 + α2vvv2 = vvv + φ1φ2αw, (7.1.45)

which has the meaning of the average velocity of the entanglement structure. It is equal
to the polymer velocity vvvp for polymer solutions. This concept was first introduced by
Brochard [21] to derive the mutual diffusion constant to be discussed below.

Constitutive equation

It is natural to claim that the network stress is determined by the gradient tensor of the tube
velocity vvvt [4]. In the linear response regime the network stress is then expressed as

σi j (t) =
∫ t

−∞
dt1Gxy(t − t1)κ

(t)
i j (t1), (7.1.46)

where κ
(t)
i j (t) is the tube velocity gradient tensor written as

κ
(t)
i j = ∇ivt j + ∇ jvti − 2

3
δi j∇ · vvvt. (7.1.47)

Case in which short chains are not entangled

So far we have assumed that both N1 and N2 exceed Ne. The intermediate case in which
N2 � Ne < N1 can also be considered. Here the shorter component acts as a solvent.
Obviously, we have the one-sided stress division (7.1.31) with vvvt ∼= vvv1, so

α ∼= 1/φ1, ζ ∼= φ2ζ02, L ∼= φ2
1φ2/ζ02. (7.1.48)

We may obtain these results by setting N2 = Ne in (7.1.43) and (7.1.44). It is natural that
these quantities are independent of N1, Ne, and ζ01.

Symmetric case without dynamical coupling

Many theories of polymer blends have been constructed for the symmetric case, N1 =
N2 = N and ζ01 = ζ02 = ζ0, neglecting the stress–diffusion coupling. Then the dynamics
is essentially the same as that of usual binary fluid mixtures. However, crossover effects
arise from the sensitive N dependence of the static and dynamic coefficients. Here,

L = φ1φ2 Ne/Nζ0, Dm = D1(1 − 2Nφ1φ2χ), (7.1.49)

where D1(∝ Ne/N 2) is the diffusion constant of a single chain in (7B.1). Note that the
hydrodynamic diffusion constant Dhyd = T/6πηξ can exceed the above Dm only very
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close to the critical point (ξ � RG N 1.5/Ne or |1 − χ/χc| � N 2
e /N 3) and is usually

negligible [1].

7.1.5 Mutual diffusion constant in polymer blends

We examine the mutual diffusion constant Dm in (7.1.24) in polymer blends in more detail
with the expression of ζ in (7.1.44). Supposing very viscous systems and neglecting the
hydrodynamic diffusion constant Dhyd, we have [21]–[26],

Dm = LT r = (φ2 N1 D1 + φ1 N2 D2)

(
φ2

N1
+ φ1

N2
− 2φ1φ2χ

)
, (7.1.50)

where D1 ∝ Ne/N 2
1 ζ01 and D2 ∝ Ne/N 2

2 ζ02 are the single-chain diffusion constants in
the reptation regime in (7B.1). If N1 � N2 and φ1 is not small, we find

Dm ∼= D2φ
2
1(1 − 2N2φ2χ). (7.1.51)

In this case the mutual diffusion is governed by the diffusion of the shorter chains. As a
result, Dm remains finite even in the gel limit N1 → ∞, as ought to be the case. However,
there were some controversies before the expression (7.1.50) was established [26]. We
stress that the concept of the tube velocity is essential in its derivation.

7.1.6 Relaxation of small concentration deviations

In the following theory it is important that the network dilation rate ∇ · vvvt is nonvanishing
when diffusion is taking place. This is an established result for polymer gels [17], but is not
trivial for other systems with transient entanglements. In the linear regime, (7.1.45) gives

∇ · vvvt ∼= αφ1φ2∇ · w ∼= −α
∂

∂t
δφ. (7.1.52)

We assume that the system is in a one-phase state (r > 0) without macroscopic flow and
all the deviations from equilibrium depend on space and time as exp(iq · r + iωt). Then
(7.1.33) may be linearized as

∂

∂t
δφ = iωδφ = −�qδφ − LαZ , (7.1.53)

with

Z = ∇∇ : →←
σσσ = −

∑
i, j

qi q jσi j , (7.1.54)

where

�q = LT q2(r + Cq2) = Dmq2(1 + ξ2q2) (7.1.55)
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is the decay rate in the absence of the dynamical coupling. In the linear regime (7.1.45)–
(7.1.47) for polymer blends ((7.1.36) and (7.1.37) for polymer solutions) yield

Z = −4

3
φ1φ2αη

∗(ω)q2(iq · w) = 4

3
αη∗(ω)q2(iωδφ) (7.1.56)

where use has been made of (7.1.52) and

η∗(ω) = 1

iω
G∗(ω) =

∫ ∞

0
dte−iωt Gxy(t) (7.1.57)

is the complex shear viscosity. We assume its behavior as

η∗(ω) ∼= η (ωτ � 1),
∼= G/ iω (ωτ � 1), (7.1.58)

where η is the zero-shear viscosity and G = η/τ is the shear modulus.2 From (7.1.54) and
(7.1.57) we have [

iω + �q +
(

4

3
Lα2

)
q2iωη∗(ω)

]
δφ = 0. (7.1.59)

Gel-like behavior for fast motion

For ωτ � 1, δφ relaxes as in gels and the concentration decay rate is given by

�gel(q) = �q + 4

3
Lα2Gq2 = L

(
T r + 4

3
α2G + T Cq2

)
. (7.1.60)

For small q the system relaxes diffusively with a gel diffusion constant,

Dgel = L

(
T r + 4

3
α2G

)
= Dm(1 + εr

−1). (7.1.61)

On the second line we have introduced a parameter εr defined by

εr = T r/

(
4

3
α2G

)
= Dm/

(
4

3
Lα2G

)
. (7.1.62)

We shall see that the dynamical coupling is strong for εr � 1 and weak for εr � 1.
For polymer solutions, Dm becomes the cooperative diffusion constant (7.1.27) and α =

1/φ, so that

Dgel = ζ−1
(

Kos + 4

3
G

)
, (7.1.63)

εr = 3Kos/4G. (7.1.64)

The above expression for Dgel coincides with the original one for gels [17]. It is important
that εr ∼ 102 for good solvent and εr ∼ 1 for theta solvent [14]. Therefore Dgel ∼= Dm for

2 The shear modulus is also written as µ for gels and solids.
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good solvent, whereas Dgel can be considerably larger than Dm for theta solvent. However,
in polymer blends, Dm tends to zero while Dgel remains finite near the critical point, so the
strong-coupling limit |εr| � 1 can be realized.

Renormalized kinetic coefficient for slow motion

For ωτ � 1 we may set η∗(ω) ∼= η∗(0) = η and rewrite (7.1.59) as [iω(1 + ξ2
veq2) +

�q ]δφ = 0, where we define the viscoelastic length by [4]

ξ2
ve =

4

3
Lα2η. (7.1.65)

The coupling parameter εr is then expressed as

εr = Dmτ/ξ
2
ve. (7.1.66)

The decay rate is modified as

�eff(q) = LT q2(r + Cq2)/(1 + ξ2
veq2)

= (Leff(q)/L)�q , (7.1.67)

with the renormalized kinetic coefficient,

Leff(q) = L/(1 + ξ2
veq2). (7.1.68)

An experimental result supporting the above effect is shown in Fig. 7.3 [27], which was
obtained from an asymmetric polymer blend undergoing slow phase separation, as will be
discussed in detail in Section 8.9. For polymer solutions we have

ξ2
ve ∼ η/ζ ∼ (η/η0)ξ

2, (7.1.69)

where ξ ∼ a/φ for theta solvent above the coexistence curve, so we confirm ξve � ξ . This
length was first introduced by Brochard and de Gennes [28] for semidilute solutions with
good solvent in the form ξve = (Dmτ)

1/2. The viscoelastic length ξve in polymer blends
can also be much longer than ξ , as will be discussed below.

In the case ξve � ξ the renormalized decay rate (7.1.67) behaves as

�eff(q) ∼= Dmq2 (q < ξ−1
ve ),

∼= Dm/ξ
2
ve

∼= εr/τ (ξ−1
ve < q < ξ−1),

∼= (εr/τ)(ξq)2 (q > ξ−1). (7.1.70)

We should not forget to require �eff(q)τ < 1 as the self-consistency condition. If εr � 1,
it is satisfied in the wide region qξ < ε

−1/2
r from the third line of (7.1.70). However, if

εr > 1, it is satisfied only in the narrow region qξve < ε
−1/2
r from the first line. Thus

there is almost no viscoelastic renormalization effect for εr > 1; namely, Leff(q) ∼= L for
any q. The viscoelastic effect becomes important rather suddenly for εr � 1. The simple
diffusion equation cannot be used for concentration variations changing more rapidly than
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Fig. 7.3. The normalized Onsager kinetic coefficient as a function of the wave number q in an
asymmetric polymer blend of PVME/d-PS observed in early-stage spinodal decomposition [27]. It
may be fitted to q−2 for q > R−1

0 = 10−3 Å−1. This value of R0 was five to seven times larger than
the gyration radius RG. In our theory it is identified with ξve in (7.1.72).

ξve for semidilute solutions with theta or poor solvent and entangled polymer blends with
εr � 1. If the spatial scale is longer than ξ , it should be modified as(

1 − ξ2
ve∇2) ∂

∂t
δφ = Dm∇2δφ. (7.1.71)

Viscoelastic length for polymer blends

For polymer blends ξve is given by

ξ2
ve =

4

3
(φ1φ2)

2
(

N1ζ01 − N2ζ02

φ1 N1ζ01 + φ2 N2ζ02

)2(
Ne

φ1 N1ζ01
+ Ne

φ2 N2ζ02

)
η, (7.1.72)

where use has been made of (7.1.43), (7.1.44), and (7.1.65). It is important that ξve can be
much longer than the gyration radius RG and the correlation length ξ . To see this, let us
roughly estimate it by setting ζ01 = ζ02 in the following cases.

(i) When N1/N2 − 1 ∼ 1 we find

ξ2
ve ∼ φ1φ2L2

t , (7.1.73)

where L t ∼ N−1/2
e N1a is the tube length in the reptation theory (see Appendix 7A).
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(ii) In the dilute limit φ2 → 0, ξ2
ve becomes proportional to φ2 as

ξ2
ve ∼ φ2

1

N1 N2
(N1 − N2)

2L2
t , (7.1.74)

where L t is the tube length composed of the host chains. Furthermore, if N1 � N2 � Ne,
we obtain ξve ∼ (N 3

1 /N2 Ne)
1/2φ

1/2
2 a. Thus ξve can be very long even for very small φ2.

7.1.7 Time-correlation function

We now show that the stress–diffusion coupling can explain the nonexponential decay of
dynamic light scattering, which has been observed in a variety of complex viscoelastic
fluids [6, 7]. Although our theory will be limited to incompressible polymer solutions
and blends, our mechanism will remain applicable to other fluid mixtures such as dense
suspensions, microemulsions, lyotropic polymeric liquid crystals, and fluids near glass
transitions.

We calculate the time-correlation function for the thermal fluctuations of the volume
fraction φ in equilibrium in one-phase states,

I (q, t) = 〈φq(t)φq(0)
∗〉, (7.1.75)

where 〈· · ·〉 is the equilibrium average and φq(t) is the Fourier component of φ(r, t). The
equal-time-correlation function will be assumed to be of the Ornstein–Zernike form (7.1.8)
The Laplace transformation (or the one-sided Fourier transformation) with respect to time
is written as

Î (q, ω) =
∫ ∞

0
dte−iωt I (q, t), (7.1.76)

which is analytic for Imω < 0.
In Appendix 7C, Î (q, ω) is calculated in the following form,

Î (q, ω) = Iq
1 + M∗(ω)q2

iω[1 + M∗(ω)q2] + �q
, (7.1.77)

with

M∗(ω) = 4

3
Lα2η∗(ω) = ξ2

veη
∗(ω)/η∗(0). (7.1.78)

For polymer solutions, (7.1.77) is rewritten as

−iω Î (q, ω)+ Iq = Tφ2q2
/[

iωζ +
(

Kos + 4

3
iωη∗(ω)+ φ2Cq2

)
q2

]
. (7.1.79)

The above expression reduces to that for theta solvent by Brochard and de Gennes for the
case of a single stress relaxation time [3]. In the real time representation, I (q, t) satisfies
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the following non-markovian equation,

İ (q, t)+ �q I (q, t)+ (q2ξ2
ve/η)

∫ t

0
dt ′G(t − t ′) İ (q, t ′) = 0, (7.1.80)

where İ (q, t) = ∂ I (q, t)/∂t .
Two limiting cases are as follows.

(i) When �qτ � 1 holds, we may set M∗(ω) = ξ2
ve to obtain

Î (q, ω) ∼= Iq
/

[iω + �eff(q)] or I (q, t) ∼= Iq exp[−�eff(q)t]. (7.1.81)

This renormalized exponential relaxation can be observed in semidilute solutions with theta
solvent and asymmetric polymer blends near the critical point.

(ii) The above formula indicates that I (q, t) remains nonvanishing even for t � 1/�q if
τ is very long. Let us assume τ�q � 1 and qξ < 1, in which we may set �q ∼= Dmq2. In
the weak-coupling case εr � 1, we obtain

Î (q, ω)/Iq ∼= [1 + M∗(ω)q2]/�q , (7.1.82)

for ω � 1/τ . This means that I (q, t) becomes proportional to the stress relaxation function
at long times as

I (q, t)/Iq ∼= (εrG)−1Gxy(t), (7.1.83)

for t � τ . Use has been made of the relation M∗(ω)/Dm = η∗(ω)T/Gεr. In the strong-
coupling case εr � 1 and ξveq � 1, we may set 1 + M∗(ω)q2 ∼= M∗(ω)q2 in (7.1.77),
so

Î (q, ω)/Iq ∼= 1/[iω + εrG/η∗(ω)]. (7.1.84)

Thus the decay rate is of order εr/τ and is longer than 1/τ . In this case the relaxation is
strongly governed by the viscoelastic coupling.

7.1.8 Maxwell model: single stress-relaxation time

Analytic calculations can be performed when the stress relaxes with a single relaxation
time [3]. The resultant predictions are in agreement with the general trends of experiments,
particularly those in Figs 7.1 and 7.2. That is, we assume that small deviations of the stress
tensor are governed by

∂

∂t
σi j = Gκ

(t)
i j − 1

τ
σi j , (7.1.85)

where κ
(t)
i j is defined by (7.1.47). From

∑
i j ∂

2κ
(t)
i j /∂xi∂x j = (4/3)∇2∇ · vvvt the quantity

Z in (7.1.54) obeys

∂

∂t
Z = −1

τ
Z + 4

3
Gαq2 ∂

∂t
δφ. (7.1.86)
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The coupling to δφ arises from the network dilation relation (7.1.52). Hereafter we assume
that all the deviations depend on space as exp(iq · r). From (7.1.53) δφ obeys

∂

∂t
δφ = −�qδφ − LαZ . (7.1.87)

Now (7.1.86) and (7.1.87) constitute a closed set of coupled equations for δφ and Z . If we
assume Z(0) = 0, (7.1.87) may be integrated to give the dynamic equation of δφ(t) in a
time-convolution form,

∂

∂t
δφ(t) = −�qδφ(t)− 4

3
α2LGq2

∫ t

0
dt ′ exp[−(t − t ′)/τ ]

∂

∂t ′
δφ(t ′). (7.1.88)

Jäckle and co-workers [29, 30] derived a dynamic equation of the same form assuming
that the chemical potential difference depends linearly on a slowly relaxing, scalar variable.
Their theory was also used near to the glass transition [30]. More recently, Clarke et al. [31]
also proposed a similar evolution equation to explain anomalous slow fluctuation growth
in early-stage spinodal decomposition of a highly entangled polymer blend. General so-
lutions of (7.1.86) and (7.1.87) are expressed as linear combinations of exp(−�1t) and
exp(−�2t), where the two relaxation rates, �1 and �2, are the roots of

�2 −
(

1

τ
+ �q + 4

3
α2GLq2

)
�+ 1

τ
�q = 0. (7.1.89)

In particular, τ�q � 1 holds at very long wavelengths, where

�1 ∼= �eff(q), �2 ∼= τ−1(1 + ξ2
veq2). (7.1.90)

We then examine the time-correlation function. The function M∗(ω) in (7.1.78) becomes

M∗(ω) = ξ2
ve/(1 + iωτ), (7.1.91)

because the complex viscosity behaves as

η∗(ω) = η/(1 + iωτ). (7.1.92)

As a result I (q, t) decays as

I (q, t)/Iq = χ1 exp(−�1t)+ χ2 exp(−�2t), (7.1.93)

where χ1+χ2 = 1. At small q, where �q � 1/τ , we have the two modes given in (7.1.90).
However, in dynamic light scattering experiments, the reverse condition �q � 1/τ is in
many cases satisfied. Here further calculations yield

�1 ∼= �gel(q), �2 ∼= �q/(τ�q + ξ2
veq2) = �q/τ�gel(q), (7.1.94)

where �gel(q) is defined by (7.1.60), and

χ2 ∼= ξ2
veq2/(τ�q + ξ2

veq2) = 1/[εr(1 + ξ2q2)+ 1]. (7.1.95)
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We furthermore assume q � ξ−1 to find

�1 ∼= Dgelq
2, �2 ∼= εr/(1 + εr)τ,

χ2 ∼= 1/(1 + εr), (7.1.96)

where Dgel is defined by (7.1.61). As εr → 0, we have I (q, t)/Iq ∼= exp(−�2t) with �2

smaller than 1/τ by εr, which agrees with (7.1.84).

7.1.9 Viscoelastic Ginzburg–Landau theory for polymer solutions

To describe viscoelastic effects on the concentration inhomogeneities in the Ginzburg–
Landau scheme, it is convenient to introduce a new dynamic variable

→←
W = {Wαβ}, which

is a symmetric tensor representing chain conformations undergoing deformations and is
analogous to the Finger tensor in (3A.13). Note that φ changes in time more rapidly than
→←

W even at relatively small wave numbers for entangled systems. We need to construct
a canonical form of dynamic equations or a set of Langevin equations satisfying the
fluctuation–dissipation relations [32]–[34]. Such formal frameworks for viscoelastic fluids
have already been presented but without discussions of phase transitions [35, 36]. In the
following we consider entangled polymer solutions in the semidilute regime (N−1/2 �
φ � 1). We will numerically solve the resultant dynamic equations to examine viscoelastic
spinodal decomposition in Section 8.9 and shear-induced phase separation in Section 11.2

For entangled polymers we may define
→←

W as follows. Let us consider entanglement
points Rn on a chain and number them consecutively along it as n = 1, 2, . . . , N/Ne,
where N/Ne is the number of entanglements on a chain. Then,

Wαβ = 1

Na2

〈N/Ne∑
n=1

(Rn+1 − Rn)α(Rn+1 − Rn)β

〉
chain

, (7.1.97)

where the sum is taken over entanglement points on a chain, and the average 〈· · ·〉chain

is taken over all chains contained in a volume element whose linear dimension is longer
than the gyration radius (∼ N 1/2a). In equilibrium we assume the gaussian distribution
of Rn+1 − Rn to obtain 〈Wαβ〉eq = δαβ , where 〈· · ·〉eq is the equilibrium average. We
generalize the free-energy functional in (7.1.2) to the following form

H{φ, →←
W } =

∫
dr

[
v−1

0 fsite(φ)+ T

2
C(φ)|∇φ|2 + 1

2
G(φ)Q(

→←
W )

]
(7.1.98)

where G(φ)(∼ T v−1
0 φαG ) is the shear modulus. The simple scaling theory gives αG = 3,

although αG ∼= 2.25 in experiments [14, 15]. The Q(
→←

W ) is a nonnegative-definite function
of

→←
W . In simulations, which will be explained in Sections 8.9 and 11.2, we assume the

simplest gaussian form,

Q(
→←

W ) = 1

2

∑
αβ

(Wαβ − δαβ)
2. (7.1.99)
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This form is questionable for large deformations, however. Alternatively, we may set Q =
I1 − ln I3 [33] or Q = 3 ln I1 − ln I3 [34], where I1 = ∑

α Wαα and I3 = det
→←

W. Such
forms are suggested by the finite-strain theory in Appendix 3A.

Because
→←

W represents the network deformation, its motion is determined by the polymer
velocity vvvp and its simplest dynamic equation is of the form

∂

∂t
Wαβ + (vvvp · ∇)Wαβ −

∑
γ

(Dαγ Wγβ + Wαγ Dβγ ) = −1

τ
(Wαβ − δαβ), (7.1.100)

where {Dαβ} is the gradient tensor of the polymer velocity,

Dαβ = ∂

∂xβ
vpα, (7.1.101)

and τ on the right-hand side of (7.1.100) is the stress relaxation time which is very long
in the semidilute region and behaves as (7.1.30). In the rheological literature [37, 38], the
left-hand side of (7.1.100) is called the upper convective time derivative, but it is known
that either classes of time derivative also satisfy the requirement of the frame invariance.
Once we have the free energy and the dynamic equation for

→←
W, we may calculate the

network stress tensor induced by
→←

W as

→←
σσσp = G

→←
W · ∂

∂
→←

W
Q + 1

2
G Q

→←
I

= G
→←

W · ( →←
W − →←

I )+ 1

4
G Q

→←
I . (7.1.102)

The first line holds for general Q and the second line for the special choice (7.1.99). (See
Appendix 7D for its derivation.) With the above results and (7.1.4), the force densities
Fp(= F1) and Fs(= F2) in the two-fluid dynamic equations (7.1.16) and (7.1.17) are
obtained as

Fp = −1

4
Q∇G + ∇ · →←

σσσp, Fs = η0∇2vvvs ∼= η0∇2vvv. (7.1.103)

The first term (∝ ∇G) in Fp arises from the concentration dependence of G (and is not
included in (7.1.31)).

Noise terms

We have obtained a closed set of dynamic equations for the gross variables. We may add
gaussian and markovian noise terms on the right-hand sides of the dynamic equations,
(7.1.21) for w, (7.1.34) for vvv, and (7.1.100) for

→←
W. The amplitudes of the noise terms

are determined from the fluctuation–dissipation relations [32]. Then these equations are
Langevin equations in the general scheme of Chapter 5.
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Adiabatic approximations

When we are interested in slow motions, the relative velocity w and the average velocity vvv

are determined in the adiabatic approximations (7.1.32) and (7.1.35). Then,

w = 1

ζ

[
−φ∇ δH

δφ
+ Fp

]
, (7.1.104)

−η0∇2vvv =
[
−φ∇ δH

δφ
+ Fp

]
⊥
= [

ζw
]
⊥, ∇ · vvv = 0, (7.1.105)

where the friction coefficient ζ(∝ φ2) is given by (7.1.26) and [· · ·]⊥ denotes taking the
transverse part. At this stage, w and vvv have been expressed in terms of φ and

→←
W in the adia-

batic limits, so that the independent dynamic variables are reduced from {δρ, φ,vvvp,vvvs,
→←

W }
to {φ, →←

W }.

Linearized equations

To linear order in the deviation δWαβ = Wαβ − δαβ , the network stress is expressed as

σαβ ∼= GδWαβ, (7.1.106)

and (7.1.100) becomes

∂

∂t
δWαβ = Dαβ + Dβα − 1

τ
δWαβ. (7.1.107)

Thus, in the linear regime, our Ginzburg–Landau model becomes essentially the same as
the Maxwell model with the dynamical stress–diffusion coupling. In the presence of weak
steady shear flow 〈vvv〉 = γ̇ yex , ex being the unit vector in the x direction, we may use
(7.1.100) to obtain δWxy = γ̇ τ . Then (7.1.106) yields the shear viscosity increase,

�η = η − η0 = Gτ, (7.1.108)

in the linear response regime. If �η � η0, the system becomes highly viscoelastic due
to deformations of

→←
W. In the reverse case of rapid motions with characteristic frequencies

much larger than τ−1, we integrate (7.1.107) as

δWαβ = ∂

∂xα
upβ + ∂

∂xβ
upα, (7.1.109)

where up(r, t) = ∫ t
0 dt ′vvvp(r, t ′) represents the displacement vector of the transient net-

work. Then (7.1.106) assumes the form of elastic stress with G being the shear modulus.

7.2 Dynamics in gels

With the formation of a network in polymer systems, fluid (sol) states change into soft
solid (gel) states. Such sol–gel phase transitions have long been studied in the literature [1].
Salient features at the transition point are singular critical behavior of the dynamic shear
modulus, G∗(ω) ∼ (iω)β [39], and a power-law decay of the (homodyne) dynamic light
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scattering amplitude, I2(q, t) ∼ t−n [40]. Interplay between phase separation and gelation
poses new problems in thermoreversible physical gels [41]. Field theoretical approach to
vulcanization via the replica technique is also worth mentioning [42]. There have also been
a number of experimental and theoretical studies on nematic elastomers [43], which exhibit
unique mechanical properties due to the coupling between molecular orientation and strain.
In this section, however, we will mainly treat phase transitions influenced by elasticity
in chemical gels, focusing on inhomogeneous network fluctuations. To this end we will
extend the mean field theory of macroscopic shape-change transitions in gels presented in
Section 3.5.

Near-equilibrium dynamics of the network fluctuations has been studied by dynamic
light scattering [17, 44]. Furthermore, with a lowering of the solvent quality, we encounter
three kinds of instabilities occurring successively or simultaneously. (i) In isotropic gels
immersed in solvent, a macroscopic instability occurs for Kos < 0 against a volume
change. In this process, a gel can remain transparent without small-scale phase separation
if the temperature change consists of very small and slow steps. It proceeds only with
absorption or desorption of solvent through the gel–solvent interface, so it is extremely
time-consuming unless the gel size is very small [45]. (ii) Dynamic critical behavior
detected by light scattering [44] can be expected near a bulk instability point, where
Kos + 4µ/3 = 0 in isotropic gels [46, 47]. Below this point spinodal decomposition takes
place, which we will investigate in Chapter 8. (iii) As the third kind of instability, a surface
instability can take place on a gel–solvent interface [48]–[51]. An example is given in Fig.
7.4. It is triggered for Kos + µ/3 < 0 in isotropic gels, but it can be induced more easily
on the surface of uniaxially stretched gels. Tanaka et al. [48] observed surface patterns
consisting of numerous line segments of cusps into the gel, transiently on the surface
of swelling gels and permanently on the surface of uniaxially swollen gels whose lower
surface is clamped to a substrate. The physical mechanism responsible for the development
of these patterns is now well understood, and they can be reproduced analytically [52, 53]
and numerically [54, 55].

A variety of shape changes have also been observed in shrinking gels, which include
surface bubbles [56], necklace-like bubbles, bamboos, and wrinkled tubes [57]. Repre-
sentative examples are shown in Fig. 7.5. There, a sudden shrinkage produced a dense
impermeable layer in the surface region, which caused an increase of the osmotic pressure
inside the sample and led to internal phase separation under a fixed volume [57]. Figure 7.6
shows stable two-phase coexistence on a cylindrical NIPA gel in a water–methanol mixture
[58], where the two phases were homogeneous and transparent and shear deformations
were induced near the interfaces under the condition µ � Kos.

7.2.1 The GLW hamiltonian for gels

We first consider neutral gels for simplicity and will later briefly treat weakly ionized
gels. A gel point is represented by r0 = (x01, x02, x03) in the as-prepared state and
by r = (x1, x2, x3) after deformation. Parameterization of physical quantities in terms
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Fig. 7.4. An ionized acrylamide gel formed in a Petri dish is allowed to swell in water. An extremely
fine pattern appears on the free surface of the gel, and coarsens with time (a→g) [48].

Fig. 7.5. Bubble and bamboo patterns in a shrinking cylindrical acrylamide gel immersed in an
acetone–water mixture [57]. A variety of patterns emerge depending on the acetone composition and
the degree of uniaxial stretching.

of r0 is called the Lagrange representation, while that in terms of r is called the Euler
representation. We have already introduced the deformation tensor �i j = ∂xi/∂x0 j in
(3.5.46) and the Finger tensor Wi j = ∑

k �ik� jk in (3A.13) [46, 52, 59]. The volume
fraction φ is expressed as (3.5.47) or

φ = φ0/[det{W }]1/2. (7.2.1)

Constructing the Ginzburg–Landau theory of gels is fairly straightforward using the free
energy (3.5.52), in which the elastic free energy is included, and the gradient term for
polymer solutions in (7.1.2). Using dr0 = drφ/φ0 we thus set up the GLW hamiltonian
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Fig. 7.6. Stable coexistence of swollen (Sw) and shrunken (Sh) phases observed on a cylindrical
NIPA gel in a water–methanol mixture [58].

H = Hφ +Hel in the Euler representation as

βHφ =
∫

dr
[
v−1

0 g(φ)+ 1

2
C |∇φ|2

]
, (7.2.2)

βHel =
∫

dr
φ

2φ0
ν0

∑
i

Wii , (7.2.3)

where g(φ) is a dimensionless free-energy density. For neutral gels it is given by (3.5.53)
(with f = 0). The term proportional to B in (3.5.43) is incorporated into g(φ). If we
impose the constraint (7.2.1) (or (3.5.47)), our hamiltonian is a functional of {Wi j }. In
contrast, in the viscoelastic model for polymer solutions in (7.1.98), φ and {Wi j } are treated
as independent variables because the network is transient. We note that the constraint
(7.2.1) ceases to be a good approximation on spatial scales shorter than the average distance
between the crosslink points.

We may calculate the stress tensor
→←
��� = {�i j } by superimposing an infinitesimal

additional displacement δu onto r and expressing the free-energy change as (6A.6) to first
order in δu. In this calculation we use the identities, δ�i j = ∂δui/∂x0 j and ∂δui/∂x j =∑

k �
k jδ�ik , where {� j i } = {∂x0 j/∂xi } is the inverse matrix of {�i j }. The incremental

change of φ is given by

δφ = −φ
∑

i j

� j iδ�i j = −φ
∑

i

∂δui

∂xi
. (7.2.4)

Note the general formula, ∂ ln[det
→←
A ]/∂Ai j = A ji for arbitrary matrix

→←
A . Then

→←
��� =

→←
���φ − →←

σσσ consists of two terms [52]. The first term is of the same form as that for binary
fluid mixtures in Chapter 6 and is determined by Hφ as

�φi j = T

[
v−1

0 (φg′ − g)− 1

2
∇ · (Cφ∇φ)− 1

2
φC∇2φ

]
δi j + T C

∂φ

∂xi

∂φ

∂x j
, (7.2.5)
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where g′ = ∂g/∂φ. The second term is the elastic part,

σi j = T ν0(φ/φ0)Wi j . (7.2.6)

The resultant force density acting on the network is simply of the form,

−∇ · →←
��� = −φ∇ δ

δφ
Hφ + ∇ →←

σσσ . (7.2.7)

In the Lagrange representation H can also be treated as a functional of r = r(r0). Using
(6A.6) we find (

δH
δr

)
r0

= φ0

φ
∇ · →←

���. (7.2.8)

Thus the extremum condition (δH/δr)r0 = 0 in the Lagrange representation is equivalent
to the stress balance condition in the Euler representation.

Gaussian approximation

With our model hamiltonian we examine small fluctuations around homogeneously de-
formed states in 3D. The deformation is represented by

xi =
∑

j

Ai j x0 j + ui , (7.2.9)

where u is a displacement vector. We are interested in the Fourier components uq with
q = |q| much larger than the inverse system size. As can be known from Appendix 3A, the
increase of H in the bilinear order is calculated as

δH = 1

2

∫
q

[(
Kos + µ

3
+ T Cφ2q2

)
|q · uq|2 + µJ (q̂)q2|uq|2

]
, (7.2.10)

where Kos and µ are defined by (3.5.57) and (3.5.54), respectively, and J (q̂) depends on
the direction q̂ = q−1q of the wave vector as

J (q̂) = (φ/φ0)
2/3

∑
i jk

Aik A jk q̂i q̂ j . (7.2.11)

The reference volume fraction φr = φ0/det
→←
A is written as φ for simplicity. Note that

the right-hand side of (7.2.10) takes the standard form of isotropic elasticity [60] in the
long-wavelength limit, since J (q̂) = 1 in the isotropic case. The thermal structure factor
in the mean field theory is written as

Ith(q) = 〈|φq|2〉 = Tφ2/[
Kos + µ

3
+ µJ (q̂)+ T Cφ2q2

]
, (7.2.12)

which depends on the direction q̂ even in the limit q → 0 in anisotropic gels.

(i) In the isotropic case, we have the usual Ornstein–Zernike form with the correlation
length ξ defined by

ξ−2 =
(

Kos + 4

3
µ

)
/(T Cφ2), (7.2.13)
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Fig. 7.7. Kos + 4µ/3 obtained from the inverse of the scattered light intensity from a 2.5% poly-
acrylamide gel [44].

Thus the intensity at long wavelengths diverges as Kos + 4µ/3 → 0. As shown in Fig. 7.7,
Kos + 4µ/3 ∼= 5 × 104(T/Ts − 1) dyn/cm2 with the spinodal temperature Tsp ∼= 260 K
and µ ∼ 102 dyn/cm2 in a 2.5% polyacrylamide gel [44].

(ii) For the uniaxial case (3.5.66), we have

J (q̂) = (λ2 − λ−1)q̂2
x + λ−1. (7.2.14)

The structure factor is then

Ith(q) = 〈|φq|2〉 = Tφ2
/[

Kos +
(

1

3
+ 1

λ

)
µ+

(
λ2 − 1

λ

)
µq̂2

x ++T Cφ2q2
]
, (7.2.15)

which is analogous to the structure factor of the spin fluctuations in Ising systems with
dipolar interaction [61]. For λ > 1 the thermal fluctuations of the network density are
weaker in the stretched direction than in the perpendicular directions even in the small-q
limit. However, this is apparently in contradiction with some scattering experiments, as
will be discussed in Section 7.3.

Bulk instability in uniaxial gels

With (7.2.15) we may identify the bulk spinodal point in uniaxially deformed gels. (i) For
stretching λ > 1, most enhanced are the long-wavelength fluctuations varying in the plane
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perpendicular to the uniaxial axis (qx = 0). Spinodal decomposition should take place for

Kos +
(

1

3
+ 1

λ

)
µ < 0, (7.2.16)

where we should observe cylindrical domains elongated in the stretched direction in late
stages. In agreement with this result, Horkay et al. [62] observed strong anisotropic domain
scattering from a stretched gel in theta solvent, which we will discuss again in Section 8.9.
(ii) For compression λ < 1, those varying in the uniaxial axis trigger the bulk instability
for

Kos +
(

1

3
+ λ2

)
µ < 0, (7.2.17)

where one-dimensional, lamellar-like domains should emerge.

Two-dimensionally constrained gels

A gel may change its shape only in one direction (parallel to the x axis) if its lower surface
is clamped onto a plate or if it is inserted into a glass tube in a shrunken state and is swollen
afterwards. Here the elongation ratio α⊥ in the perpendicular directions is held constant,
while the elongation ratio α‖ in the x direction or φ = (φ0/α

2
⊥)/α‖ is the order parameter.

We calculate the longitudinal osmotic modulus in the form,

K‖ = φ

(
∂

∂φ
�‖

)
Tα⊥

= Kos +
(

1

3
+ λ2

)
µ, (7.2.18)

where �‖ = �xx = T v−1
0 (φg′ − g) − T ν0(φ/φ0)α

2
‖ from (7.2.5) and (7.2.6). (i) In

the stretched case λ > 1, spinodal decomposition in the bulk region occurs under (7.2.16),
while K‖ > 0 or before onset of macroscopic instability. (ii) In the compressed case λ < 1,
(7.2.17) and (7.2.18) show that the two instabilities are both triggered simultaneously. In
summary of this uniaxial case, we predict that spinodal decomposition in the bulk region
will be observed before macroscopic shape changes both for λ > 1 and λ < 1. Another
uniaxial case under a constant stretching force was considered in Section 3.5, where a
macroscopic instability precedes spinodal decomposition.

7.2.2 Third-order elastic interaction: correspondence between gels and alloys

In the gaussian approximation, the longitudinal (‖ q) and transverse (⊥ q) components of
the displacement uq are decoupled as in (7.2.10). In Appendix 7E we shall see that they are
nontrivially coupled in the third order in H. In a gel with a clamped boundary, elimination
of the transverse displacement (minimization of the free energy at fixed space-dependent
volume fraction) yields

H(3)
el = −ggel

∫
drδφ

∑
i j

(
∇i∇ j

1

∇2
δφ

)2

, (7.2.19)
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where 1/∇2 is the inverse operator of ∇2. This interaction is of third order in the deviation
δφ = φ− φr, where φr = 〈φ〉 is the average volume fraction. Its strength is represented by

ggel = µ/2φ3
r . (7.2.20)

This form is applicable both in 2D and 3D. It is worth noting that a third-order interaction
of the same form arises in binary alloys in which the shear modulus depends on the com-
position as (10.1.8). From (10.1.37)–(10.1.41) in Chapter 10, we recognize that shrunken
(swollen) regions in gels correspond to harder (softer) regions in binary alloys because of
the minus sign in (7.2.19).3 Although this correspondence apparently contradicts the fact
that the shear modulus in gels decreases with swelling, it is supported by observations of
network formation of polymer-rich regions in unstable entangled polymer solutions [63].
It will also be supported by numerical analysis of phase separation in gels in Section 8.9.

The above elastic interaction may be calculated analytically for a spheroidal domain in
a metastable or unstable gel matrix. We assume that its shape is represented by x2/a2 +
(y2 + z2)/b2 = 1 and the volume fraction changes in a step-wise manner from φin inside
the ellipsoid and φr outside it. The domain is shrunken for �φ = φin −φr > 0 and swollen
for �φ = φin − φr < 0 as compared to the surrounding region. As in (10.1.62) for alloys,
we obtain

H(3)
el = −ggel(�φ)3Ve

[
1

3
+ 3

2

(
Nx − 1

3

)2]
, (7.2.21)

where Ve is the volume of the spheroid and Nx is the depolarization factor dependent on
a/b as in Fig. 10.7. The shape factor (Nx−1/3)2 is minimum for spheres and maximum for
pancake shapes for which a � b and Nx ∼= 1. We here present some predictions for phase-
separating neutral gels. (i) Shrunken domains will eventually take compressed shapes.
They will tend to touch one another to form a continuous phase even when their volume
fraction is relatively small. The characteristic thickness RE of compressed domains should
be determined from a balance of the surface free energy and the third-order-interaction in
the form

RE ∼ σ/(ggel|�φ|3), (7.2.22)

where σ is the surface tension. If the volume fractions in the two phases are not close and
|�φ| ∼ φr, Re is simply expressed as

RE ∼ σ/µ, (7.2.23)

which greatly exceeds the correlation length ξ for weak crosslinkage. (ii) Swollen domains
will not be much deformed from sphericity particularly for small droplet volume fractions.
(iii) Moreover, phase transitions in a clamped gel occur between homogeneous one-phase
states and two-phase states with pinned domains. They are discontinuous or hysteretic at
any network volume fraction. This means that there is no Ising-type critical point in the
presence of H(3)

el . The phase diagram of clamped neutral gels can be known from that of

3 The minus sign arises from the constraint (7.2.1), whereas there is no such constraint between the composition and the elastic
field in alloys.
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alloys in Fig. 10.15, where the polymer volume fraction in gels corresponds to the volume
fraction of the softer component in alloys.

7.2.3 Weakly charged gels

In Appendix 7F we will briefly explain the Debye–Hückel theory or random phase approxi-
mation (RPA) for charged polymer systems [64]–[68]. Let a small fraction f̂ of monomers
composing the chains be charged4 and salt ions be present with a small average density
2c̄sa. This theory is valid when the typical electrostatic energy e2c̄1/3

total/εs of the mobile ions

is much smaller than T or equivalently c̄total � κ3
Db [64], where c̄total = 2c̄sa + v−1

0 f̂ φ
is the total mobile-ion density and εs is the dielectric constant of the solvent. In this case
mobile ions are mostly moving in solvent, being not trapped by the chains, and screen
the Coulomb interaction between the opposite charges on the chains. The inverse Debye
screening length κDb is defined by

κ2
Db = 4π"Bc̄total, (7.2.24)

where

"B = e2/εsT (7.2.25)

is the Bjerrum length (of order 7 Å in water at 300 K). From (7F.6) the thermal structure
factor Ith(q) for gels can be obtained if 1 − 2χ in Kos for neutral gels is replaced by
1 − 2χ + v−1

0 4π"B f̂ 2/(q2 + κ2
Db), where χ is the interaction parameter assumed to be

independent of φ. The resultant q-dependent osmotic bulk modulus becomes

K (q) = Kos + v−2
0 Tφ2 4π"B f̂ 2

q2 + κ2
Db

= Tφ2

v0

[
1 − 2χ + φ + 4π"B f̂ 2

v0(q2 + κ2
Db)

]
+ T ν0

[
B
φ

φ0
− 1

3

(
φ

φ0

)1/3]
.

(7.2.26)

The second line is the result from the Flory–Huggins theory and the classical rubber theory.
As a generalization of (7.2.12), the thermal structure factor under anisotropic deformation
is written as

Ith(q) = Tφ2
/[

K (q)+ µ

3
+ µJ (q̂)+ T Cφ2q2

]
, (7.2.27)

which depends on q̂ through J (q̂). For the isotropic case, where J (q̂) = 1, Ith(q) can have
a peak at an intermediate wave number qm determined by

q2
m = v−1

0 (4π"B/C)1/2 f̂ − κ2
Db

= v−1
0 (4π"B/C)1/2[

f̂ − (4π"BC)1/2(2v0c̄sa + φ f̂ )
]
. (7.2.28)

4 The number of counterions per chain was written as f in (3.5.51) and is equal to N f̂ .
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The right-hand side is required to be positive here. Without salt (c̄sa = 0), it is satisfied
for sufficiently small φ because C ∝ φ−1. On adding salt, qm decreases and eventually
vanishes. If the right-hand side is negative, the peak of Ith(q) is at q = 0 as in neutral gels.
Moreover, as the solvent quality is decreased with qm > 0, we expect the occurrence of
microphase separation [65, 66]. The typical size of emerging domains will be of order q−1

m
in polyelectrolyte solutions without crosslinkage. However, the network elasticity can also
pin the domain growth even in neutral gels, as stated near (7.2.22). This means that we
need to take into account both the charge effect and the network elasticity to determine the
domain structure in polyelectrolyte gels.

7.2.4 Dynamic equations of gels

In gels swollen by solvent, network motion is highly damped by friction with the solvent,
so the network velocity with respect to the solvent velocity is given by [17, 46, 69]

vvv = −1

ζ
∇ · →←

��� = − 1

ζ

[
φ∇ δ

δφ
Hφ − ∇ →←

σσσ

]
, (7.2.29)

where ζ is the friction coefficient behaving as (7.1.26). In the Lagrange picture we have

vvv =
(
∂

∂t
r
)

r0

= −ζ−1 φ

φ0

(
δH
δr

)
r0

. (7.2.30)

This equation becomes a Langevin equation if we add the noise term to the right-hand
side which satisfies the fluctuation–dissipation relation. We will neglect the noise term for
simplicity.

We also consider the evolution equations for the deformation tensor �i j in (3.5.46) and
the Finger tensor Wi j in (3A.13) in the Euler representation. The Lagrange time derivative
(∂/∂t)r0 and the Euler time derivative ∂/∂t ≡ (∂/∂t)r are related by (∂/∂t)r0 = ∂/∂t +
vvv · ∇. Further, using the relation (∂�i j/∂t)r0 = ∂vi/∂x0 j =

∑
k(∂xk/∂x0 j )(∂vi/∂xk), we

obtain (
∂

∂t
+ vvv · ∇

)
�i j −

∑
k

Dik�k j = 0, (7.2.31)

(
∂

∂t
+ vvv · ∇

)
Wi j −

∑
k

(Dik Wkj + Wik D jk) = 0. (7.2.32)

where Di j = ∂vi/∂x j is the velocity gradient tensor in the deformed space. The equation
for {Wi j } coincides with (7.1.100) for polymer solutions in the limit τ → ∞. The
continuity equation for φ follows from (7.2.4) and (7.2.29) as

∂

∂t
φ = −∇ · (φvvv) = ∇ · L

(
∇ δHφ

δφ
− 1

φ
∇ · →←

σσσ

)
, (7.2.33)

where L = φ2/ζ is the kinetic coefficient consistent with (7.1.23) for φ � 1. Notice that
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(7.2.33) is of the same form as that of (7.1.33) derived on the basis of the stress–diffusion
coupling.

Linear dynamic equation

We consider relaxation of the displacement u in an affinely deformed state represented by
(7.2.9). From (7.2.33) the linearized dynamic equation reads [17]

∂

∂t
u = ζ−1

[(
Kos + 1

3
µ− T Cφ2∇2

)
∇(∇·u)+

∑
jk

µ jk∇ j∇ku
]
, (7.2.34)

where

µi j = T ν0(φ/φ0)
∑

k

Aik A jk (7.2.35)

is a shear modulus tensor. The deviation δφ then obeys

∂

∂t
δφ = ζ−1

[(
Kos + 1

3
µ− T Cφ2∇2

)
∇2 +

∑
jk

µ jk∇ j∇k

]
δφ. (7.2.36)

The decay rate of the Fourier component of δφ becomes

�q = ζ−1
[

Kos + 1

3
µ+ µJ (q̂)+ T Cφ2q2

]
q2, (7.2.37)

where J (q̂) = µ−1 ∑
jk µ jk q̂ j q̂k equivalently with (7.2.11).

(i) In the isotropic case, the diffusion constant is given by Dgel = ζ−1(Kos + 4
3µ) as

already derived in (7.1.63). This indicates critical slowing down for Kos+ 4
3µ → 0 [44, 70]

and spinodal decomposition for Kos + 4
3µ < 0. (ii) In the uniaxial case (3.5.66), the gel

diffusion constant behaves as

Dgel(q̂) = ζ−1
[

Kos +
(

1

3
+ 1

λ

)
µ+

(
λ2 − 1

λ

)
µq̂2

x

]
. (7.2.38)

Takebe et al. [71] performed dynamic light scattering from a uniaxially deformed gel with
good solvent and measured anisotropy in the diffusion constant Dgel(q̂) of the density
fluctuations. As displayed in Fig. 7.8, their data indicate that diffusion is faster in the
stretched direction than in the perpendicular directions, in reasonable agreement with
(7.2.38) (provided that the anisotropy of the friction coefficient ζ is negligible).

Two-fluid hydrodynamic equations

Following on from the work by Tanaka et al. [17], two-fluid hydrodynamic equations for
gels in the linear regime were presented by Marqusee and Deutch [72], which contain
the gel velocity vvv1 = ∂u/∂t and the solvent velocity vvv2. A more general set of dynamic
equations were proposed by Johnson [73], which takes into account a mass coupling effect
(a mass matrix) present in the hydrodynamic theory of porous media by Biot [74]. At low
frequencies these equations take essentially the same forms as (7.1.16) and (7.1.17) with
F1 = ∇ · →←

σσσ and F2 = η0∇2vvv2 [46], where →←
σσσ is the elastic stress tensor and η0 is the
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Fig. 7.8. Comparison between experimental (circles) and theoretical (dotted line) angular depen-
dences of the relative diffusion constant Dgel(θ)/D0 for a swollen polyacrylamide gel stretched by
λ = 2 [71]. Here D0 = 2.2×10−7cm2/s is the diffusion constant for λ = 1 at the same temperature.
The dotted line represents 0.78 cos2 θ + 0.61 where cos θ = qx/q.

solvent viscosity. As an application of the two-fluid description we now examine slow
transverse motion with frequencies much smaller than ζ/ρ in isotropic gels. Note that gels
can support transverse sound waves with the frequency (µ/ρ)1/2q at very low frequencies
(or very small q), where the network and the solvent move in phase and the total mass
density ρ = ρp + ρs appears here.

Because the displacement u is convected by the average velocity field vvv (= the average
of the polymer and solvent velocities as in (7.1.12)), we have

∂

∂t
u = vvv + ζ−1

[(
Kos + 1

3
µ

)
∇(∇ · u)+ µ∇2u

]
. (7.2.39)

As in the polymer solution case, we assume ∇ · vvv = 0. Analogously to (7.1.34), vvv obeys

ρ
∂

∂t
vvv = µ[∇2u − ∇(∇ · u)] + η0∇2vvv. (7.2.40)

These linear dynamic equations describe two characteristic kinds of collective modes in
gels; the longitudinal part of u or δφ obeys Tanaka’s diffusion equation [17], while the
transverse part and vvv are coupled to form slow transverse sound modes at small wave
numbers. More generally, by assuming the space–time dependence as exp(iqx + iωt), we
calculate the dispersion relation from(

iω + µ

ζ
q2

)(
iω + ηs

ρ
q2

)
+ µ

ρ
q2 = 0. (7.2.41)
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Fig. 7.9. Decay rate divided by q2 vs T in a 2.5% polyacrylamide gel [69]. The solid line represents
the Kawasaki–Stokes formula.

In the long-wavelength limit q → 0, we have sound modes, ω ∼= ±(µ/ρ)1/2q. For general
q , we have ω = ω+ or ω−, where

iω± = −1

2

(
η0

ρ
+ µ

ζ

)
q2 ± i

[
µ

ρ
− 1

4

(
η0

ρ
− µ

ζ

)2

q2
]1/2

q. (7.2.42)

Because µ/ζ � η0/ρ in weakly crosslinked gels, the modes are oscillatory only for q
smaller than

kc = 2(ρµ)1/2/η0. (7.2.43)

The corresponding crossover frequency ωc may be introduced by

ωc = µ/η0, (7.2.44)

which is equal to 1
2 (µ/ρ)

1/2kc = 1
4νk2

c and is very small. For q > kc we have two
overdamped modes. The slower mode decays with

iω− ∼= −ωc(1 + η0ζ
−1q2) ∼= −ωc, (7.2.45)

where η0q2/ζ � 1 because η0/ζ ∼ ξ2 with ξb ∼ a/φ being the blob size from (7.1.26).
The faster mode is nothing but the usual shear mode, iω+ = −(η0/ρ)k2. The kc and ωc

are estimated to be very small, 0.5 × 103 cm−1 and 0.7 × 104 s−1, respectively, in a 2.5%
polyacrylamide gel in Ref. [44].

Hydrodynamic interaction in weakly crosslinked gels

In weakly crosslinked gels, the hydrodynamic interaction should determine the magnitude
of the friction coefficient ζ as in semidilute polymer solutions or near-critical fluids. In fact,
as shown in Fig. 7.9, the Kawasaki–Stokes formula T/6πη0ξ in (6.1.24) nicely explained
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the diffusion constant in a dynamic light scattering experiment on a 2.5% polyacrylamide
gel [44]. Note that kc � q ∼ 105 cm−1 � ξ−1 was satisfied in this experiment. However,
to be precise, there should be a crossover when ξ becomes of order kc [46].

7.2.5 Dynamics of macroscopic instability in isotropically swollen gels

We now examine the dynamics of the macroscopic instability around Kos = 0 in isotropic
gels, where the fluctuations much smaller than the system size are suppressed by the finite
shear modulus. Let a spherical gel with radius R be immersed in solvent at zero-osmotic
pressure. The gel expands or shrinks isotropically and the displacement vector u is assumed
to be in the radial direction,

ui (r, t) = x̂i u(r)e
−�t , (7.2.46)

where u(r) is independent of the direction r̂ = r−1r. Because we treat the linear equations,
all the deviations may be assumed to depend on time as e−�t . In the dynamic equation
(7.2.34) we neglect the higher-gradient term (∝ C). Then,

u(r) = Ae−�t [sin(qr)− qr cos(qr)
] 1

q2r2
, (7.2.47)

where A is a small amplitude and

q = (�/Dgel)
1/2. (7.2.48)

The zero osmotic pressure condition, r̂ · →←
��� · r̂ = 0 at r = R, becomes(

Kos + 4

3
µ

)
∇ · u − 4µ

u

R
= 0. (7.2.49)

By setting Q = q R we readily find

1 + 3

4µ
Kos = 3

Q2

(
1 − Q

tan Q

)
. (7.2.50)

(i) When |Kos| � µ, we have |Q| � 1. Because the right-hand side of (7.2.55) behaves as
1 + 1

15 Q2 + · · · for |Q| � 1, we obtain Q2 ∼= 45Kos/4µ or

� ∼= 15ζ−1 R−2 Kos. (7.2.51)

Note that the gel diffusion constant Dgel remains finite at Kos = 0. (ii) For Kos � µ or far
above the macroscopic critical point, we have ∇ · u ∼= 0 at r = R, so that Q ∼= π and [45]

� ∼= π2ζ−1 R−2 Kos. (7.2.52)

In the theoretical literature, however, the distinction between the macroscopic and bulk
instabilities has not been well recognized [46, 47]. Experimentally it is subtle, because
considerable amounts of the critical fluctuations should be generated already at the point
Kos = 0 for small µ and the observation time should be longer than the relaxation time of
the macroscopic mode.
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Fig. 7.10. Solution w = w(εel) as a
function of the modulus ratio εel in
(7.2.55) obtained from the eigenvalue
equation (7.2.53) for the surface mode.
Here w → 0.9126 · · · as εel → ∞. The
relaxation rate of the surface mode is
expressed as (7.2.57) in isotropically
swollen gels and (7.2.59) in uniaxially
deformed gels.

7.2.6 Surface instability of gels

Isotropic case

We consider a slowly varying deviation u localized near a gel–solvent interface. If the
higher order gradient term (∝ C) is neglected, the problem reduces to that of the surface
(Rayleigh) sound wave on a planar stress-free surface [60]. We take the x axis in the normal
direction with the gel being in the lower region x < 0 and the solvent being in the upper
region x > 0. The space dependence on the plane may be assumed to be sinusoidal as
eiqy . Then we may set ∇y = iq and ∇z = 0. We need to solve the following eigenvalue
problem,

εel∇(∇ · u)+ ∇2u = −wq2u, (7.2.53)

which holds in the bulk region x < 0. The stress-free boundary condition at x = 0 becomes

εel∇ · u + ∇x ux − ∇yuy = 0, ∇x uy + ∇yux = 0, (7.2.54)

where

εel = 1

µ
Kos + 1

3
. (7.2.55)

As plotted in Fig. 7.10, w = w(εel) in (7.2.53) is a function of εel only and is the solution
of the following cubic polynomial equation [60],

(εel + 1)(w3 − 8w2 + 24w − 16) = 16(w − 1). (7.2.56)

In solids, the surface (Rayleigh) sound velocity cRay is related to w by cRay = (wµ/ρ)1/2,
ρ being the mass density, and the surface mode oscillates in time with the frequency
cRayq. In gels, the surface mode is overdamped as e−�t . From the linear dynamic equation
(7.2.34) the relaxation rate is expressed as

� = ζ−1µw(εel)q
2. (7.2.57)



350 Dynamics in polymers and gels

Fig. 7.11. The critical elongation ratio α⊥/α‖ = λ−3/2 vs εel for various values of the dimension-
less lateral wave number q∗ = σgs|q|/λ2µ for a semi-infinite uniaxially deformed gel. They are
determined by � = 0 in (7.2.59) and represent the instability curves at wave number (λ2µ/σgs)q∗
against surface undulations. The dashed curve represents the bulk spinodal line in (7.2.16) for λ > 1.

In our problem it is important that w(εel) tends to zero as w ∼= 2εel as εel → 0 [52, 53],
which readily follows from (7.2.56). Therefore, the surface mode is unstable for εel < 0.
Notice also that the surface tension effect has been neglected in the above arguments. The
surface tension σgs of the gel–solvent interface is expected to be of order T/ξ2 from the
scaling theory [1] and should play the role of suppressing small-scale surface disturbances.
A theory accounting for its presence [53] yields

� ∼= 2ζ−1
(

Kos + 1

3
µ+ 1

2
σgs|q|

)
q2, (7.2.58)

for small εel. In the early stage of the instability, the unstable wave number region is
bounded as |q| < 2|Kos + 1

3µ|/σgs.

Uniaxial case

We examine the surface mode on a gel deformed uniaxially as (3.5.66). (See Appendix 7G
for the details of the calculation.) Generalizing (7.2.57) and taking into account the surface
tension effect, we calculate the relaxation rate as [52, 53]

� = ζ−1µλ2
[
w(λ2εel)− 1 + 1

λ3
+

(
w1σgs

λ2µ

)
|q|

]
q2, (7.2.59)

where w1 is a number of order 1. In particular, for εel � 1 or Kos � µ, the surface
instability occurs for

λ−3 � 0.1 or λ � 2, (7.2.60)
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Fig. 7.12. Schematic representation of a
2D swollen network, which initially
formed a periodic square lattice before
swelling [81]. Here the bonds shown as
thick lines cannot be elongated and
represent frozen blobs.

because w(λ2εel) ∼= 0.9 from Fig. 7.10. In Fig. 7.11 we show the curves of � = 0 in the
plane of εel = Kos/µ+ 1/3 and α⊥/α‖ = λ−3/2 for several values of q∗ ≡ σgs|q|/(λ2µ).
Below these curves, surface undulations with wave numbers smaller than (λ2µ/σgs)q∗ are
unstable. The dashed curve is the bulk spinodal line for the case λ > 1 determined by
(7.2.16).

7.3 Heterogeneities in the network structure

Heterogeneities are inherent in randomly crosslinked networks [75]. They play the role
of quenched (frozen) randomness, producing quasi-static network deformations [75]–[80].
The scattering from such systems is sometimes larger than that from a semidilute solution
with the same concentration at small q. As illustrated in Fig. 7.12, Bastide and Leibler [81]
argued that the network heterogeneities produce quasi-static, long-range, elastic deforma-
tions uR with swelling and the resultant concentration fluctuations (∝ ∇ ·uR) are the origin
of the excess scattering. The scattering amplitude from heterogeneous gels then consists
of the dynamic and static components; the former arises from the thermal fluctuations and
decays as exp(−Dgelq2t) in time, while the latter is static and does not decay in dynamic
light scattering. In addition, the scattering amplitude from heterogeneous gels strongly
depends on the scattering position. Interestingly, as shown in Fig. 7.13, Matsuo et al. [79]
found that the space averages of the two components, the static ĪS and the dynamic ĪD,
grow strongly as a spinodal temperature Tsp is approached. Remarkably, the growth of ĪS

is stronger than that of ĪD. Furthermore, ĪS depends strongly on the temperature Tpre at
which the gel was prepared, whereas ĪD is insensitive to Tpre. That is, ĪS grows if Tpre is
close to Tsp.

Recently, much attention has been paid to anomalously anisotropic quasi-static fluctua-
tions in uniaxially stretched gels, detected by small-angle neutron scattering [75, 82, 83].
We show the isointensity curves of the scattered intensity I (qx , qy) in Fig. 7.14(a) and
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Fig. 7.13. The dynamic and static scattered light intensities, ĪD and ĪS, respectively, from a hetero-
geneous NIPA gel with Ts = 306.4 K [79]. Both components grow strongly as the instability point
is approached.

Fig. 7.14. (a) Isointensity curves of small-angle neutron scattering as a function of the elongation
ratio λ in a swollen gel [82]. (b) Scattered intensities in the parallel and perpendicular directions,
I‖(q) and I⊥(q), as a function of q in the same experiment.



7.3 Heterogeneities in the network structure 353

the parallel and perpendicular components, I‖(q) = I (q, 0) and I⊥(q) = I (0, q), re-
spectively, in Fig. 7.14(b) [82]. We can see that the intensity is largest at small q in the
stretched direction (abnormal butterfly pattern). A similar trend was also found in blends
of crosslinked and linear polystyrene [78]. This finding at small q apparently contradicts
our theoretical intensity (7.2.15) from the thermal fluctuations, which indicates a normal
butterfly pattern. Bastide et al. [84] intuitively argued that the static density fluctuations
become stronger in the stretched direction than in the perpendicular directions.

We will give a simple theory of the static heterogeneities, which is a generalization of
a theory by the present author [85]. We will obtain essentially the same results as those
of a subsequent theory by Panyukov and Rabin [86]. However, because we will use a
perturbation theory, our theory will not be applicable near the instability point where the
heterogeneities are much enhanced, as in Fig. 7.13.

7.3.1 Heterogeneous crosslinkage

Let crosslinks be formed in a semidilute polymer solution at the preparation of a gel, where
the polymer volume fraction is φ0 on the average. The space position in the gel in the
as-prepared state will be denoted by r0. Note that r0 is the original position to be shifted to
r = r(r0) after deformation. We then argue that there are two origins of heterogeneities in
the crosslink density. (i) If the crosslinks form independently of one another, there arises
an intrinsic crosslink density deviation νin(r0) with no long-range correlation,

〈νin(r0)νin(r′0)〉 = pinν0δ(r0 − r′0), (7.3.1)

where ν0 is the average crosslink density. The dimensionless coefficient pin is expected to
be of order 1. It is in fact equal to 1 if the crosslink number in a small fixed volume obeys
a poissonian distribution (like the particle number in a fixed volume in a dilute gas). (ii)
We note that the crosslink can be formed at points where monomers of different parts of
the chains are in close contact, so that the crosslink density is proportional to the contact

(or entanglement) point density ∝ ξ−3
pre , where ξpre ∝ φ

−ν̂/(3ν̂−1)
0 is the blob size or the

correlation length of the semidilute solution in the as-prepared state. (See the sentences
below (7.1.26) for the explanation of blobs.) Therefore, if there is a small inhomogeneous
deviation δφ0(r0) in the volume fraction at the instant of crosslink formation, it induces a
crosslink density deviation νφ(r0) proportional to the deviation of ξ−3

pre as

νφ(r0) = A0ν0φ
−1
0 δφ0(r0), (7.3.2)

where the coefficient,

A0 = φ0
∂

φ0
ln(ξ−3

pre ) = 3ν̂/(3ν̂ − 1), (7.3.3)

is determined by the exponent ν̂, so A0 = 3 in theta solvent (ν̂ = 1/2) and A0 = 9/4 in
good solvent (ν̂ = 3/5). It follows that the correlation of νφ(r0) is proportional to that of
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the deviation δφ0(r0) as

〈νφ(r0)νφ(r′0)〉 = A2
0ν

2
0φ

−2
0 〈δφ0(r0)δφ0(r′0)〉. (7.3.4)

Now the crosslink density consists of three parts as

ν(r0) = ν0 + νin(r0)+ νφ(r0). (7.3.5)

If νin and νφ are sufficiently small, they should be independent of each other. We may
then write the structure factor of the deviation δν = νin+νφ immediately after the crosslink
formation as ∫

dr0〈δν(r0)δν(0)〉 exp(iq0 · r0) = pinν0 + A2
0ν

2
0φ

−2
0 I0(q0), (7.3.6)

where I0(q0) is the structure factor of the volume-fraction fluctuations at the instant of the
gel preparation. It is important that the crosslink heterogeneity forms quenched disorder
fixed to the network, so that the crosslink number ν(r)dr in a small volume element dr
in the deformed state coincides with that, ν(r0)dr0, in the initial volume element dr0 =
drφ/φ0 in the original state under the mapping relation r = r(r0). Therefore, if the gel is
anisotropically deformed as (7.2.9), the correlations of the crosslink density deviations in
the Euler representation are expressed as

〈νin(r)νin(r′)〉 = pinν0(φ0/φ)δ(r − r′), (7.3.7)

〈νφ(r)νφ(r′)〉 = A2
0ν

2
0φ

−2
0 〈δφ0(

→←
A−1 · r)δφ0(

→←
A−1 · r′)〉. (7.3.8)

where we have assumed r = →←
A · r0 and r′ = →←

A · r′0 neglecting the small displacement u in
(7.2.9). The structure factor of δν in the deformed gel is thus written as

〈|νq|2〉 =
∫

dr〈δν(r)δν(0)〉 exp(iq · r) = ν0φ0

φ

[
pin + A2

0
ν0

φ2
0

I0(
→←
A · q)

]
. (7.3.9)

If the preparation is made in good solvent, we simply have 〈|νq|2〉 ∼= pinν0φ0/φ. Con-
versely, if the semidilute solution is close to the solution critical point at preparation [79],
we have 〈|νq|2〉 ∼= 9(ν2

0/φ0φ)I0(
→←
A · q) by setting A0 = 3 at small q.

In our theory, the elastic free energy is assumed to be given by (7.2.3) with ν0 being
replaced by ν0 + δν. Therefore, the random hamiltonian is written as

HR = 1

2
T

∫
dr0δν

∑
i j

�2
i j , (7.3.10)

in the Lagrange description. More generally, the random hamiltonian can be of the form,

HR =
∫

dr0

∑
i jk

σ
(R)
i j �ki�k j , (7.3.11)

where σ
(R)
i j represents a random internal stress produced at the crosslinkage [87, 88]. The

deviatopic part σ (R)
i j − δi j

∑
k σ

(R)
kk /3 can be important in nematic networks composed
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of rod-like molecules [89]. There, elimination of the elastic field gives rise to quenched
disorder acting on the orientational traceless tensor Qi j .

7.3.2 Frozen random deformations

First we consider neutral gels. If the crosslink density is inhomogeneous as ν = ν0 + δν,
the stress tensor

→←
��� in (7.2.5) and (7.2.6) consists of that with the homogeneous part ν0 and

that proportional to the heterogeneous part δν. The latter can be expressed as

�hetero
i j = T (φ/φ0)[Bδi j − Wi j ]δν, (7.3.12)

where B is the coefficient in the classical rubber theory in (3.5.43). The random static
dilational strain gR = ∇ · uR can be conveniently calculated from

∑
jk ∇ j∇k� jk = 0. To

linear order in δν we may use the expression (7G.1) for the deviation of the stress tensor.
Together with (7.3.12), we find[(

Kos + µ

3
− T Cφ2∇2

)
∇2 +

∑
jk

µ jk∇ j∇k

]
gR = T

φ

φ0

[
B∇2 −

∑
jk

W jk∇ j∇k

]
δν.

(7.3.13)
With the aid of the definition of J (q̂) in (7.2.14), the Fourier transformation of (7.3.13)
yields

gR(q) =
[

Bα−2 − J (q̂)

εel + J (q̂)+ Ĉq2

]
1

ν0
νq, (7.3.14)

where α = (φ0/φ)
1/3, εel is defined by (7.2.55), and Ĉ = T Cφ2/µ. The structure factor

of the frozen concentration fluctuations thus becomes

IR(q) =
[

J (q̂)− Bα−2

εel + J (q̂)+ Ĉq2

]2
φ2

ν2
0

〈|νq|2〉, (7.3.15)

where 〈|νq|2〉 is given by (7.3.9). Although Ĉ is independent of q̂ from our GLW hamil-
tonian (7.2.2), we allow its q̂ dependence. It is required from the experiment [82], which
showed Ĉ‖ > Ĉ⊥ under uniaxial extension, Ĉ‖ and Ĉ⊥ being the values of Ĉ(q̂) in the
stretched and perpendicular directions, respectively. Notice that there should generally be
higher-order gradient terms proportional to qi qkuq j u∗

q" in the free energy (7.2.10). For

anisotropically deformed gels such terms should give rise to an angle-dependent Ĉ(q̂).
The total intensity I (q) is the sum of the heterogeneity contribution IR(q) and the

thermal contribution Ith(q):

I (q) ∼= φ2α

ν0

[
1

εel + J (q̂)+ Ĉ(q̂)q2
+ p(q)α2

(
J (q̂)− Bα−2

εel + J (q̂)+ Ĉ(q̂)q2

)2]
, (7.3.16)

where

p(q) = 〈|νq|2〉φ/ν0φ0 = pin + A2
0ν0φ

−2
0 I0(

→←
A · q). (7.3.17)
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At large q, the first term in the brackets of (7.3.16) behaves as q−2 and the second term
as q−4. Therefore, the thermal fluctuations dominate over the frozen fluctuations at large
q, in agreement with the experiments. For theta solvent the above expression and that of
Panykov and Rabin [86] coincide at small q (� R−1

G ) if comparison is made using A0 = 3
in (7.3.3) and their theoretical value pin = 3.

Isotropically swollen gels

In a swollen isotropic state, where J (q̂) = 1 and Bα−2 � 1, the intensity takes a Debye–
Bueche form [90],5

I (q) ∼= φ2T

Kos + 4µ/3

[
1

1 + ξ2q2
+

(
α2

εel + 1

)
p(q)

(1 + ξ2q2)2

]
. (7.3.18)

The static contribution to the pair correlation function behaves as exp(−r/ξ) in space. In
the long-wavelength limit, the ratio of the two contributions is written as

IR(0)/Ith(0) = p(0)α2/(εel + 1) = p(0)(φ0/φ)
2/3µ/(Kos + 4µ/3). (7.3.19)

The excess scattering increases with increasing swelling ratio and even becomes dominant
as Kos + 4µ/3 → 0, consistent with the experimental results shown in Fig. 7.13. Here
it is instructive to calculate the local variance of the static deviation δφR = −φgR of the
volume fraction. For simplicity, we set p(q) = pin to obtain

〈δφ2
R〉 =

∫
q

IR(q) ∼ pin
[
φ0v0ν0/(εel + 1)

]1/2
. (7.3.20)

For the validity of our perturbation theory, the above variance should be much smaller than
φ2. However, as Kos + 4µ/3 → 0, it grows and our theory becomes inapplicable.

Uniaxial stretching and shear deformation

For the uniaxial stretching represented by (3.5.66), J (q̂) is written as (7.2.14) in terms
of the stretching ratio λ. We numerically calculate I (q) from (7.3.16) setting λ = 2,
εel = 4, Bα−2 = 0, and p(q) = pin, where the second term (∝ I0) in (7.3.17) is
neglected. As shown in Fig. 7.15, we obtain a normal butterfly pattern at pinα

2 = 0.1
and an abnormal butterfly pattern at pinα

2 = 1.3. In these two cases, p(q) and Ĉ(q̂)
are constants independent of q for simplicity. We can see changeover from the normal to
abnormal butterfly patterns for pinα

2 � 1.
As another example, let us apply a shear deformation, where Ai j = α(δi j + γ δi xδ j y), γ

being the shear strain. Then φ0/φ = α3 as in the uniaxial case, and

J (q̂) = 1 + 2γ q̂x q̂y + γ 2q̂2
x . (7.3.21)

We first examine the scattering in the qx –qy plane by setting q̂x = cos θ and q̂y = sin θ ;

5 As an example, this form was obtained for a material with holes of varying and undetermined shapes (or in the presence of
random interfaces) [90].
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Fig. 7.15. Theoretical intensity from (7.3.16) in the uniaxial case λ = 2 in the qx –qy plane
(|qx |, |qy | < 2C−1/2) with εel = 4 and Ĉ = 2 [85]. (a) Normal butterfly pattern at pinα

2 = 0.1.
(b) Abnormal butterfly pattern at pinα

2 = 1.3.

then, the maximum J+ and minimum J− of J (q̂) are given by

J± = 1 + 1

2
γ 2 ± γ

2

√
4 + γ 2. (7.3.22)

The maximum is attained in the most stretched direction θ = θmax = π/4− tan−1(γ /2)/2,
where θmax decreases from π/4 to 0 with increasing γ (> 0). The minimum is attained at
θ = θmax+π/2. Figure 7.16(a) shows I (q) for p(q) = pin, Bα−2 = 0, and Ĉ = const. We
can see rotation of the maximum direction from the normal to abnormal butterfly pattern in
the qx –qy plane. In Fig. 7.16(b) we also show patterns in the qx –qz plane. These patterns
are very analogous to those from sheared polymer solutions in theta solvent, as will be
discussed in Chapter 11.

Remarks

It is surprising that even weak and short-range randomness in the crosslinkage (elastic
quenched disorder) can produce enhanced, long-range static composition heterogeneities
with large swelling or in the vicinity of the instability point. However, it remains unknown
how the enhanced heterogeneities affect the phase transition and phase separation. Notice



358 Dynamics in polymers and gels

Fig. 7.16. Theoretical butterfly patterns under shear deformation at εel = 4 [85]. (a) In the qx –qy

plane we show the normal pattern for pinα
2 = 0.1 and γ = 1 (left) and the abnormal one for

pinα
2 = 1 and γ = 4 (right). (b) In the qx –qz plane we show the normal pattern for pinα

2 = 0.1
and γ = 1 (left) and the abnormal one for pinα

2 = 1 and γ = 3 (right).

that the perturbation scheme used to derive (7.3.16) breaks down near the spinodal point
Kos + 4µ/3 ∼= 0. We can well expect that domains of a shrunken (or swollen) phase are
created and pinned in regions with the crosslink density higher (or lower) than the average.

7.3.3 Heterogeneities in weakly charged gels

In anisotropically deformed, weakly charged gels, the thermal structure factor is given
by (7.2.27). In the presence of crosslink heterogeneities the static density heterogeneities
appear, as in neutral gels. Also in this case the charge effect can be accounted for by
replacement, Kos → K (q) in (7.2.26). As a result, we obtain the total structure factor [68],

I (q) ∼= φ2α

ν0

[
1

ε(q)+ J (q̂)+ Ĉ(q̂)q2
+ p(q)α2

(
J (q̂)− Bα−2

ε(q)+ J (q̂)+ Ĉ(q̂)q2

)2]
, (7.3.23)
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where ε(q) = K (q)/µ+1/3. This structure factor can have a peak at an intermediate wave
number. For the isotropic case, its condition is given by the positivity of the right-hand
side of (7.2.28). For q � R−1

G the above expression is essentially the same as a more
complicated one by Rabin and Panyukov [67] and agrees with the general trend of the
experiment [83].

Appendix 7A Single-chain dynamics in a polymer melt

We first consider a polymer melt composed of monodisperse long chains. An important
parameter is the average monomer number Ne (∼ 100) between consecutive entanglement
points on a chain. For N < Ne, entanglements may be neglected and the single-chain
motion is described by the Rouse dynamics,

v0ζ0
∂

∂t
Rn = T

a2

∂2

∂n2
Rn + fn (0 ≤ n ≤ N ), (7A.1)

where v0ζ0 is the microscopic friction coefficient per monomer, ∂Rn/∂n = 0 at n = 0 and
N , and fn(t) is the random force characterized by

〈 fµn(t) fνn′(t
′)〉 = 2T v0ζ0δµνδnn′δ(t − t ′). (7A.2)

Then the slowest variation (Rn ∝ cos(πn/N )) gives the longest relaxation time (Rouse
time),

τRouse = π−2(a2/T )v0ζ0 N 2. (7A.3)

The diffusion constant of the mass center RG = N−1 ∑
n Rn is determined by the average

random force N−1 ∑
n fn and is known to be DRouse = T/v0ζ0 N from (7A.2) with the aid

of (5.1.30) and (5.1.31).
For N > Ne, the single-chain motion is described by the reptation dynamics [1, 2, 91].

In the theory, each chain is regarded as a reptile passing through a curved tube with radius
dt and length L t estimated as

dt = N 1/2
e a, L t = (N/Ne)dt = (N/N 1/2

e )a, (7A.4)

where a is the monomer size. The diffusion constant of a chain through a tube is inversely
proportional to the polymerization index N as Dt = T/v0ζ0 N , where v0ζ0 N is the friction
coefficient per chain. This is of the same form as the diffusion constant of a chain in the
Rouse dynamics. Thus the disentanglement (reptation) time τ in which a chain escapes
from a tube is calculated as

τ = L2
t /Dt = (v0ζ0a2/T )N 3/Ne. (7A.5)

On this timescale, the center of mass of a chain moves a distance on the order of

(N/Ne)
1/2dt = N 1/2a, (7A.6)
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so that the translational diffusion constant of a chain is

D = Na2/τ = (T/v0ζ0)Ne/N 2. (7A.7)

The effective friction constant is then equal to T/D = v0ζ0 N 2/Ne per chain, which is
larger than that in the Rouse model by N/Ne. Next, macroscopic rheology is considered.
Entangled polymers behave as gels (or soft elastic materials) with shear modulus,

G = T/a3 Ne, (7A.8)

against deformations with timescales shorter than τ . The stress relaxation time is given by
τ and the zero-shear (newtonian) viscosity is estimated as

η = Gτ = (v0ζ0/a)N 3/N 2
e . (7A.9)

These expressions for D and η reduce to those of the Rouse model for N ∼ Ne. However,
a number of measurements have shown the behavior η ∝ N 3.4 [1, 2]. The origin of the
discrepancy in the exponent of N has not yet been conclusively identified.

Appendix 7B Two-fluid dynamics of polymer blends

The reptation concepts need to be applied to the dynamics of a mixture of two species of
polymers, 1 and 2. The polymerization index Ne between entanglement points is assumed
to be common for the two species and both species are entangled (N1 > Ne and N2 >

Ne). Then, each polymer undergoes reptation motion in common tubes. As in (7A.7), the
diffusion constants of a single chain belonging to the two species are

DK = (T/v0ζ0K )Ne/N 2
K , (K = 1, 2), (7B.1)

where ζ0K are the microscopic friction coefficients of the two species. For macroscopically
homogeneous deformations, the shear modulus is again given by (7A.8). If the tubes are
naively assumed to be stationary during reptation motion of each chain, a simple mixing
rule for the stress relaxation function is obtained as

G(t) = φ1G1(t)+ φ2G2(t), (7B.2)

where G K (T ) are those of the pure components. However, the above form is known to only
poorly explain a number of experiments presumably due to release of the tube constraints.
A more successful and still simple mixing rule is known as double reptation [91]–[93], of
the form

G(t) =
[
φ1

√
G1(t)+ φ2

√
G2(t)

]2
, (7B.3)

which accounts for (i) the reptation motion of each chain and (ii) the relaxation of con-
straints on a given chain by reptation of its neighbors.
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For not too small volume fractions, we should consider the mutual diffusion constant
Dm between the two components. It may be derived from the two-fluid hydrodynamic
equations. Assuming (7.1.4) we write the two-fluid dynamic equations of blends as

ρK
∂

∂t
vvvK = −ρK∇µK − ζK (vvvK − vvvt)+ FK , (K = 1, 2). (7B.4)

The friction terms on the right-hand sides arise when the velocities are different from the
velocity of the network structure or the tube velocity vvvt [21]. Because of the force balance
between the two components, we should require

ζ1(vvv1 − vvvt)+ ζ2(vvv2 − vvvt) = 0. (7B.5)

This equation is solved to give

vvvt = 1

ζ1 + ζ2
(ζ1vvv1 + ζ2vvv2). (7B.6)

Because

vvv1 − vvvt = ζ2

ζ1 + ζ2
(vvv1 − vvv2), vvv2 − vvvt = ζ1

ζ1 + ζ2
(vvv2 − vvv1), (7B.7)

the friction coefficient ζ between the two components in (7.1.16) and (7.1.17) becomes

ζ = ζ1ζ2/(ζ1 + ζ2). (7B.8)

The friction coefficients ζ1 and ζ2 per unit volume should tend to be of microscopic sizes
for N1 ∼ N2 ∼ Ne or in the Rouse limit, and they are proportional to N1 and N2 in the
entangled case. Thus we find

ζ1 = φ1ζ10 N1/Ne, ζ2 = φ2ζ20 N2/Ne. (7B.9)

which leads to the expression for ζ in (7.1.44).
The principle of positive-definiteness of the heat production rate can be conveniently

used to seek fundamental dynamical relations. When the mixture is slightly displaced from
equilibrium, the total free energy in our system is written as

HT = H{φ} +
∫

dr
[

1

2ρ̄2 KT
(δρ)2 + 1

2
ρ1vvv

2
1 +

1

2
ρ2vvv

2
2

]
. (7B.10)

The first term is given by (7.1.2). Using the dynamic equations (7.1.11), (7.1.16), and
(7.1.17), we obtain

d

dt
HT =

∫
dr

[−ζw2 + vvv1 · F1 + vvv2 · F2
]
. (7B.11)

Our simple assumption here is that the heat production rate is determined in the form

− d

dt
HT =

∫
dr

[
ζw2 + ∇vvvt : →←

σσσ
]

(7B.12)
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in terms of the tube velocity vvvt. It then leads to the intermediate stress division (7.1.38)
with

α1 = ζ1/(ζ1 + ζ2), α2 = ζ2/(ζ1 + ζ2). (7B.13)

We can express α as (7.1.39) and vvvt as (7.1.45).
The above theory is highly phenomenological involving various assumptions. It is proba-

bly the simplest theory consistent with the existing molecular models and the experimental
results. The validity of the assumptions should be critically checked in future study.

Appendix 7C Calculation of the time-correlation function

Following Ref. [3] we apply small, fictitious external fields acting on the two components
in a polymer blend. The change in the free energy is

δHext =
∫

dr(δρ1U1 + δρ2U2), (7C.1)

Then the forces on the two polymers are −ρ1∇U1 (K = 1, 2), and they should be added
to the right-hand sides of (7.1.16) and (7.1.17). As a result the expression for w is modified
as

w = (φ1φ2/ζ )

[
−∇ ∂H

∂φ
+ α∇ · →←

σσσ − ρ∇(U1 − U2)

]
. (7C.2)

We hereafter assume that U1 − U2 ∝ exp(iq · r + iωt) in space and time. We modify
(7.1.59) as [

iω + �q +
(

4

3
Lα2

)
q2iωη∗(ω)

]
δφ = −ρLq2(U1 − U2). (7C.3)

The general linear response theory [94] leads to the relation,

δφ = −(ρ/T )
[
Iq − iω Î (q, ω)

]
(U1 − U2), (7C.4)

where Iq and Î (q, ω) are given by (7.1.8) and (7.1.76), respectively. Comparison of (7C.3)
and (7C.4) yields

−iω Î (q, ω)+ Iq = T Lq2
/[

iω + �q +
(

4

3
Lα2

)
q2iωη∗(ω)

]
. (7C.5)

Note that both sides of (7C.5) tend to Iq as ω → 0. Some manipulations readily lead to
(7.1.77).

Appendix 7D Stress tensor in polymer solutions

We derive the reversible part of the stress tensor
↔
� arising from the deviations of φ and

→←
W neglecting dissipation for polymer solutions. We follow the method for near-critical
fluids in Appendix 6A. The velocity difference w between polymer and solvent will also
be neglected. We consider a small fluid element at position r and at time t . Due to the
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velocity field vvv the element is displaced to a new position, r′ = r + u with u = vvvδt , after a
small time interval δt . Then the volume element dr′ and the volume fraction are changed
as dr′ = dr(1 + ∇ · u) and φ′(r′) = φ(r), respectively. The change of

→←
W is calculated

from (7.1.102) as

W ′
i j (r

′) = Wi j (r)+
∑

k

(D̃ik Wkj + Wik D̃ jk), (7D.1)

where D̃i j = ∂ui/∂x j is the strain tensor. The increment of H{φ, →←
W } in accord with these

changes is expressed as (6A.6), which yields �i j . After some calculations we obtain

→←
��� =

[
1

ρ̄KT
δρ − f + 1

2
C |∇φ|2

]
→←
I + C(∇φ)(∇φ)− →←

σσσp, (7D.2)

where →←
σσσp is given in (7.1.102). The total stress tensor is the sum of

→←
��� and the viscous

stress − →←
σσσvis.

Appendix 7E Elimination of the transverse degrees of freedom

Here we are interested in heterogeneous fluctuations much shorter than the system size in
an isotropically swollen gel with average polymer volume fraction φr. We may then impose
the clamped boundary condition (u = 0 on the boundary). Assuming no macroscopic
swelling from a reference state (α = 1), we set

r = r0 + u or r0 = r − u, (7E.1)

where u is a small displacement vector. We use the Euler representation and treat the
original gel position r0 as a function of the final position r. Then the inverse matrix of
�i j in (3.5.46) is expressed as

�i j = ∇ j x0i = δi j − Di j , (7E.2)

where ∇ j = ∂/∂x j and Di j = ∇ j ui . In 3D, the relative volume fraction ( ≡ φ/φr can be
divided into four terms, each being of nth order in u (n = 0, . . . , 3):

( = det{∇ j x0i } = 1 − ∇ · u + J2 − J3, (7E.3)

where

J2 = 1

2

∑
i j

[
Dii D j j − Di j D ji

]
, J3 = det{Di j }. (7E.4)

Because of the clamped boundary condition, the space averages become

〈(〉 = 1, 〈∇ · u〉 = 〈J2〉 = 〈J3〉 = 0. (7E.5)
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As in (3.5.48) or (7.2.3) the elastic free energy in our theory is proportional to the first
rotational invariant I1 = ∑

i j �
2
i j in (3A.4). In terms of ( and Di j , I1 is expressed as

(2 I1 =
∑
i �= j

[
�i i� j j − �i j� j i ]2 +

∑
i �= j �=k

[
�i j�kk − �ik�k j ]2

= 4(− 1 + 1

2

∑
i j

(Di j + D ji )
2 + X3 + X4. (7E.6)

In the second line the linear term −4∇ · u has been expressed in terms of (. Though not
explicitly expressed, X3 and X4 are the third- and fourth-order terms. Retaining the first
two terms in the above expression, we clearly obtain the usual expression for the elastic
free energy (3A.18).

In order to minimize the space integral of (I1 with ( = ((r) held fixed, we introduce

G =
∫

dr
[

1

2
(I1 + h

(
(− 1 + ∇ · u − J2 + J3

)]
=

∫
dr

[
2 − 1

2(

]
+

∫
dr

[
1

4(

∑
i j

(Di j + D ji )
2 + h((1 + ∇ · u)

]
+ · · · ,

(7E.7)

where h = h(r) is a space-dependent Lagrange multiplier required from the constraint
(7E.3). The terms proportional to X3, X4, J2, and J3 are not written in the second line.
We can show self-consistently that h is of order (1 ≡ ( − 1. To leading order in (1, the
minimization condition (δG/δu)( = 0 yields the first-order solution u = u(1) with

u(1) = ∇w, (7E.8)

where w is the solution of the Laplace equation,

∇2w = (1. (7E.9)

It then follows the expansion h = −(1 + · · · . Up to second order in (1, we thus find
G = G0 with

G0 =
∫

dr
[

3

2
+ 1

2
(1 + 1

2
(2

1

]
. (7E.10)

Next we consider the third-order contributions. (i) In calculating the third-order term X3

in the second line of (7E.6), we may use (7E.8) to obtain

X3 = 6J3 +(3
1 −(1

∑
i j

(∇i∇ jw)2, (7E.11)

where J3 is defined by (7E.4) and its space integral vanishes as in (7E.5). (ii) From the
second line of (7E.7), we find two third-order contributions; one is equal to the space
integral of −(1

∑
i j (∇i∇ jw)2 and the other is written as

G3 =
∫

dr
∑

i j

(∇i∇ jw)(∇i u
(2)
j + ∇ j u

(2)
i ) = −2

∫
dr(1∇ · u(2), (7E.12)
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where u(2) is the displacement of order (2
1. The constraint (7E.3) yields

∇ · u(2) = 1

2
(2

1 −
1

2

∑
i j

(∇i∇ jw)2. (7E.13)

Up to the third order we finally have

G = G0 − 1

2

∫
dr(1

∑
i j

(∇i∇ jw)2. (7E.14)

Appendix 7F Calculation for weakly charged polymers

In weakly charged polymers in theta or poor solvents [65]–[68], we write the number
density of monovalent counterions in the solvent as ni. Further assuming the presence of
salt ions with unit charges ±e, we set up the following free-energy functional:

βHch =
∫

dr
[
ni ln ni + ci ln ci + csa ln csa

] + "B

2

∫
dr

∫
dr′

n(r)n(r′)
|r − r′| , (7F.1)

where ci is the salt counterion density and csa the salt co-ion density. The last term is the
electrostatic energy in a solvent with dielectric constant εs, and "B is the Bjerrum length
defined by (7.2.25). The charge density is written as

n(r) = np(r)− ni(r)+ csa(r)− ci(r), (7F.2)

where

np(r) = v−1
0 f̂ φ(r) (7F.3)

is the density of ions attached to the polymer chains. The f̂ is the fraction of charged
monomers. The space averages satisfy n̄ p = n̄i and c̄s = c̄i . In the RPA approximation we
assume that the deviations, δni = ni − 〈ni〉, δci = ci − 〈ci〉, and δni = ni − 〈ni〉 are small
compared with the averages. Then, in the bilinear order in the deviations, the free energy
is written in terms of the Fourier component as

βδHch = 1

2

∫
q

[
1

n̄i
|ni(q)|2 + 1

c̄sa
|ci(q)|2 + 1

c̄sa
|csa(q)|2 + 4π"B

q2
|n(q)|2

]
. (7F.4)

We define the Debye–Hückel free-energy functional HDH{φ} by

exp(−βHDH) =
∫

Dni

∫
Dci

∫
Dcsa exp(−βHch). (7F.5)

In the RPA approximation the functional integrations over the thermal fluctuations of ci,
csa, and ni may easily be performed to give

βHDH = V

(
n̄i ln n̄i + 2c̄sa ln c̄s − 1

12π
κ3

Db + · · ·
)
+

∫
q

2π"B

κ2
Db + q2

|np(q)|2, (7F.6)

where κ−1
Db is the Debye screening length defined by (7.2.24) in terms of the total mobile

charge density c̄total = n̄i + 2c̄sa. For c̄total � κ3
Db, under which the RPA approximation
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is valid, the dominant contribution to the thermodynamic free energy the translational
entropy of the total mobile ions (counterions and salt ions), see also (3.5.49). The gaussian
integrations give rise to the following contribution to the free energy:

1

2
V

∫
q

ln(1 + κ2
Db/q2) = V (κ3

Db/4π2)[�/κDb − π/3 + · · ·]. (7F.7)

The first term in the brackets depends on the upper cut-off wave number � but is simply
proportional to c̄total, so it can be omitted in (7F.6). The first nontrivial correction in the
Helmholtz free energy is thus written as [64]

(�F)DH = − 1

12
V T κ3

Db. (7F.8)

Appendix 7G Surface modes of a uniaxial gel

We consider the surface mode in the uniaxial case. From (7.2.5) and (7.2.6) the deviation
of the stress tensor as

δ
→←
��� i j =

[
−

(
K + µ

3
−T C∇2

)
δi j +µi j∇i∇ j

]
∇ ·u−

∑
k

[
µik∇ku j +µ jk∇kui

]
. (7G.1)

Hereafter the higher-order gradient term (∝ C) will be neglected. From (7.2.35) we have
µi j = µδi j [(λ2 − λ−1)δi x + λ−1]. Then the eigenvalue equation to be solved in the region
x < 0 is written as

εel∇(∇ · u)+ (
λ2∇2

x − λ−1q2)
u = −w̃q2u. (7G.2)

Some manipulations cause the above equation to assume the same form as (7.2.53) for the
isotropic case,

ε̃el∇(∇ · u)+ ∇2u = −(λ−2w̃ + 1 − λ−3)q2u, (7G.3)

where ∇2 = ∇2
x − q2 and

ε̃el = εel/λ
2. (7G.4)

In calculating the boundary condition at x = 0, we first note the relation, �i j = (µxx −
µyy)δi j (δ j y + δ j z) + δ�i j , which follows from 〈�i j 〉 = (φ f ′ − f )δi j − µi j and (7G.1).
Second, the normal unit vector is written as n = (1,−∂ux/∂y, 0). From these two relations
the stress-free boundary condition

→←
��� · n = 0 turns out to be of the same form as (7.2.54)

with εel being replaced by ε̃el. Thus the results for the isotropic case can be used to give

w̃ = λ2[w(ε̃el)− 1 + λ−3]. (7G.5)
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Part three

Dynamics of phase changes





8

Phase ordering and defect dynamics

When an external parameter such as the temperature or the pressure is changed, physical
systems in a homogeneous state often become unstable and tend to an ordered phase
with broken symmetry [1]–[6]. The growth of order takes place with coarsening of do-
main or defect structures. Such ordering processes are observed in many systems such
as spin systems, solids, and fluids. Historically, structural ordering and phase separation
in alloys has been one of the central problems in metallurgy. These highly nonlinear
and far-from-equilibrium processes have recently been challenging subjects in condensed
matter physics. We will review various theories of phase ordering, putting emphasis on the
dynamics of interfaces and vortices. As newly-explored examples we will discuss spinodal
decomposition in one-component fluids near the gas–liquid critical point induced by the
piston effect, that in binary fluid mixtures near the consolute critical point adiabatically
induced by a pressure change, that under periodic quenching, and that in polymers and
gels influenced by stress–diffusion coupling. A self-organized superfluid state will also
be investigated, which is characterized by high-density vortices arising from competition
between heat flow and gravity.

8.1 Phase ordering in nonconserved systems

8.1.1 Model A

We analyze the phase ordering in model A with a one-component order parameter (n = 1)
given by (5.3.3)–(5.3.5). The temperature coefficient r is changed from a positive to a
negative value at the instant of quenching t = 0 as

r = κ2
0 (t < 0), r = −κ2 (t > 0). (8.1.1)

If the system is quenched from a disordered state at a relatively high temperature, we have
κ2

0 � κ2. After the quench, ψ obeys

∂

∂t
ψ = −L

[
−κ2 − ∇2 + u0ψ

2
]
ψ + Lh + θ. (8.1.2)

The random noise term θ(r, t) is characterized by (5.3.4). The coefficient K of the gradient
term in (5.3.5) is set equal to 1 and the shift r0c in (4.1.17) is not written for simplicity.
Hereafter we will examine mainly the case h = 0 and 〈ψ〉 = 0. Effects of a small magnetic
field will be examined in Section 8.2.
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Our problem is highly nontrivial because of the simultaneous presence of the gradient
and nonlinear terms in (8.1.2). From (5.2.17) the equal-time structure factor I (k, t) evolves
for t > 0 and h = 0 as

∂

∂t
I (k, t) = 2L

{
κ2[1 − J (k, t)] − k2}

I (k, t)+ 2L , (8.1.3)

where

J (k, t) = u0

∫
dreik·r〈ψ(r, t)3ψ(0, t)〉/κ2 I (k, t) (8.1.4)

arises from the nonlinearity. At large t we shall see that ψ(r, t) locally saturates into either
of ±ψeq with ψeq = κu−1/2

0 . Then we have domains with a characteristic size "(t) growing
in time. The thermal correlation length in the two phases and the interface thickness are
given by ξ = 2−1/2κ−1. If the thermal fluctuations of ψ are neglected, ψ2 ∼= ψ2

eq holds
except for the interface region. This means that J (k, t) → 1 for "(t) � ξ and k �
"(t)−1, but it is not obvious in what manner it tends to 1. The following theories indicate
1 − J (0, t) ∝ t−1 at h = 0 as t → ∞.

Exponential growth and the Ginzburg criterion

If u0 is very small, the nonlinear term proportional to u0ψ
3 in (8.1.2) is negligible at an

early stage. As discussed in Section 5.3, the Fourier component ψk depends on time as
exp(−�k t) with

�k = L(−κ2 + k2). (8.1.5)

In the long-wavelength region k < κ , �k is negative and the fluctuations grow exponen-
tially. The maximum growth rate is attained at k = 0 and is written as

γ0 = Lκ2. (8.1.6)

The small-scale fluctuations with k � κ decay with �k ∼= Lk2 and are little affected by
quenching. We integrate (8.1.3) neglecting J (k, t) to obtain the structure factor I0(k, t) =
〈|ψk(t)|2〉 in the linear approximation:

I0(k, t) = exp(−2�k t)

κ2
0 + k2

+ exp(−2�k t)− 1

κ2 − k2
. (8.1.7)

At very long wavelengths (k � κ) and after a time of order γ−1
0 , the above expression is

simplified as

I0(k, t) ∼= (κ−2
0 + κ−2) exp(2γ0t − 2Lk2t). (8.1.8)

The exponential growth leads to eventual breakdown of the linear approximation itself.
To check it, we decouple the four-body correlation function in J (k, t). Then it becomes
independent of k as

J (k, t) ∼= 3u0κ
−2〈ψ(r, t)2〉 ∼= 3Kdu0κ

−2
∫ κ

0
dqqd−1 I (q, t), (8.1.9)
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where we have picked up the growing fluctuations (q < κ) only. The Kd is the geometrical
factor defined by (4.1.16). We now replace I (q, t) on the right-hand side by I0(k, t) in
(8.1.8). Furthermore, in the time region t � γ−1

0 , we notice κ � (Lt)−1/2 and may push
the upper bound of the q integration to infinity. Thus,

J (k, t) ∼ (Kdu0κ
−ε)(γ0t)−d/2e2γ0t , (8.1.10)

where ε = 4 − d. If Kdu0κ
−ε � 1, J (k, t) remains much smaller than 1 over a sizable

time region and exponential growth will be observed. Here it turns out to be small when
the Ginzburg condition (4.1.24) holds and the mean field critical behavior is realized for
ε > 0.

Notice that u0κ
−ε is a unique parameter characterizing the model at h = 0 af-

ter the model is made dimensionless. In fact, let the space, time, and ψ be measured
in units of κ−1, (Lκ2)−1, and ψeq; then, the fluctuation–dissipation relation becomes
〈θ(r, t)θ(r′, t ′)〉 = 2u0κ

−εδ(r−r′). This form indicates that the noise strength is character-
ized by u0κ

−ε . If h �= 0, another relevant dimensionless parameter is the scaled magnetic
field h∗ = h/κ2ψeq.

Roles of the three terms

(i) The nonlinear term (∝ u0ψ
3) gives rise to saturation of ψ into ψeq or −ψeq. To see

this, we neglect the gradient term (∝ ∇2ψ) and the random noise term, to obtain

∂

∂t
ψ = −L(−κ2 + u0ψ

2)ψ. (8.1.11)

Because Y (t) ≡ ψ2
eq/ψ

2 obeys the linear equation,

∂

∂t
Y = −2γ0(Y − 1), (8.1.12)

(8.1.11) is integrated to give

ψ(t) = ψ(0)ψe
/ {

ψ(0)2 + [ψe
2 − ψ(0)2]e−2γ0t

}1/2

∼= ϕ(t)
/ [

1 + αϕ(t)2
]1/2

, (8.1.13)

with

α = 1/ψ2
eq = u0/κ

2. (8.1.14)

The second line of (8.1.13) holds for |ψ(0)| � ψeq, and

ϕ(t) = ψ(0)eγ0t . (8.1.15)

For γ0t � 1, ψ(t) approaches ψeq or −ψeq depending on the sign of the initial value ψ(0).
Figure 8.1 displays the behavior of ψ(t)/ψeq.

(ii) The role of the noise term is as follows. As (8.1.8) indicates, if κ0 � κ , the coefficient
of the exponential factor in the fluctuation intensity turns out to be κ−2 due to the random



376 Phase ordering and defect dynamics

Fig. 8.1. ψ(t)/ψeq as given by the first line of (8.1.13). The numbers in the figure are the initial
values at t = 0.

0.5 2 5

10 20 40

Fig. 8.2. Pattern evolution with time in model A with κ = L = 1 in the presence of the gaussian
noise term θ . The dynamic equation is discretized on a 128 × 128 lattice with �x = 1 and �t =
0.002. The numbers are the times in units of γ−1

0 after quenching.

agitation in the time region 0 < t < γ−1
0 . However, once the fluctuation level much

exceeds the thermal order, the evolution of ψ becomes insensitive to the thermal noise.
The random noise term is no longer important in the later stages of pattern evolution.

(iii) The gradient term limits the instability only in the long-wavelength region (k < κ)
during the initial stage and creates the interfaces of the domains in the later stages.
Coarsening is then driven in the direction of decreasing the interface area.
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Fig. 8.3. Variance
√
〈ψ2〉 divided by ψeq for model A with (solid line) and without (dashed line)

the noise term for t > 0. The initial ψ on each lattice point are commonly gaussian random numbers
with variance 0.1ψeq. Each curve is the result of a single run.

8.1.2 Late-stage behavior and the structure factor (n = 1)

Before proceeding to nonlinear theories, we show a numerical solution of (8.1.2) at h = 0
in the presence of the noise term θ in 2D in Fig. 8.2. We can see intricate patterns of
the two-phase structure with the thermal fluctuations superimposed, which are symmetric
between the two phases and are percolated throughout the system. Figure 8.3 displays
the dimensionless variance

√
〈ψ2〉/ψeq for the same run (solid line), together with the

same quantity for another run without thermal noise. In the late stage t � 10γ−1
0 , ψ

saturates into either ψeq = κ/u1/2
0 or −ψeq except for the interfacial regions with thickness

ξ = 2−1/2κ−1. The characteristic length of the patterns grows as

"(t) =
√

Lt or κl(t) = √
γ0t . (8.1.16)

Note that "(t) does not depend on the quench depth and much exceeds ξ for t � γ−1
0 . The

total free energy of the system at zero magnetic field is then

H = σ S(t)+ const., (8.1.17)

where σ ∼ Tψ2
eq/κ is the surface tension and S(t) is the total surface area of order V/"(t).

The patterns are self-similar if they are scaled by "(t). As a result, the pair correlation
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function behaves as

〈ψ(r1, t)ψ(r2, t)〉 ∼= κ2β/νgth(κr)+ ψ2
eqG(r/"(t)), (8.1.18)

where r = |r1 − r2|. The first term represents the thermal pair correlation. The second
term arises from the two-phase structure and is determined by the surface pattern only. For
r � "(t) the two points are mostly within the same domain, so that G(0) = 1. The Fourier
transformation gives the structure factor,

I (k, t) ∼= κ−γ /ν fth(k/κ)+ ψ2
eql(t)d F("(t)k), (8.1.19)

where fth and F are the d-dimensional Fourier transformations of gth and G, respectively.
The ratio of the domain to thermal contribution in (8.1.14) is

ψ2
eq"(t)

d/κ−γ /ν ∼ [κ"(t)]d , (8.1.20)

at long wavelengths k � "(t)−1. Use has been made of ψ2
eq ∼ κ2β/ν ∼ κd−γ /ν which

follows from the scaling relations in Chapter 2. The above ratio can be very large in the
late stage. Because of this large difference, the thermal structure factor will be neglected in
much of the following discussion.

As will be shown in Appendix 8A, the domain structure factor, written as Idom(k, t), has
the Porod tail in the region "(t)−1 � k � κ ,

Idom(k, t) = ψ2
eq"(t)

d F("(t)k) ∼= γdψ
2
eq

A

kd+1
, (8.1.21)

where γd is 8π in 3D and 8 in 2D, and A is the interface area (line) density for 3D (2D), so
A ∼ 1/"(t). Comparing the two contributions in (8.1.18) at such large k, we find that the
domain structure factor is larger than the thermal structure factor for

k < κ[κ"(t)]−1/(d+1). (8.1.22)

The upper limit on the right-hand side decreases with time and is smaller than κ , but is
much larger than "(t)−1. We shall see the Porod tail obtained numerically or experimentally
in Fig. 8.9 for the nonconserved case and in Figs 8.13, 8.18 and 8.24 for the conserved case.

8.1.3 The Suzuki and Kawasaki–Yalabik–Gunton theories

Nonlinear transformation leading to linear theory

Suzuki [7] presented a compact dynamic theory to describe bifurcation of a single variable
(ψ(t) → ±ψeq) neglecting space dependence and taking into account the nonlinear
and noise terms. Kawasaki, Yalabik, and Gunton (KYG) [8] extended Suzuki’s theory to
construct approximate space-dependent solutions of (8.1.2) after quenching with h = 0.
KYG used the nonlinear transformation (8.1.13) to introduce a new field ϕ(r, t),

ψ(r, t) = ϕ(r, t)
/[

1 + αϕ(r, t)2]1/2
. (8.1.23)
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The inverse relation is

ϕ(r, t) = ψ(r, t)
/[

1 − αψ(r, t)2]1/2
. (8.1.24)

Then (8.1.2) at h = θ = 0 is rewritten as

∂

∂t
ϕ = L

[
κ2 + ∇2]

ϕ − 3Lαϕ

1 + αϕ2
|∇ϕ|2. (8.1.25)

KYG neglected the last term of (8.1.25) to obtain

∂

∂t
ϕ = L

[
κ2 + ∇2]

ϕ. (8.1.26)

This linearization approximation is valid during the very early stage of pattern evolution,
but is not justified at the late stage, as discussed at the end of this section. Then, if ϕ is
a gaussian random variable at t = 0, it remains so at later times and the variance of its
Fourier component is

〈|ϕ(k, t)|2〉 = χk exp[2L(κ2 − k2)t], (8.1.27)

where χk is the initial intensity.
With this approximation a one-point distribution function is defined as

ρ1(ψ, t) = 〈δ(ψ(r, t)− ψ)〉

= (1 − αψ2)−3/2
〈
δ

(
ϕ(r, t)− ψ√

1 − αψ2

)〉
. (8.1.28)

Here ϕ(r, t) at each point is gaussian with the variance,

β(t) = 〈ϕ(r, t)2〉 =
∫

q
χq exp

[
2L(κ2 − q2)t

]
∼= χ0(8πLt)−d/2e2γ0t . (8.1.29)

In the second line the initial correlation is assumed to be short-range and χq is replaced by
χ0. It then follows Suzuki’s distribution function,

ρ1(ψ, t) = 1√
2πβ(t)(1 − αψ2)3

exp

[
− 1

2β(t)

ψ2

1 − αψ2

]
. (8.1.30)

This distribution is zero for |ψ | ≥ α−1/2 = ψeq. Its time evolution is illustrated in Fig. 8.4.
At long times it has two peaks at ψ ∼= ±ψeq and the peak width is determined by

1 − ψ2/ψ2
eq � ψ2

eq/β(t) ∼ (Kdu0κ
−ε)−1(γ0t)d/2e−2γ0t . (8.1.31)

The right-hand side is the inverse of J (k, t) in (8.1.10). For t � γ−1
0 the peak width

decreases rapidly and we may set

ψ(r, t) ∼= ψeq
ϕ(r, t)

|ϕ(r, t)| , (8.1.32)

as ought to be the case except for the interface regions.
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Fig. 8.4. The distribution function ρ1(ψ, t) defined by (8.1.30) for β(t)/ψ2
eq = 0.02 (a); 0.2 (b);

0.33 (c); 0.5 (d); 1 (e); and 4 (f). The function β(t)/ψ2
eq is the scaled variable τ in Suzuki’s theory

[7].

Pair correlation function

Next we may calculate the pair correlation function,

g(r, t1, t2) = 〈ψ(r1, t1)ψ(r2, t2)〉, (8.1.33)

where r = |r1 − r2|. The two times t1 and t2 can be different here. Use of (8.1.23) gives

g(r, t1, t2) =
∫

dϕ1

∫
dϕ2

ϕ1

(1 + αϕ2
1)

1/2

ϕ2

(1 + αϕ2
2)

1/2
P0(ϕ1, ϕ2), (8.1.34)

where P0(ϕ1, ϕ2) is the two-point distribution function of ϕ1 = ϕ(r1, t1) and ϕ2 =
ϕ(r2, t2). It may be constructed in terms of the variances among these quantities,

β1 = 〈ϕ(r1, t1)
2〉, β2 = 〈ϕ(r2, t2)

2〉, β12 = 〈ϕ(r1, t1)ϕ(r2, t2)〉, (8.1.35)

in the following gaussian form,

P0(ϕ1, ϕ2) = (2π)−1 D−1/2 exp

[
− 1

2D

(
β2ϕ

2
1 + β1ϕ

2
2 − 2β12ϕ1ϕ2

)]
, (8.1.36)

where D ≡ β1β2 −β2
12. Let t1 � γ−1

0 and t2 � γ−1
0 such that (8.1.32) holds at t = t1 and

t2. Then, as will be shown in Appendix 8B, we obtain

g(r, t1, t2) = ψ2
eq

∫
dϕ1

∫
dϕ2

ϕ1

|ϕ1|
ϕ2

|ϕ2| P0(ϕ1, ϕ2)

= 2

π
ψ2 sin−1 X, (8.1.37)
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where

X = β12/
√
β1β2. (8.1.38)

If the initial pair correlation is short-range, we may set

X =
(

2
√

t1t2
t1 + t2

)d/2

exp

[
− r2

4L(t1 + t2)

]
, (t1, t2 � γ−1

0 ). (8.1.39)

The equal-time-correlation function (t1 = t2 = t) is written in the scaling form
ψ2

eqGKYG(r/"(t)) consistent with (8.1.14), where

GKYG(x) = 2

π
sin−1

[
exp

(
−1

8
x2

)]
. (8.1.40)

At large distances x = r/"(t) � 1 it follows the gaussian form,

GKYG(x) ∼= 2

π
exp

(
−1

8
x2

)
. (8.1.41)

At short distances x = r/"(t) � 1 we obtain

GKYG(x) = 1 − 1

π
x + O(x3). (8.1.42)

The term linear in x = r/"(t) gives rise to the Porod tail (8.1.21), for which see Appendix
8A. Another interesting quantity is the equal-point correlation (r = 0). For t1 � t2,
(8.1.37) and (8.1.39) yield

g(0, t1, t2) ∼= 2

π
ψ2

eq

(
4t2
t1

)d/4

. (8.1.43)

We recognize that, because the two-point correlation (8.1.38) is proportional to td/4
2 for

t2 � t1, the initial variance χ0 should come into play for t2 � γ−1
0 . To check this, we set

t2 = 0 and t1 � γ−1
0 such that (8.1.32) holds at t = t1. Then, the integrand of (8.1.34)

may be set equal to (ϕ1ϕ2/|ϕ1|)P0(ϕ1, ϕ2), and the double integration is performed to give

g(r, t1, 0) ∼= ψeq

√
2χ0

π
(2πLt1)

−d/4 exp

(
− 3r2

16Lt1

)
, (8.1.44)

which is indeed proportional to χ
1/2
0 .

Summary of the KYG theory

The KYG theory gives simple analytic expressions for the correlation functions via the
nonlinear transformation (8.1.23). However, there is no reason to neglect the last term in
(8.1.25) in the late stage. In fact, the two terms in (8.1.25) are balanced to form the interface
solution, ψ = ψeq tanh(κs/

√
2) or ϕ = ψeq sinh(κs/

√
2), where s = n · (r − ra) is the

coordinate along the normal vector n on a surface {ra}. It is worth noting that, if the surface
is weakly curved, the above interface solution satisfies ∂ϕ/∂t ∼= L(∇2−∂2/∂s2)ϕ near the
interface point ra [9]. Here, if ∇2 − ∂2/∂s2 is replaced by (1−1/d)∇2, we may reproduce
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a subsequent theory by Ohta, Jasnow, and Kawasaki (OJK) [10]. We shall see that the OJK
theory gives a better description of the late-stage behavior than the KYG theory.

8.1.4 Periodic quench

There are some interesting nonlinear effects when the temperature coefficient r oscillates
in time taking positive and negative values periodically. We start with model A with a
one-component order parameter in the absence of an ordering field,

∂

∂t
ψ = −L

[
r(t)− ∇2 + u0ψ

2
]
ψ + θ, (8.1.45)

where r(t) is a periodic function of time. For simplicity we assume a step-wise variation,

r(t) = r− (0 < t − n(t1 + t2) < t1)

= r+ (t1 < t − n(t1 + t2) < t1 + t2), (8.1.46)

where n = 0, 1, 2, . . . and tp = t1 + t2 is the period of the oscillation. However, our main
conclusions are independent of the detailed functional form of r(t). (See Ref. [11], where
r(t) is assumed to oscillate sinusoidally.)

We briefly summarize the scenario here. (i) If r− and r+ are both positive, the system
is obviously in a disordered phase with vanishing order parameter 〈ψ〉 = 0. (ii) If they
are both negative, an ordered phase will emerge with a homogeneous average ψ̄(t) =
〈ψ(r, t)〉. If the fluctuation effect is neglected, ψ̄(t) obeys

∂

∂t
ψ̄(t) = −L[r(t)ψ̄(t)+ u0ψ̄(t)3]. (8.1.47)

We divide the above equation by ψ̄(t) and average over t in one period in a periodic state
to obtain

1

tp

∫ tp

0
dtψ̄(t)2 = 1

tp

∫ tp

0
dt

|r(t)|
u0

. (8.1.48)

This is analogous to the equilibrium relation ψ2
eq = |r |/u0. (iii) However, when r− < 0 <

r+, the problem is highly nontrivial. The fluctuations are much enhanced in the unstable
time regions if

L|r−|t1 � 1. (8.1.49)

Domains are formed during r = r−, but the fluctuation level decreases exponentially
during r = r+ roughly by exp(−Lr+t2). If this factor is small enough, the phase ordering
returns to its starting point and the system tends to a periodically modulated disordered
state (〈ψ〉 = 0). If the domain destruction during r = r+ is nearly complete, the
large-scale heterogeneities remaining at t = tp become weaker than the thermal level and
the correlation range among the domains is cut off at

"p = (2Ltp)
1/2. (8.1.50)
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However, with decreasing r+t2, the correlation range increases towards a metastability
limit of the disordered phase. Eventually, domains should continue to grow over successive
periods, resulting in a homogeneous, oscillating average ψ̄(t) of order (|r−|/u0)

1/2. Thus
we may predict a dynamcal first-order phase transition with a discontinuous change in
ψ̄(t).

Recursion relations

We outline the calculation in the case r− < 0 < r+. Supplementary discussions will be
presented in Appendix 8C. With growth of the fluctuations we may set

ψ(r, t) ∼= b(t)−1/2 ϕ(r, t)

|ϕ(r, t)| . (8.1.51)

Here b(t) ∼= u0/|r−| in the unstable time region 1/L|r−| � t < t1 as in (8.1.32). In the
successive time region t1 < t < t1 + t2, (8C.2) yields

b(t) = u0

(
1

|r−| +
1

r+

)
exp[2Lr+(t − t1)] − u0

r+
. (8.1.52)

Thus ψ(r, t) decays exponentially for t − t1 � 1/Lr+. In disordered states, use of (8B.9)
then gives the domain structure factor at long wavelengths,

Idom(k, t) = b(t)−1χk exp(−2Lk2t)
/ ∫

q
χq exp(−2Lq2t). (8.1.53)

where χk = 〈|ψk(0)|2〉 is the initial variance. More generally, we should allow for a
nonvanishing average order parameter η = 〈ψ(r, 0)〉 at t = 0 [11]. Under (8.1.49) we
may express the next initial variance and average order parameter at t = tp, denoted by χ ′

k
and η′, in the following recursion relations,

χ ′
k = (bpβ̄)

−1χk exp(−"2
pk2 − η2/β̄)+ κ−2

th , (8.1.54)

η′ = (2/πbp)
1/2

∫ η/β̄1/2

0
dxe−x2/2, (8.1.55)

where

β̄ =
∫

q
χq exp(−"2

pq2). (8.1.56)

The last term in (8.1.54) is the intensity produced by the thermal noise. From (8.1.8) we
have

κ−2
th = 1

|r−| +
1

r+
. (8.1.57)

The coefficient bp is of the form,

bp = b(tp) ∼= u0κ
−2
th exp(2Lr+t2). (8.1.58)
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The recursion relations (8.1.54) and (8.1.55) are independent of the functional form of r(t)
as long as the fluctuations are much enhanced during r(t) < 0. In fact, the same recursion
relations were derived for a sinusoidal temperature oscillation in Ref. [11].

These equations are controlled by a unique dimensionless parameter A defined by

A = Kd"
−d
p κ−2

th b(tp) = Kdu0"
−d
p κ−4

th exp(2Lr+t2), (8.1.59)

which represents the ratio of the thermal fluctuations to the domain fluctuations at t = tp
on the scale of "p. We make the above equations dimensionless by setting

χk = κ−2
th F("pk), η = (Kd/κ

2
th"

d
p)

1/2G. (8.1.60)

The dimensionless recursion relations, F → F ′ and G → G′, read

F ′(x) = S−1F(x) exp(−x2 − Z2)+ 1, (8.1.61)

G′ = (2/π A)1/2
∫ Z

0
dxe−x2/2, (8.1.62)

where S and Z are determined by

S/A = G/Z =
∫ ∞

0
dyyd−1e−y2F(y). (8.1.63)

Periodic states are obtained by setting F ′(x) = F(x) and G′ = G. In particular, disordered
states (G = Z = 0) exists only for S ≥ 1 and

F(x) = S/(S − e−x2
), (8.1.64)

where S and A are related by

A−1 =
∫ ∞

0
dyyd−1/(Sey2 − 1). (8.1.65)

If S is close to 1, we have S − 1 ∼ (A − Ac0)
2 with Ac0 = 0.89 in 3D and S − 1 ∼

exp(−2/A) in 2D. The correlation length of the large-scale heterogeneities grows as (S −
1)−1/2"p while the system stays in disordered states. Experimentally, this effect will occur
as the average temperature is lowered with a fixed magnitude of the temperature oscillation.

Periodic states and first-order phase transition

We numerically examined the above recursion relations and showed that periodic states
are attained after many iterations over a wide range of initial F(x) and G [11]. We plot
A vs S in periodic states in Fig. 8.5(a) and A vs Z in Fig. 8.5(b) in 3D. At the point Q,
where A = 1.34, S = 0.80, and Z = 0.85, A is locally a maximum as a function of S.
The point R, where A = 0.89, Z = 0, and S = 1, is a metastability limit of the disordered
phase, towards which the correlation length grows. At the point P, we obtain Z = 1.82 and
S = 0.41, while at the point S, Z = 0 and S = 1.09.

Pasquale et al. [12] numerically examined periodic quench with the step-wise temp-
erature variation (8.1.46) to confirm the first-order phase transition, but they neglected



8.1 Phase ordering in nonconserved systems 385

Fig. 8.5. (a) A vs S in the dimensionless recursion relations (8.1.61) and (8.1.62) in periodic states
in 3D [11]. The portion of the curve with S > 1 corresponds to the disordered phase, while that
with S < 0.80 to the ordered phase. The system is linearly unstable in the region Q R where 0.8 <

S < 1. (b) A vs Z in periodic states in 3D. Here Z = GA/S vanishes in the disordered phase and is
nonvanishing in the ordered phase.

the space-dependence of ψ . More numerical analysis and corresponding experiments are
required.

Coarsening in many-component systems (n ≥ 2)

When a system with continuous symmetry is quenched into an unstable temperature region,
a large number of defects emerge and their number decreases as a function of time in late-
stage coarsening [6], [13]–[24]. They are topologically stable singular objects for n ≤ d ′ =
d − ds, where ds is the dimension of the core structure. That is, if their positions are fixed
(without pair annihilation, etc.), they cannot be eliminated by continuous deformations of
the vector ψψψ only. Vortices are representative examples for n = 2 with ds = 1 (line) in 3D
and ds = 0 (point) in 2D.

Let us consider an n-component system with the simple nonconserved dynamics,

∂

∂t
ψ j = −L

[
−κ2 − ∇2 + u0|ψ |2

]
ψ j + θ j , (8.1.66)

where L > 0 and

〈θi (r, t)θ j (r′, t ′)〉 = 2Lδi jδ(r − r′)δ(t − t ′). (8.1.67)
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Fig. 8.6. Development with time of the configuration of vortex lines in the model (8.1.66) in the
purely dissipative case L = 1 in a 64 × 64 × 64 system under periodic boundary conditions without
the noise term, with κ = 1 [16]. The times after quenching are indicated and the total line lengths
LT are given in units of the lattice spacing. All the line ends are situated at the boundary and are
connected with the end at the other side. The arrows indicate reconnection of the crossing lines.

For n = 2 relevant singular objects are vortices, whose profile was examined in the
Ginzburg–Landau theory in Section 4.5. As an example, Fig. 8.6 shows snapshots of vortex
lines (with charges " = ±1) obtained by numerically solving (8.1.66) [16]. In 3D the
typical line curvature is scaled as [14, 16, 20]

K(t) ∼ t−a, a ∼= 0.5, (8.1.68)

analogous to the typical surface curvature in the one-component case. It is also important
that the spacing between the lines is of order K(t)−1. Then, in a volume with linear
dimension K(t)−1, the lines inside are only slightly curved and their number is of order 1,
so that the line length density decreases in time as

nv(t) = LT(t)/V ∼ K(t)2 ∼ t−2a, (8.1.69)

where LT(t) is the total line length in the system with volume V . In 2D xy systems,
simulations of (8.1.66) (without the noise) [13, 22] indicate that vortex pairs with opposite
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charges (" = ±1) collide and disappear, leading to a decreasing of the vortex density as
nv(t) ∼ t−a with a ∼= 0.5.

Generalized KYG theory

The simplest theory to investigate the coarsening in many-component systems is to gener-
alize the nonlinear transformation (8.1.23) as [18]

ψ j (r, t) = ϕ j (r, t)
/ [

1 + α|ϕϕϕ(r, t)|2
]1/2

( j = 1, . . . , n). (8.1.70)

The subsidiary vector field ϕϕϕ = (ϕ1, . . . , ϕn) obeys the gaussian distribution characterized
by

〈ϕi (k, t)ϕ j (−k, t)〉 = χkδi j exp[2L(κ2 − k2)t]. (8.1.71)

At long times we may set

ψ j (r, t) = 1

|ϕϕϕ(r, t)|ϕ j (r, t), ( j = 1, . . . , n), (8.1.72)

as in (8.1.32). Then the pair correlation function g(r, t1, t2) = 〈ψψψ(r1, t1) ·ψψψ(r2, t2)〉 is
expressed in the following integral form,1

g(r, t1, t2) = ψ2
eq

2�((n + 1)/2)√
π�(n/2)

∫ 1

0
ds(1 − s2)(n−1)/2 X√

1 − X2s2
(8.1.73)

where �(x) is the gamma function. The pair correlation depends on r = |r1−r2|, t1, and t2
through the single variable X defined by (8.1.38). We notice that the one-component result
(8.1.37) is recovered for n = 1.

The above result shows that the defect contribution to the equal-time pair correlation
function can be scaled as

g(r, t) = 〈ψψψ(r1, t) ·ψψψ(r2, t)〉 = ψ2
eqG(r/"(t)), (8.1.74)

where r = |r1 − r2| and "(t) = (Lt)1/2. This is consistent with the simulation result
(8.1.68) for n = 2. It is also remarkable that the Fourier transformation of G(r/"(t)), the
defect structure factor divided by ψ2

eq, behaves at large k"(t) � 1 as

Î (k) = And"(t)
−nk−(d+n), (8.1.75)

which is the generalization of the Porod tail (8.1.21). For n = 2, the short-distance behavior
(r � "(t)) is logarithmically singular as

G = 1 − [
r2/8"(t)2]

ln[r/"(t)] + · · · . (8.1.76)

This behavior in fact gives rise to the tail (8.1.75). For general n and d, (8.1.73) yields
And = 2dπd/2−1�((n+1)/2)2�((n+d)/2)/�(n/2). Figure 8.7 numerically demonstrates
the presence of the tail (∝ k−5) in the scaled structure factor for n = 2 in 3D.

1 The above integral is proportional to the hypergeometric function F(1/2, 1/2; n/2 + 1; X2) [6, 17].
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Fig. 8.7. The scaled structure factor I (k, t)〈k〉3 plotted on a regular scale and a logarithmic scale for
n = 2 in 3D in the model (8.1.66) with L = 1 [16]. The times after quenching are indicated, and
〈k〉 = ∑

k<π k I (k, t)/
∑

k<π I (k, t), where the space is measured in units of the lattice spacing.

Generalized Porod tail

The tail (∝ k−(n+d)) arises from the distortion of ψψψ around stable topological defects,
which exist for n ≤ d for point defects and for n ≤ d − 1 for line defects. This will be
shown in Appendix 8D for n = 2. In general [6, 21],

Î (k) = π−1(4π)(d+n)/2�((n + 1)/2)2�(d/2)�(n/2)−1 ndef

kd+n
, (8.1.77)

in terms of an appropriately defined defect density ndef. For interfaces (n = 1), ndef is the
surface area (line length) density A in 3D (2D). For vortices (n = 2), ndef is the vortex line
length (number) density nv with charge ±1 in 3D (2D). The above formula is consistent
with (8.1.21), (8D.3), and (8D.5).

Summary

The generalized KYG theory is very simple and consistent with numerical results but
is not well justified. We mention an attempt to theoretically derive it [23] and a more
sophisticated theory of phase ordering in many-component systems [19]. As another kind
of system with a tensor order parameter, liquid crystals exhibit interesting phase-ordering
processes from isotropic to nematic states [6, 16, 17]. There, the disclination line density
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Fig. 8.8. Surface movement by vδt in a small time interval δt ,
where a surface element with area da is changed to a new element
with area da′. Here we can see the relation, da′/da =
(R1 + vδt)(R2 + vδt)/R1 R2 = 1 + (R−1

1 + R−1
2 )vδt + · · ·.

decreases in time as t−1 in 3D, analogous to (8.1.69) [25, 26]. The phase ordering in liquid
crystals is similar to that in the xy systems, although topological singularities in nematics
are more complicated.

8.2 Interface dynamics in nonconserved systems

8.2.1 The Allen–Cahn equation

In a one-component system at a late stage after quenching, phase ordering is locally com-
pleted except at the interface regions, so the problem is how to describe the interface motion
in the thin limit of the interface thickness. In the nonconserved case without ordering field
and thermal noise, the interface motion is governed by the Allen–Cahn equation [27],

v = −LK, (8.2.1)

where v is the interface velocity in the normal direction n, L is the kinetic coefficient in
(8.1.2), and K is the mean curvature multiplied by 2 or the sum of the principal curvatures,

K = 1

R1
+ 1

R2
. (8.2.2)

We will call K simply the curvature. Then a sphere with radius R shrinks as

∂

∂t
R = −2

L

R
or R(t)2 = R(0)2 − 4Lt. (8.2.3)

In 2D, (8.2.1) remains applicable if we set 1/R2 = 0. From this equation we obtain the
coarsening law (8.1.16) by making the following order estimations,

v ∼ "(t)/t, K ∼ "(t)−1. (8.2.4)

We then show that the surface area S(t) or the free energy H in (8.1.17) decreases
monotonically in time. As shown in Fig. 8.8, if the surface is slightly moved by δζ in the
normal direction, a small surface element da changes to da′ given by

da′ = da(1 +Kδζ ). (8.2.5)
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We set δζ = vδt for a small time interval δt to obtain

d

dt
S(t) =

∫
daKv (8.2.6)

for any v. When the Allen–Cahn dynamics (8.2.1) holds, (8.1.17) and (8.2.6) yield

d

dt
H(t) = σ

d

dt
S(t) = −Lσ

∫
daK2 ≤ 0. (8.2.7)

The coarsening thus proceeds, to decrease the surface energy.

8.2.2 The Ohta–Jasnow–Kawasaki theory

It is convenient to introduce a smooth subsidiary field u(r, t) to represent surfaces by u =
const. The differential geometry is much simplified in terms of such a field. The two-phase
boundaries are represented by u = 0. Let all the surfaces on which u = const. be governed
by the Allen–Cahn equation (8.2.1) in the whole space. Then u obeys

∂

∂t
u = −v|∇u| = L|∇u|∇ · n. (8.2.8)

From n = |∇u|−1∇u the above equation is rewritten as

∂

∂t
u = L

[
∇2 −

∑
i j

ni n j
∂2

∂xi∂x j

]
u. (8.2.9)

Supposing intricate surfaces, Ohta–Jasnow–Kawasaki (OJK) [10] preaveraged ni n j on the
right-hand side of (8.2.9) to replace it by its angle average δi j/d. The field u then obeys a
diffusion equation,

∂

∂t
u = L ′∇2u (8.2.10)

with

L ′ = (1 − 1/d)L . (8.2.11)

Because u = 0 on the interfaces, ψ is expressed as

ψ(r, t) ∼= ψeq
u(r, t)

|u(r, t)| , (8.2.12)

on spatial scales much longer than κ−1, analogous to (8.1.32). Furthermore, if the initial
value u(r, 0) obeys a gaussian distribution without long-range correlation, u(r, t) remains
gaussian at later times and is characterized by

〈|uk(t)|2〉 = χ0 exp(−2L ′k2t), (8.2.13)

where χ0 is the initial variance assumed to be independent of k.
We notice that, if L is replaced by L ′, the correlation function expressions of the KYG

theory in the late stage become those of the OJK theory. In other words, the OJK results
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Fig. 8.9. The dimensionless structure factor F(Q), the Fourier transformation of GOJK(x), in (a) 2D
and (b) 3D in the OJK theory (solid line) for the nonconserved case [10]. The broken line represents
simulation results.

are obtained from the KYG results if t is replaced by (1 − 1/d)t . For example, the pair
correlation g(|r1 − r2|, t1, t2) = 〈ψ(r1, t1)ψ(r2, t2)〉 in OJK is calculated from (8.1.37) in
KYG. In particular, the equal-time correlation (t1 = t2 = t) is written in the scaling form
g(r, t, t) = ψ2

eqGOJK(r/"(t)) with

GOJK(x) = 2

π
sin−1

[
exp

(
− 1

8(1 − 1/d)
x2

)]
. (8.2.14)

This OJK scaling function agrees excellently with simulations, as shown in Fig. 8.9.
Furthermore, OJK gives the same equal-point correlation g(0, t1, t2) as that in KYG, so
(8.1.43) holds in both theories for t1 � t2.

Comparison of solutions of the model A, KYG, and OJK equations

It is of interest to compare actual solutions of the original model A, KYG, and OJK equa-
tions in 2D. In Fig. 8.10 we show ψ(r, t) in model A, (8.1.2), with h = θ = 0 on the left,
u(r, t) = exp(t L∇2/2)u(r, 0) in OJK in the middle, and ϕ(r, t) = exp(t L∇2+γ0t)ϕ(r, 0)
in KYG on the right in 2D. The initial values ψ(r, 0), u(r, 0), and ϕ(r, 0) on each lattice
point are the same gaussian random number with variance 0.1. Here the patterns of KYG
at time t and those of OJK at time 2t are identical. We notice the following. (i) At an
early stage (t � γ−1

0 ), the linear approximation is valid and the model A patterns coincide
approximately with those of KYG. (ii) At an intermediate stage (10γ−1

0 � t � 50γ−1
0 ),

the model A patterns become very similar to those of OJK. (iii) However, the model A and
OJK patterns become gradually dissimilar at a very late stage (t � 100γ−1

0 ). Nevertheless,
the statistical properties of the patterns in these two schemes remain surprisingly close, as
has already been demonstrated in Fig. 8.9. This is also demonstrated in Fig. 8.11, where
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Fig. 8.10. Comparison of the time evolution of patterns in model A (left), OJK (middle), and KYG
(right) on a 258 × 258 lattice with �x = 1 and �t = 0.02 without thermal noise. The numbers are
the times in units of γ−1

0 . The patterns of model A and KYG are nearly the same at γ0t = 10, while
those of model A and OJK are similar at γ0t = 50.

the perimeter density of the patterns are plotted in these three cases for the runs in Fig.
8.10.

8.2.3 Derivation of the dynamic equation for interface motion

We now derive the Allen–Cahn equation including the effects of a small magnetic field
h and the random noise term θ starting with (8.1.2) [28]. We note that the average 〈ψ〉
outside the interface regions instantaneously approaches the equilibrium values,

〈ψ〉 ∼= ±ψeq + χh, (8.2.15)
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Fig. 8.11. The perimeter density for the runs in Fig. 8.10. They reveal coincidence of the curves of
model A and KYG for γ0t � 10 and those of model A and OJK for γ0t � 50. This tendency is
reproducible for a sufficiently large system size.

where χ = (2κ2)−1 is the susceptibility, 〈 〉 being the average over the noise. This is a
linear response relation valid for

0 ≤ h � κ2ψeq, (8.2.16)

under which the second term in (8.2.15) is much smaller than the first. Including the
interface region, we set

ψ(r, t) = ψint(s)+ δψ(r, t), (8.2.17)

where s is the coordinate along the surface normal n, and

ψint(s) = −ψeq tanh(κs/
√

2) (8.2.18)

is the fundamental interface solution presented in Section 4.4. Therefore, we have 〈ψ〉 ∼=
−ψeq + h/2κ2 in the spatial region s � κ−1 and 〈ψ〉 ∼= ψeq + h/2κ2 in the region
s � −κ−1. By suitably defining the interface position, we may assume that the deviation
δψ(r, t) in (8.2.17) is orthogonal to ψ ′

int(s) = dψint(s)/ds:∫
dsψ ′

int(s)δψ(r, t) = 0, (8.2.19)

without loss of generality. This is because a small shift of the interface position by δζ is
equivalent to replacing ψint(s) by ψint(s − δζ ) ∼= ψint(s) − δζψ ′

int(s). The s integration
here is almost convergent if |s| is a few times larger than κ−1 at the upper and lower bounds.
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The coordinate s = s(r, t) is a function of r and t . As will be shown in Appendix 8E,
we have

∇s = n, ∇2s = ∇ · n = K,
∂

∂t
s = −v, (8.2.20)

K being the curvature defined by (8.2.2). Then the space derivatives of ψint(s) are

∇ψint(s) = ψ ′
intn, ∇2ψint(s) = ψ ′′

int +Kψ ′
int, (8.2.21)

where ψ ′′
int(s) = d2ψint(s)/ds2. Therefore, from (5.3.5) we have

µ = δ

δψ
βH = −Kψ ′

int +
[
L̂(s)− ∇2

⊥
]
δψ − h, (8.2.22)

where L̂(s) is the linear operator defined by (4.4.44) and ∇2
⊥ = ∇2 − ∂2/∂s2. Thus (8.1.2)

becomes

−vψ ′
int +

∂

∂t
δψ = LKψ ′

int + Lh − L
[
L̂(s)− ∇2

⊥
]
δψ + θ. (8.2.23)

We multiply both sides of the above equation by ψ ′
int and integrate over s. On the left-

hand side, the inner product of ∂δψ/∂t and ψ ′
int is of order O(v2), because the leading

contribution of order O(v) vanishes from the orthogonality relation (8.2.19). We thus arrive
at

v = −LK + vh + θa, (8.2.24)

where vh is a constant velocity (now taken to be positive),

vh = (2T Lψeq/σ)h, (8.2.25)

σ being the surface tension given by (4.4.8). The θa is the random noise term defined at
each surface point ra as

θa = −(T/σ)
∫

dsψ ′
int(s)θ(r, t). (8.2.26)

From (5.3.4) its fluctuation variance is

〈θa(t)θa′(t
′)〉 = 2(LT/σ)δaa′δ(t − t ′), (8.2.27)

where δaa′ is the δ function on the surface satisfying
∫

daδaa′ = 1.
The deviation δψ(r, t) then consists of two parts as δψ(r, t) = ψh(s) + δψ1(r, t). The

first part is of order h and is the solution of

L̂(s)ψh(s) = h[1 + (2ψeqT/σ)ψ ′
int], (8.2.28)

where the left-hand side is made orthogonal to ψ ′
int. The second part is induced by the noise

term θ and is determined by[
∂

∂t
+ L(L̂(s)− ∇2

⊥)
]
δψ1 = θ + (T/σ)ψ ′

intθa, (8.2.29)
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where the left-hand side is the noise term orthogonal to ψ ′
int. For |s| � κ−1, ψ ′

int vanishes

and L̂(s) tends to 2κ2, so ψh(s) tends to h/(2κ2) in agreement with (8.2.15) and δψ1 obeys
the linearized Langevin equation in the bulk region,[

∂

∂t
+ L(2κ2 − ∇2)

]
δψ1 = θ. (8.2.30)

8.2.4 Langevin equation for surfaces

At a late stage after quenching, with small h, the total free energy H is approximately of
the form

H = σ S(t)− (2Tψeqh)V+(t)+ const., (8.2.31)

where S(t) is the surface area and V+(t) is the volume of the phase with ψ ∼= ψeq.
The second term is the magnetic field energy, because 2Tψeqh is the free-energy density
difference between the two phases. With respect to a small surface deformation, ra to
ra + δζn, the incremental change of H is written in the following surface integral,

δH =
∫

da
(
σK − 2Tψeqh

)
δζ, (8.2.32)

with the aid of (8.2.5). The functional derivative of H with respect to the surface displace-
ment ζ may thus be expressed as

δ

δζ
H = σK − 2Tψeqh (8.2.33)

Therefore, (8.2.24) is rewritten as

v = − L

σ

δ

δζ
H+ θa . (8.2.34)

This is a Langevin equation for the surface {ra}, which is a new gross variable. The
fluctuation–dissipation relation between the noise term θa and the kinetic coefficient L/σ
in (8.2.34) has been given by (8.2.27). As a generalization of (8.2.7) and also as a self-
consistency relation of the model, H monotonically decreases in time (if the noise term is
neglected) as

d

dt
H =

∫
da

(
δ

δζ
H

)
v = − L

σ

∫
da

[
σK − (2Tψeqh)

]2 ≤ 0. (8.2.35)

Undulations of a planar interface

Because the above theory is formal, we consider a simple case of a planar interface at
h = 0 with small disturbances superimposed. If the unperturbed interface is perpen-
dicular to the z axis, the surface displacement ζ(r⊥, t) is parameterized by the two-
dimensional coordinates r⊥ = (x, y). For small ζ , the normal unit vector is written as
n = (−∂ζ/∂x,−∂ζ/∂y, 1) and the curvature is given by

K = ∇ · n ∼= −∇2
⊥ζ (8.2.36)
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where ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2. Then ζ obeys

∂

∂t
ζ = L∇2

⊥ζ + θ⊥. (8.2.37)

From (8.2.27) the noise term θ⊥(r⊥, t) satisfies

〈θ(r⊥, t)θ(r′⊥, t ′)〉 = 2(L/σ)δ(r⊥ − r′⊥)δ(t − t ′), (8.2.38)

which assures the equilibrium distribution,

Peq(ζ ) ∝ exp

[
− σ

2T

∫
dr⊥|∇⊥ζ |2

]
, (8.2.39)

in the gaussian approximation in accord with the results in Section 4.4. From (8.2.33) and
(8.2.34) the relaxation rate of the surface displacement with wave number k is given by

�k = Lk2. (8.2.40)

The coarsening law (8.1.16) again follows if we pick up the fluctuations with k ∼ 1/"(t)
and set

�k t ∼ Lt/"(t)2 ∼ 1. (8.2.41)

Growth of a circular or spherical domain

Let us consider a circular (in 2D) or spherical (in 3D) domain with radius R, within which
ψ ∼= ψeq and outside of which ψ ∼= −ψeq. In this case the free energy is a function of R:

H(R) = Sd

[
σ Rd−1 − 2Tψeq

d
h Rd

]
, (8.2.42)

where Sd is the surface area of a unit sphere in d dimensions. Using v = ∂R/∂t and
∂H(R)/∂R = Sd Rd−1δH/δζ , we obtain a Langevin equation for R,

∂

∂t
R(t) = −L

[
d − 1

R
− 2Tψeqh

σ

]
+ θ(R, t). (8.2.43)

The noise term θ(R, t) is the angle average of θa(t) in (8.2.26),

θ(R, t) = S−1
d R−d+1

∫
d� θa(t), (8.2.44)

where d� is the angle element. From (8.2.27) it follows that the noise amplitude relation
is

〈θ(R, t)θ(R, t ′); R〉 = 2L(R)δ(t − t ′), (8.2.45)

where 〈· · · ; R〉 is the conditional average under fixed R (see Section 5.2). The kinetic
coefficient is dependent on R as

L(R) = (L/Sdσ)R−d+1. (8.2.46)
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It is worth noting that (8.2.43) may be expressed in the standard form of Langevin equa-
tions,

∂

∂t
R(t) = −L(R)

∂

∂R
βH(R)+ θ(R, t). (8.2.47)

We may now introduce a critical radius by

Rc = (d − 1)(σ/2Tψeq)h
−1. (8.2.48)

If the noise term is neglected, the droplet continues to grow for R > Rc and shrinks to
vanish for R < Rc. In a weak magnetic field, which satisfies (8.2.16), we have Rc � ξ .

Diffusion of a droplet

The center of mass of a droplet undergoes diffusive motion with a radius-dependent diffu-
sion constant. In the nonconserved case this effect is very small, but its calculation is simple
and instructive. For a spherical droplet in 3D we may express θa(t) = ∑

"m θ"mY"m(na)

in terms of the spherical harmonic functions Y"m . Components with " = 1, m = −1, 0, 1
arise from translational motions of the droplet. We pick them up to obtain the random
velocity of the center of mass,

u(t) = d

Sd
R−d+1

∫
daθa(t)na . (8.2.49)

Use of (8.2.45) gives

〈uα(t)uβ(t
′)〉 = 2d(LT/σ Sd)R−d+1δαβδ(t − t ′). (8.2.50)

From the general relation (5.1.39) we obtain the diffusion constant in model A,

DA(R) = (d LT/Sdσ)R−d+1. (8.2.51)

We can see that the characteristic diffusion length [DA(R)t]1/2 is much shorter than R on
the characteristic timescale (t ∼ R2/L). Thus the droplet center is virtually fixed at the
initial position in model A.

8.2.5 Chemical potential in the case h = θ = 0

If θ = h = 0, the generalized chemical potential µ ≡ δ(βH)/δψ is approximated from
(8.2.22) as

µ ∼= −2ψeqKδ̂(r), (8.2.52)

at a late stage. The δ̂(r) is a δ-function nonvanishing only on the surface {ra}. For any
smooth function ϕ(r) we require∫

drδ̂(r)ϕ(r) =
∫

daϕ(ra), (8.2.53)

da being the surface element. Then δ̂(r) is well-defined mathematically in the thin-
interface limit. As an illustration, Fig. 8.12 shows µ(r, t) at γ0t = 20.
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Fig. 8.12. The chemical potential µ(r, t) = δ(βH)/δψ for model A without thermal noise at γ0t =
20 on a 256 × 256 lattice. The interfaces are located in the black regions (where µ > 0.2ψeqκ

2) and
in the white regions (where µ < −0.2ψeqκ

2). In the gray regions µ is close to 0. The phase with
ψ ∼= ψeq is shrinking (expanding) in the black (white) regions.

The two-point correlation function H(r, t1, t2) = 〈µ(r1, t1)µ(r1 + r, t2)〉 can be ex-
pressed as

H(r, t1, t2) = V−1
∫

dr1

∫
dr2µ(r1)µ(r2)δ(r1 − r2 − r)

= (2ψeq)
2V−1

∫
da1

∫
da2K1K2δ(r1 − r2 − r), (8.2.54)

where V is the volume of the system, and daα , rα , and Kα in the second line are the surface
element, position, and curvature on the surfaces at time tα (α = 1, 2), respectively. Because
the integration of Kα over the surface in a unit volume is of order "(tα)−2, we notice the
scaling relation [29],

H(r, t1, t2) = ψ2
eq"(t1)

−4 H∗(r/"(t1), t2/t1), (8.2.55)

where the algebraic time dependence of "(t) (d ln "(t)/d ln t = const.) is assumed. From
∂ψ/∂t = −Lµ without thermal noise, the pair correlation g(r, t) = 〈ψ(r1, t)ψ(r1, t)〉
(r = |r1 − r2|) obeys

∂

∂t
g(r, t) = −2L〈ψ(r1, t)µ(r2, t)〉 = 2L2

∫ t

0
dt ′H(r, t, t ′), (8.2.56)

where we can set 〈ψ(r1, 0)µ(r2, t)〉 = 0 in the scaling limit (or in the limit of small initial
variance of ψ). If (8.2.55) is assumed, the scaling form g(r, t) = ψ2

eqG(r/"(t)) holds only
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for "(t) ∝ t1/2. By setting "(t) = (Lt)1/2 as in (8.1.16), we may relate G(x) and H∗(x, s)
as

−x
∂

∂x
G(x) = 4

∫ 1

0
ds H∗(x, s). (8.2.57)

More generally, we find the two-point scaling,

g(r, t1, t2) = ψ2
eqG∗(r/"(t1), t2/t1), (8.2.58)

with G∗(x, 1) = G(x) and G∗(x, 0) = 0. The results of KYG and OJK clearly satisfy this
scaling relation.

8.2.6 Phase ordering in small magnetic field

We next lower the temperature into the unstable region from a nearly disordered state
(〈ψ〉 = O(h) at t = 0) in the presence a small, positive h which satisfies (8.2.16). Here the
effect of h becomes apparent after a long crossover time tc. We balance the first two terms
in (8.2.24) as

L/"(tc) ∼ vh ∼ (T Lψeq/σ)h. (8.2.59)

From (8.2.48) we may set "(tc) = Rc (although Rc has been defined in a different
situation). Therefore,

tc = Rc/vh ∼ γ−1
0 (ψeqκ

2/h)2, (8.2.60)

where use has been made of σ ∼ Tψ2
eqκ . We find tc � γ−1

0 from (8.2.16). After the
crossover time tc, the favored phase expands with the velocity vh and the unfavored phase
begins to disappear on the timescale of tc. The changing rate �c of droplets with radii close
to Rc, which will be introduced in the next section, is of order t−1

c .

8.2.7 Motion of antiphase boundaries in model C

In real materials it is always the case that a nonconserved order parameter is coupled to
conserved variables such as the energy or concentration. (See Section 3.4 for such examples
in binary alloys.) The simplest dynamic model is model C near a critical point introduced in
Section 5.3, where the free energy is given by the GLW hamiltonian H{ψ,m} in (4.1.45). A
nonconserved scalar order parameter ψ obeys (5.3.3) with the kinetic coefficient L , while
a conserved variable m obeys (5.3.13) with the kinetic coefficient λ. The interface profile
between the two ordered phases is written as ψ = ψint(s) and

m = C0[τ − γ0ψint(s)
2], (8.2.61)

in equilibrium, where ψint changes between ±ψeq. Here τ is the reduced temperature if m
is the energy variable, while it is the chemical potential difference if m is the concentration
variable. We are assuming no latent heat or no concentration difference between the two
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phases. This indeed happens for antiphase boundaries separating two variants of the same
ordered structure in alloys [27].

Obviously, when the timescale of m is faster than that of ψ , the interface motion is
nearly the same as that of model A and the domain size grows as R(t) ∼ (Lt)1/2 after
quenching. This condition is given by Dt � R(t)2 ∼ Lt or D � L , where D = λ/C ′

0
is the diffusion constant of m with C ′

0 = C0(1 + 2γ 2
0 C0/u0) being the specific heat in the

ordered phases in the mean field theory. On the other hand, in the reverse limit D/L → 0,
phase ordering proceeds at fixed m and we have again the growth law R(t) ∼ (Lt)1/2. In
addition, if m is initially heterogeneous, it plays the role of quenched disorder in this limit.
However, for slow diffusion D � L and for strong static coupling γ 2

0 C0/u0 � 1, there is
some complicated transient behavior at very long times.

8.3 Spinodal decomposition in conserved systems

In conserved systems, phase-separation processes taking place in an unstable state are
called spinodal decompositions [30]. Here, without flow from the boundary, the average
order parameter M is fixed in time at an initial value, so it characterizes the type of
quench and there can be two kinds of experiments: critical quenches are those lowering
the temperature into an unstable state with M = 0 or through the critical point; while
off-critical quenches are those with M �= 0 [31]. Because M is not dimensionless, it is
convenient to introduce φ by2

φ = 1

2
+ 1

2ψeq
M. (8.3.1)

In late stages of phase separation, the system is composed of the two phases with ψ ∼=
±ψeq as in the nonconserved case, and φ tends to the volume fraction of the phase with
ψ ∼= ψeq because M ∼= φψeq − (1 − φ)ψeq = (2φ − 1)ψeq. We will use φ rather than M
to characterize the type of quench.

Experimental data on the growth of domains are usually fitted to an algebraic form,
"(t) ∼ ta . Two experiments are presented here. (i) Figure 8.13 displays the scattering
intensity from a phase-separating Al–Zn binary alloy, where a ∼= 0.17 [32] (although
the peak wave number km(t) at the largest t (= 103 min) was only one-half the initial
peak value km(0)). It could be fitted to Furukawa’s phenomenological scaling function
Q2/(2 + Q6) with Q = k/km(t) [2]. In solids, the exponent a has often been observed
to be considerably smaller than 1/3 because of elastic effects or pinning by disorder.3 (ii)
Figure 8.14 shows the scattered light intensity from a polymer blend below the spinodal
temperature [33]. It grew exponentially at an early stage with a fixed peak wave number, in
agreement with the linear theory presented below. At a late stage an accelerated growth rate
with a ∼= 0.8 was observed due to the hydrodynamic interaction, which we will discuss in
Section 8.5.

2 In this book we use φ also as the volume fraction of polymers.
3 We will treat elastic effects on phase separation in solids in Chapter 10.
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Fig. 8.13. (a) Small-angle neutron scattering intensity vs scattering wave number k for Al–
10 at.% Zn polycrystals quenched from 300 ◦C to, and held at, 18 ◦C [32]. In (b) the curves are
normalized and plotted vs km(t), the characteristic wave number.

8.3.1 Model B

We start with model B with a single conserved order parameter,

∂

∂t
ψ = L∇2[

r − ∇2 + u0ψ
2]
ψ + θ, (8.3.2)

which describes the dynamics of binary alloys without elastic interactions as was discussed
in Section 5.3. The temperature coefficient r is changed from a large positive value to a
negative value −κ2 at t = 0 as in (8.1.1). The ordering field h, if it is homogeneous in
space, vanishes in the above equation. As in the nonconserved case (8.1.3) the evolution
equation of the equal-time structure factor I (k, t) is given by

∂

∂t
I (k, t) = 2Lk2{

κ2[1 − J (k, t)] − k2}
I (k, t)+ 2Lk2, (8.3.3)

where

J (k, t) = u0

∫
dreik·r〈ψ(r, t)3δψ(0, t)〉/κ2 I (k, t), (8.3.4)

with δψ = ψ − M , M = 〈ψ〉 being the space average.
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Fig. 8.14. Light scattering intensity from a polymer blend of SBR (styrene–butadiene random
copolymer) (8 vol.%) + polybutadiene (30 vol.%) at an early stage (t < 80 min) in (b) and at a
late stage (t > 118 min) in (a) [33]. The molecular weights are about 105 for the two polymers.

Linear growth

Because J (k, t) ∼= 3u0 M2/κ2 in the mean field theory (or for small fluctuations), spinodal
decomposition occurs for

κ2 − 3u0 M2 > 0, (8.3.5)

as discussed in Section 5.3. At large t and small k, J (k, t) should tend to 1 with coarsening
even for M �= 0. Let us suppose a critical quench (M = 0) and neglect J (k, t) in (8.3.3).
After the quench, the structure factor is again expressed as in (8.1.7) with

�k = Lk2(−κ2 + k2). (8.3.6)
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Fig. 8.15. 2D time evolution of patterns in model B after quenching at t = 0 without thermal noise
for φ = 0.5 and φ = 0.6. The numbers are the times after quenching in units of (Lκ4)−1.

Growth occurs for k < κ and is maximum at an intermediate wave number k = km given
by

km = 2−1/2κ. (8.3.7)

The maximum growth rate is

�m = 1

4
Lκ4. (8.3.8)

Near k ∼ km, the structure factor in the linear approximation grows as

I0(k, t) ∼= (κ−2
0 + k−2

m ) exp
[
2�mt − 2L(k2 − k2

m)
2t

]
, (8.3.9)

which is the counterpart of (8.1.8). The term proportional to k−2
m is produced by the thermal

noise term in the initial stage. We may examine the validity of the linear approximation by
estimating J (k, t) using the decoupling approximation as in the nonconserved case. Then,

J (k, t) ∼ (Kdu0κ
−ε)(�mt)−1/2 exp(2�mt). (8.3.10)

Therefore, if the Ginzburg condition Kdu0κ
−ε � 1 in (4.1.24) holds, exponential growth

of the fluctuations at k ∼ km is observable over a sizable time region. Note that model B is
characterized by the two parameters, φ and u0κ

−ε , after scale changes, κr → r, Lκ4t → t ,
and ψ/ψeq → ψ .

Computer simulations and scaling

Figure 8.15 shows evolution patterns of model B at φ = 0.5 and 0.6 in 2D [34, 35]. Figure
8.16 is a snapshot at φ = 0.5 in 3D [36]. We can see bicontinuous domain structures at the
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Fig. 8.16. A 3D snapshot of a two-phase
structure obtained as a solution of model B
[36].

critical-quench condition and droplet structures for off-critical quenches. From simulations
and theories of model B, it is now established that the characteristic domain size grows as

"(t) ∝ ta with a = 1/3, (8.3.11)

at long times, irrespective of the volume fraction φ and the space dimensionality. The
equal-time pair correlation gdom(r, t) due to the domain structure is scaled as

gdom(r, t) = ψ2
eqG(r/"(t)). (8.3.12)

The domain structure factor is then scaled as

Idom(k, t) = ψ2
eq"(t)

d F(k"(t)), (8.3.13)

as in the nonconserved case. To confirm the above scaling we give simulation results at
φ = 1/2 in 3D [36]. Namely, Fig. 8.17 shows the dimensionless pair correlation function
G(x) in model B, while Fig. 8.18 shows the dimensionless structure factor F(Q) in model
B (and model H). We recognize that the domain structure factor has a Porod tail (∝ k−d−1)

at large k as in (8.1.21). However, at small Q = k"(t) � 1, it goes to zero rapidly as

F(Q) ∼= C Q4, (8.3.14)

from the conservation law [37]. A derivation of this small-k behavior will be given in the
next section. Note that the thermal intensity Ith(k, t) tends to ξ2 ∼ κ−2 for k � κ , so that
the domain contribution is dominant for ξ2 � ψ2

eq"(t)
d(k/κ)4 or

k > "(t)−1[ξ/"(t)]d/4. (8.3.15)

The lower bound here is much smaller than the peak wave number km(t) ∼ 2π/"(t).
(See (8.1.22) for the upper bound, below which the Porod tail dominates over the thermal
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Fig. 8.17. The scaled pair correlation function
G(x) vs x = r/"(t) of model B at φ = 0.5 in
3D [36].

Fig. 8.18. The scaled structure factor F(Q) for
models B and H [36].

intensity.) The wave number region in which Idom(k, t) � Ith(k, t) expands with growth
of "(t).

8.3.2 The Langer–Bar-on–Miller theory

Langer, Bar-on, and Miller (LBM) [38] presented the first analytic theory for model B
[4, 39, 40]. It takes into account the nonlinearity in relatively early-stage spinodal decom-
position and reasonably describes the onset of coarsening. This scheme will be applied
to periodic spinodal decomposition in Section 8.8. To this end, it is convenient to add a
constant rc to r as

r = −κ2 + rc, (8.3.16)

where rc is a shift of r due to the fluctuation effect in the LBM scheme. That is, we
determine rc such that the structure factor at small wave numbers grows indefinitely for
r < rc and tends to a steady Ornstein–Zernike form for r > rc. Then rc = −0.374κ2 if
the upper cut-off wave number � is set equal to κ (α = 1 in (8F.10)). More generally, the
curve r = rc as a function of the average composition yields a spinodal curve [39, 40], but
it depends on the choice of the ratio �/κ as an artifact of the approximation.

LBM introduced single-point and two-point distribution functions,

ρ1(ψ1, t) = 〈δ(ψ(r1, t)− ψ1)〉, (8.3.17)

ρ2(ψ1, ψ2, r, t) = 〈δ(ψ(r1, t)− ψ1)δ(ψ(r2, t)− ψ2)〉, (8.3.18)

where ρ2 depends on the distance r ≡ |r1 − r2| and

ρ1(ψ1, t) =
∫

dψ2ρ2(ψ1, ψ2, r, t). (8.3.19)
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Fig. 8.19. (a) The structure factor vs Q = k/κ for a critical quench at various τ = 2Lκ4t in the
LBM theory [38]. The initial peak wave number km(0) = κ/

√
2 is indicated below the figure. The

inset shows the one-point distribution ρ1 vs y = ψ/ψeq. (b) Relaxation of the parameter A(t) in
(8.3.22).

For any n and m, we obtain

〈δψ(r1, t)nδψ(r2, t)m〉 =
∫

dψ1

∫
dψ2δψ

n
1 δψ

m
2 ρ2(ψ1, ψ2, r, t), (8.3.20)

where δψ = ψ − M . To obtain a closed set of equations for ρ1 and I (k, t), they assumed
the following truncation for ρ2,

ρ2(ψ1, ψ2, r, t) = ρ1(ψ1, t)ρ1(ψ2, t)

[
1 + 1

〈δψ2〉2
g(r, t)δψ1δψ2

]
. (8.3.21)

Then J (k, t) in (8.3.4) becomes independent of k. We introduce A(t) by

A(t) = 1 − J (k, t) = 1 − rc/κ
2 − u0〈ψ3δψ〉/κ2〈δψ2〉, (8.3.22)

where A(t) is a monotonically decreasing function of t . As a result, (8.3.3) reads

∂

∂t
I (k, t) = 2Lk2[

κ2 A(t)− k2]
I (k, t)+ 2Lk2. (8.3.23)

As will be derived in Appendix 8F, the dynamic equation for ρ1(ψ, t) is a self-consistent
Fokker–Planck equation in which I (k, t) is involved. Figure 8.19 is the LBM numerical
result for a critical quench, where the peak wave number decreases in time with the growth
exponent a about 0.2. The LBM theory can thus reproduce the initial coarsening behavior.
However, it is not applicable with the formation of well-defined interfaces, because the
ansatz (8.3.21) is no longer justified at such late stages.
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8.4 Interface dynamics in conserved systems

At late stages after quenching, two-phase regions with ψ ∼= ±ψeq are distinctly separate
with domain sizes much wider than the interface thickness. By analyzing the interface
motion, we can explain the growth law (8.3.11). In terms of the volume fraction q = q(t)
of the regions with ψ ∼= ψeq, the volumes of the regions with ψ ∼= ±ψeq are written as

V+ = V q, V− = V (1 − q), (8.4.1)

V being the total volume. Because the interface can move only after diffusive transport of
the order parameter across the interface, ψ slowly approaches the final value, ψeq or −ψeq.
Therefore, we define a deviation,

& ≡ ψ − ψeqε(r, t), (8.4.2)

where ε = 1 in the regions with ψ ∼= +ψeq and ε = −1 in the regions with ψ ∼= −ψeq.
The space average of & becomes

〈&〉 = M − ψeq(V+ − V−)/V = M − ψeq(2q − 1). (8.4.3)

In the off-critical case the supersaturation ∆(t) may be introduced by

∆(t) = 〈&〉/2ψeq. (8.4.4)

In terms of φ in (8.3.1) the conservation law (8.4.3) may be expressed as

∆(t)+ q(t) = φ = const. (8.4.5)

For critical quenches (M = 0) we trivially have q = 0.5 and ∆ = 0, but for off-critical
quenches ∆(t) is nonvanishing and slowly approaches 0.

At late stages we shall see that & changes on the scale of the domain size "(t) far from
the interface regions, where we may assume |&| � ψeq to obtain the diffusion equation,

∂

∂t
& = D∇2&, (8.4.6)

where D is the diffusion constant in the ordered phase,

D = 2Lκ2. (8.4.7)

8.4.1 The Gibbs–Thomson condition and the Stefan problem

As shown in Fig. 8.20, while ψ jumps by ±2ψeq, the generalized chemical potential
µ(r, t) ≡ δ(βH)/δψ continuously changes at the interface even if the thin-interface limit
"(t)/ξ → ∞ is taken mathematically. Its surface value will be written as

µa = µ(ra, t), (8.4.8)

on the surface {ra}. If there were discontinuities in µ across the interface, the current
−L∇µ would change abruptly, leading to rapid temporal variations of ψ near the interface.
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Fig. 8.20. A cross section of a 2D spinodal decomposition pattern of model B without thermal noise
along the x axis in units of (1.51/2κ)−1 at t = 2200/Lκ4. We can see (upper panel) that ψ is
nearly discontinuous at the interface positions, while (lower panel) µ = ∂(βH)/∂ψ (solid line) is
continuous throughout the system. We also confirm that & in (8.4.2) (dashed lines) nearly coincides
with µ/2κ2 far from the interface positions.

However, as can also be seen in Fig. 8.20, the gradient ∇µ jumps across the interface. We
decompose ψ as

ψ(r, t) = ψint(s)+ δψ(r, t) (8.4.9)

with
∫

dsψ ′
int(s)δψ = 0, s being the coordinate along the normal n, as in (8.2.17) for

model A. Then δψ → & far from the interface. Near the interface we may rewrite (8.2.22)
as

−Kaψ
′
int +

[
L̂(s)− ∇2

⊥
]
δψ = µa, (8.4.10)

where L̂(s) is the linear operator defined in (4.4.44). We hereafter write the curvature as
Ka explicitly with the subscript a. Multiplication of ψ ′

int(s) = dψint(s)/dζ and integration
over s in the region |s| � ξ yield

µa = (σ/2Tψeq)Ka . (8.4.11)
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This is the solvability condition of (8.4.10), which assures a unique solution for δψ near
the interface (|s| � ξ ). Far from the interface (|s| � ξ ), on the other hand, δψ ∼= & varies
slowly and its boundary value extrapolated to the interface is

&a = (2κ2)−1µa = (σ/4Tψeqκ
2)Ka = 2ψeqd0Ka, (8.4.12)

where we define a capillary length d0 by

d0 = σ/(8Tψ2
eqκ

2). (8.4.13)

Here d0 = ξ/6 with ξ = 2−1/2κ−1 from the mean field result (4.4.9) for the surface
tension. Therefore, we obtain the following order estimations,

&a/ψeq ∼ ξKa ∼ ξ/"(t). (8.4.14)

The interface velocity v in the normal direction n is induced by a small discontinuity of
the diffusion current across the interface. The conservation law requires

2ψev = L[n · ∇µ] = D[n · ∇&], (8.4.15)

where [· · ·] ≡ (· · ·)s>0 − (· · ·)s<0 is the discontinuity across the interface. We take ψ ∼=
−ψeq in the outward region s � ξ and ψ ∼= ψeq in the inward region s � −ξ . With (8.4.6),
(8.4.12), and (8.4.15) we have a closed set of dynamic equations for moving interfaces.
Diffusion problems with moving boundaries, which are called the Stefan problems, are
nonlinear and highly nontrivial.

A circular and spherical domain

For simplicity, let us consider an isolated circular (2D) or spherical (3D) droplet with
radius R, within which ψ ∼= ψeq. We assume that ψ tends to (−1 + 2∆)ψeq far from the
interface with ∆ being a small positive supersaturation. The Gibbs–Thomson condition at
the interface (8.4.11) yields the boundary values,

µa =
(

σ

2Tψeq

)
d − 1

R
, &a =

(
σ

4Tψeqκ2

)
d − 1

R
. (8.4.16)

Within the droplet µ is fixed at µa and ψ is given by

ψ ∼= ψeq +&a = ψeq

[
1 + 2(d − 1)

d0

R

]
. (8.4.17)

In Fig. 8.21 we show a growing circular domain with radius R = 8.16κ−1 in a 2D
simulation, where ψ/ψeq tends to −0.96 far from the droplet and hence ∆ = 0.02. The
critical radius, which we will discuss below, is given by Rc = 2.36κ−1. In this simulation
we have µ = µa = 0.056κ2ψeq and ψ/ψeq = 1.027 inside the droplet. These two values
are consistent with (8.4.12) and (8.4.16). In fact, the Gibbs–Thomson relation (8.4.11)
gives µa = 0.058κ2ψeq if the mean field expression for σ is used. Even if we prepare
a droplet within which ψ considerably deviates from ψeq at t = 0, the two relations in
(8.4.16) are soon satisfied after a transient time of order R2/D. However, violation of the
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Space

Fig. 8.21. The chemical potential µ and order parameter ψ for a growing circular solution of the
model B equation without thermal noise, where ∆ = 0.02 and R/Rc = 3.46. The space is measured
in units of (1.51/2κ)−1. The Gibbs–Thomson relation (8.4.11) is excellently satisfied here.

Gibbs–Thomson relation becomes noticeable for large ∆ � 0.1 because it holds only in
the limit ∆ → 0.

One-dimensional solution of the Stefan problem

The Stefan problem may be solved exactly for a one-dimensional case, where K = 0 and
an equilibrium phase with ψ = ψeq expands upward into a metastable region, the interface
position being at x = xint(t). We may envisage ice growth into metastable water from
a boundary wall, where & is the entropy (or temperature) deviation and 2ψeq in (8.4.15)
corresponds to the latent heat. The boundary conditions for & = ψ+ψeq in the metastable
region are

& → 0 (x → xint), & → 2ψeq� (x → ∞). (8.4.18)

To first order in ∆, the solution for t > 0 is given by

xint = 2∆√
π

√
Dt, (8.4.19)

&(x, t) = 2ψeq∆√
π

∫ X

0
ds exp

(
−1

4
s2

)
, (8.4.20)
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where X = (x−xint)/
√

Dt . This exercise demonstrates that the interface velocity is slowed
down with decreasing ∆ and that the deformation of & extends over the diffusion length,

"D(t) = (Dt)1/2. (8.4.21)

In Appendix 8G, we will solve the Stefan problem for a circle in 2D and a sphere in 3D.

The Gibbs–Thomson condition in general

The boundary relation (8.4.12) is a special case of the famous Gibbs–Thomson condition. It
can be derived in general statistical–mechanical contexts not necessarily close to the critical
point. One notable example is crystal growth, in which the temperature at a crystal–melt
interface is lowered by an amount proportional to K below the bulk melting temperature.

It is also straightforward to generalize (8.4.11) or (8.4.12) for the general form (4.4.15)
of the free-energy density. To be specific, let us assume a generalization of model B [41],

∂

∂t
ψ = ∇L(ψ) · ∇ δ

δψ
βH, (8.4.22)

where the kinetic coefficient L may depend on ψ but the noise term is neglected. The
chemical potential µ = δ(βH)/δψ is still continuous at the interface. Following the
procedure which has led to (8.4.11), we obtain the surface value of µ in the form

µa = (σ/T�ψ)Ka, (8.4.23)

where �ψ = ψ
(1)
cx − ψ

(2)
cx is the difference of the order parameter values in the bulk two

phases. The order parameter values extrapolated to the interface from the bulk regions are
given by µa/χα (α = 1, 2), where χα are the susceptibilities in the bulk. In the asymmetric
case χ1 �= χ2, the order parameter values &a extrapolated from the two sides are different.

8.4.2 The quasi-static approximation and scaling

We now make simple order estimations in the course of the domain growth. Let K ∼ 1/"(t)
and v ∼ d"(t)/dt ∼ "(t)/t from the scaling and &a ∼ ψeqξ/"(t) from (8.4.14). Then,
(8.4.15) yields

ψeq
d

dt
"(t) ∼ D"(t)−1&a or

d

dt
"(t)3 ∼ Dξ. (8.4.24)

Thus,

"(t) ∼ (Dξ t)1/3 ∼ (Lκt)1/3. (8.4.25)

If "(t) is interpreted as the average droplet radius, the above relation also holds for off-
critical quenches. The average droplet radius tends to obey (8.4.25), independently of φ,
when "D(t) exceeds the distance among droplets. The coarsening in the limit of small φ
[31] will be discussed in Chapter 8. Because "(t)/"D(t) = [ξ/"(t)]1/2, we notice that the
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domain size becomes shorter than the diffusion length at late stages. In such cases, we may
assume the quasi-static condition,

∇2& = 0. (8.4.26)

To justify this equation, let us estimate the left-hand side of (8.4.6) as &a/t and the right-
hand side as D&a/"(t)2 near the interface with &a being given by (8.4.14); then, the ratio
of the former to the latter is "(t)2/"D(t)2 ∼ ξ/"(t) � 1.

A spherical and circular domain

Around a spherical droplet in 3D the quasi-static condition (8.4.26) may be used to give

& = ψ + ψeq = 2ψeq∆+ (&a − 2ψeq∆)
R

r
. (8.4.27)

As will be shown in Appendix 8G, this expression holds in the region ξ � r − R � "D

only for ∆ � 1. Because the flux onto the droplet is 4πDR(2ψeq∆ − &a), the evolution
equation of R is obtained as [31]

∂

∂t
R = D

(
∆

R
− 2d0

R2

)
, (8.4.28)

where the capillary length d0 is defined by (8.4.13). For the generalized model (8.4.22),
on the other hand, we should replace 2ψeq by �ψ in (8.4.27) and may suitably define ∆

and d0 as will be shown in Section 9.1. Then (8.4.28) can be used with D = L(ψ(2)
cx )/χ2

being the diffusion constant in the phase outside the droplet. In 2D, however, logarithmic
corrections appear even close to the interface. As will be shown in Appendix 8G, we should
replace R/r in (8.4.27) by A ln(r/R) + 1 around a circular droplet with A = 2/ ln∆−1

and modify the droplet evolution equation as

∂

∂t
R = 2D

ln(1/∆)

(
∆

R
− d0

R2

)
, (8.4.29)

which is valid for ∆ � 1. The critical radius in 2D and 3D is given by

Rc = d − 1

∆
d0. (8.4.30)

8.4.3 Chemical potential correlation and the Yeung relation

At a very late stage, where "D(t) � "(t), the generalized chemical potential µ =
δ(βH)/δψ varies gradually over the domain size "(t). Conversely, it is sharply peaked
in the interface regions in the nonconserved case. Let us consider the two-point correlation
for the deviation δµ = µ− 〈µ〉,

H(r, t1, t2) = 〈δµ(r1, t1)δµ(r2, t2)〉
= (σ/2Tψeq)

2"(t1)
−2 H∗(r/"(t1), t2/t1), (8.4.31)
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where r = |r1−r2|. The scaling relation assumed in the second line has been inferred from
(8.4.11). The Fourier transformation in space yields

Hq(t1, t2) = (σ/2Tψeq)
2"(t1)

d−2 H∗
Q(t2/t1), (8.4.32)

where Q = q"(t). Furukawa [29] examined the above correlation function in the limit
q → 0 numerically and found limq→0 Hq(t1, t2)/Hq(t1, t1) ∼ (t2/t1)0.5 for t2 < t1 in 2D.
From ∂ψ/∂t = L∇2µ without thermal noise, the time derivative of the pair correlation
function g(r, t) = 〈ψ(r1, t)ψ(r1, t)〉 (where r = |r1 − r2|) is written as

∂

∂t
g(r, t) = 2L∇2〈ψ(r1, t)µ(r2, t)〉 = 2L2∇4

∫ t

0
dt ′H(r, t, t ′), (8.4.33)

where we may set 〈ψ(r1, 0)µ(r2, t)〉 = 0 in the scaling limit (or in the limit of small
initial variance of ψ). If the second line of (8.4.31) is assumed, the scaling form g(r, t) =
ψ2

eqG(r/"(t)) holds only for "(t) ∝ t1/3. We define "(t) by

"(t) = (Lσ/2Tψ2
eq)

1/3t1/3. (8.4.34)

The Fourier transformation of (8.4.33) gives a desired relation between F(Q) and H∗
Q(s),(

d + Q
∂

∂Q

)
F(Q) = 6Q4

∫ 1

0
ds H∗

Q(s). (8.4.35)

Because limQ→0 H∗
Q(s) is nonvanishing and finite [29], the above equation leads to the

small-Q behavior (8.3.14) first derived by Yeung [37], which has been confirmed in
simulations.

8.4.4 General solutions without thermal noise in 3D

Critical quench

Let us consider late-stage domain growth in the critical-quench (M = 0) case in 3D. In
analogy with electrostatics, the surface boundary condition (8.4.15) may be interpreted as
that of a surface charge density given by ρa = −(2ψeq/D)va , where the surface velocity
v in the normal direction at ra is written as va . Notice that the symmetry between the
two phases in the critical-quench case leads to the charge-neutrality condition,

∫
daρa =

−(2ψeq/D)
∫

dava = 0. Then, using the 3D Green function,

G(r, r′) = 1

4π |r − r′| , (8.4.36)

we may formally integrate (8.4.26) as

&(r, t) = −2ψeq

D

∫
da′G(r, ra′)va′ . (8.4.37)
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The neutrality condition assures the convergence of the above surface integration at
large distance, the screening length being "(t) in (8.4.25). The Gibbs–Thomson condition
(8.4.12) leads to a surface dynamic equation,∫

da′G(ra, ra′)va′ = −(Lσ/4Tψ2
eq)Ka = −Dd0Ka, (8.4.38)

where the length d0 is defined by (8.4.13). Because the above equation is nonlocal, we
formally define the inverse kernel �aa′ [42] by∫

da′′�aa′′G(ra′′ , ra′) = δaa′ , (8.4.39)

where δaa′ is the δ-function on the surface (which satisfies
∫

da′δaa′ϕa′ = ϕa for any ϕa).
Then va is expressed as

va = −Dd0

∫
da′�aa′Ka′ , (8.4.40)

which is the counterpart of the Allen–Cahn equation (8.2.1). The nonlocality here, how-
ever, makes the problem much more complicated. The free energy in this case is equal to
the surface energy as H = σ S(t)+ const. Its rate of change is

d

dt
H = −σ Dd0

∫
da

∫
da′Ka�aa′Ka′ ≤ 0, (8.4.41)

which cannot be positive because the kernel G(ra, ra′) and hence its inverse kernel �aa′

are positive-definite. Coarsening thus occurs in order to lower the surface free energy at a
late stage, where ξ � "(t) � "D(t).

Off-critical cases with small volume fraction

We consider the dilute case φ � 1, in which droplets emerge in late-stage phase separation.
The volume fraction q(t) of the droplets slowly approaches φ. The free energy may be
expressed in terms of the surface area S(t) and the supersaturation ∆ = ∆(t) = φ − q(t)
as

H = σ S(t)+ (4T κ2ψ2
eq)∆

2V

= σ

[
S(t)+ 1

2d0
∆2V

]
. (8.4.42)

The second bulk term arises from the relation, − 1
2κ

2ψ2 + 1
4 u0ψ

4 ∼= κ2&2 ∼= κ2〈&〉2.
Here we shift infinitesimally the surface ra to ra + δζana . The subscript a is attached to all
the quantities defined at ra . From the relation δ∆(t) = −δq(t) = − ∫

daδζa/V , we find

δ

δζa
H = σ

(
Ka − ∆

d0

)
. (8.4.43)

Obviously, for a sphere with radius R, the above quantity vanishes for R = Rc, Rc being
the critical radius in (8.4.30).
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When the diffusion length "D = (Dt)1/2 exceeds the average domain separation, we
may set up the counterpart of (8.4.37) in the majority phase as

&(r, t)− 2ψeq∆ = −2ψeq

D

∫
dr′G(r, r′)

[
va′ δ̂(r

′)+ ∆̇
]
, (8.4.44)

where δ̂(r) is the surface δ-function defined by (8.2.53), and ∆̇ = ∂∆(t)/∂t . On both sides
we have subtracted the space averages of & and va δ̂(r), because 〈&〉 − 2ψeq∆ = 0 from
(8.4.4) and

∫
dava/V + ∆̇ = 0 from the time derivative of (8.4.5). As r → ra , (8.4.12)

holds and∫
dr′G(ra, r′)

[
va′δ(r

′)+ �̇
] = D

(
∆− d0Ka

) = − L

4ψ2
eq

δ

δζa
βH, (8.4.45)

which is the counterpart of (8.4.38). The integration over r′ should be cut off at a screening
length "s, because domains far apart should not be correlated in their growth. More
specifically, let us suppose an assembly of spheres with radii Ri (t) at fixed positions ri ,
for which the above equation becomes [42, 43]

Ri
∂

∂t
Ri +

∑
j �=i, ri j<"

1

ri j
R2

j
∂

∂t
R j + 1

2
"2∆̇s = D

(
∆s − 2d0

Ri

)
, (8.4.46)

where ri j = |ri − r j | are the distances between the pairs i, j and the summation over the
other spheres ( j �= i) is limited within a long distance cut-off ". The last two terms on
the left-hand side, if they are combined, should be independent of " as long as " > "s.
The equation without them is the starting point of the classic Lifshitz–Slyozov theory [31],
which will be explained in Section 9.3. Note that the second term on the left-hand side
multiplied by −D−1 represents the fluctuation of the supersaturation seen by the sphere
i and produces correlation in the droplet radii (not in the positions) in the space range
ri j < "s. It is known that this fluctuation gives rise to corrections of order φ1/2 to the
Lifshitz–Slyozov growth law in the small-φ limit [44]–[46].

It is highly nontrivial how the screening length "s is determined in the late stage where
the diffusion length "D(t) exceeds the inter-domain distance n−1/3

dom ∼ φ−1/3 R [5]. Here,
ndom is the domain density and the average radius R is determined from 4πR3ndom/3 = φ.
If a sphere with radius R0 dissolves, it results in an increase of the effective supersaturation
of order δ∆ ∼= R3

0/r Dts ∼ R3
0/r"2

s in its neighborhood with distance r less than "s, where
ts = "2

s/D is the duration time of the effect of dissolution. In this correlated region, spheres
with R > Rc grow by δR ∼ Dtsδ∆/R ∼ R3

0/r R within the time ts. Now we can determine
"s self-consistently by

(ndom"
3
s )R2(δR)r="s ∼ R3

0, (8.4.47)

where the left-hand side is the volume absorbed by the surrounding ndom"
3
s droplets in the

correlated region. Supposing spheres with radii not much different from Rc(t) ∼ ξ/∆(t),
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we set R0 ∼ R ∼ Rc and find

"s ∼ (ndom R)−1/2 ∼ φ−1/2 R, (8.4.48)

ts = "2
s/D ∼ t Rc0/R, (8.4.49)

δR ∼ φ1/2 R, (8.4.50)

where Rc0 ∼ d0/φ is the initial critical radius, so ts � t and δR � R. The inequality,
n−1/3

dom < "s < "D , follows. In the above arguments, however, we have examined the effect
of a single dissolved droplet. We notice that many droplets may dissolve during the time ts
in the correlated region. Their number is estimated as

δNdis ∼ "3
s

∣∣∣∣∂ndom

∂t

∣∣∣∣ts ∼ φ−1/2 Rc0/R, (8.4.51)

which is larger than 1 in the time region where R/Rc0 < φ−1/2. The net growth of R
during the time ts is a superposition of contributions from δNdis dissolved droplets:

(δR)net ∼ δNdisδR ∼ Rc0. (8.4.52)

This increase is of order Rts/t from (8.4.49) and (8.4.50) and is consistent with the
algebraic growth of R.

8.4.5 Langevin equation for surfaces

We now include the noise effect in the surface dynamic equation. It may be added to the
formal solution (8.4.40) as

va = − L

4ψ2
eq

∫
da′�aa′

∂

∂ζa′
βH+ θa . (8.4.53)

where we have set ∆̇(t) = 0 for simplicity. The noise strength is determined from the
fluctuation–dissipation relation,

〈θa(t)θa′(t
′)〉 = (L/2ψ2

eq)�aa′δ(t − t ′). (8.4.54)

This Langevin equation for the conserved case is the counterpart of (8.2.34) for the
nonconserved case. A more systematic derivation of the noise term can be found in Ref.
[42].

Undulations of a planar interface

We may use (8.4.53) to examine the dynamics of the surface displacement ζ(r⊥, t) super-
imposed on a planar interface at z = 0, where r⊥ = (x, y) is the position vector on the
unperturbed surface z = 0. Because �aa′ is not a usual function, it is more convenient to
re-express (8.4.53) in terms of G in (8.4.36) as∫

dr′⊥G(r⊥, r′⊥)
∂

∂t
ζ(r′⊥, t) = Lσ

4Tψ2
eq
∇2
⊥ζ + θ̃ (8.4.55)
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with

〈θ̃ (r⊥, t)θ̃(r′⊥, t ′)〉 = (L/2ψ2
eq)G(r⊥, r′⊥)δ(t − t ′). (8.4.56)

The 2D Fourier transform of G(r⊥, r′⊥) = G(|r⊥ − r′⊥|) is∫
dr⊥ exp(ik · r⊥)G(|r⊥|) = 1

2k
, (8.4.57)

where k = |k|. Fourier transformation of the above equation yields

∂

∂t
ζk = − Lσ

2Tψ2
eq

k3ζk + θk. (8.4.58)

Here the noise term θk = 2kθ̃k satisfies

〈θk(t)θq(t
′)〉 = (L/ψ2

eq)k(2π)
2δ(2)(k + q)δ(t − t ′), (8.4.59)

where δ(2) is the two-dimensional δ function. This assures the equilibrium distribution of
the surface displacement (8.2.39). The relaxation rate of the surface undulations with wave
number k is thus given by

�k = (Lσ/2Tψ2
eq)k

3 ∼ Lκk3. (8.4.60)

As in the nonconserved case (8.2.41), the coarsening law (8.4.25) may be inferred from the
above dispersion relation if we pick up the fluctuations with k ∼ 1/"(t) and set

�k t ∼ Lκt/"(t)3 ∼ 1. (8.4.61)

Growth and diffusion of a spherical domain in 3D

In the dilute limit of droplets, we may consider a single droplet isolated from others. Due
to its appearance, ∆(t) is slightly decreased from φ as ∆(t) = φ − 4πR3/3V , and H in
(8.4.42) increases by4

H(R) = 4πσ

(
R2 − φ

3d0
R3

)
, (8.4.62)

where the constant term and that of order φ2 are omitted. This droplet free energy is of the
same form as that in (8.2.42) if h there is replaced by (4ψeqκ

2)φ. The Langevin equation
for R can also be written in the standard form (8.2.47) with the kinetic coefficient,

L(R) = (L/16πψ2
eq)R−3. (8.4.63)

Furthermore, we may examine the diffusion of a spherical domain by setting θa(t) =∑
"m θ"m(t)Y"m(na) using the spherical harmonic functions and picking up the components

with " = 1, m = −1, 0, 1. The random velocity of the center of mass is expressed as

4 If the volume fraction of droplets q(t) = φ −�(t) increases appreciably compared with φ, we should use �(t) in place of φ
in (8.4.62), as will be discussed in Chapter 9.
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(8.2.49) for the nonconserved case. The diffusion constant for model B in 3D may be
readily calculated as [42]

DB(R) =
∫ ∞

0
dt〈ux (t)ux (0)〉 = (9L/16πψ2

eq)R−3. (8.4.64)

This diffusion constant is again negligibly small, as in model A.

8.4.6 Interface dynamics in coupled systems

In model C, introduced in Section 5.3, the motion of a nonconserved order parameter ψ
is slowed down by diffusion of a subsidiary conserved variable m [47]. This model may
be used to describe order–disorder phase transitions in binary alloys near the tricritical
point, as explained in Section 3.3. As another notable tricritical system, we mention
3He–4He mixtures [48]–[50], whose GLW hamiltonian is given in (4.2.15) or (4.2.22).
In these systems, the conserved variable m can take different values, me1 and me2, in
the two phases. Then, in late-stage phase ordering, the volume fraction of the disordered
phase tends to a constant because of the conservation law, and diffusion of the conserved
variable becomes the controlling factor of the coarsening. Analytic work on early-stage
spinodal decomposition is straightforward but rather complicated [47, 48]. Such analysis
in a simple case was given in Section 5.3. Moreover, numerical work has revealed some
unique nonlinear effects [51]–[53]. In Fig. 8.22 we show typical phase-ordering patterns
in model C [53]. The dynamic scaling for the structure factor was confirmed to hold both
for the conserved and nonconserved variables in late-stage spinodal decomposition with
the domain size growing as t1/3 [51]. In experiments on 3He–4He mixtures [49, 50], the
dynamic scaling behavior was indeed observed in the scattered light intensity, where the
hydrodynamic interaction governs the domain growth at late stages. Furthermore, in binary
alloys, phase ordering can be radically influenced by coupling to the elastic field. Such
aspects will be treated in Section 10.3.

Although we will not discuss it in this book, a phase-field model similar to model C
has been used to describe crystal growth in a metastable melt [54]. There, a nonconserved
order parameter ψ , called a phase field, is equal to 0 in the liquid region and to 1 in the
solid region, while a conserved variable m representing the entropy is related to ψ and the
temperature T as m = C0T−1

melt(T − Tmelt − L latψ). Here C0 is the specific heat, Tmelt is
the melting temperature, and L lat is the latent heat.

Model C near the tricritical point

We hereafter examine the diffusion-limited interface motion in model C, neglecting the
noise terms, where a scalar nonconseved order parameter ψ and a scalar conserved variable
m obey (5.3.3) and (5.3.13), respectively. The kinetic coefficients L and λ will be assumed
to be constants, but our theory can readily be generalized to the case in which they differ
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Fig. 8.22. Typical time evolution of patterns in a model C system quenched into the order–disorder
coexistence region [53]. As unique features, the disordered phase (black) forms a wetting layer that
wraps the ordered domains of opposite sign (white or gray) in (a), and there are two kinds of domains
(variants) in the ordered phase in (b). The times shown in the picture correspond to 150 and 450 from
top to bottom in suitable units. The normalized concentration defined by [2c̄−(c1+c2)]/(c2−c1) is
equal to −1/3 in (a) and 1/3 in (b), where c̄ is the average and c1 and c2 are those on the coexistence
curve.

in the two phases. The GLW hamiltonian may be written as

βH{ψ,m} =
∫

dr
[

f (ψ)− hψ + 1

2
|∇ψ |2 + 1

2
C0(δτ̂ )

2
]
, (8.4.65)

where a small ordering field h may be present and

δτ̂ = δ

δm
βH = C−1

0 m + γ0ψ
2 − τ. (8.4.66)

The free-energy density f (ψ) takes the form of (3.2.1) near a symmetrical tricritical
point. The equilibrium interface profile ψ = ψint(s) and m = mint(s) is obtained from
minimization of H at h = 0. Then mint is expressed as (8.2.61) in terms of ψint, and the
difference of m in the two phases is expressed as

�m = me2 − me1 = −γ0C0
[
(ψ(2)

cx )2 − (ψ(1)
cx )2]

, (8.4.67)

where ψ
(α)
cx (α = 1, 2) are the equilibrium values in two-phase coexistence.
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When the motion of curved interfaces is sufficiently slow, δτ̂ should be continuous
across the interface and assumes a well-defined surface value δτ̂a , as the chemical potential
µ = δH/δψ in model B. However, the flux −λn · ∇δτ̂ along the normal is discontinuous
across the interface and determines the interface velocity v from the conservation law,

(�m)v = −λ[n · ∇δτ̂ ], (8.4.68)

where n is the normal unit vector from the phase 1 to the phase 2, and [· · ·] is the
discontinuity across the interface as in (8.4.15). Next we impose the quasi-static condition
on the evolution equation for ψ because the timescale of ψ is much faster than that of m at
long wavelengths. This simply yields

δ

δψ
βH = f ′(ψ)+ a0δτ̂ψ − ∇2ψ − h = 0, (8.4.69)

where a0 = 2γ0C0. Near the surface point a, this equation is approximated as

−Kaψ
′
int + a0δτ̂aψint +

[
f ′′(ψint)− ∇2]

δψ − h = 0. (8.4.70)

If this equation is multiplied by ψ ′
int and integrated over the interface region |s| � ξ , the

surface value of δτ̂ is determined as

δτ̂a = − 1

�m

[
σ

T
Ka − (�ψ)h

]
, (8.4.71)

where �ψ = ψ
(1)
cx − ψ

(2)
cx . However, far from the interface we may neglect the gradient

term (∝ ∇2ψ) in (8.4.69). Then the deviation δψ = ψ − ψ
(α)
cx in the phase α is linearly

related to h and δτ̂ as

δψ = χα
(
h − ψ(α)

cx a0δτ̂
)
. (8.4.72)

From (8.4.66) and (8.4.72) the deviation δm = m − meα is written as

δm = C0αδτ̂ − a0ψ
(α)
cx χαh, (8.4.73)

where χα = 1/ f ′′(ψ(α)
cx ) is the susceptibility of ψ and

C0α = C0 + (a0ψ
(α)
cx )2χα. (8.4.74)

If m is the entropy variable, C0α has the meaning of the specific heat at h = 0. Far from
the interface, δτ̂ (or δm) obeys the diffusion equation,

∂

∂t
δτ̂ = Dα∇2δτ̂ , (8.4.75)

where Dα is the diffusion constant in the phase α:

Dα = λ/C0α. (8.4.76)

This diffusion equation should be solved under the boundary condition (8.4.71) and the
interface velocity is determined by (8.4.68). These equations are equivalent to those in
model B except for the appearance of the ordering field h.
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Droplet growth

As an application of the above relations, we consider a spherical droplet of the phase 1
growing into a metastable phase 2. The supersaturation ∆ is defined by

∆ = me2 − m∞
�m

= − δτ̂∞
C02�m

, (8.4.77)

where δτ̂∞ and m∞ are the values of δτ and m far from the droplet. Adopting the quasi-
static condition ∇2δτ = 0 outside the droplet, we obtain the counterpart of (8.4.28),

∂

∂t
R = D2

R

[
∆− d02

(
2

R
− T�ψ

σ
h

)]
. (8.4.78)

The capillary length in the phase α is defined by

d0α = C0ασ

(�m)2T
. (8.4.79)

We exchange the subscripts 1 and 2 if a droplet of the phase 2 is growing into a metastable
phase 1. Near the symmetrical tricritical point, d0 is of the order of the correlation length
ξ ∝ |T − Tt |−1 from (3.2.24), (4.4.22), and (4.4.24).

Surface mode and crossover between the nonconserved and conserved cases

The above results are analogous to those in model B. However, when �m is very small,
they are valid only in the long-wavelength (or low-frequency) limit (k � kc). For k � kc

we should recover the result (8.2.68) for the case �m = 0. This crossover can be seen
apparently in the surface dispersion relation. Some calculations show that the decay rate of
a sinusoidal perturbation on a planar interface is written as

�k = Lk3/(k + kc), (8.4.80)

where k is the lateral wave number assumed to be much smaller than ξ−1 and

kc = T (�m)2L/2σλ (8.4.81)

is a crossover wave number. This decay rate coincides with the model A result (8.2.40)
for k � kc and becomes [2σλ/T (�m)2]k3, analogous to the model B result (8.4.60), for
k � kc.

8.5 Hydrodynamic interaction in fluids

Hydrodynamic interaction plays a decisive role in the phase-separation dynamics of flu-
ids. Representative systems are as follows. (i) Binary fluid mixtures composed of small
molecules, such as isobutyric acid + water, are classic systems where light scattering
experiments have been used to study asymptotic critical behavior and phase separation
[55]–[60]. In such fluids, phase separation can be induced by an adiabatic pressure-quench
method [56, 59] or a microwave-heating method (applicable to lutidine + water with
an inverted, isobaric coexistence curve) [55]. The space and timescales of the emerging
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Fig. 8.23. The scaled peak wave number Q̄m = km(t)ξ vs the scaled time τ = Dξ−2t =
(T/6πη)ξ−3t for various quenches at the critical concentration in isobutyric acid + water (I+W)
obtained by Chou and Goldburg [55], where ξ ∼= 2−1/2κ−1. The curved solid line (WK) summarizes
similar measurements on the same system by Wong and Knobler [56]. The broken and dashed lines
are respectively the theoretical results of LBM [38] and of Kawasaki and Ohta (KO) [71].

concentration fluctuations can be of the order of a laser-light wavelength (∼ 103 Å) and
minutes, respectively. (ii) In one-component fluids near the gas–liquid critical point, adia-
batic changes occurring on the acoustic timescale can be used to induce phase separation.
Here, the slow thermal diffusion controls the kinetics. As a result, the general feature of
phase separation becomes very similar to that in usual binary fluid mixtures [61]. (iii)
A great number of phase-separation experiments have also been performed on polymeric
systems [33], [62]–[68]. In symmetric polymer blends, where constituent polymers have
nearly identical molecular weights and viscoelastic properties, the hydrodynamic interac-
tion eventually governs late-stage phase separation in the same manner as in usual binary
fluid mixtures. In asymmetric polymer blends, however, viscoelastic effects unique to
polymers can drastically influence phase separation, as will be discussed in Section 8.9.

We now present some representative experimental data. (i) In Fig. 8.23, the scaled
peak wave number Q̄m(τ ) = km(t)ξ is written as a function of the scaled time τ =
(T/6πηξ3)t = Dξ−2t at the critical composition in a near-critical mixture of isobutyric
acid + water [55]. The growth exponent a = −∂ ln Q̄m/∂ ln τ is time dependent; a ∼ 0.3
for Q̄m ∼ 0.3, and a ∼ 1 for Q̄m < 0.1. (ii) In Fig. 8.24 experimental results for the
dimensionless wave number Q∗

m = 2πξ/"(t) are reported vs τ = Dξ−2t for CO2 and
SF6 in reduced gravity [61]. A decrease in the volume fraction φ of the gas phase to below
0.5 resulted in an interconnected morphology with a ∼ 1 for φ > φhyd ∼= 0.29 and
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Fig. 8.24. The scaled wave number Q∗
m = 2πξ/"(t) vs τ = Dξ−2t for CO2 and SF6 in reduced

gravity [61]. The domain size "(t) is obtained from video footage or photographs. The curves
refer to an average of data obtained for binary fluid mixtures [55]–[58]. The open symbols (lower
curve) correspond to interconnected-fast growth and the filled symbols (upper curve) correspond to
disconnected-slow growth. The crossover between these two morphologies was found to occur when
the volume fraction of the gas phase is about 0.29.

a disconnected morphology with a ∼= 1/3 for φ < φhyd. (iii) In Fig. 8.25, the scaled
structure factor F(Q) is written for isobutyric acid + water (I/W) [55, 56], lutidine +
water (L/W) [55], and polybutadiene + polyisoprene [68]. These data demonstrate the
universality of the domain morphology in fluids at late stages, in excellent agreement
with 3D simulation results [36, 69, 70]. It is also worth noting that Hashimoto et al.
took 3D images of bicontinuous domains in polymer blends using laser scanning con-
focal microscopy [68]. For example, from images at a very late stage of polybutadiene
(50 vol%)+ polyisoprene (50 vol%), the method reproduced saddle-shaped surfaces with
the statistical averages, 〈R−1

1 + R−1
2 〉 ∼= 0, 〈(R−1

1 + R−1
2 )2〉 = 8.8 × 10−2 µm2, and

〈(R1 R2)
−1〉 = −6.2×10−2 µm2 for the principal curvatures. These bicontinuous surfaces

resemble minimal surfaces (where R−1
1 + R−1

2 = 0 is satisfied at each surface point),
though there are considerable deviations.

8.5.1 The Kawasaki–Ohta theory

In the Stokes–Kawasaki approximation in Section 6.1, the velocity field is expressed as
vvvψ + vvvR as given by (6.1.47) and (6.1.48). Then the kinetic coefficient L(r, r′) becomes
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Fig. 8.25. The universal scaling function F(Q) vs Q = k/km for binary fluids and a polymer blend
at a late stage [68]. Simulation results are also shown (solid line). We can see S(Q) ∝ Q−4 for
Q � 1 and S(Q) ∝ Q4 for Q � 1.

nonlocal and nonlinearly dependent on ψ as (6.1.53). For near-critical binary mixtures
at the critical composition, Kawasaki and Ohta [71] used the LBM scheme for J (k, t)
as in (8.3.22) and decoupled the four-body correlation arising from the hydrodynamic
interaction in the evolution equation of the intensity I (k, t). The resultant equation reads

∂

∂t
I (k, t) = 2Lk2[

κ2 A(t)− k2]
I (k, t)+ 2Lk2

+ 2
∫

q
k · →←

T k−q · k
[
(q2 − k2)I (k, t)I (q, t)− I (k, t)+ I (q, t)

]
,

(8.5.1)

where (
→←
T q)αβ = (T/ηq2)(δαβ − qαqβ/q2). The upper cut-off wave number of the fluc-

tuations is taken as κ , so L ∼ T/6πηκ . The viscosity η here is the renormalized one
accounting for the fluctuation effect. They assumed that A(t) relaxes as in the original
LBM calculation in Fig. 8.19(b). As can be seen in Fig. 8.23, the last term in (8.5.1)
arising from the hydrodynamic interaction considerably accelerates the coarsening. This
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theory turns out to agree with the experimental trend in near-critical binary mixtures in an
intermediate time region, but is not applicable when the two phases are distinctly separated
by sharp interfaces.

It should be noted that the size of the thermal fluctuations is very large in the asymptotic
critical region of near-critical fluids. As a result, distinct domains in phase separation can
be seen only when the domain size considerably exceeds ξ [72]. This is probably the
reason why the Kawasaki–Ohta theory is valid for near-critical fluids over a sizable time
region. In fact, in simulations without thermal noise [36, 69, 70], clear domain structures
are established earlier than in the case with thermal noise, and the fast coarsening a = 1
soon becomes apparent for low-viscosity cases (see below).

8.5.2 Late-stage coarsening for critical quench

McMaster [63] and Siggia [73] argued that the coarsening of interconnected domain
structures takes place with deformation and breakup of tube-like regions. The characteristic
velocity field v" (around domains with sizes ∼ ") is determined by the balance between
the surface tension force density of order σ/" and the viscous stress of order 6πηv"/" as

v" ∼ 0.1σ/η. (8.5.2)

The characteristic domain size "(t) at time t may be estimated as

"(t) ∼ v"t ∼ 0.1(σ/η)t. (8.5.3)

In accord with this simple picture, experiments and simulations have shown that the peak
wave number in the late stage is written as

km(t) = 2π/"(t) ∼ 102η/σ t ∼ 102κη̃/τ, (8.5.4)

where τ = Dξ−2t is the dimensionless time and η̃ is a dimensionless viscosity defined by

η̃ = ηLu0/T = ηD/(2Tψ2
eq). (8.5.5)

In particular, η̃ tends to a universal number of order 0.1 in the asymptotic critical region of
near-critical fluids [42].

Tube-like regions may be regarded as aggregates of deformed spheres continuously
growing into larger ones. At sufficiently high volume fractions φhyd < φ < 1 − φhyd,
such spheres have no time to be separated from others because new coalescence events
take place before relaxation to spherical shapes. Based on this picture, Nikolaev et al. [74]
estimated the threshold volume fraction φhyd to be 0.26 in agreement with the experimental
value 0.29 [61]. This value is also consistent with 3D simulations of binary fluids described
by the Boltzmann–Vlasov equations [75]. The interconnected patterns in fluids are thus
maintained by the hydrodynamic flow produced by the surface motion. This suggests that
the threshold volume fraction should be closer to 0.5 without hydrodynamics (in model B).
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In the above hydrodynamic theory we have assumed low Reynolds numbers. On the
scale of the domain size ", the Reynolds number is estimated as

Re(") = ρv""/η ∼ 0.1(ρσ/η2)" ∼ 0.01(ρσ 2/η3)t. (8.5.6)

The condition Re(") < 1 yields " < "ina, where

"ina ∼ 10η2/ρσ. (8.5.7)

This upper bound length is very long near the critical point due to small σ and in polymer
systems due to large η.

Interface dynamics

Let us use model H, as outlined in Section 6.1, to describe the interface dynamics during the
late stage. A transverse velocity field can be induced around curved interfaces, where µ =
δ(βH)/δψ assumes the surface value (8.4.11). From (6.1.11) the force density produced
by the concentration fluctuations may be expressed near the interface as

−ψ∇ δ

δψ
H ∼= −∇

(
ψ

δ

δψ
H

)
− σKa δ̂(r)na, (8.5.8)

where δ̂(r) is the δ-function on the surface defined by (8.2.53), and na is the normal unit
vector. The first term on the right-hand side does not induce the transverse part of the
velocity. The second term is valid on spatial scales longer than ξ and has been derived using
the relations (8.2.20) and (8.4.11). The Stokes–Kawasaki approximation (setting ∂vvv/∂t =
0) gives the velocity field expressed in the following surface integration,

vvvψ(r, t) = −
∫

da′ →←
T (r − ra′) · na′σKa′ , (8.5.9)

where
→←
T i j (r) = (8πη)−1(δi j r−1 + xi x j r−3) is the Oseen tensor in 3D, η being the

renormalized viscosity for near-critical fluids. This velocity field is nonvanishing only
when the domain shape deviates from sphericity. In fact, for a sphere placed at the origin,
the second term in (8.5.8) is rewritten as 2σ R−1∇ε(R − r), where ε(x) = 1 for x > 0
and ε(x) = 0 for x < 0, so it may be included in the pressure term. As will be shown in
Appendix 8H, we can generally prove that both the velocity vvvψ and the velocity gradient
∇vvvψ are continuous across the interface. Therefore, there is no discontinuity of the viscous
stress tensor, while the pressure discontinuity is determined by the well-known Laplace
law,

[p]a = −σKa . (8.5.10)

For bicontinuous domain structures at very late stages, the interface velocity tends to the
velocity field at the same interface position ra [42]:

va = na · v(ra, t) = −
∫

da′[na · →←
T (ra − ra′) · na′

]
σKa′ . (8.5.11)
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In this approximation the diffusive current −Lna · ∇µ through the interface has been
neglected. This holds for sufficiently large domain sizes, "(t) � η̃1/2ξ (for which see
the comment below (8.5.13)). If we set Ka ∼ "(t)−1, the typical magnitude of va becomes
independent of t as va ∼ σ/η. Therefore the typical domain size "(t) ∼ vat is known to
grow as (8.5.3). We also note that, once (8.5.11) holds, the scaled structure factor F(Q)

should become universal, which is independent of η̄ in (8.5.5) and (probably weakly)
dependent on φ (if φ is larger than φhyd).

Instability of a cylindrical domain

As a classic problem of hydrodynamics, it is well-known that axisymmetric perturbations
superimposed on a long cylindrical domain grow to induce breakup of the cylinder into
spherical droplets [76, 77]. In fact, if a long cylinder with radius a is divided into spheres
with radius R, the total surface areas of the cylinder and spheres, S0 and S, respectively,
satisfy S/S0 = 3a/2R and the breakup decreases the total surface area for R > 3a/2.

The linear stability analysis is straightforward, in particular for the homogeneous vis-
cosity case. Let the cylinder be along the z axis and the radius of a perturbed cylinder be
written as ã(z) = a + δa + ζ(z), where ζ(z) is a small perturbation with wave number k
along the z axis and δa is a uniform radius change determined from the conservation of the
cylinder volume,

∫
dzã2 = const. Then the surface area S = 2π

∫
dz[1 + (∂ζ/∂z)2]1/2ã

changes by

δS = π

∫
dz

[
a

(
∂

∂z
ζ

)2

− 1

a
ζ 2

]
= π

a
(Q2 − 1)

∫
dzζ 2, (8.5.12)

which is negative for Q = ka < 1. For model H without thermal noise, the linear growth
rate � stems from the concentration diffusion and the flow convection as [78]

� = (1 − Q2)

(
C1

Lκ

a3
+ C2

σ

ηa

)
, (8.5.13)

where the dimensionless coefficients C1 and C2 depend on Q = ka and are of order 1 for
Q ∼ 1. The first term (∝ a−3) in the brackets is the model B result and can be important
in systems with large η. The above expression indicates that the hydrodynamic interaction
dominates over the diffusive processes for a � η̃1/2ξ with η̃ being defined by (8.5.5).

Polymer blends

In high-molecular-weight polymers the mean field critical behavior holds in statics and
dynamics (except extremely close to the critical point), where u0 remains at the mean
field value in the Flory–Huggins theory and the kinetic coefficient L is determined from
the Rouse or reptation theory. If the polymerization index N exceeds that Ne between
entanglement points, the chains are entangled and the viscosity grows as η ∝ N zη , where
zη = 3 follows from the reptation theory but zη = 3.4 has been obtained experimentally,



428 Phase ordering and defect dynamics

as discussed in Appendix 7A. Then we find that the dimensionless viscosity grows with
increasing N as [69]

η̃ ∼ 10−2(N/Ne)
zη−2. (8.5.14)

In symmetric polymer blends exhibiting the mean field critical behavior, there will appear
an intermediate time region in which the coarsening "(t) ∼ (Dξ t)1/3 holds. The crossover
time τ ∗ in units of (Dκ2)−1 to the appearance of hydrodynamic coarsening is then esti-
mated as

τ ∗ ∼ (100η̃)3/2. (8.5.15)

In entangled polymer blends, the reduced plot of Qm = kmξ vs τ = Dξ−2t should
therefore be nonuniversal; the larger N/Ne, the later is the appearance of the hydrodynamic
regime. This is called the N -branching effect [79, 80].

8.5.3 Effect of the random velocity field

We may treat (8.5.11) as a Langevin equation by adding a noise term θa(t):

va = −
∫

da′[na · →←
T (ra − ra′) · na′

] δ

δζa′
H+ θa, (8.5.16)

with the fluctuation–dissipation relation,

〈θa(t)θa′(t
′)〉 = 2T

[
na · →←

T (ra − ra′) · na′
]
δ(t − t ′). (8.5.17)

The random noise term θa is determined by the surface value of the random velocity in
(6.1.48) as

θa(t) = na · vvvR(ra, t). (8.5.18)

Note that vvvR(r, t) changes smoothly in space as can be seen from its integral form in terms
of

→←
T . Then (6.1.51) yields (8.5.17). This Langevin equation can be used in the following

examples.

Undulations of a planar interface

We set up the linear Langevin equation for the surface displacement ζ = ζ(x, y, t) of a
planar interface. As in (8.4.58) its Fourier component obeys

∂

∂t
ζk = − σ

4η
kζk + θk, (8.5.19)

where k = |k|. The noise term θk satisfies

〈θk(t)θq(t
′)〉 = (T/2ηk)(2π)2δ(2)(k + q)δ(t − t ′) (8.5.20)

and assures the equilibrium distribution (8.2.39). The surface displacement is thus over-
damped with the decay rate

�k = (σ/4η)k. (8.5.21)
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Because the derivation is based on the Stokes–Kawasaki approximation, the above result is
valid only when �k is smaller than the viscous damping rate ηk2/ρ or when k � ρσ/η2.
However, the viscous damping is negligible at very small wave numbers in the region
k � ρσ/η2, where the surface displacement oscillates as a capillary wave with the well-
known dispersion relation,

ωk = (σ/2ρ)1/2k3/2. (8.5.22)

Experimentally, the surface mode can be studied with inelastic light scattering from a
surface [81]. The surface mode is well defined in the wave number region kξ � 1 and its
overall behavior can be examined with the Gibbs–Thomson relation (8.4.12), the continuity
of the stress tensor, and ∂ζ/∂t = vz at the interface z = ζ ∼= 0 [81, 82]. It is worth noting
that the growth law (8.5.3) can also be obtained if we set k ∼ "(t)−1 and �k ∼ t−1 in
(8.5.21).

For very viscous fluids with η̃ � 1, the overdamped relaxation rate is the sum of the
diffusive contribution (8.4.60) and the hydrodynamic one (8.5.21):

�k = (Lσ/2Tψ2
eq)k

3 + (σ/4η)k, (8.5.23)

which is analogous to (8.5.13). The model B contribution (∝ k3) arising from diffusion
can be important in the intermediate wave number region η̃−1/2κ < k < κ .

Diffusion of a droplet

If a spherical droplet is isolated from others and there is no average flow, the evolution
equation of its radius R(t) is the same as (8.4.28) for model B. However, its center of mass
is convected by the random velocity field vvvR(t). As in models A and B, in model H the
random velocity u(t) of the center of mass is expressed as

u(t) = (3/4πR2)

∫
daθana, (8.5.24)

where θa is defined by (8.5.18). The diffusion constant due to the random velocity field
now reads

Dhyd(R) =
∫ ∞

0
dt〈ux (t0 + t)ux (t0)〉 = T

5πηR
. (8.5.25)

As should be the case, this is the diffusion constant of a spherical emulsion droplet
suspended in a fluid whose viscosity is the same as that inside the droplet [83].

8.5.4 Coalescence of droplets for off-critical quenches

Diffusing droplets with volumes v = 4πR3/3 and v′ = 4πR′3/3 collide and fuse into a
new droplet with volume v + v′. If φ is not too small, the characteristic droplet radius is
simply determined by Dhyd(R)t ∼ R2. This yields the growth law R(t) ∝ t1/3 [84] in
agreement with experiments [56, 61]. Let us examine how the number density n(v, t) of
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droplets with volume v evolves due to this mechanism [85]–[89]. The collision probability
between droplets with volumes v and v′ is written as K (v, v′)n(v, t)n(v′, t) with [85, 87]5

K (v, v′) = 4π
[
Dhyd(R)+ Dhyd(R′)

]
(R + R′). (8.5.26)

Note that this collision kernel is estimated as 16πDhyd(R)R = 16T/5η for R ∼ R′.
Upon each collision, two droplets fuse into one, so the total droplet number density n(t) =∫ ∞

0 dvn(v, t) obeys

∂

∂t
n(t) = −1

2
× 16πDhyd(R)Rn(t)2. (8.5.27)

which is integrated to give6

n(t)−1 = 4π

3φ
R̄(t)3 = 8T

5η
(t + t0), (8.5.28)

where φ is the volume fraction and t0 is related to the initial droplet number density by
n(0)−1 = (8T/5η)t0. For t � t0 the average radius grows as

R̄(t) = (6Tφ/5πη)1/3t1/3. (8.5.29)

At very small volume fractions (φ � 0.03), however, the diffusive collision of droplets
becomes negligible and another mechanism of evaporation–condensation governs the
coarsening, as will be discussed in Section 9.2.

It is possible to study the time evolution of the probability density n(v, t) using the
Smoluchowski equation [85]–[88],

∂

∂t
n(v, t) = −n(v, t)

∫ ∞

0
dv′K (v, v′)n(v′, t)

+ 1

2

∫ v

0
dv′K (v − v′, v′)n(v − v′, t)n(v′, t). (8.5.30)

This equation was originally constructed to describe coagulation of colloidal particles
[85]. More generally, it has been used for coagulation processes in various situations if
the collision kernel is appropriately redefined. Application to droplet growth in laminar
and turbulent flow fields will be discussed in Section 11.1. In this evolution equation the
volume fraction is fixed in time: ∫ ∞

0
dvvn(v, t) = φ, (8.5.31)

which implies that the supersaturation �(t) is assumed to vanish. The total droplet number
density n(t) decreases monotonically in time as

∂

∂t
n(t) = −1

2

∫ ∞

0
dv

∫ ∞

0
dv′K (v, v′)n(v, t)n(v′, t) < 0. (8.5.32)

5 The relative motion of two droplets with radii R and R′ is described by the diffusion equation with D = Dhyd(R)+ Dhyd(R′).
One of them comes within the sphere with radius R+R′ enclosing the other one at a rate 4πD(R+R′)n(v, t) in the quasi-static
approximation (see the derivation of (8.4.28)).

6 If the collision kernel (8.5.26) is used, the coagulation equation (8.5.30) gives dn(t)−1/dt = 1.07×8T /5η numerically, which
is very close to the approximate result (8.5.28) [86, 89].
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We expect that n(v, t) tends to the following scaling form at long times [86, 88],

n(v, t) = φ

v̄(t)2
n∗

(
v

v̄(t)

)
, (8.5.33)

where n∗(x) is a universal scaling function. This scaling holds only when v̄(t) ∼ R̄(t)3 ∼ t
for the collision kernel (8.5.26).

In particular, if we set K = const. as in (8.5.27), the Laplace transformation of (8.5.30)
yields the equation for f (x, t) = ∫ ∞

0 dvn(v, t) exp(−xv),

∂

∂t
f (x, t) = K

[
− f (0, t) f (x, t)+ 1

2
f (x, t)2

]
. (8.5.34)

This equation is exactly solved in the form [85],

1

f (x, t)
= t + t0

2t0

[
2(t + t0)

t0 f (x, 0)
− K t

]
. (8.5.35)

At long times t � t0 the small-x (∼ v̄(t)−1) behavior is relevant, so we may set f (x, 0) =
2/K t0−φx +O(x2) to obtain f (x, t)−1 = φ−1v̄(t)[1+ v̄(t)x +O(x2)]. Thus we confirm
the scaling (8.5.33) with simple results,

v̄(t) = 1

2
Kφ(t + t0), n∗(y) = e−y . (8.5.36)

The first one is equivalent to (8.5.28).

8.5.5 Inertial regime and gravity effect

In the hydrodynamic regime for critical quenches, the Reynolds number on the scale of
the domain size " grows as (8.5.6). Eventually Re(") exceeds 1 for " > "ina, where "ina is
defined by (8.5.7). It follows a new inertial or turbulent regime, where the surface energy
density σ/" should be balanced with the kinetic energy density ρv2

" . By setting " ∼ v"t ,
we obtain a growth law [90, 91],

"(t) ∼ (σ/ρ)1/3t2/3. (8.5.37)

In this new regime the Reynolds number grows as

Re(") ∼ ρ"2/ηt ∼ ("/"ina)
1/2 ∝ t1/3. (8.5.38)

The growth law (8.5.37) can also be derived from the capillary-wave frequency (8.5.22)
if we set k ∼ "−1 and ωk t = 1. This suggests that the surface deformations behave as
(large-amplitude) capillary waves. A fraction of the surface free energy should then be
transformed into the kinetic energy of eddies on the spatial scale of the domain size "

(which are the largest eddies). At high Reynolds numbers such eddies are broken into
smaller ones. This cascade ends at the Kolmogorov dissipative length,

k−1
dis ∼ "Re(")−3/4 ∼ "("/"ina)

−3/8. (8.5.39)
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Here we neglect intermittency of turbulence, for which see (11.1.70). Thus the condition
" � k−1

dis � "ina is needed to realize a well-defined turbulent regime. However, in near-
critical fluids, σ(∝ κ2) is very small and the high Reynolds number condition is realized
only at extremely late stages.

We also note that the gravity-dominated domain motion takes place for

"(t) > aca = [σ/g(�ρ)]1/2, (8.5.40)

where aca is the capillary length in gravity introduced in (4.4.54). We have aca � "ina

in most near-critical fluids. In the regime aca < " < "ina, large-scale sedimentation
flow accelerates the formation of macroscopic phase separation [63, 92]. In addition to
experiments in space [58, 61], the gravity effect can be suppressed in a special isodensity
fluid mixture (methanol + partially deuterated cyclohexane) in which the two phases have
almost no mass-density difference [57]. However, even in such gravity-free experiments,
there has been no indication of crossover into the inertial regime.

As will be discussed in Section 11.1, by applying laminar or turbulent shear to phase-
separating fluids, we may stop spinodal decomposition at a time on the order of the inverse
shear to realize dynamical steady states. For example, when two immiscible fluids with
a significant surface tension are stirred (or sheared in microgravity), we will encounter a
two-phase state with a high Reynolds number Re(") � 1.

8.6 Spinodal decomposition and boiling in one-component fluids

In one-component fluids near the critical point, we will show that phase separation can
be induced in the bulk region with the aid of the piston effect. As a new problem we will
analyze boiling and condensation near a slightly heated or cooled boundary wall. However,
molecular dynamics simulations of spinodal decomposition in fluids have been performed
at constant temperature or energy under the periodic boundary condition [93]–[95].

8.6.1 Quench induced by the piston effect

Beysens et al. [61] realized spinodal decomposition in a near-critical liquid (ρ > ρc) in a
cell with a fixed volume by slightly lowering the boundary temperature. Here the thermal
diffusion layer is contracted and remains stable, whereas the interior region can be adiabat-
ically expanded and cooled into a metastable or unstable state. Let Ti be the initial temper-
ature and Tbf be the final boundary temperature. With this temperature change the pressure
is decreased from the initial value pi to p(t) = pi + (∂p/∂T )n(Tbf − Ti)[1 − Fa(t/t1)],
where t1 is the quick relaxation time in (6.3.7) and Fa(s) is the relaxation function in
(6.3.9). For t � t1 the pressure is decreased by (∂p/∂T )n(Tbf − Ti). We stress that this
pressure pinning is effective even during phase separation. The temperature in the interior
region Tin is adiabatically changed from Ti to

Tin(t) = Ti +
(
∂T

∂p

)
s
[p(t)− pi ]. (8.6.1)
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Fig. 8.26. Density deviations in spinodal
decomposition in a one-component fluid in the
absence of gravity at t = 40 after a change of the
boundary temperature on a 128×128 lattice in 2D.
The darkness is proportional to
&(r, t) ∝ ρ(r, t)− ρc.

Because (∂p/∂T )s ∼= (∂p/∂T )cx, the thermodynamic state in the interior region is shifted
to be nearly along the coexistence line in the p–T phase diagram. The average density
change ψ1 = 〈ψ〉t − 〈ψ〉0 in the interior region is given by (6.2.65) and is much smaller
than the density difference 2B(1−Tbf/Tc)

β between liquid and gas, so it is negligible. The
temperature coefficient r = a0τ in (4.1.18) or (4.1.48) in the hamiltonian H is changed as

r = A0(Ti/Tc − 1) (t < 0), r = −A0(1 − Tbf/Tc) (t � t1), (8.6.2)

in the interior region.7

Numerically solving dynamic equations, which will be presented below, we show a
density pattern of spinodal decomposition induced by the piston effect in the gravity-free
condition in Fig. 8.26. We can see the presence of wetting layers at the top and bottom.
Similar two-phase patterns influenced by the boundary have been studied for model B [96]
and for model H [97]. More explanations will follow.

8.6.2 Dynamic equations

The density n and entropy density s (or energy density e) in one-component fluids are
related to the spin and energy variables, ψ and m, in the corresponding Ising system as
in (2.2.7) and (2.2.9) (or (2.2.8)). In this section we neglect the mixing of the density and
energy variables and set β1 = 0 to analyze complex dynamics in the simplest manner,
which means that the order parameter is simply the density deviation. In addition, we may
set α1 = βs = 1 without loss of generality. Then the mapping relationship near the critical
point reads

δn = ψ, ncδs = αsψ + m, (8.6.3)

7 To be precise, the coefficient A0 depends on the reduced temperature due to the critical fluctuations.
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where αs = −(∂p/∂T )cx/nc is a negative constant. Note that the fluctuations of the
pressure and temperature may be related to those of the ordering field h and reduced
temperature τ in the corresponding Ising system as in (4.2.1) and (4.2.2). From (2.2.12)
and (4.1.46) we may thus set8

(T − Tc)/Tc = τ, m = C0(τ − γ0ψ
2). (8.6.4)

In nonequilibrium, ψ and τ are fundamental dynamic variables dependent on space and
time. Furthermore, in gravity along the z direction, we may assume that the combination
p1(t) ≡ δp(r, t) + ρcgz is a function of time only as in (6.2.11) in describing slow fluid
motions. In a gravitational field, τ and ψ are related by

(ncTc)
−1 p1(t)+ αsτ = δ

δψ
βHT = (a0τ − C0∇2 + u0ψ

2)ψ + m0gz, (8.6.5)

where HT is given by (6.2.8) in gravity, a0 = 2γ0C0, C0, and u0 are the parameters in H in
(4.1.45), together with (4.1.48) and (4.1.49), and m0 is the particle mass. Notice that p1(t)
is determined from the mass conservation relation

∫
drψ = const. in the fixed-volume

condition. In fact, p1(t) is related to the space average of τ as p1(t) = Tc(∂p/∂T )n τ̄ for
small disturbances in supercritical fluids, see Section 6.3.

The dynamics is governed by the heat conduction equation (6.2.10). From ncδs = αsψ−
1
2 a0ψ

2 + C0τ it is rewritten as(
∂

∂t
+ v · ∇

)(
αsψ − a0

2
ψ2 + C0τ

)
= λ0∇2τ

= αs L0∇2(a0τ − C0∇2 + u0ψ
2)ψ, (8.6.6)

where L0 = λ0/α
2
s is the kinetic coefficient, and the noise term is omitted. As discussed in

Section 6.2, the velocity field may be assumed to be incompressible or ∇ ·vvv = 0 on a long
timescale. Then we may use the Stokes–Kawasaki approximation (6.1.46) to obtain

η0∇2vvv = −ψ∇[
(a0τ − C0∇2 + u0ψ

2)ψ + m0gz
] + ∇ p̃, (8.6.7)

where p̃ ensures ∇ · vvv = 0. The above equation reduces to (6.4.9) if the first term on the
right-hand side is set equal to −m0gψez . Now (8.6.5)–(8.6.7) constitute a closed set of
equations under the boundary conditions for τ and/or the heat flux −λ0Tc∇τ .

To check relative magnitudes of the various terms in (8.6.6) and (8.6.7), we choose a
reference reduced temperature τ̃ and make the equations dimensionless by scale changes,

A = τ/τ̃ , & = (u0/τ̃ )
1/2ψ, V = (ξ/D)vvv, (8.6.8)

8 Here τ + δτ̂ in Chapter 4 is rewritten as τ = τ(r, t).



8.6 Spinodal decomposition and boiling in one-component fluids 435

250 5600200

Fig. 8.27. Density deviations for 〈&〉 = 0 at t = 200, 250, and 5600 after increasing Abot from
−1 to 0, while Atop is kept at −1. Here Abot and Atop are the boundary values of a scaled reduced
temperature A.

where D = L0a0τ̃ . Space and time are measured in units of ξ = ξ+0τ̃
−ν and tξ = ξ2/D

at τ = τ̃ . We rewrite ξ−1r and t−1
ξ t as r and t to avoid cumbersome notation. Then some

calculations yield

A + acδs
[
(A − ∇2 +&2)& + Gz

] = P(t), (8.6.9)(
∂

∂t
+ V · ∇

)(
& + 1

2
acδs&

2 − δs

2ac
A

)
= ∇2[A − ∇2 +&2]&, (8.6.10)

where P(t) = p1(t)/(|αs |ncTcτ̃ ) depends only on t , and ac is the universal number close
to 1 introduced in (2.2.37). The parameter δs is defined by

δs = γs
−1/2 = (CV /C p)

1/2, (8.6.11)

where γs is the specific-heat ratio at τ = τ̃ on the critical isochore. Thus δs ∼ τ̃ (γ−α)/2 �
1. The dimensionless gravitational acceleration is defined by

G = (m0ξ/a0τ̃ )g ∼ (τg/τ̃ )
βδ+ν (8.6.12)

where τg was given by (2.2.48) with βδ + ν ∼= 2.2. The dimensionless velocity field is
determined by

η̃∇2V = −&∇(A − ∇2 +&2)& − G&ez + ∇ P̃inh, (8.6.13)

where η̃ is defined by (8.5.5) and is of order 0.1 near the critical point, and P̃inh ensures
∇ · V = 0.

In the 2D simulation results in Figs 8.26–8.28, integrations are performed on a 128×128
lattice with the rigid boundaries at z = 0 and z = L(= 128) but under the periodic
boundary condition in the x (horizontal) axis. We set ac = 1, δs = 0.1 (or γs = 100),
and η̃ = 0.2. First we explain phase separation in the gravity-free case presented in Fig.
8.26. For t < 0, the system is in a one-phase state with 〈&〉 = 0 and A = 1. At t = 0,
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(a) (b) (c)

Fig. 8.28. Density deviations in dynamical steady states resulting from competition between gravity
and heat flow for off-critical cases: 〈&〉 = −0.2 (gas-rich), Abot = −1, and Atop = 0 in (a);
〈&〉 = −0.4 (gas-rich), Abot = −2, and Atop = 0 in (b); 〈&〉 = 0.4 (liquid-rich), Abot = −2, and
Atop = −1 in (c).

the boundary values of A both at z = 0 and z = L , Abot and Atop, respectively, are
decreased from 1 to −1. For t � t1 = (L/γs)

2 ∼ 1 the piston effect is operative such that
A approaches −1 throughout the system. The boundary values of & at z = 0 and L are
fixed at 2. This means that the boundaries are wetted by liquid in equilibrium [97].

8.6.3 Self-organized convention due to phase separation

Much more interesting are the phenomena of boiling and condensation in gravity, which
occur after heating a liquid at the bottom or cooling a gas at the top. We show some
numerical results by setting G = 0.06 and & = 1.2 at z = 0 and z = L . (i) In Fig. 8.27
we initially prepare an equilibrium two-phase state with 〈&〉 = 0 and A = −1. At t = 0,
Abot is raised from −1 to 0 and is held constant thereafter, while Atop is kept at −1. For
t � 30, gas droplets emerge at the bottom and move upward. For t � 60, liquid droplets
also emerge, forming at the top and moving downward. These processes are initially gentle,
but gradually become violent for t � 180 with a decrease of the density difference between
the upper and lower regions. For t � 250, a dynamical steady state is eventually realized in
the whole system with turbulent density and velocity disturbances (while the temperature
disturbances are much smaller), as in the pattern at t = 5600. There, in the middle part
of the cell, the gravity-induced density stratification is much reduced compared to that in
equilibrium.9 In these processes, heat transport is enhanced in the upward direction. The
Nusselt number Nu here is about 5.5 in the final state, which is the ratio of the effective
thermal conductivity in the dynamical steady state to that in the initial two-phase state (for
infinitesimal heat flux). (ii) In Fig. 8.28 we show density patterns in dynamical steady states
for off-critical cases. In (c) the system is relatively far from the critical point, where we can

9 Gravity effects in stirred fluids will be discussed around (11.1.81).
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see a usual picture of boiling in the lower liquid region. However, the patterns become
quite unusual on approaching the critical point.

In Section 6.4 we discussed that thermal plumes move upward from the bottom when
the applied temperature gradient exceeds the adiabatic temperature gradient ag defined
by (6.4.3). Similarly, gas droplets formed at the bottom move upward under the same
condition. Thus, even if a fluid very close to the critical point initially consists of gas
and liquid regions below Tc, convection sets in for |dT/dz| > ag . In terms of the heat
flux Q the condition of convection onset is also written as Q > Qc = λag , where λ is
the (renormalized) thermal conductivity. A remarkable feature in the two-phase state is
that heat can be transported very efficiently in the form of latent heat, where gas (liquid)
droplets move upwards (downward) with positive (negative) excess entropy. As a result, in
dynamical steady states with Q > Qc, the temperature gradient in the middle part of the
cell should be simply given by

(dT/dz)middle ∼= −ag, (8.6.14)

whereas the density profiles in the two-phase states are very complicated. However, the
temperature gradient should become much steeper in the gas layer at the bottom and in the
liquid layer at the top. Indeed (8.6.14) is excellently satisfied by the temperature profiles
obtained in our simulations as long as Q � Qc. Here the degree of phase separation
is determined such that (8.6.14) is satisfied. The thickness of the boundary layers at the
bottom and at the top is of the order of the capillary length aca in (4.4.54). the Nusselt
number can then take a very large value of order L/2aca.

In summary, competition between gravity and heat flow from below produces intriguing
self-organized states below Tc. Analogous self-organized heat transport is known in 4He
near the superfluid transition under gravity and heat flow applied from above. Note that
(6.7.35) for normal fluid states and (8.10.57) for superfluid states are similar to (8.6.14).

8.7 Adiabatic spinodal decomposition

If the entropy in the ordered phase is lower than that in the disordered phase, the temper-
ature generally rises due to internal entropy release in the course of phase ordering in the
adiabatic condition. Similarly, in nearly incompressible binary mixtures, where the piston
effect can be neglected, the temperature rises slowly with the progress of phase separation
after a pressure quench [98]. We will develop the Ginzburg–Landau theory to account for
this effect.

8.7.1 Entropy release in model C

As an illustrative example, we consider phase ordering in model C near the critical point
for h = 0, in which a nonconserved order parameter ψ and a conserved variable m are
coupled as in (5.3.3) and (5.3.13). If m is the energy density, the local reduced temperature
deviation is written as

δτ̂ = δ

δm
βH = C−1

0 (m − m0)+ γ0ψ
2. (8.7.1)
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[Note that m can be a concentration, as is usually the case in order–disorder phase transi-
tions in solids.] Here we assume m = m0 and ψ = 0 at the beginning of the phase ordering
(neglecting the thermal fluctuations). If the system is thermally isolated or there is no flux
of m from the boundary, the space average of m is fixed at the initial value m0, so that∫

dr(m − m0) = 0. Without noise and ordering field, we rewrite the dynamic equation for
ψ as

∂

∂t
ψ = −L[r0 + a0δτ̂ − ∇2 + u0ψ

2]ψ, (8.7.2)

where a0 = 2γ0C0. The system is unstable for r0 < 0 initially and the fluctuations of
ψ are subsequently enhanced. However, with the development of domains, m becomes
inhomogeneous around the interface as m = −γ0ψ

2 + const. This is because δτ̂ tends to
be homogeneous throughout the system at long times. Therefore, the average temperature
deviation,

δτ1(t) = 〈δτ̂ 〉 = γ0〈ψ2〉, (8.7.3)

starts from zero (or a small value in the presence of the thermal fluctuations) and increases
with time. The effective reduced temperature deviation seen by the order parameter is given
by r(t)/a0 = r0/a0 + δτ1. As t → ∞, r(t) tends to r∞ determined by

r∞ = r0 + a0γ0 lim
t→∞〈ψ2〉 = r0 + a0γ0|r∞|/u0, (8.7.4)

where use has been made of ψ2 → |r∞|/u0 as t → ∞. Therefore, we find

r∞ = r0/(1 + X), (8.7.5)

with

X = 2γ 2
0 C0/u0. (8.7.6)

Here X is of order 1 in the asymptotic critical region (for which see the sentence below
(8.7.15)).

8.7.2 Binary fluid mixtures after a pressure jump

In Section 6.5 we discussed adiabatic relaxations with fixed average entropy and concen-
tration in near-critical binary fluid mixtures. To induce phase separation we change the
pressure in a step-wise manner at t = 0 and keep it constant for t > 0 [56]. The average
deviations ψ1, m1, and q1 are related to the average density change ρ1 as in (6.5.48).
Then the average deviation h1 = 〈δ(βH)/δψ〉 ∼ ψ1/χ of the ordering field is negligible,
leading to (6.5.50)–(6.5.52) even during phase separation. Here τ = (∂τ/∂T )hp(T − Tc)

from (2.3.62) on the coexistence curve in the isobaric condition. As in (8.7.3) we define

δτ1(t) = γR(〈ψ2〉 − M2), (8.7.7)

where the initial average order parameter M = 〈ψ〉 may be nonvanishing. We use
the renormalized coefficients such as γR given by (4.1.59) for near-critical binary fluid
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mixtures in the asymptotic critical region. Then we have τ1 = C−1
M m1 + δτ1, where m1

is related to ρ1 as in (6.5.48) and CM is the constant-magnetization specific heat in the
corresponding Ising system. Substitution of this result into (6.5.50) and use of (6.5.33)
yield

c2ρ1 = p1 −
(
∂p

∂τ

)
hζ
δτ1. (8.7.8)

Thus (6.5.52) becomes

T1(t) =
(
∂T

∂p

)
s X

p1 + ρcc2
c

ρc2

(
∂T

∂τ

)
hp
δτ1(t), (8.7.9)

where use has been made of the second line of (2.3.46).
Let Tini (= Ti+(∂T/∂p)s p1) be the temperature in the initial time region where δτ1 ∼= 0.

Then the time-dependent average temperature can be expressed as

T (t)− Tc = (Tini − Tc)+ ρcc2
c

ρc2

(
∂T

∂τ

)
hp
δτ1(t). (8.7.10)

As t → ∞ we obtain

δτ1(∞) = 4φ(1 − φ)γRψ
2
eq = 2β−1a2

cφ(1 − φ)|τf|, (8.7.11)

similarly to (8.7.4). Here φ is defined by (8.3.1) and is the volume fraction at t = ∞, τf

is the value of τ at t = ∞, and use has been made of (4.1.59). The universal number ac

defined by (2.2.37) satisfies a2
c = (βψeq)

2/CMχ |τ |, for which see footnote 2 on p. 50.
Because τf = (∂τ/∂T )hp(Tf − Tc), we obtain Tf − Tc = (Tini − Tc)+ X |Tf − Tc|, where

X = 2(a2
c/β)φ(1 − φ)ρcc2

c/ρc2. (8.7.12)

Therefore,

Tf − Tc = (Tini − Tc)/(1 + X). (8.7.13)

The above X coincides with X in (8.7.6) in the mean field theory (where a2
c = γ0ψ

2
eq/|τ |)

for φ = 1/2 and ρcc2
c
∼= ρc2. It is convenient to define

Z(t) = (〈ψ2〉 − M2)/[4φ(1 − φ)ψ2
eq], (8.7.14)

where ψeq is the order parameter value in the final equilibrium state. Then Z(t) grows from
0 to 1 and

T (t)− Tc = (Tini − Tc)

[
1 − X

1 + X
Z(t)

]
. (8.7.15)

When ρc2 ∼= ρcc2
c , we have X ∼= 1.5 at the critical composition by setting ac = 1 and

β = 1/3. Donley and Langer [98] derived essentially equivalent results with X about 1 at
φ = 1/2 for 3-methylpentane + nitroethane. They calculated Z(t) using the LBM scheme
[38] applicable in the relatively early stage of spinodal decomposition. The resultant time
evolution of the average temperature T (t) is shown in Fig. 8.29. In the above theory we
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Fig. 8.29. Theoretical scaled temperature difference [T (t)−Tc]/|Tf −Tc| as a function of the scaled
time t/tξ where tξ = 6πηξ3/Tc is the thermal relaxation time in the final state [98]. The horizontal
line at −1 denotes the final equilibrium temperature differences.

have neglected the memory effect arising from the frequency-dependent bulk viscosity. In
experiments in one-phase states [56, 99], the temperature and the scattered light intensity
exhibited an overshoot as a function of time. These effects have not yet been explained.

8.8 Periodic spinodal decomposition

In Section 8.1 the effects of periodic temperature modulation were examined near the
instability point in model A. Here we will consider periodic spinodal decomposition (PSD)
in models B and H [40, 100] to show some new features different from those in normal
spinodal decomposition (NSD). The physical processes involved are as follows. If the
oscillation is sufficiently slow, domains can be formed periodically since phase separation
proceeds during T < Tc. If the decay mechanism of domains which is effective during
T > Tc is strong enough, phase separation is stopped. In such a case, the system is
in a one-phase state on length scales much longer than the characteristic domain size.
However, if the average temperature T̄ is lowered below a certain value T ∗, domains are
only partially dissipated during T > Tc and continue to grow over successive periods.
A salient feature is that the fluctuations at very long wavelengths are nearly constant in
each period and evolve very slowly. Our theory for model B predicted T ∗ < Tc [40, 100].
In experiments on a near-critical binary fluid mixture obeying model H [101], this dy-
namical phase transition was observed to be continuous, in contrast to the discontinuous
dynamical phase transition in model A, and takes place for T̄ < T ∗ with T ∗ > Tc at
critical quench. The fluctuation level in a periodically modulated one-phase state appeared
to be higher than that in equilibrium at the critical point due to partial formation of
domains.
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8.8.1 Numerical analysis in the Langer–Bar-on–Miller scheme

Model B

We assume that the temperature coefficient r = a0(T − Tc)/Tc in the GLW hamiltonian
oscillates as in the nonconserved case (8.1.46). Here we set t1 = t2 = tp/2, where tp is the
period of the oscillation, and parameterize r(t) as

r(t)− rc = r1(σ − 1)

(
n < t/tp < n + 1

2

)

= r1(σ + 1)

(
n + 1

2
< t/tp < n + 1

)
, (8.8.1)

where n = 0, 1, 2, . . ., and rc is the shift explained below (8.3.16), r1 = κ2 is the
magnitude of the oscillation, and r1σ is the time average of r(t). A critical quench (M = 0)
will be assumed. We are interested in the case |σ | < 1 where the system is brought into
stable and unstable temperature regions periodically. Strong fluctuation enhancement is
expected when

µ = Lr2
1 tp = Lκ4tp (8.8.2)

is much larger than 1. In this case, if we observe only the first period, enhancement occurs
in an intermediate wave number region,

µ−1/2κ < k < κ. (8.8.3)

The long-wavelength fluctuations with k < µ−1/2κ can be affected after several periods.
The lower bound in (8.8.3) arises from the condition Dk2tp > 1 with D = Lκ2.

In previous studies, we examined periodic spinodal decomposition within the LBM
theory as a first nonlinear approach [40, 100]. The structure factor I (k, t) then obeys
(8.3.23) under the periodic temperature modulation (8.8.1). The time-dependent parameter
A(t) is defined by (8.3.22). One of our main results is that there is a critical value of
σc = σc(µ), as shown in Fig. 8.30(a). For σ > σc the system tends to a periodically
modulated one-phase state, whereas for σ < σc spinodal decomposition does not stop,
ultimately resulting in macroscopic phase separation. The long-wavelength fluctuations
with k � µ−1/2κ experience only slow time evolution of A(t). Hence we define the
time-average of A(t) in one period,

An = 1

tp

∫ (n+1)tp

ntp
dt A(t). (8.8.4)

For σ > σc, a well-defined limit A∞ = limn→∞ An is attained, resulting in the limiting
Ornstein–Zernike structure factor,

I∞(k, t) = lim
n→∞ I (k, ntp + t) = 1/(κ2 A∞ + k2), (k � µ−1/2κ). (8.8.5)
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Fig. 8.30. (a) The critical value of σc(µ) as a function of µ at the critical composition obtained in the
LBM scheme [100]. Phase separation occurs for σ < σc(µ), while the system remains in a disordered
phase for σ > σc(µ). (b) The dimensionless structure factor F∞(Q, τ ) = limn→∞ κ2 I (k, ntp + t)
at various reduced times τ in one period (0 < τ < 40) in a periodic disordered state with µ = 20
and σ = 0.174, where Q = k/κ and τ = 2Lκ4t with κ = r1/2

1 [40]. In the inset F(Q, 40µ+ τ) =
κ2 I (k, 20tp + t) is shown.

We found A∞ ∼ σ−σc for σ > σc at each µ numerically. Thus the final correlation length
grows as

ξ∞ = κ−1 A−1/2
∞ ∝ (σ − σc)

−1/2, (8.8.6)

as σ → σc. In Fig. 8.30(b) we show F∞(Q, τ ) = κ2 I∞(k, t) in one period for µ = 20 and
σ = 0.174, where Q = k/κ and τ = 2Lκ4t with κ = r1/2

1 . For Q � µ−1/2 it is weakly



8.8 Periodic spinodal decomposition 443

dependent on τ and assumes the Ornstein–Zernike form (8.8.5), while for µ−1/2 � Q � 1
it oscillates rapidly because of periodic formation and annihilation of domains. In the inset
we also show κ2 I (k, 20tp+t) after 20 periods. For k/κ � 0.2 these two intensities coincide
within a few percent. As a marked feature in this calculation, at finite t two peaks can
emerge in the structure factor when the fluctuations in the intermediate wave numbers are
enhanced.

Model H

We have also examined periodic spinodal decomposition for a critical quench on the basis
of the Kawasaki–Ohta equation (8.5.1) [100]. We assume the same step-wise temperature
oscillation with average T̄ and amplitude T1. Then we redefine µ as

µ = tpT κ3/6πη, (8.8.7)

where κ = ξ−1
+0 (T1/Tc)

ν and η is the viscosity. In the one-phase region the intensity I (k, t)
again tends to the Ornstein–Zernike form, limt→∞ I (k, t) = 1/(κ2∞ + k2), at long wave-
lengths k � µ−1/2κ . It is found that κ2∞ becomes much smaller than A∞ = limn→∞ An

in model B due to the hydrodynamic interaction [40]. For example, κ2∞/κ2 ∼= 0.024 and
A∞/κ2 ∼= 0.15 at µ = 5 and σ = 0.174. We find two peaks in I (k, t) in some time regions.
The hydrodynamic interaction increases the rate of the phase ordering and is crucial in PSD
as well as in NSD.

8.8.2 Experiments of periodic quenches in fluids

In a PSD experiment on a binary fluid mixture of isobutyric acid + water [101], an
oscillating temperature T (t) was achieved by a step-wise pressure oscillation with tp = 1 s.
Its time-average and amplitude spanned the interval, −2.7 mK ≤ T1σ = T̄ − Tc ≤ 2
mK and 3 mK ≤ T1 ≤10 mK. Only a single peak was observed in the intensity, which
diminished slowly with time. The critical value σc was positive and between 0.16 and 0.20.
Conspicuous features are as follows. (i) In Fig. 8.31 we plot k2 I (k, t) in the one-phase
region σ > σc. The limiting structure factor approaches a strongly enhanced intensity
growing as

I (k, t) ∝ 1/kφ, (φ ∼= 2.6), (8.8.8)

which is stronger than the equilibrium intensity at the critical point. (ii) For σ slightly
smaller than σc, the timescale of the ring collapse (domain growth longer than the laser
light wavelength) became exceedingly long. However, the peak wave number km(t) has
the same functional form as in NSD. In fact, the two sets of measurements of PSD and
NSD could be mapped onto each other. To do so, Joshua et al. [101] rescaled km and t as
qm = kmξeff and τ = (T/6πξ3

eff)t for PSD by introducing a new length ξeff, and thus found
a mean field relation,

ξeff ∝ (σc − σ)−νeff (νeff ∼= 1/2). (8.8.9)
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Fig. 8.31. Weighted angular distribution of scattering at various times for σ > σc (disordered phase
regime) [101]. The quench period is 1 s. The inset shows the coexistence curve in the temperature–
composition plane and defines the quench parameters. This diagram corresponds to σ = (T̄−Tc)/T1.

Subsequently, Tanaka and Sigehuzi performed a PSD experiment on a polymer blend of
ε-caprolactone (OCL) + styrene (OS) with molecular weights 2000 and 1000, respectively
[102], where the timescale of phase separation was very slow even away from the critical
point. The modulation could be made sinusoidal as T (t) = T̄ +�T sin(2π t/tp), where tp
and �T were fixed at 10 or 20 s and at 1 or 2 K, respectively. The average temperature T̄
and the volume fraction φ were varied in the experiment. New findings were as follows. (i)
Figure 8.32 demonstrates the presence of a two-level structure composed of an elementary
structure and a large, growing superstructure at a late stage. The smaller domains are
created and destroyed within each period and do not grow in time, while the larger ones
grow continuously. The structure factor has two peaks, in contrast to the observation in
Ref. [101]. This is probably because the unstable time interval was much longer in this
experiment. Here coarsening of the larger domains occurs for T̄ < T ∗(φ). (ii) They also
examined the composition dependence of T ∗(φ) to obtain a dynamic phase diagram. Most
interesting is that T ∗(φ) > Tcx(φ) for bicontinuous domains and T ∗(φ) < Tcx(φ) for
droplets. where Tcx(φ) is the equilibrium coexistence temperature.

8.9 Viscoelastic spinodal decomposition in polymers and gels

Using the reptation concepts, de Gennes [103] and Pincus [104] examined early-stage
spinodal decomposition of symmetric polymer blends with equal molecular weights,
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Fig. 8.32. Coarsening processes of PSD for T̄ < T ∗ in a polymer blend [102]. (a) Bicontinuous in
OCL/OS(35/65). The times after quenching are expressed as t = ntp + 9 s with tp = 10 s for various
n. (b) Droplet patterns in OCL/OS(38.5/61.5) at t = ntp + 15 s with tp = 20 s.

N1 = N2 = N . If composition fluctuations with sizes longer than the gyration radius
RG are considered, these theories, as well as subsequent ones [105]–[109], predicted
that the characteristic features of spinodal decomposition are nearly the same as those
derived from simple dynamic models for usual low-molecular-weight fluids. A number of
phase-separation experiments have also been performed on polymer solutions and blends
[62]–[68], [110]–[118], where phase separation occurs on much slower timescales and
much longer spatial scales than in usual binary fluid mixtures. In accord with the theories,
if the space and time are appropriately scaled, most polymer systems studied behave like
usual binary fluid mixtures. However, when the two components have distinctly different
viscoelastic properties, unusual effects presumably ascribable to viscoelasticity have been
detected. First, as was shown in Fig. 7.3, in early-stage spinodal decomposition of an
asymmetric blend of PVME/d-PS, Schwahn et al. [115] found that the kinetic coefficient
L(q) depends on the wave number q as L(q)/L(0) ∼ q−2 even for q much smaller than
the inverse of the gyration radius RG, supporting the presence of the viscoelastic length
ξve (∼= 7RG) in (7.1.68). More dramatically, Toyoda et al. [118] found ξve ∼ 14RG in very
slow spinodal decomposition of a highly entangled 6% polystyrene in dioctyl phthalate
(DOP) with molecular weight 5.5 × 106. In Fig. 8.33 their growth rate data are compared
to the theory presented here. Second, as displayed in Fig. 8.34, Tanaka observed formation
of sponge-like network structures composed of thin polymer-rich regions in late-stage
spinodal decomposition of deeply quenched polymer solutions and asymmetric polymer
blends [116, 117]. Such patterns were also reported in polymer solutions by other groups
[111, 114].
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Fig. 8.33. Data for growth rate vs wavenumber (×) compared to the theoretical expression
LT q2(|r | − Cq2)/(1 + ξ2

veq2) in (8.9.13). The data were obtained in early-stage spinodal decom-
position in a highly entangled polystyrene solution [120]. The broken line represents the usual
Cahn–Hilliard form LT q2(|r | − Cq2). We can see drastic slowing down of spinodal decomposition
due to the viscoelastic effect.

20    mµ

Fig. 8.34. Pattern evolution with time during phase separation of a PS/PVME mixture [117]. A
network composed of more-viscous domains coarsens with time and ultimately breaks up into
disconnected domains. The elapsed times after quenching are shown.
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Fig. 8.35. Small-angle neutron scattering
intensities from swollen gels in an isotropic
state (◦), and in a uniaxially stretched state
(×, I‖(q); +, I⊥(q)), in theta solvent at a
common volume fraction [120].

Experimental reports on spinodal decomposition in gels are not abundant. However,
it is often the case in experiments that, when a swollen gel is suddenly brought into an
unstable temperature region, it instantly turns opaque without any appreciable volume
change [119, 120]. This means that gels undergo spinodal decomposition with enhance-
ment of small-scale fluctuations. As an example, Fig. 8.35 shows small-angle neutron
scattering data from a swollen gel in theta solvent under uniaxial stretching λ ∼ 1.6 [120].
Here the intensity I‖(q) in the stretched direction and that I⊥(q) in the perpendicular
directions exhibit a Porod q−4 tail for q < 0.01 Å indicating the presence of domain
structures. Because I⊥(q)/I‖(q) is in excess of 2, (8A.11) suggests that the domains are
elongated in the stretched directions. This behavior is consistent with the discussion below
(7.2.16). Furthermore, the domain structures in gels are eventually pinned due to network
elasticity. In a closely related effect, experiments have shown that the coarsening stops
if crosslinks are introduced by gelation [121], chemical crosslinking reaction [122] or
photo-crosslinking [123] in the course of phase separation. Theoretically, Sekimoto et al.
demonstrated that a steady sponge-like domain structure is produced by elastic pinning
[124] in a 2D microscopic network system. They also found elongation of domains under
uniaxial compression. Similar results were recently reproduced from the Ginzburg–Landau
model in Section 7.2 [125].

In this section we will examine early-stage viscoelastic spinodal decomposition on the
basis of stress–diffusion coupling, and then we will present simulation results for polymer
solutions and gels. We will defer analysis of viscoelastic nucleation to Section 8.5.

8.9.1 Early-stage viscoelastic spinodal decomposition

Using the notation of Section 7.1, we examine the initial exponential growth of the compo-
sition fluctuations in the unstable temperature region r < 0 in polymer solutions and blends
on the basis of the Maxwell model equations (7.1.85)–(7.1.87) [126]. Our conclusions are
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as follows. For shallow quenching, phase separation proceeds on timescales longer than the
stress-relaxation time τ and the kinetic coefficient depends on the wave number q as q−2

for qξve > 1. For deep quenching, phase separation takes place as in gels on timescales
shorter than τ . In the following, the viscoelastic length ξve will play an important role. In
asymmetric polymer systems, (7.1.65) and (7.1.69) indicate that ξve can be much longer
than the correlation length ξ .

In the present case the temperature coefficient r is defined by (7.1.7) and is negative after
quenching below the spinodal curve. We redefine εr in (7.1.64) as its absolute value,

εr = T |r |/(
4

3
α2G

)
, (8.9.1)

where G is the shear modulus. We also have εr = Dmτ/ξ
2
ve, analogous to (7.1.66) if we

set Dm = LT |r |. The parameter εr represents the depth of quenching. We measure lengths
and frequencies in units of

"e = (3T C/4α2G)1/2 = ε
1/2
r κ−1, (8.9.2)

�e = LC"−4
e , (8.9.3)

where C = C(φ) is given by (7.1.3) and κ = (|r |/C)1/2 is the inverse correlation
length. The parameter α, appearing in (7.1.86) and (7.1.87), represents the strength of the
dynamical coupling between the composition and stress fluctuations. The stress relaxation
rate 1/τ and the growth rate |�1| are scaled by �e as

γve = (�eτ)
−1, R = |�1|/�e. (8.9.4)

The viscoelastic length ξve in (7.1.65) is related to γve as

ξve = γ
−1/2
ve "e. (8.9.5)

We will assume

γve � 1 or ξve � "e, (8.9.6)

under which the viscoelasticity can strongly affect phase separation. Because we use the
Maxwell model, the equation R = |�1|/�e follows from (7.1.90) in the form

R2 + [γve + (1 − εr)x + x2]R = γve(εr − x)x, (8.9.7)

which depends on the wave number q through x defined by

x = (q"e)
2. (8.9.8)

A positive R is obtained only for x < εr.
In semidilute polymer solutions near the coexistence curve, we estimate

"e ∼ ξ ∼ a/φ, �e ∼ 1/τb, γve ∼ τb/τ ∼ η0/η � 1, (8.9.9)

where ξ is the thermal correlation length, a is the monomer size, φ is the polymer volume
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Fig. 8.36. The dimensionless growth rate
R(x, εr) vs x = (q"e)

2 for several quench
depths, εr = 0.5, 0.75, 1.0, 1.25, 1.4, from
below at γve = 10−3 [126]. Here the
length "e is defined by (8.9.2) and εr by
(8.9.1), while γve defined by (8.9.4) is the
dimensionless stress-relaxation rate.

fraction, τb is the relaxation time within a blob defined by (7.1.28), η0 is the solvent
viscosity, and η is the solution viscosity behaving as (7.1.29). In polymer blends we
consider the case in which the polymerization index N1 of the first component is not much
different from that, N2, of the second component. Then ξve ∼ L t from (7.1.73) with L t

being the tube length in (7A.4). The reptation theory in Appendix 7A yields

"e ∼ dt ∼ N 1/2
e a, γve ∼ (Ne/N1)

2 � 1, (8.9.10)

where Ne is the polymerization index between two consecutive entanglements on a chain.

Viscoelastic suppression of the growth rate

We will examine (8.9.7) and seek the maximum Rm of R attained at x = xm. Then Rm and
xm are functions of εr and γve. In the original units, the maximum growth rate qm and the
peak wave number �m are expressed as

qm = x1/2
m /"e = (xm/εr)

1/2κ, �m = Rm�e. (8.9.11)

In Fig. 8.36 we plot R vs x for several εr at γve = 10−3. We recognize that R is much
suppressed for εr � 1, compared to the usual case R = (εr − x)x without viscoelasticity
(γve = ∞). We display Rm in Fig. 8.37(a) and xm in Fig. 8.37(b) as functions of 1/γve

and εr. For 1/γve � 1 and εr � 1, they are much smaller than in the case 1/γve � 1. The
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Fig. 8.37. (a) The maximum growth rate Rm as a function of 1/γve and εr [126]. The curve
determined by Rm = γve (or �m = 1/τ ) is shown on the surface of Rm. For 1/γve � 1 the usual
form Rm ∼= ε2

r /4 without the dynamic coupling is obtained, while the gel form, Rm ∼= (εr − 1)2/4,
follows for 1/γve � 1. (b) The square of the dimensionless peak wave number xm = (qm"e)

2 as a
function of 1/γve and εr [126]. A crossover can be seen from the usual behavior xm ∼= εr/2 to the
gel behavior xm ∼= (εr − 1)/2 as 1/γve is increased.

growth rate can exceed the stress-relaxation rate or Rm > γve in the gel region, 1/γve � 1
and εr � 1.

Shallow quenching: viscoelastic slowing-down

For shallow quenching εr � 1, (8.9.7) gives

R ∼= (εr − x)x/(1 + γ−1
ve x). (8.9.12)

The viscoelastic effect is to renormalize the kinetic coefficient as (7.1.67) and the growth
rate in the original units reads

|�1| ∼= LT q2(|r | − Cq2)/(1 + ξ2
veq2). (8.9.13)

The above form is in agreement with the experimental results in Figs 7.3 and 8.33 [118].
For very shallow quenching εr � γve the viscoelastic effect can be neglected, so that

the peak position is xm ∼= εr/2 and the maximum of R is Rm ∼= ε2
r /4 as in the usual

model B case. However, in the region γve � εr � 1, the x dependence in the denominator
of (8.9.12) is crucial and

xm ∼= (γveεr)
1/2, Rm ∼= γveεr. (8.9.14)

In the original units the peak wave number and the maximum growth rate are

qm ∼= (κ/ξve)
1/2, �m ∼= εr/τ. (8.9.15)
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Deep quenching: gel-like spinodal decomposition

If εr slightly exceeds 1 (if εr − 1 � γ
1/3
ve more precisely), spinodal decomposition takes

place as in gels in the early stage, where in accord with (7.1.60) we obtain

R ∼= (εr − 1 − x)x . (8.9.16)

Therefore,

xm ∼= 1

2
(εr − 1), Rm ∼= 1

4
(εr − 1)2, (8.9.17)

which are rewritten in the original units as

qm ∼= 1√
2
(εr − 1)1/2"−1

e , �m ∼= 1

4
(εr − 1)2�e. (8.9.18)

The growth rate in the region εr − 1 < x < εr is negligibly small for γve � 1. We notice
that �m soon exceeds 1/τ for εr − 1 > 2γ 1/2

ve . Therefore, if τ is very long, the observed
spinodal point will appear to be shifted downwards to the gel spinodal point εr = 1 (or
Dgel = 0), while the true spinodal point for finite τ remains at εr = 0 (or Dm = 0).

8.9.2 Simulation of spinodal decomposition in polymer solutions

In Tanaka’s experiments on deeply quenched semidilute polymer solutions [116], slovent-
rich domains appeared at an early stage after an incubation time and grew until polymer-
rich regions became thin enough to form a sponge-like network. The solvent regions were
droplets enclosed by the network even if their volume fraction was considerably larger
than that of the network. To explain these observations, the viscoelastic Ginzburg–Landau
model of polymer solutions in (7.1.98)–(7.1.105) was numerically solved in 2D [127, 128].
We here demonstrate that a sponge-like network can appear for slow relaxation of

→←
W (for

large τ in (7.1.100)), where the viscoelastic stress largely cancels the stress due to the
surface tension and stabilizes the network structure for a long time.

We integrate (7.1.13) for φ and (7.1.107) for
→←

W on a 256×256 lattice under the periodic
boundary condition, where w is given by (7.1.104) and vvv is calculated from (7.1.105),
so the average polymer velocity vvv p ∼= vvv + w is expressed in terms of φ and

→←
W . For

t > 0 the system is unstable at (1 − 2χ)/φc = 4.25 as can be seen in Fig. 3.12, for
which φ/φc = 5.86 in the polymer-rich phase and φ/φc = 0.0026 in the solvent-rich
phase on the coexistence curve. Hereafter φc = N−1/2 is the critical volume fraction. In
terms of the correlation length ξ and the cooperative diffusion constant Dm (see Section
7.1) in the final polymer-rich phase, space and time in Fig. 8.38 are measured in units
of " = 0.81ξ , and τ0 = 1.16ξ2/Dm, respectively. The solvent viscosity is set equal to
η0 = ζa2/18φ2 consistent with (7.1.26). The shear modulus and the stress-relaxation time
are set equal to G = 0.2(T/v0)φ

3 and τ = 0.1τ0[(φ/φc)
3 + 1], respectively. Because

of the small coefficients (0.2 and 0.1 in G and τ ), the viscoelasticity does not affect the
patterns appreciably for t � 100 in our simulation, but it comes into play at later times
within polymer-rich regions.
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Fig. 8.38. (a) Patterns of φ(x, y, t) at 〈φ/φc〉 = 2 [127]. This is the case close to the boundary
between the droplet and network morphologies. (b) Patterns of φ(x, y, t) at 〈φ/φc〉 = 2.5. See text
for units of space and time.

In Fig. 8.38 we display patterns at 〈φ/φc〉 = 2 in (a) and those at 〈φ/φc〉 = 2.5
in (b), which closely resemble those of Tanaka shown in Fig. 8.34. In particular, at
〈φ/φc〉 = 2.5 the interface line density L(t) behaves as follows. (i) In the presence of
viscoelasticity we obtain t−α with α ∼ 1/3 for t � 200. (ii) Without viscoelasticity or for
the Flory–Huggins free energy with hydrodynamic interaction, the velocity field quickens
the growth as L(t) ∝ t−2/3 in the region 100 � t � 400. In this case, however, solvent
droplet shapes tend to be circular for t � 400 and a crossover to the droplet growth law
L(t) ∝ t−1/3 appears to take place at later times. Therefore, the hydrodynamic interaction
is suppressed in the presence of viscoelasticity. To support this result, we observe that the
network in Fig. 8.38 does not move as a whole and vvv must be suppressed on longer spatial
scales.

Next, we explain why polymer-rich domains do not change their elongated shapes, even
after long times, in the presence of viscoelasticity [127]. In the early-stage, polymer-rich
regions are elastically compressed due to desorption of solvent (as in deswelling gels).
After a transient time, however, the surface tension force becomes effective at the ends
of stripe-like polymer-rich regions, where the curvature is largest. If there were no vis-
coelasticity, circular domains would then appear. In our viscoelastic case, subsequent shape
changes produce elastic expansion in the direction perpendicular to the stripe and elastic
compression in the direction of the stripe. The resultant network stress largely cancels the
stress originating from the surface tension (or that from ∇φ) and greatly slows down further
shape changes.
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8.9.3 Simulation of spinodal decomposition in gels

We next show numerical results in 2D on spinodal decomposition in gels on the basis of the
Ginzburg–Landau model presented in (7.2.29)–(7.2.33) [125]. Namely, the conformation
tensor

→←
W and the volume fraction φ obey (7.2.32) and (7.2.33), respectively, while the

network velocity vvv is determined by (7.2.29) with ζ ∝ φ2. For simplicity, we assume
g(φ) = v0ā(−0.8ψ2 + ψ4) and C = const. with ψ = 2φ/φ0 − 1 in the dimensionless
free-energy density g(φ) in (7.2.2). The strength of crosslinkage is represented by

ν∗0 = ν0/ā ∼ ν0T/|Kos| ∼ µ/|Kos|. (8.9.19)

By measuring space and time in units of the correlation length ξ and a diffusion time
(ξ2/Dm), we display in Fig. 8.39 typical network domain structures in an isotropic case
with ν∗0 = 0.3 and those in a uniaxial case with λ = √

2 and ν∗0 = 0.1, where λ

is the degree of stretching in (3.5.66). The average polymer volume fraction is φ0/2 or
〈ψ〉 = 0. The domain structures for the isotropically swollen case closely resemble those
observed in deeply quenched polymer solutions and asymmetric polymer blends [116]. In
the uniaxially stretched case, we can see the formation of lamellar structures elongated in
the stretched direction, consistent with the experimental result in Fig. 8.35. In Fig. 8.40
we plot the perimeter density P(t) vs t in the isotropic case. Because P(t) measures the
inverse length scale of the domains, Fig. 8.40 demonstrates extreme slowing-down of the
domain growth, which is consistent with the experiments [119]–[123] and the simulation
[124]. Note that we are treating the case of weak network deformations without crosslink
breakage and the origin of pinning is shear deformations asymmetric between the two
phases.

Further remarks are as follows. (i) The patterns and pinning effect in gels are analogous
to those for coherent alloys with composition-dependent elastic moduli, as can be seen
in Figs 10.12 and 10.13 below. This close resemblance stems from the third-order elastic
interaction (7.2.19) for gels and that in (10.1.37) for alloys, as already discussed below
(7.2.19). (ii) We have neglected the effects of heterogeneities of the network structure,
which was treated in Section 7.3. (iii) It is of great interest to understand how charges
alter phase separation behavior when an ionized gel is quenched into an unstable re-
gion.

8.10 Vortex motion and mutual friction

Vortices in classical fluids have finite lifetimes limited by the shear viscosity. However,
quantized vortices in superfluids are topological singularities, as discussed in Section 4.5,
and hence are unique singular objects appearing collectively in rotating helium and in
thermal counterflow [129]. Our aim here is to examine vortex motion in systems with the
xy symmetry in the Ginzburg–Landau scheme. To this end, we will firstly treat a simple
relaxation model and secondly review theoretical results for 4He and 3He–4He near the
superfluid transition. Defect turbulence in 4He in heat flow and liquid crystalline polymers
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Fig. 8.39. Time evolution of domain structures for phase-separating gels [125]. The three frames on
the left correspond to the isotropically swelling case with ν∗0 = 0.3, and those on the right correspond
to the uniaxially stretching case with ν∗0 = 0.1. Polymer-rich regions are shown in black. See text for
units of space and time.

in shear flow will then be briefly explained. Self-organized superfluid states with high-
density vortices will be shown to be created by competition between heat flow and gravity
near the superfluid transition.

Although not discussed in this book, we note that proliferation of dislocations is re-
sponsible for the plastic deformation of crystals, where the dynamics of an assembly of
dislocations is strongly influenced by long-range elastic interactions on mesoscopic scales
(∼ 10−4 cm) [130].

8.10.1 Simple relaxation model

We assume that a complex order parameter ψ = ψ1 + iψ2 obeys the simple relaxation
model (8.1.66). For simplicity, we neglect the noise term and set r = −κ2, K = 1, and
h = 0, but the coefficient L is generally complex as

L = L1 + i L2, (8.10.1)
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Fig. 8.40. Time dependence of the perimeter density P(t) for ν∗0 = 0.1, 0.2, 0.3 and 0.38 [125].
For comparison, we also plot P(t) vs t (solid line) for the case without elastic effects (ν∗0 = 0),

which obeys P(t) ∼ t−1/3.

where L1 ≥ 0. If L1 = 0 and L2 = h̄/2m4 > 0, (8.1.66) reduces to the reversible
Gross–Pitaevskii equation [131, 132]:

∂

∂t
ψ = −i

h̄

2m4

[−κ2 − ∇2 + u0|ψ |2]
ψ. (8.10.2)

2D case

We consider an assembly of vortex points, Ri = (Xi , Yi ), with charge "i = ±1 in 2D. The
distances between vortices are assumed to be much longer than ξ . In Appendix 8I we will
derive the following vortex dynamic equation,

∂

∂t
Ri = −(

L1 + "iL2ez×
) ∂

∂Ri
Hv/T

= πM2(
L1 + "iL2ez×

) ∑
j �=i

"i" j

R2
i j

(Ri − R j ), (8.10.3)

where M2 = κ2/u0, ez is the unit vector along the z axis, ez × (· · ·) denotes taking the
vector product, and Hv is the vortex free energy given by (4.5.14) in 2D. The kinetic
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coefficients L1 and L2 are expressed in terms of L as [133]–[135]

πM2(L1 + iL2) = 2

E0L1 − i L2
(L2

1 + L2
2), (8.10.4)

where

E0 ∼= ln(Rmax/ξ) (8.10.5)

is a coefficient logarithmically dependent on the ratio of the upper cut-off Rmax and the
core size ξ . We will treat E0 as a constant considerably larger than 1.

As a simple case, if there are only two vortices, the relative vector x = R1 − R2 is
governed by

d

dt
x = πM2[

2L1"1"2 + L2("1 + "2)ez×
] 1

|x|2 x. (8.10.6)

The distance |x| then obeys

d

dt
|x|2 = 4πM2L1"1"2 = const. (8.10.7)

In the presence of dissipation (L1 > 0), two vortices attract (repel) each other for "1"2 < 0
("1"2 > 0). If two vortices with opposite charges approach each other within the core
radius (∼ ξ), they are annihilated.

3D case

In 3D a vortex line with unit charge is represented by R(s) where s is the arc length. The
distances between different vortex line elements and the typical inverse curvature are as-
sumed to be much longer than ξ . Similarly to (8.10.3), the vortex velocity vvvL = ∂R(s)/∂t
is written as

vvvL = −(
L1 + L2t×) δ

δR(s)
Hv/T, (8.10.8)

where t = dR(s)/ds is the tangential unit vector and the vortex free energy Hv is given
by (4.5.19). The kinetic coefficients L1 and L2 are expressed as (8.10.4) in terms of L =
L1 + i L2. The above form is nonlocal and is very complicated in general.

However, if we neglect the interaction among distant vortex line elements and set Hv =
H(0)

v in (4.5.6), we obtain a much simpler dynamic equation,

vvvL = πM2 E0K(L1n + L2b), (8.10.9)

where K is the line curvature, n is the normal unit vector, and b = t × n. They are
determined by dt/ds = Kn. With this local induction approximation we notice the fol-
lowing. (i) In the dissipationless case L1 = 0 and L2 �= 0, we reproduce the Arms–Hama
approximation (4.5.24). (ii) In the presence of dissipation (L1 > 0), the total vortex line
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length decreases in time as

d

dt
LT = −

∫
dsKn · vvvL

= −πM2 E0L1

∫
dsK2 ≤ 0, (8.10.10)

which is analogous to (8.2.7). (iii) In the purely dissipative case (L1 > 0 and L2 = 0)
(8.10.9) becomes

vvvL = 2L1Kn, (8.10.11)

which resembles the Allen–Cahn equation (8.2.1) for the interface dynamic motion. The
scaling behavior (8.1.68) is now derived if vvvL is estimated to be of order K/t .

Noise effect

As in the case of interface dynamics, we may regard (8.10.3) or (8.10.8) as a Langevin
equation [136] by adding on its right-hand side a random noise term which is related to L1

via the fluctuation–dissipation relation (5.2.7). Obviously, L1 is a dissipative kinetic coef-
ficient, while L2 is a reversible one, in the general theory of Langevin equations presented
in Chapter 5. The noise effect is needed if we consider thermally activated vortices such as
those in the 2D xy model near the Kosterlitz–Thouless transition [137, 138].

8.10.2 Vortex motion in a superfluid

In superfluid 4He there can be different macroscopic average velocities of the normal fluid
and superfluid components, un and us, respectively. The average relative velocity will be
written as

w = un − us, (8.10.12)

which is assumed to vary slowly in space as compared with the average vortex distance. Its
magnitude should also be sufficiently small such that

|w| � h̄/m4ξ. (8.10.13)

Otherwise, superfluidity itself will be broken, as will be discussed in Section 9.7.
The mutual interaction between the superfluid component and the normal fluid com-

ponent arises from quantized vortices. The vortex velocity vvvL is determined by the local
superfluid velocity vvvs� and the macroscopically averaged normal fluid velocity un at the
vortex point under consideration [129, 139]. First note that the lift (Magnus) force density,

fM = (2π h̄/m4)ρst × (vvvL − vvvs�), (8.10.14)

is acting on a vortex point per unit length from the superfluid component. Hereafter ρs =
m2

4h̄−2T M2 is the average superfluid mass density. Then ρn = ρ−ρs is the average normal
fluid mass density. Hall and Vinen [139] assumed that the drag force density is given by

fD = −γ0t × [t × (un − vvvL)] + γ0t × (un − vvvL), (8.10.15)
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supposing collisions with normal excitations (mostly, rotons above 1 K and not close to
Tλ). If we neglect the inertia of the vortex, the force balance fM + fD = 0 holds, leading to

vvvL = vvvs� − α′t × [t × (un − vvvs�)] + αt × (un − vvvs�). (8.10.16)

Here the coefficients α and α′ are related to γ0 and γ ′
0 by

α′ + iα = (γ0 + iγ ′
0)/[γ0 + iγ ′

0 − i(2π h̄/m4)ρs]. (8.10.17)

Hall and Vinen also introduced other mutual friction coefficients B and B ′ by

α + iα′ = (ρn/2ρ)(B + i B ′). (8.10.18)

In terms of α and α′, the force densities in (8.10.14) and (8.10.15) are expressed as

fM = −fD = (2π h̄/m4)ρs
{
αt × [t × (un − vvvs�)] + α′t × (un − vvvs�)

}
. (8.10.19)

These coefficients can be measured by investigating second sound in rotating helium. As
T → 0, α and α′ tend to zero or vvvL → vvvs�. In the temperature range 1 K � T � 2.1 K, α
is of order 1 and α′ is considerably smaller than α [129]. We also note that the normal fluid
(or roton) velocity vvvR near a vortex core becomes different from the average un due to the
viscous drag effect. The difference arises within the range of the viscous penetration length
(η/ρω)1/2 from the core where we suppose a second sound with frequency ω. Mathieu and
Simon showed that this hydrodynamic effect is the dominant mutual friction mechanism
for 1.7 � T � 2.1 K [140].

For un = us = 0, we have vvvs� = vvvs1, where vvvs1 is the superfluid velocity in (4.5.24)
induced at a vortex point by the local curvature. Then (8.10.16) takes the standard form
(8.10.8) with

L1 + iL2 = m4

π h̄ρs

[
α + i(1 − α′)

] = 2

γ0 + iγ ′
0 − i(2π h̄/m4)ρs

. (8.10.20)

In general cases with nonvanishing un and us, we have vvvs� = vvvs1 + us and may rewrite
(8.10.16) as

vvvL − us = −(
L1 + L2t×) δ

δR(s)
H̃v/T, (8.10.21)

where we introduce a modified free energy,

H̃v = Hv − π h̄ρs

m4

∫
dsw · [R(s)× t(s)]. (8.10.22)

As a simple example, for a vortex ring with radius R we have

H̃v = 2ρs

(
π h̄

m4

)2[
R ln(R/ξ)+ m4

h̄
w · bR2

]
, (8.10.23)

which is analogous to the droplet free energy H(R) in (8.2.42) in model A in 2D.
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The Arms–Hama approximation

We use the Arms–Hama approximation (4.5.24) by replacing Hv by H(0)
v in (4.5.6). Then

the local velocity vvvs� consists of a macroscopic average us and the locally induced velocity
vvvs1 = V�b with

V� =
h̄

2m4
E0K. (8.10.24)

The vortex velocity (8.10.16) becomes

vvvL = us + t × [−α′t × w + αw
] + V�

[
(1 − α′)b + αn

]
. (8.10.25)

Using the first line of (8.10.10) we calculate the rate of change of the total line length as

d

dt
LT = α

∫
dsK

(
b · w − V�

) − ( ∫
dsKn

)
· (

us + α′w
)
. (8.10.26)

If we consider only closed loops, the second term vanishes because
∫

dsKn = ∫
dR(s) =

0. However, if the two ends of a line are attached to the boundary wall, the second term is
in general nonvanishing.

As a simple, instructive example we apply w perpendicularly to the single vortex ring
sketched in Fig. 4.7. Here b is parallel to w, n points in the outward direction of the ring
circle, and K = −1/R, where R is the ring radius. Then (8.10.25) is rewritten as

vvvL = us + (w · b)
(
α′b − αn

) − h̄E0

2m4 R

[
(1 − α′)b + αn

]
. (8.10.27)

In the presence of dissipation (α > 0) we notice that R changes in time as

∂

∂t
R = n · (vvvL − us) = α

(
−w · b − h̄E0

2m4 R

)
. (8.10.28)

This is analogous to (8.2.43) for circular or spherical domain growth in the nonconserved
case. In the present case, the relative velocity plays the role of a magnetic field in spin
systems. Indeed, the ring can expand if w · b < 0 and R is larger than the critical radius,

Rc = h̄E0

2m4|w| , (8.10.29)

while it shrinks otherwise. Near the λ point we have Rc � ξ from (8.10.13) and E0 � 1.

Mutual friction in 4He near the superfluid transition

Near the superfluid transition, experimental data indicate divergence of α ∼= B/2 and
α′ ∼= B ′/2 roughly as

α ∼ 1 − α′ ∼ (1 − T/Tλ)
−av , (8.10.30)

where av ∼ 1/3 [141, 142]. This behavior was also derived by Pitaevskii with a simple
theoretical estimate [143]. In Ref. [133] they were predicted to be on the order of the
renormalized kinetic coefficient LR in model F investigated in Section 6.5. Because we
treat the fluctuations longer than ξ , L should be identified with the renormalized one, LR, in
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the long-wavelength limit, which behaves as |τ |−ν+xλ with xλ being the dynamic exponent
for the thermal conductivity in (6.6.42). Similarly to (8.10.4), α and α′ are expressed as

α + i(α′ − 1) = 2m4

h̄
|LR|2/[(Re LR)(X1 + iY1)], (8.10.31)

where X1 and Y1 are positive, of order 1, and only weakly dependent on τ . Experimentally,
α and 1−α′ are positive and grow as T → Tλ in agreement with the above result [129, 142].
If we adopt model F, (8.10.31) does not involve logarithmically divergent integrals (or E0)
in α and α′, in contrast to (8.10.4). A deviation of the entropy variable around a moving
vortex line can eliminate such divergence.

Mutual friction in 3He–4He mixtures near the λ line and the tricritical point

The vortex motion in 3He–4He mixtures is also of great interest [134], though there seems
to be no experimental data so far. The behavior of α and α′ sensitively depends on the
average 3He concentration X . This is because the linear combination c2 of the entropy and
concentration fields given in (6.6.94) relaxes diffusively with a small diffusion constant
D2 around a moving vortex line and crucially influences the vortex motion. However, as
discussed near (6.6.102), the coupling between c2 and ψ vanishes at an intermediate 3He
concentration XD ∼= 0.37 at SVP and a mixture there behaves as pure 4He [135]. Moreover,
because of the slow relaxation of c2, α and α′ exhibit strong frequency dependence for
ω � D1ξ

−2. This effect is particularly important in the tricritical region where D1 ∝ ξ−1.
In the low-frequency limit ω � D1κ

2 we obtain

α + i(α′ − 1) = 1

/[(
Re

h̄

2m4LR

)
(XA + iYA)+ δB

]
, (8.10.32)

where XA and YA are of order 1, and Re(1/L) ∼ |τ |1/3 near the λ line. The quantity
δB is positive and depends on |τ | logarithmically, going to 0 as δB ∼ X for X � 1
δB ∼ (X − XD)

2 for X ∼= XD. Thus, α and α′ remain finite on the λ line. The coefficient
α grows near the λ line and saturates to the following λ-line value; in particular,

α → δ−1
B ∼ X−1 (X � 1)

∼ (X − XD)
−2 (X ∼= XD). (8.10.33)

However, 1 − α′ takes a maximum at |τ | ∼ τc close to the λ line as

1 − α′ ∼ Re LR (τc < |τ | � 1),

∼ δ−2
B Re(1/LR) (|τ | < τc). (8.10.34)

The crossover reduced temperature τc is roughly of order δ3
B and is very small for X � XD,

but it increases on approaching the tricritical point.
In the tricritical region, however, δB grows as ξ . Therefore, α ∼ ξ−1 and 1 − α′ ∼= 0.

This behavior can be explained as follows. It is known that the fluctuations of c2 are much
enhanced with variance 〈c2 : c2〉 ∼ ξ as in (3.2.25). Therefore, the variation of c2 induced
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around a moving vortex is very large, giving rise to a large resistance. From (8.10.32) we
notice that

vvvL ∼= un + (t · w)t + αt × (un − vvvs�). (8.10.35)

This behavior is in a marked contrast to that at low temperatures where vvvL ∼= vvvs� due to
small dissipation.

8.10.3 Defect turbulence in 4He in heat flow

It is well known that, if w is sustained externally at a constant value, a dynamical steady
state is eventually established in which a vortex tangle is generated. Vinen described the
time evolution of the line density nv(t) of a vortex tangle in the form [144]

d

dt
nv = A1|w|n3/2

v − A2n2
v. (8.10.36)

From (8.10.28) the first term represents line stretching due to the flow with A1 ∼ α, while
the second term represents line shrinking due to the curvature effect with A2 ∼ αh̄E0/m4.
The typical line curvature in the dynamical steady state is on the order of Rc and the vortex
line density in the steady state is scaled as

(nv)steady ∼ R−2
c ∼ (m4/h̄E0)

2|w|2. (8.10.37)

The timescale of the tangle growth ttan is estimated as

ttan ∼ A−1
2 R2

c ∼ h̄E0

αm4|w|2 . (8.10.38)

Schwarz used (8.10.25) in numerical analysis of vortex tangles in thermal counterflow
[145]. He assumed that vortex lines reconnect when they encounter one another. Then
reconnection gives rise to randomization of the lines as in Fig. 8.41. Subsequently, such
reconnection processes were numerically studied on the basis of the dissipative dynamic
equation (8.1.66) [15, 17], for which see Fig. 8.6, and the reversible Gross–Pitaevskii
equation [146]. The resultant complex phenomenon has been called vortex turbulence,
though it is very different from the usual fluid turbulence characterized by the energy
cascade from large to small length scales. We also remark that fluid turbulence in superfluid
4He, such as that generated by a grid, poses another fundamental problem, where we are
interested in how vortices come into play in the dissipative wave number range [147, 148].

The Gorter and Mellink mutual friction force

In the presence of vortex tangles there arises mutual friction between the normal fluid
and superfluid components. We take spatial averages in fluid elements with sizes much
longer than the inter-vortex distance (∼ Rc in dynamical steady states) and assume only
slow spatial variations in the averaged quantities. The average mutual force density Fsn is
written as

Fsn = 1

�V

∫
dsfD, (8.10.39)
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Fig. 8.41. Time evolution of a vortex tangle with α = 0.1 starting with six vortex rings in (a) [145].
The average flow is into the front face. Reconnections of lines lead to increasingly complex patterns.
A dynamical steady state is attained in (e) and (f).

where the line integral is along all the vortex lines within a fluid element with volume �V .
From (8.10.19) we estimate its magnitude as

|Fsn| ∼ (h̄/m4)ρsα|w|L
∼ (m4/h̄E2

0)ρsα|w|3. (8.10.40)

We have set L ∼ Lsteady in the second line. In the simplest form, the two-fluid hydrody-
namic equations read

ρs
∂

∂t
us = −ρs∇µ− Fsn = −ρs

ρ
∇ p + ρss∇T − Fsn, (8.10.41)
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ρn
∂

∂t
un = −ρn

ρ
∇ p − ρss∇T + Fsn + η∇2un, (8.10.42)

where un = 〈vvvn〉 and us = 〈vvvs〉 are the average velocities, η is the shear viscosity,
and the thermal conductivity and the bulk viscosity are neglected. The µ and s are the
chemical potential and entropy per unit mass, respectively. Gorter and Mellink proposed
the following form [129, 149],

Fsn = −A(T )ρsρn|w|2w, (8.10.43)

where A(T ) is a temperature-dependent coefficient of order (m4/h̄E2
0ρn)α. This form

is consistent with the second line of (8.10.40). In steady thermal counterflow, we obtain
∇ p = η∇2un and

s∇T = ηρ−1∇2un + ρ−1
s Fsn

∼= −A(T )ρn|w|2w. (8.10.44)

The second line holds for wide cells where the pressure gradient is small. The relation
∇T ∝ Q3 has been observed in many experiments [129], where Q is the heat flux
expressed as

Q = Tρsun = Tρssw, (8.10.45)

from ρsus + ρnun = 0 in 1D geometry.

Mutual friction near the superfluid transition

Near the λ point the temperature dependence of A(T ) is proportional to LR (∝ ξ/λR) from
(8.10.31). For small |τ | = 1 − T/Tλ � 1, we have the behavior

1

Tλ

d

dx
T = −Bv|τ |−mv Q3. (8.10.46)

The exponent mv = 4ν − xλ arises from ρ−3
s A(T ). Previous experiments were fairly

consistent with the above form [150, 151]. For example, Ahlers’ result for Tλ − T � 10−4

K [150] was fitted to (8.10.46) with mv = 2.23 and Bv = 5 × 10−29 in cgs units.
The assumption (8.10.13) at the starting point is equivalent to the condition |τ | � τQ ,

where τQ is the crossover reduced temperature introduced in (6.7.8). It is instructive to
rewrite the above equation in terms of τQ in the following scaling form,

d

dx
|τ | = Av

|τ |
ξ
(τQ/|τ |)6ν, (8.10.47)

where

Av = Bvξ+0 A−6ν
Q |τ |5ν−1−mv = (ρ/sT )(h̄/m4)

3ξ−2
+0 A(T )|τ |2ν−1, (8.10.48)

with AQ = (m4ξ0+/h̄sTλρ∗
s )

1/2ν and ξ ≡ ξ+0|τ |−ν . The dimensionless number Av is
theoretically of order w/E2

0 and is expected to be much smaller than 1, where the behavior
of w was discussed near (6.6.59)–(6.6.67). Ahlers’ result [150] gives Av ∼ 1.1 × 10−3.
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Hereafter we neglect the weak temperature dependence of Av and treat it as a small number
of order 10−3.

Taking the origin of the x axis appropriately inside the cell, we may integrate (8.10.47)
in the form

|τ(x)|5ν = |τ(0)|5ν + 5νAv(τ
6ν
Q /ξ0+)x . (8.10.49)

The characteristic length over which the reduced temperature τ changes significantly due to
the mutual friction is given by "sn ∼ 103(|τ |/τQ)

6νξ . The temperature in heat-conducting
superfluids may be considered to be homogeneous if the cell height h is much shorter than
"sn. If there is a HeI–HeII interface at x = xint, we have τ(xint) = −τ∞ as given by
(6.7.29). Then,

(|τ(x)|/τ∞)5ν = 1 + (5νR−6ν
∞ Av)

1

ξQ
(x − xint), (8.10.50)

where ξQ is defined by (6.7.9). Thus the height of the superfluid region where τ(x) ∼= −τ∞
is of order 103–104ξQ and is well defined theoretically but might be narrow experimen-
tally.10 For x < xint the system is in a normal fluid state. The vortex line density in the
superfluid region is estimated as

nv ∼ E−2
0 (τQ/|τ |)2νξ−2, (8.10.51)

which is much smaller than ξ−2 for |τ | � τQ . Finally, we compare the characteristic
magnitude of the temperature gradient in normal fluid and superfluid states at the same |τ |
and Q; (6.7.4) and (8.10.47) give(

d

dx
T

)
super

/(
d

dx
T

)
normal

∼ 10−3(|τ |/τQ)
−13/4, (8.10.52)

which is indeed very small for |τ | � τQ . The gravity effects are neglected in the above
relations.

8.10.4 Self-organized states in 4He heated from above

As discussed in Section 6.7, gravity and heat flow, if they are in the same direction, can
compete to produce self-organized states near the superfluid transition. We introduce the
local reduced temperature ε as in (6.7.22) by taking the x axis in the downward direction
with the origin at the top in a cell with height h. In a superfluid state slightly below the λ

line, we have ε < 0 and change (8.10.47) as

d

dx
|ε| = −G + Bv|ε|−mv Q3. (8.10.53)

We notice that there are two cases. In regime M the right-hand side of (8.10.53) is positive,
which is realized for relatively large Q. Conversely, it is negative in regime G, where the
gravity-induced gradient is dominant.

10 For precise measurements of 1 − T∞/Tλ = τ∞ close to the interface, the thermometer size needs to be smaller than this
length.
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Regime M

As a special situation we assume that a normal fluid is in an upper region 0 < x < xint of
a cell and a superfluid is in the lower region xint < x < h. At the interface position, where
|ε| = τ∞, the condition of regime M reads

τ 1+ν
g = ξ+0G < Av R−3+ν

∞ τ 1+ν
Q , (8.10.54)

where τg is defined by (2.4.36). If we set R∞ ∼ 2, the above relation yields

τQ � 103τg or Q � 103(g/gearth)
2ν/(1+ν) (erg/cm2 s), (8.10.55)

where gearth is the gravitational acceleration on earth. In this regime the temperature profile
is exemplified by curves 1 and 2 in Fig. 8.42. If the superfluid region is sufficiently wide,
ε tends to a limiting value given by

εc = −(Bv Q3/G)1/mv ∼ −A1/mv
v (τQ/τg)

(1+ν)/mvτQ . (8.10.56)

The relaxation length is given by |εc|/G. In this self-organized state the temperature
gradient due to defects becomes equal to the transition temperature gradient:(

d

dx
T

)
defect

= d

dx
Tλ. (8.10.57)

The reduced temperature at the bottom εbot is larger than 103τg (∼ 10−6 on earth) in
magnitude. The vortex line density in units of ξ−2 is small, from (8.10.51).

Vortex turbulence in regime G

Regime G is realized under the reverse condition of (8.10.54) or (8.10.55). Further requir-
ing (6.7.31) we have Q in the range 1 � Q/(g/gearth)

2ν/(1+ν) � 103 (cgs) in the geometry
of Fig. 8.44. The reduced temperature at the bottom satisfies |εbot| � 103τg . In this case the
system approaches the λ point at constant Q with increasing distance from the interface.
The dimensionless wave number K = kξ is related to |ε| as

K (1 − K 2) = (ξ/ξQ)
2 = (τQ/|ε|)2ν, (8.10.58)

where τQ and ξQ are defined by (6.7.8) and (6.7.9), respectively. The value of K at x ∼= xint

is determined by (6.7.30). It increases up to a critical value Kc for x − xint � "G Q where
"G Q = ε∞/G ∼ 10−2 Q1/2ν(gearth/g)(cm) is the relaxation length. Hereafter Kc will be
set equal to the mean field value 1/

√
3, for which see (9.7.7) below. It is known that the

critical fluctuations gives rise to a correction only of order 10% [153]. In the region with
K ∼ 1/

√
3, vortices should be densely generated to produce much more enhanced mutual

friction than represented by the Gorter–Mellink term in (8.10.53) which holds only under
the weak-flow condition (8.10.13). In the strong-flow condition K ∼ 1/

√
3, the free energy

to create a vortex line is decreased, so we propose a generalized form of (8.10.36),

d

dt
nv = A1|w|n3/2

v − A2(1 − 3K 2)γvn2
v, (8.10.59)



466 Phase ordering and defect dynamics

Fig. 8.42. Profiles of the local reduced temperature ε in a superfluid region on earth with Q =
2160, 1240, 710, 200 and 31 erg/cm2 s (curves 1–5) [152]. A normal fluid region is assumed to be
in the region x < xint and ε = −τ∞ at x = xint. Regime G is realized for Q � 103 erg/cm2 s on
earth in this geometry. We can see that ε → εc for x − xint � τ∞/G, resulting in self-organized
superfluid states in both regimes M and G.

where the exponent γv has not yet been calculated. In steady states, (8.10.53) is then
generalized as

d

dx
|ε| = −G + Bv|ε|−mv Q3(1 − 3K 2)−2γv . (8.10.60)

The last factor accounts for the growing mutual friction as K → 1/
√

3. We solve the above
equation at γv = 1 and R∞ = 2.5 to obtain the temperature curves 3–5 in Fig. 8.44. We
recognize that the system tends to a self-organized superfluid state for x − xint � "G Q ,
in which the gradient of T is equal to that of Tλ(p) and |ε| approaches a limiting reduced
temperature εc. In particular, for Q � 103(g/gearth)

2ν/(1+ν), K should be close to 1/
√

3
and

ε → εc ∼= −2τQ . (8.10.61)

The scaled vortex line density nvξ
2 in (8.10.51) can be of order E−2

0 in regime G, while it
is very small in the conventional regime M.
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A self-organized superfluid region at constant εbot

We numerically solve (6.7.23)–(6.7.27) in regime G in 1D [152]. As in Fig. 6.28 we
measure the space, reduced temperature, and heat flux in units of 1.6×10−3 cm, 2.5×10−8,
and 11 erg/cm2 s, respectively. The unit of time is about 10−4 s. We prepare a normal
fluid state heated from above and then suddenly lower the bottom reduced temperature
εbot from 2 to −2 to produce an embryo of superfluid at the bottom. The heat flux at the
top is fixed at 0.1. The superfluid region then grows into the upper normal fluid region.
Figure 8.43 shows numerical data at t = 45 615, for ρs(x, t) = |&(x, t)|2 in (a) and
A(x, t) = T (x, t)/Tλbot − 1 and ε(x, t) = T/Tλbot − 1 + G(x − h) in (b). We can see
a number of phase slip centers [154], the one-dimensional counterpart of vortices, in the
expanding superfluid region. They are rapidly varying in time and the temperature (solid
line) has a gradient such that ε (dashed line) becomes flat on the average as shown in
(b). In the self-organized superfluid region, the superfluid velocity Im(&∗∇x&)/|&|2 is
fluctuating around the critical value 1/

√
3 and the heat flux is about 0.5 on the average.

In this case the front of the superfluid region reaches the top on long timescales because
a large amount of entropy is stored in the upper normal fluid region., If we increase the
heat flux at the top to the value at the bottom (Qtop = Qbot = Q), the interface motion
can be stopped and coexistence of a normal fluid and self-organized superfluid state can
be realized in a dynamical steady state. In 4He in this geometry, an expanding superfluid
region is in regime G only when the reduced temperature εbot(< 0) at the bottom is smaller
than 103τg in magnitude. For deeper quenching, regime M will be realized.

A self-organized superfluid region at constant Q

As already mentioned below (6.7.42), Moeur et al. [155] observed a self-organized super-
fluid region for Q � 1 erg/cm2 s. Simulations were also performed in this geometry in
1D [156, 157]. Using the dynamic model (6.7.23) and (6.7.24) we prepare an equilibrium
superfluid state for t < 0 and subtract a constant heat flux Qbot from the bottom for
t > 0. Then a self-organized superfluid region with defects expands upwards into the upper
superfluid region without defects. If we subsequently apply the same heat flux from the top
(Qtop = Qbot = Q), we may realize a dynamical steady two-phase state, as shown in Fig.
8.44. In this case there is no sharp boundary between the two phases and the width of the
transition region is on the order of the defect spacing. We can see continuous generation and
annihilation of defects in the self-organized region. Second-sound waves are then emitted
into the upper superfluid region, causing large-scale temperature perturbations.

8.10.5 Defect turbulence in liquid crystalline polymers in shear flow

It is worth noting that similar defect turbulence has been observed in nematic liquid
crystalline polymers subjected to shear [158, 159], in which shear flow causes tumbling
of liquid crystalline molecules. The coherence of rotating molecular alignment is broken
on the spatial scale of a typical distance ad among disclination lines. Such states in liquid
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Fig. 8.43. A superfluid region created at the bottom (x = 160) and expanding towards the top
(x = 0) at t = 45 615 in regime G obtained by numerically solving (6.7.23) and (6.7.24) [152].
(a) The superfluid density is plotted. Because the simulation is in 1D, there are many phase slip
centers in the expanding superfluid region. Space and time are scaled by 1.6× 10−3 cm and 10−4 s.
(b) T/Tλbot − 1 (solid line) and ε (dashed line) are plotted in the transient state and are expanded in
the inset. They are scaled by 2.5 × 10−8.
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Fig. 8.44. A self-organized superfluid with defects below a superfluid without defects in regime G
at Q = 11 erg/cm2 s applied from above. They are obtained by numerically solving the model
(6.7.23)–(6.7.28).

crystals are sometimes called polydomain states. In dynamical steady states, the viscous
stress ηγ̇ is balanced with the Franck elastic energy density K/a2

d , where η is the viscosity,
γ̇ is the shear rate taken to be positive, and K is the Franck elastic constant. Thus ad is
estimated [158] as

ad ∼ (K/ηγ̇ )1/2. (8.10.62)

The line density nv ∼ a−2
d is then proportional to γ̇ in the steady state. In transient states

Larson and Doi derived the following evolution equation [159],

d

dt
nv = B1γ̇ nv − B2n2

v, (8.10.63)

from nematodynamic equations with B1 and B2 being appropriate constants. This equation
is analogous to the Vinen equation (8.10.36). We notice surprising similarity between these
two phenomena in which a large number of defects are generated by an externally applied
flow.

Appendix 8A Generalizations and variations of the Porod law

We examine the short distance behavior (ξ � r � "(t)) or the large wave number behavior
(ξ−1 � k � "(t)−1) of the pair correlation function and the structure factor neglecting the
thermal fluctuations and taking the thin interface limit [160]–[162]. Let ε(r) = ψ(r, t)/ψeq
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take either of ±1 in the two phases, ψeq being the equilibrium order parameter value. The
time variable t will be suppressed for simplicity. The scaled pair correlation function is
written as

G(r) = g(r)/ψ2
eq = 〈ε(r1)ε(r2)〉, (8A.1)

which depends only on r = r1 − r2 if the system is homogeneous on average. Here we
allow that the system can be anisotropic in space; then, G(r) depends on the direction of
r and the Fourier transformation of G(r), written as Î (k) = Idom(k)/ψ2

eq, depends on the
direction of k.

It is convenient to introduce [163]

G1 = ∇1 · ∇2G = −∇2
1 G. (8A.2)

Notice that ε changes only at the surface and

∇1ε(r1) = 2δ(s1)n1, (8A.3)

where s1 is the coordinate along the normal unit vector n1 on the surface (so δ(s1) is the
surface δ-function δ̂(r1) in (8.2.53)). Then,

G1(r) = 1

V

∫
dr1

∫
dr2

[∇1ε(r1) · ∇2ε(r2)
]
δ(d)(r1 − r2 − r)

= 4

V

∫
da1

∫
da2(n1 · n2)δ

(d)(r1 − r2 − r), (8A.4)

where da1 and da2 are the surface elements at the surface positions r1 and r2, respectively,
and the surface integrals are taken within a macroscopic volume V containing a large
number of domains. Here the δ function in d dimensions is written as δ(d) to avoid
confusion.

If r = |r1 − r2| is much smaller than the inverse curvature, the two points are mostly
located on the same surface and r2 − r1 becomes perpendicular to n1 so that s1 ≡ (r2 −
r1) · n1 = r · n = O(r2) ∼= 0 and n1 · n2 ∼= 1. The surface integration

∫
da2 · · · may then

be performed to give

G1(r) ∼= 4

V

∫
da1δ(s1) = 4A

r
〈δ(n · r̂)〉, (8A.5)

where A is the surface area (line length) density in 3D (2D) and 〈· · ·〉 = ∫
da(· · ·)/AV

is the average over the surface and r̂ = r−1r is the direction of r, so it follows the short
distance behavior G1 ∝ 1/r . We introduce the distribution function P(n) for the normal
unit vector n on the surface, in terms of which G1 may also be expressed as

G1(r) ∼= 4A

r

∫
d�P(n)δ(n · r̂), (8A.6)

where d� is the solid angle element.



Appendix 8A Generalizations and variations of the Porod law 471

Isotropic case

If the distribution of the surface normal n is isotropic (where P = 1/4π for d = 3 and
P = 1/2π for d = 2), we obtain

G1 ∼= 2A

r
(3D), G1 ∼= 4A

πr
(2D). (8A.7)

In this case G behaves at short distances as

G = 1 − Ar + · · · (3D), G = 1 − 4π−1 Ar + · · · (2D), (8A.8)

which follows from

G1 = −∇2G = −
[
∂2

∂r2
+ (d − 1)

∂

r∂r

]
G (8A.9)

for the isotropic case. This expansion form holds for thin and smooth interfaces and can
also be derived from simple geometrical arguments. Namely, when r is much smaller than
the typical inverse curvature, G(r) can be −1 only when the two points r1 and r2 are both
in the layer region where the distance to the surface is shorter than r . This probability is of
order r A, giving rise to the second terms in (8A.8). The Porod tail (8.1.21) of the structure
factor is now readily obtained by Fourier transformation of (8A.7).

Anisotropic case

The Fourier transformation of G1(r) is written as

Î1(k) ∼= 4A
∫

d�P(n)(2π)d−1δ(d−1)(k⊥), (8A.10)

where k⊥ is the perpendicular part of k to n and is a d − 1 dimensional vector. Due to
δ(d−1)(k⊥) in the above integral, n must be parallel to k and P(n) may be replaced by
P(k̂), where k̂ = k−1k is the direction of k. Then I1 ∝ AP(k̂)/kd−1. Because the Fourier
transform of G(r) is given by I (k) = I1(k)/k2, we obtain

Î ∼= 32π2 A

k4
P(k̂) (3D), Î ∼= 16π A

k3
P(k̂) (2D), (8A.11)

which holds in the region "(t)−1 � k � ξ−1. In the isotropic case, the above relations
reduce to those known in the literature. While the Porod tail has been discussed for the
isotropic case in the literature, the above formulas provide a new experimental possibility
of gaining information of anisotropy of the domain structure. An example is given in Fig.
8.35, which shows the Porod tail from a uniaxially stretched gel. We note that domains
in fluids are elongated in gravity and in shear flow, while domains in solids usually take
anisotropic shapes due to elasticity. The Porod tail can be detected even after the spinodal
ring has collapsed at very late stages.
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Kirste–Porod corrections and Tomita’s sum rule

In the isotropic case it is easy to calculate the second-order corrections. We consider the
problem in 3D here. Expansion of G1 in powers of r reads [164, 165]

G1 = 2A

r

(
1 − r2

2R2
m
+ · · ·

)
. (8A.12)

Here 1/R2
m is written in terms of the principal curvatures 1/R1 and 1/R2 as

1

R2
m

=
〈

3

8
K2 − 1

2R1 R2

〉
(8A.13)

where K = 1/R1 + 1/R2. The structure factor may then be expanded as

Î ∼= 8π A

k4

(
1 + 1

R2
mk2

+ · · ·
)
. (8A.14)

The correction term was first derived by Kirste and Porod [161]. We note that there is no
constant term in G1, which leads to Tomita’s sum rule [3, 163],∫ ∞

0
dk[k4 Î (k)− 8π A] = 0. (8A.15)

The above integral is equal to 2π2 limr→0[G1(r) − 2A/r ] = 0. This sum rule has been
confirmed by a simulation of spinodal decomposition without thermal noise [166].

Scattering from bilayers

Scattering experiments have been performed from fluid membranes in the so-called L3

(sponge) phase without long-range order [168]. There, thin bilayers separate a fluid into
two equivalently percolated domains and hence scattering mainly arises from surfactant
molecules trapped on the surface. In this case the structure factor Îs of the surfactant has a
tail [165, 168],

Îs(k) ∼= 8π2 A

k2
P(k̂), (8A.16)

in the region "−1 � k � b−1, where " is the typical length of the surface structure and b
is the thickness of the bilayer. The above formula may be used to examine the distribution
P(n) of the surface normal vector n, whose anisotropy may be induced by external forces.

Scattering from fractal surfaces

So far we have assumed smooth surfaces, but surfaces can be finely rugged with a surface
fractal dimension Df. That is, to cover such a surface with spheres of radius a, we need
spheres proportional to a−Df . Here d − 1 ≤ Df < d, and Df = d − 1 for smooth surfaces.
In this case the following tail is well known [3, 169],

Î (k) ∝ k−2d+Df . (8A.17)
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Appendix 8B The pair correlation function in the nonconserved case

Calculation for n = 1

There is no essential difference in the calculation of the two-body correlation function
g(|r1 − r2|, t1, t2) ≡ ψ2

eqG at a late stage between the KYG and OJK theories [8, 10]. We
follow the notation in the KYG theory. The results in the OJK theory are obtained if L is
replaced by L ′. From (8.2.12) we express ψ(r, t) in terms of the subsidiary field ϕ(r, t) as

ψ(r, t) = ψe

∫
dp

iπp
exp[i pϕ(r, t)], (8B.1)

where the Cauchy principal value should be taken at p = 0. Then,

G =
∫

dp1

iπp1

∫
dp2

iπp2
〈exp[i p1ϕ1 + i p2ϕ2]〉, (8B.2)

where ϕ1 = ϕ(r1, t1) and ϕ2 = ϕ(r2, t2). Because ϕ1 and ϕ2 are gaussian, the above
average can be readily performed as

〈exp(i p1ϕ1 + i p2ϕ2)〉 = exp

(
−1

2
β1 p2

1 − 1

2
β2 p2

2 − β12 p1 p2

)
, (8B.3)

where β1, β2, and β12 are defined by (8.1.35). From (8.1.26) and (8.1.27) we have

β12 =
∫

k
χk exp

[
L(κ2 − k2)(t1 + t2)+ ik · (r1 − r2)

]
, (8B.4)

in terms of the initial variance χk . By changing the integration variables to x1 = β
1/2
1 p1

and x2 = β
1/2
2 p2, we obtain [170]

G =
∫

dx1

iπx1

∫
dx2

iπx2
exp

(
−1

2
x2

1 − 1

2
x2

2 − X x1x2

)
, (8B.5)

where X = β12/(β1β2)
1/2. Therefore, G is a function of X only and

d

d X
G =

∫
dx1

∫
dx2 exp

(
−1

2
x2

1 − 1

2
x2

2 − X x1x2

)
= 2

π
(1 − X2)−1/2. (8B.6)

Integration with respect to X gives (8.1.37). (i) If the lengths
√

Lt1 and
√

Lt2 are much
longer than the initial correlation length, we may replace χk by its long-wavelength limit
χ0 to obtain

β12 = χ0
[
4πL(t1 + t2)

]−d/2 exp
[−|r1 − r2)|2/4L(t1 + t2)

]
, (8B.7)

which leads to (8.1.39). (ii) If the initial correlation is long as in the periodic quench case,
the above approximation is not valid. Focusing only on small wave number behavior, we
may set

G ∼= 2

π
X = 2

π
β12/(β1β2)

1/2. (8B.8)
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The domain structure factor, the Fourier transformation of ψ2
eqG at t1 = t2 = t , now

becomes

Idom(k, t) ∼= ψ2
eqχk exp(−2Lk2t)

/ ∫
q
χq exp(−2Lq2t). (8B.9)

Calculation for n ≥ 2

For many-component systems we use the identity,

ϕϕϕ

|ϕϕϕ| = An

∫
p

iϕϕϕ

pn−1
exp(ip · ϕϕϕ), (8B.10)

where An = (4π)(n−1)/2�[(n − 1)/2] and
∫

p = (2π)−n
∫

dp. When (8.1.72) holds, we
have

G = [(n − 1)An]2
∫

p1

∫
p2

p1 · p2

(p1 p2)n+1
exp

(
−1

2
β1 p2

1 −
1

2
β2 p2

2 − β12 p1 · p2

)
. (8B.11)

By changing the integration variables as x1 = β
1/2
1 p1 and x2 = β

1/2
2 p2, we notice that

G depends only on X . We may perform the integrations over x1 = |x1| and x2 = |x2| in
dG/d X as in (8B.6). Some calculations yield (8.1.73).

Appendix 8C The Kawasaki–Yalabik–Gunton theory applied to periodic quench

We present the calculation for periodically modulated states in the KYG scheme. More
details can be found in Ref. [11]. The nonlinear transformation (8.1.23) for the normal
quench case may be generalized to the periodic quench case as

ψ(r, t) = ϕ(r, t)
/[

1 + b(t)ϕ(r, t)2]1/2
, (8C.1)

where

b(t) = 2Lu0

∫ t

0
dt ′ exp

[
2L

∫ t

t ′
dt ′′r(t ′′)

]
. (8C.2)

Here ϕ(r, t) is the solution of (8.1.45) without the nonlinear and noise terms, so it obeys

∂

∂t
ϕ = −L[r(t)− ∇2]ϕ. (8C.3)

The space average ϕ̄(t) = 〈ϕ(r, t)〉 obeys ∂ϕ̄/∂t = −Lr(t)ϕ̄ and the deviation δϕ =
ϕ(r, t)− ϕ̄(t) is gaussian. Then (8.1.51) is justified when

β(t) = 〈δϕ(r, t)2〉 =
∫

q
χq exp

[
−2Lq2t − 2L

∫ t

0
dt ′r(t ′)

]
(8C.4)

is much larger than b(t)−1. In the step-wise case (8.1.46) we obtain

β(t)b(t) = u0

(
1

|r−| +
1

r+

)
exp(2L|r−|t1)

∫
q
χq exp(−2Lq2t). (8C.5)
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in the time region t − t1 � 1/Lr+. In a periodic disordered state, this quantity is of order
AS(S − 1)−1 exp(−2Lr̄ tp) at t = tp, where r̄ is the time average of r(t). We are thus
allowed to assume β(t)b(t) � 1 for 2L|r̄ |tp � 1 with r̄ < 0. In ordered states the average
order parameter is calculated from

ψ̄(t) = [2πb(t)β(t)]−1/2
∫

dϕ
ϕ

|ϕ| exp

{
− 1

2β(t)

[
ϕ − ϕ̄(t)

]2
}

= [2/πb(t)]1/2
∫ Z(t)

0
dx exp(−x2/2), (8C.6)

where Z(t) = ϕ̄(t)/β(t)1/2. At t = tp we have η′ = ψ̄(tp) to find the recursion relation
(8.1.55).

Appendix 8D The structure factor tail for n = 2

We derive the structure factor tail at large wave number k for n = 2 from geometrical
arguments [6, 21].

(i) In 2D, the complex order parameter ψ = ψ1+ iψ2 close to a vortex but outside its core
at the origin is expressed as

ψ1/ψeq = ±y/r, ψ2/ψeq = ±x/r, (8D.1)

where the charge of the vortex is assumed to be ±1 (for which see (4.5.1) or (4.5.11)). In a
system with volume V we have

G(r) = ψ−2
eq 〈ψψψ(r1) ·ψψψ(r2)〉 = nv

V

∫
dr1

∫
dr2

r1 · r2

r1r2
δ(2)(r1 − r2 − r), (8D.2)

where r = r1 − r2 and nv is the vortex number density. The Fourier transformation gives
the defect structure factor (divided by ψ2

eq),

Î (k) = nv

∣∣∣∣ ∫
dr1

r1

r1
eik·r1

∣∣∣∣2

= (2π)2nvk−4. (8D.3)

(ii) In 3D, let us consider a weakly curved vortex line with charge ±1. We take the origin
of the reference frame at a point on the line and the z axis along the tangential unit vector
t. Close to the line but outside the core, ψ depends on r⊥ = (x, y, 0) as in (8D.1) and is
nearly independent of z. Thus,

G(r) = 1

V
nv

∑
j

∫
dr1

∫
dr2

r⊥1 · r⊥2

r⊥1r⊥2
δ(3)(r1 − r2 − r) (8D.4)

The nv is the line length density of vortices. The Fourier transformation gives

Î (k) = nv

∫
dz1(2π)

2k−4
⊥ exp[i t · k(z1 − z2)]

= nv(2π)
3k−5〈δ(t · k̂)〉. (8D.5)
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In the first line, k⊥ = k− (k · t)t is the perpendicular part and becomes equal to k due to the
δ-function. In the second line, k̂ = k−1k is the direction of the wave vector, and the average
is over the direction of t. If the distribution of t is isotropic, we have 〈δ(t · k̂)〉 = 1/2 to
obtain (8.1.75).

Appendix 8E Differential geometry

We consider the differential geometry of a smooth surface determined by u(r) = 0. It is suf-
ficient to examine the geometry in the neighborhood of a reference point r0 = (x0, y0, z0)

on the surface, where u(r) is expanded as

u(r) =
∑

i

(xi − xi0)∇i u + 1

2

∑
i j

(xi − xi0)(x j − x j0)∇i∇ j u + · · · , (8E.1)

where ∇i = ∂/∂xi and the derivatives are those at r0. The normal unit vector n of the
surface is generally written as

n = |∇u|−1∇u. (8E.2)

The normal at the point r0 will be written as n0 and the z axis will be taken along it, so
n0 = (0, 0, 1). Appropriately choosing the x and y axes at r0, we may express the distances
of r = (x, y, z) to the surface as

s ≡ u(r)/|∇u| = z − z0 + 1

2R1
(x − x0)

2 + 1

2R2
(y − y0)

2 + · · · , (8E.3)

where R1 and R2 are the principal curvatures at r0. The surface u = 0 is thus expressed as

z − z0 + 1

2R1
(x − x0)

2 + 1

2R2
(y − y0)

2 + · · · = 0. (8E.4)

From (8E.2) the normal unit vector is written as

n ∼=
(

1

R1
(x − x0),

1

R2
(y − y0), 1

)
. (8E.5)

For arbitrary r = (x, y, z) in the neighborhood of r0 we may check the relation,

s = (r − ra) · n = (r − ra) · n0 = (r − r0) · n, (8E.6)

where

ra = (x, y, z0 − (x − x0)
2/2R1 − (y − y0)

2/2R2) (8E.7)

is the closest point on the surface u = 0 to r. From (8E.5) the curvature relation follows as

K = ∇ · n = 1

R1
+ 1

R2
. (8E.8)

The above relations together with ∂z0/∂t = −v yield (8.2.20).
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Appendix 8F Calculation in the Langer–Bar-on–Miller theory

We briefly explain the calculation scheme of the LBM theory [38]. The wave number κ in
(8.3.16) and the upper cut-off wave number � in our notation correspond to kc and kmax in
LBM, respectively. In addition, rc = 0 in LBM. We divide the space into cubic cells with a
lattice constant a of the order of the correlation length ξ . Following LBM we relate a to �

as (4π/3)�3 = (2π/a)3 or a3 = 6π2/�3. The Langevin equation (8.3.2) is rewritten as

∂

∂t
ψi = −L

∑
j,"

�i j
[
(� j" + rδ j")ψ" + δ j"u0ψ

3
"

] + θi , (8F.1)

where the matrix �i j is the lattice representation of −∇2. For example, in the nearest
neighbor approximation we have �i i = 6a−2 and �i j = −a−2 for nearest neighbor pairs
i and j . The noise term satisfies

〈θi (t)θ j (t
′)〉 = 2La−3�i jδ(t − t ′). (8F.2)

We require the ansatz (8.3.21) on the lattice. Then gi j (t) = 〈δψi (t)δψ j (t)〉 obeys

∂

∂t
gi j = −L

∑
"

[L̂i"g"j + L j"g"i ] + 2La−3�i j , (8F.3)

where

Li j =
∑
"

�i"[�"j − A(t)δ"j ], (8F.4)

with A(t) being defined by (8.3.22).
The equation for ρ1 may be constructed from the Fokker–Planck equation for the

microscopic distribution P({ψ}, . . . , t) for all the lattice points. It is written in the form,

∂

∂t
ρ1(ψ, t) = L

∂

∂ψ

[
G(ψ)+�a−3 ∂

∂ψ

]
ρ1, (8F.5)

where � = �i i , and

G(ψ) = W (t)
δψ

〈δψ2〉 +�u0

[
ψ3 − 〈ψ3〉 − 〈ψ3δψ〉 δψ

〈δψ2〉
]
, (8F.6)

with

W (t) =
∑

j

Li j g ji =
∑
"j

�i"[�"j − δ"j A(t)]g ji . (8F.7)

From (8F.3) the variance s(t) = 〈(δψ)2〉 at a point obeys

∂

∂t
s(t) = 2L

[−W (t)+ a−3�
]
. (8F.8)

In the continuum limit we have

W (t) = (2π2)−1
∫ �

0
dkk4[

k2 − κ2 A(t)
]
I (k, t). (8F.9)
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Because (8F.8) should be consistent with (8.3.23), we require (2π)−3
∫ �

0 dkk2 = �/a3 or
� = 3�2/5. Finally, we need to give the relation between � and κ . It is natural to assume

� = ακ or a = [(6π2)1/3/α]κ−1, (8F.10)

where α is a parameter of order 1. LBM set α = 1 in their numerical calculation. Now
(8.3.23) and (8F.5) constitute closed dynamic equations.

Appendix 8G The Stefan problem for a sphere and a circle

We solve the Stefan problem for a growing sphere in 3D and circle in 2D to clarify the
condition under which the quasi-static approximation is valid. First, let us consider an
isolated sphere in 3D whose radius at t = 0 is slightly larger than Rc. We assume no other
droplets within the distance of the diffusion length "D(t) = (Dt)1/2 in the following. Then
the initial growth rate is of order τ−1

c = D∆/R2
c ∼ D∆3/d2

0 . For t � τc we may thus
solve the diffusion equation (8.4.6) at fixed R in the form,

&(r, t) = 2ψeq∆+
[
(&a − 2∆ψeq)

R

r

][
1√
π

∫ ∞

Z
ds exp

(
−1

4
s2

)]
, (8G.1)

where &a is the boundary value given by (8.4.12) and Z ≡ (r − R)/
√

Dt . For r − R �
"D(t) the last factor in (8G.1) may be set equal to 1, leading to the quasi-static solution
(8.4.27). Second, in the time region t � τc, R much exceeds Rc and the surface tension
effect at the boundary condition becomes unimportant. Then we may set &(R, t) = 0 at
the interface. Expecting the growth R(t) ∝ (Dt)1/2, we set

R(t) = (2pDt)1/2, &(r, t) = 2ψeq∆G(r/R(t)), (8G.2)

where p is a dimensionless number to be determined below. The scaling function G(s) in
the second line satisfies

−ps
d

ds
G(s) =

(
d

ds
+ 2

s

)
d

ds
G(s), (8G.3)

which is solved to give

G(s) = C−1
∫ s

1
ds1s−2

1 exp

(
− p

2
s2

1

)
, (8G.4)

with

C =
∫ ∞

1
ds1s−2

1 exp

(
− p

2
s2

1

)
. (8G.5)

The conservation law (8.4.15) gives

p = ∆C−1 exp

(
− p

2

)
, (8G.6)
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which determines p as a function of ∆. For ∆ � 1 we have

p = ∆

[
1 +

(
1

2
π∆

)1/2

+ · · ·
]
. (8G.7)

If ∆ � 1, we have p � 1, C ∼= 1, and G(s) ∼= 1 − 1/s in the region s � p−1/2 so that
&(r, t) in (8G.2) approaches (8.4.27) for p1/2r/R(t) � 1 or r � ∆−1/2 R(t) ∼ "D(t).
Thus the quasi-static condition is applicable in the region |r − R| � "D(t) under ∆ � 1.

In 2D, R/r in (8.4.27) should be replaced by A ln(r/R) + 1 around a circular droplet
under the quasi-static condition (8.4.26). To determine the coefficient A, we consider the
case R � Rc only, neglecting the surface tension effect and assuming the scaling solution
(8G.2). The 2D scaling function G(s) is obtained if s−2

1 in (8G.4) and (8G.5) is replaced
by s−1

1 . The equation (8G.6) holds also in 2D. For ∆ � 1 we find

p ∼= 2∆/ ln p−1 ∼= 2∆/ ln�−1. (8G.8)

In the range 1 < r/R � p−1/2 we thus obtain & ∼= 2ψeq∆A ln(r/R) with

A = 2/ ln p−1 ∼= 2/ ln∆−1. (8G.9)

Appendix 8H The velocity and pressure close to the interface

Let a 3D incompressible fluid in a two-phase state be acted on by a force localized on a
surface {ra}. In the Stokes approximation the velocity field vvv is determined by

η∇2vvv − ∇ p + Xa δ̂(r) = 0, ∇ · vvv = 0, (8H.1)

where δ̂(r) is the surface δ-function defined by (8.2.53) and the source Xa is assumed
to be smooth on the surface. We also assume that the viscosity η is homogeneous as in
near-critical fluids. Then vvv is expressed in terms of the Oseen tensor as

vvv(r) =
∫

da′ →←
T (r − ra′) · Xa′ . (8H.2)

Let ra be the closest point on the surface from r in the neighborhood of the surface. Then,
we may take the local reference frame as r − ra = ζna and ρρρ = ra′ − ra . The ζ is
the coordinate along the normal na , while ρρρ is perpendicular to na . Then da′ = dρρρ and
|r−ra′ | = (ρ2+ζ 2)1/2. Using

∫ ∞
0 dρ[1−ρ/(ρ2+ζ 2)1/2] = ∫ ∞

0 dρρζ 2/(ρ2+ζ 2)3/2 = |ζ |,
we may perform the surface integration (that over ρρρ) as

vvv(r) = vvv(ra)− |ζ |
η

[
Xa − (Xa · na)na

] + O(ζ 2). (8H.3)

In (8.5.8), Xa = −σKana is parallel to the normal and the second term of (8H.3) vanishes,
so that vvv(r) − vvv(ra) becomes of order ζ 2. This implies continuity of the velocity gradient
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tensor across the interface.11 Next we consider the pressure p, which may be expressed as

p(r) = 1

4π

∫
da′ 1

|r − ra′ |3
(r − ra′) · Xa′ . (8H.4)

This quantity is generally discontinuous across the interface. As ζ → 0, the integration
over ρρρ gives

p(r) = ζ

2|ζ |na · Xa . (8H.5)

In the case Xa = −σKana , the above relation yields the Laplace law (8.5.10).

Appendix 8I Calculation of vortex motion

Because the calculation of vortex motion is very complicated in helium, we here present it
in 2D for the simple relaxation model (8.1.66) by setting |r | = κ = u0 = 1 and θ j = 0.
Close to a vortex center Ri = (Xi , Yi ), ψ may be approximated as

ψ = ψv(x − Xi , y − Yi ) exp[iq · (r − Ri )] + δψ, (8I.1)

where ψv(x, y) is the fundamental vortex solution (4.5.1). The phase modulation near the
vortex core is written as

θv =
∑
j �=i

" j tan−1[(y − Y j )/(x − X j )]. (8I.2)

The wave vector q in (8I.1) represents the gradient of θv at r = Ri due to the other vortices
far away from Ri , where " j is the charge of the vortex at R j . Then,

qx = −
∑
j �=i

" j

R2
i j

(Yi − Y j ), qy =
∑
j �=i

" j

R2
i j

(Xi − X j ), (8I.3)

where Ri j = |Ri − R j | is the distance between the pair i and j . The deviation δψ is the
deformation of ψ from ψv to be determined below.

The vortex center moves with a velocity vvvL = (vLx , vLy) for nonvanishing q. Hereafter
we take the origin of the reference frame at Ri . As in the one-component case, we set
∂ψ/∂t = −vvvL · ∇ψv and neglect the term of order q2 to obtain

a · ∇ψv = [−1 − ∇2 + 2|ψv|2]δψ + ψ2
v δψ

∗ (8I.4)

where the vector a = (ax , ay) is defined by

ax = 1

L
vLx + 2iqx , ay = 1

L
vLy + 2iqy . (8I.5)

If "i = 1, the left-hand side of (8I.4) consists of two terms,

a · ∇ψv = a−B0(r)e
2iϕ + a+C0(r), (8I.6)

11 There are situations in which surfactant molecules are absorbed on a fluid interface. If they are heterogeneously distributed on
it, the areal force density Xa has a lateral component and the viscous shear stress becomes discontinuous across the surface.
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where ϕ = tan−1(y/x) and

a+ = 1

2
(ax + iay), a− = 1

2
(ax − iay). (8I.7)

In terms of the amplitude A0(r) of ψv determined by (4.5.4), the two functions B0(r) and
C0(r) in (8I.6) are expressed as

B0(r) = e−2iϕ
(

∂

∂x
+ i

∂

∂y

)
ψv = A′

0 −
1

r
A0, (8I.8)

C0(r) =
(

∂

∂x
− i

∂

∂y

)
ψv = A′

0 +
1

r
A0, (8I.9)

where A′
0 = d A0/dr . With the form (8I.6) we notice that δψ may also be expressed as

δψ = δB(r)e2iϕ + δC(r)∗, (8I.10)

where δB and δC depend on r only. Substitution of the above form into (8I.4) yields

a−B0 = L̂2δB + A2
0δC, (8I.11)

a∗
+C0 = L̂0δC + A2

0δB, (8I.12)

where L̂n (n = 0, 2) are the following operators,

L̂n = − d2

dr2
− 1

r

d

dr
+ n2

r2
− 1 + 2A2

0. (8I.13)

It is convenient to define the inner product of two functions F(r) and G(r), which decay
sufficiently rapidly at large r , by

(F,G) =
∫ ∞

0
drr F(r)G(r). (8I.14)

Then L̂n are self-adjoint (or (F, L̂nG) = (L̂n F,G)). The right-hand sides of (8I.11) and
(8I.12) vanish for δB = B0 and δC = C0; in fact, operating ∇ to (4.5.2) we have L̂2 B0 +
A2

0C0 = L̂0C0 + A2
0 B0 = 0. Thus the solvability condition of (8I.11) and (8I.12) reads

a−(B0, B0)+ a∗
+(C0,C0) = 0, (8I.15)

under which δB and δC are well defined. However, B0 and C0 decay as r−1 at large r , so
we define

E0 =
∫ Rmax

0
dr

[
1

r
A2

0 + r(A′
0)

2
]
∼= ln(Rmax/ξ), (8I.16)

where Rmax is the upper cut-off length. Then we find (B0, B0) = E0 − 1 and (C0,C0) =
E0+1, because (C0,C0)−(B0, B0) = 2. After some calculations (8I.15) may be rewritten
as

vx + ivy = 2|L|2
E0L1 − i L2

(qy − iqx ), (8I.17)

which leads to (8.10.4).
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9

Nucleation

In metastable states the free energy is at a local minimum but not at the true minimum.
Such states are stable for infinitesimal fluctuations. However, rare spatially localized fluc-
tuations, called critical nuclei, can continue to grow, eventually leading to macroscopic
phase separation and ordering [1]–[9]. We will discuss how critical nuclei emerge and
how they grow. Then we will treat one-component fluids near the gas–liquid critical point,
where bubble boiling or liquid condensation can also take place in the thermal diffusion
layer as well as nucleation in the bulk region. We will also examine quantum nucleation
at very low temperatures, viscoelastic nucleation in polymers, and vortex nucleation in
superfluid helium.

9.1 Droplet evolution equation

9.1.1 Spherical droplets

We consider a spherical droplet emerging in a metastable state. As discussed in Chapter 8,
the droplet free energy consists of the surface and bulk parts,

H(R) = Sd

(
σ Rd−1 − 1

d
µeff Rd

)
,

= Hc − d − 1

2
Sdσ Rd−3

c (δR)2 + · · · , (9.1.1)

where S3 = 4π and S2 = 2π , and µeff is the free-energy difference per unit volume
between the metastable and stable phases. The second line is the expansion around the
critical radius, Rc = (d − 1)σ/µeff Rc, with respect to δR = R − Rc. As shown in Fig. 9.1,
H(R) takes a maximum at R = Rc given by

Hc = H(Rc) = Sd

d
σ Rd−1

c ∼ T (Rc/ξ)
d−1. (9.1.2)

We assume Hc � T or equivalently Rc � ξ . We shall see that the nucleation rate I is
proportional to the small factor exp(−Hc/T ).

Field reversal in the nonconserved case

If the scalar order parameter ψ is nonconserved, a simple nucleation experiment is a
reversal of magnetic field in ferromagnetic systems or electric field in ferroelectric systems.
That is, we prepare a homogeneous state with ψ ∼= −ψeq and apply a small positive

488
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Fig. 9.1. The free energy needed to create
a spherical droplet with radius R in 3D. It
takes a maximum Hc at R = Rc.

Fig. 9.2. Phase diagram of a system with a scalar conserved order parameter. The system is quenched
at the average order parameter M slightly inside the coexistence curve T = Tcx. At the final temper-
ature T , the two equilibrium phases have the average order parameters ±ψeq. The supersaturation is
defined by ∆ = (M + ψeq)/2ψeq.

magnetic field h at t = 0. Then, as in (8.2.15), ψ instantaneously adjusts to h as
ψ ∼= −ψeq + (2κ2)−1h. The magnetic field is very small and satisfies (8.2.16). This initial
state has a higher free energy than the true stable state with ψ ∼= ψeq + (2κ2)−1h. The
free-energy difference per unit volume is

µeff = 2Tψeqh, (9.1.3)

which was already used in (8.2.31). With the appearance of droplets a domain switching
process slowly proceeds.

Quench experiments in the conserved case

In the conserved case (particularly in near-critical binary fluid mixtures), a metastable
state is realized if the temperature difference δT = Tcx − T is lowered slightly below
the coexistence curve with a fixed average order parameter M , as illustrated in Fig. 9.2.
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If T is held fixed near the critical point, we have ψ = ±ψeq = ±Acx(Tc − T )β ,
respectively, in the two final macroscopic phases. The average order parameter M is
the equilibrium value on the coexistence curve if T = Tcx or δT = 0. Thus, M =
−Acx(�Tcx)

β with �Tcx = Tc − Tcx. The (initial) supersaturation ∆ in (8.4.4) is of the
form,

∆ = M + ψeq

2ψeq
= 1

2
− 1

2

(
�Tcx

�Tcx + δT

)β

∼= β

2
δT /�Tcx. (9.1.4)

The second line holds for shallow quenches, δT/�Tcx � 1. If the ψ4 free-energy density
is assumed, the free-energy difference in (9.1.3) is given by

µeff = 8Tψ2
eqκ

2∆ = σ

d0
∆, (9.1.5)

where d0 is defined by (8.4.13). The critical radius is Rc = (d − 1)d0/∆ as given by
(8.4.30).

In 3D quench experiments, an assembly of spherical droplets with radii {R j } ( j =
1, 2, . . .) appear in a metastable matrix after a transient time. We then express the total
free energy H in (8.4.42) as

H = 4πσ
∑

j

R2
j +

σ

2d0
V∆2, (9.1.6)

with

∆ = φ − 1

V

∑
j

4π

3
R3

j , (9.1.7)

where V is the total volume of the system, and φ is defined by (8.3.1). If we select
a particular droplet (say, j = 1), the terms related to this droplet in H become writ-
ten as H(R1) + (4πR3

1/3)2/V ∼= H(R1), leading to the droplet free energy H(R) in
(9.1.1).

Free energy of a single droplet in a finite system

While a critical droplet is unstable against its volume change, we observe a large liquid,
gas, or crystal domain formed in a finite system as an equilibrium state in the final stage of
phase separation. Indeed, in gravity-free space experiments and simulations, the final gas
or liquid droplet assumes a spherical shape. Obviously, the mass conservation law brings
about such a final state. To show its stability, let us consider a single spherical domain
with radius R in the 3D conserved case. From (9.1.6) and (9.1.7) we obtain the free-energy
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Fig. 9.3. The free energy H(R) needed, in units of 8πσ R2
c , to create a single spherical droplet in a

conserved finite system. The maximum size RM(∝ (φV )1/3) is chosen to be four times larger than
Rc. Then the maximum and minimum are attained at R/Rc = 1.02 and 3.59, respectively.

change in a finite system with volume V ,

H(R) = 4πσ R2 + σ

2d0
V

(
φ − 4π

3V
R3

)2

− σ

2d0
Vφ2

= 8πσ R2
c

[
x2

2
− x3

3
+ 1

6

(
Rc

RM

)3

x6
]
, (9.1.8)

where x = R/Rc. The radius R cannot exceed RM determined by φV = (4π/3)R3
M. We

assume that RM = (3Vφ/4π)1/3 is much larger than Rc = 2d0/φ. We notice that H(R)
has a maximum at R/Rc = 1 + (Rc/RM)3 + · · · and a minimum at R/Rc = RM/Rc −
1/3 + · · ·, as plotted in Fig. 9.3. The maximum corresponds to the critical droplet and the
minimum to the final equilibrium droplet. Hereafter we will treat droplets with sizes much
smaller than RM and neglect the system size effect.

9.1.2 Droplets for general cases with conservation

The expressions for d0 and µeff can be derived for more general cases. We consider a
3D system with a general free-energy density f (ψ) for a scalar conserved variable ψ .
The temperature T is changed from a disordered region above the coexistence curve to a
metastable region slightly below it. The equilibrium values of ψ at the final temperature
T are written as ψ

(1)
cx and ψ

(2)
cx . The initial average order parameter M = 〈ψ〉 is slightly
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different from ψ
(2)
cx and the supersaturation is defined by

∆ = (M − ψ(2)
cx )/�ψ, (9.1.9)

where �ψ = ψ
(1)
cx − ψ

(2)
cx . We calculate the free-energy increase when a spherical droplet

with radius R is created in the metastable matrix and ψ = ψ(r) changes slowly over the
region r < "D = (Dt)1/2. No other droplets are present within the distance of "D . The
bulk part is written as

1

T
�H =

∫ >

dr
[

f (ψ(r))− f (M)
] + 4π

3
R3[

f (ψin)− f (M)
]
, (9.1.10)

where the first term is the contribution outside the droplet (r − R � ξ ) and the second
term is that inside it (R − r � ξ ). The contribution in the interface region (|r − R| � ξ )
gives rise to the surface energy. From (8.4.23) the order parameter value inside the droplet
is given by

ψin = ψ(1)
cx + (χ1σ/T�ψ)

2

R
∼= ψ(1)

cx , (9.1.11)

where χ1 = 1/ f ′′(ψ(1)
cx ) is the susceptibility of the phase 1. To evaluate the first term of

(9.1.9) we use the conservation of ψ ,∫ >

dr
[
ψ(r)− M

] + 4π

3
R3[

ψin − M
] = 0, (9.1.12)

and the expansion f (ψ)− f (M) = f ′(M)(ψ − M)+ 1
2χ

−1
2 (ψ − M)2 + · · · outside the

droplet, where χ2 = 1/ f ′′(ψ(2)
cx ) is the susceptibility in the phase 2. Then,

1

T
�H ∼= 1

2
χ−1

2

∫ >

dr
[
ψ(r)− M

]2 + 4π

3
R3[

f (ψin)− f (M)− f ′(M)(ψin − M)
]
.

(9.1.13)
In the second term we use

f (ψ) = fcx + µcxψ + 1

2
χ−1
α (ψ − ψ(α)

cx )2 + · · · , (9.1.14)

where fcx = f (ψ(α)
cx )− µcxψ

(α)
cx and µcx = f ′(ψ(α)

cx ) are common in the two equilibrium
phases (α = 1, 2). This gives f (ψin) − f (M) ∼= µcx(ψin − M) for ψin ∼= ψ

(1)
cx and

M ∼= ψ
(2)
cx . Neglecting the first term we thus obtain

1

T
�H ∼= 4π

3
R3[µcx − f ′(M)](ψin − M)

∼= −4π

3
R3χ−1

2 (�ψ)2∆. (9.1.15)

Here we need to show that the first term in (9.1.13) is really negligible. To this end
we use (8.4.27) with 2ψeq being replaced by �ψ . Then the first term is estimated as
2π"Dχ

−1
2 (�ψ)2(R∆ − 2d0)

2, where "D plays the role of the large-distance cut-off. The
ratio of the first to second term in (9.1.13) is very small for R ∼ Rc, while it is of order
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"D∆/R ∼ ∆1/2 for R � Rc with R ∼ (∆Dt)1/2 being substituted. Then, the free-energy
difference and the capillary length are written as

µeff = Tχ−1
2 (�ψ)2∆ = σ

d0
∆, (9.1.16)

d0 = χ2σ/T (�ψ)2. (9.1.17)

If we set �ψ = 2ψeq and χ2 = 1/2κ2, we reproduce (9.1.5) and (8.4.13).

Coupled systems

For model C near the tricritical point, we have already derived the interface dynamic
equations (8.4.75)–(8.4.79), in which a nonconserved order parameter ψ and a conserved
variable m take different values in the two phases, α = 1, 2. The system is in a metastable
state for a small ordering field h in (8.4.65) and supersaturation ∆ in (8.4.77) with

µeff = σ

d02
∆+ T (�ψ)h. (9.1.18)

The droplet growth is slowed down by the diffusion of m in a surrounding metastable
region. Nucleation in 3He–4He mixtures near the tricritical point is also governed by slow
diffusion of the concentration with µeff being the first term in (9.1.18) as in usual fluid
binary mixtures [10].

Precipitates of an ordered phase in alloys

In binary alloys treated in Section 3.3, the concentration c and the long-range order
parameter η are coupled in the free-energy density v−1

0 fsite(c, η), where v0 is the volume of
a unit cell and fsite is given by (3.3.12) or (3.3.28). In metallurgy, much attention has been
paid to the growth of precipitates with the L10 or L12 structure in a disordered, metastable
bcc or fcc matrix. In this case η is determined as a function of c because c changes slowly
in time. Thus c should be identified with ψ in the relation f (ψ) = v−1

0 fsite(c, η(c)). Here

c ∼= ψ
(1)
cx and η �= 0 inside the droplet, while f (ψ) = f (c, 0) with c = M and η = 0

far from the droplet. The concentrations on the coexistence curve (which are written as ce1

and ce2 in Section 3.3) are here written as ψ
(1)
cx and ψ

(2)
cx . The supersaturation ∆ is then

defined by (9.1.9). From (9.1.16) we have

µeff = [ f ′(M, 0)− µcx](ψ(1)
cx − M)

∼= χ−1
2 (�ψ)2∆, (9.1.19)

where µcx = f ′(ψ(1)
cx , η(ψ

(1)
cx )) = f ′(ψ(2)

cx , 0) and χ−1
2 = f ′′(ψ(2)

cx , 0). The second line
holds for ∆ � 1 and is of the same form as (9.1.16). The capillary length d0 is given by
(9.1.17). For example, let us consider an L12 domain in Al–Li at low temperatures where
T � w1 ∼ −w0(∼ 2000 K), ce1 ∼= 0, and ce2 ∼= 1/4 from (3.3.36). In terms of the
average concentration M in the Al-rich matrix, we then have �ψ ∼= 1/4, ∆ ∼= 4M , and
χ−1

2
∼= (T M−1 + |w0|)/v0, so that µeff = (T + M |w0|)/4v0 for M � ce1.
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9.1.3 Droplet size distribution

In Chapter 8 we have set up the Langevin equation for a spherical droplet, which can
be used when the droplet radius is much longer than ξ . Both in the nonconserved and
conserved cases, it is of the standard form,

∂

∂t
R = −L(R)βH′(R)+ θ(R, t)

= v(R)+ θ(R, t), (9.1.20)

where H′(R) = ∂H(R)/∂R and

v(R) = −L(R)βH′(R) (9.1.21)

is the rate of change of the radius. The noise term satisfies the fluctuation–dissipation
relation (8.2.45) with the kinetic coefficient L(R) being defined by (8.2.46) or (8.4.63).
The v(R) vanishes at R = Rc and is of the form,

v(R) = L

(
2Tψeq

σ
h − d − 1

R

)
(nonconserved),

= D

R

(
�− 2d0

R

)
(3D conserved). (9.1.22)

We then set up the Fokker–Planck equation for the droplet distribution n(R, t) as

∂

∂t
n = ∂

∂R
L(R)

[
∂

∂R
+ βH′(R))

]
n = ∂

∂R
L(R)n0

∂

∂R

(
n

n0

)
. (9.1.23)

We interpret n(R, t)d R as the droplet number in the size interval [R, R + d R] per unit
volume at time t . We can see that

n0(R) = nξ exp[−βH(R)] (9.1.24)

is a steady solution of the above Fokker–Planck equation, but it grows unphysically for R >

Rc if µeff > 0. However, on the coexistence curve (µeff = 0), n0(R) has a well-defined
physical meaning as the equilibrium distribution of rarely appearing droplets, where n0(R)
is written as

ncx(R) = nξ exp
(−Sdσ Rd−1/T

)
. (9.1.25)

In the asymptotic critical region, (4.4.11) gives Sdσ Rd−1/T = Sd Aσ (R/ξ)d−1 with Aσ

being about 0.09 in 3D. The scaling near the critical point suggests that the prefactor nξ is
of the following order,

nξ ∼ ξ−(d+1). (9.1.26)

The number density ncx(R) rapidly decreases with increasing R and becomes extremely
small for R several times longer than ξ . Obviously, in the nucleation problem with µeff >

0 we must examine nonstationary solutions of (9.1.23) because droplets larger than Rc

continue to grow. In addition, we note that the thermal noise term θ(R, t) in (9.1.20) should
not be affected by a weak degree of metastability. This guarantees that the distribution of
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droplets of small size (R � Rc) remains almost the same as ncx(R) on the coexistence
curve. Thus, in solving (9.1.23), we impose the following boundary condition,

n(R, t) ∼= n0(R) ∼= ncx(R) for ξ < R � Rc, (9.1.27)

which holds at any t (> 0) after quenching.

The droplet free-energy density and irreversibility

In the conserved case, the Langevin equation (9.1.23) is supplemented with the mean-field
equation for the supersaturation,

∆(t) = φ −
∫

d R
4π

3
R3n(R, t), (9.1.28)

where 3D is assumed. From (9.1.6) the droplet free-energy density fD can be written in
terms of n and ∆ as

fD(t) = H/V = 4πσ
∫

d R R2n(R, t)+ σ

2d0
∆(t)2. (9.1.29)

Because ∆ depends on n, (9.1.23) becomes nonlinear with respect to n. We need to show
that (9.1.23) and (9.1.28) constitute a closed set of irreversible evolution equations. The
entropy of the droplet system may be defined by

S(t) = −
∫

d Rn ln(n/nξ )− 1

T
fD(t). (9.1.30)

Use of (9.1.23) yields a nonnegative-definite entropy production,

d

dt
S(t) =

∫
d RL(R)

[
∂

∂R
ln n + βH′(R)

]2

n ≥ 0. (9.1.31)

9.1.4 Classical theory of nucleation kinetics

The kinetics of nucleation was originally formulated in a metastable fluid where the liquid
and vapor number densities, nliq and ngas, are distinctly different [11]. In this classical
theory, n(", t) is the number density of liquid clusters containing " molecules. The cluster
size changes with evaporation and condensation of molecules between the cluster and the
surrounding gas phase. In terms of the frequencies of these two elementary processes, a(")
and b("), the rate of change of the cluster size from "− 1 to " is expressed as

J (") = a("− 1)n("− 1, t)− b(")n(", t). (9.1.32)

The rate equation for n(", t) is written as

∂

∂t
n" = J (")− J ("+ 1). (9.1.33)

Here we assume the detailed balance of the two processes,

a("− 1)n0("− 1) = b(")n0("), (9.1.34)
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where n0(") is the steady distribution determined by the Boltzmann weight,

n0(") = n1 exp [−βε(")] . (9.1.35)

Analogous to H(R) in (9.1.1), ε(") is the free energy needed to produce a cluster with size
", consisting of the surface and bulk terms,

ε(") = α0("− 1)2/3 − δµ("− 1). (9.1.36)

The coefficient α0 is proportional to the surface tension, and δµ = µgas − µliq is the
chemical potential difference (per particle) between the two phases. Considering only large
droplets (" � 1), we can take the continuum limit to obtain

∂

∂t
n(", t) = ∂

∂"
a(")

[
∂

∂"
+ ∂(βε("))

∂"

]
n(", t). (9.1.37)

This has the same mathematical structure as (9.1.23). The kinetic coefficient a(") is
proportional to the surface area 4πR2 for large " where 4πR3nliq/3 = ". Thus a(") is
of order R2ngasvth ∝ "2/3 where vth = (T/m0)

1/2 is the thermal velocity.

9.1.5 The Binder and Stauffer cluster dynamics

In Chapter 8 we presented the Smoluchowski equation (8.5.30) which describes coales-
cence of droplets due to their diffusive motions. Binder and Stauffer [6] combined the
Fokker–Planck and Smoluchowski equations as

∂

∂t
n(", t) = ∂

∂"
a(")

[
∂

∂"
+ ∂(βε("))

∂"

]
n(", t)

+ 1

2

∫ "−"c

"c

d"′K ("− "′, "′)n("′, t)n("− "′, t)

− n(", t)
∫ ∞

"c

d"′K (", "′)n("′, t). (9.1.38)

The first term accounts for the effect of absorption and desorption of small clusters with
sizes smaller than a cut-off "c. The last two terms represent the effect of coagulation of
clusters with sizes " and "′ larger than "c. Particularly near the critical point, if we consider
only droplets with sizes longer than ξ , we should set "c ∼ aξ1/D , where a is a molecular
size and D is the fractal dimension introduced in Chapter 2. In this case we are treating
compact droplets below Tc (rather than fractal clusters) in (9.1.38). In fluids, the diffusive
coagulation is described by the last two terms in (9.1.38) with K (", "′) being given by
(8.5.26), while the birth process and initial-stage growth are described by the first term.
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9.1.6 Cluster models

Cluster theory of condensation

In a gas phase near the coexistence curve not close to the critical point, we may consider
compact aggregates of " molecules and call them clusters. Condensation into liquid should
start with the growth of such clusters [12]. If the excluded volume interaction among the
clusters is neglected, the total pressure of the system is a superposition of partial pressures
from " clusters,

p = T
∞∑
"=1

n0("), (9.1.39)

where n0(") is the equilibrium number density of " clusters. The total particle number
density is expressed as

n =
∞∑
"=1

"n0("). (9.1.40)

From the variance relation (1.2.19) or (1.2.48) the isothermal compressibility is of the
form,

KT = (T n2)−1
∞∑
"=1

"2n0("). (9.1.41)

With formation of clusters at fixed n, we can see that p decreases and KT increases, as
ought to be the case. The simplest choice of n0(") is given by (9.1.35), which yields [12, 13]

p = n1T
∫ ∞

0
d" exp

(−βα0"
2/3 + βδµ"

)
, (9.1.42)

where δµ = µgas −µliq and the summation
∑

" is replaced by the integral
∫

d". We regard
p as a function of the gas chemical potential µ = µgas and the temperature T . Note that
the liquid chemical potential µliq is the value on the coexistence curve and is a function of
T . We then differentiate p with respect to µ at fixed T to obtain (9.1.40) and (9.1.41) with
the aid of (1.2.14) and (1.2.18).

Essential singularity

The right-hand side of (9.1.42) is an analytic function of h ≡ βδµ defined in the region
Re h ≤ 0 at fixed T . However, in the region Re h > 0, the integral becomes divergent
at large " (or for large clusters), while all the derivatives dk p/dhk (k = 1, 2, . . .) remain
finite as h → 0 with Re h < 0. This implies that the thermodynamic potential p/T as
a function of ν = βµ has an essential singularity on the coexistence curve [12]–[16].
However, experimental observation of this singularity from above the coexistence curve is
very difficult because there is no divergence of the thermodynamic derivatives. The above
arguments can also be applied to Ising systems after magnetic field reversal, because of the
correspondence between the two systems: p ←→ − f and βδµ ←→ h.
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The Fisher model

By calculating the cluster contribution to the grand canonical partition function, Fisher
proposed a more detailed form for the equilibrium cluster distribution near the coexistence
curve (T < Tc) [13],

n0(") = n1"
−(2+1/δ) exp

[−b0(1 − T/Tc)"
1/βδ + h"

]
, (9.1.43)

where b0 is a positive constant and βδµ in fluids is written as h in order to apply the above
expression also to Ising spin systems. Near the critical point, this form is more accurate
than the classical one (9.1.24) for small clusters whose linear dimensions are shorter than
ξ or

L" ≡ a"1/D < ξ. (9.1.44)

Such clusters are important near the critical point and are characterized by the fractal
dimension D, as discussed in Section 2.1. The algebraic power factor (∝ "−(2+1/δ)) is
important close to the critical point where the region (9.1.44) of " is well defined. It
should be noted that the surface free-energy term in the exponent is assumed to be linear
in 1− T/Tc. This is a natural assumption; in fact, the clusters shorter than ξ are influenced
by those with lengths shorter than or comparable to L" as the renormalization group theory
indicates. Hence n0(") should remain analytic with respect to 1−T/Tc as long as L" � ξ .
For L" > ξ , however, n0(") assumes the form (9.1.35) depending on fractional powers of
1 − T/Tc. With the form (9.1.43) the critical divergence of the isothermal compressibility
(or the magnetic susceptibility) can be correctly reproduced. At h = 0 we have

KT ∼
∫ "∗

1
d""−1/δ ∼ ξ D(1−1/δ) ∼ ξγ/ν, (9.1.45)

where the upper cut-off is "∗ = (1 − T/Tc)
−βδ = (ξ/a)D and use has been made of the

exponent relations (2.1.7) and (2.1.28).
The Fisher cluster distribution (9.1.43) has been compared with computer simulation

data of Ising systems [17]–[21], where the majority of spins are aligned in one direction
(up or down) close to the coexistence curve. In the simplest definition, groups of reversed
spins linked together by nearest-neighbor bonds may be called clusters. However, with
this definition in 3D, infinite clusters percolate throughout the lattice near the critical point
even in one-phase states [19]. More elaborate definitions of clusters were subsequently
devised. It is known that the calculated density n0(") is well characterized by the power-law
factor (∝ "−(2+1/δ)) and the surface term (∝ (1 − T/Tc)"

1/βδ) in the exponent, which are
predicted by the Fisher model (9.1.43).

Binder argued that, if clusters are defined appropriately on the lattice in Ising systems,
n0(") should generally satisfy [20],

n0(") = n1"
−(2+1/δ)N (L"/ξ, h"), (9.1.46)

in terms of a scaling function N (x, y) near the critical point. Because (1 − T/Tc)"
1/βδ ∼

(L"/ξ)
1/ν from (2.1.28), the Fisher form (9.1.43) is a special case of (9.1.46). Furthermore,
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for L" > ξ the clusters become compact domains or droplets with radius R ∼ L" > ξ , as
discussed in Section 2.1. Then the classical droplet distribution n0(R) in (9.1.24), which is
analytic in R but non-analytic in 1 − T/Tc, becomes consistent with (9.1.46). To check it
we note the relations,

n1"
−(2+1/δ) ∼ n1"

−1ξ−d , (9.1.47)

h" ∼ h(1 − T/Tc)
β"d/D ∼ hψeq Rd , (9.1.48)

at the crossover L"/ξ = 1. Thus n0(R)∂R/∂" ∼ n0(R)R/" satisfies (9.1.46).
In summary, clusters are essential entities near the coexistence curve appearing with

appreciable densities. The probability that they grow into droplets with sizes several times
larger than ξ is extremely small for small supersaturation, but such rare events can indeed
trigger nucleation of a new phase for h > 0.

9.2 Birth of droplets

We consider early-stage nucleation where the droplet volume fraction is very small and
interactions between droplets are nearly absent. In the conserved case the supersaturation
∆ is assumed to be equal to the initial value φ in (8.3.1). We are interested in the time
evolution of the droplet size distribution n(R, t) which obeys (9.1.23) for t > 0 with
a positive constant µeff. The initial distribution n(R, 0) satisfies (9.1.27) and virtually
vanishes for R > Rc. After a long incubation time, a small number of droplets with radii
larger than Rc emerge and continue to grow.

9.2.1 Evolution of droplets with R ∼ Rc

We wish to examine how droplets with sizes close to Rc evolve. In the vicinity of Rc the
Langevin equation may be linearized as

∂

∂t
δR = �cδR + θ(Rc, t), (9.2.1)

where �c is the value of ∂v(R)/∂R at R = Rc or

�c = −LcβH′′(Rc) = (d − 1)SdLcβσ Rd−3
c . (9.2.2)

Hereafter we write

Lc = L(Rc). (9.2.3)

The growth rate �c is written as

�c = (d − 1)L R−2
c ∝ h2 (nonconserved)

= DR−2
c ∆ = 1

4
Dd−2

0 ∆3 (3D conserved). (9.2.4)
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As h → 0 or ∆ → 0, the timescale �−1
c becomes very long. If the noise term were

neglected, droplets with small positive (negative) δR would grow (shrink) exponentially
with the growth rate �c. As can be easily expected, however, the effect of the thermal
noise is crucial for such near-critical droplets. To check this, we set up the corresponding
linearized Fokker–Planck equation,

∂

∂t
n = ∂

∂R

(
Lc

∂

∂R
− �cδR

)
n, (9.2.5)

where the second derivative ∂2/∂R2 arises from the thermal noise. To represent its strength
we introduce a small parameter ε by

ε−2 = β|H′′
c |R2

c = (d − 1)Sdβσ Rd−1
c ∼ (Rc/ξ)

d−1. (9.2.6)

We have ε ∼ ξ/Rc in 3D. The maximum of the droplet free energy (9.1.2) reads

Hc = 1

d(d − 1)
ε−2T . (9.2.7)

We introduce a dimensionless radius deviation given by

x = δR/εRc or R = Rc(1 + εx). (9.2.8)

Then (9.2.5) may be rewritten as

∂

∂t
n = �c

∂

∂x

(
∂

∂x
− x

)
n, (9.2.9)

where ε is removed. Each droplet motion is sensitively affected by the thermal noise in the
following narrow region,

|R/Rc − 1| � ε ∼ (ξ/Rc)
(d−1)/2. (9.2.10)

That is, if we observe a droplet in the above region, it is highly probabilistic whether it
grows or shrinks. The thermal noise is also important at small R(� Rc) where it produces
the distribution in (9.1.27). In Appendix 9A general solutions of (9.2.9) will be presented.

9.2.2 Deterministic growth

For R/Rc − 1 � ε, the growth rate of each droplet is nearly deterministic as

∂

∂t
R = v(R), (9.2.11)

and n(R, t) obeys

∂

∂t
n = − ∂

∂R
[v(R)n], (9.2.12)

where the radius growth rate v(R) is defined by (9.1.21). Then there is a mapping between
the droplet radii at two times, R1 slightly exceeding Rc at a time t1 and R2 at a later time



9.2 Birth of droplets 501

t2. The droplet number conservation gives

n(R2, t2) = n(R1, t1)

(
∂R1

∂R2

)
t1t2

= n(R1, t1)
v(R1)

v(R2)
. (9.2.13)

Because (9.2.11) is integrated as

t2 − t1 =
∫ R2

R1

d R′ 1

v(R′)
, (9.2.14)

we find (∂R2/∂R1)t1t2 = v(R2)/v(R1) at fixed t1 and t2. Furthermore, because v(R) ∼=
�c(R − Rc) for small R/Rc − 1, we rewrite (9.2.14) as

�c(t2 − t1) = ln

(
R2 − Rc

R1 − Rc

)
+

∫ R2

R1

d R′
[

�c

v(R′)
− 1

R′ − Rc

]
. (9.2.15)

For 0 < R1/Rc − 1 � 1 the lower bound R1 of the integral in the second term may be
replaced by Rc, because the integral is convergent even in the limit R1 → Rc. We obtain

ln(R1/Rc − 1) = ln(R2/Rc − 1)+ G(R2/Rc)− �c(t2 − t1), (9.2.16)

where

G(R/Rc) =
∫ R

Rc

d R′
[

�c

v(R′)
− 1

R′ − Rc

]
. (9.2.17)

For the models treated so far, G(R/Rc) turns out to be a function of u = R/Rc only:

G(u) = u − 1 (nonconserved)

= 1

2
u2 + u − 3

2
(3D conserved). (9.2.18)

In Fig. 9.4 we plot u2 ≡ R2/Rc − 1 vs u1 ≡ R1/Rc − 1 for 0 < u1 < 1 and �c(t2 − t1) =
10.5, 20.5, and 40.5 in the 3D conserved case.

In real nucleation experiments there is a maximum droplet radius Rmax(t) above which
n(R, t) is virtually zero. Because Rmax(t) obeys (9.2.11), its value at large time t � �−1

c
roughly satisfies

G(Rmax(t)/Rc)− �ct ∼= 0. (9.2.19)

Obviously, we have

Rmax(t) ∼= Rc�ct = vht (nonconserved)

∼= Rc(2�ct)1/2 ∼ D∆1/2t1/2 (3D conserved), (9.2.20)

where the velocity vh = Rc�c appeared in (8.2.25). (See Fig. 9.5, p. 504, for n(R, t) near
Rmax(t).)
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Fig. 9.4. The mapping between two radii,
R2 > R1 with R1 slightly exceeding Rc,
as determined by (9.2.15) for
�c(t2 − t1) = 10.5, 20.5, and 40.5.

9.2.3 The nucleation rate

After a transient time t0, we observe a constant birth (nucleation) rate I of droplets with
sizes larger than Rc emerging per unit volume and per unit time. From (9.2.9) n(R, t) at
R ∼ Rc is known to change on the timescale of �−1

c . At smaller R the timescale is faster.
It is then natural to estimate t0 as [6]

t0 ∼ �−1
c . (9.2.21)

The meaning of the constant nucleation rate may be stated as follows. If R − Rc � εRc,
the evolution of R is almost deterministic and

n(R, t) d R = I dt for d R = v(R) dt, (9.2.22)

which is the number of growing droplets newly emerging in a time interval dt per unit
volume and is independent of R. Thus we obtain a steady distribution in the region R/Rc−
1 � ε,

ns(R) = I/v(R). (9.2.23)

Of course, to have appreciable droplets larger than Rc in a volume V , the observation time
tobs must be much longer than 1/I V . For a typical experimental volume (say, 1 cm3), we
may define a nucleation time by

tN = (I V )−1. (9.2.24)

We treat the case tobs � tN supposing slow droplet growth.1 We also note that the droplet
volume fraction q(t) increases with a rate of order Rd

max I , so that

q(t) ∼ Rd
max I t, (9.2.25)

1 If the growth is rapid or ballistic with small dissipation, appearance of a single droplet with R > Rc can lead to completion of
macroscopic phase separation. This is the case at very low temperatures.
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where the algebraic growth of Rmax(t) is assumed. Interaction between droplets become
appreciable at a particular completion time tco, as will be discussed later. In Appendix 9A
we will investigate how n(R, t) rapidly decays from I/v(R) to 0 around Rmax. The width
of this changeover region is estimated as

(�R)max ∼ v(Rmax)/�c. (9.2.26)

The steady-state distribution

Because ns(R) is a steady solution of (9.1.23), it generally satisfies

L(R)

[
∂

∂R
+ βH′(R)

]
ns = −I. (9.2.27)

Imposing the condition ns(R) → 0 as R → ∞, we integrate the above equation as

ns(R) = I
∫ ∞

R
d R1

1

L(R1)
exp

[
βH(R1)− βH(R)

]
. (9.2.28)

For R−Rc � εRc, we may replace βH(R1)−βH(R) and L(R1) in the above integrand by
β(∂H/∂R)(R1 − R) and L(R), respectively; then, (9.2.23) is reproduced. Next we impose
the boundary condition (9.1.27) at small R to obtain an equation for I ,

nξ = I
∫ ∞

0
d R1

1

L(R1)
exp

[
βH(R1)

]
, (9.2.29)

where nξ is the coefficient in (9.1.25). The integrand on the right-hand side is very sharply
peaked at Rc from the second line of (9.1.1). The gaussian integration from |R−Rc| � εRc

yields the classical expression,

I = (2π)−1/2Lc(β|H′′|)1/2n0(Rc)

= (2π)−1/2�cnξ εRc exp(−βHc). (9.2.30)

In 3D, we have nξ εRc ∼ ξ−3 from (9.1.26) and (9.2.6), so I ∼ �cξ
−3 exp(−βHc). As is

well known, the exponential factor exp(−βHc) varies over many decades even for a very
small change of µeff (∝ h or ∆). Thus I is extremely sensitive to µeff, whereas it is much
less sensitive to the kinetic factor �c.

Let us examine the behavior of ns(R) close to Rc. If R < Rc and ε � |R/Rc − 1| � 1,
we obtain

ns(R) ∼= nξ exp

[
−βHc + 1

2
β|H′′|(δR)2

]
∼= n0(R). (9.2.31)

However, ns(Rc) = n0(Rc)/2 at R = Rc. Therefore, the ratio ns(R)/n0(R) is nearly equal
to 1 in the region 1 − R/Rc � ε, decreases to 1/2 at R = Rc, and becomes much smaller
than 1 for R/Rc − 1 � ε. The behavior in the region |R − Rc| � Rc can be expressed in
the following integral form,

ns(R)/n0(Rc) ∼= (2π)−1/2
∫ ∞

0
ds exp

(
−1

2
s2 − xs

)
, (9.2.32)
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Fig. 9.5. Time evolution of the droplet size distribution n(R, t) on a semi-logarithmic scale as a
solution of (9.2.34) at ε2 = 0.0096 in the 3D conserved case. The first 11 curves correspond to the
times at �ct = 0, 1, . . . , and 10. The last four curves are those at t = 15, 20, 25, and 30. In the inset
the curves of ln[n(R, t)/ns(Rc)] are plotted at �ct = 1, 2, 3, and 15 (from below) around R/Rc ∼ 1.

where x = (R − Rc)/εRc. This is in fact a steady solution of the linearized Fokker–Planck
equation (9.2.9). It behaves as

ns(R)/n0(Rc) ∼= exp

(
1

2
x2

)
(x � −1),

∼= (2π)−1/2 1

x
(x � 1). (9.2.33)

9.2.4 Numerical analysis of the birth process

As an illustration, we show in Fig. 9.5 the time evolution of n(R, t) for the 3D conserved
case obtained as a solution of the Fokker–Planck equation (9.1.23),

∂

∂t
n = �c

∂

∂r

[
ε2

r3

∂

∂r
− 1

r
+ 1

r2

]
n, (9.2.34)
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Fig. 9.6. Z and ln Z vs R/Rc−1 at �ct = 15 in Fig. 9.5, where we set n(R, t) = [I/v(R)] exp(−Z).

where r = R/Rc. From (9.2.6) we have

ε = (9πβσ R2
c )

−1/2 = (9π Aσ )
−1/2ξ/Rc, (9.2.35)

where Aσ is the coefficient in (4.4.11). In Fig. 9.5 we choose ε = 0.00961/2 = 0.098,
though this is much larger than its typical values in real 3D nucleating systems. For this
choice we have Hc/T = (6ε2)−1 = 17.4 in 3D from (9.2.7). For near-critical fluids in
the asymptotic critical region, this corresponds to Rc/ξ = 6.8 and ∆ = 0.3d0/ξ ∼ 0.05
from Aσ = 0.09 and d0/ξ ∼ 0.1. As the initial condition of the calculation, the system is
assumed to be on the coexistence curve; namely, n(R, 0) = const. exp(−4πσ R2/T ) ∝
exp(−r2/2ε2), which is virtually zero around R ∼ Rc. The figure demonstrates the
approach of n(R, t) to a steady distribution ns(R) in the region R < Rmax(t) on the
timescale of �−1

c in accord with (9.2.21). The upper cut-off expands in time as the second
line of (9.1.22) for �ct � 1. In addition, in Fig. 9.6 we plot Z ≡ log[I/v(R)n(R, t)] and
log Z at �ct = 15 to examine the very steep decay of n(R, t) around Rmax. We can see
that Z roughly grows exponentially around Rmax, so that

n(R, t) ∼= I

v(R)
exp

{
− exp

[
R − Rmax

(�R)max

]}
, (9.2.36)

where the width (�R)max is consistent with (9.2.26).

9.2.5 The nucleation rate in the mean field critical region

The classical Landau theory of phase transition holds somewhat away from the critical
point. This condition is expressed in terms of the Ginzburg number Gi in (4.1.25) in 3D as

1 − T/Tc > Gi = (3/2π2)2u2
0/a0, (9.2.37)
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where the coefficient K of the gradient free energy is equal to 1. We may relate the
coefficient a0 in (9.2.37) and the correlation length ξ by ξ−2/2 = κ2 = a0(1 − T/Tc). In
3D, we rewrite Hc in (9.1.2) as

Hc = T C0/∆
2. (9.2.38)

Using the mean field results, (4.4.8) and d0 = ξ/6, we may rewrite C0 as

C0 = 4
√

2π

81

κ

u0
= 2

√
2

27π

[
(1 − T/Tc)/Gi

]1/2
. (9.2.39)

Thus, with increasing 1 − T/Tc above Gi, C0 increases and I decreases. In Appendix
9B, we shall see that C0 tends to a universal number in the asymptotic critical region
Tc−T � Gi. Therefore, nucleation is suppressed in the mean field critical region, because
the thermal fluctuations are weak there. In Section 4.2, we showed that polymer blends
with large molecular weights have very small Gi (∝ N−2).

9.3 Growth of droplets

9.3.1 The Kolmogorov, Johnson–Mehl, and Avrami theory in nonconserved cases

In the nonconserved case (model A), the interface velocity is expressed as (8.2.24), which
tends to the constant velocity in (8.2.25),

vh = (2T Lψeq/σ)h = Rc�c, (9.3.1)

for R � Rc or for t � tc ∼ 1/�c. We assume that the nucleation rate I is very small and
is independent of time. Substitution of Rmax = vht into (9.2.25) yields the volume fraction
of the favored phase,

q(t) ∼=
∫ t

0
dt

4π

3
R3

max I ∼= π

3
Iv3

ht4 (3D), (9.3.2)

in the early stage of nucleation where q(t) � 1 and t � �−1
c . The 2D version follows by

replacement, v3
ht4 → v2

ht3 in (9.3.2). The growing domains begin to touch and overlap as
q(t) becomes of order 1. The completion time tco of this phase inversion is determined as

vd
h td+1

co I = 1 or tco = (vd
h I )−1/(d+1). (9.3.3)

Here we are assuming that tco is much shorter than tN in (9.2.24). The characteristic domain
size at t = tco is given by

rh = vhtco = (vh/I )1/(d+1). (9.3.4)

The finiteness of the critical radius Rc (or the surface tension effect) is important in the
early stage, t � �−1

c . Therefore, in the limit rh � Rc or tco � �−1
c , it may be neglected

in the overall relaxation of q(t), where Kolmogorov, Avrami, and Johnson–Mehl predicted
the exponentiated form [22]–[24],

q(t) = 1 − exp

[
−π

3
Ivd

h td+1
]
= 1 − exp

[
−π

3
(t/tco)

d+1
]
. (9.3.5)
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Fig. 9.7. Scaled curves of the volume fraction q(t) of the CsCl (B2) structure growing from the NaCl
(B1) structure in RbI after increasing the pressure above a critical value pc ∼= 3.5 kbar [26]. The time
is measured in units of the completion time tco which becomes longer with decreasing p − pc. The
solid and dashed curves are from (9.3.5) and (9.3.6), respectively.

This holds for 2D and 3D, with the same coefficient π/3. Subsequently, Ishibashi and
Takagi phenomenologically extended the above formula taking into account finite Rc as
[25]

q(t) = 1 − exp

{
−π

3
Ivd

h

[
(t + tc)

d+1 − td+1
c

]}
, (9.3.6)

where tc = Rc/vh ∼ �−1
c is defined in (8.2.60). In Fig. 9.7 we show data of time-dependent

volume fractions of a new phase in a pressure-induced structural phase transition [26]. The
curves 2–5 correspond to the case rh � Rc and nicely fall onto the (solid) theoretical curve
(9.3.5). However, curve 6 corresponds to a shallow quenching and considerably deviates
from (9.3.5), presumably from the effect of finite Rc. If the curve is fitted to (9.3.6), we
have Rc/rh = tc/tco = 0.3.

The derivation of (9.3.5) is very simple. Notice that q̄(t) = 1 − q(t) is the probability
that no transformation has yet taken place at time t at an arbitrarily chosen point r0. Let
the phase change be first caused in the subsequent time interval [t, t + dt] by invasion
of a droplet with radius in the range [r, r + dr ], where dt and dr are infinitesimal. The
birth of such a droplet, which occurred in the time interval [t − r/vh, t − r/vh + dt] and
in the shell region [r, r + dr ], is a stochastic event with probability d N = I (4πr2dr)dt
(for d = 3). The inversion probability at r0 is given by the product q̄d N (= −dq̄), where
the factor q̄ originates from the supplemented condition that there is no transformation
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before t . Integration over r gives a decreasing rate of q̄,

d

dt
q̄ = −q̄

∫ vh t

0
dr 4πr2 I = −4π

3
v3

ht4 I q̄, (9.3.7)

whose time-integration yields (9.3.5) in 3D.
It is also easy to calculate the equal-time correlation of the local volume fraction u(r, t)

[27], where u(r, t) is 1 in the metastable phase and 0 in the favored phase. Then 〈u(r, t)〉 =
1 − q(t). The pair correlation function for the deviation δu = u − 〈u〉 reads

〈δu(r0, t)δu(r + r0, t)〉 = [1 − q(t)]2{
exp

[
Ivd

h td+1&d(s)
] − 1

}
, (9.3.8)

which is nonvanishing only for s = r/2vht < 1 or &d(s) = 0 for s ≥ 1. For 0 ≤ s ≤ 1 we
give the 3D expression,

&3(s) = π

3
(1 − s)3(1 + s). (9.3.9)

9.3.2 The Lifshitz–Slyozov and Wagner theory for conserved systems

The completion time

In 3D conserved systems we may define a completion time tco such that the droplet volume
fraction is some fraction of the initial supersaturation φ ≡ ∆(0), say, 0.5. Phase separation
has partially completed at t = tco. Emergence of droplets will be noticeable on the
timescale of tco. From (9.2.25) and using (9.2.20), we may estimate tco by

(2Dφtco)
3/2 I tco ∼ φ. (9.3.10)

Here we define a dimensionless nucleation rate Ĩ by

I = Dξ−5 Ĩ . (9.3.11)

Then (9.3.10) is solved to give

�ctco = φ14/5 Ĩ−2/5. (9.3.12)

At t ∼ tco the maximum radius grows up to the following order,

Rmax(tco)

Rc(0)
∼ (�ctco)

1/2 ∼ φ7/5 Ĩ−1/5. (9.3.13)

At small volume fraction we have tco � �−1
c ∼ t0 and

Rmax(tco) � Rc(0). (9.3.14)

Figure 9.8 shows the completion time tco estimated for near-critical fluids [28], which
increases dramatically for φ � 0.02.

We also make two supplementary remarks. (i) The diffusion length at t = tco is estimated
as "D = (Dtco)

1/2 ∼ Rmax(tco)φ
−1/2. It becomes longer than the average inter-domain

length n−1/3
dom , because

"D ∼ φ−1/6n−1/3
D , (9.3.15)
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Fig. 9.8. The scaled completion time
tco/tξ vs initial relative supersaturation
y = x/x0 ∼= 6φ, where tξ = D−1ξ2, in a
near-critical fluid [28]. The solid line is
obtained from the Schwartz–Langer theory
[28], and the dashed line from the
Binder–Stauffer theory [6]. The dash-dot
curve represents the scaled nucleation time
tN/tξ in (9.2.24) for V =1 cm3.

where ndom ∼ φ/Rmax(tco)
3 is the droplet density at t = tco. Droplet interaction may then

be taken into account with the mean field constraint (9.1.28). (ii) To have a large number
of droplets in the experimental cell at t = tco, the nucleation time tN in (9.2.24) must be
much shorter than tco. In 3D conserved systems this condition is realized for sufficiently
large cell volume,

V/ξ3 � φ−8/15 Ĩ−3/5. (9.3.16)

The LSW equations

After a transient time of order tco, we follow the time evolution of the droplet size distribu-
tion neglecting further emergence of new droplets and the thermal noise. Then each droplet
evolves under the influence of a time-dependent supersaturation ∆(t). Here analytic theory
of the droplet evolution is possible, as first presented by Lifshitz–Slyozov, and by Wagner
(LSW) [29]–[31]. This theory is justified in the limit of small droplet volume faction as
already discussed in Section 8.4. As an example, Fig. 9.9 shows coarsening of spherical
domains with the L12 structure (illustrated in Fig. 3.10) in a Ni–18Cr–6Al metallic alloy
[32], where the mean domain size distribution nicely obeyed the LSW theory with the
growth law R̄(t) ∝ t1/3 for the mean radius.

To make the equations simple, let us rescale the radius and time as

r = R/Rc(0), τ = �c(t − tco), (9.3.17)
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Fig. 9.9. Development of γ ′ precipitates for Ni–18 at.%Cr–6 at.%Al alloy aged at 1073 K for
(a) 86.4 ks, (b) 691 ks, and (c) 5.2 Ms [32]. The Cr concentration was adjusted to minimize the
lattice mismatch and the elastic effects, to be discussed in Chapter 10, were suppressed.

where Rc(0) = 2d0/φ and �c = Dd−2
0 φ3/4. Then, without the noise term, (9.1.20)

becomes
d

dτ
r = p(τ )

1

r
− 1

r2
. (9.3.18)

We write the supersaturation divided by its initial value as p(τ ):

p(τ ) = ∆(t)

∆(0)
= Rc(0)

Rc(t)
, (9.3.19)

where Rc(t) is the time-dependent critical radius. From (9.1.28) we express p(τ ) in terms
of the droplet distribution,

p(τ ) = 1 −
∫ ∞

0
drr3n(r, τ ). (9.3.20)

Here (4π/3)[Rc(0)4/∆(0)]n(R, t) is redefined as n(r, τ ). The radius distribution obeys

∂

∂τ
n(r, τ ) = − ∂

∂r

[
p(t)

r
− 1

r2

]
n(r, τ ). (9.3.21)

Now (9.3.20) and (9.3.21) constitute a closed set of evolution equations, which was exam-
ined analytically [29]–[31] and numerically [33, 34]. For finite volume fractions, however,
diffusional interactions between the domains can be significant [35]–[37]. This effect was
discussed in Subsection 8.4.4.

Asymptotic behavior

As the initial distribution at τ = 0 (or t = tco) we should choose the distribution behaving
as (9.2.36). Then n(r, 0) is broadly distributed in a wide region r � Rmax(tco)/Rc(0) and
decays rapidly at large r as

dk

drk
n(r, 0) → 0 (r → ∞) (9.3.22)
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Fig. 9.10. The asymptotic scaling functions Pλ(u) for λ = 1, 2, and ∞ reading from above. Here
P∞(u) coincides with PLSW(u) in (9.3.26) in the LSW theory.

for any k = 1, 2, . . .. In this usual or normal case, the LSW theory holds and the long-time
behavior of p(τ ) and n(r, τ ) are given by [29]–[31]

p(τ ) → p∗τ−1/3, (9.3.23)

n(r, τ ) → A∞ p(τ )4 PLSW(u), (9.3.24)

where p∗ = (9/4)1/3 and

u = r/p(τ ) = R/Rc(t). (9.3.25)

As will be calculated in Appendix 9C, the scaling function PLSW(u) is defined in a finite
region 0 < u < 1.5 and is of the form,

PLSW(u) = 324u2

(u + 3)7/3(3 − 2u)11/3
exp

(
− u

1.5 − u

)
(0 < u < 1.5), (9.3.26)

with the normalization condition,∫ 1.5

0
du u PLSW(u) =

∫ 1.5

0
du PLSW(u) = 1. (9.3.27)

This function is plotted in Fig. 9.10. From (9.3.18) the coefficient A∞ is determined as

A∞ =
[ ∫ 1.5

0
du u3 P(u)

]−1
∼= 0.885. (9.3.28)
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Thus the LSW theory predicts the following asymptotic results for large τ � 1:

Rc(t) ∼= 〈R(t)〉 ∼= Rc(0)(4τ/9)1/3, (9.3.29)

ndom(t) ∼= (27A∞/16π)φRc(0)
−3τ−1, (9.3.30)

where 〈R(t)〉 is the average radius and ndom(t) is the average droplet number density. In the
droplet free-energy density fD(t) in (9.1.29), the first term representing the surface tension
part is of order (∆(0)2σξ−1)τ−1/3 and is larger than the second term (∝ ∆(t)2) by τ 1/3.

However, the LSW limit (9.3.24) is not a unique long-time limit [38, 39]. It is not ap-
proached if the initial distribution n(r, 0) has an upper cut-off rmax(0) = Rmax(tco)/Rc(0)
and tends to zero as

n(r, 0) ∼ (rmax(0)− r)λ (r → rmax(0)), (9.3.31)

with λ > 0. This property is preserved in time such that we have n(r, τ ) ∼ (rmax(τ )− r)λ

around a time-dependent cut-off rmax(τ ). The long-time behavior of n(r, τ ) is then written
as

n(r, τ ) → Aλ p(τ )4 Pλ(u), (9.3.32)

where Pλ(u) is a λ-dependent scaling function defined in the region 0 < u < u1 =
(3λ+ 6)/(2λ+ 5) and behaves as

Pλ(u) ∼= Cλ(u1 − u)λ, (9.3.33)

as u → u1 with the normalization,∫ u1

0
du u Pλ(u) =

∫ u1

0
du Pλ(u) = 1. (9.3.34)

We will give an analytic expression for Pλ(u) in Appendix 9C. The LSW scaling function
is reproduced in the limit,

PLSW(u) = lim
λ→∞

Pλ(u). (9.3.35)

The scaling relation (9.3.23) also holds with

p∗ =
[

2λ+ 5

3(λ+ 1)

]1/3 3λ+ 6

2λ+ 5
. (9.3.36)

In Fig. 9.10 we display P1(u) and P2(u), which differ noticeably from PLSW(u) only in
the region 1 < u < 1.5. The coefficient Cλ in (9.3.33) is about 60 for λ = 1 and 700 for
λ = 2, so the curves of finite λ(≥ 1) are very steep at the upper cut-off u1 and are not
much different from the LSW limit (λ = ∞).

Numerical analysis of the LSW theory

Numerical integration of the LSW equations (9.3.20) and (9.3.21) has been performed by
many authors. For a wide range of the initial distributions n(r, 0), which decay rapidly
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Fig. 9.11. Numerical solution of the LSW equations (9.3.20) and (9.3.21). The initial distribution
at τ = 0 is broadly distributed and decays rapidly for r = R/P(0) > 14. (a) Time evolution
of the normalized distribution P(u, τ ) with u = R/Rc(τ ) at τ = 0, 250, 500, and 2 × 104. The
curves approach the LSW function PLSW(u) ( ·+) in (9.3.26). (b) The difference P(u, τ )− PLSW(u)
decreases to zero very slowly at very long times. (c) Time evolution of p(τ ) (solid line) in (9.3.19),
where p(0) ∼= 0.7 from (9.3.20). The curve of p(τ )τ−1/3 (dashed line) demonstrates the final scaling
behavior (9.3.23).

and satisfy (9.3.22), the approach to the LSW limit can readily be confirmed [33, 34]. In
Fig. 9.11 we show such an example, where n(r, 0) is broad with rmax(0) = 10 and decays
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Fig. 9.12. The difference P(u, τ )− P1(u)
for the case λ = 1 at very long times. This
demonstrates attainment of the asymptotic
scaling behavior (9.3.32) on very long
timescales.

rapidly as (9.2.36) for r > 10. Here u = r/p(τ ) and

P(u, τ ) = n(r, τ )

/ ∫ ∞

0
dr ′n(r ′, τ ). (9.3.37)

Figure 9.11(a) shows that the width of P(u, τ ) becomes of order 1 on the timescale of
rmax(0)2 and PLSW(u) is subsequently approached. In (b), however, we can see that the
ultimate very slow approach occurs in the region 1 < u < 1.5, which seems to agree with
the predicted logarithmic relaxation [29, 39]. In (c) we confirm that the scaling behavior
(9.3.23) of P(τ ) is asymptotically satisfied for τ ≥ 104.

Next we confirm the approach (9.3.32) when n(r, 0) has an upper cut-off and satisfies
(9.3.31) with λ = 1. In Fig. 9.12 we plot the difference P(u, τ )− P1(u), where n(r, 0) =
C1(r−1) for 1 < r < 6 and n(r, 0) = 1.25C1(10−r) for 6 < r < 10 with the upper cut-off
being 10. We can see the ultimate scaling behavior (9.3.32) for λ = 1 unambiguously.

9.3.3 Experiments in near-critical fluids

We briefly review nucleation experiments [8, 9], [40]–[44] and theoretical interpretations
[6, 28] on near-critical fluids, where the diffusion-limited coalescence discussed in Section
8.5 can be neglected at small droplet volume fraction q(t) � 0.03 and no elastic effects
are involved. As an advantage here, if space and time are scaled by ξ and tξ = D−1ξ2, the
dynamics becomes universal. In fact, the capillary length is expressed as

d0 = χσ/4Tψ2
eq = Ad0ξ, (9.3.38)

where Ad0 is a universal number of order 0.1, as will be shown in Appendix 9B. The
growth rate of critical droplets (9.2.4) is estimated as

�c ∼= 25Dξ−2φ3 ∼= 0.1(T/6πηξ3
−0)(1 − T/Tc)

3νx3, (9.3.39)
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where we have used the Stokes–Kawasaki formula (6.1.24) for the diffusion constant and
the expression for ξ in (2.1.10). For example, we have a very small growth rate of �c =
10−3 s−1 for isobutyric acid + water (IW) at T/Tc − 1 = 10−4 and x = 0.1.

The nucleation rate

From (9.2.30) the nucleation rate in 3D behaves as

I ∼ ξ−3�c exp(−C0/φ
2), (9.3.40)

where φ = ∆(0) is the initial supersaturation. In near-critical fluids, the control parameter
has usually been taken to be

x = δT /�Tcx ∼= (2/β)φ, (9.3.41)

where β ∼= 1/3 and the second line of (9.1.4) has been used. We thus have

I ∼ I0(1 − T/Tc)
6ν exp

[−(x0/x)2]
, (9.3.42)

with

x0 = (2/β)C1/2
0 . (9.3.43)

As will be examined in Appendix 9B, C0 ∼= 0.0015 and x0 ∼= 0.74 are universal numbers
from relations among the critical amplitudes. The exponential factor in I changes abruptly
from a very small to a very large number with only a slight increase of x for x � 1. For
example, if (x0/x)2 = 50, I is increased by exp(100δx/x) with a small increase of x to
x + δx . This factor can be of order 103 even for δx/x = 0.05. It is also instructive to
express x in terms of I and 1 − T/Tc as

x = 0.116x0
/[

1 + 0.05 ln(1 − T/Tc)− 0.014 ln I
]1/2

, (9.3.44)

where we have used a typical value, I0 ∼ 1032 ∼= e74 cm−3 s−1. Therefore, x only very
weakly depends on I and 1 − T/Tc. As a result, x remains of order 0.1 for wide ranges of
experimentally accessible values of I (for instance, 10−2 cm−3 s−1) and 1 − T/Tc. Thus,
if the observation time tobs is sufficiently long (> tco), we should encounter the appearance
of noticeable cloudiness in the bulk fluid region at x ∼ 0.1 and can determine a rather
definite cloud point, δT = δTBD ∼ 0.1�Tcx, experimentally [11].

Anomalous supercooling

Figure 9.13 shows data of cloud points measured by various groups [8, 42]. It was unex-
pected that the observed supercooling increased considerably at very small |1 − T/Tc|.
However, this anomalous supercooling can now simply be ascribed to the critical slowing-
down of the droplet growth. That is, the completion time tco defined by (9.3.12) becomes
very long near the critical point, while noticeable droplets are observable only when the
observation time tobs is longer than tco. Then the observed cloud-point curve should be
determined by equating the two times as tobs = tco [6, 28]. The data in Fig. 9.14 are
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Fig. 9.13. Reduced supercooling x = δT/�Tcx at cloud points vs �Tcx/Tc, as measured in various
fluids on a log-log scale (+, C7H14; �, CO2; ×, He3; ◦, LW; �, IW) [8, 42]. The inset shows data
for lutidine + water (LW) only. For LW, the absolute values |δT/�Tex| and |δTcx/�Tc| are plotted,
because the coexistence curve is inverted and superheating induces metastability. The curved broken
line is obtained from tco = 1 s in the Binder–Stauffer theory [6].

Fig. 9.14. Initial relative supersaturation x/x0 as a function of scaled reduced temperature at four
completion times tco for IW (�) and PMCH + MCH (◦) [43]. The solid lines are the Langer–Schwartz
theoretical results [28] (which can be obtained from (9.3.12)) and the dashed one is the Binder–
Stauffer prediction [6] for tco = 1 s. Here ε = 1 − T/Tc, while ε0 is a characteristic reduced
temperature dependent on fluids [28].
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Fig. 9.15. (a) Coexistence curve in a binary fluid mixture (IW). Arrows labeled 1 and 2 show the
path of the two-step quench utilized by Siebert and Knobler to determine the nucleation rate [44].
(b) Logarithm of the reduced nucleation rate vs the reduced supersaturation x/x0 for IW.

cloud-point observations for IW and C7H14+C7F14 (PMCH + MCH) in comparison with
theoretical curves of tco [43].

Afterwards, the validity of the classical formula (9.3.42) near the critical point was
demonstrated by Siebert and Knobler with a two-step quench experiment on IW [9, 44],
where both the temperature and the coexistence curve were changed adiabatically (see
Subsection 6.5.6). We describe their experiment neglecting the latter change. As shown in
Fig. 9.15(a), the temperature was first shifted to T1 in the metastable region for some time
t1, where the nucleation rate I (T1) was appreciable. Then the temperature was reversely
shifted to T2, where the nucleation rate I (T2) was much smaller. Droplets were thus
created at the lower temperature and their number density was I (T1)t1. In Fig. 9.15(b)
the dimensionless nucleation rate Ĩ (in units of (T/6πη)ξ−6) is written as a very steep
function of y = x/x0. Its behavior is completely determined by the exponential factor
exp(−y−2) within experimental precision.
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Fig. 9.16. A spherical droplet in a one-component fluid.
We assume that droplet growth is governed by thermal
diffusion. Then, inside the droplet, the pressure p1 and
temperature T1 are constant; outside it, the pressure
p∞ = p1 + 2σ/R is also constant, but the temperature
T2(r) depends on the distance from the droplet center.

9.4 Nucleation in one-component fluids

Several books have been devoted to nucleation of liquid droplets from a metastable gas
and that of gas droplets from a metastable liquid [1]–[4]. In these cases, pressure and
temperature variations can both control the nucleation. Furthermore, because the pressure
propagates rapidly in time, the temperature changes adiabatically in most situations. To
understand this aspect, we will mainly treat metastable one-component fluids near the gas–
liquid critical point [45, 46], which depends sensitively on whether the pressure or the
volume is fixed [47]. We will elucidate the following. (i) Let us decrease the pressure by a
small constant amount with a fixed boundary temperature near the coexistence curve. If the
fluid is in a gas state, isobaric nucleation can well be induced in the bulk region. However,
if it is in a liquid state, boiling is easily triggered in the thermal diffusion layer near the
boundary. (ii) Upon cooling of the boundary temperature under the fixed-volume condition,
adiabatic nucleation can be realized in the interior region in a liquid state. However, if a
gas is cooled from the boundary at a fixed volume, liquid droplets readily appear in the
thermal diffusion layer, apparently suggesting no metastability in gas in agreement with
previous experiments [48, 49]. (iii) If a liquid is heated at the boundary wall, boiling readily
occurs both at a fixed volume and at a fixed pressure. The threshold for boiling decreases
dramatically on approaching the critical point.

9.4.1 Basic nucleation formulas

Let us consider a slightly metastable, one-component fluid, in which a spherical droplet
with radius R of phase 1 is growing in a metastable medium of phase 2, as illustrated
in Fig. 9.16. The fluid state need not be close to the critical point. All the deviations are
measured from a reference equilibrium state on the coexistence curve, whose pressure and
temperature are written as p0 and T0 = Tcx(p0), respectively. As is well known, the growth
rate is governed by the slow thermal diffusion of latent heat absorbed or released at the
interface. The pressure deviation δp∞ outside the droplet is nearly homogeneous through-
out the container of the fluid. Note that δp∞ depends on time t under the fixed-volume
condition. The pressure deviation δp1 inside the droplet is determined by the Laplace law,

δp1 = δp∞ + 2σ

R
. (9.4.1)
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The temperature deviation δT2 outside the droplet satisfies the quasi-static condition
(8.4.26) near the interface, so that

δT2(r) ∼=
[
δT1 − δT∞

] R

r
+ δT∞, (9.4.2)

where r is the distance from the droplet center, δT∞ is the temperature deviation far
from the droplet, and δT1 is that inside the droplet. The temperature within the droplet
is assumed to be homogeneous. Then, because the temperature and the chemical potential
µ per particle should be continuous at the interface, we have δT2(R) = δT1 and

−s2δT1 + v2δp∞ = −s1δT1 + v1δp1, (9.4.3)

using the Gibbs–Duhem relation δµ = −sδT + vδp. Here sα and vα = 1/nα are the
entropy and volume per particle, respectively, of the reference liquid or gas phase on the
coexistence curve (α = 1, 2). We may then eliminate δp1 using (9.4.1) and express δT1 in
terms of δp∞ as

δT1 =
(
∂T

∂p

)
cx

[
δp∞ − 2σv1

R�v

]
, (9.4.4)

where �s = s2 − s1 and �v = v2 − v1, and use has been made of the Clausius–Clapeyron
relation, �s/�v = (∂p/∂T )cx in (2.2.21). For R = Rc the temperature inhomogeneity
vanishes or δT1 = δT∞, so that we obtain the well-known relation [3],

δp∞ −
(
∂p

∂T

)
cx
δT∞ = 2σ

Rc(v2/v1 − 1)
. (9.4.5)

The free-energy difference µeff per unit volume in the droplet free energy (9.1.1) is given
by

µeff = n1
[

lim
r→∞ δµ2 − δµ1

] = (v2/v1 − 1)

[
δp∞ −

(
∂p

∂T

)
cx
δT∞

]
, (9.4.6)

which is equal to 2σ/Rc from (9.4.5), as ought to be the case. The fluid is metastable for
µeff > 0, while it is stable for µeff ≤ 0. To realize metastability in isobaric experiments
with δp∞ = 0, supercooling (superheating) is needed for a gas (liquid). From (9.1.1) the
free energy to create a critical droplet is given by

Hc = 16π

3
σ 3/µ2

eff =
16π

3
σ 3

(
v1

�v

)2/[
δp∞ −

(
∂p

∂T

)
cx
δT∞

]2

, (9.4.7)

slightly away from the coexistence curve.
The evolution equation for the radius R follows if we require that the heat current

onto the interface −λ2(∂δT2/∂r) should be balanced with the latent heat generation (or
absorption) at the interface, where λ2 is the thermal conductivity of phase 2. As in (8.4.28)
for model B, energy conservation at the interface gives

n1T (�s)
∂

∂t
R =

(
λ2

R

) [
δT1 − δT∞

]
, (9.4.8)
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where T0 is simply written as T on the left-hand side. (See Appendix 9D for more details.)
Using (9.4.4) we may rewrite (9.4.8) in the standard form (8.4.28). We can then determine
the products D∆ and Dd0. Let the diffusion constant D be the thermal diffusivity of phase
2,

D = λ2/C (2)
p , (9.4.9)

where C (2)
p = n2T (∂s/∂T )

(2)
p is the constant-pressure specific heat per unit volume of the

phase 2. Then the supersaturation and the capillary length are given by

∆ = C (2)
p

T n1�s

[(
∂T

∂p

)
cx
δp∞ − δT∞

]
, (9.4.10)

d0 = σC (2)
p

/[
T (n1�s)2]

. (9.4.11)

Furthermore, in many experimental conditions, in which the fluid volume is changed, δp∞
and δT∞ are related by the adiabatic condition,

δp∞ =
(
∂p

∂T

)(2)

s
δT∞. (9.4.12)

In this case ∆ becomes

∆ =
[

n2

n1(�s)

(
∂s

∂T

)(2)

cx

(
∂T

∂p

)
cx

]
δp∞, (9.4.13)

where use has been made of (2.2.38). If (∂s/∂T )cx in phase 2 and �s = s2 − s1 have the
same (opposite) sign, decompression (compression) is needed to realize metastability in
phase 2.

Formulas near the gas–liquid critical point

Near the gas–liquid critical point, we rewrite ∆ in (9.4.10) in terms of the universal number
ac in (2.2.40) as

∆ ∼= β

2ac

√
γsθlg

[ (
∂T

∂p

)
cx
δp∞ − δT∞

]/
(Tc − Tcx), (9.4.14)

where γs = C p/CV ∼ (1−T/Tc)
α−γ is the specific-heat ratio. Hereafter θlg = 1 (or −1) if

phase 2 is a gas (or liquid) phase. The surrounding phase 2 is metastable for 0 < ∆ � 0.1
and even unstable for ∆ � 0.1, while it is stable for ∆ ≤ 0. In the adiabatic condition
(9.4.12) we furthermore obtain

∆ ∼= −β

2
δT∞/(Tc − Tcx), (9.4.15)

which is of the same form as (9.1.4) because δT there corresponds to |δT∞|. Thus cooling
is needed to induce nucleation in the adabatic condition (9.4.12) both in a liquid and gas.
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9.4.2 Nucleation near the critical point at fixed volume

Langer and Turski [45] presented a theory of nucleation valid at constant pressure. How-
ever, experiments on fluids near the gas–liquid critical point have been performed under
the fixed-volume condition. Here we consider a near-critical fluid at a fixed total volume
V0. It was initially on the coexistence curve with p = p0 and T = T0 = Tcx(p0) at a given
pressure p0(∼= pc). The deviation δT0 = T0−Tcx(p0) can be nonvanishing in experiments,
but its effect is only to shift the supersaturation as will be shown in (9.4.23) below. We then
slightly change the boundary temperature at t = 0 and fix it in later times as

Tb = T0 + T1. (9.4.16)

The piston effect discussed in Section 6.3 governs the subsequent relaxation process.
Before the emergence of droplets the interior temperature deviation δT∞ (T1in in the
notation of Section 6.3) relaxes to T1 as (6.3.10) on the quick timescale of t1 ∼= L2/γ 2

s D
in (6.3.7). The pressure deviation δp is homogeneous and is given by (∂p/∂T )nδT∞ ∼=
(∂p/∂T )sδT∞. Near the boundary the temperature profile is given by (6.3.11) and (6.3.12).
From (9.4.14) the space-dependent supersaturation is calculated as [47]

∆(x, t) ∼= ∆∞
[

1 + θlg
2

ac

(
γs t1
π t

)1/2

exp

(
− x2

4Dt

)]
, (9.4.17)

where the second term decaying as t−1/2 in the square brackets arises from the temperature
inhomogeneity in the thermal diffusion layer. In the interior region the supersaturation
tends to

∆∞ = 1

2
β(−T1)

/
(Tc − Tcx). (9.4.18)

However, the inhomogeneity of ∆(x, t) gives rise to important consequences in experi-
ments, which will be discussed for the two cases θlg = ±1 separately.

We find the following.

(i) When a metastable fluid is in the liquid phase (θlg = −1), the supersaturation near the
boundary is as shown in Fig. 9.17. If the liquid is supercooled (namely, T1 < 0),∆(x, t)
becomes negative within the thermal diffusion layer in the early-stage region,

t < γs t1 = t2, (9.4.19)

and this inhomogeneity becomes negligible for t � t2. Fortunately in this case, controlled
nucleation experiments may well be performed. That is, for t � t1, nucleation starts from
the interior liquid region initially characterized by

δT∞(0) ∼= T1, δp∞(0) ∼=
(
∂p

∂T

)
n

T1 ∼=
(
∂p

∂T

)
s

T1. (9.4.20)

The initial supersaturation is given by (9.4.18). In accord with this result, Moldover et al.
were able to perform nucleation experiments at liquid densities (n > nc) in the fixed-
volume condition [48, 49]. Conversely, if the liquid is heated (T1 > 0) slightly above the
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Fig. 9.17. Supersaturation in a liquid after a step-wise boundary temperature change at a fixed
volume. It was initially on the coexistence curve. On cooling, the bulk region can become metastable
while the thermal diffusion layer is stable. On heating, the thermal diffusion layer is easily driven
into an unstable state, resulting in boiling.

coexistence curve, the thermal diffusion layer can become metastable or even unstable in
the time region t < t2. For t ∼ t1 and x ∼= 0, ∆(x, t) attains a maximum,

∆max ∼ √
γs |T1|/(Tc − Tcx). (9.4.21)

Therefore, if ∆max � 0.1 and

Dξ−2t2 ∼ (L/ξ)2/γs � 1, (9.4.22)

phase separation should be induced in the narrow spatial region x � (Dt2)1/2 ∼ γ
−1/2
s L

transiently in the time region t � t2.

(ii) When a metastable fluid is in the gas phase (θlg = 1), the supersaturation near the
boundary is as shown in Fig. 9.18. Upon supercooling ∆(x, t) attains a large value within
the thermal diffusion layer. Its maximum ∆max is again given by (9.4.21). This means that
phase separation starts to take place within the thermal diffusion layer for t � t1 except for
very small |T1| (� γ

−1/2
s (Tc − Tcx)). In realistic experimental conditions, a liquid layer

will appear to wet the boundary and no appreciable metastability of the gas phase will be
detected. This conclusion is consistent with the experiment by Dahl and Moldover [48],
who observed no metastability in gas states (n < nc) and expected preferential wetting of
a liquid layer at the wall as its physical origin. In addition, upon heating, the gas phase is
always stable everywhere in the cell.
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Fig. 9.18. Supersaturation in a gas after a step-wise boundary temperature change at a fixed volume.
It was initially on the coexistence curve. On cooling, condensation can easily be induced in the
thermal diffusion layer. On heating, the whole region remains stable.

Bubble growth in the interior liquid region

We next examine droplet growth in a bulk liquid region. In Section 6.3 we showed that the
interior pressure deviation is pinned at (∂p/∂T )s T1 in one-phase states due to the thermal
diffusion layer acting as a piston. In Appendix 9E we will show that this remains the case
even in the presence of growing droplets in the interior region and that the mean field result
�(t) = �(0)− q(t) holds with

∆(0) = 1

2
β

[
−T1 +

√
γs

ac
θlgδT0

]/
(Tc − Tcx), (9.4.23)

where q(t) is the droplet volume fraction. The second term in the square brackets arises
when the temperature T0 before cooling deviates from the coexistence temperature Tcx =
Tcx(P0). The LSW theory thus remains applicable without modification.2

9.4.3 Highly superheated and supercooled fluids

So far we have examined slightly metastable fluids particularly near the critical point.
However, a large number of experiments have been performed to approach the stability
limit of fluids deeply in the metastable region [3, 50]. For example, the compressibility of
superheated water behaves as [51]

KT ∼= K0(1 − T/Ts)
−γc , (9.4.24)

2 An incorrect conclusion was reached in Ref. [47] in this aspect.
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Fig. 9.19. Phase diagram of 4He including the negative pressure regime [52]. The diagram is not
to scale. The spinodal line indicates the pressure at which the sound velocity in the liquid becomes
zero and the liquid becomes unstable against long-wavelength density fluctuations. Bubbles formed
around free electrons will explode if the pressure reaches the line formed by the circles. The quantum
nucleation regime is also marked (see Ref. [54]).

in the range 100 ◦C < T < 220 ◦C at 1 bar, where K0 is a constant, the spinodal
temperature Ts = 315 ± 10 ◦C, and γc ∼= 1. The heat capacity C p grows in the same
manner, while CV does not grow. Similarly, upon supercooling, various quantities such as
KT and C p grow as

X = X0(T/Ts − 1)−γX + Xb, (9.4.25)

where X0 and Xb are constants and γX is an appropriate exponent. These data indicate
enhancement of those fluctuations with sizes smaller than the critical radius on approaching
the metastability limit or the spinodal line T = Ts(p), though it cannot be reached in
practice due to the onset of nucleation. In the van der Waals theory the spinodal line is
given by (3.4.7), where C p and KT grow with γ = 1 and CV remains nonsingular as
(3.4.6).
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As a particularly ideal system, 4He at low temperature can be supercooled considerably
at negative pressures, as illustrated in Fig. 9.19 [52]. In such metastable states at T ∼= 0,
the sound velocity c decreases as [53]

c = c0(p − ps)
ν, (9.4.26)

where c0 is a constant, ps ∼= −9.5 bar, and ν ∼= 1/3. Because ρc2 = dp/dρ as T → 0, we
obtain

p − ps ∝ (ρ − ρs)
δ, (9.4.27)

near the spinodal point, where δ = 1/(1 − 2ν) ∼= 3 and ρs ∼= 0.095 g cm−3. Here the
gas density is much lower than the liquid density and the free-energy difference µeff in the
droplet free energy (9.1.1) is nearly equal to |p| from (9.4.6) at negative p, so that

Hc = 16πσ 3/3|p|2. (9.4.28)

At relatively high temperatures (T � 200 mK), the nucleation rate is given by the
classical formula I ∝ exp(−Hc/T ) in (9.2.30). However, at lower temperatures a quantum
nucleation mechanism is expected to be dominant [54, 55].

Furthermore, if electrons are injected into liquid 4He, the nucleation barrier can be much
reduced [56, 57]. In fact, the droplet free energy of a gas bubble around an electron is
written as

H(R) = π2h̄2

2me R2
+ 4πσ R2 + 4

3
πpR3, (9.4.29)

where the first term arises from electron confinement, with me being the electron
mass. Each electron expels liquid helium and forms a bubble with radius Rmin =
(π h̄2/8mσ)1/4 = 19 Å even at p = 0. For p < 0 the metastable and critical radii are
the solutions of |p|/(2σ/Rmin) = x−1 − x−5 < 4/55/4 where x = R/Rmin. The minimum
becomes nonexistent for |p| ≥ (16/5)(me/10π h̄2)1/4σ 5/4 ∼ 2 bar, where all the gas
droplets explode as observed [57].

9.4.4 Sound propagation in two-phase states

When systems are composed of finely divided domains, increased sound attenuation has
been observed in a number of materials. Examples are polycrystals [58, 59], fluids of emul-
sions [60]–[63], solids undergoing martensitic transitions [64], phase-separating polymer
solutions [65] and 3He–4He mixtures [66], and so on. Many years ago, Zener [58] and
Isakovich [60] independently predicted that, when the acoustic wavelength λ = 2πc/ω
is much longer than the typical domain size R, acoustic attenuation is enhanced by
small-scale heat currents between adjacent crystallites or two phases. Another well-known
attenuation mechanism is the scattering of sound by domains,3 but it decreases rapidly
and becomes negligible as λ/R → ∞ [61]. Here we will examine this problem in

3 The cross section of a droplet of radius R is of order R6/λ4 [61]. The attenuation per wavelength is then of order φ(R/λ)3 ∝
φω3 for R � λ at small droplet volume fraction φ.
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one-component fluids to predict enhanced sound attenuation in the presence of droplets
at low frequencies [67]. Similar conclusions may be drawn for binary fluid mixtures [67]
and 3He–4He mixtures [68] in two-phase states.

Temperature inhomogeneity

We assume that the acoustic frequency ω is much faster than the typical growth rate of
domains but the acoustic wavelength is much longer than the typical domain size R. All the
acoustic perturbations with subscript a are assumed to be very small and depend on time as
eiωt . Near a gas–liquid interface, the acoustic pressure perturbation δpa may be considered
to be homogeneous,4 but the acoustic temperature deviation δTa is inhomogeneous and is
calculated from

iωδTa = iω

(
∂T

∂p

)
s
δpa + D∇2δTa, (9.4.30)

which is equivalent to the first line of (6.3.15). If we require continuity of the chemical
potential at the interface, we obtain

δTa − (∂T/∂p)cxδpa = 0, (9.4.31)

at the interface. Far from the interface we also require the adiabatic condition, δTa −
(∂T/∂p)sδpa → 0. We introduce a dimensionless function F = F(r) by

δTa −
(
∂T

∂p

)
s
δpa =

[(
∂T

∂p

)
cx
−

(
∂T

∂p

)
s

]
δpaF . (9.4.32)

Then F obeys

∇2F = (iω/D)F = κ2
DF, (9.4.33)

where

κD =
√

iω/D. (9.4.34)

We may assume Re κD > 0. We solve (9.4.33) requiring that F = 1 on the interface
and F → 0 far from the interface. For example, near a planar interface, we have F =
exp(−κD|x |), where |x | is the distance from the interface. For a spherical droplet with
radius R, F is obtained as a function of the distance r from the droplet center as

F = R sinh(κDr)/r sinh(κD R) (r < R),

= R

r
exp(κD R − κDr) (r > R). (9.4.35)

Because the physical quantities are different in the gas and liquid phases, we will attach
the subscripts, 1 and 2, or � for liquid and g for gas, when necessary.

4 To be precise, the droplet radius oscillates in a sound leading to a small pressure discontinuity across the interface. This effect
may be neglected for large droplet sizes (R � d0) in small-amplitude sounds [67].
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Effective adiabatic compressibility

We consider a small volume element with linear dimension much shorter than the sound
wavelength. But it contains many domains and its boundary moves with the fluid velocity.
Its volume without sound is denoted by V and its small change due to the sound by δVa .
Then the effective adiabatic compressibility δK D(ω) is defined by

δVa/V = −K D(ω)δpa . (9.4.36)

Let ρ̄ be the average mass density given by

ρ̄ = φgρg + φ�ρ�, (9.4.37)

where φg and φ� = 1 − φg are the volume fractions of the gas and liquid phases. Then, in
a sound, ρ̄ changes by δρ̄a = −ρ̄δVa/V . The sound-wave dispersion relation is written as

ω2/k2 = 1/ρ̄K D(ω), or k = ω
√
ρ̄K D(ω). (9.4.38)

Hereafter we neglect the frequency-dependent bulk viscosity arising from the relaxation of
the thermal fluctuations.

In each phase outside the interface regions the local volume change δva ∼= −δna/n2 per
particle due to δTa and δpa is written as

δva =
(
∂v

∂p

)
s
δpa +

(
∂v

∂T

)
p

[
δTa −

(
∂T

∂p

)
s
δpa

]

= − v

ρc2
δpa

{
1 − (γs − 1)

[(
∂T

∂p

)
cx

(
∂p

∂T

)
s
− 1

]
F

}
, (9.4.39)

where use has been made of (9.4.32). In addition, in the presence of nonvanishing mass
flux w through the interface, mass conversion takes place at the interface causing a volume
change. The resultant total volume change consists of two parts as

δVa =
∫

V
dr

δva

v
+ �v

iω

∫
da

w

m0
, (9.4.40)

where
∫

da represents the surface integrations over the interfaces contained in the volume
V , �v = v2 − v1 is the volume difference per particle, and m0 is the particle mass. Using
(9D.2) and the Clausius–Clapeyron relation, we may rewrite the surface integration into
the bulk integration as

δVa =
∫

V
dr

[
δva

v
− 1

iωT

(
∂T

∂p

)
cx
λ∇2δTa

]
= −δpa

∫
dr

1

ρc2
[1 + ZF], (9.4.41)

where (1.2.53), (1.2.54) and (9.4.32) have been used in the second line, and

Z = (γs − 1)

[(
∂T

∂p

)
cx

(
∂p

∂T

)
s
− 1

]2

= ρc2

C p

(
∂s

∂p

)2

cx
. (9.4.42)
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Separating the space into the gas and liquid regions, we may rewrite the second line of
(9.4.49) as

K D(ω) =
φg

ρgc2
g

[
1 + Zg〈F〉g

] + φ�

ρ�c2
�

[
1 + Z�〈F〉"

]
, (9.4.43)

where Zg and Z� are the gas and liquid values of Z in (9.4.42), and 〈 〉g and 〈 〉� are the
space averages in the gas and liquid regions, respectively.

Near-critical fluids

Near the gas–liquid critical point we may set Z = a2
c
∼= 1 and obtain a simple expression,

K D(ω) = (ρc2)−1(1 + a2
c 〈F〉), (9.4.44)

where 〈F〉 is the space average of F . (i) The dissipation occurs in the thermal diffusion
layer around the interfaces in the relatively high-frequency region DR̄−2 � ω � t−1

ξ =
Dξ−2, where R̄ is the average droplet radius. There, we have 〈F〉 ∼= 2A/κD where A is
the surface area per unit volume, so that

K D(ω) ∼= (ρc2)−1(
1 + 2a2

c A
√

D/ iω
)
. (9.4.45)

The resultant attenuation per wavelength is given by

αDλ
∼= πa2

c A
√

2D/ω. (9.4.46)

This attenuation is much larger than that due to the thermal fluctuations calculated in
Section 6.2. (ii) We then consider a dilute assembly of spherical droplets with volume
fraction φ � 1. If the diffusion length "D = 1/|κD| =

√
D/ω is shorter than the screening

length "s = φ−1/2 R̄ introduced in (8.4.48), 〈F〉 is the sum of the space integrals of (9.4.35)
for droplets in a unit volume:

K D(ω) ∼= 1

ρc2

{
1 + 4πa2

c

κD

∫
d Rn(R)R2[

coth(κD R)+ 1
]}

, (9.4.47)

where n(R) is the droplet size distribution per unit volume. We may reproduce (9.4.45)
in the high-frequency regime. However, this expression is valid only for ω � D"−2

s =
φDR̄−2. For ω � DR̄−2 we may devise the following approximate expression [67],

K D(ω) = 1

ρc2

[
1 + a2

c
ωs

iω + ωs

]
, (9.4.48)

where

ωs = 4πndom R̄D ∼ DR̄−2φ. (9.4.49)

Here ndom = ∫
d Rn(R) is the droplet number density and ndom R̄ = ∫

d Rn(R)R ∼ "−2
s .

The resultant attenuation per wavelength becomes

αDλ
∼= πa2

c
ωsω

ω2 + ω2
s
. (9.4.50)
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This attenuation takes the maximum πa2
c/2 at the very low frequency ω = ωs. For ω � ωs

the attenuation decreases and the sound speed tends to c/(1 + a2
c )

1/2.

Fluids far from criticality

(i) The relatively high-frequency region ω � Dg R̄−2 and D�R̄−2 is realized in most
conditions of large droplet systems. As in (9.4.45) we have

K D(ω) = 1

ρ̄c2
em

+
[

1

ρgc2
g

Zg D1/2
g + 1

ρ�c2
�

Z�D1/2
�

]
A(iω)−1/2, (9.4.51)

where A is the surface area density, ρ̄ is given by (9.4.37), and cem is the sound velocity in
the Wood theory [69] determined by

1

c2
em

= (φgρg + φ�ρ�)

[
φg

ρgc2
g
+ φ�

ρ�c2
�

]
. (9.4.52)

We may derive this sound velocity generally for composite materials in an effective
medium theory neglecting heat conduction and mass conversion. In bubbly fluids, the
sound velocity is known to be much decreased in the presence of a small fraction of gas
bubbles. Its behavior is fairly well described by the above formula.

(ii) Although not realized in usual experiments, we may consider the very-low-frequency
limit where the thermal diffusion length exceeds the inter-domain distance. In this case we
have 〈F〉g ∼= 〈F〉� ∼= 1 and the sound velocity tends to that in Ref. [61]:

1

c2
L

= ρ̄K D(0) = (φgρg + φ�ρ�)

[
φg

ρgc2
g
(1 + Zg)+ φ�

ρ�c2
�

(1 + Z�)

]
. (9.4.53)

As T → Tc, we have cL → c/(1 + a2
c )

1/2.
(iii) More specifically, for liquids containing gas bubbles, we derive the counterpart of

(9.4.48) valid in the low-frequency region ω � D�R̄−2 and Dg R̄−2:

K D(ω) = 1

ρ̄c2
L

−
(

Z�

ρ�c2
�

)
iω

iω + ωs"
, (9.4.54)

where ωs" = 4πD�
∫

d Rn(R)R ∼ φg D�R̄−2. The dissipation in the liquid mainly occurs
in the liquid region. Even for small φg the attenuation per wavelength grows as ω−1 as
ω is decreased from DR̄−2 and has a maximum at ω ∼ ωs. It goes without saying that
when liquid droplets are suspended in a gas, the corresponding expression for K D(ω) can
be obtained by exchange of � and g.

(iii) If the droplet size is very large or the fluid is at very low temperatures, the thermal
conduction can become negligible in the droplet motion. For example, the motion of a gas
bubble is governed by the Rayleigh–Plesset equation in (9.5.5) below [70]. In such cases
droplets can resonate to applied sounds, leading to large oscillation of the droplet radii and
enhanced acoustic attenuation [56]. This effect is not treated here.
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9.5 Nucleation at very low temperatures

At very low temperatures, the thermal activation mechanism of nucleation should be
replaced by a quantum mechanism. Lifshitz and Kagan constructed the first seminal
theory of kinetics of first-order phase transitions at T ∼= 0 [71]. They showed that the
quantum tunneling mechanism can produce a droplet of a new phase in a metastable,
ideal incompressible fluid. In 4He at T ∼= 0, consideration has been given to first-order
phase transitions between solid and superfluid phases and between gas and superfluid
phases [54, 55]. We also mention phase separation at nearly zero temperatures in 3He–4He
mixtures [72]–[74]. Although a few experiments have already been performed, there still
remain many unsolved problems. In this section we will briefly discuss the Lifshitz–Kagan
theory of homogeneous nucleation, comparing it with the classical nucleation theory.

9.5.1 Droplet hamiltonian

The role of dissipation in the droplet motion becomes small at very low temperatures. In
such cases we need to include the kinetic energy in the droplet hamiltonian as

H = 2πρeff R3 Ṙ2 + 4πσ R2 − 4π

3
µeff R3, (9.5.1)

where Ṙ = ∂R/∂t is the interface velocity and the first term represents the kinetic energy
supported by the surrounding fluid, with ρeff being a mass density. If the surrounding fluid
(phase 2) can be treated as an incompressible liquid, the fluid velocity there is written as
v(r) = A/r2 in the radial direction r−1r. The coefficient A is determined from the mass
conservation at the interface: ρ2[v(R)− Ṙ] = −ρ1 Ṙ, so that

v(r) = (1 − ρ1/ρ2)Ṙ R2 1

r2
(r > R), (9.5.2)

where ρ1 and ρ2 are the mass densities of the inner phase 1 and the outer phase 2,
respectively. Integration of ρ2v(r)2/2 in the region r > R gives the kinetic energy with

ρeff = (ρ1 − ρ2)
2/ρ2. (9.5.3)

In particular, ρeff ∼= ρ2 = ρliq for a gas bubble. The momentum P and the mass M(R) of
the droplet are defined by

P =
(
∂H
∂ Ṙ

)
R
= M(R)Ṙ, M(R) = 4πρeff R3. (9.5.4)

In terms of R and P the kinetic energy is written as P2/2M(R). The dynamics is obtained
from the canonical equations, Ṙ = ∂H/∂P and Ṗ = −∂H/∂R, leading to

ρeff

(
R R̈ + 3

2
Ṙ2

)
= −2σ

R
+ µeff, (9.5.5)

where R̈ = ∂2 R/∂t2. For a gas bubble, this equation is known as the Rayleigh–Plesset
equation [70], where µeff = p′(t) − p∞(t) is generally time dependent with p′(t) and
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p∞(t) being the pressures inside and far from the droplet, respectively. Note that the
timescale of the heat conduction is R2/D, where D is the thermal diffusion constant.
When |Ṙ| � D/R, the effect of the heat conduction is negligible and the droplet expands
or shrinks adiabatically.

In the metastable case µeff > 0 and R � Rc, the interface velocity Ṙ tends to a terminal
velocity given by

v∞ = (2µeff/3ρeff)
1/2, (9.5.6)

which is slower than the sound velocity for weak metastability. For a gas bubble at a
negative pressure p = p∞, we have v∞ = (2|p|/3ρliq)

1/2. In particular, if the initial
droplet kinetic energy is very small and the droplet is expanding, the droplet velocity is
given by

Ṙ = [2|U (R)|/M(R)]1/2 = v∞(1 − R0/R)1/2, (9.5.7)

where R0 is the radius at the turning point of the potential U (R) = 4πσ R2 − 4πµeff R3/3
or

R0 = 3σ/µeff = 1.5Rc. (9.5.8)

9.5.2 Quantization

Lifshitz and Kagan [71] quantized the above H by treating P as the following operator,

P = h̄

i

∂

∂R
, (9.5.9)

which gives the usual commutation relation P R− R P = h̄/ i , h̄ being the Planck constant.
Here the mass M(R) depends on R and does not commute with P , so ambiguity arises in
the form of the kinetic energy but is negligible for large R which satisfies

(h̄/R)2/2M(R) � 4πσ R2. (9.5.10)

This condition may be rewritten as R � RQ with

RQ = (
h̄2/

32π2ρeffσ
)1/7

, (9.5.11)

which is of order 1 Å for 4He. The quasi-classical (WKB) approximation for the wave
function can be used under the condition (9.5.10) or for R � RQ [75]. We should also
note that the Lifshitz–Kagan hamiltonian is based on the droplet picture and is meaningful
only when R is longer than the interface thickness (∼ RQ). In terms of RQ, the ground-state
energy of H on the coexistence curve (µeff = 0) is of the following order,

Eg = 4πσ R2
Q. (9.5.12)

In the quantum-mechanical treatment we solve the Schrödinger equation,

i h̄
∂

∂t
& = H&. (9.5.13)
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The wave function &(R, t) is localized in the region R ∼ RQ at t = 0 but becomes
nonvanishing in the region R > R0 after an incubation time. The behavior of the wave
function & around R ∼= R0 is important in the quantum case, while the behavior of the
droplet size distribution function near the classical critical radius Rc is important in the
classical case. Assuming that & is very small in the region R > R0, we normalize & as∫ R0

0
d R |&(R, t)|2 ∼= 1. (9.5.14)

The smallness parameter is the ratio of the two lengths,

∆Q = RQ/R0 = (RQ/3σ)µeff, (9.5.15)

which may be used as the quantum-mechanical supersaturation. The maximum Umax of
the potential U (R) is much larger than Eg in (9.5.12) from

Umax ∼ 4πσ R2
0 ∼ Eg/∆

2
Q. (9.5.16)

9.5.3 Quantum nucleation rate

In the region R < R0, & is nearly independent of time and may be calculated in the
WKB approximation [75]. As in the classical case, we assume that & is nearly equal to the
ground-state wave function for µeff = 0 in the region R � RQ. Because Eg is small, we
may set H& ∼= 0 with & = exp[i S0/h̄ + i S1 + O(h̄)]. The result up to S1 is written as

& = C

[
M(R)

U (R)

]1/4

exp

[
−1

h̄

∫ R

0
d R′√2M(R′)U (R′)

]
, (9.5.17)

which holds for RQ � R < R0. The above result is not affected by the ambiguity in the
kinetic energy arising from the R dependence of M(R). The coefficient C is independent
of µeff and is determined from (9.5.14), so C2 ∼ h̄/(ρeff R5

Q). For RQ � R � R0, &
rapidly decays as

& ∼ R1/4 exp

[
−2

7
(R/RQ)

7/2
]
, (9.5.18)

which is analogous to (9.1.25). As R → R0, & behaves as

& ∼= C

[
M0

U ′
0(R0 − R)

]1/4

exp

[
−A+ 2

3

(
R0 − R

a0

)3/2]
, (9.5.19)

where the coefficients near the turning point are

M0 = M(R0) = 4πρeff R3
0, U ′

0 = 4πσ R0, a0 = (h̄2/2M0U ′
0)

1/3. (9.5.20)

The length a0 is also expressed as a0 = (R7
Q/R4

0)
1/3 = RQ∆

4/3
Q and is very small (� RQ),

which corresponds to εRc in (9.2.8). The A in (9.5.19) is the action integral,

A = 1

h̄

∫ R0

0
d R

√
2M(R)U (R). (9.5.21)
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In the present problem the above integral is performed to give

A = (5π2/32h̄)(2ρeffσ)
1/2 R7/2

0 = (5π/128)∆−7/2
Q . (9.5.22)

In the region R > R0, however, & depends on t . It should vanish for R > Rmax(t),
where Rmax(t) ∼= v∞t is the upper cut-off radius after quenching the system at t = 0.
Analogous to the classical case, the quantum-mechanical probability distribution in the
region R0 < R < Rmax(t) behaves as

|&(R, t)|2 = �Q/Ṙ, (9.5.23)

where Ṙ is the classical velocity in (9.5.7). Because
∫ Rmax

R0
d R Ṙ−1 ∼= t , the probability

that R exceeds R0 is proportional to t as∫ Rmax

R0

d R |&(R)|2 ∼= �Qt. (9.5.24)

From (9F.6) in Appendix 9F the decay rate �Q is estimated as

�Q ∼ 1

h̄
Eg exp(−2A). (9.5.25)

To calculate the nucleation rate I , Lifshitz and Kagan multiplied �Q by the number density
N0 of virtual centers of precipitating droplets, which should be in the range n0 < N0 <

4/3πR3
0, n0 being the particle number density. Then,

I = I0 exp(−2A), (9.5.26)

where I0 ∼ N0 Eg/h̄ is a microscopic number. Because the droplet growth for R > R0 is
rapid, nucleation will be completed even with growth of a single droplet and the nucleation
time is given by (9.2.24). The crossover temperature T ∗ from the thermal activation to
quantum tunneling mechanisms may be estimated as

T ∗ ∼ Umax/A ∼ Eg/∆
3/2
Q . (9.5.27)

Experimentally, the (negative) pressure [55] or supersaturation [74] at which phase sepa-
ration was observed became independent of T below a certain crossover temperature. This
indicates the relevance of quantum fluctuations in nucleation. However, it is not conclusive
at present whether or not the Lifshitz–Kagan theory provides the real quantum mechanism.
For example, nucleation around a vortex line might be relevant.

9.6 Viscoelastic nucleation in polymers

Not enough attention has so far been paid to nucleation phenomena in polymeric systems,
neither theoretically nor experimentally, whereas many experimental results have been ob-
tained on spinodal decomposition, as described in Section 8.9. Krishnamurthy and Bansil
[76] performed a light scattering experiment on a metastable polymer solution near the
critical point. They found a large asymmetry between the growth of polymer-rich droplets
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and that of polymer-poor droplets even relatively close to the critical point. They ascribed
this asymmetry to a strong concentration dependence of the viscosity and the diffusion
constant. Balsara et al. observed early-stage nucleation in a ternary mixture of A polymers,
B polymers, and A–B diblock copolymers by small-angle neutron scattering [77], where
the copolymers serve to reduce the surface tension. Theoretically, nucleation in polymer
blends has been treated within the traditional scheme for low-molecular-weight fluids [78],
but the stress–diffusion coupling introduced in Section 7.1 has been overlooked. The aim of
this section is to show that stress–diffusion coupling can drastically slow down the growth
of droplets if the droplet radius is shorter than the viscoelastic length ξve in (7.1.68) or
(7.1.72). In our theory [79], most important will be a modified Gibbs–Thomson relation at
the interface, which accounts for the relaxing network stress.

9.6.1 Supersaturation and the critical radius

Using the Flory–Huggins theory in Section 3.5 and (9.1.9)–(9.1.17), we first calculate the
supersaturation ∆ = (φ

(1)
cx − M)/�φ, the capillary length d0, and the critical radius Rc =

2d0/∆ in metastable polymer systems. Hereafter we will consider only the initial stage of
nucleation and write the average volume fraction M = 〈φ〉 simply as φ.

Semidilute polymer solutions

As discussed in Section 3.5, a very dilute phase with φ
(2)
cx ∼= 0 and a semidilute phase with

φ
(1)
cx ∼= 3(χ−1/2) can coexist macroscopically with almost vanishing osmotic pressure on

the coexistence curve T = Tcx(φ), where χ is the interaction parameter. If the temperature
T is slightly below Tcx and the deviation δT = Tcx − T is increased at constant φ (>
φc = N−1/2), we enter into a metastable region with � ∼= −Kos∆ < 0. Assuming that χ
depends on T as ∂χ/∂T = −χ1 with χ1 being a positive constant, we obtain

φ(1)
cx

∼= 3χ1�T, φ(1)
cx − φ ∼= 3χ1δT, (9.6.1)

where �T ≡ Tc − Tcx and δT ≡ Tcx − T as in Section 9.1. Therefore,

∆ ∼= δT/�T . (9.6.2)

From (3.5.24) and (4.4.34) we find Kos ∼= v−1
0 Tφ3/3 and σ ∼= T a−2φ2/12 near the

coexistence curve, where a = v
1/3
0 is the monomer size, so that

d0 ∼= 1

4
aφ−1, Rc ∼= 1

2
a(φ∆)−1. (9.6.3)

The free energy to produce a critical droplet in (9.1.2) is expressed as

Hc ∼= π

48
∆−2T . (9.6.4)



9.6 Viscoelastic nucleation in polymers 535

Polymer blends

We consider polymer blends with N1 ≥ N2 � 1 in the mean field critical region (4.2.39).
We define

εχ = χ/χc − 1 = (N1 N2)
−1/2(1 − T/Tc)/Gi. (9.6.5)

Some calculations yield

�φ ∼ [φc(1 − φc)]
1/2ε1/2

χ , χ−1
φ = (T v0)

−1 f ′′site ∼ v−1
0 χcεχ , (9.6.6)

where φc is given by (3.5.33). The capillary length and surface tension are estimated as

d0 ∼ ξ ∼ a(N1 N2)
1/4ε−1/2

χ , σ ∼ T a−2(N1 N2)
−1/4ε3/2

χ , (9.6.7)

where the behavior of σ is consistent with (4.4.42). Therefore, in accord with the general
result (9.2.37)–(9.2.39), the free energy to create a critical droplet is estimated as

Hc ∼ (N1 N2)
1/4ε1/2

χ ∆−2T . (9.6.8)

The nucleation barrier is enlarged by the factor (N1 N2)
1/4ε

1/2
χ in the mean field critical

region, indicating suppression of the nucleation rate.

9.6.2 Viscoelastic Gibbs–Thomson relation

Polymer solutions

We set up the interfacial boundary condition around a solvent-rich spherical droplet in a
semidilute polymer solution. In the presence of a nonvanishing network stress, the stress
balance at the interface yields

δp − Sn + 2σ

R
= δp0, (9.6.9)

where

Sn = n · →←
σσσ · n (9.6.10)

is the normal component of the network stress outside the droplet, δp is the pressure
deviation outside the droplet, and δp0 that inside it. We assume that Sn is nonvanishing
only outside the droplet, because the network structure should be anisotropic (isotropic)
outside (inside) the droplet. Here the continuity of the solvent chemical potential µs gives
δp − δp0 = �, as derived in (3.5.19). It then follows a modified Gibbs–Thomson relation
at the interface,

Kos(φ/φ
(1)
cx − 1)− Sn + 2σ

R
= 0, (9.6.11)

where φ is the volume fraction immediately outside the droplet.
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Polymer blends

We next calculate the discontinuities of the chemical potentials µ1 and µ2 per unit mass
in (7.1.4) across the interface. To this end we assume that the two-fluid dynamic equations
(7.1.16) and (7.1.17) hold even in the interface region. We divide them by φK = ρK /ρ

and integrate over the region |r − R| � ξ . Then, using the intermediate stress division
(7.1.38), we may calculate the differences [µK ] ≡ (µK )+ − (µK )− (K = 1, 2), where
the subscripts, + and −, denote the values at r ∼= R + ξ and r ∼= R − ξ , respectively.
Assuming (7.1.1) and using (7.1.40), we find

ρ[µ1] = α1

φ1
Sn = [

1 + (1 − φ(1)
cx )α

]
Sn,

ρ[µ2] = α2

φ2
Sn = (

1 − φ(1)
cx α

)
Sn, (9.6.12)

where ρ is the mass density assumed to be a constant and φ
(1)
cx is the volume fraction of

the first component outside the droplet. Note that αK , φK , and Sn in (9.6.12) are the values
immediately outside the droplet because the network stress is assumed to vanish inside the
droplet. The discontinuity of the chemical potential difference then becomes

ρ(µ1 − µ2) = αSn. (9.6.13)

Here ρ(µ1 −µ2) = v−1
0 f ′site holds outside the interface region from (7.1.6). Therefore, the

above relation is rewritten as

r̄1(1 − r̄2(2 = αSn. (9.6.14)

For simplicity, we write r̄K ≡ v−1
0 f ′′site at φ = φ

(K )
cx (equal to the values of r in (7.1.7)

multiplied by T in the two phases). The deviations (K are defined by (1 ≡ φ − φ
(1)
cx and

(2 ≡ φ − φ
(2)
cx immediately outside and inside the droplet, respectively.

Next, from (3.5.31) we may relate the chemical potential of the second component (per
unit mass) to the pressure deviation δp as ρµ2 = δp + ( fsite − φ f ′site)/v0 outside the

interface region. Expanding this expression around φ
(K )
cx (K = 1, 2), we find

ρµ2 = δp − φ(K )
cx r̄K(K . (9.6.15)

Together with the second line of (9.6.12) we may express the pressure discontinuity as

[δp] = φ(1)
cx r̄1(1 − φ(2)

cx r̄2(2 + [1 − φ(1)
cx α]Sn

= (�φ)r̄1&1 + [1 − α(�φ)]Sn. (9.6.16)

In the second line, (2 has been eliminated using (9.6.14). The stress-balance equation
(9.6.9) also holds for polymer blends, leading to

(�φ)r̄1(1 − α(�φ)Sn + 2σ

R
= 0. (9.6.17)

If we set α = 1/φ and �φ = φ, the above relation reduces to (9.6.11) for polymer
solutions.
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9.6.3 Viscoelastic stress

Next we need to express Sn in terms of R and ∆ to construct the evolution equation of R.
We assume that the growth rate is much slower than the stress relaxation time τ . Then the
network stress σi j may be expressed in terms of the tube velocity vvvt as (7.1.46) and (7.1.47)
in the linear regime. We note that the velocity fields outside the droplet can be calculated
from the mass conservation relations across the interface,[

ρK

(
vvvK · n − ∂

∂t
R

)]
= 0 (K = 1, 2), (9.6.18)

where n = r−1r is the outward normal unit vector. Because the velocities inside the droplet
vanish, these relations are rewritten as

φ(1)
cx vvv1 · n = (�φ)

∂

∂t
R, (1 − φ(1)

cx )vvv2 · n = −(�φ)
∂

∂t
R. (9.6.19)

The tube velocity (7.1.45) immediately outside the droplet is given by

vvvt · n = (α1vvv1 + α2vvv2) · n = α(�φ)
∂

∂t
R. (9.6.20)

Outside the droplet we require ∇ · vvvK ∼= 0 because ∂ρK /∂t ∼= 0, so that vvvK ∝ ∇(1/r) for
r > R or

vvvt(r, t) = α(�φ)

(
∂R

∂t

)
R2

r3
r. (9.6.21)

For slow motions we thus have

σi j = Sn

(
3

2r2
xi x j − 1

2
δi j

)
R3

r3
, (9.6.22)

where the normal stress at the interface Sn is expressed as

Sn = −4α(�φ)η
1

R

(
∂

∂t
R

)
. (9.6.23)

Substitution of the above result into (9.6.17) gives the desired result,

(1

�φ
+ 4α2η

r̄1 R

(
∂

∂t
R

)
+ 2d0

R
= 0, (9.6.24)

where d0 is the capillary length defined by (9.1.17).

9.6.4 Modified Lifshitz–Slyozov equation

The deviation δφ ≡ φ − φ
(1)
cx outside the droplet obeys the diffusion equation or the

modified diffusion equation (7.1.71) for slow motions. As in usual fluids, we use the
quasi-static condition ∂δφ/∂t ∼= 0 or ∇2δφ ∼= 0 for r > R to obtain

δφ(r, t) = R

r
(1 −

(
1 − R

r

)
(�φ)∆. (9.6.25)
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The above solution satisfies the boundary condition at r = R and tends to −(�φ)∆ for
r � R. Then the evolution equation for R is given by

∂

∂t
R = − 1

�φ
Dm

(
∂

∂r
δφ

)
r=R

= Dm

R

[
�+ (1

∆φ

]
, (9.6.26)

where Dm = Lr̄1 is the mutual diffusion constant in phase 1 as given in (7.1.27) and
(7.1.50). From (9.6.24) we arrive at

∂

∂t
R = Dm

(
∆− 2d0

R

)/(
R + 3

ξ2
ve

R

)
, (9.6.27)

where ξve is the viscoelastic length defined by (7.1.65). This result may be interpreted as
originating from renormalization of the kinetic coefficient from L to Leff(R) = L/(1 +
3ξ2

ve/R2) for droplets, which is analogous to that in (7.1.68) for plane-wave fluctuations.
Thus, the Lifshitz–Slyozov theory holds only for R � ξve, while small droplets with

R � ξve are governed by

∂

∂t
R ∼= �c(R − Rc). (9.6.28)

The growth rate is given by

�c = 1

3
Dmξ

−2
ve ∆ = 1

3
εrτ

−1∆, (9.6.29)

where εr is defined by (8.9.1). When εr � 1, �c can be much smaller than τ−1. In particular,
for polymer solutions, we have

�c = σ

2ηRc
= Tφ3

12ηa3
∆ ∼ τ−1∆. (9.6.30)

In experiments, it is of great interest to investigate nucleation in the case Rc < ξve or
∆ > d0/ξve. For polymer solutions we have d0/ξve ∼ (η0/η)

1/2. For polymer blends with
N1/N2 − 1 ∼ 1, (7.1.74) gives d0/ξve ∼ ξ/L t ∼ (Ne/N1εχ )

1/2, where εχ is defined
by (9.6.5). We can see that there is a crossover from the viscoelastic slowing-down into
the critical slowing-down as the critical point is approached. The former is more apparent
away from the critical point. In addition, we expect a considerable decrease of σ or d0/ξve

in the presence of A–B diblock copolymers which come together in the interface region
of A and B homopolymers [77]. Thus addition of such diblock copolymers will make the
viscoelastic effect unambiguously observable.

9.7 Intrinsic critical velocity in superfluid helium

Superfluid states with a superfluid velocity us are metastable in a toroidal geometry where
the macroscopic normal fluid velocity un vanishes. If us is small, it decays slowly with
nucleation and growth of vortices [80]–[84].
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9.7.1 Current-carrying states

We consider superfluid 4He at low temperatures in a cylindrical container with cross-
sectional area A0 and length L0. In this geometry, macroscopic superfluid currents parallel
to the cylindrical axis can flow without appreciable decay within observation times if the
flow velocity is below a certain critical velocity usc. Experimentally, the container can be
packed with a porous substance that clamps the normal fluid component (un = 0). In this
case the complex order parameter behaves as5

ψ(x) = M exp(ikx) with k = 2π j/L0, (9.7.1)

where x is the coordinate along the cylinder axis, and j is an integer ensuring the periodic
boundary condition ψ(x) = ψ(x + L0). We assume j � 1 hereafter. The macroscopic
superfluid velocity is given by

us = h̄

m4
k. (9.7.2)

Minimization of the GLW hamiltonian H in (4.1.1) yields the amplitude,

M = [(κ2 − k2)/u0]1/2 (9.7.3)

in the mean field theory, where κ2 = −r0, K = 1, and h = 0. The minimum of H depends
on k2 as

Hmin(k) = −1

4
V u0 M2 = Hmin(0)+ 1

2
Vρsu

2
s + O(k4), (9.7.4)

where V = A0L0 is the volume. The one-dimensional solution (9.7.1) thus represents a
metastable state for small k. To examine its linear stability, we write ψ as

ψ = (M + w1 + iw2) exp(ikx), (9.7.5)

where w1 and w2 are real numbers. The GLW hamiltonian (4.1.1) is then expressed as

H = Hmin(k)+
∫

dr
[
(κ2 − 3k2)w2

1 + 1

2
|∇w1|2 + 1

2
|∇w2 + 2kw1ex |2

+ u0 Mw1(w
2
1 + w2

2)+
1

4
u0(w

2
1 + w2

2)
2
]
, (9.7.6)

where ex is the unit vector along the cylinder axis. Therefore, current-carrying states in the
form of (9.7.1) are metastable only for

k <
1√
3
κ, (9.7.7)

and are linearly unstable for k > κ/
√

3 (the Eckhaus instability). This stability criterion
follows in the general Ginzburg–Landau theory [82, 85]. We note that the superfluid current
Js ∝ (κ2 − k2)k takes a maximum at k = κ/

√
3 and the above stability criterion is

equivalent to ∂ Js/∂k > 0. Analogously, in superconducting wires or films, the so-called
critical current has been determined by the same criterion [86].

5 We neglect variations of ψ near the boundary wall within the correlation length.
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Fig. 9.20. Phase contours for a single vortex line with superimposed uniform flow normal to the line
[82].

9.7.2 Nucleation of vortex rings

For k � κ/
√

3, the decay mechanism of the superfluid velocity has been ascribed to
vortex line motion perpendicular to the flow, as illustrated in Fig. 9.20. Let a vortex ring
with radius R be perpendicular to the flow with us = b · us > 0 in the case un = 0. We
rewrite (8.10.28) as

∂

∂t
R = α

(
us − h̄E0

2m4 R

)
= αus

(
1 − Rc

R

)
, (9.7.8)

where α is the mutual friction coefficient, and E0 ∼= ln(R/ξ) is logarithmically dependent
on R but will be treated as a constant considerably larger than 1. Note that us plays the role
of a magnetic field in metastable spin systems. If R is larger than the critical radius Rc in
(8.10.29), the ring will grow and eventually disappear at the boundary. In this elementary
process, the phase of the complex order parameter is decreased by 2π or j → j − 1 in
(9.7.1). Such vortex rings can appear as rare thermal fluctuations and hence us decays as
[82]

∂

∂t
us = −2π h̄

m4
A0 I (us), (9.7.9)

where I (us) is the nucleation rate of vortex rings with R > Rc per unit volume.
From (8.10.23) the free energy to create a vortex ring is given by

H̃v = ρs

(
π h̄

m4

)2

E0
(
2R − R2/Rc

)
. (9.7.10)
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The evolution equation (9.7.8) is then rewritten as

∂

∂t
R = −

(
m4α

4π h̄ρs R

)
∂

∂R
H̃v. (9.7.11)

The above equation may be treated as a Langevin equation in the standard form if we
add the noise term related to the kinetic coefficient L(R) = m4α/4π h̄ρsT R via the
fluctuation–dissipation relation [80]. Note that we derived H̃v in (8.10.22) by analyzing
the vortex motion, whereas in the literature [81] it has been derived using the relation
ε = ε0 − pus between the energies, ε and ε0, of an elementary excitation with momentum
p in the moving and static reference frames, respectively. This picture is justified only
without dissipation, however. For the present case of a vortex ring we have

H̃v = Ering − p0us, (9.7.12)

where Ering = Ering(R) is the vortex free energy in the static reference frame in (4.5.12)
and p0 = p0(R) is the momentum of the vortex ring. We may determine p0 such that H̃v

takes a maximum at R = Rc, which gives6

p0 = (2π2h̄/m4)ρs R2. (9.7.13)

The maximum of H̃v is given by

Hvc = (π h̄/m4)
2ρs E0 Rc = T u0/us, (9.7.14)

where u0 is a characteristic velocity defined by

u0 = (πE0)
2h̄3ρs/2m3

4T . (9.7.15)

Near the λ point we use the transverse correlation length ξT ∼= 3.4(1 − T/Tλ)−2/3 Å in
(4.3.105). It satisfies (4.3.107), so that

u0 = (πE0)
2h̄/2m4ξT, Hvc/T = π2 E0 Rc/ξT. (9.7.16)

Langer and Reppy [82] set

I (us) = ν0 exp(−Hsc/T ) = ν0 exp(−u0/us), (9.7.17)

where ν0 is a phenomenological constant. Using (9.1.26) and the first line of (9.2.30), we
estimate it near the λ point as

ν0 ∼ α
h̄

m4
R−3/2

c ξ
−1/2
T ∼ �ξξ

−3
T (ξT/Rc)

3/2, (9.7.18)

where �ξ (∝ ξ−z
T ) is the typical order parameter relaxation rate. Its form above Tλ is given

by (6.6.44).

6 If Ering is regarded as a hamiltonian dependent on p0, we have a conjugate velocity v0 = d Ering/dp0 = (h̄E0/2m4)/R.
From (4.5.24) this is the velocity of a vortex ring perpendicular to the ring, in the dissipationless limit.
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Fig. 9.21. Superfluid critical velocities vsc obtained for flow through 500 Å and 2000 Å filter
materials, and through Vycor glass as a function of temperature [82, 83].

9.7.3 Critical velocity

Experimentally, at a well-defined critical velocity us = usc, |dus/dt | takes a characteristic,
observable value (0, while it is not appreciable for us slightly below usc in realistic
observation times. In Fig. 9.21 we plot the critical velocity curves, usc vs T , measured
by Clow and Reppy [83]. Close to the λ point the curves for the 500 Å and 2000 Å are
represented by

usc = 670(1 − T/Tλ)
2/3 cm/s. (9.7.19)

To check the stability condition (9.7.7) we set κ = ξ−1
+0 (1−T/Tλ)2/3 using ξ+0 = 1.4 Å at

SVP determined below (2.4.4). Then the experimental critical wave number kc ≡ m4usc/h̄
is written as

kc = 0.062κ. (9.7.20)

The coefficient is one order of magnitude smaller than 1/
√

3 in (9.7.7). This is a natural
result because (9.7.7) and (9.7.20) give the threshold of linear instability of plane-wave
perturbations and nucleation of vortices, respectively.

Theoretically, the critical velocity usc is determined from (9.7.9) by [82]

(0 = 2π h̄

m4
A0 I (usc) = 2π h̄

m4
A0ν0 exp

(
− u0

usc

)
, (9.7.21)

so that

usc = u0/γ, (9.7.22)
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where

γ = ln(2π h̄ A0ν0/m4(0). (9.7.23)

Then (9.7.9) may be expressed as

∂

∂t
us = −(0 exp

[
γ (1 − usc/us)

]
. (9.7.24)

Note that usc depends weakly on the experimental conditions. Experimentally, if the decay
of us is fitted to (9.7.24), γ may be determined as an adjustable parameter. In this manner
Clow and Reppy obtained γ ∼= 46 near the λ point. Theoretically, Langer and Reppy found
γ ∼= 53 and usc = 4800(1 − T/Tλ)2/3 cm/s by setting (0 = 1 cm/s2 and A0 = 10−8 cm2

(∼ the square of the pore size of the porous substance). Thus the simple homogeneous
nucleation theory presented so far is not in quantitative agreement with experiment.

Appendix 9A Relaxation to the steady droplet distribution

Here we solve the (unstable) linearized Fokker–Planck equation (9.2.5) or (9.2.9) under
ε � 1. The variable we use is x = (R − Rc)/εRc and the equation is valid in the region
|x | � ε−1. Starting with an initial distribution nini(x) at t = t0 ∼ �−1

c , we calculate the
subsequent solution for t > t0 in the form,

n(x, t) =
∫

dx0 φ(x, x0, t − t0) nini(x0). (9A.1)

The φ(x, x0, t − t0) is the conditional probability that x is equal to the initial value x0 at
t = t0:

φ(x, x0, t − t0) → δ(x − x0) as t → t0. (9A.2)

It is calculated in the following gaussian form,

φ(x, x0, t − t0) = 1√
2π(q2 − 1)

exp

[
− (x − qx0)

2

2(q2 − 1)

]
, (9A.3)

where

q = exp[�c(t − t0)]. (9A.4)

The initial time t0 is chosen such that nini(x) ∼= ns(x) ∼= C0 exp(x2/2) for x � −1 and
nini(x) � C0 for x � 1. In the case of Fig. 9.5 we clearly have t0 = �−1

c .
As an illustrative example, let us assume

nini(x) = C0 exp

(
1

2
x2

)
(x < −M), nini(x) = D0e−αx (x > −M), (9A.5)

where M is of order 1. In Fig. 9.5 the above form holds with M ∼ 2 and α ∼ 1 at
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t = �−1
c . First, the contribution from the region x0 < −M is calculated in (9A.1). By

setting y = −x0/(q2 − 1)1/2 we have

n<(x, t) = C0√
2π

∫ ∞

M∗
dy exp

[
− x2

2(q2 − 1)
− qxy√

q2 − 1
− y2

2

]
∼= C0√

2π

1

x
exp

(
−1

2
X2

)
, (9A.6)

where M∗ = M/(q2 − 1)1/2. The second line holds for x � 1 and q � 1, and

X = x/q = x exp[−�c(t − t0)]. (9A.7)

Second, from the region x0 > −M and in the case q � 1, we obtain

n>(x, t) ∼= D0√
2πq

∫ ∞

−M
dx0 exp

[
−1

2
(X − x0)

2 − αx0

]
∼= D0q−1 exp(−αX), (9A.8)

where the second line holds for X � 1. Thus,

n(x, t) = n>(x, t)+ n<(x, t) ∼= C0√
2π

1

x
F(X), (9A.9)

where

F(X) = exp

(
−1

2
X2

)
+

√
2π

D0

C0
X exp(−αX). (9A.10)

We substitute the above results into (9.2.13) replacing x and t by x = (R1 − Rc)/εRc and
t1. Further replacing R2 and t2 in (9.2.13) by R and t , we may calculate n(R, t) for larger
R/Rc − 1 � ε and t � t0 as

n(R, t) = I

v(R)
F(X). (9A.11)

Use has been made of the relation
√

2π I = C0�cεRc for the nucleation rate I in terms of
C0, which follows from (9.2.30) and (9.2.31). From the mapping relation (9.2.16) we have

X = x exp
[−�c(t1 − t0)

] = 1

ε
(R/Rc − 1) exp

[
G(R/Rc)− �c(t − t0)

]
, (9A.12)

where G(R/Rc) is defined by (9.2.17). We can see that X changes from a very small
number (∼= 0) to a very large number (� 1) as R exceeds Rmax(t) in a changeover region
with a width estimated as (9.2.26). From F(0) = 1 we also find (9.2.33).

Appendix 9B The nucleation rate near the critical point

We estimate Ad0 in (9.3.38) and C0 in (9.3.40) close to the critical point in 3D Ising-
like systems. In terms of the universal number Aσ

∼= 0.09 in (4.4.11) and the critical
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amplitudes, B0 in ψeq = B0(1 − T/Tc)
β and �0 in χ = �′

0(1 − T/Tc)
−γ , we obtain

Ad0 = �′
0 Aσ /[4B2

0 (ξ0−)3] ∼= 0.10 (9B.1)

from the universal relations among critical amplitudes (see Chapter 4). This value is
considerably smaller than the mean field value 1/6 = 0.145. Then,

C0 = (16π/3)Aσ A2
d0

∼= 0.015, (9B.2)

x0 = (2/β)C1/2
0

∼= 0.74. (9B.3)

Similar estimations were presented in Ref. [6], while Langer and Schwarz set x0 = 1.24–
1.30 in analyzing experiments [28]. There seems to be some uncertainty both in the critical
amplitude ratios and in the experimental data to determine C0 or x0 conclusively.

Appendix 9C The asymptotic scaling functions in droplet growth

By assuming the scaling solution n(r, τ ) ∝ p(τ )4 Pλ(u) in (9.3.21), we obtain

d

du
[χ(u)Pλ(u)] = −3Pλ(u) (9C.1)

with

χ(u) = u − γ0

(
1

u
− 1

u2

)
= 1

u2
(u − u1)(u − u2)(u − u3). (9C.2)

The parameter γ0 is defined by

γ0 = 3(p∗)3, (9C.3)

where p∗ is the coefficient in (9.3.23). Let the equation χ(u) = 0 have three real solutions
u = u1, u2, and u3. Then they satisfy u3 < 0 < u1 ≤ u2 and may be expressed in terms
of a parameter s as [39]

u1 = 1 + 4

s2 − 1
, u2 = s − 1

2
u1, u3 = − s + 1

2
u1, (9C.4)

where s ≥ 3 to guarantee u1 ≤ u2, and

γ0 = −u1u2u3 = 1

4
(s2 − 1)−2(s2 + 3)3. (9C.5)

We then integrate (9C.1) as

Pλ(u) = const.

χ(u)
exp

[
−3

∫ u

0
du′ 1

χ(u′)

]

= Dλ

u2

(u − u3)6

(
u − u3

u2 − u

)µ(
u1 − u

u2 − u

)λ

, (9C.6)
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where Dλ is a constant and

λ = 21 − s2

s2 − 9
, µ = 4 − s2 + 3

2s(s + 3)
. (9C.7)

We notice that Pλ(u) can have the meaning of the dimensionless distribution in the region
0 < u < u1 for λ > 0 or 3 ≤ s <

√
21. We determine Dλ from the normalization (9.3.34).

Integrating (9C.1) in the region 0 < u < u1 we find

Dλ = 3γ0

(
s − 1

2

)λ+2(
s + 1

s − 1

)4−µ

. (9C.8)

Multiplying (9C.1) by u3 and integrating in the region 0 < u < u1 also gives (9.3.34).
The scaling function in the LWM theory can be reproduced in the limit λ → ∞ or s → 3,
where u3 → −3, u2 − u1 ∼= (s − 3)u1/2, u1 → 3/2, and the last factor in (9C.6) becomes(

u1 − u

u2 − u

)λ

→ exp

(
− u1

u1 − u

)
, (9C.9)

which leads to the LSW result (9.3.26). The parameter γ0 in (9C.5) decreases from 8.64 to
6.75 as λ increases from 0 to ∞. It is known that there is no physically meaningful attractor
for the case γ0 < 6.75 [39].

Appendix 9D Moving domains in the dissipative regime

Here we consider the linear deviations in a two-phase state of a one-component fluid in the
strongly dissipative regime. Let vvv1,vvv2, and vvvint be the fluid velocities immediately inside
and outside a droplet and the interface velocity, respectively. Then the mass current through
the interface in the normal direction is given by

w = ρ1(vvv1 − vvvint) · n = ρ2(vvv2 − vvvint) · n, (9D.1)

where the normal unit vector n is pointed from phase 1 to phase 2. The energy current near
the interface is (eα + pα)(vvvα − vvvint)− λα∇δTα (α = 1, 2) in the reference frame moving
with the interface, where eα is the energy density, pα is the pressure, and λα is the thermal
conductivity in the phase α. We then use the thermodynamic identity e + p = n(sT + µ),
where s and µ are the entropy and the chemical potential per particle. Because µ1 = µ2,
the continuity of the energy current along n yields

T (�s)m−1
0 w = [

λ2∇δT2 − λ1∇δT1
] · n, (9D.2)

where (9D.1) has been used and m0 = ρ/n is the particle mass. For a spherical domain of
phase 1 with radius R, we may set vvv1 = 0, vvvint · n = ∂R/∂t , and w = −ρ1∂R/∂t . Thus,

T n1(�s)
∂

∂t
R = −λ2

(
∂

∂r
δT2

)
r→R

, (9D.3)

which leads to (9.4.8).
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Appendix 9E Piston effect in the presence of growing droplets

We consider a slightly metastable liquid in which gas bubbles with a small volume fraction
q(t) are growing in a cell with a fixed volume V0. In the interior liquid region outside the
droplets, the average pressure deviation is written as

δp∞(t) = Apq(t)+
(
∂p

∂s

)
n

QT (t)

nT V0
, (9E.1)

where the first term is the pressure increase due to the droplet formation, and the second
term is that due to the heat supply QT (t) from the boundary. (See (6.3.2) and (6.3.3) for
the case without droplets.) The bubbles may be regarded as tiny pistons within the liquid.
The coefficient Ap is written as

Ap =
(
∂p

∂n

)
s
(�n)+

(
∂p

∂s

)
n
(�s) = ac

n|�s|T√
CV C p

(
∂p

∂T

)
cx
, (9E.2)

where use has been made of (1.2.53), (2.2.21), and (2.2.39). The first term (∝ �n =
n� − ng ∼= −v−2�v > 0) arises from the density difference between the two phases, and
the second one (∝ �s = s� − sg < 0) from the latent heat, where the quantities with
subscript � (g) are those in the liquid (gas) phase. These two terms have opposite signs
and largely cancel each other. As in Appendix 6D, we perform the Laplace transformation∫ ∞

0 dte−�t (· · ·) in the case Dt � L2 or � � D/L2, where L ∼ V 1/3
0 is the system

length. The condition of the constant temperature at the boundary gives∫ ∞

0
dte−�tδp∞(t) = Apw

1 + w
q̃(�)+

(
∂p

∂T

)
s

T1

�(1 + w)
, (9E.3)

where w = (�t1)1/2 and q̃(�) = ∫ ∞
0 dte−�t q(t). The interior temperature variation

δT∞(t) outside the droplets is given by (9.4.21) also in the present fixed-volume case.
From (9.4.10) we find∫ ∞

0
dte−�t [∆(t)−∆(0)+ q(t)

] = −
√
�t1

1 +√
�t1

[
a2

c q̃(�)+ ∆(0)

�

]
, (9E.4)

where ∆(0) is given by (9.4.23). The inverse Laplace transformation becomes

∆(t)−∆(0)+ q(t) = −a2
c

∫ t

0
dt ′Fa(t

′/t1)q̇(t − t ′)− Fa(t/t1)∆(0), (9E.5)

where q̇(t) = dq(t)/dt , and Fa(s) is defined by (6.3.9). The right-hand side is clearly
small at long times t � t1.

Appendix 9F Calculation of the quantum decay rate

In the vicinity of the turning point, |R − R0| � R0, & satisfies

H& ∼=
[
− h̄2

2M0

∂2

∂R2
− U ′

0(R − R0)

]
& ∼= 0. (9F.1)
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The appropriate solution is uniquely expressed in terms of the Airy functions Ai(z) and
Bi(z) [87] as

&(R) = N
[

Bi

(
R0 − R

a0

)
+ iAi

(
R0 − R

a0

)]
, (9F.2)

where N is a constant. On the left-hand side, R0 − R � a0, & grows as

& ∼= Nπ−1/2
(

R0 − R

a0

)−1/4

exp

[
2

3

(
R0 − R

a0

)3/2]
, (9F.3)

from the asymptotic behavior of the Airy functions. Comparing this with (9.5.19) gives

Na1/4
0 ∼ C(M0/U ′

0)
1/4 exp(−A). (9F.4)

Outside the turning point, R − R0 � a0, & behaves as

& ∼= Nπ−1/2
(

R − R0

a0

)−1/4

exp

[
2i

3

(
R − R0

a0

)3/2

+ π i

4

]
, (9F.5)

which yields (9.5.23) with

�Q = N 2(h̄/πa0 M0) ∼ C2 exp(−2A). (9F.6)
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(1947); P. L. Chambré, J. Acoust. Soc. Am. 263, 29 (1954).

[70] Lord Rayleigh, Phil. Mag. 34, 94 (1917); D. Y. Hsieh and M. S. Plesset, Phys. Fluids 4, 970
(1961); A. Crespo, ibid. 12, 2274 (1969).

[71] I. M. Lifshitz and Yu. Kagan, Zh. Eksp. Teor. Fiz. 62 (1972) 385 [Sov. Phys. JETP 35 (1972)
206].

[72] I. M. Lifshitz, V. M. Polesskii, and W. A. Khokholov, Zh. Eksp. Teor. Fiz. 74 (1978) 268 [Sov.
Phys. JETP 47 (1978) 137].

[73] V. A. Mikheev, E. Ya. Rudaviskii, V. K. Chagovets, and F. A. Sheshin, Sov. J. Low Temp. Phys.
17 (1991) 233 [Fiz. Nizk. Temp. 17 (1991) 444].

[74] T. Satoh, M. Morishita, M. Ogata, and S. Katoh, Phys. Rev. Lett. 69 (1992) 335.

[75] L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, 1975).

[76] K. Krishnamurthy and R. Bansil, Phys. Rev. Lett. 50, 2010 (1983).

[77] N. P. Balsara, C. Lin, and B. Hammouda, Phys. Rev. Lett. 77, 3874 (1996).

[78] K. Binder, Physica A 243, 118 (1995).

[79] A. Onuki, J. Physique II 2, 1505 (1992).

[80] S. V. Iordanskii, Zh. Exsp. Teor. Fiz. 48, 708 (1965).

[81] J. S. Langer and M. E. Fisher, Phys. Rev. Lett. 19, 560 (1967).

[82] J. S. Langer and J. D. Reppy, in Progress in Low Temperature Physics 6, ed. C. Gorter
(North-Holland, Amsterdam 1970), p. 1.

[83] J. R. Clow and J. D. Reppy, Phys. Rev. Lett. 67, 29 (1967); Phys. Rev. A 5, 424(1972).

[84] R. J. Donnelly, Quantized Vortices in He II (Cambridge University Press, 1991).



References 551

[85] L. Kramer, Phys. Rev. 179, 149 (1969); H. J. Mikeska, ibid. 179, 166 (1969).

[86] M. Tinkham, Introduction to Superconductivity (McGraw-Hill, New York, 1975).

[87] M. Abramowiz and I. A. Stegun, Handbook of Mathematical Functions (U.S. Government
Printing Office, Washington, DC, 1968).



10

Phase transition dynamics in solids

A variety of domain structures have been observed in metals undergoing (i) phase separa-
tion, or (ii) structural phase transitions [1]–[6]. In phase separation, a difference arises
in the lattice constants of the two phases (lattice misfit). At a structural phase transi-
tion, anisotropically deformed domains of a stable low-temperature phase emerge in a
quenched, metastable or unstable high-temperature phase. As a consequence, elastic strains
are induced which radically influence the phase transition behavior. Here we will present
Ginzburg–Landau theories for phenomena (i) and (ii) under the coherent condition [1],
in which the lattice planes are continuous through the interface without any coherency
loss due to dislocations, as illustrated in Fig. 10.1(a). In the incoherent case, however,
dislocations are accumulated at the interface regions, and the resultant elastic effects have
not yet been well investigated.1

Among a number of important topics, here we cite examples of research on phase
separation in binary alloys. In particular, experiments on Ni-base alloys are noteworthy
[7]–[16]. (i) Figure 10.2 shows Ni3Al (γ ′) cuboidal domains (precipitates) with the ordered
L12 structure (illustrated in Fig. 3.10) in a disordered fcc Ni–Al alloy matrix [8]. Here,
initially spherical domains changed their shapes into cuboids with facets in {100} planes
as they grew. (ii) As can be seen in Fig. 10.3, at a very late stage cuboids can be seen
sometimes to split into two plates or eight cuboids, despite an increase in the surface
energy [3], [5a], [9, 15]. (iii) Figure 10.4 shows the time evolution of Ni4Mo domains
in a Ni–16.3 at.% Mo alloy [10], where harder cuboids with a larger shear modulus C44

are encased in a softer matrix. With increasing aging time, the mean domain size r̄(t)
increased but the size distribution became narrower. In Fig. 10.5 these features can be seen
in the time dependence of the mean domain size r̄(t) in (a) and the standard deviation
σ(t) of the size distribution in (b). The coarsening virtually stopped with prolonged aging
(t � 106 s), as shown in (a). Such abnormal slowing down occurs for high solute contents
under strong elastic constraints [9], [15]–[17], while the usual growth law r̄(t) ∝ t1/3 has
been observed for small volume fractions of precipitates and/or relatively short aging times.
(iv) Application during aging of stretching or compression in the [100] direction in cubic
solids is known to produce cylindrical or lamellar domains in late stages [18]–[21]. Figure
10.6 gives examples of the morphology of γ ′ precipitates in the absence of an applied
stress and under uniaxial strain in an Ni–15at.%Al alloy [19].

1 Grain boundaries in polycrystals are also incoherent.
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Fig. 10.1. The interface condition is coherent in (a) and incoherent in (b) in a two-phase state of a
binary solid. In both cases the lattice constants of the two phases are different.

Fig. 10.2. Dark-field transmission electron micrographs of Ni–Al alloys taken using (100) γ ′
precipitate superlattice reflections: (a) 6.35 wt% Al aged for 92.5 h, the volume fraction of γ ′ being
0.13; (b) 5.78 wt% Al aged for 54 h, the volume fraction of γ ′ being 0.034 [8].

A short summary of theories on phase separation in binary alloys is as follows.
(i) Eshelby calculated the elastic energy of ellipsoidal domains coherently embedded in
a solid matrix [22]. However, an energetic theory, as such, is not suitable for describing
dynamical processes in which the domain shape changes with time. (ii) Cahn presented a
Ginzburg–Landau theory for the simplest case of isotropic elasticity with constant elastic
moduli [23], predicting a downward shift of the coexistence curve in the temperature–
concentration phase diagram after elimination of the elastic field. (iii) For cubic crys-
tals with constant elastic moduli [24], Cahn derived a dipolar interaction, bilinear with
respect to the concentration fluctuations. More refined or generalized derivations have
subsequently been presented [2], [25]–[29]. This dipolar interaction is long-range and
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Fig. 10.3. Image of γ ′ precipitates, showing (a) doublet γ ′ plates in an aged Ni–12 at.% Al alloy
and (b) assemblies of eight cuboids, four of them being visible in this plan view, in an aged Ni–
12 at.% Si alloy [9].

Fig. 10.4. Time evolution of Ni4Mo precipitates in an Ni–16.3 at.%Mo alloy aged at 973 K for
(a) 12.8 ks, (b) 864 ks, (c) 2.6 Ms, and (d) 5.2 Ms [10]. The domain shapes here closely resemble
those in the simulation in Fig. 10.18.

angle-dependent, so it is minimized for particular shapes and configurations of precipitates.
(iv) Unique effects arise when the two phases have different elastic moduli. Ardell et al.
[7] calculated the interaction among spherical domains whose shear modulus is slightly
different from that of the matrix, but this interaction loses its meaning once domains
change their shape from sphericity. Johnson and Voorhees [3] and Cahn [23] predicted that
a growing precipitate which is softer than the matrix should be deformed from a sphere
into an ellipsoid as its radius exceeds a critical size RE. (v) The present author extended
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Fig. 10.5. (a) The mean particle radius r̄(t) and (b) the standard deviation σ(t) vs time for Ni4Mo
particles in Ni–16.3 at.%Mo alloy aged at 973 K [10].

Fig. 10.6. Microphotographs of replicas taken from a (100) surface of an Ni–15 at.% Al alloy aged
at 1023 K, with (a) with no external stress, (b) in tension, and (c) in compression [19]. The stress
applied in (b) and (c) was 147 MPa, and there was little appreciable stress effect on the domain
shapes in the early stages.



556 Phase transition dynamics in solids

a Ginzburg–Landau approach [30] to the case of concentration-dependent elastic moduli.
The resultant dynamic equations can easily be integrated using a computer [31]–[40]. (vi)
We also mention simulations of a similar coarse-grained dynamical model [28, 41] and
Monte Carlo simulations [42, 43]. In particular, Lee [5d, 44] examined shape changes, in-
cluding domain splitting, for strong elastic inhomogeneity, using a microscopic approach.

The organization of this chapter is as follows. We will discuss elastic effects in phase
separation, first assuming isotropic elasticity in Section 10.1 and next assuming cubic
anisotropic elasticity in Section 10.2. We will then proceed to other topics. Reviews
and some new calculations will be given on order–disorder and improper martensitic
phase transitions in Section 10.3 and on proper martensitic transitions in Section 10.4.
A Ginzburg–Landau theory of Jahn–Teller phase transitions will also be presented in Sec-
tion 10.4. In the case of structural phase transitions experimentalists [45] have posed many
problems, which are not well understood and are mostly beyond the scope of this book.
We will also treat macroscopic instabilities in solids, particularly those in hydrogen–metal
systems, in Section 10.5. Surface instabilities will be the last topic, to be discussed in
Section 10.6.

10.1 Phase separation in isotropic elastic theory

We will describe binary alloys using model B coupled to isotropic elasticity via the Vegard
law. For simplicity, we will neglect order–disorder phase transitions. Particular attention
will be paid to the effect of a composition-dependent shear modulus. We will derive long-
range interactions among the composition fluctuations by eliminating the elastic field.2

10.1.1 Ginzburg–Landau free energy for concentration and elastic field

The order parameter ψ and its average M are related to the composition c as

ψ = c − cc,

M = 〈ψ〉 = 〈c〉 − cc, (10.1.1)

where cc is a critical concentration. The elastic field u is the displacement vector measured
from an isotropic, disordered reference state at c = cc or ψ = 0. In binary solids, ψ is
coupled to u in the free energy H as

H =
∫

dr
[

f0(ψ)+ C

2
|∇ψ |2 + αψ∇ · u + fel(u)

]
. (10.1.2)

The free-energy density f0(ψ) will be assumed to be of the form,

f0(ψ) = 1

2
r0ψ

2 + 1

4
u0ψ

4, (10.1.3)

u0 and C being constants. For T close to a mean field critical temperature Tc0, the
parameter r0 is expressed as

r0 = a0(T − Tc0). (10.1.4)
2 It is worth noting that this procedure is analogous to that of deriving the attractive interaction between electrons mediated by

acoustic phonons in metals, which leads to superconductivity at low temperatures [46].
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This Landau form can be accurate only for small ψ or in the weak segregation case. If
we include the strong segregation case in our theory, we should use the Bragg–Williams
free-energy density in Section 3.3,

f0(ψ) = v−1
0 T

[
c ln c + (1 − c) ln(1 − c)

] − 2v−1
0 Tc0c2, (10.1.5)

where v0 is the microscopic cell volume and cc = 1/2. The expansion of the above expres-
sion with respect to ψ = c − 1/2 yields (10.1.3) with a0 = 2/v0 and u0 = 4Tc0/3v0. The
elastic energy fel consists of the contributions from volume dilation and shear deformation:

fel(u) = 1

2
K |∇ · u|2 + 1

4
µ

∑
i j

e2
i j , (10.1.6)

where

ei j = ∇ j ui + ∇i u j − 2

d
δi j∇ · u (10.1.7)

is the traceless, symmetrized strain tensor and will be called the shear strain tensor. In
this section, ∇i ≡ ∂/∂xi , and i, j, k, " stand for x , y, z in 3D (x , y in 2D). The space
dimensionality d is either two or three. We assume that the bulk modulus K is a constant,
but the shear modulus µ depends on ψ as

µ = µ0 + µ1ψ, (10.1.8)

where µ0 and µ1 are constants. Here µ1 > 0 if c is the concentration of the harder
component. Moreover, µ1 � µ0 will hold if the shear moduli µA and µB of pure metals
A and B are nearly the same, but µ1 ∼ µ0 should follow in the case |µA − µB| ∼ µA (or
µB).

The elastic stress tensor →←
σσσ i j is calculated as follows. Against a small incremental

displacement ui → ui + δui at fixed ψ , the change of H should be written as

δH =
∫

dr
∑

i j

σi j∇iδu j , (10.1.9)

leading to the expression,

σi j = (K∇ · u + αψ)δi j + µei j . (10.1.10)

The elastic free-energy density fel(u) can then be expressed as

fel(u) = 1

2

∑
i j

σi j∇ j ui − 1

2
αψ∇ · u. (10.1.11)

On long timescales of the concentration fluctuations, the elastic field instantaneously
relaxes and adjusts to a given concentration field. This is the condition of mechanical
equilibrium in the bulk region,(

δ

δui
H

)
bulk

= −
∑

j

∇ jσi j = 0. (10.1.12)
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The u is thus determined as a functional of ψ under each given boundary condition. In
general, an average homogeneous strain can be created inside the solid as

〈∇ j ui 〉 = Ai j . (10.1.13)

The displacement may be divided into the average and the deviation as

ui =
∑

j

Ai j x j + δui . (10.1.14)

Applying an external stress or clamping the boundary?

(i) A natural boundary condition will be to apply a constant external stress tensor →←
σσσex at

the boundary; particularly, the stress-free boundary is given by →←
σσσex = 0. For simplicity, we

assume no mass exchange between the solid and the outer region, neglecting melting and
crystal growth. Then we should minimize a generalized Gibbs free energy defined by [30]

H′ = H−
∫

da(n · →←
σσσex · u)

= H−
∫

dr
∑

i j

(
→←
σσσex)i j∇i u j , (10.1.15)

where
∫

da(· · ·) is the surface integral on the boundary and n is the outward normal unit
vector. At fixed ψ , H′ is minimized under the bulk condition (10.1.12) and the boundary
condition,

→←
σσσ · n = →←

σσσex · n. (10.1.16)

(ii) We may alternatively clamp the solid such that δu = 0 at the boundary. In this case
H is minimized with respect to variations of u in the bulk region and at the boundary
from (10.1.9). We note that the concentration fluctuations much shorter than macroscopic
sizes are insensitive to the boundary condition. Unless we are interested in macroscopic
shape changes and surface undulations, we may adopt the clamped boundary condition or
even the periodic boundary condition (as in usual simulations) instead of the condition of
constant applied stress. Then, using (10.1.11) and (10.1.12), we rewrite the free energy as

H =
∫

dr
[

f0(ψ)+ C

2
|∇ψ |2 + 1

2
αψ∇ · u + 1

2

∑
i j

σi j Ai j

]
, (10.1.17)

under both the clamped and the periodic boundary condition. The last term in the brackets
is important in the presence of elastic inhomogeneity.

Vegard law

To explain the origin of the bilinear coupling (∝ α) in (10.1.2), let us consider an isotropic,
one-phase state under the stress-free boundary condition. The average elastic deformation
is isotropic as

〈∇i u j 〉 = − α

d K
Mδi j , (10.1.18)
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in terms of the average order parameter M . Here the effect of the thermal expansion [47]
is neglected.3 The volume V or the lattice constant a of the system then change by

δV = −V
α

K
M, δa = −a

α

d K
M. (10.1.19)

These deviations are measured from those at 〈c〉 = cc. The lattice expansion coefficient is
defined as [23]

η = d

dc
ln a = − α

d K
. (10.1.20)

In real binary alloys, the lattice constant in one-phase states may be approximated as a
linear function of 〈c〉 empirically in a relatively wide concentration range, which is often
called the Vegard law [48]. In phase separation, nonvanishing α leads to a lattice misfit
between the two phases. For precipitates in a matrix, the lattice misfit or mismatch is often
defined by

ε = (ap − am)/am ∼= η�c, (10.1.21)

where ap and am are the lattice constants of the unconstrained (stress-free) precipitate and
matrix phases, respectively, and �c is the concentration difference between the two phases.
The mismatch cannot be very large in the coherent case. As an extreme case [5a], ε is very
small (∼ 0.0008) for L12 structures in Al–Li as stated below (3.3.32). It is also known that
the addition of a third component can make ε very small, as in the experiment in Fig. 9.9.
For these cases the elastic effects become small.

10.1.2 Elimination of the elastic field for small µ1

A general procedure of eliminating the elastic field will be given in Appendix 10A. We
may calculate u by treating µ1 as a small expansion parameter. This scheme is justified for

|µ1ψ | � L0, (10.1.22)

where L0 is the elastic modulus for the longitudinal displacement (or sound),

L0 = K +
(

2 − 2

d

)
µ0. (10.1.23)

We express δu in terms of δψ = ψ − M solving the mechanical equilibrium condition
(10.1.12):

α∇iψ + (L0 − µ0)∇i g + µ0∇2ui + µ1

∑
j

∇ j (ψei j ) = 0, (10.1.24)

3 The lattice constant is dependent on the temperature as well as the composition. In this chapter we assume rapid thermal
equilibration and neglect temperature inhomogeneities.
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where g ≡ ∇ · δu. Taking the divergence of the above vector equation yields

∇2[
L0g + αψ

] + µ1

∑
i j

∇i∇ j (ψei j ) = 0. (10.1.25)

For µ1 = 0 the zeroth-order solution is calculated as

δu(0) = −(α/L0)∇w, (10.1.26)

where w is a potential determined by the Laplace equation,

∇2w = δψ or w = 1

∇2
δψ, (10.1.27)

where 1/∇2 is the inverse operator of ∇2. The Fourier component of w is related to that of
ψ as wk = −k−2ψk. The corresponding dilation strain is

g(0) = ∇ · δu(0) = −(α/L0)δψ. (10.1.28)

Note that L0 is the elastic modulus for plane-wave fluctuations, whereas K is that for
isotropic dilation as in (10.1.18). The zeroth-order shear strain is

e(0)i j = Si j − 2α

L0

(
∇i∇ j − 1

d
δi j∇2

)
w, (10.1.29)

where

Si j = Ai j + A ji − 2

d
δi j

∑
"

A"" (10.1.30)

is the traceless, symmetric average strain.
The first-order correction of the dilation strain is readily calculated from (10.1.25) in the

form,

g(1) = −µ1

L0

1

∇2

∑
i j

∇i∇ j (ψe(0)i j ). (10.1.31)

We substitute (10.1.28), (10.1.29), and (10.1.31) into (10.1.17). The free energy up to first
order in µ1 is then of the form,

H =
∫

dr
[

f (ψ)+ C

2
|∇ψ |2

]
+Hinh +Hex, (10.1.32)

where the constant terms are not written explicitly. The free-energy density f (ψ) includes
the zeroth-order elastic contribution:

f (ψ) = f0(ψ)− (α2/2L0)ψ
2

= 1

2
rψ2 + 1

4
u0ψ

4. (10.1.33)

In the second line we have used (10.1.3). The temperature coefficient is expressed as

r = r0 − α2/L0 = a0(T − Tc), (10.1.34)

where Tc = Tco + α2/L0a0 is the so-called coherent critical temperature.
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Cahn’s theory

Cahn treated the simplest case of homogeneous moduli assuming isotropic elasticity [23].
In his theory, the displacement u is measured from the stress-free, isotropic, homogeneous
state with a given concentration c, whereas our reference elastic state is that at M = 0 or
c̄ = cc. Thus, the dilation strain in his definition is shifted by −(α/K )ψ from ours. His
chemical free-energy density fchem is related to f0(ψ) in (10.1.2) by

fchem(ψ) = f0(ψ)− α2

2K
ψ2. (10.1.35)

Using f (ψ) in (10.1.33) we obtain

f (ψ)− fchem(ψ) = 1

2
α2

(
1

K
− 1

L0

)
ψ2, (10.1.36)

which can also be written as η2 E(1 − ν)−1ψ2 [23] in terms of the Young’s modulus E =
9Kµ/(3K +µ) and the Poisson ratio ν = (3K − 2µ)/2(3K +µ) in 3D [47] with η being
defined in (10.1.20). In Cahn’s original theory, therefore, the elastic field only serves to
shift the coexistence curve downwards by η2 E/[2(1−ν)a0] from the chemical coexistence
curve determined by fchem(ψ). The point r = M = 0 and the curve r + u0 M2 = 0
are called the coherent critical point and coexistence curve, respectively. See [49, 50] for
experiments. More discussion is given for cubic solids in Subsection 10.2.1.

Elastic inhomogeneity interaction Hinh

The Hinh in (10.1.32) arises from the elastic inhomogeneity (EI) and has a third-order
dependence on ψ as

Hinh = gE

∫
drψ Q̂, (10.1.37)

where

Q̂ =
∑

i j

(
∇i∇ jw − 1

d
δi j∇2w

)2

(10.1.38)

represents the degree of anisotropic deformation with w being defined by (10.1.27). The
coefficient gE is given by

gE = µ1α
2/L2

0

= 9µ1η
2/(1 + 4µ0/3K )2, (10.1.39)
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where the second line is the 3D expression. Hereafter we will neglect the higher-order
interactions with respect to µ1. Because of the relation,

∫
drQ̂ = (1 − 1/d)

∫
dr(δψ)2,

we may express Hinh as4

Hinh = gE

∫
dr

[(
1 − 1

d

)
M(δψ)2 + δψ Q̂

]

= gE

∫
dr

[(
1 − 1

d

)
M(δψ)2 − 1

d
(δψ)3 +

∑
i j

δψ(∇i∇ jw)2
]
.

(10.1.40)

In the first line, the first term (∝ M(δψ)2) in the brackets can be incorporated into the bi-
linear elastic term in f (ψ) in (10.1.33) by replacement, −(α2/2L0)ψ

2 →−(α2/2〈L〉)ψ2,
where 〈L〉 = L0 + (2 − 2/d)µ1 M is the longitudinal modulus at ψ = M . If we assume
(10.1.33) and focus our attention on the bilinear order terms, we obtain the spinodal curve
of isotropic, homogeneous one-phase states in the form,

r + 3u0 M2 +
(

2 − 2

d

)
gE M = 0, (10.1.41)

whose maximum point in the r − M plane is given by r = (1 − 1/d)2g2
E/3u0 and M =

−(1 − 1/d)gE/3u0.

Dipolar interaction Hex arising from external stress

Anisotropic deformations (10.1.13) give rise to a long-range dipolar interaction,

Hex = −1

2
gex

∫
dr

∑
i j

Si j (∇iψ)(∇ jw), (10.1.42)

with

gex = −2µ1α/L0. (10.1.43)

In terms of the Fourier transformation ψk of ψ(r) this interaction is expressed as

Hex = 1

2
gex

∫
k

∑
i j

Si j k̂i k̂ j |ψk|2, (10.1.44)

where k̂ = k−1k denotes the direction of the wave vector. For example, we apply a uniaxial
deformation, for which the average strain tensor Ai j in (10.1.3) is expressed as Axx = λ‖,
A j j = λ⊥ ( j �= x), and Ai j = 0 (i �= j). Then this interaction becomes of the same form
as the dipolar interaction in uniaxial ferromagnets [51, 52] or ferroelectrics [53],

Hex = gex(λ‖ − λ⊥)
∫

k

(
k̂2

x − 1

d

)
|ψk|2. (10.1.45)

4 The last term in the brackets in the second line is of the same form as H(3)
el in (7.2.19) for gels.
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Because gex ∝ µ1, the concentration fluctuations can be influenced by an externally
applied strain only in the presence of elastic inhomogeneity (EI). As in Fig. 10.6, several
groups have performed phase separation experiments under uniaxial stress σA along the
[100] direction in cubic solids [18]–[20]. They observed lamellar and cylindrical domain
structures depending on whether the deformation is stretching or compression, respec-
tively.

Weak and strong elastic inhomogeneity

As we approach the coherent critical point (r = M = 0), the third-order interaction Hinh

alters the concentration fluctuations drastically (even in one-phase states). In this sense
Hinh is relevant however small µ1 is, as well as Hex. To see this at M = 0, we estimate
the magnitude of the fluctuations of ψ as (|r |/u0)

1/2 using the second line of (10.1.33) and
compare rψ2/2 in (10.1.33) and gEψ Q̂ in (10.1.37). The relative magnitude of these two
terms is represented by the following dimensionless parameter,

g∗
E = gE/

√
|r |u0, (10.1.46)

which grows as |r |−1/2 as r → 0. For g∗
E � 1 we are in the regime of weak elastic inhomo-

geneity (WEI), where the effects of EI can be apparent only in late-stage phase separation.
For g∗

E � 1, on the other hand, we are in the regime of strong elastic inhomogeneity (SEI),
where even the thermal fluctuations on the scale of the correlation length are distinctly soft
or hard. Using (10.1.5), (10.1.33), and (10.1.39), we rewrite the condition of SEI in terms
of observable quantities as

v0|µ1|η2/Tc � |T/Tc − 1|1/2, (10.1.47)

where v0 is the volume of a unit cell and η is the lattice expansion coefficient in (10.1.20).
Below Tc or in phase separation we also have

g∗
E ∼ v0η

2|�µ|/(Tc|�c|2), (10.1.48)

in terms of the shear modulus difference �µ and the concentration difference �c. Alterna-
tively, we may introduce a characteristic reduced temperature and average order parameter
by

rE = g2
E/u0, ME = gE/u0. (10.1.49)

In the SEI regime we require |r | � rE and |M | � ME. For |M | � ME (even at τ = 0) the
solid is in the WEI regime.

10.1.3 A nearly spherical domain

Let us suppose an isolated nearly spherical precipitate in a weakly metastable matrix in the
WEI regime without externally applied stress in 3D [34], [54]–[56]. The order parameter is
equal to ψ0 within the domain and to M outside it. If we assume the free-energy density in
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the second line of (10.1.33), we have ψ0 ∼= �c/2 and c0 ∼= −�c/2 where �c = ψ0−M ∼=
2(|r |/u0)

1/2. We are interested in how the shear modulus difference,

�µ = µ1�c, (10.1.50)

can change the domain free energy. The typical strain around the domain is given by

e0 = α�c/L0. (10.1.51)

From (10.1.39) we notice the relation,

gE(�c)3 = (�µ)e2
0. (10.1.52)

First, assuming that the critical domain is spherical, we introduce an effective supersatu-
ration ∆eff in the presence of EI. Because (10.1.27) is solved as w = (�c)r2/6+· · · within
a sphere, Hinh in (10.1.40) is calculated as Hinh = −(4π/9)R3gE(�c)3 + · · ·. Note that
δψ = 0 outside the domain if the concentration depletion is neglected. The free-energy
difference µeff in (9.1.1) thus consists of two terms as

µeff = 2|r |(�c)2∆eff = 2|r |(�c)2∆− 1

3
gE(�c)3, (10.1.53)

where ψ2
eqκ

2 in (9.1.5) is replaced by (�c)2|r |/4T in the present notation. We define the
effective supersaturation [34],

∆eff = ∆− 1

3
g∗

Eθsh, (10.1.54)

including the first correction from EI. Here θsh = 1 for the hard domain case and θsh = −1
for the soft domain case, g∗

E being taken to be positive. Note that ∆ is determined for
the free-energy density (10.1.33) or for the coherent phase diagram. In the case of soft
precipitates (θsh = −1), however, the critical domains take compressed pancake shapes if
RE � Rc or g∗

E � ∆.
Second, we consider the free-energy increase due to deviations from sphericity (" �=

0). We represent the domain surface by r = R + ∑
"m δ"mY"m(θ, ϕ) using the spherical

harmonics Y"m . Then [34, 56],

�H =
∞∑
"=1

"∑
m="

[
σ

2
("2 + "− 2)+ gE(�c)3 R

"("− 1)

2"+ 1

]
|δ"m |2. (10.1.55)

The first term is the surface tension term, σ being the surface tension. Interestingly, the
second term in (10.1.55) is negative for the softer domain case, which favors shape changes
from a sphere [29]. Comparing the two terms at " = 2, we find a critical radius against
shape deformations,

RE = 5σ/|gE(�c)3| = 5σ/(|�µ|e2
0). (10.1.56)

For R > RE the spherical shape is unstable against deformations (even without external
loads), leading to anisotropic shapes with larger surface areas. This instability occurs when
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the elastic energy (∼ (�µ)e2
0 R3) from EI and the surface energy (∼ σ R2) become of the

same order. Because σ ∼ (�c)2|r |ξ , we find

RE/ξ ∼ 1/g∗
E � 1, (10.1.57)

where ξ = (C/|r |)1/2 is the thermal correlation length.

10.1.4 An ellipsoidal domain

Eshelby calculated the elastic energy of an ellipsoidal domain (coherent inclusion) assum-
ing isotropic elasticity [22]. We will reproduce his results in the WEI regime. The domain
shape is represented by

∑3
j=1 x2

j /a2
j = 1, within which ψ = ψ0 and outside of which

ψ = M . As will be shown in Appendix 10B, w takes a simple form inside the ellipsoid,

w = 1

2
�c

∑
j

N j x2
j + const., (10.1.58)

in terms of the depolarization factors N j (> 0). They satisfy
∑

j N j = 1 and are equal to
1/3 for spheres. The zeroth-order strain in (10.1.29) is of the form

e(0)i j = Si j − 2e0

(
Ni − 1

3

)
δi j (10.1.59)

within the ellipsoid. If the distance r from the center of the ellipsoid greatly exceeds the
domain size (i.e., at a point some way outside of the domain), w behaves as a Coulombic
potential (∝ 1/r ) and

e(0)i j
∼= Si j + 1

2π
Vee0∇i∇ j

1

r
, (10.1.60)

where Ve = (4π/3)a1a2a3 is the volume of the ellipsoid. It is well known that the strain
field within an ellipsoidal coherent inclusion is homogeneous for isotropic elasticity.

Under an externally applied stress, Hex in (10.1.42) may readily be calculated, because
∇i∇ jw = �cN jδi j inside the ellipsoid and δψ = ψ − ψ̄ = 0 outside it. For simplicity,
we assume a spheroid with a1 = a and a2 = a3 = b with the x axis being taken along the
symmetry axis. Then,

Hex = −3

2
Ve(�µ)e0Sxx

(
Nx − 1

3

)
. (10.1.61)

The Nx (= N1) decreases from 1 to 0 as a/b increases form 0 to ∞, as shown in Fig. 10.7.
If αµ1Sxx > 0, Hex increases with increasing a/b. Thus, energetically favored are oblate
spheroids with a < b for αµ1Sxx > 0 and prolate spheroids with a > b for αµ1Sxx < 0.

Next we calculate Hinh produced by a spheroid. From (10.1.40) it becomes

Hinh = Vee2
0(�µ)

[
−1

3
+

∑
j

(
N j − 1

3

)2]
. (10.1.62)

Here we have set ψ = −�c/2 outside the domain as in (10.1.53) assuming weak
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3
2

Fig. 10.7. The depolarization factor Nx vs a/b for a spheroid represented by x2/a2+(y2+z2)/b2 =
1, see Appendix 10B. The function (3/2)(Nx − 1/3)2 is also shown.

metastability. In Fig. 10.7 we plot
∑

j (N j − 1/3)2 = (3/2)(Nx − 1/3)2. (i) For the soft
domain case �µ < 0, Hinh decreases as the shape deviates from sphericity. It is minimum
for compressed pancake shapes. (ii) For �µ > 0, the coherent inclusion is harder than
the matrix and Hinh serves to stabilize a spherical shape. However, if a number of hard
domains are present in a softer matrix, they interact with each other and change their shapes
to minimize Hinh, as will be discussed below.

10.1.5 Shape changes of hard domains

A pair of hard domains

Let two nearly spherical hard domains, A and B, be placed in a softer matrix without
external stress in 3D, where ψ = ψh within them and ψ = ψs outside them. The shear
modulus difference �µ = µ1(ψh −ψs) is positive. From Hinh in (10.1.40) the interaction
energy is written as

Hinh = 1

4
�µ

∫
A+B

dr
∑

i j

(
eA

i j + eB
i j

)2
, (10.1.63)

where the space integral is within the domains A + B, and eA
i j and eB

i j are the strains
(10.1.7) produced by A alone and B alone, respectively. If A and B are spheres with radii
RA and RB, eA

i j vanish within A and are given by the second term of (10.1.59) with e0 =
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α(ψh − φs)/L0 outside A. We take VA to be the volume of A, and rA to be the center
position of A. The equivalent relations hold also for B. If the distance rAB = |rA − rB|
between the centers, rA and rB, much exceeds RA and RB, the strains eB

i j within A are
nearly constants, given by

eB
i j =

1

2π
e0VB

[
3xABi xAB j

r5
AB

− δi j

r3
AB

]
, (10.1.64)

which can be used even for non-spherical shapes. If the volume VB of B on the right-hand
side is replaced by the volume VA of A, we obtain eA

i j within B. Thus, we arrive at Eshelby’s
interaction between two spheres [7],

Hinh ∼= 3

8π2
(�µ)e2

0VAVB(VA + VB)
1

r6
AB

. (10.1.65)

However, a crucial point is missed here [33]. That is, the assumption of spherical shapes
is justified only when RA and RB are much smaller that RE. If, conversely, they are much
larger than RE, the domains change their shapes such that the shear strains inside them
vanish:

eA
i j + eB

i j = 0, (10.1.66)

within A and B. Namely, vanishing of Hinh can be achieved by shape adjustment. The proof
is almost obvious for |rA−rB| � RA, RB. Here the selected shapes after the adjustment are
spheroids with the symmetry axis (the x axis) being along the relative vector rAB = rA−rB.
From (10.1.59) eA

i j = −2e0(Ni − 1/3)δi j within A in terms of the depolarization factors
Ni . Using (10.1.60) we rewrite (10.1.66) as

Nx − 1

3
= 1

2π
VB

1

r3
AB

. (10.1.67)

For a ∼= b the shape of A is an oblate spheroid with

b

a
− 1 ∼= 5

2

(
RB

rAB

)3

. (10.1.68)

As should be the case, A tends to a sphere for RB � rAB. The shape of B is also an oblate
spheroid, for which RB on the right-hand side is replaced by RA. Interestingly, the above
relation does not involve any material constants. We note that, on the one hand, the resultant
increase of the surface free energy is of order �Es ∼ σ R2(b/a − 1)2 ∼ σ R2(R/rAB)

6,
where we assume RA ∼ RB ∼ R. On the other hand, the canceled elastic inhomogeneity
energy is of order �Einh ∼ (�µ)e2

0 R3(R/rAB)
6 from (10.1.65). We thus estimate

�Einh/�Es ∼ R/RE. (10.1.69)

Shape adjustment should occur for R > RE, independently of the inter-domain distance,
where a decrease in Hinh dominates over an increase in the surface free energy.
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Many hard domains

The above arguments can be generalized to the case in which there are many hard domains
in a softer matrix. Shape adjustment can cancel the elastic inhomogeneity energy when the
average domain size R greatly exceeds RE. For simplicity, we assume that their separation
distances greatly exceed their sizes. The condition of vanishing shear strain within a
domain A is then written as

eA
i j + e0CA

i j = 0, (10.1.70)

where

CA
i j =

∑
n �=A

1

2π
Vn

[
3xni xnj

r5
n

− δi j

r3
n

]
(10.1.71)

is the sum of the strain contributions from the other domains. The rn is the relative vector
between A and the nth domain and Vn is the volume of the nth domain. We then rotate the
reference frame with an orthogonal matrix Ui j such that the matrix CA

i j becomes diagonal.
The condition (10.1.70) can be satisfied if Ni are determined by∑

k"

UkiU"j C
A
k" = 2

(
Ni − 1

3

)
δi j . (10.1.72)

The principal axes of the ellipsoidal domain A are along the three orthogonal unit vectors
ēi =

∑
j Ui j e j . In terms of the cartesian coordinates in the new axes, x̄i =

∑
j Ui j x j , the

domain boundary of A is represented by
∑

i x̄2
i /a2

i = 1.

10.1.6 Dynamic equation

The dynamic equation for ψ is assumed to be of the diffusion type,

∂

∂t
ψ = λ0

T
∇2 δ

δψ
H+ θ, (10.1.73)

where λ0 is the kinetic coefficient, and θ(r, t) is the random noise term which is negligible
at late stages. Microscopically, a small number of vacancies are crucial for interdiffusion in
binary alloys, because the direct exchange of A and B atoms is suppressed by a large energy
barrier [57]–[59]. Here we examine the effect of the elastic inhomogeneity interaction in
phase separation in the absence of an anisotropic external stress.

Shape evolution of a nearly spherical domain

We derive the evolution equation for a nearly spherical domain in the WEI regime [34, 56].
The interface is represented by r = R + ∑

"m δ"mY"m(θ, ϕ). The radius R obeys

∂

∂t
R = D

R

(
∆eff − 2d0

R

)
, (10.1.74)
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where D = λ0|r |/T is the diffusion constant, d0(∼ ξ) is the capillary length, and ∆eff(�
1) is the effective supersaturation defined by (10.1.54). The amplitude δ"m obeys

1

δ"m

∂

∂t
δ"m = ("− 1)

1

R

∂R

∂t
− D

R2
("2 + "− 2)

[
(2"+ 1)

d0

R
+

(
2"

"+ 2

)
g∗

Eθsh

]
,

(10.1.75)
which reduces to the result by Mullins and Sekerka for g∗

E = 0 [60].

Shape evolution of a nearly planar interface

From (10.1.75) we derive the evolution equation of disturbances on a planar interface by
taking the limit, R → ∞, " → ∞ with k = "/R > 0 being fixed [60]. The deformed
position is represented by z = vt + δk cos(kx) where the z axis is along the normal to the
interface. The region below the interface is isotropic, while the upper region is uniaxially
deformed. Then (10.1.75) reduces to [34]

1

δk

∂

∂t
δk = kv − 2Dk2(d0k + g∗

Eθsh). (10.1.76)

If the isotropic region is softer (θsh = −1), the interface is unstable even at rest (v = 0) at
long wavelengths,

k < g∗
E/d0 ∼ 1/RE. (10.1.77)

The instability at v = 0 is of purely energetic origin in contrast to the kinetic Mullins–
Sekerka instability [60]. Simulation of this instability was performed in Ref. [36].

10.1.7 Simulation with elastic inhomogeneity

We now discuss 2D simulation results of (10.1.73) on a 128 × 128 square lattice under the
periodic boundary condition [32, 33, 36]. With appropriate scale changes of space, time,
and ψ , we may set r = −1, C = 1, u0 = 1, and λ0/T = 1 in (10.1.32), (10.1.37),
and (10.1.73). In the following, gE is the dimensionless degree of elastic inhomogeneity
(= g∗

E). The dynamic equation without the noise term reads

∂

∂t
ψ = ∇2[

(−1 − ∇2)ψ + ψ3] + IE. (10.1.78)

The second term arises from Hinh in the form

IE = gE∇2 Q̂ + 2gE

∑
i j

∇i∇ jψ

[
∇i∇ jw − 1

d
δi j∇2w

]
, (10.1.79)

where Q̂ is defined by (10.1.38). Our system is quenched at t = 0 from a one-phase state.
The time t after quenching will be indicated where necessary in the following figures. If
0 < gE � 1, we have ψ ∼= −1 in the softer regions and ψ ∼= 1 in the harder regions.
The volume fractions of the softer and harder regions are expressed as φs = (1 − M)/2
and φh = (1+ M)/2 in terms of the average M in the WEI regime. Hereafter, time will be
measured in units of CT/λ0r2.
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Fig. 10.8. Shape change of a single soft domain in a harder matrix assuming isotropic elasticity,
where gE = 0.004, 0.008, and 0.016 from the left.

Shape changes of soft domains

Figure 10.8 illustrates that a soft domain in a harder matrix undergoes a shape-change
transformation for gE = 0.004, 0.008, and 0.016. At t = 0 we prepare an ellipse slightly
deformed from a circle within which ψ = −1 and outside of which ψ = 0.8. We can
see that the mode " = 2 is amplified, and the domain is subsequently elongated into a
slender shape for relatively large gE. In phase separation, as soft domains are elongated,
they touch and coalesce more frequently than spheres (circles in 2D), forming a percolated
network even at relatively small volume fraction φs of the soft component. In Fig. 10.9 such
processes are shown at φs = 0.2 for various times after quenching with gE = 0.02 and 0.07
[36]. At gE = 0.02 the initial domains are close to being circles and shape deformation
proceeds slowly. At gE = 0.07 we find unambiguous achievement of percolation. The
timescale of the network formation depends sensitively on gE and φs. The width Rs of the
elongated (black) softer regions increases with decreasing gE, suggesting the crossover at
R ∼ RE ∝ 1/gE. In these processes the total perimeter length first increases due to the
elongation and then it begins to decrease very slowly due to coarsening.

Shape changes of hard domains

We start with two circular domains at t = 0 and follow their time development at gE =
0.05. Figure 10.10 shows, at t = 103, the shapes of these two hard domains in a softer
matrix. The distance between the domains is initially of the same order as the domain
radius, but no tendency of coalescence of the domains can be seen within the computation
time (t < 103). The initial values of ψ are +1 inside the domains and −1 outside them,
with small random numbers being superimposed at t = 0. Then there arises no appreciable
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Fig. 10.9. Time evolution of softer (black) domains for gE = 0.02 (top) and 0.07 (bottom) at φs =
0.2 assuming isotropic elasticity. The numbers are the times after quenching from a disordered one-
phase state [36].

Fig. 10.10. The degree of anisotropic deformation Q̂ defined by (10.1.38) for two hard domains at
gE = 0.07 in a softer matrix, at t = 1000 assuming isotropic elasticity. The domain profiles are also
shown (left) [32].

change of the total area. However, if the initial mean value outside the domains is taken to
be −0.8 or −0.9 (metastable values), the domains grow in time, still with no tendency to
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Fig. 10.11. The evolution patterns at gE = 0.07 for φs = 0.7 in (a), 0.5 in (b), and 0.3 in (c),
assuming isotropic elasticity [32].

coalesce. After a transient time, the hard regions are isotropically deformed (Q̂ ∼= 0), while
the interfaces facing each other are flattened and the soft region between them is uniaxially
deformed.

Spinodal decomposition with elastic inhomogeneity

In Fig. 10.11 we display the time evolution of domains for φs = 0.7, 0.5, and 0.3 at
gE = 0.07 [32], where the black regions represent soft domains and the white regions hard
domains. In (a) and (b) shape adjustment of hard domains are taking place throughout the
system. In (b) and (c) the soft regions form networks enclosing hard droplet-like domains,
which are natural configurations lowering Hinh. Figure 10.12(a) shows the total perimeter
(interface) length in the WEI regime at gE = 0.05 and 0.07. For φs = 0.5 and 0.3, the
coarsening almost stops at very late stages. Note that the inverse perimeter length per unit
volume may be treated as the characteristic domain size R. Figure 10.12(b) shows R thus
determined in the SEI regime at M = 0 [5e], [38]. The inset indicates that the domain
size in pinned states is inversely proportional to gE, so R ∼ RE. The two-phase states here
are driven into metastable states because of asymmetric shear deformations in the soft and
hard regions. This picture becomes evident in Fig. 10.13, where the degree of anisotropic
deformation Q̂ is displayed in a pinned state. It exhibits mountains characteristic of local
elastic energy barriers preventing further coarsening. In these pinned states, the surface
energy (∼ σ Rd−1, σ being the surface tension) and the elastic inhomogeneity free energy
(∼ T gE(�ψ)3 Rd ) per domain are of the same order. This balance leads to R ∼ RE.
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Fig. 10.12. (a) Perimeter length vs time for spinodal decomposition in the regime of weak elastic
inhomogeneity [32]. Here φs = 0.3, 0.5, and 0.7 (30, 50, and 70%) and gE = 0.05 and 0.07 assuming
isotropic elasticity. Pinning, evidenced by a constant length, can be seen at later stages for φs = 0.3
and 0.5. (b) The domain size R(t) obtained as the inverse of the perimeter length (in units of ξ ) vs
time (in units of ξ2/D) at M = 0, assuming isotropic elasticity [5e]. Pinning occurs at an early stage
in the case of strong elastic inhomogeneity (gE � 1). In the inset the relation R ∝ 1/gE is shown to
hold in pinned states.
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Fig. 10.13. ‘Mountain’ structure of the degree of anisotropic elastic deformation Q̂ for φs = 0.5
and gE = 0.05 within isotropic elasticity [32]. The soft regions (network) are mostly uniaxially
deformed, while the hard regions are only isotropically dilated and Q̂ ∼= 0.

We also recognize that the Lifshitz–Slyozov law R(t) ∼ t1/3 is obeyed for R < RE before
the onset of pinning. Thus the crossover time tE is proportional to g−3

E , or

tE ∼ D−1ξ2/(g∗
E)

3, (10.1.80)

where D is the diffusion constant.

10.1.8 Glassy two-phase states

It is worth remarking upon the fact that glassy two-phase states are realized under EI [38].
Though redundant, we write down the minimal GLW hamiltonian,

Hiso =
∫

dr
(

1

2
rψ2 + 1

4
u0ψ

4 + 1

2
C |∇ψ |2 + gEψ Q̂

)
, (10.1.81)

which involves the two characteristic lengths, ξ and RE. Here we need to estimate the
free-energy barrier per domain in pinned states. If g∗

E � 1, the mountain structure in Fig.
10.13 indicates

(�H)E ∼ σ Rd−1
E ∼ T (|r |2−d/2/u0)/(g

∗
E)

d−1. (10.1.82)

Thus, (�H)E � T , because the factor |r |2−d/2/u0 is large in the mean field theory (the
Ginzburg criterion (4.1.24)). This means that pinning occurs even if the thermal noise
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Fig. 10.14. Difference in the free-energy density between one-phase and pinned two-phase states (in
units of T g4

E/u3
0) as a function of r/rE at M/ME = −0.21. The difference vanishes at r/rE = 0.265

on the two-phase branch, where a first-order phase transition is expected. The two-phase states are
unstable for r/rE > 0.53, while the one-phase states for r/rE < −0.89, as predicted by (10.1.41)
(not shown here).

term is added to the right-hand side of (10.1.78). Although not attained in simulations, we
believe that true equilibrium two-phase states are periodic in space, in which droplet-like
hard domains are enclosed by percolating soft regions.

In the SEI regime, phase transitions occur between a one-phase state and a pinned
two-phase state without much growth of the domains. In Fig. 10.14 we plot the free-
energy density difference � f = Hiso/V − r M2/2 − u0 M4/4 relative to the value
in the homogeneous phase as a function of r/rE at M/ME = −0.21 (which is close
to the maximum point M/ME = −1/6 of the spinodal curve (10.1.41) in 2D). The
two-phase state with � f < 0 should be stable against thermal agitations even if the
thermal noise is included. Hence the point at which � f = 0 on the two-phase branch
may be treated as a first-order phase transition point. At M/ME = −0.21, the value of r
at the transition point thus determined is 0.26rE, while the values at the spinodal points
are 0.53rE for the two-phase states and −0.89rE for the one-phase states. As shown in
Fig. 10.15, this hysteretic behavior persists at any M . Therefore, no critical point exists
under EI. Around this first-order phase transition, we have r ∼ rE, ψ ∼ ME, and
ξ ∼ r−1/2

E ∼ RE. Then the free-energy barrier per domain is estimated as (�H)E ∼
T [r2−d/2

E /u0] � T in the mean field regime. In the asymptotic critical region, if it can be
reached, the barrier is weakened, suggesting the appearance of periodic two-phase states
in equilibrium.
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Fig. 10.15. The phase diagram in the r–M (temperature–composition) plane under elastic inhomo-
geneity assuming isotropic elasticity, calculated in 2D. The meanings of the data are as follows: +,
first-order transition points; ∗, instability points of one-phase states; ×, instability points of pinned
two-phase states. The points ∗ are on the theoretical spinodal curve (10.1.41). The dotted line is
obtained from (10.1.85) at φs = 0.1. Domain patterns in pinned states are also shown, where the soft
regions are shown in black.

Figure 10.15 also shows that the soft (black) regions form a thin network at relatively
small volume fractions of the soft component [38]. For such domain structures the space
dependence is mostly along the interface normal n except for the junction regions. Then
we may set ∇i∇ jw ∼= ni n j (ψ − M) to obtain the approximate free-energy density,

1

T
feff = 1

2
rψ2 + 1

4
u0ψ

4 + ḡEψ(ψ − M)2, (10.1.83)

where ḡE = (1 − 1/d)gE. For this free-energy density, phase separation occurs for

reff = r − 4MḡE − 3ḡ2
E/u0 < 0, (10.1.84)

and the interface thickness is given by ξ = |C/reff|1/2, where C is the coefficient in
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(10.1.2). In the resultant two phases we have ψ = ψ+ and ψ− with ψ± = −ḡE/u0 ±
|reff/u0|1/2, so that

M = −ḡE/u0 + |reff/u0|1/2(1 − 2φs), (10.1.85)

where φs is the volume fraction of the soft regions. The network at small φs should dissolve
when the layer thickness becomes of order ξ . However, we cannot determine the mesh size
"net of the networks in Fig. 10.15 from the quasi-1D free-energy density (10.1.83) only.
In our simulation, "net is about ten times longer than ξ at the points of first-order phase
transition at small φs in Fig. 10.15. Indeed, these points are nearly on the theoretical curve
for φs = 0.1 in (10.1.85).

10.2 Phase separation in cubic solids

For cubic solids we again suppose the GLW hamiltonian (10.1.2), where the composition
and the elastic field are coupled via the Vegard law. The elastic energy density is expressed
in terms of the three elastic moduli, C11, C12, and C44, in the form [47],

fel(u) = 1

2
C11

∑
i

(∇i ui )
2 + 1

2
C12

∑
i �= j

(∇i ui )(∇ j u j )+ 1

2
C44(e

2
xy + e2

yz + e2
zx )

= 1

2
K (∇ · u)2 + 1

8
(C11 − C12 − 2C44)

∑
i

e2
i i +

1

4
C44

∑
i j

e2
i j , (10.2.1)

where ei j in the second line is the shear strain defined by (10.1.7). The elastic stress tensor
is given by

σi i = (C11 − C12)∇i ui + C12∇ · u + αψ,

σi j = C44ei j (i �= j). (10.2.2)

The concentration variation changes the pressure as in the isotropic case. The bulk modulus
K and the shear modulus µ are given by

K = 1

d
C11 + d − 1

d
C12, µ = C44. (10.2.3)

The degree of cubic anisotropy is represented by the following parameter,

ξa = (C11 − C12 − 2C44)/C44. (10.2.4)

Note that the transverse sound velocity is given by cT[100] = √
C44/ρ in the [100]

direction and by cT[110] = √
(C11 − C12)/2ρ in the [110] direction, where ρ is the

mass density. The velocity difference in these two directions is expressed in terms of ξa

as cT[110]2 − cT[100]2 = ξaC44/2ρ. It is also well known that (C11 − C12)/2 and C44

interchange their roles for 2D deformations (homogeneous along the z axis) if the reference
frame is rotated by π/4 in the xy plane. It is also well known that a cubic solid is stable
under the criteria K > 0, C44 > 0, and C11 − C12 > 0 for small deformations [47]. (See
Subsection 10.5.1 for more discussions.)
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To examine the effects of elastic inhomogeneity (EI) we assume the linear dependence
of the elastic moduli on ψ ,

Ci j = C (0)
i j + C (1)

i j ψ. (10.2.5)

The bulk and shear moduli are then expressed as K = K0 + K1ψ and µ = µ0 + µ1ψ ,
where

K1 = 1

d
C (1)

11 + d − 1

d
C (1)

12 , µ1 = C (1)
44 . (10.2.6)

Another relevant parameter is

ξa1 = (C (1)
11 − C (1)

12 − 2C (1)
44 )/C (0)

44 . (10.2.7)

10.2.1 Bilinear interaction for homogeneous elastic moduli

In cubic crystals, the elastic interaction among the order parameter fluctuations is al-
ready highly nontrivial even for homogeneous elastic moduli (Ci j = C (0)

i j ). It produces
anisotropic domain morphologies characteristic of cubic solids. Moreover, in the absence
of elastic inhomogeneity, the morphology is unaffected by an externally applied strain. As
will be shown in Appendix 10A, the mechanical equilibrium condition ∇ · →←

σσσ = 0 is solved
to give

ui = α∇iwi , (10.2.8)

in the absence of an externally applied strain. The Fourier transformation of w j is related
to that of ψ as

wi (k) = 1

[1 + ϕ0(k̂)]C44(k2 + ξak2
i )
ψk, (10.2.9)

with

ϕ0(k̂) =
(

1 + C12

C44

) ∑
j

1

1 + ξak̂2
j

k̂2
j . (10.2.10)

If ξa �= 0, ϕ0(k̂) depends on the direction k̂ of the wave vector. The dilation strain is
expressed as

g = ∇ · u = α
∑

j

∇2
jw j . (10.2.11)

The elastic part of H in (10.1.2) becomes a bilinear dipolar interaction,∫
dr

1

2
αψ∇ · u =

∫
k

1

2
τel(k̂)|ψk|2, (10.2.12)

with

τel(k̂) = − α2

C12 + C44

[
1 − 1

1 + ϕ0(k̂)

]
. (10.2.13)
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As in (10.1.35) and (10.1.36), we are interested in the elastic contribution to the chemical
free energy fchem and, hence, introduce

B(k̂) = τel(k̂)+ α2

K
. (10.2.14)

We then reproduce Khachaturyan’s result [2]:5

B(k̂) = α2

K
− α2(1 + 2γ1 + 3γ2)

C11 + (C11 + C12)γ1 + (C11 + 2C12 + C44)γ2
, (10.2.15)

where

γ1 = ξa(k̂
2
x k̂2

y + k̂2
y k̂2

z + k̂2
z k̂2

x ), γ2 = ξ2
a (k̂x k̂y k̂z)

2. (10.2.16)

In Ref. [30], τel(k̂) was calculated for general cases with arbitrary elastic inhomogeneity
and externally applied strain.

The directions of the wave vector which minimize τel(k̂) (and maximize ϕ0(k̂)) are
called elastically soft directions. As the temperature is lowered, early-stage spinodal de-
composition is triggered by those concentration fluctuations varying in the soft directions.
In late-stage phase separation, the interface planes tend to be perpendicular to one of these
directions. For most cubic crystals ξa is negative and the soft directions are 〈100〉. If the
solid is assumed to be inhomogeneous only in these directions, the coexistence curve is
shifted downwards by [24]

�Tc[100] = 1

a0
B[100] = 2α2

a0
· C11 − C12

(C11 + 2C12)C11
, (10.2.17)

where a0 is defined by (10.1.34). This shift was estimated to be 20 deg.K in Al–Zn [49]
and 600 deg.K in Au–Ni [50].6 On the other hand, if ξa > 0, the softest directions are
〈111〉.

Weak cubic elastic anisotropy

For small ξa, τel(k̂) is expanded as

τel(k̂) = −(α2/C11)+ τcub(k̂
2
x k̂2

y + k̂2
y k̂2

z + k̂2
z k̂2

x )+ O(ξ2
a ), (10.2.18)

where

τcub = −2α2C44ξa/C2
11. (10.2.19)

5 This expression agrees with the original one [24] only to first order in ξa for general k̂, but coincides with it exactly in the
[100] direction.

6 The latter alloy has a large lattice misfit (|η| ∼ 0.1) and large elastic inhomogeneity (C(1)
i j ∼ C(0)

i j ), so the assumption of
elastic homogeneity is inappropriate.
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In this simplest form, the interaction arising from cubic elasticity is written as

Hcub = 1

2
τcub

∫
k
(k̂2

x k̂2
y + k̂2

y k̂2
z + k̂2

z k̂2
x )|ψk|2

= 1

4
τcub

∫
dr

∑
i �= j

(∇i∇ jw)2. (10.2.20)

This form has been used in computer simulations. The 2D result follows for k̂z = 0.

10.2.2 Third-order interactions due to elastic inhomogeneity

We calculate the third-order interaction in ψ arising from the ψ dependence of the elastic
moduli in the absence of an external stress (Si j = 0). For the elastically homogeneous
case, the dilation strain is given by (10.1.28) and is written as g(0) here. The zeroth-order
shear strain is expressed as

e(0)i j = α

[
∇i∇ j (wi + w j )− 2

d
δi j

∑
"

∇2
"w"

]
, (10.2.21)

where the w j are defined by (10.2.9). In terms of g(0) and e(0)i j the elastic inhomogeneity
interactions are written as

Hinh =
∫

drψ
[

1

2
K1(g

(0))2 + 1

8
ξa1C44

∑
j

(e(0)j j )
2 + 1

4
C (1)

44

∑
i j

(e(0)i j )2
]
, (10.2.22)

to first order in C (1)
i j . However, the above expression is still very complicated, so we further-

more consider the limit ξa → 0. The first term (∝ K1) in the brackets is then proportional
to ψ(δψ)2 from (10.1.28) and can be incorporated into the free-energy density. In terms of
w in (10.1.27) the other two terms become

Hinh = 1

4
gcub

∫
drψ

∑
i �= j

(∇i∇ jw
)2 + gE

∫
drψ

∑
i j

(
∇i∇ jw − δi j

d
∇2w

)2

, (10.2.23)

where

gcub = −2(α/C11)
2ξa1C44, gE = 1

2
(α/C11)

2(C (1)
11 − C (1)

12 ). (10.2.24)

The first term in (10.2.23) was first derived by Sagui et al. [40], while the second term has
already been derived in (10.1.37) and (10.1.38) assuming isotropic elasticity.

10.2.3 Simulation with cubic anisotropy

We numerically solve the dynamic equation (10.1.73) without the noise term. For r = −1,
C = 1, u0 = 1, and λ0/T = 1, it is written as

∂

∂t
ψ = ∇2[

(−1 − ∇2)ψ + ψ3] + Icub + Iex + IE + I cub
E . (10.2.25)
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Fig. 10.16. Time evolution patterns in a
cubic alloy quenched at t = 0 with
τcub = 0.675 at (a) φs = 0.5 (left) and
(b) φs = 0.3 (right) in the absence of an
external stress [31].

The cubic interaction Hcub in (10.2.20) gives rise to

Icub = 1

2
τcub

∑
i �= j

∇2
i ∇2

jw, (10.2.26)

where w is defined by (10.1.27). When anisotropic external strain is applied, Hex in
(10.1.44) follows, leading to

Iex = −gex

∑
i j

Si j∇i∇ jψ. (10.2.27)

The third-order interaction Hinh in (10.2.23) consists of two terms; as a result, one contri-
bution in (10.2.25) is IE in (10.1.79), while the other one reads

I cub
E = 1

4
gcub∇2

∑
i �= j

(∇i∇ jw)2 + 1

2
gcub

∑
i �= j

∇i∇ jψ(∇i∇ jw). (10.2.28)

Effect of Hcub only

Taking account of Hcub or Icub only, we first show that the cubic anisotropy gives rise to
rectangular domains. In Fig. 10.16 we display 2D simulated domain structures at t = 200
and 1200 after quenching, with τcub = 0.675 and gcub = gE = Si j = 0 [31]. The
volume fraction of one component is 0.5 in (a) and 0.3 in (b). The softest directions are
[01] and [10], so domains are rectangular stripes aligned in [10] or [01] in the absence
of an anisotropic external stress. The domain widths show a sharp peak at R(t) ∼ ta with
a = 0.2–0.3, while the domain lengths are broadly distributed. Other simulations including
cubic anisotropy have also been performed [2, 28, 43]. In these numerical studies, no
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Fig. 10.17. Lamellar patterns developed
with time, (a) under a uniaxial stress along
[10], and (b) under a shear stress with the
softest directions making angles of 21◦ and
69◦ with respect to [10] (see Ref. [31]).

pinning (freezing of coarsening) was observed and the growth law was not much different
from the usual Lifshitz–Slyozov law, despite the highly anisotropic shapes of the domains.

Effect of Hcub +Hex

Next we include the interaction Hex in (10.1.42) arising from an applied external stress in a
cubic solid with τcub = 0.675, neglecting Hinh (although Hex vanishes without EI). Figure
10.17(a) shows patterns under a uniaxial stress along [10] with gexSxx = −gexSyy = 0.15
[31]. We cite several observations of lamellar or cylindrical domain structures in cubic
alloys under a uniaxial stress [18]–[20]. As another example, Fig. 10.17(b) also shows
patterns under a shear stress with gexSxy = −0.226. In these cases, the domain width
continues to grow with the growth exponent about 0.2, as in the case of Hcub alone.

Effect of Hcub +Hinh

In Fig. 10.18 we display time evolution patterns and pinning of two-phase structures in the
presence of Hcub and Hinh, where we set τcub = 0.675 and gE = 0.07, but gcub = 0. Then
the role of elastic cubic anisotropy is simply to orientate the interfaces in the preferred
directions. The patterns obtained closely resemble those in Fig. 10.4 [10] observed in Ni-
base fcc crystals with relatively large misfits, in which the component with smaller C44

forms a network [61].
Next we examine the effect of the anisotropic, third-order interaction (∝ gcub) in

(10.2.26). When τcub + gcubψ take positive and negative values in the two phases, there
arises competition in the orientation of the interfaces [40]. In Fig. 10.19 we set gcub = −4
and gE = 0.5 where ψ < 0 in the regions in black. Here the interfaces tend to be parallel
to the x or y axis or make angles of ±π/4 to these axes. This competition persists at any
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Fig. 10.18. The evolution patterns in the presence of elastic inhomogeneity in a cubic solid for
τcub = 0.675, gE = 0.07, and gcub = 0 at φs = 0.5 [35]. They resemble those in Fig. 10.4.

60

400
(a)

60

400
(b)

60

400
(c)

Fig. 10.19. Time evolution patterns with orientational competition for gE = 0.5 and gcub = −4.
Here τcub = M = 0 in (a), τcub = 0.1 and M = 0 in (b), and τcub = 0 and M = 0.3 in (c). We set
ψ < 0 in the regions in black.

late stage for τcub = M = 0 in (a). However, those parallel to the x or y axis gradually
dominate if τcub is increased to 0.1 in (b) or if M is off-critical at 0.3 in (c).

We present the phase diagram for cubic solids in Fig. 10.20 under EI [38] (cf. Fig. 10.15
for isotropic elasticity). Here we consider the 2D case in which the total GLW hamiltonian
is the sum of Hiso in (10.1.80) and Hcub in (10.2.20) with τcub = 0.71rE, so gcub = 0. As
in the isotropic case the hysteretic behavior remains at any M , indicating no critical point.
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Fig. 10.20. The phase diagram in the r–M plane for a cubic solid in the presence of Hcub. The
meanings of the data points are the same as in Fig. 10.15. Again, as for Fig. 10.15, there is no critical
point.

10.3 Order–disorder and improper martensitic phase transitions

In Section 3.3 we discussed order–disorder phase transitions due to local (optical) atomic
displacements in binary alloys neglecting the elastic effects (arising from coupling to the
acoustic degrees of freedom). For example, in Fe–Al alloys, a critical line separates a
disordered bcc phase and an ordered bcc phase and ends at a tricritical point; below this
point the transition is first order [62, 63]. Here domains in the ordered phase keep the cubic
symmetry. However, L10 domains in fcc alloys are tetragonally deformed in one of the
directions [100], [010], or [001], and some interesting patterns have been observed when
such tetragonal precipitates are developing in a cubic matrix [64, 65]. The long-range order
parameter η is a scalar quantity for bcc solids as in (3.3.11) [39] and is a vector (η1, η2, η3)

for fcc solids as in (3.3.26) [2], [66]–[69]. Originally, a Ginzburg–Landau model with a
three-component order parameter was also presented for improper ferroelastic transitions
in perovskite-structure compounds such as SrTiO3 [70]. For n-component systems the
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chemical free-energy density fchem may be of the form,7

fchem = A1(c − c1)
2 − A2(c − c2)|η|2 − A3|η|4 + A4|η|6 + A5

∑
α<β

η2
αη

2
β, (10.3.1)

where |η|2 = ∑
α |ηα|2, c1 and c2 are appropriate concentrations, and A j ( j = 1, . . . , 4)

are positive constants. The gradient free energy may be of the form fgra = 1
2 D|∇c|2 +

1
2 C

∑
α |∇ηα|2, where C and D are positive constants. The total free energy is then the sum

of the chemical free energy and the elastic free energy as H = ∫
dr[ fchem + fgrad] +Hel,

as will be discussed in Appendix 10A. For many-component systems (n ≥ 2), the term
proportional to A5 breaks the rotational symmetry in the vector space of (η1, . . . , ηn) and,
if A5 > 0, the ordered state with η1 �= 0 and η j = 0 ( j ≥ 2) is favored over other ordered
states such as the one with η1 = · · · = ηn . For A2 > 0, the ordered phase has a higher
value of c than in the disordered phase. There can be two kinds of elastic coupling; one is
between c and the strains εi j = (∇i u j + ∇ j ui )/2 as in (10.1.2), while the other involves
ηp and is of third order as

HI = −
∫

dr
∑
pi j

σ 0
i j (p)η2

pεi j , (10.3.2)

where σ 0
i j (p) (p = 1, . . . , n) are constant matrices. This coupling is even with respect to ηp

from crystal symmetry. If we assume harmonic elasticity, we may eliminate the strain fields
and obtain fourth-order angle-dependent interactions among ηp following the procedure in
Appendix 10A. The simplest dynamic equations are of the forms

∂

∂t
c = M∇2 δ

δc
H,

∂

∂t
ηα = −L

δ

δηα
H, (10.3.3)

where M and L are the kinetic coefficients.
At improper martensitic transitions, on the other hand, no composition field is involved,

and a vector order parameter ηp (p = 1, . . . , n) representing optical atomic displacements
is coupled to the strains as in (10.3.2) [66, 67]. The sum of the chemical free-energy density
and the gradient free-energy density may be given by

fchem + fgrad = τ

2
|η|2 − A3|η|4 + A4|η|6 + A5

∑
α<β

η2
αη

2
β + C

2

∑
α

|∇ηα|2. (10.3.4)

Interfaces between variants in this case are then under elastic constraints [71]. The dynam-
ics of η is governed by the nonconserved (second) equation in (10.3.3). With this model,
3D simulations were performed with and without external stress [67].

In ferroelectric transitions such as those in BaTiO3 [72], the order parameter is the
polarization vector P, and the effects of the applied electric field are of great technological
importance. Here the (dipolar) electrostatic interaction and the coupling to the elastic field
strongly influence the phase transition behavior [73]. These two ingredients should lead to

7 The third-order term proportional to η1η2η3 can also be present for n = 3 as shown in (3.3.29). Its effect in phase ordering
has not yet been examined.
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unique domain structures observed at long times. To study phase ordering, Nambu and
Sagala performed 2D simulations [74], in which P and the strains are coupled in the
form (10.3.2) but the electrostatic interaction is neglected. We predict that ∇ · P should
be strongly suppressed due to the electrostatic interaction, because ρeff = −4π∇ · P is the
effective charge (as in (4.2.58)).

Anomalous elastic properties of improper and proper martensitic materials (including
shape-memory effects) are of great technological importance [75]. We mention an exper-
iment by Yamada and Uesu [76, 77] on improper martensitic Pb3(PO4)2 with hexagonal
symmetry. As an idealized condition, their system was composed of stripe domains with
η2 = ±η0 and η3 = η1 = 0 and those with η3 = ±η0 and η2 = η1 = 0 varying along
[100]. The effective shear modulus µeff was then 10−4−10−3 of the shear modulus µ in the
one-phase state. To explain such soft elasticity Yamada [77] proposed a pinning mechanism
of interfaces due to defects. Ohta [78] proposed a mechanism of anomalous elasticity of
twin structures, in which the domain walls are dragged by a very slowly evolving field,
presumably representing a defect density.

In this section we explain some representative examples of ordering dynamics in
order–disorder and improper martensitic phase transitions, though such studies are still
fragmentary and insufficient.

10.3.1 Order–disorder transitions in bcc alloys with elastic inhomogeneity

Sagui et al. [39] examined the effect of elastic inhomogeneity in model C with scalar
nonconserved and conserved variables, η and c, supposing bcc solids. If the free-energy
density is even with respect to η, the simplest allowable form of the deformation stress in
(10A.2) is given by

σ 0
i j = −[

αc(c − cc)+ αηη
2]
δi j , (10.3.5)

where αc and αη are constants and cc is a critical composition. The shear modulus depends
on c and η as

µ = µ0 + µc(c − cc)+ µηη
2. (10.3.6)

Assuming isotropic elasticity, the elastic field can easily be eliminated and, to first order in
the coefficients µc and µη, we obtain the elastic inhomogeneity interaction,

Hinh = 1

L2
0

∫
dr

[
µc(c − cc)+ µηη

2] ∑
i j

[
∇i∇ jw − 1

d
δi j∇2w

]2

, (10.3.7)

where L0 is the longitudinal modulus in (10.1.23) and w is determined by

∇2w = αc(c − 〈c〉)+ αη(η
2 − 〈η2〉). (10.3.8)

Recall that the morphologies from model C without the coupling to an elastic field were
exemplified in Fig. 8.22. We are interested in how they are affected by Hinh using the
common parameter values in fchem in (10.3.1).
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Fig. 10.21. The evolution patterns in model C when the variants of the ordered phase (white and
gray) are hard [39]. The normalized concentration (see caption 8.22) is −1/3 in (a) and 1/3 in (b).

In Figs 10.21 and 10.22 the normalized concentrations in (a), −1/3, and (b), 1/3, are the
same as those in (a) and (b), respectively, in Fig. 8.22. As in model B, we can see that the
soft phase forms a percolated network at long times even if its volume fraction is relatively
small. That is, in Fig. 10.21 the ordered regions (white or gray) are harder and take droplet
shapes, while the disordered regions (black) are percolated. They resemble those in Fig.
10.11 (for the case without η) except that there are two variants of the ordered phase. Here
we do not see antiphase boundaries (interfaces between the two variants). However, in
Fig. 10.22 the disordered regions (black) are harder. In (a) the disordered regions form a
wetting layer at an early stage due to the nature of the model C quench, but they tend to
become droplet-like at later stages because they are hard. In (b) the soft ordered regions
(white or gray) are elongated even at an early stage compared with those in Fig. 8.22 (b).
Interestingly, we can see the appearance of antiphase boundaries both in (a) and (b) because
the two variants touch after the shape changes of the disordered domains.

We make some remarks. (i) In the simulation, coarsening was observed to slow down
considerably compared with the previous case in Fig. 8.22 without elasticity, but the reason
for the asymptotic growth behavior remains unclear except for in Fig. 10.21(a) where we
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Fig. 10.22. Time evolution patterns in model C when the variants of the ordered phase (white and
gray) are soft [39].

expect pinning. (ii) The anisotropy arising from cubic elasticity is neglected in the simu-
lation, which would bring close resemblance of simulated patterns and real morphologies.
(iii) Near the tricritical point, the elastic inhomogeneity interaction is marginal [38]. In fact,
RE in (10.1.56) is proportional to ξ on the line of the first-order transition phase. Thus, for
sufficiently small µc and µη in (10.3.4), RE � ξ holds and the elastic inhomogeneity
remains weak as the tricritical point is approached.

10.3.2 Chessboard-like L10 structures in fcc alloys

Bouar et al. [68] obtained unique chessboard patterns formed by tetragonal precipitates
in a fcc matrix. The atomic configurations in a fcc cubic alloy are characterized by the
concentration c and a three-component vector long-range order parameter (η1, η2, η3)

in (3.3.26). For simplicity, Bouar et al. assumed homogeneous elastic moduli and the
emergence of pseudo-two-dimensional rod-like L10 microstructures with η3 = 0 aligned
along [001]. Then two pairs of variants (four variants) are considered out of three pairs of
variants possible in the low-temperature phase. From the crystal symmetry, the stress-free
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strain in (10A.2) is diagonal and is even with respect to ηα . Its simplest form is written as

ε0
i i = ε1(η

2
1 + η2

2)+ (ε3 − ε1)(η
2
1δi1 + η2

2δi2) (i = 1, 2, 3), (10.3.9)

where ε1 = (a − a0)/a0 and ε3 = (c − a0)/a0 with a0 being the crystal lattice parameter
of the cubic phase, and a and c those of the variants of the tetragonal phase. If the volume
dilation is small compared with the tetragonal strain, we have |ε3 + 2ε1| � |ε3| or ε1 ∼=
−ε3/2. Although the problem is considered in 2D, ε0

33 is nonvanishing here. In 2D, the
elastic free energy Hel in (10A.5) is of the form

Hel = 1

2

∫
k

∑
α,β=1,2

Bαβ(k̂)(η2
α)k(η

2
β)

∗
k, (10.3.10)

where k = (k1, k2, 0) and (η2
α)k are the Fourier transformations of η2

α . Bouar et al.
furthermore assumed isotropic elasticity on the [001] plane; then, from (10A.19) and
(10A.20) we may derive

Hel = µ

1 − ν
(ε3 − ε1)

2
∫

k

∣∣∣∣ ∑
α=1,2

(
Ac − k̂2

α

)
(η2

α)k

∣∣∣∣2

+ µε2
1(1 + ν)

∫
drη4, (10.3.11)

where ν is the Poisson ratio in the range −1 < ν < 1/2 [47] and Ac = (ε3+νε1)/(ε3−ε1).
Orientation of domains is then selected such that the first term of (10.3.11) is minimized.
We consider a tetragonal domain with η1 �= 0 and η2 = 0 emerging in a cubic region,
and home in on the interface between the two phases. It tends to be parallel to the habit
plane whose normal n0 is in the softest direction minimizing Hel. When ε1/ε3 < 0 and
|ε3/ε1| > ν, the angle θ1 between n0 and [100] is given by

cos2 θ1 = Ac = (ε3 + νε1)/(ε3 − ε1). (10.3.12)

For ε1/ε3 < 0 and |ε3/ε1| ≤ ν we have θ1 = π/2. The corresponding angle θ2 for
a tetragonal domain with η2 �= 0 and η1 = 0 emerging in a cubic region is given by
θ2 = π/2 − θ1. In Fig. 10.23 a pattern in a simulation at ε1/ε3 = −0.49 and ν = 1/3
is compared with an experimental image for Co39.5Pt60.5 [68]. This choice of parameters
makes the angles of the chessboard pattern from the habit plane relation (10.3.11) agree
with the observed ones.

10.3.3 Improper hexagonal to orthorhombic transformations

A number of unique domains have been observed in hexagonal → orthorhombic transfor-
mations [79]–[81] and hexagonal → monoclinic transformations [82]. Torres presented a
general 3D form of the free-energy density for such crystal symmetry [66].

Recently, Wen et al. [6, 83] studied patterns emerging in improper hexagonal → or-
thorhombic transformations on the basis of (10.3.1) and (10.3.2). They considered the
basal plane of the hexagonal lattice, illustrated in Fig. 10.24, assuming homogeneity per-
pendicular to the plane. Then the atomic structures of the ordered phase can be represented
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Fig. 10.23. Comparison between an experimental TEM image and a simulation result of a chess-
board pattern in Co39.5Pt60.5 [68]. In the simulation, η1 or η2 is nonvanishing in the black regions,
while η1 ∼= 0 and η2 ∼= 0 in the white regions.

++

Fig. 10.24. The basal plane of the hexagonal structure (courtesy of Professor L. Q. Chen). The
hexagonal disordered phase (left) is transformed into one of the three (pairs of) variants of the
orthorhombic phase (right).

by a three-component long-range order parameter (η1, η2, η3), giving rise to three pairs
of variants (six variants) in the orthorhombic phase on the basal plane, each pair being
characterized by different elastic deformations. In particular, in Ti–Al–Nb [81], where c
represents the Nb concentration, the perpendicular components ε0

i3 (i = 1, 2, 3) and the
dilational part of the stress-free strain are small, and the Nb concentrations in the two
phases are only slightly different. On the basis of these facts, Wen et al. considered the
problem in 2D with a concentration-independent, traceless stress-free strain,

ε0
11 = −ε0

22 = 1

2
εs

(
2η2

1 − η2
2 − η2

3

)
, ε0

12 = ε0
21 =

√
3

2
εs

(
η2

2 − η2
3

)
, (10.3.13)

where ε0
i3 = 0 and εs is a constant characteristic strain. This is the simplest form of the

stress-free strain under the condition that the free energy is invariant with respect to rotation
of the reference frame by θ = nπ/3 (n = 1, 2, . . .) in the xy plane. This can be shown as
follows. From Appendix 10A, the cross term between (η1, η2, η3) and u in the free-energy
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density is written as

fI = −
∑
i jk"

ε0
i jλi jk"εi j = −1

2
µεs

[
(2η2

1 − η2
2 − η2

3)e2 +
√

3(η2
2 − η2

3)e4
]
, (10.3.14)

where isotropic elasticity is assumed and

e2 = ∇x ux − ∇yuy, e4 = ∇x uy + ∇yux . (10.3.15)

For the rotation x ′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ , we have

e′2 = e2 cos 2θ + e4 sin 2θ, e′4 = −e2 sin 2θ + e4 cos 2θ. (10.3.16)

For θ = π/3 we set (η′1, η
′
2, η

′
3) = (η2, η3, η1); then, fI is invariant in terms of the primed

quantities in the rotated reference frame. We also remark that Torres’ form of fI reduces to
(10.3.13) in the 2D case [66].

Because the elastic property on the basal plane of a hexagonal lattice is isotropic from the
triangular symmetry, the 2D formula (10A.21) is applicable and then the elastic interaction
energy becomes

Hel = µε2
s

4(1 − ν)

∫
k

∣∣(k̂2
x − k̂2

y)
(
2η2

1 − η2
2 − η2

3

)
k + 2

√
3k̂x k̂y

(
η2

2 − η2
3

)
k

∣∣2
. (10.3.17)

With this Hel Wen et al. numerically solved (10.3.2) with the chemical free-energy density
(10.3.1). Figure 10.25 shows coarsening orthorhombic domains, where the mean concen-
tration is 0.125 in (a) and 0.10 in (b). The resultant volume fraction of the ordered phase
is about 0.69 in (a) and 0.37 in (b). We observe that the domain shapes depend sensitively
on the mean concentration. The unique orientation relationship of the habit planes of the
three variants is determined from minimization of (10.3.17) as a function of the angle θ of
the interface normal where k̂x = cos θ and k̂y = sin θ . Closely resembling patterns have
been observed in experiments.

They furthermore examined the effect of applied strain εa
i j in phase ordering. From

(10A.2) and (10A.3) we notice that the applied stress σ a
i j = ∑

k" λi jk"ε
a
k" gives rise to

the free-energy density of the form, fex = −∑
i j ε

0
i jσ

a
i j . They argued that a uniaxial stress

can be applied in such a direction that variants 1 and 2 are equally favored but variant 3 is
unfavored. In this case fex is written as

fex = −µεsε
a(η2

1 + η2
2 − 2η2

3), (10.3.18)

where εa is the strength of the applied strain and εsε
a > 0. Obviously the applied stress is

uniaxial along the direction whose angle with respect to the first principal axis (horizontal
in Fig. 10.24) is π/6. With the above term included in simulations (with fixed average
strain), they obtained a number of patterns in which the fraction of variant 3 diminishes
with increasing εa.
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600
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Fig. 10.25. Simulated precipitation processes of ordered orthorhombic domains from a disordered
hexagonal matrix [83]. In (a) the white regions are ordered and the black regions are disordered.
In (b) the shades of gray represent the values of η2

1 − η2 − 2η2
3, distinguishing the three ordered

variants in the majority disordered hexagonal matrix. Therefore, the four different gray levels from
brightest to darkest correspond to variant 1, parent phase, variant 2, and variant 3, respectively. The
volume fraction of the ordered domains is 0.69 in (a) and 0.37 in (b). The numbers are the times after
quenching, scaled appropriately.

Domain pinning

Wen et al. also performed simulations by neglecting the concentration fluctuations or for
c = const [6, 83]. Then the dynamics is provided by the second equation of (10.3.3) obeyed
by the three-component long-range vector order parameter (η1, η2, η3). In phase ordering,
the system is soon composed of three pairs of the low-temperature variants. As shown in
Fig. 10.26, the late-stage pattern is characterized by fixed orientations of the interfaces
between the different variants. As a result, the angles between them at the junction points
are multiples of π/6. They closely resemble those observed in real alloys. Due to these
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Fig. 10.26. Typical pattern of orthorhombic domains at fixed concentration in a pinned (late-stage)
state on a hexagonal basal plane.

strong geometrical constraints, pinning of the domain growth is expected when the elastic
energy (∼ µε2

s R3) per domain exceeds the interface energy (∼ σ R2, σ being the surface
tension) [84]. Thus, the characteristic domain size R∗ in pinned states is given by

R∗ ∼ σ/µε2
s . (10.3.19)

This relation is confirmed in Fig. 10.27, which indicates that the time to pinning becomes
shorter with an increase in the characteristic elastic energy density µε2

s .

10.4 Proper martensitic transitions

In proper martensitic materials a structural phase transition occurs without large-scale
composition changes. Its representative microscopic origin is coupling between electronic
orbital states and lattice distortions (called Jahn–Teller coupling [85]–[87]) For example,
when one electron occupies an electronic state spanned by doubly degenerate d-orbital
states at each site in the undistorted crystal structure, Kanamori introduced pseudo Pauli
spin matrices σ̂nx and σ̂nz operating on electronic states at site n [88]. As will be derived
in Appendix 10C, there arises a bilinear orbit–lattice interaction energy of the form

HJT = gK

∑
n

(σ̂nz Qn3 + σ̂nx Qn2), (10.4.1)

where Qn2 and Qn3 represent appropriate linear combinations of atomic displacements at
site n. Their acoustic parts may be equated to e2 and e3 to be defined in (10.4.4) below.
Then, if there is an orbital order represented by 〈σ̂nz〉 ∝ cosϕ and 〈σ̂nz〉 ∝ sinϕ at low
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Fig. 10.27. The domain size R(t) (inverse perimeter length) of orthorhombic domains vs time after
quenching for µε2

s = 1.01, 1.51, 2.11, 2.7, and 3.25 from above [84]. In the inset the domain size in
pinned states is shown. In dimensionless units we take τ = −1, A3 = 0.5, A4 = 11/6, A5 = 0.5,
and C = 1.2 in (10.3.4) and K/µ = 2 (or ν = 1/2).

temperatures, a cubic to tetragonal phase transition is caused as 〈Qn3〉 = η0 cosϕ and
〈Qn2〉 = η0 sinϕ. The tetragonal distortion is along the x , y, z axis for ϕ = 2π/3, −2π/3,
0, respectively. The transition becomes first order in the presence of an anharmonic energy
of the form [86]

H3 = −A3

∑
n

(Q3
n3 − 3Qn3 Q2

n2). (10.4.2)

If the coefficient A3 is small, the transition becomes weakly discontinuous.
Proper structural phase transitions are often characterized by soft modes [45, 90]. For

example, at nearly continuous cubic to tetragonal transitions, the elastic constant against
[110] sound becomes small towards the transition as

C ′ = 1

2
(C11 − C12) = AT (T − Tc0), (10.4.3)

as a function of T at a fixed pressure p, where the solid becomes soft against tetragonal
strains. As a result, the thermal fluctuations of the tetragonal strains are enhanced as T →
Tc0, as can be seen in (10.4.44) below. A representative example is given by Nb3Sn [91,
92]. However, in KCN [93], C44 tends to zero and softening occurs in a two-dimensional
subspace of the wave vector. (See near (10.5.1).)
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10.4.1 Nonlinear elastic free energy

Following the conventional continuum theory [94]–[97], we describe proper martensitic
transitions in terms of the strains, including anharmonic terms, where the microscopic
true order parameter (σ̂nz and σ̂nx in the Jahn–Teller case (10.4.1)) has been eliminated.
[However, it is unclear under what conditions this approach is justified.8]

In this book the diagonal strains are defined by

e1 = ∇x ux + ∇yuy + ∇zuz,

e2 = ∇x ux − ∇yuy,

e3 = 1√
3
(2∇zuz − ∇x ux − ∇yuy). (10.4.4)

The off-diagonal components are written as

e4 = ∇x uy + ∇yux , e5 = ∇yuz + ∇zuy, e6 = ∇zux + ∇x uz . (10.4.5)

In the bilinear order the elastic energy corresponding to (10.2.1) is expressed as

H0 = 1

2

∫
dr

[
K e2

1 + C ′(e2
2 + e2

3)+ C44(e
2
4 + e2

5 + e2
6)

]
. (10.4.6)

We hereafter consider a cubic to tetragonal phase transition, where the two tetragonal
strains, e2 and e3 constitute a two-component order parameter. The elastic constant C ′

is assumed to be expressed as (10.4.3). To describe the transition we should include the
following elastic energy consisting of higher-order anharmonic terms,

H′ =
∫

dr
[−αe1(e

2
2 + e2

3)− B(e3
3 −3e2

2e3)+ ū0

4
(e2

2 + e2
3)

2 + v0

6
(e2

2 + e2
3)

3]
, (10.4.7)

where α is a Grüneisen constant related to the density or pressure dependence of C ′ as

α = ρ

2

(
∂C ′

∂ρ

)
T
= K

2

(
∂C ′

∂p

)
T
. (10.4.8)

Thus α can be known from measurements of C ′ for various pressures in the cubic phase
(though there seem to be no available data). The third-order term proportional to B, which
corresponds to H3 in (10.4.2), is allowable from symmetry because

e3(e
2
3 − 3e2

2) = 12
√

3εD
x ε

D
y ε

D
z

= η3 cos(3ϕ). (10.4.9)

In the first line,

εD
i = ∇i ui − 1

3
e1 (10.4.10)

are the deviatoric diagonal strains. In the second line we have set

e2 = η sinϕ, e3 = η cosϕ, (10.4.11)

8 In Subsection 10.4.7 we will set up another Ginzburg–Landau theory for the orbital order parameter coupled to elastic strains.
It will indeed predict some effects beyond the scope of the traditional nonlinear strain theory.



596 Phase transition dynamics in solids

where η = (e2
2 + e2

3)
1/2 ≥ 0, and used the relation cos(3ϕ) = cos3 ϕ− 3 cosϕ sin2 ϕ. Here

we express εD
i in terms of η and ϕ as

εD
x = η√

3
sin

(
ϕ − π

6

)
, εD

y = − η√
3

sin

(
ϕ + π

6

)
, εD

z = η√
3

cosϕ. (10.4.12)

The gradient free energy can be of the form,

Hgrad =
∫

dr
[

C

2
(|∇e2|2 + |∇e3|2)− D

2
W

]
, (10.4.13)

with

W = 4
[
εD

y (3∇2
z − ∇2)εD

x + εD
z (3∇2

x − ∇2)εD
y + εD

x (3∇2
y − ∇2)εD

z

]
= e3�3e3 − e2�3e2 − e2�2e3 − e3�2e2, (10.4.14)

where �2 = √
3(∇2

x −∇2
y ) and �3 = 2∇2

z −∇2
x −∇2

y . Comparing (10.4.9) and (10.4.14),
we notice that the gradient term −DW/2 in (10.4.13) is allowable as well as the third-order
anharmonic term proportional to B in H′. Because Hgrad should be nonnegative-definite,
we require

C ≥ |D|, (10.4.15)

which can also be seen in (10.4.33) below. Now the total Ginzburg–Landau free energy is
given by

H = H0 +H′ +Hgrad

=
∫

dr f +Hgrad. (10.4.16)

The free-energy density f (not including the gradient terms) is expressed as

f = K

2
e2

1+
C44

2
(e2

4+e2
5+e2

6)+
(

C ′

2
−αe1

)
η2−B(e3

3−3e3e2
2)+

ū0

4
η4+ v0

6
η6, (10.4.17)

where η2 = e2
2 + e2

3.

Stress tensor

The stress tensor σi j can be calculated in the procedure in (10.1.9) as

σxx = K e1 − αη2 + S2 − 1√
3

S3,

σyy = K e1 − αη2 − S2 − 1√
3

S3,

σzz = K e1 − αη2 + 2√
3

S3, (10.4.18)
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where

S2 = ∂ f

∂e2
− C∇2e2 + D(�3e2 +�2e3),

S3 = ∂ f

∂e3
− C∇2e3 − D(�3e3 −�2e2). (10.4.19)

The normal stress differences are expressed as

σxx − σyy = 2S2, 2σzz − σxx − σyy = 4√
3

S3. (10.4.20)

The off-diagonal components are given by σi j = C44(∇i u j +∇ j ui ) (i �= j) as in (10.2.2).
We readily confirm the relation, ∑

j

∇ jσi j = − δ

δui
H. (10.4.21)

Homogeneous states

In homogeneous stress-free states we have e4 = e5 = e6 = 0, e1 = αη2/K , and ∂ f/∂e2 =
∂ f/∂e3 = 0. Then f becomes dependent only on e2 and e3 or η and ϕ as

f (e2, e3) = 1

2
C ′η2 − Bη3 cos 3ϕ + 1

4
u0η

4 + 1

6
v0η

6, (10.4.22)

where

u0 = ū0 − 2α2/K . (10.4.23)

We assume B > 0 and u0 > 0 and neglect the sixth-order term (v0 = 0). For η > 0, f
is minimized for ϕ = 2π/3,−2π/3, and 0 as a function of ϕ, which correspond to three
variants with the symmetry axis along the x , y, and z axis, respectively, from (10.4.12). In
Fig. 10.28 we show a contour plot of f (e2, e3) for v0 = 0. Let f (e2, e3) be minimized at
η = η0 for these values of ϕ. If it is nonvanishing, it satisfies

C ′ − 3Bη0 + u0η
2
0 = 0, (10.4.24)

which is solved to give

η0 = (3B/2u0)
[
1 +

√
1 − 4u0C ′/9B2

]
. (10.4.25)

Under the stress-free condition, the ordered phase is stable for C ′ ≤ 2B2/u0 and
metastable for 2 < C ′u0/B2 < 9/4. If C ′ ∼ B2/u0, we have η0 ∼ B/u0 and
fmin ∼ −Bη3

0, where fmin is the minimum of f . The lattice constant a‖ along the symmetry
axis and that, a⊥, perpendicular to it are expressed as

a‖
a0

= 1 + 1√
3
η0 − α

3K
η2

0,
a⊥
a0

= 1 − 1

2
√

3
η0 − α

3K
η2

0, (10.4.26)
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Fig. 10.28. Contour plot of the free-energy
density f (e2, e3) in (10.4.22) for B > 0.
The variants 1, 2, and 3 correspond to the
tetragonal variants stretched along the z, x ,
and y axis, respectively.

where the lattice constants along the three axes are set equal to a0(1+∇i ui ) with a0 being
the lattice constant in the cubic phase. We note that a‖ > a⊥ for B > 0 but a‖ < a⊥ for
B < 0.

We may also apply a uniaxial stress σzz = σa along the z axis under the stress-free
condition in the x and y axes (σxx = σyy = 0). In homogeneous states we have e1 =
(αη2

0 + σa/3)/K , ∂ f ∂e2 = 0, and ∂ f/∂e3 = σa/
√

3, so we should minimize

f̃ = f (e2, e3)− 1√
3
σae3. (10.4.27)

For small σa there appears a difference between the minimum free energy for ϕ ∼= 0 and
that for ϕ ∼= ±2π/3 given by

� fmin = −1

2

√
3σaη0 + O(σ 2

a ). (10.4.28)

The higher-order terms are negligible for |σa/Bη2
0| � 1. If σa satisfies this condition and

has the same (opposite) sign as that of B, the variant with the symmetry axis along the z
axis is energetically unfavored (favored). (See Subsection 10.4.7 for more discussions on
the effect of applied stress.)

Compatibility conditions

Because the displacement vector is composed of three components, ux , uy , and uz , in 3D,
there are certain relations among the six strains which are satisfied identically. They are
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known as compatibility relations given below [99]:

∇x∇ye4 = ∇2
x εy + ∇2

yεx , 2∇x∇yεz = ∇z(∇x e5 + ∇ye6 − ∇ze4),

∇y∇ze5 = ∇2
yεz + ∇2

z εy, 2∇y∇zεx = ∇x (∇ye6 + ∇ze4 − ∇x e5),

∇z∇x e6 = ∇2
z εx + ∇2

x εz, 2∇z∇xεy = ∇y(∇ze4 + ∇x e5 − ∇ye6),

(10.4.29)

where εi = ∇i ui (i = x, y, z) are the diagonal strains and can be expressed in terms of
e1, e2, and e3. These relations, which readily follow from the definitions of the strains, are
known to be sufficient conditions for the existence of u = (ux , uy ,uz). That is, if they are
satisfied for given strains, we may construct the corresponding u which yield these strains.

10.4.2 Interface between variants

We examine an interface between the two stress-free variants with ϕ = 2π/3 and −2π/3
[96]–[98] by assuming that all the strains depend only on

s = (x + y)/
√

2. (10.4.30)

The interface normal is then in the direction [110]. We require e2 → ±√
3η0/2 and e3 →

−η0/2 far from the interface (s → ±∞). The compatibility relations (10.4.29) indicate
that εz , e4 − εx − εy , and e5 − e6 should be constants independent of s. We thus seek the
solution by setting

e1 = −
√

3

(
e3 + 1

2
η0

)
+ α

K
η2

0, e4 = −
√

3

(
e3 + 1

2
η0

)
, e5 = e6 = 0. (10.4.31)

As ought to be the case, the strain,

∇zuz = − 1

2
√

3
η0 − 1

3K
αη2

0, (10.4.32)

is constant. All the strains are now expressed in terms of e2 and e3. The free-energy density
including the gradient terms is written as

f̂ = K

2

(
e1 − α

K
η2

)2

+ 1

2
C44e2

4 + f (e2, e3)+ C + D

2

∣∣∣∣ d

ds
e2

∣∣∣∣2

+ C − D

2

∣∣∣∣ d

ds
e3

∣∣∣∣2

,

(10.4.33)
where e1 and e4 are given by (10.4.31) and f (e2, e3) is defined by (10.4.22). The total
free energy H is the space integral of f̂ . From (10.4.18) and (10.4.19) the mechanical
equilibrium condition

∑
j ∇ jσi j = 0 turns out to be equivalent to the extremum condition

δH/δe2 = δH/δe3 = 0 of H with respect to e2 and e3.
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Barsch–Krumhansl solution

In f̂ the cross terms between e2 and e3 are written in the form G(e3)e2
2. It then follows

that e3 = −η0/2 = const. if ∂G(e3)/∂e3 = 0. This condition is rewritten as (
√

3 +
2αe3/K )α + 3B + u0e3 = 0, if we assume u0 > 0 and v0 = 0 in f . Then,

C ′ = (9B2/4u0)X (2 − X), η0 = (3B/2u0)X, (10.4.34)

with X = 4(1 + α/
√

3B)/(1 + 2α2/K u0) > 1. Now e3 is constant and

f̂ =
(

u0

4
+ α2

2K

)
(e2

2 − 3η2
0/4)2 + C + D

2

∣∣∣∣ d

ds
e2

∣∣∣∣2

+ const. (10.4.35)

Thus the interface profile is simply of the form

e2 = (
√

3η0/2) tanh(s/2ξ), (10.4.36)

where

ξ2 = 2(C + D)/[3η2
0(u0 + 2α2/K )]. (10.4.37)

In their original theory Barsch and Krumhansl [96] assumed α = 0 and C ′ = −18B2/u0

to obtain (10.4.36).

Small-B case

When B is small, the phase transition is weakly discontinuous and there arises a nearly
critical case,

K + C44 � |C ′| ∼ B2/u0, η0 ∼ B/u0. (10.4.38)

Notice that the first two terms in (10.4.33) give rise to the bilinear term 3(K+C44)(δe3)
2/2,

which serves to suppress the deviation δe3 = e3 + η0/2. Some calculations yield

e3 = −1

2
η0 − α√

3(K + C44)
(η2 − η2

0)+ O(B3). (10.4.39)

The free-energy density is again of the form (10.4.35) up to order B4, leading to the profile
(10.4.36). The interface thickness ξ is also given by (10.4.37), so ξ ∝ B−1.

10.4.3 Dynamic equation and linear analysis

Large-scale elastic disturbances propagate on the acoustic timescale throughout the system.
We assume the dynamic equations,

ρ
∂2

∂t2
u − ζ∇2 ∂

∂t
u = − δ

δu
H = ∇ · →←

σ , (10.4.40)

where ρ is the mass density and ζ is the bulk viscosity assumed to be isotropic [47]. If C ′

is slightly negative, the transverse acoustic sound varying along [110] (and that varying in
one of the other five equivalent directions) becomes unstable.
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Here we perform linear analysis assuming that all the deviations are small, depending
on space and time as exp(ik · r−�t). Let the direction k̂ = k−1k be nearly along [110] and
k̂ · u be very small compared to ux ∼= −uy . Then the deviations are expanded in powers
of k̂2

x − 1/2, k̂2
y − 1/2, and k̂2

z . It follows that uz ∼= −(K/µ + 1)k̂z(k̂ · u) ∼= 0. Thus only
e2 remains nonvanishing with the other strains being nearly zero. The relaxation rate � is
determined by

ρ�2 − ζk2� = −k2Ce(k), (10.4.41)

where

Ce(k) = C ′ + µθ2 + 4Kµ

K + µ
(ϕ − π/4)2 + (C + D)k2. (10.4.42)

Here (k̂x , k̂y, k̂z) = (cos θ cosϕ, cos θ sinϕ, sin θ) with θ ∼= 0 and ϕ ∼= π/4, and C and D
are the coefficients in the gradient free energy (10.4.13). A growing mode with negative �
exists for Ce < 0. At long wavelengths we obtain

� ∼= ±k(|Ce(k)|/ρ)1/2. (10.4.43)

If |C ′| � K ∼ µ, the instability condition Ce < 0 is realized only when k̂ slightly deviates
from [110] with |θ | and |ϕ − π/4| being smaller than |C ′/µ|1/2. This high anisotropy of
the growing fluctuations can be seen at early stages in Figs 10.33–10.35 below.

We also notice that the thermal fluctuations of u grow for small positive C ′ from
(10A.16). In the gaussian approximation the growing part of the correlation function of
u is written as

〈uku∗
k〉 ∼=

T

k2Ce(k)
e[11̄0]e[11̄0], (10.4.44)

where k is assumed to be nearly along [110] and e[11̄0] = 2−1/2(1,−1, 0).

10.4.4 Square–rectangular transition

We present nonlinear analysis of square to rectangular transformations in 2D on the basis
of the following free-energy density,

f = K

2
e2

1 +
µ

2
e2

4 − α′e1e2
2 +

(
τ

2
e2

2 +
ū0

4
e4

2 +
v0

6
e6

2

)
+ D

2
|∇e2|2, (10.4.45)

where τ(= C ′) is a control parameter in our simulation and9

e1 = ∇x ux + ∇yuy, e2 = ∇x ux − ∇yuy, e4 = ∇yux + ∇x uy (10.4.46)

are the dilation, tetragonal, and shear strains, respectively. This 2D free-energy density
is obtained from the 3D form (10.4.17) for ∇zuz = const. and e5 = e6 = 0 under the

9 In 2D the shear strain is usually written as e3, but it is written as e4 here to avoid confusion between the 2D and 3D cases.



602 Phase transition dynamics in solids

condition of homogeneity along the z axis. Furthermore, the 2D compatibility relation
follows from (10.4.28) in the form,

∇2e1 − 2∇x∇ye4 − (∇2
x − ∇2

y )e2 = 0. (10.4.47)

Experimentally, this 2D situation will be realized if a small uniaxial stress σa is applied
such that the variant with the symmetry axis along the z axis is unfavored. If e3 in (10.4.17)
is replaced by 〈e3〉 − e1/

√
3 and the terms proportional to e1e2

2 are collected, the coupling
constant α′ in (10.4.45) is expressed in terms of the 3D coefficients in (10.4.17) as

α′ = α +
√

3B + 1√
3

[ū0 + 2v0〈e3〉2]〈e3〉. (10.4.48)

It is important that α′ can be nonvanishing even for α = 0 in solids with B �= 0. With the
free-energy density (10.4.45) we now rewrite (10.4.40) as

ρ
∂2

∂t2
ux − ζ∇2 ∂

∂t
ux = ∇x [K e1 − α′e2

2] + µ∇ye4 + ∇xµ2,

ρ
∂2

∂t2
uy − ζ∇2 ∂

∂t
uy = ∇y[K e1 − α′e2

2] + µ∇x e4 − ∇yµ2, (10.4.49)

where

µ2 = (τ − 2α′e1 − D∇2)e2 + u0e3
2 + v0e5

2. (10.4.50)

Dilation adjustment mechanism of domain pinning

First we point out an important difference in the two cases, α′ = 0 and α′ �= 0. On
the one hand, for α′ = 0, disordered regions disappear on relatively rapid timescales
in phase ordering, eventually resulting in a twin structure with interfaces along [11] or
[1̄1]. This is simply because the elastic energy is minimized for twin structures, as will
be discussed in Appendix 10D. On the other hand, for α′ �= 0, the third-order coupling
(∝ e1e2

2) can give rise to nearly steady, structural intermediate states, in which domains
of the tetragonal phase are coherently embedded in a cubic matrix [102]. Such elastic
stabilization of domains is possible when the dilation strain e1 is asymmetrically induced
in the high- and low-temperature phases (dilation adjustment mechanism). Note that the
effective temperature for the order parameter fluctuations is given by

τeff = τ − 2α′e1. (10.4.51)

Domain pinning is expected if τeff < 0 in ordered domains and τeff > 0 in a cubic matrix.
Around a tetragonal domain with |e2| ∼ η0, the heterogeneity of e1 is of order α′η2

0/K ,
resulting in a decrease of the free-energy density of order

� f ∼ −(α′η2
0)

2/K . (10.4.52)
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Thus the width �T of the temperature region in which the intermediate states are stable or
metastable is obtained from

�τ = AT�T ∼ |� f |/η2
0 ∼ (α′η0)

2/K . (10.4.53)

where AT is defined in (10.4.3).

Simulation results

We give some numerical solutions of the dynamic equations (10.4.49) imposing the peri-
odic boundary condition on ux and uy on a 128 × 128 lattice. This means that the space
averages of e1, e2, and e4 vanish in our simulations. With appropriate scale changes we
set ρ = D/2 = 1 and assume K = µ. Two representative cases are given by u0 = −1
and v0 = 1 in Figs 10.29, 10.31, and 10.32 (case D) and u0 = 1 and v0 = 0.05 in Figs
10.33 (case C). Without the cubic term (∝ B) in the free energy the transition remains
first order in case D and becomes continuous in case C. (i) In Fig. 10.29 we start with a
circular tetragonal domain with radius R = 5 at t = 0 for τ = −1, K = 5, α′ = 2, and
ζ = 0.5 without noise. This seed is soon deformed into an ellipse and elastically expanded
(e1 > 0 since α′ > 0). Then the neighborhood outside the tips of the ellipse also become
elastically expanded, which generates new elliptical domains with the opposite sign of e2.
This successive generation of domains proceeds until the whole system is covered with
small-scale domains at t ∼ 180. In this run the periodic pattern at t = 13 × 103 lasted
in the time region 104 � t � 4 × 104 and a large-scale twin structure was ultimately
selected on the timescale of 105. Figure 10.30 displays slow relaxation behavior in the
free-energy density. (ii) In Fig. 10.31 we confirm the rapid appearance of a twin structure
at relatively deep quenching into τ = −4. However, (iii) nearly steady patterns emerge
for nonvanishing α′ at shallow quenching in accord with (10.4.53). Examples of pinned
intermediate states are given in Fig. 10.32 in case D and Fig. 10.33 in case C, where the
two variants of the tetragonal phase are coherently embedded in a disordered region. In
these runs the initial values of e2 are random numbers in the range [−0.05, 0.05]. It is
remarkable that the intermediate phase exists even for u0 > 0 (case C).

The patterns indicate that the interfaces between the ordered and disordered regions are
oriented in special directions. As can be known from (10D.6), if |e2| ∼ η0 in an ordered
domain, we estimate the optimal angle θ between the surface normal and the x axis as

cos 2θ ∼ α′η0/K , (10.4.54)

where the absolute value of the right-hand side is assumed to be smaller than 1. If it is larger
than 1, we numerically find θ ∼= 0 and π/2 for the two variants. The above estimation is
consistent with the patterns in Figs 10.32 and 10.33.

10.4.5 Structural intermediate states

In a number of metallic alloys near the martensitic phase transition, distinct domains
(or embryos) with low-temperature tetragonal symmetry have been detected in a high-
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Fig. 10.29. Time evolution of e2 (left) and e1 (right) starting with a spherical droplet at t = 0. Here
ζ = 0.5, τ = −1, K = 5, α′ = 2, u0 = −1, and v0 = 1. Elliptical domains in the tetragonal phase
(in black for e2 ∼ 1.5 and in white for e2 ∼ −1.5) are then successively created. There remain
disordered regions in the cubic phase with e2 ∼ 0 (in gray) for t � 4 × 104. Note that e1 is positive
(in black) in the two variants of the tetragonal phase.
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Fig. 10.30. Average free-energy density (= 〈H〉/V ) vs time, where the curves 1, 2, and 3 correspond
to the runs in Figs 10.29, 10.32, and 10.33, respectively. Extremely slow time evolution can be
seen once domains are elastically pinned. Step-like decreases represent cooperative disappearance of
several domains.

1 10650 3 5 103

Fig. 10.31. Time evolution of the formation of a twin structure at relatively deep quenching at τ =
−4. The other parameters are K = 8, α′ = 4, u0 = −1, v0 = 1, and ζ = 1.

temperature cubic phase [103]–[107]. They have been observed as tweed patterns by
electron microscopy and an anomalous increase of sound attenuation. Presumably, they
should give rise to the so-called central peak observed by neutron scattering [45]. These
pretransitional (or premartensitic) effects are very unusual, but ubiquitous, and can some-
times be seen hundreds of degrees above the transition temperature at which the cubic
phase disappears. Kartha et al. [108] have ascribed the origin of the tweed patterns to
quenched disorder imposed by the compositional randomness, which is considered to
strongly perturb the order parameter fluctuations. However, such impurity mechanisms
can only lead to fuzzy inhomogeneous lattice distortions above the nominal transition
temperature. In order to explain distinctly discernible tetragonal embryos, Fuchizaki and
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1052.03 101140 4

Fig. 10.32. Time evolution of an intermediate state for τ = −1, K = 8, α′ = 4, u0 = −1, v0 = 1,
and ζ = 1. After an incubation time of order 103, a small-scale intermediate domain structure appears
suddenly, as in the top figure. The middle pattern lasts until t ∼ 104, while the bottom one is stable
for t � 5 × 104.

1.04 101780 4 16 104

Fig. 10.33. Time evolution of an intermediate state for τ = −1, K = 5, α′ = 2, and ζ = 1. Here we
set u0 = 1 > 0 and v0 = 0.05 in the free-energy density. The bottom pattern is stable for t � 5×104.

Yamada [109] sought an intrinsic mechanism stemming from anharmonic elasticity, though
their analysis was limited to 1D. To support their claim, our 2D simulations demonstrate
that third-order anharmonic elasticity can freeze tetragonal domains in a disordered matrix.
As a next step, 3D simulations are strongly needed. In summary, elastic self-adjustment
arising from the cubic coupling ∼ e1e2

2 can produce numerous intermediate configurations
depending on τ , K , α′, and the initial conditions.

We also mention recent observations of structural intermediate states in ferroelectric
relaxors such as PbMgx Nb1−x O3 [110] and in doped manganites [111]. In two-phase
coexistence near the transition, the former materials exhibit a strongly enhanced dielectric
response, while the latter show a large (colossal) magnetoresistance. However, the impor-
tance of the elastic interactions in phase transitions is not well recognized in the literature.

10.4.6 Proper hexagonal to orthorhombic transformations

We discussed improper hexagonal to orthorhombic transformations in Subsection 10.3.3.
We here consider the proper case in 2D, where e2 and e4 constitute a two-component
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order parameter and three orthorhombic variants appear on the hexagonal basal plane. The
minimal elastic free-energy density is given by [101, 112],

f = K

2
e2

1 +
τ

2
η2 − αe1η

2 − B(e3
4 − 3e4e2

2)+
ū0

4
η4 + D

2
(|∇e2|2 + |∇e4|2), (10.4.55)

where η2 = e2
2 +e2

4. The first two terms are those in isotropic linear elasticity in 2D, K and
τ being the bulk and shear moduli. If we set e2 = η sinϕ and e4 = η cosϕ, the angle ϕ is
changed to ϕ′ = ϕ + 2θ from (10.3.16) with respect to rotation, x ′ = x cos θ + y sin θ and
x ′ = −x sin θ+ y cos θ . Because the cubic term in (10.4.55) is written as −Bη3 cos(3ϕ), it
is invariant with respect to the rotation by θ = π/3 and its sign is reversed for θ = π/6. We
may thus assume B > 0 without loss of generality. Furthermore, if θ = π/12, it is changed
to Bη3 sin(3ϕ′) = −B(e′32 − 3e′2e′23 ), reproducing the originally presented form [101]. In
this model there are three equivalent stress-free variants in the low-temperature phase, as
can be seen in Fig. 10.28. That is, variant 1 is given by e4 = η0 and e2 = 0 (ϕ = 0), variant
2 by e2 = √

3η0/2 and e4 = −η0/2 (ϕ = 2π/3), and variant 3 by e2 = −√
3η0/2 and

e4 = −η0/2 (ϕ = −2π/3), where η0 is defined by (10.4.25) with C ′ being replaced by τ .
The dynamic equation (10.4.40) is rewritten as

ρ
∂2

∂t2
ux − ζ∇2 ∂

∂t
ux = ∇x [K e1 − αη2 + µ2] + ∇yµ4,

ρ
∂2

∂t2
uy − ζ∇2 ∂

∂t
uy = ∇y[K e1 − αη2 − µ2] + ∇xµ4, (10.4.56)

where

µ2 = (τ − 2αe1 − D∇2)e2 + 6Be4e2,

µ4 = (τ − 2αe1 − D∇2)e4 + 3B(e2
2 − e2

4). (10.4.57)

Linear stability analysis can readily be performed for small disturbances in a disordered
homogeneous state. Assuming that all the deviations are proportional to exp(ik · r −�t),
we obtain isotropic dispersion relations,

ρ�2 − ζk2� = −k2(τ + Dk2) or − k2(K + τ + Dk2). (10.4.58)

Thus phase ordering occurs if τ is changed to a negative value, where the fluctuations start
to grow isotropically in the initial stage.

Planar interfaces

We suppose a planar interface in equilibrium stress-free states. All the strains vary in one
direction and are functions of

s = x cos θ + y sin θ, (10.4.59)

where θ is the constant angle between the interface normal and the x axis. The 2D
compatibility relation (10.4.47) gives

e1(s) = e2(s) cos 2θ + e4(s) sin 2θ + A, (10.4.60)
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where A is a constant. For example, between the stress-free variants 2 and 3, we require
cos 2θ = 0 or θ = ±π/4 because e1(∞) = e1(−∞), e2(∞) �= e2(−∞), and e4(∞) =
e4(−∞). Under the stress-free condition we have e1 = ±(e4 + η0/2)+ αη2

0/K to obtain

f = K

2

(
e4 + η0

2
− α

K
δe2

2

)2

− B(e3
4 − 3e4e2

2)+
u0

4
(e2

2 + e2
4)

2 + D

2

∣∣∣∣ d

ds
e2

∣∣∣∣2

+ D

2

∣∣∣∣ d

ds
e4

∣∣∣∣2

,

(10.4.61)
where δe2

2 = e2
2 − 3η2

0/2. As in the cubic to tetragonal case in (10.4.34)–(10.4.39), e2

is given by (10.4.36) exactly at τ = −18B2/u0 and approximately for small B. In the
same manner, θ = π/12 and 7π/12 for the interfaces between the variants 1 and 2, and
θ = −π/12 and 5π/12 for those between the variants 1 and 3. These orientation relations
remain valid even for α �= 0 and will explain the simulation results below.

For this model we may also calculate an interface between a variant and a disordered
region. Let us assume that e4 tends to 0 as s → ∞ and η0 as s → −∞ while e2 = 0 at any
s. Under the stress-free condition we require e1 + αe2

4/K → 0 as s → ±∞. In (10.4.60)
we find A = 0 and

sin 2θ = αη0/K , (10.4.62)

where we assume |(α/K )η0| < 1. Using these relations, f becomes

f = τ

2
e2

4 − Be3
4 +

u0

4
e4

4 +
D

2

∣∣∣∣ d

ds
e4

∣∣∣∣2

. (10.4.63)

In particular, at τ = 2B2u0 we obtain the equilibrium stress-free interface solution,

e4 = 1

2
η0

[
1 − tanh(s/2ξ)

]
, (10.4.64)

where η0 = 2B/u0 and ξ2 = Du0/6B2.

Simulation results

We present some simulation results on a 128×128 lattice with ζ = 1, K = 8, B = 1,
and D = 2. We start with a disordered state at t = 0 and follow subsequent structural
transformations. In Fig. 10.34 the quench depth is fixed at τ = −1, but α is equal to 0 in
(a), 1.4 in (b), and 1.9 in (c). Notice the close resemblance between the proper case (a) and
the improper case in Fig. 10.26. We also note the following. (i) Figure 10.35 shows that the
domain growth is pinned at relatively early times (t ∼ 103 here), analogous to Fig. 10.27.
(ii) If |α| is larger than a critical value αc, domains of the disordered phase do not disappear
in pinned states. For the selected parameter values in Fig. 10.34, we find αc ∼= 1.2 and the
volume fraction of the disordered phase to be 0 in (a), 0.17 in (b), and 0.40 in (c). In (c)
the three variants form stripes forming a network embedded in the disordered phase. (iii)
The orientation relations derived above for the interfaces among the three variants are well
satisfied particularly in (a), in agreement with the experiments [80, 82]. This was already
reported in a previous simulation [112].
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2 2 2

Fig. 10.34. Patterns in hexagonal to orthorhombic transformations, calculated from the 2D model
(10.4.56) and (10.4.57) for ζ = 1, K = 8, B = 1, and D = 2. We vary the coupling constant α as 0,
1.4, and 1.9. The four different gray levels from darkest to brightest correspond to variant 1 (ϕ = 0)
(black), variant 2 (ϕ = 2π/3), variant 3 (ϕ = −2π/3), and parent phase (white), respectively. The
upper figures at t = 102 represent relatively early-stage patterns emerging from the initial isotropic
patterns. The lower figures correspond to nearly pinned patterns. The fraction of the parent phase
increases with increasing α.

Fig. 10.35. Perimeter length (per unit volume) vs time for the runs in Fig. 10.34. We can see pinning
of the domain structures for t � 103.
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10.4.7 Orbital order and Jahn–Teller coupling

We now construct a Ginzburg–Landau theory for orbital order [113], but defer analysis
of phase-ordering kinetics of the model to future work. As in Appendix 10C, a cubic to
tetragonal structural phase transition is assumed to be induced by the Jahn–Teller coupling
(10.4.1). We suppose spinel-type crystals such as CuFe2O4 and Mn3O4 [88]. As in (4.1.2),
we introduce a coarse-grained, two-component order parameter ψ1, ψ2 as

ψ1(r) = −"−d
∑

n∈new cell

〈σ̂nz〉, ψ2(r) = −"−d
∑

n∈new cell

〈σ̂nx 〉, (10.4.65)

where the summation is over lattice points in an appropriately defined cell with a lattice
constant " longer than the original lattice constant a. The average 〈· · ·〉 is taken doubly
over the quantum and thermal fluctuations. It is convenient to define the complex order
parameter by ψ = ψ1 + iψ2 = |ψ | exp(iϕ) or

ψ1 = |ψ | cosϕ, ψ2 = |ψ | sinϕ. (10.4.66)

The tetragonally distorted states are given by ϕ = 0, 2π/3, and −2π/3 for an axis of
symmetry along the z, x , and y direction, respectively. The amplitude ψ is nonvanishing
below the transition and increases as the temperature is lowered. Considering the average
of (10.4.1), we obtain the free-energy density fJT representing the orbit–lattice coupling:

fJT = −gJT(e3ψ1 + e2ψ2) = −gJT Re[(e3 + ie2)ψ
∗], (10.4.67)

where e2 and e3 are defined in (10.4.4).
Here it is informative to consider how ψ is changed with respect to a rotation of the

reference frame by π/2. The rotation about the x axis is equivalent to the replacement, y →
z, z → −y, with x unchanged, which yields the transformation ψ → exp(−2π/3)ψ∗.
The rotations about the y and z axes yield ψ → exp(2π/3)ψ∗ and ψ → ψ∗, respectively.
The complex strain defined by e3 + ie2 is also changed in the same manner and fJT is
invariant for these rotations. Generally, in the presence of the crystal cubic symmetry in
the disordered phase, the total free-energy density f = f (ψ,u) for ψ and the elastic
strains should be invariant with respect to these rotations. Thus we propose the following
Landau expansion close to the transition,

f = r0

2
|ψ |2 + u

4
|ψ |4 + C

2
|∇ψ |2 − B0(ψ

3
1 − 3ψ1ψ

2
2 )+ fJT + fel, (10.4.68)

where u, C , and B0 are positive constants, and fel is the elastic free-energy density of
cubic solids. We assume that r0 depends on the temperature T as r0 = A0(T − T0),
where A0 is a positive constant and T0 is a constant temperature. Note that the real parts
of ψ3−k(e3 + ie2)

k (k = 0, 1, 2, 3) constitute four third-order invariants. More explicitly,
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they are written as

I30 = ψ3
1 − 3ψ1ψ

2
2 , I31 = (ψ2

1 − ψ2
2 )e3 − 2ψ1ψ2e2,

I32 = ψ1(e2
3 − e2

2)− 2ψ2e2e3, I33 = e3
3 − 3e3e2

2. (10.4.69)

We may assume a third-order term expressed as
∑3

j=0 B j I3 j in the free-energy density,
where B j ( j = 0, . . . , 4) are coefficients. In (10.4.68), for simplicity, we retain a third-
order term proportional to I30 with B0 > 0 and assume that fel is bilinear in the strains
as

fel = K

2
e2

1 +
C ′

0

2
(e2

2 + e2
3)+

C44

2
(e2

4 + e2
5 + e2

6). (10.4.70)

This is of the same form as the elastic free energy in (10.4.6) except that C ′ is replaced by
a background value C ′

0.
In the disordered phase, elimination of ψ(∼= gJT(e3+ie2)/r0) yields the effective elastic

moduli C ′ for the tetragonal strains in the form

C ′ = C ′
0 − g2

JT/r0. (10.4.71)

The nominal critical temperature Tc0 in (10.4.3) is given by Tc0 = T0 + g2
JT/A0C ′

0. We
next consider a tetragonal state stretched along the z axis in the stress-free condition, where
ψ1 = M > 0 and ψ2 = 0. By setting e3 = gJT M/C ′

0 we obtain r + uM2 − 3B0 M = 0,
similar to (10.4.24), where

r = r0 − g2
0 = A0(T − Tc0). (10.4.72)

At r = rtr, a first-order phase transition occurs, and M and e3 change from 0 to Mtr and
etr, respectively, where

rtr = 2B2
0/u, Mtr = 2B0/u, etr = 2gJT B0/C ′

0u. (10.4.73)

For r < rtr the ordered phase is stable and M is expressed as

M = 3

4
Mtr

[
1 +

√
1 − 8r/9rtr

]
. (10.4.74)

The elastic moduli C ′ in (10.4.71) just above the transition is expressed as C ′
0w/(1 + w)

with

w = 2C ′
0 B2

0/g2
JTu. (10.4.75)

In terms of the elastic properties, w represents weakness of the first-order phase transition.
The fluctuation effect becomes much more complicated in ordered states than in disor-

dered states due to the two-component nature of ψ . We consider the fluctuations of ψ , e2,
and e3. Their second-order contributions in f are written as

δ f = rL

2
(δψ1)

2 + rT

2
ψ2

2 + C

2
|∇ψ |2

+ C ′
0

2

[(
δe3 − gJT

C ′
0
δψ1

)2

+
(

e2 − gJT

C ′
0
ψ2

)2]
+ · · · , (10.4.76)
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where δψ1 = ψ1 − M and δe3 = e3 − gJT M/C ′
0 are the deviations. Here we do not write

explicitly the second-order contributions arising from nonvanishing dilational and shear
strains. As in Subsections 4.3.7 and 4.3.8, rL and rT are the longitudinal and transverse
inverse-susceptibility, respectively. In the present case we obtain

rL = 2uM2 − 3B0 M, rT = 6B0 M. (10.4.77)

It is worth noting that rT is positive owing to the third-order term in f , while in Sec-
tion 4.3 it was shown to vanish in (isotropic) many-component spin systems. Considering
homogeneous deviations of e3 and e2, we obtain the effective elastic moduli, C ′

L and C ′
T,

respectively, by eliminating δψ1 and ψ2. In terms of w in (10.4.75) and m ≡ M/Mtr, they
are expressed as

C ′
L

C ′
0
= w(4m2 − 3m)

1 + w(4m2 − 3m)
,

C ′
T

C ′
0
= 9wm

1 + 9wm
. (10.4.78)

In Fig. 10.36 we display these elastic moduli near the transition for w = 0.04. The modulus
C ′

L below the transition is continuously connected to C ′ in (10.4.71) above the transition
and is smaller (larger) than C ′

T for r larger (smaller) than −9rtr.
For inhomogeneous deviations the elastic contributions to the free energy may be cal-

culated, using the procedure in Appendix 10A, in terms of the Fourier components ψαk

(α = 1, 2) [114]. In particular, if the wave vector k is along [110], these contributions do
not affect the variance of ψ2 in the long-wavelength limit, so that limk→0〈|ψ2k|2〉 = 1/rT.
As a result, the velocity of the transverse sound propagating along [110] and polarized
along [11̄0] is given by ct[110] = (C ′

T/ρ)
1/2, ρ being the mass density. In passing, let

us consider the limit B0 → 0 with r(< 0) and gJT fixed. Then we find C ′
T → 0 and

C ′
L/C ′

0 → 1/[1 + 2C ′
0|r |/g2

JT]. In accord with this result, Pytte [89] found that ct[110]
vanishes for all temperatures below the transition in the absence of the cubic terms.10

Correspondence between the two theories

We also comment on the relationship between the conventional nonlinear strain theory
[94]–[97] and the present theory. We can see that only in the case w � 1 do the two theo-
ries yield essentially the same results near the transition |r | � g2

JT/C ′
0. In this parameter re-

gion, we have a small modulus C ′(� C ′
0) given in (10.4.71). From r0 ∼= g2

JT/C ′
0 � u|ψ |2,

we here find the linear relation, ψ ∼= (gJT/r0)(e3 + ie2). Substitution of this relation into
(10.4.68) gives rise to the anharmonic elastic free energy (10.4.7) with the coefficients,
B = (C ′

0/gJT)
3 B0 and u0 = (C ′

0/gJT)
4u.

Compression-induced phase transition

Furthermore, some new effects can be predicted if a uniaxial stress σa is applied along
the z axis. As in (10.4.27) we should then minimize f̄ ≡ f − σae3/

√
3. By setting e3 =

10 Similar elastic softening has been observed in nematic elastomers (rubbers composed of liquid crystal molecules in the nematic
phase). See Ref. [43] in Chapter 7.
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Fig. 10.36. Normalized elastic moduli for tetragonal strains vs normalized reduced temperature (∝
T − Tc0) obtained from the free-energy density (10.4.68) for w = 0.04. Here C ′

L and C ′
T are the

moduli for e3 and e2, respectively, in the tetragonal phase stretched along the z axis. The normalized
order parameter M/Mtr (divided by 10) is also plotted.

(gJTψ1 + σa/
√

3)/C ′
0 we have

f̄ = r

2
|ψ |2 + u

4
|ψ |4 − B0(ψ

3
1 − 3ψ1ψ

2
2 )−

gJT√
3C ′

0

σaψ1. (10.4.79)

In the case of stretching σa > 0, the tetragonal variant with ψ1 > 0 and ψ2 = 0 is
favored below the transition.11 However, the phase behavior becomes more interesting in
the case of compression σa , so we limit ourselves to this case. As shown in Fig. 10.37, the
temperature–stress plane is divided into two regions by a line of first-order phase transition
(line F) and a critical line (line C). These two lines meet at a tricritical point, where r and
|σa| assume the following tricritical values,

rt = 63

32
rtr, σt = 81

√
3

64
wC ′

0etr, (10.4.80)

respectively, in terms of rtr in (10.4.73) and w in (10.4.75). On line C we obtain 4r/9rtr =
|σa/σt|1/2 − |σa/8σt| and M/Mtr = (3/8)σa/σt. Above the lines the stable phase consists

11 For stretching, there is still a first-order phase transition line expressed as r/rtr = 1 + (81/32)σaσt < 3/2 which ends at a
critical point given by r = 3rtr/2 and σa = (16/81)σt. Here M = ψ1 is discontinuous across this line by Mtr(3 − 2r/rtr)

1/2,
while there is no discontinuity for σa > (16/81)σt.
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Fig. 10.37. Phase diagram of a solid under uniaxial compression (σa < 0) with the free-energy
density (10.4.79), where Jahn–Teller coupling is responsible for the structural phase transition. The
horizontal and vertical axes represent |σa/σt|1/2 and r/rtr, respectively. A line of first-order phase
transition (dashed line F) starts from the point where r = rtr and σa = 0, and meets a critical line
(solid line C) at a tricritical point, where r = rtr and σa = −σt. Here ψ1 < 0 and ψ2 = 0 above the
curves, while there are two stable variants below them, as given by (10.4.81).

of a single tetragonal state expressed as ψ1 = −M < 0 and ψ2 = 0. Below the lines we
have an orthorhombic phase with two stable variants expressed as

ψ1 = −M cosϕa, ψ2 = ±M sinϕa, (10.4.81)

where ϕa is an angle in the range 0 < ϕa < π/3 and satisfies sin2(3/4)[1 −
|σa/σt|(8M/3Mtr)

2]. Here ϕa → π/3 as σa → 0 for r < rtr, ϕa → 0 as line C is
approached, and ϕa remains nonvanishing as line F is approached from below. The modulus
C ′

T for the strain e2 tends to zero as line C is approached both from above and below.

Antiferromagnet-like order

In MnF3 the orbital occurs alternatively in two sublattices with a symmetry axis along one
of the cubic axes (say, the z axis) [88]. In such cases it is convenient to introduce the two
complex order parameters, ψA = ψA1+iψA2 and ψH = ψB1+iψB2, for sublattices, A and



10.5 Macroscopic instability 615

B. Then we have the antiferromagnet-like order parameter ζ = ψA −ψB in addition to the
ferromagnet-like order parameter ψ = ψA +ψB. The orbital order in MnF3 is represented
by ψA = ψ∗

B = i M exp(iφ) or by ψ = −2M sinφ and ζ = 2i M cosφ, where the solid is
uniaxially deformed along the z axis and φ is the canting angle of the sublattice order. In
the bilinear order, the interaction energy density between the two sublattices is of the form
fAB = −r1 M2 cos 2φ. We assume that the interaction strength r1 is positive, because the
ferromagnet-like order (φ = −π/2) is favored for negative r1. If the interaction between
the two sublattices arises only from fAB, elimination of the strains in f gives [113]

f = 2

[
r

2
M2 + u

4
M4 − B0 M3 sin 3φ

]
− r1 M2 cos 2φ (10.4.82)

where the factor 2 accounts for the presence of the two sublattices. Minimization of f with
respect to M and φ yields a phase diagram in the r–r1 plane. A line of first-order phase
transition starts from the point r = rtr and r1 = 0 and ends at a tricritical point where
r = r1 = 9rtr/2. This line is expressed by 2r/rtr = 1 + (2r1/3rtr + 1)3/2. For r1 > 9rtr/2
the phase transition becomes continuous with a critical line given by r = r1. We have the
disordered phase with M = 0 above these lines and the canted phase with M > 0 and
0 < φ < π/6 below them.

10.5 Macroscopic instability

10.5.1 Cowley’s classification

According to Cowley [115], type-I instabilities correspond to structural phase transitions
at which acoustic modes become soft in particular wave vector directions, whereas type-II
are those with soft planes. At a type-0 instability, only macroscopic deformations on
the sample scale (∼ L) become unstable without critical enhancement of small-scale
fluctuations. To illustrate this classification, let us consider the sound speed c in cubic
solids with q L � 1 determined by the matrix equation,

ρc2q2ui = (C12 + C44)qi (q · u)+ [C44q2 + 2(C ′ − C44)q
2
i ]ui . (10.5.1)

If C ′ = (C11−C12)/2 tends to zero, as in Nb3Sn [91, 92], the transverse sound propagating
along [100] and polarized along [11̄0] becomes soft and the instability is of type-I. If C44

tends to zero, as in KCN [93], softening occurs for any q on the xy plane with u being along
the z axis, leading to type-II transitions. The type-0 instability occurs for negative K =
(C11 + 2C12)/3 < 0 while C ′ > 0 and C44 > 0. As a well-known example, K approaches
zero towards a transition temperature in some solids such as Sm1−x Yx S or Ce1−x Thx

at the valence instability [116]. At such type-0 transitions, macroscopic volume changes
take place on timescales of order L|ρ/K |1/2 [117], which is obtained by replacement,
ζ� → ρ�2, in (7.2.56) and is much faster than in gels. In the macroscopic instability of
polymer gels discussed in Section 7.2, the bulk osmotic modulus Kos becomes negative
and the dynamics is slowed down by the network–solvent friction.
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10.5.2 Hydrogen–metal systems

We will give detailed discussions on a unique example of type-0 instability in hydrogen–
metal systems. Large amounts of hydrogen can be absorbed by many metals such as V,
Nb, Ta, and Pd and its concentration can be of order 100 at.% (one proton per metal ion)
[118]–[126]. In metals, the hydrogen molecules give their electrons to the conduction band,
while the protons occupy interstitial sites. The diffusion constant of the protons strongly
depends on the metal and its structure (bcc or fcc), increases with temperature, and can
even be of order 10−4 cm2/s at room temperature. Therefore, the protons can diffuse
over macroscopic system sizes within realistic observation times. Absorption or desorption
of hydrogen can also occur from the metal surface, which takes place relatively rapidly,
particularly for Pd. Considerable heat is released with hydrogen absorption. Such metallic
alloys can be used as efficient containers of hydrogen.

The dissolved hydrogen systems undergo phase changes involving gas (α), liquid (α′),
and solid (superlattice) phases. In Fig. 10.38 the isotherms connecting the α and α′ phases
are shown for fcc Pd–H [119a], where η in (10.1.20) is about 0.06 and �Tc[100] in
(10.2.17) is of order 300 deg. C [127]. The Coulomb interaction between the protons
is screened by the electrons and becomes short-range, but there arises a unique elastic
interaction between them because the lattice expands in the presence of proton intersti-
tials (∼ 10−24 cm3 per hydrogen atom) [121]. Wagner and Horner [118b, 124] derived
a Ginzburg–Landau free energy to describe the gas–liquid transition of hydrogen–metal
systems. On the coarse-grained level, it turns out to be of the same form as the free energy
(10.1.2) set up for usual binary metal alloys. However, a unique feature in hydrogen–
metal systems is that macroscopic proton density variations can lower the free energy on
experimental timescales to induce sample shape changes under the stress-free boundary
condition [123]. We will show that such a macroscopic instability follows generally from
the bilinear coupling (∝ αψ∇ · u) in the free energy (10.1.2) or from the Vegard law. Of
course, in clamped samples and on relatively deep quenching, we expect the occurrence of
phase separation in which α and α′ regions are separated by sharp interfaces. We mention
observations of coherent plate-shaped precipitates of PdH0.05 in an α′ matrix and PdH0.6

in an α matrix [127]. A similar changeover between macroscopic and bulk instabilities
was also studied for gels in Chapter 7. We also note that various domains of ordered
(superlattice) phases have also been observed [119b].

Homogeneous states in contact with a hydrogen reservoir

Let a metal be in contact with a hydrogen gas reservoir with a constant chemical potential
µH = µH(T, p). The total free energy is of the form, HT = H − ∫

drµHψ, where
H is given in (10.1.2) and ψ = cH − cHc represents the proton composition deviation
from the critical value in the metal. For simplicity, we assume isotropic elasticity with
homogeneous bulk and shear moduli, K and µ, and isotropic lattice expansion due to the
proton interstitials.12

12 The latter assumption is a good approximation for fcc crystals, but uniaxial deformations can be significant in bcc crystals
[120].
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Fig. 10.38. Phase diagram of Pd–H [119a] at various temperatures showing a gas–liquid phase
transition of protons in Pd. The vertical axis represents the pressure of the surrounding H gas, while
the horizontal axis the relative number of protons per Pd atom.

Here we present a Landau theory neglecting spatial inhomogeneity within the solid. If
the gas pressure is low, we may assume the stress-free condition K g + αM = 0 at the
solid–gas boundary, where M = 〈ψ〉 and g = 〈∇ · u〉. Then,

HT = V

[
r0

2
M2 + u0

4
M4 − µH M + αgM + K

2
g2

]

= V

[
1

2
(r0 − α2/K )M2 + u0

4
M4 − µH M

]
, (10.5.2)

where g has been eliminated in the second line. In chemical equilibrium with the reservoir,
the equation of state is of the form,

(r0 − α2/K )M + u0 M3 = µH. (10.5.3)

If the hydrogen composition deviates slightly from the chemical equilibrium value by δM ,
the free energy increases by δHT = V [r0 + 3u0 M2 − α2/K ](δM)2/2. Thus the system is
unstable for

r0 + 3u0 M2 < α2/K , (10.5.4)

against further absorption or desorption of hydrogen. In terms of r defined by (10.1.34),
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this instability criterion is rewritten as

r + 3u0 M2 < rm, (10.5.5)

The shift rm is a positive number expressed as

rm = α2
(

1

K
− 1

L

)
=

(
2 − 2

d

)
α2µ

K L
, (10.5.6)

where L = K + (2 − 2/d)µ. Thus the macroscopic critical point and spinodal line are
given by r − rm = M = 0 and r + 3u0 M2 = rm , respectively, whereas the bulk critical
point and spinodal line are given by r = M = 0 and r + 3u0 M2 = 0, respectively. The
mean field critical behavior should be observed near the macroscopic transition unless rm

is very small. To observe the macroscopic instability, however, the observation time needs
to be sufficiently long.

10.5.3 Macroscopic modes

We show that concentration deviations varying on the sample scale can lower the elastic
free energy [118b, 125], which leads to sample shape changes [123]. For simplicity the
sample shape is assumed to be spherical with radius R in 3D. In the one-phase region we
retain only the terms bilinear in δψ and neglect the gradient term in the mean field theory
to obtain

HT = 1

2

∫
dr

[
(r0 + 3u0 M2)δψ2 + αψg

] + const. (10.5.7)

At r = R we impose the stress-free boundary condition,∑
j

σi j x̂ j = 0. (10.5.8)

Within the sphere r < R the mechanical equilibrium condition is written as

∇i [αψ + (L − µ)g] + µ∇2ui = 0. (10.5.9)

Taking the divergence gives

∇2(Lg + αψ) = 0. (10.5.10)

As will be shown in Appendix 10E, the dilation strain g = ∇ · u is expressed in terms
of ψ = M + δψ as

g(r) = −α

L
ψ(r)− α

L

∫
dr′M(r, r′)ψ(r′)

= − α

K
M − α

L
δψ(r)− α

L

∫
dr′M(r, r′)δψ(r′). (10.5.11)

The first two terms in the second line correspond to (10.1.18) and (10.1.28), respectively,
and the last term arises from the macroscopic modes. From (10.5.10) the kernel satisfies

∇2M(r, r′) = 0. (10.5.12)
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It is written in terms of the eigenfunctions as

M(r, r′) =
∑
"m

M"χ"m(r)χ"m(r′)∗, (10.5.13)

with

χ"m(r) =
(

2"+ 3

R3

)1/2(
r

R

)"

Y"m(θ, ϕ), (10.5.14)

where Y"m(θ, ϕ) are the spherical harmonics with " = 0, 1, 2, . . . and −" ≤ m ≤ ". The
eigenvalues are given by

M" = µ("+ 1)("+ 2)

L("2 + 2"+ 3/2)− µ("+ 1)("+ 2)
. (10.5.15)

The eigenfunctions satisfy ∇2χ"m(r) = 0 and are orthogonal and normalized as∫
drχ"m(r)χ"′m′(r)∗ = δ""′δmm′ , (10.5.16)

but they do not form a complete set. The first two eigenvalues are

M0 = M1 = 4µ/3K . (10.5.17)

For " > 1, M" is a decreasing function of " and, as " → ∞, it tends to

M∞ = µ/(L − µ) = µ/(K + µ/3). (10.5.18)

Substitution of (10.5.11) into (10.5.7) gives

HT = 1

2

∫
dr(r + 3u0 M2)δψ(r)2 − α2

2L

∫
dr

∫
dr′δψ(r)M(r, r′)δψ(r′), (10.5.19)

where the constant terms are not written explicitly. We decompose δψ(r) as

δψ(r) = δψ(r)⊥ +
∑
"m

&"mχ"m(r), (10.5.20)

where δψ⊥ is orthogonal to χ"m . Then we obtain

HT = 1

2

∫
dr(r + 3u0 M2)δψ(r)2

⊥ + 1

2

∑
"m

(
r + 3u0 M2 − α2

L
M"

)
|&"m |2. (10.5.21)

The modes characterized by " become unstable for

r + 3u0 M2 <
α2

L
M", (10.5.22)

which becomes (10.5.5) for " = 0 in 3D.
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10.5.4 Dynamics at macroscopic instability

We examine linear dynamics of the macroscopic modes in the one-phase region when the
sample shape is spherical [118b, 125, 126]. From (10.1.73) and (10.5.7) δψ obeys the
diffusion equation,

∂

∂t
δψ = λ0

T
∇2 δ

δψ
H ∼= D∇2δψ, (10.5.23)

where the long-range part (∝ M) vanishes from (10.5.11) and (10.5.12) and D = λ0(r +
3u0 M2)/T is the diffusion constant. Let the deviation δψ be of the form

δψ(r, t) = e−�"t Y"m(θ, ϕ)&(r). (10.5.24)

If this form is substituted in the diffusion equation, we find &(r) ∝ j"(qr), where j"(z) =
(2/π z)1/2 J"+1/2(z) is the spherical Bessel function of order " and

q = (�"/D)1/2. (10.5.25)

The dilation deviation is calculated from (10.5.11) in the form

δg(r, t) = −(α/L)e−�"t Y"m(θ, ϕ)G(r), (10.5.26)

where

G(r) = &(r)+M"(2"+ 3)
r"

R2"+3

∫ r

0
dr1r2+"

1 &(r1). (10.5.27)

Solids under the chemical equilibrium

For hydrogen–metal systems we impose the chemical equilibrium condition

(r0 + 3u0 M2)δψ + αδg = 0 (10.5.28)

as the boundary condition at r = R. Using (10.5.25)–(10.5.27) we obtain

r + 3u0 M2 = α2

L
M"F1"(q R), (10.5.29)

where

F1"(z) = (2"+ 3)
∫ 1

0
dxx2+" j"(xz)/j"(z)

= 1 + 1

(2"+ 3)(2"+ 5)
z2 + O(z4). (10.5.30)

Near the instability point, �" is small and |q R| � 1, so

�"
∼= (2"+ 3)(2"+ 5)DR−2[

(r + 3u0 M2)L/(α2M")− 1
]
. (10.5.31)

Particularly for the isotropic mode " = 0, we have

�0 ∼= 15DR−2[(r + 3u0 M2)/rm − 1], (10.5.32)
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where rm is defined by (10.5.6). For " = 0, �0 tends to zero as the macroscopic spinodal
line is approached, indicating a slowing-down of volume changes. If the temperature is
lowered slightly below this line but above the bulk spinodal line, additional hydrogen
will be absorbed (desorbed) if the initial average M is positive (negative). This transition
proceeds monotonically towards the final equilibrium state where the equation of state
(10.5.3) is satisfied. The proton density heterogeneity involved remains on the system size
scale, so no two-phase coexistence can be expected and the spinodal line keeps its mean
field character. We stress that a mass flux through the surface is needed to induce the
instability of the uniform dilation mode " = 0.

Solids under no mass exchange

We consider the macroscopic modes in usual binary metal alloys, neglecting mass ex-
change at the boundary. This condition is written as n · ∇δH/δψ = 0 at the boundary,
where n is the surface normal. For a spherical sample we obtain

∂

∂r
(r0δψ + αδg) = 0 (10.5.33)

at r = R. For the isotropic case " = 0, no effect from the long-range part appears, resulting
in the usual boundary condition,

j ′0(q R) = 0 or tan(q R) = q R, (10.5.34)

where j ′"(z) = d j"(z)/dz. This isotropic mode slows down near the bulk instability where
D → 0. For " �= 0, however, the macroscopic modes can become unstable before the bulk
instability. Some calculations yield

r + 3u0 M2 = α2

L
M"F2"(q R), (10.5.35)

analogous to (10.5.29), where

F2"(z) = "(2"+ 3)
∫ 1

0
dxx2+" j"(xz)/z j ′"(z)

= 1 + 2"2 + 5"+ 4

2(2"+ 3)(2"+ 5)
z2 + O(z4). (10.5.36)

Near the instability point with " �= 0, the counterpart of (10.5.31) reads

�"
∼= 2(2"+ 3)(2"+ 5)

2"2 + 5"+ 4
DR−2[

(r + 3u0 M2)L/(α2M")− 1
]
. (10.5.37)

In real binary metal alloys, the resultant timescales are exceedingly long for macroscopic
samples and the effects of crystal anisotropy should also be taken into account.
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Gorsky effect

We may generally assume (10.5.19) for the free energy in one-phase states for any sample
shape, although the kernel M(r, r′) is difficult to calculate except for spheres. We recog-
nize that the elastic field u and the stress tensor are determined by the overall distribution of
the concentration. This is the origin of anelastic relaxation called the Gorsky effect [128],
as observed in hydrogen–metal systems. That is, if external forces are applied at t = 0,
an elastic strain is instantaneously induced. If the dilation applied is inhomogeneous, the
protons start to diffuse from a locally compressed to an expanded region to achieve ho-
mogeneity of the chemical potential (= δH/δψ). As a result, a slowly relaxing additional
strain εad(t) appears [118c, 121].

10.6 Surface instability

10.6.1 Surface modes

The modes with " � 1 in (10.5.14) represent deformations localized near the surface,
because χ"m(r) is appreciable only for R − r � R/" from (r/R)" = (1 + (r − R)/R)" ∼=
exp((r − R)"/R). The wave number of the surface corrugations is given by "/R. We shall
see below that a surface instability is triggered for

r + 3u0 M2 < rs, (10.6.1)

where

rs = α2M∞/L = 3

4
[K/(K + µ/3)]rm, (10.6.2)

in 3D. It follows the relation 0 < rs < rm, where rm is defined by (10.5.6).
Let us now examine the surface modes localized near a planar interface at z = 0, where

a binary solid is placed in the lower region (−∞ < z < 0) and a gas in the upper region
(0 < z < ∞). We treat the problem assuming isotropic elasticity and neglecting crystal
growth and melting. The elastic field is induced to satisfy the mechanical equilibrium
condition against the concentration deviation. As will be shown in Appendix 10F, the
Fourier transformations of δψ and δg in the yz plane are related by

gk(z) = −α

L

[
ψk(z)+ µ

L − µ
ekz(k

]
, (10.6.3)

where k is the wave vector in the xy plane, k = |k|, and

(k =
∫ 0

−∞
dz′ekz′ψk(z

′). (10.6.4)

The resultant free energy is written in the form

H = 1

2

∫
dr(r + 3u0 M2)δψ(r)2 +

∫
k
(−rsk + σ̃k2)|(k|2, (10.6.5)
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where

σ̃ = 1

2
σ [α/(L − µ)]2. (10.6.6)

The term proportional to the surface tension σ arises from the surface displacement calcu-
lated in (10F.7). The normalized eigenfunction is given by χk(z) =

√
2kekz defined in the

region z < 0. If we set ψk(z) = &kχk(z), we obtain &k = √
2k(k and

H = 1

2

∫
k
(r + 3u0 M2 − rs + σ̃k)|&k|2, (10.6.7)

in agreement with the criterion (10.6.1). When r + 3u0 M2 < rs, the surface undulations
grow with the characteristic wave number given by

km = [rs − (r + 3u0 M2)]/σ̃ . (10.6.8)

10.6.2 Dynamics at surface instability

We examine linear dynamics of sinusoidal disturbances proportional to eikx−�k t in the
long-wavelength limit (k � km). The diffusion equation in the region z < 0 reads

−�kψk = D(∇2
z − k2)ψk, (10.6.9)

and is integrated to give

ψk(z, t) = &eqz−�k t , (10.6.10)

where q with Req > 0 is determined by

q2 = k2 −�k/D. (10.6.11)

From (10.6.3) the dilation strain at z = 0 is written as

gk(0) = −α

L
exp(ik · r⊥)e−�k t

[
1 + 2µk

(L − µ)(k + q)

]
&, (10.6.12)

where & is the amplitude in (10.6.10).

(i) In hydrogen–metal systems we require the chemical equilibrium condition at z = 0,
which results in

r + 3u0 M2 = 2k

k + q
rs. (10.6.13)

Near the instability we find

�k ∼= 4Dk2(r + 3u0 M2 − rs)/rs. (10.6.14)

(ii) This surface instability still exists even if we assume the condition of no mass flux at

the interface, ∂(r0δψ + αδg)/∂z = 0 at z = 0. Some calculations yield

r + 3u0 M2 = 2k2

q(k + q)
rs. (10.6.15)
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Near the instability this equation is solved to give

�k ∼= 4

3
Dk2(r + 3u0 M2 − rs)/rs. (10.6.16)

10.6.3 Surface instability in growing films

So far we have neglected crystal growth and melting. However, a variety of patterns have
been observed in growing thin films, where elastic effects arise from a lattice misfit with
the substrate and the deposition rate is a new control parameter of the growth [129]. When
the film consists of a one-component metal, surface patterns between the film and the
surrounding vapor or melt are of primary concern [130]. When the film is composed of
an alloy, there can also be phase separation within the film influenced by elasticity and
coupled with the surface undulations [131]. Although these problems are beyond the scope
of this book, we here briefly discuss the Asalo–Tiller–Grinfeld instability [132, 133] for
uniaxially deformed films composed of a one-component metal at zero deposition rate.
This instability was observed on a superfluid–crystal interface in 4He [134] and on an
interface of a polymer melt and its crystal [135].

At long wavelengths we may adopt the hydrodynamic approach. Let us write the stress
tensor in the solid as psδi j − σsi j , where the first term represents a pressure dependent on
the solid mass density ρs, and the second term arises from the anisotropic deformations and
is proportional to the shear modulus. The mechanical equilibrium condition at the interface
gives

pf + σK = ps − n · →←
σs · n, (10.6.17)

where pf is the fluid pressure, σ is the surface tension, K is the curvature, and n is the unit
normal at the surface. The chemical equilibrium at the interface yields [136, 137]

ρsµf = ps − n · →←
σσσs · n + fs = pf + σK + fs, (10.6.18)

where µf is the chemical potential of the fluid and fs the free-energy density of the solid
including the elastic energy. In particular, in 4He at low temperatures, pf and µf may be
treated as constants and their deviations from those in equilibrium two-phase coexistence
are related by δµf = δpf/ρf from the Gibbs–Duhem relation. Then (10.6.18) gives

σK + ( fs − f (0)s ) = (ρs/ρf − 1)δpf, (10.6.19)

where f (0)s is the value of fs in unstrained solids in equilibrium two-phase coexistence and
the right-hand side is an externally controllable parameter. We notice that the chemical
equilibrium condition still holds for positive K and decreasing fs. Such deformations
can release a fraction of the stored elastic energy, thereby overcoming the surface energy
increase and thus leading to a surface instability. The characteristic wave number of the
growing undulations km is determined by balance of the two terms on the right-hand side
of (10.6.19) as km ∼ ( fs − f (0)s )/σ ∼ µε2

a /σ , where εa = εzz − εxx is the applied
anisotropic strain. See (10.6.22) below for km from the linear theory.
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We are then interested in small undulations upon a planar surface of a uniaxially
deformed solid at a fixed pf. If the characteristic wavelength of the undulations in the
lateral directions is much shorter than the sample thickness, we may assume that the solid
occupies the semi-infinite region −∞ < z < ζ(x, y). The surface position ζ changes as a
result of crystal growth or melting. The calculations are then similar to those in Appendix
10F assuming isotropic elasticity [138]. We obtain an increase of the total free energy of
the system bilinear with respect to ζ ,

�H =
∫

k

(
−Jσ 2

a k + 1

2
σk2

)
|ζk|2, (10.6.20)

with

J = (K + 4µ/3)/[4µ(K + µ/3)] = (1 − ν2)/E, (10.6.21)

where σa = σzz − σxx = 2µεa is the applied uniaxial stress, E is the Young’s modulus,
and ν is the Poisson ratio. The characteristic wave number is given by

km = 2Jσ 2
a /σ. (10.6.22)

The result (10.6.22) is applicable only when the sample thickness H is much greater
than k−1

m . In experiments on 4He, Torii and Balibar [134] applied a very small anisotropic
strain (εa ∼ 10−5) and observed macroscopic patterns with wavelength about 7 mm, where
the gravity contribution in (4.4.53) should also be taken into account. In epitaxial films,
k−1

m can be microscopic with much larger εa. Grinfeld [133] extended the above result to
the case of finite H on a rigid substrate and found a critical thickness Hc, above which a
film becomes unstable against undulations and below which it can adjust coherently to the
substrate. Some simulations [139]–[141] have been performed to investigate the nonlinear
pattern formation to find growing grooves which serve to release the stored elastic energy.
In particular, Müller and Grant [140] set up a free-energy density f (φ,u) for a phase field
φ and an elastic field u, in which the shear modulus µ(φ) is zero in liquid (φ = 0) and
positive in solid (φ = 1). Assuming that µ(φ) is much smaller than the bulk modulus K ,
they eliminated u in terms of φ to obtain an elastic inhomogeneity interaction similar to
that in (10.1.37) and solved the resultant dynamic equation of φ. Figure 10.39 shows a
typical 3D pattern from their simulation.

Appendix 10A Elimination of the elastic field

We eliminate the elastic field u in general anisotropic elasticity characterized by the fourth-
rank elastic constant tensor λi jm"(= λ j im" = λi j"m = λm"i j ) [47]. If the elastic constants
are homogeneous, this procedure is almost trivial [2, 5c], readily leading to the final result
in (10A.15) below. The case with inhomogeneous elastic constants is more complicated
and was analyzed in Ref. [30].

Defining the elastic strain by

εi j = 1

2
(∇i u j + ∇ j ui ), (10A.1)
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Fig. 10.39. Simulated surface pattern on a uniaxially strained solid growing into a melt [140].

we assume the total free energy in the form

H{ψ,u} = H{ψ}0 +
∫

dr
[
−

∑
i j

σ 0
i jεi j + 1

2

∑
i jm"

λi jm"εi jεm"

]
. (10A.2)

The first term on the right-hand side is a functional of ψ independent of u. We may
generally treat ψ as a set of the important gross variables such as the concentration c
and the long-range order parameter η. The tensor σ 0

i j depends on ψ and can be arbitrary. It
is convenient to express it as

σ 0
i j =

∑
m"

λi jm"ε
0
m". (10A.3)

In the literature ε0
i j is called the stress-free strain, transformation strain, intrinsic strain, or

spontaneous deformation. The elastic stress tensor is then written as

σi j =
∑
m"

λi jm"εm" − σ 0
i j =

∑
m"

λi jm"[εm" − ε0
m"]. (10A.4)

The elastic free energy is usually defined in the form,

Hel = 1

2

∫
dr

∑
i j

[εi j − ε0
i j ]σi j = 1

2

∫
dr

∑
i jm"

λi jm"[εi j − ε0
i j ][εm" − ε0

m"], (10A.5)
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which is nonnegative-definite in stable states. Then the total free energy is expressed as

H{ψ,u} = H{ψ}c +Hel. (10A.6)

The first term may be called the chemical free energy and is of the form,

H{ψ}c = H{ψ}0 − 1

2

∫
dr

∑
i j

σ 0
i jε

0
i j . (10A.7)

If we assume the Vegard law and adopt the coupling in (10.1.2), we have

σ 0
i j = −αψδi j , ε0

i j = − α

d K
ψδi j , (10A.8)

where ψ is the composition deviation and K is the bulk modulus. Let the free-energy
density in H{ψ}c be fchem; then, (10A.7) indicates that it is related to f0 in H{ψ}0 as in
(10.1.35). In order–disorder phase transitions, σ 0

i j depends on η as in (10.3.2) for fcc alloys
and as in (10.3.5) for bcc alloys, for example.

For simplicity, we assume homogeneous λi jm" (independent of ψ). In the presence of
general homogeneous strain 〈εi j 〉, H is expressed as

H{ψ,u} = H{ψ}0 −
∫

dr
∑

i j

〈εi j 〉σ 0
i j +

1

2
V

∑
i jm"

λi jm"〈εi j 〉〈εm"〉 + δH. (10A.9)

The second term can be important when σ 0
i j contains terms proportional to η2

α as in (10.3.9)
or (10.3.14). The third term is simply a constant (if the solid shape is fixed during phase
separation). The last term δH is obtained if εi j in the second term of (10A.2) is replaced by
the deviation δεi j = εi j−〈εi j 〉. If 〈εi j 〉 = 0, we simply have Hel = δH+ 1

2

∫
dr

∑
i j σ

0
i jε

0
i j .

To express δH in terms of ψ , we impose the mechanical equilibrium condition:∑
j

∇ jσi j =
∑
m"

λi jm"∇ j∇"um − fi = 0, (10A.10)

where

fi =
∑

j

∇ jσ
0
i j (10A.11)

is the force density created by the order parameter fluctuations. In terms of the Fourier
components uik and fik, the above equation is expressed as

k2
∑

j

�i j (k̂)u jk = − fik, (10A.12)

where

�i j (k̂) =
∑
m"

λim j"k̂m k̂". (10A.13)
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The vector k̂ = k−1k denotes the direction of the wave vector. Let �i j (k̂) be the inverse
matrix of �i j (k̂). Then (10A.11) is solved in the form

uik = − 1

k2

∑
j

�i j (k̂) f jk. (10A.14)

Substitution of the above result into (10A.2) yields the desired result,

δH = −1

2

∫
k

1

k2

∑
i j

�i j (k̂) fik( f jk)
∗ = −1

2

∫
k

∑
i jm"

�i j (k̂)k̂m k̂"σ
0
imk(σ

0
j"k)

∗. (10A.15)

Note that the eigenvalues of �i j (k̂) are ρcα(k̂)2 (α = 1, 2, 3), where cα(k̂) are the sound
velocities, as can be seen in (10.5.1) for cubic solids. It is also worth noting that the
correlation functions of the thermal fluctuations of the elastic field u can be expressed
in terms of �i j as

〈uiku∗
jk〉 =

T

k2
�i j (k̂)+ T

k4

∑
"m

�i"(k̂)� jm(k̂)〈 f"k f ∗mk〉, (10A.16)

where the vector f is defined by (10A.11). Thus the fluctuations of u are enhanced with
softening of sound modes.

In cubic solids we have

�i j (k̂) = C44(1 + ξak̂2
i )δi j + (C12 + C44)k̂i k̂ j . (10A.17)

The inverse is written in terms of ϕ0(k̂) in (10.2.10) as

�i j (k̂) = 1

C44(1 + ξak̂2
i )

[
δi j −

(
1 + C12

C44

)
k̂i k̂ j

[1 + ϕ0(k̂)](1 + ξak̂2
j )

]
. (10A.18)

The calculation of Hel is very complicated except for the scalar case (10A.8) treated in
Section 10.2.

In the isotropic case ξa = 0 we have

�i j (k̂) = 1

µ

[
δi j − 1

2(1 − ν)
k̂i k̂ j

]
, (10A.19)

where µ = C44 and ν = C12/(C11+C12) (the Poisson ratio). This expression is applicable
in 2D and 3D with this definition of ν. To study salient features arising from the anisotropy
of ε0

i j , particularly in simulations, use has been made of the expression (10A.19) even for
cubic solids. (i) For example, if the transformation strain is orthorhombic or tetragonal, we
have diagonal transformation strain and stress tensors, ε0

i j = δi jε
0
i i and σ 0

i j = δi jσ
0
i i . It is

easy to derive

δH = 1

4µ

∫
k

[
1

1 − ν

∣∣∣∣ ∑
j

k̂2
jσ

0
j jk

∣∣∣∣2

− 2
∑

j

k̂2
j |σ 0

j jk|2
]
. (10A.20)
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This expression leads to (10.3.11) for the case (10.3.9). (ii) In particular, in 2D we set
ε0

i3 = 0 (i = 1, 2, 3) to obtain a simple expression,

Hel = µ

4(1 − ν)

∫
k

∣∣ε0
11k + ε0

22k − (k̂2
1 − k̂2

2)(ε
0
11k − ε0

22k)− 4k̂1k̂2ε
0
12k

∣∣2
, (10A.21)

where k̂1 = k̂x and k̂2 = k̂y . This expression leads to (10.3.17) for the case (10.3.13).

Appendix 10B Elastic deformation around an ellipsoidal domain

We calculate elastic deformations around an ellipsoidal inclusion assuming isotropic elas-
ticity. We define the ellipsoidal coordinate ξ = ξ(x, y, z) as the solution of the equation
[142]

1

a2
1 + ξ

x2 + 1

a2
2 + ξ

y2 + 1

a2
3 + ξ

z2 = 1, (10B.1)

with ξ > −a2
1,−a2

2,−a2
3 . The ellipsoidal surface is represented by ξ = 0, while ξ > 0

outside it and ξ < 0 inside it. We also write x1 = x, x2 = y, and x3 = z. For large
r2 = x2 + y2 + z2 we obtain ξ ∼= r2. We use the following relations,

∇iξ = 2xi

a2
i + ξ

/[ ∑
j

1

(a2
j + ξ)2

x2
j

]
. (10B.2)

As ξ → 0, the gradient vector ∇ξ tends to |∇ξ |n where n = (n1, n2, n3) is the normal unit
vector at the surface, ni = xi/a2

i

[ ∑
j x2

j /a4
j

]1/2. We introduce the depolarization factors
Ni by

Ni = 1

2
a1a2a3

∫ ∞

0

ds

(s + a2
i )R(s)

, (10B.3)

where

R(s) =
√
(s + a2

1)(s + a2
2)(s + a2

3). (10B.4)

From ∂ ln R(s)/∂s = 1
2

∑
i 1/(s + a2

i ), we can easily find

N1 + N2 + N3 = 1. (10B.5)

For a spheroid (a1 = a and a2 = a3 = b) we have N1 = b2(g(e) − 1)/(a2 − b2), where
e = |1 − b2/a2|1/2 is the eccentricity, g(e) = ln[(1 + e)/(1 − e)]/2e for a > b, and
g(e) = e−1 tan−1 e for a < b [142]. In Fig. 10.7 we show N1(= Nx ).

We next introduce the following vector,

Di = 1

2
(a1a2a3)xi

∫ ∞

ξ

ds

(s + a2
i )R(s)

(ξ > 0),

= Ni xi (ξ < 0). (10B.6)

From the definition of Ni the continuity of Di holds across the ellipsoidal surface ξ = 0. It
is known that Di − Ni xi is proportional to the dipolar field around an ellipsoidal conductor
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in an electric field in the xi direction [142].13 The gradient ∇Di has a discontinuity across
the interface proportional to n as

[∇Di ] = −a−2
i xi∇ξ = −ni n. (10B.7)

Furthermore, using (10B.2), we confirm ∇ j Di = ∇i D j . Therefore, Di turns out to be
expressed as Di = ∇i W . Then ∇2W = 1 inside the ellipsoid and ∇2W = 0 outside it.
The field w in (10.1.27) may be written as w = (�ψ)W , resulting in (10.1.58).

Appendix 10C Analysis of the Jahn–Teller coupling

We derive the Jahn–Teller interaction HJT in (10.4.1) for doubly degenerate d-orbital states
around Cu2+ or Mn3+ [88], whose wave functions are represented as linear combinations
of the wave functions proportional to 2z2 − x2 − y2 and x2 − y2. The index n denoting the
lattice site will be dropped. The orbital states proportional to 2x2 − y2 − z2, 2y2 − z2 − x2,
and 2z2 − x2 − y2 are written as |x2〉, |y2〉, and |z2〉, respectively, while those with wave
functions proportional to x2 − y2, y2 − z2, and z2 − x2, are written as |x2 − y2〉, |y2 − z2〉,
and |z2 − x2〉, respectively. As orthogonal, complete bases, we define

|1〉 = |x2 − y2〉 = 1√
3
(|x2〉 − |y2〉), |2〉 = |z2〉. (10C.1)

Because the electronic orbit is elongated in the x , y, and z axes in the states |x2〉, |y2〉,
and |z2〉, respectively, the orbit–lattice (Jahn–Teller) coupling energy at each site in cubic
solids should be of the form,

HJT = −ḡK

[
Qx |x2〉〈x2| + Qy |y2〉〈y2| + Qz |z2〉〈z2| − 1

2
(Qx + Qy + Qz)

]
, (10C.2)

in the bra-ket representation of quantum mechanics, where ḡK is a positive coupling
constant and Qi (i = x, y, z) represent the atomic displacements whose acoustic parts
are ∇i ui . We then use |x2〉 = 2−1(

√
3|1〉 − |2〉) and |y2〉 = −2−1(

√
3|1〉 + |2〉) to express

HJT in the form of (10.4.1) with

Q2 = Qx − Qy, Q3 = 1√
3
(2Qz − Qx − Qy), (10C.3)

and gK = (
√

3/4)ḡK. From (10.4.4) the acoustic part of Q2 and Q3 are e2 and e3,
respectively. The pseudo-Pauli matrices are defined at each lattice site and are expressed as

σ̂z = |1〉〈1| − |2〉〈2|, σ̂x = |1〉〈2| + |2〉〈1|. (10C.4)

Thus HJT in (10.4.1) is the sum of the Jahn–Teller contributions from all the lattice sites.
If one electron is in a d-orbital state at a lattice site, its state is expressed as a linear
combination of the two bases |1〉 and |2〉 in the form c1|1〉 + c2|2〉, where c1 and c2 are

13 Let us assume the Laplace equation ∇2[xi F(ξ)] = 0 outside the ellipsoid ξ > 0; then, F(ξ) satisfies d2 F/dξ2 + d F/dξ ·
d[ln R(ξ)(ξ + a2

i )]/dξ = 0, leading to either of F = const. or the first line of (10B.6).
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complex coefficients with |c1|2 + |c2|2 = 1. For example, if the orbital state is purely |x2〉,
we have c1 = √

3/2 and c2 = −1/2. If Q2 and Q3 are treated as constants, the eigenvalues
of HJT in (10C.2) are calculated as ±gK(Q2

2 + Q2
3)

1/2, and the eigenstate corresponding to
the lower eigenvalue is given by sin θ23|1〉 − cos θ23|2〉 where tan(2θ23) = Q2/Q3.

Appendix 10D Nonlocal interaction in 2D elastic theory

For the 2D free-energy density (10.4.45) we may easily express e1 and e4 in terms of
the order parameter ψ = e2 such that they minimize H = ∫

dr f at fixed ψ . Under this
constraint of fixed ψ we consider the part of H which involves e1 and e4,

�H =
∫

dr
[

K

2
e2

1 +
µ

2
e2

4 − α′e1ψ
2 + λ(∇x ux − ∇yuy − ψ)

]
, (10D.1)

where λ is a space-dependent Lagrange multiplier. From δ�H/δux = δ�H/δuy = 0 we
obtain

K∇x e1 + µ∇ye4 = −∇xλ+ α′∇xψ
2, (10D.2)

K∇ye1 + µ∇x e4 = ∇yλ+ α′∇xψ
2.

Some calculations yield

e1 = α′

K
ψ2 + L−1∇2W, e4 = −2µ

K
L−1∇x∇y W, (10D.3)

where

W = (∇2
x − ∇2

y )ψ − α′

K
∇2ψ2, (10D.4)

and L−1 is the inverse operator of

L = ∇4 + 4

µ
K∇2

x∇2
y . (10D.5)

We also obtain λ = −L−1(∇2
x − ∇2

y )W . The �H is expressed in terms of ψ as

�H =
∫

dr
(

1

2
K WL−1W − 1

2K
α′2ψ4

)
. (10D.6)

If α′ = 0, we simply obtain W = (∇2
x − ∇2

y )ψ [108], so that �H is lowered when

the space variations are along [11] or [11̄], leading to the formation of twin structures. If
α′ �= 0, we are led to the estimation (10.4.54) for the interface orientation in intermediate
states. We also note that Kartha et al. [108] added a term λ′g to the free-energy density
for the case α′ = 0, where g ≡ ∇2e1 − 2∇x∇ye4 − (∇2

x − ∇2
y )e2. From the elastic

compatibility relation (10.4.47) we identically have g = 0 in 2D. Then they minimized
the free energy by taking the functional derivatives with respect to e1 and e4 and treating
λ′ as a space-dependent Lagrange multiplier at fixed e2. There is no essential difference
between their method and the one presented above.
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Appendix 10E Macroscopic modes of a sphere

We calculate the macroscopic modes for the free energy (10.1.2) under the stress-free
boundary condition in the absence of crystal growth and melting. For simplicity, we assume
that the crystal shape is a sphere with radius R and the elastic moduli are homogeneous.

Isotropic case (" = 0)

First we assume that ψ = ψ(r) is independent of the direction r̂. Then the elastic field is
isotropic as

ui (r) = u(r)x̂i , (10E.1)

where u(r) depends only on r = (x2 + y2 + z2)1/2. The dilation strain is written as

g = ∇ · u = u′ + 2
u

r
, (10E.2)

where u′ = ∂u/∂r . From the mechanical equilibrium condition (10.5.10) we obtain

Lg + αψ = A = const. (10E.3)

The stress tensor (10.1.10) is expressed σi j = Aδi j −2µ(δi j − x̂i x̂ j )g+2µ(δi j −3x̂i x̂ j )u/r.
The displacement at r = R is equal to u R = (A/4µ)R from the stress-free boundary
condition (10.5.8). The space integral of g is the volume change δV = ∫

drg = 4πR2u R,

which follows from (10E.2). The space integration of (10E.3) gives

A = − 4µ

3K
αM, u R = − 1

3K
RαM, (10E.4)

in terms of M = 〈ψ〉. From (10E.2) we find

u(r) = − α

Lr2

∫ r

0
dρρ2

[
ψ(ρ)+ 4µ

3K
M

]
. (10E.5)

Representation of a vector in spherical coordinates

As a preparation for general anisotropic cases, we introduce a general representation in
which an arbitrary vector variable, written as u, is expressed in terms of three scalar
functions h, Q, and S as

u(r) = ∇h + Qr + (r ×∇)S. (10E.6)

As a simplifying result, we will find S = 0 in our present problem. The dilation strain
becomes

g = ∇2h + 3Q + r Q′, (10E.7)

where Q′ = ∂Q/∂r . Along the three orthogonal unit vectors,

e1 = r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ),

e2 = ∂

∂θ
e1 = (cos θ cosϕ, cos θ sinϕ,− sin θ),

e3 = e1 × e2 = (− sinϕ, cosϕ, 0), (10E.8)
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the vector u has three components expressed as

u1 = e1 · u = h′ + Qr,

u2 = e2 · u = 1

r
∇θh − ∇ϕS,

u3 = e3 · u = 1

r
∇ϕh + ∇θ S, (10E.9)

where h′ = ∂h/∂r , ∇θ = ∂/∂θ , and ∇ϕ = (sin θ)−1∂/∂ϕ. Therefore, h and S can be
expressed in terms of u2 and u3 as

−�̂h = r

sin θ
∇θ (sin θ)u2 + r∇ϕu3,

−�̂S = −∇ϕu2 + 1

sin θ
∇θ (sin θ)u3, (10E.10)

where

�̂ = 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin θ2

∂2

∂ϕ2
(10E.11)

is the angle part of the laplacian operator ∇2 = ∂2/∂r2 + (2/r)∂/∂r + �̂/r2.
To impose the boundary condition at r = R, we need to calculate the following

components of the shear strain ei j in (10.1.7):

e1 · →←e · e1 = 2u′
1 −

2

3
g = 4

3
g − 4

r
h′ − 2

r2
�̂h − 4Q,

e2 · →←e · e1 = ∇θ

(
2h′

r
− 2h

r2
+ Q

)
+ ∇ϕ

(
S′ − S

r

)
,

e3 · →←e · e1 = ∇ϕ

(
2h′

r
− 2h

r2
+ Q

)
− ∇θ

(
S′ − S

r

)
, (10E.12)

where S′ = ∂S/∂r . An advantage of our representation is that different " and m are not
mixed in the bulk relations (r < R) and the boundary conditions (r = R) if they are
expressed in terms of h, Q, and S. We may thus assume that h, Q, and S commonly depend
on the angles θ and ϕ as Y"m(θ, ϕ), whereas u2 and u3 are not proportional to Y"m(θ, ϕ).

Anisotropic case (" > 0)

We now use the above representation by assuming h, Q, S ∝ Y"m(θ, ϕ), and

ψ(r) = ψ"m(r)Y"m(θ, ϕ). (10E.13)

We may then replace �̂ by −"("+ 1). We take the inner products between the bulk vector
relation (10.5.9) and ei . Those with i = 2, 3 simply give

∇2 Q = 0, S = 0. (10E.14)
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Therefore, we may set

Q = Q"mr"Y"m(θ, ϕ), (10E.15)

where Q"m is a constant. Taking the product with e1 gives

Lg + αψ = µ(Q + r Q′) = µ("+ 1)Q. (10E.16)

From (10E.7) the equation for h is obtained in the form,

∇2h = −α

L
ψ +

[
("+ 1)

µ

L
− ("+ 3)

]
Q. (10E.17)

Because h(r) = h"m(r)Y"m(θ, ϕ) should be finite at r = 0, we may integrate the above
equation as

h"m(r) =
[
("+ 1)

µ

L
− ("+ 3)

]
Q"mr"+2

4"+ 6

+ α

(2"+ 1)L

[
&<

"m(r)

r"+1
+ r"&>

"m(r)

]
+ H"mr", (10E.18)

where H"m is a constant and

&<
"m(r) =

∫ r

0
dρ ψ"m(ρ)ρ

"+2, &>
"m(r) =

∫ R

r
dρ ψ"m(ρ)

1

ρ"−1
. (10E.19)

From the strain relations (10E.12) the stress-free boundary condition yields two relations
at r = R,

2h′

r
− 2h

r2
+ Q = 0, (10E.20)

Lg + αψ − µ

(
4

r
h′ + 2

r2
�̂h + 4Q

)
= 0. (10E.21)

We notice that the combination X"m(r) ≡ rh′
"m − "h"m does not involve the last term

(∝ H"m) in (10E.18) and satisfies a simple boundary condition,

("+ 2)X"m(R) = −3

2
R2 Q"m, (10E.22)

which readily yields{[
("+ 1)

µ

L
− ("+ 3)

]
1

2"+ 3
+ 3

2"+ 4

}
Q"m = α

L

∫ R

0
dρ ψ"m(ρ)ρ

"+2. (10E.23)

From (10E.16) we may now express g in terms of ψ . Some manipulations yield (10.5.11)–
(10.5.16).
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Appendix 10F Surface modes on a planar surface

Supposing a semi-infinite elastic system, we examine small surface undulations under the
mechanical equilibrium condition in the absence of crystal growth and melting. We take the
z axis in the normal direction and the x axis on the horizontal plane. All the deviations are
proportional to eikx and independent of y. They decay as ekz far below the interface (z →
−∞), where k is assumed to be positive for simplicity. This semi-infinite approximation
is allowable if the wavelength 2π/k is much shorter than the thickness of the solid. From
(10.5.10) we obtain

Lδg + αδψ = Aekz+ikx , (10F.1)

where A is a constant. Then (10.5.9) becomes

µ∇2ui + ∇i [(αµ/L)ψ + (L − µ)Aekz] = 0, (10F.2)

and the displacement is of the form,

ux = iα

2L
eikx [

G(z)+ (βx + γ z)ekz]
, (10F.3)

uz = α

2L
eikx

[
1

k

∂

∂z
G(z)+ (βz + γ z)ekz

]
, (10F.4)

where γ = −[L(L − µ)/αµ]A and

G(z) =
∫ 0

−∞
dz′e−k|z−z′|δψ(z′). (10F.5)

We determine the three coefficients, βx , βz , and A from (10F.1) and the stress-free bound-
ary condition σzz = σxz = 0 at z = 0. Some calculations yield

βx = −βz = L + µ

L − µ
G(0), γ = 2kG(0), (10F.6)

where G(0) coincides with (k in (10.6.4). The surface displacement is given by

uz(0) = − α

L − µ
eikx G(0). (10F.7)
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11

Phase transitions of fluids in shear flow

In recent years, much attention has been focused on the nonlinear effects of shear flow
in which a certain internal structure of fluids is strongly affected by flow field [1]–[3].
As shown in Fig. 11.1, the simplest flow profile is γ̇ yex (simple shear flow), where the
flow direction is taken to be along the x axis, ex being the unit vector along the x axis,
and the mean velocity varies in the y or shear gradient direction, while the z direc-
tion is called the vorticity direction. Effects of elongational flow have also been studied
for polymeric systems [4]. Such nonlinear, nonequilibrium effects have been known for
some time in polymer science with no satisfactory explanations [4]–[10], and are now
becoming notable topics in the study of (i) fluids near the critical point (near-critical
fluids) and (ii) various complex fluids such as polymers, liquid crystals, colloidal systems,
and amphiphilic systems. This trend has developed out of the foundation of a deeper
understanding of dynamic critical phenomena, kinetics of first-order phase transitions, and
polymer physics. Experimentally, the investigation has been accelerated through the recent
application of scattering techniques to nonequilibrium phenomena under shear. As will be
shown in Appendix 11A, the equal-time-correlation functions of scalar variables satisfy
the translational invariance in a flow field with a homogeneous average velocity gradient,
giving rise to the proportionality of the light and small-angle neutron scattering intensity
and the structure factor. Other optical effects such as birefringence and dichroism have
also provided sensitive techniques with which to detect spatial anisotropy of concentration
fluctuations and molecular alignment. The information gained by these means can then
be combined with rheological data of the shear stress and normal stress differences,
which in many cases exhibit unusual behavior in nonlinear response regimes of shear.
Though the study of complex fluids under shear has often been conducted with the goal of
producing engineering oriented results, it is now developing into a new interdisciplinary
field embracing engineering and physics. Here rheology and phase transitions are closely
and uniquely related.

We will treat near-critical fluids under shear in Section 11.1 and shear-induced phase
separation in polymer solutions in Section 11.2, where we will also discuss analogous
effects in other fluids, as much as possible. In Section 11.3 we briefly mention, for various
complex fluids, a number of shear flow problems which are still being studied and are
not yet well understood. Finally, the subject of Section 11.4 will be supercooled liquid
dynamics with (and without) shear on the basis of recent simulations.

641
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Fig. 11.1. If the average flow is expressed by ux = (S + A)y, uy = (S − A)x and uz = 0, we have
a simple shear flow for S = A = γ̇ /2 in (a), an elongational flow for S > A > 0 characterized by
hyperbolic stream lines in (b), and a rotational flow for A > S > 0 characterized by elliptic stream
lines in (c). Suppression of the concentrated fluctuations is strong in (b) and weak in (c), while it is
intermediate in (a) [12].

11.1 Near-critical fluids in shear

We consider nearly incompressible fluid binary mixtures near the consolute critical point
under shear flow [11]–[17]. (See Ref. [12] for the other types of flow shown in Fig. 11.1.)
The concentration fluctuations are greatly deformed as they are convected by a spatially
varying velocity field. The deformation time is given by the inverse shear 1/γ̇ , so the
deformation is strong or nonlinear when the so-called Deborach number De, defined by

De = γ̇ tξ (11.1.1)

exceeds 1 (the strong shear case), where tξ is the characteristic lifetime of the critical
fluctuations given in (6.1.25). The dynamic equation (6.1.10) for ψ is rewritten as

∂

∂t
ψ = −γ̇ y

∂ψ

∂x
− ∇ · (ψvvv)+ L0∇2 δ

δψ
βH+ θ, (11.1.2)

where H is the GLW hamiltonian given by (4.1.1). The velocity field is divided into the
average γ̇ yex and the deviation v, where v obeys (6.1.11) with ∇·vvv = 0. We will investigate
the effects of the first term on the right-hand side of (11.1.2) in various situations.

11.1.1 Strong shear regime in one-phase region

Deformations by shear are weak for γ̇ tξ < 1 and strong for γ̇ τξ > 1. It is convenient to
introduce a characteristic wave number kc by �kc = γ̇ . The decay rate �k in (6.1.21) in the
mode coupling theory yields

kc = (6πη/T )1/3γ̇ 1/3, (11.1.3)
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in strong shear. The viscosity will be written as η. Then, by setting kcξ = kcξ0τ
−ν
s = 1,

we may introduce a crossover reduced temperature τs in shear flow by

τs = (6πηξ3
0 /T )1/3ν γ̇ 1/3ν ∝ γ̇ 0.54. (11.1.4)

Slightly different and essentially the same definitions of kc and τs follow if use is made
of the expressions in the dynamic renormalization group theory. The critical fluctuations
are strongly deformed by shear in the long-wavelength region q < kc. For example, kc =
2.3 × 10−4γ̇ 1/3 cm−1 and τs = 10−5γ̇ 0.54 with γ̇ in s−1 in isobutyric acid + water.

Mean field structure factor

Let us then calculate the steady-state structure factor for positive temperature coefficient
r0 at the critical composition. We start with the mean field approximation or linearizing of
the dynamic equation (11.1.2). Its Fourier transformation yields

∂

∂t
ψq = γ̇ qx

∂

∂qy
ψq − L0q2(r0 + q2)ψq + θq. (11.1.5)

The fluctuations are simultaneously convected by shear and thermally dissipated with the
decay rate (in the mean field theory) given by

�(q) = L0q2(r0 + q2). (11.1.6)

The steady-state structure factor I (q) satisfies(
2�(q)− γ̇ qx

∂

∂qy

)
I (q) = 2L0q2. (11.1.7)

The right-hand side arises from the thermal noise term θq(t), giving rise to the Ornstein–
Zernike form Ieq(q) = 1/(r0 + q2) without shear. The simplest way to examine the shear
effect is to expand I (q) in powers of γ̇ as

I (q) = I0(q)
[
1 − 2qx qy γ̇ /I0(q)�(q)+ · · ·], (11.1.8)

where I0(q) = 1/(r0 + q2) is the mean field Ornstein–Zernike structure factor. In this
linear regime, the intensity increases most in the directions in which qx = −qy and qz = 0.
Clearly, this expansion is valid in the (mean field) weak shear condition γ̇ < L0r2

0 .
Generally, taking into account the convection due to shear, we may solve (11.1.7) in the

following integral form,1

I (q) =
∫ ∞

0
dt exp

[
−2t�(|q|)+ t γ̇ qx

∂

∂qy

]
2L0q2

=
∫ ∞

0
dt exp

[
−2

∫ t

0
dt1�(|q(t1)|)

]
2L0q(t)2, (11.1.9)

1 This follows from the mathematical identity, exp[λU (x) + λ∂/∂x] = exp[
∫ λ

0 dλ′U (x + λ′)] exp[λ∂/∂x], where U (x) is an
arbitrary function of x .
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in terms of a deformed wave vector defined by2

q(t) = q + γ̇ tqx ey . (11.1.10)

We find I (q) → 1/r0 as q → 0 and I (q) ∼= 1/(r0 + q2) for q � kc even in shear
flow. The effect of shear is significant in the region r0 ∼= 0 and q � kc, where we have
�(|q(t1)|) ∼= L0(γ̇ t1qx )

4 and

I (q) =
∫ ∞

0
dt exp

[
−2

5
L0(γ̇ qx )

4t5
]

2L0(γ̇ tqx )
2 ∼ k−8/5

c |qx |−2/5, (11.1.11)

where kc is determined by L0k4
c = γ̇ in the mean field theory. These limiting cases can be

interpolated by the following approximate expression,

I (q) ∼= 1/(r0 + ck8/5
c |qx |2/5 + q2), (11.1.12)

where c ∼= 0.76. Unless qx is very small, (11.1.11) holds for q much smaller than kc in
strong shear (which is r0 < k2

c in the mean field theory).

Renormalization effects

We thus find that I (q) is suppressed below the equilibrium level. As a result, the critical
dimensionality dc is lowered from 4 to 2.4 in strong shear. To see this, let us consider the
renormalized kinetic coefficient LR in strong shear for general spatial dimensionality d.
From (6.1.18), LR in the long-wavelength limit is written as

LR ∼= (d − 1)T

dη

∫
q

1

q2
I (q)

∼= C1
T

ηk4−d
c

+ C2
T

η

∫ <

q

1

q2(r0 + |qx |2/5)
, (11.1.13)

where the first term in the second line is the contribution from the wave number region q >

kc and the second term that from the region q < kc, with C1 and C2 being dimensionless
constants. Notice that the second term grows as r0 → 0 for d < 2.4 and converges to
a value of order T/ηk4−d

c even at r0 = 0 for d > 2.4. This means dc = 2.4. In 3D,
therefore, the lower cut-off wave number of the singular fluctuation contributions becomes
kc in strong shear, whereas it is ξ−1 = ξ−1

+0 (T/Tc −1)ν in the linear response regime. Thus
the renormalized kinetic coefficient behaves in 3D as

LR = T/6πηkc ∝ γ̇−1/3. (11.1.14)

The shear viscosity η is treated as a constant here, because its singularity is weak. We shall
see its weak non-newtonian behavior later. The structure factor after the renormalization is
roughly of the form,

I (q) ∼= 1/(rR + ck8/5
c |qx |2/5 + q2), (11.1.15)

2 This wave number is equal to q̃(−t) introduced below (11A.7).
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Fig. 11.2. Reduced scattering intensity I (q)/Ieq(q) for aniline + cyclohexane as a function of ϕ =
tan−1(qx/qy) in the polar coordinate at T − Tc = 1.5 mK [15]. The horizontal axis (ϕ = 0) is
parallel to the flow (‖ x), while the vertical axis (ϕ = π/2) is in the velocity gradient direction.
Results for two scattering angles θ = 2◦ (q = 5200 cm−1) and θ = 10◦ (q = 26 000 cm−1) are
shown. Shear rates γ̇ are in units of s−1.

with

rR = ξ−2
+0 τ

2ν−1
s [T − Tc(γ̇ )]/Tc, (11.1.16)

where kc and τs are defined by (11.1.3) and (11.1.4), respectively, and Tc(γ̇ ) is the critical
temperature in shear to be discussed below. Obviously, if τs is replaced by (T −Tc)/Tc and
the γ̇ dependence of Tc(γ̇ ) is neglected, the equilibrium result rR ∼= ξ−2 is reproduced.
At small rR (� k2

c ), I (q) ∝ |qx |−2/5 in most directions of q for q < kc. This means
substantial suppression of the fluctuations below the equilibrium critical intensity Ieq(q) =
1/(ξ−2 + q2).

In Fig. 11.2 we show I (q)/Ieq(q) as measured by Beysens’ group in a critical mixture of
aniline + cyclohexane which agrees with (11.1.15) [15]. A small-angle neutron scattering
experiment was also performed in a low-molecular-weight polymer blend under shear [18].
Form birefringence and dichroism have also been used to detect anisotropy of concentra-
tion fluctuations under shear in agreement with theory [19, 20].

In usual (low-molecular-weight) near-critical fluids, the static and dynamic renormal-
ization effects are crucial, leading to multiplicative fractional powers of τs as in (11.1.14)
and (11.1.16). There are also systems in which the renormalization effects are negligible.
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As an extreme example, Dhont and Verduin [21] examined shear effects in near-critical
colloidal systems with attractive interaction superimposed onto the hard-core repulsion, in
which ξ+0 = 2000 Å is very large and the mean field theory holds.

11.1.2 Shift of the critical temperature

Next we discuss the critical temperature Tc(γ̇ ) in shear flow. We define the inverse suscep-
tibility rR by the limit, rR = limq→0 1/I (q), and require rR = 0 at T = Tc(γ̇ ). No shift
is assumed in the critical composition. Note that rR is shifted from the bare value r0 due
to the nonlinear fluctuation effects. The difference �r = rR − r0 arises firstly from the
quartic term in H as

(�r)st = 3u0

∫
q

1

q2
+ 3u0

∫
q

[
I (q)− 1

q2

]
+ · · · , (11.1.17)

where I (q) is the steady-state structure factor at the critical point under shear. The first term
produces a downward shift of the equilibrium critical temperature Tc(0) from the mean
field value, while the second term is a new negative contribution under shear. Secondly the
hydrodynamic interaction gives rise to a positive contribution,

(�r)hyd =
(

1 − 1

d

)
T

η0L0

∫
q

1

q2

[
1 − q2 I (q)

] + · · · , (11.1.18)

which vanishes in equilibrium as ought to be the case. We obtain the above result if we
start with the Kawasaki equation (6.1.52) and construct the equation for I (q). Note that the
ratio of the second term in (11.1.17) and the first term in (11.1.18) is written as −3[d/(d −
1)]g/ f in terms of g in (4.1.22) and f in (6.1.35), so it tends to a universal number (=
−19/54 + O(ε)) in the asymptotic critical region.

The ε expansion of the shift in near-critical fluids

We may calculate the shift using the ε expansion in low-molecular-weight near-critical
fluids. The fluctuation effects are strong in such fluids and hence, if the upper cut-off wave
number � becomes much smaller than the microscopic wave number ξ−1

+0 , the dimension-
less coefficients g and f approach the universal fixed-point values g∗ in (4.3.16) and f ∗

in (6.1.37), respectively. Because the dominant contributions in the last two integrals of
(11.1.17) and (11.1.18) arise from q ∼ kc, we may set � = kc to obtain

(�r)st = (�r)eq − 0.044εk2
c , (11.1.19)

(�r)hyd = 0.127εk2
c , (11.1.20)

where the first term on the right-hand side of (11.1.19) represents the shift in equilibrium.
Summing the two contributions proportional to k2

c , we find a downward shift,

Tc(γ̇ )− Tc(0) = (0.044 − 0.127)ετsTc = −0.083ετsTc, (11.1.21)
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where τs is defined by (11.1.4). In 3D we thus expect Tc(γ̇ ) − Tc(0) ∼ −0.1τsTc. It is
important that the hydrodynamic interaction does not affect the equilibrium properties, but
gives rise to the downward shift (11.1.20) in strong shear. Beysens et al. [16] detected a
downward shift from the turbidity and the structure factor with q perpendicular to flow.
It was proportional to γ̇ 0.53 but four times smaller than the result (11.1.21) at ε = 1 in
a few critical binary fluid mixtures, so that this aspect remains unsettled. It is difficult
to determine a small shift definitely in usual binary fluid mixtures, because scattering is
suppressed even at T = Tc(γ̇ ) as in (11.1.15) and domains do not grow indefinitely below
Tc(γ̇ ) as will be explained in Subsection 11.1.4.

Polymer A + polymer B in common solvent

Hashimoto et al. observed a large downward shift and notable shear-induced mixing
in ternary mixtures of polystyrene (PS) and polybutadiene (PB) in a common solvent
of dioctylphthalate (DOP) [22]–[29]. In their system the polymer volume fraction φ =
φPS + φPB is of the order of the overlapping value and the fluid may be treated as a binary
fluid mixture of weakly interacting PS-rich blobs and PB-rich blobs with ξ+0 ∼ 50 Å
[29]. Thus the space and timescales are much more enlarged than in usual binary fluid
mixtures; for example, tξ ∼ 1 s even for |T − Tc| ∼ 1 deg. K. In the temperature
region investigated, the static properties are described by the mean field theory, but the
hydrodynamic interaction is operative [23]. As a result, the crossover reduced temperature
τs from weak to strong shear is three or four orders of magnitude larger than in usual binary
fluid mixtures. They obtained a downward shift given by Tc(γ̇ ) − Tc(0) ∼ −AcτsTc with
τs ∝ γ̇ 0.5 and Ac ∼= 0.06 using the following two methods [23]. First, they could express
the scattered intensity above Tc(γ̇ ) perpendicular to flow (qx = 0) as

1/I (q) ∼= ξ−2
+0 [T − Tc(0)]/Tc + Ack2

c + q2, (11.1.22)

where kc = ξ−1
+0 τ

1/2
s . Second, if shear was increased from a two-phase state at fixed T

below Tc(0), scattering gradually decreased and shear-induced homogenization eventually
took place at the critical condition Tc(γ̇ ) = T . Subsequently, Yu et al. [30] used fluores-
cence and phase-contrast microscopy on a similar ternary mixture of PS + PB in DOP and
reported that the shift tends to saturate at very high shear.

11.1.3 Transition temperature shift in diblock copolymers

By slightly changing the calculations presented so far, we may readily examine the shear
effect on A–B diblock copolymers, where each chain is composed of A and B blocks
[31]–[36]. In such systems the equilibrium structure factor in the disordered phase has a
maximum at an intermediate wave number k0 and is expressed in the region q ∼ k0 as

Ieq(q) ∼= 1/[r + (q − k0)
2], (11.1.23)

where r ∝ T − Tc with Tc being a nominal transition temperature from a disordered to an
ordered phase. The volume fraction deviation ψ = φA −〈φA〉 of type-A blocks is assumed
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to obey the dynamic equation (11.1.2) with a Ginzburg–Landau free energy H expanded
up to O(ψ4). For simplicity, we treat the problem in the disordered phase in the symmetric
case where A and B blocks have the same lengths. Then the free-energy density is even
with respect to ψ = φA −1/2, and lamellar domain structures emerge at low temperatures.

In mean field calculations of shear effects [32, 34], the steady-state intensity I (q) is
expressed in the integral form (11.1.9) with �(q) = L0q2[r + (q − k0)

2]. Then we can
see that the linear response regime is given by γ̇ < �c(r/k2

0)
3/2 where �c = L0k4

0 is the
noncritical relaxation rate. Only in this regime may I (q) be expanded in powers of γ̇ . In
the region �c(r/k2

0)
3/2 < γ̇ < �c, nonlinear deformations occur on the fluctuations with

q ∼= k0 as

I (q) ∼= 1/[r + (q − k0)
2 + c1k2

0 |µ̇q̂x q̂y |2/3 + c2k2
0 |µ̇q̂x |4/5], (11.1.24)

where µ̇ = γ̇ /�c, q̂ = k−1
0 q, and c1 and c2 are positive numbers of order 1. As in (11.1.17)

the shift of the temperature coefficient is written as

r − r0 ∼= 3u0

∫
q

I (q), (11.1.25)

where r0(∝ T − Tc0) is the bare coefficient and u0 is the coefficient of the quartic term
in H assumed to be small (� k0). The hydrodynamic interaction is not relevant for the
fluctuations with q ∼ k0 [34].3 In equilibrium, the fluctuation contribution grows as r −
r0 ∼= (3/2π)u0k2

0r−1/2 at small r because of the singular integral
∫

dq[r + (q −k0)
2]−1 ∼

r−1/2. Brazovskii [35] concluded that a first-order phase transition into a lamellar phase
should take place at

r0 = rc ∼= −(3u0k2
0/2π)2/3 (γ̇ = 0). (11.1.26)

In shear flow, Cates and Milner [36] predicted that the first-order phase transition curve is
shifted upwards as

rc(γ̇ )− rc ∼= (γ̇ /γ̇ ∗)2|rc| (γ̇ � γ̇ ∗), (11.1.27)

where γ̇ ∗ = �cu0/k0. This is because the fluctuations with q ∼= k0 are suppressed below
the equilibrium level as in (11.1.24). In addition, the spinodal curve (metastability limit of
the disordered phase) is given by

r0 = rs(γ̇ ) ∼= (γ̇ /γ̇ ∗)−1/3rc (γ̇ � �c), (11.1.28)

which tends to −∞ as γ̇ → 0. These results were in qualitative agreement with a
subsequent small-angle neutron scattering experiment [37].

11.1.4 Spinodal decomposition in shear

More dramatic are the effects of shear in the unstable temperature and composition region.
Beysens and Perrot performed a spinodal decomposition experiment in a near-critical

3 In (11.1.18) the integrand is replaced by q−2[1 − I (q)/I0(q)] for diblock copolymers. Then the integrand is nonsingular at
q = k0 and (�r)hyd becomes negligible.
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Fig. 11.3. Time evolution of light scattering patterns from a phase-separating near-critical binary
fluid mixture at the critical composition [17]. Here γ̇ = 0.035 s−1 and Tc − T ∼ 1 mK, so γ̇ tξ ∼
0.01. The upper patterns (A) are those in the qx –qy plane, while the lower ones (B) are those in the
qx –qz plane.

binary fluid mixture below Tc by periodically tilting a quartz pipe container [38]. Such
a periodic shear was found to prevent domain growth, resulting in a permanent spinodal
ring of the scattered light. For steady shear, domains are elongated in the flow direction as
ξ γ̇ t in an initial stage [17, 39], but are eventually broken by shear. In Fig. 11.3 we show
light scattering patterns from a phase-separating fluid in shear, which are characterized by
strong anisotropy (streak patterns) even in weak shear γ̇ tξ � 1 below Tc [17, 40].

Computer simulations with various methods, though in 2D, have also shown strong
deformations of bicontinuous domain structures just after quenching [41]–[48]. Experi-
mentally, it has also been observed that spinodal decomposition is stopped in steady shear
at a particular stage [22, 23], giving rise to dynamical stationary states. Such states can be
realized by a balance between the thermodynamic instability and flow-induced deforma-
tion. In these two-phase states we may neglect the gravity effect when the domain size R
is very small compared with the so-called capillary length ag in (4.4.54). The Reynolds
number Re of a domain is given by Re = ργ̇ R2/η and is very small near the critical point.
However, we may well encounter the opposite limit Re � 1 far from the critical point,
where the inertia effect is crucial [13].

Unfortunately, detailed information cannot be gained from scattering alone, so some
theoretical speculations were made on the domain morphology giving rise to streak patterns
[49]. Hashimoto et al. [50] have taken optical microscope images from a DOP solution
to investigate the ultimate bicontinuous morphology in shear, as shown in Fig. 11.4. They
have found that domains are elongated into extremely long cylinders in steady states except
when they are under extremely weak shear. For γ̇ tξ < 1 such string-like domains still
contain a number of random irregularities undergoing frequent breakup, interconnection,
and branching, while the overall structure is kept stationary. For γ̇ tξ > 1 the continuity of
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Fig. 11.4. Optical microscopic images (a, c, e) and corresponding light scattering patterns (b,d,f) for
a PS/PB(80:20)/DOP 3.3 wt% solution at Tc − T = 10 K (taken by Hashimoto’s group [50]). Here
(a) and (b) were obtained under steady shear at 4 s−1, while (c) to (f) were obtained at 90 s and 250 s
after cessation of shear. We can see breakup of cylindrical domains into droplets, which occurs on a
timescale of ηξ⊥/σ , where σ is the surface tension and ξ⊥ is the cylinder diameter.

the strings increases and even extends macroscopically in the flow direction (string phase).
The scattering intensity perpendicular to the flow is proportional to the squared lorentzian
form 1/[1 + (qξ⊥)2]2 due to cylindrical domains, where ξ⊥ represents the diameter of the
cylinders and decreases with shear as

ξ⊥ ∼= [2π/qm(0)](γ̇ tξ )
−α, (11.1.29)
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where qm(0) is the peak wave number in spinodal decomposition without shear and α =
1/4–1/3. Thus we have ξ⊥ ∼ 2π/kc where kc is determined from �kc = γ̇ in strong
shear. For very large shear γ̇ � 102/tξ , the diameter ultimately becomes of the order
of the interface thickness and the contrast between the two phases vanishes, resulting in
shear-induced homogenization (at T = Tc(γ̇ ) if at the critical composition). Afterwards,
Hobbie et al. [51] studied the dynamics of formation of the string phase in a DOP solution
after application of shear. Note that the streak scattering patterns in DOP solutions closely
resemble those in usual binary fluid mixtures, so strong elongation of domains should
also occur in usual binary fluid mixtures [17, 40]. We should also mention that optical
microscope images of string-like domains have been reported for polymer blends [52, 53].

Note that cylindrical domains are unstable in the absence of shear against surface
undulations, resulting in the breakup of cylinders into droplets (the Tomotika instability
[54]), as discussed in Section 8.5.1. Frischknecht [55] examined the linear stability of
cylindrical domains in the presence of shear and showed that shear can suppress growth of
surface undulations under the condition R � σ/ηγ̇ (∼ ξ/γ̇ tξ for near-critical fluids). We
note that the surface tension is extremely small (� 10−4 cgs) in Hashimoto’s case, as in
near-critical fluids. Figure 11.4 is a dramatic example of the Tomotika instability observed
after cessation of shear. This capillary-driven instability is, in essence, the coarsening
mechanism of late-stage spinodal decomposition at the critical composition, as discussed in
Section 8.5. Rheologically, there should be no appreciable increase �η of the macroscopic
viscosity in the string phase because the surfaces do not resist flow.

We may also consider spinodal decomposition under oscillating shear γ̇ (t) = γ̇0 cos(ωt)
[56], where we may predict a new bifurcation effect under periodic shear. That is, if the
maximum shear strain γ = γ̇0/ω is larger than a critical value γc, the shear distortion is
effective enough and the domain growth can be halted, resulting in a periodic two-phase
state. If γ < γc, the shear cannot stop the growth, leading to macroscopic phase separation.
A similar bifurcation was found in periodic spinodal decomposition in Section 8.8.

11.1.5 Nucleation in shear

Droplet breakup in shear

We slightly lower the temperature T below the coexistence temperature Tcx by δT =
Tcx − T at an off-critical composition. The initial supersaturation ∆ is much smaller than
1 and is related to δT and �T = Tc − Tcx by ∆ ∼= (δT/�T )/6 near criticality as in
(9.1.4) for β = 1/3. Appreciable droplets of the new phase can appear only when the
critical droplets are not torn by shear. This indicates that the critical radius of nucleation
Rc ∼ ξ/∆ must satisfy

Rc < R∗, (11.1.30)

where

R∗ ∼= Cbσ/ηγ̇ (11.1.31)
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is the Taylor breakup size in shear flow [57]–[59]. The coefficient Cb is of order 3 for
near-critical fluids. It is known that the droplet shape at the breakup condition deviates from
a sphere and may be approximated as a spheroid with the ratio R‖/R⊥ between the longer
and shorter radii depending on the viscosity ratio η1/η2 between the viscosities inside
and outside the droplet. Then there follows a necessary condition of observing noticeable
droplets [13, 49, 60],

γ̇ tξ < ∆ � 1. (11.1.32)

This gives an upper limit of shear, γ̇ ∗ ∼ φ/tξ , at each δT or a lower limit of the quench
depth,

δT ∗ ∼ γ̇ tξ (�T ) ∝ γ̇ (�T )1−3ν, (11.1.33)

at each γ̇ in order to have droplets. This simple criterion has been confirmed in binary
mixtures under gentle stirring [61, 62] and uniform shear [63]. Very sensitive dependence
of the droplet density with R > Rc on γ̇ around γ̇ ∗ was observed, for example, by
dynamic light scattering after cessation of shear [63]. This suggests that the droplets
become monodisperse in shear flow.

The key quantity in the initial stage of nucleation is the nucleation rate I in (9.3.42). It
is known that I can be of order 1 when δT is equal to the classical Becker–Döring limit
δTBD (∼= 0.13�T from Fig. 9.13) as discussed in Section 9.3.3. We note δT ∗ < δTBD

for very weak shear which satisfies (11.1.32). If this inequality holds, droplets will emerge
at δT = δTB D on increasing δT from zero, but droplets will disappear at δT = δT ∗

on decreasing δT from a state in which droplets preexist. This hysteretic behavior was
observed by Min and Goldburg [63] as shown in Fig. 11.5.

Spinodal in flow field?

We raise a fundamental question as to the existence of metastability itself in relatively large
shear for which (11.1.32) is not satisfied. Namely, if δT is increased in such shear, droplet
formation will be suppressed, because localized droplets larger than R∗ cannot be stable.
In particular, if γ̇ tξ ∼ 1, Rc becomes of order ξ and the suppression is complete in the
sense that phase separation can be triggered only by instability of plane-wave fluctuations.
This suggests that a spinodal point becomes well defined in such shear as the onset point
of phase separation. Recall that the spinodal point for the off-critical case obtained in the
mean field theory has no definite theoretical meaning in quiescent fluids.

To investigate this effect, we suggest that an experiment be undertaken to measure the
light scattering intensity from off-critical binary fluid mixtures under weak shear below the
equilibrium coexistence curve. If droplet formation can be suppressed, we expect growth of
the intensity as limq→0 I (q) ∼ (T − Ts)

−γ on approaching a spinodal temperature Ts. We
also mention experiments by a Uzbekistan group [64]. They detected a peak in the specific
heat CV X far below the coexistence curve in gently stirred off-critical binary mixtures of
methanol + heptane. They claimed that a spinodal point can be reached in the presence
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Fig. 11.5. The normalized forward intensity F (the transmittency of light) from an off-critical binary
fluid mixture as a function of the quench depth δT [63]. The curves H, C and PQ correspond to
γ̇ = 340, 340, and 20 s−1, respectively. These shear rates are much smaller than 1/tξ = 1.3 × 104

s−1. The lines are a viewing guide. On the branch PQ the experiment was started at the point P in an
opaque state and was ended at the point Q where droplets disappeared due to the breakup mechanism.
The branch H was started at the point F ∼= 1 where the nucleation rate is appreciable. The branch C
was ended at the point F ∼= 1 due to the breakup mechanism.

of stirring. More experiments, including light scattering, on stirred off-critical fluids in the
metastable temperature region would be very informative.

Flow-induced coagulation

Another important mechanism is coagulation of droplets induced by shear [65, 66]. As
discussed in Section 8.5, such coalescence becomes important in late-stage droplet growth,
where the droplet volume fraction saturates to the initial supersaturation φ. It is known that
in flow, both laminar and turbulent, a droplet collides with others on the timescale of order
1/φγ̇ (the mean free time) where φ is the droplet volume fraction. In a flow field we may
set up the Smoluchowski equation (8.5.30) with the collision kernel estimated as

K (v, v′) ∼ γ̇ (R + R′)3 ∼ γ̇ (v + v′), (11.1.34)

where R ∼ v1/3 and R′ ∼ v′1/3 are the radii of the colliding droplets [65]. However, the
above estimation (11.1.34) is valid only when the sizes of the colliding droplets are of the
same order. It is known that flow-induced collisions rarely occur between droplets with
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very different sizes, because the smaller one moves on the stream line of the velocity field
around the larger one without appreciable diffusive motion for a Peclet number Pe � 1
(see (11.1.37) below for a definition of Pe) [67, 68]. Thus, if coagulation occurs among
droplets with sizes of the same order, (8.5.30) and (11.1.34) indicate that the droplet
number density n(t) = ∫ ∞

0 dvn(v, t) and the average droplet size R(t) = [3φ/4πn(t)]1/3

obey [66, 69](
∂

∂t
n(t)

)
collision

∼ −γ̇ φn(t),

(
∂R(t)

∂t

)
collision

∼ γ̇ φR(t). (11.1.35)

Thus R(t) grows exponentially. For aggregating colloidal systems this exponential growth
is well known [69].

Simulations of colloid aggregates have shown deformation, rupture, and coagulation
of clusters in shear flow [70, 71]. These hydrodynamic effects are of great technological
importance in two-phase polymers [72], in particular in the presence of copolymers (which
lower the surface tension) [73].

Droplet size distribution in shear

Under (11.1.32) a nearly stationary distribution of droplets is realized after a long re-
laxation time. As stated above, Min and Goldburg [63] found the results indicating a
monodisperse distribution of droplets peaked at R ∼= R∗ and, once such a distribution
is established, further time development of the droplet distribution becomes extremely
slow. Though such a state is nearly stationary, there is still a diffusive current onto each
droplet from the surrounding metastable region. It will grow above Rc and break into
smaller droplets, which will then start to grow again or dissolve into the metastable region
depending on whether their radii are larger or smaller than Rc. Each droplet will also collide
with another one on the timescale of 1/γ̇ φ. The evolution of the droplet size distribution
is therefore very complex and the observed quasi-stationarity is produced by a delicate
balance among these processes. Alternatively, we may also start with an opaque state at
a sufficiently large δT characterized by a small shear-dependent supersaturation ∆(γ̇ ).
Then, by gradually decreasing δT at fixed γ̇ , a nearly stationary state will be obtained,
which corresponds to the branch C in Fig. 11.5. Interestingly, it has been found to be more
opaque and has a larger droplet volume fraction (or a smaller supersaturation) than in the
reverse case of increasing δT from zero.

Figure 11.6 show multiple peaks in the scattered light intensity characteristic of very
monodisperse droplets in the qx –qz plane taken by Hashimoto et al. [26, 27]. They also
observed similar hysteresis by increasing or decreasing γ̇ over a wide range with δT fixed.
First, they increased γ̇ from an opaque state with droplets to reach a transparent state
without droplets at Tspi (0)− T ∝ γ̇ , where Tspi (0) is the cloud-point temperature at zero
shear. We believe this disappearance of droplets to have been caused by the Taylor breakup
mechanism (though the difference of Tspi (0) and the temperature Tcx on the coexistence
curve was not clarified in their work). Second, they decreased γ̇ from a one-phase state
homogenized by large shear to reach a spinodal-like point at which Tspi (0) − T ∝ γ̇ 1/2
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Fig. 11.6. Multiple peaks in the scattered light intensity from monodisperse droplets in the qx –qz

plane in an off-critical PS/PB/DOP solution at γ̇ = 0.33 s−1 (taken by Hashimoto’s group [26]–
[28]). Here the lines with numbers n (= 0, 1, . . .) indicate the positions of the nth peak.

and below which droplets appear. However, they found that quasi-steady states reached
in the decreasing branch are still slowly evolving towards the steady states reached in the
increasing branch on timescales of several hours. The experiments by Hashimoto et al. and
those by Min and Goldburg are consistent with each other.

Acceleration of droplet growth in shear

To analyze their experimental findings Baumberger et al. [74] argued that growth of an
isolated droplet in a metastable fluid can be considerably accelerated even in very weak
shear by an advection mechanism. If the growth is slow, the composition ψ outside the
droplet is determined by a quasi-static condition,

u · ∇ψ + D∇2ψ = 0, (11.1.36)

where u is the average flow tending to a simple shear flow far from the droplet. If we
assume that ψ changes on the scale of the droplet radius, the relative importance of the
two terms in (11.1.36) is given by the Peclet number,

Pe = γ̇ R2/D = γ̇ tξ (R/ξ)2. (11.1.37)

We have Pe > γ̇ tξ /∆2 for R > Rc and Pe ∼ 1/γ̇ tξ at the breakup size R ∼ R∗. Thus
Pe � 1 can hold in a wide time interval even under (11.1.32). The deviation from the
spherical shape is small for R � σ/ηγ̇ or for R � R∗. For Pe � 1 it is important that
the concentration gradient is localized in a thin layer with a thickness "γ̇ given by

"γ̇ = (D/γ̇ )1/2 = R/
√

Pe (11.1.38)

around the droplet. This relation follows from a balance between the two terms in (11.1.33).
As a result, the diffusion current onto the droplet from the metastable fluid is increased by
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Fig. 11.7. Droplet radius R as a function
of time for δT = 8 mK and several shear
rates γ̇ = 0, 0.3, 0.8, and 9.8 in an
off-critical isobutyric acid + water [74].
The effective growth exponent ∂lnR/∂lnt
increases with increasing shear from the
usual value 1/3 at zero shear.

R/"γ̇ ∼ Pe1/2 as compared to the case Pe � 1 [75, 76], so that the usual Lifshitz–Slyozov
equation is modified as

∂

∂t
R ∼ D

R

(
∆− 2D0

R

)√
Pe ∼

√
γ̇ D

(
∆− 2d0

R

)
, (11.1.39)

where d0 is the capillary length (∼ ξ ) in (8.4.13) or (9.1.17). Thus, as shown in Fig. 11.7,
the timescale of the initial stage can be considerably accelerated by the convection effect.
As the supersaturation around the droplets decreases, however, the probability of droplet
encounters will become the dominant mechanism of the droplet growth. Interestingly, all
the data in Fig. 11.7 obey Pe ∼ (φγ̇ t)b with b ∼ 4/3. Note also that the critical radius
Rc = 2d0/∆ is unchanged by very weak shear and there seems to be no drastic change in
the nucleation rate.

The above mechanism is important in systems with a small diffusion constant such as
polymer blends. As a similar effect we note that, if surfactant molecules are added to an
oil–water two-phase system, they can be advected onto the oil–water interfaces efficiently
in shear flow, leading to shear-induced emulsification. Systematic experimentation in these
cases should be interesting.

11.1.6 Rheology in near-critical fluids

From (6.1.17) the fluctuations of the order parameter ψ give rise to the following additional
shear stress,

γ̇ �η = −T 〈(∇xψ)(∇yψ)〉
= −T

∫
q

qx qy I (q), (11.1.40)
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where ∇i = ∂/∂xi and �η is the fluctuation contribution. Other important quantities are
the normal stress differences,

N1 = σxx − σyy = T 〈(∇xψ)2 − (∇yψ)2〉,
N2 = σyy − σzz = T 〈(∇yψ)2 − (∇zψ)2〉. (11.1.41)

These quantities can also be expressed in terms of the structure factor as in the second line
of (11.1.40).

Strong shear regime in one-phase states

In the one-phase region, the above quantities may be expressed as integrals in the wave
vector space using the structure factor I (q). We find that �η is nearly logarithmic as
ln(ξ/ξ+0) in weak shear and as ln(1/kcξ+0) in strong shear. This crossover was first
predicted by Oxtoby [77]. If use is made of the ε expansion in strong shear, the steady-state
viscosity is of the form [78],

η = η0 +�η ∝ (kcξ+0)
−xη ∝ γ̇−xη/d , (11.1.42)

where xη = ε/19+· · · is a small dynamic exponent. This shear-rate dependence was mea-
sured by Hamano et al. [79]. In weak shear the normal stress differences are proportional
to γ̇ 2 and are very small. In strong shear, the right-hand sides of (11.1.40) and (11.1.41)
after the wave vector integrations are of order T kd

c , so that

N1 = 0.046εηγ̇ , N2 = −0.032εηγ̇ , (11.1.43)

to first order in ε [78]. Note that N1 and N2 are even functions of γ̇ , while the shear stress
σxy is odd. If we allow the case γ̇ < 0, we should use |γ̇ | in (11.1.42) and (11.1.43).

Weak shear regime in two-phase states

When a near-critical fluid is undergoing phase separation, larger stress contributions arise
from interface deformations because (∇φ)(∇φ) behaves like a δ function near the interface
multiplied by the tensor nn, where n = (nx , ny, nz) is the normal unit vector. In weak
shear, the interfaces are sharp and (11.1.40) yields a well-known expression [80]–[82],

(�η)sur = − 1

γ̇
σ

∫
da nx ny, (11.1.44)

where σ is the surface tension, da is the surface element, and the surface integral is within
a unit volume containing many domains. This surface contribution is the sole change of the
macroscopic viscosity in newtonian two-phase fluids with the same viscosity. Similarly,

(N1)sur = σ

∫
da (n2

x − n2
y),

(N2)sur = σ

∫
da (n2

y − n2
z ). (11.1.45)
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If we suppose an assembly of largely deformed droplets near the breakup condition R ∼
R∗ in (11.1.31) with volume fraction φ, we estimate 〈−nx ny〉 ∼ 〈n2

x − n2
y〉 ∼ 1 to obtain

[83]

(�η)sur ∼ φσ/γ̇ R ∼ φη, (11.1.46)

(N1)sur ∼ (N2)sur ∼ ηγ̇ φ, (11.1.47)

where the surface area density is of order φ/R. Because (11.1.46) is independent of shear,
it is analogous to well-known expressions for the macroscopic viscosity of suspensions or
emulsions in the zero-shear limit [81]. However, in our case droplets are largely deformed,
so the rheology is strongly nonlinear. The behavior of N1 and N2 is marked because they
are nearly zero in one-phase states and jump to large values after quenching.

Doi and Ohta set up dynamic equations for the interfacial stress tensor σ
∫

dani n j and
the surface area density [84]. In steady states, their equations reproduced (11.1.46) and
(11.1.47). Furthermore, they can reasonably describe transient stress relaxation after a step
increase in the shear rate. Simulations of simple fluids in 2D also showed a considerable
increase of the viscosity in spinodal decomposition under shear [41]–[47]. Such studies in
complex fluids with internal structures should be of great importance.

We mention related experiments. (i) Krall et al. [56] measured the viscosity increase
�η(t) in a near-critical binary fluid mixture of isobutyric acid + water using a viscometer
in which shear was oscillated and damped in time. After a pressure quench at t = 0, �η(t)
increased on the timescale of tξ , in accord with (11.1.46). While it tended to a constant
for the droplet case, it slowly decayed to zero at the critical (bicontinuous) case after a
long time (∼ 20 s). In Fig. 11.8 we show their data of the viscosity increase and the shear
modulus (= Re G∗(ω)) at a critical quench. Hamano et al. [79] subsequently observed the
same decay of �η(t) in steady shear in a rotational viscometer. Because a sharp streak
scattering pattern emerges with �η(t) → 0, we may conclude that a string phase (see Fig.
11.4) was realized in their critical-quench cases. For such highly elongated domains the
interfaces are mostly parallel to the flow and nx ∼= 0 in (11.1.44), leading to �η ∼= 0.
Notice that N1 is still given by (11.1.47) even in the string phase. (ii) The rheology of
phase-separating polymer blends has also been studied [85]–[88] particularly when the two
phases are newtonian and have almost the same viscosity. The observed �η and N1 were in
excellent agreement with the scaling relations (11.1.46) and (11.1.47). Figure 11.9 shows
data of N1 in a blend of PS + poly(vinyl methyl ethyl)) (PVME) with a molecular weight
of order 105 in two-phase states [86], in which the viscosities of the two components were
of the same order. The linear behavior N1 ∝ γ̇ was seen even at low shear rates where
shear-thinning of the viscosity was still weak.

11.1.7 Rheology in two-phase binary fluid mixtures with viscosity difference

Let us consider phase-separating newtonian binary fluid mixtures in which the two phases
have different viscosities η1 and η2 [89]. Batchelor [75] derived a formal expression
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Fig. 11.8. Reduced viscosity increase (η− ηs)/ηs and the elastic shear modulus G/ωηs in a critical
binary mixture of isobutyric acid + water [56], where ηs is the viscosity in one-phase states at the
same temperature. The symbols◦, �, and � correspond to quenches of depths of 11, 19, and 64 mK,
respectively. The smooth curves are those from the Doi–Ohta constitutive equations [84].

for the average stress tensor in two-phase states in the low-Reynolds number limit. In
incompressible flow 〈vvv〉 = u with velocity gradient Di j = ∂ui/∂x j , it is written in the
following surface integral form [81],

〈σi j 〉 = −pδi j + (φ1η1 + φ2η2)(Di j + D ji )

+ (η1 − η2)

∫
da(v′i n j + v′j ni )− σ

∫
dani n j , (11.1.48)

where p is a pressure, da is the surface element, n is the normal unit vector at the interface
from phase 1 to phase 2, vvv′ in the third term is the velocity deviation vvv − u immediately
inside the droplets, and φ1 and φ2 = 1 − φ1 are the volume fractions of the two phases.
The surface integral is performed over the surfaces within a unit volume. The last term
arises from the surface tension force and remains nonvanishing even for η1 = η2, leading
to (11.1.44) and (11.1.45). Its contribution to the shear viscosity becomes negligible for
high elongation of the domains, such as in the string phase. However, in a transient process
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Fig. 11.9. Normal stress difference N1 vs shear rate γ̇ at various temperatures in a polymer blend in
two-phase states [86]. These data demonstrate the relation N1 ∝ γ̇ in (11.1.47).

or in the droplet case, we have 〈−nx ny〉 ∼ 1 and

(�η)sur ∼ σ A/γ̇ , (11.1.49)

where A is the surface area density.
For simplicity, we consider nearly steady two-phase states under shear in the case η1 �

η2. Then phase 2 is compressed into layers with thickness R2, and the distance between
two neighboring domains of phase 1 with size R1 is equal to R2. The two lengths R1 and
R2 are related to the volume fractions as

AR1 ∼ φ1, AR2 ∼ φ2. (11.1.50)

The typical velocity gradients γ̇1 and γ̇2 in the two phases satisfy

η1γ̇1 ∼ η2γ̇2 ∼ 〈σxy〉. (11.1.51)

The macroscopic shear rate γ̇ is given by

γ̇ ∼ (R1 + R2)
−1(R1γ̇1 + R2γ̇2) ∼ φ1γ̇1 + φ2γ̇2. (11.1.52)

These relations yield the effective viscosity,

ηeff = 〈σxy〉/γ̇ ∼ (
φ1/η1 + φ2/η2

)−1
. (11.1.53)
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When η1 � η2, this relation means that even a small fraction of the second phase can
drastically reduce ηeff from η1 to η2/φ2 for φ2 � φ1η2/η1. Obviously, the second phase
acts as a lubricant. Furthermore, the typical velocities in the two phases are estimated as

v1 = γ̇1 R1 ∼ φ1

η1

〈σxy〉
A

, v2 = γ̇2 R2 ∼ φ2

η2

〈σxy〉
A

. (11.1.54)

We assume that the typical velocity of the droplet phase is smaller than that in the contin-
uous phase. When the two phases are both percolated, we require v1 ∼ v2 to obtain the
condition of bicontinuity,

φ1/η1 ∼ φ2/η2. (11.1.55)

This relation has been known as an empirical law for polymer mixtures in the engineering
literature [90].

In particular, we consider three cases in more detail. (i) When φ1/η1 < φ2/η2 and the
more viscous phase 1 forms a droplet phase, the velocity gradient is mainly supported by
the less viscous phase 2 and γ̇ ∼ φ2γ̇2 even for φ2 � 1. Because the two mechanisms of
aggregation and breakup should balance in the steady state, typical droplets will be close
to the breakup condition. They are only slightly deformed from a sphere and the stress due
to the surface tension and that due to the viscosity are of the same order. Therefore, we
have 〈σxy〉 ∼ σ/R1 ∼ γ̇2η2 and

R1 ∼ σ/(ηeffγ̇ ) ∼ σφ2/(η2γ̇ ), (11.1.56)

which decreases down to σ/η1γ̇ with increasing φ1 at fixed γ̇ . To the normal stress
differences the last two terms in (11.1.48) both give rise to contributions of the same order,

N1 ∼ N2 ∼ σφ1/R1 ∼ (φ1η2/φ2)γ̇ , (11.1.57)

which increases up to order η1γ̇ at φ2 ∼ η2/η1. (ii) When φ2 is very small, phase 2 forms a
droplet phase. In the case η2 � η1 an isolated droplet of phase 2 is elongated into a slender
shape prior to breakup [58, 59]. The ratio of the longest radius R‖ and the shortest radius
R⊥ deviates from 1 appreciably for R‖ ∼ σ/η1γ̇1 and is of order (η1γ̇1/σ)

3/4V 1/4 in the
steady state, where V (∼ R‖R2

⊥) is the droplet volume. Here γ̇1 may be set equal to γ̇ . At
the breakup we have

R‖ ∼ σ/(η2γ̇ ), R⊥ ∼ (η2/η1)
1/2 R‖. (11.1.58)

Here ηeff ∼ η1, consistent with (11.1.52). The behavior of N1 and N2 is complicated.
Let us consider N1. The contribution from the last term in (11.1.48) is of order σ A with
A ∼ φ2/R⊥, which is (η1η2)

1/2γ̇ φ2 at the breakup. However, the third term in (11.1.48)
is of order η1 Av2 cos θ , where v2 ∼ R⊥γ̇2 ∼ R⊥η1γ̇ /η2 is the typical velocity within the
slender droplet and θ is the angle between the normal n and the x axis (which is parallel to
the flow). We may set cos θ ∼ R⊥/R‖. Thus,

N1 ∼ (η
3/2
1 /η

1/2
2 )φ2γ̇ , (11.1.59)
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which is larger than the surface tension contribution by η1/η2. The above relation is still a
conjecture because the velocity field around a slender droplet is very complicated and more
systematic analysis is needed. We also notice that N1 seems to be discontinuous where the
slender droplets become percolated near φ2 ∼ η2/η1.

11.1.8 Rheology in diblock copolymers

In diblock copolymers the fluctuations with q ∼ k0 can be strongly enhanced as (11.1.23)
at small r . Note that the transition becomes first order due to the fluctuation effect as stated
near (11.1.26). By calculating the complex shear modulus G∗(ω) in the disordered phase,
Fredrickson and Larson found that these fluctuations give rise to anomalous rheological
properties [33]. In particular, they predicted that the fluctuation contribution �η in the
zero-frequency shear viscosity grows as r−3/2. In the linear regime, a subsequent mode
coupling theory [34] yielded

G∗(ω)/ iω = η0 + Acr−3/2(1 +√
1 + i�)−2, (11.1.60)

where η0 is the background viscosity, Ac is a constant, and � = (k2
0/8�c)ω/r , with �c

being the noncritical relaxation rate introduced above (11.1.24). With increasing shear,
however, the fluctuation contribution �η in the steady state decreases as

�η ∝ γ̇−1 (11.1.61)

in the region (r/k2
0)

3/2 < γ̇ /�c < 1. The form birefringence was also predicted to grow
towards the transition [34, 91].

If the temperature is cooled below the transition, lamellar ordered grains appear and
evolve slowly [92] (and their orientation may be achieved by application of shear or an
electric field). In such locally ordered states, Rosendale and Bates [93] found anomalous
low-frequency behavior,

G∗(ω) ∼ (iω)1/2, (11.1.62)

as shown in Fig. 11.10. To explain their finding, Kawasaki and Onuki examined the
dynamics of mesoscopic phases with locally lamellar morphology with disorder [94].
Because lamellar systems behave like solids in the direction normal to the lamellae, a
large stress arises as

σi j = Bni n j (n · ∇)u, (11.1.63)

for variations of the lamellar spacing. Here B is a compression elastic constant and u(r, t)
is the local displacement field of lamellae. The local normal unit vector n(r) is assumed
to be stationary and varies randomly in space on the scale of the defect distance "def

much longer than the lamellar spacing λ. The proposed mechanism is associated with
overdamped collective modes with wave vector k = k⊥ + k‖n in the region represented by
|k‖| � |k⊥| � λ−1 and k � (ρω/η0)

1/2. The decay rate of uk is then given by

�(k) ∼= (B/η0)(cos2 θ + λ2k2), (11.1.64)
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Fig. 11.10. Dynamic shear modulus G′(ω) = Re G∗(ω) as a function of reduced frequency for a
symmetric diblock copolymer near the microphase separation point [93]. The temperature-dependent
parameter aT is chosen such that the curves coincide for ω > ω′

c. Filled and open symbols
correspond to the ordered and disordered states, respectively.

with cos θ = k‖/k being small. A mode coupling expression for the frequency-dependent
viscosity is written as

η∗(ω) = η0 + B
∫

k
ϕ(k)

1

iω + �(k)
· cos2 θ

cos2 θ + λ2k2
. (11.1.65)

The ϕ(k) is defined by

ϕ(k) =
∫

dre−ik·r〈nx (r)ny(r)nx (0)ny(0)〉, (11.1.66)

where the average is taken over the random distribution of n. Notice that ϕ(k) behaves as
(2π)dδ(k)/12 in the limit "def → ∞. Then the angle integration over θ(∼= π/2) yields

G∗(ω) = iωη0 + π

24
(Bη0iω)1/2 (ω > ω") (11.1.67)



664 Phase transitions of fluids in shear flow

where ω" = (B/η0)(λ/"def)
2 is a very small frequency for "def � λ. For ω < ω" we obtain

solid-like behavior G∗(ω) ∼ 0.01B [31]. In the above theory defect motion is neglected,
whereas it is relevant in another independent theory [95].

The above mechanism was invoked to explain stress relaxation in concentrated emul-
sions by Liu et al. [96], where (iω)1/2 behavior appears at intermediate frequencies in their
empirical formula, G∗(ω) = Gp + A(φ)(iω)1/2 + η∞iω. There has also been a number of
observed nonlinear shear effects in various ordered phases of diblock copolymers, but they
are beyond the scope of this book [31], [97]–[99].

11.1.9 Turbulent critical binary mixtures

We examine critical phenomena and phase separation of near-critical binary fluid mixtures
in vigorous stirring or turbulence [61, 62] [100]–[105]. In turbulence, eddies with linear
dimension " break into smaller ones successively in the inertial range L0 > " > k−1

d . In
the original Kolmogorov theory [106], the energy injection rate ε̄ ∼ u3

"/" is a constant
independent of ", where L0 is the size of the largest eddies (∼ the size of the stirrer) and kd

is the viscous cut-off wave number. It is now believed that turbulence is intermittent [107].
That is, eddies with sizes of order " fill only a small fraction of the space which is of order

β(") = ("/L0)
µ. (11.1.68)

The exponent µ is in the range 0.25 � µ � 0.5. Taking into account the intermittency, we
should modify the relation for the energy injection rate as ε̄ ∼ β(")u3

"/", which yields

u" ∼ (ε̄")1/3("/L0)
−µ/3. (11.1.69)

In the dissipative range " < k−1
d the velocity fluctuations are dissipated by the shear

viscosity η. Thus u"/" ∼ (η/ρ)"−2 at " ∼ k−1
d . Using the definition of the Reynolds

number Re = L0u0/(η/ρ), we may express kd as

kd = L−1
0 Re3/(4−µ). (11.1.70)

The maximum shear rate γ̇dis in turbulence is given by

γ̇dis = (η/ρ)k2
d ∼ (η/ρL2

0)Re6/(4−µ). (11.1.71)

To make rough estimates we set Re ∼ 104, L0 ∼ 1 cm, η/ρ ∼ 10−2 cm2 s−1, and µ = 0
to obtain kd ∼ 103 cm−1 and γ̇dis ∼ 104 s−1.

Droplet sizes in turbulence

For simplicity, we assume droplets with sizes R (� ξ) with sharp interfaces in a two-phase
state below Tc. Near the critical point, the droplets are broken into smaller sizes in the
dissipative range (< k−1

d ):

R ∼ σ/ηγ̇dis ∼ (ρσ/η2)k−2
d , (11.1.72)
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where the shear stress ηγ̇dis is balanced with the capillary force density (∼ σ/R) as for
laminar shear [13]. The condition R < k−1

d is equivalent to

σ ∼ T/ξ2 < (η2/ρ)kd. (11.1.73)

However, away from the critical point, the surface tension increases and the reverse of
(11.1.73) holds. Then R is in the inertial range (> k−1

d ) and is determined by a balance
between the typical pressure variation (∼ ρu2

R) over the distance R and the capillary force
density (∼ σ/R) in the form,

R ∼ k−1
d (ρσ/η2kd)

3/(5−2µ) > k−1
d . (11.1.74)

This expression (with µ = 0) was originally derived by Kolmogorov [13, 66, 108].

Critical fluctuations and spinodal decomposition in turbulence

The concentration fluctuations in near-critical fluids have sizes much shorter than the
size of the smallest eddies (∼ 1/kd) and are most effectively strained by the smallest
eddies. These eddies turn over on the timescale of 1/γ̇dis, during which the concentration
fluctuations are acted on by the eddies. The concentration fluctuations encounter them
intermittently, and the mean free time is determined by

1/tmf = β(kd)γ̇dis ∼ (η/ρ)L−2
0 Re(6−3µ)/(4−µ). (11.1.75)

This time tmf should be compared with the thermal relaxation time tξ . In a one-phase state,
the critical fluctuations are not much affected in the weak shear regime tξ < tmf, while
they are strongly suppressed in the wave number region k < kc in the strong shear regime
tξ > tmf. As in the laminar shear case, the characteristic wave number kc is defined by

kc = (6πη/T tmf)
1/3 ∼ (6πη2/ρT L2

0)
1/3 Re(2−µ)/(4−µ). (11.1.76)

The crossover reduced temperature τs in shear flow is defined by τs = (ξ+0kc)
1/ν . For

example, if 1/tmf ∼ 104 s−1, we have τs ∼ 10−3 for isobutyric acid + water. As shown in
Fig. 11.11, Chan et al. [101] observed that there is no sharp phase transition in turbulence.
As T is slightly lowered below Tc, the scattered light intensity increases gradually but
dramatically. As shown in Fig. 11.12, the steady-state intensity Ik has a peak at k = 0,
even below Tc. Moreover, they did not detect the Porod tail in the intensity for T/Tc − 1 ∼
−10−4 mK and Re ∼ 104, where the two-phase boundaries should have been blurred by
the turbulent shear.

We will now present numerical examples on turbulent critical binary mixtures [104]. If
the sizes of the concentration fluctuations are in the dissipative range, the velocity field vvv

may be expanded as

vvv(r, t) = vvv(r0, t)+
∑

j

Di j (t)(x j − x j0)+ · · · , (11.1.77)

where r0 represents an appropriate reference point. To examine the fluctuations of a passive
scalar c convected by u as ∂c/∂t = −u · ∇c + D∇2c, Batchelor [109] made an analysis
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Fig. 11.11. The scattered light intensity I0 = limk→0 Ik in the long-wavelength limit and the wave
number kw vs T − Tc in dynamical steady states of a critical binary fluid mixture of isobutyric
acid + water stirred at 14.2 Hz [101], which corresponds to Re = 104. Here kw is determined by
Ikw = I0/2.

assuming that {Di j (t)} is nearly stationary, while Kraichnan [110] investigated the reverse
case in which {Di j (t)} changes rapidly as a white noise. The latter will be the case in
near-critical fluids. Then the intensity I (k, t) obeys

∂

∂t
I (k, t) = B

(
k2 ∂2

∂k2
+ 4k

∂

∂k

)
I (k, t)+ X (k, t), (11.1.78)

where

B = 1

15

∑
i j

∫ t

−∞
ds〈[∇ j ui (r, t)][∇ j ui (r, s)]〉. (11.1.79)

Here B is estimated as (ε̄/15ν)trel ∼ β(kd)γ̇
−2
dis trel where trel is the relaxation time of the

time-correlation function in (11.1.77). If we set trel = γ̇−1
dis , we find B ∼ 1/tmf. In the

passive scalar case, Kraichnan set X (k, t) = −2Dk2 I (k, t) [110]. For near-critical fluids
below Tc we may set X (k, t) equal to the right-hand side of the Kawasaki–Ohta equation
(8.5.1) [104]. Then, as t → ∞, I (k, t) tends to a steady intensity Ik scaled as

Ik = k−3
w I ∗(k/kw, B∗), (11.1.80)

where kw is determined by Ikw = I0/2, and B∗ = Btξ is the dimensionless turbulent shear
rate. We found that the curve of kwξ vs 1/B∗ is analogous to the curve of km(t)ξ vs t/tξ
in normal spinodal decomposition in Fig. 8.22. This suggests that spinodal decomposition
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Fig. 11.12. The scaled intensity Ik/I0 vs k/kw in a stirred critical binary mixture on a log–log scale
[101]. The dashed curve is obtained as the steady solution of (11.1.78) at B = 0.1/tξ , with X (k, t)
being the right-hand side of the Kawasaki–Ohta equation (8.5.1).

is stopped at a time of order 1/B(� tξ ). These results are in good agreement with data of
the scattered light intensity, as demonstrated in Fig. 11.12.

11.1.10 Gravity effect in stirred fluids

Fluids can be mixed efficiently even by gentle stirring, so it is often used in experiments and
in everyday life. Chashkin et al. [111] measured the specific heat CV under gentle stirring
in one-component fluids at the critical density near the gas–liquid critical point. As shown
in Fig. 2.4, they could observe a sharp peak of CV even very close to the critical point
(|T/Tc−1| � 10−4); this would have been masked by the gravity effect in a quiescent fluid.
(See also Ref. [64] cited in Chapter 4.) To support their finding, we may argue [112] that
the density stratification in gravity is much reduced from −ρg(∂ρ/∂p)T to −ρg(∂ρ/∂p)s

under stirring. The ratio of these two quantities is (∂ρ/∂p)T /(∂ρ/∂p)s = C p/CV and is
very large near the gas–liquid critical point. This means that the entropy per unit mass
tends to be homogenized (s(p, T ) ∼= const.) in stirred fluids despite the presence of a
pressure gradient. This is because of the instantaneous pressure equilibration and the slow
thermal diffusion, as discussed in Section 6.4. As a result, there should arise a small vertical
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temperature gradient, (
dT

dz

)
stirr

= −ρg

(
∂T

∂p

)
s
, (11.1.81)

which is −0.27 mK/cm in CO2 on earth. Also in binary fluid mixtures, if use is made of
the derivative (∂T/∂p)s X at fixed concentration X , we can predict the same temperature
gradient. Cannell [113] first reported the presence of a temperature nonuniformity in
stirred fluids in gravity, but there has been no systematic experiment to confirm the above
predictions. It is worth noting that (11.1.81) is analagous to (8.6.14).

11.2 Shear-induced phase separation

The effects of shear on polymeric systems are generally very complex [9]. As well as
shear-induced mixing, application of shear or extensional flow sometimes induces a large
increase in turbidity, indicating shear-induced composition heterogeneities or demixing.
Semidilute polymer solutions near the coexistence curve most unambiguously exhibit
shear-induced demixing [114]–[116]. The tendency for demixing is intensified with in-
creasing molecular weight M(� 2×106) and the polymer volume fraction above the over-
lapping value, as can be seen in Fig. 11.13 [117]. The fluctuation enhancement becomes
more remarkable at non-newtonian shear, where shear-thinning behavior is significant.
Large stress fluctuations have also been reported upon demixing by shear [6, 7, 118],
suggesting formation of gel-like aggregates under shear.

Recently, a number of scattering experiments have detected shear-induced demixing in
high-molecular-weight PS in DOP [119]–[128]. In addition, van Egmond and co-workers
used form birefringence and dichroism [129, 130]. As representative examples we show
scattering patterns in the qx –qy plane in Fig. 11.14 [119] and in the qx –qz plane in Fig.
11.15 [120], and data of form dichroism in Fig. 11.16 [129]. Also elongational (exten-
sional) flow was applied to PS in DOP [131], where fluctuation enhancements were even
more dramatic, giving rise to fourfold symmetry in the scattered intensity with intensity
maxima on the axes at 45◦ to the principal axes. Rheological behavior of polymer solutions
at phase separation was also studied. In particular, semidilute PS/DOP solutions display
shear-thickening at high shear [120, 129] and a second overshoot in the shear stress after
application of shear [123, 132]. The latter is caused by the onset of large concentration
enhancement, as will be demonstrated by simulations to follow.

Intensive theoretical efforts have been made to understand this complex problem. We
mention three main theoretical ingredients being established. They are (i) the dynamical
coupling mechanism first applied to sheared polymer solutions by Helfand and Fredrick-
son [133, 136, 137], (ii) the viscoelastic Ginzburg–Landau scheme [134, 135, 138, 139]
with a conformation tensor as a new independent dynamical variable, and (iii) computer
simulations [140, 141] which give insights of the behavior of strongly fluctuating polymer
solutions under shear. The first two ingredients were discussed in Chapter 7. However, a
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Fig. 11.13. Difference Ts(γ̇ ) − T 0
s vs γ̇ in PS + trans-decalin (TD), where Ts(γ̇ ) is the demixing

temperature in shear and T 0
s is that for the solution at rest. The molecular weights and concentra-

tions are indicated [117]. For positive (negative) values of the difference, shear-induced demixing
(homogenization) occurs.

Fig. 11.14. Contour plots of steady-state light scattering amplitudes in the qx –qy plane from 4% PS
in DOP at 15 ◦C for (a) γ̇ = 0.4 s−1, (b) γ̇ = 1.2 s−1, and (c) γ̇ = 10 s−1 [119]. The molecular
weight is 1.8 × 106 and τ = 0.6 s. In the newtonian regime (a) we can see an abnormal butterfly
pattern aligned in the direction of qx ∼= qy . With increasing shear in the region γ̇ τ � 1, the
fluctuations are gradually rotated due to convective motion. Numbers to the lower right indicate
contour increments.

number of puzzles remain unexplored in spinodal decomposition and nucleation with (and
even without) shear, close to and below the coexistence curve.
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Fig. 11.15. Steady-state light scattering patterns in the qx –qz plane from 6% PS in DOP at 27 ◦C
with the molecular weight being 5.5 × 106 [120]. The angle θ = 7◦ refers to the scattering angle
and corresponds to q = 1.8 × 104 cm−1. The number beneath each pattern indicates the shear rate.
The patterns have a strong intensity along the flow direction and a dark streak along the vorticity
direction.

We also remark that similar scattering patterns have been observed by small-angle
neutron scattering from swollen and uniaxially expanded gels, as discussed in Section
7.2. Notice the close resemblance between Figs 7.14–7.16 for gels and Figs 11.14–11.15
for polymer solutions [120, 126]. In both polymer solutions and gels, the problems en-
countered are those of stress balance attained by composition changes in heterogeneous
systems. The difference is that the crosslink structure is permanent in gels and transient in
polymer solutions, which makes the problem simpler (though still complex) in gels.

11.2.1 Linear theory of polymer solutions in shear flow

Helfand and Fredrickson (HF) [133] examined the dynamic coupling in shear to linear
order in the concentration fluctuations by assuming that the stress fluctuations instanta-
neously follow the concentration fluctuations. Their theory most simply illuminates the
mechanism of shear-induced fluctuation enhancement, but it is applicable only at very long
wavelengths. Here we present a more general linear theory which is valid in a wider wave
vector region and is still analytically tractable. We first consider the newtonian regime [10,
142],

γ̇ τ � 1, (11.2.1)

where τ is the stress relaxation time behaving as (7.1.30). The fluctuation enhancement
is rather mild in the newtonian regime, but it can be drastic in the non-newtonian regime
γ̇ τ � 1. Interestingly, such effects become apparent even when γ̇ is still much smaller
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Fig. 11.16. Dichroism vs time from PS in DOP at T = 20 ◦C with the laser beam along the shear
gradient (y) axis [129]. Shear was applied at t = 0 and stopped at t = 30 s. At high shear rates
the dichroism changes from negative to positive values because of orientation of the concentration
fluctuations along the flow (x) direction.

than the inverse of the diffusion time tξ = ξ2/Dm in contrast to the case of near-critical
fluids. The correlation length ξ and the mutual diffusion constant Dm are defined by (7.1.9)
and (7.1.27), respectively. We have tξ � τ except very close to the critical point and
thus assume γ̇ tξ � 1 in the semidilute concentration region with theta solvent. In this
subsection the temperature region is assumed to be above the coexistence curve, where
phase separation does not occur in the absence of shear.

We linearize (7.1.33) with respect to the deviation δφ around a homogeneous state under
shear flow. When τ does not exceed the timescale of the deformations under consideration
and the inverse shear rate 1/γ̇ , we express the network stress →←

σσσ as

σi j ∼= η

(
∇ jvpi + ∇ivpj − 2

3
δi j∇ · vvv p

)
+ 1

3
N1δi j (2δi x − δiy − δi z), (11.2.2)

where η is taken to be the newtonian shear viscosity in the regime γ̇ τ < 1 dependent on
φ as in (7.1.29) and N1 = σxx − σyy ∼ ητ γ̇ 2 is the first normal stress difference. We
neglect the second normal stress difference N2 = σyy − σzz and assume

∑
i σi i = 0. The

key relation arising from using the polymer velocity vvv p in (11.2.2) is that ∇ · vvv p is related
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to the time derivative of the deviation δφ in the linear order as(
∂

∂t
+ γ̇ y∇x

)
δφ ∼= −φ∇ · vp. (11.2.3)

Then we find

∇ · ∇ · →←
σσσ p ∼= 4η

3
∇2(∇ · vvv p)+

[
2γ̇ η′∇x∇y + 1

3
N ′

1(2∇2
x − ∇2

y − ∇2
z )

]
δφ. (11.2.4)

The second term arises from the φ dependence of η and N1, where

η′ = ∂η/∂φ ∼ 6η/φ, N ′
1 = ∂N1/∂φ ∼ 10N1/φ (11.2.5)

from (7.1.29), (7.1.30), and N1 ∼ ητ γ̇ 2. In the HF theory the fluctuations of the velocity
gradient are neglected and the first term on the right-hand side of (11.2.4) is absent. We
then obtain the linear equation for the Fourier component φq in the form,(

∂

∂t
− γ̇ qx

∂

∂qy

)
φq = −�eff(q)φq, (11.2.6)

where the (modified) relaxation rate is defined by

�eff(q) = L

1 + ξ2
veq2

[
q2(r + Cq2)− 2η′

φ
γ̇ qx qy −

N ′
1

3φ
(2q2

x − q2
y − q2

z )

]
. (11.2.7)

Here the kinetic coefficient is modified as Leff(q) = L/[1+ξ2
veq2] as in (7.1.68) due to the

first term on the right-hand side of (11.2.4), where the viscoelastic length ξve defined by
(7.1.65) is much longer than ξ as estimated in (7.1.69). The explicit form of the coefficient
r = Kos/φ

2 is given in (7.1.7), where Kos is the osmotic bulk modulus. The mutual
diffusion constant Dm is related to the kinetic coefficient L as Dm = Lr ∼ T/6πη0ξ .

To calculate the steady-state structure factor we add a random source term θRq on the
right-hand side of (11.2.6), where

〈θRq(t)θRq′(t
′)〉 = 2(2π)dδ(q + q′)Leff(q)q

2δ(t − t ′). (11.2.8)

This form assures the Ornstein–Zernike structure factor I0(q) = 1/(r + Cq2) in equi-
librium. The expression for the steady structure factor I (q) is obtained from (11.1.9) if
�(q) and L0 are replaced by �eff(q) and Leff(q), respectively, where q(t) depends on t as
(11.1.10). If we expand I (q) in powers of γ̇ as in (11.1.8), we obtain for qξ � 1

I (q)/I0(q) = 1 + 2qx qy
[
η′Leff(q)/φ − ξ2]

γ̇ /�eff(q)+ · · · . (11.2.9)

Comparing this with (11.1.8), we notice a surprising result even in the linear order with
respect to γ̇ . That is, the correction due to the viscoelasticity is much larger than and has a
sign opposite to that due to the convection, in accord with a light scattering experiment
by Wu et al. [119] at small shear γ̇ τ < 1. The ratio of these contributions is about
−6(ξve/ξ)

2 for qξve < 1 from (7.1.65) and (11.2.5). This suggests that the concentration
fluctuations tend to be aligned in the directions opposite to those for near-critical fluids.
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Similar abnormal alignment perpendicular to the stretched direction has been observed in
heterogeneous gels, treated in Chapter 7.

From (11.2.7), �eff(q) can be negative even for positive r , indicating growth of the
fluctuations even above the spinodal curve. In terms of Kos = φ2r this condition becomes

Kos < φη′γ̇ ∼ 6ηγ̇ or Kos < 2φN ′
1/3 ∼ 7N1, (11.2.10)

where the first relation is obtained for qx = qy and the second for qz �= 0 and qy = qz = 0.
In particular, in the newtonian limit γ̇ τ � 1 we may neglect the normal stress effect and
the critical shear rate γ̇c is given by

γ̇c = φr/η′ ∼= Kos/6η. (11.2.11)

Then some calculations show that the maximum of −�eff(q) is attained at qx = qy = ±qm

and qz = 0 with

qm ∼ (γ̇ − γ̇c)
1/4 D−1/4

m ξ−1/2, (11.2.12)

which increases from 0 and becomes of order (ξξve)
−1/2 for γ̇ ∼ τ−1. The maximum

growth rate is given by �m = Dmξ
2q4

m and becomes of order Kos/η for γ̇ ∼ τ−1. Thus
the above estimates are self-consistent in theta and poor solvent where G = η/τ � Kos.
However, note that the growth of the fluctuations is transient because �eff(q) is negative
only in a limited wave vector region and the convection brings the wave vector outside this
unstable region. We should thus regard the above results to be very approximate.

The above linear theory can explain the experiment by Wu et al. at small shear [119], but
cannot adequately explain those by Hashimoto’s group. In particular, on PS/DOP solutions
with M ∼ 5.5 × 106 [128], Saito et al. took data of critical shear rates, γ̇cx and γ̇cz , above
which the scattering amplitudes in the x and z directions grow abruptly above the thermal
level with increasing shear. They found γ̇cx ∼ τ−1 consistent with (11.2.11), but γ̇cz was
systematically larger than γ̇cx by a factor of 3. As a result, the ratios of the stress values
at these two critical shear rates were (σxy)cz/(σxy)cx ∼ 1.6 and (N1)cz/(N1)cx ∼ 3.4.
Thus, at γ̇ = γ̇cz , the system was in the non-newtonian regime and the linear theory is
inapplicable. More seriously, the diffusion time 1/Dmq2 was shorter than τ(∼ 50 s) for
most values of q observed. When Dq2τ � 1, sheared polymer solutions should behave
like gels under shear strain and another theory is needed. Notice the close resemblance
between Fig. 7.16 for gels and Fig. 11.15.

11.2.2 Normal stress effect

We next examine how the normal stress causes diffusion perpendicular to the flow direction
[134, 135]. We will first treat polymer solutions, but the following theory is also applicable
to polymer blends [143] and dense colloidal suspensions. A similar theory was also
developed to discuss flow instability of layered structures aligned in the flow direction
[144].
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Because the convection makes the mathematics very complex, we assume that all the
deviations are small and vary only in the y (velocity gradient) direction as eiqy . To linear
order in the composition deviation δφ, (7.1.33) becomes

∂

∂t
δφ = − Lq2

1 + q2ξ2
ve

(
rδφ − 1

φ
δσyy

)
, (11.2.13)

where r = Kos/φ
2 and σyy is the yy component of the polymer stress on the order of the

first normal stress difference N1. The deviations are related as

δσyy = −AnδN1, (11.2.14)

where An is of order 1 (equal to 1/3 if the diagonal part
∑

j σ j j/3 and the second normal
stress difference N2 are neglected). For slow motions we may assume the mechanical
equilibrium condition along the x direction,

ρ
∂

∂t
vx = ∇yσxy ∼= 0. (11.2.15)

Hence the shear stress σxy should be constant in the y direction and the deviation of the
shear rate is expressed as

δγ̇ =
(
∂γ̇

∂φ

)
σxy

δφ = −
[(

∂σxy

∂φ

)
γ̇

/(
∂σxy

∂γ̇

)
φ

]
δφ. (11.2.16)

Now the relaxation rate in (11.2.13) is written as q2 Dy/(1 + q2ξ2
ve), where the diffusion

constant in the y direction is of the form,

Dy = L

[
r + An

φ

(
∂N1

∂φ

)
σxy

]
. (11.2.17)

Next we consider the concentration fluctuations varying in the z direction as eiqz .
They induce no velocity gradients varying in the y direction in the linear order. Thus the
relaxation rate in the z direction is written as q2 Dz/(1 + q2ξ2

ve) with

Dz = L

[
r + An

φ

(
∂N1

∂φ

)
γ̇

]
. (11.2.18)

These diffusion constants may also be expressed as D j = (L/φ)(∂�∗/∂φ) ( j = y, z),
where �∗ is a generalized osmotic pressure defined by

�∗ = �(φ)− σyy . (11.2.19)

The above �∗ is analogous to the right-hand side of (9.6.9) or (9.6.11) (if the inverse
curvature R−1 there is set equal to zero).4

4 Here we propose the following experiment. Let us apply a shear flow to a two-phase state with a planar interface parallel to
the flow; then, the semidilute region will expand and the polymer volume fraction will decrease by (γ̇ τ )2φ ∼ [σxy/G]2φ for
γ̇ τ � 1.
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(i) In the newtonian regime γ̇ τ � 1, we may set [10, 142]

σxy = ηγ̇ = Gτ γ̇ ,

N1 = A1G(τ γ̇ )2 = A1σ
2
xy/G, (11.2.20)

where A1 is a constant of order 1. Here G ∝ φ p with p = 2–3 and η ∝ φxη with xη ∼ 6
for semidilute solutions with theta solvent from (7.1.29) and (7.1.30), so

Dy = L[r − p An N1/φ
2],

Dz = L[r + (2xη − p)An N1/φ
2]. (11.2.21)

Thus the fluctuations varying in the y axis become linearly unstable for

Kos = φ2r > p An N1 ∼ N1. (11.2.22)

This means that shear-induced demixing occurs in the y direction with increasing shear
even for r > 0 or in one-phase states [134]. However, (11.2.10) suggests that the fluctua-
tions with qx ∼ qy and those varying along the x axis should have already been enhanced
at this instability point.

(ii) In the non-newtonian regime τ γ̇ > 1, it is known that N1 > σxy and N1 ∼ G(γ̇ τ )β

with β smaller than 1 [10, 142]. We conjecture that the composition fluctuations should
grow when the typical value of N1 exceeds Kos or

G(γ̇ τ )β � Kos or (γ̇ τ )β � (T − Ts)/(Tcx − Ts), (11.2.23)

where Ts is the spinodal temperature and Tcx is the coexistence temperature (see Section
3.5). Thus fluctuation enhancement readily occurs in highly entangled polymer solutions
as the temperature approaches the coexistence curve where Kos ∼ G.

Polymer blends

In polymer blends, shear-induced mixing and demixing can both occur in the same polymer
mixture depending on the composition, temperature, and the shear rate [145]–[148]. To
predict the shear effect we should know a number of complex factors such as the strength
of the hydrodynamic interaction, the degree of viscoelasticity, or the asymmetry between
the two components. For entangled polymer blends, if we assume spatial variations along
the y or z direction, (7.1.42) is linearized as

∂

∂t
δφ = − Lq2

1 + q2ξ2
ve

(
rδφ − αδσ j j

)
, (11.2.24)

where r is given by (7.1.7), α is defined by (7.1.43), and j = y or z. In their theory Clarke
and McLeish [143] set δσ j j = −δN1/3 to obtain

D j = L

(
r + α

3

∂N1

∂φ

)
, (11.2.25)

where the derivative is at fixed σxy for j = y and at fixed γ̇ for j = z. In calculating
N1 they used the double reptation model in Appendix 7B and obtained shear-dependent
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spinodal curves for the fluctuations varying perpendicularly to the flow direction. In a
scattering experiment seen along the z direction (q ‖ the z axis) on a blend of PS + PVME
by Gerard et al. [148], shear-induced demixing exhibited features remarkably similar to
normal spinodal decomposition in quiescent states. These include an initial increase of
scattered intensity with time and a maximal growth rate at q = qm. They analyzed their
data using the diffusion constant along the z direction of the form Dz = a1(T −Ts)+az γ̇

2,
where az < 0 for shear-induced demixing. Theoretically [143], az can be both positive and
negative in polymer blends, while it is positive in polymer solutions as given in (11.2.21).

Slipping layer formation in colloidal suspensions

For some time, considerable attention has been paid to the migration or diffusion of
polymers [149, 150] or colloidal particles [151]–[155] in the velocity gradient direction.
Simulations have also been performed on this effect for colloids including the hydrody-
namic interaction [156]. In particular, to describe plug-flow formation in concentrated
colloidal suspensions flowing through a capillary, Nozières and Quemada [155] proposed
a diffusion equation for the colloid volume fraction φ varying in the y direction:

∂

∂t
φ = ∇y

[
aφ

(
∇yµ+ 1

2
b∇y γ̇

2
)]

, (11.2.26)

where µ = µ(φ) is the chemical potential of colloids dependent on φ. The coefficients a
and b may depend on φ. This equation is analogous to (11.2.13); the term proportional to
γ̇ 2, which was called a lift force, corresponds to that proportional to δσyy/φ in (11.2.13).
For slow motions, the mechanical equilibrium condition σxy = ηγ̇ = const. is satisfied.
The viscosity grows sharply towards a close packing volume fraction φm as

η = η0(1 − φ/φm)
−xη , (11.2.27)

where xη ∼ 2. The diffusion constant for infinitesimal deviations around a homogeneous
steady state is then written as

Dy = aφ

(
∂µ

∂φ
− bγ̇ 2 ∂

∂φ
ln η

)
, (11.2.28)

where the second term is negative as in (11.2.21). Hence, with increasing γ̇ , Dy becomes
negative, leading to the formation of a slipping layer containing a small volume fraction
of colloids near the boundary. In such a phase-separated state Nozières and Quemada
introduced a modified chemical potential,

µ∗ = µ(φ)+ 1

2
bγ̇ 2 = µ(φ)+ 1

2
bσ 2

xy/η
2, (11.2.29)

where b was treated as a constant. They could then write a schematic phase diagram at
fixed σxy . Furthermore, they assumed homogeneity of µ∗ − C∇2

yφ in space including the
interface region, which is analogous to the interface equation (4.4.1) for the gas–liquid
phase transition. In order to obtain a more plausible phase diagram, we here assume
µ(φ) = v−1

0 T {ln[φ/(1 − φ/φm)] + 1/(1 − φ/φm)}, which is the result in the van der
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Fig. 11.17. The effective chemical potential µ∗ in (11.2.30) (in units of v−1
0 T ) vs φ/φm, where

A = 2, Ac, 5, and 8 reading from below. The portion of the curves with ∂µ∗/dφ < 0 is produced by
the lift force, and Dy in (11.2.28) vanishes at the spinodal points where ∂µ∗/∂φ = 0. The dashed
lines are obtained from the Maxwell construction.

Waals theory in Section 3.4 with v0 being the volume of a colloidal particle. Together with
the assumption b = const. (which is problematic, however), we obtain

µ∗ = v−1
0 T

[
ln

(
(

1 −(

)
+ 1

1 −(
+ A(1 −()4

]
, (11.2.30)

where ( = φ/φm, A = v0bσ 2
xy/2Tη2

0, and use is made of (11.2.27). In Fig. 11.17 we plot

µ∗ vs ( for various A. Two-phase coexistence is achieved for A > Ac = (3/2)(6/5)5 ∼=
3.73.

In colloidal suspensions, however, γ̇−1 becomes the only timescale for Pe � 1 [156]
where

Pe = (6πη0a3/T )γ̇ , (11.2.31)

is the Peclet number, a being the particle radius. As a result the normal stress difference
N1 should behave as

N1 ∼ η0γ̇ (Pe � 1). (11.2.32)

In this case we should have γ̇ instead of γ̇ 2 in (11.2.26) and (11.2.28), but this does not
change the results qualitatively.
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In experiments, the shear stress will decrease suddenly with the appearance of a thin
slipping layer if the viscosity η0 inside the layer is much smaller than η in the bulk region.
Let us fix the relative velocity v0 between the upper plate at y = h and the lower plate
at y = 0. Because the velocity gradient is given by σxy/η0 within the slipping layer with
thickness d and by σxy/η in the bulk region with thickness h − d, we have

v0 = σxy

(
h − d

η
+ d

η0

)
. (11.2.33)

The shear stress thus very sensitively depends on d as

σxy = σ0/(1 + d/d∗), (11.2.34)

where σ0 = v0η/h is the shear stress for d = 0. The length defined by

d∗ = hη0/η (11.2.35)

is much shorter than h for η0 � η.

Slipping in polymer solutions

Also in entangled polymer solutions the mechanism of shear-induced phase separation
might be relevant to slippage, though the above simple theory for colloids will be in-
adequate. In an experiment on entangled PS in good solvent [157], marked composition
inhomogeneities varying on the wall plane appeared close to the wall and traveled into
the bulk with the occurrence of slippage. This phenomenon was found to be strongly
influenced by the interaction between the polymer and the surface.

11.2.3 Thermodynamic theory on sheared polymer solutions

Rangel-Nafaile et al. [116] developed a thermodynamic theory of shear-induced phase
separation. They assumed that the total free-energy density consists of the Flory–Huggins
free-energy density and a stored elastic energy fel on the order of N1. Such a form of the
free energy was suggested by Marrucci’s work [158] on the dumbbell model. Then a spin-
odal curve was determined by Kos + φ2∂2 fel/∂φ

2 = 0, where the derivative with respect
to φ was performed with the shear stress held fixed. However, the second derivative of fel

is positive, leading to a downward shift of the spinodal if φ is much larger than a critical
entanglement volume fraction φ∗. Conversely, if the problem is treated dynamically, the
shift due to the stress–diffusion coupling is definitely upward. Nevertheless, the absolute
value of the shift is determined by |Kos| ∼ N1 from the thermodynamic assumptions in
accord with (11.2.10) or (11.2.22). We believe that it is appropriate to introduce the concept
of the stored free energy or the elastic free energy to describe viscoelastic fluids. In the
thermodynamic theories [116, 159, 160], however, the usual scheme of thermodynamics is
assumed and space-dependent fluctuations are not adequately taken into account. Jou and
co-workers [160] stressed that thermodynamic arguments, if improved, can be useful in
understanding shear effects in polymers.
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11.2.4 Simulation of shear-induced phase separation: elastic turbulence

We need a numerical approach to understand the nonlinear regime of shear-induced phase
separation. To this end, the viscoelastic Ginzburg–Landau model in (7.1.98)–(7.1.105)
was solved in the presence of shear flow in 2D [14, 140] using a numerical scheme
[161] similar to that used by Lee and Edwards for nonequilibrium molecular dynamics
(MD) simulations [162]. A simpler approach based on smoothed particle hydrodynamics
also produced similar results [141]. We integrate (7.1.33) for φ and (7.1.100) for the
conformation tensor

→←
W on a 128 × 128 square lattice, where the relative velocity w and

the average velocity v are given by (7.1.104) and (7.1.105), respectively. A shear flow
〈vx 〉 = γ̇ y is applied at t = 0. We shall see that the small-scale fluctuations emerging
due to the viscoelastic instability grow in magnitude and spatial size but are eventually
broken by the flow. Phase separation is then only partially completed, resulting in a chaotic
dynamical steady state with large fluctuations in the composition and stress. Here we will
present simulated physical images, which can be obtained only through numerical work at
present, mentioning related experiments.

Shear-induced composition fluctuations above the coexistence curve

We first assume that our system is above the coexistence curve as [14]

〈(〉 = 2, T = Tc or χ − 1

2
= N−1/2, (11.2.36)

where N is the polymerization index. Hereafter we set

( = φ/φc, (11.2.37)

where φc = N−1/2. The coefficient of the gradient free energy is written as C =
(T/v0)C0/φ with C0 = a2/18 from (4.2.26). The thermal correlation length and the
mutual diffusion constant in the equilibrium state determined by (11.2.36) are written as
ξ = (NC0/5)1/2(∼ the gyration radius) and Dm, respectively. We measure space and time
in units of " = (5/3)1/2ξ and τ0 = (25/6)ξ2/Dm. The shear modulus and the stress
relaxation time are set equal to

G = T v−1
0 φ3, τ = 0.3τ0((

4 + 1). (11.2.38)

The solvent viscosity is taken to be η0 = (T/v0)φ
3
c τ0, which is equivalent to assuming

the friction coefficient as ζ = η0φ
2/C0. Then the newtonian solution viscosity and the

relaxation time are written as

η/η0 = 0.1(3((4 + 1), τ/τ0 = 0.3((4 + 1). (11.2.39)

We have η/η0 = 13.6 and τ/τ0 = 5.1 in equilibrium determined by (11.2.36), but G,
τ , and η are fluctuating quantities in nonequilibrium. In our case G is considerably larger
and τ is much smaller than those in the real experiments. We also add random source
terms in the dynamic equations; as a result, the equilibrium distribution is expressed as
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Fig. 11.18. Time evolution of ((x, y, t) = φ(x, y, t)/φc after application of shear γ̇ τ = 0.25 at
t = 0 [140]. The numbers below the figures are the times measured in units of τ0 = 2.5"2/Dm.
The space region in our simulations is given by 0 < x, y < 128, where the space coordinates are
measured in units of " = (5/3)1/2ξ , ξ being the correlation length in equilibrium. The shading
represents [((x, y, t) − (min]/((max − (min) with (max ∼= 3.6 and (min ∼= 0.38 being the
maximum and the minimum of ((x, y, t) at these times.

exp(−H̃/ε2), where H̃ is a dimensionless Ginzburg–Landau free energy with the space
unit being ". In this work we set ε = 0.1 and the variance

V =
√
〈((− 〈(〉)2〉 (11.2.40)

taken over all the lattice points turns out to be 0.038 in thermal equilibrium.
We display snapshots of ((x, y, t) at various times in Figs 11.18 and a 3D graphical

representation in Fig. 11.19, respectively, after application of shear γ̇ τ = 0.25 at t = 0.
At an early stage (t � 40) we can see growth of the fluctuations with wave vectors with
qx ∼= qy in agreement with the linear theory. At a later time the polymer-rich regions are
elongated into long stripes forming a transient network and are continuously deformed by
hydrodynamic convection on the timescale of 1/γ̇ τ0(= 20). We also notice that ((x, y, t)
varies irregularly even on the mesh size scale " in regions with ((x, y, t) � 2, whereas
it varies smoothly in space in regions where ((x, y, t) is considerably below 2. This is
obviously because viscoelasticity is weakened in the latter regions. The structure factor
I (qx , qy, t) is much enhanced at small q, but is fluctuating in time in our calculation
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Fig. 11.19. 3D graphical representation of ((x, y, t) for γ̇ τ = 0.25 at t = 60 under the same condi-
tions as in Fig. 11.18, showing turbulent enhancement of the concentration fluctuations comparable
to those in spinodal decomposition [140].

because of the small system size. In Fig. 11.20 its time average taken over the interval
150 < t < 1000 is shown for γ̇ τ = 0.1 in (a) and for γ̇ τ = 0.25 in (b). We can see two
peaks in the qx –qy plane in the steady state in accord with the scattering experiment [119].
At smaller shear they are located at qx ∼= qy , while they approach the qx axis as shear
is increased. In Fig. 11.21 we show the variance V defined by (11.2.40), which increases
from the equilibrium value 0.038 and fluctuates around 0.5 in the dynamical steady state.

Stress fluctuations

In Fig. 11.21 we show the space averages of the shear stress and normal stress difference,

σ̄xy = 〈σxy〉 − 〈C(∇xφ)(∇yφ)〉,
N̄1 = 〈σxx − σyy〉 + 〈C[(∇yφ)

2 − (∇xφ)
2]〉, (11.2.41)

where the tensor σi j is treated as a fluctuating quantity defined by (7.1.102). At high
shears the stress components due to viscoelasticity (∝ 〈σi j 〉) are much larger than those
from the gradient free energy (∝ 〈C∇φ∇φ〉), while the latter ones are dominant singular
contributions in low-molecular-weight fluids. The average shear stress first grows linearly
in time up to the order of ηγ̇ at t ∼ τ , but it begins to decrease with growth of the
shear-induced fluctuations. The normal stress difference grows as t2 initially. After the
transient stage they both exhibit chaotic fluctuations. Figure 11.22 displays N̄1 (divided by
η0/3τ0) for 0 < t < 800 at γ̇ τ = 0.05, 0.1, and 0.25. At the largest shear γ̇ τ = 0.25,
the network composed of elongated polymer-rich regions is often extended throughout the
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Fig. 11.20. Contour plots of the time average of the structure factor for γ̇ τ = 0.1 in (a) and γ̇ τ =
0.25 in (b) in the qx –qy plane [140]. The wave vector is measured in units of 2π/128". The peak
height is 15.7 in (a) and 470 in (b).

Fig. 11.21. Time evolution of the variance V defined by (11.2.40) (dotted line), the average shear
stress σ̄xy (solid line), and the average normal stress difference N̄1 (broken line) for γ̇ τ = 0.25
[140]. The stress components and the time are scaled appropriately.

system but is subsequently disconnected. Because the stress is mostly supported by such a
network, this process produces abnormal fluctuations of the stress. Interestingly, in many
cases the normal stress difference takes a maximum (or minimum) when the shear stress
takes a minimum (or maximum) [14].
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Fig. 11.22. Chaotic time evolution of the average normal stress difference as a function of time for
γ̇ τ = 0.05, 0.1, and 0.25 reading from below [140]. The average shear stress also exhibits similar
behavior.

In experiments, the stress components are measured as the force density acting on a sur-
face with a macroscopic linear dimension h. If h is much longer than the characteristic size
of the network structure, the observed stress components will exhibit only small temporal
fluctuations. More than four decades ago Lodge [6] reported abnormal temporal fluctu-
ations of the normal stress difference at a hole of 1 mm diameter for polymer solutions
contained in a cone-plate apparatus. He ascribed its origin to growth of inhomogeneities
or gel-like particles. Peterlin and Turner [7] suggested temporary network formation in
sheared polymer solutions to explain their finding of a maximum in the shear stress
after application of shear. In subsequent measurements [118, 123, 132], σxy and N1 have
exhibited a peak at a relatively short time (first overshoot) arising from transient stretching
of polymer chains and a second peak (second overshoot) arising from shear-induced phase
separation. In our dynamic model we are neglecting the former relaxation process, so our
first overshoots correspond to the observed second overshoots. It would be informative if
further rheological experiments could be performed at various temperatures including the
case below the spinodal point or in small spatial regions, as in Lodge’s case [6].

Strongly deformed composition fluctuations below the coexistence curve

We also simulated a quench of the system at N 1/2(2χ−1) = 3, which is below the classical
spinodal value N 1/2(2χ − 1) ∼= 2.5, with the same volume fraction 〈(〉 = 2 [14]. Figure
11.23 shows snapshots for γ̇ τ = 0.425 in (a) and 0.85 in (b) at t = 200. The maximum and
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Fig. 11.23. Snapshots of ((x, y, t) below the spinodal point for γ̇ τ = 0.425 in (a) and 0.85 in (b) at
t = 200 [14]. The system is in a dynamical two-phase steady state. The solvent-rich (white) domains
become narrower and more elongated with increasing shear.

minimum of ((x, y, t) are 3.53 and 0.01 in (a) and 3.23 and 0.01 in (b). Here we can see
formation of sharp interface structures and continuity of the polymer-rich (dark) regions.
In the droplet-like solvent-rich regions ( becomes very small, whereas in the continuous
polymer-rich regions it increases slowly in time because deswelling of solvent is taking
place there, as in gels. At relatively large shear, the system tends to a two-phase dynamical
steady state, where the solvent-rich regions are narrow and compressed.

However, for very small shear and deep quenching, we found that the system is ulti-
mately divided into two regions, one mostly with solvent and the other being polymer-rich.
In transient time regions in such cases, solvent-rich regions are very easily deformed by
shear into extended shapes and the shear stress decreases abruptly once such solvent-rich
regions are percolated throughout the system. (A gas droplet in a newtonian viscous liquid
can be elongated into a slender shape in shear flow [57]–[59].) Here thin solvent-rich
regions should act as a lubricant serving to diminish the measured viscosity. This picture
was originally presented by Wolf and Sezen [115] to interpret their finding of a viscosity
decrease which signals the onset of phase separation at small shear in semidilute solutions.

11.3 Complex fluids at phase transitions in shear flow

There are a large number of intriguing examples of nonlinear shear effects in complex
fluids undergoing some kind of phase transition [1]–[10]. We mention them here without
detailed discussions. (i) In colloidal systems, even when a relatively weak experimentally
producible shear is applied, the structure of the phase can be changed drastically. In partic-
ular, shear-induced melting of crystal structures has been studied by scattering experiments
[163]–[165]. Some theoretical approaches have also been presented [166]. At a gas–liquid
critical point in colloidal systems, the critical fluctuations are extremely sensitive to shear
[21]. The viscosity was reported to increase strongly in such colloidal systems [167] and
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Fig. 11.24. A theoretical schematic diagram of shear stress vs shear rate in the steady state for an
entangled micellar system [173]. With increasing shear a shear-banding instability occurs at γ̇ = γ̇1.

in dense microemulsions near the percolation threshold [168]. (ii) Phase transitions in
fluids with complex internal structure and long-range order are very sensitive to shear.
Examples are various mesoscopic phases of liquid crystals [169]–[172], amphiphilic sys-
tems [173]–[176], and block copolymers [97]–[99]. It is obvious that structures such as
lamellae or cylinders are easily aligned by relatively weak shear. Even their structures and
phase behavior can be altered by shear near the transition point. For example, shear can
induce transitions between phases of lamellae and monodisperse multilamellar vesicles
[174] and between isotropic and nematic phases, giving rise to two-phase coexistence in
inhomogeneous flow [175]. The latter phenomenon can be understood from a steady-state
stress–strain curve of the type shown in Fig. 11.24 [173]. Also spectacular is the shear-
thickening behavior in worm-like micelles induced by shear-induced structures [177, 178].
(iii) We also mention electro-rheological and ferromagnetic fluids, in which string-like
structures of colloidal particles are formed due to dipolar interaction under an electric or a
magnetic field. They exhibit unique rheology and phase behavior in shear flow [179, 180].
(iv) Less studied in physics, but important in polymer science are crystallization [181, 182]
and gelation [4], [183]–[186] of polymers in a flow field. In particular, molecular theory
of thermoreversible gels in shear flow is worth mentioning [185]. In aqueous surfactant
solutions, marked increases of the viscosity and N1 were observed, which were interpreted
as arising from shear-induced aggregate formation or gelation [177]. In aqueous agarose
solutions, huge viscosity enhancement was also observed, in which gelation was probably
induced upon phase separation [187]. (v) We also mention boundary effects such as slip-
ping between a viscoelastic fluid and a solid boundary [188, 189]. Furthermore, application
of shear has become possible on molecular systems inserted between two solid plates of
spacing on the order of 10 Å. In such confined systems, measurements of the shear stress
give information on shear-induced melting of a solid phase and nonlinear rheology of a
fluid phase [190, 191].
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Finally, we stress the importance of computer simulations in understanding various
complex problems of fluids under shear [192]. In the next section we will discuss a new
examples of the use of this technique.

11.4 Supercooled liquids in shear flow

When fluids are deeply supercooled without crystallization, particle motions are severely
restricted or jammed and the structural or α relaxation time τα increases dramatically
from a very short to a very long time over a rather narrow temperature range (T ∼ Tg,
the glass transition temperature) [193, 194]. Since η ∝ τα , a high value of τα leads to
highly viscoelastic behavior.5 Glass transitions are of particular importance in polymer
science [195, 196]. Recently, much attention has been paid to the mode coupling theory
of glass transitions [197, 198], which is the first analytic scheme to describe the onset
of slow structural relaxations at temperatures considerably above Tg. For a long time,
however, it has been expected [199]–[201] that rearrangements of particle configurations in
glassy materials should be cooperative, involving many molecules, owing to configuration
restrictions. In other words, such events occur only in the form of clusters whose sizes
increase at low temperatures. In normal liquid states, on the contrary, rearrangements are
frequent and uncorrelated among one another in space and time. Such an idea was first put
forward by Adam and Gibbs [199], who invented a frequently used jargon, cooperatively
rearranging regions. A number of molecular dynamics (MD) simulations have detected
mobile clusters or strings in coexistence using immobile regions in supercooled model
binary fluid mixtures using various visualization methods [202]–[207]. We shall see that
such heterogeneities are analogous to the critical fluctuations in Ising systems.

Most previous papers on glass transitions are concerned with near-equilibrium properties
such as relaxations of the density time-correlation functions or dielectric response. From
our point of view, these quantities are too restricted or indirect, and there remains a rich
group of unexplored problems in far-from-equilibrium states. Here we shall see that shear
is a relevant perturbation, drastically changing the glassy dynamics when γ̇ exceeds τ−1

α

[205, 208]. In this sense, applied shear is analagous to a magnetic field in Ising systems.
In near-critical fluids and various complex fluids, nonlinear shear regimes emerge when γ̇

exceeds some underlying relaxation rate. However, uniquely in supercooled liquids, even
very small shear can greatly accelerate the microscopic rearrangement processes. Similar
effects are usually expected in systems composed of very large elements such as colloidal
suspensions.

As shown in Fig. 11.25, Simmons et al. [209] observed shear-thinning behavior roughly
represented by

η(γ̇ ) = σxy/γ̇ ∼= η(0)/(1 + γ̇ τη), (11.4.1)

in steady states in the range 6 × 1013 > η(0) > 7 × 105 poise in soda–lime–silica glass.

5 In experiments, the glass transition temperature Tg is determined such that the (zero-shear) viscosity η becomes 1013 poise at

T = Tg [194]. In the simulations cited here, η (or τα ) is only, at most, 104 times larger than that far above the glass transition.
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Fig. 11.25. Normalized viscosity η(γ̇ )/η(0) vs normalized shear rate γ̇ τ0 measured in viscous flow
in soda–lime–silica glass [209]. Here τ0 is equal to η(0)/G = τησlim/G ∼ 10−2τη in terms of the
shear modulus G and the limiting shear stress σlim. The solid curve represents (11.4.1).

The characteristic time τη is expected to be of order τα . Remarkably, σxy tends to a limiting
shear stress, σlim = η(0)/τη, of order 10−2G, G being the shear modulus. After application
of shear, they also observed an overshoot of the shear stress before approach to a steady
state. As a closely related problem, understanding of the mechanical properties of amor-
phous metals such as Cu57Zr43 has been of great technological importance [210]. They
are usually ductile in spite of their high strength. At low temperatures T � 0.6 ∼ 0.7Tg,
localized bands (� 1 µm), where zonal slip occurs, have been observed above a yield
stress. At relatively high temperatures T � 0.6 ∼ 0.7Tg, however, shear deformations are
induced homogeneously (on macroscopic scales) throughout samples, giving rise to viscous
flow with strong shear-thinning behavior. In particular, in a model amorphous metal in 3D,
Maeda and Takeuchi [202] followed atomic motions after the application of a small shear
strain to observe heterogeneities among poorly and closely packed regions (on microscopic
scales), which are essentially the same entities that we will discuss.

Another interesting issue is as follows. Several experiments have revealed that the
translational diffusion constant D of a tagged particle in a fragile glassy matrix becomes
increasingly larger than the Einstein–Stokes value DES = T/6πηa with lowering T ,
where a is the radius of the particle [211, 212]. At sufficiently low temperatures power
law behavior is observed,

D ∝ η−ν, (11.4.2)
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(a) (b)

Fig. 11.26. (a) A typical particle configuration and the bonds defined at a given time at T = 0.337
in 2D [205]. The diameters of the circles here are equal to σα (α = 1, 2). The areal fraction of the
soft-core regions is 93%. (b) The pair correlation functions gαβ(r) in quiescent states as functions of
r/σαβ at T = 0.337 in 2D [205].

where ν ∼= 0.75. Thus D/DES increases from of order 1 up to order 102 ∼ 103 in
supercooling experiments. The same tendency has been confirmed by MD simulations
[213]–[215]. Its origin is now ascribed to the coexistence of relatively active and inactive
regions within which the diffusion constant varies significantly.

11.4.1 Model system and glassy slowing-down

We will discuss dynamic heterogeneity detected in simulations of a model binary fluid
mixture consisting of N1 = N2 = 5000 particles and interacting via the soft-core potential
[216],

vαβ(r) = ε(σαβ/r)12, σαβ = 1

2
(σα + σβ), (11.4.3)

where r is the distance between two particles and α, β = 1, 2. Space and time are
measured in units of σ1 and τ0 = (m1σ

2
1 /ε)

1/2, where m1 is the mass of the species 1.
The temperature T will be measured in units of ε, so it will be a dimensionless number.
The size ratio σ2/σ1 is chosen to prevent crystallization at low T (which is 1.4 in 2D
and 1.2 in 3D in the following). The pressure p and the number density n(∼ σ−d

1 ) need
to be high to realize jammed particle configurations. We apply shear in nonequilibrium
MD simulations imposing the Lee–Edward boundary condition [162]. For our model,
no essential differences have been found between 2D and 3D (except for a difference
in the dynamic exponent z in (11.4.7) below). Binary fluid mixtures interacting via the
Lenard-Jones potential have also been used to study glassy dynamics [207].
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Because of the convenience of visualization in 2D, we first present a snapshot of
particles at T = 0.337 in 2D in Fig. 11.26(a), which gives an intuitive picture of the
particle configurations. We can see that each particle is touching mostly six particles and
infrequently five particles at distances close to σαβ . Similar jammed particle configurations
can also be found in 3D, where the coordination number of other particles around each
particle is about 12. Then it is natural that the pair correlation functions gαβ(r) have a very
sharp peak at r ∼= σαβ , as displayed in Fig. 11.26(b) for 2D.

11.4.2 Bond breakage and dynamic heterogeneity

Owing to the sharpness of the first peak of the pair correlation functions gab(r), we can un-
ambiguously define bonds between particle pairs at distances close to the first peak position
[205]. That is, the particle pair i and j is bonded if ri j (t0) = |ri (t0)− r j (t0)| ≤ "1ab where
i ∈ a and j ∈ b. After a lapse of time �t , the bond is broken if ri j (t0 +�t) > "2ab. Here
"1ab is longer than the first peak position of gab(r), and "2ab(≥ "1ab) is shorter than the
second peak position. The number of the unbroken bonds may be fitted to exp[−(�t/τb)

c]
as a function of the time interval �t with c � 1 (c ∼ 0.6 at T = 0.234) in 3D. Thus we
determine the bond breakage time τb both in quiescent and sheared conditions. It may be
fitted to a simple formula,

1/τb(γ̇ ) ∼= 1/τb(0)+ Abγ̇ , (11.4.4)

where Ab is a constant of order 1. In the strong shear condition γ̇ τb(0) > 1, we have
τb(γ̇ ) ∼ γ̇−1. This means that jump motions are induced by applied shear on the timescale
of γ̇−1.

Following the bond breakage process, we can visualize the kinetic heterogeneity without
ambiguity and quantitatively characterize the heterogeneous patterns. In Fig. 11.27 we
show spatial distributions of broken bonds in a time interval of [t0, t0 + 0.05τb] in 2D,
where about 5% of the initial bonds defined at t = t0 have been broken. The dots are the
center positions Ri j = 1

2 [ri (t0) + r j (t0)] of the broken pairs at the initial time t0. The
broken bonds are seen to form clusters of varying size. While the heterogeneity is weak
for a liquid case (a) at T = 2.54 and γ̇ = 0, it is marked in a glassy case (b) at T = 0.337
and γ̇ = 0. The bond breakage time τb is 17 in (a) and 5 × 104 in (b). In (c) we set
γ̇ = 0.25 × 10−2 and T = 0.337 with τb = 32 ∼ 1/γ̇ . The heterogeneity becomes much
suppressed by shear, while its spatial anisotropy remains small. Notice that even in normal
liquids bond breakage events frequently occur in the form of strings involving a few to
several particles, obviously because of the high density of our system. In glassy states such
strings become longer and aggregate, forming large-scale clusters.

We next define the structure factor of the broken bonds as

Sb(q) =
〈∣∣∣∣ ∑

broken bonds

exp(iq · Ri j )

∣∣∣∣2〉
, (11.4.5)

where Ri j = 1
2 [ri (t0) + r j (t0)]. The summation is over the broken pairs in a time interval
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Fig. 11.27. Snapshots of the broken bonds in 2D [205]. Here T = 2.54 with weak heterogeneity
in (a), and T = 0.337 with enhanced heterogeneity in (b) in the absence of shear. In (c), where
γ̇ = 2.5 × 10−2 and T = 0.337, the heterogeneity is much suppressed. The flow is in the upward
direction and the velocity gradient is in the horizontal direction from left to right. The arrows indicate
the correlation length ξ obtained from (11.4.6).

[t0, t0 +�t]. Then Sb(q) can be fitted to the Ornstein–Zernike form,

Sb(q) = Sb(0)/(1 + ξ2q2), (11.4.6)

both in 2D and 3D, as shown in Fig. 11.28 for 3D where �t = 0.05τb. The correlation
length ξ is determined from this expression. We can also see that Sb(0) ∼ ξ2 leading to
weak temperature dependence of Sb(q) at large q. The clusters of the broken bonds are
analogous to the critical fluctuations in Ising systems. As in critical dynamics, we have
furthermore confirmed a dynamical scaling relation,

τb ∼ ξ z, (11.4.7)

where z = 4 in 2D and z = 2 in 3D. This relation holds even in strong shear γ̇ τb(0) �
1, where ξ ∼ γ̇−1/z . At present, we cannot explain the origin of these simple numbers
for z. We can only argue that z should be larger in 2D than in 3D because of stronger
configurational restrictions in 2D. Because γ̇ suppresses the heterogeneity, it is analogous
to a magnetic field h in Ising systems.

11.4.3 The α relaxation time

In the literature it is usual to follow the motion of tagged particles. The self-part of the
density time-correlation function is defined by

Fs(q, t) = 1

N1

〈 N1∑
j=1

exp[iq ·�r j (t)]

〉
, (11.4.8)

where �r j (t) = r j (t) − r j (0), and the summation is taken over all the particles of the
species 1. As shown in Fig. 11.29(a) in 3D, this function has a plateau at low temperatures,
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Fig. 11.28. Sb(q)/Sb(0) vs qξ on logarithmic scales for various T and γ̇ in 3D [205]. The solid line
is the Ornstein–Zernike form 1/(1 + x2) with x = qξ .

during which the particle is trapped in a cage formed by the surrounding particles. After
a long time the cage eventually breaks, resulting in diffusion with a very small diffusion
constant D. We may define the α relaxation time such that

Fs(q, τα) = e−1 (11.4.9)

holds at q = 2π . Thus τα represents the cage breakage time on the microscopic spatial
scale (∼ σ1). Figure 11.29(a) shows that τα grows strongly at low T .

We also generalize the density time-correlation function (11.4.8) in the presence of shear
flow by introducing a new displacement vector of the j th particle as

�r j (t) = r j (t)− γ̇

∫ t

0
dt ′y j (t

′)ex − r j (0), (11.4.10)

where ex is the unit vector in the flow direction. In this displacement, the contribution from
convective transport by the average flow has been subtracted. Then, Fs(q, t) only slightly
depends on the angle of the wave vector q for γ̇ � 1 in our model. In Fig. 11.29(b)
we shown its relaxation at q = 2π and T = 0.267 for various γ̇ . Comparing the two
figures with and without shear, we recognize that applying shear is equivalent to raising
the temperature.

We can thus determine the α relaxation time also in shear. We found that the bond
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Fig. 11.29. The self-part of the density time-correlation function Fs(q, t) at q = 2π in 3D [205].
In (a) T decreases from the left as 0.772, 0.473, 0.352, 0.306, 0.267, and 0.234 in quiescent states
(γ̇ = 0). In (b) γ̇ increases from the right as 0, 10−4, 10−3, 10−2, and 10−1 at T = 0.267. Increasing
γ̇ is equivalent to raising T .

breakage time and the α relaxation time are simply related in 3D by

τα ∼= 0.1τb, (11.4.11)

which holds at any T and γ̇ in any supercooled state in our simulations. In this section,
however, we use the notation τα for the usual α relaxation time in quiescent states (γ̇ = 0).
Remarkably, the particle motion out of the cage takes place on the timescale of γ̇−1 in
the case γ̇ τα > 1. We propose that dielectric relaxation measurements be carried out on
glass-forming fluids under shear, where τα(γ̇ ) should be observed.

11.4.4 Heterogeneity in diffusion

As q → 0, Fs(q, t) decays diffusively as

Fs(q, t) ∼= exp(−2Dq2t) (q � 1). (11.4.12)

In shear flow, Dq2 in the above expression should be replaced by
∑

µν Dµνqµqν , where

〈[�r j (t)]µ[�r j (t)]ν〉 = 2Dµν t (µ, ν = x, y, z) (11.4.13)

at long times (t � τα). However, we confirmed for our 3D model fluid that the tensor Dµν

is nearly diagonal as Dδµν for γ̇ � τ−1
0 (= 1) in supercooled states.

In Fig. 11.30 we show 3D simulation results of the diffusion constant of a tagged particle
of the species 1 [215]. The data can be fitted to D ∝ η−0.75 at low T in agreement with
the experiments [211, 212]. However, the zero-shear viscosity η is proportional to τα as
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Fig. 11.30. Dτα vs τα in a model 3D fluid
binary mixture [215]. The solid horizontal
line represents the Stokes–Einstein value
DESτα = (2π)−2.

η ∼ T τα . Both τα and D can be obtained from Fs(q, t) in (11.4.8); τα from the relaxation
behavior at q = 2π as in (11.4.9) and D from that in the region q � 1 as in (11.4.12).

To understand the different dependences of D and η on τα , let us consider the van
Hove correlation function Gs(r, t), whose 3D Fourier transformation is equal to Fs(q, t) in
(11.4.8). It is the probability that a tagged particle moves over a distance r in time interval
t , so it is nonnegative-definite and normalized as 4π

∫ ∞
0 drr2Gs(r) = 1. The mean-square

displacement is related to D as

〈|�r(t)|2〉 = 4π
∫ ∞

0
drr4Gs(r, t)

∼= 6Dt. (11.4.14)

The second line holds for t � 0.1τα in our system, while the first line ∼= (3T/m)t2 for t �
0.1τα . Numerically, however, Gs(r, t) deviates considerably from the asymptotic gaussian
form, (4πDt)−3/2 exp(−r2/4Dt), even when the second line of (11.4.14) holds. We found
that the scaled function

√
6πDt4πr2Gs(r, t) has a large r -tail which can be scaled in terms

of r/t1/2 for t � 3τα and gives a dominant contribution to D [215]. Because this tail
vanishes for t � 3τα , 3τα is the lifetime of the heterogeneity in our system. We may thus
conjecture that Gs(r, t) is expressed in terms of the local diffusion constant D(x, t) as

Gs(r, t) = 〈
[4πD(x, t)t]−3/2 exp

[−r2/4D(x, t)t
]〉
, (11.4.15)

where x denotes the space position and the average is taken over space. Here the space
variation of D(x, t) is significant for t � 3τα , but its average is fixed as 〈D(x, t)〉 ∼= D for
t � 0.1τα . To the mean-square displacement in (11.4.14) the contributions from regions
with large D(x, t) are expected to be dominant. From (11.4.15) the so-called non-gaussian
parameter defined by A(t) = 3〈|�r(t)|4〉/〈|�r(t)|2〉2 − 1 is written as

A(t) = 〈D(x, t)2〉/〈D(x, t)〉2 − 1. (11.4.16)
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In accord with this result, it has been expected that A(t) takes a maximum (∼ 3) when the
heterogeneity structure is most marked [217, 218] (which is at t ∼ 0.1τα in our system).

In the following we visualize the heterogeneity of the diffusivity. We pick up mobile
particles of each species a (1 or 2) with the amplitude of the displacement vector �r j (t)
exceeding a lower limit "c(t) in a time interval [t0, t0+t]. Here "c(t) is defined such that the
sum of [�r j (t)]2 of the mobile particles is 66% of the total sum (∼= 6Dat Na for t � 0.1τα
with a = 1, 2). In Fig. 11.31(a) the mobile particles of the smaller species 1 in a time
interval of [t0, t0 + 0.125τα] are depicted as spheres with radii,

a j (t) = |�r j (t)|
/√〈∑

"∈1

(�r"(t))2

〉
/N1, (11.4.17)

located at R j (t) = 1
2 [r j (t0) + r j (t0 + t)] [215]. The heterogeneity is most marked for

that time interval at which the so-called non-gaussian parameter is maximum. Next we
represent the displacement vectors of the mobile particles of both the species 1 and 2 by
cones with the base center and the tip being the initial and final positions, respectively. We
then group the mobile particles into clusters with particle number n = 1, 2, . . ., where the
mobile particles i ∈ a, j ∈ b belong to the same cluster if either of |ri (t0) − r j (t0 + t)|
or |ri (t0 + t) − r j (t0)| is shorter than 0.3(σa + σb). In Fig. 11.31(b) we pick up those
belonging to the clusters with n ≥ 5 [206]. They are 5% of the total particle number
N , but they contribute 40% to the sum 〈∑"[�r"(t)]2〉 of all the particles. The mobile
particles thus form chains, as also reported by Donati and coworkers [207]. Moreover,
these chains aggregate to form large-scale heterogeneities on the scale of ξ . Note also
that the above visualization method sensitively depends on the time interval t . Indeed, the
diffusion process becomes homogeneous if t is longer than the lifetime of the heterogeneity
structure (∼ 3τα).

Shear-induced diffusion in supercooled liquids and dense suspensions

It is remarkable that the relation D ∝ η−0.75 at low T holds even under strong shear. Thus,

D ∝ γ̇ 0.75 (γ̇ τα � 1), (11.4.18)

in the simulations. We mention similar observations in concentrated suspensions under
shear. When the Peclet number Pe in (11.1.37) is much larger than 1 [219], the motion
of the colloidal particles is predominantly caused by shear-induced changes of the particle
configurations. The self-diffusion constant in the shear gradient direction Dy and that in
the vorticity direction Dz both behave as

D j ∼= D̂ j (φ)a
2γ̇ ( j = y, z), (11.4.19)

where D̂ j (φ) is a dimensionless number dependent on the colloid volume fraction φ and
is of order 0.1 at φ ∼ 0.4.
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Fig. 11.31. Mobile particles in a time interval t = 0.125τα at T = 0.267 in 3D [206]. The darkness
of the spheres and cones represents the depth in the 3D space. (a) Those of the smaller species
1 represented by spheres with radii a j (t) in (11.4.17). (b) Those belonging to clusters with sizes
n ≥ 5.
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11.4.5 Rheology in a supercooled binary fluid mixture

Mechanical properties of glassy materials are of great interest. (i) After a microscopic
transient time ttra, the stress relaxation function G(t), which describes a linear response,
can be fitted to the Kohlrausch–Williams–Watts (KWW) form,

G(t) = G0 exp[−(t/τs)
β ] (ttra � t � τs), (11.4.20)

where β ∼ 0.5 and τs ∼ τα . The coefficient G0 has a well-defined experimental meaning
as the shear modulus for very large τα at low T . In our 3D model, G0 ∼ 10 at T ∼ 0.2.
Note that the true initial value G(0) = G∞ is expressed as (1.2.85) and is of order 102 at
low T in our model. Thus G(t) decreases from G∞ to G0(∼ 0.1G∞) on the timescale of
ttra and then follows (11.4.20). However, (ii) there is a marked nonlinear response in glassy
materials. At low T (� Tg), they behave as solids but respond to shear strain nonlinearly or
undergo plastic deformations above a few % strain [202, 210]. At relatively high T (� Tg),
they can be made to flow at high shear stress, but their viscosity is non-newtonian except
for extremely small shear rates (< τ−1

α ) [209]. In these processes, we need to understand
the dynamics of cooperative bond (cage) breakage induced by shear.

In the following, we will consider nonlinear viscous flow. The average shear stress σxy

in sheared steady states can be related to the steady-state pair correlation functions gαβ(r)
as

σxy = −1

2

∑
α,β=1,2

nαnβ

∫
drv′αβ(r)

xy

r
gαβ(r), (11.4.21)

where the kinetic part is neglected. This formula readily follows from the microscopic
expression (5E.3) if it is extended to binary fluid mixtures. The dominant contribution here
arises from the anisotropic part of gαβ(r) at r ∼= σαβ , which is, at most, only a few % of
the isotropic part in our fluid. Figure 11.32 shows the steady-state viscosity η(γ̇ ) = σxy/γ̇

in our system in 3D, where non-newtonian behavior appears for γ̇ larger than τb(0)−1 ∼
0.1τ−1

α . The steady-state viscosity η(γ̇ ) = σxy/γ̇ is simply related to the bond breakage
time in (11.4.4) as

η(γ̇ ) ∼= Aητb(γ̇ )+ ηB

∼= [η(0)− ηB]/(1 + τηγ̇ )+ ηB, (11.4.22)

where Aη and ηB are constants of order 1, and τη = Abτb(0). This form agrees with the
experimental result (11.4.1) for η(0) � ηB. In particular, η(γ̇ ) ∼= (Aη/Ab)/γ̇ + ηB, for
γ̇ τb(0) � 1. If the background ηB is negligible, a constant limiting stress follows as

σxy ∼= σlim = Aη/Ab, (11.4.23)

which holds for 1/τb(0) � γ̇ � σmin/ηB ∼ 0.1/τ0. Here σlim is of order 0.5 and is
considerably smaller than the shear modulus G0.
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Fig. 11.32. The steady-state viscosity η(γ̇ ) in units of ετ0/σ
3
1 vs the shear rate γ̇ in units of 1/τ0 at

various T in a model 3D binary fluid mixture [208]. The data tend to become independent of T at
high shear.

The physical mechanism of this strong shear-thinning behavior is as follows. Upon
each bond breakage induced by shear, the particles involved release a potential energy of
order ε. This is then changed into energies of random motions supported by the surrounding
particles. The heat production rate is estimated as

Q̇ ∼ nε/τb(γ̇ ) ∼ nεγ̇ , (11.4.24)

where n is the number density. Because Q̇ is related to the viscosity by Q̇ = σxy γ̇ , we
obtain σxy ∼ nε in high shear.

Jamming rheology

Similar jamming rheology has begun to be recognized in granular materials and foams
composed of constituent particles [220]–[225]. Shear-thinning behavior and hetero-
geneities in configuration rearrangements are universally observed experimentally and
numerically from microscopic to macroscopic systems. See an assembly of related papers
[226] for experiments and theories of jamming rheology.
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11.4.6 Rheology in a supercooled polymer melt

Interpretations of the rheology of glassy chain systems also treat problems in both the linear
response regime and those in the nonlinear regime. (i) Stress and dielectric relaxations of
glassy polymer melts occur on very short to very long timescales in very complicated
manners [195, 196]. For entangled chain systems with N > Ne, experiments have shown
that the stress relaxation function G(t) exhibits a glassy stretched-exponential decay, a
glass–rubber transition, a rubbery plateau, and a terminal decay, in that order, over many
decades of time. That is, the KWW function in (11.4.20) is replaced by a power-law decay,

G(t) ∼= e−1G0(t/τs)
−ν, (11.4.25)

with ν ∼ 0.5 in the glass–rubber transition region t � τs ∼ τα [195]. This decay continues
until the rubbery plateau is reached, where G(t) is equal to the modulus nT/Ne of entan-
gled polymers. These hierarchical relaxations arise from rearrangements of jammed atomic
configurations and subsequent evolution of chain conformations. (ii) Glassy polymers
undergo plastic deformations exhibiting shear bands above a yield stress (corresponding to
a few % strain) at low T [227], while atomic rearrangements occur (quasi)homogeneously
leading to highly viscous non-newtonian flow at elevated T . These effects are commonly
observed also in amorphous metals [210]. (iii) The stress–optical relation (proportionality
between birefringence and stress) has been used in experiments on polymers both in the
linear and nonlinear regimes. However, it is violated as T is approached Tg [228, 229],
obviously owing to enhancement of the glassy part of the stress. Note that the stress in
polymers consists of the glassy and entropic parts; the former is usually negligible (on not
very fast timescales) as compared to the latter far above Tg, but becomes important near
and below Tg.

In the following we will present simulation results on a model melt composed of short
chains with polymerization index N = 10, obeying the Rouse dynamics in quiescent states.
The monomers interact via a Lenard-Jones potential (characterized by ε and σ as in (1.2.1))
and consecutive beads interact via a nonlinear spring potential [230]. The temperature T ,
the time, and the viscosity are scaled in units of ε, τ0 = (mσ 2/ε)1/2, and ετ0/σ

3. For such
N the longest relaxation time of the chains is the Rouse time,

τR ∼ N 2τα. (11.4.26)

The α relaxation time τα characterizes the decay of the correlation function Fs(q, t) at
q ∼ 2π/σ as in (11.4.9) and represents the timescale of monomeric structural relaxation.
Figure 11.33 shows G(t) in our system containing 100 chains. At T = 0.2 it behaves as

G(t) = G0 exp[−(t/τs)
β ] + GR(t) (t � ttra), (11.4.27)

where ttra ∼ 1 and τs ∼ τα ∼ 102. The first term is of the same form as (11.4.25), while
GR(t) is the Rouse relaxation function decaying as nT N−1 exp(−t/τR) for t � τR. On
relatively short timescales (< τR), the first term is important and the stress–optical relation,
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Fig. 11.33. The stress relaxation function G(t) (thin solid lines) at T = 0.2 in a supercooled state
and T = 1 in a normal liquid state in a model polymer melt [206]. It may be fitted to the stretched-
exponential form (dotted line) at relatively short times and tends to the Rouse relaxation function
GR(t) (bold dashed lines) at long times.

valid at high T , is violated. At T = 0.2 we can see distinct differences in the following
moduli: G∞ = G(0) ∼ 102, G0 ∼ 5, GR(0) = nT ∼ 0.2, and GR(τR) ∼ nT N−1 ∼ 0.02.

In shear flow, polymer chains are significantly elongated when γ̇ becomes of order
τ−1

R for N < Ne. (This criterion becomes γ̇ ≥ τ−1
rep for N > Ne, where τrep is the

disentanglement time estimated as (7A.5) in the reptation theory.) Such shear rates are
extremely small in supercooled states. Marked shear-thinning behavior then takes place
for larger shear rates. In Fig. 11.34 we display the steady-state viscosity η(γ̇ ) in our
model system [206]. The horizontal arrows indicate the linear viscosity ηR = ∫ ∞

0 dtGR(t)
(∝ N−1τR) from the Rouse model, and the vertical arrows indicate the points at which
γ̇ = τ−1

R . In particular, the curve of T = 0.2 may be fitted to η ∝ γ̇−ν with ν ∼ 0.7 for
γ̇ τR � 1. The shape changes of chains occurring for γ̇ � τ−1

R should be observable by
scattering experiments. It would be interesting to know how the monomeric relaxation time
τd is affected by shear, particularly for very long chain systems. Thus dielectric relaxation
measurements in shear [229] seem to be informative.
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Fig. 11.34. The steady-state viscosity vs γ̇ for T = 0.2, 0.4, and 1 in a model polymer melt [206].
A line of slope −0.7 is also drawn as a guide. The model exhibits marked shear-thinning behavior
for γ̇ τR � 1 and becomes independent of T for very high shear rates.

Appendix 11.A Correlation functions in velocity gradient

We consider time-correlation functions in steady states under flow with a homogeneous
velocity gradient

u(r) = u0 +
↔
D · r, (11A.1)

where u0 is a constant and
↔
D is the velocity gradient tensor, assumed to be constant. In this

case the time-correlation function of any scalar variable ψ(r, t) satisfies [12]

〈ψ(r, t)ψ(r′, t ′)〉 = 〈ψ(r − e
↔
D(t−t ′) · r′, t − t ′)ψ(0, 0)〉. (11A.2)

The equal-time-correlation function (t = t ′) depends only on the relative position r − r′.
Its Fourier transformation yields the steady-state structure factor

I (q) =
∫

dr exp[iq · (r − r′)]〈ψ(r, t)ψ(r′, t)〉, (11A.3)

which is observable by scattering experiments.
In particular, in shear flow the derivation of the above relation is obvious. We note that

a shift of the origin of the reference frame by a in the y axis is equivalent to a Galilean
transformation to a new reference frame moving with a velocity −aγ̇ ex . This implies that,
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in homogeneous stationary states, the time-correlation function of any density variable
φ(r, t) may be written as

〈ψ(r, t)ψ(r′, t ′)〉 = 〈ψ(r − r′ − γ̇ (t − t ′)y′ex , t − t ′)ψ(0, 0)〉. (11A.4)

It is instructive to rewrite (11A.4) in terms of the Fourier components,

〈ψq(t)ψk(t
′)〉 = (2π)dδ(q + k + qx γ̇ (t − t ′)ey)I (q, t − t ′), (11A.5)

where

I (q, t) =
∫

dr exp(iq · r)〈ψ(r, t)ψ(0, 0)〉. (11A.6)

The first factor in (11A.5) is the delta function in d dimensions. To understand its origin
we note that a plane-wave concentration fluctuation (∝ exp(iq · r) at t = 0) with a small
amplitude changes in time into a plane wave with a time dependent wave vector given by

q̃(t) = q − γ̇ tqx ey, (11A.7)

if nonlinear couplings among the fluctuations are neglected. Then (11A.4) is nonvanishing
only for q̃(−t + t ′) = −k on the average over the fluctuations, yielding the above delta
function. It would be informative to measure the time-dependence of I (q, t) in (11A.6), but
dynamic light scattering in shear flow has not yet been successful for binary fluid mixtures.
This is probably because the Doppler shift of scattered light depends on the y coordinate
of the scattering position and the observed signal strongly depends on the thickness of the
scattering region in the y direction [231, 232]. Recently, however, dynamic light scattering
experiments were performed on lyotropic lamellar phases of brine and surfactant in shear
flow [233].
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