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Preface

The present book – through the topics and the problems approach
– aims at filling a gap, a real need in our literature concerning CFD
(Computational Fluid Dynamics). Our presentation results from a large
documentation and focuses on reviewing the present day most important
numerical and computational methods in CFD.

Many theoreticians and experts in the field have expressed their in-
terest in and need for such an enterprise. This was the motivation for
carrying out our study and writing this book. It contains an important
systematic collection of numerical working instruments in Fluid Dynam-
ics.

Our current approach to CFD started ten years ago when the Univer-
sity of Paris XI suggested a collaboration in the field of spectral methods
for fluid dynamics. Soon after – preeminently studying the numerical
approaches to Navier–Stokes nonlinearities – we completed a number
of research projects which we presented at the most important interna-
tional conferences in the field, to gratifying appreciation.

An important qualitative step in our work was provided by the devel-
opment of a computational basis and by access to a number of expert
softwares. This fact allowed us to generate effective working programs
for most of the problems and examples presented in the book, an as-
pect which was not taken into account in most similar studies that have
already appeared all over the world.

What makes this book special, in comparison with other similar en-
terprises?

This book reviews the main theoretical aspects of the area, emphasizes
various formulations of the involved equations and models (focussing on
optimal methods in CFD) in order to point out systematically the most
utilized numerical methods for fluid dynamics. This kind of analysis –
leaving out the demonstration details – takes notice of the convergence



xiv

and error aspects which are less prominent in other studies. Logically,
our study goes on with some basic examples of effective applications of
the methods we have presented and implemented (MATLAB).

The book contains examples and practical applications from fluid dy-
namics and hydraulics that were treated numerically and computation-
ally – most of them having attached working programs. The inviscid
and viscous, incompresible fluids are considered; practical applications
have important theoretical outcomes.

Our study is not extended to real compresible fluid dynamics, or to
turbulence phenomena. The attached MATLAB 6 programs are con-
ceived to facilitate understanding of the algorithms, without optimizing
intentions.

Through the above mentioned aspects, our study is intended to be an
invitation to a more complete search: it starts with the formulation and
study of mathematical models of fluid dynamics, continues with analysis
of numerical solving methods and ends with computer simulation of the
mentioned phenomena.

As for the future, we hope to extend our study and to present a new
more complete edition, taking into account constructive suggestions and
observations from interested readers.

We cannot end this short presentation without expressing our grat-
itude to our families who have supported us in creating this work in
such a short time, by offering us peace and by acquitting us from our
everyday duties.

The authors



Chapter 1

INTRODUCTION TO MECHANICS OF
CONTINUA

1. Kinematics of Continua
1.1 The Concept of a Deformable Continuum

The fluids belong to deformable continua. In what follows we will
point out the qualities of a material system to be defined as a deformable
continuum.

Physically, a material system forms a continuum or a continuum sys-
tem if it is “filled” with a continuous matter and every particle of it
(irrespective how small it is) is itself a continuum “filled” with matter.
As the matter is composed of molecules, the continuum hypothesis leads
to the fact that a very small volume will contain a very large number of
molecules. For instance, according to Avogadro’s hypothesis, of air
contains molecules (under normal conditions). Obviously,
in the study of continua (fluids, in particular) we will not be interested
in the properties of each molecule at a certain point (the location of the
molecule) but in the average of these properties over a large number
of molecules in the vicinity of the respective point (molecule). In fact
the association of these averaged properties at every point leads to the
concept of continuity, synthesized by the following postulate which is ac-
cepted by us: “Matter is continuously distributed throughout the whole
envisaged region with a large number of molecules even in the smallest
(microscopically) volumes”.

Mathematically, a material system filling a certain region of the
Euclidean tridimensional space is a continuum if it is a tridimensional
material variety (vs. an inertial frame of reference) endowed with a spe-
cific measure called mass, mass which will be presumed to be absolutely
continuous with regard to the volume of
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Axiomatically, the notion of mass is defined by the following axioms:
1) There is always an i.e., an application which asso-

ciates to a material system from the assembly of all material systems
a real positive number (which is also a state quantity joined

to called the mass of the system.
Physically, the association of this number to a material system
is made by scaling the physical mass of with the mass of another

material system considered as unit (i. e. by measurement);
2) For any “splitting” of the material system in two disjoint subsys-

tems and and the application
satisfies the additivity property, i.e.,
This additivity property attributes to the mass application the quality

of being a measure. Implicitly, the mass of a material system is
the sum of the masses dm of all the particles (molecules)which belong
to what could be written (by using the continuity hypothesis too)
as

the integral being considered in the Lebesgue sense;
3) For any material system its mass does not change during

its evolution, i.e., it is constant and consequently (the universal
principle of mass conservation).

Concerning the hypothesis of absolute continuity of the mass vis a vis
the volume of the region occupied by the considered material system

this hypothesis obviously implies, besides the unity between the ma-
terial system and the region “filled” by it, that the mass of any material
subsystem could become however small if the volume of the
region occupied by P, becomes, in its turn, sufficiently small
(but never zero, i.e., the principle of the indestructibility of matter is
observed). More, by accepting that the region and all its subregions
D, are the closure of certain open sets which contain an infinity of fluid
particles occupying positions defined by the corresponding position vec-
tors r (vs. the inertial frame) and additionally the boundaries of these
sets are surfaces (in a finite number) with continuous normal, then ac-
cording to the Radon–Nycodim theorem, there is a positive numerical
function defined a.e. in such that the mass of a part
can be expressed by
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The function is called the density or the specific mass accord-
ing to its physical meaning. By using the above representation for the
introduction of the density we overtake the shortcomings which could
arise by the definition of as a point function through

a definition which, from the medium continuity point of view, specifies
only at a discrete set of points.1 Obvious, the acceptance of the existence
of the density is a continuity hypothesis.

In the sequel, the region occupied by the continuum (and anal-
ogously D occupied by the part P) will be called either the volume
support of or the configuration at the respective moment in which
the considered continuum appears.

The regularity conditions imposed on and on its boundary will
support, in what follows, the use of the tools of the classical calculus (in
particular the Green formulas).

Obviously, the continuum will not be identified with its volume sup-
port or its configuration. We will take for the continuum systems the
topology of the corresponding volume supports (configurations), i.e., the
topology which has been used in classical Newtonian mechanics. In par-
ticular, the distance between two particles of a continuum will be the
Euclidean distance between the corresponding positions of the involved
particles.

In the study of continua, in general, and of fluids, in particular, time
will be considered as an absolute entity, irrespective of the state of the
motion and of the fixed or mobile system of reference. At the same time
the velocities we will deal with are much less than the velocity of light
so that the relativistic effects can be neglected.

In the working space which is the tridimensional Euclidean space —
space without curvature — one can always define a Cartesian inertial
system of coordinates. In this space we can also introduce another sys-
tem of coordinates without changing the basic nature of the space itself.

In the sequel, an infinitesimal volume of a continuum (i.e., with a
sufficiently large number of molecules but with a mass obviously in-
finitesimal) will be associated to a geometrical point making a so-called
continuum particle, a particle which is identified by an ordered triple

1 Since the function defined by this limit cannot be zero or infinite (corresponding to the
outside or inside molecule location of the point where the density is calculated), Vol(D) can
never be zero.
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of numbers representing, in fact, the coordinates of the point (particle)
within the chosen system. The synonymy between particle and material
point (geometrical point endowed with an infinitesimal mass) is often
used.

An important concept in the mechanics of continua will be that of
a “closed system” or a “material volume”. A material volume is an
arbitrary entity of the continuum of precise identity, “enclosed” by a
surface also formed of continuum particles. All points of such a material
volume, boundary points included, move with a respective local velocity,
the material volume deforming in shape as motion progresses, with an
assumption that there are no mass fluxes (transfers) in or out of the
considered volume, i.e., the volume and its boundary are composed by
the same particles all the time.

Finally, a continuum is said to be deformable if the distances between
its particles (i.e., the Euclidean metric between the positions occupied
by them) are changing during the motion as a reaction to the external
actions. The liquids and gases, the fluids in general, are such deformable
continua.

1.2 Motion of a Continuum.
Lagrangian and Eulerian Coordinates

To define and make precise the motion of a continuum we choose both
a rectangular Cartesian and a general curvilinear reference coordinate
systems, systems which can be supposed inertial.

Let R and r be, respectively, the position vectors of the contin-
uum particles, within the chosen reference frame, at the initial (refer-
ence) moment and at any (current) time respectively. We denote
by and respectively, the coordinates of the two vectors in
the rectangular Cartesian system while and will represent the
coordinates of the same vectors in the general curvilinear (nonrectan-
gular) system. Thus r referring to a rectangular Cartesian system is

where any two repeated indices imply
summation, and are the unit vectors along the axes respectively.
For a general system of coordinates the same position vec-
tor r will be, in general, a nonlinear function of these coordinates.
However its differential is expressible linearly in for all coordi-
nates, precisely

the vectors being called the covariant base vectors. Obviously if
are the Cartesian coordinates and, implicitly,
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Let now be the mapping which associates to any particle P of the
continuum at any time a certain position r obviously belonging
to the volume support (configuration) i.e., This mapping

is called motion, the equation defining the motion of that
particle. Obviously the motion of the whole continuum will be defined
by the ensemble of the motions of all its particles, i.e., by the mapping

which associates to the continuum, at any
moment its corresponding configuration.

The motion of a continuum appears then as a sequence of configura-
tions at successive moments, even if the continuum cannot be identified
with its configuration

The mapping which defines the motion has some properties which
will be made precise in what follows. But first let us identify the most
useful choices of the independent variables in the study (description) of
the continuum motions. They are the Lagrangian coordinates (material
description) and the Eulerian coordinates (spatial description).

Within the material description, the continuum particles are “identi-
fied” with their positions (position vectors) in a suitable reference config-
uration (like, for instance, the configuration at the initial moment 2

These positions in the reference configuration would provide the “fin-
gerprints” of the continuum particle which at any posterior moment
will be individualized through this position R belonging to the reference
configuration

Under these circumstances, due to the mentioned identification, the
equation of the motion is

the R coordinates together with representing the La-
grangian or material coordinates, through which all the other motion
parameters can be expressed. Hence and with R
scanning the points of the domain will define the velocity field and
the acceleration field respectively at the moment 3

The equation of motion, for an R fixed and variable, defines the
trajectory (path) of the particle P which occupied the position R at the
initial moment.

Finally, from the same equation of motion but for  fixed and R vari-
able in the configuration we will have that the corresponding r is

2In the theory of elasticity one takes as reference configuration that configuration which
corresponds to the natural (undeformed) state of the medium.
3We suppose the existence of these fields and their continuity except, possibly, at a finite
number of points (surfaces) of discontinuity.
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“sweeping” the current configuration (at the time In this
respect (1.1) can be also understood as a mapping of the tridimensional
Euclidean space onto itself, a mapping which depends continuously on

and the motion of the continuum in the whole time interval
will be defined by the vector function considered on

Now, one imposes some additional hypotheses for the above mapping
joined to the equation of motion (1.1). These hypotheses are connected
with the acceptance of some wider classes of real motions which confer
their validity.

Suppose that r is a vectorial function of class with respect to
the R components. This means that the points which were neighbours
with very closed velocities and accelerations, at the initial moment, will
remain, at any time neighbours with velocities and accelerations very
closed too. Further, we presume that, at any moment there is a
bijection between and except, possibly, of some singular points,
curves and surfaces. Mathematically this could be written through the
condition that, at any time the mapping Jacobian

a.e. in
This last hypothesis linked to preserving the particles’ identity (they

neither merge nor break) is also known as the smoothness condition or
the continuity axiom. As from the known relation between the elemental
infinitesimal volumes of and namely one deduces,
through that any finite part of our continuum cannot have the
volume (measure) of its support zero or infinite, the above hypothesis
also implies the indestructibility of matter principle.

In the previous hypotheses it is obvious that (1.1) has, at any moment
an inverse and consequently Summarizing, in

our hypotheses, the mapping (1.1) is a diffeomorphism between and

The topological properties of the mapping (1.1) lead also to the fact
that, during the motion, the material varieties (i.e., the geometrical va-
rieties “filled” with material points) keep their order. In other words,
the material points, curves, surfaces and volumes don’t degenerate via
motion; they remain varieties of the same order. The same topological
properties imply that if is a material closed curve (surface) in
the reference configuration, then the image curve (surface) C(S), at any
current time will be also a closed curve (surface).

Further, if the material curves (surfaces) and
are tangent at a point then, at any posterior moment, their images
will be tangent at the corresponding image point P, etc.

The material description, the adoption of the Lagrangian coordinates,
is advisable for those motion studies when the displacements are small
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and we may watch the whole motion of the individualized (by their
positions in the reference configuration) particles.

In the case of fluids, in general, and of gases, in particular, the
molecules are far enough apart that the cohesive forces are not suffi-
ciently strong (in gases, for instance, an average separation distance
between the molecules is of the order As a consequence
to follow up such particles during their motion becomes a difficult task,
the corresponding displacements being very large (a gas sprayed inside
“fills” immediately the respective room).

That is why for fluids, in general, and for gases, in particular, another
way to express the parameters of the motion, to choose the independent
variable, should be considered. This new type of motion description is
known as the spatial or Eulerian description, the corresponding variables
being the spatial or Eulerian coordinates.

Precisely, as Eulerian coordinates (variables) the components of r
or and are to be considered. In other words, in this description, we
focus not on the continuum particles themselves but on their position
in the current configuration and we determine the motion parameters
of those particles (not the same !) which are locating at the respective
positions at that time. Thus to know           for a fixed r at
means to know the velocities of all the particles which, in the consid-
ered interval of time, pass through the position defined by r. On the
other hand, if we know the velocity field       on by integrating
the differential equation with initial conditions (assuming
that the involved velocity field is sufficiently smooth to ensure the exis-
tence and uniqueness of the solution of this Cauchy problem) one gets

which is just the equation of motion (1.1) from the material
(Lagrangian) description. Conversely, starting with (1.1) one could im-
mediately set up etc., which establishes the complete equivalence
of the two descriptions.

In what follows we calculate the time derivatives of some (vectorial or
scalar) fields  expressed either in Lagrangian variables or in
Eulerian variables

In the first case and this derivative is called a local or material

derivative. Obviously, in this case, and

But, in the second case, we have where is, in
Cartesian coordinates, the differential operator This
derivative is designed to be the total or spatial or substantive derivative
or the derivative following the motion. In particular
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Stokes has denoted this total derivative by the operator being
equal to due to the obvious equality
(v · grad) v = (grad v) · v, v · grad or [grad()] · v being the so-called
convective part of

When all the motion parameters, expressed in Eulerian coordinates,
do not depend explicitly on time, the respective motion is called steady
or permanent. Obviously, the steady condition is or, equivalently,

Conversely, if time appears explicitly, the motion is unsteady or non-
permanent.

Before closing this section we should make precise the notions of tra-
jectories (pathlines), streamlines and streamsurfaces, vortex lines and
vortex tubes, circulation and the concept of stream function as well.

1.2.1 Trajectories

In general the trajectory (pathline) is the locus described by a material
point (particle) during its motion. The trajectories will be the integral
curves (solutions) of the system

or of the system

where being the so-called contravari-
ant components of the velocity v in the covariant base vectors of the
considered curvilinear system.

Obviously, at every point of a trajectory the velocity vector is neces-
sarily tangent to the trajectory curve. At the same time we will sup-
pose again the regularity of the velocity field      to ensure the exis-
tence of the solution of the above system (in fact the vectorial equation

A detailed study of this system, even in the case when
some singular points occur (for instance, the “stagnation points” where

has been done by Lichtenstein [84].

1.2.2 Streamlines and Streamsurfaces
For a fixed time the streamlines and the streamsurfaces are the

curves and, respectively, the surfaces in the motion field on which the
velocity vector is tangent at every point of them. A streamsurface could
be considered as a locus of streamlines.
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The definition of streamlines (tangency condition) implies that the
streamlines should be the integral curves of the differential system

or

where the time which appears explicitly in or has to
be considered as a parameter with a fixed value.

At every fixed moment, the set of the streamlines constitutes the mo-
tion pattern (spectrum). These motion patterns are different at different
times.

When the motion is steady, the motion spectrum (pattern) is fixed
in time and the pathlines and streamlines are the same, the definable
differential system becoming identical. This coincidence could be real-
ized even for an unsteady motion provided that the restrictive condition

is fulfilled. This result can be got, for instance, from the
so-called Helmholtz–Zorawski4 criterion which states that a necessary
and sufficient condition for the lines of a vectorial field  to become
material curves (i.e., locus of material points) is

Identifying we get the necessary and sufficient condition that
the lines of the v field (i.e., the streamlines) become material curves (i.e.,
trajectories), precisely

A stream tube is a particular streamsurface made by streamlines drawn
from every point of a simple closed curve. A stream tube of infinitesimal
cross section is called a stream filament.

1.2.3 Vortex Lines and Vortex Surfaces
By curl or vorticity or rotation we understand the vector

The rationale for such a definition is the fact that, at every point
of the continuum motion, the particles rotate about an instantaneous
axis and the vector has the direction of this axis, the value of the

rotation being also

4See [33]
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For a fixed time by a vortex (vorticity, rotation) line (surface) we
understand those curves (surfaces) whose tangents, at every point of
them, are directed along the local vorticity (curl, rotation) vector.

Of course the particles distributed along a vortex line rotate about
the tangents to the vortex line at their respective positions.

A vortex (vorticity, rotation) tube is a vortex surface generated by
vortex lines drawn through each point of an arbitrary simple closed curve
(there is a diffeomorphism between the continuum surface enclosed by
this simple curve and the circular disk).

If the vortex tube has a very small (infinitesimal) sectional area it is
known as a vortex filament.

1.2.4 Circulation

The circulation along an arc AB is the scalar The

following result is a direct consequence of the Stokes theorem [110]5:
“The circulation about two closed contours on a vortex tube at a given
instant — closed contours which lie on the vortex tube and encircle it
once, in the same sense — are the same” (this result of pure kinematic
nature is known as the “first theorem of Helmholtz”).

The invariance of the circulation vis-a-vis the contour C which encir-
cles once the vortex tube supports the introduction of the concept of the
strength of the vortex tube. More precisely, this strength would be the
circulation along the closed simple contour (C) which encircles once, in
a direct sense, the tube.

The constancy of this circulation, which is equal to the rotation flux
through the tube section bounded by the contour (C), leads to the fact
that, within a continuum, both vortex and filament lines cannot “end”
(the vanishing of the area bounded by (C) or of the vortex would imply,
respectively, the unboundedness of the vorticity or the mentioned area,
both cases being contradictions).

That is why the vortex lines and filaments either form rings in our
continuum or extend to infinity or are attached to a solid boundary.
(The smoke rings from a cigarette make such an example).6

5 The circulation of a vector u, from a continuous derivable field, along the simple closed
contour (L), is equal to the flux of rot u through a surface bounded by (L), i.e.

provided that the reference frame (system), made by the positively

oriented tangent at a point the outward normal n to at a point M and the
vector MP, for any points M and P, is a right-handed system.
6 For a line vortex (which is distinct from a vortex line and which is a mathematical ideal-
ization of a vortex filament assumed to converge onto its axis, i.e. a vortices locus) the same
assertion, often made, is false (rot v could have zeros within the continuum in motion!)
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Obviously, of great interest is how the circulation along a material
closed simple contour changes while the contour moves with the contin-

uum. To analyze this aspect let us evaluate i.e., the rate

of change (in time) of the circulation about a material contour joining
the points A and B as it moves with the medium. Considering then

for we have

where If A and B coincide so as to form a simple closed curve
(C) in motion, obviously i.e., the rate of change of

circulation of velocity is equal to the circulation of acceleration along the
same closed contour (C). If the acceleration comes from a potential, i.e.,
a = grad U, then the circulation of the velocity along the closed contour
does not change as the curve moves, the respective motion being called
circulation preserving.

For the fluids, under some additional hypotheses a very important
result connected with the circulation conservation will be given later on
(the Thompson Kelvin theorem).

1.2.5 Stream Function for Plane and Axially Symmetric
(Revolution) Motions

By extending the already given kinematic definition to the dynamics
case, a motion is supposed to be steady (permanent) if all the (kinematic,
kinetic, dynamic) parameters characterizing the medium state and ex-
pressed with Euler variables are not (explicitly) dependent
on

All the partial time derivatives of the mentioned parameters being zero
we have (from the continuity equation) that i.e.,

the vector field is conservative (solenoidal).
The above equation allows us to decrease the number of the unknown

functions to be determined; we will show that in the particular, but ex-
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tremely important case, of the plane and axially symmetric (revolution)
motions.

A continuum motion is said to be plane, parallel with a fixed plane
(P), if, at any moment the velocity vector (together with other vectors
which characterize the motion) is parallel with the plane (P) and all the
mechanical (scalar or vectorial) parameters of the motion are invariant
vs. a translation normal to (P). We denote by and the Cartesian
coordinates in (P) so that the variable not playing a
role. In the same way, we denote k being the
unit vector normal to (P) and oriented as axis.

One says that a motion is axially symmetric vs. the fixed axis
if, at any moment the velocity vector’s supports (and of supports of
other vectors characterizing the motion) intersect the axis and all the
mechanical parameters associated to the motion are rotation (vs.
invariants. We denote by and the orthogonal axes in a merid-
ian half-plane (bounded by by k the unit vector which is directly
orthogonal to and and by and the respective components of
the vectors v obviously located in this half-plane.

Now let be, at a fixed instant a contour (C) drawn in Oxy and let
be the corresponding surface generated by:

a) a translation motion, parallel to k and of unit amplitude, in the
case of plane motions or

b) an motion of a in the case of revolution
(axially symmetric) motions.

Let be a number which equals 0, in the case of a plane motion and
equals 1, in the case of a revolution motion. Hence

(with the remark that the (C) orientation being that
obtained by a rotation from n with and is the elemental arc
length on (C).

If the motion is steady7 and (C) is a closed curve bounding the area
from Oxy, the above expressions vanish8 and, by using the divergence

(Green) theorem, we get

7 The result keeps its validity even for unsteady motion provided that the continuum is incom-
pressible; in these hypotheses the function which will be introduced in the sequel, depends
on the time too.
8We have an exact total differential due to the condition
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for any of Oxy. Following the fundamental lemma (given by the
end of the next section) we could write

a relation which is equivalent with the above continuity equation for the
plane or axially symmetric motions.

As the last relation expresses that is an exact total
differential, there is a function being a positive constant),
defined within an arbitrary additive constant, such that

i.e., we can write

and hence

The function is, by definition, the stream function of the con-
sidered steady (plane or axially symmetric) motion.

The above formulas show that the unknown functions and could be
replaced by the unique unknown function The curves are
the streamlines in Oxy. Generally, (C) being an arc joining the points
A and B from the same plane, represents the
mass flow rate through the sense of n along (C) being determined
by the rotation of the (C) tangent (oriented from A to B).

1.3 Euler–Lagrange Criterion.
Euler’s and Reynolds’ (Transport) Theorems

Let us consider a material volume (closed system) whosesurface
is formed of the same particles which move with the local continuum

velocity being thus a material surface. We intend to obtain a necessary
and sufficient condition, for an arbitrary boundary surface of equa-
tion to be a material surface, i.e., to be, during the motion,
a collection of the same continuum particles of fixed identity.



14 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

Following Kelvin, if a material point (particle) belonging to moves
along the unit external normal with a velocity then its
infinitesimal displacement in an infinitesimal interval of time

will be As this particle should remain on (to be a
material surface) we would obviously have Keeping
only the first two terms of the Taylor’s expansion which is backed by the
infinitesimal character of the displacement ( and correspondly of the
time we get

But, on the other side, any material point (particle) of the surface
should move with the continuum velocity at that point, i.e., necessarily,

and thus we get the necessary condition

To prove also the sufficiency of this condition we should point out
that (for instance) if this condition is fulfilled, then there will be at the
initial moment a material surface such that our surface
i.e., it is the image of through the motion mapping at the instant
But then, due to the conservation theorem of material surfaces, it comes
out immediately that should be a material surface.

Now let us attach to the first order partial differential equation
its characteristic system, i.e., let us consider the differential

system

It is known that if being constants
is a fundamental system of first integrals of our characteristic differential
system, the general solution of the above partial differential equation is

where is an arbitrary function of
class But, then, the particles of coordinates which
fulfil the equation will also fulfil i.e., at the
time they will be on the material surface of equation (in other
words, the surface is the image, at the moment of the material
surface from a reference configuration).

This result, which gives the necessary and sufficient condition for an
(abstract) surface to be material is known as the Euler–Lagrange crite-
rion.
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Obviously a rigid surface (for instance a wall), which is in contact
with a moving continuum, is a particles locus i.e., it is a material surface.
Using the above criterium we will have, on such a surface of equation

the necessary condition and when the

rigid surface is fixed then, so that the continuum velocity is
tangent at this surface.

The Euler theorem establishes that the total derivative of the motion
Jacobian J = det(grad r), is given by

The proof of this result uses the fact that the derivative of a determi-
nant J is the sum of the determinants which are obtained from J by
the replacement of the line with that composed by its derivative vs.
the same variable.

In our case, for instance,

because and
Hence, by identical assessments of and we get the result we

were looking for Using this result together with the known
relation between the elemental infinitesimal volumes from and
i.e., we can calculate the total derivative of the elemental
infinitesimal volume, at the moment (that means from Precisely
we have

(dV being fixed in time).
Reynolds’ (transport) theorem is a quantizing of the rate of change

of an integral of a scalar or vectorial function integral evaluated
on a material volume As the commutation of the operators of
total time derivative and of integration will not be valid any more, the
integration domain depending explicitly on time, we have to consider,
first, a change of variables which replaces the integral material volume

depending on time, by a fixed integral domain and so the
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derivative operator could then commute with that of integration. More
precisely we will perform the change of variables given by the equation
of motion expressed in Lagrangian coordinates, i.e., the
new integration domain becoming the fixed domain from the initial
configuration and then we could come back to the current domain

More exactly, taking into account both Euler’s and Green’s theorems
we have

where n is the unit external normal.
This transport formula will be useful in establishing the equations of

motion for continua (under the so-called conservation form).
Analogously, one establishes equivalent formulas for the total deriva-

tives of the curvilinear or surface integrals when the integration domains
depend upon time.

Thus

where is the contour enclosing the surface [52].
From this formula comes the necessary and sufficient condition for the

flux of a field F, through a material surface to be constant, which
condition is

In the formulation of the general principles of the motion equations
under a differential form (usually nonconservative), an important role is
taken by the following

LEMMA: Let be a scalar function defined and continuous in a
domain and let D be an arbitrary subdomain of If

for every subdomain then the function in
The proof is immediate by using “reductio ad absurdum” and the

continuity of [110].
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The result is still valid even in the case when instead of the scalar
function a vectorial function of the same r is considered (it is sufficient
to use the previous assertion on each component). At the same time the
conclusion will remain the same if the above condition takes place only
on a set of subdomains (E) with the property that in any neighborhood
of a point from there is at least a subdomain from the set (E).

2. General Principles. The Stress Tensor and
Cauchy’s Fundamental Results

2.1 The Forces Acting on a Continuum
Let us consider a material subsystem P of the continuum a subsys-

tem imagined at a given moment in a certain configuration
which is enclosed in the volume support of the whole system On
this subsystem P of the continuum two types of actions are exerted:

(i) contact (surface) actions, of local (molecular) nature, exerted on
the surface S of the support D of the subsystem P by the “comple-
mentary” system (as the “pressure or pull” of the boundary, the
“pushing” action through friction on the boundary, etc.)

(ii) distance (external) actions, of an extensive character, exerted on
the bulk portions of the continuum P and arising due to some external
cause (such as gravity, electromagnetic, centrifugal actions, etc.)

But the mechanics principles are formulated, all of them, in the lan-
guage of forces and not of actions. To “translate” the above mentioned
actions into a sharp language of forces we will introduce the so-called
Cauchy’s Principle (Postulate) which states:

“Upon the surface S there exists a distribution of contact forces, of
density T, whose resultant and moment resultant are equipollent to the
whole contact action exerted by M\P.

At the same time there is a distribution of external body or volume
forces of density exerted on the whole P or D and whose resultant
and moment resultant are completely equivalent (equipollent) with the
whole distance (external) action exerted on P ”.

The contact forces introduced by this principle are called stresses.
These stresses, of surface density T, at a certain moment will de-
pend upon the point where they are evaluated and the orientation of
the surface element on which this point is considered, orientation char-
acterized by the outward normal unit vector n on this surface, such that

Concerning the external body or volume forces (the gravity forces are
body forces while the electromagnetic forces are volume forces, etc.), of
density f, at a certain time they depend only on the position vector r
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of the point of application, i.e., To avoid ambiguity we will
suppose, in this sequel, that all the external forces we work with are body
forces (gravity forces being the most important in our considerations).
To postulate the existence of the densities T and f (continuity hypothe-
ses) is synonymous with the acceptance of the absolute continuity of the
whole contact or external (body) actions with respect to the area or the
mass respectively. Then, by using the same Radon–Nycodim theorem,
the total resultant of the stresses and of the external body forces could
be written

representations which are important in the general principles formula-
tion.

In the sequel we will formulate the general principles for continua
by expressing successively, in mathematical language, the three basic
physical principles:

(i) mass is never created or destroyed (mass conservation);
(ii) the rate of change of the momentum torsor is equal to the torsor

of the direct exerted forces (Newton’s second law);
(iii) energy is never created or destroyed (energy conservation).

2.2 Principle of Mass Conservation.
The Continuity Equation

Mass conservation, postulated by the third axiom of the definition of
the mass, requires that the mass of every subsystem remains
constant during motion. Evaluating this mass when the subsystem is
located in both the reference configuration (i.e., for and the
current configuration at the moment mass conservation implies that

the last equality being obtained by reverting to the current reference
configuration.

In the continuity hypothesis of continuum motion as the
above equalities hold for every subsystem P (and so for every domain

the fundamental lemma, from the end of sub-section 1.1, leads to
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which represents the equation of continuity in Lagrangian coordinates.
In spatial (Eulerian) coordinates, by making explicit the third axiom

from the mass definition, i.e., we get

where the Reynolds transport theorem has been used. Backed by the
same fundamental lemma, the following forms of the continuity equation
can also be obtained:

(the nonconservative form)

or

(the conservative form).

We remark that if in the theoretical dynamics of fluids, the use of
nonconservative or conservative form does not make a point, in the ap-
plications of computational fluid dynamics it is crucial which form is
considered and that is why we insist on the difference between them.

2.2.1 Incompressible Continua
A continuum system is said to be incompressible if the volume (mea-

sure) of the support of any subsystem of it remains constant as the
continuum moves.

By expressing the volume (measure) of the arbitrary system P at both
the initial and the current moment, we have

i.e., the incompressibility, in Lagrangian coordinates, implies that J = 1
and consequently the equation of continuity becomes

We can arrive at the same result, in Eulerian coordinates, if we write

which leads to and, from the continuity equation, to
We conclude that for incompressible continua, the (mass) density
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remains constant as the particles are followed while they move (i.e., on
any pathline), but the value of this constant could be different from
trajectory to trajectory.

If the medium is homogeneous, i.e., is constant with respect to the
spatial variables, then it is incompressible if and only if is constant vs.
the time too.

We note that if a continuum is homogeneous at the moment
it could become nonhomogeneous later on. In fact a continuum remains
homogeneous if and only if it is incompressible.

Within this book we will deal only with incompressible homogeneous
media (continua).

2.3 Principle of the Momentum Torsor Variation.
The Balance Equations

According to this principle of mechanics, applied within continua for
any material subsystem at any configuration of it
the time derivative of the momentum torsor equals the torsor of the
(direct) acting forces.

As the torsor is the pair of the resultant and the resultant moment,
while the (linear) momentum of the subsystem P is

and the angular (kinetic) momentum is

(O being an arbitrary point of the stated principle can

be written as

respectively

the right members containing the direct acting forces resultant (i.e., the
sum of the stresses resultant and of the external body forces), respec-
tively the moment resultant of these direct forces (moment evaluated vs.
the same point O).

But, by using the continuity equation, we remark that

In fact, on components, we have
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Under these circumstances, the above equations become

and

both equalities being valid for any subsystem and implicitly for
any domain

A direct application of the momentum variation principle is Cau-
chy’s lemma which establishes that, at any moment and at any point r
from a surface element of orientation given by n, the stress vector T,
supposed continuous in r, satisfies the action and reaction principle, i.e.,
[33]

2.4 The Cauchy Stress Tensor
As the stress vector T, evaluated at a point r, does not depend only

on r and but also on the orientation of the surface element where the
point is considered (i.e., on n), this vector cannot define the stress state
at the respective point. In fact, at the same point r, but considered
on differently oriented surface elements, the vectors T could also be
different. This inconvenience could be overcome by the introduction,
instead of an unique vector T, of a triplet of stress vectors whose
components with respect to the coordinates axes will form a so-called
tensor of order 2. This stress tensor, introduced by Cauchy, is the first
tensor quantity reported by science history.

The triplet of stress vectors thus introduced will be associated, at
every moment, to the same point r but considered on three distinct
surface elements having, respectively, the outward normal parallel with
the unit vectors of the reference system, namely

 Let us denote by the components on the axes
of the vector i.e.,

We will show, in what follows, that the stress state at a point r, at
every moment will be characterized by the triplet of these vectors

or, synonymously, by the set of the nine scalars
which depend only on r. Precisely, we will show that the
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stress T, evaluated for the considered moment at a point r, situated
on a surface element of normal can be expressed by the relation

known as Cauchy’s theorem.
The proof is backed by the theorem (principle) of momentum applied

to a tetrahedral continuum element with its vertex at r, the lateral
faces being parallel to the planes of coordinates, its base is parallel to
the plane which is tangent to the surface element where the point r is
located. Considering then that the volume of the tetrahedron tends to
zero and using the mean theorem for each of the coordinates, we get
Cauchy’s theorem. The detailed proof can be found, for instance, in
[33].

Let us now consider, for any moment the linear mapping [T] of the
Euclidean space into itself, a mapping defined by the collection of
the nine numbers i.e., Such a mapping which,
in general, is called a tensor will be, in our case, just the Cauchy stress
tensor, a second order tensor in We will see that by knowing the
tensor [T] which depends, for any instant only on r, we have the
complete determination of the stress state at the point r.

Precisely we have

This fundamental relation shows that T depends linearly on n and,
consequently, it will always be continuous with respect to n.

It is also shown that the tensor [T] is an objective tensor, i.e., at a
change of a spatio-temporal frame, change defined by the mapping [Q]
or by the orthogonal proper matrix the following relation
holds:

(the proof could be found, for instance, in [33]).
It is also proved that [T] is a symmetric tensor, i.e., [33].

This result, besides the fact that it decreases the number of parameters
which define the stress state (from 9 to 6), will also imply the existence,
at every point, of three orthogonal directions, called principal directions,
and vs. them the normal stresses (T · n) take extreme values which are
also the eigenvalues of the tensor (mapping) [T].

The stress tensor symmetry is also known as “the second Cauchy’s
theorem (law)”.
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2.5 The Cauchy Motion Equations
Cauchy’s theorem allows us to rewrite in a different form the principle

of the momentum torsor variation, that means of the linear momentum
and of the angular momentum variation.

Precisely, it is known that

and

Obviously, in the conditions of the continuous motions (which cor-
respond to the parameters field of class by using the exten-
sion of Green’s formulas for tensors of order greater than 1 [Appendix
A] together with the fundamental lemma, from the (linear) momentum
theorem one gets

relations known as Cauchy’s equations or “the first Cauchy’s law (theo-
rem)” .

These equations could be established under different forms too. Thus,
starting with the formulas for the total derivative of both the momentum

and the volume (depending on time)
integral, we have

As the symbol designating the
dyadic product [Appendix A], the above equation could be rewritten in
the form

known also as the transport equation of (linear) momentum and which
could be used, in fluid dynamics, for evaluation of the global actions
exerted on the immersed bodies.
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Then, by using the fundamental lemma, one gets the so-called con-
servative form of Cauchy’s equations

which, on components, leads to

Concerning the writing of Cauchy’s equations in Lagrangian coordi-
nates this requires the introduction of some new tensors as, for instance,
the Piola–Kirchoff tensor [33].

Concerning the objectivity (frame invariance) of the Cauchy equations
we remark that these equations are not frame invariants. Really while
the forces which correspond to the contact or distance direct actions are
essentially objective (frame invariants) as well as and
(these together with and [T] respectively), the acceleration vector
which obviously depends on the frame of reference, is not objective.

An objective form of these equations obtained by the introduction of
some new vectors but without a physical meaning can be found in [33].

With respect to the mathematical “closure” of the Cauchy system of
equations (3 equations with 10 unknowns), this should be established
by bringing into consideration the specific behaviour, the connection be-
tween stresses and deformations, i.e., the “constitutive law” for the con-
tinuum together with a thermodynamic approach to the motion of this
medium.

2.6 Principle of Energy Variation.
Conservation of Energy

The fact that the energy of a material system does not change while
the system moves, i.e., the so-called “energy conservation”, will lead
to another equation which characterizes the motion of the material
medium.

Obviously, by introduction of some thermodynamic considerations
later on, this energy equation will be rewritten in a more precise form.

Let us assess the elemental work done per unit time (the power) of the
forces exerted on a material subsystem P of the deformable continuum

and whose configuration is D, i.e.,
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Using then the equality a consequence of the defi-
nition of the transposed tensor and of the symmetry of the stress tensor,
precisely

the first integral of the right side, becomes

Since from the Cauchy equations,

taking into account that the second order tensor [G] = grad v (of compo-
nents can be split as a sum of a symmetric tensor [D] of components

(the rate-of-strain tensor) and a skew-symmetric
tensor of components (the rotation tensor) while

we finally have

where W is the internal(deformation) energy whose existence is cor-
related with the quality of our continuum to be deformable (for rigid
bodies obviously W = 0) while is the kinetic energy of the system.

Usually a specific deformation energy is defined by
and then

Part of the work done, contained in W, may be recoverable but the
remainder is the lost work, which is destroyed or dissipated as heat due
to the internal friction.

So we have, in the language of deformable continua, the result of en-
ergy conservation which states that the work done by the forces exerted
on the material subsystem P is equal to the rate of change of kinetic
energy and of internal energy W.

2.7 General Conservation Principle
The integral form of mass conservation, momentum torsor and energy

principle as established in the previous section respectively, can all be
joined together into a unique general conservation principle. Precisely,
for any material subsystem which occupies the configuration

whose boundary is S, at any moments and we have the
following common form for these principles:
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Obviously if all considered variables (i.e., the motion) are assumed
continuous in time, the general conservation principle becomes

where n is the unit outward vector drawn normal to the surface S.
The above relation states that for a volume support D, the rate of

change of what is contained in D, at moment plus the rate of flux
out of S, is equal to what is furnished to D. The quantities A,B,C are
tensorial quantities, A and C having the same tensorial order. If
then it is a tensor whose order is one unity higher than A.

If we use the Reynolds transport theorem for the first integral and the
Gauss divergence theorem for the second integral, we have

where f = Av + B.
Since the above result is valid for any material subsystem P of the

deformable continuum (i.e., for any D) the fundamental lemma and the
same hypothesis on the motion continuity allows us to write

which is the unique general differential equation, in conservative form,
associated to the studied principles.

3. Constitutive Laws. Inviscid and real fluids
3.1 Introductory Notions of Thermodynamics.

First and Second Law of Thermodynamics
Thermodynamics is concerned with the behaviour of different mate-

rial systems from the point of view of certain state or thermodynamic
variables parameters. The considered thermodynamic (state) variables
will be the absolute temperature (the fundamental quantity for thermo-
dynamics), the pressure the mass density the specific (per mass
unity) internal energy and the specific entropy The last two state
variables will be defined in what follows.
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The main aim of thermodynamics is to establish a certain functional
dependence among the state (thermodynamic) variables known as con-
stitutive (behaviour) laws (equations). These constitutive equations will
contribute to the mathematical “closure” of the equations system de-
scribing the deformable continuum motion.

Obviously the deformation of the material systems depends essentially
on the temperature when this deformation takes place. That is why, for
a complete study, a deformable continuum should be considered as a
thermodynamic system, i.e., a closed material system (no matter enters
or leaves the system) which changes energy with its surrounding through
work done or heat (added or taken).

By the thermodynamic state of a system, at a certain instant, we un-
derstand the set of all the values of the state (thermodynamic) variables
(parameters) which characterize the system at that moment.

By a thermodynamic process we understand a change of the thermody-
namic state (i.e., of the values of the state variables) as a consequence of
certain operations or actions or, shorter, when a thermodynamic system
changes from one state to another one.

A system is called in thermodynamic equilibrium if its thermodynamic
state is time invariant.

Suppose now that a thermodynamic system has changed from an ini-
tial state (1) to a new state (2). By producing changes in either the
system or its surrounding, it would be possible to reverse the state from
(2) to (1). If this is possible to be done without any modification in
both system and surrounding, the process is called reversible. On the
contrary it is irreversible.

The reversible processes characterize the ideal media and they imply
infinitesimal changes which have been carried out so slowly that both
the system and the surrounding pass successively through a sequence of
equilibrium states.

The internal energy associated to a material system, is the com-
plementary value of the kinetic energy vs. the total energy E, i.e.,

Depending only on the state of the system at the considered moment
(and not on the way this state has been reached), the internal energy
is an objective quantity (while the kinetic energy, due to the presence
of v, is not objective). If we postulate that the internal energy is an
absolutely continuous function of mass, there will be a function called
the specific internal energy, such that
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In fact the first law of thermodynamics postulates the possibility to
transform the heat (thermal energy) into mechanical energy. More pre-
cisely within a thermodynamical process (when the deformable material
subsystem passes from a thermodynamical state to a “neighboring” one),

the rate of change of the total energy is equal to the elemental power

of the direct forces exerted on the system plus the quantity of heat

added to or taken out per unit time so we have

If i.e., there is not a heat change with the surrounding, the
process (and the motion) are called adiabatic. Generally
where and are, respectively, “contact actions” (the conduction
heat) and “distance actions” (the radiation heat). By accepting (to
introduce the corresponding densities) that and are absolutely
continuous functions of surface and, respectively, mass, we will have that

D being, at the respective moment, the configuration of the subsystem
P and S its boundary.

Under these circumstances, for any deformable continuum subsystem
P, the first law of thermodynamics can be written

On the other side the energy variation principle, stated in the previous
section, is

such that, using also the transport formula and the continuity equation,
the first law of thermodynamics could be written
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By introducing now the heat flux principle (Fourier–Stokes) which
states that there is a vector called heat density vector, so that

9 ,

the Gauss divergence theorem leads to

that is, using the fundamental lemma too,

Obviously if we did not “split” into the conduction heat and the
radiation heat, the last two terms of the above relation would be repre-
sented by the unique term being the total heat density per unit
of mass.

To conclude, the energy equation together with the first law of ther-
modynamics could be written both in a nonconservative form

and in a conservative form or of divergence type10

this last form playing a separate role in CFD.
The second law of thermodynamics, known also as the Kelvin–Planck

or Clausius principle, is a criterion which points out in what sense a
thermodynamic process is irreversible.

It is well known that all the real processes are irreversible, the re-
versibility being an attribute of only ideal media. While the first law of
thermodynamics does not say anything on the reversibility of the pos-
tulated transformations, the second law tries to fill up this gap. More

9For sake of simplicity we consider only the case of the heat added to P and corresponding
“– n” will represent the unit inward normal drawn to S and this is the right unit normal
vector we deal with in our case.

The heat flux principle could be got by applying the above form of the first law of ther-
modynamics to a tetrahedron of Cauchy type (that is a similar tetrahedron with that used
in the proof of the Cauchy theorem)
10The transformation of the left side could be done by using the derivative of a product and
the equation of continuity.
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precisely, in a simplified form, one postulates that a transformation, a
thermodynamical process, takes place in such a way that the entropy
does not decrease or remain the same.

What is the entropy ? In the case of reversible processes, the spe-
cific entropy (per mass unit) is defined by the differential relation

where is the total heat per mass unit while T is the abso-
lute temperature — an objective and intensive quantity (i.e., it is not an
absolute continuous function of volume) — whose values are strictly pos-
itive and which is the fundamental quantity of thermodynamics. But,
generally, the entropy S for the material subsystem P will also be a
state quantity which is an absolute continuous function of mass (exten-
sive quantity) and it can be expressed, via Radon–Nycodim’s theorem
as being the specific entropy. In the case of an

irreversible process this entropy changes as a result of both interaction
with surroundings (external action) and inside transformations (internal
actions) such that we have

Since (a result coming from kinetics) and we have

that which is the local form of the second law, also known as
the Clausius–Duhem inequality. We remark that the “equality symbols”
would belong to the case and, implicitly, to the reversible
(ideal) processes. Obviously for these reversible processes, using also
the first law of thermodynamics under the form one
obtains the so-called Gibbs equation

which is fundamental in the study of ideal continua.
Concerning the general (unlocal) formulation for the second law of

thermodynamics, the condition of some real (irreversible) processes, this
could be the following:

For any material subsystem P of the deformable continuum M, which
is seen in the configuration D of boundary there is a state quantity
S, called entropy, whose rate of change, when the subsystem is passing
from a state to another (neighboring) one, satisfies
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3.1.1 Specific Heats. Enthalpy
The specific heat is defined as the amount of heat required to increase

by unity the temperature of a mass unit of the considered medium.
Correspondingly, the specific heat is

Supposing that the temperature is a function of and we have

where the subscript denotes the fixed variable for partial differentiation.
Analogously, assuming that the specific internal energy is also a func-
tion of and we have

Referring to the case of fluids, as the work done by a unit mass

“against” the pressure forces is the first law of

thermodynamics can be written

where is the heat added to the unit mass. Because is an integrating
factor for in the sense that we get Obvi-
ously, for reversible processes (ideal media) and the last relation
becomes an equation which could be also deduced as a
consequence of Gibbs’ equations (for inviscid fluids).

Generally, for any fluids, by using the above expression for and the
first law of thermodynamics, we have that

Hence the specific heat is

From this expression it will be possible to define two “principal” spe-
cific heats: one for called the specific heat at
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constant pressure, and the other for called
the specific heat at constant volume. Thus

and11

Obviously, for the reversible processes (ideal media) we also have

and

Concerning the difference this is equal to                  a

result which can be found, for instance, in [33].
Now, let us introduce a new state variable H called enthalpy or total

heat. The enthalpy per unit mass or the specific enthalpy is defined
by

Differentiating this relation with respect to T, while keeping con-
stant, we obtain

In terms of the above Gibbs’ equation could also be written as

a form which will be important in the sequel.

3.2 Constitutive (Behaviour,
“Stresses-Deformations” Relations) Laws

The system of equations for a deformable continuum medium — the
translation of the Newtonian mechanics principles into the appropiate
language of these media — should be closed by some equations of spe-
cific structure characterizing the considered continuum and which in-
fluence its motion. Such equations of specific structure, consequences

11 We have used here some results of the type

classical calculus.

etc. which come from the
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of the motion equations of particles within the microscopic theory and
which, in our phenomenological approach are given by experience as
physical laws, will be designated as constitutive or behaviour laws or
simply “stresses-deformations” relations (in fact they are functional
dependences between the stress tensor and the mecanical and thermo-
dynamical parameters which are associated to the motion, between the
quantities which characterize the deformation and the stresses which
arise as a reaction to this deformation).

Noll has given a set of necessary conditions, in the form of general
principles, which should be fulfilled by any constitutive law. By using the
necessary conditions, some general dependences between the mechanical
and thermodynamical parameters will be “filtered” and thus a screening
of real candidates among different “stresses-deformations” relations is
performed [95].

In what follows we will present, in short, the most important of such
principles (the details could be found in [95]).

The first principle is that of dependence on “the history” of the ma-
terial. According to this principle the stress state at a certain point
of the deformable continuum and at a given moment, depends on the
whole “history” of the evolution (from the initial to the given considered
moment) of the entire material system. In other words, this principle
postulates that the stress at a point of continuum and at a certain mo-
ment is determined by a sequence of all the configurations the continuum
has passed through from the initial moment till the considered moment
(included).

A second principle which is in fact a refinement of the previous prin-
ciple is that of spatial localization. According to this principle, to de-
termine the stress state at a certain point and at a certain moment
not the whole history of the entire continuum is required but only the
history of a certain neighborhood of the considered point.

Finally, the most powerful (by its consequences) principle would be
that of objectivity or material frame indifference. According to this
principle a constitutive law should be objective and so frame invariant
which agrees with the intrinsic character of such a law.

An important consequence of this objectivity principle is the impos-
sibility of the time to appear explicitly in such a law.

If in a constitutive law the point where the stress is evaluated does
not appear explicitly, the respective medium is called homogeneous. The
homogeneity is also an intrinsic property of the medium. It can be
shown then if there is a reference configuration where the medium is
homogeneous that it will keep this quality in any other configuration
[150].
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A deformable continuum is called isotropic, if there are not privileged
directions or, in other terms, the (“answering”) functional which defines
the stress tensor is isotropic or frame rotation invariant.

According to the Cauchy–Eriksen–Rivlin theorem [40], a tensor func-
tion defined on a set of symmetric tensors of second order from

and whose values are in the same set, is isotropic if and only if it
has the form where are isotropic
scalar functions of the tensor [A] which could always be expressed as
functions of the principal invariants of the tensors [A], i.e.,

As a corollary any linear isotropic tensor function in should
be under the form where and are
constants.

3.3 Inviscid (Ideal) Fluids
The simplest of all the mathematical and physical models associated

to a deformable continuum is the model of the inviscid (ideal) fluid.
By an inviscid (ideal) fluid we understand that deformable continuum

which is characterized by the constitutive law (or, on com-
ponents, where is a positive scalar depending only on r
and (and not on n), physically coinciding with the (thermodynamical)
pressure.

The “hydrostatic” form (characterizing the equilibrium) of the stress
tensor shows that the stress vector T is collinear with the
outward normal n drawn to the surface element (and, obviously, of op-
posite sense) i.e., for an inviscid fluid the tangential stresses (which with-
stand the sliding of neighboring fluid layers) are negligible.

The same structure of the constitutive law for an inviscid fluid points
out that this fluid is always a homogeneous and isotropic medium.

In molecular terms, within an inviscid fluid, the only interactions
between molecules are the random collisions. Air, for instance, can be
treated as an inviscid fluid (gas).

With regard to the flow equations of an inviscid (ideal) fluid, known
as Euler equations, these could be got from the motion equations of a
deformable continuum (Cauchy equations), i.e., from
where we use now the specific structure of the stress tensor
hence

or, in vector language
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a system which should be completed by the equation of continuity.
Of course the Euler equations could be rewritten in a “conservative”

form (by using the continuity equation and the differentiating rule of a
product), namely

If the fluid is incompressible, the Euler equations and the equation
of continuity, together with the necessary boundary (slip) conditions
(characterizing the ideal media) which now become sufficient conditions
too, ensure the coherence of the respective mathematical model, i.e.,
they will allow the determination of all the unknowns of the problem
(the velocity and pressure field). If the fluid is compressible one adds the
unknown which leads to a compulsory thermodynamical study of
the fluid in order to establish the so-called equation of state which closes
the associated mathematical model.

The thermodynamical approach to the inviscid fluid means the use
of the energy equation (together with the first law of thermodynam-
ics) and of Gibbs’ equation which, being valid for any ideal continuum,
synthesizes both laws of thermodynamics.

The energy equation, either under nonconservative form or under con-
servative form, comes directly from the corresponding forms of an arbi-
trary deformable continuum, namely from

respectively

Concerning the Gibbs’ equation, in the case of
an inviscid fluid it becomes so that

or, by eliminating from the equation of continuity
we get
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This last differential relation could be the departure point in the ther-
modynamical study of the ideal fluids. If the internal energy is given
as a function of the independent parameters and i.e., if we
know then we will immediately have the equations of state

and or, in other words, the function
determining the thermodynamical state of the fluid, is a thermodynami-
cal potential for this fluid. Obviously, this does not occur if is given as a
function of other parameters when we should consider other appropriate
thermodynamical potentials.

If the inviscid fluid is incompressible, from we have

that or and hence More, if in the energy
equation, written under the form

we accept the use of the Fourier law where is the
thermal conduction coefficient which is supposed to be positive (which
expresses that the heat flux is opposite to the temperature gradient), we
get finally

As and (the radiation heat) is given together with
the external mass forces, the above equation with appropriate initial
and boundary conditions, allows us to determine the temperature T
separately from the fluid flow which could be made precise by considering
only the Euler equations and the equation of continuity.

This dissociation will not be possible, in general, within the compress-
ible case. Even the simplest statics (equilibrium) problems for the fluids
testify that.

An important situation for the compressible fluids is that of the perfect
fluids (gases), the air being one of them.

By a perfect gas, we understand an ideal gas which is characterized by
the equation of state (Clapeyron) (where R is a characteristic

constant). For such a perfect gas the relation

becomes even if and are functions of temperature
(Joule). Since the first law of thermody-
namics under the form leads to
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and

At the same time, from the transcription of Gibbs’ equation
and from we have

or

where

From we also get (Eucken’s formula), while

the state equation, in becomes

The relation together with the above expres-
sion for T, assuming that and are constants, lead, by a direct
integration, to

respectively

If there is an adiabatic process (which means without any heat change
with the surrounding), from we get i.e., the entropy
is constant along any trajectory and the respective fluid flow is called
isentropic (if the value of the entropy constant is the same in the whole
fluid, the flow will be called homentropic). In this case the perfect gas is
characterized by the equation of state and where

and K are constants while we also have

Obviously in the case of an adiabatic process, the equation of state
together with the Euler equations and the equation of continuity,

will be sufficient for determining the unknowns (the temperature
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T being determined at the same time with For the same perfect
gas, under the circumstances of the constancy of the specific principal
heats but in the nonadiabatic case, the first law of thermodynamics (by
neglecting the radiation heat) leads to

or, by using the Fourier law, we arrive at

an equation which allows the determination of the temperature not sep-
arately, but together with Euler’s equations, i.e., using the whole system
of six equations with six unknowns

Generally, the fluid characterized by the equations of state under the
form with satisfying the requirements of the implicit func-
tions theorem, are called barotropic. For these fluids, the determination
of the flow comes always to a system of five equations with five unknowns,
with given initial and boundary conditions.

3.4 Real Fluids
By definition a deformable continuum is said to be a real fluid if it

satisfies the following postulates (Stokes):
1) The stress tensor [T] is a continuous function of the rate-of-strain

tensor [D], while it is independent of all other kinematic parameters (but
it may depend on thermodynamical parameters such as and T);

2) The function [T] of [D] does not depend on either a space position
(point) or a privileged direction (i.e., the medium is homogeneous and
isotropic);

3)
4)

[T] is a Galilean invariant;
At rest ([D] = 0),

The scalar designates the pressure of the fluid or the static
pressure. A fundamental postulate states that is identical with the
thermodynamic pressure. We will see later in what circumstances this
pressure is an average of three normal stresses.

Generally the structure of the stress tensor should be
where the part “at rest” is isotropic while the remaining is an
anisotropic part. For the so-called Stokes (“without memory”) fluids,

with restriction for the fluid flows of
“rigid type” (without deformations), while for the fluids “with memory”,

depends upon the time derivatives of [D] too.
The postulate 2) implies, through the medium isotropy, that the func-

tion [T] is also an isotropic function in the sense of the constitutive laws
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principles. At the same time, within the frame of Noll’s axiomatic sys-
tem, the postulate 3), which states the inertial frame invariance of [T],
is a consequence of the objectivity principle.

At last, the necessary and sufficient condition for the isotropy of a
tensorial dependence (the Cauchy–Eriksen–Rivlin theorem) shows that,
in our working space the structure of this dependence should be of
the type

where are isotropic scalar functions depending upon the princi-
pal invariants of [D], where

and and with the obvious restriction
 (conditions required by the postulate 4)).

This general form for the constitutive law defines the so-called Reiner–
Rivlin fluids, after the names of the scientists who established it for the
first time.

Those real fluids characterized by a linear dependence between [T]
and [D] are called Newtonian or viscous. By using the corollary which
gives the general form of a linear isotropic tensorial function
observing the hydrostatic form at rest, we necessarily have for these
fluids the constitutive law

where the scalars and are called, respectively, the first and the
second viscosity coefficient. By accepting the Stokes hypothesis

which reduces to one the number of the independent viscosity
coefficients and which is rigorously fulfilled by the monoatomic gases
(helium, argon, neon, etc.) and approximately fulfilled by other gases
(provided that is not very large) we would have (from

that i.e., the above
mentioned result on the equality of pressure with the negative mean of
normal stresses.

Obviously, for a viscous fluid there are also tangential stresses and so
there is a resistance to the fluid layers sliding. The viscosity of fluids is
basically a molecular phenomenon.

For the incompressible viscous fluid from we get
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Sutherland, in the hypothesis that the colliding molecules of a perfect
or quasiperfect gas are rigid interacting spheres, got for the viscosity

coefficient  the evaluation where and are

constants [153].
Fluids that do not observe a linear dependence between [T] and [D]

are called non-Newtonian. Many of the non-Newtonian fluids are “with
memory”, blood being such an example.

In the sequel we will establish the equation for viscous fluid flows
without taking into account the possible transport phenomenon with
mass diffusion or chemical reactions within the fluid.

Writing the stress tensor under the form the Cauchy
equations for a deformable continuum lead to

or, in conservative form,

We remark that all the left sides of these equations could be writ-
ten in one of the below forms, each of them being important from a
mathematical or physical point of view:

Concerning which is a vector,
by using the formulas

being the rotation tensor – the skew-
symmetric part of and a an arbitrary vector), we get for
a first form

where
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A second form is obtained by using the additional formulas

more precisely, we have

At last, by introducing some known vectorial-tensorial identities (see
Appendix A), one can get a third form,

With regard to the energy equation, by using the nonconservative,
respectively the conservative form of this equation for an arbitrary de-
formable continuum, in the case of the viscous fluid we get

(the nonconservative form), respectively

(the conservative form), where, obviously,

If we are interested in the mathematical nature of these equations we
remark that, firstly, the equation of continuity is a partial differential
equation of first order which could be written, in Lagrangian coordi-
nates, such that is a solution of this
equation which also defines the trajectories (obviously real). As these
trajectories are characteristic curves too, the equation of continuity is
then of hyperbolic type.
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Concerning the equation of flow, if from the first form of we
take out the second derivative terms (the “dominant” terms), they could
be grouped into

According to the classification of the second order partial differential
equations, these equations are elliptic if the eigenvalues and of
the associated quadratic form are positive. Consequently, in the steady
case, if and the flow equations are of elliptic type. The
same property belongs to the energy equation if, by accepting for the
conduction heat the Fourier law, the thermal conduction coefficient is
positive. In the unsteady case the previous equations become parabolic.

Globally speaking, the whole system of equations would be elliptic-
hyperbolic in the steady case and parabolic-hyperbolic in the unsteady
case. If then the elliptic and parabolic properties will be lost.

Concerning the initial and boundary conditions, the first ones specify
the flow parameters at being thus compulsory in the unsteady
case. As regards the boundary conditions, they imply some information
about the flow parameters on the boundary of the fluid domain and
they are always compulsory for determining the solution of the involved
partial differential equation in both steady and unsteady cases.

For a viscous fluid which “passes” along the surface of a rigid body, the
fluid particles “wet” the body surface, i.e., they adhere. This molecular
phenomenon has been proved for all the continuous flows as long as the
Knudsen number 12

Due to this adherence the relative velocity between the fluid and the
surface of the body is zero or, in other terms, if is the absolute
velocity of the body surface and v the absolute velocity of the fluid, we
should have If that means the body surface is
at rest, then and also being a unit tangent vector on
the surface and n is the unit normal vector drawn to the surface.

These conditions are called the adherence or non-slip conditions, in
opposition with the slip conditions and which characterize
the inviscid (ideal) fluid.

Obviously the presence of a supplementary condition for the
viscous fluids equations should not surprise because these are partial
differential equations of second order while the ideal fluids equations are
of first order.

12This number is an adimensional parameter defined by

path and L a reference length.

where is the mean free
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We will see that if the viscosity coefficients tend to zero, the solution
of a viscous fluid problem does not converge to the solution of the same
problem considered for an inviscid fluid. More precisely, we will establish
that this convergence is non-uniform in an immediate vicinity of the
body surface (where the condition is also lost) where another
approximation (than that given by the model of inviscid fluid) should
be considered.

Concerning the boundary conditions they should be completed, in
the case of unbounded domains, with a given behaviour at infinity (far
distance) for the flow parameters.

All these features analyzed above are associated with the physical na-
ture of the fluid flow. Within the CFD we must take care to use the
most appropriate and accurate numerical implementation of the bound-
ary conditions, a problem of great interest in CFD. We will return to
this subject later in this book.

3.5 Shock Waves
In a fluid, besides the surfaces (curves) loci of weak discontinuities

there could also occur some strong discontinuities surfaces (curves) or
shock waves where the unknowns themselves have such discontinuities
in passing from one side to the other side of the surface (curve). To de-
termine the relations which connect the limiting values of the unknowns
from each side of the shock wave (the shock relations), we should use
again the general principles but under the integral form which accepts
lower regularity requirements on these unknowns. Once these relations
are established, we will see that if we know the state of the fluid in
front of the wave (the state “0”) and the discontinuities displacement
velocity it will be always possible to determine the state of the fluid
“behind” the shock wave (the state “1”). We will deal only with the

case of perfect gases where the internal specific energy is

and the total specific energy is the fluid being considered
in adiabatic (isothermic) evolution. This entails total energy conserva-
tion, a requirement which prevails in the equation of state in the form

13

Now we introduce the concept of “weak” solution which allows the
consideration of unknowns with discontinuities. Let us take, for instance,

13It is shown that the entropy increase, required by the second law of thermodynamics,
associated with a shock raise, does not agree with an equation of state in the form
where is constant.
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a nonlinear equation written in conservative form, i.e., in a domain D
of the plane namely

or

where and “div” is the space-time divergence operator.
If is a smooth function with compact support in the plane then
the above differential equation leads to the fulfilment, for any of the
“orthogonality” relation which comes, by integrating

by parts, to

If is a smooth function the last relation is equivalent with the given
differential equation; but if it is not smooth enough, the last equality
keeps its sense while the differential equation does not.

We will say that is a weak solution of the differential equation if it
satisfies for any smooth function with compact

support. Obviously, if we want to join also the initial conditions
then, integrating on (a subdomain of D from the half-plane

we get

and if has its support far from the real axis, the last term would
disappear again.

So we have both a differential and a weak form for the considered
equation. We will also have an integral form if we integrate the initial

equation along an interval of the real axis, precisely

Of course we should ask if a weak solution satisfies necessarily the in-
tegral form of the equation ? Provided that the same quantities, which
showing up in the conservative form of the equation are kept for the in-
tegral form too, the answer is affirmative. That is why the weak solution
will be basically the target of our searches.

Let us now investigate the properties of the weak solutions of the
conservation law in the neighborhood of a jump dis-
continuity (i.e., of first order, the only ones with physical sense). Let
be a weak solution along the smooth curve in the plane Let
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be a smooth function vanishing in the closed outside of a domain S, the
curve dividing the domain S into the disjoint subdomains and

Then

Since is a regular function in both and if n is the unit nor-
mal vector oriented from to then by applying Gauss’ divergence
formula and the validity of the relation in and in we are
led to

where and are the F values for taking the limiting values from
respectively

As the above relation takes place for any we will have [F · n] = 0
on where denotes the “jump” of F · n across

Suppose that is given by the parametric equation so that
the displacement velocity of discontinuity is Further

and F being the above relation becomes

where again [ ] designates the jump of the quantity which is inside the
parentheses, when the point is passing across (from to

A function satisfying the differential equation whenever it is possi-
ble (in our case in and and the above jump relation across the
discontinuity surface will satisfy both the integral and the weak form
of the equation.

Obviously, all the above comments could be extended to the conserva-
tive laws systems. Let us consider, as a conservative system, the system
of equations for an isentropic gas in a one-dimensional flow, precisely
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where (the specific momentum), system which is completed by
the state equation

But if instead of the equation of state we consider the energy
equation

with then some physical reasons show that the ac-
ceptance of the energy conservation is a much more realistic condition
than in general, depending on entropy and so it cannot be
constant.

In fact the above system together with does not have the
same weak solution as the same system but is completed with the energy
conservation.

There are special subjects as, for instance, the wave theory in hydro-
dynamics, where the results obtained by considering the equation of
state are close to reality. But, generally speaking, the shock
phenomena should be treated with the system completed with the above
energy equation instead of the equation of state.

From the jump relation across the discontinuity surface
which moves with velocity we get , for any of the equations of the

above system, the jump relations

called the Rankine–Hugoniot jump relations.
If it takes a coordinate system whose displacement with uniform ve-

locity would be, at a moment equal with the displacement velocity
of a discontinuity located at the origin of this system, then within this
new frame of coordinates, the previous relations will be rewritten
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where the subscripts identify the state “0” before the jump and the state
“1” after the jump. If the respective discontinuity
is of contact type because show that these discontinuities
move with the fluid.

If the discontinuity will be called a shock wave or, shorter,
a shock. As the fluid is passing through shock or,
equivalently, the shock is moving through fluid.

That part of the gas (fluid) which does not cross the shock is called
the shock front (the state “0”) while the part after the shock is called
the back of the shock (the state “1”).

From the Rankine–Hugoniot relations we could get simple algebraic
relations which allow the determination of the parameters after shock
(state “1”) by using their values before shock (state “0”).

If and are the sound speed in front and, respec-

tively, behind the shock, then denoting by and

which determine and with the data before the shock.
Analogously, we have

and from the perfect gases law we obtain for the “new” tem-
perature the evaluation

relation which, together with the above ones, solves completely the pro-
posed problem.

In what follows we will see what type of conditions should be imposed
to ensure the uniqueness of the (weak) physically correct solution.

It is easy to check that through every point of a shock in the
plane one can draw two characteristics, one of each side of the shock,

and being the projections of the fluid velocity on the shock nor-
mal, at the origin of the system) and by and we easily
get the relations
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i.e., the shock “separates” the characteristics. These characteristics are
oriented (both of them) towards the “past”, i.e., to the initial data line

or towards the “future” i.e., towards larger
A shock is said to obey the entropy condition if the two characteristics

which cross at each point of it are oriented backwards to the initial line
A shock which does not observe the entropy condition is called a

rarefaction shock. In gas dynamics the rarefaction shocks are excluded
because if such shock exists, the (weak) solutions of the problem will
not be unique and, more, such a solution does not depend continuously
on the initial data (the characteristics cannot be “traced back” to the
initial line) and the basic thermodynamic principles are violated.

We shall allow only shocks which do obey the entropy condition. This
restriction will make the (weak) solution of the problem unique.

A shock is called compressive if the pressure behind the shock is
greater than the pressure in front of the shock.

One shows that for a fluid with an equation of state under the form
(or, more generally, whose total energy is conserved while the

specific energy is given by the fulfilment of the entropy
condition holds if and only if the shock is compressive.

It has been proved that, for a perfect gas, the so-called Weyl hypothe-
ses are satisfied, which means

Then, besides the fact that the knowledge of the values of the flow pa-
rameters before the shock together with the shock displacement velocity
allows the determination of the flow parameters behind the shock, the
following properties across the shock take place:

1) There is an entropy increase which is of order 3 in or in

2) The pressure and the specific mass increase such that the shock is
compressive and

3) The normal component of the fluid velocity vs. the shock front is
supersonic before the shock, becoming subsonic after shock. Further, the
fluid flow before the shock will obviously be supersonic while after shock
it will be subsonic, the shock waves arising only within the supersonic
flows.

One can show that the Weyl hypotheses are satisfied by other gases
too.
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3.6 The Unique Form of the Fluid Equations
In the sequel we will analyze the conservative form of all the equations

associated with fluid flows — the equations of continuity, of momentum
torsor and of energy within a unique frame. Then we will show which
are the most appropriate forms for CFD. We notice, first, that all the
mentioned equations (even on axes projection if necessary) could be
framed in the same generic form

where U, F, G, H and J are column vectors given by

where are the components of the tensor of the vector f and
of the vector v.

In the above equations the column vectors F, G and H are called
the flux terms while J is a “source” term (which will be zero if the
external forces are negligible). For an unsteady problem U is called
the solution vector because its elements are dependent variables which
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can be numerically evaluated by considering, usually, some time steps.
Therefore using this approach one calculates numerically the elements
of U instead of genuine variables and Of course once the
numerical values for the U components are determined, the numerical
values for the genuine parameters are immediately obtained by

In the case of the inviscid fluids we

will follow the same procedure with the simplification
In the case of the steady flow, we have That is why for such

problems one frequently uses numerical techniques of marching type.
For instance if the solution of the problem is obtained via a marching
procedure in the direction of the axis, then our equation could be
written in the form

Here F becomes the “solution” vector while the dependent variables

are and From these

variables it would be possible to get again the genuine variables even
if this time the calculations are more complicated than in the previous
case.

Let us notice now that the generic form considered for our equations
contains only the first order derivatives with respect to and and all
these derivatives are on the left side, which makes it a strong conservative
form. This is in opposition with the previous forms of our equations (for
instance the energy equation) where the spatial coordinates derivatives
could occur on the right side too. That is why these last equations are
considered to be in a weak conservative form.

The strong conservative form is the most used in CFD. To understand
“why”, it would be sufficient to make an analysis of the fluid flows which
involve some “shock waves”. We will see later, that such flows imply
discontinuities in variable etc. If for determining of such flows
we would use, for instance, the so-called “shock capturing” method,
the strong conservative form leads to such numerical results that the
corresponding fluid is smooth and stable, while the other forms of these
equations lead to unrealistic oscillations, to an incorrect location of the
discontinuities (the shock) and to unstable solutions. The main reason
for this situation consists in the remark that whereas the “genuine”
variables are discontinuous, the dependent variables like and
are continuous across the shock wave (Rankine–Hugoniot relations).



Chapter 2

DYNAMICS OF INVISCID FLUIDS

The inviscid (ideal) fluids are hypothetical fluids in which the viscosity
is neglected and consequently there is no opposition while the fluid layers
slide “one on another”. Although such fluids don’t occur in nature, their
study offers useful information in the regions far enough from the solid
surfaces embedded in fluids. At the same time the neglect of viscosity
(i.e., all the coefficients of viscosity are zero) simplifies considerably the
flow equations (Euler) which allows a deep approach via the classical
calculus. Nowadays the interest has been renewed in inviscid fluid flows
because up-to-date computers are capable of solving their equations,
without any other simplifications for problems of great practical interest.
It is also interesting to note that for (the inviscid fluid case)
we have accomplished the conditions for a “perfect continuum”, the
Knudsen number being zero [153].

The target of this chapter is to set up the main results coming from
the Euler flow equations which allows a global understanding of flow
phenomena in both the incompressible and compressible case. Obvi-
ously, due to the high complexity of the proposed aim, we will select
only the most important results within the context of numerical and
computational methods.

1. Vorticity and Circulation for Inviscid Fluids.
The Bernoulli Theorems

Suppose that in the equations of vorticity under the hypothesis that
the external forces derive from a potential, which means in
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we set then we get

For a barotropic fluid (obviously for an incompressible fluid too) be-
cause and taking into account the equation of conti-

nuity, it turns out that so that we obtain

Similarly, from

we get such that, for a barotropic fluid, we fi-

each term of the Euler equation) could be written as
On the other hand, if we consider the flux of rotation (vorticity) across
a fluid surface that is as and the formula

holds, we can state the following theorem:

1 The Thompson theorem requires, basically, the existence of a uniform potential of accelera-
tions. Somne recent results, which have also taken into consideration the case of nonuniform
potential of accelerations, should be mentioned [122].

[153],

nally have This result, also known as the Thompson (Lord
Kelvin) theorem, states that the circulation along a simple closed curve,
observed during its motion, is constant whenever the fluid is inviscid
(ideal), barotropic (or incompressible) and the mass (external) forces
are potential.1 Correspondingly, in the above conditions, the strength
of a vortex tube is a constant too (Helmholtz).

In the case of the ideal incompressible or barotropic compressible fluid
flows, the vorticity (rotation) equation (obtained by taking the curl of
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THEOREM 2.1. The rotation (vorticity) flux across a certain part of
a fluid surface (which is watched during its motion) is constant.

As direct consequences of this theorem we have the following results
which can be proved by “reductio ad absurdum”:

A fluid surface which at a certain instant is a rotation (vorticity)
surface will preserve this quality all the time, i.e., it will be a rotation
(vorticity) surface during the motion. A similar result could also be
formulated for the vorticity (rotation) lines, these lines being defined as
the intersection of two vorticity (rotation) surfaces;

If, at a certain moment, the fluid flow is irrotational (potential),
then this quality will be kept at any later moment.

This last result, known as the Lagrange theorem and which is valid in
the above mentioned hypotheses, could be obtained either by reductio ad
absurdum (supposing that the flux of rotation across a certain surface,
with would be different from zero which leads obviously to a

contradiction) or by remarking that the equation

has the solution (in Lagrangian coordinates) where
is the vorticity vector at the moment and is the mass density
at the same moment.

If the fluid flow is irrotational, then there will be a velocity potential
such that As from Euler’s equation in

Helmholtz form, in the same hypotheses of a barotropic fluid and of the
conservative character of the external forces, we also get

In other words, in an irrotational flow of an inviscid barotropic fluid
with external forces coming from a potential U, we have

where is a function depending only on time (in the steady
case this function becomes a constant, which does not change its value
in the whole fluid domain). This result, known as the second Bernoulli
theorem (integral) could be also extended in the case of a rotational
fluid flow. Precisely, by considering the inner product of both sides of
Euler’s equation with v, we will have that where

If the flow is steady, then we will have at once
i.e., the quantity is constant at any path line, the
value of this constant being different when we change the trajectory.
This last result is known as the first Bernoulli theorem (integral).
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Now we remark that the above quantity K also satisfies, in the steady
state case, the equation and, correspondingly, v
·gradK = 0 which could be obtained from the Euler equation in the
Helmholtz form, with the same previous assumptions. Consider the
energy equation for an inviscid fluid with no heat change with its sur-
rounding and with a time-free potential of the external forces,
that is

or where
The energy equation shows that H = constant on each streamline.

From the expression of H we get, by taking the grad operator and using
the equality that

where is the specific volume.
At the same time the first law of thermodynamics written under the

“gradient” form, i.e., allows us to write
that or

The last equality is known as the Crocco–Vazsonyi equation and it
shows that H is constant in the whole domain of the flow provided
that and In other words, for the isentropic steady
potential fluid flows H is constant together with K.

In the absence of the external forces where is the en-
thalpy at the zero velocity (stagnation) points. In this case the Crocco
– Vazsonyi equation can be written in the simplified form as

Generally, the values of the constants taken by K and H along a
certain streamline, in the steady case, are different. But in the case of
isentropic flows the constants for K and H will be the
same.

It has been shown that the modification of these constants while the
streamlines are changing (which does not occur in the case of irrotational
flows) is a direct consequence of the existence of the rotational feature
of the whole fluid flow [153].
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2. Some Simple Existence and Uniqueness
Results

In what follows we will present, successively, some existence and
uniqueness results for the solutions of the Euler system (equations). A
special accent is put on the uniqueness results because, in fluid dynam-
ics, there is a large variety of methods, not necessarily direct (i.e., they
could also be inverse, semi-inverse, etc.), which enable us to construct
a solution fulfilling the given requirements and which, if a uniqueness
result already exists, will be the right solution we were looking for.

At the same time we will limit our considerations to the “strong”
solutions, i.e., the solutions associated to the continuous flows, while the
other solutions (weak, etc.) will be considered within a more general
frame, in the next chapter.

We will start by focussing on additional requirements concerning the
associated boundary conditions. The slip-conditions on a rigid wall —
which are necessary conditions for any deformable continuum and which,
in the particular case of the inviscid fluids are proved to be also sufficient
for the mathematical coherence of the joined model — take the known
form v · n = 0 or, when the wall is moving, being the
relative velocity of the fluid versus the wall).

If our fluid is in contact with another ideal fluid, the contact surface
(interface) is obviously a material surface whose shape is not “a priori”
known. But we know that across such an interface the stress should
be continuous. As in the case of the ideal fluid the stress comes to
the pressure, we will have that across this contact surface of (unknown)
equation F = 0, there are both (the Euler–Lagrange criterion for

of two conditions, the kinematic condition and the dynamic
condition does not lead to an over-determined problem
because this time, we should not determine only the solution of the
respective equation but also the shape of the boundary F = 0, the
boundary which carries the last data. In other words, in this case, we
deal with an inverse problem.

If the flow is not adiabatic we will have to know either the temperature
or the vector q on the boundary of the flow domain.

If the flow is adiabatic, from the energy equation we will have
and, if the fluid is also perfect the Euler system will
have five equations with five (scalar) unknowns v, If, additionally,

material surfaces) and and being the limit values of the
pressure at the same point of the interface, a point which is “approached”
from the fluid (1), and from the fluid (2) respectively). The existence
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the flow is homentropic then (as we have already seen) the fifth equation
will be

Concerning the initial conditions for the Euler equations, they arise
from the evolution character of these equations. Such initial conditions
imply that we know T and v at an “initial” moment so that these
conditions, together with the Euler equations, set up a Cauchy problem.
From the classical Cauchy–Kovalevski theorem we can conclude that this
Cauchy problem for the Euler system (with the equation of con-
tinuity, the constancy of entropy on each path line which means
in adiabatic evolution) and the state equation together with
the initial conditions

solution defined on the domain where
T(r), for any r, is a function depending continuously on initial data in
the metrics of analytical spaces.

Of course the above mentioned result is a locally time existence and
uniqueness theorem which is valid only for continuous functions (data
and solution).

Generally, there are not global (for all time) existence and uniqueness
results, excepting the two-dimensional case due to the vorticity conser-
vation 2. Nevertheless the practical applications require certain
sharp global uniqueness conditions for the Cauchy problem or more gen-
erally for the Cauchy mixed problem (with also boundary conditions, at
any time associated with the Euler system.

Before presenting such uniqueness results we remark that the “non-
uniqueness” of the Euler system solution would be linked to the “sud-
denness” of the approximation of a viscous and non-adiabatic fluid by
an ideal fluid in adiabatic evolution. R. Zeytonnian3 has shown that the
loss of the boundary conditions associated with the mentioned approxi-
mation, in the circumstances of the presence of some bodies of “profile
type”, could be completed by the introduction of some Joukovski type
conditions (to which we will return) while in the case of some bodies
of “non-profile type”, the model should be corrected by introducing a
vortices separation (vortex sheets).

Let now be a solution of the Euler system for
a solution which is defined in a bounded domain We accept

that the boundary of this domain is composed of a three-dimensional
spatial domain enclosed in the hyperplane and by a sectionally

2See R. Zeytonnian, Mécanique Fondamentale des Fluides, t.1, pp. 154 – 158 [160].
3See R. Zeytonnian, Mécanique Fondamentale des Fluides, t.1, p. 126 [160].

where is a well-posed problem and for any ini-
tial data and analytical state equations, i.e., there is a unique analytical
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smooth hypersurface (for which has a common border with the
domain Let also be the outward unit normal to
It is proved that the uniqueness of U in is intimately linked with the
hyperbolicity of the Euler equations which requires the fulfilment of the
following complimentary hypothesis: at each point of the hypersurface

the inequality

should be satisfied.
More precisely, one states that ([160]) if the solution U of the Euler

system exists in the class and this solution satisfies the condition
(2.1), while then for any other solution of
the Euler system, one could find a constant such that
fulfils 4 for Consequently if the equality

holds on (that means in the hyperplane then it will be
satisfied at any point-moment Obviously called
the determination domain for the solution of the Cauchy problem with
the initial data on is the union of all the domains which back on
and on whose boundary the inequality (2.1) is satisfied.

It has been also proved that if is a smooth boundary (of
class) of the determination domain then this hypersurface will
be a characteristic surface of the Euler system, the inequality sign of
(2.1) being replaced by that of equality.

We now remark that in the conditions of an Euler system in adiabatic
evolution with a state equation of class, assuming that the
domain of the fluid flow has the boundary which is composed
of both rigid and “free” parts, and is the propagation velocity of the
surface [33] then, if

(i) are functions of class on [0, T] × D,
(ii) the initial conditions are given together with
(iii) the boundary conditions on and, similarly,

v, in the regions where
then the Euler system (even with in adiabatic evolution, with
the state equation has a unique solution5.

The uniqueness is still kept even in the case when there are not bound-
ary conditions at the points of where being the speed of
sound.

For the definition of the norm we deal with, we should first consider all the cuts of
by the hyperplane Then by introducing the vectorial function
on its norm corresponding to the cut will be defined by

5J.Serrin [135].

4
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In the case of the incompressible inviscid isochrone or baro-

tropic compressible fluid flows, Dario Graffi has given a uniqueness result
which requires [57]:

(i) the functions and are continuously differen-
tiable with bounded first derivative on [0, T] × D,

(ii) the initial conditions the boundary conditions v · n
and the external mass forces f are given, respectively, on and

(iii) the state equation (in the barotropic evolution) is of the class.
We remark that these results keep their validity if D becomes un-

bounded — the most frequent case of fluid mechanics — under the re-
striction of a certain asymptotic behaviour at far distances (infinity) for
the magnitude of velocity, pressure and mass density, namely of the type

where is a positive small parameter.
We conclude this section with a particular existence and uniqueness

result which implies an important consequence about the nonexistence of
the Euler system solution for the incompressible, irrotational and steady
flows.

More precisely, if D is a simply connected and bounded region, whose
boundary moves with the velocity V, it can easily shown that [19]:

(i) there is a unique incompressible, potential, steady flow in D, if and
only if

(ii) this flow minimizes the kinetic energy over all

the vectors u with zero divergence and satisfying
We remark that this simple result, through (ii), associates to the prob-

lem of solution determining a minimum problem for a functional, that
is a variation principle. Such principles will be very useful in numerical
approaches to the fluid dynamics equations and we will return to them
them later in this book.

At the same time if our domain D is bounded and with fixed bound-
ary only the trivial solution (the rest) corresponds to
a potential incompressible steady flow. Obviously in the case of the un-
bounded domains this result will be not true provided that the boundary
conditions on should be completed with the behaviour at infinity.

The same result (the impossibility of an effective flow) happens even
if the domain is the outside of a fixed body or a bodies system, the
fluid flow being supposed incompressible with uniform potential (without
circulation) and at rest at infinity.
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3. Irrotational Flows of Incompressible Inviscid
Fluids. The Plane Case

The Lagrange theorem, stated in the first section of this chapter,
establishes the conservation of the irrotational character of certain fluid
flows. An important application of this theorem is the case when the
fluid starts its flow from an initial rest state (where, obviously,

If a fluid flow is irrotational, then from the condition rot v = 0 we
will deduce the existence of a scalar function defined
to within an additive function of time, such that Obvi-
ously, the determination of this function, called the velocity potential, is
synonymous with that of the velocity field. But from the equation of
continuity we also get while the slip
condition on a fixed wall immersed in the fluid, becomes

that is the determination of comes to the solving of a boundary value
problem of Neumann type joined to the Laplace operator.

Obviously, if the domain flow is “unbounded” we need some behaviour
conditions at far distances (infinity) which, in the hypothesis of a fluid
stream “attacking” with the velocity an obstacle whose boundary is

implies that

So that in this particular case the flow determining comes either to a
Neumann problem for the Laplace operator (the same problem arises in
the tridimensional case too), that means in the fluid domain D
with or to a Dirichlet problem for the same Laplace operator
(which is specific only in the 2-dimensional case) when in D with

In the conditions of an unbounded domain (the case of a flow past a
bounded body being included too), the above two problems should be
completed by information about the velocity (that is about and

respectively) at far distances (infinity).
Now we will show that in a potential flow past one or more body(ies),

the maximum value for the velocity is taken on the body(ies) boundary.
If M is an arbitrary point in the fluid which is also considered the origin
of a system of axes, the axis being oriented as the velocity at M,
then we have while for any other point P, we have

If the function is harmonic and consequently it does not have an
extremum inside the domain, then there will always be some points P
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so that which means In other words
the unique possibility for the velocity to get a maximum value is only
on the boundary. Concerning the minimum value of the velocity this
could be reached inside the domain, namely in the so-called stagnation
points (with zero velocity). If the fluid flow is steady and the external
forces can be neglected, from the second Bernoulli theorem (integral)
it comes that, at a such stagnation point, the pressure has a maximum
while at boundary points of maximum velocity, the pressure should have
a minimum.

Let us now consider the case of an incompressible irrotational plane
(2-dimensional) fluid flow.

Let Oxy be the plane where we study the considered fluid flow,
and being the velocity vector components on and respectively,
and the magnitude of this vector. The fluid being incompressible, the
equation of continuity can be written such that udx – vdy
is, for every fixed an exact total differential in and Consequently,
there is a function defined to within an additive function of
time by the equality where is seen as a parameter and
not as an independent variable.

This function is the stream function of the flow since the
curves at any fixed moment define the streamlines
of the flow that has been shown. On the other side, the flow being
irrotational, we also have which proves the existence of a
second function the velocity potential, defined also to within
an additive function of time, such that where again is
considered a parameter and not an independent variable. Hence

or, under vectorial form

k being the unit vector of the axis directly perpendicular on the plane
Oxy.

But these equalities show that the two functions and satisfy
the classical Cauchy-Riemann system and, consequently, the function

is a monogenic (analytic) function of the complex variable
which could depend, eventually, on the parameter This

function is called the complex potential of the flow and it is obviously
defined to within an additive function of time. The real and imaginary
part of which means the velocity potential and the stream function
of the flow, are two conjugate harmonic functions; the equipotential lines
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and the streamlines form, at any point of
the fluid flow, an orthogonal network, the inner product
being zero. At the same time we also have

The function is also an analytic function of called
the complex velocity of the flow and which will be denoted by ; the
modulus and the argument of define, respectively, the magnitude of
the velocity and the angle with changed sign, made by the velocity
vector with the axis as

We conclude that the kinematic description, the whole pattern of the
considered flow, could be entirely determined by knowing only the ana-
lytic function the complex potential of this flow at the considered
moment

In the previous considerations we have seen that, to any incompress-
ible potential plane fluid flow it is possible to associate a complex poten-
tial. It is important to find out if, conversely, any analytic function of

can be seen as a complex potential, i.e., it determines an incompress-
ible irrotational plane flow of an inviscid (ideal) fluid. To answer this
question we recall that, from the physical point of view, it is necessary

sidered domain so that, at any point of takes only one
value.

Once accomplished this requirement, due to the analyticity of the
function at any point of the conjugate harmonic functions
and (the real and the imaginary part of satisfy the Cauchy–
Riemann system, that is but such a fluid flow
should be an incompressible irrotational plane flow of an inviscid fluid.
On the other hand, if the domain is simply connected, we will also
deduce that is analytic and uniform too, which means a holomor-
phic function in Really, being the affix of a point of we have

the integral being taken along an arbitrary arc

connecting the points and M (or and The Cauchy–Goursat
theorem proves, being uniform and simply connected, that the
above expression for does not depend on the chosen arc and con-
sequently is uniform. It will not be the same if the domain is

to choose the function such that its derivative, the complex velocity,
is not only an analytic function but also a uniform function in the con-



62 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

multiply connected. Let for example, be the domain sketched in
Figure (2.1) where and are two arcs joining and M oriented

as it is shown; by calculating the integral along and then along

we will get distinct values whose difference is equal to the integral,
of function calculated along the closed contour On the

Figure 2.1. The case of a multiply connected domain

other hand it is known that the difference is equal to where
is a positive, negative or null integer6 while is the number

given by

(C) being a closed contour of encircling once, in the direct sense,
the domain of boundary We remark that is

the circulation of the velocity vector when we contour once, in a direct
sense, the curve (C) and is the flux across (C), as we

have already made precise.
But then the function where is the affix of an inside

point A of has exactly the same nonuniformity properties as
which means, by deplacing along the same (L) the difference between

6The modulus of the integer is the number which expresses how many times the respective
contour encircles the simply connected domain of boundary is negative if the
contour is encircled, times, in an inverse sense and it is positive if the encircling is in a
direct sense (in the case of Figure 2.1,



Dynamics of Inviscid Fluids 63

the initial and the final value is again Consequently the
function is uniform, that is holomorphic in

We conclude that a function in the case of a doubly connected
domain, could be considered a complex potential if it admits the repre-
sentation plus a holomorphic function of

More generally, the following result holds:
Let be the connected components of the com-

plement of a bounded domain and let be a set of internal
points of respectively An analytic function can be
considered a complex potential of a fluid flow in if and only if there
are a set of real numbers and such that

is a holomorphic function in
Case of steady flows. If the flow is steady and will be free of (they

do not depend explicitly on time) and consequently we may suppose that
and have the same property.

Concerning the effective determination of the complex potential for a
certain plane flow, it could be done taking into account the boundary
conditions. In the particular case when the fluid past a fixed wall, this
wall, due to the slip condition is a streamline of our flow
and consequently, along this curve, is constant. Conversely,
if a plane fluid flow is known (given), we could always suppose that a
streamline is a “solid wall”, because the slip condition is automatically

fulfilled shortly, we could say that it is possible to so-

lidify (materialize) the streamlines of a given flow (under the above
assumption).

written as To assess this constant it is suf-
ficient to have both the magnitude of the velocity and the pressure

also have Each of the two sides of the previous equality

is non-dimensional. The first one, denoted by is called the pressure
coefficient.

Starting from some analytical functions satisfying the unifor-
mity properties stated above, it could always build up corresponding
fluid flows. For instance a linear function and being

Finally, supposing that and implicitly the velocity field are deter-
mined, it will always be possible to calculate the pressure at any point
of the fluid flow by using the second Bernoulli theorem which can be

at a point belonging to the flow domain. Additionally, if f = 0, we



arithmic functions and defined on the
whole plane without its origin (D and being real constants) correspond
respectively to a source (sink) — according to the sign of flow rate D
— and to a point vortex of circulation all of them being located at
the origin. For practical applications one considers also the so-called

origin, whose complex potential is
Of course all these singular flows could be shifted to another location
of the plane (and even with an axis making an angle with by

considering the change of coordinates

Properties of the above elementary flows as well as a set of additional
examples of such simple flows one finds, for instance, in Caius Iacob’s
book “Introduction mathématique à la mécanique de fluides”, chapter
VII, page 407 [69].

We now remark that any linear combination of the complex potentials
is still a complex potential in the common definition domain where

the analytic functions satisfy the uniformity requirements stated
above. Consequently, starting with some given fluid flows, it is always
possible to set up, by superposition, new flows, that means to consider
linear combinations of the respective complex potentials.

For instance by superposition of a uniform flow parallel to the
axis, of complex potential and of a doublet placed at the origin of
complex potential and R being positive real constants), one
gets the complex potential of the fluid flow past a circular disk (cylinder)
of radius R without circulation. If we superpose on the previous flow a
point vortex located at the origin, which leads to the complex potential

we obtain the fluid flow past the same disk of radius R but this time
with circulation

Detailed considerations on the steady, plane, potential, incompressible
flows past a circular obstacle can be found, for instance, in the same [69]
or in [52].

4. Conformal Mapping and its Applications
within Plane Hydrodynamics

In the previous section we mentioned the technique to build up fluid
flows by considering elementary analytic functions. But it will be im-
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constants, will lead to a uniform (constant velocity) flow while the log-

doublet (dipole) of axis and strength (moment) K, located at the
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portant and very useful to have at our disposal more general construc-
tion methods for the fluid flows. The conformal mapping will be such
a method for determining a fluid flow satisfying some “a priori” given
requirements.

Generally, a conformal transformation of a domain from the plane
onto a domain (D) from the plane (Z), is a holomorphic function

which fulfils the condition (the angles preserving
condition). If the conformal mapping is also univalent (injective) this
will be a conformal mapping of the domain onto the domain (D).
Obviously the holomorphicity is preserved by a conformal mapping. The
same thing happens with the connection order of the domain We
know that the determination of the conformal mapping (on a canonical
domain) is synonymous with that of the Green function associated to the
Laplace operator and to the involved domain, that is with the possibility
to solve a boundary value problem of Dirichlet type for the same operator
and domain [69].

Concerning the existence of conformal mapping, in the case of a
simply-connected domain, a classical result known as Riemann–Cara-
theodory’s theorem states that:

For a given simply-connected domain from the plane and
whose boundary contains more than a point, it is always possible to map
it conformally, in a unique manner, onto the circular disk from
the plane (Z), such that to a certain point there corresponds an
internal given point from and to a certain direction passing
through there corresponds a given direction passing through

We remark that the uniqueness of the conformal mapping holds to
within three arbitrary parameters, so that we deal, basically, with a
class of functions which defines the considered conformal mapping.

Unfortunately the proof of the existence in this theorem is far from
being a constructive one such that, in practical problems, we are faced
with the effective determination of the conformal mapping. There are
few cases when these conformal mappings are explicitly (analytically)
found. That is why the approximative procedures (one of them being
sketched in a next section) are of the greatest interest.

Finally, the above result could also be extended to the doubly-connec-
ted domains (see, for instance, Y. Komatu [75]) and even to the general
multiply-connected domains but, in this last case, it is extremely difficult
to determine and work with the involved functions. As a consequence
the conformal mapping method is not practically used in the case of
domains with a higher order of connection.

Returning to the simply-connected case, the following result is of re-
markable interest in different applications:
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THEOREM 2.2.  If is a simply-connected domain from the plane
bounded by a simply closed curve and if a holomorphic

function in has the additional property that when is deplaced
along the contour in a certain sense, its image Z describes a simply
closed curve C— delimiting a domain (D) from the plane (Z), in such
a way that the correspondence between and C is a bijection, then the
correspondence between and (D) will also be a bijection and, conse-
quently, the function will be a conformal mapping of onto
(D).

Let now F ( Z ) be the complex potential of a given fluid flow defined
in a domain (D) of the plane (Z); we suppose as known the function

and its inverse which establish a conformal map-
ping between the domain (D) of the plane (Z) and a domain of the
plane Then the function with the same regularity
properties as F(Z), will be the complex potential of a new fluid flow
defined in and called the associated (transformed) flow of the given
fluid flow by the above mentioned conformal mapping.

Really could be considered as a complex potential because

and so will be a uniform function in together with in
(D ) , as well as is also uniform together with

We also remark that in two homologous points and Z of the con-
sidered conformal mapping, we have But then the values
of the velocity potential and of the stream function are equal at such
homologous points; consequently, the streamlines and the equipotential
lines of the two flows are also homologous within the considered confor-
mal mapping. More, the circulations along two homologous arcs and the
rates of the flow across two homologous arcs are equal. Particularly, if
a fluid flow defined by F(Z) has a singularity at (source, point
vortex, etc.), the associated flow will have at the point the homol-

the relation between the surface elements it results that
and V being the velocities magnitude in the associ-

ated flows of the same fluid density

ogous of a singularity of the same nature and even strength. Of
course, at two homologous points the fluid velocities are not (in general)
the same, which comes out from the above equalities for the complex
velocities.

Concerning the kinetic energy this will be preserved too, as from
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4.1 Helmholtz Instability
Now we will study the stability of an inviscid, incompressible, parallel

fluid flow, containing a velocity discontinuity, following [22]. Precisely,
we will suppose that, above the axis, the fluid moves with a uniform
velocity U in the positive sense and, below, it moves with a uniform
velocity of equal magnitude but in the opposite sense. In this case, the

axis represents a discontinuity surface for the velocity and it is the
site of a vortex sheet of uniform circulation 2U per unit of width. We
remember that the circulation is

where V is the magnitude of the velocity of the fluid and ds is the arc
element along a closed curve encircling the vortex.

Such a vortex sheet is unstable i.e., if a displacement happens the
sheet will go away and will not return to its initial position. This could be
shown by analytical studies, considering small sinusoidal perturbations.
Here we will numerically analyze the time evolution of such perturba-
tions.

We divide the vortex sheet into segments of equal length on and
each segment will be divided into equispaced discrete vortices. As
the total circulation per unit length is 2U, each discrete vortex has the
circulation We will suppose that at the initial moment these
vortices are displaced from their initial positions to the positions

Let us consider the row of vortices containing the vortices
The complex potential generated by this row is

Thus the complex potential generated by all the rows which compose
the sheet is

Replacing this potential in the relation
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by differentiating and separating into the real and imaginary parts we
obtain the components and of the velocity at the point So,
for the vortex we have

and

By introducing the dimensionless variables

the relationships (2.2), (2.3) and (2.4) become

Due to the symmetry and periodicity of the involved functions, the
computation is needed only for within a half of the wave-
length. The greatest part of this computation involves the above Cauchy
problem numerically solving.

The computer result is an animation which shows the evolution of the
perturbation in time (see also Figure 2.2).

An enlarged picture of the interest zone, obtained by cubical interpo-
lation of X and Y, is shown in Figure 2.3.

The MATLAB code is
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Figure 2.2. Evolution of a vortex sheet after perturbation

Figure 2.3. Evolution of a vortex sheet after perturbation, T = 0.30
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5. Principles of the (Wing) Profiles Theory
5.1 Flow Past a (Wing) Profile for an Incidence

and a Circulation “a priori” Given
Let be a contour — the right section, in the working plane, of an

arbitrary cylinder; in aerohydrodynamics such a cylinder could be seen
as an airfoil or a wing of a very large (“infinite”) span (to ensure the
plane feature of the flow) and the respective right section is called
wing profile or shorter profile7.

The main problem of the theory of profiles is to study the steady flow
of a fluid past a profile (obstacle), a flow which behaves at infinity (that
means for very large) as a uniform flow of complex velocity

By incidence of the profile with respect to we will understand
the angle made by the velocity vector at far field (infinity) with the

Besides the incidence of the profile let us also establish precisely
(“a priori”) the circulation of the flow around the profile.

The determination of the complex potential comes then to the search

1) is an analytic and uniform function in

3)

Let (D) be the domain of the plane (Z) defined by and let
or be the canonical conformal mapping8 which maps

(D) onto the domain the exterior of the given profile
The complex potential F(Z) of the associated (transformed) flow will

satisfy the properties 1), 2) and 3) provided that and are replaced by
F and Z, while and are replaced, respectively, by (D ) and (C).
More precisely, the fulfilment of the conditions 1) and 2) comes from the

ical, of the domain – the outside of the closed contour – onto the outside of a circular
circumference (C) of radius R, centered at the origin, a mapping which in admits a

development in the form The radius R of the circumference (C) is an “a

priori” unknown length which depends only on the given contour

already studied parallelism between and F(Z), while the condition

7With regard to the geometry of profiles, some additional considerations can be found, for
instance, in the Caius Iacob book “Introduction mathèmatique à la mécanique des fluides”,
pp. 652-654 [69]. In this book, starting with p. 435, some special classes of profiles are
envisaged too.
8We recall the following basic theorem: “ There is a unique conformal mapping, called canon-

for an analytic function such that:

2) its imaginary part is constant along
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3) is a direct consequence of the equality which is always

valid for a canonical conformal mapping.
But we have already established a function F ( Z ) answering these

questions; hence, the function that we seek is given by
where, of course,

It is shown that the thus determined function is, up to an ad-
ditive constant without importance, the unique9 function satisfying the
conditions 1), 2) and 3). The fundamental problem of the theory of
profiles is thus reduced to the problem of determination of the canonical
conformal mapping of the domain — the exterior of the profile —
onto the outside of the circular disk.

If the fluid flow past a circular disk has some singularities (sources,
point vortices, doublets, etc.) an important result which allows the de-
termination of the corresponding complex potential is the “circle (Milne–
Thompson) theorem” which states the following:

The function which is analytic in D — the exterior of the cir-
cumference — except at finite number of singular points
whose principal parts with respect to these singularities is and
which is continuous on will satisfy the requirement

only if being a real constant.

Some remarkable extensions of the circle (Milne–Thompson) theorem
are given by Caius Iacob [69].

The Blasius formulae [52] allow us to evaluate directly the global
efforts exerted on the profile by the fluid flow. We will limit ourselves to
the determination of the general resultant of these efforts, which comes
to the “complex force” given by the formula (Blasius–Chaplygin) [52]

being considered in a direct sense.

To calculate this integral we remark that it is possible to continuously
deform the integration contour into a circular circumference of an
arbitrarily large radius, centered at the origin, being analytic and
uniform in the whole outside of that means in on the other

9This result is a consequence of the uniqueness of the solution of the external Dirichlet
problem for a disk with supplementary condition of a given non-zero circulation. See, for
instance, Paul Germain, “Mécanique des millieux continus”, pag. 325, Ed. Masson, 1962
[52].
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hand, for large enough, using and

we also have

the unwritten terms being infinitesimally small of second order in
and Hence

such that

So, we can see that the general resultant is acting on a direction which
is perpendicular to the attack (far field) velocity, its algebraic magnitude
being This result is known as the Kutta–Joukovski theorem and,
according to it the resultant component on the velocity direction — the
so-called drag —, is zero, which represents D’Alembert’s paradox, while
the normal component vs. the velocity direction, the so-called lift, would
be zero if the flow is without circulation.

D’Alembert’s paradox also holds for three-dimensional potential flows.
This “weakness” of the mathematical model could be explained not only
by accepting the inviscid character of fluid and, implicitly, the slip-
condition on rigid walls but also by assuming the potential (irrotational)
character of the entire fluid flow, behind the obstacle too. However ex-
perience shows that, behind the obstacles, there are vortices separations.
That is why we will consider, in the next sections, the case of the almost
(nearly) potential flows — that is with vortices separation — and when
D’Alembert’s paradox does not show up.

5.2 Profiles with Sharp Trailing Edge.
Joukovski Hypothesis

Many aerodynamics profiles have “behind” an angular point, the plane
trace of the sharp edge of the wing with infinite span. Let be the
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affix of this sharp trailing edge of and be the affix of its
homologous from (C) (by the canonical conformal mapping considered
before). The function in the neighborhood of behaves
as10

the omitted terms in this expansion being of order higher than in
According to the above expansion if a direction, passing through

is rotated with an angle then the homologous direction passing
through will rotate with the angle If we denote by
the angle of the semitangents drawn to at (that is the “jump”
of a semitangent direction passing through is see Figure 2.4
A), one could see that the exponent in the above expansion should
necessarily be the “jump” of the homologous direction from the
plane Z, thus being (see Figure 2.4 B).

Figure 2.4. Profile with sharp trailing edge

Consequently, in the vicinity of

and this derivative vanishes at But then, from

one could see that the complex velocity in the neighborhood of the sharp

10See, for instance, C. Iacob, “ Introduction mathématique à la mécanique des fluides”, p.
645 [69].
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trailing edge of the profile of the affix has, in general, an unbounded
modulus. This situation does not arise when is a zero velocity
(stagnation point) for the envisaged flow; really, being a simple
zero for and

will be zero at if or, bounded, if (this last case
corresponds to the presence, at the trailing edge, of a cuspidal point of

To avoid the existence of infinite velocities in the neighborhood of
the sharp trailing edge (which does not have any physical support), one
states the following hypothesis, called also the Joukovski–Kutta hypothe-
sis (condition): “The circulation which, for a given incidence, should be
considered for the flow around a profile with sharp trailing edge, is that
which leads to a finite velocity at the trailing edge”.

To determine the effective value of this circulation it would be suffi-
cient to write that is a stagnation (zero velocity) point for
the transformed (associated) flow around the disk (C).

From the expression of the complex velocity on the circular boundary
in the fluid flow past the disk [69], that is

we could see that this implies and hence

So that, taking into account the Joukovski hypothesis, there is only
one flow past a profile when the incidence is “a priori” given. The angle

defines the so-called zero lift direction because, if and
the lift will be also zero by the above evaluation for

5.3 Theory of Joukovski Type Profiles
Let us consider the transformation whose derivative

is This transformation defines a conformal mapping
between the planes and (Z) except the singular points Z = ±1 where
the conformal character is lost.

It is shown that if its image in the plane will
be the ellipse
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whose focuses are located at the points A (1,0) and In the
case when the image in the plane (Z) will be the segment [–1,1]
run in both senses (on the “upper border” and then, in the opposite
sense, on the “lower border”). Obviously, in this case, the considered
transformation would map both the outside and inside of the unit disk

onto the whole plane with a cut along the segment [–1, 1]
(in accord with the existence of two inverse transformations

where, to fix the ideas, the positive determination of the root
at is considered).

If is a circumference passing by A and its image will be only a
circular arc joining A and and crossing the center C of an arc which
is run in both senses. Let’s now consider a circumference passing only
through the singular point A (and not through Its image will be
a closed curve with a sharp cuspidal point at A where the tangent is
the same with that to the arc which is also “the skeleton” of this
contour.

This image contour is called the Joukovski (wing) profile, and the ini-
tial considered transformation is of Joukovski or Kutta–Joukovski type.

Obviously to a fluid flow around of velocity at far field, it

could associate a fluid flow of velocity at infinity, past the considered
Joukovski profile, the incidences in both flows being the same.

The Joukovski profiles are technically hard to make and more, they are
not very realistic for practical purposes. That is why their importance
is mainly theoretical.

The above Joukovski type transformation could be generalized by
considering

or even the last transformation having the advantage of
equal velocities at far field in the associated flows. We remark that the
last form could be rewritten as

and it transforms the outside of onto the whole plane with
a cut along the segment [–2R, 2R]. A direct generalization would be

which points out that
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a form which avoids the sharp cuspidal point and which, in the vicinity
of infinity, has the expansion

In this case the image of a circumference passing through – R and
R will be the union of two circular arcs, symmetrical versus  and
passing through and

Finally, if one considers the image of a circumference passing only
through Z = R and centered on the OX axis, this image will be tangent
to the previous symmetrical contour at where it has also a sharp point
with the angle of semitangents equal to Such an image is known
as a Karman–Trefftz profile. An application on a dirigible balloon of
Karman–Trefftz type is given in chapter 6, 3.3.

Writing the Joukovski type transformation under the form

von Mises has considered the generalization

Again a circumference passing through Z = R is transformed onto a
(wing) profile of von Mises type, with a sharp point at a certain and
where the jump of each semitangent is

We remark that if the Joukovski type profiles depend on two param-
eters (like the coordinates of the center), the Karman – Trefftz type
profiles depend on three parameters (with the additional while the
von Mises type profiles depend on parameters.

E. Carafoli has introduced the transformations of the type
with a positive integer (the order of the pole For small

 one obtains quasi–Joukovski profiles.
Caius Jacob has considered a class of profiles defined by the conformal

mappings expressed in terms of rational functions [70].
Recently, I. Taposu has emphasized a special class of profiles (“dolphin

profiles”) whose use in practice could improve the classical concepts of
aerodynamics [139].

In different laboratories around the world one deals with classes of
profiles (Naca, Göttingen, ONERA, RAE, Tzagy, etc.) which are given,
in general, “by points” and, seldom, by their analytical form.
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5.4 Example
In the sequel we will illustrate a particular transformation (mapping),

namely the Joukovski transformation (see section 2.5.3),

By this transformation the complex potential of a uniform flow becomes
i.e., the potential for a uniform flow past a circular

cylinder of radius U being the magnitude of the velocity at far field.
This transformation, where allows the conformal

transformation of a circle of radius  centered at from the
second quadrant onto a so-called Joukovski airfoil (profile) in the

 plane.
Let us now consider a uniform flow of velocity U in the positive

direction past the above Joukovski airfoil. In particular, its sharp trailing
edge at is the image of the point Q at where is crossed
by the above circle.

The magnitude V of the velocity in the  plane is related to the
magnitude of the velocity in the plane by the relation

i.e.,

We remark that if the velocity at Q where then the
velocity V at the sharp trailing edge becomes infinite, which
is a contradiction with the Joukovski–Kutta condition. Thus, we must
impose that the point Q on the circle be a stagnation point; this goal
may be reached if we create a clockwise circulation on the circle,
and this circulation is then conserved by the conformal mapping. The
magnitude of this circulation is and the flow
past the circle is then constructed by adding to the uniform stream a
doublet and a point vortex, so that we get the complex potential of the
resultant flow

Here the constant term has been added but the values of the
stream function on the circle do not change after this superposition.
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The variables are related by the relationship
and they control the shape of the airfoil. For instance, and

determine the thickness and the chord length while the ordinate of P
the “camber” of the airfoil.

For our example we will take
Using the formula for the uniform motion with circulation past

a circle in the plane, we generate the airfoil profile as a level curve
(streamline) in the  plane.  Other level curves
give other streamlines around the airfoil, see Figure 2.5.

Figure 2.5. Uniform flow past a Joukovski airfoil

The pressure on the surface could be calculated using the velocities,
from the formula (2.8)

and then the dimensionless pressure difference (the pressure coefficient)
at every point can be calculated according to Bernoulli’s relation by

It is shown in Figure 2.6.
The MATLAB program is
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Figure 2.6. The pressure distribution around the airfoil

5.5 An Iterative Method for Numerical
Generation of Conformal Mapping

In the sequel, we will present a method for the approximate construc-
tion of conformal mappings for arbitrary shaped obstacles [87].

It is known that a function which maps conformally the
outside of a profile from the plane onto the outside of a disk (C),
of radius R, from the plane ( Z ) , can be represented as a series
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The main problem is the effective calculation of the coefficients
To do that, we will consider the previous development at the

point of the circumference (C) and then we will
separate the real and the imaginary parts, thus obtaining

Although the coordinates of the points of the contour are
known, either in a tabular or in a functional form, the functions
and are still unknown. That is why an iterative method to calculate

and must use the coefficients
First, due to the orthogonality conditions for the trigonometric func-

tions, we have

and, from here, we could write that

Then we choose for its “initial” (of order zero) approximation
where and are arbitrary. From the expression

of and we have
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To the above abscissa it is possible to join the corresponding or-
dinate either from the given tabular or from the functional form,
and then we can also obtain the coefficients which
will be calculated via the mentioned integral relations. Using these coef-
ficients new abscissas and then new ordinates are calculated and so the
process is continued. For instance, within the iteration of order
iteration) we have

from where

The iterative method sketched above is easy to use on a computer.
The only additional required subprograms are connected to the interpo-
lation such that in each “sweep” new values of the ordinates, respectively
abscissas, become available. The method converges quite fast.

6. Panel Methods for Incompressible Flow of
Inviscid Fluid

The panel methods in both source and vortex variants, are numerical
methods to approach the incompressible inviscid fluid flow, and which,
since the late 1960s, have become standard tools in the aerospace indus-
try. Even if in the literature the panel methods occur within “computa-
tional aeronautics”, we will consider them as a method of CFD.

In this section we will “sketch” the panel method, separately in the
source variant and then in the vortex variant, by considering only the
“first order” approximation.

6.1 The Source Panel Method for Non-Lifting
Flows Over Arbitrary Two-Dimensional
Bodies

Let us consider a given body (profile) of arbitrary shape in an incom-
pressible inviscid fluid flow with free-stream velocity Let a contin-
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uous distribution of sources be along the contour (surface) of the body
and let be the source strength, per unit length, of this distribu-
tion where is the natural parameter (the distance measured along this
contour in the edge view). Obviously an infinitesimal portion of the
boundary (source sheet) can be treated as a distinct source of strength

The effect induced by such a source at a point located a
distance from is a fluid flow with an infinitesimally small velocity
potential given by

The total velocity potential at the point P, induced by all the sources
from to is obtaining by summing up the above infinitesimal poten-
tials, which means

Obviously, the fluid velocity induced by the source distribution (sheet)
will be superposed, at any point P, on the free-stream (attack) velocity.
The problem we intend to solve (numerically) is that of the determi-
nation of such a source distribution which “observes” the surface
(boundary) of the body (profile), i.e., the combined action of the uni-
form flow and the source sheet makes the profile boundary a streamline
of the flow.

To reach this target, let us approximate the profile boundary by a
set of straight panels (segments), the source strength per unit length
being constant over a panel but possibly varying from one to another
panel.

Thus, if there is a total of panels and are the
constant source strengths over each panel respectively, these “a priori”
unknown will be determined by imposing the slip-condition on the
profile boundary. This boundary condition is imposed numerically by
defining the midpoint of each panel to be the control point where the
normal component of the fluid velocity should be zero.

In what follows, for sake of simplicity, we will choose the control points
to be the midpoints of each panel (segment).

Let us denote by the distance from any point on the
panel to the arbitrary point The velocity potential induced at
P due to the panel of constant source strength is
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Obviously, the potential at P due to all the panels is the sum

Suppose now that P is the control point, that is the midpoint of the
panel. Then we have

while the normal component of the velocity at is

being the outward unit normal vector to the panel. Because
for at the control point and, when the derivative is carried
out, appears in the denominator (thus creating a singular point), it
would be useful to evaluate directly the contribution of the panel
to this derivative calculated at Since it is about a source which
acts only on a half-circumference (the other half-circumference does not
interfere due to the rigid wall), its strength will be and this is the
looked for contribution to the normal component of the velocity. Hence

Taking into account that the normal component of the free-stream

being the angle between and the slip-condition will be
which means

Applying this approach to all the panels, the above equalities with
represent a linear algebraic system with unknowns

which can be solved by conventional numerical methods.

velocity at the same point is
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Certainly this approximation could be made more accurate by in-
creasing the number of panels and, if necessary, by considering panels of
different length (for instance, in the case of a profile shape, one gets a
good accuracy by considering 50 to 100 panels which are either smaller
in the leading edge region of a rapid surface curvature or longer over the
quasi-flat portions of the profile).

Obviously, following the same way, we can also obtain the tangential
components of the velocity at the same point precisely

Hence, the pressure at the same control point is calculated by the

Bernoulli theorem while the pressure coefficients are
Before ending this section it is important to give a procedure for

testing the accuracy of the above method. If is the length of the
panel of source strength (per unit length), then the strength of the
entire panel will be, obviously, But the mass conservation, in the

hypothesis of a closed contour, allows us to write which

provides an independent criterion to test the obtained results.

6.2 The Vortex Panel Method for Lifting Flows
Over Arbitrary Two-Dimensional Bodies

Consider now a continuous distribution of vortices (vortex sheet) over
the surface (contour) of a body (profile) in an incompressible flow with
free-stream velocity Let be the strength (circulation)
of the vortex sheet, per unit length along Thus the strength of an
infinitesimal portion of the boundary (vortex sheet) is and this
small section could be treated as a distinct vortex of strength Intro-
ducing again the point in the flow, located at distance from
the infinitesimal portion of the boundary (vortex sheet) of strength

induces an infinitesimal velocity potential at P, namely

and, correspondingly, the entire distribution of vortices from and
will generate a velocity potential
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Analogously, the circulation around the vortex sheet from to
is the sum of the strength of the elemental vortices, that is

Another property of this vortices distribution is that the

tangential component of the fluid velocity experiences a discontinuity
across the sheet in the sense that, for every and be-
ing the tangential velocities “above” and “below” the sheet respectively.

This last relation is used to demonstrate that, for flow past a wing
profile, the value of is zero at the trailing edge, which means In
fact this relation is one form of the Joukovski condition which fixes the
values of the circulation around the profile with a sharp trailing edge, the
lift force L being related to this circulation through the Kutta–Joukovski
theorem, that is The goal of this method is to find
such that the body (profile) surface (boundary) becomes a streamline of
the flow. At the same time we wish to calculate the amount of circulation
and, implicitly, the lift on the body.

As in the case of sources, we will approximate the vortex sheet by
a series of panels (segments) of constant strength (per unit length)
which form a polygonal contour “inscribed” in the profile contour. Let
us denote by the constant vortex strength over each
panel respectively. Our aim is to determine these unknown strengths
such that both the slip-condition along the profile boundary and the
Joukovski condition are satisfied. Again the midpoints of the panels are
the control points at which the normal component of the (total) fluid
velocity is zero.

Let be a point located a distance from any point of the
panel, the radius making an angle to the axis. The velocity
potential induced at P due to all the panels is

where
If P is the control point of the panel, then
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Hence the normal component of the total fluid flow at the point
is

which, vanishing for every (the slip-condition), will generate a linear
algebraic system to determine the unknowns But
this time, in contrast with the source panel method, the system should be
completed with the Joukovski condition In fact, the fulfilment
of this last condition could be performed by considering two small panels
(panels and in the neighborhood of the sharp trailing edge, such
that the control points and are close enough to the trailing edge,
and imposing that This leads to the “a priori” fulfilment
of the Joukovski condition. At the same time, to avoid the approach of
an over-determined system of unknowns with equations we will
ignore the slip-condition at one of the control points and so we get again
a system of  linear algebraic equations with unknowns, which can be
solved by conventional techniques.

Obviously, the obtained solution, besides the slip-condition, will sat-
isfy the Joukovski condition too. More, the tangential velocities to the
boundary are equal to which could be seen clearly supposing that, at
every point inside the body (on the “lower” part of the vortex sheet
too) the velocity Hence, the velocity outside the vortex sheet is

so that the local velocities tangential to the
surface (boundary) are equal to the local values of

Concerning the circulation, if is the length of the panel, then
the circulation due to the panel is and the total circulation is

and, correspondingly, the lift L is

Finally, we remark that the accuracy problems have encouraged the
development of some higher-order panel techniques. Thus a “second-
order” panel method assumes a linear variation of over a given panel
such that, once the values of are matched at the edges to its neighbors,
the values of at the boundary points become the unknowns to be
solved. Yet the slip-condition, in terms of the normal velocity at the
control points, is still applied.

There is also a trend to develop panel techniques using a combination
of source panels and vortex panels (source panels to accurately represent
“the thickness” of the profile while vortex panels to effectively provide
the circulation). At the same time, there are many discussions on the
control point to be ignored for “closing” the algebraic system in the case



Dynamics of Inviscid Fluids 87

of the vortex panels. References can be found, for instance, in the book
of Chow [22].

6.3 Example
Let us consider, for instance, a source panel of length 2L, lying sym-

metrically on the axis [22]. Assume that on it, sources of the strength
per unit length are distributed. The velocity potential induced at every

point by the source contained in the infinitesimal panel element

to respectively

Considering a point such that and if

Thus the panel generates a flow having an outward
normal velocity of magnitude The tangential velocity is the same
on both sides of the panel and it is zero at the midpoint and infinite at
the edges of the panel.

If such a panel with sources of strength is placed normal
to a uniform flow of speed U, the induced normal velocity cancels the
oncoming flow on the left side and thus the resultant flow is tangent to
the surface. So, the panel becomes coincident with one of the streamlines
of the flow.

If the panel makes an angle with the uniform stream, the generated
flow cancels the normal induced flow if its strength is

Let now be the number of the panels. On each panel are distributed
uniform sources of strength (strength per unit length) respec-
tively. The velocity potential of the resultant flow at every point

above, where J is the panel and is the strength of
from the flow field, generated by the sources from the panel is, as

at is  (this expression is obtained by
taking the real part of the source complex potential).

The potential induced by the entire panel is

and the velocity components can be obtained by derivation with respect

from the right of the panel we obtain the limit On the
other hand, by a similar approach from the left, we obtain the limit
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the source from the element located at on that panel. Here

is the distance from the control point
to an arbitrary point on the panel.

The velocity potential for the flow obtained by superposition of the
given uniform flow and the source panels is then

Let now be the control point on the panel, where the
outward normal makes an angle with the uniform stream. At this
point on the surface of the body, the above slip condition becomes

where

The calculations become easier if we express the integrals in terms
of the geometrical elements of the panels, see Figure 2.7.

Figure 2.7. Evaluation of the integrals

The length of each panel is

The angle at between the panel and the axis is related
with the similar angle of the normal at the control point by
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the relation

from where

After derivation with respect to the normal we get

where

By replacement, the integral becomes

where

But the denominator of the integrand is of the form

where

thus, consequently,

By using the system (2.10), with the introduction of the dimensionless
(undimensional) variables we get

where are given by (2.11), excepting for every



90 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

We remark that for a body of a complicated shape the calculation
of the normals to the panels at control points is not always easily per-
formed. We can modify the above algorithm by choosing the boundary
points to be on the surface of the body and the control points

to be the midpoints of the panels. The panel orientation is given
by

where Arctg takes its values on This technique is easier to apply
but it is not as accurate as the previous method. Now the control points
are located near the surface of the body and they will approach the
surface if the number of panels increases.

Other remark is that the panels could be of different sizes. It is useful
to take small panels in a part of the body of large curvature, in order to
increase the accuracy of the method.

After the calculation of the dimensionless strengths the velocity
potential may be written. The velocities at the control points
are tangent to the panels and thus at these points

where is a tangent vector to the surface of the panel.
Taking the derivative of with respect to we also obtain

Here is given by

for and for every
Finally, the pressure on the surface of the body could be described by

the pressure coefficient (2.9)

We will illustrate this method with the following problem. Let us
consider two circular cylinders of radius placed in a uniform flow of
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velocity The centers of the cylinders are separated by a distance
of in a direction perpendicular on the flow. Considering
panels on each cylinder, let us calculate for every control points the
values of the velocity and the pressure coefficient.

We choose the simplified variant, with the boundary points on the
surface of the cylinders and the control points are the midpoints of the
panels. The variables P of the program will contain all the characteristics
of every panel.

The results are presented in Figure 2.8.

Figure 2.8. The pressure coefficient on the surface of the cylinders

The MATLAB program is
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We remark the low-pressure region between the two cylinders.

7. Almost Potential Fluid Flow
By almost (slightly) potential flows, we understand the flows in which

the vorticity is concentrated in some thin layers of fluid, being zero out-
side these thin layers, and there is a mechanism for producing vorticities
near boundaries.

For such models the Kutta–Joukovski theorem does not apply and
the drag may be different from zero, which means one can avoid the
D’Alembert paradox.

There are many situations in nature or in engineering where the
viscous flows can be considered, in an acceptable approximation, as
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“nearly potential”. Such situations occur in particular when it con-
siders “streamlined” bodies, that is bodies so shaped as to reduce their
drag.

Now we shall analyze the model of incompressible inviscid fluid flow
due to the presence of N (point) vortices, located at the points

in the plane and of strength respectively. The
stream function joined to the vortex, ignoring the other vortices for
a moment, is given by

The vorticity associated to the same vortex will be given by

where is the Dirac function while the corresponding velocity field (ig-
noring again the influence of the other vortices) is

with
Obviously, due to the interaction of vortices, the points where the

vortices are centered (located) start to move. More precisely, taking
into account the superposed interaction of all the vortices,
move according to the differential equations

where
Then, if we retake the previous way in a reverse sense, we conclude

that:
Let a system of constants and a system of points (initial

positions) be in the plane. Suppose we allow
these points to move according to the above equations whose solutions
could be written in the form and Define then

and let This last equality

provides a solution of Euler’s equations, a solution which preserves the
circulation. Really, if C is a contour encircling vortices

then and is flow invariant (constant).
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Of course the relationship between these solutions and the other solu-
tions of the Euler system is not very obvious but it could be established
rigorously under some carefully chosen hypotheses.

Now we remark that the above system forms also a Hamilton system.
Really, by defining the system is equivalent

with

Introduce the new variables

we get a real Hamilton system

and, as in classical mechanics we have

i.e., H is a constant in time along a path line.
A consequence of this property is that if all the vortices have the same

sign for their strength, then they cannot collide during the motion. In
other terms, if at then this result remains
valid for all time since if H will become infinite.

We remark that the Euler equations themselves form a Hamiltonian
system (see, for instance, [2]) such that the Hamiltonian nature of the
vortex model (approximation) should not surprise. What might be of
great interest is to establish whether or not this system is completely in-
tegrable in the sense of Hamiltonian systems. There are some reasons to
suppose the existence of a certain Lie group that generates the equations
(in some sense) [19].

Let us generalize the previous case and imagine the N vortices moving
in a domain D with boundary Following the same way as before we
must modify the flow of the vortex (its velocity so that

This could be done by adding a potential flow of velocity such that
In other words, we choose a stream function associated

with the vortex, which satisfies



Dynamics of Inviscid Fluids 95

that is, equivalently, to choose , where
is the Green’s function for the Neumann problem associated with the
Laplace operator (Laplacian) in the domain D.

Retaking again the Euler system in the form

we can write

and then we set But these equations seem to be
just the equations established for a system of point vortices, the integral

representation for being replaced by the formula valid

in the conditions of a point vortices system analogously as a Riemann
integral is approximated by a Riemann sum. This suggests that an
inviscid incompressible flow can be approximated by the flow induced
by a discrete system of vortices, The convergence of solutions of the
discrete vortex equations to solutions of Euler’s equations as is
studied in [38] and in [61].

Vortex systems provide both a useful tool in the study of general
properties of Euler’s equations and a good starting point for setting up
effective algorithms for solving these equations in specific situations.

8. Thin Profile Theory
The theory of a wing with an infinite span (i.e., the theory of profiles)

requires knowledge of the conformal mapping of the profile outside, from
the physical plane onto the outside of a disk from the plane (Z).
However, for an arbitrary (wing) profile, it is difficult to get effectively
this mapping; that is why, many times, one prefers the reverse procedure,
that is to construct (wing) profiles as images of some circumferences
through given conformal mappings. The Joukovski, Karman–Trefftz,
von Mises, etc. profiles belong to this category [69].

In the particular case of the thin profiles with weak curvature, the
problem of a flow past such a profile can be directly solved in a quite
simple approximative manner. More precisely, this time it will not be
necessary to determine the above mentioned conformal mapping but
only the solving, in the physical plane, of a boundary value problem of
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Hilbert type that reduces, in an acceptable approximation, to a Dirichlet
problem for the Laplace equation.

8.1 Mathematical Formulation of the Problem
Suppose that our (wing) profile is formed11 by the arcs and of

equations

where is a very small positive parameter; we admit that the
functions and are continuous and derivable in and

Suppose also that
This profile is placed in a uniform fluid free-stream of complex veloc-

ity both the magnitude of the physical (attack) velocity
at far field and its angle of incidence sufficiently small, being inde-
pendent of time. In what follows we will look for the complex potential
of the fluid flow under the form

or, focussing on the velocity field determination, we set

with

The unknown function the corrective complex potential, in-
duced by the presence of the thin profile, is a holomorphic function in
the vicinity of any point at finite field, with a logarithmic singularity

More, the above equality (for the velocity field) generates
the representation

U and V playing the roles of some perturbation (corrective) velocities
due to the presence in the free-stream of the thin profile.

Obviously it is about the cross-section of the profile in the plane11

at infinity. On the contrary, the derivative of this function, is holo-
morphic in the entire outside of the profile, vanishing at infinity, that is
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Just the regularity of the function in the whole outside of the
considered profile leads to the idea of determining of this function instead
of the corrective potential To reach this purpose we need first
to formulate the boundary conditions of the problem in terms of the
functions U and V.

Since the unit normal vector to the contour of equation

is the slip-condition along the walls can be written

Taking into account the above relationship between and we
have finally the condition

such that the velocity field determination comes to the solving of a
Hilbert boundary value problem associated to the Laplace equation.

It is obvious that, additionally, we should observe the Joukovski con-
dition to ensure the boundness of the velocity at sharp trailing edge
(that is, at

So far we have not formulated, in the mathematical model associated
to the problem, any simplifying hypothesis. Now we assume that is
small enough to be neglected in the presence of which agrees
with the fact that the considered profile is thin and the incidence itself

is small. On the other hand we may assimilate the profile with the
segment AB of the real axis and designating by this segment, by

its side corresponding to and by that corresponding to
the above boundary (slip-) condition could be approximated by

Thus we are led, in view of the determination of the harmonic function
to a Dirichlet problem for the entire plane  with a cut along

the segment of the real axis.

8.2 Solution Determination
The solving of a Dirichlet problem joined to the Laplace operator for

the whole plane with a cut along the segment AB of the real axis, to
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which the problem of the fluid flow past a profile is reduced, is a classical
issue in the literature12.

The solution of this problem, applied to the function

whose real part is known on the boundary AB, leads to

Unfortunately, this bounded solution of the proposed Dirichlet prob-
lem does not satisfy yet the condition expressing the rest of fluid at far

distances i.e., To satisfy this condition too we will add

we could write

A direct and elegant manner for solving this problem, even in the more general case of a
boundary formed by distinct segments on can be found, starting from page 201, in the
book of C. Iacob [69].

where is a real constant, while the chosen de-
termination for equals to at

12

13Really, by adding to a term in the form where the values of V

on AB will not be modified.

to the previous solution a term of the type where is a real

constant (not chosen yet) and the determination of the squared root is
the same as the previous one (i.e., it is positive at 13. Since
in the neighborhood of infinity we have
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Then, to ensure that at far distances the solution of our
problem tends to zero, it is sufficient to choose the real constants and

so that

Finally we have for the complex velocity the representation

a formula given by L. I. Sedov, but obtained via other technique [134].
On the other hand, as a complex potential at far field, has an

expansion under the form

and implicitly the complex velocity is

we get for the circulation necessarily14, the value

This value corresponds to that obtained by the Joukovski condition
(rule), the fluid velocity being, obviously, bounded at the sharp trailing
edge. Supported by it we could also calculate the general resultant of
the fluid pressures on the thin profile, namely we have15

Details on the theory of a thin (wing) profile and even some extensions
such as the case of the thin airfoil with jet, can be found in the book
of C. Iacob [69]. The thin profile with jet in the presence of the ground
has been studied in [113].

14

15
In virtue of the uniqueness of such a series development.
By applying directly the Blasius–Chaplygin formulas.
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9. Unsteady Irrotational Flows Generated by the
Motion of a Body in an Inviscid
Incompressible Fluid

In what follows we will formulate the mathematical problem for deter-
mination of the fluid flow induced by a general displacement (motion) in
the fluid mass of a rigid body, this fluid flow being unsteady (in general).
Before considering separately either the 2-dimensional (plane) or the 3-
dimensional case, we remark that the problem of a uniform displacement
of a body with the velocity in a fluid at rest, is completely equiv-
alent with the problem of a uniform free-stream of velocity past the
same body but supposed fixed. This fact comes out at once, if one con-
siders also, besides the fixed system of axes, a mobile reference frame
rigidly linked to the body and we express the position vector (radius)
of the same point within these two systems, namely then, by
derivation, one deduces a similar relation between the velocity vectors
expressed in the two systems, that is Hence, the rest state
at infinity versus the fixed system (v = 0), will be the state of a uniform
motion with the velocity within the mobile system where the body
could be seen fixed (being rigidly linked to it).

9.1 The 2-Dimensional (Plane) Case

In general, when we deal with the case of unsteady plane flows we
need first to introduce a fixed system of axes OXY. With respect to
this system, at any instant the flow will be determined by its complex
potential defined up to an additive function of time. The uniform
derivative of this complex potential will provide the components U and
V on the axes OX and OY.

The function in the domain where it is defined at any mo-
ment is either a uniform function (which means a holomorphic function
of Z) or the sum of a holomorphic function and some logarithmic terms,
the critical points of these last ones being interior to the connected com-

of these logarithmic terms can depend on time but, under our
assumption, are necessary constant. If this does not happen, the
circulation along a fluid contour encircling a contour which is
followed during the motion, will not be constant, in contradiction with
the Thompson theorem.

The determination of F should be done by using both the initial
conditions (a specific feature for the unsteady flows) and the boundary
conditions attached to the problem.

ponents of the complement of “A priori”, the coefficients
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In particular, along a wall the normal component of the relative veloc-
ity of the fluid (versus the wall) should vanish. Concerning the pressure,
it can be calculated by the Bernoulli theorem which, in this case, states
that

where the “constant” depending on time, will be determined with
the initial conditions.

An important case is when there is only one mobile body (obstacle)
in the mass of the fluid, which allows a simple formulation of the initial
and boundary conditions (on the body surface). More precisely, by con-
sidering a mobile reference frame (system of coordinates) Axy, rigidly
linked to the obstacle (body), and by using the linear expression of Z as
function of (with the coefficients depending on time, in fact a change
of variables, the flow being watched within the fixed frame OXY), we
get first                which represents the complex potential of the
flow expressed in the variables and

Hence for the components and of the velocity vector, we have
(here and are the components of the absolute fluid velocity

versus the fixed system OXY, these components being expressed in the
variables and

Let us now denote by and the components on and
respectively, of the vector the velocity of the point A belonging to
the body, and by the magnitude of the body rotation; the contour
(surface) of the obstacle being then defined by the time free parametric
equations the velocity of a point belonging

belonging to the obstacle contour, is
such that the slip-condition can be written, for any fixed   in the form

This last expression determines, to within an additive function of time,
the value of along the contour, precisely

to this contour, is whose components are

Then, the normal component of the relative velocity at the point P,
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9.2 The Determination of the Fluid Flow Induced
by the Motion of an Obstacle in the Fluid.
The Case of the Circular Cylinder

Let us consider an obstacle, bounded by the contour (C), which is
moving in the fluid mass supposed at rest at infinity. We know that the
circulation along the contour (C) is necessarily constant; in the sequel,
we limit ourselves to the case when this constant is zero.

Our aim, using the above notation, is to determine at any instant
a function holomorphic outside (C), whose derivative is zero at
far distances and whose imaginary part along (C), fulfils the condition

Suppose now, for sake of simplicity, that we solve first, the following
particular cases of the initially proposed problem, which are distinct by
the values characterizing the obstacle rototranslation:

1)
2)
3)
In all these cases we may assume that the corresponding complex

potential is independent of time (the attached domains having a fixed
in time shape); denote by the complex potentials
which correspond to these three cases respectively.

It is obvious that, in general, being supposed arbitrary
continuous functions of time, the function

represents a solution of the initial proposed problem16. One could prove
that the flow thus determined is unique, according to the uniqueness of
the respective Dirichlet problem. Concerning the effective determination
of the functions in the first two cases (when the displacement
of the obstacle is a uniform translation of unit velocity) the fluid flow
watched from Axy, can be identified with a steady flow of the type
already studied in the section devoted to the theory of profiles. The
third case is that of a uniform rotation. This case, as the previous two,
can be explicitly solved if we know the canonical conformal mapping of
the outside of (C) onto the exterior of a circular circumference.

16 The solution of the respective Dirichlet problem being a linear functional of the boundary
data.
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Let us consider the simple case when (C) is a circular disk centered
at A. First we remark that, in this case, the function is constant
and consequently we could eliminate the free of term
This result is obvious because the rotation of the disk with respect to its
center does not influence the ideal fluid flow. The case when and

corresponds to the situation when (C) is performing a uniform
translation along the  axis; with respect to (C) (the system Axy),
the flow is steady with a velocity at infinity parallel to the axis
and whose algebraic magnitude, versus the same axis, is –1; then the

complex potential associated to this relative flow is R being

the radius of (C) and consequently the absolute flow watched from the
fixed system OXY, has as complex potential

which corresponds to a doublet located at the origin A of the plane
and whose axis is collinear with the velocity. From here, we could

deduce, at once, that in the case when the circular cylinder translates
with arbitrary components the corresponding complex potential
is

An important generalization of the above situation is the situation
when the displacement of the obstacle in the fluid mass takes place in
the presence of an unlimited wall (as it is the case of a profile moving
in the proximity of the ground, that is the “ground effect” problem).
At the same time a great interest arises from the fluid flow induced
by a general rototranslation of a system of arbitrary obstacles in the
mass of the fluid. We will come again to this problem after the next
section, by pointing out a new general method for approaching the plane
hydrodynamics problem [111].

9.3 The 3-Dimensional Case
Consider now the three-dimensional flow induced by the motion of

a rigid spatial body (obstacle) in the mass of fluid at rest at far field,
i.e., it is about a generalization of the previous study made in the plane
case. Let then be the three-rectangular fixed system and the
velocity potential of the absolute  fluid flow           be, at any
moment, a harmonic function of whose gradient (velocity) is zero at
infinity. Introducing also the mobile system rigidly linked to
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the obstacle – but watching the absolute flow (that is versus the fixed
system we set again

To determine this function the velocity potential of the absolute
flow but expressed in the variables of the mobile system (a
function which is also harmonic and with zero gradient at infinity), we
should write the slip-condition on the surface of the obstacle. Let
then and be the velocity of the point A , belonging to the obstacle,
and, respectively, the obstacle rotation; these are known vectorial func-
tions of time. At a point P of the contour if n is the unit outward
normal drawn to at P, we have for the function the condition

i.e., the projection of the relative velocity on n is zero.
We denote now by the components of on the

axes and by those of on the same axes; let also
be the components of n while are those of AP × n on the same
axes of the reference frame With this notation, the above
condition is

While are geometric entities depending only on P from and
not on are known functions of time, independent of P from

Let us admit that there are the functions harmonic

outside of so that on and whose vanish at
far distances. In fact the existence of these functions comes from the
solving of a Neumann problem for the exterior of the domain with
the additional requirements that the first order partial derivative of
tends to zero when the point P tends to infinity.

It is known that such Neumann problems, in quite general conditions,
admit one unique solution and only one [52].

Setting then

this function satisfies all the conditions of the problem and defines the
searched velocity potential for fluid flow outside the obstacle. Once the
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function is determined, the pressure can be calculated by applying the
Bernoulli theorem.

9.4 General Method for Determining of the Fluid
Flow Induced by the Displacement of an
Arbitrary System of Profiles Embedded in
the Fluid in the Presence of an “A Priori”
Given Basic Flow

In what follows we intend to give a brief survey on a new method which
allows us the solving of any direct problem of plane hydrodynamics, i.e.,
to determine the fluid flow induced by a general displacement in the
inviscid fluid mass, of an arbitrary system of profiles, possibly in the
presence of unlimited walls, in the conditions of the pre-existence of an
already given “basic” flow which could present even a (finite) number of
singularities.

The great advantage of this method consists, not only in its general-
ity but also in the fact that it can be easily adapted to the numerical
calculations. A CVBM joined to this general method will be presented
later in this book.

From the mathematical point of view, by avoiding the conformal map-
ping technique, the method solves the proposed problem by using some
appropriate singular integral equations which, under our assumptions,
lead to a system of regular integral Fredholm equations. By imposing
some additional hypotheses on both the profiles and the “a priori” ex-
isting basic flow, one establishes also, together with the solving of the
involved algebraic system, the existence and uniqueness theorems for the
respective integral equations.

9.4.1 The Mathematical Considerations and the
Presentation of the Method in the Case of Only One
Profile Moving in an Unlimited Fluid

Let us consider17, as being given, a plane potential inviscid fluid flow
called the basic flow. Let be the complex velocity of this basic
fluid flow.

Let us now imagine the fluid flow induced by a general displacement
(roto-translation) of an arbitrary profile in the fluid mass. Of course this
flow will superpose on that basic fluid flow. In what follows, we want

17 For more details and even for the consideration of a general case of profiles, one could
read the paper of T. Petrila [103]. An extension of this method to the case of profiles with
sharp trailing edge and of the influence of some unlimited walls on the flow can also be found
in the papers of T. Petrila [102], [101].
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to present a new method for determining the complex velocity
of the fluid flow which results by the just mentioned superposition, a
method which could provide simple numerical algorithms for the whole
flow pattern.

Concerning the curve C, one admits that its parametrical equation
defined for and referred to a fixed system of rectan-

gular Cartesian coordinates Oxy, fulfils the following conditions (I):
(I)i) it is a periodic bounded function in
(I)ii) it is a Jordan positively oriented curve for
(I)iii) it is a twice continuously differentiable function in with

and M being a finite constant.
We remark that the restrictions imposed on the profile (C) will lead

to the continuity of its curvature which implies the continuity of the
kernels of the involved Fredholm integral equations.

In regard to the given function it belongs to a class of
functions with the following properties:

(a) 1) they are holomorphic functions in the domain (the entire
plane), except at a finite number of points placed at a finite
distance, and which represent the singular points for these functions;
let be the domain from which one has taken out these singular
points;

(a) 2) they are continuous and bounded functions in
a domain which contains also the point at infinity; let

(a) 3) they are Hölderian functions at the points of the curve (C)18.

Let be the circulation of the basic fluid flow which equals

that is equals the sum of the circulations of all the given singularities of
the fluid flow.

Regarding the unknown function the complex velocity of the
resultant flow, it will be looked for in a class of functions (b) which
satisfies the requirements:

(b) 1) it is a holomorphic function in the domain
except the same points which are singular points of the same
nature as for (i.e., the corresponding Laurent developments have
the same principal parts);

18 Suppose that, during the displacement of the profile, we have which means
the curves C do not intersect the points which stay all the time outside of these
curves.
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(b) 2) it is a continuous and bounded function in
which also contains the point of infinity where

(b) 3) it is a Hölderian function at the points of the contour (C) where
it also satisfies the boundary condition:

There is a real function such that for any we have

where and are given functions of time corresponding to the compo-
nents of the transport (translation) velocity at the point
while is also a function of time defining the instantaneous rotation;

(b) 4) it satisfies the equality where is an “a priori”
given function.

Once all these mathematical assumptions have been introduced, the
(unknown) function is sought among the solutions of the following
singular integral equation with a Cauchy kernel, namely

where 19.
In order to use the boundary (slip) condition on C, we now let

and so we get

19 The above representation for the complex velocity introduces a corrective complex potential
(corresponding to the presence of the profile (C)) in the form of a continuous distribution of
point vortices along the curve (C). We would get the same representation using Cauchy’s
formula for the function and for the domain the cross-section of D with
a disk centered at the point and of radius R. Setting then and taking into
account that we are necessarily led to the following relation for

the desired function

As regards the last term, it doesn’t play an essential role because the solution of the Fredholm
integral equation (to which we are led), and which satisfies the condition with the “a priori”
given circulation, is independent of it.
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where is the principal value (in the Cauchy sense) of the involved

integral. Denoting then by and

by 20, we could write

that is

Separating now the real parts of both sides, we obtain the following
integral equation of Fredholm type with continuous kernel, precisely

where we have denoted

20 With this notation we could also write

S being the area bounded by (C).
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We remark that according to the above hypotheses, the right side is a
Hölderian function, which implies that the solutions of this equation (if
they exist), are also Hölderian functions.

To study the existence of the solution of this integral equation we will
use the Fredholm alternative which is now applicable. According to this
alternative, the existence of the solution is related to the fulfilment of
the condition

Actually, the uniformity of the complex function in the vicinity
of C leads to

meanwhile we also have

which proves that the condition

is satisfied21.
Consequently the equation (2.13) admits a set of solutions of the form

where is a real arbitrary constant, is the unique non-zero
solution of the homogeneous equation which also satisfies the condition

while is a particular solution of the non-homogeneous

equation. It is easy to see that we can always choose one solution (that
is the corresponding such that

21 To interchange (commute) the integrals is possible due to the Bertrand–Poincaré formula.
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 being “a priori” given.
The previous results can be concisely formulated in both mathemati-

cal and fluid dynamics language, i.e., we have:
THEOREM 2.3. For any curve C and complex function belong-

ing to the class (I) and respectively, and for any continuous system
of four real functions of time there is only one solution of
the above singular integral equation (2.12) which satisfies the conditions

Or, in hydrodynamical language,
For any profile C and a basic potential incompressible inviscid fluid

flow with complex velocity satisfying the conditions (I) and
respectively, and for any continuous displacement of this profile in the
mass of the fluid, there is only one resultant fluid flow with an “a priori”
given circulation which satisfies also the conditions

10. Notions on the Steady Compressible
Barotropic Flows

Suppose now that the inviscid fluid is compressible but limiting our
interest to the case of the steady irrotational flow of a barotropic fluid.
Further, for sake of simplicity, we will neglect the external mass forces

10.1 Immediate Consequences of the Bernoulli
Theorem

Our working hypotheses allow us to use the second Bernoulli theorem
which can be written here in a very simple form, namely

being a constant in the whole mass of the fluid and the velocity
modulus (magnitude). In this relation is a function of defined up to
an additive constant, by the differential equality  Introducing
now the equation of state under the form (the fluid being
compressible barotropic) we have also

being the speed of sound in the fluid and which is defined as

(see the above definition) but also of
So that it comes out that will be an increasing function not only of
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When is known the Bernoulli theorem allows, by using also the
equation of state, the calculation of as functions of the velocity
modulus

Now we shall show that the functions are always decreasing
functions with respect to For it comes directly from the above
Bernoulli theorem; and being also increasing functions of (as in-
verse functions of increasing ones), they will be decreasing functions of

too. Finally, from and from the hypotheses made on the

state equation and it can deduce that is
non-decreasing with respect to and hence the above stated property is
valid for too.

The Mach number denoted by M, is the ratio so that M is always
an increasing function of

A last entity which plays an important role in the study of these fluid
flows is the mass flux density For this we have

We remark that is an increasing function of (although is decreasing
with respect to if M < 1, that is the flow is subsonic while it is a
decreasing function of if M > 1, that is the flow is supersonic.

In the current applications we will presume that the barotropic fluid is
an ideal gas in an adiabatic evolution so that being a positive
constant and the adiabatic index, being also a constant greater than
unity (for air In this case we have and,
correspondingly, since  we could take for the assessment

Denoting by the values taken by at the point of zero
velocity , we could also write
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relations which, together with the Bernoulli theorem already written at
the beginning of the section lead to

i.e., to the formulas which give explicitly the dependences
and The functions (2.14) point out an important property which
is specific only to the compressible fluid flows: the constant being
known, it will be impossible for the fluid to overtake during its flow, a
certain maximum velocity given by

Such a restriction does not occur in the case of the incompressible
flow. When the quantities defined by (2.14) tend to
zero and so the Mach number increases indefinitely. On the other hand,
if at a point of the flow domain the fluid velocity is equal to the sound
speed, that is then, from the same (2.14), we get

The quantity  will be a constant called the critical sound speed in
fluid. In virtue of the already established properties (with regard to the
Mach number, for instance), at a certain point the flow is subsonic or
supersonic as is inferior or superior of

We remark that if our compressible fluid is also perfect, in the sense
of the Clapeyron law acceptance together with the constancy of the
specific heats and we will also have But then,
in the same conditions of an adiabatic process, we could deduce that

and the previous relations should be completed with

It is important to understand in which context the incompressible fluid
flow could approximate the compressible fluid flows. If we denote by G
the inverse function of that is the incompressible case
corresponds to As is the inverse of we can
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see that an incompressible fluid shows up as a limit case of compressible
barotropic fluid when the sound speed is infinity large, i.e., the Mach
number is zero everywhere.

In the adiabatic case, in a domain where is sufficiently small to
support the development

with we can see that, in the case when the velocity is such

that the quantity could be neglected versus the unity, we reobtain
the Bernoulli theorem for the incompressible fluid, which means

so that the compressibility effects don’t arise.

10.2 The Equation of Velocity Potential
(Steichen)

The envisaged flows being irrotational, the velocity vector v depends
on a velocity potential i.e., there is the representation

or This function, as in the incompressible case,
will satisfy a partial differential equation which could be determined, for
instance, by introducing the above representation into the equation of
continuity. More precisely, the equation of continuity could be written
(the flow being steady) as

But, using the Bernoulli theorem already written in the previous sec-
tion and the definitions of and as well, we have in the
entire fluid mass

so that

or
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Correspondingly, the equation of continuity, after a division by and
a multiplication by becomes

The flow being irrotational we also have and
so that we can write

which represents the looked for equation. This partial differential equa-
tion of second order is obviously nonlinear and contains only the deriva-
tives of since we have established that is a function of that is
of In the case of the 2-dimensional flows, by setting

we can see that is the solution of the
equation

The type of this equation, called also the Steichen equation, depends
on the position of the Mach number versus the unity22 which reflects,
from the mathematical (analytical) point of view, the profound difference
that exists between the subsonic and supersonic flows. So, if
the subsonic flows, the equation is of elliptic type while if the
supersonic flows, the equation is of hyperbolic type. In the case when
for certain regions we have and for others the equation is of
mixed type and the associated flow is called transonic; in this situation
the curves along which the transition from a type to another takes place,
that is the curves are called the sonic lines.

As regards the asymptotic behaviour of at far distances, Finn and
Gilbarg have proved that, in the subsonic case [46]

where is the constant magnitude of the attack (free-stream) velocity
with the incidence versus OX, is
the flow-rate and the circulation.

22 The determinant of this equation being
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Before focussing on a simple application of this equation we remark
that the Steichen equation is equivalent with the system

where is the stream function which can be directly introduced
through the continuity equation, a system which is not a Cauchy–Riemann
system any more but a nonlinear one, being a function of
Obviously, in the incompressible case because we reobtain the
Cauchy–Riemann system.

Finally, by expressing the Steichen equation through the stream func-
tion we remark the invariance of the form of this equation, which
means

where and are now considered as functions of
Concerning the boundary condition attached to these equations, they

come to and so on the fixed obstacle
(wall) while, at far field, supposing that the velocity is parallel to
the axis, we have

respectively

We remark that if we accept, instead of barotropy, an equation of
state under the form while the fluid flow is now rotationally
steady, the equation for the stream function becomes [153]

Obviously, in the irrotational and homentropic
case, we reobtain the above determined equation.

10.3 Prandtl–Meyer (Simple Wave) Flow
Consider now the plane fluid flows whose velocity potential is of the

form the variables and being the polar coordinates of
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a current point P of the plane. Let i be the unit vector of OP while
j is the unit vector which is obtained by rotating i with Since

we can write

being the Lamé coefficient for the variable
Then the velocity vector will remain equipolent with itself along any

half-straight line emanating from the origin
Conversely, it is proved that any irrotational flow with the above

property admits a velocity potential of the form 23

Remarking that and therefore

(because while is obviously zero) together with

the equation

which is often written as becomes

If will be a linear function of and while is
a linear function of and the flow being thus uniform. By avoiding
this trivial solution, we keep necessarily so that the modulus
of the normal component to OP of the velocity is equal with the local
speed of sound24. The flow will be thus supersonic.

Denoting by the angle made by v to OP then

M being the Mach number at P. The angle is, by
definition, the Mach angle at the same point P.

Finally, let us write again the Bernoulli equation Admit-
ting that the fluid flow is barotropic in adiabatic evolution, this becomes

which is a differential equation for determining of To solve this
equation we shall introduce the parametric representations

which finally lead to a representation of the solution in the form

23 The expression for the Laplacian in polar coordinates, being

24 The curves with this property are also called Mach lines.
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being the maximum of the fluid velocity while

A flow of this type is called a simple wave or Prandtl–Meyer flow; it
occurs, for example, in the conditions of a supersonic flow past a sharp
convex corner (dihedron) made by plane walls (see Figure 2.9). The

Figure 2.9. The simple wave flow past a convex dihedron

involved flow is uniform in the region delimitated by the first horizontal
wall and the Mach line of equation 25

, where is the
Mach angle corresponding to along this Mach line a “matching”
with a simple wave flow takes place, this simple wave flow acting in
the “fan” 26 Once the “expansion” is achieved, the flow
becomes again uniform and parallel with the second wall OE.

For details one can consult [69].

10.4 Quasi-Uniform Steady Plane Flows
The examples envisaged in the previous sections have shown that the

complete solving of many problems arising from fluid dynamics seems
to be extremely difficult even in the case of an inviscid fluid. The main
difficulty comes from the nonlinear character of the appropriate math-
ematical problem, which is obvious in the case of a compressible flow.

25 The existence of such a line is supported by the fact that the perturbation induced by the
dihedron vertex could not be transmited upstream (the sound speed being less than the
velocity which is downstream oriented) and so it will propagate just along
26 Along the radius limiting the fan-expansion, the velocity either takes its maximum
value or is parallel with the wall OE, the flow becoming uniform. In the case of a
“cuspidal” dihedron (i.e. with an upstream oriented concavity) instead of a fan-expansion we
will have a “compression”, i.e. a supersonic flow with a shock wave (a velocity discontinuities
line) located in the vecinity of the corresponding half-straight line
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If the flow is incompressible and irrotational, the equations are linear
while the boundary conditions could become, sometimes, nonlinear such
that the “superposition” principle does not apply any more. Finally,
even if the problem is entirely linear, it is very often impossible to get
an explicit analytical solution.

Due to all these difficulties, sometimes it is advisable to reasonably
involve “deep” schemas which allow a better approach to such problems.
In this view the linearizing method behaves like a very useful study tool
which allows us, by simplifying the problem formulation, to get explicit
(approximate) solutions in many and various situations. Naturally, we
should always analyze the validity of the obtained results.

10.5 General Formulation of the Linearized
Theory

Suppose that as an “unperturbed” flow, a uniform flow of velocity
parallel to the axis is considered. In this flow, the mass

density and the pressure are denoted by and respectively and,
if the flow is compressible, we denote by the sound speed (which
is the same at any point of the flow domain). To simplify the writing
of the below formulas, one could choose as a velocity unit and in
this case is the inverse of the Mach number which is simply denoted
by M. Suppose now that this given uniform flow (stream) is perturbed
by introducing of some disturbance factors27, thus having for velocity,
pressure and mass density respectively, the representations of the type

defining entities which characterize the
new (perturbed) fluid flow. Here is a small parameter whose mechan-
ical significance should be made precise in every particular problem.

It easy to see that the determination of this new flow comes to pre-
cise these functions But the equations connecting the unknown
functions could be obtained by pointing
out that the total derivative of a quantity, which is zero in the unper-
turbed flow, comes now to the operator       28

.

So that the equation of continuity and the Euler equations become,
keeping only the main terms (of first order) in (which agrees with the
linearizing principles)

27 Such a perturbation could occur when, for instance, the uniform stream meets a profile,
etc.
28 Really, from  , by using both the flow steadiness and the expression
linearizing, we get this result.
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assuming obviously that the mass (external) forces f can be neglected29.
If the fluid is incompressible we have and the above three

equations form a linear system in the three unknown functions If
the fluid is barotropic compressible, from the state equation we have

which means, keeping only the principal (main) terms in

an equation which completes the above system of three equations.
In what follows we will focus on the case when the perturbation of the

uniform flow is due to the presence, in this uniform stream, of an obstacle
(profile). Before analyzing the boundary conditions on the obstacle we
will make precise the conditions joined to the fluid behaviour at infinity.

10.6 Far Field (Infinity) Conditions
Obviously, the entities which characterize the perturbed flow

will tend to zero upstream (in an exact formulation, it is possible to find
an abscissa such that for these entities are arbitrarily small).
This condition allows us to simplify the above written system. Thus,
the second equation

shows that is a function only of but from the imposed
condition, this function is necessarily zero because it tends to zero when

and therefore

If this value of is introduced in the third equation of the system,
that is in

29 Here, the obvious equalities have been used.
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we reobtain the irrotational feature of the flow  so that

there is a potential of the perturbation velocity, i.e., the compo-
nents of the (perturbation) velocity admit the representation

In principle, is precise to within an additive constant; we could fix

this constant by defining as 30 which implies

that when being fixed).
We shall also admit that could be expressed by the derivative of

the above integral, the commutation of the derivative and of the integral
being ensured.

At last, the first equation of the system (that of continuity), taking
into account all we have already obtained, leads to the following partial
differential equation for the function 31

M being the Mach number of the unperturbed flow. Conversely, any
solution of this equation defines through the above formulas, a perturbed
flow.

10.7 The Slip-Condition on the Obstacle
Let there be, in the fluid mass, an unbounded (of infinite span) cylin-

drical obstacle whose right section in the plane Oxy is To legitimise
the linearization, the tangent drawn at any point of the contour of this
section must make a very small angle to the Ox axis, the velocity
vector being oriented just along this tangent. More precisely, we suppose
that the section is delimitated by a closed contour, infinitely close
to the segment of the Ox axis and which is defined by the
equations

30 It is assumed that the written integral exists (it has “a sense”); it is a moment hypothesis
which should be checked once the effective solution is obtained.
31 Taking into account that
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where and are some given functions defined on
sufficiently smooth on this interval and taking equal values at the ends
of it32.

Once these considerations are made, always within the linearized the-
ory, the unknown functions of the problem (of the “perturbed” flow)
will be supposed defined in the whole plane except the cut

But then, the slip-condition along the profile surface, expressed on
the two “sides” of the cut, could be written as

where and are the derivatives of and with respect
to 33.

10.8 The Similitude of the Linearized Flows.
The Glauert–Prandtl Rule

Suppose, for instance, that we deal with the subsonic flows.
By setting will be the solution of the elliptic

equation

Let us now consider a change of variables and functions, defined by
The function is a harmonic

function in the variable and which means

Further, we also have

and, analogously,

32

33

It says (in aerodynamics) that defines the upperside of the profile while
defines its lowerside.

Really the slip-condition expressed, for instance, on the upperside will be written
as what leads, by linearizing, to the above result.
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Thus, if the potential defines a “neighboring” flow versus an-
other one of Mach number M, i.e., the function satisfying the equation
of the perturbed flow together with the conditions at far field and the slip
condition along the contour of the given profile then the function

will define a perturbed flow governed by the harmonic equation
of the incompressible fluid (M = 0), with the same conditions at far
distances and slip-condition along the same contour of the profile

In this respect the study of a linear subsonic flow could be always
reduced to that of an attached incompressible fluid flow. This result
is of great practical importance, the study being essentially simplified
by reducing the compressible problem to an incompressible one. By
collecting all the formulas which allow the complete determination of the
compressible case using the data of the attached incompressible problem,
we get the so-called Glauert–Prandtl rule (method).

More details on this parallelism of the mentioned flows can be found,
for example, in the book of C. Iacob [69].

Obviously, in the conditions of a supersonic flow with M > 1, if
again we will obtain the equations or

both of them being hyperbolic. A general solution of
these equations is

with and sufficiently smooth arbitrary functions. The curve
the characteristics of our hyperbolic equations (and

which are, generally, weak discontinuities curves) are the Mach lines (or
waves).

We can see that the inclination of these curves is given by
that is and therefore is the Mach angle.

Under these circumstances, the propagation velocity v, joined to the
presence of an obstacle in the fluid mass, satisfies the same equation
such that we have while the total velocity is given
by being the attack velocity).

A simple calculation points out that the projections on the Mach lines
of this total velocity, are constant in the sense that along a Mach line
from a family (of Mach lines), the projection of the velocity on the Mach
lines from another family remains constant.

The linearization of the supersonic flow equations is known as the
method of J. Ackeret, the equivalent of the Glauert–Prandtl method for
the subsonic flows [69].
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11. Mach Lines. Weak Discontinuity Surfaces

Let us reconsider the Steichen equation to which we attach a Cauchy
condition. In the hydrodynamical language this Cauchy problem applies
to the determination of the fluid flow in the proximity of a given ana-
lytical arc C, of equation by knowing
a distribution of velocity along this arc, given by

Obviously once and on the arc C have been deter-
mined, the velocity potential will be also known on this arc. But for the
effective determination of (the flow) in a vicinity of the arc C (which
is synonymous with the possibility to envisage a Taylor development for

it is important that both the arc C and the data on it satisfy some
regularity requirements.

It is shown [69] that the Steichen equation being of Monge type, the
Cauchy problem is not possible for those arcs and data which satisfy the
differential relation

If and are the solutions of the associated algebraic
equation in which means of the equation

whose roots are real only if (supersonic flows), then the
characteristic strips are given by [69]

By integrating the equations of the second row we are led to the prime
integrals and which being basically some
partial differential equations of first order, could provide a particular
class of solutions (integral surfaces) for the Steichen equation.

If one considers the projection of the characteristic strip (correspond-
ing to a given solution on the flow plane Oxy, the respective curves
are (called) the characteristics. One of the family of characteristics, cor-
responding to the above particular solutions, is made by straight lines
along which will be constant. But these are the simple wave
flows already envisaged in the case of the expansion around a dihedron
(Prandtl–Meyer flows), the flows for which the bijectivity between the
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physical plane and the hodograph plane is absent, which
means and which will not be considered in what follows34.

Generally, if is an arbitrary solution of the Steichen equation, the
projections of the characteristic strips on the plane  will be defined
by the last equation of the two groups or, obviously, by the unique
equation (where
and These projections – the characteristic curves (lines) – are
real only if (or and they are called Mach lines. From the
theory of differential equations it is known that the locus of the cuspidal
(“returning”) points of the Mach lines is the sonic line

Therefore through every point of the supersonic flow region
a Mach line from each family is passing and along it the fluid

velocity satisfies the equations from the second row. At any point of
a Mach line the projections of the fluid particle velocity on the normal
direction are equal to the local speed of sound. Really, from

if is the elemental arc along a Mach line we also have
that This result being valid for both
characteristics at a certain point, leads to the fact that the direction
of the velocity vector (that is the tangent drawn to the streamline at a
point) is the bisecting line of the angle made by the Mach lines at that
point, an angle which is the double of the Mach angle

Any surface (curve) of weak discontinuity (that is across it there are no
discontinuities for the velocity field but there are discontinuities for the
first order derivatives of the velocity components) is compulsory among
the characteristic surfaces (curves), an expected result according to the
unsolvability of the Cauchy problem in this case.

Consider now a linear or quasilinear system of first order partial dif-
ferential equations, written under the form

where the matrix of un-

knowns being U, the matrix (column) of the “free” terms is B while the

34 Considering a hyperbolic system of the type and defining a solution
of the simple wave type as a solution of the form which means the
dependence on the Euclidian variables is made by the same function has
shown, in a famous theorem, that within the class of continuous solutions only a solution of
the simple wave type could be joined (it is adjacent) to a constant state (corresponding to
the rest or to a uniform flow).
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matrices of the system are

Obviously, either the coefficients or the terms could depend
on the independent variables (a linear system) plus,
possibly, on the unknowns (a quasilinear system). We will
see immediately that the compressible inviscid fluid (Euler) system is of
the above form.

Let us now consider a Cauchy condition associated to the above writ-
ten system, a condition which implies the specification of the solution
U on a hypersurface of equation

that is F being a given column vector. Similarly, as in the
case of the Steichen equation, the solvability of this problem is connected
with the possibility of the evaluation of the higher order derivatives of
U on the surface (that is the possibility of a Taylorian expansion)

what is not possible if det [91], a relation which defines

the characteristic hypersurfaces. In other terms, if and

then P being also a homogeneous polynomial function of
degrees in if this is zero only when at

the system will be elliptic (it does not have real characteristic
hypersurfaces) or if the equation P = 0 (in has real roots (for any
given values for the system will be completely hyperbolic.

Finally, a hypersurface is a weak discontinuity surface (when passing
across it are continuous while at least one of its derivatives has
a discontinuity of first kind), if and only if [33]. As
this represents also the equation of characteristic hypersurfaces we get
the above mentioned result.

The theory of weak discontinuity surfaces is very important in fluid
mechanics since the perturbations propagate along the discontinuity sur-
faces. If we accept, for instance, that a uniform stream of velocity v is
perturbed at a fixed point O, then this perturbation will be transported
by the fluid and then it propagates with the sound speed  following a
direction n. In the subsonic case, this perturbation may reach any
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point from upstream or downstream, there not being real characteris-
tics. In the case the perturbation propagates in a region which is
strictly delimitated by the real characteristics (Mach lines) which pass
through O, thus delimitating a cone with the vertex at O and whose
span is the double of the Mach angle. Outside this cone there is no
perturbation interference linked to the fixed point O.

If we recall the Euler equations, in an adiabatic regime and in the
absence of the mass forces, then considering as independent thermody-
namical variables and from we have

such that the Euler equations become

Considering again the matrices and the vector of the un-
known functions U by

the above system can be rewritten as where
Following the result from the above general frame, the

characteristic equation will be given by P = 0, where
while P is
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and where Developing the determinant
using the last row, we have that

which, for any has all the roots (in real and so the system
of the compressible inviscid fluid equations, in adiabatic evolution, is of
hyperbolic type.

As regards the possibly discontinuity surfaces, which are among the
characteristic surfaces, by denoting the propagation velocity of such a
surface with from the above equation we get

that is or Meanwhile the surface of velocity (the
entropy wave) is a material surface (which is moving together with the
fluid) and along which an entropy discontinuity could occur while the
pressure is constant, the surfaces which propagate with the sound speed

(called the sound waves) will be the loci for pressure discontinuities,
the entropy remaining there constant.

12. Direct and Hodograph Methods for the
Study of the Compressible Inviscid
Fluid Equations

In what follows we will give a brief overview of some of the methods for
approaching the “generalized” Cauchy–Riemann system for the steady
irrotational plane flows, i.e., the system

with the classical slip-condition on the surface of the embedded bodies
together with the condition at infinity (in the case of the unbounded
domains).

The above system is obviously nonlinear since
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Concerning the existence of the solution of this system, a system equiv-
alent with the Steichen equation, C. Morawetz and A. Busemann have
proved that, at least in the transonic case, it is ensured provided that
one gives up the usual continuity requirements.

Now we will briefly present either a direct method or some hodograph
methods to approach the above system. For sake of simplicity we will
deal with the subsonic (elliptic) case when any discontinuity surface is
avoided.

12.1 A Direct Method [115]
The direct method we intend to present briefly in the sequel is im-

portant by its possibilities to be used for approaching other nonlinear
systems too.

Suppose, from the beginning, that the functions and are in the
form and where and represent, respectively,
the velocity potential and the stream function of the same flow but
considered incompressible. Using the Cauchy–Riemann system for
and we will get

where .
Now we will get, using this direct method, the classical solutions of

the source and of the (point) vortex in the compressible case.
By imposing that  and are constant), we

would try to determine a such that the above system is
fulfilled. Simple calculations show that this should be of the form

constant), that is

while depends on this But this solution is just the com-

pressible source. Analogously, if is given, then the
corresponding solution of the obvious structure will be

necessarily and

The last triplet corresponds to the compressible point vortex.

35 With respect to the explicit form for it is, for instance,

(for adiabatic flows) or

(Chaplygin fluid), etc. Obviously this functional dependence should fulfil the restrictions
implied by its significance, namely being the
critical velocity).

35
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Let us now extend the above procedure by considering either the pair
of functions

or the nonholomorphic function
If we introduce also the function
a holomorphic function in it is obvious that the composed function

will be nonholomorphic in
So we have in our hands a pair of complex functions and F with
the above mentioned properties, which should be formulated such that
their composition satisfies the focussed system and, more, the functional
dependence is ensured. Basically all these lead, through the
Cauchy–Riemann system which is satisfied by U and V,  to the fulfilment
of the condition

where and each side of this equality

depending on
In the particular case of a subsonic stream past a circular obsta-

cle with a velocity at far field by accepting the adiabatic law
and choosing

the above system leads, by an approximate solving, to a solution which
has been already established through the Imai–Lamla method but which
now satisfies exactly the boundary conditions [115].

12.2 Chaplygin Hodograph Method.
Molenbroek–Chaplygin equation

The hodograph (plane) method, as in the incompressible case, leads us
to a study of the flow in the “hodograph” plane and, consequently,
the independent variables and are replaced by and or V and (the
velocity polar coordinates) while and should be expressed with these
new coordinates36. It is also possible to try, conversely, to express V
and as functions of and considered now independent variables,
which has the advantage of knowing, in general, the variation domain
for the point of the plane while the corresponding domain
from the hodograph plane is not known yet.

We remark that if we make the change of variable defined by
and together with the change of function

36 Details on the “hodograph” plane techniques can be found, for instance, in [69].
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the Steichen equation will transform into the following linear partial
differential equation (Prandtl equation)

to which one could apply the classical methods of integration (Riemann).
The inconvenience of such change of variable and function consists in
the lack of a simple mechanical interpretation for while and have
several interpretations.

If we keep only the passage to the hodograph plane, by setting
we have and

and from here, by eliminating dx and dy and replacing  and
we get

Imposing that the right side should be a total (exact) differential and
separating then the real and imaginary parts, we obtain the system

which, by “inversion”, could be written (Chaplygin)

If we manage to solve this system, we will have and
defined in a domain of the hodograph plane contained in the disk

37. From the “connection” formulas

by integrating, we can obtain and that is and
and therefore, by inversion (the condition making

this possible), one finally gets and
Suppose now that, from the last two equations of the system, we

have eliminated thus obtaining the so-called Molenbroek–Chaplygin
equation

37 We denote the magnitude of the maximum velocity while the critical velocity
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an equation which could be rewritten, in an equivalent form

The last form is a linear elliptic or hyperbolic equation, according to
or and whose characteristics in the hodograph plane

will not depend on or These characteristics called
also hodograph characteristics, will be defined by the equation

It is shown that these hodograph characteristics, in fact the char-
acteristics of the Prandtl equation in the coordinates V and have
perpendicular directions (tangents) vis-a-vis the Mach lines of the other
family from the physical plane.

Before ending this last section of Chapter 2, we intend to present,
briefly, other useful forms of the Chaplygin system or of the Molenbroek–
Chaplygin equation.

If, for instance, in the plane of the variable V,  we introduce
we obtain with

and the Molenbroek–Chaplygin equation becomes

If in the place of V,  we consider now the variable

being a function of V, then the Molenbroek–Chaplygin equation gives

us with which is used specially
in the transonic flows. The case corresponds to the Tricomi
equation.

Finally, in the adiabatic case, by introducing the nondimensional vari-
able and the constant so that and to the
interval of variation corresponds the interval
while to the critical value of the velocity corresponds

We also have and
the Chaplygin system and the Molenbroek–Chaplygin equation become
respectively,

and
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Using the method of separating variables, Chaplygin has succeeded in
obtaining the exact general solution for the above equations by means
of the hypergeometric series [69].



Chapter 3

VISCOUS INCOMPRESSIBLE FLUID
DYNAMICS

In what follows we will give a short survey on some features related
to the viscous incompressible fluid flows and their equations (Navier–
Stokes), all considered within the context of building of some numerical
algorithms to approach these flows. Thus, after a brief overview of some
uniqueness and existence results, we will focus on different formulations
used for Navier–Stokes equations. A special role will be played by the
so-called integral conditions for the rotation which replaces the non-
existence of a “classical” boundary condition.

Aspects connected with the nondimensionalization of the involved
equations, followed by some approximate models in the case of small,
respectively great, Reynolds number, are then envisaged. From the large
variety of approaches to the important concept of boundary layer, we
will chose the probabilistic way which, apart from a higher rigor, is a
source of efficient numerical algorithms.

Everywhere in this chapter the laminar character of the flow is ac-
cepted.

1. The Equation of Vorticity (Rotation) and the
Circulation Variation

We have seen that for a viscous incompressible fluid, the stress tensor
is given by the constitutive law that is

We suppose, in the sequel, that the viscosity coefficient is constant
(by accepting the Stokes hypothesis should be constant
as well). Since
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by introducing also the kinematic viscosity coefficient the equa-
tions which govern the fluid flow (more precisely, the equations of linear
momentum) could be rewritten, as we have previously seen, in one of
the following equivalent forms:

or

or

These equations of mixed type, are known also as the Navier–Stokes
equations. Obviously, in order to define precisely the whole pattern of
the flow, they should be completed by the equation of continuity and
the equation of energy together with some initial and boundary (adhe-
rence or no-slip conditions) plus, eventually (in the case of unbounded
domains), the behaviour conditions at far field (infinity).

In what follows we will search new formulations for the Navier–Stokes
system or even different “approximations” for it in order to solve some
practical problems.

Before doing that we need some results about the vorticity (rotation)
and circulation.

For a viscous compressible fluid, by applying the operator rot to both
sides of the flow equation under the Helmholtz form, which means to
the equation

in the hypothesis that the external forces come from a potential U, that
is f = –gradU, we get
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However, according to Appendix A,

and so we will also have

i.e., the rate of change of vorticity for an observer who is moving with
the fluid is

having the expression already formulated within the study of
viscous compressible fluid flows.

On the other hand, we know that the circulation along a closed fluid
contour C, is defined by and But since

and f comes from the potential U we obtain

which provides the rate of change of circulation for the considered fluid
flow.

Obviously, in the conditions of a viscous incompressible flow (div v =
0) and under the same hypothesis on the conservative character of the
external forces (f = –gradU), by applying again the operator rot to
both sides of the Navier–Stokes system, that is to

we get

and

As is given this time by



136 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

we finally have

We remark that the vorticity changes due to the term are related
to either the “stretching” of the vortex line or to the “angular turning”
of the vortex line. In the plane case these aspects of stretching or turning
are completely absent and the vorticity equation is simply

The above equations, which have been established assuming incom-
pressibility, will have the same structure even in the case of barotropic
compressibility when there is a function such that

The same equations anticipate vorticity conservation in the plane case,
which will not be true in the three-dimensional case. This remark would
back support the non-existence of some general uniqueness and exis-
tence results (with the continuous dependence on data) for the three-
dimensional Navier–Stokes equations when only some local results, that
is for small intervals of time, exist.

2. Some Existence and Uniqueness Results
The Navier–Stokes equations(the equations of viscous incompressible

fluid flows) have had the attention of many mathematicians who have
approached them in their study of the mathematical coherence of the
corresponding model, i.e., the search for the existence and uniqueness of
the solution which depends continuously on data.

In a famous paper published in 1933 [82], J. Leray established the ex-
istence of the steady state solution (but not its uniqueness) in a bounded
domain for the Navier–Stokes system by using an “a priori” assess-
ment of the Dirichlet integral in the form where M

depends on the Reynolds number and the data of the problem (the
external mass forces and the transport velocity of the domain bound-
ary). In the same paper Leray investigated also the case when is
an external unbounded domain (the complement of a compact set) by
completing the Navier–Stokes equations with a condition of the type

(i.e., a far field condition).
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Although in the three-dimensional case the respective behaviour con-
dition is satisfied (Finn [45]), this will be not always fulfilled in the plane
case so that the problem of the mentioned Leray solutions is still open.

In the particular case when and the Reynolds number is suf-
ficiently small, G.P.Galdi has given an existence and uniqueness result
within some suitable function spaces. The same author has established
an existence and uniqueness result for the Oseen problem [48]. Con-
cerning the Stokes problem for an exterior domain whose boundary is
Lipschitzian, Galdi and Simander have proved, in the existence
and the uniqueness of a solution which depends continuously on data
[50].

As regards the Cauchy problem for the unsteady Navier–Stokes sys-
tem, the existence and the uniqueness of the classical solution has been
established in both plane and axially symmetric cases while in space
the existence has been proved only locally, i.e., for limited time inter-
vals and for sufficiently small Cauchy data (in a suitable topology) [77],
E. Hopf pointing out that this problem is not “well-posed” [66]. The
same E. Hopf has also proved the existence of weak solutions for the
Navier–Stokes equations [67].

An overview of the existence and uniqueness results has been made
by R.K.Zeytonian [159] and more recently by P.L. Lions [85].

In the sequel we will touch upon the some uniqueness results of the
classical solution which, as we have pointed out in the case of the inviscid
fluids, are of the greatest practical interest.

Thus, in the conditions of the domains which are bounded by surfaces
made by a finite number of closed boundaries of rigid bodies (possibly
in motion), a Dirichlet–Cauchy condition for the Navier–Stokes equa-
tions (i.e., the adherence condition together with an initial condition
for velocity) has a unique (classical) solution in quite non-restrictive hy-
potheses (Foa, [47]). D. Graffi and J.Serrin have extended this result
to the case of the compressible fluids too [57], [135]. At the same time,
following a procedure given by Rionero and Maiellaro for the inviscid
fluids, the uniqueness of the classical solution is also established under
the assumptions of the boundedness at infinity of the velocity gradients
[130].

Concerning the unbounded domains (the exterior of a closed and
bounded surface), a situation which often occurs within practical prob-
lems, Dario Graffi has shown the uniqueness of the solution for a Dirichlet-
Cauchy problem provided that the velocity and pressure fields are con-
tinuous and bounded with respect to the spatial variables and the time,
while the velocity second order derivatives are continuous a.e. with re-



138 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

spect to the same variables and, at far distances, the pressure behaves
as

Some extensions of this result, for the case of compressible fluids, may
be found in D. Graffi [59], S. Rionero and P. Galdi [129].

Obviously if a classical solution initially exists (that is on a small
interval of time, starting from and it is steady, then, if this solution
will not be sufficiently smooth at an ulterior moment (which means,
basically, it will not exist) the uniqueness will collapse.

3. The Stokes System
Let D be a plane or spatial region with a fixed smooth boundary

and w a vectorial field defined on D. It is known that such a vectorial
field w could be uniquely decomposed into the sum u + grad p = w,
where u is a vector satisfying div u = 0 (solenoidal) being also “parallel”
to the boundary that is while is a scalar (defined up
to an additive constant) [19].

Due to this result we may define the operator P, called the orthogonal
projection operator, which maps every vector w into the vector u, i.e.,
into its part of zero divergence which is also “parallel” to the boundary.
According to the above result this operator P is well-defined.

We notice that P is, by construction, a linear operator satisfying the
equality w = Pw + grad p, whose fixed points are the vectors u fulfilling
div u = 0, and, of course, Pu = u while its zeros are the
vectors gradp because, obviously, P(grad p) = 0.

Let us consider the Navier–Stokes system, under the assumptions of
the external (mass) forces absence or of their derivation from a potential
U, and let us apply to this system the operator P. As

we have

But if v satisfies the iricompressibility condition (div v = 0) and the
necessary condition on the fixed boundary as well,
the same result does hold for and it does not for (this fulfils

but, in general, With this remark we
are led to the following equation of evolution type (an important feature
which allows the construction of numerical temporal algorithms)



Viscous Incompressible Fluid Dynamics 139

where R being the so-called Reynolds number (generally
and being the characteristic (reference) velocity and length

respectively or, in other terms, it is the ratio between the weight of the
inertial forces and that of the viscosity forces).

The importance of this equation consists first in the pressure elimina-
tion, the pressure being then constructed “a posteriori” as the “gradient”
part of

Further, this consequence of the Navier–Stokes equation is of a great
importance in elaborating on a class of numerical algorithms1.

If R is small (the case of the slow flows or the very viscous fluids, etc.)
the right side of the above equation could be approximated by

and hence we have the approximate system

This system which represents a good approximation of the Navier–
Stokes equations (in the above mentioned hypotheses) is of parabolic
type and it is called the Stokes system.

The Stokes system is a first (classical) linearized form of the viscous
fluid equations. In fact, to the equations of this system one associates
corresponding adherence (no-slip) conditions and initial con-
ditions under the form and as well.

Applying the divergence (div) operator to both sides of the previous
system we get in D, that is, within the Stokes model, the
pressure is a harmonic function. If the flow is steady we will have that

1In fact, except the incompressible case, all the unsteady flow equations for both viscous and
inviscid fluid are of evolution type. Even in the incompressible case, one could restore this
evolution character by introducing an “artificial compressibility” which later tends to zero.
For instance, the equation of continuity becomes with a small parameter
which ultimately is obliged to tend to zero.
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the fluid velocity is a biharmonic function while the vorticity
is also a harmonic function

In this book we will come back to the Stokes system within the context
of certain applications to practical problems.

We cannot finalize this section without pointing out what is known as
Stokes paradox. Basically this paradox shows up that, in the conditions
of a plane steady uniform (at far field) flow around a circular cylinder,
the Stokes model fails2.

The failure of the approximation at far distances through the Stokes
model (in fact there is not a valid uniform approximation of the exact
equations), leads to the consideration of some nonlinear effects within
the Stokes equations. Some details on this new approach which leads to
the so-called Oseen model, can be found in the sequel and, for instance,
in [98].

4. Equivalent Formulations for the Navier–Stokes
Equations in Primitive Variables

There are two main distinct ways to proceed in the construction of
some equivalent formulations for the Navier-Stokes equations, both being
of great use in the numerical approach to these equations.

The first is the pressure-velocity or (only) pressure formulation, known
also as the formulation in “primitive” (“genuine”) variables. The sec-
ond is the vorticity-potential or stream function formulation (with its
variants) known as the formulation in “non-primitive” variables. In the
sequel we will give a brief survey on the most important features of
both formulations, focussing on some recent results about the integral
conditions for vorticity which interfere within the formulation in “non-
primitive” variables.

4.1 Pressure Formulation
In what follows we will envisage an equivalent formulation of the

Navier–Stokes system which allows evaluation of the pressure as a func-
tion of velocity field. For this we first consider the Navier–Stokes equa-
tions under the form

to which one applies the divergence operator. Using then the formulae
(see Appendix A)

2The first rigourous proof of the Stokes paradox can be found in the first edition of the Kocin,
Kibel, Rose book [74].
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and

we also have

and consequently

where
Using now the decomposition of the gradient tensor, that is grad v =

where [D] is the symmetric rate-of-strain tensor
and is the skew-symmetric rotation tensor

we may check by direct calculations, that

and grad v so that
By introducing now Truesdell’s number for vorticity  defined

through (and which is seen as a measure for
the fluid vorticity), the above equation could be also rewritten

As together with the incompressibility assumption, we get the
following equation for the pressure determining

an equation to which one should join the appropriate boundary condi-
tions. We remark that for the irrotational flow while
for the rigid bodies ([D] = 0), so that
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4.2 Pressure-Velocity Formulation
The Navier–Stokes equations, in the absence of external (body) forces,

written in the form

will be completed in what follows by the equation of internal energy

where is the so-called dissipation (func-
tion) which measures the rate of work done by the “viscous part” of
the stresses during the deformation process of a unit volume of fluid
in order to increase the internal energy and hence the temperature
of the fluid. Since should be negative, from its explicit structure

it turns out that and which
is obviously satisfied.

On the other side, being constant for the incompressible fluid, the
thermodynamics equations lead to with C the specific heat.
Hence the internal energy equation becomes

where is the thermal diffusion.
From the pressure equation (see pressure formulation) where

we now have

an equation which should be (numerically) solved simultaneously with
the flow and continuity equations of the Navier–Stokes system. The use
of the no-slip condition on a solid fixed surface in the flow
equation, yields3

or, by taking the dot product with n, the unit outward normal drawn
to we get

3We have used the vector identity with
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Thus we have to solve a Neumann problem for the Poisson equation
of the pressure, a problem which creates much inconvenience due to the
nonlinear character (in velocity derivatives) of the boundary condition.
To overcome most of these shortcomings it is recommended, for instance,
the use of everywhere except for the evolution term that is
to replace the above pressure equation by

or, equivalently, by

where is Truesdell’s number.
These equations should be solved (at time steps) simultaneously with

the flow equation, the pressure for being taken as the “right”
pressure.

Chorin has suggested another method which avoids completely the
pressure equation. Replacing the equation of continuity
by the equation

where is an artificial compressibility and is the corresponding
artificial equation of state, Chorin solves only this equation together with
the flow equation, the incompressibility being achieved by a dynamic
relaxation in time so that and the steady state is attained.

5. Equivalent Formulations for the Navier–Stokes
Equations in “Non-Primitive” Variables

In what follows we intend to present some alternative formulations for
the Navier–Stokes equations which, besides a certain theoretical interest,
will lead to remarkable advantages in the numerical and computational
approach. We will focus on the unsteady cases when we try to “split”
the equations vis-a-vis the involved unknowns while the incompressibility
condition implies the Laplace operator. This approach allows us to avoid
the compatibility condition between the boundary and initial data (a
condition which does not occur in the steady state case) but it requires
the formulation of some integral type conditions for vorticity which will
replace certain adherence conditions on the boundary.
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Let us recall the Navier–Stokes equations in the domain D, of solid
boundary (with the unit outward normal n), that is

with the initial conditions and the boundary conditions
b being the displacement velocity of the wall (boundary) which sat-

isfies also (for every the global condition

Obviously the initial velocity should fulfil the condition
(solenoidal vector) while b and should also satisfy the compatibility
condition

This compatibility condition, due only to the incompressibility, was
used by Kato in 1967 [73] to establish the existence and uniqueness of
the classical solution for the inviscid fluids (Euler equation) in the bidi-
mensional case. At the same time, this compatibility condition together
with the solenoidal character of the initial velocity, allows us to identify
the appropiate linear space of the initial velocities which is finally
[140].

In the following, by limiting ourselves to the plane case, we will try
to give a new formulation for the Navier–Stokes equations using other
variables than the “genuine” (“primitive”) ones. At the beginning we
will write the Navier–Stokes system in orthogonal generalized (curvilin-
ear) coordinates, followed by the stream function formulation. Then we
will establish the equivalent equations in vorticity and stream function
(the formulation) which reduces obviously the number of un-
knowns and eliminates the incompressibility condition whose numerical
fulfilment could be extremely difficult. This formulation, the most used
to approach the viscous incompressible fluids, has a weak point by the
lack of the boundary condition for vorticity. We will show how it is
possible to bypass this inconvenience by introducing a so-called integral
type condition for vorticity.

5.1 Navier–Stokes Equations in Orthogonal
Generalized Coordinates. Stream Function
Formulation

The complexity of different practical problems, the diminution of the
computational effort as well, lead to the choice of appropiate systems of
reference (coordinates) which would simplify both the formulation and
the solving of the problems.
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In what follows we will write the Navier–Stokes equations in orthog-
onal curvilinear (generalized) coordinates. (For supplementary details,
the consideration of non-orthogonal coordinates included, see, for in-
stance, [153]). As a direct application, in the same orthogonal coordi-
nates, we will give the transcription of the envisaged equations under
the stream function form (formulation).

Let us now consider the generalized coordinates and, at a
given point let there be a triplet of unit vectors

which are respectively tangent to

the coordinate curves and where are the so-called
Lamé coefficients. The fact that are generalized orthogonal
coordinates implies automatically that

We know that the gradient, divergence, rotor (curl) and Laplacian
operators have respectively (in these coordinates) the expressions [153]

where

where is any scalar function while A is an arbitrary vector

But then we can rewrite the Navier–Stokes equations as
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As regards the entities they become
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and where div v is expressed as above (the writing of the divergence
operator in generalized coordinates). These equations are used when
their conservative form is not wanted.

In the following we will focus on the stream function formulation for
the Navier–Stokes equations, a form used by certain numerical meth-
ods due to the advantage of the automatic fulfilment of the equation of
continuity. At the beginning we deal with the plane and axially sym-
metric flows and then, by using the scalar and vectorial potentials, we
will extend our search to the three-dimensional case.

Let us consider again the fluid velocity If
these velocity components are independent on a certain coordinate (as
the other flow parameters), the fluid flow is either plane (bidimensional)
or axially-symmetric (revolution).

For sake of simplicity, suppose that all the parameters associated to
the flow are, for example, independent of In the plane case the flow
will be the same as on the surface the component
and On the other hand, in the axially-symmetric case, is the
azimuthal angle and the derivatives are zero although the component

is or is not zero while
In the axially-symmetric case with the azimuthal angle constant,

the above written (in generalized coordinates) continuity equation will
be identically satisfied by

Denoting we find (from the above expression for rot v) that
the vorticity components are
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where the differential operator is

If now we consider the Navier–Stokes equation which corresponds to
together with the equation of rotation, we have

where

In two dimensions,
tions become

and the previous equa-

and

In the tridimensional case, we start with the following representation
for the velocity v, namely where and the
vector A is solenoidal, that is div A = 0. The last requirement could
be satisfied by looking for A under the form S grad N, which means to
fulfil

or, in other terms, N should be a harmonic function while the surfaces
S = constant and N = constant have to be orthogonal.
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Obviously, the above representation satisfies implicitly the continuity
equation. Applying the rotor (curl) operator to this representation we
also get

In other words, in the three-dimensional case, the writing of the in-
volved equations (using the scalar and vectorial potentials) comes to
the consideration of the last equation together with and the
equation of vorticity

At the same time, by substituting the expression into the
definition of vorticity, we obtain

Concerning the boundary conditions for these two scalar equations,
they could be deduced from those already known by a separate consider-
ation of the normal and tangential velocity components at the boundary
points. If n is the unit outward normal vector drawn to the boundary

is the unit tangent vector counterclockwise oriented, is the
natural parameter (the arc length) on the boundary, then the condition

implies

respectively

The first of these conditions, after integrating along the boundary,
leads to a Dirichlet condition for By accepting that D is a simply
connected domain, from the global condition we get the

warranty that the respective integral along the boundary defines a uni-
form function to within an additive function of time such
that

where is the natural coordinate of a fixed point of
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To simplify the form of the boundary condition for we will not take
into consideration the term and, denoting by

the two conditions could be written

Regarding the initial condition, this implies a vorticity condition at
the instant precisely

With respect to the compatibility condition attached to the Navier–
Stokes system, that is it could be rewritten in the
form

where also
If these last two conditions on the data are satisfied, Guermond J. L.

and Quartapelle L. have rigorously established in 1993 [126], the equiv-
alence between the genuine formulation of the Navier–Stokes equations
and the formulation”, which means with the system

Obviously this formulation is nonlinear due to the presence of the
Jacobian which is “coupling” the equations in and further, there are
two boundary conditions for and none for If the difficulties caused
by this nonlinearity can be overtaken by combining some explicit or
implicit step-time algorithms within suitable iterative procedures, those
connected with the boundary conditions will be avoided by one of the
following methods (formulations) which are presented in the sequel.
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5.1.1 The Biharmonic Formulation

The simplest way to avoid the lack of a boundary condition for vor-
ticity is to eliminate, from the previous system, the vorticity itself. By
substituting the expression for vorticity into the transport
equation for it (the vorticity equation) we reach the problem

where is the solution of the Dirichlet problem

the data and satisfying both the compatibility and solenoidal condi-
tion. In the above formulation the boundary conditions don’t lead to an
overdetermined problem (as they seemed to in the formulation)
because the equation in is of fourth order. There are many numerical
procedures either in finite differences or in boundary elements (for the
linearized variants). This problem could also be written in the following
variational form (which is essential for a finite element type method):

“To find a function such that and

and

where (·, ·) denotes the inner (dot) product in while and
are the standard notations for the corresponding Sobolev spaces”.

5.2 A “Coupled” Formulation in Vorticity and
Stream Function

This new formulation envisages a new way to avoid the difficulties
joined to a double condition for on and to a total absence of
conditions for

We remark that, even in the absence of the non-linear term from the
vorticity equation, the involved equations should be considered as being
coupled through the boundary conditions. In other terms, one of the
conditions for must be “associated” with the vorticity equation but
this equation is not sufficient to determine alone the unique Therefore,
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in this approach, a boundary condition for is not needed but the two
equations should be solved necessarily as coupled.

More precisely, the Dirichlet condition will be attached to
the rotation (vorticity) equation

while the Neumann condition is associated with the equation

But this last equation will not be a real Poisson equation
since is an unknown and so the compatibility condition for such a
Neumann problem

is not required anymore. Obviously we also have the initial condition
for vorticity, i.e.,

To such a formulation one could join either ADI techniques with fi-
nite differences (Napolitano) [94] or Chebyshev spectral approximations
(Heinrichs)[63].

At the same time, in view of the construction of some finite element
type methods, one could state the following variational (mixed) formu-
lation for the above equations:

“To determine and such that and

and are the standard notations for the Sobolev spaces”.
We finally remark that in this formulation one of the two conditions

on is imposed implicitly as a natural condition.

5.3 The Separated (Uncoupled) Formulation in
Vorticity and Stream Function

In what follows we will try to separate the equations from the
formulation”. To do that we need some supplementary conditions for
vorticity which should replace the boundary conditions for it. These
supplementary conditions will be stated in a different form versus the
classical boundary conditions, since they have an integral character.

where again (·, ·) denotes the inner (dot) product in while
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Due to L. Quartapelle and Valz–Cris we have the following result
[127]:

THEOREM A function defined on D, is such that with

and if and only if

for any harmonic function on D, that is in D.
This integral condition, whose existence has been anticipated by other

scientists, has to be considered as a condition of a unique type vis-a-vis
the usual classical boundary conditions. This is not a boundary integral
formulation due to the presence of the volume integral.

If we introduce the fundamental solution for the Laplace
operator (the Green function) through the equation

where is the Dirac distribution in two dimensions,
by using the Poisson (Green) formula for a pair of regular functions
and (on D), that is

where now while satisfies and

we obtain the following new form of the integral condition

with 0, as r is inside, outside or on the boundary point of D.
The introduction of the above integral condition allows us to break

the into the two problems

and



154 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

where is an arbitrary harmonic function.
Obviously, in the absence of the nonlinear term, a complete separa-

tion of the two equations may be achieved so that they could be solved
successively (one by one) in the indicated order.

At the same time, if the second equation is accompanied by the Neu-
mann condition

the result is completely equivalent. The same thing happens if we con-
sider also the arbitrary function of time the integral condition being
invariant with respect to this choice.

Among the applications of the vorticity integral condition we should
mention the works of Dennis and his collaborators where one has studied
the fluid flows past flat plates of finite size and which are “aligned”
with the stream, the fluid flows around circular cylinders or spheres and
even the Oseen model [25], [26], [27], [28]. More precisely, in all these
researches, one deals with series expansions for and with respect to
different suitable orthogonal function systems and then one keeps only
a finite number of series terms. The final results agree well with the
classical ones [42].

Now we will make some considerations on the equivalent formulations
in the three-dimensional case. For these flows some additional difficulties
occur due to the fact that the components of the velocity vector (which
is solenoidal) are, in general, different from zero and two of them (the
tangential components) should be determined on the solid boundaries.

We would limit ourselves to the formulation, backed by
the (always possible) vector decomposition

Concerning the transport equation for vorticity (the rotation equa-
tion), it is known that now it has the form (we denoted

with an initial condition (corresponding to the initial condition for v) of
the type

By applying then the divergence operator to the vorticity equation we
get
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with the supplementary initial condition
If this equation is also completed by the supplementary homogeneous

condition for the unique solution of the above
equation will be identical to zero, which means should be a solenoidal
vector for This last condition, introduced by Lighthill,
together with the initial condition for are the necessary and suffi-
cient requirements for to be solenoidal, a condition demanded by the
definition itself of

In the sequel we will limit ourselves to considering the
formulation based on the unique (always possible) “splitting” of the
velocity vector by where the vector A is determined
up to the gradient of a scalar function and it fulfils the condition

Obviously the above representation and the incompressibility condi-
tion lead also to

which means will be harmonic in D.
The boundary conditions which are imposed on and A will be de-

rived from those imposed on v by separation of the normal and tangential
components from

We accept, together with Hirasaki and Hellums, that regarding the
boundary condition on the normal direction, it will be satisfied by

and

the last condition being, in fact, synonymous with the orthogonality
condition

The determination of leads to solving a Neumann problem which,
taking into consideration the global condition
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can be uniquely solved to within an arbitrary function of time
Once is determined, the tangential part of the boundary condition for
v, that is becomes also

By applying now the rotor (curl) operator to both sides of the decom-
position we get for A the equation
and the attached boundary conditions

But the above system is equivalent with

Finally the following results hold:
THEOREM 3.1. The Navier–Stokes system written in the genuine

variables v and together with a Cauchy–Dirichlet (initial-boundary)
condition is equivalent with the following system in variables and
A,

provided that the data n · b and satisfy the restrictions

As regards the vorticity integral condition this could be written now
in the form [126]
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where is an arbitrary solenoidal vector.
Correspondingly, the “uncoupled” (separated) form in the

formulation would be [126]

It is important to remark that, in three dimensions, the equation of
rotation (vorticity) has been completed by both boundary and integral
conditions, the last of them implying all the three components of vortic-
ity.

5.4 An Integro-Differential Formulation
The establishing of a unique integro-differential equation which is

equivalent with the Navier–Stokes system is due to Wu [157], [158].
Basically, the procedure uses both the rotation equation

and the Poisson equation

the last one being the consequence of the consideration of the condition
div v = 0 into the identity

Let now and x be a variable and a fixed point respectively, both
belonging to the flow domain, while It is known that the
solution of the above Poisson equation is given (in three and then in two
dimensions) by
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respectively

But we also know that

and both the identity

and the (Gauss) theorem

are valid.
Making then successively and we get

respectively

which leads to
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respectively

Using the adherence (no-slip) condition and the consequence
for interior flow we would have

while for the exterior flow with the free-stream velocity

with or and or 2 (according to the tri or bidimensional
case).

The substitution of these representations in the vorticity equation
gives rise to the integro-differential equation.

6. Similarity of the Viscous Incompressible Fluid
Flows

The (dynamic) similarity method is a very useful tool not only in
aerohydrodynamics but even in the approach to many other physical or
technical problems. This method allows us to specify all the conditions
which should be imposed on some laboratory models such that the in-
formation obtained from laboratory experiments could be extended to
the real situations. At the same time this method provides a special
technique for getting a whole class of solutions (depending on certain
parameters), starting with a solution of the system of equations which
governs the respective problem (process).

This method will also support the possibility of the construction of
some nondimensional solutions, a fundamental feature in the numerical
approach to the equations associated to the process (problem).

Generally speaking, two physical phenomena are said to be (dynam-
ically) similar if the parameters characterizing one of these phenomena
could be directly obtained from the same parameters for the second phe-
nomenon (and which are, obviously, evaluated at the “similar” spatial
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points and at the same moments) by a simple multiplication with some
unchanged factors called the similarity coefficients.

Let us now establish the similarity conditions for two viscous incom-
pressible fluid flow without any heat interchange with the surroundings
(isothermal). Considering then a system of characteristic (reference)
values for time, length (coordinates), velocity, pressure and mass (body)
forces, denoted respectively by and operating the vari-
able and function change

where the quantities with “bar” are obviously nondimensionalized, the
Navier–Stokes system becomes4

and

Dividing by and supposing that the conservative terms are not
neglected, we get

and

where the following nondimensionalized entities (also called the similar-
ity numbers) interfere:

The above equations are the nondimensionalized Navier–Stokes equa-
tions. To them we should add the nondimensionalized initial and bound-
ary conditions, according to the given problem.

If two viscous incompressible isothermal fluid flows are similar, the pa-
rameters (field values) of one of them could be obtained from the same

4The components of the velocity v are now denoted by while those of the nondimensional
velocity are denoted by
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parameters of the second flow, by multiplying with the same factor,
i.e., both the equations and the initial and boundary conditions (which
ensure at least the solution uniqueness) should be identical and, conse-
quently, the similarity numbers and R are also the same.
Obviously the respective solutions will depend on the parameters

and even on and (supposed constant but, generally, differ-
ent in the two flows), all the parameters being linked by the condition
that and R take the same values in the two similar flows.
Therefore we are led to a class of solutions depending on a reduced (with
four) number of free parameters, an important theoretical result.

In the case when we put away both the isothermal and homogeneous
character of the flow, but supposing that the variation of the tempera-
ture and of the concentration do not influence the viscosity, the thermal
conductivity as well as other thermodynamical properties of the fluid
then, if the radiation heat is ignored, the equations of the viscous in-
compressible fluid could be written as

and

where T is the temperature whose variation is is the thermal
coefficient of the fluid expansion connected with the Archimedean force
due to the density difference, that is and g is the gravity
acceleration.

Concerning the equation of heat conduction, it takes the form

where  is a constant which is called the thermal diffusion coefficient.
By using again the above equations, the technique of the similarity

method, we obtain the nondimensionalized system

where, besides the Strouhal, Euler, Reynolds and Froude numbers (the
last being now defined by there arises also the Peclet

number which is defined by Sometimes the Froude and
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Peclet numbers are replaced by the Prandtl number and the Grashof
number defined as and

Considering now the adjacent phenomenon of the propagation (diffu-
sion) of the involved substance if C is the concentration of the “mixture”
and D the diffusion coefficient of it, it is shown [87] that the differen-
tial equation of the mixture diffusion has exactly the same form as the
equation of heat conduction, namely

which, by nondimensionalizing, becomes

where is the diffusion Peclet number which is different from the
ordinary Peclet number, defined above (and in which is replaced by
D), namely

and to which there corresponds a diffusion Prandtl number (also-
called the Schmidt number) by the relation

In the sequel we will consider only the steady flows of the viscous
incompressible (homogeneous and isothermal) fluids, in the absence of
the external (mass, body) forces. These flows which basically depend
only on a unique similarity number (the Reynolds number), are of great
practical interest within the context of dividing these fluid flows in two
great categories: the fluid flows with small (low) Reynolds number and
the fluid flows with high (large) Reynolds number.

6.1 The Steady Flows Case
Let us consider again the Navier–Stokes system in the particular con-

ditions of steadiness and of the absence of external mass (body) forces.
Let L, be respectively, a reference length, velocity and pressure
which are characteristic for the envisaged problem.

Let us now make a variable and function change
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which transforms the equation of continuity into that is
while the flow equations become

The variables and the functions with “bar” will be called reduced and
the corresponding resultant system of equations is called the reduced
system. Within this system two nondimensional coefficients arise:

the first, is not connected to any interesting feature of the

(solution) system and that is why we avoid it by choosing (it
is possible to make such a choice because the pressure interferes only by
its derivatives, which does not happen in the compressible case);

the second will be the inverse of the Reynolds number
and it characterizes the weight of the viscosity effects versus

those caused by the inertia
In this way the reduced system can be written

Let there now be a solution of this system (considered for R fixed),
namely

To this solution there corresponds, by the formulas of variable and
function change, a family of solutions for the Navier–Stokes equations
and the equation of continuity, a family which depends on four parame-
ters L, linked by the condition that R should be fixed (therefore
only three parameters are independent).

Hence there is the following family of solutions (associated to a solu-
tion of the reduced system)

and

The fluid flows which correspond to such a family of solutions, for the
same fixed R, are called similar flows.
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Obviously, if are zero on a surface of equation
any similar flow satisfies also the adherence condition along the surface

which represents the equation of the boundary of an
obstacle immersed in the fluid.

Besides its exceptional theoretical importance (connected with the
construction of a class of solutions of the Navier–Stokes system which
depend on three free parameters), the nondimensionalized reduced sys-
tem is the system we deal with in view of the use of the numerical
algorithms and implicitly to simulate the fluid flows on the computer.

We cannot also forget that the similarity principle for the fluid flows
backs the laboratory experience on prototypes (as those made in an
aerodynamical tunnel) and when, by starting with the measurements
performed in some particular conditions, it is possible to anticipate the
results in much more general conditions provided that the Reynolds
number is constant.

7. Flows With Low Reynolds Number. Stokes
Theory

Let and be a solution of the reduced
system for a certain fixed R.

Suppose now that we make while are fixed. Denoting by
and the main parts of and respectively, it is shown that the

following asymptotic behaviours hold, namely

being a real number (not determined yet) while the notation
designates infinitely small quantities with respect to

Using these developments in the reduced system and neglecting those
terms which are of higher order (in the small parameter R) than the
kept terms, we get

It is obvious that only the choice allows us to watch the problem
in what follows (i.e., to keep the maximum number of the unknown
functions), such that we are led to the system (we will now omit the
writing of superscripts)
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This linear system is the Stokes system for steady flows. By applying
the divergence operator to the second equation, we also have
which means the pressure is a harmonic function within this model.

We now remark that if the flow is plane or axially symmetric, there
will be a stream function which allows us to express both components
of velocity (that is and with the help of this unique function so we
have (see also Chapter 1)

in the plane case and in the revolution case).
Nondimensionalizing the steady Navier–Stokes system, starting now

from the rotation (vorticity) equation

by

and corresponding

we are led (keeping only the main parts in to the system

The last equation could be also found in the study of the stream
function of an inviscid incompressible irrotational fluid flow (Chapter 1).
If is determined, from the second equation, then the first equation
allows us to define the function

Obviously, in the plane case the stream function will be a
biharmonic function , that is

Unfortunately the Stokes model which is elliptic in the steady case
while it is parabolic in the unsteady one, fails at large distances from the
immersed obstacle [33]. This result, known also as Stokes paradox, could
be proved, in an elegant manner, in the case of the flow past a circular
cylinder by pointing out the impossibility of such a steady flow with a
nonzero constant velocity at far field [153]. Basically this paradox means
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that, irrespective how small is the flow velocity at infinity (at far field),
the nonlinear term of the Navier–Stokes system (which is neglected in
the Stokes model) cannot be considered small enough vis-a-vis the other
terms (uniformly, in the whole cylinder outside). Or, in other words, the
Navier–Stokes equations should be considered, basically, nonlinear.

In fact, even if we study the three-dimensional flow past a sphere
using the Stokes model, a serious deviation versus the experiment arises
at a sufficiently large distance from the sphere. An explanation of this
weakness consists in the fact that the simplification considered within
the Stokes model is rigorous only if terms and are of the same
magnitude order. But at far field such a situation does not always occur
(for instance in the case of the sphere, the terms are always of the
order while the terms are of order To overtake this
inconvenience when we study the fluid flow at large distances, a good
suggestion is to choose a reference length L sufficiently great (of the
order of the distance between the obstacle and the far points) such that,
even in the case of slow flows with high viscosity, the Reynolds number
does not become small. Considering then a new variable and function
change defined by where are kept constant
while the initial system

will be rewritten in the form

a system which, by keeping its non-linearity, does not differ essentially
from the Navier–Stokes system.

If we accept that the far field (stream) velocity is parallel with the
axis (this means its nondimensionalized components are given by
the solution of the above system will be sought under the form

where and are the main parts of the perturbation terms associated
to the presence of the obstacle. Finally, by using these expansions in the
above equations and eliminating the terms of higher order in the small
parameter R, we arrive at the linear system

known as the Oseen system.



Viscous Incompressible Fluid Dynamics 167

This system is different from the previous Stokes system only by the
presence of the term But just the presence of this term allows us to
avoid the Stokes paradox, i.e., it becomes possible to study flow at large
distances.

Before stating some appreciation about the Oseen model (system)
within a known problem, we remark once again that, the pressure is
a harmonic function (which we get directly by applying the divergence
operator to the second equation).

Let then be a harmonic function in such that If we

introduce, instead of the function the function then
this new function will satisfy

while

a system whose unknowns are “separated”.

7.1 The Oseen Model in the Case of the Flows
Past a Thin Profile

Let us consider the plane flow of a viscous incompressible fluid with a
uniform (parallel to velocity at far field in the presence of a thin
obstacle (profile) whose sketch in the flow plane is the smooth arc
C of continuously differentiable equations

Following [33] we accept, if the perturbations induced by the presence
of the profile are respectively and that the looked for velocity and
pressure fields have the representations

where is the velocity magnitude at far field, is the constant density
and is the pressure in the unperturbed flow.

Nondimensionalizing, by the introduction of the new variables and
functions as follows,

in the hypothesis of the steadiness and by neglecting the perturbations
of higher order, we get a new system for perturbed velocity and pressure,
namely
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(where we have omitted using the “prime” superscript symbol for the
perturbed entities, a convention which is kept in the sequel).

But this equation corresponds to the Oseen approximation and it will
be completed with the equation of continuity

together with the (nondimensionalized) no-slip condition on C,

and the behaviour condition at far field (infinity)

As is a harmonic function, if designates a harmonic conjugate
function of it, then will be an analytic function whose
development in the neighborhood of infinity is of the form

Let there now be a holomorphic function whose
derivative is equal to According to the derivative definition
for such a function we have that P and Q should satisfy the system

On the other side the stream function whose existence is as-
sured by the continuity equation and is a constant
which, vanishing at infinity, is necessarily zero everywhere.

So we are led to the equation

which, completed with would provide a system we deal with in
the flow domain.

Considering now the auxiliary functions and defined by

the above system can be decomposed into the independent equations
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to which one adds the vanishing conditions at far field of the type

Let and be two points of the contour
C. Since the arc C, swept as increases from an origin O, is smooth
either the distances between these points or the argument of the
joining chord (which means the angle made with the positive sense of

are continuous functions.
Let

and analogously

where is the affix of a point from the flow plane.
Obviously, the continuity of requires us to avoid its “growth”

which could arise by a complete rotation around which means we
should consider a suitable cut in the flow plane, as for instance the half-
straight line being the infinity point of the flow plane).

Further, if and we also have that

the sign ± corresponding to the “right”, respectively “left”, boundary
value.

Let there now be a holomorphic function where
and satisfy the Cauchy – Riemann system

Our intention is to search the solution of the modified Oseen
system in the form

which is obviously a harmonic function while the arbitrary functions
and are to be determined through the fulfilment of the boundary
conditions.
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Concerning the second equation of the Oseen system, by the change
of function it becomes, in the new unknown function F, a
Helmholtz equation But it is well known that this
Helmholtz equation admits the solution where is the Bessel
function of imaginary argument, of the second kind and zero order. If we
now introduce the function connected with by the system

this function will also verify the above Helmholtz equation, that is5

Consequently, the solution of the Oseen equation could
be represented in the form

the functions and being distinguished via the boundary con-
ditions.

By introducing also the Bessel function of imaginary argument, of the
second kind and the first order, that is which is linked to the
previous function by the relation and denoting
by and it is shown that [33]

5The explicit expression of this function the conjugate, can be found in the literature
[154].
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By imposing now the adherence condition, either we approach the
arc (C) from its left or from its right, that is using the
Plemelj “jump” theorems for the potential of double layer, we obtain
the singular integral equation (but which can be reduced to a Fredholm
equation with a continuous kernel) of the problem

where with and (equali-
ties previously proved) while denotes the integral considered in the
Cauchy (principal) sense.

When (C) is a flat plate without any incidence (that is, placed on the
axis), the equations of this profile are

and
Remarking that the factors which multiply the unknown C, in the

integral equation of the problem, are zero, by separating the real and
imaginary part of this equation we obtain either an equation which has
only the trivial solution or the integral equation of first kind

where

Supposing that the Reynolds numbers are low, the singular kernel

could be approximated by being the
Euler constant. Consequently the above integral equation becomes

where and whose solution, given by T. Carlemann, is
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More details on this Oseen system approach can be found in [33].

8. Flows With High (Large) Reynolds Number
If we look again at the reduced system

where now the Reynolds number is supposed large (which could
be done also for small) a legitimate question will be whether or not
the solution of this system is “close” to that of the corresponding Euler
system, for the same flow domain, that is to

In other words, the fact that would imply the convergence
of the Navier–Stokes system solution to the corresponding solution of
the ideal incompressible fluid (Euler) equations?

We will see that the presence of this viscosity term irrespective
of how small it is, besides retaining of the second order character for the
Navier–Stokes system, together with the adherence condition (obviously
more complete than the slip condition for inviscid fluids) will determine:

1. The “Procrustian” differentiation of the fluid flow governed by
the Navier–Stokes equations (vis-a-vis the flow associated to the Euler
equations) in the proximity (vicinity) of the boundary in a region
whose “thickness” is in inverse variation with R.

2. The mentioned region where this differentiation occurs and which
persists irrespective of how small R is, could be even separated from the
boundary, this separation acting as a source of vorticity.

So that completely new circumstances will arise and they will be fun-
damental to understanding the limits of the inviscid fluid model, which
means the extent to which one could use with good results the hypothe-
ses (schemes) already introduced for this inviscid fluid.

For a better understanding of these ideas we start our study with a
simple mathematical model where one analyses the relationship between
the solution of the second order differential equation with Dirichlet (bilo-
cal) condition and the solution of a Cauchy problem for that first order
differential equation which is the “limit” of the first equation when the
small parameter The conclusions obtained from this abstract
mathematical model will be extended to the parallelism between the
Navier–Stokes and Euler equations.
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8.1 Mathematical Model
Let us consider the second order differential equation

where and is a small positive parameter, to which we join
the boundary conditions

It is known that the unique solution of this bilocal problem is

Suppose now that, in this solution, we make and so we have

for
A questionable aspect would be the rapport between this limit and

the “limit” of the differential equation resulting from the given equation
when which means the differential equation In fact
will be a solution of the differential equation more precisely that
solution which satisfies the prescribed condition but it does
not at the point 0 where

In other terms the convergence of to when is
nonuniform in the interval [0, 1] and in the neighborhood of zero
cannot be considered a correct approximation for the exact solution

of the initially given bilocal problem for the second order dif-
ferential equation.

To get a correct approximation of in the neighborhood of
we will use a special technique (the “ordinates dilatation”). More

precisely, we perform a change of variable and then we make
but keeping to be a constant. So that we obtain

and then keeping only the main (of the highest
order in terms of it, i.e., of the differential equation We
can also see that and that is a

This new limit function will be the solution of that differential
equation got from the initial one by the change of variable and function
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“matching condition” of the two approximations holds. Obviously the
just found function represents a good approximation of
(for enough small) in the neighborhood V(0) of the origin (where a
boundary condition is lost) while will be a correct approximation
for the same function in the complement of the previous region, that is
for

This simple model could be a guide in introducing the so-called “bound-
ary layer” which corresponds to the region where the approximation of
the solution of the Navier–Stokes system through the corresponding Eu-
ler solution is not possible. In fact the Navier–Stokes system, with a high
Reynolds number, plays the role of the above second order differential
equation with the immediate proximity of the wall (obstacle) cor-
responds to V(0) and the Euler equation takes the place of the “limit”
equation (when

To get a correct approximation of the Navier–Stokes equations in the
vicinity of the obstacle (wall), where the solution of the Euler equation
fails (replacing also the adherence condition by the much less rigorous
slip condition), one performs again a change of variables and functions
(the “ordinate dilatation”) making then such that the new just
introduced variables keep their constancy. Finally, considering only the
main terms in (and neglecting the rest) we reach the so-called
boundary layer equations.

As regards the solutions of the Euler system, they match with those
of the boundary layer equations at a sufficiently large distance from the
obstacle, i.e., on the “border” of this boundary layer whose thickness
varies directly with as we will see later.

The parallelism between the envisaged mathematical model and the
approximation of the Navier–Stokes system by the Euler and boundary
layer equations is illustrated also in Figure 3.1.

8.2 The Boundary Layer Equations
Our purpose is now to determine explicitly the boundary layer equa-

tions in the conditions of the existence of an obstacle which could be
identified with the positive real semiaxis (the half-infinite flat plate) and
which is placed in a viscous incompressible fluid stream with a veloc-
ity at far field. Obviously the same problem for an ideal
fluid (a uniform flow) leads, in nondimensional variables, to the solution

but this solution does not approximate the viscous
fluid flow in the boundary layer formed in the proximity of the wall.

To determine the boundary layer equations, we should set up a change
of variable and function that implies the “coordinates dilatation” (in this
case an “ordinates dilatation”) and then we keep only the main terms in
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Figure 3.1. The approximation of the Navier–Stokes solutions by the Euler and
boundary layer solution

More precisely, in the nondimensionalized equations of the viscous
incompressible fluid, that is in

performing a change of variable and function which allows a clearer ap-
pearance of the velocity component normal to the plate (“the ordinates
dilatation”), that is

we obtain that (necessarily) being just the boundary
layer “thickness” (for any other value of either the continuity equation
would lose a term, becoming trivial, or the terms due to viscosity or
those due to the acceleration quantity — from the other two equations
— would disappear, in both situations the whole system becoming more
“poor”). If now we make imposing and to be constant and
then keeping only the main terms in one obtains the following system
of equations of boundary layer (Prandtl)6

6The boundary layer equations in the case of curved surfaces are much more complicated
(see, for instance, S.L. Goldstein [56]).
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with the boundary conditions which express the adherence to the plate

together with the matching conditions with the inviscid fluid flow

Obviously, the approximation through the boundary layer solution
is backed by the existence of some positive constants C and such
that, in a certain norm within the velocity space, the solution of the
Navier–Stokes system and the corresponding solution of the boundary
layer equations satisfy an estimation of the form7

Before giving a brief mathematical study of the Prandtl equations we
should make some remarks. First, if we evaluate the circulation along a
simple contour (for instance, a rectangular one) which is tangent to the
obstacle, being all the time inside the boundary layer, this circulation
will vanish. Really, if our rectangular contour ABCD has the side DC
tangent to the obstacle at D and the other side AB is obviously parallel
with it, from on the boundary, we have also there while the

continuity equation leads to Thus, since on the boundary
we could suppose that is small in the proximity of the boundary or
more specifically, is small compared with the value of along AB while

is near zero along DC. So we have

7There are very few, and only in particular cases, mathematical results on such estimations.
Concerning the existence and uniqueness theorems we should mention O.A. Olejnik [96] and
P. C. Fife [44] who have shown, under some assumptions, the existence of such an estimation
for
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Implicitly, there will be a source of vorticity, the existence of the
boundary layer being associated with a mechanism for producing vor-
ticity in the boundary vicinity.

Experimentally, we can see that, when a boundary layer arises in the
neighborhood of an obstacle and an “unfavourable” pressure gradient8

occurs, there is a point C where this boundary layer is separating from
the obstacle, between the upper delimitation border of the boundary
layer and the obstacle surface some inverse flows being possibly formed.
This separation will be a vorticity source which propagates in the bound-
ary layer which could support the almost potential fluid flows model (see
the previous chapter), the separating vorticity lines being considered as
emanating from the separation points of the boundary layer. It would be
plausible to identify the separation points with those points where the
vorticity vanishes although there are no mathematical results to support
this assertion.

The second matching condition, together with the last equation, shows
that which means the pressure is constant inside the bound-
ary layer and its value equals that of the pressure of the ideal fluid in
the adjacent flow.

As a consequence of this remark, and the Prandtl system
will contain only the velocity components and But the continuity
equation (the compressibility condition) allows then the construction of
a stream function such that and so the boundary layer
system could be rewritten, in the unique unknown as

an equation to which one should attach the conditions

To construct the solution of this third order nonlinear partial differ-
ential equation, we remark that if is a solution of this equation,

8The “unfavourable” pressure gradients are corelated with a pressure increasing in the flow
direction which leads to a slower fluid flow in the boundary layer together with an accentuated
slenderness of this one, all of them determining the formation of a rest region where a slow
inverse flow could arise. As the main fluid stream should avoid this quite significant zone and
thus determine the boundary layer separation, in this case we can’t make an exact assesment
of the adjacent inviscid flow. In the conditions of the “favourable” pressure gradients, the
decrease of the pressure in the sense of the flow together with the continuous slenderness of
the boundary layer, make that the outer inviscid fluid model will be not affected anymore
and this inviscid model could be “added” without any difficulties.
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the same thing happens with the functions for any constants

and In the particular case when these constants are linked through
a relation of the form rational), together with the solution

we also have the class of solutions An imme-

diate question will be if the application has

any fixed points, i.e., if this correspondence, by a suitable choice of the
constants and can lead to such functions which satisfy the equality

It is shown that the necessary form of the functions to fulfil

the above requirement is for any rational [52].

On the other hand the fulfilment of the condition

implies a compulsory choice for namely
Therefore we intend to look for those solutions (of the boundary layer

system) which are of the form with and In the

language of the function the Prandtl equation becomes a nonlinear
ordinary differential equation

with the boundary conditions

H. Weyl formulated a successive approximations procedure which pro-
ves the existence and the uniqueness of the solution of the above equa-
tion. This solution has been exactly calculated but it presents some
inconvenience. Thus for small, becomes infinite which could be
avoided by choosing a suitable system of coordinates. At the same time,
in V(0) the Reynolds number (there is no reference length
associated to the problem) becomes small, irrespective of how small is

which contradicts the basic hypothesis that the Reynolds number is
always very large. In spite of all these shortcomings, which cannot be
avoided in the boundary layer theory, the obtained solutions agree very
well with experience at all the points outside of V (0).
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Figure 3.2 points out the shape of the longitudinal velocity profile
which comes from the Weyl solution. Experience confirms

these results, showing that this velocity profile tends to stabilize.

Figure 3.2. The profile of the longitudinal velocities

Before ending this section we try to give a definition of the bound-
ary layer “thickness”, even if this concept is not very precisely stated.
One accepts an understanding that the thickness corresponding to the
abscissa is that for which Therefore, it corresponds
to the value which satisfies which means this value
should be approximately Consequently we have

that is the thickness grows together with and hence the shape of the
boundary layer “border” has a parabolic shape.

The aim of this book is not to overview the analytical or “practical”
methods for solving the boundary layer equations. There is a large vari-
ety of such methods but most of them are valid only in particular cases or
they are not sufficiently rigorous concerning the approximations made.
In fact this last remark involves many of the papers on the boundary
layer theory, the practical applications imposing a “rush” for effective
solutions which are not always correct from the mathematical point of
view.

In what follows we will focus on a probabilistic algorithm which allows
modification of the fluid flow governed by the Euler equations, in the
vicinity of the boundary, in order to simulate the boundary layer effects
and implicitly to get new approximations, in the same vicinity, for the
solutions of the Navier–Stokes system.
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8.3 Probabilistic Algorithm for the Prandtl
Equations

In what follows we will describe a random procedure (due to A. I.
Chorin) based on a distribution of vortex sheets that allows construction
of a practical numerical algorithm for approaching the boundary layer
equations.

Let us consider, first, the heat equation for an infinite rod, namely

where represents the temperature in the rod and v its con-
ductivity.

Accepting that, at the initial moment, being the
Dirac distribution, then the (distributional) solution of this equation is
the fundamental (Green) solution given by

This solution could be probabilistically interpreted in two ways:
1) Fix the time and place N particles, of mass at the origin

Suppose that these particles “jump” so that the associated
random variables follow the Gaussian distribution with mean zero and
variance Thus, the probability that such a particle will “land”
between and is the Gauss probability density function multiplied

by (the length of the landing interval), precisely

If we repeat this with a very large number of particles (provided that
their total mass is unity), then, according to the central limit theo-
rem, the probability density function of the arithmetic average of the
associated independent Gaussian random variables when their number
increases indefinitely, converges to the probability density function of
the individual Gaussian distribution considered above;

2) Let us split up the time interval into subintervals, each of
them with length and consider the following procedure in a step
by step manner.

Again let us place the N particles of mass at the origin, but now
at too. Suppose that these particles will undergo a random walk,
more precisely, the position of the particle at the moment

is

where are independent Gaussian random variables, each of them with
mean 0 and variance The final displacement of the particle
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is the sum of its displacements and it has, obviously, a Gaussian dis-
tribution with mean zero and variance Automatically
the probability density function associated to one particle (its random
variable) at time has the same structure as above and methods 1) and
2) are equivalent.

Let us recall now the same heat equation but with the initial condition
We know that the solution of this problem is

where

But this solution has also a probabilistic interpretation. More pre-
cisely, let us consider the N particles, starting at a random initial posi-

tion and let us assign to each of them the mass If
we let the particles perform a random walk (as in the method 2), keep-
ing their mass constant, then, after steps, the expected distribution of
mass for the N particles, at a real position, is given by the above
solution.

If the heat equation is considered only on the half-line with
boundary condition then the Green function for this problem
is

with

As

and

the solution of the heat problem
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is

The probabilistic interpretation of the last result is obtained as above,
by starting with N particles of mass at and N of mass at

and letting them all (random) walk (by, for instance, the method
2).

Random walk methods will now be applied to vortex sheets. For the
sake of simplicity, let us consider the plane fluid flow in the upper half
plane and suppose that the boundary (the infinite flat
plate) is rigid and at rest while the free-stream velocity of magnitude U
is parallel to the real axis. Let us seek that solution of the Navier–Stokes
system which is parallel to the flat plate and independent on that is

the pressure constancy being also ensured such that

Obviously the appropiate Euler system solution is (U, 0).
Since the Navier–Stokes equations require the boundary conditions

and thus

the Navier–Stokes system reduces to

or by introducing the nondimensional variables and to

If then the nondimensionalized form of this equation is the
same as that of the above equation and it will be the same with the
boundary conditions. Accepting that the nondimensionalized equation
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with appropiate boundary conditions has a unique solution, this solution
must satisfy if Picking that is

we can state that depends on and only through

the combination Set and Then

the initial equation becomes the following ordinary differential equation
(in the function with appropiate boundary conditions, more precisely

But the unique solution of this bilocal problem is

where we have used the well-known result

This solution shows that there is a significant deviation from the Euler
equation solution in a region near the wall (the boundary layer) whose

“thickness” is proportional to and thus, for fixed time, the boundary

layer decreases as
Correspondingly, the vorticity of the flow is

satisfying the equation
Unfortunately the boundary conditions for vorticity are not explicit

and they should be determined from the adherence conditions on the
boundary.

To reconstruct this solution using random walks method, we first de-
fine a vortex sheet of strength as a fluid flow parallel to the real axis

where the component “jumps” by the amount when crosses a
parallel line with say i.e.,

As the solution tends to the constant value U, for
while it vanishes for In other words, when the
solution approaches a vortex sheet on with strength –U.

Let us replace this vortex sheet by N “small” vortex sheets, each of
strength Accept that each of these smaller vortex sheets undergoes
a random walk in the direction defined by
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where are Gaussian random variables with mean zero and variance
whith

We state that for large N the distribution of vorticity is constructed
this way and from it the function

satisfies the heat equation and This is clear
from the random walk method developed above for the heat equation.
What requires additional explanation is why satisfies the no-slip con-
dition on the boundary. If we remark that on the average, half of the
vortex sheets are above and half below, we can write

or, in a discrete version,

But the strength of the vortex sheet is and therefore

The random walk method based on vortex sheets will now be extended
to the solution of the Prandtl equation (in an unsteady regime) for the
half-infinite flat plate (the positive real semiaxis).

The associated fluid flow (boundary layer) will be approximated at
by a set of N vortex sheets of finite width corresponding to

the coordinates and of strength To
displace these vortex sheets we split up the time interval in parts
of duration and we advance in time (from to following
the algorithm:

(i) the vortices move according to a discrete approximation of the
ideal (Euler) flow;

(ii) vorticity is added by placing new vortex sheets on the boundary so
that the resultant flow satisfies the adherence condition on the boundary;

(iii) the vortex sheets undergo a random walk as that described in the
previous flat plate example to approximate the solution of the heat equa-
tion and to preserve the boundary conditions on boundary



Viscous Incompressible Fluid Dynamics 185

(iv) time is advanced by the step and the procedure restarts until
time is reached.

Obviously, the number of vortex sheets will increase in time, which
corresponds to the fact that vorticity is created in the boundary layer.

Let explain now step (i). It is known that the velocity component
satisfies

or, in a discrete version, the component of the velocity of the vortex
due to the vortex sheets, is given by

This sum is extended over all the vortex sheets such that and
that is for all the vortex sheets whose “shadow” on the

axis contains the point On the other hand the incompressibility
and the boundary condition lead to

This last relation determines in terms of 9 and a corresponding
(discrete) approximate evaluation could be

But a more useful approximation is obtained by rewriting the above
relation in terms of the vortex strengths precisely

where

9Obviously, due to this relation, if is prescribed we will not be allowed to prescribe
too.
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and

Here means the sum over all for which

and means the sum over all which satisfy

We could summarize all this by saying that in step (i) of the above
algorithm, the vortex sheet is moved by

where and are given by the respective above expressions.
The new velocity field is now determined by the same vortex sheet but

considered at their new positions. This new velocity field satisfies
on the real axis (by construction) and also Concerning the
condition on the real axis at the beginning of the procedure, it
needs not remain so.

The aim of the second step (ii) is just to correct the boundary condi-
tions. This may be done as follows: divide the real axis into segments of
length and, supposing that at the center of one of these segments

we place at one or more vortex sheets with the same sum
of strengths which will guarantee that, on average, on the
axis in the new flow.

In step (iii) we add a random component to positions of
the existing vortex sheets, precisely a Gaussian random variable (with
mean 0 and variance such that the new positions are given by

Intuitively, the vortex sheets move about in ideal flow together with a
random simulating viscous diffusion. Vortex sheets newly
created (to observe the boundary conditions) diffuse out from the bound-
ary by means of the same random component and then get “swept”
downstream by the main flow.
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If there is a leading edge (such as the origin in the case of the half-
infinite plate situated on the positive real semiaxis), the model will be
forced to create more vortex sheets at this edge in order to satisfy the
adherence condition (since they are immediately swept downstream by
the flow with no replacement).

Regarding the length of the vortex sheet displacement, if in the
direction its average is proportional to in the direction the “av-
erage” jump (displacement) will be proportional to

Details about the use of this model on vortex sheets can be found in
the papers [20] while some theoretical aspects are treated in [21].

8.4 Example
Let us consider, as a simple problem, a semiinfinite flat plate aligned

with a uniform flow of constant velocity U and of constant physical
properties, including density [22]. The boundary layer equations are
in this case simplified to

where is the kinematic viscosity of the fluid. From these equa-
tions we could calculate the velocity components The model is valid
for the thin laminar boundary layer within an incompressible fluid but
also for a compressible fluid with a velocity much slower than the speed
of sound.

At any point on the plate we have three boundary conditions —
two for the first equation and one for the second — namely the non-slip
conditions at the surface and the uniform flow at far distances, that is

The differential equation and the boundary conditions for (3.2) are
therefore

(the Blasius problem) and the velocity components become
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This problem could be numerically solved. First, it is transformed
into a system of three first order equations

with not known for the moment. It will be calculated by successive
numerical integrations with a Runge–Kutta method such that
is satisfied.

If we have and its derivatives and we could calculate the velocity
components within the boundary layer from formulas (3.6).

Let us consider a numerical example with and the kine-
matic viscosity of the air (at sea level) The problem
(3.5) is solved by the MATLAB program

which uses the function subprogram edstrlim.m

The program chooses different values for and solves the correspond-
ing Cauchy problem. The values of representing for large values

are taken and the value for which is
found (see for example Figure 3.3).

The corresponding solution is represented in Figure 3.4.
The structure of the boundary layer could be now obtained by rep-

resenting the components of the velocities respectively from the
formulas (3.6). We remark that the thickness of the boundary layer (de-
fined as the height for which which occurs for is of
the form

therefore it is represented by a parabola, see Figure 3.5.
We also remark that the boundary layer thickness is about 0.37cm

and the Reynolds number corresponding to this distance is
the Reynolds number must be large in order to ensure the
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Figure 3.3. Choosing the initial condition

Figure 3.4. The solution of the Blasius problem. The graph of

validity of the boundary layer theory. Moreover, the shear stress is

thus describes the dimensionless shear stress in the boundary layer.
Consequently, the particular value which is the value calcu-
lated in the program, is the dimensionless shear stress on the flat plate.

We could avoid the calculation of (which needs the successive solv-
ing of Cauchy problems on large intervals by using the following
change of coordinates.

Let where is a constant that will be determined, and let
be a function associated to through Then
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Figure 3.5. The boundary layer for a flat plate

so that the Blasius problem (3.5) becomes

But appears only in the condition at infinity, therefore we may
choose By solving this single Cauchy problem, we obtain
its solution together with the derivatives and on a
reasonably large interval for Taking the square root of we find the
value of at the end of that interval. Then, and

Other procedure could be the use of the relation after
the calculation of and the solving of the Cauchy problem for with
these initial data.

The above problem may be complicated by injection or suction of fluid
through the body surface resulting in a modification of the structure of
the boundary layer and also of the heat transfer. If the injection of
fluid is suitably distributed, the fluid flow remains self-similar, that is
the equations describing the phenomenon and the boundary conditions
may be transformed into a form with a single parameter as independent
variable.

Such a case is when the velocity of the injected (or sucked) fluid is of
the form

where C is a constant. In this case the equation and the initial conditions
of the problem (3.5) remain the same, excepting of where C
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positive or negative means injection, respectively suction of fluid. The
results are shown in Figure 3.6.

Figure 3.6. Boundary layer with injection of fluid

Now in the velocity profile within the boundary layer there exists an
inflection point. At that point and this means an instability of
the flow and a turbulence may develop in the boundary layer.

We remark that in the case of an injection or suction of fluid, we
cannot apply the method of changing of variables to solve the Blasius
problem. The constant appears now at a boundary condition, not only
at infinity and now cannot be arbitrarily chosen.

8.5 Dynamic Boundary Layer with Sliding on a
Plane Plaque

We will now determine the characteristic values of the viscous bound-
ary layer, disregarding the classical hypothesis of adherence to the wall
[114].

Let us consider a semifinite plane plaque situated on the axis,
having the edge at O, attacked under a null angle by a viscous incom-
pressible fluid stream. The flow is plane and we let be the plane of
the flow. The fluid flow equations are



192 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

where i.e.,

according to the approximations of the boundary layer theory. Unlike
the theory of the classical boundary layer, in which to these equations
one associates the boundary conditions

in our case, the boundary conditions will be

the first signifying the fact that the fluid, in contact with the plaque,
slides on its surface.

Taking from the second equation (3.7) and replacing it into the first
equation, we get

and, by integration with respect to from to we obtain

where thus leading to the integral relationship

We shall use this integral relationship by considering a velocity profile
within the boundary layer of the shape
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where

The coefficients can be determined by using the appropriate conditions

where

Following the calculations, there appears the nondimensional profile
of the horizontal component of the velocity, in the shape

In Figures 3.7, respectively 3.8, we present the profile of the nondimen-
sional velocity together with the influence of the L parameter on the
velocity’s profile.

Figure 3.7. The profile of the nonmensional velocity

Now, one can also determine other characteristic values of the bound-
ary layer. For instance, the local tension between two neighbor layers

has the expression
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Figure 3.8. The influence of the L parameter

Figure 3.9. The local tension between two neighbor layers

and it is represented, within the section in Figure 3.9.
The local stress on the plaque has the expression

Replacing the velocity expression (3.10) and the local stress on the
plaque (3.11) in the integral relationship (3.9), we get

respectively
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from where, by integrating, it turns out that

due to From the relation (3.11) we get the expression of the
local stress on the plaque

which is represented in Figure 3.10.

Figure 3.10. The local stress on the plaque

The influence of the abscissa  and of the L parameter on the thickness
of the boundary layer is presented in Figure 3.11.

Figure 3.11. The thickness of the boundary layer



Chapter 4

INTRODUCTION TO NUMERICAL
SOLUTIONS FOR ORDINARY AND
PARTIAL DIFFERENTIAL EQUATIONS

1. Introduction
The equations describing the flow of fluids are ordinary or partial dif-

ferential equations which combine the flow variables (the velocity com-
ponents, the pressure, etc.) and their derivatives. But for most of these
equations there are no analytical methods to find their solutions. Con-
sequently, different numerical methods should be used, methods which
allow us to produce approximative solutions by using computers. For
more details on such methods which are also presented in this book, we
refer to [4], [13], [18], [22], [43], [79], [100], [120], [121], [125], [128], [131],
[145], [155].

The main quantitative feature that we deal with is the accuracy of a
numerical method, i.e., its ability to approximate “as well as possible”
the analytical solution of the given problem when the approximation
tools become “fine enough”. The main qualitative feature taken into
account is the stability of the method, i.e., its ability to not propagate
and not accumulate errors from the previous calculations to the following
ones.

The first step to numerically solve a given problem is its numerical
discretization. This means that each component of the differential or
partial differential equation is transformed into a “numerical analogue”
which can be represented in the computer and then processed by a com-
puter program, built on some algorithm.

The continuous form of these models could be represented as

Excepting some very simple cases, we can not determine the exact so-
lutions of these equations and therefore we should find at least some
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approximative solutions that describe well enough the physical phe-
nomenon. These approximative solutions must be the elements from
a finite dimensional space, calculable by an acceptable effort from a finite
system of equations of the type

Here is a parameter supposed to tend towards zero, when the di-
mension of the system tends to infinity. The essential problem is the
link between and For its study, we need also a link between the fi-
nite dimensional space and the continuous space which allows finally the
evaluation of the distance (deviation) between and distance (devi-
ation) that must become small for a small (the convergence problem).
For this, we need first a study which ensures that becomes closer
to A when (the consistency problem). Moreover, we need also a
study which ensures that belongs to a bounded set when (the
stability problem).

For example, the finite differences method based upon the Taylor
series, describes the derivatives of a function as the difference between
its values at various points. In other words, the method replaces the
derivative operators from A with combinations of some “translation”
operators into If we know the values of the function and its
derivatives at the point we could approximate the values of at the
neighboring points or by

where is small and the derivatives of are calculated at
But if we know the values of at by adding and

subtracting the above formulas we can approximate the first and the
second order derivatives of at namely

or

and

where or represents the error order.
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Combining these formulas into the given equation we get

The above formulas and others deduced by various techniques, as we
will see in the next sections, allow the replacing of every term from
the given equation, and thus obtaining its numerical analogue. This
can be performed by choosing a grid in the computational domain and
replacing the derivatives at the grid points with finite differences, as
above. Finally, we obtain a system from which we calculate the values of
the unknown functions at the grid points, i.e., we calculate the numerical
solution.

By this procedure, a differential or partial differential equation de-
fined on the entire domain, that is at an infinite number of points, is
transformed into a system with a finite number of equations which de-
scribes the relations between the values of the unknown solution at a
finite number of points (belonging to the domain).

If is the exact solution and the numerical one, then
is called the residue. If when is called
the truncation order. The discretization procedure is consistent if the
truncation error tends towards zero when But consistency is not
sufficient to prove the convergence of towards We have

and thus a uniform boundedness of into the considered functional
space is also necessary, a property which is called the stability of the
approximation scheme. It comes usually from the relation

by applying the Banach–Steinhaus theorem [121].
There are other aspects that must be taken into account when we

analyze a numerical method. Let us take an illustrative example, specif-
ically

where the exact solution is

Let us discretize this equation with centered finite differences
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If denotes the approximation of for where
we can calculate the exact discrete solution from the above

equations

where is the Peclet number. For P > 2 we remark some
important oscillations of the numerical solution in the vicinity of
see Figure 4.1. For P < 2 we have no oscillations.

Figure 4.1. The spatial instability

This particular behaviour is called spatial instability of the numerical
method and it is due to the dominant advective character of the equation
in the case of a small coefficient

If we use another numerical scheme, for instance

the numerical solution is given through the same formula but with
and therefore the spatial instability does not interfere.

In the case of a time evolution, by discretization of the time deriva-
tive one can obtain explicit or implicit links between the values of the
unknown function at different time instants. It is necessary to study the
time stability of the envisaged numerical method.

The passing from a time level to another is numerically performed by
multiplication by a complex factor — the so-called amplification factor.
The errors appear, in magnitude — the dissipative errors — if the ampli-
fication factor is, in magnitude, less than 1, or in phase, if the numerical
solution is advected along a different speed than the exact solution. If
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the amplification factor is in magnitude larger than 1 the scheme is un-
stable. The phase errors are joined to the odd order derivatives which
are present in the equation, while the dissipative ones are joined to the
even order derivatives.

The discretization is often performed in two stages, using the lines
method. First, a spatial discretization is performed, obtaining a system
of time differential equations. To this system the specific methods are
then applied. The distribution of the eigenvalues of the spatial operator
from the discretized equation and the behaviour of the amplification
factor have an important role for the study of the algorithm.

The schemes which are not of this form are the space-time schemes.
Typical examples are the Lax–Wendroff (1960) and MacCormack (1969)
methods, but from the 1980s they gradually were replaced by the lines
methods. A reason for this is that the numerically steady solutions for
the space-time schemes could depend on the considered time step-size.

In physical problems, the admissible values of some variables are lim-
ited to some intervals. On the other hand, some numerical methods
allow the generation of spurious oscillations in the numerical solutions,
violating the above requirement.

Numerical schemes with a higher accuracy and generating lower oscil-
lations must be used. One of the properties characterizing such schemes
is the reduction of the total variation of the numerical solution (TVD
- Total Variation Diminishing) when marching in time,

where

A much used scheme is MUSCL (Monotonic Upstream Scheme for
Conservation Laws), elaborated by Van Leer in 1983. For the construc-
tion of a nonoscillatory scheme it is important to reconstruct a local
interpolant of the unknown function from a discrete set of values.

Harten and Osher (1987) found a criterion which allows the construc-
tion of schemes not-TVD but yet nonoscillatory. A reconstruction of
degree of the function is essentially nonoscillatory (ENO) if

for Of course, in the neighborhood
of some singularities of the solution, the accuracy of these schemes is not
so good and must be improved by the grid refinement. But this action
could lead to stability problems which could be avoided by choosing of
some spatial discretizations with better stability qualities.

In the sequel we will illustrate, by some simple examples, the main
numerical methods for the basic types of problems of fluid dynamics. We
remark that, taking into account the significance and the frequency of
the appearance of these equations in practical problems, a lot of software
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was elaborated, more or less comprehensive, more or less accessible, in
order to solve numerically such problems.

Nowadays, the calculation of the values of some elementary or special
functions is no more a problem; many optimized algorithms are imple-
mented on all computing packages and the solving of linear systems of
equations is very easy. The exact solving methods for such sys-
tems are now accessible in MATLAB by the command which
analyses the matrix A and chooses the optimal solving procedure. The
frequently encountered case of a sparse matrix A is also considered; so we
may solve large systems of thousands of equations within an acceptable
computing time.

For very large systems, some iterative methods are also available
(gmres – Generalized Minimum Residual, pcg – Preconditioned Con-
jugate Gradients, for instance). These iterative methods need, usually,
the description of the matrix A or only the algorithm to calculate the
matrix-vector product Au and they are particularly efficient. Of course,
complex problems may lead to very large systems of algebraic equa-
tions whose solving is very difficult or even impossible with the already
implemented methods. In these cases it is necessary to find and to pro-
gramme specific algorithms taking into account the specific structure of
the system.

Analogously, the numerically solving of the main problems for partial
differential equations is facilitated by using the(PDE)–Partial Diffe–
rential Equations toolbox of MATLAB which allows a complete treat-
ment, from a description of the computational domain, to imposing of
the initial and the boundary conditions, choice of the (constant or vari-
able) coefficients of the equations, discretization of the domain by a
suitable triangular mesh, implementation of the finite element method
(including visualization of the solution), mesh refinement, etc.

Unfortunately, the increasing specificity of the problems reduces the
flexibility of these packages. They are designed to solve standard prob-
lems, more and more complex, with few variations, for specific domains
and taking into account only certain equations and phenomena. We re-
mark, for instance, the industrial packages FLUENT or COSMOS, used to
solve problems from fluid dynamics and heat transfer in 3D, which is in
a continuous development. Other software, based on the finite element
method, finite differences, finite volumes or spectral methods are FEAT-
FLOW, SIMPLE, QUICK, PHOENICS, FLOTRAN, NSFLEX, FIDAP, FIRE,
LISS, FASTEST, FEMLAB and many others, for educational or scientific
purposes, accessible on INTERNET.
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2. Discretization of a Simple Equation
In order to illustrate and compare some discretization methods, we

apply them to a simple equation (the one-dimensional diffusion equation)

2.1 Using the Finite Difference Method
We start by establishing the domain where the equation is studied. If,

for example, we model the diffusion of a gas into a tube of length the
spatial domain is the interval of the  axis associated to this length,
i.e., The time domain begins at and indefinitely extends to
the positive direction of the time axis  i.e., Concluding, the
equation domain is

Now we can choose the grid. We will construct a grid formed by the
straight lines where and with the
constant step size for all in the  direction and the
straight lines where with the constant step
size for all in the  direction. The nodes will be the
intersection points of these straight lines, i.e.,

We are able now to discretize the equation by replacing the derivatives
by finite differences. For example, if we denote by we
obtain for the node

which could be reset in the form

Applying these formulas for any we see that from the
known values for (the initial conditions) we can calculate those
for then from these values we calculate those for and so on.
At each step, we must know the values and (from the boundary
conditions) in order to complete the time level values. Such a procedure
is called explicit. There are many such formulas, as we will see in a next
chapter.

2.2 Using the Finite Element Method
We will choose the same grid as that for the finite difference method

but for instance we will discretize the equation only with respect to the
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time

where
Let us construct the variational (or weak) form of this equation, by

multiplication with the known function and by integration upon

which becomes, after an integration by parts,

Let us transform now this equation into its numerical analogue. We
divide the spatial domain into elements, for example

on each element we seek the unknown function under the form
where are the shape functions and are those

corresponding to that element’s nodal values. Choosing the multipliers
to be the shape functions on each element and considering the right-

hand side of the variational equation at the same time instant (the
explicit procedure), we find

for the first element and a similar equation for the second.
But the shape functions are simple, the above integrals can be ex-

actly calculated, the integrated parts reciprocally reduce at the interior
nodes and finally we obtain two equations for each element, having as
unknowns the nodal values. In matrix form, these equations are, for
each element

Assembling these elements, the local numbering 1 – 2 becomes a global
numbering 1 – 2 – 3 and the above systems become
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for the first element and

for the second.
Combining these local systems into a global system , we get

Here we introduce the boundary conditions and then, by solving the
system, we get the nodal values of the solution at the instant from
the values at the instant (which appear on the right-hand side). We
also remark, although for two elements it is not yet apparent, that the
matrix of the system is a sparse matrix and thus the system could be
solved by corresponding techniques.

2.3 Using the Finite Volume Method
At the first step we discretize in time the equation,

Then, at the time instant we divide the spatial domain into
finite volumes (in our case they are intervals too) but having the reference
point P at the center. Considering three such neighboring finite volumes,
with centers at the points W and E (to West respectively to East of
P), these volumes have their interior boundaries placed at the points
between W and P, respectively between P and E. The discretization
of the spatial derivative is now performed by the formula

and then

Replacing into the above equation for every reference point E, P, W
we obtain another system from which we can calculate at the
next time instant This step is performed as for the finite differences
method, using the initial and boundary conditions. What is different in
these two methods is the discretization procedure.
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2.4 Comparison of the Discretization Techniques

The above presented methods have a common feature: they generate
equations for the values of the unknown functions at a finite number of
points in the computational domain.

But there are also several differences. The finite difference and the
finite volume methods generate numerical equations at the reference
point based on the values at neighboring points. The finite element
method produces equations for each element independently of all other
elements. Only when the equations are collected together and assembled
into a global matrix are the interactions between elements taken into
account.

The finite element method takes care of boundary conditions of Neu-
mann type while the other two methods can easily apply to the Dirichlet
conditions.

The finite difference method could be easily extended to multidimen-
sional spatial domains if the chosen grid is regular (the cells must look
cuboid, in a topological sense). The grid indexing is simple but some
difficulties appear for the domain with a complex geometry.

For the finite element method there are no restrictions on the con-
nection of the elements when the sides (or faces) of the elements are
correctly aligned and have the same nodes for the neighboring elements.
This flexibility allows us to model a very complex geometry.

The finite volume method could also use irregular grids like the grids
for the finite element methods, but keeps the simplicity of writing the
equations like that for the finite difference method. Of course, the pres-
ence of a complex geometry slows down the computational programs.

Another advantage of the finite element method is that of the specific
mode to deduce the equations for each element which are then assembled.
Therefore, the addition of new elements by refinement of the existing
ones is not a major problem. For the other methods, the mesh refinement
is a major task and could involve the rewriting of the program.

But for all the methods used for the discrete analogue of the initial
equation, the obtained system of simultaneous equations must be solved.
The time marching from one time level to another could lead to a blow-
up of the numerical accumulated errors (the numerical instability of
the computations). This instability must be counteracted by using
suitable discretization procedures. On the other hand, when the spatial
dimensions of the cells tend towards zero, the numerical solutions must
tend towards the analytical solution of the problem (the convergence of
the algorithm). The following chapters will detail these features.
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3. The Cauchy Problem for Ordinary Differential
Equations

The simplest problems for ordinary differential equations (ODE) are
that for the first order equations

where is the unknown function. The geometric interpretation of
such an equation is based on the idea that for a given function
its derivative represents the slope of the tangent to its graph at the
point If at any point from (or from the definition domain
of the equation) we draw a vector of slope we obtain a vector
field and therefore the differential equation defines a family of curves
(trajectories) which are tangent at every point to the corresponding
vector of the field.

For example, for the differential equation we obtain Figure
4.2 where the (trajectories) curves family mentioned is obvious. From

Figure 4.2. The flow field generated by the equation

here arises also the notion of flow field generated by the differential
equation, because the image is similar to the motion of the particles of
some fluid flow.

It is “obvious” from the picture that we can choose a unique solution
by choosing a point on the respective curve, i.e., by imposing a
condition of the form
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called also a Cauchy condition. The two relations (4.1, 4.2) form a
Cauchy problem.

There exists a natural trend to “a priori” suppose the existence and
the uniqueness of the solution of a Cauchy problem since the differential
equation models a real, physical, observable phenomenon. However, the
real process and its mathematical model are two distinct entities. The
model reflects only partially the phenomenon, therefore it is possible
that some models have either no solutions or many solutions, some of
which without physical relevance.

The aim of the existence and uniqueness theorems is to describe fam-
ilies of equations as large as possible for which the existence and the
uniqueness of the Cauchy problem is ensured. For some difficult prob-
lems, often there are no explicit formulas for the solutions and implicitly
numerical calculations must be used. In these cases it is important to
know that a solution exists before investing time and computing effort
to look for something that eventually could not be found.

Definition. A solution of the Cauchy problem (4.1, 4.2) is a differen-
tiable function of on an interval I which contains which verifies

and

We remark that this definition could be weakened, by accepting the
nondifferentiability of on a “small enough” set of points

In order to ensure the existence and the uniqueness we must impose
some restraints on the function i.e., on the slopes of the trajectories
generated by the differential equation. For example, the problem

has two solutions on and This may
occur due to the rapid change of the slopes of the solutions near
generated by the function

The usual requirements that ensure the existence and the uniqueness
are the continuity of the function with respect to and the satisfaction
of the Lipschitz condition

with respect to the second argument of The proof of the existence
theorem is based on the transformation of the given differential equation
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into an integral equation

and on the fact that this Volterra type equation has a solution which
could be found by a convergent process of successive iterations (Picard),
namely

THEOREM 4.1. Suppose that in the
function is continuous with respect to  and verifies a Lipschitz
condition

Then there exists a unique solution of the Cauchy problem (4.1, 4.2),
which can be extended until the boundary of D.

Let us recall the example of Figure (4.2)

where the associated integral equation is
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The successive iterations are

and we recognize the partial sums of the power series expansion of the
exact solution

In many cases we can find such explicit solutions. But, also many
important problems have no such representations of the solutions and
we should use numerical approximation methods.

There are many such numerical methods. In simple cases, a simple
method could be satisfactory but more “serious” problems could require
the more elaborate methods.

A first problem to solve is to establish what the numerical method
calculates. As an algorithm which runs a finite time interval gives only
a finite number of outputs, we should determine what those values rep-
resent. They could be approximations of the coefficients of some series
expansion (as for the previous example) or they could be approximations
of the values of the solution at a finite number of points, previously or
even chosen while running . Moreover, the numerical method should
allow also some estimations of the approximation errors.

A second problem is to calculate the next values from the previous
ones, for example to calculate once given This suggests
the Taylor’s series finite expansion (Taylor’s formula)

where the last term is an error term and
The simplest numerical method (Euler) derives from the above ex-

pansion by truncation after the linear term



Introduction to Numerical Solutions for ODE and PDE 211

which leads to the basic formula

where and is a chosen step size.
Assuming that the second derivative of the solution is bounded by M

in magnitude, one can show that the step error is of order and the
total error on the interval where
is bounded by i.e., it is of order

We could obtain better methods, with errors of order for
using the above integral representation

Here the last term in the parentheses represents an average slope of the
solution on the interval A good numerical method should
calculate, as accurately as possible, this average slope.

For example, the Euler method takes as average slope the solution
value at Of course, a better value seems to be the slope considered at
the midpoint of the interval i.e.,

The problem here is the calculation of the solution which is,
in fact, the same problem as that to be solved. But this value at the
midpoint of the interval could be also approximated by an “Euler step”,
precisely

and thus we obtain an algorithm of the form

By developing these expressions we obtain a coincidence with the
Taylor development of the solution until the term in so that the step
error of the above algorithm (Runge) is of order while the total
error on is of order The price paid for this is the twice
evaluation of the function at each step.
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The general methods of such type, called Runge-Kutta methods consist
of a sequence of stages, at each stage evaluating an approximative value
of the slope of the exact solution. The final step advances the solution
from to by using a weighted sum of the above calculated slopes.
This means

where is the number of stages. A particular method is characterized
by the coefficients and which could be given in a Butcher table
— see Table 4.1.

These methods use a fixed step size By diminishing the accuracy,
but also the computing time, increases. It is possible to diminish the step
size only where the approximative solution changes rapidly its values and
we could use a larger step size in the regions with a slow variation of
the solution. Consequently, the step size should be modified while

For example, the above Runge method (4.4) has Table 4.2
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calculating and in agreement with the solution’s behaviour. This task
could be performed, for instance, by running (in parallel) two different
methods, one for the solution propagation and the other to estimate and
to control the errors.

For example, the popular method RK4 with 4 stages of Kutta, Table
4.3, gives the approximation

where is the exact solution and is a step obtained
by this method. The coincidence with the Taylor series, of the exact
solution is until the order 4. This method could be coupled by a RK3
method, of order 3, Table 4.4, which gives a similar formula

By subtraction of the above two representations for we get

from where

Consequently, calculating RK4 we can give a good approximation of
the error of RK3. But this parallel calculation requires new evaluations
of the function Fehlberg has discovered that there exist some pairs of
Runge-Kutta methods with different truncation orders while the main
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lines of the respective tables are the same. So that, the step size could
be fitted using only one supplementary evaluation for the function

Such a pair is formed by the methods described in Tables 4.5, 4.6
with the truncation order 5, respectively 6, so that the accuracy of the
method is of order 4, respectively 5. There are many other such pairs,

implemented in the usual computing packages.
The above presented methods are also applicable (in the vector form)

for the first order systems of differential equations, namely

Therefore, the higher order differential equations

which, by the change of variable and function
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is reduced to a system of the form

can also use the above methods.
For example, the problem

reduces to the system

which is of the form

The numerical integration of this problem by MATLAB requires a
subprogram which describes the system

saved as funct.m, while the main program

performs the integration of the system on the interval [0,50] with the
given initial conditions and plots the solution and the phase portrait
(i.e., the curve as function of parametrized by

For the approximating Runge–Kutta methods, an essential fact is that
they are one-step methods. This means that the approximative solution
at a next time level is calculated from the solution at the given time
level only. But after performing several such steps, we could also use
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the multi-step methods which use the information from more previous
time levels.

The most used multi-step procedures are the Adams–Bashforth (AB2
and AB3) methods,

and Adams–Moulton (Crank–Nicolson and AM3) methods

where and

3.1 Examples
In order to present some very simple examples of the motion of a body,

we will follow Chow [22], taking into account also the forces exerted by
the surrounding fluid that leads to systems of differential equations.

3.1.1 Falling of a Spherical Body
Let us consider a spherical body, of mass and diameter located

at at the origin of the Oz axis, which is chosen in the direction of
the gravitational acceleration. The initial velocity of the body is and
it moves under the action of the gravitational force mg along the Oz
axis. At the moment the body is at the distance from the origin
and it has the velocity all these functions satisfying the differential
system

where and being the mass
density of the surrounding fluid while is the density of the body.

Here is the (dimensionless) drag coefficient which expresses the
influence of the viscosity of the fluid. It depends on the shape of the
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body and the Reynolds number R and, generally, it is difficult to find
it analytically so that some appropiate experiments are used for this
purpose. If the fluid has the kinematic viscosity the experimental
expression for as a function of the Reynolds number (in the
case of a smooth sphere) could be approximated by

The particular values for a steel sphere dropping in air (under atmo-
spheric conditions at sea level), are

Obviously, in vacuum, without any
surrounding fluid, and the differential system becomes

with the solution where and
are respectively the initial position and velocity.

Now we have a mathematical model of the phenomenon, represented
by the system (4.6) together with the initial conditions, so that we are
able to perform various numerical experiments. The numerical results
are confirmed by physical experiments if we are placed in the domain of
the model’s validity. The MATLAB programs are:

a) program of function type, computing the coefficient saved as
drag.m

b) program of function type describing the system (4.6), saved as
ecdif11.m
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and called up with particular values of the parameters.
The results of numerical simulations with different values of the di-

ameters of the spheres are represented in Figure 4.3 where the time
variation of the velocities for some particular diameters are shown.

Figure 4.3. Velocities of steel spheres falling in air (for particular diameters)

We remark that after some time the bodies reach a final constant
velocity which increases with the diameter of the sphere. For a large
sphere, the effect of the viscosity becomes negligible in comparison with
body inertia, so that the sphere would behave as if it were moving in

c) the main program, saved as freefall.m
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a vacuum. In this case, the velocity increases indefinitely with time
without a terminal constant velocity.

The terminal velocity for a particular fluid and diameter could be
calculated by taking to zero the right-hand side of the velocity equation
from (4.6), i.e., If we plot the values of the expression

and if we remark that for (for instance), under the
above conditions, we have B/C = 857.5741, then the calculated terminal
velocity will be

Moreover, we remark from the same equation of the velocity (4.6)
that if then the right-hand side of the equation is negative, so
the velocity diminishes and, conversely, if the right-hand side is
positive so that the velocity increases. This means that is a steady
stable solution of the system (4.6).

We must remark that the above model for the numerical experiments
is suitable only for subsonic velocities (for supersonic velocities the effect
of the shock waves must be taken into account). Also, if the displacement
of the body is large, the variation of the air density is significant and it
must be used in the model.

The reader could perform many numerical experiments, for example
with a ping-pong ball (with a density supposed to be equal to that of
the air) and of diameter in water, where
and while or with a glass sphere with

etc.

3.1.2 Ballistic Problem
Let us study now the translation motion of a body through a fluid in

the Oxy plane, where the Oy axis is in the opposite direction to that
of the gravitational force. The body has a velocity of components
and the fluid has a velocity of components which depend on the
position and time. Assuming a spherical body of diameter and mass

the governing equations (which take also into account the specific
fluid dynamic forces) are

where We will consider as an example a
steel sphere of diameter moving in the air, starting from the
initial position (0,0) with an initial velocity 800m/s which makes an



220 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

angle (elevation) with the horizontal Ox direction. The motion in a
vacuum is obtained for Moreover, for large initial velocities, the
variable density of the air at a higher altitude, must be considered by
using, for instance, the function

The MATLAB subprogram describing the differential system is:

where an opposite horizontal wind was considered, i.e., and
for simplicity, the drag coefficient was taken as (corresponding
to the postcalculated Reynolds number, which now depends also on the
Mach number). The computation is stopped if the projectile reaches its
initial height            The main program, saved as p14.m, is the following

and it is called by the command
global theta0 cod;theta0=60;p14;
The results are shown in Figure 4.4. We remark the changes in the

range depending on the density of the air. Any elevations and wind
velocities may be tested and compared with the motion in the vacuum.
The program is also useful for other problems, for instance to determine
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Figure 4.4. The motion of a projectile

the elevation such that the maximum range is reached, for certain given
conditions. In this case the suitable drag coefficient must be taken into
account, by using the subprogram drag.m.

3.1.3 Shock Waves in Viscous Fluids

In a real fluid flow, the velocity and the pressure vary smoothly
through a thin shock region instead of jumping, as described in the
inviscid theory. Let us study now numerically the structure of a shock
in the presence of the viscosity, for a simplified problem.

Suppose the shock propagates at a constant supersonic velocity
along the negative direction of the  axis. Let the coordinate system
move at the shock wave velocity, so that it becomes steady with respect
to this frame. Let us use the subscripts and for the far upstream,
respectively for the far downstream, given quantities.
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For a steady one-dimensional flow the continuity, motion and energy
equation become respectively

where while and are the viscosity coefficients of the
fluid, is the constant-pressure specific heat and is the thermal con-
ductivity. Integrating with respect to on an interval containing the
shock, we get

where is the mass flux through the shock. The left sides of the above
equations become, far downstream (where the velocity and the temper-
ature are uniform),

which represent the laws of conservation of mass, momentum and energy
across the shock.

The effective integration of the above equations may be generally per-
formed only by numerical methods, after some simplifications. Let us
replace the pressure in the state equation (the Clapeyron relation)

where R is the gas constant. Let us replace from the obtained
equation into the energy equation. Using the dimensionless variables
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from the relation we get the new formulations of the momen-
tum and energy equations, that is

where is the Prandtl number and is the dimensionless
parameter

Consider now a simpler case, of a monoatomic gas, so that
and Finally, we get the equations

The boundary conditions at the end of the shock are

and the use of these conditions for the above equations yields to an
algebraic system for U and with the solutions

where characterizes the shock strength. The upper and
lower signs give the upstream, respectively the downstream, conditions.

Now we rewrite the above system by introducing the new variables
and through the relations

and thus we obtain the “shock equations”
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The steady solutions of this system, obtained for could be
deduced by solving the system

which leads to

where represents the upstream and the downstream conditions.
Computing the Jacobian of the left side functions at the two points
for the particular data and we find that at there are
two real positive eigenvalues, so it is an unstable node, while at there
are one positive and one negative eigenvalue,
so it is a saddle point. In this case, the heteroclinic trajectory joining
the two steady points must be numerically calculated from towards

i.e., downstream towards upstream, in the decreasing of direction.
This trajectory is a stable manifold for and it is tangent at to
the linear stable subspace generated by the eigenvector of the Jacobian
corresponding to the negative eigenvalue v = (–0.8534,0.5213).

The calculation could be even more simplified by dividing the equa-
tions (4.8), thus obtaining

i.e., a unique differential equation which will be integrated from
 towards with the Cauchy condition

 for our particular case. Of course, we do not start exactly from
the critical point but from a neighboring (towards the stable manifold
direction) point

The numerical results could be compared with the experimental (wind
tunnel) ones. We will introduce the dimensionaless distance

where the reference viscosity coefficient is to be evaluated at the
temperature being the constant upstream temperature
of the fluid. Finally, we have
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This equation will be joined with the equation (4.9), together with
the Cauchy condition X = 3.30 for deduced from the
experiments and which determines the X coordinates. The results are
shown in Figure 4.5.

Figure 4.5. Shock waves in viscous fluids

We remark an excellent agreement between the numerical simulation
and physical experiment results concerning the structure of the shock
wave. The reference length in this particular case is so
that the shock interval is of length 0.68cm. See [22] for more details.

The MATLAB program is:

which uses the function subprogram
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4. Partial Differential Equations
4.1 Classification of Partial Differential Equations

Different phenomena are governed by partial differential equations of
different structures and types. For example, the inviscid compressible
fluid flow (in a subsonic regime) around a body could be described, by
linearization, with the equation

where is the velocities potential and M < 1 is the Mach number
(the ratio of the fluid velocity and the sound speed). In this case, the
perturbation generated by the presence of the body propagates in all
directions.

In the supersonic case, for M > 1, the above equation changes its type,
the two coefficients being now of different sign. Physically, the fluid in
its motion goes beyond the perturbations produced in front of the body
and thus a perturbation region appears only behind the body, bounded
by two straight lines — the characteristics of the partial differential
equation. On the characteristics, the first derivatives of the components
of the velocity are different from one side to another, due to the fact
that the perturbations exist only at one side so that the second order
derivatives of the velocity potential are not defined on these lines.

The type of a second order partial differential equation is induced by
the existence (reality) of these characteristics. Suppose that the equation
of is

where A, B, C, D could be functions of (Monge equation).
The variations of the velocity components passing from to

are given by

Let us now consider the above three relations as a system having as
unknowns the second order derivatives of taking into account the fact
that along the characteristics these derivatives are not defined. Therefore
the determinant of the system must vanish
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i.e., we have the differential relation

Consequently, on the characteristics we can write

There are three different cases.
a) If then through every point from the compu-

tational domain, two characteristics pass (like the case of the supersonic
flow) and the equation (4.10) is called of hyperbolic type. For example,
the equations describing oscillations, particularly the wave equation, are
of this type;

b) If then there are no real characteristics. These
equations are of elliptic type , like the equation for the subsonic flow
case or the Laplace or the Poisson equations;

c) If there exists through every point of the computa-
tional domain only one real characteristic and the equation is of parabolic
type. The equations describing diffusion or dissipation phenomena are
of this type.

We remark that these types of equations describe not only different
types of phenomena but also their solutions are of different types and
can be numerically found by using different techniques.

In the case of systems of partial differential equations we have a similar
situation. Let

be such a system, where and are functions of
Being placed at a point in the Oxy plane, let us seek the directions

along which the derivatives of and are not determined — the so-
called characteristic lines. If we add to the above system (4.11) the
equations

we see that could be undetermined only if the determinant
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is zero. Therefore

where

or, in other form,

The above equations give the directions of the characteristic lines
through the current point As in the case of a single equation, we
have three situations:

a) the system is hyperbolic and we have two characteristic
curves through

b) the system is parabolic and we have a single charac-
teristic curve through the given point

and
c) the system is elliptic and we have no real characteristic

lines through that point.
We remark that in the hyperbolic case, if we try to solve the above

system with respect to the derivatives of and (by Cramer’s rule, for
instance) we are led to an undetermination only when the respective
numerators are also zero. So that we obtain the equations

which are, in fact, differential equations for the variables and These
equations are valid only on the characteristic lines and the integration
of the system reduces, in fact, to the integration of these differential
equations.

4.2 The Behaviour of Different Types of PDE
a) Hyperbolic equations. In this case the information from the point

P of the computational domain influences only the region between the
characteristics through P, see Figure 4.6.

The value of the solution at P is influenced only by the values of the
data on the interval between the characteristics through P. The
inviscid steady supersonic fluids and the inviscid compressible subsonic
unsteady fluids are described by such type of equations. For the unsteady
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Figure 4.6. The influence domain for the hyperbolic case

case the role of the axis is taken by the time axis and its direction is
also a flow field direction.

b) Parabolic equations. The value of the solution at the point P from
the plane Oxy influences the whole region of the plane to one side of the
characteristic through P, see Figure 4.7.

Figure 4.7. The influence domain for the parabolic case

If the axes are the boundaries of the computational domain,
the solution of the equation at P depends on the values of the data
on the semiaxis and on the semiaxis from O to This solution
could be calculated starting from the data and marching in the flow field
direction (here the direction). Some reduced forms of the Navier–
Stokes equations (for example the Stokes system) and the boundary layer
problems are of such a type.
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c) Elliptic equations. The information from P influences the entire
computational domain. The value of the solution at P depends on the
data on the entire boundary Obcd, see Figure 4.8.

Figure 4.8. The influence domain for the elliptic case

What is specific for this case is the fact that the solution at P must
be calculated simultaneously with the solutions at all the points from
the computational domain. This is a different procedure than that for
the parabolic and hyperbolic cases where the information marches from
the data of the problem in the flow field direction to the solution at
other points. Based on this fact, the elliptic problems are also-called
equilibrium problems.

The subsonic steady inviscid and the incompressible fluid flows are
governed by equations of this type. On the boundary we could have
Dirichlet type conditions, when the values of are given or Neumann
conditions, when the values of the derivatives are given. Of course,
mixed conditions are also used.

d) The same problem may lead to equations which are of different
types in different regions. For example, the supersonic motion of a blunt
body through the atmosphere (or, the same thing, the supersonic air flow
past that body) shows a region with supersonic velocity, with M > 1
and, in front of the body, a region with a local subsonic velocity, with
M < 1 so we are in a transonic case. In the first case the fluid flow is
described by a hyperbolic equation and in the second case by an elliptic
equation, see Figure 4.9.

The method of a simultaneous treatment of the two regions requires
that, starting with the given initial conditions, one marches in time
considering the unsteady equations which determine the fluid flow. After
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Figure 4.9. The transonic case

a long time, the solution approaches the steady state which describes the
fluid flow into both regions, the super and subsonic regions.

We also remark that if we try to solve a problem with wrong or in-
complete initial and boundary conditions, the numerical solutions could
be obtained but these are spurious solutions, without physical relevance.
A problem is well-posed in the Hadamard sense if its solution exists, it is
unique and it depends continuously on data. It is important to know this
fact before taking the numerical approach on the respective problem.

4.3 Burgers’ Equation
We shall now consider, following [42], the nonlinear equation

written in the conservative form which could be rewritten into the non-
conservative form

These two forms are equivalent in the continuous approach but of differ-
ent behavior in the discrete (by finite differences) approach. We remark
the analogy between the nonconservative form and the linear advection
equation, but now the advection velocity is no longer constant, depend-
ing on the solution The initial shape

distorts at the next time levels. More precisely, the points where is
greater are moving faster in a direction given by the sign of
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4.3.1 Classical and Weak Solutions

If we choose a point on a curve of the plane and we
calculate the total derivative of on it, we find

where
We remark that the derivative vanishes in the direction of slope
if and only if is a solution of Burgers’ equation. If we consider the

family of straight lines indexed by a parameter

and impose the condition then is constant on each
straight line. These straight lines are, in fact, the characteristic curves
of the equation.

The solution of the Cauchy problem (4.13)+(4.14) can be given as
follows: Through the point of the axis passes a single straight
line of slope of equation

On this characteristic line the solution is of a constant value, the value
at the point of the axis,

The equations (4.15)+(4.16) constitute a parametric representation
of the solution of the Cauchy problem. Theoretically, from the
equation (4.15) we obtain as a function of and and replacing it into
the equation (4.16) we obtain the analytical form of the solution

We remark that for the linear advection equation

the characteristic curves were the parallel straight lines
For Burgers’ equation the characteristic curves are straight lines too
but, generally, they are nonparallel; the slopes depend on the value of
the solution at the considered point. This is an effect of the nonlinearity
of the equation.

Let us consider three examples of different initial conditions in order
to point out this phenomenon.

Example 1.
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As above, the parametric form of the solution is

from where, by eliminating we obtain

This is a continuous, piecewise derivable solution and its regularity is
similar to the regularity of the initial profile. The derivative discontinuity
moves on the characteristic curve

Example 2.

Here has a discontinuity at the origin and let us consider for at
this point, all the values between 0 and 1. As above, the parametric
form of the solution is

Eliminating the parameters and from the above equations, we
obtain

In this case, the initial shape is discontinuous at the origin. From this
point we have, in the plane a set of characteristic curves
and the Cauchy problem solution is still continuous in the halfplane

Example 3.

If in the previous cases was a monotonically increasing function, now
is a monotonically decreasing function. The characteristic slopes

decrease, because

Consequently, the characteristics intersect in the halfplane But,
on each characteristic, is of the constant value coming from the
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axis and therefore at the intersection point of the characteristics must
take different values. This is possible only if we accept discontinuous
solutions of the equation. These solutions appear although the initial
profile was a continuous differentiable function.

Such discontinuities appear in the physical phenomenon described by
the Burgers equation. In gas dynamics, for example, they are called
shocks or shock waves. For their mathematical characterization we need
the notion of weak solution, which allows the discontinuities, see section
1.3.5. The shock condition becomes

that is the slope of the shock is the average of the values on its sides.
Example 4. Let us consider now the initial profile

The solution is (in parametric form)

But decreases, so the characteristics intersect themselves and a shock
appears, beginning, in this case, from the origin. Its slope is
so the shock’s equation is

The solution of the Cauchy problem is therefore

and we remark that there is a discontinuity at
The extension of the notion of solution allows significant physical

results even in the case of decreasing initial shapes. Conversely, the
uniqueness of the solution is lost.

If we resume Example 2, for which

we easily remark that together with the continuous solution
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we also have a discontinuous solution

which verifies the equation on subdomains, together with the initial con-
dition and the shock condition. But this discontinuous solution does not
verify the entropy condition (see again section 3.5, Chapter 1) and, of
course, it has no physical significance and must be eliminated.

The following theorem can be proved:
THEOREM 4.2. If the initial profile is a bounded and measurable

function, then the Cauchy problem for the Burgers equation has a unique
entropy solution.

We conclude:
a) the elliptic or parabolic equations cannot allow shocks,
b) the linear hyperbolic equations allow shocks only if these exist in

the initial or boundary conditions,
c) the nonlinear hyperbolic equations allow shocks, even without dis-

continuities in the problem’s data.

4.3.2 Burgers’ Equation with Dissipative Term
Let us now consider the equation

where is a positive constant. This is a parabolic equation, and it may
be considered as derived from the diffusion equation with a convective
term or derived from the Burgers equation with a dissipative

term Generally, is considered small, so we have in fact a singu-
larly perturbed problem. This equation is often used for testing numer-
ical methods because it is a model of Navier–Stokes equations.

Looking for stationary solutions of this equation we consider the dif-
ferential equation

and we obtain, by integration,
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Choosing the + sign and C > 0 we get the differential equation

which yields

In this last form of the solution we consider K < 0 in order to focus
on the solutions defined on For K = – 1 these solutions are

i.e., they are decaying functions from C to –C, and their
slope at the origin tends to as At the limit we obtain a shock
(a discontinuity verifying the entropy condition). We have

THEOREM 4.3.
a) The problem (4.18)+(4.14) has a unique regular solution for
b) This solution tends, as to the weak solution of the problem

(4.13) + (4.14) verifying the entropy condition
for all and

4.4 Stokes’ Problem
A very important and much studied example, which introduces the

difficulties of the Navier–Stokes system is the Stokes problem, which
means

where are the components of the velocity flow,   is the pressure and
R the Reynolds number. We remark the lack of a boundary condition
for the pressure and the presence of the equation at every
time instant, see also section 3, Chapter 3.

4.4.1 Direct Solving
We will present here, following [126], a very important direct method

of Glowinski and Pironneau to solve the Stokes system. Let us consider
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the problem

which defines the Stokes problem on the tridimensional domain V and
where coming from the temporal discretization of the linearized
incompressible equations.

The particularity of the method is the introduction, besides the Pois-
son equation for the pressure, of another Poisson equation
for a scalar unknown

By applying to that equation the operator we remark that
is a solution of the fourth order elliptic equation

It means that we may ensure if the solution of the equation
(4.21) is But the solution of the fourth order equation will be

if and

Consequently, the equation and the conditions of the Stokes problem
(4.20) will be fulfilled by the solutions and u of the system

if the auxiliary unknown verifies also the Neumann condition

We remark that the last condition is a substitute for the non-existent
boundary condition for the pressure. In order to determine the boundary
condition for which ensures the fulfillment of the incompressibility
equation we will consider the system
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and we calculate for which Here is an unknown defined

on the surface S and which is supposed to be of null average in order to
fix the indetermination (up to an additive constant) of

The condition is next rewritten in a variational (integral)

form

for every function defined and of null average on S.
By using the Green formula for (which transforms the surface

integral into a volume integral), the equations of the system (4.22) and
the similar equations for a system for the integral from (4.23) may be
written as

which shows the symmetry of that integral. However, it is useless for
calculations because of the necessity to record the values of for each
function It is more workable to use the decomposition of the solution

into

where are solutions, for every being an arbitrary
fixed point on S), of the three elliptic problems

and are solutions of the problems

Here is the Dirac function on S for a tridimensional domain V.
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Instead of the functions defined only on S, we will introduce the
auxiliary scalar functions defined on V by

With these functions, the problem (4.23) will be transformed into the
linear problem

where

Practically, the functions may be taken nonvanishing only at
a sharp region in the neighborhood of the boundary S, which leads to a
more efficient evaluation of the integrals. We remark also that the linear
operator Ã is a symmetrical one, so the algebraic system of equations
may be iteratively solved by the efficient conjugate gradient method.

4.5 The Navier–Stokes System
Let us consider a bidimensional domain (the extension to tridimen-

sional domains is immediate) and the Navier–Stokes system written in
the form

Almost all the numerical procedures to solve a system of this form use
the fractional step method. The velocity u is advanced in time by an ap-
proximation of the first equation, obtaining an “intermediate” velocity.
It is then used in an elliptic equation which imposes the incompressibility
condition and determines the pressure at the end of the time step.

We can remark that the usual methods are (time convergence) of
second order for the velocity but only of first order for the pressure. In
the sequel we will describe a particular numerical method and we will
show how one can obtain a complete second order (in time) accuracy.

As in Chapter 3, the basic theorem is that of Ladyzhenskaya, as a
particular case of the orthogonal decomposition results of Hodge.
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THEOREM 4.4. Every vectorial field   defined on the domain allows
a unique orthogonal decomposition where w is a solenoidal
field with a zero normal component to the boundary

If we return to the system (4.24), we remark that the first equation
is such a decomposition and it may be rewritten as

where is an operator which projects a vectorial field on the space of
the solenoidal vector fields, with suitable boundary conditions.

By half-discretization in time, the equations (4.24) become

Here represents a second order approximation at the time
level which is usually explicitly calculated.

The above half-discretized problem is solved by a fractional step pro-
cedure. From the first equation we determine an “intermediate” velocity

which is then projected on the space of divergence free vectorial fields,
obtaining A typical algorithm is of the form

Step I. We solve for

where is an approximation of and is a boundary condition
for which can be specified depending on the particular method.

Step II. We project on the solenoidal fields space

with boundary value conditions consistent with and

Step III. We update the pressure

where L represents the dependence of with respect to
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In the sequel, we pass to the next time level. Such type of methods
are called projection methods. Particular methods should be pointed out

1.
2.
3.

by the approximation of the pressure
by choosing the boundary condition
by choosing the function

These three approaches must be correlated in order to obtain a second
order accuracy of the method. For instance, the boundary condition for

must be consistent with the first equation (4.27) but the function
is not yet calculated at this instant and should be approximated,

depending on the choice of Similarly, replacing the first equation of
(4.27) into the first equation of (4.26), by eliminating and comparing
with the first equation from (4.25) we obtain an update for the pressure

by the relationship

This update must be taken into account in order to obtain a second
order accuracy for the pressure, on the boundary too, and in order to
eliminate the spurious modes for the pressure.

The choice of the boundary conditions may be better understood by
referring to an alternative formulation of the Navier–Stokes equations.
Let there be new variables m and connected with the flow velocity

and so that u and obey the Navier–Stokes equations. For instance, we
require that m verify on

where

The equations (4.28,4.29,4.30) constitute an equivalent formulation
of the Navier–Stokes equations, where the pressure was eliminated. It
could be calculated, if it is necessary, from the relationship

obtained by comparison of the first equation (4.29) with the first equa-
tion (4.24). It is easy to remark that even the boundary conditions are
given for u, the equation (4.28) shows that there is a coupling of the
boundary conditions for m and
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The time half-discretized form for the above equations is

If it is necessary, the pressure may be computed from the second order
approximation of the equation (4.31)

The numerical calculation of the projection is made usually by solv-
ing a Poisson equation. Let w be a given vectorial field which must be
decomposed into where v is of free divergence and satisfies

where In order to find v we have

where

We remark that, for the thus defined projection, v always automat-
ically satisfies the boundary condition in the normal direction to the
boundary but in the tangential direction to the bound-
ary we will have only if w is so that

This fact must be taken into account at the choice of the boundary
conditions for the equations (4.26) and (4.32) where the projection of
the solution must verify both the normal and the tangential boundary
conditions.

With regard to the above facts, we will describe two projection meth-
ods of second order accuracy and without spurious pressure modes.

The first method, which is similar to that proposed by Liu in 1997,
may be written as
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The velocity at the end of the time step is

where is the solution of the problem

If it is necessary, the pressure may be calculated from the relationship

In the above relations, the index means the centered differences
discretization, of second order accuracy. The term is cal-
culated by centered differences in space and second order extrapolation
in time.

The second method, similar to those proposed by Kim and Moin in
1985, is

Then

where is the solution of the problem

If it is necessary, the pressure may be calculated from the relationship

In the numerical calculations, we remark that the time extrapolation,
where it intercedes, does not perform at the first time step. Here one
may use an iterative procedure. For instance, in the case of the first
method,
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followed by

where the iterations start with The advection term is reset
at each iteration taking the average of the derivatives of and

Another remark is that, in the same relations, we calculate finite
differences at neighboring points to the boundary ones, for instance

The necessary unknown values at the boundary are calculated by
quadratic extrapolation from the first three inside values.

More comments on the considered methods may be found in [12].
We retain the idea that, generally, the numerical solution of the

Navier–Stokes system is obtained by the following general scheme:
First, we perform a half-discretization in time, by one of the known

procedures from the differential equations — backward or forward Eu-
ler, Crank-Nicolson or — and we obtain a sequence of steady
(generalized) Navier–Stokes systems, with given boundary conditions, in
the form:

Being given and time step size let us find
and such that

with the right-hand side

This problem may be stated in the compact form

where we have used the notation
Second, we perform the spatial discretization by the finite element

method (FEATFLOW, FLUENT), finite difference (SIMPLE, QUICK), fi-
nite volume, spectral methods. Some commercial or scientific packages
are PHOENICS, FLOTRAN, NSFLEX, FIDAP, FIRE, LISS, FASTEST. By
denoting again u, respectively the discrete values of the corresponding
functions, the discrete version of the problem (4.33) is:
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Being given and the time step size let us find           and
such that

where

Here M is the mass matrix, B is the gradient matrix and the
transpose of the divergence matrix. The problem becomes a nonlinear
algebraic system, which may be usually iteratively solved.

Particular choices lead to particular algorithms, completed by proce-
dures to describe the complex geometries domains, convergence tests,
local refinement of the meshes, etc.

4.5.1 Projection-Diffusion Method

We will present now, following [7], [147], [148], a so-called “projection-
diffusion algorithm”, elaborated by a French group led by G. Labrosse,
to solve the Navier–Stokes unsteady system. This algorithm uses no
auxiliary temporal schemes to decouple the velocity field and the pres-
sure.

Let us consider the system

1. The pressure calculation from the system

where contains, besides some sources, the advective contribution of
We assume here The projection-diffusion

method is suggested by the physical process to instantaneous adaptation
of the pressure field on the whole domain, keeping both the solenoidality

of and of the acceleration                        The method consists in

solving, at each instant, of the problems.
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where are the computational
domains for the u components from the first equation respectively
Here is the normal unit to

2. The calculation of the velocities field u at the next time instant,
from the problem

implicitly solved in the spectral space. So, at every step we directly solve
a Poisson type problem for each dependent variable (the velocities and
the pressure).



Chapter 5

FINITE-DIFFERENCE METHODS

1. Boundary Value Problems for Ordinary
Differential Equations

Some types of problems from fluid dynamics lead to boundary value
problems for differential equations of the form

The first step to approximately solve these problems by finite differ-
ences is to construct the grid

with the step size The values of evaluated at these
points will be denoted by We will evaluate also the derivatives
of at the same points using the values of at the neighboring grid
points. From the Taylor expansion we have, for a small

Therefore,

and, consequently,
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This represents an approximating formula by forward finite differ-
ences. Analogously, we obtain

which represents the approximating formula by backward finite differ-
ences and

that by centered finite differences.
The approximation errors are of order for the first two formulas

and for the last formula. But using also other values for dif-
ferent from +1 and –1 (and considering more points in the grid) some
formulas of higher accuracy order can be obtained.

The second derivative is similarly approximated,

By replacing these formulas into the differential equation, we get

where by we understand their values at Arranging the
terms, we have the system

which represents the requirement to verify the equation at the interior
grid points.

The boundary conditions become

which are the known values that pass to the right-hand side. Finally,
the following tridiagonal system for is obtained
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where

By solving this system, using sparse matrices techniques, we get the
approximative values of the solution at the interior grid points. Simi-
larly one could approach the systems of differential equations.

1.1 Supersonic Flow Past a Circular Cylindrical
Airfoil

Let us consider the plane, steady, irrotational, inviscid, supersonic
fluid flow past a symmetrical circular arcs airfoil, at zero angle of attack,
see Figure 5.1. In a Cartesian reference frame Ozy, the equation of the

Figure 5.1.

upper side is

with

the geometry of the profile being also characterized by the ratio

where is the “arrow” of the profile and is its “chord”. We suppose
the free stream Mach number to be M = 2.5. For details, we refer to
the monograph of M. Holt [64], page 69.
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To numerically solve this problem we consider the B V L R (Babenko–
Voskresenki–Liubimov–Rusanov) method. Let the equations of the given
flow (the fluid is supposed to be compressible barotrop)

where This system is equivalent to the matrix equation

where

(here the penultimate equation is a consequence of the last equation, of
the Bernoulli integral and of the state equation).

By changing the variables and

where the function was chosen so that on the wall and
along the shock wave, the above matrix equation could be rewritten

where

Obviously, to this equation considered for (given) and
one attaches both the slip condition on the wall
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and the boundary conditions (the jump conditions) on the shock, written
in the form

Let us now consider a rectangular mesh, with step sizes

with mesh nodes of coordinates

(M, being integers). Let us denote the value of a mesh function
at the node by

We will deduce the system of differential equations attached to the
above equations. We will use centered differences, with correction terms
in the direction (artificial viscosity), leading to an order2 of accuracy
system which may be written in symbolic form

We remark that this system represents 4M scalar equations attached
to the points of the same “layer” (i.e., having the same index To
these equations we add the slip-conditions on the wall and the four shock
conditions. In the language of finite differences, these equations may be
rewritten in the form
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where

In other words, the system contains on each “layer” 4M + 5 equations
with 4M+5 unknowns: the values of for every M – 1
and the values of on the shock wave together with
the shock wave equation The location of the shock wave is
determined, finally, by the immediate formula

This system may be iteratively solved by the “double sweep” method.
Precisely, at the beginning of each iteration cycle, we use the last evalua-
tion of (at the step to compute the coefficients

which depend effectively on X. In the sequel, we consider the

system (5.2) as a linear system with the unknown (from the step
with the known previously computed coefficients.

These iterations will be continued until the difference between the
initial and final values for X becomes sufficiently small.

In order to effectively solve the proposed system by the “double sweep”
method, we remark that along the airfoil profile (its upper side) the slip
condition may be written

By forward “sweep” this condition will be transfered, step by step,
from the wall to the shock At a certain point
(at an intermediate step) we will establish a relationship of the type

with the recurrence formulas

where is a normalizing factor that makes So, at
every step and are computed. For one comes on the
shock wave where, again, This equation together with

where

and
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the four boundary conditions, written above on the shock wave, give
a system of five equations which allows the determination of the five
unknown functions and F). The effective solution of this system
may be found in the paper “Three Dimensional Flow of Ideal Gases
Around Smooth Bodies”, NASA TT F-380, of the authors of the B V L
R method.

In order to perform now the reverse “sweep”, i.e., the successive deter-
mination of starting from the shock wave, we must
get, by using the difference system (5.2) and the equation
a relationship of the form where the
necessary condition for stability, which is feasible. Details on such a
scheme may be found in A.N. Liubimov, V.V. Rusanov [86].

The computations will be continued until the difference between the
forward values and the reverse values will be smaller than an
“a priori” given number, i.e., until the computation stabilizes at a given
approximation. The method provides a sufficiently accurate computa-
tion of the supersonic flow, the location of the shock wave being better
represented than in the Prandtl–Meyer model.

2. Discretization of the Partial Differential
Equations

Let and be a grid on the
computational domain, with the nodes and the step-sizes
for the two directions, step-sizes of which could be different.

The finite differences method replaces the derivatives from the par-
tial differential equation by finite differences, thus resulting an algebraic
systems. The basic tool is the Taylor development in the neighborhood
of the current point.

For example, if is the horizontal component of the velocity, then at
the point where and we have the value while

at has the expression

The exact value of could be obtained by taking into account all
the terms of the series (if the series is convergent). Practically, the series
is “truncated” by neglecting the high order terms and considering very
small step sizes So that, we have
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with a second order accuracy or

with a first order accuracy.
From these relations one could evaluate

which approximates the first derivative by a forward finite difference.
Like the previous one-dimensional case, we have also

from which

that is the approximation of the derivative by a backward finite differ-
ence.

By subtraction of the formulas (5.3) and (5.5) we get

i.e., the approximation by centered differences.
If we add the same formulas we obtain

which is an approximation of the second order derivative.
Obviously, there exist similar formulas for the derivatives with respect

to :
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We also remark that

i.e., forward and backward finite differences are used simultaneously.
Thus, we could similarly generate different formulas for other kinds of
derivatives. For instance,

from which

An important problem is how to approximate the derivatives at the
boundary grid points, for example, how to approximate at the bound-
ary node 1 from Figure 5.2.

Using one of the previous formulas, we have

A more precise formula could give

but is unknown outside of the computational domain. The boundary
condition
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Figure 5.2. The approximation of the derivative at a boundary node

could be imposed by choosing but we cannot calculate the
derivative with this formula.

Suppose that in the neighborhood of the boundary, is of the form

Then

thus, having one could calculate But, on the other hand,

therefore

Concerning the accuracy, we have

Comparing the formulas (5.7) with (5.8) we find

with errors which affect Dividing by we obtain

Such type of formulas are called one-sided finite differences. More details
can be found in [124].
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3. The Linear Advection Equation
The linear advection equation is

where is a constant that physically represents the advection velocity.
It is easy to verify that the general solution of this equation is

where F is an arbitrary, differentiable, single-valued function which rep-
resents, in fact, the shape of the solution at This profile is
translated along the direction at the velocity at the next time
moments.

This equation is commonly used as an example and a test equation
for many numerical methods.

3.1 Discretization of the Linear Advection
Equation

The first step in the numerical treatment of this problem is the dis-
cretization. In this section we will study different types of discretization
by finite differences following [79].

We define a spatial grid of N + 2 points, with a constant step size

where N of them lie within the computing interval (0,1). The solution
will be approximated at the points while will be

used for describing the boundary conditions.
So, if is fixed outside the computing interval, these boundary con-

ditions are discretized by

In the case of periodic boundary conditions, we have

while in the case of homogeneous Neumann conditions we have

Here a temporal grid is defined on with constant step size
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and the approximations of the solution on the grid are denoted
by

We shall study different discretizations of the advection equation, ob-
tained by various discretizations of partial derivatives.

3.1.1 Forward-Time and Centered-Space Scheme
We shall use the forward difference for the temporal derivative and

the centered difference for the spatial derivative. So, we obtain a discrete
form of a first order accurate in time and second order accurate in space,
equation

or, by neglecting the “small” terms,

First, let us analyze the stability of the scheme. We shall use the von
Neumann method, based on the study of the behavior of a single Fourier
mode

in the approximation process.
The exact solution corresponding to this initial condition is

If we are looking for solutions of the approximating equation (5.9) of the
form

advected at the velocity then

and

Substituting in the equation (5.9) we find
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or

But the above equation implies that the amplification factor
of the numerical solution passing from the moment to the moment

has a magnitude greater than 1 (we note that may be complex).
Consequently, the numerical solution

is growing when and this scheme is unconditionally unstable, that
means useless.

3.1.2 Centered-Time and Centered-Space Scheme
The discretization of both derivatives, in space and in time, by cen-

tered differences, leads to

or

which is second order accurate.
Let us study the stability of this scheme. As in the previous section,

we obtain

and consequently,

This implies that is real and now, as the left-hand-side has a magni-
tude less than 1, the above equality is satisfied for every only if

The factor which can be considered a “nondimensional
velocity”, is called the Courant number. The above condition is in fact
a restriction on the time step size when the space step size is fixed, and
it is called the CFL (Courant–Friedrichs–Lewy) condition.

This example shows that not any discretization gives valid numerical
solutions.
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If the CFL-condition is not satisfied then, denoting the amplification
factor by

and by

the equation (5.11) becomes

such that, consequently

If it is obvious that and the scheme is stable. But if

then

and the solutions of the difference equation (5.10) are combinations of
two elementary solutions: one is oscillating and decaying but the other
is oscillating and growing. This growing solution swamps the other and
yields instability.

Let us study the accuracy of this scheme, supposing the CFL-condition
satisfied. The equation (5.12) gives us the advection velocity of the nu-
merical solution

which may be put in the form

where and
It should be noted that may coincide with (for all only for

very particular spatial and temporal step sizes and Such a case
is C = 1, that is which is situated on the stability limit.

If we decrease the step size in order to increase the accuracy and
to maintain the stability (C < 1), the result is a translation velocity of
the numerical solution lower than the exact velocity. This fact is obvious
if we plot with respect to or C* with respect to C.
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Longer waves spread numerically faster than shorter waves and the larger
the wavelength the better is the numerical velocity.

But the initial profile of the unknown function may be represented
as the sum of a Fourier series and each term of the series is a wave with
a specific numerical velocity. Consequently, the initial shape cannot be
preserved by numerical advection with this scheme.

Even if the stability is ensured by imposing the CFL-condition, even if
we have an acceptable accuracy when the initial profile is a superposition
of waves with wavelength greater than the grid step there are other
facts that make the above method difficult to use.

We remark that the equation (5.10) allows the computation of at
the time level from its values at the time levels and But, at
the first step, we know only the time level The necessary values
for the next time level may be computed, for example, using the method
from the previous section. We suppose that the errors coming from this
single step by the unstable method are small relative to other errors of
the present method.

Figure 5.3. Numerical velocity with respect to the wave number

Moreover, the advection velocity of the numerical solution depends
on the wave number If we represent C*/C with respect to for a
fixed C, for example C = 1/4, we obtain Figure 5.3.

We remark that if then so a wave with the wave
number

never advects. This happens for waves of wavelength
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Another feature, much more serious, is that our scheme may generate
two numerical solutions of the same problem. The value is com-
puted from the values and but ignoring the values If we
mark on the grid the points which are under the influence of
we see that these points are completely independent from those under
the influence of or (like the white and black squares on a chess
board). So, what we compute are two uncoupled solutions, that may be
of different behavior and producing spurious numerical oscillations.

Of course, we may diminish this phenomenon by recoupling the partial
solutions. For example, such a way which ensures the circulation of the
information between the two types of grid points is to substitute the
computed values by the modified values

where There are many types of such filters but their
use leads to unnatural algorithms.

3.1.3 Backward-Time and Centered-Space Scheme

Let us consider now the following discretization of the linear advection
equation

or

This is an implicit scheme. The solution at the next time level is
computed from the present time level by solving a tridiagonal system of
equations.

Now, if we study the stability by the von Neumann method, replacing
the wave in the previous equation, we obtain

The magnitude of the left-hand side is greater than 1, resulting thus in
a complex . So, the right-hand side modulus is greater than 1 and the
amplification factor

has magnitude less than 1. The scheme is then unconditionally stable
but it does not preserve the amplitude of the waves.
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3.1.4 Crank–Nicolson Scheme

Using the average of forward and backward schemes, we obtain

If we study the stability as in the previous sections, we have

The terms in brackets have the same magnitude, thus resulting in a
unitary amplification factor The implicit scheme is then un-
conditionally stable but, as in the previous sections, this scheme does
not preserve the shape of the waves: the numerical velocity depends
on the wave number Particularly, the waves with the wave length

for which yield

3.1.5 Upstream Schemes
We have remarked above that the use of the centered-differences

schemes for the spatial derivative does not yield good algorithms. Tak-
ing into account the fact that the partial differential equation advects
the values of the solution from left to right (downstream), it is natu-
ral to use for the spatial discretization a finite difference that uses the
known value (from left, upstream) and not the unknown value (from
right, downstream) from the spatial grid point

Then we discretize the spatial derivative by a backward finite differ-
ence, using the upstream values of For we obtain

We firstly remark that this scheme is of first order of accuracy and we
need only an upstream boundary condition, so we must specify only the
value

The stability study, as in the previous sections, yields

We see that, generally, Moreover,
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It follows that the magnitude of the amplification factor is less than 1
for and greater than 1, conversely. So, for the
numerical solution is stable but it decreases with time while the exact
solution does not.

But, if C = 1, from the above relations it follows that
so the numerical solution does not diminish and, more, In
this particular case the numerical solution is “perfect”.

Even in the case when and it depends on the
wave number we have no spurious maxima or minima, due to the
numerical diffusion, manifested by a decreasing amplitude of the initial
shape. Moreover, each step profile at the initial state is rounded.

Due to the conservation of the maxima and minima of the initial state,
even not exactly in position or magnitude, we can say that this scheme
is monotony preserving.

3.2 Numerical Dispersion and Numerical
Diffusion

It is the moment to explain the reason of the numerical difficulties
encountered at the above schemes. It should be recalled that we were
trying to solve numerically the equation

by discretizing the partial derivatives and neglecting the “small” terms
(i.e., of order of some powers of or But from the generic devel-
opment in Taylor series

we remark that the neglected terms link to the high order derivatives of
with respect to and This means that the exact equation we try to

solve by simple discretizations becomes

If we use a centered finite difference for the spatial derivative and if
we suppose sufficiently small such that the error comes only from
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and we will have

So, in fact, the numerical solution approximates the solution of a (new)
equation of the form

If we replace here the test wave

we obtain

from which

Concluding, the numerical solution, which approximates in fact the
solution of the equation (5.15), is advected by a velocity slower than
by the exact velocity and this velocity depends on the wave number

This is the origin of the numerical dispersion that we encountered in
the above schemes and it is generated by the presence of odd derivatives
into the considered equation.

Let us now take the scheme where the spatial derivative is approxi-
mated by a backward finite difference (for where we also neglected
the terms of order

In this case the equation to solve is, in fact,
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The term which contains the second spatial derivative of represents a
diffusion and it smoothes the initial state. This term is not a physical one
but it is the effect of the discretization of the spatial derivative and thus
it is the origin of the numerical diffusion encountered in some schemes.
This phenomenon is generated by the presence of even derivatives into
the equation.

Also, by replacing the test solution

into the above equation, we find

and thus

So,

and the numerical solution moves with the same velocity as the exact
solution while its amplitude decays to zero.

3.3 Lax, Lax–Wendroff and MacCormack
Methods

There are many other discretization methods. For example, in the
equation

we can replace the spatial derivative by the centered finite difference and
the temporal derivative by the formula

obtaining thus the Lax method

In this case, by considering a perturbation
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the amplification factor becomes

where The stability condition yields so in
this case the CFL condition is valid too.

Consequently, for stability, the Courant number C must be less than
1 while, for accuracy, it is necessary that C be close to 1.

Lax– Wendroff method. Let there be a flow parameter value at the
point and at the moment The value at the next time (moment)
should be

From the equations of the phenomenon we can directly compute

and by derivation of the equations with respect to we can also compute

This is a method of second order accuracy.

For example, for the linear advection equation we have

We can substitute

from the equation, which yields the scheme

MacCormack method. This two-step method is easier to apply. The
first step is a predictor one

while the second step is the corrector
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The accuracy is the same as for the Lax–Wendroff method but we do
not need the use of second order derivatives.

Both methods are explicit, so the stability imposes constraints on the
time step. If a wave propagates through a fluid with velocity and the
sound velocity is the stability constraint is

Physically, this means that the time step must not exceed the necessary
time to propagate the wave from a grid point to the next one. It should
be better that C be closer to 1, but in the case of many grid points this
can not always be achieved. We remark that the time step may be
variable during the integration process.

3.3.1 Fluid Flow Through a Nozzle
Let us illustrate the MacCormack method for the nonlinear problem

of a fluid flow through a nozzle (a tube of variable section, larger at
the ends and straightened at the interior), following the paper of J.D.
Anderson Jr. [5]. The fluid comes from a reservoir where the flowfield
variables are supposed to be constant.

The equations governing the phenomenon are the one-dimensional
conservation equations, i.e.,

the continuity equation

the momentum equation

the energy equation

the state equation (Clapeyron)

where is the cross-sectional area, as a function of the distance
along the nozzle.
If is the density in the reservoir, is the speed of the sound

at the temperature of the reservoir, L is the length of the nozzle,
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A *the minimal area of the section of the nozzle, the above equations are
nondimensionalized by

So, we get the system

where the last equation corresponds to the calorically and thermally per-
fect gas ( of constant and consequently In the calculations
we take and

As boundary conditions at the first computing node from the left (in
the reservoir), we have

As initial conditions we take linear distributions for between 1 in
the reservoir and 0.1 at the exit of the nozzle, at for be-
tween 0.1 and 1 and for   between 1 and 0.1. During the evolution,

will be modified by linear extrapolation vs. the first two computing
nodes. Similarly, the values at the last node will be calculated by linear
extrapolation vs. the last two computing nodes.

This problem is solved by finite differences discretization vs. and
the time marching will be made by the MacCormack method. Generally,
having the values of calculated at the moment

we evaluate from the differential system and the other time
derivatives at the moment by replacing the spatial derivatives with
the first order forward finite differences

where is the generic notation of the right-hand side of the system;
we evaluate and the other quantities at the next time level

by
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we evaluate and the other quantities at the moment using
in the system the above calculated values and discretizing the spatial
derivatives by backward finite differences

we correct the values of the derivatives vs. by the average

we calculate Z, V, at the next time level by

and we resume the iterations.
The numerical results are presented in Figure 5.4 where the variation

Figure 5.4. The nozzle fluid flow

of the temperature density velocity and mass transfer
in the steady state (after 250 iterations) are given vs.

We remark that the spatial step size was chosen constant
but the time step size was modified during the iterations such that
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where is the sound speed at (corresponding to the temperature

This adaptive time step size was imposed by the stability of calculations.
The MATLAB code is
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which presents the time evolution from 10 by 10 iterations.

4. Diffusion Equation
Let us now consider an equation with second order derivatives with

respect to the spatial variable, namely the one-dimensional diffusion
equation

This parabolic equation is also used as a test problem for different numer-
ical methods. Let us add to it some boundary conditions, like Dirichlet
conditions

We consider the same grid respectively,
as in the case of the linear advection equation. The spatial

derivative will be discretized by the central second order finite difference
and the temporal derivative by one of the first order finite differences.
From the boundary conditions we have and for all

4.1 Forward-Time Scheme
This is

i.e.,

It is an explicit scheme. Let us study the stability by the von Neumann
method.

Consider a Fourier mode

with variable amplitude; by substituting into the diffusion equation we
find

and thus

We remark the decay in time of the amplitudes (as in the attached
physical phenomenon) and the decaying dependence on the wave number
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Let us check the behaviour of the numerical solution, which must be
the same in the case of stability. If the numerical solution does not decay
it means that the scheme is unstable.

Choosing a test solution of the form

and replacing into the equation (5.16) we find

or

The numerical solution decreases in time if From the
above equation we have

There are three cases:
a) if the numerical solution is monotonically decreas-

ing,
b) if the numerical solution is oscillatory decreasing

(in this case may be complex and the amplification factor is of
magnitude less than 1),

c) if the numerical scheme is unstable.

Concluding, it is necessary for stability that So, this
scheme is only conditionally stable. The stability requirement is very
strong, we need very small time steps and thus this scheme is of less use.
The truncation error is of order

There are many explicit schemes, some of them unconditionally stable,
like that of the DuFort–Frankel method

which implies three time levels. The truncation error is better than in
the previous, namely

4.2 Centered-Time Scheme
Let us now consider the following approximation of the diffusion equa-

tion
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namely

which is second order accurate in space and in time. The scheme is
explicit but we need the numerical solution at two previous time levels

and (in order to compute the next time level).
Resuming the stability computations, we find

If we denote and we have

and thus

But the “–” sign always yields a solution with            which represents
(for complex an oscillatory and growing in magnitude solution. This
solution may cover the solution corresponding to the “+” sign. The
scheme is therefore unconditionally unstable.

We must underline that a better accuracy does not yield a better
stability.

4.3 Backward-Time Scheme
Finally, let us consider the scheme

which yields

This is an implicit scheme, the numerical solution at the level
is computed by solving a tridiagonal system formed with the known
solution at the previous time level.

For stability, in this case, we find

But the left-hand side is positive and of magnitude greater than 1, thus
resulting in an amplification factor which is always between 0 and
1, for all spatial or time steps. The scheme is therefore unconditionally
stable.
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4.4 Increasing the Scheme’s Accuracy
In 1927 Richardson proposed the following technique to increase the

accuracy of schemes with differences. Calculating the exact value with
a method of first order of accuracy, we obtain an approximation of
order of Recomputing with a smaller step, like we obtain the
approximation

If the exact solution is smooth, the scheme is stable and the round-off
errors in the computer are negligible, then we may write

where A is supposed constant. Eliminating A we obtain

so approximates by a second order accuracy.
Analogously, using second order schemes, we may obtain schemes of

third order of accuracy

and thus

This procedure cannot be used indefinitely due to the accumulation
of round-off errors.

4.5 Numerical Example
Let us use an implicit (backward-time) scheme for the problem of a

starting flow in a channel, between two parallel infinite plates, caused
by a suddenly imposed pressure gradient along the channel. The
equation of the flow is

If the distance between the plates is 2L, the initial and boundary con-
ditions will be and

As the time increases, the solution will approach the steady
state distribution

By introducing the dimensionless variables
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the deviation from the steady solution, which is

satisfies the diffusion equation with the conditions
 and for

By applying here this backward-time scheme, we obtain the MATLAB
program

which shows the time evolution of the velocity profile, see Figure 5.5.

Figure 5.5. The fluid flow caused by a pressure gradient

The truncation error of the above scheme is of order It
could be improved by taking for the spatial derivative the average of the
centered finite differences at the time levels and
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which gives, after rearranging the terms,

This is the Crank–Nicolson method which is an implicit method and
unconditionally stable too, with a truncation error of order

We remark that the implicit methods have the advantage of stabil-
ity for large values of the time step size (attention, not every implicit
method is unconditionally stable ! ). This means fewer computing steps,
resulting in a shorter computing time.

Unfortunately, the programming itself is more difficult, the computing
time per each step being longer because a system of equations must be
solved if R changes; also, larger truncation errors occur if the time step
size is chosen too large.

5. Burgers Equation Without Shock
We prefer the discretization of the conservative form of the equation,

which is closer to the physical conservation law modeled. In this sec-
tion we will present some classical discretizations by finite differences
schemes.

5.1 Lax Scheme
With the above notation, on a grid defined on we

have

obtained by discretization of the temporal derivative by a forward finite
difference and of the spatial derivative by a centered finite difference
together with the substitution of by the averaged values at the spatial
neighboring points. If we write the scheme in the form

we remark that it may be derived from the discretization of the noncon-
servative form of Burgers’ equation where was replaced by the above
average. It is an explicit scheme, of first order of accuracy.

In order to study the stability, first a linearization is necessary, either
of the original equation or of the nonlinear discretized form. Obviously,
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in the nonlinear case, the method is only local, due to the high gradients
of the solution in some domains.

Let us consider therefore the linearized scheme

where is an averaged local value of the unknown.
Let us take an initial profile

which becomes at the point

Substituting into (5.18) we get

for which the amplification factor is

But

so that the stability condition is

We remark now that the stability condition changes with the solution.
The time and space step sizes must be automatically adapted while
computing. For this, at each time level we should compute and

next an acceptable value of is to be considered.

5.2 Leap-Frog Scheme
This is an explicit, of second order accuracy scheme, i.e.,

The stability analysis gives the same condition (5.19). To start we need
a single step scheme in order to calculate, in addition, the second time
level.
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5.3 Lax–Wendroff Scheme
This is an explicit, of second order accuracy scheme, using intermedi-

ary grid points and We have two stages:
a predictor, in which we compute, for all

and which is, in fact, a Lax scheme with steps and a corrector,
in which we calculate, for all

which is a leap-frog scheme with halved steps.
For the stability study, we linearize the equations (5.21) and (5.22),

i.e., we get

and

Eliminating the level we obtain

As above, the amplification factor is

and

which is of magnitude less than 1 for
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6. Hyperbolic Equations
6.1 Discretization of Hyperbolic Equations

Oscillatory flows in fluid dynamics are governed by partial differential
hyperbolic equations. For example, the propagation of a one-dimensional
sound wave of small amplitude is described by the equation

where is the time and is the spatial coordinate in the direction of
propagation. The wave’s velocity is (considered constant in the lin-
earized problem) and the flow velocity is Similar equations may be
written for density, pressure, temperature.

Here should be found for every time moment in the spatial
domain We also need the initial conditions

and boundary conditions, at both ends of the interval. If, for example,
one end is closed by a rigid wall, then there we have for all
If the other end is open into the atmosphere, then the pressure should
be constant at that end, i.e.,

The discretization methods by finite differences for such problems are
similar to the parabolic case, cf. [155] for example. We divide the spatial
interval by a grid of step size with the total number of points
N + 2 and the time axis by a grid of step size which now is not
bounded, see Figure 5.6.

Using second order centered finite differences for partial derivatives,
it follows that

where C is the nondimensional parameter

i.e., the Courant number. The above formulas calculate the approximate
solution at the time level from the known values at the two previous
time levels..

Let us study the stability of the above scheme (5.24) using the von
Neumann method. Suppose that the solution may be developed into a
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Figure 5.6. The grid for hyperbolic problems

Fourier series with respect to spatial variables. A typical term of this
series is

where is the amplitude at the moment of the component with the
wave number Analogously,

Replacing into (5.24) we obtain

or

where If we introduce the amplification
factor for which

the above equation becomes

with the roots
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The stability is ensured only when that is or

This inequality is always verified if or, finally,

Concluding, for the stability we need a relationship between the time
and space step sizes. In the particular case when we obtain
the scheme

which is, in fact, the “leap-frog” method.
It can be proved that this method yields the exact solution of the

problem. Indeed, the exact solution verifying the initial conditions (5.23)
is

or, in short form,

Here F and G represent waves that propagate without changing the
profile, at constant velocity. The lines of slopes in the plane
are the characteristics of the wave equation and describe the advance in
time of the waves.

So we have

But

and therefore

On the other hand,
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Taking into account the two equations coincide.
The above computations have a strong physical interpretation. The

exact solution formula shows that the value of the solution at a point P
of the plane depends on the values on the grid points between the
diagonals PQ and PR of slopes through P (see Figure 5.7).

Figure 5.7. Physical interpretation of the stability criterion

The region PQRP is the computational domain of the values of the
solution in P. If respectively are the characteristics through P of
slopes for the exact solution, then is the physical domain
of dependence for the exact solution in P. If as in the figure, then
the computational domain contains the physical domain of dependence
and the computations are stable. Computing errors appear by using
values from the computational domain and not from the dependence
domain.

But if then the computational domain PQRP is in-
cluded in the physical dependence domain and only a part of
needed information for the value of the solution in P is available and
this yields the instability. The limit case C = 1 or yields
the equality of the two domains and the algorithm computes the exact
solution.

In the above formulas we need the numerical solution at two time
levels in order to calculate it at a next time level. We have directly from
the initial conditions
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The equation at is

But from the second initial condition, if we discretize the derivative by
a centered finite difference, we get

from which, by replacing we have

or

So, we have the starting formulas.
As an immediate application, let us study the sound waves in a tube

[22]. Let us consider a tube of in length, of uniform cross section,
divided into two chambers by a diaphragm at the middle section and
closed at the right end. Suppose that the air density in the tube is

where is the atmospheric density and

with The boundary conditions will be at the

open end and at the closed end.
Suppose that at the diaphragm is suddenly removed. It may be

proved, from Euler’s equation, that

and from the continuity equation

by linearization, that the density fluctuation satisfies the wave equa-
tion

where is the sound speed, considered to be
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By denoting, in the sequel, and using the above discretization,
the boundary conditions become

which leads to the starting relations

and to the iterations

where the time step size is The following MATLAB pro-
gram performs an animation of this phenomenon for 1000 time steps,
describing the evolution of as a function of and time

The program shows the generation of two waves, a compression wave
propagating toward the left and an expansion wave propagating towards
the right and which specifically reflects at the ends of the tube.

6.2 Discretization in the Presence of a Shock
In a neighborhood of a shock the variation of at the considered

grid points does not tend to zero, and that induces numerical difficul-
ties. These problems may be surpassed either by using some “shock-
fitting” schemes, that treat the position of the shock as an unknown
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and discretize the equation separately on each side of the shock, or by
introducing an “artificial viscosity”.

The first methods are difficult to use. It is difficult to follow a shock
that may appear or disappear, it is difficult to express numerically the
entropy condition and it is difficult to keep the stability of the schemes
in the case of using variable step sizes.

The methods based on an artificial viscosity are more often used.
Although they may represent the shock more extended than it really is,
its position and intensity are correctly represented. Moreover, we need
not impose the entropy condition because at the limit, when we
obtain just the entropy solution.

Practically, we add to the equation a term of the form with
positive and small, or we discretize the equation by a dissipative scheme,
which automatically introduces a numerical diffusion.

Let us first take the linear advection equation

where is constant. The Lax scheme is

Let us suppose that is sufficiently smooth and it can be developed
in a neighborhood of the point Applying these developments in
the above formula we obtain the equation

If we suppose the equation may be written

We may say either that the Lax scheme discretizes the advection equa-
tion by a first order accuracy or that this scheme discretizes the equation

by a second order accuracy.
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From

we obtain, if is sufficiently smooth,

and then the equation (5.25) becomes

If the stability condition is verified,

then the numerical method introduces, in fact, in the right-hand side a
dissipative term of intensity

when
The calculations are performed similarly for the Burgers equation. In

fact, the second order approximating equation is

But we have

so our equation may be finally written
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The perturbation is regular, so the qualitative behavior of
the equation is the same as that of the Burgers equation with dissipative
term. Of course, we should impose the condition

which ensures the correct sense of dissipation (with positive intensity).
This technique with artificial viscosity is often used for the stabiliza-

tion of numerical schemes. Let us consider now a numerical example for
the Burgers equation

with the initial condition (see [42])

Starting from the parametric equations of the exact solution

and from the shock condition

we can find the exact solution for the above problem, i.e.,

where is the shock equation,

The equations of the characteristic lines, along which the initial values
should be transported, are, corresponding to the four lines from the
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definition of

see Figure 5.8.

Figure 5.8. The characteristic lines of the equation

We will apply two discretization schemes and we will compare the
numerical solutions with the exact one at namely

First, we will use the Lax scheme,

and then the predictor-corrector scheme studied by Peyret and Lerat,

with
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where the proposed optimal values were chosen. For
both schemes we use the same stability condition

which at each time level evaluates the new time step size the spatial
step size being fixed and therefore

Figures 5.9 and 5.10 show the numerical solutions together with the
errors versus the exact solution.

Figure 5.9. The numerical solutions

Figure 5.10. The errors

We could remark that the second accuracy scheme gives better
results than the Lax scheme, which is of the first order of accuracy. The
MATLAB program, called lax.m is
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6.3 Method of Characteristics
The numerical solution for the sound waves in a tube shows that a

sound wave propagates at a constant velocity without changing its shape.
This fact is a result of linearization of the governing equations, in the
case of small perturbations about the equilibrium state.
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These governing equations are, as we know, the Euler and the conti-
nuity equations

where the sound speed is also a function of and Assume that the
fluid flow velocity is less than the sonic speed. By eliminating after
some transformations, we obtain the equations

where

and the subscript “0” indicates the undisturbed conditions.
The above equations show that

is constant along a curve in the xt plane. From

comparing with the above equations, we obtain

which is the expression for the slope of that curve.

is constant along a curve of slope

Similarly,
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These curves are the so-called characteristics of the equations. As and
depend on and the characteristics are generally curves in the plane

Since P, respectively Q, are constant along the characteristics, a so-
called method of characteristics may be developed [22]. Suppose that
the initial data are given at and we must calculate those at a
point C, at some The two characteristics through C, of slopes

respectively intersect the at A, respectively B. But
and or

Thus

If the distance between A and B is small, the characteristics can
be approximated by two straight lines of slopes respectively

and then, the values at C, which is the intersection of these
lines, are approximately given by the above formulas.

Therefore, having the grid in the xt plane, we will draw the (linearized)
characteristics through the new point C and the values at the previous
time level at A and B will be calculated by interpolation from the known
values on the grid at this time level, see Figure 5.11.

Figure 5.11. The characteristics method

Finally we have
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and then the new values respectively will be
calculated from (5.28). Here is the spatial step size and is the
time step size

The stability condition requires that the numerical domain of depen-
dence at any grid point is not less than the physical domain of depen-
dence determined by the characteristics, i.e., both

must be satisfied in the whole computational domain.
For example, let us consider, as in the previous example, a tube with

the left end closed and the right end open. Let be the
sound speed in the undisturbed state and at we will consider a
small perturbation of the shape described by a piecewise linear function
determined by (as in the program); the initial condition for is

where the sign is taken in correspondence with the sign of The bound-
ary conditions become

for the left end, open in the atmosphere and where only the characteristic
Q = const. is used while

for the closed right end where only the characteristic P = const. is used.
The program uses for the air at sea level, and the

starting time step size which can be modified by testing the
numerical stability. The MATLAB program is
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While running the program we remarked a distortion of the shape of
the wave in the compression region, i.e., a shock wave is developed, see
Figure 5.12 which represents as a function of at such a time instant.

Actually, the velocity gradient becomes so great that the viscosity of
the fluid and heat transfer can no longer be neglected. In such regions
the equations (5.27) break down and the computation should be stopped.
The structure of a shock wave for a real gas was numerically studied in
section 3.1, Chapter 4.

7. Elliptic Equations
Let us consider the Poisson equation

to be solved in the rectangle We know the values
of (for example on the boundary of the domain. In order to
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Figure 5.12. Shock waves

discretize the partial derivatives of we introduce a grid on D , given
by the lines respectively

If we denote by the approximations of at the
point and we use centered finite difference approximations for
the derivatives, we have for each interior point of D,

with a truncation error of order
In the simple case when we find a system of

simultaneous equations and the same number of unknowns

7.1 Iterative Methods
We will analyze first an iterative method to solve the above system

(which generally is a large system). We choose an initial approxima-
tion for the interior of the rectangle D.

Supposing known we will calculate the next approximation from
(5.30)

Let us prove that for (the solution of the finite
difference system).
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Indeed, by substraction of the equations (5.30) and (5.31) we find for
the errors at each point

and thus

Let us denote the greatest of these errors for the iteration.
Obviously, For the points having a neighbor on the
boundary, (boundary points of the first layer) where the error vanishes,
we have the estimation

For the points having as neighbor one of the above points (boundary
points of the second layer), we have the estimation

So,

where M is the total number of layers in the grid. Consequently,

and generally,

as Therefore, after sufficiently many iterations, the computed
values will approximate as well as we wish (of course, within the limit of
the computer’s errors) the solution of the finite difference system (5.30).

7.1.1 Liebmann and SOR Methods
A faster iterative method is the Liebmann formula
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where the new iteration is calculated from down to up and from left to
right, the new computed values being immediately used.

In the particular case of a rectangle, with a uniform grid, a faster
method is the successive overrelaxation method, shortly S.O.R.,

where the optimal value of is

and
Let us consider, as an example, the fluid flow through a channel de-

fined by [–3,3] × [–2,2] with an inside obstacle of boundary
see [22]. The fluid enters in the channel by a hole

and it freely exits through the outlet as we can see in
Figure 5.14.

The harmonic stream function will take the value 1 on the upper
left and upper walls, the value – 1 on the lower left and lower wall, it will
be on the hole and it will verify on the right wall (uniform
stream).

In this case the presence of the obstacle (on the boundary of it we
could take imposes a particular care for discretization.

Really, the (obstacle) boundary points do not usually coincide with
the grid points, thus the grid points in the immediate neighborhood of
the obstacle must be moved to its boundary, see Figure 5.13.

If are the distances from the new nodes
to the node and we denote by the

values of at these new nodes, we get the discretization formula of the
Laplacian around the node

Let us expand and the others in Taylor’s series and neglect the
higher-order terms, obtaining
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Figure 5.13. The grid near the boundary of the obstacle

and similar relations for the others. Substitution into the above relation
gives

and by equating corresponding coefficients and solving the obtained sys-
tem we get

Therefore, the iterative formula (Liebmann) (5.32) becomes
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for such a node.
For example, taking inside the channel an elliptical obstacle we obtain

the streamlines from Figure 5.14.

Figure 5.14. Channel flow past an elliptical obstacle

The MATLAB program is
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The program calculates the boundary of the obstacle from the equa-
tion and the new grid points on that boundary are cal-
culated by solving the equations respectively

An error (the difference between two successive
iterations) less than 0.01 is obtained after about 60 iterations.

which uses the function subprograms
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7.1.2 ADI Method

An interesting iterative algorithm, often used, could be obtained by
introducing a fictitious diffusion problem

with a suitable initial condition U. The solution of this unsteady problem
for large approximates the solution of the Poisson equation and thus,
the time marching for the above equation gives an iterative method to
solve the problem (5.29).

By discretizing the above equations with the finite differences method
on the grid respectively with
the step sizes and by denoting as usual the approximation
of the exact solution at the grid points and at the moment
(with the time step size the explicit Euler method with respect to
the time leads to

Unfortunately, the stability requirements

make the method useless. But Peaceman, Rachford and Douglas, in
1955, proposed the decomposition of each time step into two steps of
length and a semi-implicit treatment of the spatial derivatives,
obtaining the so-called ADI (alternating direction implicit) method, see,
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for instance, [125], [120]:

In fact, at the first half-step the direction is implicitly treated and
then, at the second half-step the direction is implicitly treated too.
In the sequel this order is reversed, to avoid the break of the solution
into independent components. At every half-step we have to solve a
tri-diagonal system of algebraic linear equations, which is no longer a
difficult problem. The scheme has a second order of accuracy in space
and in time and it is unconditionally stable, thus it is the usually used
algorithm for practical problems. Of course, a sufficiently large number
of time steps must be considered and the final accuracy depends on the
spatial step sizes.

A project of MATLAB program is
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for the problem

With this data for the program an accuracy of about is obtained.
The algorithm can be easily extended to the three-dimensional cases.

7.2 Direct Method
In the case of a rectangle, we may also use an exact method for solving

the system (5.30).
We remark that the computation of the second order derivative with

respect to is, in fact, the multiplication of the values of on the grid,
from left, with a differentiation matrix

where we have taken into account the null values of on the boundary
(else they pass to the right-hand side of the discretized system). The
second derivative with respect to is similarly calculated, by multiplica-
tion of the values of on the grid, from right, with the matrix (the
transposed differentiation matrix).

In the case of the problem

by discretization of the second derivatives at the points
and we obtain a system with the

unknowns of the form
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If we denote the right eigenvectors (columns) matrix of by we
have where is the diagonal matrix of eigenvalues.
The computation is similar for So that, multiplying the above system
by from the left and by  from the right, it becomes

from which,

and next, from we calculate
The computing effort is the diagonalization of and but this is

performed only once. We remark that for tridiagonal and constant coef-
ficients matrices, like ours, there are analytical formulas for eigenvalues
and eigenvectors. So, for the matrix

we have the eigenvalues [124]

and the right eigenvectors matrix is

no other calculations being required.
For we have, consequently,

and

or
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(and similarly for which next should be normed, P:=P/norm(P).
We have moreover

We will present an example of a fluid flow leading to such a problem,
i.e., a rectangular domain with vorticity.

Let us study the flow generated by a distribution of vorticity within a
rectangular domain following [22]. As we know, the vorticity
is a vector in the direction with the magnitude defined as the curl
of the velocity vector Using the relation between the velocity
components and the stream function the above relationship can be
written in the scalar form (passing to the magnitude

In a particular case of the domain D = [–3, 3] × [–2, 2], with the vor-
ticity generated by the point vortices of strengths 100, respectively –50,
located at the points (1,1) respectively (1,0), one obtains the streamlines
from Figure 5.15.

Figure 5.15. Streamlines generated by two line vortices

The MATLAB program is
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where the discrete system was exactly solved. The stream function
was chosen such that it takes the 0 value on the streamline which

represents the boundary of the domain.
For further details concerning the solvability of large systems of equa-

tions we recommend [128].

7.3 Transonic Flows
Let us consider now the important problem of the calculation of a

plane steady transonic flow. Precisely, we will present a computing pro-
cedure for a steady, inviscid, transonic fluid flow past an airfoil. In the
case of a velocity close to the sound velocity, a zone with supersonic
velocity appears near the airfoil, leading to the shock waves. Mathemat-
ically, the phenomenon is described by mixed partial differential equa-
tions: elliptic in the subsonic region and hyperbolic in the supersonic
zone. The discretization procedure will take into account this aspect.
Moreover, in the physical domain, the rapid changes of the flowfield
around the airfoil arise so there we must refine the computing grid.

After the basic paper of E. M Murman [92], the simplest mode (but
not the most accurate) to numerically calculate this flowfield is the use
of the transonic small disturbance theory. What we are calculating is
in fact the induced small disturbance on the uniform stream due to the
presence of the airfoil.

We scale the coordinate to where is the airfoil thickness
ratio and we consider the velocity potential for which the velocity
disturbances are

The flow is governed by the unique equation

where K is a similarity parameter (when the unperturbed
velocity increases to the sound speed, K decreases), is the free
stream Mach number and is the ratio of specific heats. For the concrete
calculations we take K = 1.3 and
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We can see that in the regions with higher velocity and the
equation is locally hyperbolic, while in the regions with smaller velocity

and the equation is elliptic.
As computational domain we choose a rectangle whose base rep-

resents the (upper) airfoil surface on the interval [–1, 1] . The boundary
conditions will be

where the airfoil equation is In the sequel, for sake of sim-
plicity, we will consider On the other sides of the compu-
tational rectangle we consider, as boundary conditions, the unperturbed
values of the usual doublet for a closed body

and we keep only the written term in the above series. Here is the
doublet strength,

which, during the calculations, will be approximated (after every step)
by reducing the double integral to an integral on the computational
domain.

So, let us consider a mesh with meshlines and, as initial
approximation, a uniform flow. We approximate at every node

and, depending on the result of the comparison with the equation
will be discretized as follows:

in the elliptic case,

in the hyperbolic case,
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In both cases,

excepting the first computational row where

Finally, we take at the horizontal axis

At every iteration we evaluate by

and thus we can modify the values on the boundary of the computational
domain. Finally, the values on the horizontal axis needed for the pressure
coefficient are approximated by extrapolation from the internal nodes

The different discretizations of the equation in the different zones are
imposed by the different dependence domains. In the elliptic case, this
is the whole computational domain and the node for the new computed
value is surrounded by the old ones. Conversely, in the hyperbolic case,
the dependence domain is only the angle between the two characteristics
through the node and the new value uses only those at the upwind nodes.

The discrete system is iteratively solved, considering the time evolu-
tion of the phenomenon. If we denote at each step the system to solve
by we attach to this problem the equation

which may be discretized in time by, for instance,

Choosing the time step size sufficiently small in order to ensure the
computational stability and performing a sufficiently large number of
steps in order to approximate well the steady solution, we obtain the
results from Figures 5.16, 5.17 and 5.18.
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Figure 5.16. The pressure coefficient

Figure 5.17. The sonic line

The first figure shows the pressure coefficient on the airfoil
surface (with changed sign). We can see the rapid change on the right,
due to the presence of the shock wave. The second figure shows the sonic
line shape which separates the subsonic zone (outside) and
the supersonic zone (inside). The last figure shows the velocity field near
the airfoil and the shock wave.

In order to increase the accuracy, we can use the transformed coordi-
nates

that refine the mesh near the airfoil. The computational domain is
using 111 nodes on direction and 62 on

direction. We have performed 2000 time iterations. We remark that
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Figure 5.18. The velocity field

this procedure is not the fastest (or the most accurate) but it is easy to
understand.

The MATLAB code is
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7.4 Stokes’ Problem
We will firstly consider the steady state case

where Let us present an example leading to such a problem.
In the case of a viscous incompressible flow, the Reynolds number

R measures the relative importance of the inertial forces vs. viscous
forces in the flow. If the Reynolds number R is large, the viscous force
terms in the Navier–Stokes equations become small in comparison with
the others. In this case the viscous forces are important only in a rela-
tively small region in the neighborhood of the surface of the fluid – the
boundary layer. If R is much smaller than unity, the viscous forces are
dominant on the fluid flow.

By eliminating the terms describing the inertial forces in the Navier–
Stokes equations we obtain for the steady state the equation

Such flows for which are called Stokes flows and the above equa-
tion is called the Stokes equation (see also sections 3.3 and 4.4.4). Taking
the curl of the above equation we are led to
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where is the vorticity. Similarly, divergence of the equation
yields, based on the incompressibility

In the particular case of a two-dimensional Stokes flow in the xy plane,
by introducing the stream function for which

we find that the only nonvanishing vorticity component is that in the
direction and

By using the (scalar) equation verified by the vorticity, we also get

where

is the biharmonic operator and the above equation is the biharmonic
equation for

Let us consider, for instance, following [22] a square cavity ABCD,
see Figure 5.19.

Figure 5.19. Driven cavity flow

Here the steady fluid flow is generated by sliding the lid (an infinitely
long plate on the top of the cavity). We assume that the dimensions are
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normalized, i.e., the cavity is the square [0,1] × [0,1], the horizontal lid
velocity is 1m/s and the Reynolds number is so small that we deal with
a Stokes flow.

As there are no fluid changes between the cavity inside and outside,
the fluid flow forms a closed path within the cavity. The surfaces DA,
AB, BC, CD will determine the streamline and so, the nor-
mal velocities to these surfaces are all zero. We will require that the
tangential velocity to these surfaces vanishes too, excepting on the lid
CD, where it is equal to 1. So, the biharmonic equation for the stream
function is joined with eight boundary conditions, precisely

We would solve this problem by the finite differences method. Let us
cover the cavity with a square mesh of step size The discretization of
the biharmonic equation is [124]

At the boundary nodes we assume For the boundary condi-
tions containing derivatives, we will use, for discretization, centered first
order finite differences. So, we will consider a layer of fictitious nodes of
step size outside the domain. The nodes numbering will be:

fictitious node at the left side (outside) of AD.
boundary node at AD. Here
inside (computational) node in the direction. Here will be

calculated.

inside (computational) node at the direction. Here will
be calculated.

boundary node. Here
fictitious node at the right (outside) of BC.

Analogously we make the numbering in the direction :
Thus, at AD we will have
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and similarly at the sides AB and BC. At the side CD where
the conditions will be

While we discretize the biharmonic equation at the inside boundary
neighboring nodes, the values of at the fictitious nodes appear. Here
we will use the above equations.

So, the biharmonic equation will be discretized at the inside nodes
where and obtaining

linear equations with the same number of unknowns and a linear
algebraic system of the form is obtained. The matrix A
of this system and the right-hand side terms are difficult to be manually
written, but A is a sparse matrix and in our case, for we are
able to calculate the exact solution of the system.

The first part of the code, cf. [124], automatically determines the
right-hand side b and then the matrix A. By systematically numbering
the mesh nodes and arranging the unknowns into a column vector S
of size we observe that

and hence

for What we need is such a subprogram which calcu-
lates R from a given S, i.e., the subprogram rez.m

The main program must complete the boundary and fictitious layers
of S (which is of size with the above mentioned
values and next it must compute b and A. Finally, it should solve the
algebraic linear system and plot the solutions representing the stream
function values on the mesh nodes. The MATLAB code is
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The result, the streamlines, can be seen in Figure 5.19.
We will present other methods to bypass the difficulties generated by

the presence of the equation Let us consider the evolution
problem

associated with the boundary conditions for V and some suitable initial
conditions for V and at Here should be chosen so
that the convergence of the solutions of the problem (5.34) toward the
steady solution of the Stokes problem (5.33) when is assured.
Obviously, the second equation from (5.34) has no physical meaning
before the steady state is reached. Consequently, the above method is
only a tool to generate an iterative algorithm to approximate the steady
solution of the Stokes problem.

The numerical solving of the problem (5.34) will be performed by the
spatial discretization with finite differences on a mesh MAC (marker
and cell), introduced by Harlow and Welsh, and with the simple forward
Euler time discretization. We follow Peyret and Taylor [120], where the
convergence and the stability of this scheme is analyzed.

The key element is the choice of the staggered mesh for the discretiza-
tion of respectively (see Figure 5.20).
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Figure 5.20. The MAC mesh

The discretized equations are:

where (and similarly for means the approximate value of

at the spatial node and at the time instant The
above approximations are of second order accuracy.

The necessary stability conditions of the above scheme are (Peyret,
Taylor)
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As regards the behaviour of the discretization in the neighborhood of
the boundary, we remark (Figure 5.21) that the pressure appears only at
the inside nodes of the domain so we do not use pressure values on the
boundary. We also remark that the above formulas involve the values
of only at vertical boundaries, respectively the values of only at the
horizontal boundaries. But we have values of (in the discretization of

near the boundary) and of (in the discretization of near the
boundary) at nodes outside the computing domain, values which should
be calculated by extrapolation of the inside and boundary values.

Figure 5.21. Boundary nodes

So, in order to calculate by left extrapolation of the inside values
and of the boundary value with a quadratic polynomial, we

find

and, symmetrically, by right extrapolation,

Similar formulas may be also written for
Consequently, the algorithm consists in the following :

step 1: from initial conditions we have at the inside nodes
step 2: from boundary conditions we have at the boundary

nodes
step 3: we calculate at the outside nodes (in the neighborhood of

the horizontal boundaries)
step 4: we calculate at the outside nodes (in the neighborhood of

the vertical boundaries), using (5.36)
step 5: we calculate at the inside nodes, using (5.35)
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step 6: we evaluate the differences between the old and the new val-
ues of If these differences are not sufficiently small, we will resume
the algorithm from step 3; if the differences are sufficiently small, we ex-
tract the results, which represent the approximations of the solution of
the steady Stokes problem.

As an example, let us solve the Stokes problem for the domain
[0,1] × [0,1], with boundary conditions excepting

The MATLAB code is
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As result we obtain the velocities field (Figure 5.22) and the evolution
of the errors of for (Figure 5.23).

Figure 5.22. The steady solution of the Stokes problem

Figure 5.23. The time evolution of the errors of

8. Compact Finite Differences
8.1 The Compact Finite Differences Method

(CFDM)
For the usual finite differences methods, the accuracy could be in-

creased by increasing the number of grid points, which complicates
the obtained system and induces difficulties at the neighborhood of the
boundary of the computational domain.

We could bypass these difficulties with the formulas using also the
values of the derivatives at the nodes, together with formulas which link
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these values, for instance,

for the first derivative and

for the second one. Both formulas have an accuracy of order and
associated to the equation and to the boundary conditions,
lead to block tridiagonal systems with the unknowns This
represents the exact solution with a higher accuracy using a smaller
number of nodes.

If we know the values of a single-variable function on a grid with
the step size the values of the derivative on the grid may be ap-
proximated by combinations of the values on the neighboring points.
Our purpose is to obtain formulas of highest order of approximation and
of the best spectral resolving power.

The above centered finite difference schemes of second order use the
values and in order to approximate the derivative at the
point High order schemes use more such values . In the spectral
methods, the approximation of the first derivative is made using the val-
ues on all points of the grid. The compact finite difference schemes
simulate this behavior. We will present briefly the methods with com-
pact finite differences, using the works of [81], [23], [29].

8.2 Approximation of the Derivatives
8.2.1 Approximation of the First Derivative

Let us seek an approximating formula of the form
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The relationships between the coefficients are obtained by
matching the Taylor’s series coefficients of different orders. So we have

Analogously, we have

Replacing into the above formulas we have

By identification of the coefficients of we find

The scheme (5.37) with the constraint (5.38) represents an approximat-
ing formula with four parameters of second order of accuracy.
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By identification of the coefficients of we obtain, in addition,

Equation (5.37) with the constraints (5.38) and (5.39) represents an ap-
proximating formula with three parameters of fourth order of accuracy.

Analogously, if we add the relationship

we obtain a sixth order scheme with two parameters. Adding

we get an eighth order scheme with one parameter and, finally, by in-
troducing

we are lead to a scheme of tenth order of accuracy.
If we write these formulas at all the points of the grid and if we

add the special formulas for the boundary, we obtain a tri- or penta-
diagonal system from which we can calculate the first order derivatives

simultaneously on the whole grid.
Let us analyze in detail some particular compact schemes. From the

approximating formula (5.37) with the relationships (5.38) and (5.39) we
obtain a fourth order scheme, with three parameters. Choosing we
obtain tridiagonal systems to calculate the derivatives. Choosing
too, we get tridiagonal schemes with one parameter, of fourth order of
accuracy.

From (5.38) and (5.39) we find

so the approximating formula is

with an error of the order

If we obtain the well-known approximating formula of fourth
order with centered differences. For we obtain the classical scheme
of Padé (which uses the values of only at the neighboring points
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If the dominant term of the error vanishes and we obtain a sixth
order scheme.

The formula (5.37) can be applied at the interior points in the case
of bounded domains and of the boundary value problems. In order to
calculate the derivatives at the boundary points and at their neighboring
points we need special asymmetric formulas, which do not use values of

outside of the domain.
For the boundary point we use a formula of the type

As above, by matching the Taylor’s series terms, we find the fourth order
of accuracy for

Analogously, at the right end we get the approximation

So, in the case of bounded domains with boundary conditions, the
system used for the computation of first order derivatives is formed by
the relationships (5.42), (5.40) for each interior point and by (5.43). For

this system is
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8.2.2 Approximation of the Second Order Derivative

As in the above section, we start from the approximating relationship

Next, based on the development in Taylor’s series, we identify the co-
efficients and we obtain the relationships between So, for
example, if

and

we get a scheme with three parameters, of fourth order.
Choosing we obtain a tridiagonal scheme, while choosing

we get a five points scheme with one parameter,

The truncation error is of the order

For we have the classical forth order centered differences
scheme. For we obtain a three-points and fourth order scheme
and for the dominant term of the error vanishes and we get a
sixth order scheme.

Obviously, in order to increase the order of the scheme to ten we may
impose other conditions.

Similar relationships may be used for the high order approximation
of the high derivatives.

In this case too, we need special formulas for computing the derivatives
at the boundary points and their neighbors, in the cases of bounded
domains. For example, at the left boundary point we impose an
approximation formula

In order to obtain a third order of accuracy, the coefficients become
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with an error of the order

Choosing we obtain a fourth order scheme.

8.3 Fourier Analysis of the Errors
Let us now consider a periodic function on the interval [0, L], that

is and Therefore

where are complex conjugated and is real. For facility, we intro-
duce the scaled wave number and the scaled coordinate

So, the Fourier modes become and the scaled wave numbers

The first derivative of with respect to generates a function with
Fourier coefficients

The differentiation error for the formulas in the above section may be
evaluated by comparison between the derivative coefficients, from those
formulas, and the exact coefficients.

For example, for the second order centered finite difference,

so the calculated Fourier coefficients are

where are the modified scaled wave numbers (by the
numerical scheme).

To every numerical scheme one assigns a particular function The
exact derivative corresponds to The interval
on which corresponding to the numerical scheme, approximates
well (within the limit of a given tolerance), the exact derivative

defines the set of well solved waves. The shortest wave well solved
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(corresponding to the largest wave number W ) depends only on the
numerical scheme and not on the number N of points of the grid.

A similar calculation as above, applied to the scheme (5.37) gives a
modified wave number

Indeed, considering the particular Fourier mode it is modified
by (5.37) as follows:

or

from which we obtain
For example, for the centered fourth order scheme we have

and for the compact fourth order scheme we have

The graphs of the functions for each case are given in Figure 5.24.
It is obvious that the compact schemes have better spectral solving

qualities than classical finite difference schemes. These qualities may
be improved. For example, if we impose on the relationships (5.37) the
conditions (5.38) and (5.39) which ensure the fourth order of accuracy,
we still dispose of three parameters. They may be calculated from the
conditions

where This method yields a better
pentadiagonal scheme with seven points, with a higher spectral resolving
power, as it can be seen in Figure 5.24. In this case the parameters are
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Figure 5.24. The modified wavenumbers

We remark that the spectral methods, which will be studied in a sub-
sequent chapter, yield for all We have performed
calculations and got similar results for higher order derivatives, too.

There is another manner to characterize the errors. Let us consider
the linear advection equation

where every wave (with whatever wave number) propagates with the
phasic velocity 1. By discretizing the spatial derivative we may prove
that the phasic velocity for a wave with the wave number is given by

and the more different this is from 1, the more inappropriate the numer-
ical scheme represents that wave.

In multidimensional problems these phase errors also appear in an
anisotropic form. Considering the equation

where is a direction in the plane, while every wave has the phasic ve-
locities 1 in each direction, the discretization schemes generate different
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velocities depending on the wave numbers and on the direction. These
velocities are given by

where is the angle between the propagation direction and the axis.
Figure 5.25 represents these velocities for classical centered-differen-

Figure 5.25. The anisotropy of the phase velocities

ces schemes of orders II and IV, for compact scheme of order IV and
for compact spectrally improved scheme. Each curve corresponds to a
wave number the radius distance to the angle
representing their phase velocity.

The outward curves correspond to small wave numbers and represent
better solved waves (with phasic velocities closer to 1). The shorter
waves, with larger wave numbers, have smaller phasic velocities, with
anisotropic propagation. We remark the qualities of compact schemes
over classical schemes.

8.4 Combined Compact Differences Schemes
The compact schemes were developed in many directions, in order

to increase the accuracy, the resolving power and to make them easily
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handled, especially in the treatment of boundary conditions. We will
present such schemes, with three points, of order 6 of accuracy, with a
similar accuracy (5) at the boundary points and their neighbor. Specific
is the combination in the same relationship of the first and second or-
der derivatives, which yields in applications twice- and triple-tridiagonal
systems.

If the function to be approximated is defined on [0, L], we will
use a uniform grid with the step
size If we denote the exact values of the function and
of the first and second order derivatives at the points
we seek formulas of the type

and so on. Here represent the approximations of the corre-
sponding derivatives and they will be calculated from the established
formulas for by some systems of simultaneous equations.

In order to obtain a sixth order formula (as an example), we will build
the Hermite polynomial defined on and satisfying

But

The seven coefficients from the above relationship may be calculated
from the conditions (5.45)
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and so on. Approximating the derivatives of by the derivatives of
locally, in the neighborhood of

and substituting it into the relationships (5.47) we find

and

If we neglect now the rests and (the truncation errors) we
obtain the approximating formulas. Therefore

We remark that the rests are

The Fourier analysis of the errors gives for the modified wave number

which indicates a much increased resolving power vs. the non-combined
schemes. Also, in the multidimensional case

indicates a much decreased anisotropy over the non-combined schemes.
Let us take an example of this type of discretization. We consider the

problem
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Using the above discretization we have

where, as above, the index means the value of that function at
We remark that at every interior point from [0, L] we have

three relationships: one of (5.50) and two of (5.49), relating the three

unknowns for that point: and

But, at each boundary point respectively we have
only two relationships coming from (5.50). In order to solve the above
system, we need one more relationship for each boundary point.

Let’s now consider a fifth degree polynomial,

At the boundary point we impose that

If we now calculate the coefficients of and we use the series develop-
ments of in the neighborhood of we find

Neglecting the rest of the right-hand side, we obtain the needed formula.
Similarly, for the boundary point we find

If we add the equations (5.51) and (5.52) to the above system, we
finally obtain a system of 3(N + 1) equations with 3(N + 1) unknowns:
the values of and of its derivatives of first and second order at all
(interior and boundary) points. This system has a triple tridiagonal
matrix and could be solved by special techniques for sparse systems.

The sixth-order accuracy in the interior and the fifth-order near the
boundary make this method very efficient. For a similar error, the needed
number of grid points over the centered second order finite difference
method is much smaller: 18 nodes vs. 9400 in the case of an effective
example (see [23]).
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8.5 Supercompact Difference Schemes
For the classical finite difference schemes it is difficult to increase the

order of accuracy; this can be performed only by increasing the number
of nodes.

The compact schemes behave well, i.e., we may obtain a better ac-
curacy with a small number of nodes. However, formulas with an “a
priori” degree of accuracy are difficult to obtain.

The combined compact schemes give us a solution to this problem. By
coupling the first and second derivatives we can increase the accuracy
while maintaining the small number of grid points.

We can extend this idea and so the supercompact schemes are set up.
With these schemes a needed accuracy (as high as we need) using only
three points in the pattern may be obtained.

We will present (without calculations), after [29], this type of schemes.
Let there be N-dimensional vectors

and the N × N matrices

where The simplest supercompact scheme to approximate
the odd derivatives is

where
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If we have we may calculate all for and next,

approximate the corresponding derivatives by an
accuracy of order

Similarly, for even derivatives, we define the vector

and the matrix

The relationship to approximate the even derivatives is

where Next approximates by an accuracy of
order

Here we can choose N as high as we need but, moreover, for the
same order of accuracy, the supercompact schemes behave better. For
example, for N = 3 which yields an approximation of the first derivative
of sixth order, the classical centered difference scheme of the same order

where has a truncation error

The sixth order compact difference scheme

has the truncation error

and the sixth order supercompact scheme has the truncation error

Also, the resolving power and the anisotropy are better than those of
the same order compact schemes.



Finite-Difference Methods 335

9. Coordinate Transformation
In some particular cases, the physical domain of the fluid may be

covered by a rectangular grid. Such a case is, as an example, the driven
rectangular cavity, where the boundary may be depicted by some grid
points lying exactly on it.

In other cases, as of the fluid flow past a cylinder, rectangular grids
yield difficulties in the treatment of the boundary. The grid points are
inside or outside the cylinder and only by exception do they lie on the
boundary. Consequently, we must modify the grid points in the neigh-
borhood of the boundary and this yields computing difficulties. In the
case of the cylinder or other such bodies the problem may be solved
using polar (or other kinds of) coordinates, in order to transform the
computing domain also into a rectangle. Of course, the price is a change
of the equation envisaged to be numerically solved. For example, the
Laplace equation

becomes, in polar coordinates

In many cases, the advantage of working on a rectangular computa-
tional domain, with a uniform rectangular grid, is compensatory to the
more complicated form of the equation. The problem is to find the coor-
dinate transformation which maps the physical domain into the needed
computational domain such that the uniform rectangular grid in the
computational domain corresponds to a non-uniform curvilinear grid in
the physical domain. The advantage is not only the discretization of the
boundary of the physical domain. Due to specific conditions, the char-
acteristics of the fluid flow may have large variations in some regions in
the physical space. In these regions a refinement of the grid should be
very useful, as it yields an increased accuracy, without a supplementary
computing effort; see Figure 5.26 which presents the grid transformation
in a neighborhood of a body in the boundary layer problem, for example.

Let us see now how we can transform the grids of the physical domain
into some rectangular grids in the computational domain, after [4] and
[155]. We will consider only the case of two-dimensional domains, but
such formulas (more complex) exist also for the tridimensional cases.

Let us transform the variables from the physical space into
in the computational domain, by the relationships
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Figure 5.26. Curvilinear non-uniform grid

where often The derivatives in the partial differential equation
are transformed by the formulas

and for the second order derivatives we have
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For example, in the case of the Laplace equation, verified by the ve-
locities potential of an inviscid, steady, irrotational, incompressible fluid
flow, i.e.,

we obtain, through the new coordinates (in the computational domain)
the equation

This equation will be discretized by a uniform grid in the computa-
tional domain. The corresponding algebraic system will be solved and
next, using the inverse transformation, we will obtain the values of the
potential (and of the velocities too) in the physical domain. For this
purpose, the coordinate transformation must be precisely given.

In the coordinate transformation formulas, the terms describing the
geometry of the grid, like and others, are called metrics. If the co-
ordinates transformation is given analytically, we may obtain formulas
for these metrics. But in many applications, the coordinate transforma-
tions are given numerically and then the metrics are computed by finite
differences.

We remark that it is more convenient to work with the inverse trans-
formations

because all computations are made in the computational domain, on
uniform rectangular grids. For this, starting with a dependent variable,
like the horizontal component of the velocity in the steady
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case, from the system

we obtain by direct solution,

where

Similar formulas may be also obtained for the second order derivatives.
In the following sections we will study three types of grid transforma-

tions.

9.1 Coordinate Stretching
In some cases, in the study of the boundary layer for example, the

essential phenomenon happens in a little region, near the surface of the
body. It is a good idea to refine the coordinate lines in this region, while
maintaining a uniform rectangular grid in the computational domain.

For example, let us consider the viscous fluid flow over a flat surface
and we wish to refine the coordinate lines in a neighborhood of

this surface. The simplest coordinate transformation for this is

whose inverse transformation is

So we obtain the inverse metrics
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For example, the continuity equation for the stationary bidimensional
flow,

and using the above coordinates transformation formulas this equation
becomes

or, by replacing the corresponding metrics,

where

Here is the point of the computational domain where the maximum
clustering is to occur and controls the degree of clustering (larger
values of provide a finer grid around By a similar formula, we
may obtain simultaneous refinements in both directions and

9.2 Boundary-Fitted Coordinate Systems
One of the great advantages of the coordinate transformations is the

possibility to identify some coordinate lines with the boundaries of the
physical domain. For example, if the physical domain is a rectangle,
bounded (as an upper wall) by a curvilinear boundary of equation

then the transformation

will lead to a rectangular grid in the computational domain. The curvi-
linear boundary now coincides with the coordinate line

Such transformations may be performed even in more complex cases.
The domain around an airfoil, for example, may be transformed in a

which represents the continuity equation in the computational domain.
A more complex formula is
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rectangle in which the surface of the airfoil is one of the sides. It is nec-
essary to find functions defined on a rectangle,
in the computational domain, if we know those values on the rectan-
gle’s boundary. The transformation may be defined inside the rectangle
by solving a Dirichlet problem for the Laplace equation (the simplest
equation for which we have a maximum principle).

We must remark that this problem is not close to the physics of the
fluid flow. It is used only to choose a suitable grid for our physical domain
and, next, by the computed metrics, the equations of the physical model
may be transformed and then discretized.

Let us present here an example of the automatic generation of the
grid suitable for a given domain, using the work [143].

As above, the Laplace equation for and is transformed into

where

The functions are effectively given on the boundary of the
computational domain, corresponding to the boundary of the physical
domain (or to some cuts in this domain). So, by discretization and
solving these Dirichlet problems we find the discrete forms of the metrics,
used next to transform the physical equations.

Therefore, we choose the grid points on the physical boundary, maybe
closer in “difficult” regions, corresponding to uniformly spaced grid points
on the boundary of the computational domain. By finite difference dis-
cretization of the derivatives , we have

The equation will be discretized and then it will be solved by itera-
tions. Starting from an initial approximation of the solutions
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the new approximation will be calculated from

The boundary values for are
introduced at the beginning and they do not change while iterate

After the new iteration was calculated we recompute at
the grid points and then we pass to the next
iteration. Finally, we obtain

and the corresponding coordinate lines.
If we wish to study, for example, the inviscid, incompressible fluid

flow, through a channel of variable section (see Figure 5.27), we choose
the grid points on the boundary of the channel and we will transform
this channel into the computing domain which may
be covered by a uniform grid with step size The boundary values on
the sides               are obtained from the grid points’ coordinates
chosen on the boundary of the channel and the boundary conditions on
the sides corresponding to the inlet or outlet, are obtained
from the grid points chosen on these regions. So, we may control, to a
certain extent, the density of the coordinate lines in different regions.

The above computation was not close to the physics of the phe-
nomenon. In order to study the flow, we start from the streamlines
equation

which will be transformed into

where are still calculated as above. The boundary conditions for
in the computational domain, will be on the lower horizontal

wall, on the upper horizontal wall and on the vertical
walls.
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In our simple case these conditions are verified for the function
So that, the coordinate lines will be, in fact,

streamlines. These results can be seen in Figures 5.27 and 5.28.

Figure 5.27. Curvilinear coordinates adapted to the physical domain

Figure 5.28. Velocity field through the channel

The MATLAB code is
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9.3 Adaptive Grids
In many problems, either of evolution or steady state, solved by it-

erations, it is useful to dynamically adapt the grid according to the
gradients of the calculated values. So, in the physical domain, the grid
points evolve in conjunction with the solution. But in the computing
domain they are fixed. In this case, the grid generation is linked to
the computed solution, in contrast with what happened in the previous
sections.

For example, the step sizes of the grid may be chosen by the formulas

where is one of the primitive variables of the fluid, like or T.
These formulas cluster the grid points in the regions with high gradients
of that variable.

Now, in the transformation formulas, we should also take into account
the time. In these cases, although the grid points in the computational
domain are fixed, the coefficients of the form do not vanish, producing
the movement of the grid points in the physical space. So, the changes
of respectively for a fixed point from the physical domain,
are described.

If we exploit the formulas of the type

where and similarly for those coefficients are obtained
by solving the system

In these formulas, at the points we approximate
and are obtained from the formulas that govern the grid

adaptation. We remark that by clustering the grid points in the regions
of high gradients, such type of transformations are also flow visualization
methods.



Chapter 6

FINITE ELEMENT AND BOUNDARY
ELEMENT METHODS

1. Finite Element Method (FEM)

This is another method to transform a partial differential equation
into a finite number of simple equations. Basically, the computational
domain is divided into a finite number of subdomains — the elements.
On each element we envisage a simple variation of the unknown functions
and then the results are assembled to describe the numerical solution on
the entire domain.

Let us suppose, in the one-dimensional case, that on the respective
element the unknown function U has a linear variation. Then, the func-
tion could be expressed on the respective element using only its values at
the ends of the elements (called nodes) and the distance from the com-
putational point to one end. For a quadratic variation we should use,
in addition, the value of U at another point belonging to the element,
for instance at its midpoint.

Using this representation, the derivative of U on that element is a
constant while the second derivative is zero and carries no information
about U. To eliminate this situation, the equations containing the sec-
ond derivative are transformed into equations with the first derivatives
only. The technique is called the variational formulation and consists
of multiplication of the equation by a known function (the test func-
tion), followed by integration of the obtained equation on the respective
domain and then the use of an integration by parts formula for terms
containing higher order derivatives, in order to reduce the derivative
order.
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For example, consider the Laplace bidimensional equation

where the unknown function U depends on the spatial coordinates and
By multiplication with the known function followed by integration

on the domain we get

In order to reduce the derivative order, we integrate both terms by parts
and so we obtain

where is the boundary of and is the unit outward normal
vector drawn to the boundary of    Therefore the derivative order of
the unknown function is reduced but the values of its derivative on the
boundary interfere.

Analogously, for a differential equation

we obtain

and next

From the variational form we can deduce the discrete form of the
given equation. For example, in the one-dimensional case, on each el-
ement with the nodes respectively we have the linear
representation

or

Here the functions
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are the shape functions (they are linear, taking the value 0 at a node and
the value 1 at the other one), generally chosen from a class of functions

and are the nodal values (the values of U at the nodes).
Consequently, for each element we can write

where is the number of nodes belonging to that element. Then the
derivatives are calculated through

By replacing into the variational form, decomposed now into a sum
of integrals on each element, where

and choosing a number of known test functions from a test functions
space a number equal to the number of nodes, we obtain a system
which represents the discretized form of the given equation. For example,
if we choose as for each node the shape function corresponding to that
node, we obtain the Galerkin method, but other choices are also possible.
By solving this system we obtain the approximations of the values of the
unknown solution at the nodes, which generate next the approximation
of that solution on each element.

The finite element method is one of the most used methods for numer-
ical solving of differential problems. It does not act directly on the dif-
ferential equations; these are, firstly, set in a variational (integral) form.
Next, the integrals are decomposed as sums of integrals on subdomains
and the unknown functions are locally approximated by polynomials on
those subdomains. This scheme leads to important advantages such as:

a) the possibility to solve problems on domains with an arbitrary
geometry and different type of boundary conditions,

b) the possibility to use unstructured grids, the introduction or the
elimination of some elements does not change the global structure of the
data,

c) the structural and flexible programming of the algorithms,
d) a rigorous mathematical foundation.
Depending on the used variational principle, the finite element meth-

ods could be classified as the Rayleigh–Ritz method, the Galerkin method
and the least-squares method.
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The Rayleigh–Ritz method minimizes the “total potential energy”,
that is the difference between the numerical and the exact solution of
the problem is minimized in a certain energy norm. The algorithm leads
to linear algebraic positively defined systems and it is practical especially
for problems governed by self-adjoint elliptic operators.

The Galerkin method is based on the weighted residual form. If

is the problem to solve, where A is a differential linear operator and
B is a boundary operator, the unknown is approximated by a linear
combination of trial (basis) functions namely

whose coefficients can be calculated from the system

Here and are suitable test functions (for instance,
The method is applicable also for non-self-adjoint equations, in fluid

dynamics for example. However, in many cases, especially for problems
governed by first order equations, the method does not give the best
approximation results.

The least-squares method is based on the minimization of the resid-
uals in a least-squares sense, more precisely the method minimizes the
functional

within the constraint of the boundary conditions. The approximate
solution is calculated from the system

The most important advantages of this method are:
a) universality, i.e., in contrast with the classical methods where for

every type of problem we should use a different type of schemes, the
least-squares finite element method (LSFEM) has a unified formulation
for all types of problems. For example, in the same mathematical and
numerical frame, the method is able to simulate fluid dynamics problems
for subsonic, transonic, supersonic or hypersonic flows.
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b) efficiency, i.e., the method is suited for differential operators of
the first order and leads to algebraic systems with symmetric positively
defined matrices.

c) robustness, i.e., no special treatments such as artificial dissipation,
staggered grids, operator-splitting, etc are necessary. The method con-
tains the mechanism to automatically capture discontinuities or shocks.

d) optimality, i.e., the method leads to a solution with the best ap-
proximation (with an error of the same order as the interpolation error)
and this error can be evaluated by an error indicator included in the
form of residuals.

1.1 Flow in the Presence of a Permeable Wall
In the sequel we will consider a plane, potential, without circulation

flow of an inviscid, incompressible fluid, generated by a general displace-
ment of a profile, in the presence of an unlimited permeable wall. The
fluid is assumed to be at rest at far distances [111]. The solution will be
approximated by a finite element method, together with an analysis of
the convergence and of the errors.

1.1.1 Variational Model Joined to the Mechanical Problem
We will suppose that the plane, unlimited, permeable wall is located

at a sufficiently large distance from the mobile profile C such that their
working condition could be linearized. The determination of the complex
potential of the considered fluid flow becomes a solution of the following
boundary value problem for the uniform stream function

where is the flow domain in the physical plane, the outside of the
profile C bounded by the wall are the components
as functions of time in of the rototranslation of the profile C
in the inviscid fluid mass, at rest at infinity (with respect to the fixed
frame Oxyz whose Ox axis coincides with the wall and is an
arbitrary function of time. The function and the real constants



350 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

and are related with the permeability P and the pressure outside
of by moreover, we as-
sume this equality being in agreement with the

condition on the wall where
But the rest condition at infinity under the acceptable hypothesis of

the uniform convergence for leads also to

the constancy of the limits and so that we

have (the constant being fixed to zero

by a translation Therefore, the above problem becomes

where while

at the upperside of the profile C and at the
lowerside of the same profile C; and the
equations of the upperside and lowerside belong to and, more,

But the Dirichlet condition on C could be homogenized by “eleva-
tion” , which means: being given an however small, and an A > 0,
however large, one could introduce a function with the
support in the “half”-disk and which ver-
ifies on the profile C the condition denoting then

the function satisfies the problem



Finite Element and Boundary Element Methods 351

In order to put the problem (6.2) into a suitable variational frame, we
will introduce the space and we will define
the following bilinear, skew-symmetric and continuous form on V × V,

If the functions and are regular, being zero on C, then

where denotes the tangential derivative on while is the

unit outward normal at the contour C. The application

is extended by density into the space
Let us set now

and suppose The problem (6.2) becomes:
Find a function such that

where (.,.) denotes the inner product from while is the above
considered linear and continuous functional on V which coincides with

If we remark that

ifan inner product on

we also have
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and one proves
THEOREM 6.1. If is given, there exists a unique function
solution of the problem (6.3). The function satisfies (6.4),

it is unique and independent of the “elevation”

1.1.2 Numerical Approximation of the Solution
In order to construct a numerical approximation of the unique solu-

tion of the problem (6.3) or (6.4) we must, first, replace the unbounded
domain by a bounded working domain. Therefore, let be the
bounded domain joined to the original domain and defined by

where the parameter A > 0 (which will tend to should be chosen
such that the contour C with its inside belongs to

Then we will have the approximated problem

where is the restriction of onto the interval (–A, A) and is the
circumference from the positive half-plane defined by

We will show the existence and the uniqueness of the solution
of the above problem (6.5) together with the fact that, under some
hypotheses, the function converges (in a sense that will be made
precise) towards the exact solution of the problem (6.1).

Following the same way as in the previous sub-section, we will intro-
duce an “elevation” with the support belonging to
the half-disk

and verifying on the contour C the condition
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Since and if we set we will be led
to the problem

Introducing now the space

we obtain, for the problem (6.6), a variational formulation similar to
that from the previous sub-section and we could state

THEOREM 6.2. Under the hypotheses from the previous theorem, the
problem (6.6) has a unique solution The function
is unique, independent of the “elevation” and it verifies the problem
(6.5). Moreover, if is the extension of by zero onto the
function converges strongly towards the function in

We will use now a finite element method for the effective approxima-
tion of the solution Let be a regular sequence of trian-
gulations of i.e., for which there exists such that, being the
smallest angle of all these triangles, we have the relation

Let us set the largest side of all the triangles being

less than a k. Consider now the finite dimensional space

and, correspondingly,

where i.e., the union of all polygonal contours corre-
sponding to and C , within the respective triangulation.
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By denoting the linear interpolation of
on the nodes of  and by putting

for all the approximate problem comes to:
Find a function such that to be a solution

of for all
The solving of this problem is given by
THEOREM 6.3. (1) The above approximate problem has a unique

solution which converges towards when
(2) If we have also the error estimation

where the constant is independent of the parameter k.

1.2 PDE-Toolbox of MATLAB
For the complicated shape domains and for more complicated equa-

tions one can call the Partial Differential Equations (PDE) tool-
box from MATLAB. Shortly, it could be used in the following way:

by the command pdetool from the MATLAB work sheet the PDE
Toolbox work sheet is open;

from the menu Options activate grid and then, from the sub-menu
application select generic scalar as equation type;

from the menu Draw activate draw mode and then polygon;
on the PDE Toolbox work sheet draw, with the mouse, the boundary

of the considered (plane) computational domain (in our example a star-
like domain);

from the menu Boundary activate boundary mode and then specify
boundary conditions; in the dialog window select the boundary condi-
tion type Dirichlet or Neumann and the corresponding parameters. The
boundary conditions could be given separately on each boundary seg-
ment by a mouse click on that segment.

from the menu PDE activate PDE mode and then PDE specifica-
tion; in the dialog window choose the equation type - elliptic, which
corresponds to the equation
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and the coefficients: for instance;

from the menu Mesh activate mesh mode and then initialize mesh,
which generates a starting triangular mesh that can be seen on the
screen;

from the menu Solve activate Parameters and in the dialog window
activate Adaptive mode; This option allows the successive refinement
of the mesh depending on the approximated solution. From the Solve
menu too, activate Solve PDE and so the toolbox numerically solves the
defined problem by the finite element method, performing also successive
refinements of the mesh until a stopping criterion is verified;

from the menu Plot activate Parameters and then, in the dialog
window select color and contour, which determines the graphical visu-
alization mode of the solution.

For any of the above actions there exist buttons, in the corresponding
order, which facilitate the use of the toolbox. All the results on the PDE
Toolbox work sheet may be exported on the MATLAB work sheet and
used in complex programs.

For example, from the menu Mesh, activating Export Mesh, OK one
could bring on the MATLAB work sheet the lists of the points, sides
and triangles of the mesh, in the proposed variables Similarly,
from the menu Solve, activating Export Solution, OK one could export
on the MATLAB sheet the values of the numerical solution at the mesh
points, in the proposed variable

Now, by the commandpdemesh(p,e,t) on the MATLAB work sheet,
the final computational triangular mesh could be graphically represented
(see Figure 6.1). By the command pdesurf (p,t,u) the solution could
be graphically represented (see Figure 6.2). By choosing a rectangular
mesh, the calculated solution could be interpolated on that mesh using
the  commands x=-1:0.01:1; y=x; uxy=tri2grid(p,t,u,x,y); The
uxy variable will contain the numerical values of the solution at the grid
points (x-y) inside the computational domain and NaN at the other. The
graphical representation can be performed now by surf(x,y,uxy).

There are many other options, very well described in the Help pages
of the toolbox and also in the demo examples.

For modeling and simulating many scientific and engineering prob-
lems based on partial differential equations, including 1D, 2D and 3D
geometry, we recommend also the use of FEMLAB (www.femlab.com).
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Figure 6.1. The triangular mesh on a star-like domain

Figure 6.2. The numerical solution of the Dirichlet problem on the star-like domain

2. Least-Squares Finite Element Method
(LSFEM)

We will briefly present, following [72], the least-squares finite element
method (LSFEM).

2.1 First Order Model Problem
Let us consider the simplest first order differential problem

The classical solution is a function which satisfies the
above relations; it exists and it is unique for every Moreover,
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if then (we recall that means that
all are continuous on

Let us now convert the problem into a variational form, using the
spaces For

with the norm and the inner product defined by

Typical examples of functions of are the continuous functions, the
piecewise continuous functions, particularly piecewise constant func-
tions, defined on

If and then
The corresponding norm is

Typical examples of functions of are the functions of or the
piecewise differentiable continuous functions.

Generally, if and then and
we have the corresponding definitions of the norm. On we will also
use the semi-norm

The following important inequalities hold:
a)

b)

Friedrichs, for and

Sobolev, for

We will also use the basic lemma of the variational calculus
LEMMA. If and
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then
The finite element method to approximate the solution of the problem

(6.7) consists in finding an approximate solution of the form

where are known functions of a specific type, satisfying the condition
By denoting

the coefficients can be calculated from the equations

where is an arbitrary continuous function. To calculate the coeffi-
cients we will choose functions

A particular method is obtained from the above scheme by choosing
the functions and from the subspace of

containing piecewise linear functions.
Let us consider the grid

which divides into the elements of length and let
be. We will require that the elements of be continuous

on [0,1], linear on each element and
The functions could be described by their values on the

nodes. We have

where

Then, the basis functions have the value 1 at the corresponding nodes
the value 0 at other nodes and are piecewise linear functions on each

interval Obviously, for
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It may be proved that the interpolation error of a function by
an interpolant function at the given grid is, if

The classical Galerkin finite difference method could be formulated as
follows:

Find such that

Since is of the form (6.8), by choosing in (6.9) for
we obtain the system

from which we can calculate the unknowns The above system
can be rewritten

or, in matrix form,

The elements of the matrix K of order could be easily
calculated (in the general case they are obtained by assembling the values
on each element). We have, for

and

Moreover, for we have



360 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

As regards the calculation of F, by some simple quadrature formulas
(trapezoidal rule), we obtain, for

and

If we choose a uniform grid the system (6.10) becomes

We remark that the equations are of the form

incidentally identical to the equations obtained by the centered finite
difference method

As we know, this structure of the matrix leads to a solution decoupling on
odd-even nodes and then oscillatory numerical solutions appear. These
oscillations persist even if the grid is refined. In practice, we choose
instead of the centered difference an upwind difference

which is equivalent to introducing a numerical dissipation. In fact, in-
stead of the given equation, we numerically solve by centered finite dif-
ferences the “perturbed” equation
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Let us present now the LSFEM. In this case we try to minimize the
integral

onto the space V. The necessary minimum condition is that the first
variation vanishes, i.e.,

or

The discrete problem is now:
Find such that

Since is of the form (6.8), we now obtain the system

of the same form

By recalculating the matrix K and the right-hand side F, we find
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Now the matrix K is symmetric and positive-definite. In the partic-
ular case when the above system takes the form

We remark now that the left-hand side can be interpreted as the centered
finite differences discretization of while the right-hand side is the
centered finite differences discretization of

Here is the explanation of this fact. The variational problem was to
find      for which

Assuming that exists, upon integration by parts we find

Consequently,

This means that the derivative of the original first order equation must
be satisfied on the interval, the original equation must be satisfied at

as the natural boundary condition and the original boundary con-
dition becomes an essential boundary condition. Therefore, we have the
Galerkin formulation for a second order equation, which is very efficient.
Moreover, the condition number of the matrix K is of order
which is similar to that from the classical Galerkin method for second
order equations.

Concluding, the least squares method transforms the difficult (as re-
gard the numerics) problem for a first order equation into an easily
solvable second order equation.

If we study the error of the method, if then we have
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i.e., an optimal error, of the same order as the interpolation by finite
elements error.

We will present now a very simple example which illustrates the power
of the LSEFEM. Let us consider the problem

with the exact solution

For we use the upwind scheme, the Galerkin finite element
method and LSFEM. The comparison with the exact solution is given
in Figure 6.3.

Figure 6.3. The approximate solutions for and

2.2 The Mathematical Foundation of the
Least-Squares Finite Element Method

Let with or 3, be an open bounded domain, with a
piecewise smooth boundary (i.e., it can be decomposed into a finite
number of arcs (surfaces) and each of them can be locally represented by
indefinitely differentiable functions; more, the angles between the arcs
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(surfaces) are greater than zero). As examples, a sphere, cube, torus,
triangle, polyhedron, etc. have piecewise smooth boundaries.

For we have

which is a Banach space with the norm

For is a Hilbert space with the inner product, respectively
the norm,

For every integer we have the Sobolev space

which is a Hilbert space, with the norm

Obviously, Particularly, the space and its sub-
space

with the norm

and, respectively, the semi-norm on

are of great interest.
For vector-valued functions u with components we consider the

product spaces
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with the corresponding norms

Let us consider now a linear equation

where Its solution is denoted by It is important that
the practical (proposed) problems be well-posed. This means that the
above equation has a solution for every the solution is unique
in a space U and if changes “a little”, the solution also changes “a
little”. In operator language, this means that is one-to-one
and its inverse is continuous between the normed spaces U and V.

THEOREM 6.4. The necessary and sufficient condition for a linear
operator A to have a continuous inverse is that

In the case of an operator A satisfying the above condition, we have
for the equation (6.14)

which means that the solution continuously depends on the data.
If is an approximation (obtained by a certain method) of the exact

solution, we have

Therefore, if the norm of the residual tends towards zero
for then in U.

The proof of the property (6.15) uses
THEOREM 6.5. (The Friedrichs inequality) If and
where then there exists a real constant C > 0, which is

independent of such that

We remark that one gets and consequently, on the
semi-norm may be used instead of a norm.

THEOREM 6.6. (The Poincaré inequality) If then there
exists a real constant C > 0, independent of such that
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Let us define now the finite element spaces These spaces con-
sist of piecewise polynomial functions. More precisely, the domain
is decomposed by a triangulation with the elements K. In the case

the elements are intervals, for      the elements are triangles or
quadrilaterals while for they are tetrahedrons or hexahedrons.

We will denote by the space of polynomials of order less than
or equal to defined on K, and by the polynomials of order less
than or equal to in each of the variables.

We will define if we solve boundary value problems of
first order and if we solve problems of second order. In the
case of the piecewise polynomial functions, we have

where Since the treatment of second order problems is
difficult by the LSFEM, we will consider only first order systems and
the high order problems can be reduced to this case.

Let us describe now the elements K. We will present only the case
and we will suppose that is a polygonal plane domain. We will

divide  into

generating the triangulation It is necessary that the
triangles do not overlap and that no vertex of one triangle lies on the
edge of another triangle (it can coincide only with another vertex).

We will define the parameter of the triangulation as the maximum
diameter of all circles circumscribing the triangles from and as the
minimum diameter of all circles inscribed in the triangles from We
suppose that there exists a constant independent of such that

This condition avoids the generation of arbitrarily thin triangles (or of
interior angles arbitrarily small).

Let us consider now a triangle from such a triangulation. The nodes
are the vertices of the triangle. We will construct the linear
interpolant of on this triangle

From the interpolation condition
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we obtain the coefficients and by substitution we find

where

We remark that the order of the nodes is important. The
counterclockwise sense corresponds to D > 0, otherwise D < 0. We
remark also

About the interpolation errors, if we work with polynomials of order
and for functions sufficiently smooth, we have

Let us now give a general formulation of LSFEM. We will consider
only steady state problems. In the evolution case, the time discretization
leads at each step to a boundary value problem of this type.

The linear boundary value problem which we consider is

where A is a partial differential of the first order operator

Here is the vector of the unknown functions,
are given functions, and are continuous matrices which

depend on while B is a boundary operator.
We will suppose and we choose a suitable subspace V of

which involves the boundary conditions. Let R = Av – f be the
residual of v and we have
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A solution u of the problem (6.18) could be interpreted as an element
of V which minimizes the residual

The least squares method minimizes (6.19) in V, i.e.,

A necessary minimum condition is that the first variation vanishes at u,

Thus, the problem to solve is to find       such that

We remark that B(u, v) is symmetric and by discretization will lead
to a symmetric positive-defined matrix.

In finite element discretization we choose a unique basis for all the
unknown functions and we are looking for in the form

where are the values of u at the node and N is the number of nodes
of an element. Introducing this expression into the equation (6.20) we
obtain the system

where U is the global vector of the values at the nodes.
The global matrix K is assembled from the element matrices

where is the domain covered by the element. F is obtained
by assembling the element vectors

We remark that the boundary condition could be also included into
and then no boundary conditions are imposed on the subspace

V.
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If we write now the Euler–Lagrange equation for the problem (6.20),
upon application of the Green formula we find

where A* is the adjoint operator of A. The Euler–Lagrange equation is
therefore

For this equation, the boundary condition Bu = 0 is an essential bound-
ary condition and is a natural boundary condition.

Concluding, the least squares method for first order systems is equiv-
alent to the Galerkin method for the second order system (6.21). We
remark also that A* A is a self-adjoint operator, even if A itself is not
self-adjoint.

We will estimate now the errors for this method. We need the follow-
ing result:

THEOREM 6.7. If the first order linear differential system Au = f has
a unique solution u which continuously depends on the data
then there exists a positive constant such that

Moreover, if the solution then there exists a positive constant
M such that

Let us suppose now that is a subspace of V which consists of
piecewise polynomials of order and the problem Au = f is well-posed.
Then for u and we have

Particularly, we have also

from which, by subtracting, we obtain

Let now be the interpolant of u. Then, from the above
relation, we have
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By simplifying and from the above theorem, we get

Since from the above relation and from
the form of the interpolation error we obtain

THEOREM 6.8. If the problem (6.18) is well-posed and its solution is
sufficiently smooth, then we have the estimations of the error

This theorem ensures the convergence of the method and it does not
matter what type the first order system is, elliptic, hyperbolic, mixed,
etc. We remark that in the elliptic case we are able to give an improved
result. If A is elliptic and coercive, i.e.,

then we have the optimal estimation:
THEOREM 6.9. If is the solution generated by the LSFEM for

the elliptic, coercive system (6.18), with piecewise polynomial of order
then there exists constants and independent of u and such

that

2.3 Div-Curl (Rot) Systems
We will present on such types of systems the use of the LSFEM.

Suppose that is a bounded domain, with the piecewise smooth
boundary (one or another of the components may be empty
but not both; if both are not empty, they must have at least one common
point). We will denote by n the unit outward normal to the boundary,

a tangential vector to at a boundary point.
We present, without proof, some technical properties.
THEOREM 6.10. Let be bounded and convex in Then for every

function satisfying  on and n × u = 0 on we
have



Finite Element and Boundary Element Methods 371

THEOREM 6.11. If is bounded simply connected in and
satisfies

then u = 0 in
THEOREM 6.12. (The Friedrichs inequality). Let be a bounded and

simply connected domain in Then for every function
satisfying n · u = 0 on and n × u = 0 on we have

where C depends only on
The above result shows that on the space

the norms and are equivalent (for as

above).
THEOREM 6.13. (The Gradient theorem). If satisfies

then in
THEOREM 6.14. If and n × u = 0 on then

on
THEOREM 6.15. (The second Friedrichs inequality). Let be a

bounded and simply connected domain in with the smooth boundary
For every we have

Let us consider now the 3D divergence-curl system

The given vector must satisfy the compatibility conditions

and if then must satisfy
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This system of four equations with three unknowns is not overde-
termined. By introducing the dummy variable the system can be
rewritten

But, from Theorem 6.8, the first vector equation is equivalent with the
system

From the conditions (6.23), n × u = 0 on and Theorem 6.11, the
above relations yield

thus in and its introduction does not change the original system.
In Cartesian coordinates, for the system is written

while in matrix form

where
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But the associated characteristic polynomial is

for all thus the system is elliptic. We need two boundary
conditions on each boundary. But and n · u = 0 are two conditions
on while n × u = 0 implies that two tangential components of u on

are zero.
Let us apply the least-squares method. We construct the functional

where

If the variation of I vanishes, we obtain the variational formulation in
the least squares sense: find       such that

where

and

From the Friedrichs inequality we obtain

THEOREM 6.16. The solution of the problem (6.22) or (6.25) exists,
it is unique and it satisfies

and then

To apply the finite element method, we rewrite the equation (6.25)
under the form
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With the hypothesis that all the functions are smooth enough, we use
the Green formulas in the above relation and we get

Taking into account

and the conditions satisfied by v on the above relation becomes

for all Then the Euler–Lagrange equation and the boundary
conditions become

We remark that now the divergence equation does not appear on the
domain The solutions of the uncoupled Poisson system (6.27) with
the mentioned boundary conditions automatically satisfy the divergence
equation. In fact, if u is smooth enough, the variational problem (6.26)
is equivalent to the original problem (6.22).

We can now discretize the above problem by the finite element method.
Let us construct the subspace of continuous, piecewise polyno-
mial of order functions and for the finite element solution
we have

THEOREM 6.17. The finite element method based on the equation
(6.25) has an optimal convergence and an optimal satisfaction of the
divergence equation, i.e.,

Concluding, the application of the LSFEM to the original problem
(6.22) is reduced to the application of the Galerkin finite element method
(6.26) to the system (6.27, 6.28, 6.29). This system contains three un-
coupled Poisson equations; the essential boundary conditions come from
the original boundary conditions while the natural boundary conditions
come from the original equations considered on the boundary too.
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2.4 Div-Curl (Rot)-Grad System
Let us consider now the second order elliptic boundary value problem

where Here could be a temperature, a potential, etc.
Let us try to transform this problem into a first order divergence-

gradient problem

The variational form is obtained by multiplying the first equation by
and integrating, multiplying then the second equation by

and integrating.
The variational problem is to find the pair

for which

But, by finite element discretization, the associated matrix is not positi-
vely defined.

By applying the least-squares method in the classical form to the prob-
lem (6.32), which is not an elliptic system, we are led to a convergence
which is not optimal.

The optimal least-squares method is based on the system

Although the second equation could be obtained from the third and the
second boundary condition could be obtained from the first, the presence
of these relations is very important.

In the two-dimensional case the system (6.33) consists of four equa-
tions with three unknown functions. As in the previous section, by
introduction of a dummy variable it will be shown that the system is
well determined and elliptic. In the Cartesian coordinates, it is
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The equations containing are equivalent to

where But from the last two equations we get

i.e., is a constant and the introduction of it does not change the original
system. In the matrix form we have

where

But

for every vector Consequently, the extended system is elliptic
with four equations and four unknowns, therefore we need two boundary
conditions.

Let us study the errors. We will denote

The optimal least-squares method minimizes the functional
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We remark again that the variable is indeed a dummy variable which
has nothing to do with the numerical computation.

If the variation of I vanishes with respect to and u, we obtain the
variational formulation: Find such that

where

The discretized by the finite element method problem is to find

such that

where

It can be proved that

where

Consequently, A is continuous and coercive and therefore we have an
optimal convergence.

2.5 Stokes’ Problem
Let us consider now the Stokes problem
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where is a bounded domain with the sufficiently smooth bound-
ary We define the bilinear forms and

so the weak formulation of the above Stokes problem is

where the solution is looked for in a suitable space
To approximate this solution, we choose the finite dimensional sub-

spaces included or not included in containing
piecewise polynomial functions with respect to a simple decomposition

of (triangles, quadrilaterals, etc.). Of course, we require a con-
servation of the elements shape condition during the refinement. In the
discrete form, the Stokes problem becomes

where are looked for in
The necessary and sufficient conditions for the existence and the con-

vergence of the approximations are

for while for the stability (the inf-sup or Babuška–Brezzi condi-
tions) are

for a independent of
Within these conditions we have the approximation result

In the literature many admissible pairs of finite elements spaces for
velocities and for pressure are described.

An interesting procedure to study the Stokes problem is the use of the
form together with the least-squares finite-element method. By

introducing the vorticity the Stokes system may be written
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in a first order form, namely

Although in this form we have eight equations with seven unknowns
(in the 3D case), the system is determinated and elliptic. This fact
may be remarked by introducing the auxiliary unknown satisfying

By introducing the third equation into the second, we find and
thus on i.e., the use of does not change the initial system,
but now we have (in the 3D case) eight equations with eight unknowns.

If we write the above system on the components,
we have

or, in matrix form
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where

The associated characteristic polynomial satisfies

for every which confirms the ellipticity of the system. Fur-
ther, it is equivalent to the initial Stokes system.

Finally, to the system (6.35) one applies the least-squares finite-element
method, see [72].

3. Boundary Element Method (BEM)
The boundary element method, developed especially after 1970, is

a numerical method to solve boundary value problems. In fact, this
method, using a solution of the homogeneous differential operator or a
fundamental solution of the differential operator, associates to the given
boundary value problem an integral representation which reduces solving
of the differential problem to determining the solution of an integral
equation on the boundary of the domain.

By the numerical (or analytical) integration of these integral equations
on the boundary, which could require both a boundary discretization and
the use of some quadrature formulas, we obtain numerical values which,
through the associated integral representation, allow the evaluation of
the solution at any interior point of the considered domain.

The integral equation on the boundary decreases by 1 the dimension of
the problem to solve and, more, it incorporates the boundary conditions
so that no other special relations are needed. Unbounded domains could
be also treated without any special preparation, the conditions at infinity
being incorporated into the respective integral equations.

Of course, the price that one must pay for the above facilities is the
necessity to construct an integral representation associated to the bound-
ary value problem and an integral equation on the boundary, the two
tools required by this method. For the first one, generally, it is neces-
sary to have explicit solutions of the homogeneous associated equation or
fundamental solutions for the given equation and this fact will restrain
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the applicability of the method foremost to differential operators with
constant coefficients. Concerning determination of the integral equa-
tions on the boundary, different methods could be used, as for example
passage to the limit in the associated integral representation when an
arbitrary point “tends” towards a boundary point, or Green theorems
or Somigliana identity or Betti theorems (for elasticity problems) etc.
A unitary formulation, which is superior by its generality, could be ob-
tained from the weighted residual formulation of the problem.

In particular cases, like the bidimensional boundary value problems
for the Laplace operator, using the formalism of complex variables and
functions, construction of integral equations on the boundary could
be avoided, obviously using supplementary hypotheses (the so-called
CVBEM variant).1

The integral equations on the boundary, due to the diversity of the
usually involved singularities, exceed the well studied Fredholm equa-
tions frame. This fact explains the lack of a unitary mathematical theory
for BEM.

W.L. Wendland and his co-workers have obtained promising results
in the construction of such a theory, situating BEM within the theory
of pseudodifferential operators.

In what follows we will sketch some basic elements of BEM, using the
book [100] and then the variant CVBEM will be developed, a variant
which gives a convergent procedure and an extremely practical working
instrument in plane hydrodynamics.

3.1 Abstract Formulation of the Boundary
Element Method

Let be a differential operator defined on a certain space of functions
with its values in another (maybe the same) space of functions. Consid-
ering then, on a domain with the boundary the differential equation

where and are functions from the domain of definition,
respectively from the codomain (range) of (functions defined on the
same to this equation one attaches, usually, a set of boundary con-
ditions of the type on on where

The operators S and G, defined on the same space of functions as
with values in some space of functions defined on respectively will
correspond to the so-called essential boundary conditions, respectively
natural boundary conditions (the essential ones having a determinant

1 CVBEM (Complex Variables Boundary Element Method).
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role for the uniqueness of the solution of the problem). In fact, we get
these operators S and G by defining, first, on the working spaces (the
domain and the codomain of an inner (scalar) product, for instance

Then, if we integrate by parts the inner product

being a weight function defined on the

same belonging to a space of functions which could coincide with
that of until all the derivatives of the function are eliminated, we
will have for this inner product the “transposed” form

S and G being the differential operators which appear after the integra-
tion by parts. By definition contains terms resulting from the
first stage of integration while contains the corresponding terms (of
the same order of differentiability) in The operator is called the
adjoint operator for If we say that is self-adjoint and then
we have also and

The above writing of the inner product does not give only the possi-
bility to appreciate whether or not the operator is self-adjoint but also
two different types of boundary conditions as the operators or
are given at the points of

Of course the above form of the inner product anticipates that the wor-
king space (the domain and the codomain of will be some subspaces,
with some differentiability properties, of or, more generally, of

corresponding to the order of the differential operator
The “boundary values” of the functions and of its derivatives at the
points of (and, implicitly, those of the operators S and G) will be
understood everywhere in the sense of the values of the trace operators

operators which exist by virtue of the Trace
theorem, and which, for

Let now be the exact “punctual” solution of the boundary value
problem and an approximation of it belonging to the same space of
functions. Obviously, corresponding to this approximation, we have ei-
ther a “residue” (“error”) joined to the equation fulfilment, i.e.,

or the residues linked with the boundary conditions sat-
isfaction, i.e., on and
on The purpose of any approximation procedure is to make these
residues (errors) as small as possible. Depending on the manner of per-
forming this task, we have different types of approximation. So, if we
require R to be zero at certain points or subdomains of we obtain the
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points (on subdomains) collocation method which generalizes the finite
differences method. If we consider a weight function of a suitable
space of functions, we could ask that the error R satisfy the requirement

This implies the “mean” satisfaction of the given

equation and we are led to a weighted residuals method (the Galerkin
method, respectively the moment method for belonging to the same
class as

If both and it is natural to have also (with respect to
the weight function

It is expected to use, instead of the given initial problem, as starting
point in the construction of the approximation  the unique “weighted”
equation

In fact, this equation could be obtained from the equation
performing the integration by parts and, once the operators S and G
have appeared, imposing on the approximation the fulfilment of the
conditions and

In what follows, in order to extend the domain of the possible approx-
imations, we will try, first, to weaken the regularity conditions on the
approximating function (with the price of the corresponding “strength-
ening” of the requirements on the weight functions and then, to get
the exact satisfaction of the equation (or of its adjoint), with the price
of losing the only approximative fulfilment of the boundary conditions.
This way will lead, finally, to the boundary element method (BEM).

Thus we obtain the weak formulation (a first reduction of the reg-
ularity requirements on and the inverse formulation (the complete
elimination of the derivatives of the function to the obvious detriment
of the function which takes over the respective derivatives). Of course,
any solution of the initial “weighted” equations will be also a solution of
the weak or inverse formulation equation but the reciprocal statement,
generally, is not true.

We retain the requirement that the boundary element method will be
correlated with the inverse formulation of the weighted equation. If in
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the previous numerical methods (finite element method, finite differences
method, etc.) we constructed the functions by approximating the desired
solution on the domain while satisfying the boundary conditions on
in BEM we act contrarily: we choose the exact or fundamental solutions
for the differential operator (or for its adjoint) and then we try to satisfy
approximately the boundary conditions.

Basically, the working instruments of the boundary element method
are, as we previously stated, both an integral representation of the so-
lution, associated to the boundary value problem on the considered do-
main, and an integral equation on the boundary whose solving allows
then, by the associated integral representation, the construction of the
solution at any interior point of the considered domain.

Let us suppose now, as an example, that the operator ob-
viously a self-adjoint operator, and the boundary conditions joined to
the equation in are on (essential), respectively

on (natural). If the exact solution is approxi-

mated by and obviously by we will have also, together with
the residue (error) in the boundary residues
on and on

Considering then the weighted equation
which is synonymous with imposing on the approximation

the conditions on and and we are led to:
(i) the original formulation

(which represents the starting point in the genuine Galerkin method,
when and belong to the same class, and in the weighted residuals
method and implicitly in the finite differences method, when and
belong to different classes);

(ii) the weak formulation

(the starting point for the finite element method, for and belonging
to the same class, and for the weak weighted residuals formulations);

(iii) inverse formulation
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(the origin of the Trefftz method, for and belonging to the same
space).

Confining ourselves to the inverse formulation but in the case when
and belong to different classes and or

the inverse formulation will lead to a set of boundary relations which
allow us to calculate the approximation by satisfying the boundary re-
quirements and implicitly, the construction “a posteriori” of the approx-
imative solution at any point of the domain. Accepting, for instance,

because (for any function with a

compact support and continuous in a vicinity of the inverse formula-
tion gives the so-called integral representation attached to the problem.
Moreover, if in this integral representation we make by
denoting the fundamental solution while we will obtain an
integral equation on the boundary of the type

which represents, in fact, the compatibility condition of the boundary
data and which could be the integral equation attached to the problem,
an essential tool for BEM.

Concerning the coefficient if we confine ourselves only to the
bidimensional case, it will be equal to if belongs to a smooth portion
of and it will be equal to if is a cuspidal point, framed
by the smooth portions and of the boundary whose outward
normals form the angles and respectively with the axis.

We remark that both the integral representation and the integral equa-
tion on the boundary are not uniquely determined. They could be ob-
tained in different ways, but the principles of the BEM are the same,
not depending on the used technique.

3.2 Variant of the Complex Variables Boundary
Element Method [112]

In the sequel we will give a variant of BEM, the so-called CVBEM,
which provides total satisfaction in the problems where the unknown is
a holomorphic function, as many of the plane hydrodynamics problems
are. In this case, the simple use of the Cauchy formula already gives an
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integral representation attached to the considered problem. Moreover,
the use of an appropriate system of interpolating functions allows us to
avoid the boundary integral equation; the data on the boundary could
be calculated by solving an algebraic system, without any approxima-
tion of the boundary and without any numerical quadrature. It it also
remarkable that CVBEM is a convergent procedure, within quite large
conditions.

Let then be a holomorphic function in the simply connected
domain D, the outside of a Jordan rectifiable curve C. Suppose that

is continuous on and its real or imaginary part or even a
combination of them being known on the boundary C. The Cauchy
formula, that is

will be the integral representation of the envisaged

problem. Now we want to determine i.e., For that let us
consider a system of nodes on C, placed
counterclockwise, separating the contour C into the arcs

being the arc joining the node with Considering then the
approximation of the unknown function defined by

where while are the Lagrange interpolating

functions, constructed for every respective arc, i.e.,

the Cauchy integral becomes (up to a constant

where
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(we accept that the principal determination for the complex logarithm
has been considered).

Supposing now that is evaluated at the nodes that
is

we are led to the algebraic system of equations with unknowns

where

By its solving we will obtain the approximation of the function
and implicitly, via the Cauchy formula, the solution at any point

of the domain D.
If the Jordan curve C has at the node a cuspidal point, the angle of

the semi-tangents at this point being with then the
Cauchy formula is applicable again, the behaviour of in a vicinity

being given by i.e.,

In this case, the piecewise interpolation must take

into account this behaviour in which is performed by a similar
approximation on while on and we will take

This choice does not change the structure of for
while for we have respectively
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Concerning the coefficients for they could be
directly calculated from the expression of using, in the case
and the equality

For the case we have

where we take again the principal determination of the logarithmic func-
tion.

We will consider now the convergence problem of this (CVBEM) pro-
cedure. Precisely, we will determine under which conditions
holds and, more, when is valid.

Definition. A grid of the closed contour C
is called “acceptable” if, for any the condition

is fulfilled.
Let now be an acceptable grid on the boundary C and let

be the norm of this grid. Then we have the following
theorems:

THEOREM 6.18. If is a “piecewise linear” La-

grange approximation (i.e., constructed on each of the contour C,
as above) of the function with respect to an acceptable grid of
norm then

where
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and
THEOREM 6.19. If is a “piecewise linear” La-

grange approximation of the function with respect to an acceptable
grid of norm then

The proofs of these theorems are immediate, based on the uniform
continuity of [112].

Now we remark that this convergence of the Lagrange approximation
should not surprise because it is an approximation on segments which
is, generally, a spline function of first order. The result is still valid
(based on the same remark) in the case when the “piecewise linear”
Lagrange approximations are replaced, on every arc by arbitrary
powers of them [112]. This generalization will be important in the cases
of contours with cuspidal points such as the case of profiles with sharp
trailing edge. An application of this procedure will be given in the next
section.

Obviously, the solving of the finally obtained homogeneous algebraic
systems needs supplementary conditions (like an “a priori” given circu-
lation). More details can be found in [112].

3.3 The Motion of a Dirigible Balloon
As a particular application, let us consider the fluid flow produced by

the motion of a self-propelled dirigible balloon in a uniform stream of
wind whose velocity is “a priori” given.

We assume that both the dirigible motion and the velocity of the wind
stream depend explicitly on time and the motion is plane and potential.
Neither external forces nor the influence of the ground are considered
(the dirigible being all the time at a sufficiently great distance from the
ground).

Suppose that the contour of the dirigible is expressed by an explicit
equation of the type

This equation implies, besides the symmetry of the balloon vs. the
real axis, the existence of a sharp trailing edge, located at the point of
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the abscissa and where the semitangents with the real axis are
respectively

In fact, the above profile is of Karmann–Trefftz type [69], the connec-
tion between the parameter of the above theory and the just introduced

parameter being given by In the sequel we shall use

the value As regards the stream of wind (the basic flow in terms

of the previous theory), it will be defined by, for instance, the complex
velocity

while the displacement of the dirigible would be defined by
where (the successive time instants), see Figure 6.4.

Figure 6.4. The balloon’s profile

The value of the circulation will be established by considering, instead
of the flow produced by the dirigible motion, the “dual problem”, i.e.,
that of an opposite fluid stream of velocity past our pro-
file, cumulated with the velocity of the wind The Jukovski hy-
pothesis leads to the following value of the circulation,

Above we have taken into consideration the fact that the image of our

profile through the mapping is a circumference

centered at of radius and whose point Z = 1 corresponds to
the sharp trailing edge.

The slip condition at the points of the dirigible contour will be written
as
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where is the looked for complex relative velocity of the fluid
flow vs. the system of axes rigidly linked to the profile.

As regards to the nodes chosen counterclockwise
on the contour of the dirigible, they are obtained by allowing the real
parameter of (6.36) to take the values –2, –1.9, –1.7, –1.4, –1.2, –1,
–0.8, –0.6, –0.4, –0.2, 0, 0.5, 0.7, 0.9, 1. The leading edge is the node

while the trailing edge is the node
By imposing also the additional conditions, which state the equality

of the flow velocity at the sharp trailing edge and at its neighboring
nodes, i.e., and with F = 16
(in order to avoid some logarithmic singularities in the calculation of

and we are led to the solving of a linear algebraic
system of 60+2 (circulation condition) real equations with 56 unknowns.

Since the slip conditions are written at all the 27 remaining nodes
and at or that means

and by the elimination of in the favor of we are led again to an
overdetermined nonhomogeneous system but this time of 62 equations
with 29 unknowns.

By solving this system we find its unique solution i.e., we find
at the node for We can proceed now

to the determination of the unknown function

This will be done at the mesh points of a squared neighborhood, of size
[–5,5]×[–5,5] of the profile, both the and steps of the respective

mesh being equal to which means 961 points. Finally, the (absolute)

velocity of the resultant fluid flow vs. a fixed system of axes will be
determined by calculating the vector at the same mesh
points and at different time moments. For details and figures, see [107].

3.4 Coupling of the Boundary Element Method
and the Finite Element Method

The complexity of the practical problems, the simultaneous presence
of structures and systems which are much different by their properties,
require a proper treatment, a special mobility to manage the computa-
tional techniques, all in order to obtain solutions that are as accurate as
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possible. Obviously, the envisaged numerical method should also take
into account the computational effort, the economical efficiency, short
computational time being an essential component for practical mathe-
matical modeling. In this context, if the FEM distinguishes itself as a
very good method, easily applicable, for example, in anisotropic prob-
lems, it could not be used, without important losses of accuracy, for
problems with geometrical singularities (cuts or concave breaks) as they
appear, for instance, in the mechanics of “breaks”, being also uncomfort-
able for unbounded domains or domains with stresses or fluxes concen-
trations. Conversely, the BEM is recommended for the solving of these
last types of problems, the boundary integral formulations containing
both the data at infinity (for unbounded domains) and the possibility
to model quite exactly and by a minimal effort (adopting a suitable
elements system on the boundary with convenable nodes) the possible
geometrical singularities.

In what follows, we will sketch some problems of the “coupling” of
these two methods, FEM and BEM, for the same practical problem,
but involving regions with different properties which require the use
of one or the other of the two methods2. Of course, the possibility
to use boundary elements of higher order allows the “coupling” of the
neighboring regions, distinctly treated by the two methods, without loss
of continuity. Once the problems are approached in the distinct manner
of the two methods, the resulting algebraic systems should be “fitted” in
order to obtain a unique system (with the same unknowns). This could
be performed either by transforming the FEM region into a boundary
element, a real possibility in the case of the use of mixed finite element
formulation or, conversely, by transforming the boundary element into
an equivalent finite element.

We will develop this idea, confining ourselves to a potential problem
in a domain We will study the problem by FEM in
and by BEM in considering, on the common interface both the
continuity conditions (the potentials evaluated at the same point of
by the two methods, in the domains and must be the same) and
the equilibrium conditions (the fluxes, the derivatives of the potentials
in the direction of the outward normal, evaluated at the same point of

by the two methods, in the domains respectively must be
opposite).

Thus let us consider a potential problem in the domain with the
boundary governed by the Poisson equation with

2This section follows the exposure from the book [100], p. 267.
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the joined essential boundary conditions on and natural
boundary conditions on Constructing then the expres-
sion of the weighted residual of this problem, with the supplementary
requirement on the approximation (of the solution to satisfy iden-
tically the essential boundary conditions on we will have,
for the region (with FEM),

(the weak formulation with on while for the region (with
BEM),

(the inverse formulation with
If we remain for the moment, in the sub domain then if the weight

functions (in the weak formulation) are expressed with the same ba-
sic functions as the function one may apply a finite element type
discretization (and a corresponding interpolation) which will lead to a
matrix system of the form KU = F + D. Here K is the global matrix
of the system (a symmetrical matrix), U is the corresponding matrix of
the unknowns (the values of the potentials at the nodes), F is the vector
constructed with the integrals and the vector D corresponds to

the integrals

Finally, if the above inverse formulation is used in we will obtain,
on the boundary of this subdomain, the integral equation

But this integral equation underlies a BEM in and by its applica-
tion we will come, finally, to a matrix system of the form HU = GQ + B
where the unknowns are grouped into the vectors U (the nodal boundary
values of the potential) and Q (the nodal boundary values of the deriva-
tives of the potential with respect to the outward normal, the fluxes).
Concerning the known matrices H and G, their form depends on the
fundamental solution and the chosen interpolating functions space while
the vector B is constructed starting from the integrals
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In order to “match” the distinct algebraic systems obtained in
respectively in to assemble them into a unique system, we will trans-
form the region into an equivalent finite element. In other words, we
will try to rewrite the matrix system obtained for in a form identical
with that of the system obtained for

Remarking that the vector F was obtained by multiplying the given
fluxes by the interpolating functions used for the weight, one could al-
ways find a matrix N, called the distribution matrix, so that F = NQ
where Q is the vector containing the unknown values at the boundary
nodes of the flux (the derivative, with respect to the outward normal,
of the potential). If we write then the system HU = GQ + R in the
form and we multiply both sides of this equality by
the distribution matrix N, the result could be written in a form, specific
to that means where

Unfortunately, as regards the computational efficiency, the
matrix is no longer symmetrical as the matrices K associated to the
FEM, are. If we choose to “symmetrize” the matrix by replacing
it with a symmetric matrix we could proceed, for instance,
by a simple “error diminishing” technique. Thus, let be the error —
due to the asymmetry — measured by the deviation of the nondiago-
nal coefficients and versus the corresponding coefficients (yet

unknowns)) and equals to

Writing the necessary condition for the minimization of we
get

which means the coefficients are given by so that

the symmetric matrix is
Correspondingly, the system is rewritten under

the form which will be assembled into a usual manner
(ensuring the compatibility and equilibrium conditions on the interface

with the system, of the same type, from
A direct procedure to obtain the symmetric matrix could be the

so-called “energetic onset”. Starting from the expression of the energy
in the domain where the BEM for the potential problem is applied, i.e.,

get
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the equilibrium requirement leads to

But the integral equation which gives the solution of the problem,
once one knows the values of and on the boundary, is

and then, by replacing into the above relation,

we get, in a matrix form and after the introduction of the interpolating
functions for and the system

But this leads necessarily to a system of the form KU = F + D where
K is a symmetric matrix given by i.e., to a
system which could be assembled with that obtained by FEM. Here we
denote by N the matrix formed by integrating the interpolating functions
and by C the matrix that links Q and U (Q = CU).

Another coupling procedure of FEM and BEM uses the so-called
approximative boundary elements or the so-called Sommerfeld relation.
In order to illustrate this technique we will consider, for simplicity, the
case of the Laplace equation for the domain with the boundary
whose weighted residual expression (in the inverse formulation) is

Assume that the domain is the outside of a body, which means it is
an unbounded domain. Due to some known reasons we apply the FEM
only in a finite domain, the outside of the body limited by a spherical
interface while in the exterior of the BEM will be applied. As
the fundamental solution of the Laplace equation is the above
inverse formulation shows that at any point of the interior region we
have
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which means

This last relation establishes the link between the boundary values of
u and q and it could replace the boundary integral equation within the
use of the BEM in the exterior of But the result of the application
of this integral relation will be a system of equations with a “non-band”
matrix. If we choose the radius R of the interface large enough that
the above integral relation, written under the form

could be approximated by on using also the above
link between u and q at the points of we will come to a system of
equations with a “band” matrix as in the FEM.

The above approximate relation, at the points of is a relation
of Sommerfeld type. The establishment of such relations is important
especially for problems with complicated fundamental solutions. Thus,
if we consider, in an unbounded domain the Helmholtz bidimensional
equation with the fundamental solution

(where is the Hankel function), the integral Sommerfeld equation
on the boundary is obviously difficult to manage. But, concurrently,
the Sommerfeld relation on the boundary with radius R large enough,
is which essentially simplifies the calculations.



Chapter 7

THE FINITE VOLUME METHOD AND
THE GENERALIZED DIFFERENCE
METHOD

The finite volume method is, probably, the most popular discretiza-
tion method used in CFD. It is similar, in some aspects, to the finite
differences method while the discretization procedure is linked to the
finite element method. More precisely, the discretization is performed
by transforms joined to the physics of the studied phenomenon and con-
serving some quantities during numerical computations. For this, one
uses often the integral formulation of the conservation laws.

The physical domain is considered divided into cells. Between the
time instants and the variation of some physical quantity, for
example of the mass, in a cell denoted by

is given by the sum of the flow fields between and the neigh-
boring cells namely

The total mass conservation is ensured by the conditions

The finite differences method allows high order approximation schemes
with a reasonable computing effort. However these schemes are difficult
to apply on domains with a complicated geometry or complicated bound-
ary conditions.

The finite element method works very well on domains with complex
geometry and has a well founded theory but it needs more calculations
for the same accuracy.
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The finite volume method combines the simplicity of the finite dif-
ferences methods with the local accuracy of the finite element method.
It allows the use of a flexible mesh with small geometrical errors. The
computational effort is greater than in classical finite difference methods
and less than in the finite element method for a similar accuracy. At
the same dimension of the discretized problem, the accuracy is higher
than with finite differences and nearly the same as with finite elements.
The theory is elaborated, the variational form of the problems connects
the theory and the algorithms of finite element and finite differences
methods.

In 1953 R. H. MacNeal used integral interpolation methods to estab-
lish difference schemes on irregular networks. After many years, A. M.
Winslow and other researchers (1967, 1973) employed the linear finite
elements to construct difference schemes on arbitrary triangulations, us-
ing the circumcenter dual grid and also the barycenter dual grid. At
the end of 1970 some computational fluid researchers (S. V. Patankar
[99] among others) proposed to apply the difference method on irregular
networks to the computation of compressible and incompressible fluid
flows. Due to its many advantages this method developed rapidly, be-
coming one of the most efficient methods for fluid computations. The
researchers called it the finite volume method (FVM) or finite control
volume method, indicating that it is a discrete approximation of the
control equations in an integral form.

In 1978, R. Li, using finite element spaces and generalized character-
istic functions on dual elements, rewrote integral interpolation methods
in a form of generalized Galerkin methods and thus obtained the so-
called generalized difference methods (GDM). This method is basically
an extension of the finite volume method (i.e., with piecewise constant
and piecewise linear elements the two methods are, in fact equivalent)
and provides a useful theoretical basis for it.

1. ENO Finite Volume Schemes
ENO (Essentially Non-Oscillatory) schemes are high order accurate

schemes designed for problems with piecewise smooth solutions contain-
ing discontinuities. The use of the finite volume method to construct
numerical schemes for nonlinear conservative equations allows the gen-
eralization of the classical difference schemes to arbitrary grids.

The key idea is to use a nonlinear adaptive procedure to automatically
choose the locally smoothest stencil and avoid crossing discontinuities
in the interpolation procedure. ENO schemes are quite successful in
computational fluid dynamics especially for problems containing shocks.
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In the sequel we will shortly present some ENO finite volume schemes,
following [137].

These schemes are based on interpolation of discrete data, by using
algebraic polynomials.Traditional finite volume methods are based on
fixed stencil interpolations. For example, the interpolation for the cell
uses the cells to build a second order interpolation polynomial,
i.e., the cell plus one cell to the right and one cell to the left. This
works well for globally smooth problems but it is oscillatory (the Gibbs
phenomenon) near a discontinuity and such oscillations do not decay in
magnitude when the mesh is refined.

Earlier attempts to eliminate or reduce these spurious oscillations were
mainly based on the explicit artificial viscosity and limiters. The arti-
ficial viscosity must be large enough near discontinuity to reduce the
oscillations but small elsewhere to maintain a high-order accuracy, so it
is problem dependent. The limiters eliminate the oscillations by reduc-
ing the order of accuracy of the interpolant near the discontinuity but
the accuracy degenerates also near smooth extrema.

ENO schemes were first introduced by Harten, Engquist, Osher and
Chakravarthy in 1987 [62]. Today their study is very active and most
of the problems solved have solutions containing strong shocks and rich
smooth region structures, so that lower order methods usually have dif-
ficulties.

1.1 ENO Finite Volume Scheme in One
Dimension

Let us consider the one-dimensional conservation law

with suitable initial and boundary conditions. We will discretize only
the spatial variable and will leave the time variable to be continuous
for the moment.

The computational domain is We consider the grid

and we define cells, cell centers and cell sizes respectively by

for We denote the maximum cell size by

We assume that the values of the numerical solution are also available
outside the computational domain whenever they are needed (this is the
case, for example, for periodic or compactly supported problems).
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First of all we must solve the following problem (reconstruction):
Problem 7.1. (One-dimensional reconstruction)
Given the cell averages of a function

find a polynomial of degree at most for each cell such
that it is a order accurate approximation to the function inside

i.e.,

In particular we obtain approximations to the function at the cell
boundaries

In order to solve this problem, we consider a cell and an order of
accuracy We choose a stencil based on cells to the left, cells to
the right and itself

There is a unique polynomial of degree at most whose
cell average in each of the cells in agrees with that of

This polynomial is the approximation we are looking for, as long
as the function is smooth in the region covered by the stencil
(see the complete proof in [137]).

Consequently, given the cell averages

there are constants such that the reconstructed value at the cell
boundary

is order accurate
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For a uniform grid the coefficients do not depend on or
and we have, for example, for and

The second problem to solve is how to choose the stencils. We are
interested in the class of piecewise smooth functions, i.e., functions which
have as many derivatives as the scheme calls for, everywhere except for
at finitely many isolated discontinuity points, where the function
and its derivatives are assumed to have finite left and right limits.

For piecewise smooth functions a fixed stencil approximation
may not be adequate near discontinuities. If the stencils contain a dis-
continuous cell for close enough to a discontinuity, the Gibbs phe-
nomenon happens and the approximation property (7.4) is no longer
valid. The basic idea is to avoid including the discontinuous cells in the
stencil (if possible), by using an adaptive stencil, i.e., the left shift
changes with the location

Let us consider the primitive function of

(where the limit can be replaced by any fixed number) and we have,
obviously,

Thus we know exactly the primitive function at the cell boundaries.
If we denote by the unique polynomial of degree at most which
interpolates at the points

then its derivative is the above polynomial
Let us define the 0-th degree divided difference of the function

by

Then, the degree divided differences, for are defined induc-
tively by
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Similarly, the divided differences of the cell averages (7.3) are defined
by

and in general

But from (7.5) we have

so that we can write the divided differences of  in terms of and
completely avoid the computation of V.

The Newton form of is

so that

Of course, we can express completely in terms of
An important property of divided differences is

for some as long as is smooth in this stencil.
If is discontinuous at some point inside the stencil, we have

thus the divided difference is a measurement of the smoothness of V.
Finally, the ENO reconstruction procedure is the following :
Algorithm 7.1. (ENO reconstruction)
Given the cell averages of a function we obtain a piecewise

polynomial reconstruction, of degree at most  by
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1. Computing the divided differences of the primitive function
for degrees 1 to using

2. Starting in the cell with a two-point stencil

for (which is equivalent to a one-point stencil for
3. For assuming

is known, add one of the neighboring points to the stencil following:
– if

add to the stencil to obtain

–otherwise, add to the stencil to obtain

4. Use (7.6) to obtain and use it to get the approximations at
the cell boundaries

The finite volume schemes are based on cell averages so we do not
solve (7.1) directly but its integrated version. If we integrate over we
obtain

where

is the cell average. We approximate the equation (7.7) by the conserva-
tive scheme

where is the numerical approximation to the cell average
while the numerical flux is defined by
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Here the values are obtained by Algorithm 7.1 (ENO reconstruc-
tion).

The above function is a monotone flux, satisfying:
is a Lipschitz continuous function in both arguments;
is a nondecreasing function in  and a nonincreasing function

in
is consistent with the physical flux i.e.,

Some examples of monotone fluxes are:
1. Godunov flux

2. Engquist–Osher flux

3. Lax–Friedrichs flux

where is a constant and the max is taken over the

relevant range of
Consequently, an ENO finite volume scheme is the following
Algorithm 7.2. (ENO finite volume scheme)
Given the cell averages
1. Follow Algorithm 7.1 to obtain the order reconstructed values

and for all

2. Choose a monotone flux and use (7.9) to compute the flux
for all

3. Form the scheme (7.8).
The time discretization of an initial value problem for the system (7.8)

can be performed by various methods, like Runge-Kutta or multi-step.
Another way to discretize the time variable in the equation (7.1) is by
the Lax–Wendroff procedure.

We start from the Taylor series expansion in time
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Then we use the original equation (7.1) to replace the time derivatives
by the spatial derivatives

We substitute now these derivatives into (7.13) and discretize the spatial
derivatives of by an ENO finite volume scheme, for example.

Actually, we first integrate (7.1) in space-time over
to obtain

Now we use a Gaussian quadrature to discretize the time integrations

where and are respectively the Gaussian quadrature nodes and
weights. Finally we replace each

by a monotone flux

and use (7.13) and (7.14) to convert

to and its spatial derivatives also at The derivatives can
be obtained by using the reconstructions inside and We
remark that each derivative of is one order lower in accuracy but
this is compensated by the presence of in front of it in (7.13).
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1.2 ENO Finite Volume Scheme in
Multi-Dimensions

In this case we consider the 2D conservation law

with initial and boundary conditions. Of course, most of the considera-
tions are also valid for higher dimensions.

First we describe how the reconstruction and approximation are gen-
eralized to higher dimension spaces. Now we have two cases:

a) structured meshes, where the computational (spatial) domain is a
rectangle covered by the cells

where

The centers of the cells and the grid sizes are

We denote as above the maximum grid sizes by

and assume that and are of the same order of magnitude during
refinements.

b) unstructured meshes, where the computational (spatial) domain is
covered by a triangulation with N triangles (for example)

where we denote by the area of the triangle and we use again
to denote a typical “length” of the triangles, for example the longest

side of the triangle.
The corresponding reconstruction problem in the rectangular case is:
Problem 7.2. (Two dimensional reconstruction for rectangles)
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Given the cell averages of a function

find a polynomial preferably of degree at most (in each
variable), for each cell such that it is a order accurate approx-
imation to the function inside

In particular, this gives the approximations to the function at
the cell boundaries

which are order accurate.
In order to solve the problem, if we consider a location and the

order of accuracy we again choose a stencil based on
neighboring cells and we try to find a polynomial of degree at
most whose cell average in each of the cells of agrees with
that of We remark that in 2D there are many more candidate
stencils than in the 1D case and, unfortunately, not all the candidate
stencils can be used to obtain the polynomial (neither existence nor
uniqueness automatically holds).

For rectangular meshes, however, we can proceed as in 1D, using the
tensor product stencils

Then we introduce the primitive
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and, obviously, we have as in the 1D case,

i.e., with the knowledge of the cell averages we know exactly the prim-
itive function V at cell corners.

Now, on each tensor product stencil

there is a unique polynomial of degree at most in each variable
which interpolates V at every point in Finally, we get the
solution of Problem 7.2

Practically, we first perform a 1D reconstruction (Problem 7.1) in the
direction, obtaining one-dimensional cell averages of in direction

and then we perform the reconstruction also in the direction. Of
course, the cost of this kind of reconstruction is very high. If the cost
to perform a 1D reconstruction is then for nD reconstruction we need

per grid point.
The reconstruction problem in the triangular case is
Problem 7.3. (Two dimensional reconstruction for triangles)
Given the cell averages of a function

find a polynomial of degree at most for each triangle
such that it is a order accurate approximation to the function
inside

In particular, gives approximations to the function at the triangle
boundaries, which are needed in forming the finite volume schemes.

The general procedure to solve this problem is the following. Once
given the location and the order of accuracy we first choose a stencil

based on neighboring triangles and then we try to
find a polynomial of degree at most whose cell average in
each of the triangle in agrees with that of If the given
linear system has a unique solution, is called an admissible stencil.
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Of course, the reconstruction is performed using only such admissible
stencils and this procedure is essentially two dimensional.

In the sequel we describe the ENO finite volume schemes for the 2D
conservation law (7.15). Again, we do not solve directly this equation
but we focus on its integrated version.

For a structured mesh, we integrate (7.15) over the cell to obtain

where is the cell average. We approximate this equation by the
conservative scheme

Here, again, the numerical flux is defined by

where and are respectively Gaussian quadrature weights and
nodes for approximating

and are the order accurate reconstructed values obtained
by the following ENO reconstruction.

ENO reconstruction. We use the one-dimensional ENO reconstruc-
tion Algorithm 7.1 on the two-dimensional cell averages in the (or

direction to obtain one-dimensional cell averages in (or Then,
using again the one-dimensional ENO reconstruction in the (or
direction, we recover the function itself.

We remark that the superscript — implies the values obtained within
the cell and the superscript + implies the cell
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The flux is defined similarly,

for approximating

Here the order accurate ENO reconstruction values are
obtained as above and is a one-dimensional monotone flux such as
(7.10), (7.11) or (7.12).

Consequently, the ENO finite volume procedure, given the cell av-
erages and the one-dimensional monotone flux   could be the
following:

Algorithm 7.3. (2D ENO finite volume scheme for rectangular mesh)
1. Follow the above ENO reconstruction procedure to obtain the

values

at the Gaussian nodes;
2. Calculate the flux using (7.17) and the flux using

(7.18);
3. Form the scheme (7.16).
The time discretization works as in the 1D case. If the geometry

cannot be covered by a Cartesian grid, the computational domain can
be mapped smoothly to a rectangle by the transforms

leading to

for example. The smoothness of and guarantees a high order
approximation to and the above scheme is still conservative.

Unfortunately, this 2D ENO finite volume scheme for rectangular
mesh is very expensive and this is why multidimensional finite volume
schemes of order of accuracy higher than 2 are rarely used for a struc-
tured mesh. Finite difference versions of such schemes are much more
economical for these cases.

One advantage of the ENO finite volume method is that it can be de-
fined on arbitrary meshes, provided that an ENO reconstruction on that



The Finite Volume Method and the Generalized Difference Method 411

mesh is available. Consequently, adaptive algorithms can be formulated
and therefore the cost could be greatly reduced.

Let us discuss now the case of unstructured meshes, using a two-
dimensional ENO reconstruction. Taking the triangle as a control
volume, the semi-discrete finite volume scheme for the equation (7.15)
is

where is the cell average, and n is the outward unit
normal of the triangle boundary

The line integral is discretized by a Gaussian integration for-
mula

where  is replaced by a one-dimensional numerical flux
in the n direction, any of (7.10), (7.11) or (7.12). For example, the
Lax–Friedrichs flux yields

where is an upper bound for Here and are the
reconstructed values of inside the triangle and outside the triangle
(inside the neighboring triangle) at the Gaussian points, see [1], [138].

2. Generalized Difference Method
In the sequel we will shortly present the GDM, following [83].

2.1 Two-Point Boundary Value Problems
We will illustrate the principle of this generalization of the finite vol-

ume method by studying the simple case of a two-point boundary value
problem. Consider the problem

where we have both natural and essential boundary conditions. Here we
will suppose and As we know,
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by multiplying the equation with

and by integrating by parts, we obtain the variational problem to find
the functions such that

where

If the solution of the variational problem (7.20)
then is also a classical solution.

The Galerkin method consists in choosing a finite dimensional sub-
space of and solving of discrete problem of finding
such that

The finite element method constructs as a space of piecewise poly-
nomial functions. For the finite volume method the type of problem
(7.20) is generalized as follows.

We discretize by the grid

and we call, as above, the subintervals elements. We will
denote and Let be again the set
of the polynomial functions of order less than or equal to and

the set of the piecewise polynomial functions with respect to T. Gener-
ally, we denote

the space of the piecewise polynomial functions of order less than or
equal to on

The essential boundary condition is imposed by choosing the
subspaces
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As above, we multiply the original equation by and we
integrate by parts on obtaining

or, shortly,

where

Thus we obtain the variational problem to find
such that

Of course, if is a solution of the problem (7.22) and
then is also a classical solution of the problem (7.19).

In the sequel we will simply denote Also, we denote
the Heaviside function

and the Dirac distribution, which is also the derivative of and we
use the “formula”

for all smooth functions The piecewise polynomial function can
be expressed as the sum of a continuous function and a step function

Consequently, for the functions or for functions with
continuous, the above formulas will be interpreted in the sense of

distributions. Of course, in the case of a function is
reduced to its original definition.
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Let us present now the principle of the finite volume method. We will
construct the grid

and the dual grid

where

We will denote and
the cells of the dual grid. We will choose the trial functions from the

space as the space of finite elements with respect to
the grid and the test functions from the space as
piecewise polynomial functions, of low order, with respect to the dual
grid T*, from the space The discretized form of the vari-
ational problem by the finite volume method is to find such
that

Different choices of lead to different schemes. Let us describe
some particular cases.

2.1.1 The Linear Case
Let us consider the problem

where and
We will discretize the interval by the grid as above, where we

will denote and We suppose that the grid
satisfies a requirement of the type for a constant

which does not allow the generation of very small cells compared
with the others.

The space will be chosen as the space of the piecewise linear func-
tions, corresponding to the grid It consists of the functions which
are continuous on and is linear on each and thus
it is uniquely determined by the values at the ends of the element. Ob-
viously, this is an subspace of
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As for the finite element method, a basis in is formed by the
functions

Then is expressed as

where On the element we have

We will now construct the dual grid as above, and we will choose
as the piecewise constant functions space. It contains all the functions

such that for and is a constant on each

The basis for this space consists of the functions

and then every is expressed as

with
We will discretize now the variational equation (7.23). We will look

for

such that

In the case of our equation,
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for and

The unknowns    can be determined from the system

We remark that the left-hand side of the system coincides with that
obtained by the classical finite differences method, if we approximate the
integrals from the right-hand side with respectively The
matrix of the system is symmetric, tridiagonal, i.e.,

As regards the convergence of the algorithm, if then

(we notice that the seminorm and the norm are equivalent in the
space

2.1.2 The Quadratic Case
Consider now the problem
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where and
We will choose now as the subspace of functions that are piecewise

polynomial of second order, with respect to the grid Thus any
function must be continuous, satisfying and being on
each element a second order polynomial, determined by its values at
the ends and the midpoint of Obviously, we obtain a
subspace of

We find a basis if on each element we look for quadratic functions
which take at the three nodes associated to the element (the ends and the
midpoint) the successive values 1,0,0, respectively 0,1,0, respectively
0,0,1. So that, the basis elements will be

and

for
Then, any can be expressed as

where and On each element
we have
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where
We will choose the dual grid (which generates a space of the

same dimension) as

where The functions will be
also chosen piecewise constant, and form a space spanned
by the basis

and

Then any is represented as

We can now discretize the problem. The discrete variational problem
is now to find the function such that

where

respectively,
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In all these expressions and for the quantities on the
right-hand side of must be dropped. Similarly, we make the convention
that and

From the quadrature formulas

we obtain the system

If the unknowns are arranged in the order

then the coefficient matrix of the system is also symmetric tridiagonal
and of the form

where

and so on.
As regards the convergence, we have the following result.
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THEOREM 7.1. If is the solution of the problem (7.24)
and is the solution of the discretized by quadratic element problem
(7.25), then

2.1.3 The Cubic Case
Let us consider the more general problem

where and
We will choose now as the space of the piecewise polynomial func-

tions of third order with respect to the grid Thus any function
must be continuous and differentiable, satisfying and

on each element it is a cubic polynomial determined by its values and
derivatives at the ends of We obtain a subspace
of

We construct a basis looking for cubic polynomials P which verify

respectively

In the first case, while in the second case
where  will be separately determined on each element. By

the changes of variable respectively we obtain the
corresponding expressions of P on the elements thus we have
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Any could be represented as

where
On each element we have

and

where
We will choose the dual grid (which generates a space of the

same dimension) as

where The functions will be chosen now piecewise
linear, from a space with the basis

and

Then, any is represented as
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where and
Let us discretize the problem. The discrete variational problem is now

to find the function such that

Let us study here only the dominant term from i.e.,

From (7.27) and (7.28) we have

and

respectively

We will approximate the integral by

from which we obtain
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and for the endpoints

Therefore the approximate bilinear form for is

where A is a symmetric matrix of the form

We remark that it is a sparse matrix, with a band of the same width as
for the corresponding finite element method but easier to obtain.

As regards the accuracy order of the method, we have
THEOREM 7.2. Suppose that the homogeneous problem

admits only the trivial solution and that the solution of the problem
(7.26) satisfies For the solution of the problem (7.29)
we have the evaluations

for a sufficiently small
The above result shows a good accuracy and a uniform convergence

of the approximate solutions to the exact one. In some cases we have
also a superconvergence.

THEOREM 7.3. Suppose that the solution of the problem (7.26)
satisfies  and the grid is a uniform grid.
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Then for the approximate solution of the problem (7.29) we have the
estimation

This result shows that at certain nodes the accuracy could be in-
creased with respect to the optimal one.

2.2 Second Order Elliptic Problems
Let be a bounded domain with piecewise smooth boundary

and let us consider the boundary value problem

of elliptic type. This means that and are smooth enough
and they verify

where is a constant. We also suppose
The associated variational problem is to find such

that

where

In order to discretize the problem, let and be finite dimensional
spaces (of the same dimension); the discretized problem is to find

such that

The case leads to the standard Galerkin method. In the
finite volume method we choose, generally, and even is not
included in U. It is defined by a dual grid and the equation (7.31) is
considered in the distribution sense. Different choices of and
generate different schemes and the representation of by a basis of
leads to a system of algebraic equations for determining the coefficients.
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We will present the case of a triangular mesh. The case of quadrilat-
eral elements is treated similarly.

Suppose that is a polygonal domain which will be divided into a
finite number of triangles. These have no overlapping internal regions;
a vertex of any triangle does not belong to a side of any other triangle,
it may coincide only with another vertex. Moreover, each vertex of
is a vertex of a triangle.

Each triangle is called an element and each vertex is called a node.
All these elements constitute a triangulation of where is the
maximum length of all the sides.

Let us construct the dual grid Given a node let
be the neighboring nodes and the midpoints of the sides Choos-
ing a point on each element we will connect successively

to form the polygonal region (obviously, the polygo-
nal line is closed after a finite number of segments). The polygon
is the dual element of and all the dual elements constitute the dual
decomposition of

For concrete problems the following dual decompositions are the most
important. One case is to choose as the barycenter of the triangle

and the other is when is the circumcenter of the same
triangle.

Of course, the triangulations must be quasi-uniform, corresponding
to the relation (6.16), i.e.,

for any node Q of the dual grid The two above important cases for
the choice of the nodes also implies the relation

for every node of the grid Here and are respectively
the area of the element from containing Q and the area of the dual
element

The space can be chosen as the space of the piecewise linear func-
tions generated by Therefore, the functions should be continuous;
they satisfy and on each element K from is a linear
function with respect to and determined by its values on the vertices
of the triangle. Consequently,

The expression of these elements with respect to a basis in is made
as in the formula (6.17).

Concerning the test functions space, these will be chosen piecewise
constant with respect to The spatial basis is constructed as follows.
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For any interior node we choose the function

Then any is expressed as

where P belongs to the set of the interior nodes. If and

is the interpolant on we have the estimation

With these discretizations, the numerical problem is reduced to find-
ing for which

or

where is the set of the interior nodes from Here

and is the outward normal to the boundary of the element and

The integrals can be calculated by different quadrature formulas.
Let us illustrate the method on the simplest case of the Poisson equa-

tion
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for which

Now and are constant on each element, thus the integrals do
not depend on the location of the nodes We obtain the system

where
In the case of a uniform triangulation (see Figure 7.1) the discrete

Figure 7.1. Uniform triangulation
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system reduces to

where represents In fact, this is the standard five points
scheme.

But we could consider an equilateral triangulation, with the sides
from where (see Figure 7.2)

Figure 7.2. Equilateral triangulation

In this case the discrete system becomes

Of course, in all the above formulas, the last node coincides with
the first (for instance,

As regards the errors, we have the following estimation.
THEOREM 7.4. Let be the solution of the problem (7.30) and

the solution of the problem (7.32). If then
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This estimation could be improved by choosing better spaces The
presented methods could be extended for quadrilateral meshes, to high
order elliptic equations or to nonlinear equations.

2.3 Parabolic Equations
Let us consider now the mixed problem for a parabolic equation

where is a bounded domain in with a Lipschitz continuous bound-
ary and A is a second order elliptic differential operator,

The corresponding variational problem is to find a function
such that

Here

and we suppose

In order to discretize this problem we will construct a quasi-uniform
grid and dual grid on together with the spaces and

The discrete problem is to seek a function for
such that

where is the interpolation projection of in
If respectively are bases of

and the above problem could be expressed in the following form:
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find such that the coefficients verify

where are the coefficients of

If we denote the matrices

and the vectors

for the above system can be rewritten in matrix form

which can be solved by specific methods. We remark that M is nonsingu-
lar thus the differential system has a unique solution for any

As regards the error estimation we have
THEOREM 7.5.  If respectively are the solutions of the problems

(7.33) and (7.34), then

In order to obtain numerical solutions for the problem (7.33) we must
also discretize the differential system (7.34).

Let us denote by the time stepsize and by
At the moment we will discretize the time derivative by a backward
finite differences formula



The Finite Volume Method and the Generalized Difference Method 431

Thus we obtain a fully-discrete scheme (backward Euler):
find such that

If we choose other discretization type for the time derivative, for
instance

then we obtain also a fully-discrete scheme (Crank–Nicolson):
find such that

Both methods are implicit and the coerciveness of guarantees the
existence and the uniqueness of the solutions for a given

As regards the error estimation of the fully-discretized schemes, we
have the following results:

THEOREM  7.6. Let and be the solutions of the problem (7.33)
respectively of the backward Euler scheme. Then

for
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THEOREM 7.7. Let and be the solutions of the problem (7.33),
respectively of the Crank–Nicolson scheme. Then

for
The above schemes were the most simple, with an accuracy of order
In the sequel we will discuss a high order scheme.
Let us consider the mixed problem

where

with with respect
to

We will choose the grid and the (barycenter) dual grid on
We take as the space of the piecewise cubic polynomial functions
related to belonging to and satisfying the boundary conditions,
and as the space of piecewise linear functions related to belonging
to C.

The semi-discrete problem is to find such that
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and we have the following error estimation result.
THEOREM 7.8. If respectively are the solutions of the problems

(7.35) and (7.36), then

If we consider a fully-discrete Crank–Nicolson scheme,

we obtain
THEOREM 7.9. Let  and be the solutions of the problems (7.35)

respectively Crank–Nicolson scheme. Then

for
Similar results could be obtained for hyperbolic problems.
As a conclusion, we can see that for accuracy and robustness similar

to the finite element method, the finite volume method is more efficient,
with less computing effort.

2.4 Application
Let us consider now as an application of the GDM the numerical

simulation of underground water pollution. Underground water is often
contaminated by the chemical fertilizer and pesticide in agriculture, for
example, which seep into the ground with rain or irrigation. These
solutes in the water perform a convective motion (with respect to the
underground water) and a diffusive motion due to the density diffusion
of the water molecules.

A mathematical model describing the contaminated water (or the wa-
ter with any chemical solute), is the following equation of the solute
density C:
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Here is the saturation thickness (depending on V is the known

velocity of water, is the diffusion coefficient tensor,

W is the amount of the water flooded into (positive) or pumped off
(negative) from a unit area of water-bearing formation. In particular,
if the water goes in or out through a well i.e., is either a
source or a sink, then where Q is the amount
of water and the Dirac distribution. Finally, is the density of the
solute, known for a source and unknown for a sink. Obviously, initial
and boundary conditions are also considered.

Let us consider now a triangulation and its barycenter
dual grid see for example Figure 7.2, where a node
together with its neighboring nodes and its dual element are depicted.
The sources and the sinks must be taken as nodes and, moreover, if
the coefficient of the diffusion term is discontinuous on a line L, then L
should be cut into several line segments by some nodes and such that
each segment is a side of an element.

We assume that C is continuous when crossing such an
and the flow of the solute is also supposed to be continuous,

for the unit outer normal vector to L.
The trial function space is the piecewise linear function space re-

lated to with the vertices of the elements as the nodes while the test
function space is the piecewise constant space corresponding to

Let us integrate the equation (7.37) on We obtain

By Green’s formula and using instead of C, we have
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Working now in the triangle with a barycenter (see again
Figure 7.2) and using the linearity of we evaluate the above
line integrals piecewise on the fold line segments obtained by intersecting
the integral line with

For example, in we have

where, denoting by the coordinates of a point P,

and

Similarly,

Here, on the line segment of equation

we have



436 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

while on of equation

we have

Moreover,

Concerning the source term of the equation (7.37), if is not a well,
then it is directly computed, while if is a well, then

and, in this case,

Finally, we discretize the derivative with respect to on the left-hand
side of the equation (7.37). Let be the time step size and let us take
the nodes Using, for example, the Crank–
Nicolson method, we obtain

The above equations with initial and boundary conditions give the
GDM for the problem (7.37).This scheme could be easily extended to
tetrahedral, cuboid or triangular prismatic grids on a 3D field.
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Unfortunately, in the computation of contaminated underground wa-
ter, one often encounters problems where the diffusion coefficient is much
less than the convection speed. In such a case, the above method fails
to approximate accurately the transitional band that results from the
diffusion and undesirable oscillations appear. Upwind schemes are often
used to eliminate these oscillations.

Let us consider a simpler two-dimensional solute transfer equation

where the diffusion tensor D and the convection speed V are known.
The source term is at a well and we have also
initial and boundary conditions.

As above, let and be a triangulation and its
barycenter dual grid. Let be the piecewise linear, globally continuous
function space and the piecewise constant function space. Denote by

the interpolation projection operator from to i.e., for given
we have and

If we integrate the equation (7.43) on for example, taking
and replacing in the convection term by then we

obtain

Now, the diffusion term is calculated according to (7.38), (7.39), (7.40)
and (7.41) with while the source term is calculated according to
(7.42) with The convection term is treated as follows.

We apply Green’s formula

denoting by where and (see Figure
7.2) and we define
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Then we have the approximation

Finally, using the Crank–Nicolson method (for example) to discretize
the time we obtain the scheme

where the right-hand side is calculated as above. Applying it to the
equation (7.43) the oscillations disappear and the density front becomes
narrower with a more accurate position [83].



Chapter 8

SPECTRAL METHODS

The spectral methods approximate the unknown functions by trun-
cated series of orthogonal functions for example Fourier series for
periodic problems or Chebyshev or Legendre polynomials for nonperi-
odic problems, that is

where the values are the unknowns. The specific way to determine
these unknowns, characterizes the spectral method.

For example, in the case of the problem

the Galerkin method consists of the vanishing of the residue
“in a weak sense”, i.e.,

tions
The Galerkin method works when the functions satisfies homoge-

neous boundary conditions. This happens for the trigonometric systems
where periodic conditions appear but it does not for the orthogonal
polynomial systems. For these cases the Galerkin method is modified
by reducing the weak vanishing of the residue equations only for

where is a weight function associated to the orthogonality of the func-
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and by adding the boundary conditions

thus obtaining the tau method.
Another possibility to calculate the unknown coefficients is to require

that the given equation is satisfied at a certain grid, together with the
boundary conditions, i.e.,

obtaining the collocation method. From the interpretation of the ex-
pression of as a Lagrange interpolation polynomial at the nodes

where the unknowns to be determined are, in fact, the val-
ues These methods use also relations which express the deriva-
tives of at the nodes implying the values of at the same nodes,
relations deduced by differentiation of the above relation.

The spectral methods are very attractive, due to the fact that the
distance between the exact solution and the approximative solution

is of order that is

where depends on the regularity of (the highest derivative order
that admits). Therefore, for a sufficiently large number of grid
points, the accuracy is determined by the regularity of the exact solution.
Particularly, if the solution is infinitely differentiable, the error
tends towards zero faster than any power of which means a spectral
accuracy. This behaviour is better than that of the finite differences or
finite element methods where the accuracy is fixed, of order
depending on the approximation scheme.

In the previous sections two principal numerical methods were pre-
sented. The first one, the finite differences method (and its variants),
replaces the function by its values
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on a given grid. The derivatives of different orders of the function are
then approximated on the same grid, by processing the discrete values.
The second one is the finite element method (and its variants) which
replaces the function by the coefficients of its development with respect
to a given function’s basis,

Its derivatives are calculated directly from the above expression and
then they are rediscretized with respect to the same basis, so that the
derivative coefficients are obtained as functions of the original coefficients

The great advantage of the finite differences method consists in the
simplicity of the relations which discretize a differential problem, for a
required (possibly high) accuracy. But if the computational domain has
a more complicated geometry, this advantage is lost.

The finite element method adapts very well to computational domains
of any admissible form, it allows the local refinement of the mesh depend-
ing on the gradient of the approximated solution, it allows an increasing
accuracy depending on the complexity of the discretization formulas.
However, this accuracy is limited by the qualities of the basis functions
used for the discretization.

Both above discretization methods lead to solving of algebraic sys-
tems. Another of their advantages is the fact that the obtained linear
(or linearized) algebraic systems have sparse matrices, which requires
a reasonable computing effort even for a very large dimension of the
systems.

The discretization by developing the function with respect to a prop-
erly chosen orthogonal system of basis functions has, moreover, the great
advantage that the approximation accuracy depends on the smoothness
of the function to be approximated: the higher smoothness (the func-
tion has higher order derivatives), the faster decaying of the coefficients
sequence This means that smooth functions could be very well ap-
proximated by a very small number of (development) coefficients. Of
course, the matrices of the systems obtained by this type of discretiza-
tion are now “full”, but their small dimension could compensate this
drawback.

This section, following [13], presents such a type of discretizations.
They induce a linear transformation between and its coefficients se-
quence between the physical and the transforms space, called
the finite transform of If the basis system is complete, this transform
could be inverted and the function can be described either through its
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values in the physical space or through its coefficients in the transforms
space.

The coefficients depend on all the values of in physical space. But
a finite number of coefficients could be calculated, with an accuracy
depending on the smoothness of the function from a finite number of
values of on a properly selected grid. This defines a discrete transform
between the set of the respective values of and the set of respective
approximate (discrete) coefficients. It is important to remark that this
discrete transform could be performed in many cases by fast procedures
with a number of operations of order instead of usually
required by the matrix-vector multiplications.

1. Fourier Series
1.1 The Discretization

It is known that the set of functions

is an orthogonal system in i.e.,

The Fourier series of the function is

where

are the Fourier coefficients of the series being convergent in
An important problem is to approximate by the truncated Fourier

series

Since from the Parseval identity we have
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a result is that the approximation error depends upon how fast the
Fourier coefficients decay to zero when which means that it
depends on the smoothness and the periodicity of

Indeed, if we have

thus If and then
Iterating, if and is periodic for

then Particularly, if is infinitely differ-
entiable and periodic with all its derivatives, then its Fourier coefficients

decay faster than any power of a property called spectral accu-
racy. Of course, this property can be only “asymptotically seen”, i.e.,
for large enough.

For applications, the truncation of the Fourier series is not sufficient.
Another adjacent problem will be to approximate the remaining Fourier
coefficients.

For an even let us consider the nodes

The discrete Fourier coefficients of the function corresponding to this
grid are

The above relation can be inverted and we have

Consequently, the trigonometric polynomial

interpolates at the nodes (8.1) and it is called the discrete Fourier
series of

We remark that the N coefficients correspond by a one-to-one
mapping with the N values of on the grid, a mapping which is
called the discrete Fourier transform and is described by the relations



444 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

(8.2) and (8.3). The calculations can be accomplished by the fast Fourier
transform (FFT).

The relation between the discrete Fourier coefficients and the exact
ones is given by the formula

which shows that the Fourier terms with the frequencies behave
on the grid (8.1) similarly with the terms corresponding to the frequency

and they are indistinguishable at the considered nodes. Therefore we
have the formula

where represents the aliasing error. Its influence on the accuracy of
a spectral method is of the same order as that of the truncation error.

Another phenomenon which could deteriorate the approximating qual-
ities of the method is the oscillatory behaviour of the truncated or dis-
crete Fourier series in a neighborhood of a discontinuity point (the ends
of the interval in the case of a non-periodic function, are also included
here). One remarks that has oscillations of order O(1) in a neigh-
borhood of order of the discontinuity point. The convergence
speed of towards is also reduced to an order even when
is smooth, excepting this discontinuity point. A similar behaviour can
be observed also for the interpolant

This phenomenon is called the Gibbs phenomenon and its reduction
is very important for both theoretical and practical considerations. Its
source is the slow decay of the Fourier coefficients in the case of discon-
tinuous (or non-periodic) functions, thus its attenuation can be obtained
by damping the high order modes. Of course, all the Fourier coefficients
carry information about the discontinuity so that this damping must be
carefully done.

Concluding, a practical mode to attenuate the Gibbs phenomenon is
to replace with the smoothed series

where must be real non-negative numbers and is a decreasing
function of

Some usual choices are:
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Cesaro smoothing,

which eliminates the Gibs phenomenon, preserves the bounded variation
quality of the function but generates a heavy smearing of modifying
its values outside of the neighborhood of the discontinuity;

Lanczos smoothing

raised cosine smoothing

The last two types of smoothing attenuate the Gibbs phenomenon and
approximate well the function outside of the neighborhood of the dis-
continuity.

Figure 8.1 shows these types of smoothings for the function

Here

where

1.2 Approximation of the Derivatives
The most important problem for the discretization of differential and

partial differential equations is the approximation of the derivatives of
the unknown function. This depends upon the representation of the
function in the physical or transforms spaces.

The differentiation in the transforms space is very simple. If
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Figure 8.1. The attenuation of the Gibbs phenomenon

is the Fourier series of then is the Fourier series
of the derivative Shortly, and it is called the Fourier–
Galerkin derivative of If both the series are convergent
in The differentiation and the truncation commute.

The differentiation in the physical space which starts from the values
of on the grid (8.1), evaluates the discrete Fourier coefficients by the
formula (8.2), then these coefficients are multiplied by ik in order to
obtain the discrete Fourier coefficients of the derivative and, finally, the
values of the derivative on the grid are obtained using the correspond-
ing formula (8.3). This differentiation procedure leads to the Fourier
collocation derivative of

So that we have and, generally, the
differentiation and the interpolation do not commute.

This transform of the values of on the grid to the (approximate)
values of the derivative on the same grid could be performed using a
derivative matrix i.e.,
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where

If the following formula is recommended:

where

and the calculations could be performed using FFT.
Concerning the truncation and interpolation errors, we have the result

for all where and Here is the
subspace of the functions belonging to with the first      derivatives
being periodical. A similar formula exists also for the interpolant
Particularly,

2. Orthogonal Polynomials
2.1 Discrete Polynomial Transforms

Let us denote by the space of the polynomials of at most N degree.
Let us choose a system of polynomials with degree equals to for

and orthogonal with respect to the weight over (–1, 1),i.e.,

The Weierstrass theorem implies that this system of polynomials is
complete in Then, any function of this space could be
expanded in a series with respect to the system that is



448 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

where the coefficients are given by the relations

and

We also define, in this case, the truncated series

In the sequel the nodes of different quadrature formulas will be im-
portant. We have the following results:

Gauss integration. Let be the roots of  and let
be the solution of the linear system

Then for and

In this case the roots are all inside of (–1,1). In order to include one
end point, we will consider the polynomial
where is calculated such that

Gauss–Radau integration. Let be the roots of
and let be the solution of the linear system

Then

Similarly, in order to include both ends of the interval in the grid, con-
sider where and are calculated
now such that
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Gauss–Lobatto integration. Let be the roots
of and let be the solution of the linear system

Then

We will suppose that the weight function is given together with the
corresponding orthogonal polynomials For a given N, let
be the nodes of the above quadrature formulas and let be the
corresponding weights.

Let us consider now a smooth function on (–1, 1) and let be its
values at the above grid points, Let be the inter-
polating polynomial on these nodes, i.e., and

Since it is a polynomial, it could be represented as

and then

We have also

where

The relations (8.6) and (8.7) relate the physical space of with
the transforms space of a transformation which is similar to that for
the Fourier series and which is called the discrete polynomial transform
associated with the weight and the nodes

The relation between the discrete and continuous polynomial coeffi-
cients is
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where

is the discrete inner product. Therefore, where
is the aliasing error.

We will present in the sequel some details about two types of polyno-
mials, much used in CFD. For more informations see [13] and [144].

2.2 Legendre Polynomials
The Legendre polynomials are the eigenfunctions

of the Sturm–Liouville problem

on the interval (–1, 1) with the weight Usually they are normal-
ized such that

The expansion of a function with respect to is

where the expansion coefficients are

Concerning the discrete expansions, the three types of grids and the
corresponding weights are:

Legendre–Gauss. are the roots of and the
weights are

Legendre–Gauss–Radau. are the roots of
and the weights are
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Legendre–Gauss–Lobatto. are the roots
of and the weights are

The differentiation in the transforms space consists in calculation of
the derivative coefficients with respect to the given function coefficients.
If is smooth enough, then could be represented as

where the derivative coefficients are

For the second derivative we have

Here,unlike for the Fourier series, the differentiation and the trunca-
tion do not commute, The result of this type of
differentiation is called the Legendre–Galerkin derivative.

The differentiation in the physical space is performed starting from the
values of of one of the above grids, then constructing the interpolating
polynomial and evaluating its derivative on that grid. The result,

is called the Legendre-collocation derivative of and
generally it is different from the Galerkin derivative

The calculation could be performed by multiplication of the vector of
the values of on the grid by a derivative matrix,
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where, for the Gauss–Lobatto nodes (for example), we have

For the differentiation by Legendre polynomials we have also some
estimations for the truncation and for the interpolation errors, precisely

for all where and A similar formula
also exists for the interpolant Particularly,

2.3 Chebyshev Polynomials
The Chebyshev polynomials are the eigenfunctions

of the Sturm–Liouville problem

The weight function is now If we normalize, as usual, by
the relation these polynomials become

Therefore, by the transform many results (and, implicitly,
fast computing possibilities) from the theory of Fourier series could be
adapted for Chebyshev polynomials.

The expansion of a function with respect to is

where the coefficients of the expansion are
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for

It is interesting to remark that by the change of function
the above series becomes a cosine Fourier series

If is infinitely differentiable, then is also infinitely differen-
tiable and periodical together with all its derivatives. In this case, the
Chebyshev coefficients decay to zero faster than every power of

For the discrete Chebyshev series we have the following nodes and
weights:

Chebyshev–Gauss

Chebyshev–Gauss–Radau

Chebyshev–Gauss–Lobatto

Taking into account also the boundary conditions, the most used are
the Gauss–Lobatto nodes. The transformation from the physical space
to the Chebyshev transforms space (8.7) could be performed by multi-
plication by the matrix

where

while the inverse transformation (8.6) is performed by multiplication by
the matrix
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We remark that both transforms could be efficiently performed by the
FFT.

We have again the aliasing error

The differentiation in the transforms space is represented by

where

while for the second derivative it is

The above coefficients could be also iteratively obtained, by using the
relations

where for
The above derivative is the Chebyshev–Galerkin derivative,

The Chebyshev-collocation derivative in the physical
space is efficiently obtained starting from the values of on the Gauss–
Lobatto nodes and calculating the discrete Chebyshev coefficients from
the relation (8.7). Then the differentiation in the transforms space is
made by the iterative formulas (8.8) and finally we transform it back to
physical space with the values of the derivative on the grid. All these
calculations could be performed by FFT, so that for orders this
way is much faster.

Of course, the Chebyshev–collocation could be described also in a
matrix form, as in the above section. We have
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where, for the Gauss-Lobatto nodes we have

We have also the following estimations of the truncation and interpo-
lation errors for the discretization by Chebyshev polynomials,

for all where and A similar formula
takes place also for the interpolant Particularly,

3. Spectral Methods for PDE
We will illustrate the spectral methods on some classical problems.

Consider, first, the Burgers equation

with a corresponding boundary condition. We should define the trial
space where the discrete solution will be looked for, the test space

where “the best” satisfaction of the partial derivatives equation is
demanded and, obviously, the discretization scheme for this equation.

3.1 Fourier–Galerkin Method
We will look for periodical solutions on the interval The space

will be chosen as the space of the trigonometric polynomials of
degree at most N/2 and the approximate solution of the problem will
be inr the form of a truncated Fourier series
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If we require that the residue of the equation (8.10) be orthogonal to
any test function from we obtain

thus, the coefficients must verify the differential system

where

and with the initial condition

The formula (8.11) is a particular case of a nonlinear term which could
be treated in different ways. For instance,

which is a convolution sum.

3.2 Fourier-Collocation
Again within the periodicity on hypothesis, we consider now

that is represented by its values on the grid
We will require that the equation (8.10) is satisfied at

the grid points, i.e.,

The unknowns are the functions of which verify the above
system and the initial conditions

If we denote by U the vector of these unknown functions, the system
could be written as
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where is the Fourier-collocation derivative matrix (8.5) and rep-
resents the pointwise product of the two vectors.

We remark that the Burgers equation could also be written in the
conservative form

Applying to this form the Fourier-collocation method, we find the dif-
ferential system

which is not equivalent to (8.12). We also remark that for the Fourier–
Galerkin method there is no difference between the two discrete systems.

3.3 Chebyshev-Tau Method
Let us look for the solution of the problem (8.10) on (–1, 1) with

the boundary conditions We seek the discrete
solution as the series

and again we require that the residue is orthogonal to polynomials of at
most N – 2 degree

This leads to

where

and it could be calculated by the formula
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To these relations we join also the boundary conditions
which are transformed to

The relations (8.14) and (8.15) give a system of N + 1 differential
equations for the functions with the initial conditions

3.4 Chebyshev-Collocation Method
Now the discrete solution is represented by its values at the grid

points and the equation should be satisfied at
the same points, i.e.,

To these relations we also join the boundary conditions

and the initial conditions

In this case the vector of the unknowns is

The Chebyshev-collocation derivative matrix (8.9) applies to a vec-
tor of N + 1 dimension (components), with the first and the last com-
ponent zero. This means, in fact, the deletion of the first and the last
column of But the partial differential equation is discretized with
respect to only at the interior nodes the values of the
derivative at the first and the last node being not used. This means the
deletion of the first and the last row from the derivative matrix.

Concluding, in the presence of the boundary conditions
we could work with the matrix given by
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which performs the first order differentiation at the interior nodes and
with

which perform the second order differentiation at the interior nodes. The
matrix form of the discrete system is thus

3.5 The Calculation of the Convolution Sums
In the Burgers equation and in other equations from fluid dynamics we

should discretize also some nonlinear quadratic terms of the form
In the physical space this reduces to a simple multiplication

of the values at the nodes, while in the transforms space this leads to
the calculation of a convolution sum

The direct calculation requires operations (and much more
in the spaces of higher dimension). This computational effort can not
be accepted, taking into account that in the physical space only O(N)
operations are needed. We have seen that in some cases the direct or
converse passing from the transforms space to the physical space could
be performed by FFT which needs usually (in similar conditions) only

operations.
The idea is to pass from the coefficients of and from the transforms

space to their values at the nodes, respectively in physical space,
to make the required sum in the physical space, i.e.,

and then to calculate the coefficients of in the transforms space. The
total operations amount in this way is of order

However we must remark that these transforms between the physi-
cal and the transforms spaces introduce aliasing errors too, so that the
methods using such type of evaluation of the convolution sum are not
genuine spectral methods. They are called pseudospectral methods and
there are some techniques to decrease these aliasing errors.
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3.6 Complete Discretization
In the above examples, only the spatial discretization was performed,

leading to a semi-discretized form of the given problem

a procedure which is called the method of lines.
In the study of the stability of these methods the linearized system

interferes, where L is the Jacobian of F at the respective point.
If L is a diagonalizable matrix, by a change of variable, the linear

system could be decoupled into independent equations of the form

where are the eigenvalues of L.
The numerical integration method for the differential system is asymp-

toticly stable if for small enough time stepsize the product of by
any eigenvalue (possibly complex) belongs to the stability region of the
respective numerical method. Thus, it is important to know the eigen-
values of the derivative matrices of first and second orders.

For the operator on the interval (–1, 1), in the presence of the
boundary condition the Chebyshev-collocation discretization
becomes to the multiplication of the vector by
the matrix

where is the derivative matrix (8.9) and are the Gauss–
Lobatto nodes. The spectrum of this matrix, for different values of N,
is represented in Figure 8.2.

The MATLAB program is
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Figure 8.2. The spectrum of the Chebyshev-collocation first derivative matrix

We remark computationally that every eigenvalue has a negative real
part and their magnitudes satisfy Moreover, the first
derivative matrices are very sensitive to round-off errors as we can see
in the cases N = 32, respectively N = 64.

Concerning the second derivative matrix, for the operator on
the interval (–1, 1), in the presence of the boundary conditions

the Chebyshev-collocation discretization leads to the mul-
tiplication of the vector by the matrix
given by (8.16). The eigenvalues are real negative and it can be shown
(theoretically and numerically) that there exist positive constants and

independent of N, for which

The numerical calculations show that about two-thirds of the eigenval-
ues approximate very well the eigenvalues of the second order derivative
operator with the prescribed boundary conditions. Only the upper-third
of the discrete eigenvalues show a very strong growth together with N.
This fact influences the stability of the spectral numerical methods for
differential systems and imposes the use of some unconditionally stable
procedures which often are implicit. However, the very good accuracy



462 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

of spectral methods allows the use of some coarser grids than for other
methods and this fact reduces essentially the computing effort.

4. Liapunov–Schmidt (LS) Methods
An efficient method, which can be used for different types of boundary

value problems is the Liapunov–Schmidt (LS) method, elaborated in the
years 1906–1908 and reformulated in a modern language by L. Cesari
after 1963 [17]. This method applies to some nonlinear equations of the
type

for instance in the presence of some bound-
ary conditions, considered on the domain of the linear operator L.

Let X and Y be real Banach spaces and let F be an application

satisfying

We are looking for nontrivial solutions of the equation
The value is a bifurcation value (or is a bifurcation point)

for the above equation if every neighborhood of in contains
nontrivial solutions of it. The following important result holds.

THEOREM 8.1. If the point is a bifurcation point for the equa-
tion then the Fréchet derivative cannot be a linear
homeomorphism of X to Y.

In the sequel we will consider so-called Fredholm operators. A linear
operator is called a Fredholm operator if the kernel of L,
ker L, is finite dimensional, the range of L, imL, is closed in Y and the
co-kernel of L, cokerL, is also finite dimensional. Concerning
we have:

THEOREM 8.2. Let be a Fredholm operator with kernel V
and co-kernel Z. Then there exists a closed subspace W of X and a
closed subspace T of Y such that

The operator is bijective and has a continuous
inverse, hence it is a linear homeomorphism of W onto T.

We may decompose now every and uniquely
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hence the equation is equivalent to the system of equations

If we denote by using a Taylor expansion we have

and, consequently, the considered equation becomes

or

Let now and be projections determined
by the decomposition. Then, the above equation leads to

The equation (8.19) is a fixed point equation. If can be determined
as a function of and the equation (8.18) becomes an equation in
a finite dimensional space for the finite dimensional

Although used mainly for the theoretical demonstration of existence of
the solutions of such a problem, including the branching of Navier–Stokes
solutions for example, the above LS method (or the alternative method,
following Cesari) is also very useful for the effective approximation of
these solutions. We will present, shortly, a constructive variant of the
LS method, illustrated by some examples, following [145].

Let S be a real, separable Hilbert space, a linear
operator and a nonlinear operator. We impose the
following assumptions:

a) L is a closed operator (i.e. and imply
and self-adjoint, D(L) is dense in S and the

is finite,
b) L has the eigenvalues such that

and when the corresponding eigenfunctions
determine an orthonormal complete system in S,

c) there is a subspace of S which is complete with regard to a norm
and for every its Fourier series

converges in the norm too and Additionally
we admit that there is an such that for every we have
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d) is closed vs. the norm
e) for every R > 0 there is and such that for all

with we have
and

Our purpose is the study of the existence of the solutions of the equa-
tion (8.17) in their numerical approximation and the
evaluation of the errors.

Let and

Obviously, We define the operators and
by the following:

If

then

It may be proved that is well defined and for all we have
while Further, from

and where

and we have At the
same time we have

Let us suppose, additionally, that
f) and D(N) is a subspace of
Let now be a solution of the equation Lu = Nu.

By applying the operators and to this equation, we find

called the auxiliary equation of the problem, and

called the bifurcation equation of the problem. Conversely, every solu-
tion of the system of (8.20) and (8.21), belonging to is
also a solution of (8.17).
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The auxiliary equation is, in fact, a fixed point problem. For its study,
let and be an “approximating” solution of the equation
Lu = Nu. Let be such that
We denote

We also define the operator by

for all We can show that for a sufficiently large becomes
a contraction with respect to the metric space so, according to the
Banach fixed point theorem, the operator admits a unique fixed point

called the associate element for and which can be got by the
method of successive approximations. So, we define another operator,

Consequently, for
every the associate element,  i.e., it fulfils
the auxiliary equation.

This element also satisfies the bifurcation equation if

i.e., if fulfils the system

called the system of determining equations. This is a system on for
the coefficients of So, we have the theorem:

THEOREM 8.3. If are sufficiently large, then the equation (8.17)
admits a solution if and only if the system of determining equations
(8.22) admits a solution and then

Consequently, the study of the existence of the solutions of the equa-
tion Lu = Nu can be reduced to the study of the existence of the solu-
tions of the determining equations and, more, their approximation into

leads to the approximation of the solutions of the equation Lu = Nu
into Summarizing, the approximating algorithm is:

a) We are looking for an approximative solution of the equation Lu =
Nu of the form

where
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b) By fixing we generate the associate function
performing the iterations

c) With as an approximation of the associated function, we
can write the system of the determining equations, with
the unknowns This system of the form is
then numerically solved, by a suitable method, for instance by Newton’s
method. Every evaluation of the function F means reiteration of the b)
step. Finally, thus determined generates, also by the b) iterations,
an approximation of the solution of the equation Lu = Nu.

We remark that in the case of Galerkin’s method, the approximat-
ing solutions are looked for in the form where the
coefficients are determined from the equations

i.e.,

These equations are derived from the determining equations for
If the system of the determining equations disappears. The
associate function to a certain satisfies the equation so
the algorithm reduces, in this case, to the transformation of the equation
Lu = Nu into a fixed point problem. Obviously, this case arises only
when there exists the inverse and is a contraction.

In the case of the Navier–Stokes equations, the nonlinear Galerkin
method [37], as a variant of the LS method, is based on the decomposition
of the velocity u into low, respectively high, frequency components

If we can express the pressure with respect to the Navier–Stokes
system becomes

where
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is a bilinear form. Projecting this equation on the modes and we
obtain the equivalent system

where P, Q are the corresponding projectors.
If z is small compared with y, the second equation reduces to

which appears as an interaction between the low and high frequency
components. We deduce

and replacing this expression into the first equation of the system, we
find

This equation appears as a bifurcation equation

for the NavierStokes system, if in the z equation we neglect the terms
B(z, z), B(z, y), B(y, z), i.e., here we approximate

The advantage of the LS method consists of the important reduction
of the dimension of the nonlinear system to be solved is, generally,
small) together with the possibility to oversee the approximating errors.
This advantage can be remarked in the following example [116], [117],
which presents an application of the LS method for the Burgers equation,
which means for

First, we will analyze the steady state case

where, for instance, is chosen such that
is an exact solution of this problem.



468 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

Using the above notation, in our case

endowed with the uniform norm The spectral problem

admits the eigenfunctions and the eigenvalues
satisfying the needed conditions.

We look for the solution of the problem (8.23) as a truncated Fourier
series

Let Then

and

The coefficients of the development of with respect to this system
are

In this case we have

from which the Fourier coefficients for Nu can be obtained at once:
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Consequently, the iterations which lead to the associated element for
are

for Obviously, the elements are fixed. Re-
iterating for when the desired accuracy is obtained (and
for sufficiently large it necessarily happens),

represents an approximation of the associated function
The determining equations become

which means

When the equation (8.24) has a solution then, for sufficiently large
the system (8.26) will also have a solution which can be approximated.
Such a procedure using the data computes by the
above iterative process (8.25), and on the base of the obtained results it
will improve the initial data The cycle is recomputed until the
requested accuracy is achieved and the associated function of the final
iteration represents an approximation of the solution of the problem
(8.24).

In the sequel we will consider the unsteady problem

where, for numerical computations, we will take
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so that the problem has the exact solution
The main difference with respect to the previous case consists in the

structure of the operator N where now the term is involved. Suppos-
ing we have calculated the solution at the time level the auxiliary
equation becomes at the time level

where is the time step. If is sufficiently large, the above itera-
tions converge towards the associated function This would be
a solution of the problem (8.27) if

In this case the coefficients of are

Since

the equations (8.28) represent a system of differential equations with re-
spect to the unknown functions with the initial conditions

To the system (8.28) of the form one could apply differ-
ent numerical procedures in order to get an approximate solution. For
instance, a predictor-corrector procedure involves

where the corrector can be recalculated. The result of the numerical
integration represents at the time level The associated function
for is then an approximation of the solution of the problem (8.27)
at the time level

The algorithm of this procedure is then the following:
One knows the approximative solution at the time level its coef-

ficients being
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1.

2.

3.

We evaluate

We calculate the predictor

We calculate the associated function for as the
limit of the sequence

where the iterations stop at a convenient rank S;
4. We evaluate

for
5. We calculate the “corrected”

The steps 3,4,5 are repeated if necessary;
6. We calculate the associated function for as the limit of

the sequence

where, again, the iterations are stopped at a convenient rank S. In
we now have the coefficients of the approximate solution of the

problem (8.27) at the next time level
7. The values obtained through the new enter into

and step 1 is repeated for a new level of time.
In what follows we will present some numerical results, taken from

[116]. The problem (8.27) was also solved, for comparison, by the finite
difference method (Crank–Nicolson for and forward Euler for
that is
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and by the LS method using the Euler method in (8.28) and predictor-
corrector as described in the algorithm.

Table 8.1 contains the maximal errors with respect to the exact solu-
tion, for the above three algorithms at time levels
and for While growing in order to accelerate the
convergence of iterations the phenomenon of the instability of the nu-
merical calculation is remarked, but by diminishing the time step size
the stability is kept up.

5. Examples
5.1 Stokes’ Problem

We will shortly present in this section, following [14], the particular
treatment of the Stokes problem by a spectral method. We will use the
representation in primitive variables — the velocity and the pressure —
due to their capability of extending towards 3D problems for which the
other formulations are less applicable. So, let us consider the problem

where is a bounded domain in The term from the first equation
may be derived, for instance, from a time discretization of a unsteady
Stokes problem and in this case

We are looking for a solution in the spaces
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based on a variational formulation. For that, we will introduce the
bilinear forms

and the linear form

and the problem (8.29) may be reformulated as

with the unknowns and
The discretization of this problem may be made by decomposition of
into spectral elements and by using a space of polynomial on spectral

elements functions

We will use the finite dimensional subspaces respectively
and the (linear) and bilinear approximative forms

based on the Gauss quadrature formulas. The discrete Stokes problem
becomes

with the unknowns and
In a matrix form, the above system can be written

where is the discrete gradient matrix and is the discrete
divergence matrix.
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The sufficient conditions for stability and consistency of the above
scheme are (Inf-Sup conditions)

These conditions are also of practical interest, as they influence the
convergence of the discrete solutions toward the exact solutions as

or the solvability of the Stokes discrete problem for a fixed N.
Indeed, one may show that

where

The constants indicate, if they are small, the non-optimality of
the discrete method.

But the system (8.31) may be reduced to a scalar equation for the
pressure (Uzawa method)

The proper eigenvalues of the discrete Uzawa operator
satisfy

and small values for    again indicate a poorly conditioned operator,
hence a slow convergence of the iterative methods used to solve the
problem (8.33).

We remark that for most of the existing schemes, is independent
of N but depends on N by the interaction of the pressure modes
with the velocity field. If we fix and require

then We have three possible situations:
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a) Such a ype of pressure, called spurious, must be elimi-
nated from in order to satisfy the condition (8.32).

b) as for some These are weakly-
spurious modes and yield as

c)  as These are the essential pressure modes,
the “good” ones, with respect to the conditions (8.32).

Concluding, we can state that

and the discrete pressure belongs to a subspace so that

We remark that the above variational formulation may be extended
also to the cases in which by using Inf-Sup generalized con-
ditions.

Let us illustrate the above numerical algorithms on the computational
domain (–1, 1) × (–1, 1) and look for and
Both the momentum and the continuity equation are collocated on a
Gauss–Lobatto grid in each direction This method, called

leads to but also leads to the appearance of the
pressure spurious modes

within a seven-dimensional space, together with the constant mode. For
3D problems, we have dim

These spurious modes must be filtered. One of the possibilities is the
reduction of the dimension of the space where the pressure is approx-
imated i.e., The momentum equation is collocated as
above but the continuity equation is collocated on
obtaining the so-called method. It is possible to use a single
grid, where the continuity equation is collocated on with

see [6]. Now there are no spurious modes for the
pressure but In this case, the numerical calculations indicate

Let us use the method for the unsteady Stokes problem



476 BASICS OF FLUID MECHANICS AND INTRODUCTION TO CFD

where By time discretization using the backward Euler
method (for simplicity), we find

for
Let N be an even natural number and the space of the polynomi-

als of degree N satisfying the homogeneous Dirichlet conditions on the
boundary We will approximate the velocity components by poly-
nomials from and the pressure by polynomials from We will
use the Chebyshev-collocation discretization, whose derivative matrix

is defined in MATLAB.
By eliminating the boundary conditions, we obtain

where The
matrix is obtained from the matrix D by eliminating the
first and the last rows and columns. Similarly we discretize the second
derivative by the matrix and, considering the boundary conditions,
we also obtain

In order to avoid the interpolation between different grids, we will
use for the pressure discretization the same nodes The derivative
operator is now defined by constructing the interpolation polynomial
for these N – 1 nodes, then by differentiating and taking the derivative
values on these nodes. So we obtain a new derivative matrix for
which

and this does not use boundary conditions at The elements of
are

In the two-dimensional case, the discrete derivative operators may be
expressed by tensorial products. Let us consider the mesh

where and let us represent
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by the matrix If we reassemble the matrix into the column
vector built by the columns of written one by one, the derivative
matrices for the components of the velocity become

of dimensions where I is the unit ( N – 1 ) matrix. Here
kron(A,B) is the Kronecker tensorial product of the matrices A and B
i.e., a matrix built by taking all the possible products of the elements of
A and B. For instance, if A is a 2 × 3 matrix, then kron(A, B) will be
the matrix

For the pressure we will have

The discretization of the Stokes system (8.30) is

where at From the Uzawa decoupling, by ex-
pressing the components of the velocity from the first two equations and
replacing them into the last equation, we obtain the following equation
for the pressure

where

and
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After the calculation of the pressure from the first two equations
we may compute the components of the velocity. We remark that if A
has a single zero eigenvalue, the discrete problem does not allow spurious
modes for the pressure. The constant mode, which is present in the
continuous case too, where the pressure may be calculated within an
additive constant, may be eliminated by imposing either
or, more practically, the vanishing of at a mesh node.

The case of the steady state Stokes problem may be obtained as the
above by considering and then

This matrix has, besides one zero eigenvalue, only real, positive eigenval-
ues and it is very well conditioned. This allows us to solve the pressure
equation (8.35) by direct methods (for a small N) or iterative, like the
conjugate gradient method (for large N).

The numerical solution of a particular problem, such as

whose exact solution is may be
performed by the MATLAB code
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which uses the following subprogram to calculate the derivative ma-
trices

As N is small, the algebraic system may be directly solved and the
computational errors for the velocity are of the order and for
the pressure of the order

5.2 Correction in the Dominant Space
We will now present, following [146], [118], [119], an improved algo-

rithm for the numerical calculation of the solutions of some differential
systems, coming from the spectral discretization of certain fluid dynam-
ics equations. We will consider equations of the type

with joined suitable boundary and initial conditions. Here L is a dif-
ferential operator with respect to spatial variables; the given function
and the unknown function are assumed to be sufficiently smooth for
the following calculations.

By spectral discretization with respect to the spatial variables, with
nodes on each dimension, we obtain a differential system of the form

where That system is large and
stiff, so a numerical integration by particular implicit methods should
be necessary, in order to avoid the strong restraint on the time step size
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imposed by the stability of the calculations which arises in the case of
many explicit methods. The improvement of the algorithm consists in
the use of implicit methods only for the dominant directions (associated
to eigenvalues of the largest magnitude), while the system is explicitly
integrated.

We will describe the method for the bidimensional diffusion equation

Using for the spatial discretization the Chebyshev-collocation spectral
method, with the Gauss–Lobatto nodes

we obtain

where U is the matrix is the second
order derivative matrix in the presence of the homogeneous boundary
conditions on Gauss–Lobatto nodes and is its transposed matrix.

The exact solution, in matrix form, is

Let for be the eigenvalues, respectively the
right and left eigenvectors of the matrix As we know, are real,
distinct, negative, the largest in magnitude being of order Then

The explicit numerical methods replace the above matrix by a trun-
cated sum of the exponential matrix

from which obviously results the need for a very small step, in order to
ensure stability. In the method of the dominant space correction, the
solution is approximated by an explicit method, followed by a correction
on the dominant directions such that the coefficients of the explicit so-
lution corresponding to eigenvalues of large magnitude are replaced by
the coefficients of the exact solution.
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In the case of the modified Euler method, for instance, the algorithm
is

where are the dominant eigenvalues (of the largest magnitude).
We observe that the matrix T may be precomputed and consequently,
the whole calculation is explicit. The constraints on the time step size
are those to be imposed if the dominant values do not exist, so the choice
of the time step may be made only from the accuracy requirements.

We will present, following [119], an application for a bidimensional
fluid through a grooved channel. The equations are

where v is the velocity, is the pressure and the compu-
tational domain D is the reunion of the rectangles A = [0, 2] × [0, 2],
B = [–3, 0] × [0, 2], C = [–3, 0] × [–1.68, 0]. The fluid enters through
{–3} × [0, 2] and exits through {2} × [0, 2], the periodical boundary
of the domain D, the other being the solid boundary The spatial
discretization is made by the spectral element method (see [3]). The
time marching is performed by a fractional step scheme; starting from

we perform:
1. The nonlinear step:

where (the third order Adams–
Bashforth scheme).

2. The pressure step:
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Taking the divergence of the first equation and using also the second
equation, we find

This problem is solved by a method, which avoids the spuri-
ous solutions. The discretized system comes from the discretization on
A, B, C by adding the smoothness conditions on the inside boundaries
(see [119]).

3. The viscous step:

In this step the dominant space correction is used. The rectangles
A, B, C are mapped into the standard domain [–1, 1] × [–1, 1] by affine
transformations. The derivative takes into account the periodicity
conditions on and the matching conditions on the interface A – B,
thus resulting in the derivative matrix of order 2(N – 1) on A, B and
yet using of order N – 1 on C. Similarly, the derivative uses the
Dirichlet conditions on and the matching conditions on the inter-
face B – C, so resulting in the derivative matrix of order 2(N – 1)
on B, C and keeping of order N – 1 on A.

The system (8.36), written with block matrices, becomes

We remark that we should calculate by iterative methods and record only
the dominant eigenvectors of the matrices respectively
the corresponding eigenvalues, in order to apply the correction in the
dominant space (generated by the right-hand side of the above system)
method. So, the time step size restrictions to ensure stability will be
imposed only by the remaining eigenvalues.



Appendix A
Vectorial-Tensorial Formulas

In what follows we intend to give a brief overview on some basic concepts and
results which have been used throughout this book. Most of these results represent
some vectorial-tensorial relations and they can be established by direct calculation.

First of all we will present a summary of some properties joined to the fundamen-
tal concept of a tensor (in general) and of a Cartesian tensor of order 2 in (in
particular).

A. The natural way to define a Cartesian tensor of order 2 in the (Euclidian)
vectorial space is to consider it as an element of the dyadic product i.e.,
an entity of the form1

At the same time the tensor [T] could be seen as a linear application (mapping)
of the Euclidean space onto itself. If this linear application has the components
(coordinates, matrix) (that is being an orthonormal basis in
through a transformation of coordinates (change of basis) defined by all
these components will change according to the rule which represents
also a criterion to define such a tensor.

As regards the sum of two tensors and the multiplication by a scalar (tensor of
order zero) as well, they could be defined by the corresponding operations on the
matrix associated to the linear application The tensor [0] is the “zero tensor”
which maps any vector on the zero vector of having also the matrix (0) while [I] is
the “unit tensor” which applies any vector to itself, having as components By
the “product” of two tensors [T] and [S] of matrices and respectively, we
understand that tensor [TS] which has the matrix (components)       Obviously,

1The dyadic or tensorial product of two vectors and from denoted by
is the linear application (mapping) of components that is the application defined by
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this product doesn’t commute (in general). We will say that a tensor [T] is invertible

Any tensor [T] can be uniquely decomposed into the sum of two tensors, one
of them [S] being symmetric while the other is skew-symmetric, that is

A tensor [T] is called orthogonal if and only if or, equivalently, if it
“conserves” the inner (dot) product in the way that

The scalar product of two tensors of second order [T] and [S], denoted by
is the scalar where and are, respectively, the components
of the two tensors. Once defined, the inner product, the pre-Hilbertian space of the
tensors of order 2 can be also normed by introducing the norm

The trace of a tensor [T], denoted by tr[T], is the scalar which means it is the
sum of the main diagonal components of the associated matrix.

A symmetric tensor is said to be positively defined (semidefined) if
for that is the attached quadratic form

is positively defined (semidefined).
By an eigenvector u of the tensor [T] we understand any vector u satisfying the

equation the corresponding scalar being the associated eigenvalue.
Within a certain basis the above equation comes to

while the condition on the nontrivial solvability of this homogeneous system (i.e. the
system yields also nontrivial solutions) is

The polynomial is called the characteristic polynomial and the equation
which gives the eigenvalues, is known as the characteristic equation.

The coefficients of the characteristic polynomial are the invariants of [T]
and they are given by

Concerning the eigenvalues, they will be real if and only if the tensor [T] is sym-
metric and they will be positive if and only if the tensor [T] is positively defined.

If the roots of the characteristic equation are distinct, the corresponding eigenvec-
tors will form an orthogonal basis. Such orthogonal eigenvectors could be determined
even in the case of multiple roots.

The following decomposition theorems hold:
POLAR DECOMPOSITION THEOREM (Cauchy): Any nonsingular tensor of second

order [T] ( det can be written in the form where [R]

The transpose tensor could be also defined by the equality

if there is a tensor such that
The successive powers (exponents) of a tensor will be

The transpose of [T], denoted by is the tensor whose matrix is the transpose
matrix of that is while a tensor is symmetric or skew-symmetric if

respectively.or
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is an orthogonal tensor while and [S] are positively defined symmetric tensors
with the same eigenvectors, this triplet of tensors being uniquely determined.

THEOREM.  Any symmetric tensor [T] of second order from can be uniquely
decomposed as where [D] is a symmetric tensor with the first
invariant (trace) zero, which is also called the deviator (tensor), while is a
spheric tensor (which means of the type being a scalar).

B. On the analogy of the definitions from the classical field theory one could also
define:

- the gradient of a vector as the second order tensor [T] = grad   v whose
components are

- the gradient of a second order tensor [T] of components as the third order
tensor [S] =grad[T] whose components are

- the divergence of a second order tensor [T] as the vector a which satisfies2

- the curl (rot) of a second order tensor [T] is again a second order tensor, denoted
by rot[T], which is defined as

- the Laplacian of a second order tensor [T] is that second order tensor defined by

The extension of the Green–Gauss (–Ostrogradski –Ampère) or the flux-divergence
theorem also holds, i.e. we have

obviously under the conditions of the differentiable tensor fields on D.
If form an orthonormal basis, which means then by accepting that

the Cartesian systems are right-handed we will also have where
being zero otherwise.

The relations are still valid.
Then the following formulas have been stated without proof or derivation (they

could be verified with the help of techniques developed so far):
a) The triple vector product is

b) For any four arbitrary vectors a, b, c and d we have (Lagrange)

2If [T] is a higher order tensor the result of applying the divergence will be a tensor of lower
order with unity.
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For two arbitrary vectors u and v we also have
c)

d)

e)

f)

and

g)

h) For a vector u and a tensor [T] we can write

i) Let [W] be a skew-symmetric tensor in With this tensor, a vector w can be
associated, called also its dual, such that

If which is the rotation tensor, then

For an arbitrary vector v and its dual w we also have
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simple waves, 123

fluid
barotropic, 38
inviscid, 34
Newtonian, 39
non-Newtonian, 40
real, 38
Reiner–Rivlin, 39
Stokes, 38
viscous, 39

form
differential, 44
integral, 44
variational, 357
weak, 44

formulation
inverse, 383, 384
original, 384
weak, 383, 384

Gibbs phenomenon, 444

heat

conduction, 28
radiation, 28
specific, 31
total, 32

hypotheses
Weyl, 48

hypothesis
Joukovski, 74
Stokes, 39

identity, Somigliana, 381
inequality, Clausius–Duhem, 30
integral representation, 380

Lagrangian coordinates, 5
law

Cauchy
first, 23
second, 22

conservation, 44
laws

behaviour, 33
constitutive, 26, 33

lemma, Cauchy, 21
lift, 72
lowerside, 121

Mach angle, 116
mass, 1

specific, 3
material volume, 4
materialize, 63
medium

homogeneous, 20, 33
incompressible, 19
izotropic, 34

method
Adams–Bashforth, 216
Adams–Moulton, 216
ADI, 302
characteristics, 293
collocation on points, 383
collocation on subdomains, 383
Crank–Nicolson, 216, 277
finite volume, 397
fractional step, 239
generalized difference, 398
Liapunov–Schmidt, 462
Liebmann, 297
MAC, 316
MacCormack, 269
multi-step, 216
Runge–Kutta, 212
S.O.R., 298
single-step, 215
Uzawa, 474
von Neumann, 258

Morawetz C., 128
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motion
permanent, 8
plane, 12
spectrum, 9
steady, 8

Noll, 33
number

Courant, 259, 280
Euler, 160
Froude, 160
Grashof, 162
Knudsen, 42
Mach, 111
Peclet, 161, 200
Prandtl, 162, 223
Reynolds, 139, 160, 312
Schmidt, 162
similarity, 160
Strouhal, 160

numerical
diffusion, 266
dispersion, 265

orthogonal projection operator, 138

paradox
D’Alembert, 72
Stokes, 165

parameters
state, 26
thermodynamic, 26

perfect gas, 36, 43
point

cuspidal, 74
stagnation, 60

Prandtl–Meyer flow, 117
principle

Cauchy, 17
dependence on the history, 33
Fourier–Stokes, 29
heat flux, 29
indestructibility of matter, 6
mass conservation, 18
material frame indifference, 33
objectivity, 33
spatial localization, 33
thermodynamics, second, 29
variation

energy, 24
momentum torsor, 20

problem
boundary values, 247
Cauchy, 208
well-posed, 231, 365

process
adiabatic, 28, 37, 43

irreversible, 27
reversible, 27
thermodynamic, 27

profile
dolphin, 76
Joukovski, 75
Karman–Trefftz, 76
von Mises, 76

relations
Rankine–Hugoniot, 46, 50
stresses-deformation, 33

Reynolds (transport) theorem, 13
rezidue, 199
rotation, 9

scheme
Lax, 277
Lax–Wendroff, 279

sharp trailing edge, 73
shock

back, 47
compressive, 48
condition, 234
front, 47
rarefaction, 48
wave, 43, 47

similarity, 159
simple wave, 117
solidify, 63
solution

weak, 43
sonic lines, 114
spatial instability, 200
spectral accuracy, 443
stability, 199
stream

filament, 9
function, 11, 60
lines, 8
surfaces, 8

stress vector, 21
stresses, 17
successive iterations, 209
Sutherland, 40
system

Chaplygin, 131
elliptic, 228
hyperbolic, 228
Oseen, 166
parabolic, 228
reduced, 163
thermodynamic, 27

tensor
rate-of-strain, 38, 141
rotation, 141
stress, 21
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theorem
Betti, 381
Cauchy, 22
Cauchy–Eriksen–Rivlin, 39
Euler, 13, 15
Green, 381
Helmholtz, 10
Kutta–Jukovski, 72
Lagrange, 53
Radon–Nycodim, 2
Reynolds, 13, 15
Riemann–Caratheodory, 65
the first Bernoulli, 53
the second Bernoulli, 53
Thompson (Lord Kelvin), 52
transport, 13, 15

thermodynamic
equilibrium, 27
state, 27

trace, 382
trajectories, 8
transform

discrete, 442

discrete polynomial, 449
finite, 441

transformation
Joukovski, 75, 77

triangulation, 366
truncation, 199
tube

rotation, 10
stream, 9

upperside, 121

variables
state, 26
thermodynamic, 26

velocity potential, 59
volume support, 3
vortex

lines, 9
surfaces, 9

vorticity, 9

wing profile, 70
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