


PARTICLES AND WAVES



This page intentionally left blank 



PARTICLES
AND

WAVES
Historical Essays in the Philosophy

of Science

PETER ACHINSTEIN
THE JOHNS HOPKINS UNIVERSITY

New York Oxford
OXFORD UNIVERSITY PRESS

1991



Oxford University Press

Oxford New York Toronto
Delhi Bombay Calcutta Madras Karachi
Petaling Jaya Singapore Hong Kong Tokyo

Nairobi Dar es Salaam Cape Town
Melbourne Auckland

and associated companies in
Berlin Ibadan

Copyright © 1991 by Peter Achinstein

Published by Oxford University Press
200 Madison Avenue, New York, New York 10016

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Achinstein, Peter.
Particles and waves :

historical essays in the philosophy of science /
Peter Achinstein.

p. cm. ISBN 0-19-506547-6
1. Science—Philosophy—History.

2. Physics —Methodology —History.
3. Wave-particle duality—History.

I. Title. Q174.8.A24 1991
501-dc20 90-7188

2 4 6 8 9 7 5 3 1

Printed in the United States of America
on acid-free paper



For My Daughter Sharon



This page intentionally left blank 



Contents

General Introduction, 3

Part I Theories of Light: Particles versus Waves

1. Introduction, 13

2. Newton's Corpuscular Query and Experimental Philosophy, 31

3. Light Hypotheses, 69

4. Hypotheses, Probability, and Waves, 117

Part II Maxwell and the Kinetic Theory of Gases

5. Introduction, 151

6. Theoretical Derivations, 165

7. Maxwell's Analogies and Kinetic Theory, 207

8. Scientific Discovery and Maxwell's Kinetic Theory, 233

9. The Only Game in Town, 259

Part III Cathode Rays and the Electron

10. Introduction, 281

11. Theory, Experiment, and Cathode Rays, 299

Index, 335



This page intentionally left blank 



PARTICLES AND WAVES



This page intentionally left blank 



General Introduction

This volume discusses methodological issues generated by three historical
episodes in nineteenth-century physics: the wave-particle debate about the
nature of light, the development of James Clerk Maxwell's first "particle"
theory of gases, and J. J. Thomson's discovery that cathode rays are particles,
not waves. The book contains three parts, each devoted to one of these topics,
beginning with an essay presenting the historical background of the episode
and an introduction to the methodological issues to be treated. The chosen
episodes have in common the idea that unobservable entities — either particles
or waves — are postulated to explain a range of observed phenomena. Unob-
servable waves or particles are invoked by wave and particle theorists to
explain observed optical phenomena such as reflection, refraction, and dif-
fraction of light. Maxwell introduces the idea of unobservable moving parti-
cles that exert contact forces in order to explain observed phenomena involv-
ing pressure, volume, temperature, heat conduction, and diffusion of gases.
Thomson postulates the existence of unobservable charged particles, rather
than waves, to explain the observed magnetic and electric deflection of
cathode rays.

Various general methodological issues are raised by such postulations, of
no less interest today than they were in the nineteenth century. The most
important concerns the legitimacy of introducing hypotheses that invoke "un-
observables." If science is to be empirical, can such hypotheses be employed?
How, if at all, is it possible to confirm them? A number of the scientists who
participated in these episodes held strong methodological views regarding the
proper answers to these questions. So did methodologists of the period, as
well as ones today, commenting on these episodes. Two of these views are
particularly important.

One espouses the "method of hypothesis," or hypothetico-deductivism,
which permits hypotheses about unobservables provided that from them ob-
servational predictions are derivable. The second, inductivism, permits hy-
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4 GENERAL INTRODUCTION

potheses only if they are inductively inferred from observable phenomena.
Indeed, it has been claimed by a number of contemporary writers that the
debate between particle and wave theorists of light in the nineteenth century
stemmed from fundamental differences over scientific methodology. The par-
ticle theorists in the nineteenth century, it is alleged, not only defended New-
ton's corpuscular theory of the early eighteenth century, but did so on New-
tonian inductive grounds. By contrast, it is said, nineteenth-century wave
theorists defended their theory using the antithetical method of hypothesis.

Essays in Part I of this volume are devoted to these methodological dis-
putes in connection with theories of light. Since particle theorists were
strongly influenced not only by Newton's physics but also by his methodologi-
cal views, Essay 2 discusses Newton's general methodological position regard-
ing "hypotheses" and then considers to what extent it is put into practice in
defense of his own corpuscular theory of light. Essay 3 analyzes the method-
ology actually practiced by nineteenth-century wave and particle theorists in
order to determine whether this debate rested on a division between sup-
porters of the method of hypothesis and inductivists. Essay 4 considers the
philosophical basis for the nineteenth-century dispute between John Stuart
Mill and William Whewell over the legitimacy of the method of hypothesis.
Various probabilistic formulations of this dispute are constructed, and, using
these, the opposing positions of Mill and Whewell are assessed. Both men
applied their views to the wave theory. This essay analyzes the actual strategy
of the nineteenth-century wave theorists in terms of the probabilistic formula-
tions introduced.

In Part II, I turn to Maxwell's development of the kinetic theory of gases in
the middle of the nineteenth century. Maxwell himself held methodological
views about the postulation of unobservables; a number of these views are
discussed in the essays in this Part. For example, in 1855, in his first major
electrical work, he advocates what he calls the method of physical analogies
as one that enables him to avoid hypotheses about unobservables. He also
speaks in terms of an analogy in his first work on kinetic theory. Essay 7
considers to what extent he is employing a method of analogy when he
develops his kinetic theory, and why and how he does and must go beyond
analogies and introduce hypotheses about unobservables. In later work Max-
well explicitly rejects the method of hypothesis in favor of what he calls the
"method of physical speculation." Unlike the former, the latter requires that a
hypothesis have independent warrant. In Essay 8 I consider whether Maxwell
had such warrant for the fundamental assumptions of his 1860 kinetic theory.
For some he did, for others not. By appeal to Maxwell's actual practice, I
develop a general position that explains why various hypotheses about unob-
servables that he introduced were worth considering, despite their lack of
independent warrant. In this respect, I suggest, the method of hypothesis is
correct, even if other claims it makes are questionable.

One of Maxwell's most important contributions was his derivation of a
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distribution law for molecular velocities that bears his name. Essay 6 raises
the question of what role such derivations play in theoretical physics. It
challenges a basic assumption in the method of hypothesis, inductivism, and
other methodologies that the only or at least the principal role of a derivation
is to provide an empirical test for a theory or to explain some known empiri-
cal fact. By examining the specific historical context, roles for Maxwell's
derivation quite different from this are discovered.

Part III of the volume discusses J. J. Thomson's postulation of the electron
as a result of a series of experiments he conducted on cathode rays at the end
of the nineteenth century. The main methodological question raised concerns
the relationship between the particle theory of cathode rays defended by
Thomson (against the wave theory) and the experiments he performed to
support the theory. Were the latter somehow derived from the former, or is the
reverse true? More generally, how are theories postulating unobservable enti-
ties related to the experiments to which they lead and that are alleged to
confirm them? I defend a series of theses about this relationship and draw
conclusions concerning the hypothetico-deductive method as well as standard
philosophical theories about what constitutes scientific evidence for hy-
potheses about unobservables.

One theme appearing in various essays concerns a strategy frequently em-
ployed to argue for theories invoking "unobservables." Because this strategy is
of particular importance, and because its full development and philosophical
justification take place over the course of several essays, it may prove useful at
the outset to bring together various strands. The strategy contains both an
explanatory part and what I call "independent warrant." The latter is usually
established by some form of inductive or causal-inductive reasoning. Sche-
matically, in the simplest case, we have some "substance" S (e.g., light, gases,
cathode rays) that exhibits some observed property P. In other known cases
when something X exhibits P this is always or usually caused by X's having
some components (or structure) Q. It is inferred that probably S's exhibiting
P is caused by its having Q as well, even though Q in the case of S is too small
to be observed (e.g., light particles, gas molecules, electrons).

Frequently, this reasoning is more complex due to the fact that more than
one known cause can produce property P. A typical nineteenth-century argu-
ment for the wave theory of light begins by noting that light exhibits the
property of moving from one point to another in a finite time. In other
known cases finite motion is produced by the transference of some body or
bodies from one point to another or by the transmission of a wave disturb-
ance through a medium. It is concluded with some probability that the mo-
tion of light is produced by either particles or waves.

Now in this case wave theorists need some further argument to show why it
is unlikely to be particles. This they provide in one of two ways, each of which
also involves inductive reasoning from observed cases. One is direct. If light
consists of particles emanating from luminous bodies, then light should ex-
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hibit some property P, since observed particles generally exhibit that proper-
ty. (For example, light from massive bodies such as the sun should be deceler-
ated by gravitational forces exerted by such bodies.) Since light is not ob-
served to have P, it is concluded that it is unlikely that light consists of
particles. There is also an indirect method of argument. In order to explain
certain observed phenomena (e.g., diffraction), those who support the oppos-
ing particle theory of light introduce certain auxiliary assumptions (e.g., that
diffraction at the edges of an aperture is caused by attractive and repulsive
forces that act at a distance and have certain features). Although such forces
are probable, given the assumption that light consists of particles, wave theo-
rists argue that the forces are very improbable without such an assumption.
And these improbabilities are established by induction from observed proper-
ties of known forces. (See Essay 3 for the development of this argument.) By
contrast, it is claimed, the wave theory introduces no auxiliary assumptions
with this feature.

Whether the reasoning is direct or indirect, and whether it supports its
conclusion by an explicit consideration of contrary hypotheses, an essential
element involves inductive or causal-inductive reasoning from observed prop-
erties. Such reasoning yields high probability for a theory about "unobserva-
bles" based on observed properties together with known regularities involving
such properties in other cases. Let T be the theory in question, O the fact that
the substance S exhibits certain observed properties (which form the basis for
the induction), and b (for background information) the observed regularities
in other cases (b may include other established facts as well). Then the induc-
tive reasoning is claimed to show that p(T/O&b) > k, i.e., the probability of
T on O and b is "high"—greater than some threshold k of high probability.
This is what I call the "independent warrant" for theory T.

Now for the explanatory part of the strategy. Typically a scientist develop-
ing a theory postulating unobservables will spend much of his time showing
how the theory can explain various observed phenomena—ones in addition to
those in O above. The wave theorist will use his theory to try to explain
rectilinear propagation, reflection, refraction, diffraction, interference, etc.
Frequently these explanations take the form of deductive derivations from
basic assumptions of the theory expressed quantitatively. The scientist regards
these as important not only because he wishes to explain the phenomena in
question in some unified way, but also because he regards a theory of light
that can do so as more likely to be true than one that cannot. In short, where
O1, . . . ,On are observed properties of light in addition to those in O, a
scientist wants to determine not just whether his theory T has high probability
given O and b—the "independent warrant"—but whether it has high proba-
bility given this together with the other observed properties of light, i.e., given
O1, . . . ,On&O&b. If the former probability is high, and if he can show that
T can explain the remaining observed optical phenomena On . . . ,Oninsuch
a way that they follow deductively from T together possibly with b, then the
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latter probability— p(T/Ol . . . On&O&b) — must be at least as high. This is
an important role played by such explanations in the assessment of the proba-
bility of a theory. Such a role is possible even when no inductive arguments
can be constructed from the explained phenomena to the theory.

Can the fact that O1, . . . ,On are explainable by derivation from theory T
by itself guarantee high probability for Tl It cannot, since the same phenom-
ena may be explainable by derivation from a conflicting theory T'. If the
probability of such a conflicting theory T on the basis of the background
information b alone is at least as great as that of T on b, then the probability
of T cannot rise above 1/2 no matter how many observable phenomena are
explained by derivation from T(see Essay 4). Suppose we require not just that
the observations be derivable from the theory T but what Whewell in the
nineteenth century called "consilience" and "coherence." Consilience is the
demand that T explain a range of phenomena including ones of a kind
different from those that prompted the theory in the first place. Coherence is
the demand that the assumptions in T "run together," that they be "mutually
supporting." Both consilience and coherence are somewhat vague notions.
Can they be given sufficiently precise interpretations so as to enable us to
determine whether a theory that explains known phenomena and that satis-
fies these criteria is guaranteed high probability? In Essay 4 various interpre-
tations are proposed. These are precise, they capture some intuitive ideas
underlying "consilience" and "coherence," but they fail to guarantee high
probability. I am dubious that interpretations exist that accomplish all three.

One additional argument is considered in Essay 9. Suppose that theory T
explains phenomena O1, . . . ,On, and that it is the only theory known by the
experts to do so, or else it is regarded by the experts as far more plausible than
any other theory they can think of that explains these phenomena. Under
such conditions we may say that it is "the only game in town." If it is, doesn't
this fact mean that it has high probability? Or, more guardedly, doesn't this
fact at least increase 7"s probability? Or even more weakly, doesn't it make T
worth pursuing? The answer given in Essay 9 to each of these three questions
is: not necessarily.

In the last two paragraphs I have noted conditions some methodologists
want to impose on theories to guarantee high probability for the theory when
it explains the phenomena. In point of fact, in each of the three historical
episodes discussed in the volume when high probability is claimed for (some
of) the assumptions of the theory, the basis for this claim is not just the
explanatory virtue of the theory, or this together with its consilience, or
coherence, or the fact that it is "the only game in town." In each case, in
addition, there is "independent warrant" of the sorts described earlier. There
are known regularities involving the same or similar properties in other cases
that form the basis for a (causal-) inductive inference to assumptions of the
theory. In short, the strategy actually employed involves reasoning that is not
just explanatory, or explanatory-plus-coherence (or other conditions some-
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times mentioned by supporters of the method of hypothesis). Nor is it simply
inductive. Rather, it combines elements of both.

This is a philosophical work that treats methodological issues generated in
actual scientific episodes — issues that influenced the participants and con-
cerning which they often held views of their own. Each episode involves the
postulation of unobservable entities, and each raises general philosophical
questions of interest to contemporary as well as past thinkers concerning what
scientific method is appropriate in such cases. My aim is to present the history
as well as the philosophy in sufficient depth to make the result enlightening to
philosophers and historians of science as well as to others who relish method-
ological pursuits.

Of the eight nonintroductory essays, two (7 and 11) are unpublished, and
six have been published elsewhere. (Essay 2 appears in Phillip Bricker and
R. I. G. Hughes, eds., Philosophical Perspectives on Newtonian Science
(M.I.T., 1990); 3 in Studies in History and Philosophy of Science 18 (1987); 4
in British Journal for the Philosophy of Science 41 (1990); 6 in Studies in
History and Philosophy of Science 17 (1986); 8 in Philosophy of Science 54
(1987); 9 in Philosophical Studies 58 (1990).) The essays resemble their origi-
nal self-contained forms, and so they may be read independently of each
other. Voracious readers with short memories will no doubt benefit from the
fact that some arguments and examples appear more than once. Others may
wish to read more selectively.

I am indebted to the National Endowment for the Humanities for a three-
year research grant to study methodological problems in nineteenth-century
physics. Many of the essays were written or planned during this period.
Various individuals share responsibility for this volume. David Sachs and
Fred Suppe both suggested the idea to compile my recent essays on topics in
the history and philosophy of science. Robert Rynasiewicz read practically all
the material and made devastating comments. Would that I could saddle him
with the remaining errors! Laura J.S. Mlawer made very helpful suggestions
in the case of a number of the essays. She also ably assisted with the proofs,
as did Alan Penczek and Sara Radcliffe. My wife Merle Ann provided valu-
able advice and encouragement throughout this project.
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Theories of Light:
Particles versus Waves
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ESSAY 1

Introduction

"Sometimes I think I would let them imprison me in a place a
thousand feet beneath the earth, where no light could reach me, if in
exchange I could find out what stuff that is: 'Light'."

BERTOLT BRECHT, "Galileo"

1. HISTORICAL BACKGROUND1

In 1704 Isaac Newton published the first edition of the Opticks. Book III of
this edition contains 16 queries concerning the nature of light. Later editions
expanded this number to 31. Query 29 begins as follows:

Qu. 29. Are not the Rays of Light very small Bodies emitted from shining Sub-
stances? For such Bodies will pass through uniform Mediums in right Lines with-
out bending into the Shadow, which is the Nature of the Rays of Light. They will
also be capable of several Properties, and be able to conserve their Properties
unchanged in passing through several Mediums, which is another Condition of the
Rays of Light.2

The theory that Newton is introducing in this query — known as either the
particle, corpuscular, emission, or projectile theory—makes three fundamen-
tal assumptions: first, that light consists of material particles projected from
luminous bodies; second, that these particles obey Newton's three laws of
motion; third, that they are subject to short-range forces of attraction and
repulsion, although, unlike the case with gravitation, Newton supplies no
special force law for light. In Query 29 Newton proceeds to show how these
assumptions, together with some supplementary ones, can explain various
observed properties of light. In the passage just quoted he assumes that no

1. I have benefited very substantially from the historical account in G. N. Cantor, Optics
after Newton (Manchester, 1983). Also worthy of mention here is Jed Z. Buchwald, The Rise of
the Wave Theory of Light (Chicago, 1989).

2. Isaac Newton, Opticks (New York, 1979), p. 370.

13



14 THEORIES OF LIGHT: PARTICLES VERSUS WAVES

forces act on the light particles in uniform media, so that, in accordance with
his first law of motion, the light particles will move in straight lines (the so-
called rectilinear propagation of light). Following this he asserts that if refrac-
tion of light is produced by a force of attraction exerted on the light particles
by the refracting medium, then Snell's law relating the sines of the angles of
incidence and refraction follows, as he demonstrated in Book I of the Princi-
pia (Proposition 94).

In addition, Newton shows how various other known properties of light
can be explained by the particle theory. Different colors, for example, are
associated with different degrees of refrangibility of the light rays that can be
observed when the rays are dispersed by a prism. The latter phenomenon is
explained on the particle theory by assuming that light consists of particles of
different sizes, those associated with red being the largest and with violet the
smallest. Forces on these particles in dispersion produce the least dispersion
in the heaviest particles and the greatest dispersion in the lightest ones. An-
other optical phenomenon involves the alternating dark and bright rings
(called Newton's rings) produced by light traveling through a thin film of air
between two lenses. Some of the light is reflected, producing the bright rings,
and some is transmitted, producing the dark ones. Newton speaks of a ray as
alternatively in a disposition to be reflected or transmitted (its "fits of easy
reflection and transmission"). He explains these fits by supposing that the
particles of light produce a vibration in the surrounding medium that is
swifter than the rays of light and would "overtake them successively, and
agitate them so as by turns to increase and decrease their Velocities, and
thereby put them into those Fits."3

Finally, the phenomenon of double refraction might be mentioned. When
light falls on the surface of certain crystals, including Iceland spar, two re-
fracted rays are produced. One, called the ordinary ray, obeys the standard
law of refraction; the other, the extraordinary ray, does not, but continues at
an angle to the former. To explain phenomena associated with double refrac-
tion, in Query 26 Newton introduces the idea that rays of light have "sides."
Whether a ray is refracted by the crystal in the usual manner, or in the unusual
one, will depend on the position of its sides with respect to the crystal. In
Query 29 Newton returns to double refraction, suggesting that only if rays of
light are bodies can they "have a permanent Virtue in two of their Sides which
is not in their other Sides, and this without any regard to their Position to the
Space or Medium through which they pass."4

Newton's Query 29, in which he shows how the particle theory can account
for various observed properties of light, is preceded by Query 28, which
begins as follows:

3. Ibid., f. 373.
4. Ibid., p. 374.
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Qu. 28. Are not all Hypotheses erroneous, in which Light is supposed to consist in
Pression or Motion, propagated through a fluid Medium?

In this query, Newton attacks a theory—or better, perhaps, a group of theo-
ries — according to which light is not a physical substance, but some type of
pressure or impulse or motion propagated through a medium or ether. Vari-
ous physicists had espoused a view of this sort. Descartes, for example, held
that light is not itself a motion of bodies but rather a tendency to motion that
is transmitted instantaneously through a medium. Hooke associated light
with the motion of the parts of luminous bodies that is transferred through a
medium, though probably not instantaneously. Huygens, who developed the
most sophisticated view of this sort in the seventeenth century, conceived of
light as a series of irregular pulses in an ethereal medium produced by the
motions of the particles of the luminous bodies. The transmission of the
pulses occurs in a finite time, not instantaneously, and

is propagated, as that of sound, by surfaces and spherical waves. I call these waves
because of their resemblance to those which are formed when one throws a pebble
into water and which represent gradual propagation in circles, although produced
by a different cause and confined to a plane surface.5

Huygens introduced a principle, which came to bear his name, according to
which

each particle of the medium through which the wave spreads does not communicate
its motion only to that neighbor which lies in the straight line drawn from the
luminous point, but shares it with all the particles which touch it and resist its
motion. Each particle is thus to be considered the center of a wave.6

Huygens used this idea in offering explanations of various observed optical
phenomena, including reflection, refraction, and the rectilinear propagation
of light.

In Query 28 Newton proposes a host of objections to wave theories of these
types. For example, he argues — presumably referring to Descartes' theory —
that if light were only the communication of a pression without actual mo-
tion, then it would be incapable of heating objects. If light involved the
communication of actual motion instantaneously, it would require an infinite
force. One of his most powerful objections is that if any of the versions of the
wave theory were correct, then light hitting some obstacle should bend into

5. Christian Huygens, Treatise on Light, reprinted in part in Henry Crew, ed., The Wave
Theory of Light (New York, 1900); quotation on p. 11.

6. Ibid., p. 21.
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the shadow (should be diffracted). Newton observed that this is so with water
waves and sound waves:

The Waves on the Surface of stagnating Water, passing by the sides of a broad
Obstacle which stops part of them, bend afterwards and dilate themselves gradually
into the quiet Water behind the Obstacle. The Waves, Pulses or Vibrations of the
Air, wherein Sounds consist, bend manifestly, though not so much as the Waves of
Water. 7

But Newton concludes: "Light is never known to follow crooked Passages nor
to bend into the Shadow."8

The only wave-theoretic explanation for double refraction of which New-
ton was aware was one by Huygens. This explanation postulates two different
vibrating media or ethers for light. In one, standard spherical waves appear
yielding the ordinary ray. The other, in which the velocity depends on the
direction of the pulse, is responsible for the extraordinary ray. In objecting to
this, Newton points to results of experiments he has described in Query 25
involving two crystals with planes of perpendicular refraction at right angles
to each other. In such cases rays that are refracted in the ordinary way in the
first crystal are refracted in the extraordinary way in the second one. Newton
observes that Huygens admitted being unable to explain such experiments.
Indeed, Newton adds, pulses or motions propagated from a source through a
uniform medium should be "on all sides alike; whereas by those Experiments
it appears, that the Rays of Light have different Properties in their different
Sides" (p. 363).

Newton's particle theory was accepted without question by many physicists
until the mid-eighteenth century, when problems with it came to be recog-
nized by its defenders as well as by a few who espoused a wave theory, such as
Leonhard Euler and Benjamin Franklin. Wave theorists regarded these prob-
lems as undermining the particle theory, while particle theorists viewed them
as an incentive to revise, refine, or augment the assumptions of their theory.
Let me mention just two of these problems.9

Gravitation. If light is composed of particles, then light rays from massive
bodies such as the sun and the stars should be decelerated by gravitational
forces exerted by such bodies. Accordingly, contrary to what was generally
thought, the velocity of light would depend on the mass of the body emitting
the light. Particle theorists proposed various possible remedies, including the
hypothesis that the gravitational force from the sun and stars is so small

7. Newton, Op ticks, p. 362.
8. Ibid., p. 363. Newton admits that there is some diffraction, but it is away from the shadow,

never into it.
9. For detailed accounts of these and various other problems, and of who raised and re-

sponded to them, see Cantor, op. cit., ch. 3.
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compared with the force ejecting the light particles that decelerations are
difficult if not impossible to detect.

Short-range forces. Following Newton, particle theorists invoked the exist-
ence of short-range forces, both attractive and repulsive, to explain various
optical phenomena. For example, to explain the refraction that occurs when
light passes from one medium to another of different density, Newton in-
voked an attractive force with a direction perpendicular to the surface of the
denser medium. Newton attributed the diffraction of light by an obstacle
away from the shadow to a repulsive force. Particle theorists required differ-
ent forces for different optical phenomena, without producing any quantita-
tive laws governing such forces or any unification of the forces postulated.
This was regarded by many as the most serious deficiency of the particle
theory.

Despite these and other problems, most physicists at the end of the eight-
eenth century clung to the particle theory for two reasons.10 First, it seemed
capable of explaining more optical phenomena in less objectionable ways
than any rival." Second, it was part of a general program, so successful in
celestial mechanics, to explain phenomena in terms of material bodies subject
to forces obeying Newtonian laws.

In 1800 Thomas Young, a British physician and scientist, published a paper
entitled "Outlines of Experiments and Inquiries Respecting Sound and
Light."12 In Section 10 of the paper ("Of the Analogy between Light and
Sound"), Young, noting the controversy between wave and particle theorists,
proposes to bring forward considerations that will mitigate objections to the
wave theory and to present some difficulties for the particle theory that he
claims "have been little observed." The first difficulty Young mentions derives
from the observed fact that in a uniform medium light travels with the same
velocity no matter what its source. But Young finds it difficult to believe that
"whether the projecting force is the slightest transmission of electricity, the
friction of 2 pebbles, the lowest degree of visible ignition, the white heat of a
wind furnace, or the intense heat of the sun itself, these wonderful corpuscles
are always propelled with one uniform velocity" (p. 613). A second difficulty,
which Young regards as even more serious than the first, concerns partial
reflection (the fact that at a refracting surface some light rays are reflected
and others are transmitted). If the light is monochromatic and consists of
particles of exactly the same kind, why should some be reflected and others
refracted? (He obviously rejects Newton's proposal that the particles set up

10. See Cantor, op. cit., p. 89.
11. Besides the wave theory there was a fluid theory, held by a small minority, according to

which light is produced by rectilinear motion rather than vibration of a fluid ether. The theory
was associated particularly with certain doctrines in chemistry and theology rather than physics.
See Cantor, op. cit., ch. 4.

12. Thomas Young, Philosophical Transactions of the Royal Society 90 (1800), pp. 106-150.
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swifter vibrations than the surrounding medium.) By contrast, Young be-
lieves, these two phenomena are readily explainable by the wave theory. For
example, the latter postulates an elastic ether, and vibrations "are known to be
transmitted through an elastic fluid with the same velocity" (p. 614). Young
claims that to explain partial reflection, as well as the phenomena of refrac-
tion and diffraction, one need only suppose that denser refracting media
contain greater quantities of ether without an increase in elasticity, and that
light "is a propagation of an impulse communicated to this ether by luminous
bodies" (p. 614).

In 1802 Young published "On the Theory of Light and Colours" (a Baker-
ian lecture given in 1801).13 He writes:

The object of the present dissertation is not so much to propose any opinions which
are absolutely new, as to refer some theories, which have been already advanced, to
their original inventors, to support them by additional evidence, and to apply them
to a great number of diversified facts, which have hitherto been buried in obscurity.
Nor is it absolutely necessary in this instance to produce a single new experiment;
for of experiments there is already an ample store, (p. 47)

There follow four propositions, which Young labels "hypotheses," that
express basic assumptions of the wave theory: first, that a rare and highly
elastic luminiferous ether pervades the universe; second, that a luminous
body excites undulations in this ether; third, that the different color sensa-
tions depend on the frequency of vibrations excited by light in the retina; and
fourth, that material bodies attract the ethereal medium so that the latter
accumulates within them and around them for a small distance. Young claims
that, contrary to what has usually been supposed, the first three hypotheses
can be found in Newton's writings. And he defends these by appeal to pas-
sages from Newton. The fourth hypothesis, which was contrary to Newton's
assumption that ordinary matter repels the ether, Young holds to be less
fundamental than the others, but "the simplest and best of any that have
occurred" to him.

Following this are nine "propositions" that develop the wave theory in a
qualitative way by indicating various properties of the undulations and how
certain observed optical phenomena are to be explained by reference to them.
(For example, the first states that impulses are propagated through a homoge-
neous elastic medium with uniform velocity.) These propositions are defended
by invoking experiments and observations, analogies with sound, deductive
argumentation, and appeals to authority. Historically the most important of
the propositions is the eighth, which is an early formulation of the principle

13. Thomas Young, Philosophical Transactions of the Royal Society 92 (1802), pp. 12-48.
Reprinted in part in Crew, op. cit., pp. 47-61.
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of interference, Young's most famous single contribution to optics. Proposi-
tion 8 is this: "When two undulations, from different origins, coincide, either
perfectly or very nearly in direction, their joint effect is a combination of the
motions belonging to each" (p. 60). This is the case when undulations are in
the same phase, and is called constructive interference. In the discussion that
follows this proposition, Young also speaks of the case when t  undulations
are 180 degrees out of phase, as a result of which they are dest yed (destruc-
tive interference). (He makes it clear he is speaking of undulations of the same
frequency.)

In 1807 Young published a two-volume work on natural philosophy.14 Lec-
ture XXXIX, entitled "On the Nature of Light and Colours" is a defense of
the wave theory.15 Young begins by noting that "it is allowed on all sides that
light either consists of the emission of very minute particles from luminous
substances, ... or in the excitation of an undulatory motion, analogous to
that which constitutes sound, in a highly light and elastic medium pervading
the universe . . . " (p. 359). He shows how both theories attempt to explain
various optical phenomena. With regard to a significant number of them,
including diffraction, uniform velocity of light, partial reflection, double
refraction, and so on, he claims that the particle theory but not the wave
theory introduces improbable auxiliary explanatory hypotheses. Of major
interest in this lecture is his first description of the double-slit experiment
demonstrating interference — his most famous experiment. It involves a beam
of homogeneous light falling on a screen in which there are two small slits that
produce diffraction of the light. This results in an image consisting of light or
dark stripes (the interference pattern) on a surface placed beyond the screen.

Young's work did not succeed in convincing particle theorists to mend their
ways. Some regarded it simply as a defense, albeit with some new wrinkles, of
an already discredited theory. Other particularly empirically minded scientists
rejected it primarily on the grounds that it postulated a luminiferous ether—
an hypothesis that was entirely speculative. Among the latter, Henry
Brougham, one of the founders of the Edinburgh Review and later Lord
Chancellor of England, was particularly virulent. Characterizing Young's
1802 paper as "destitute of every species of merit," Brougham objected to
Young's claim to be able to defend the wave theory without producing a single
new experiment. Brougham, a champion of the Newtonian particle theory,
argued that the particle theory, by contrast to the wave theory, is legitimate
because it is inferable by induction from experiments.

The most important contributor to the wave theory in the early nineteenth
century, and the one who turned the tide in its favor, was the French engineer
Augustin Jean Fresnel. Instead of relying heavily on qualitative accounts

14. Thomas Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts
(London, 1807).

15. Ibid., pp. 358-372.
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ofte appealing to analogies between light and sound, as Young had done,
Fresnel introduced quantitative mathematical analyses into wave theoretical
explanations of various optical phenomena. His most important contribution
was a mathematical analysis of diffraction, for which he received a prize from
the Paris Academy in 1819.

Fresnel's prize essay begins with a comparison between wave and particle
theory explanations of several optical phenomena, including the diversity of
colors, Newton's rings (fits of easy reflection and transmission), and diffrac-
tion. Fresnel argues that these are readily explained by the assumptions of the
wave theory, whereas to explain them on the particle theory requires invoking
additional, highly improbable assumptions. In the case of diffraction, for ex-
ample, the particle theory invokes an attractive force to explain diffraction
bands formed inside the shadow of the diffracting obstacle and a repulsive
force to explain those produced outside the shadow. In one type of diffraction
experiment, a beam of light passes through a narrow aperture and, according to
the particle theory, is diffracted by attractive and repulsive forces with their

rigin at the edges of the aperture. But if this is so, Fresnel argues, then forces
hould vary with the mass and shape of the edges of the aperture, and thus

affect the shape of the observable diffraction fringes produced. In experiments
using two edges of different mass and shape, however, Fresnel observed no
changes in the diffraction bands produced.16 Fresnel concludes that the phe-
nomenon of diffraction does not depend on the mass or shape of the body
intercepting the light but only on its size or on the size of the aperture. He adds

We must, therefore, reject any hypothesis which assigns these phenomena to attrac-
tive and repulsive forces whose action extends to a distance from the body as great
as that at which rays are inflected [diffracted], (pp. 98-99)

Similarly he rejects another possible particle explanation that attributes dif-
fraction to the existence of a "shallow atmosphere which has the same thick-
ness as the sphere of activity of these forces, and whose refractive index
differs from that of the neighboring medium" (p. 99). This assumption, like
the former, yields the conclusion that diffraction should vary with the shape
and mass of the edges. Fresnel thus concludes: "The phenomena of diffrac-
tion cannot be explained on the emission-theory."17

Turning to the positive side of the argument, Fresnel writes:

I now propose to show that we may find a satisfactory explanation [of diffraction]
and a general theory in terms of waves, without recourse to any auxiliary hypothe-
sis, by basing everything upon the principle of Huygens and upon that of interfer-
ence, both of which are inferences from the fundamental hypothesis. (p. 99)

16. A. Fresnel, "Memoir on the Diffraction of Light," reprinted in part in Crew, op. cit., pp.
81-155; see pp. 96-97.

17. Ibid., p. 99. Italics Fresnel's.



INTRODUCTION 21

He appeals to Huygens' idea that from each point on a wave front secondary
waves emanate, and, in accordance with the idea of interference, these sec-
ondary waves either constructively or destructively interfere, depending on
the phase relationships. What Fresnel attempts to determine quantitatively is
the resultant vibration at any point behind the diffracting device. His account
is much more sophisticated than Young's, not only because it is quantitative,
but also because in determining the resulting vibration it considers wave
contributions from all points on a wave front and because it considers all
cases of interference, not just the limiting ones involving a maximum or
minimum. Fresnel derives mathematical expressions for the amplitude of the
vibration at any point behind the diffractor, and for the light intensity at that
point. From these he infers the positions and intensities of the diffraction
bands — inferences that were confirmed experimentally. One striking confir-
mation occurred with respect to a consequence noted not by Fresnel himself
but by Simeon-Denis Poisson, one of the judges for the prize. It follows from
Fresnel's assumptions that when a circular disk is used as a diffractor, then at
the center of the shadow a bright spot should appear. This prediction was also
established experimentally.

Fresnel also made substantial contributions to a wave-theoretic under-
standing of the polarization of light. Certain phenomena, including double
refraction, illustrate asymmetrical properties of light, which led Newton, for
example, to postulate sides for light rays. A set of light rays with sides orient-
ed in the same direction was polarized, one with sides in different directions
was unpolarized. Jed Buchwald has suggested that prior to the work of
Fresnel, physicists thought of rays of light as countable physical objects
comprising a beam whose intensity is determined by the number of rays it
contains.18 To characterize asymmetries among the rays, Buchwald invokes
the analogy of a stick with a crosspiece at right angles to it. If the crosspieces
are oriented in the same direction, the light is polarized. Now in experiments
conducted by Fresnel together with Arago in 1819 it was discovered that while
unpolarized rays exhibit interference effects, those polarized at right angles to
each other do not. This cast doubt on the traditional assumption of wave
theorists that light waves, like those of sound, are longitudinal (i.e., their
direction of vibration is parallel to the direction of propagation). In 1821, as a
result of this and other polarization phenomena, Fresnel concluded that these
phenomena required forces acting in a direction perpendicular to the rays,
and therefore that light consisted of transverse, not longitudinal, waves. (A
transverse wave is one whose direction of vibration is perpendicular to that of
its propagation.)

Prior to Fresnel, even wave theorists frequently discussed optical phenome-
na by reference to rays of light. For example, Young most often spoke of

18. Buchwald, op. cit., p. xv.
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constructive and destructive interference at a point produced by the interfer-
ence of two rays. With Fresnel, optical phenomena are analyzed entirely in
wave-theoretic terms. A ray of light is no longer construed as something
physical, but as a mathematical abstraction representing a line drawn in the
direction of motion of a wave perpendicular to the wave front. The ether,
however, in which the waves are present was to be thought of as physical and
not as a mathematical tool or abstraction. According to Fresnel it consists of
mutually repelling molecules of material points that fill space and that satisfy
Newtonian mechanics.

By the 1830s, as a result of Fresnel's work, the wave theory was much more
widely accepted. During this period two major review articles appeared. The
first, a 246-page article by John Herschel,19 was completed in 1827. Herschel
presents detailed mathematical treatments of the wave and particle theories of
light. He admits that "neither the corpuscular nor the undulatory, nor any
other system which has yet been devised, will furnish that complete and
satisfactory explanation of all the phenomena of light which is desirable" (p.
450). Nevertheless he argues for the superiority of the wave theory with
respect to numbers of phenomena. In many cases, interference being just one
example, the particle theory offers either no explanation or one based on
improbable or purely ad hoc speculative assumptions, whereas the explana-
tion provided by the wave theory follows from its basic principles alone and
introduces no such questionable assumptions. And for at least some phenom-
ena—such as Newton's rings and the velocity of light in denser and rarer
media—the two theories make different predictions that can be experimental-
ly tested. In the case of Newton's rings, for example, Herschel notes that the
wave theory predicts that the intervals between the rings produced by the
perpendicular incidence of light should be black, whereas this should not be
the case for the particle theory. He writes: "M. Fresnel describes an experi-
ment made for this purpose and states the result to be unequivocally in favour
of that of undulations."20

The second review article, 119 pages in length, was published by Hum-
phrey Lloyd in 1835.21 Like Herschel, Lloyd proceeds by taking various
known optical phenomena and showing how, if at all, the two major rival
theories propose to explain each. He argues that the wave theory is superior to
the particle theory on the grounds that, unlike the wave theory, the particle
theory is either unable to explain various phenomena in a precise quantitative
way or can do so only by the introduction of complex assumptions that, given
established facts, are highly improbable or yield conclusions that are.

19. John Herschel, "Light," in Encyclopedia Metropolitana (1845).
20. Ibid., p. 473.
21. Humphrey Lloyd, "Report on the Progress and Present State of Physical Optics," Reports

of the British Association for the Advancement of Science 4 (1835), pp. 295-413.
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There were a number of phenomena, including dispersion and selective
absorption, that had not been adequately explained by the wave theory, and
during the 1830s these were investigated from a wave-theoretic perspective.
Some physicists, including Brougham, David Brewster, and Richard Potter,
continued to defend the particle theory even beyond 1850. Brewster, for exam-
ple, appealed to absorption phenomena in criticism of the wave theory. How
is it possible, he asked, for two rays with small differences in wavelength to be
such that one is absorbed and one transmitted by the same medium?22 How-
ever, despite the fact that several known phenomena remained to be given
satisfactory wave-theoretic explanations, by the 1830s and 1840s most physi-
cists concerned with optics came to support the wave theory. In 1833 one such
physicist, Baden Powell, constructed the table reproduced in Figure 1. This
table lists 23 optical phenomena and evaluates the explanations offered by the
wave and particle theories as "perfect," "imperfect," or "none." In the last
category there are 12 entries for the particle theory and only 2 for the wave
theory, while in the "perfect explanations" category there are 18 for the wave
theory and only 5 for the particle theory. Even the remaining particle theorists
agreed that as the wave theory had come to be developed in a quantitative
manner, it generally offered more satisfactory explanations of a range of
phenomena than did the particle theory. Because of this, Brewster, while
refusing to admit the truth of the wave theory, was willing to consider it a
useful instrument of analysis and prediction.

2. METHODOLOGICAL ISSUES

A fundamental methodological question suggested by the wave-particle de-
bate is this: Under what conditions, if any, can scientists legitimately intro-
duce and claim support for hypotheses that invoke "unobservables" such as
light waves or particles? Light waves are not visible in the manner of water
waves, nor can light particles be seen the way larger projectiles can. How,
then, can either theory be defended empirically, and how is one to choose
between them? Various physicists who participated in the wave-particle de-
bate, as well as historical and philosophical commentators, expressed strongly
held views on these questions.

Two general methodologies loom particularly important. One is the so-
called method of hypothesis, or hypothetico-deductivism, which claims that
if an hypothesis explains and predicts a variety of phenomena, this fact is
sufficient to confirm the hypothesis or render it probable. A second method-
ology— inductivism — insists that an explanatory and predictive connection

22. David Brewster, "Observations on the Absorption of Specific Rays in Reference to the
Undulatory Theory of Light," Philosophical Magazine 2 (1833), pp. 360-363.
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Interferences of po-
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between hypothesis and phenomena is not sufficient. There must also be
some independent warrant, which consists of an inductive connection (that is
not simply explanatory or predictive) between the phenomena explained or
others and the hypothesis. In the essays that follow we will see how such
methodologies are developed and defended by participants in the wave-parti-
cle debate, and we will consider the extent to which they are employed in
actual arguments given in favor of one theory or another. Do particle theo-
rists champion one of these methodologies and wave theorists another? Is this
reflected in their actual practice? Is the methodology they do in fact employ
legitimate?

Newton's methodology, which is a type of inductivism and a rejection of
the method of hypothesis, is explicitly formulated in various passages in the
Principia (particularly in the "Rules of Reasoning in Philosophy" at the be-
ginning of Part III, and in the General Scholium at the end), in a passage at
the end of the Opticks (pp. 404-405), in various letters, and in some unpub-
lished material.

At the end of the Principia Newton confesses that although he has estab-
lished that the force of gravity exists and has the various properties he at-
tributes to it (e.g., it varies with the quantity of matter contained in bodies),
he has

not been able to discover the cause of those properties of gravity from phenomena,
and I frame no hypotheses [hypotheses non fingo]; for whatever is not deduced
from the phenomena is to be called an hypothesis; and hypotheses, whether meta-
physical or physical, whether of occult qualities or mechanical, have no place in
experimental philosophy. In this philosophy particular propositions are inferred
from the phenomena, and afterwards rendered general by induction.23

This passage, although brief, makes a number of important claims. It defines
an hypothesis as "whatever is not deduced from the phenomena." It claims
that hypotheses "have no place" in empirical science. And it tells us that
particular propositions in empirical science must be inferred from the phe-
nomena and then inductively generalized. The questions that need answering,
then, are what Newton means by "phenomena," by "deduction," and by "in-
duction."

These questions are discussed in detail in Essay 2. Very briefly, to antici-
pate, by a "phenomenon" Newton means a fact established by observations
and acceptable by anyone making the appropriate observations. (In the Prin-
cipia, following the "Rules of Reasoning in Philosophy," Newton lists six
propositions as describing phenomena, including the proposition that the five
primary planets revolve about the sun — Phenomenon 3.) By "induction" I

23. Isaac Newton, Principia (Mathematical Principles of Natural Philosophy) (Berkeley,
Calif., 1966), p. 547.
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take Newton to mean an inference from some property found to hold for all
observed members of a class to the claim that it holds for all members of the
class or for some members not yet observed. To cite one of Newton's own
examples, "the bodies which we handle we find impenetrable, and thence
conclude impenetrability to be a universal property of all bodies whatsoever"
(Principia, p. 399). "Deduction" for Newton is a term that includes both
induction, as just defined, and (ordinary) deductions or demonstrations of
the sort produced in mathematical proofs. It also includes certain forms of
reasoning from observed effects to causes (e.g., from the fact that the moons
of Jupiter and Saturn obey Kepler's laws to the proposition that the motions
of these moons have the same causes). An hypothesis, then, for Newton is any
proposition that has not been derived from accepted observational facts by
ordinary deduction, inductive generalization, inference from similar effects to
similar causes, or any combination of these. Newton believes that the aim of
the scientist should be to provide the highest certainty possible in an empirical
endeavor, and that "deductions from phenomena," and only these, will do so.
Furthermore, he explicitly rejects the idea that the method of hypothesis can
provide such certainty. You cannot infer an hypothesis on the grounds that it
explains or entails the phenomena, no matter how many and varied these are,
since there may be conflicting hypotheses that will do so as well.

Now the fundamental assumptions of Newton's particle theory—that light
consists of material bodies that obey the laws of motion and are subject to
short-range forces of attraction and repulsion—are not "deduced from the
phenomena" by Newton in the queries of the Opticks. Accordingly, they are
"hypotheses" in the Newtonian sense. If we are to take seriously Newton's
remarks at the end of the Principia, they have no place in empirical science.
Yet clearly Newton does propose and consider them in the Opticks. Is he
violating his own methodology in doing so?

Obviously he is if one focuses only on his dictum that hypotheses have no
place in experimental philosophy. In the queries, and indeed in other parts of
his writings, Newton considers various propositions that are not deduced
from the phenomena. (Indeed, in the Principia there is a proposition even
called an hypothesis, viz., that the center of the system of the world is
immovable—Book III, p. 341.) Granted, then, that in practice he at least
considers hypotheses, the question is whether Newton makes any inferences
to them that are of a kind precluded by his inductive methodology. Does he,
for example, infer the truth of his particle hypotheses on the ground that they
explain various optical phenomena?

One possibility is that he does not violate this part of his methodology at
all since he makes no inferences concerning the particle hypotheses. He is
simply raising the question of whether such hypotheses might be true.24 An-

24. This interpretation of Newton is suggested by A. I. Sabra, Theories of Light from
Descartes to Newton (London, 1967), p. 312.
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other possibility is that Newton is indeed violating his own methodology by
using the method of hypothesis to argue from the explanatory success of the
particle theory to its truth. The first interpretation does not seem to be a fair
reading of Newton, since the queries are formulated rhetorically ("Are not the
Rays of Light very small Bodies emitted from shining Substances?") so as to
suggest strongly the answer: Of course! Moreover, Query 29 is followed by a
lengthy discussion that offers arguments in favor of the particle theory, and is
preceded by a substantial discussion giving arguments against the rival wave
theory. Newton does indeed seem to be making inferences. If he is, must these
be construed in accordance with the second possibility as instances of the
method of hypothesis, that is, as inferences of a type that Newton clearly and
explicitly rejects in his methodological remarks? In Essay 2 this question is
answered in the negative. An attempt is made to reconstruct Newton's reason-
ing in favor of the particle theory so as to take into account Queries 28 and 29
of the Opticks, together with the general methodological views he expresses in
various writings. This form of reasoning is then reconstructed in probabilistic
terms and critically evaluated, and the question is raised as to how, if at all, it
differs from "deduction from the phenomena."

As noted, Newton's influence in optical theory was dominant for more
than 100 years after Queries 28 and 29 were written. When Young attempted
to revive the wave theory at the beginning of the nineteenth century, he was
met either with indifference or scorn. Henry Brougham attacked him not only
for daring to question the authority of Newton in physics, but for failing to
follow Newton's methodological precepts requiring deductions from phenom-
ena and the rejection of the method of hypothesis. Some commentators on
the history of the wave-particle debate have taken this fact together with
others as suggesting that the debate involved not just differences over physical
commitments but, equally important, differences over methodologies. Can-
tor, for example, writes that nineteenth-century particle theorists considered
"induction to be the proper scientific method," while "supporters of the wave
theory, unlike its objectors, championed the method of hypothesis."25 Larry
Laudan also claims that nineteenth-century wave theorists employed a form
of the method of hypothesis, by contrast to the eighteenth-century inductivist
critics of the wave theory and of the imperceptible ether it postulates.26

In Essay 3, these historical claims about methodologies are examined and
found wanting. A typical argument strategy used by many nineteenth-century
wave theorists involves the following steps:

25. Geoffrey Cantor, "The Reception of the Wave Theory of Light in Britain: A Case Study
Illustrating the Role of Methodology in Scientific Debate," Historical Studies in the Physical
Sciences 6 (1975), pp. 109-132; quotations on pp. 111, 114.

26. Larry Laudan, "The Medium and Its Message," in G. N. Cantor and M. J. Hodge, eds.,
Conceptions of the Ether (Cambridge, 1981).
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1. Start with the assumption that light is either a wave phenomenon or a
stream of particles.

2. Show how each theory explains various observed optical phenomena.
3. Show that the particle theory in explaining one or more of these phenome-

na introduces improbable hypotheses, whereas the wave theory does not.
4. Conclude that the wave theory is very probably true and the particle theory

is not.

Step 2 does involve the idea of explaining a range of phenomena, which is
central to the method of hypothesis. But in steps 1 and 3 wave theorists
typically introduce considerations of a different sort. For example, in step 1
Lloyd bases the assumption that light is either a wave or a particle phenome-
non, among other things, on the fact that light travels from one point to
another in a finite time, and that in nature one observes such motion occur-
ring by the transference of particles or by a wave movement. Again, in step 3
part of the argument against a particle theory explanation of some optical
phenomenon is that this explanation introduces a cause that is very improba-
ble, given other observed phenomena. For example, to explain diffraction
bands both inside and outside the shadow, particle theorists introduce attrac-
tive and repulsive forces exerted by the edges of the aperture. But Fresnel, for
example, argues that in the case of other known forces the intensity of the
force varies with the mass and shape of the edges of the aperture. Yet experi-
ments show that with diffraction no such variation exists. Accordingly, the
existence of such forces is improbable.

In both of these cases there is inductive reasoning from a property found in
observed instances of a certain type to the assumption that it probably holds
for unobserved ones of that type — an inference that Newton himself could
accept. More generally, a typical argument strategy of wave theorists contains
two components: (a) show that the wave theory can explain a variety of
optical phenomena and (b) show that the wave theory has independent war-
rant. The second is accomplished using an eliminative argument that depends
on inductive reasoning at crucial points. While the first component is present
in the method of hypothesis, the second is not. In Essay 3 the steps of the
wave theorist's argument are analyzed in detail, and the view that the argu-
ment is a form of the method of hypothesis is criticized. In addition, it is
argued that the wave theorists did not support the method of hypothesis even
in philosophical reflections about their own practice. The question is then
raised concerning the extent to which the methodologies both practiced and
preached by particle theorists — including Newton in the eighteenth century
and Brougham and Brewster in the nineteenth—were different in kind from
that employed by nineteenth-century wave theorists. I argue that strong simi-
larities exist between these methodologies.

In the 1840s the philosopher John Stuart Mill and the scientist, historian,
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and philosopher of science William Whewell debated the issue of the proper
methodology to be used in science. Central to this debate was the question of
whether, and if so how, scientific hypotheses, particularly those postulating
"unobservables," can be verified. Whewell defends a version of the method of
hypothesis requiring that, in addition to an hypothesis explaining known
phenomena, it should satisfy three conditions: (i) it should predict new phe-
nomena; (ii) it should explain (and/or predict) phenomena different in kind
from those it was initially proposed to explain; (iii) it should render the system
into which it is introduced more "coherent." Whewell calls requirement (ii) the
consilience of inductions. (In Essay 4 I follow the practice of some Whewell-
ian commentators and lump (i) and (ii) together under consilience.) If an
hypothesis that explains known phenomena also satisfies (i), (ii), and (iii),
then, says Whewell, it is established. By contrast, Mill rejects the method of
hypothesis, explicitly denying that an hypothesis is even probable under the
conditions Whewell espouses. In place of the method of hypothesis Mill
proposes what he called the deductive method, which requires not simply an
explanatory or predictive connection between the hypothesis and the phenom-
ena, but that an inductive generalization be possible from those phenomena
or others to the hypothesis in question. For the hypothesis to be proved or
even probable, this last condition, which the method of hypothesis omits,
must be satisfied.

Whewell and Mill applied their opposing method gical views to the
controversy between wave and particle theorists of light. Whewell defended
the wave theory on the grounds that, unlike the particle theory, it not only
explained known facts but was also consilient and coherent. Mill attacked the
wave theory, particularly the unobservable ether it postulated, by rejecting the
method of hypothesis — even Whewell's more sophisticated version of it—that
he thought was being used to support it.

Essay 4 constructs various probabilistic formulations of the Whewellian
method of hypothesis and assesses the methodological debate in terms of
these. It argues that although both Mill and Whewell were correct in certain
judgments and mistaken in others, Mill's criticisms of the method of hypothe-
sis should be given the edge over Whewell's defense of it. However, contrary to
the claims of both Whewell and Mill, nineteenth-century wave theorists typi-
cally did not employ a method of hypothesis. They were attempting to pro-
vide not only explanations of phenomena—whether or not consilience and
coherence were satisfied — but also independent warrant for their theory. This
they did by using an eliminative strategy. Essay 4 provides a very general
analysis of this strategy in probabilistic terms and applies the analysis to the
specific argument that wave theorists used to defend their theory.
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ESSAY 2

Newton's Corpuscular Qu y
and Experimental Philosophy

The most controversial part of Newton's Opticks is the set of queries in Book
III. Here Newton introduces numerous unproved hypotheses. This seems strik-
ingly incompatible with his methodological views about empirical science or
"experimental philosophy" (as he calls it), as well as with his actual practice in
earlier parts of the Opticks and in the Principia. One such hypothesis—
on which I shall concentrate in what follows —is the subject of Query 29. It
states that light consists of particles. More precisely, it asks the question: "Are
not the Rays of Light very small Bodies emitted from Shining Substances?"1

Following this question there is a substantial discussion of the particle theory.
And immediately prior there is a discussion for several pages of the rival wave
theory, or more precisely, of the hypothesis that "Light is supposed to consist
in Pression or Motion, propagated through a fluid Medium."

In this essay I consider various interpretations of Newton's procedures in
those queries in the Opticks that pertain to the corpuscular hypothesis. My
aim is to see whether, and if so to what extent, these procedures violate
Newton's fundamental ideas about experimental philosophy. To determine
this some review of these ideas is necessary. Later I will assess part of the
Newtonian methodology.

PART I: NEWTON'S IDEAS ABOUT HYPOTHESES
AND EXPERIMENTAL PHILOSOPHY

My aim here is to focus on Newton's views about the proper procedures in
experimental philosophy, and on some examples in his work where he seems

1. Isaac Newton, Opticks (New York, 1979), p. 370.
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to be following such procedures. (I do not claim that he always does.) New-
ton's methodological views have been widely discussed, and some of what I
shall say is not ne , although I make certain claims here that I have not found
in the literature.

I begin not with the Opticks but with a celebrated methodological passage
at the end of Newton's Principia, immediately following "hypotheses non
fingo":

Whatever is not deduced from the phenomena is to be called an hypothesis; and
hypotheses, whether metaphysical or physical, whether of occult qualities or me-
chanical, have no place in experimental philosophy. In this philosophy particular
propositions are inferred from the phenomena, and afterwards rendered general by
induction. Thus it was that the impenetrability, the mobility, and impulsive force of
bodies, and the laws of motion and of gravitation, were discovered.2

Again in a letter to Cotes in 1713 Newton writes:

... as in geometry, the word "hypothesis" is not taken in so large a sense as to
include the axioms and postulates; so in experimental philosophy, it is not to be
taken in so large a sense as to include the first principles or axioms, which I call the
laws of motion. These principles are deduced from phenomena and made general
by induction, which is the highest evidence a proposition can have in this philoso-
phy. And the word "hypothesis" is here used by me to signify only such a proposi-
tion as is not a phenomenon nor deduced from any phenomena, but assumed or
supposed — without any experimental proof.3

In these two passages Newton speaks of "deducing" or "inferring" proposi-
tions from phenomena and then making them general by induction. In Rule 4
of the "Rules of Reasoning in Philosophy" in Book HI of the Principia, he
combines these locutions and speaks of "propositions inferred by general
induction from phenomena." In a letter to Oldenburg, July 1672, he omits a
reference to induction, saying simply that "the proper method for inquiring
after the properties of things is to deduce them from experiments."4 In the
Opticks a reference to induction is also omitted and the words "deduction"
and "inference" are replaced by "proof." Newton begins the Opticks thus:
"My design in this Book is not to explain the properties of Light by Hy-
potheses, but to propose and prove them by Reason and Experiments. . . . "5

And the propositions that follow, which he also calls theorems, he defends by
providing "proof by experiments." However, at the end of the Opticks the
term induction reappears:

2. Isaac Newton, Principia ( keley, 1966), p. 547.
3. H. S. Thayer, ed., ewton's Philosophy of Nature (New York, 1953), p. 6.
4. Ibid., p. 7.
5. Newton, Opticks, p. 7.
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As in Mathematicks so in Natural Philosophy, the Investigation of difficult Things
by the Method of Analysis, ought ever to precede the Method of Composition.
This Analysis consists in making Experiments and Observations, and in drawing
general Conclusions from them by Induction, and admitting of no Objections
against the Conclusions, but such as are taken from Experiments, or other certain
Truths.6

Let me try to provide accounts of some of the Newtonian concepts.

1. PHENOMENA

In the Principia immediately following the "Rules of Reasoning in Philoso-
phy" Newton lists six "Phenomena." They concern the orbits of the satellites
of Jupiter and Saturn, the five primary planets, and the moon. Newton offers
no published definition of the term phenomenon. The following definition
intended for the second edition of the Principia was never published:

Definition 1. Phenomena I call whatever can be seen and is perceptible whatever
things can be perceived, either things external which become known by the five
senses, or things internal which we contemplate in our minds by thinking. As fire is
hot and water is wet, and gold is heavy, and sun is light, I am and I think. All these
are sensible things and can be called phenomena in a wider sense; but those things
are properly called phenomena which can be seen, but I understand the word in a
wider sense.7

Although Newton here defines phenomena as "whatever can be seen and is
perceptible" by the external senses or "internally"—which would seem to
allow physical objects such as the sun to count as phenomena—the examples
he gives in this definition are all facts rather than objects (fire is hot, water is
wet). And this is true as well of the six phenomena listed as such in the
Principia.8 For example, the first phenomenon is that the satellites of Jupiter
describe areas proportional to the times of description and their periods are
proportional to the 3/2th power of their distance from Jupiter. The third
phenomenon is that the five primary planets revolve about the sun.

As suggested by the unpublished definition, Newton regards these facts as

6. Ibid., p. 404.
7. From a manuscript sheet translated by J. E. McGuire, "Body and Void in Newton's De

Mundi Systemate: Some New Sources," Archive for History of Exact Sciences 3 (1966), pp. 238-
239. There are two other unpublished definitions of phenomena that are substantially the same as
this. In addition to this definition there is an unpublished Rule 5 that contains a brief discussion
of phenomena that conforms to the unpublished definition. See I. Bernard Cohen, Introduction
to Newton's Principia (Cambridge, Mass., 1978), p. 30.

8. They are so listed in the second and third editions, but not in the first, where they are
called "hypotheses." For a comment on Newton's terminological change see note 30.
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"perceptible." But more than this, in the Principia he treats the phenomena as
facts whose existence not only can be but has been established by observa-
tions. Concerning Phenomenon 1 Newton writes: "This we know from astro-
nomical observations." That phenomena are established by observation does
not necessarily preclude the need for inferences to them. Perhaps some of the
examples of phenomena he lists in his unpublished definition can be estab-
lished directly without inference (especially the "internal" ones: I am, I think).
But the six phenomena of the Principia are pretty clearly inferred from what
is observed. That the five primary planets revolve about the sun (Phenome-
non 3) is not determined to be so simply by seeing the planets revolve. Rather
Newton infers that they do revolve "from their moon like appearances" (in the
case of Mercury and Venus). Similarly Phenomenon 1 is inferred from astro-
nomical data Newton cites (pertaining to the periods of Jupiter's four satel-
lites and the distances of the satellites from Jupiter's center) by using mathe-
matical calculations. Newton does not say what sorts of inferences to the
phenomena are allowable. The important point seems to be that whatever the
nature of such inferences they are "from observations" and they are sufficient-
ly strong to establish the facts in question.

There is another respect in which the discussion of the six phenomena in
the Principia goes beyond the simple unpublished definition. Newton treats
the phenomena of the Principia as noncontroversial, or potentially so. They
are not facts that, although observed by some scientists, are disputed by
others. They are facts that scientists aware of the results of observations that
have been made do agree on, or would if they came to be aware of them. In
the case of Phenomenon 1 Newton gives the results of observations by three
different astronomers which establish this phenomenon. And he writes that
Phenomenon 4 (Kepler's third law) "is now received by all astronomers."9

In the Opticks, phenomena are not listed as such. Nor does the word
appear when Newton gives a "proof by experiment." Yet there is something
here that corresponds to Newton's notion of a phenomenon in the Principia,
namely, an established fact about the result of the (type of) experiment that
anyone who performed the experiment would agree to on the basis of obser-
vation. For example, Proposition 2 of Book I of the Opticks states that the
light of the sun consists of rays differently refrangible. To prove this Newton
describes a series of experiments, the first of which involves the passage of
sunlight through a single prism and the formation of the solar image on a
sheet of paper. This image, writes Newton, is "oblong and not oval [as might
otherwise be expected], but terminated with two Rectilinear and Parallel
Sides, and two Semicircular Ends." Newton's description of the results of this
experiment is, I suggest, the description of a "phenomenon." It is a fact —one
that Newton has determined to be so by observation and that can be so
determined by anyone performing this type of experiment—that an oblong

9. Newton, Principia, p. 404.
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image is produced in such an experiment. This fact would be agreed to by all,
even if there were doubts about whether it proves that light is composed of
rays of different refrangibility.

2. DEDUCING PROPOSITIONS FROM PHENOMENA

Following the six phenomena in Book III of the Principia is a set of what
Newton calls propositions (as well as theorems). These propositions are in-
ferred from one or more of the phenomena and from earlier propositions in
the Principia. In some cases the inference is deductive in a sense that any
contemporary philosopher or logician could acknowledge. For example, the
first part of Proposition 1 of Book III states that Jupiter's satellites are
continually drawn off from rectilinear motion and retained in their orbits by a
centripetal force directed to Jupiter's center. This follows deductively from
Phenomenon 1 (given above) and from Proposition 2, Book I, "Every body
that moves in any curved line described in a plane, and by a radius drawn to a
point either immovable, or moving forwards with a uniform rectilinear mo-
tion, describes about that point areas proportional to the times, is urged by a
centripetal force directed to that point."

Accordingly, when Newton speaks of "deducing" propositions from phe-
nomena he means to include at least ordinary deductions — deductions of a
type that would be found in mathematical proofs. However, Newton also
includes inductions.10 I shall follow McMullin and Mandelbaum in supposing
that by induction Newton has in mind an inference from some property found
to hold for all observed members of a class to the claim that this property
holds for some members of that class that have not been observed, or for all
members.11 The inferences he cites in his Rules of Reasoning are of this type.
Here are two examples:

10 In a letter to Cotes in 1713, written as the second edition of the Principia was being
prepar  for publication, Newton explicitly counts induction as a method of deduction (indeed,
in this passage, as the only method): " . . . experimental philosophy proceeds only upon phe-
nomena and deduces general propositions from them only by induction." However, it is difficult
to believe that for Newton the only deductions from phenomena are inductions. Recall that at the
end of the Principia he writes that "particular propositions are inferred from the phenomena and
afterwards rendered general by induction," which suggests that there are noninductive inferences
to begin with and then inductive ones to generalize from these. Newton's remarks to Cotes in the
previous passage pertain to "general" propositions. So perhaps he is thinking here only of those
propositions (such as the laws of motion, which he mentions) that do require generalization by
induction.

Descartes also uses "deduction" to include induction as well as deduction. See Desmond
Clarke, Descartes' Philosophy of Science (University Park, Pa., 1982), ch. 3.

11. Ernan McMullin, Newton on Matter and Activity (Notre Dame, 1978); see pp. 13ff;
Maurice Mandelbaum, Philosophy, Science, and Sense Perception (Baltimore, 1964); see pp.
74ff.
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The bodies which we handle we find impenetrable, and thence conclude impenetra-
bility to be a universal property of all bodies whatsoever. That all bodies are
movable, and endowed with certain powers (which we call the inertia) of persever-
ing in their motion, or in their rest, we only infer from the like properties observed
in the bodies which we have seen.12

Although Newton does not explicitly use the term "induction" here, he does
use it later in the General Scholium in Book III when referring to such in-
ferences concerning impenetrability, mobility, and so on. (See the first quota-
tion in the present essay.)

Does Newton impose any conditions on induction? He imposes none on
the number of members of the class that needs to be observed. But in his
Third Rule of Reasoning he introduces a condition that might be interpreted
as affecting the kinds of properties subject to induction. The Third Rule says:

The qualities of bodies, which admit neither intensification nor remission of de-
grees, and which are found to belong to all bodies within the reach of our experi-
ments, are to be esteemed the universal qualities of all bodies whatsoever.

For esent purposes three questions need to be asked. First, what does
Newton mean by qualities that "admit neither intensification nor remission of
degrees"? Second, is he committed to the view that where bodies are con-
cerned inductions are possible only where qualities are of this sort? Third, is
Rule 3 to be construed as governing all inferences whether or not they involve
bodies?

The phrase "admit neither intensification nor remission of degrees" (or in
another translation, "admit neither intension nor remission") is a scholastic
one that Newton probably used in his own special way. McGuire suggests that
for Newton a quality subject to "intension and remission" is one that "can
manifest continuous and successive degrees of intensity: as can the pitch of a
sound or the depth of a color."13 Even more generally, McGuire takes such
qualities to be those that admit of "more or less" (pp. 245-246) or of differ-
ences of degree. In his discussion following Rule 3 Newton does use the
expression "not liable to diminution" to refer to the qualities he has in mind.
And his examples of qualities to which the rule applies (and hence presumably
qualities that "admit neither intensification nor remission of degrees") are
extension, hardness, impenetrability, mobility, and inertia. Newton's discus-
sion contains no examples of qualities that can be "intended and remitted,"

12. Newton, Principia, p. 399.
13. J. E. McGuire, "The Origins of Newton's Doctrine of Essential Qualities," Centaurus 12

(1968), pp. 233-260; see p. 244. McGuire argues that Newton held that qualities not subject to
"intension and remission" are essential qualities of bodies.
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but in an earlier draft of this rule he lists heat and cold, wet and dry, light and
darkness, color and blackness, among others.14

Is Newton committed to the view that, where bodies are concerned, induc-
tions can involve only properties that cannot be "intended and remitted"?
This is doubtful. In the discussion following Rule 3 he admits that the gravity
of bodies "is diminished as they recede from the earth." Accordingly, it should
be a property with "intension and remission," and hence not subject to Rule
3. Yet in this passage, as well as in Corollary 2 of Proposition 6, Newton
explicitly says that the property of gravitating toward the earth is subject to
Rule 3. Moreover, hardness and impenetrability, which Newton cites in his
discussion of Rule 3, might be said to admit of degrees. Yet these properties
are supposed to be subject to the rule. McMullin has suggested that perhaps
by "hardness" here Newton did not mean the property that admits of degrees,
but the property of possessing (some degree of) hardness (impenetrability,
gravity, etc.).15 But then, as McMullin notes, the same could be said for
qualities such as color and heat (possessing some degree or intensity of color
and heat); yet Newton explicitly classifies color and heat as being subject to
"intension and remission." McMullin concludes that Newton "could have
omitted the troublesome intensity criterion from the published version of
Rule 3, without in the least affecting the manner of applying the Rule to
concrete cases."16 I tend to agree.17

Finally, it is even more dubious to suppose that Newton meant that where
bodies are not concerned inductions are restricted to qualities that cannot be
"intended and remitted." In the Opticks (as we shall see) Newton needs to
make inductions involving the property of refrangibility, which by his own
admission is subject to degrees. These inductions concern light rays, which
Newton does not want to have to assume at the outset to be bodies. Accord-
ingly, in what follows I shall not construe Newton as requiring that the
properties subject to induction be those that cannot be "intended and remit-
ted."18

14. See McGuire, "Origins," p. 237.
15. McMullin, op. cit., pp. 11-12.
16. Ibid., pp. 12-13.
17. Indeed, in his first version of the rule Newton omits the "intension and remission" clause

and writes simply: "The laws (and properties) of all bodies on which it is possible to institute
experiments, are laws (and properties) of all bodies whatsoever." (See McGuire, "Origins," p.
236.)

18. A somewhat different interpretation of Newton might be given as follows. By "induction"
Newton means an inference from observed members of a class to unobserved but observable
members. Where induction is concerned there is no restriction to properties that do not admit of
"intension and remission." Rule 3, however, is not a (straightforward) inductive rule but a more
powerful one. It sanctions inferences from observed members of a class to all members of that
class, including the unobservable ones. And when one makes an inference from the observed to
the unobservable, a restriction is required to properties that cannot be "intended and remitted."
Such an interpretation seems to be the one, or at least close to the one, offered by McGuire in
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When Newton speaks of "deductions from phenomena," does he mean to
include more than inductions and (ordinary) deductions? In addition to his
Rules 3 and 4,19 which involve induction, there are Rules 1 and 2, which
pertain to causes. From considerations of simplicity, we should admit no
more causes of natural things than are true and sufficient to explain the
appearances (Rule 1); and therefore, to the same natural effects we should, so
far as possible, assign the same causes (Rule 2). As examples of the latter,
Newton cites the cause of the descent of stones in Europe and in America,
and the cause of the reflection of light in the earth and in the planets. Newton
does not relate the first two (causal) rules to the last two (inductive) ones. (He
does not claim, for example, that the causal rules are special cases of the
inductive ones.) Moreover, he uses all four rules in the early parts of Book III
in a series of arguments leading to his law of universal gravitation. Both facts
suggest that he thought of his causal rules and his inductive ones as distinct.

What sorts of inferences are Rules 1 and 2 supposed to generate, and how
might the difference between these and inductions be expressed? Newton may
well have several types of inferences in mind that are sanctioned by his first
two rules. Let me note two that he explicitly uses. He begins the argument for
Proposition 5, Book III, as follows:

For the revolutions of the circumjovial planets around Jupiter, of the circumsa-
turnal about Saturn, and of Mercury and Venus, and the other circumsolar plan-
ets, about the sun, are appearances of the same sort with the revolutions of the
moon about the earth; and therefore, by Rule 2, must be owing to the same sort of
causes. ... (p. 410)

Newton seems to be arguing from facts about the observed Keplerian motions
of the moons of Jupiter, Saturn, and so on, described in his six phenomena,
to the proposition that these motions have the same causes. The form of the
inference is this:

"Atoms and the 'Analogy of Nature': Newton's Third Rule of Philosophizing," Studies in History
and Philosophy of Science 1 (1970), pp. 3-58; see p. 12. It is in conflict with interpretations of
Mandelbaum (op. cit., p. 62) and McMullin (op. cit., p. 15), both of whom construe Rule 3 as an
inductive rule that permits inferences from the observed to the unobservable. I take the latter
position in what follows. Newton does not explicitly say that inductions are restricted to the
observable. And, as noted earlier, he does use the term "induction" in referring to the sorts of
inferences he illustrates in Rule 3. In any event, on both the interpretation suggested by McGuire,
and on the one I shall adopt, Newton is not to be construed as restricting inductions to cases
involving properties that cannot be "intended and remitted."

19. Rule 4: In experimental philosophy we are to look upon propositions inferred by general
induction from phenomena as accurately or very nearly true, notwithstanding any contrary
hypotheses that may be imagined, till such time as other phenomena occur by which they may
either be made more accurate or liable to exceptions.
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CC1: Effects E1, . . . ,En are the same in systems S1, . . . ,Sk.
Therefore (by Rule 2)

These effects have the same causes in all these systems.

Here, as well as in the examples he gives following the introduction of Rule 2,
Newton simply infers that these effects in different systems are produced by
the same cause, without identifying that cause. Perhaps he believes that an
induction will permit an inference from the fact (phenomenon) that various
known planets and their satellites satisfy Kepler's laws to the proposition that
all the planets and their satellites do; whereas it will not permit an inference
from the similar motions of these bodies to the claim that their causes are
similar as well.

A second use of Rules 1 and 2 is illustrated by parts of Newton's discussion
of Proposition 4. Here these rules are explicitly invoked in sanctioning an
inference from the fact that the force keeping the moon in its orbit and the
force of gravity on the earth both have features in common—they are both
responsible for motions of bodies, they are both centripetal forces, and they
are both inverse-square forces — to the claim that they are one and the same
(type of) force, namely, gravity. (In saying that they are one and the same
force Newton seems to mean that not only do they obey all the same laws but
also that, were they both to act on a body, the total force exerted would be the
same as that exerted by either.)

This second type of argument might be given the following general form:

CC2: The cause of effects E (e.g., motion of a certain type) in system 1 is an
x (a type, e.g., a force) with properties P1, . . . ,Pn.
The cause of the same or similar effects E in system 2 is an x with
properties P1, . . . ,Pn

Therefore (by Rules 1 and 2)
The cause of effects E in system 1 is the same x (e.g., the same force)
as that which causes E in system 2.

Here, by contrast with the previous inference, information about the cause is
provided.

How is C2 different from induction? From the first two premises in C2,
induction would allow us to conclude:

The cause of effect E in every similar system (or in some unobserved one) is
an x with properties P1, . . . ,Pn.1,. . . ,Pn.

But, on this interpretation, induction would not allow us to conclude that the
cause is the same (type of) x. Thus, from the fact that the force retaining
Mercury and Venus in their orbits around the sun is centripetal and varies
inversely as the square of the distance, induction permits Newton to conclude
that the force retaining the other planets in their orbits is also centripetal and
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inverse-square. But Newton seems to believe he needs additional rules to infer
that these inverse-square centripetal forces are the same, namely, gravity. He
seems to believe that while induction allows generalizing that a cause with the
features in question will operate in other cases, it will not permit an inference
that we are dealing with one (type of) cause here, not many.

In addition to C1 and C2 there may well be other types of causal inferences
Newton regards as sanctioned by Rules 1 and 2. For example:

CC3: Effects E1, . . . ,En in system 1 are caused by C.
Effect EEffects 1 , . . . ,En are also present in system 2.

Therefore (by Rules 1 and 2)
Effects EEffects E1, . . . ,En are caused by C in system 2.

Let me call inferences C1, through C3 — and any others Newton would regard as
generated by the first two rules — examples of causal simplification. The rea-
son for choosing this name is that Newton explicitly justifies Rule 1 (and Rule
2, which he seems to think follows from it) by an appeal to simplicity ("Na-
ture is pleased with simplicity"). In the introduction to the Principia, and
especially in an unpublished preface to the Opticks,20 Newton stresses the idea
of deriving everything in physics from a few general principles rather than
inventing a new one for each phenomenon. Perhaps his thinking is that
induction will yield principles that are general but not necessarily few in
number. By induction we may arrive at the generalization that the cause which
keeps each of the planets in its path around the sun is some centripetal
inverse-square force. But this is compatible with the idea that these forces are
different in other respects, thus requiring a separate law for each. To simplify
and unify the situation, Newton's Rules 1 and 2 permit him to say that, until
new phenomena show otherwise, from the fact that these forces have the same
observed effects, we may infer that they are one and the same force.21

In the case of induction Newton imposes no restrictions on the numbers of
observations, and (arguably) none on properties or classes. The same is true
of causal simplification. He offers no restrictions on the types or numbers of
effects that must be observed for one to infer identical causes. What does
seem reasonably clear is that Newton treats these principles differently—both
in the Rules and in the arguments for early propositions in Book III. More-
over, if we are to construe those arguments as being or containing "deductions
from the phenomena," then the latter category will include ordinary deduc-

20. Reprinted in J. E. McGuire, "Newton's 'Principles of Philosophy': An Intended Preface
for the 1704 Opticks and a Related Draft Fragment," British Journal for the History of Science 18
(1970), pp. 178-186.

21. William Harper (in a draft ms "Newton's Unification of Heaven and Earth") emphasizes
the idea of unification here rather than simplicity. He thinks of Newton's first two rules as
endorsing a policy of unifying natural-kind conceptions wherever possible.
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tions, inductions, and causal simplification. There are propositions (such as
Propositions 1 and 2 of Book III) that he derives from the phenomena and
previous propositions by (ordinary) deduction alone without inductive gener-
alization or causal simplification. There are also propositions (such as Propo-
sition 4) which he derives using inferences of all three types. (See, in particu-
lar, the alternative "demonstration" that Newton offers for Proposition 4 in
the Scholium, page 409.)22

Accordingly, I suggest that for Newton, "deduction from the phenomena"
is a certain form of reasoning from facts regarded as established by observa-
tion. Such reasoning can be deductive in the ordinary sense; it can be induc-
tive in the sense of inferring properties of all or some members of a class from
properties of all the observed members; it can be causal simplification; or it
can be a combination of these. (In what follows I shall use "deduction" in
quotes, either by itself or in "deduction from phenomena," when speaking of
it in Newton's sense, and without quotes when speaking of it in the ordinary
sense.)

Two points concerning this definition deserve note. First, Newton regards a
proposition "deduced from phenomena" as being established "beyond reason-
able doubt" (my expression), or as having the "highest evidence that a propo-
sition can have in this [experimental] philosophy" (Newton's expression). This
does not make such a proposition incorrigible for Newton. A proposition
"deduced from phenomena" may be false, but only further phenomena can
show this. Merely imagining a "contrary hypothesis" (in the style of Des-
cartes' method of doubt) is not sufficient to diminish the extent of its believa-
bility on the basis of the phenomena. This is clear from Newton's Rule 4 in
the Principia (see note 19).

Second, in his discussion of the Third Rule of Reasoning Newton allows
inferences from some observed members of a class to other members of the
class even if the latter are not only not observed but unobservable in principle:

The extension, hardness, impenetrability, mobility, and inertia of the whole result
from the extension, hardness, impenetrability, mobility, and inertia of the parts
[this presumably Newton has inferred from observations]; and hence we conclude
the least parts of all bodies [which we have not seen and which may not be observ-
able] to be also all extended, and hard and impenetrable, and movable, and en-
dowed with their proper inertia.23

22. McGuire ("Atoms") thinks that after 1690 Newton regarded only his laws of motion and
the eight axioms in Book I of the Opticks as deduced from phenomena. This strikes me as too
strong. In that same 1713 letter to Cotes (note 10), Newton does cite the laws of motion as
examples of propositions deduced from phenomena by induction; but he also cites the law of
gravitation and the proposition that bodies are impenetrable, mobile, and exerters of force.

23. Newton, Principia, p. 399.
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This form of reasoning allows Newton to claim that if all observed members
of a certain class have a property, then this property can be ascribed to all
members of the class, even if some are unobservable. The rule itself, however,
does not commit him to postulating unobservable members of the class.24 In
the preceding passage I take Newton to be saying that extension, hardness,
and so on are applicable to the least parts of bodies, if such there be, even if
these parts are unobservable in principle. He admits that

In the particles that remain undivided, our minds are able to distinguish yet lesser
parts, as is mathematically demonstrated. But whether the parts so distinguished,
and not yet divided, may by the powers of Nature, be actually divided and separat-
ed from one another, we cannot certainly determine.25

So Rule 3 does not commit Newton to a belief in atoms (i.e., physically
indivisible parts), but only to the position that if they exist, then they are
extended, hard, impenetrable, and so on.

As previously noted, in the Opticks, by contrast to the Principia, Newton
does not write down "phenomena" as such. Instead he describes a series of
experiments. Nor does he use the expression "deduction from the phenome-
na." Instead he speaks of "proof by experiment." Whether these expressions
had the same meaning in Newton's mind,26 "proofs" Newton offers in the
Opticks do, or can readily be made to, conform to the previously noted
criteria of "deductions from phenomena." Consider the first proposition in
the Opticks and the experiment Newton suggests to prove it.

Proposition 1 states, "Lights which differ in Colour differ also in Degrees
of Refrangibility." In the first experiment Newton obtains a black oblong stiff
paper which he divides into two equal parts, painting one part red and the
other blue. He then views the paper through a prism and finds that when the
refracting angle of the prism is turned upward, so that the paper seems to be
displaced upward by the prism, its blue half is displaced upward further than
its red half. Similarly, when the refracting angle of the prism is turned down-
ward, the blue half is displaced downward further than the red half. From this
Newton draws the following conclusion:

24. McGuire ("Atoms") calls inferences that proceed from "what is observable to what is in
principle unobservable," transductions (p. 3), which (by contrast to Mandelbaum and McMul-
lin), he wants to distinguish from inductions. My claim is that Rule 3 allows Newton to make
inferences to properties of all members of a class, even if some members and their properties are
unobservable. By itself it does not allow Newton to infer that unobservable members of the class
exist Oust because observable ones do).

25. Newton, Principia, p. 399.
26. In a 1713 letter to Cotes Newton uses the expression "experimental proof in such a way

as to suggest that it has the same meaning as "deduction from phenomena." See the second quote
at the beginning of this essay.
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Wherefore in both cases the Light which comes from the blue half of the Paper
through the Prism to the Eye, does in like Circumstances suffer a greater Refraction
than the Light which comes from the red half, and by consequence is more re-
frangible.27

As a "proof this is somewhat incomplete. But I suggest that it can be
reconstructed in a more complete way, using one of Newton's previous axioms
in the Opticks, as follows:

1. We begin with the following result of Newton's first experiment, which we
can call a phenomenon, since it is a fact that Newton himself has estab-
lished by observation and he thinks will readily be accepted by anyone
performing the experiment: when the paper, one half of which is red and
the other half blue, is viewed through a prism, the blue half is more
displaced than the red half.

2. From Axiom 8 and the discussion following it (pp. 18-19): when an object
is seen through a prism the rays of light from that object are refracted, and
the object is seen not in its "proper" position but in some displaced posi-
tion as a result of this refraction.

3. From points 1 and 2, by (ordinary) deduction, the blue rays coming from
the colored paper are more refracted by the prism than the red.

4. From point 3, by induction, blue rays are more refrangible than red
(or even more generally: rays of different colors are differently refrang-
ible).

So reconstructed, we have an (ordinary) deduction of the proposition in
point 3 from the phenomena (plus previous propositions). And in point 4 we
make this general by induction. The last step is crucial, because Newton is
obviously generalizing from his experiments with the type of prism he uses to
other prisms, indeed, to any case in which there is refraction of light from
objects painted blue and red, whether or not a prism is involved. Even more
generally, to arrive at the proposition he is trying to prove he needs to infer
that such differences in refrangibility are present in all colors, not just red and
blue. Whether the argument is sufficiently strong to establish this conclusion
I will not explore here (see section 6). My claim is only that if the preceding
argument, or something like it, is a reasonable reconstruction of what New-
ton is doing here, then his first "proof in the Opticks is a perfectly good
example of what in the Principia and other writings he would classify as

27. Newton, Opticks, p. 21.
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"deducing propositions from the phenomena and making them general by
induction."28

It is not my claim that each of Newton's "proofs" in the Opticks is success-
ful. In some (perhaps even in the proof just given), the inductive generaliza-
tion might be considered too sweeping if based only on the experiments
mentioned. In others a proposition is introduced as a premise that is not
"deduced from the phenomena" in the sense indicated previously, and is
indeed controversial.29 Whatever the validity or persuasiveness of the "proofs

28. In The Newtonian Revolution (Cambridge, 1980), I. B. Cohen claims that Newtonian
methodology in the Opticks is significantly different from that in the Principia (see pp. 13ff).
Cohen points out that although Newton includes axioms and definitions in both, he makes use of
these only in the Principia, not in the Opticks, where the proof is "by experiments." Moreover,
Cohen claims that Newton's methodology in the Principia (which Cohen calls the "Newtonian
style") involves a process of mathematical idealization and simplification foreign to the Opticks.
This process begins with a set of idealized physical entities and conditions that can be expressed
mathematically; deductions are made and compared with data and observations. This leads to a
modification of the original assumptions to form a more complex mathematical system and to
further deductions and comparisons with nature (see pp. 62-68). "In the Principia," writes
Cohen, "the role of induction is minimal" (p. 16). I have three comments on this.

1. Cohen is certainly correct when he points out that in the Opticks, when Newton "proves"
his propositions, he does not make explicit reference to the axioms and definitions, as he does in
the Principia. The work is considerably less formal and precise. But the proofs work, that is, they
demonstrate what they are supposed to, only if the definitions and axioms are implicitly as-
sumed. For example, to infer Proposition 1 in the Opticks from the facts reported in Experiment
1, Newton is making at least implicit use of his definition of "refrangibility" as the disposition of
rays to be refracted or turned out of their way in passing out of one transparent body or medium
into another (p. 2). And unless he relates refraction to how a refracted body appears —as he does
in Axiom 8 and in the discussion that follows—in his proof of Proposition 1 he will not be able to
infer anything about differences in degrees of refrangibility from differences in the displacements
of the observed positions of the red and blue colors on the paper.

2. Newton himself regarded his axioms of motion in the Principia as "deduced from the
phenomena and made general by induction." That is, he regarded induction as crucial for
generating his three most basic laws. Moreover, he makes explicit reference to induction in the
proofs of various propositions in Book III. As far as mathematical idealizations go, it is true that
many of the propositions in the Principia are concerned with systems that do not exactly corre-
spond to any known in nature. For example, Proposition 1 in Book I deals with one body subject
to a single central force. But Newton derives this proposition by deduction from his laws of
motion plus their corollaries. He does not begin in this case with an actual system such as a
planet and the sun which he then idealizes by ignoring forces on the planet exerted by other
planets. The question is simply: What would happen if a body were subject to a central force?
The answer is supplied by deduction from other propositions.

3. Finally, as McGuire has emphasized ("Intended Preface," p. 182), if we examine Newton's
intended preface for the Opticks, we will conclude that Newton himself "did not see any dichoto-
my in method between that used in the Principia and that found in the Opticks"

29. For example, in his discussion of Proposition 6 of Book I, Newton offers a demonstra-
tion of the sine law that involves introducing what he himself calls a "supposition," that is, that
bodies refract light by acting upon its rays in lines perpendicular to their surfaces. Newton makes
clear in what follows that he means that a force is exerted by the refracting medium on the rays of
light. Now for Newton a force can only act upon a body. (In the Principia, Newton's definition
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by experiment" in the Opticks, I suggest that Newton treated them as "deduc-
tions from phenomena." He thought of them as demonstrating the truth of
the propositions beyond reasonable doubt from facts themselves established
by observing the results of experiments — facts that anyone capable of per-
forming the experiments could agree on.

3. HYPOTHESES AND THEIR REJECTION

Newton used the word hypothesis in different senses in his writings.30 But I
shall focus on one use in what follows, since it is, I think, central for under-
standing Newton's professed methodology. This is the use of "hypothesis"
contained in the first two quotations at the beginning of the present essay:

Whatever is not deduced from the phenomena is to be called an hypothesis.31

And the word "hypothesis" is here and used by me to signify only such a proposi-
tion as is not a phenomenon nor deduced from any phenomena, but assumed or
supposed — without any experimental proof.32

An hypothesis is any proposition that is not "deduced from phenomena" in
the sense of this expression explicated above. Newton allows that hypotheses
(in this sense) may be "metaphysical or physical . . . , of occult qualities or
mechanical."33 However, presumably he does not include purely mathematical
propositions even though they are not "deduced from phenomena."34 When a
proposition is "deduced" from phenomena it has "the highest evidence that a

of an impressed force begins with the phrase "an action exerted upon a body. . . .") So it seems
that here Newton is treating the rays of light as bodies. Yet the claim that the rays are bodies
(which strongly suggests the corpuscular theory) is not something that Newton "deduces from the
phenomena." Despite this, Newton does not seem to regard the "supposition" as a mere supposi-
tion, since he takes the resulting demonstration "to be a very convincing Argument of the full
truth" of the sine law (p. 82).

30. See I. B. Cohen, Franklin and Newton (Philadelphia, 1956), pp. 138-40, and "Hy-
potheses in Newton's Philosophy," Physis 8 (1966), pp. 163-184; Alexander Koyre, Newtonian
Studies (Chicago, 1965), pp. 261-272; N. R. Hanson, "Hypotheses Fingo," in Robert E. Butts
and John W. Davis, eds., The Methodological Heritage of Newton (Toronto, 1970), pp. 14-33.
We need only be reminded that what in the second and third editions of the Principia are called
"phenomena" are called "hypotheses" in the first edition. According to Koyre (op. cit., p. 31), in
the first edition by contrast to later ones Newton means by "hypothesis" any fundamental
assumption of the theory (so that the laws of motion would be hypotheses, in this sense, even
though, according to Newton, they are "deduced from phenomena").

31. Newton, Principia, p. 547.
32. Thayer, op. cit., p. 6.
33. Newton, Principia, p. 547.
34. See Hanson, op. cit., p. 14.
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proposition can have in this [experimental] philosophy."35 Hypotheses do not
have such evidence. Whether Newton thought that hypotheses can have some
evidence in their favor, just not the "highest," or whether he meant by an
hypothesis a proposition for which no evidence at all has been proposed, is
not clear. (The second quote just given might suggest the latter interpretation,
except that Newton here speaks of "experimental proof" rather than "evi-
dence.") In what follows I will use "hypothesis" in the broader sense in which
a proposition is an hypothesis if it is not "deduced" from phenomena, even if
there is some evidence in its favor. Accordingly, an hypothesis does not have
the highest evidence achievable in experimental philosophy; it is not estab-
lish  beyond reasonable doubt, though there may be some reason to believe
it.

One potential ambiguity must be cleared up. When Newton says that an
hypothesis is a proposition that is "not deduced from phenomena," does he
mean (i) that it has not actually been derived (in the way suggested above), or
(ii) that it is not derivable from phenomena, or perhaps even (iii) that it is not
derivable from phenomena or from any facts that will become phenomena? I
shall understand him to be asserting (i), which is of course entailed by both
(ii) and (iii), though not conversely. Newton's primary concern in experimen-
tal philosophy is to provide reasons for believing propositions that are as
strong as possible in this philosophy. Such reasons have not been provided for
a proposition that is deducible from phenomena but not yet deduced. Propo-
sitions of this sort do not have the highest evidence possible. Accordingly, a
proposition might be an hypothesis at one time not at another. Further obser-
vations and experiments could change its status.36

Now in some sense or other Newton professes to reject hypotheses, though
in what sense is not perfectly clear. For example, in the last paragraph of the
Principia, which immediately follows the paragraph in which he writes "hy-
potheses non fingo," Newton introduces what is clearly an hypothesis "con-
cerning a certain most subtle spirit which pervades and lies hid in all gross

odies; by the force and action of which spirit the particles of bodies attract
ne another at near distances, and cohere if contiguous. . . . "37 Newton

seems to recognize that this is an hypothesis since he writes that we are not
"furnished with that sufficiency of experiments which is required to an accu-
rate determination and demonstration of the laws by which this electric and
elastic spirit operates."38 How, then, can Newton be said to reject hypotheses?

35. Thayer, op. cit., p. 6.
36. Here I disagree with Koyre (op. cit., pp. 36-37), who says that "hypothesis" (in the sense

under discussion) "means for Newton something that cannot be proved." Whether Koyre means
this in sense (ii) or (iii) is not clear.

37. Newton, Principia, p. 547.
38. In a letter to Boyle of February 1678 (Opera, vol. 4, pp. 385-394), Newton speculates a

great deal more about this subtle spirit or ether, even offering an hypothesis about the cause of
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One thing he pretty clearly rejects is a certain version of the so-called
"method of hypothesis." In a letter to Oldenbu  of June 2, 1672, he writes,

If any one offers conjectures about the truth of things from the mere possibility of
hypotheses, I do not see how anything certain can be determined in any science; for
it is always possible to contrive hypotheses, one after another, which are found rich
in new tribulations.39

Newton rejects inferences to the truth of an hypothesis from its "mere possi-
bility," that is, from its ability to explain some observed phenomena or from
the fact it entails these phenomena. I take Newton to be rejecting inference
forms such as these:

Phenomena p1 , . . . ,pn are established by observation.
Hypothesis h if true would explain p1, . . . ,pn.

Therefore, h is true.

Phenomena p1 , . . . ,pn are established by observation.
P1, . . . ,pn are derivable from hypothesis h.
Therefore, h is true.

Newton's objection is that numerous hypotheses can be contrived on the basis
of which the phenomena can be derived and explained. Such forms of reason-
ing do not establish the truth of hypotheses. They do not confer on hy-
potheses the highest certainty possible in experimental philosophy. Accord-
ingly, such inferences are rejected in this philosophy.

Even if this is clearly a part of Newton's position on hypotheses, still the
rest of that position is not so clear. Here are two possibilities:

1. In experimental philosophy you can introduce hypotheses for various
purposes, so long as you do not infer their truth. For example, in the passage
from which the last quotation was taken, Newton allows one to construct
explanations of observations by means of hypotheses, and also to use hy-
potheses "as an aid to experiments" (perhaps to suggest new experiments). But
from the fact that the hypothesis does explain the observations and even
predict the results of new experiments, you cannot infer its truth. Such an
inference will not yield the highest certainty possible in experimental philoso-
phy; in that philosophy only inferences that do yield such certainty—only
"deductions from phenomena" — are permitted.

gravity: "I shall set down one conjecture more, which came into my mind now as I was writing
this letter: it is about the cause of gravity. For this end I will suppose aether to consist of parts
differing from one another in subtlety by indefinite degrees . . . " (p. 394). Newton indicates
considerable hesitation in proposing hypotheses to Boyle, and he is clearly not saying that such
hypotheses are established. Yet equally clearly he is not avoiding them.

39. Newton, Principia, appendix, p. 673.
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2. In experimental philosophy you should avoid not only inferring the
truth of hypotheses but introducing them for any purposes. In the same
passage in which Newton seems to allow hypotheses to be introduced to
explain observations and to serve as "an aid to experiments" he also writes:
" . . . wherefore I judged that one should abstain from considering hy-
potheses as from a fallacious argument. . . . "40 And, of course, in the Princi-
pia itself Newton writes "hypotheses . . . have no place in experimental phi-
losophy" (p. 547).

Newton's pronouncements about hypotheses in experimental philosophy
do not clearly favor one or the other of these interpretations. In actual
practice, as already noted, he in fact does introduce (what even he would
regard as) hypotheses. So perhaps (1) reflects his position more accurately
than does (2). However, there is another possibility, as follows.

3. The highest aim in experimental philosophy is to establish propositions
with certainty, or at least with as much certainty as is possible for a science that
is based on experience. The most certainty possible in experimental philosophy
is achieved when propositions are "deduced from phenomena." Since, by defi-
nition, hypotheses are not "deduced from phenomena," they do not have the
most certainty possible in empirical science. Accordingly, the highest aim here
is not achieved by inferences to hypotheses. If there is some proposition of
interest to us that we think is or might be true and it is possible to "deduce" it
from the phenomena, or if it is possible to construct new experiments that will
yield new phenomena from which it can be "deduced," then the "deduction"
should be made. However, there may be some proposition of interest to us for
which we have found no "deduction from phenomena." In such a case we are
not entitled to infer that it is true on the grounds that it explains or predicts
phenomena. But we are entitled to consider it, to determine what sorts of
explanations and predictions it yields. Moreover, we may be able to give some
reasons, some evidence, in its favor, even if this is not the highest possible
evidence. If we can give such reasons, we should. (What these might be will be
discussed in Part II when I turn to Queries 28 and 29 in the Opticks.) Yet we
must recognize that whatever their nature, these reasons are not the strongest,
and we should continue to search for better ones.

Indeed, the last clause in the previous paragraph may reflect another sense
in which Newton means to reject hypotheses. He rejects the idea (which he
may be attributing to Hobbes and Descartes) that once you have introduced
an hypothesis (or a set of them) to explain the phenomena, and have shown
that the phenomena are consistent with your hypothesis, there is nothing
more to do.41 On the contrary, although it can be perfectly legitimate to

40. Ibid.
41. See Robert Hugh Kargon, Atomism in England from Harriot to Newton (Oxford, 1966),

pp. 107,108,124.
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introduce an hypothesis to explain phenomena, this is only the beginning.
You must try to "deduce" the hypothesis from these or other phenome-
na. You must try to rid the hypothesis of its hypothetical nature.

Newton's pronouncements about hypotheses do not form a consistent set,
since both (1) and (2) can be found in them. However, if one also takes into
account Newton's actual practice, then perhaps his overall position on hy-
potheses is best represented by (3). Admittedly, (3) is incompatible with some
of his pronouncements (e.g., "hypotheses . . . have no place in experimental
philosophy"), as well as with some of his practice (e.g., in the Opticks the
introduction of the supposition that a force acts on light rays to produce
refraction —a supposition not "deduced from phenomena" but treated with
the certainty of something that is. See note 29). However, if we want to
attribute a consistent view to Newton that reflects a good deal, though by no
means all, of his pronouncements and his practice, then I think (3) is superior
to (1) or (2).42

Interpretation (3) allows us to view the queries in the Opticks in a way that
does not violate Newtonian methodology. Indeed, as I will show, (3) is sug-
gested by some remarks Newton makes about his methodology in Book III of
the Opticks. Finally, as noted, (3) admits the possibility of providing reasons
for hypotheses, even though these do not generate the certainty of "deduc-
tions from phenomena." There are occasions in Newton's actual practice
when he provides such reasons, and explicitly recognizes this. Thus, in a letter
to Oldenburg in July 1672, Newton responds to a criticism by Hooke who
accuses Newton of assuming as an hypothesis that light is composed of
bodies. He writes:

It is true that from my theory I argue the corporeity of light, but I do it without any
absolute positiveness, as the word perhaps intimates, and make at most but a very
plausible consequence of the doctrine, and not a fundamental supposition, nor so
much as any part of it which was wholly comprehended in the precedent proposi-
tions.43

Again in a letter to Boyle of February 1678, after proposing various hy-
potheses about the ether (including one concerning the cause of gravity),
Newton writes: ". . . by what has been said, you will easily discern whether,

42. Even if (3) is more adequate than other interpretations, one must not assume that it best
reflects Newton's overall views and practice throughout his professional career. It is quite possible
that by the later 1690s, in response to criticisms of the first edition of the Principia, not only did
Newton's use of the term "hypothesis" change but also his ideas about hypotheses (in the sense in
question) became more sharply articulated. See Cohen, "Hypotheses in Newton's Philosophy,"
op. cit., p. 179.

43. Newton, Opera IV, p. 324.
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in these conjectures, there be any degree of probability; which is all I aim
at."44

I believe that Newton was proposing such nonconclusive probabilistic rea-
sons for at least some of the hypotheses in the queries; in Part II I will attempt
to analyze such reasoning. Newton says that "deduction from the phenome-
na" is the highest evidence that a proposition can have in experimental philos-
ophy; he does not say that it is the only evidence.

4. ANALYSIS AND SYNTHESIS

At the end of the Opticks Newton offers the following methodological re-
marks:

As in Mathematicks, so in Natural Philosophy, the Investigation of difficult Things
by the Method of Analysis, ought ever to precede the Method of Composition.
This Analysis consists in making Experiments and Observations, and in drawing
general Conclusions from them by Induction, and admitting of no Objections
against the Conclusions, but such as are taken from Experiments, or other certain
Truths. For Hypotheses are not to be regarded in experimental Philosophy. And
although the arguing from Experiments and Observations by Induction be no
Demonstration of general Conclusions; yet it is the best way of arguing which the
Nature of Things admits of, and may be looked upon as so much the stronger, by
how much the Induction is more general. . . . By this way of Analysis we may
proceed from Compounds to Ingredients, and from Motions to the Forces produc-
ing them; and in general, from Effects to their Causes, and from particular Causes
to more general ones, till the Argument end in the most general. This is the Method
of Analysis: And the Synthesis consists in assuming the Causes discover'd, and
establish'd as Principles, and by them explaining the Phenomena proceeding from
them, and proving the Explanations.45

Although Newton does not use the phrase "deduction from phenomena" in
this passage, I take it that in analysis one provides such "deductions." From
the results of experiments and observations one proceeds to draw general
conclusions by induction; and " . . . it is the best way of arguing which the
Nature of Things admits of." However, Newton also speaks of the method of
composition or synthesis. His idea seems to be that once we have "deduced"
some proposition from the phenomena we can then use that proposition in
explaining phenomena "proceeding from" it. He also speaks of "proving the
Explanations," although he does not say what this means or how it is to be
done.46

44. Ibid., p. 394.
45. Newton, Opticks, pp. 404-405.
46. In the nineteenth century, Henry Brougham, a follower of Newton in both professed

methodology and in his defense of the particle theory of light, also speaks of analysis and
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Following this general methodological passage, Newton writes that in the
first two books of the Opticks he has proceeded by means of "Analysis to
discover and prove the original Differences of the Rays of Light in respect of
Refrangibility, Reflexibility, and Colour. And these Discoveries being proved
may be assumed in the Method of Composition for explaining the Phenome-
na arising from them." However, Newton has something different to say
about his procedure in the third book:

In this third Book I have only begun the Analysis of what remains to be discover'd
about Light and its Effects upon the Frame of Nature, hinting several things about
it, and leaving the Hints to be examin'd and improv'd by the farther Experiments
and Observations of such as are inquisitive.47

Newton seems to be referring to the queries in Book III rather than to the
eleven "Observations" with which the third book begins.48 But these queries
contain propositions that are not deduced from phenomena. The analysis has
only begun, and further experiments and observations will be necessary to
complete it. Nevertheless, Newton obviously believes it is of value to intro-
duce such hypotheses. And what he has done (the "hints" he has given) may
provide some reasons, albeit not conclusive ones, for believing the hypotheses
introduced. This conforms with the foregoing interpretation (3).

PART II: LIGHT

5. THE CORPUSCULAR HYPOTHESIS OF LIGHT

The final 67 pages of the Opticks contain a set of 31 queries, most of which
are followed by discussions, some fairly extensive. What will be of particular
concern here is Query 29, in which Newton asks whether rays of light are not
very small bodies emitted from shining substances. There follows a discussion
in which Newton points out that such very small bodies will have various
observed features of light. For example, they will pass through a uniform
medium in straight lines without bending into the shadow. They will be sub-
ject to certain forces that will permit them to satisfy the laws of reflection and
refraction. Their different sizes will produce the different observed colors and
degrees of refrangibility. By the forces they exert they can cause vibrations

synthesis. (See Essay 3.) Brougham insists that the phenomena explained in synthesis must be
such as to provide a sufficient basis for an inductive argument to the explanatory proposition.
Perhaps this is what is meant, or part of what is meant, by "proving the explanation." However,
Newton in the passage quoted does not explicitly require what Brougham does.

47. Newton, Opticks, p. 405.
48. Cohen, Franklin and Newton, p. 184, so interprets Newton.
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that produce fits of easy reflection and transmission observable in the phe-
nomenon known as Newton's rings. And so forth.

Whatever Newton is supposing about the proposition that light consists of
small bodies or particles (and the ancillary proposition that these particles
can exert, and be acted on by, forces subject to his laws of motion), he is not
supposing that this proposition is "deduced from phenomena." Accordingly,
it is an hypothesis, and one that he invites us to seriously consider. In doing so
is he violating his methodology? Yes, if that methodology is to be construed
in accordance with interpretation (2), of section 3, which forbids the intro-
duction of hypotheses in experimental philosophy for any purposes. But (2) is
a fairly radical interpretation of Newton's methodology. What about (1) and
(3)? He would be violating both of these if from the fact that the particle
hypothesis, if true, can explain a variety of phenomena he is inferring the
truth of that hypothesis. For then he would be employing a version of the
method of hypothesis that he rejects and that both (1) and (3) preclude.
However, Newton does not at least explicitly claim that the particle hypothesis
is true. And before we saddle him with such a view, let us consider alterna-
tives.

One is that all he is doing is considering the hypothesis — seeing what
follows from it and what it can explain; he is not claiming that the fact that it
can explain such phenomena provides a reason to believe it true. In short, the
query is to be construed as just that —a question — which makes no commit-
ment to the hypothesis in the question. Such an interpretation seems to be the
one offered by A. I. Sabra when he writes:

These are hypotheses advanced by Newton without consideration of their truth or
falsity. The fact that they appear in the Opticks as Queries and not as Propositions
means that they do not form part of the asserted doctrine of light and refraction.49

This interpretation is compatible with both (1) and (3), which allow one to
introduce hypotheses for various purposes, so long as one does not infer that
they are true.

There is another interpretation, one particularly suggested by (3). On this
interpretation Newton is doing more than simply considering the hypothesis
by seeing what follows from it and what it can explain. He is providing some
grounds for believing it to be true, or at least he is attempting to do so,
although not the "highest evidence" possible. What grounds are these?

Is he perhaps saying that the fact that the particle hypothesis (together with
ancillary assumptions) can explain a variety of observed optical phenomena
provides some grounds for believing that hypothesis? That is, is he accepting
an inference of the following type:

49. A. I. Sabra, Theories of Light from Descartes to Newton (London, 1967), p. 312. Italics
in original.
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Phenomena p1 , . . . ,pn are established by observation.
Hypothesis h if true would correctly explain p1 , . . .,pn (or p1 , . . .,pn are
deducible from h)•

Therefore (probably)
h

Such an inference is a version of the method of hypothesis, though not the
one rejected earlier. In the present case, as opposed to the previous one, h is
inferred only with probability. On this interpretation Newton would allow us
to use the method of hypothesis so long as we recognize that the conclusion is
not drawn with certainty (or with the highest certainty possible in experimen-
tal philosophy). This interpretation is compatible with both (1) and (3), since
h here is inferred only with probability, not certainty. Indeed, (3) speaks
explicitly of a form of reasoning to an hypothesis that provides some reason
for believing it, but not the highest evidence possible.

Let us call an inference to a proposition that furnishes that proposition
with the highest evidence possible in experimental philosophy a strong infer-
ence. Let us call an inference to a proposition that provides some evidence for
that proposition, but not the highest possible in experimental philosophy, a
weak inference. For Newton in experimental philosophy, all and only strong
inferences are "deductions from phenomena." Now, on the present interpreta-
tion, Newton is proposing a weak inference to the hypothesis that light rays
are corpuscular.

If so it is dubious that the inference above is what he has in mind. For one
thing, the fundamental objection he raises against the earlier version of the
method of hypothesis is applicable to this one as well. The objection is that
numerous hypotheses can explain the same phenomena. We cannot infer each
of these hypotheses with probability.

Second, to say that Newton's inference to the corpuscular hypothesis in-
volves reasoning only of the type above would be to ignore completely his
discussion in Query 28, the one that immediately precedes the query in which
the corpuscular hypothesis is introduced. In Query 28 Newton considers the
wave theory, which he takes to contain "all Hypotheses . . . in which Light is
supposed to consist in Pression or Motion, propagated through a fluid Medi-
um."50 In the ensuing nine-page discussion Newton offers numerous objec-
tions to the wave theory (or rather wave theories). For example, in explaining
various observed optical phenomena (such as refraction), wave theories sup-
pose that these phenomena arise from the modification of light rays. (To
explain the different degrees of refraction produced by a prism, wave theories
claim that the prism modifies the homogeneous rays of light rather than
separating heterogeneous rays). But Newton believes he has refuted "modifi-

50. Newton, Opticks, p. 362.
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cation" theories by a series of experiments reported in Book I. Among New-
ton's other objections to the wave theory, perhaps the most famous is that if
light "consisted in Pression or Motion either in an instant or in time, it would
bend into the Shadow,"51 as with water waves and sound waves. But no such
bending (no diffraction) had been observed.

The wave theory, various forms of which were supported by Newton's
critics Hooke and Huygens, was the rival to Newton's corpuscular theory.
That there are objections to such theories seems to be at least part of New-
ton's reason for favoring a particle theory. Putting Queries 28 and 29 together,
then, we might say that Newton is proposing a weak inference to a particle
theory from two sets of considerations: the explanatory success of the par-
ticle theory (Query 29) and the objections to wave theories (Query 28). But
how exactly is this inference supposed to proceed? What form does it take?

If Newton is making such an inference—and I think it is plausible to
suppose that he is — he does not spell it out. On the basis of the discussions in
Queries 28 and 29 it is, I think, reasonable to say that Newton is arguing in
some such way as this:

The hypothesis that light is corpuscular explains a range of observed opti-
cal phenomena.
The rival wave hypothesis has such and such difficulties.

Therefore (probably)
Light is corpuscular.

The inference is intended to be weak, not strong. But even so, exactly how it is
supposed to go and whether it is reasonable even as a weak inference is not at
all clear.

In what follows I will construct an idealized version of this argument,
which, although I cannot claim it to be Newton's, may nevertheless reflect
some features of his thought. (See Essay 3.) The argument will have two
essential components: objections to the wave theory, and an appeal to the
explanatory power of the particle theory. Moreover, it will be an argument
whose conclusion is drawn with probability. This probability will be reasona-
bly high but not high enough to achieve the certainty, or virtual certainty, of a
"deduction from phenomena." In constructing the argument I will assume
that the usual axioms of the probability calculus are satisfied. Probability can
be construed here as representing rational degrees of belief.

Let us assume to begin with that light is either a particle phenomenon or a
wave phenomenon. Newton himself offers no explicit argument for such an
assumption, although here is one that he was in a position to offer (and that is
very similar to one in fact offered by his wave-theoretic opponents in the nine-
teenth century; see Essay 3):

51. Ibid.
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Light is observed to travel in straight lines with uniform speed.
In other cases, when something travels with uniform speed in a straight line
this motion is always observed to be caused by a series of bodies or by a
series of wave pulses produced in a medium (e.g., sound waves, water
waves).

Therefore
Light is either a particle or a wave phenomenon.

Let us assume that the premises are true, that they report "phenomena," and
that this is a "deduction from phenomena," so that the conclusion has the
highest certainty possible in experimental philosophy. Such an inference, a
type of causal simplification, would be permitted by Newton's Rule 2 requir-
ing that like causes be assigned to like effects, as far as possible. If in other
cases motion is caused by particles or waves, then, unless there is evidence to
the contrary, we should infer like causes in the case of the motion of light.

Let T1 be the hypothesis that light consists of particles, T2 the hypothesis
that light consists of waves, O the observed fact that light travels in straight
lines with uniform speed, and b the accepted background information, which
includes the information in the second premise above. We might express the
results of this argument probabilistically, as follows:

That is, the probability that either T1 or T2 is true, given O and b, is equal to
1. (With minor alterations an argument similar to that which follows can be
made if equation (1) is changed to say that the probability in question is close
to 1; see Essay 3.)

Let us suppose that by appeal to certain other observed facts about light —
call them O'—we can show that the probability of the wave theory is low, say
less than 1/2. Which facts these are, and how this is to be shown, will be taken
up in a moment. For the present let us simply write

Now if p(T1 or T2/O&b) = 1, then p(T1 or T2/O&O'&b) = 1. Therefore from
(1) and (2), since T1 and T2 are incompatible, we can infer

Let O1, . . . ,On be various observed facts about light (e.g., reflection, refrac-
tion, variety of colors, fits of easy reflection and transmission, etc.) other
than those in O and O'. We would like to know how probable T1 is when these
facts are considered in addition to O&O'&b. Is p(T1/O1 , . . . ,On&O'&b) also
high? Suppose that explanations of O1, . . . ,On by theory Tl can be con-
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structed in such a way that O1, On follow deductively (in the ordi-
nary sense) from T1 together possibly with the background information b.
But if the particle theory Tl (together possibly with b) deductively entails
O1, On, then it follows from the probability calculus that p(T1:/
O1 , . . . ,On&O&O'&b) p(T1/O&O'&b). So from (3), given the existence
of such explanations, we derive

which can be construed as the conclusion of the argument. It says that the
particle theory is probable (more probable than not) given not just a few
chosen optical phenomena but a range of them, including ones explained by
that theory.

The explanations of O1, . . . ,On provided by the particle theory do not
create the high probability for that theory, but they do sustain it. (In Essay 4 I
argue that, in general, derivational explanations, even those subject to certain
further conditions, will not by themselves suffice to guarantee high probabili-
ty, although they can increase it.) These explanations permit an inference
from (3) to (4). In an attempt to establish high probability for the particle
theory on the basis of a range of optical phenomena, this is an essential role
played by such explanations. To create high probability in the first place, a
type of eliminative argument is used in which the wave and particle theories
exhaust the probability but the probability of the wave theory is low. How is
the latter to be established?

Newton offers arguments of two types, one direct, the other indirect. An
argument appealing to diffraction is an example of the former. In the case of
other wave motions such as sound waves and water waves, diffraction into the
shadow of an obstacle is observed, but no such diffraction into the shadow
had been observed by Newton or others in the case of light (though Newton
had observed diffraction away from the shadow).52 So if we include in the
background information the fact of observed diffraction with other wave
phenomena and the absence of such observations in the case of light, then the
probability of the wave theory, given b, is low.

Second, Newton offers a more indirect type of argument. He points out
that to explain certain observed optical phenomena, the wave theory intro-
duces auxiliary assumptions that are either refuted by, or made very improba-
ble by, observations. For example, to explain differences in refrangibility of
rays emerging from a prism, wave theories introduce the auxiliary hypothesis
that the prism modifies rather than separates the rays. Newton argues that
this modification assumption is refuted or at least made extremely unlikely by
further refraction experiments. (See Experiment 5, Book I, pp. 34ff.) Can we

52. See Roger H. Stuewer, "A Critical Analysis of Newton's Work on Diffraction," Isis 61
(1970), pp. 188-205.
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infer from this that the wave theory is improbable? We can if we suppose that
the probability of the modification assumption, given the wave theory and
the observations, is close to 1. Letting M be the modification assumption, T2

the wave theory, and O' the results of various of Newton's refraction experi-
ments, if p(M/O&O'&b) is close to zero and p(M/T2&O&O'&b) is close to 1,
then p(T2/O&O'&b) is close to zero. Even more generally, we get the same
result if we suppose simply that p(M/T2&O&O'&b) is much, much larger
than p(M/O&O'&b), without needing to suppose that the former probability
is close to 1. (See Essay 3.)

Accordingly, there are two sorts of arguments to show that the probability
of the wave theory is low, that is, (2). Once this is shown, we can infer the high
probability of the particle theory (3), and its continued high probability in
light of the various observed facts that it explains, that is, (4).

How "Newtonian" is the previous argument? In one respect, quite un-
Newtonian, since it explicitly invokes numerical probabilities and the proba-
bility calculus, neither of which, of course, Newton does. However, in certain
other respects it reflects what Newton seems to be doing in Queries 28 and 29.
Assuming, as I have been, that Newton intends to provide some reasons for
believing the particle theory, albeit "weak" ones, it gives a basis for inferring
that theory with probability rather than certainty. Moreover, in doing so it
takes into account Newton's criticisms of the wave theory and the explanatory
virtues of the particle theory (each of which Newton himself emphasizes),
showing how both contribute to the probability of the particle theory.

One objection that might be offered is that this argument is a type of
eliminative one, whereas Newton at one point rejects (a certain form of)
eliminative reasoning. In a letter to Oldenburg of July 1672 he writes:

I cannot think it effectual for determining truth to examine the several ways by
which phenomena may be explained, unless there can be a perfect enumeration of
those ways. You know, the proper method for inquiring after the properties of
things is to deduce them from experiments. And I told you that the theory, which I
propounded [the theory of the heterogeneity of light rays] was evinced to me, not by
inferring 'tis thus because not otherwise, that is, not by deducing it only from a
confutation of contrary suppositions, but by deriving it from experiments conclud-
ing positively and directly.53

Newton here seems to be rejecting eliminative arguments of this form:

E: Each of the hypotheses h1, . . . ,hn, if true, will correctly explain phe-
nomenon p.
But hypotheses h2, .. . ,hn are false.
Therefore, hypothesis h1 is true.

53. I. B. Cohen, ed., Newton's Papers and Letters (Cambridge, Mass., 1978), p. 93.
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Such arguments, which infer the truth of an hypothesis from the falsity of
competitors, are fallacious, unless a complete enumeration can be made of all
the competitors. Newton appears to be thinking of deductive interpretations
of E in which if the premises are true the conclusion must also be true. And he
is correct in saying that arguments of form E, thus construed, are fallacious
unless a complete enumeration of hypotheses is given. They are also falla-
cious if construed nondeductively, that is, as being such that the premises
make the conclusion probable without entailing it. Unless some suitable as-
sumption is made about the probability of the disjunction of hypotheses that
are mentioned in the first premise, the conclusion that the probability of hl is
high cannot be drawn.

However, the particular eliminative argument I have constructed is not of
form E. The first step in the argument, which leads to (1) above, is not an
explanatory step, but one involving causal simplification. The claim is not
that the particle and wave theories will both explain the finite rectilinear
motion of light, but that in other observed cases when something travels with
uniform speed in a straight line this motion is caused by a series of bodies or a
series of wave pulses in a medium. Also, the claim in the first step is indeed
exhaustive, since it assigns a probability of 1 to the disjunction of hypotheses.
But even if it were not exhaustive in this sense, even if (1) were changed to read
"p(T1 or T2/O&b) is close to but not equal to 1," a fallacy would not emerge
(although other changes would need to be made in the argument).

I conclude that reconstructing what Newton does in Queries 28 and 29 in
the form of a probabilistic argument that takes us from (1) to (4) above is in
conformity with certain important aspects of Newton's methodology. It com-
bines his explanatory reasoning in Query 29 with his criticisms of the wave
theory in Query 28 to provide some reason, though not the highest possible in
experimental philosophy, to believe the corpuscular hypothesis. Although it is
an eliminative argument it is not one of the type Newton rejects. Because the
hypothesis in question is inferred with a probability not sufficiently high to be
a virtual certainty, Newton could not construe the argument as a "deduction
from phenomena." While we should search for phenomena that will sanction
such a "deduction," we should acknowledge that, assuming its premises are
true, the present argument does provide a legitimate "weak" reason for believ-
ing the corpuscular hypothesis.

6. STRONG VERSUS WEAK INFERENCES: AN ASSESSMENT
OF ONE TENET OF NEWTONIAN METHODOLOGY

A "strong" inference furnishes the proposition inferred with the highest evi-
dence possible in experimental philosophy; a "weak" inference furnishes some
evidence but not the highest possible. I shall suppose that this difference can
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be interpreted as a difference over probabilities (construed as representing
degrees of rational belief). In a strong inference from A to B, the probability
of B given A is close to or equal to 1. In a weak inference the probability is
high (say greater than 1/2), but is not close to or equal to 1. For Newton, both
strong and weak inferences are based on "phenomena."

Now I take it to be a tenet of Newtonian methodology that in experimental
philosophy "deductions from phenomena," and only these, are strong infer-
ences. Accordingly, I want to raise two questions of assessment: (a) Are
Newton's "deductions from phenomena" guaranteed to be strong inferences?
(b) Must other kinds of inferences fail to be strong?

To answer the first question we must return to the definition of "deduction
from phenomena" offered in section 2. Deductions from phenomena, we
recall, include ordinary deductions, inductions, and causal simplification.
Inductions are inferences from all observed members of a class to some
members of the class that have not been observed, or to all members of the
class. Let me simplify the discussion by considering deductive and inductive
inferences but omitting causal simplification, which does not lend itself so
readily to a general probabilistic treatment. Also, I shall discuss cases involv-
ing only deductions (in the ordinary sense) and those involving only induc-
tions.

Deductive cases: Let O1, . . . ,On be descriptions of phenomena the con-
junction of which, together with background information b, deductively im-
plies h. Then p(h/O1, . . . ,On&b) = 1. So here we have a "strong" inference
from the O's and b to h.

Inductive cases: To discuss these I shall first introduce some probability
considerations and afterward apply them to the sorts of cases particularly
relevant to Newtonian induction. Let h be a proposition that together with
background information b deductively entails some observational statements
O1,O2, . . . . The following claims are provable.54

(a) tells us that if the prior probability of h is not zero, then as the number n
of observed consequences of h and b gets larger and larger, the probability
that the n + 1 observational consequence of h and b will be true gets higher
and higher, approaching 1 as a limit. (b) tells us that if the prior probability of
h is not zero, then as the numbers m and n get larger, the probability that the

54. See John Earman, "Concepts of Projectibility and Problems of Induction," Nous 19
(1985), pp. 521-535.
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next m observational consequences are true, given that n observational conse-
quences obtain, gets higher and higher and approaches 1 as a limit.

To introduce the third probability result some restrictions will need to be
made on h and Oi. Let h be some universal generalization of the form (x)(Fx

Gx). Let the O's be "instances" of h of the form Fai Gai. The following is
provable:

(c) gives a set of sufficient conditions for the probability of (x)(Fx Gx),
given observed instances of the form Fa, Gai, to approach 1 as a limit.

Now let us apply these three probability results to Newtonian inductions.
In all three cases let us consider h's of the form (x)(Fx Gx), and O's instances
of the form Fai Gai. (a) tells us that if the prior probability of (x)(Fx Gx) is
not zero, then as the number of observed instances of (x)(Fx Gx) increases,
the probability that the next instance will obtain gets higher and higher,
approaching 1 as a limit. A similar claim can be made for (b). (a) and (b) —so
construed — correspond to Newton's inductions from some observed members
of a class to some other member(s) of that class. (c) corresponds to Newton's
inductions from some observed members of a class to all members. In all
three cases the probability in question approaches 1 as a limit, under certain
very weak assumptions. Intuitively, the probability that the next instance will
satisfy (x)(Fx Gx), that the next m instances will, and that all instances will,
gets higher and higher as more and more instances are observed. We get more
and more certainty in these cases with more and more observed instances of
(x)(Fx Gx).

However, it is not the case that for every number n of observed instances,
the probability that the next instance will satisfy (x)(Fx Gx), that the next m
instances will (for any m), and that all instances will, is close to 1. Consider
just the latter, and suppose that the prior probability of (x)(Fx Gx) is low,
and the O's are such that, with sufficiently small n, the prior probability of
the conjunction of O's is high. If (x)(Fx Gx) and b entails the O's, then by
Bayes' theorem,

Now if p((x)(Fx Gx)/b) is low and the O's are such that, with sufficiently

55. For proof see Earman, op. cit., p. 529.



NEWTON'S CORPUSCULAR QUERY AND EXPERIMENTAL PHILOSOPHY 61

small n, p(O1, . . . ,On/b) is high, then the probability on the left will be
small, despite the fact that all the observed O's satisfy (x)(Fx Gx). One case
of this sort involves Goodmanesque properties such as "grue," where the prior
probability of the proposition "All emeralds are grue" is very low but where,
given appropriate background information, the probability that observed
items are grue if they are emeralds is very high. Strange Goodmanesque
properties or classes can prevent the probability on the left from being high
for a given n. But as n increases without bound, the probability on the left will
approach 1 as a limit, strange properties notwithstanding.

However, Goodmanesque properties are not the only things that can pre-
vent the probability on the left from being high for a given n. Recall the proof
of Proposition 1 of the Opticks. Here an induction is made from observations
of differences in refrangibility of blue and red rays in an experiment with the
sorts of prisms used by Newton to differences in refrangibility of any differ-
ently colored rays in any sort of refraction, whether or not the latter is
produced by a prism. A critic of Newton might argue as follows: (i) The
number n of observed instances of Proposition 1 (that lights that differ in
color differ in degrees of refrangibility) is quite low. (If we count as instances
here the results of types of experiments, rather than specific trials, then the
critic has some justification, since Newton cites only two experiments.) (ii)
The critic might agree that the probability of getting the results Newton
obtains with these types of experiments with prisms is high, while supposing
that obtaining analogous refraction results with other sorts of prisms or
without prisms is improbable.56 (iii) The critic might argue, on the basis of
background information b, that the prior probability of Newton's Proposi-
tion 1 is very low. At least, the critic might complain, Newton does nothing to
dispel doubts expressed in points (i) through (iii). But unless such doubts are
removed, the probability of Newton's Proposition 1, given the results of the
experiments Newton mentions, cannot be assumed to be high. The most we
can say is that this probability will increase toward 1 as the number of ob-
served instances of the proposition increases.

Confining our attention to ordinary deductions and inductions, we can
now answer the question "Are Newton's 'deductions from phenomena' guar-
anteed to be strong inferences?" in the following way. If they are deductions
(in the ordinary sense), they are so guaranteed. Any deductive inference from
O1, ,On and b to h—no matter what number n is — guarantees that the
probability of h given O1, . . . ,On and b is maximal. By contrast, it is not the
case that every particular inductive inference is guaranteed to be strong, no
matter how many instances are involved and no matter what the character of

56. See Simon Schaffer, "Glass Works: Newton's Prisms and the Uses of Experiment," in
David Gooding, Trevor Pinch, and Simon Schaffer, eds., The Uses of Experiment (Cambridge,
England, 1989), pp. 67-104.
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the properties or classes in question. If Newton's methodology requires a
claim to the contrary, then it is mistaken. However, the previous probability
results show that (under certain weak assumptions), as more and more in-
stances are observed, then no matter what the character of properties or
classes in question, the strength of the inference is guaranteed to increase and
to approach the highest strength in the limit.

Accordingly, there are several ways to interpret Newton's methodology (or
to modify that methodology) so as to avoid the problems above. First, instead
of saying that every inductive inference from phenomena is a strong one,
Newton could say that some are, namely, those based on sufficiently many
instances (provided that the prior probability of (x)(Fx Gx) is not zero).
Second, Newton could restrict those inductions he will allow in the category
of "deductions from phenomena" to ones based on sufficiently many in-
stances. On both of these proposals, however, no particular number can be
chosen that will count as "sufficiently many." In each case this will depend on
the prior probability of (x)(Fx Gx) and on the prior probability of the
conjunction of instances. Third, Newton could attempt to impose conditions
on the character of the properties or classes that are subject to induction so
that inductions involving such properties or classes will guarantee maximal
probability no matter how many instances have been observed. Newton does
not formulate any such conditions. Whether it would be possible to do so
seems very dubious to me, though I shall not pursue this here. Finally, New-
ton could abandon entirely an "absolute" claim about the strength of induc-
tions in favor of a "comparative" one. He could say simply that, under
minimal assumptions, the strength of an induction increases as more and
more instances are observed.

Now turning to the other side of the coin we need to ask whether in
experimental philosophy there are strong inferences that are not "deductions
from phenomena." Is Newton correct in implying that only "deductions from
phenomena" can have this feature?

Let us return to result (a) above. (What I say here will be applicable to (b)
as well, mutatis mutandis.) Although (a) allows h and Oi to be of forms
(x)(Fx Gx) and Fa Ga, respectively, it does not require this. All that is
necessary is that h and b deductively imply Oi. Accordingly, h might be some
proposition that Newton would classify as an hypothesis, for example, that
light consists of particles. This hypothesis is not "deduced from phenomena."
Let the background information b include Newton's first law of motion that
in the absence of forces particles travel with uniform speeds in straight lines.
Hypothesis h + b deductively implies (O1) that in the absence of forces light
travels in straight lines, and (O2) that in the absence of forces light travels with
uniform speed. Now result (a) allows us to conclude that the probability that
some consequence of an "hypothesis" (in the Newtonian sense) obtains gets
higher and higher, approaching 1 as a limit, as more and more consequences
of that hypothesis are observed. The only assumption needed is that the prior
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probability of this hypothesis is not zero. This, of course, does not imply that
the probability of the "hypothesis" itself approaches certainty, but only that
the probability of its deductive consequences does.

Newton does not appear to be thinking of cases in which we make infer-
ences to deductive consequences of "hypotheses." But such inferences can be
strong ones, or at least they can get stronger and stronger as more and more
consequences are observed to hold. To be sure, Newton could claim that he is
classifying as "inductive" an inference from some observed consequences of h
to other not yet observed consequences. But his inductions appear to be
simply inductive generalizations from observed F's that are G's to other or all
F's being G's.

Let us turn, then, to result (c) involving the probability of h itself. And let
us consider the more general case in which h is any proposition that, together
with b, deductively implies O1, O2, Here we cannot obtain the result
that lim p(h/O1 , . . . ,On&b) = 1 because we cannot in general assume that

n

lim p(O1, . . . ,On/b) = p(h/b). Indeed, the following are provable:
n—

(d) Let h (together with b) entail O1, O2, . . . . If h has at least one
incompatible competitor h' that together with b also entails O1, O2,
. . . , and whose probability on b is greater than zero, then lim
p(h/O1, . . . ,On&b) 1.

(e) Let h together with b entail O1, O2, . . . . If h has at least one incom-
patible competitor h' that together with b also entails O1, O2, . . . ,
and is such that p(h'/b) p(h/b), then for any n, no matter how
large, p(hlO1, . . . ,On&b) .5.57

So if h has competitors that, like h, deductively imply all the observable
phenomena, then h's probability will not approach 1 as a limit; and if the
prior probability of one of the competitors is at least as great as h's prior
probability, then h's probability will not increase beyond .5, no matter how
many deductive consequences of h are observed to be true.

However, the quest for strong inferences to Newtonian "hypotheses" is not
necessarily doomed. We need not insist that the limit of the probability of h
be 1, but only that the probability of h given the observations be "very high"
and remain so with more and more observations. To this end, I shall employ
the concept of a partition of propositions on b, which is a set of mutually
exclusive propositions, the probability of whose disjunction on b is 1, and the
probability of each of which on b is not zero. The following is provable (see
Essay 4):

57. See Earman, op. cit., pp. 528-529.
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(f) If h, h1, . . . , hk form a partition on b, then for any O, and for each
hi ( h) in the partition, and for any number r greater than or equal to

0 and less than 1, p(h/O&b) > r if and only if p(h i/O&b) <
1 - r. i=1

Now suppose that we have some observed phenomena O, O1, ,On and
background information b, and we want to make a strong inference to h by
showing that the probability of h given the observed phenomena and back-
ground information is greater than some threshold value r for "very high"
probability. Using theorem (f), the following strategy is possible:

Strategy for showing that h has a very high probability (greater than some threshold
value r for very high probability), given observed phenomena O, O1, . . . , On and
background information b:

1. Find some partition on b—h, h1, . . . ,hk—that includes h.
2. Show that phenomenon O is such that for each proposition hi, h in the

partition, p(ht /O&b) < 1 - r.
i 1

3. Show that O1, . . . ,On are derivable from h (together with b).

If we complete steps 1 and 2 in this strategy, then, in accordance with theorem
(f), we will have shown that p(h/O&b) > r. By completing step 3, we show
that p(h/O&O1, . . . ,On&b) > r, since O1, . . . ,On are derivable from h to-
gether with b.

The question of interest is whether this strategy is applicable to proposi-
tions Newton would regard as hypotheses. In fact, it seems applicable to the
hypothesis Newton considers in Query 29 of the Opticks—that light consists
of particles. Indeed, the probabilistic argument I constructed in the last sec-
tion can be suitably modified and shown to be a legitimate variant of this
form. Let me recall the basic steps.

We began with the observation O that light travels in straight lines with
uniform speed, which, together with the background information b, yields a
probability of 1 that light is corpuscular or undulatory, that is,

Accordingly, T1 and T2 form a partition on O&b, since T1 and T2 are incom-
patible.

Second, we found some other observed facts O' that cast doubt on the
wave theory T2. We noted this by writing p(T2 /O&O'&b) < 1/2. But this is
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too modest, even for Newton, since the actual facts cited, Newton thought,
cast much more doubt on T2 than this. The two mentioned were diffraction
and refraction. If light is a wave phenomenon, then, like water waves and
sound waves, it ought to be diffracted into the shadow; but Newton observed
no such diffraction. Second, Newton (as well as defenders of the wave theory)
believed that, given the wave theory and the observations of differences in
degrees of refraction, the probability that light is modified by the refracting
prism is very high, say close to 1. But on the basis of his own refraction
experiments, Newton pretty clearly thought he had refuted the modification
assumption, that is, the probability of this assumption, given his experimen-
tal results, is close to zero. So, where M = the modification assumption, and
O' includes the results of Newton's refraction experiments, we have the result
ihat p(M/T2&O'&O&b) is close to 1, whereas p(M/O'&O&b) is close to zero.
It follows that p(T2 /O'&O&b) is close to zero. Letting O' also contain the
observed absence of diffraction into the shadow and b also contain observed
diffraction in the case of sound and water, we write

This completes the second step in the strategy.
From (1), since the probability of T1 or T2 is 1, it remains 1 if we add O'. So

we have

Since T1 and T2 are incompatible, from (2) and (3) we infer

Since T1 + b deductively implies other optical phenomena O1, . . . ,On, from
(4) we derive

which completes the third and final step of the strategy.
Again, I must stress that it is not my claim that this is Newton's actual

argument in Queries 28 and 29. Besides the attribution of the probability
calculus, the main stumbling block lies in the use of the first step in the
strategy, leading to (1) above (even if (1) were weakened by replacing "equals"
with "is close to"). Although Newton considers only the wave and particle
theories, he does not explicitly claim that the probability of their disjunction
on the evidence is maximal (or even very high). Still in the previous section I
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indicated what type of argument for this claim Newton could have given that
would be compatible with his general methodology. If the strategy is launched
by this assumption in step (1), then Newton's own arguments against the wave
theory can be used to justify the steps leading to the final (5).

Let us suppose that (1) is justified by inference from observed phenomena.
And let us assume that the remaining steps are also valid, so that the argu-
ment does establish the very high probability of a proposition given certain
observations and background information. If so it provides the basis for a
"strong" inference to that proposition from those observations and back-
ground information. Is the argument a "deduction from phenomena"?

In certain ways it seems quite different from the sorts of arguments New-
ton has in mind when he uses this expression. First, unlike the "deductions"
that Newton gives, it contains an inference to a disjunction of propositions in
the first step. Second, the argument is eliminative, whereas the "deductions"
Newton offers are not. Indeed, he rejects (certain types of) eliminative argu-
ments. Third, and most important, it makes use of the probability calculus,
which Newton never does. The inferences to (3), (4), and (5) are justified by
principles of probability. Whether Newton would have been willing to classify
such inferences as "deductive" is unclear.

Yet reasons might be offered for classifying the argument as a "deduction
from phenomena." First, the previous characterization of causal simplifica-
tion (as well as that of induction) does not preclude an inference to a disjunc-
tion of propositions. Second, although it is eliminative, it is not an elimina-
tive argument of the type that Newton rejects. Indeed, if the previous point is
accepted, it is an eliminative argument that uses causal simplification to
establish a disjunction of propositions and then to argue against one of the
disjuncts. Third, the probability principles generating steps (3), (4), and (5)
might be thought of as, or as akin to, mathematical principles, which for
Newton can serve as a basis for "deductions."

Accordingly, assuming the argument in question is valid, the following
possibilities emerge:

1. In a broad sense the argument is a "deduction from phenomena." If so
it does not refute the Newtonian claim that only "deductions from phenome-
na" guarantee strong inferences. However, if we construe it as a "deduction
from phenomena," then with this argument we must deny that the Newtonian
corpuscular hypothesis is an hypothesis. With this argument we will have
"deduced" the corpuscular hypothesis from the phenomena and thus rendered
it no longer hypothetical.

2. In a narrower sense (one that excludes probability arguments) the argu-
ment is not a "deduction from phenomena." Yet it provides the basis for a
"strong" inference to the corpuscular hypothesis. So if this narrower sense is
Newton's, then we need to reject his idea that only "deductions from phenom-
ena" can provide the highest certainty in experimental philosophy.
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7. CONCLUSIONS

1. Although neither Newton's professed methodology, nor his actual prac-
tice, form consistent sets, my suggestion is that interpretation (3) in section 3
reflects a good deal of both. On that interpretation, the most certainty possi-
ble in experimental philosophy is achieved when, and only when, propositions
are "deduced from phenomena." The latter involves deduction or induction
or causal simplification from generally accepted facts established by observa-
tion.

2. However, on this interpretation one is allowed not only to consider
propositions not "deduced from phenomena," that is, hypotheses, but to
make weak inferences to them in cases in which "deductions" have not been
achieved. But we must recognize that such inferences are weak, and we must
continue to search for phenomena from which the propositions in question
can be "deduced."

3. One sort of non-"deductive" inference to hypotheses is illustrated in
Queries 28 and 29 in the Opticks in the discussion of the particle and wave
theories of light. Here Newton seems to be making a (weak) inference to the
particle theory on the grounds that it explains a range of optical phenomena.
In section 5 above this argument is reconstructed probabilistically in such a
way as to reflect, at least in part, Newton's discussion in Queries 28 and 29, as
well as his general methodology.

4. We cannot suppose, as Newton seems to, that "deductions from phe-
nomena" will always yield the maximal certainty possible in experimental
philosophy. In the case of induction, for example, such certainty is not guar-
anteed simply by observing positive instances of an inductive generalization
and no negative ones. What we can say is that, granted certain minimal
assumptions, an increase in the number of positive instances will increase the
strength of such inferences toward maximality. Finally, assuming that proba-
bilistic explanatory reasoning of the type constructed in section 6 can be
valid, we may say this: If probabilistic arguments are not construed as "de-
ductive," then we cannot suppose, as Newton seems to, that only "deductions
from phenomena" can generate the highest certainty possible in experimental
philosophy. *

*For very helpful suggestions I am indebted to Robert Rynasiewicz, Doren Recker, Robert
Kargon, and Alan Shapiro.
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ESSAY 3

Light Hypotheses

1. INTRODUCTION

At the beginning of the nineteenth century Thomas Young published papers
that defended the wave theory of light against the Newtonian particle theory.
Following this there occurred a lengthy and sometimes heated dispute be-
tween particle theorists and wave theorists which, it is alleged, stemmed from
deep divisions over scientific methodology. Particle theorists, it is said, partic-
ularly British ones, used the method of induction whereas wave theorists
employed the antithetical method of hypothesis. Thus Geoffrey Cantor
writes:

Although in the eighteenth century almost every British natural philosopher ac-
cepted without question the corpuscular interpretation of Newton's writings on
optics, by the 1830s most British natural philosophers had rejected Newton's cor-
puscular theory in favor of the wave theory of light. Intimately bound up with this
scientific "revolution" in optical theory was a change in scientific methodology: the
replacement of the method of induction by the method of hypothesis.1

According to Cantor, nineteenth-century particle theorists "followed the
[eighteenth-century] common-sense philosophers in considering induction to
be the proper scientific method" (p. 111), and in rejecting or limiting a
reliance on hypotheses; nineteenth-century "supporters of the wave theory,
unlike its objectors, championed the method of hypothesis" (p. 114).

Larry Laudan has also emphasized a change in methodology between the
late eighteenth and early nineteenth centuries. The wave theory of light re-

1. Geoffrey Cantor, "The Reception of the Wave Theory of Light in Britain: A Case Study
Illustrating the Role of Methodology in Scientific Debate," Historical Studies in the Physical
Sciences 6 (1975), p. 109. Emphasis mine. See also his book Optics after Newton (Manchester,
1983), pp. 177-186.
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quired an imperceptible luminiferous ether, which eighteenth-century induc-
tivists rejected as an untestable hypothesis. Speaking of the reception of ether
theories in Scotland, Laudan writes:

The primary reason for opposition to ether theories was the widespread acceptance
among Scottish philosophers and scientists of a trenchant inductivism and empiri-
cism, according to which speculative hypotheses and imperceptible entities were
inconsistent with the search for reliable science.2

Laudan goes on to argue that nineteenth-century defenders of the wave theo-
ry used a form of the method of hypothesis (which I shall consider in this
essay).

In 1803 Henry Brougham, a defender of the particle theory of light, wrote
a scathing review of Thomas Young's "Bakerian Lecture on the Theory of
Light and Colors." Brougham begins by saying:

As this paper contains nothing which deserves the names either of experiment or
discovery, and as it is in fact destitute of every species of merit, we should have
allowed it to pass among the multitude of those articles which must always find
admittance into the collections of a Society which is pledged to publish two or three
volumes every year.3

Brougham's principal objection to Young's paper is that it is not based on
inductions from experiments but involves simply the formulation of hy-
potheses to explain various facts. And Brougham writes:

A discovery in mathematics, or a successful induction of facts, when once complet-
ed, cannot be too soon given to the world. But . . . an hypothesis is a work of
fancy, useless in science, and fit only for the amusement of a vacant hour. . . . (p.
451). It is scarcely possible to conceive a wider difference than that which subsists
between the philosophy of Newton and the philosophy of Dr. Young. While the
former utterly rejects hypotheses, and asserts that our stock of facts upon the
subject of the ether is insufficient; the latter says that we have enow [sic] of experi-
ments, and that we only require to have a stock of hypotheses, (p. 455)

In this review Brougham defends the Newtonian particle theory on the
grounds that it is inductively supported by experiments, while he rejects

2. Larry Laudan, "The Medium and its Message," in G. N. Cantor and M. J. Hodge, eds.,
Conceptions of the Ether (Cambridge, England, 1981), p. 170. Unlike Cantor, Laudan's principal
aim in this paper is to compare the methodology of those who defended the wave theory in the
nineteenth century with eighteenth- (rather than nineteenth-) century inductivist critiques of that
theory (and of ether theories generally). Since my main interest in what follows is (like that of
Cantor) in the debate between wave and particle theorists in the nineteenth century, Laudan's
claim that is of special concern to me is that nineteenth-century wave theorists utilized a method
of hypothesis.

3. Edinburgh Review 1 (1803), p. 450.
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Young's defense of the wave theory on the grounds that it employs an unac-
ceptable method of hypothesis.

In what follows I propose the following:
1. To give an account of the method of hypothesis (or of various such

methods).
2. To argue, contrary to Cantor and Laudan, that in their actual practice,

as well as in their reflections on this practice, nineteenth-century wave theo-
rists such as Young, Fresnel, Lloyd, and Herschel typically employed a meth-
od that is significantly different from the method of hypothesis.

3. To argue that this method contains not only an explanatory component
present in the method of hypothesis, but an "independent warrant" compo-
nent that is not. For wave theorists the strategy for supplying independent
warrant is an eliminative one that can be justified by appeal to probabilistic
and inductive considerations. Of particular interest in this justification will be
probability considerations introduced in section 5 that pertain to the intro-
duction of auxiliary hypotheses.

4. To give an account of what nineteenth-century British particle theorists
such as Brougham meant by "induction" and how they utilized this method in
developing the particle theory. In doing this some attention will need to be
given to Newton's ideas, which exerted considerable influence on later particle
theorists.

5. To argue that there are strong similarities, if not identities, between the
inductivism of British particle theorists and the methodology of wave theo-
rists, and that the important debate is over particles versus waves, not meth-
odologies. Accordingly, the present case will not support a form of relativism
that states that fundamentally different theories employ fundamentally dif-
ferent methodologies.

2. THE METHOD OF HYPOTHESIS

On this method one proposes an hypothesis to explain observed phenomena.
If the hypothesis, if true, would correctly explain those phenomena, one can
claim support for it, even if the hypothesis postulates unobserved or unob-
servable entities and processes. Here is a simple use of this method by David
Hartley, in defending the hypothesis that an ether exists:

Let us suppose the existence of the aether, with these its properties, to be destitute
of all direct evidence, still, if it serves to explain a great variety of phenomena, it
will have an indirect evidence in its favour by this means.4

4. David Hartley, Observations on Man, His Frame, His Duty, and His Expectations, 2nd
ed., 2 vols. (London, 1791), vol. 1, p. 15. Quoted by Laudan, op. cit., p. 161.
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More generally, the method of hypothesis contains the following idea:

Basic method of hypothesis: The fact that hypothesis h if true would correctly
explain observed phenomena O1, . . . ,On constitutes at least some reason to think
that h is true.

Frequently, especially in the mathematical physics developed by both wave
and particle theorists, the explanations consist of deductive derivations of C\,
. . . ,On from h. If so, we get the modern hypothetico-deductive viewpoint.
However, the method of hypothesis is also close to the idea of retroduction
introduced by Peirce at the end of the nineteenth century and developed in the
middle of the present century by N. R. Hanson. According to Hanson, it
involves an inference of the following form:

Some surprising phenomenon P is observed.
P would be explicable as a matter of course if h were true.
Hence, there is reason to think that h is true.5

Now, according to Laudan, by the 1830s an important change had oc-
curred in the method of hypothesis. Prior to this, hypothesists were willing to
conclude that there is some reason to think an hypothesis true if it explains
phenomena that have already been observed and for which the explanation
was proposed in the first place. (This would make early versions of the
method akin to Hanson's form of retroduction.) By the 1830s a requirement
was instituted that the hypothesis has to explain states of affairs significantly
different from those it was invented to explain. This can be accomplished if
the hypothesis can predict (and explain) some new and as yet unobserved
phenomenon or some known phenomenon that did not prompt the hypothe-
sis in the first place.6 Such a view is expounded by William Whewell, who
speaks in this connection of a consilience of inductions. We might formulate
it like this:

Method of hypothesis with consilience: Let h be some hypothesis proposed initially
to explain O1 (and nothing else). The fact that h if true would correctly explain O1,

5. N. R. Hanson, Patterns of Discovery (Cambridge, England, 1958), p. 72.
6. See Laudan, op. cit., p. 175. At least one exception to Laudan's thesis is Huygens, who in

1690, in the Preface to his Treatise on Light, defends a form of the method of hypothesis that
involves deriving or explaining not only known facts but new ones as well. He writes:

. . . here [in his Treatise] the principles are verified by the conclusions to be drawn from them . . . especial-
ly when there are a great number of them, and further, principally, when one can imagine and foresee new
phenomena which ought to follow from the hypotheses which one employs, and when one finds that
therein the fact corresponds to our prevision. (Christian Huygens, Treatise on Light, reprinted in Robert
Maynard Hutchins, ed., Newton, Huygens (Chicago, 1952), p. 551.)
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. . . ,On (where these are significantly different) provides some reason to think that
h is true.

In point of fact, Whewell's version of the method seems even more com-
plex than this. Whewell notes that formulations like those above presuppose
that

the hypothesis with which we compare our fact [is] framed all at once, each of its
parts being included in the original scheme. In reality, however, it often happens
that the various suppositions which our system contains are added upon occasion
of different researches.7

In modifications toward a true theory, Whewell notes:

all the additional suppositions tend to simplicity and harmony; the new supposi-
tions resolve themselves into the old ones, or at least require only some easy
modification of the hypothesis first assumed: the system becomes more coherent as
it is further extended.8

Perhaps, then, Whewell would have espoused the following:

"Dynamical" method of hypothesis with consilience: Let h1 be some hypothesis
proposed initially to explain O1 but not O2, . . . ,On, where the latter are different
in kind from each other and from O1; let h2, . . . ,hk be hypotheses added to h1 to
explain O2, . . . ,On. The fact that h1, . . . ,hk if true would correctly explain O1,
. . . ,On, and in addition would correctly explain On+1, . . . ,On+p (different facts
that did not prompt h1t . . . ,hk), provides some reason to believe h1t . . . ,hk,
provided that h2, . . . ,hk are "natural" extensions of h1, so that h1, . . . ,hk has
"coherence."

These three formulations of the method, although by no means identical,
have in common the basic idea that the fact that an hypothesis if true would
correctly explain phenomena counts as some reason for believing that hypoth-
esis. There may be restrictions on the kinds of phenomena explained (e.g.,
they should be different in kind from ones that prompted the hypothesis in
the first place). And there may be restrictions on the additions to the hypothe-
sis required for subsequent explanations. But there is no requirement that the
hypothesis in question, or any subsequent one, be inductively inferable from
any observations. More generally, there is no requirement that there be any
independent warrant for the hypotheses introduced, that is, any reason for

7. William Whewell, The Philosophy of the Inductive Sciences (New York, 1967), vol. 2, p.
68. Emphasis in original.

8. Ibid., p. 68. Emphasis in original.
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believing such hypotheses other than the explanatory ones hypothesists men-
tion.

3. WHAT METHOD DID NINETEENTH-CENTURY WAVE
THEORISTS EMPLOY IN PRACTICE?

In publications setting forth arguments for their theory, a strategy wave theo-
rists typically used is this:

1. Start with the assumption that light is either a wave phenomenon or a
stream of particles.

According to the wave theory, light consists of a wave motion or pulse trans-
mitted through some medium; the medium itself may be composed of parti-
cles that vibrate rather than exhibit translational motion. According to the
particle theory, light consists of discrete particles emanating from luminous
bodies; these particles are subject to forces obeying Newton's laws of motion;
if no such forces are acting the particles move in straight lines with constant
finite velocity.

The assumption that light is either a wave or particle phenomenon is made
on the grounds that these are the two main theories that have been proposed
by the physics community, or on the grounds of some empirical consideration
regarding motion, or both. Taking the former line Young writes:

It is allowed on all sides, that light either consists in the emission of very minute
particles from luminous substances, which are actually projected, and continue to
move with the velocity commonly attributed to light, or in the excitation of an
undulatory motion, analogous to that which constitutes sound, in a highly light
and elastic medium pervading the universe; but the judgments of philosophers of
all ages have been much divided with respect to the preference of one or the other
of these opinions.9

Humphrey Lloyd, after a few preliminaries, begins the body of his 1834
report on the present state of physical optics as follows:

The first property of light which claims our notice is its progressive movement.
Light we know, travels from one point of space to another in time, with a velocity

9. Thomas Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts
(London, 1845), p. 359. Also taking the former line, Fresnel, like Young, begins by noting that
the particle and wave theories represent "the two systems which have up till now divided scientists
with respect to the nature of light." A. Fresnel, "Memoir on the Diffraction of Light" (1816),
reprinted (in part) in Henry Crew, ed., The Wave Theory of Light (New York, 1900). For parts of
this material not in Crew, I have used a translation provided by Laurence Selim.
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of about 195,000 miles a second. The inquiry concerning the mode of this propaga-
tion involves that respecting the nature of light itself.

There are two distinct and intelligible ways of conceiving such a motion. Either
it is the self-same body which is found at different times in distant points of space;
or there are a multitude of moving bodies, occupying the entire interval, each of
which vibrates continually with certain limits, while the vibratory motion is com-
municated from one to another, and so advances uniformly. Nature affords numer-
ous examples of each of these modes of propagated movement; and in adopting
one or the other to account for the phenomena of light, we fall upon one or other
of the two rival systems, — the theories of Newton [particle theory] and of Huygens
[wave theory].10

Lloyd's assumption that light is either a wave phenomenon or a particle
phenomenon is based on the observation that light travels in space from one
point to another with a finite velocity, that both particle and wave theories
can account for this movement, and that in nature one observes motion from
one point to another occurring by the motion of a body and by the motion of
vibrations through a set of bodies.

Herschel, another defender of the wave theory, begins his account of phys-
ical optics as follows:

Among the theories which philosophers have imagined to account for the phenom-
ena of light, two principally have commanded attention; the one conceived by
Newton ... in which light is conceived to consist of excessively minute molecules
of matter projected from luminous bodies. . . . The other hypothesis is that of
Huygens . . . , which supposes light to consist, like sound, in undulations or
pulses, propagated through an elastic medium.11

Although Herschel recognizes that other theories have been proposed, he
notes that "these are the only mechanical theories which have been ad-
vanced." He seems to suppose that these are the most plausible theories.

2. Show how each theory explains various observed optical phenomena (e.g.,
rectilinear propagation, reflection, refraction, diffraction, dispersion, etc.).

Young, for example, begins with diffraction ("when a portion of light is
admitted through an aperture and spreads itself in a slight degree in every
direction"):

In this case it is maintained by Newton that the margin of the aperture possesses an
attractive force, which is capable of inflecting the rays. . . . In the Huygensian

10. Humphrey Lloyd, "Report on the Progress and Present State of Physical Optics," Reports
of the British Association for the Advancement of Science (1834), pp. 297-298.

11. J. F. W. Herschel, "Light," Encyclopedia Metropolitana (1845), vol. 4, p. 439.
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system of undulation, this divergence or diffraction is illustrated by a comparison
with the motions of waves of water and of sound, both of which diverge when they
are admitted into a wide space through an aperture. . . . 12

Young continues by noting other observed optical phenomena and indicating
whether or how the two leading theories account for them. Exactly similar
strategies are followed by Fresnel, Lloyd, and Herschel.

3. Show that the particle theory, in explaining one or more of the observed
optical phenomena, introduces improbable hypotheses, while the wave
theory does not.

Immediately after introducing the particle explanation of diffraction at an
aperture as caused by an attractive force exerted at the margin, Young writes:

But there is some improbability in supposing that bodies of different forms and of
various refractive powers should possess an equal force of inflection, as they ap-
pear to do in the production of these effects; and there is reason to conclude from
experiments, that such a force, if it existed, must extend to a very considerable
distance from the surfaces concerned, at least a quarter of an inch, and perhaps
more, which is a condition not easily reconciled with other phenomena.13

Fresnel offers a similar argument against the forces introduced by the
particle theory to explain diffraction. He presents experiments on the basis of
which he concludes that

The phenomena of diffraction do not at all depend upon the nature, the mass, or
the shape of the body which intercepts the light, but only upon the size of the
intercepting body or upon the size of the aperture through which it passes. We
must, therefore, reject any hypothesis which assigns these phenomena to attractive
and repulsive forces whose action extends to a distance from the body as great as
that at which rays are inflected.14

12. Young, op. cit., pp. 359-360. Young's wave explanation of diffraction, which is rather
sketchy, is perhaps this: waves (e.g., those of sound and water) diverge when admitted into a wide
space through an aperture. Light is a wave motion. That is why it diverges similarly. It remained
for Fresnel to give a quantitative wave-theoretic explanation of this and other diffraction phe-
nomena. In one such phenomenon light bends around obstacles into the shadow as well as away
from it. Newton (to whom Young refers in the quotation above) observed the external fringes but
not the internal ones. This was one of his reasons for rejecting the wave theory (see section 7).

13. Ibid. Young proceeds to show how in explaining numbers of other phenomena the
particle theory, by contrast to the wave theory, employs dubious hypotheses. This strategy is also
evident in one of his earliest papers ("Outlines of Experiments and Inquiries Respecting Sound
and Light," Philosophical Transactions of the Royal Society, 1800), in which he also argues in
favor of the wave theory, though with somewhat less assurance (see pp. 613-616).

14. Fresnel, op. cit., p. 99.
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Earlier in this prize essay on diffraction Fresnel presents an argument against
Newton's introduction of "fits of easy reflection and transmission" of light
particles as an auxiliary hypothesis to explain Newton's rings. He concludes:

Not only is the hypothesis of fits improbable because of its complexity, and diffi-
cult to reconcile with the facts in its consequences, but it does not even suffice in
explaining the phenomenon of the colored rings, for which it was imagined.15

Fresnel goes on to argue that Newton's rings, as well as diffraction, can be
explained as natural consequences of the wave theory, without introducing
improbable hypotheses.

Lloyd notes that discoveries of Bradley and Roemer lead to the conclusion
that the velocity of light is the same

whatever be the luminous origin: the light of the sun, the fixed stars, the planets
and their satellites, being all propagated with the same swiftness. This conclusion
must be allowed to present a formidable difficulty in the theory of emission.16

The difficulty is that if light consists of particles (with mass), then a massive
object such as a fixed star should exert a force on them that "would be
sufficient to destroy the whole momentum of the emitted molecules, and the
star would be invisible at great distances" (p. 300). Lloyd asserts that the only
way to explain the fact that the velocity we observe is the same for all lumi-
nous bodies is to adopt an hypothesis of Arago "that the molecules of light
are originally projected with very different velocities: but that among these
velocities is but one which is adapted to our organs of vision, and which
produces the sensation of light" (pp. 300-301). Lloyd notes that such a suppo-
sition has some support from discoveries of invisible rays of the spectrum.
But he concludes that the supposition is not "easily reconciled with hy-
potheses which we are able to frame respecting the nature of vision" (p. 301;
for additional discussion of this point, see my "Light Problems: Reply to
Chen," Studies in History and Philosophy of Science 21 (1990)). By contrast,
Lloyd asserts, the fact that the observed velocity of light is the same for all
luminous bodies is explained without difficulty by the wave theory:

This uniformity of velocity, on the other hand, is a necessary consequence of the
principles of the wave-theory. The velocity with which vibratory movement is prop-
agated in an elastic medium depends solely on the elasticity of that medium and on
its density; and if these be uniform in the vast spaces which intervene between the
material bodies of the universe, (and it is not easy to suppose it otherwise) the
velocity must be the same, whatever be the originating source. (p. 301)

15. Ibid., sec. 7.
16. Lloyd, op. cit., p. 300.
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4. Conclude that the wave theory is (very probably) true, while the particle
theory is (very probably) false.

At the beginning of his paper Lloyd makes explicit the strategy he will follow:

To take, in the first instance, a rapid survey of the several leading classes of optical
phenomena which the labours of experimental philosophers have wrought out in
such rich profusion, and afterward to examine how far they are reducible to one or
other of the two rival theories which have alone advanced any claim to our consid-
eration. This is, in fact, the only way in which the truth of a physical theory can be
established; and the argument in its favor is essentially cumulative.17

Having seen how the two theories explain (or fail to explain) various optical
phenomena, and having argued that the particle theorists introduce hy-
potheses in these explanations that are improbable, whereas wave theorists do
not—or do not to such a great extent—it is concluded that the wave theory is
probably true.

4. ANALYSIS OF THIS METHOD

The method described in the previous section is a type of "eliminative" one
that consists of four parts. Schematically:

1. Assume that either theory T1 or theory T2 is correct, and give grounds for
such an assumption.

2. Show how T1 and T2 explain various observed phenomena.
3. Show that T2 in explaining one or more of these phenomena introduces

improbable hypotheses, whereas T1, does not.
4. Conclude that T1 is probably true.

Let us examine the three steps leading to the conclusion, beginning with the
second.

Step 2 introduces the idea of explanation. To conclude that T1 is probably
true, a theorist using this strategy must show that T1 is capable of explaining
certain phenomena (by producing the explanations). Following the method of
hypothesis, we might say that such a theorist seeks a theory T that will satis-
fy a

Basic explanatory condition: T if true would correctly explain observed
phenomena O1t . . . ,On.

17. Ibid., p. 295.
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In the light of the discussion in section 2 this explanatory condition, which is
associated with the "basic" method of hypothesis, could in principle be
broadened to include more sophisticated features of the "dynamical method
of hypothesis with consilience." For example, it might be required that theory
T explain phenomena different in kind from those that first prompted the
theory, and that hypotheses added to T for this purpose be "natural" ones that
result in a "coherence" among the theoretical assumptions.18

Despite the fact that wave theorists satisfied one or the other explanatory
conditions of the method of hypothesis, there is a fundamental difference
between the method they employed and the method(s) of hypothesis in sec-
tion 2. In the latter case, when the explanatory condition is satisfied, it is
concluded that there is some reason to think the theory is true. But with the
method described in the previous section this is not a sufficient condition,
only a necessary one. For each of the rival theories may satisfy the explana-
tory condition. The particle theory (no less than the wave theory), together
with auxiliary assumptions needed, would, if true, correctly explain certain
observed phenomena. Indeed, it might be the case that these auxiliary as-
sumptions are "natural" extensions of the particle theory resulting in a "co-
herent" set of assumptions, and that if the enlarged theory is true it will
correctly explain phenomena different from those prompting the theory in the
first place. If so, more sophisticated "explanatory conditions" will be satis-
fied.

For example, in explaining diffraction a particle theorist introduces the
auxiliary hypothesis that the margins of the aperture exert an attractive force
on the particles of light that is capable of causing the bending of their path.
This is a "natural" extension of the particle theory, since the latter seeks to
explain optical phenomena in terms of particles subject to forces. The objec-
tion to this explanation offered by nineteenth-century wave theorists is not
that it introduces ideas foreign to the particle theory, ones that render the set
of theoretical assumptions "incoherent," but that it introduces hypotheses
that are improbable, given observations made in this case and others.
(Fresnel's objection to the Newtonian attractive force at the margins of the
aperture in diffraction is based on experiments and observations that show
that diffraction does "not at all depend upon the nature, the mass, or the
shape of the body which intercepts the light.")

If the satisfaction of an explanatory condition is not sufficient, what else is
necessary? Here we must examine steps 1 and 3.

In step 1 wave theorists begin with the assumption that light is either a
particle or a wave phenomenon, that is, that one or the other of these two
theories is true. This is not simply assumed for the sake of argument to see

18. These additional features of an explanation are emphasized by Lloyd, op. cit., pp. 349-
350.



80 THEORIES OF LIGHT: PARTICLES VERSUS WAVES

what follows. Rather, arguing in the manner of the previous section, wave
theorists are committed to the idea that it is likely that one theory or the other
is true, and reasons are given for thinking that this is so. What sorts of
reasons are these?

Lloyd, we recall, argues "there are two distinct and intelligible ways of
conceiving" the observed motion of light, and that "in adopting one or the
other [modes of propagated motion] to account for the phenomena of light"
we obtain the particle or the wave theory. Accordingly, a part of Lloyd's
reasoning is explanatory: both theories will explain the fact that light exhibits
motion. But to this claim Lloyd adds importantly that "nature affords numer-
ous examples of each of these modes of propagated movement." Had others
been observed, presumably further ways of conceiving the propagation of
light would have been noted. Accordingly, if, as seems plausible, Lloyd means
that these are the only modes of communication known (or perhaps even just
the most prevalent ones), then, in addition to the explanatory reason, there is
an inductive one: light is observed to be communicated from one point to
another in a finite time; the modes of communication observed in nature
consist in the motion of bodies from one point to another and in the vibratory
motion of a medium; so it is reasonable to assume that light is either a
particle or a wave phenomenon.

Sometimes (as with Young) the claim that light is either a particle or a wave
phenomenon is defended by saying that these are the two leading theories
proposed by physicists. If, as I am assuming, this is to be understood as
providing some reason not simply to examine these theories but to think that
one or the other is correct, then, even in this case, the reasoning involves some
inductive steps: The fact that these are the leading theories proposed by
physicists, together perhaps with an implicit appeal to the reputations of
those supporting each theory (e.g., Newton vs. Huygens) and to their other
successes, provides some reason to think that one of these theories is true.
(Certainly a particle theorist such as Brougham had no qualms about defend-
ing his theory, at least in part, by appeal to the success of his authority
Newton. And, as noted in Essay 1, Young in an 1802 paper also appealed to
the authority of Newton in defense of some of the assumptions of the wave
theory.)

Since the claim that light is either a particle or a wave phenomenon is not
simply assumed, but grounds are given for it, and since it is recognized that
the resulting accounts are not the only possible ones,19 just the most likely, it

19. An alternative theory, which had some defenders until the early years of the nineteenth
century, was that light is produced by the rectilinear motion, rather than the vibrations, of a
fluid. According to most of these theorists this fluid consists of particles. However, unlike the
particle theorists, fluid theorists refused to offer mechanical explanations of the interactions of
light and matter, i.e., explanations in terms of attractive and repulsive forces obeying Newtonian
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seems appropriate to formulate step 1 in terms of probability. (Wave theorists
do use the term "probability" and its cognates in speaking of their theory and
that of their opponents.) In what follows I will show how the wave theorist's
argument, given in schematic form at the beginning of this section, can
plausibly be reconstructed probabilistically. In doing so I will assume that the
usual axioms of the probability calculus are satisfied, and that probability is a
measure of rational credibility. Beyond that no particular interpretation of
probability will be invoked.

We might say, then, that wave theorists using the strategy of the previous
section begin with the idea that the probability is very high —say close to 1 —
that light is either a particle or a wave phenomenon, given certain observed
facts O, including ones pertaining to the motion of light. Schematically,

where T1 and T2 are the rival theories, and b is the accepted background
information that includes facts about known modes of travel in other cases.
To note the required observations and background information and establish
(1) is the aim in the first step of the wave theorist's strategy.

Now let us turn to step 3. Here the wave theorist seeks to show that the
particle theory in its quest to explain certain observed phenomena introduces
improbable hypotheses, whereas the wave theory does not. What role does
this step play? Suppose it could be established that the probability of the
particle theory, given certain observed facts contained in O and accepted
background information b, is very low—say, close to zero. Schematically,

(In section 5 I will show how wave theorists argue in such a way that (2)
follows.) Then, since T1 and T2 are rival, incompatible theories, from (1) and
(2) we can infer

Now, let O1 . . . ,On be observed facts about light (e.g., rectilinear propa-
gation, reflection, refraction, etc.) other than those in O and b. What the
wave theorist seeks to determine is how probable his theory is in the light of
all these facts as well, that is, p(T1/O1, On&O&b). Returning to the

laws. The theory was frequently given theological associations, and for the most part its defend-
ers were writers outside the mainstream of the scientific community. (See Cantor, Optics after
Newton, ch. 4.) Accordingly, although such a theory is compatible with the observed transmis-
sion of light from one point to another, it was considered very improbable by most nineteenth-
century physicists because it postulated particles not subject to Newtonian mechanical principles
and hence unlike any observed. (See Cantor, p. 109.)
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explanatory step 2 at the beginning of this section, suppose that O1, . . . ,On

are explained by the wave theory in such a way that they follow deductively
from the theory together possibly with the background information. (When
the observed facts are described quantitatively the explanations involve math-
ematical derivations.) But if the wave theory T1 (together possibly with b)
entails O1, . . . ,On, then from the probability calculus it follows that p(T1/
O1, . . . ,On&O&b) p(T1/O&b). Accordingly, from (3) we get

And this is the conclusion of the wave theorist's argument. It tells us that the
wave theory is highly probable given a range of observed phenomena, includ-
ing ones explained by that theory.

The explanations of Ol On provided by T1, do not create the high
probability for T1 but they do sustain it. They permit an inference from (3) to
(4). The argument leading to (3) shows that O&b provides independent war-
rant for T1, that is, warrant that does not depend on the fact that O1, . . . ,On

are explained by T1,. (4) shows that the high probability secured by this inde-
pendent warrant is retained by T1 in the light of the additional optical phe-
nomena O1, . . . ,On. This is a crucial role played by such explanations in
trying to establish the high probability of the wave theory on the basis of a
variety of optical phenomena.

More generally, the following probability claim holds:

The explanatory condition (ii) by itself will not suffice to yield high proba-
bility for T. (See Essay 4 for general arguments showing why derivational
explanations, even ones subject to certain "coherence" and "consilience"
conditions, cannot guarantee high probability for T.) However, if the in-
dependent warrant condition (i) is satisfied, the result will suffice. This sug-
gests one strategy to use when trying to establish the high probability of an
hypothesis:

(6) To show that p(T/O1, . . . ,On&O&b) > k (where k represents some
threshold value for "high" probability):
(i) Show that there is independent warrant for T given some of the

observed facts O and background information b, so that p(T/
O&b) > k.

(ii) Show that the remaining observed facts O1, . . . ,On are explain-
able via derivation from T (together with b).
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Independent warrant for T, given O and b, might be shown directly by
producing some inductive or analogical argument from O and b to T, or
indirectly by producing such an argument against one or more rival theories.
Exactly how this works, particularly in the case of the wave theory, will be the
subject of the next section. But first it should be noted that wave theorist
John Herschel explicitly espouses ideas that commit him to an independent
warrant condition. In speaking about the introduction of "hypotheses" in
science, Herschel writes:

Now nothing is more common in physics than to find two, or even many, theories
maintained as to the origin of a natural phenomenon. For instance . . . with light:
one [theory] considers it as consisting in actual particles darted forth from lumi-
nous bodies, and acted upon in their progress by forces of extreme intensity resid-
ing in the substances on which they strike; another, in the vibratory motion of the
particles of luminous bodies, communicated to a peculiar subtle and highly elastic
ethereal medium filling all space, and conveyed through it into our eyes. . . .

Now, are we to be deterred from framing hypotheses and constructing theories,
because we meet with such dilemmas, and find ourselves frequently beyond our
depth. Undoubtedly not ... it may happen (and it has happened in the case of the
undulatory doctrine of light) that such a weight of analogy and probability may
become accumulated on the side of an hypothesis, that we are compelled to admit
one of two things: either that it is an actual statement of what really passes in
nature, or that the reality, whatever it be, must run so close a parallel with it, as to
admit of some mode of expression common to both, at least in so far as the
phenomena actually known are concerned. . . .

In framing a theory which shall render a rational account of any natural phe-
nomenon, we have first to consider the agents on which it depends, or the causes to
which we regard it as ultimately referable. These agents are not to be arbitrarily
assumed; they must be such as we have good inductive grounds to believe do exist in
nature, and do perform a part in phenomena analogous to those we would render
an account of; or such whose presence in the actual case can be demonstrated by
unequivocal signs. They must be verae causae, in short, which we can not only
show to exist and to act, but the laws of whose action we can derive independently,
by direct induction, from experiments purposely instituted; or at least make such
suppositions respecting them as shall not be contrary to our experience, and which
will remain to be verified by the coincidence of the conclusions we shall deduce
from them, with facts.20

What Herschel says here commits him to an independent warrant condition
for hypotheses. His insistence on "good inductive grounds" for believing in
the existence of the agents introduced by hypotheses, as well as on inductive

20. J. F. W. Herschel, Preliminary Discourse on the Study of Natural Philosophy (London,
1830), pp. 195-197.
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grounds for the laws governing such agents, would seem to require a high
probability for such hypotheses on the inductive evidence. To be sure, Her-
schel does back off a bit at the end by allowing that the suppositions about
the agents (though not the suppositions about their existence) must at least
"not be contrary to our experience." But even this appears to require at least
that the probability of such hypotheses must not be very small given our
experience. In either case, the threshold value k in (6) must be "significant."

Also contained in (6) is the idea that a range of observed phenomena is
explained by derivation from T. This is certainly part of Herschel's strategy
when he develops the wave theory. For example, in his lengthy review article
"Light" he begins his discussion of the wave theory by formulating six hy-
potheses or postulates of his theory (p. 449). He then provides explanatory
derivations of various known optical phenomena such as reflection, refrac-
tion, interference, and so on. Explaining such optical phenomena seems to be
important in showing the believability of the theory. However, this is not
sufficient because a rival theory may also, if true, correctly explain the same
observed phenomena. Accordingly, Herschel's insistence that an optical theo-
ry both provide explanations of observed optical phenomena and contain
hypotheses with independent warrant reflects the ideas in (6).

Now I suggest that in following the strategy of section 3, wave theorists
were adhering to the methodology expressed by (6), rather than to the method
of hypothesis in any of the versions in section 2. Wave theorists following the
strategy of section 3 wanted to show not only: (a) that their theory if true
would correctly explain a range of optical phenomena, but also (b) that their
theory had independent empirical warrant. Showing both (a) and (b) would
suffice to establish (4), the high probability of their theory given a range of
empirical data. They attempted to show (a) by producing the required expla-
nations using the wave theory. They attempted to show (b) by arguing to (3) —
that the probability of the wave theory, given a certain subset of all the
observations and given accepted background information, is close to 1. Con-
clusion (3) is inferred by a type of eliminative reasoning from premises (1) and
(2). Premise (1), we recall, is that the probability that light is either a particle
or a wave phenomenon, given certain observations and background informa-
tion, is close to 1. Premise (2) is that the probability that light is a particle
phenomenon, given those same observations and background information, is
close to zero. We get (1) by supposing, among other things, that the observa-
tions and background information contain the idea that light travels with a
finite velocity and that the only (or perhaps the most common) things known
to do this are particles and waves. Accordingly, premise (1) is reached by an
argument based, at least in part, on an analogy with observed cases of mo-
tion—an argument that Herschel would have classified as inductive. There
may in addition be parts of the argument used to establish (1) that are
"explanatory" (as with Lloyd), so that both components of (6) are utilized.
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And there are other arguments for (1) that can plausibly be construed as
inductive.21

How (2) is to be established will be the subject of the next section.

5. HOW TO ARGUE FOR THE LOW PROBABILITY OF THE
PARTICLE THEORY

The general idea, according to the wave theorists, is this. To explain various
optical phenomena the particle theory introduces improbable (auxiliary) hy-
potheses. For example, to explain diffraction, the particle theory introduces
the hypothesis that diffraction is caused by an attractive force at the margin
of the aperture —an improbable assumption, given what is known. While this
may be the case, how does it show that the particle theory itself is improba-
ble? In what follows I shall present some general probability considerations
and show how these can justify the wave theorist's argument.

The particle theory, as I have been construing it, contains the central
assumptions that light consists of particles emanating from luminous bodies,
that these particles are subject to forces obeying Newton's laws of motion,
and that in the absence of such forces the particles move in straight lines with
a constant velocity. However, these central assumptions do not include the
(auxiliary) assumption that diffraction at a small aperture is caused by a force
exerted at the aperture. Call the central assumptions of the particle theory T,
call the auxiliary assumption h, and let O&b be a conjunction of certain
observational data together with background information. (O will include
information about observed diffraction patterns, in addition to that about the
motion of light, and b will include information about other known forces.)
Assume that the probability of the auxiliary hypothesis, that is, p(h/O&b), is
low. How, if at all, could this be used to show that the probability of T is low?

It could be so used if the conditional probability of h given T and O is
high. Thus, if p(h/O&b) is close to 0, and p(h/T&O&b) is close to 1, then p(T/
O&b) is close to 0. We can establish this in a general way by means of the
following theorem:

21. Larry Laudan, op. cit., claims that during the 1820s and 1830s proponents of the method
of hypothesis such as Herschel and Whewell imposed a "requirement of independent or collateral
support," which stated that for an hypothesis to be credible "it must explain (or predict) states of
affairs significantly different from those which it was initially invented to explain." This I have
labeled "the method of hypothesis with consilience." It is different from what I am here calling
"independent empirical warrant," which for the wave theorist is provided by a type of eliminative
reasoning involving inductions from observations. The wave theorist is not claiming that the fact
that his theory explains (or predicts) states of affairs different from those it was originally
invented to explain by itself suffices to render it probable.
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Proof. According to Bayes' theorem, where

But sincep(T/h&O&b) 1, the theorem follows.
Assume now that p(h/O&b) 0. From the theorem it follows that if the

fraction on the right of the inequality is close to 0, then so is the probability
on the left. That is,

Now if p(h/O&b) 0, ihen p(h/O&b)/p(h/T&O&b) is close to 0 if and only
if p(h/T&O&b) is much, much larger than p(h/O&b). Accordingly, we have

A more precise expression is this: where a is any constant greater than 0,

One way that p(hlT&O&b) can be much, much larger than p(h/O&b) is if
the former probability is close to 1 and the latter probability is close to 0. So
from (A),

More precisely,

22. The analogue of this for the deductive case is this: If h is false and T entails h, then Tis
false.
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These ideas can be used in analyzing the wave theorist's argument. In
explaining some observed optical phenomenon, say diffraction (into the shad-
ow), the particle theorists introduce an auxiliary assumption, for example,

h: diffraction is caused by an attractive force exerted at the edges of the
aperture.

Given observed diffraction patterns, the probability of h, on the assumption
of the truth of the particle theory and on other accepted background informa-
tion, is extremely high. According to the particle theory, the particles of light
obey Newtonian laws. By Newton's first law, when particles are deflected
from their motion in a straight line some force must be acting. Since it is
observed that only bodies exert forces on other bodies, and since the light
bends around each edge of the aperture toward the side of the body with that
edge, it is very likely, on inductive grounds, that a force emanates from each
edge and that this force is attractive, since that is observed to be the case with
other known forces. So, given that light consists of particles subject to New-
tonian laws, and given what is known about other forces acting on bodies,
and given observed diffraction patterns, the probability of h we may suppose
is close to 1, that is,

On the other hand, without the assumption of the truth of the particle
theory, the probability of h looks very different. Thus, according to Young, h
is improbable because it requires supposing that "bodies of different forms
and of various refractive powers should possess an equal force of inflection,"
which is not observed to be the case with other known forces acting at a
distance. With the assumption that light consists of particles, and with the
observations of the deflection of light in diffraction, the probability of h
could be regarded as high, even if h requires assuming that bodies of different
forms and refractive powers exert the same force. Given that light consists of
particles, the inductive weight on the side of h from known facts about forces
acting to change directions of particles is overwhelming. However, without
the assumption that light consists of particles, our other information about
the action of forces makes the probability of h very low. At least, let us
suppose that this is so, that is,

Then from (B) we may conclude that
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that is, the probability of the (central assumptions of the) particle theory is
close to 0.

We get the same result even if we make an assumption weaker than (1),
namely, that p(h/T&O&b) > > p(h/O&b), without assuming that the former
probability is close to 1. From this assumption, (3) follows using the more
general (A).

Let us consider one more example. One standard objection wave theorists
raised against particle theorists pertained to the observed constant velocity of
light. If light consists of particles emanating from bodies, then a massive
body such as a fixed star should exert a force on these particles that would
decelerate them more than would a less massive body. Accordingly the veloci-
ty of light would not be a constant but would depend on the mass of the body
emitting the light. To explain the fact that the observed velocity of light from
all bodies is the same, Arago introduced the auxiliary hypothesis that parti-
cles of light are emitted with different velocities, but that our eyes are sensitive
to light of just one particular velocity. Call this hypothesis h.

Let us assume that, given the particle theory T and background informa-
tion (which contains Newton's law of universal gravitation), the probability of
h is extremely high. (Lloyd, for example, writes that this auxiliary hypothesis
"seems to offer the only means of avoiding this difficulty," given the particle
theory.)23 So we have p(h/T&O&b) 1. However, wave theorists argue that
the auxiliary hypothesis without the assumption of the particle theory is very
improbable, given what is known about vision. That is, p(h/O&b) 0. With
the assumption of the particle theory (let us suppose), the auxiliary hypothe-
sis is very probable, without it, very improbable.24 Accordingly, wave theorists
conclude, the probability of the particle theory, given the observed constant
velocity of light and other accepted background information, is very low. This
inference is in accord with the earlier probability considerations.

Thomas Young notes that to explain the constancy of the velocity of light
some particle theorists introduce the auxiliary hypothesis that a force of
emission exists that is about a "million million times as great as the force of
gravity" (Natural Philosophy, p. 361). Observing that light is produced by
such varied sources as decaying wood, pebbles rubbed together, iron burning
in oxygen, and the sun, Young points out that "there is no [known] instance in
nature ... of a simple projectile moving with a uniform velocity in all cases,
whatever may be its cause. . . . " While one might be willing to concede the

23. Lloyd, op. cit., p. 300.
24. The auxiliary hypothesis is probable even though it requires assuming that our eyes can

see light of just one velocity. Given the assumption that light consists of particles subject to
Newtonian forces, and given the known fact that the force exerted by a body varies with its mass,
the weight on the side of the auxiliary hypothesis is strong, despite known facts about vision. Or
at least, given the assumptions of the particle theory, the probability of the auxiliary hypothesis is
much, much larger than the probability of the auxiliary hypothesis without the assumptions of
the particle theory.
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probability of such a powerful force residing in luminous bodies, given the
assumption that light consists of particles subject to gravity, it is highly im-
probable without this assumption.

By contrast, wave theorists argue, the explanation of the same observed
optical phenomena on the wave theory does not involve the introduction of
auxiliary hypotheses whose probability given the wave theory is high, but
whose probability without the assumption of that theory is low. For example,
in explaining the observed constancy of the velocity of light on the wave
theory, Lloyd writes:

This uniformity of velocity, on the other hand, is a necessary consequence of the
principles of the wave theory. The velocity with which vibratory movement is
propagated in an elastic medium depends solely on the elasticity of that medium
and on its density; and if these be uniform in the vast spaces which intervene
between the material bodies of the universe, (and it is not easy to suppose it
otherwise), the velocity must be the same, whatever be the originating source.25

To the basic assumptions of the wave theory, in explaining the observed
constant velocity of light Lloyd adds two auxiliary assumptions: that the
velocity of a wave propagated through an elastic medium depends only on the
elasticity and density of the medium; and that these are constant in spaces
between luminescent bodies in the universe. He regards these assumptions as
very probable ("it is not easy to suppose it otherwise"). Accordingly, he be-
lieves, the wave theory, in explaining this phenomenon, does not introduce
hypotheses that, given the observations and background information, have
low probabilities.26

Let me now summarize what I take to be a typical strategy of the wave
theorists. In accordance with (6) of section 4, the aim of this strategy is to
show two things:

1. That the probability of the wave theory is high, given certain observed
phenomena and accepted background information.

2. That the wave theory if true would correctly explain a range of observed
optical phenomena.

An attempt is made to establish (1) in an indirect way by a type of elimina-
tive reasoning, as follows:

(a) It is argued that it is very probable that light is either a wave or a particle
phenomenon. This argument is at least in part an inductive one based on

25. Lloyd, op. cit., p. 301. Young, op. cit., p. 361, makes essentially the same point.
26. In the appendix there is a more general discussion of conditions under which the intro-

duction of an auxiliary hypothesis can affect the probability of a theory.
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the fact (among others) that light is observed to travel from one point to
another with a finite velocity and that the only (or most common) kinds
of things that have been observed to do this are waves and particles.

(b) It is argued that in order to explain observed optical phenomena the
particle theory introduces auxiliary hypotheses that, although probable
given the particle theory, are very improbable without it. (This argument
is also an inductive one.) And it is argued that the wave theory does not
introduce auxiliary hypotheses with these features.

(c) From (b) it is concluded that the particle theory is improbable.

(d) From (a) and (c) it is concluded that the wave theory is very probable.

An attempt is made to establish (2) by producing wave-theoretic explana-
tions for observed optical phenomena such as rectilinear propagation, reflec-
tion, refraction, interference, and so forth. In accordance with probability
principle (5) of section 4, the wave theorist can now conclude that the proba-
bility of his theory is high in the light of a range of phenomena. The theorist
can do so because of the satisfaction of the "independent warrant" condition.
On the basis of some of these phenomena and the background information (it
is argued) the probability of the wave theory is high. And in light of the wave-
theoretic explanations of other phenomena, this probability remains high.
Such a strategy, it should be noted, yields high probability for hypotheses
about "unobservables." To achieve this, inductions from observables appear
in (a) and (b) in order to establish independent warrant. And explanations of
other "observables" by means of "unobservables" appear in the explanatory
part.

6. OBJECTIONS

In what follows four objections to my account of the wave theorists' strategy
will briefly be considered.

Objection 1

It might be suggested that there is a plausible alternative interpretation that
places the wave theorists squarely in the hypothesist camp. On this interpreta-
tion, the wave theorists do not assume — as I suggest in (a) at the end of the
previous section—that it is very probable that light is either a wave or a
particle phenomenon. A fortiori, they give no arguments for such an assump-
tion. Rather they are only saying that these are the most widely held views.
And their strategy is simply to show that the wave theory if true would
correctly explain more optical phenomena than the particle theory; they con-
clude from this (via some form of the method of hypothesis) that the wave
theory is probably true, or at least more likely to be true than the particle
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theory. Such a strategy invokes explanations but no independent warrant, and
in particular no inductive reasoning.

This interpretation strikes me as mistaken. Wave theorists do assume that
light is either a particle or a wave phenomenon. Recall Young's claim that "it
is allowed on all sides [presumably including himself] that light either consists
in the emission of very minute particles from luminous substances ... or in
the excitation of an undulatory motion. . . ." And, as shown in section 4,
wave theorists do have reasons for their assumption that are not simply
appeals to its explanatory power. Moreover, it is part of the wave theorist's
argument that particle theorists, in explaining various optical phenomena,
introduce improbable auxiliary hypotheses. The reason given for this improb-
ability is not that such auxiliary hypotheses fail to explain or do so badly, but
that these hypotheses invoke forces (or whatever) unlike any observed. Final-
ly, an argument from the fact that the wave theory, if true, would correctly
explain more phenomena than the particle theory to the conclusion that the
wave theory is probably true, or at least more probable than the particle
theory, would be fallacious. As is shown in the appendix (point 8), it is
possible to have two theories T1 and T2 that are such that T1 if true will
correctly explain more phenomena than T2, yet the probability of Tl is the
same as that of T2 or even less.

Objection 2

It might be claimed that wave theorists do not always proceed by invoking a
comparison with the particle theory. Admittedly, for example, Fresnel does
use an argument of the previous sort in which support is provided for the
wave theory by comparing wave and particle explanations of diffraction and
showing how the latter but not the former introduces a very improbable
auxiliary hypothesis. Following this discussion Fresnel writes:

In the first section of this memoir I have shown that the corpuscular theory, and
even the principle of interference when applied only to direct rays and to rays
reflected at the very edge of the opaque screen, is incompetent to explain the
phenomena of diffraction: I now propose to show that we may find a satisfactory
explanation and a general theory in terms of waves, without recourse to any auxilia-
ry hypothesis, by basing everything upon the principle of Huygens and upon that
of interference, both of which are inferences from the fundamental hypothesis.27

Using the wave theory, Fresnel presents mathematical derivations of maxi-
mum and minimum intensities of light in diffraction patterns, and he takes
the fact that these derivations yield results in conformity with experiment as

27. Fresnel, op. cit., p. 99.
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helping to establish the theory. Yet he makes no attempt to demonstrate
whether or how similar results could be obtained using the particle theory.

Fresnel's strategy is in conformity with that developed in the last section.
Having already provided independent warrant for the wave theory by means
of a comparison between wave and particle explanations of the existence of
diffraction patterns (see section 5), Fresnel now proceeds to show that the
wave theory can explain other phenomena, including the mathematically de-
scribed intensities of the diffraction bands (even if the latter were not previ-
ously observed or measured). Because independent warrant is already secured
for the theory, these explanations guarantee that the high probability of that
theory will be sustained in the light of the new phenomena. This holds true
even if the intensities of the diffraction bands could also be derived from the
particle theory. If the wave theory entails the observed intensities, then, even
if the particle theory does too, p(wave theory/observed diffraction intensities
&O&b) p(wave theory/O&b). If the second probability is high, so is the
first.

Objection 3

It might be objected that to say that wave theorists argued for their theory in
the manner described in the previous section is to imply that they "conclusive-
ly refuted" the particle theory and "proved" the truth of the wave theory. It is
sometimes held that certain arguments given by wave theorists, in particular
one appealing to Young's double-slit experiment producing an interference
pattern, did just this. John Worrall has argued against such a claim on the
grounds that the particle theorists could and did give various particle explana-
tions of Young's results.28 For example, there is a physiological explanation
according to which destructive interference is produced when the two sets of
particles passing through the two slits arrive at the eye and produce vibrations
in the retina that destructively interfere. A second possible particle explana-
tion noted by Worrall invokes the idea that the forces emanating from the
sides of bodies and acting on light are capable of interfering. Worrall admits
that both these explanations are problematic (and indeed that the second one
was never actually given by particle theorists). But he argues that the fact that
they are possible particle explanations of Young's interference experiments
shows that these experiments do not refute the particle theory.

The fact that in response the particle theorists can offer possible particle
explanations of interference data does not by itself show very much. Even if
Young's experiments did not demonstrate the falsity of the particle theory,

28. John Worrall, "Thomas Young and the 'Refutation' of Newtonian Optics: A Case Study
in the Interaction of Philosophy of Science and History of Science," in Colin Howson, ed.,
Method and Appraisal in the Physical Sciences (Cambridge, England, 1976), pp. 107-179.
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they may well have made that theory very improbable (as wave theorists
claimed).29 This can be shown by appeal to the previous probability results.

Let hl be the physiological hypothesis invoked to explain interference, and
let h2 be the "interfering force" hypothesis. Suppose that the disjunction of
these two hypotheses is much, much more likely on the assumption of the
particle theory than without that assumption, that is,

where T is the particle theory and O contains the observed interference phe-
nomena. (1) seems reasonable, since (by Worrall's own admission) the dis-
junction of h1 and h2 is problematic given what else is known; but assuming
the truth of the particle theory, one of these auxiliary explanations (particu-
larly the one involving interfering forces) would seem much more likely. Now
if (1) is the case, then by proposition (A) of the previous section (p. 86),

(2)

While this would not demonstrate that the particle theory T is "conclusively
refuted" by the interference data, it would show that it is made very unlikely. I
am not claiming to have established (2), but only to show that Worrall's point
that the particle theorist can invoke h1 and h2 as possible explanations does
not suffice to preclude (2).

Objection 4

It might be objected that to claim that wave theorists used the strategy of the
previous section in arguing for their theory is to suggest that they were un-
aware of difficulties in that theory, which is untrue. For example, Herschel, a
wave theorist, believed that the wave theory had difficulty explaining the
dispersion of light by a prism.30 On the wave theory, Herschel points out, the
refraction of light is a consequence of the difference in velocity of light
between the outside medium and the refracting one. When these velocities are
given, the amount of the refraction is determined. Hence, light rays of all
colors traveling between the same two media should be refracted equally, thus
making dispersion impossible.31 Herschel notes that to explain dispersion
Thomas Young introduces the auxiliary hypothesis that the vibrations of the

29. Later in the nineteenth century wave theorists certainly took the interference experiments
to show that the wave theory is almost certain to be true and the particle theory almost certain to
be false. See J. C. Maxwell, "Ether," in W. D. Niven, ed., The Scientific Papers of James Clerk
Maxwell (New York, 1965), vol. 2, p. 764.

30. This was also one of Newton's objections to the wave theory.
31. Herschel, "Light," p. 450.
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matter of the refracting medium modify the vibrations within it that consti-
tute light, and that they do so differently according to their frequency, pro-
ducing a difference in the velocity of propagation of different colors. Her-
schel does not endorse this auxiliary hypothesis. One crucial question is
whether he regards the probability of this auxiliary hypothesis, given the wave
theory, as very much greater than the probability of this auxiliary hypothesis
without the assumption of the wave theory. Young's auxiliary assumption may
be the only one that wave theorists had come up with at that time. But that
does not mean that its probability on the assumption of the wave theory is
very much greater than its probability without this assumption. Herschel may
well have been agnostic concerning such a probability. If so he was not in a
position to draw an inference from this case that the wave theory has low
probability. Still he believed that this theory should be capable of explaining
dispersion, and he believed it had not yet adequately done so. Yet he writes:

We hold it better to state it [the wave theory] at once in its broadest terms, and call
on the reader to suspend his condemnation of the doctrine for what it apparently
will not explain, till he has become acquainted with the immense variety and
complication of the phenomena which it will. The fact is, that neither the corpus-
cular nor the undulatory, nor any other system which has yet been devised, will
furnish that complete and satisfactory explanation of all the phenomena of light
which is desirable.32

We have, then, the following situation. As shown by an eliminative induc-
tive argument, certain optical phenomena (e.g., diffraction and the constant
velocity of light) together with background information provide independent
warrant for the wave theory. In addition there are optical phenomena (recti-
linear propagation, reflection, etc.) that are explained via derivation from the
wave theory. Accordingly, the probability of the wave theory given all these
phenomena is high. However, there are some optical phenomena (dispersion)
that wave theorists have not succeeded in deriving from their theory. Yet they
want to make sure that the probability of the theory, given such phenomena,
remains high. What should their strategy be, assuming that they do not want
to modify or discard central assumptions in their theory? Here are several
alternatives: (a) Continue trying to derive O (the recalcitrant optical phenom-
enon) from the wave theory plus the background information, (b) Try to
construct some eliminative inductive argument from O to the wave theory (by
showing, for example, that the particle theorist in explaining O introduces an
auxiliary hypothesis whose probability, given the particle theory, is much,
much greater than its probability without that theory), (c) Find some auxilia-
ry hypothesis h such that O is derivable from the wave theory plus h.

The strategy wave theorists actually adopted is (c), and it will be successful

32. Ibid., p. 450. Italics in original.
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if it can be shown that some observed phenomena Oi provide independent
warrant for the wave theory & h, so that p(wave theory & hlOi &b) > k. If
the recalcitrant phenomenon O is derivable from the wave theory & h, and if
O1, . . . ,Onare derivable from the wave theory plus b, then it will follow that
p(wave theory & h/Oi &O&O1, . . . ,On) > k.

Accordingly, unexplained optical phenomena do not necessarily show that
the wave theory has low probability. But they do present a challenge to wave
theorists to demonstrate that their theory retains its high probability in the
light of such phenomena. Until they meet such a challenge all wave theorists
can say is that their theory is highly probable given the other observed optical
phenomena.

7. NEWTON'S STRATEGY

I propose now to contrast the methodological strategy of the nineteenth
century wave theorists with that of British particle theorists. To do so it will
be useful to begin with Newton's published ideas, since nineteenth-century
British particle theorists were largely influenced by them. (A much fuller
account has been given in Essay 2.) I will then focus on Henry Brougham,
since he was a typical nineteenth-century defender of the particle theory, was
a follower of Newton, and both performed experiments in optics and had
fairly well-developed methodological views. Following this there will be a
much briefer discussion of a case introduced by David Brewster, another
nineteenth-century particle theorist.

Newton's published works on the particle theory consist of a few remarks
in the Principia and several queries in the Opticks. In the Principia, Book I,
Section 14, he proves a theorem to the effect that if a body traveling across a
small space separating two media is acted on by a force directed perpendicular
to either medium, the body will be refracted in such a way that the sine of the
angle of incidence and the sine of the angle of refraction will be "in a given
ratio."33 At this point Newton seems content simply to note an analogy be-
tween the refraction of light rays when going from one medium to another
and the refraction of particles acted on by a force. He explicitly refrains from
supposing that light consists of particles. But obviously if it does, and if these
particles are subjected to a force of the sort Newton supposes when going
from one medium to another, then the refractive property of light is ex-
plained.

In the Opticks, by contrast, Newton does introduce the supposition that
light consists of particles:

33. Newton, Principia (Berkeley, Calif., 1966), vol. 1, p. 226.
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Qu. 29: Are not the Rays of Light very small Bodies emitted from shining Sub-
stances? For such Bodies will pass through uniform Mediums in right Lines with-
out bending into the Shadow, which is the Nature of the Rays of Light. They will
also be capable of several Properties, and be able to conserve their Properties
unchanged in passing through several Mediums, which is another Condition of
Rays of Light. Pellucid Substances act upon the Rays of Light at a distance in
refracting, reflecting, and inflecting them, and the Rays mutually agitate the Parts
of those Substances at a distance for heating them; and this Action and Reaction at
a distance very much resembles an attractive Force between bodies. If Refraction be
performed by Attraction of the Rays the Sines of Incidence must be to the Sines of
Refraction in a given Proportion, as we showed in our Principles of Philosophy:
And this Rule is true by Experience.34

Newton is claiming here that on the supposition that light consists of particles
(subject to his laws of mechanics), various known properties of light can be
explained, including rectilinear propagation, refraction, and reflection. He
goes on to show how the particle theory can explain colors and the fact that
light of different colors is refracted differently, "fits of easy reflexion and
transmission," and the refraction of Iceland crystal (pp. 372-373).

Accordingly, at least part of Newton's defense of the particle supposition
can be put like this:

(1) The particle theory, if true, would correctly explain a range of optical
phenomena.

Another part of Newton's strategy consists in an attack on an alternative type
of theory:

Are not all Hypotheses erroneous, in which Light is supposed to consist in Pression
or Motion, propagated through a fluid Medium? For in all these Hypotheses the
Phenomena of Light have been hitherto explain'd by supposing that they arise from
new Modifications of the Rays; which is an erroneous Supposition.

If Light consisted only in Pression propagated without actual Motion, it would
not be able to agitate and heat the Bodies which refract and reflect it. If it consisted
in Motion propagated to all distances in an instant, it would require an infinite
force every moment, in every shining Particle to generate that motion. And if it
consisted in Pression or Motion, propagated either in an instant or in time, it would
bend into the Shadow. . . . The Waves on the Surface of stagnating Water, passing
by the sides of a broad Obstacle which stops part of them, bend afterwards and
dilate themselves gradually into the quiet Water behind the Obstacle.35

34. Newton, Opticks (New York, 1979), pp. 370-371.
35. Ibid., p. 362.
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Newton offers two types of objections to theories in which light consists of a
wave (some pressure or pulse in a medium).

First, such a theory would require extremely improbable auxiliary hy-
potheses. For example, if light consisted in a motion propagated to all dis-
tances in an instant it would require an infinite force, which Newton regards
as absurd. The logic of this type of argument can be construed as the same as
that described earlier when wave theorists defend their theory: Let T be the
theory that light consists of motion propagated through a medium instanta-
neously to all distances. Let h be the auxiliary hypothesis that an infinite force
produces this motion. The probability of h given T and the observations and
background information (including Newton's mechanics) is close to 1. But the
probability of h given just the observations and background information
(which includes the fact that no infinite forces have been observed in nature)
is close to 0. Accordingly, one can conclude that the probability of T given the
observations and background information is low.

Newton employs reasoning of a similar type in connection with the phe-
nomenon of double refraction by Iceland crystal. To explain this phenome-
non, Huygens, a wave theorist, introduced the auxiliary hypothesis that there
are two vibrating mediums within the crystal. Newton argues against this
auxiliary hypothesis by appealing to refraction experiments involving two
pieces of Iceland crystal placed together. This argument is part of the query
just quoted in which doubt is being cast on the wave theory. The argument
will do so if we can suppose that the probability of Huygens' auxiliary hy-
pothesis, given the wave theory, is very much higher than its probability
without it.

Second, Newton argues even more directly that a wave theory is refuted or
at least made extremely unlikely by observations. His most famous objection
is that waves —such as water waves and sound waves—are observed to bend
around obstacles into the "shadow," but light rays are not.36 Accordingly,
given these observations, the probability that light is a wave motion is ex-
tremely low.

Before attempting to bring together these aspects of Newton's strategy, one
important methodological passage in Newton's Opticks should be noted:

As in Mathematicks, so in Natural Philosophy, the Investigation of difficult Things
by the Method of Analysis, ought ever to precede the Method of Composition.
This Analysis consists in making Experiments and Observations, and in drawing
general Conclusions from them by Induction, and admitting of no Objections
against the Conclusions, but such as are taken from Experiments, or other certain
Truths. . . . By this way of Analysis we may proceed from Compounds to Ingredi-

36. Newton performed experiments in which light bent away from the shadow of an obstacle,
but not into it. For a discussion of this see Roger H. Stuewer, "A Critical Analysis of Newton's
Work on Diffraction," Isis 61 (1970), pp. 188-205.
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ents, and from Motions to the Forces producing them; and in general, from Effects
to their Causes, and from particular Causes to more general ones, till the Argu-
ment end in the most general. This is the Method of Analysis: and the Synthesis
consists in assuming the Causes discover'd, and establish'd as Principles, and by
them explaining the Phenomena proceeding from them, and proving the Explana-
tions.37

The "method of analysis," according to Newton's most general description of
it, consists in arguing inductively from effects that have been observed to
causes of those effects. Such an argument might have this form:

(2) X's are observed to have property P.
In other cases, when something has P this is observed to be caused
only (or usually) by a cause of type C.

Therefore (probably)
The fact that X's have P is caused by C.38

For example, since Newton says we use such reasoning in arguing from mo-
tions to the forces producing them, we might construct the following argu-
ment:

The planets are observed to accelerate around the sun in a closed orbit.
In other cases (e.g., a stone's being whirled around on a string) when a
body accelerates around a central body in a closed orbit this is observed to
be caused by a force exerted by the central body.

Therefore (probably)
The fact that the planets accelerate around the sun in a closed orbit is
caused by a force exerted by the sun.

One can use this form of reasoning even when the cause of .A"s having P is
unobserved, so long as the causes in the other cases are observed.

Indeed, for Newton this form of reasoning permits inferences to causes
that are unobservable. In the Principia, Newton's Rule 3 of philosophizing
allows an inference from the fact that certain qualities ("which admit neither
intensification nor remission of degrees") are found to belong to all bodies
within the reach of our experiments to the conclusion that these qualities

37. Newton, Opticks, pp. 404-405.
38. As noted in Essay 2, in the Rules of Reasoning of the Principia Newton seems to

distinguish causal from inductive reasoning, his first two rules applying to the former, his third
and fourth to the latter. He uses all four rules in arguments leading to his law of gravitation, and
he does not claim that his causal rules are reducible to the inductive ones. By contrast, in the
present passage from the Opticks, when he speaks of the method of analysis he seems to be
conflating inductive and causal reasoning in a manner illustrated by Argument (2) above.
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belong to all bodies whatever (whether or not these are observable).39 Newton
mentions qualities such as extension, hardness, impenetrability, mobility, in-
ertia, and gravitational attraction. By the latter presumably he has in mind
mutual gravitational forces. He writes that "among those in the celestial
regions, we have no experiments, nor any manner of observation."40 Yet by
Rule 3, one can infer that such forces exist, even though they are unobserva-
ble. Accordingly, if Newton can establish that light consists of bodies, then by
using Rule 3 he can attribute to such bodies qualities such as extension,
hardness, impenetrability, mobility, inertia, and (presumably) forces, since
these are found to be the qualities of all observed bodies.

Newton's method of "composition" or "synthesis" consists in assuming the
causes and showing how observed phenomena can be explained by these
causes. Although he says that "analysis" should precede "synthesis" in one's
investigation, presumably he believes that when these are accomplished both
together provide a good reason to believe the theory describing the cause of
the phenomena. We might put these ideas as follows:

(3) Where theory T assigns a cause to various effects, T is probable if
(a) there is independent inductive support for T from observations of

other observed causes and effects ("analysis").
(b) T if true would correctly explain a range of phenomena ("synthe-

sis").

In Book 3 of the Opticks Newton provides at least some syntheses for his
particle theory of light by arguing that the theory if true would correctly
explain observed phenomena such as rectilinear propagation, reflection, and
refraction. Does he provide an analysis? Newton himself admits that

In this third Book I have only begun the Analysis of what remains to be discovered
about Light and its Effects upon the Frame of Nature, hinting several things about
it, and leaving the Hints to be examin'd and improv'd by the farther Experiments
and Observations of such as are inquisitive.41

In Newton's discussion of the particle theory there are no explicit inductive
arguments of form (2). For example, he does not offer any argument of the
following sort:

39. See Maurice Mandelbaum, Philosophy, Science, and Sense Perception (Baltimore, 1964),
who calls such inferences transdictions. He thinks of them as one type of induction. See p. 62.

40. Newton, Principia, p. 400.
41. Newton, Opticks, p. 405.
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(4) Light is observed to travel in a straight line with uniform speed.
In other cases, when something travels with uniform speed in a
straight line this is always or usually observed to be caused by a
particle or series of particles.

Therefore (probably)
The fact that light consists of particles is what causes it to travel in
straight lines with uniform speed.

How then does Newton proceed?
It is quite possible that Newton thought that he did not have any, or any

significant, "analyses" to present for the particle theory; that he simply had
"syntheses" (which would not be sufficient to make the theory probable); and
that, as he says, further experiments would be needed to provide the indepen-
dent inductive support required by an analysis. (Perhaps this is why Newton
puts the theory as a query rather than a proposition.)

On the other hand, Newton does contrast his particle theory with wave
theories. And he raises objections to such theories. It is quite possible he took
the fact that such theories have difficulties not shared by his particle theory to
be some reason, or at least part of a reason, to believe the particle theory.
(Although he puts the particle theory in the form of a query, the question,
which is formulated as a negative, seems rhetorical. The mode in which it is
expressed, as well as the arguments following the question, strongly suggest
that the answer to the question, "Are not the Rays of Light very small Bodies
emitted from shining Substances?," is supposed to be Yes!) In view of this,
how might Newton be construed, so as to preserve his inductivism and pro-
vide support for the particle theory? Here is one possibility (see Essay 2,
where this is spelled out probabilistically).

Instead of using an inductive argument of form (2) for the "analysis,"
Newton is using a slightly more complex version:

(2)' X's are observed to have property P.
In other cases, when something has P this is observed to be caused by
C or C'.
But given the observations and background information, it is unlikely
that C' causes X's to have P.

Therefore (probably)
The fact that X's have P is caused by C.

So, for example, instead of (4) we might have

(4)' (a) Light is observed to travel in a straight line with uniform speed.
(b) In other cases, when something travels with uniform speed in a

straight line this motion is observed to be caused by a series of
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particles or a series of wave pulses produced in a medium (e.g.,
sound).

(c) But given the observations and background information, it is
unlikely that a series of wave pulses in a medium is what is caus-
ing light to travel in straight lines.

Therefore (probably)
The fact that light consists of particles is what causes it to travel
in straight lines with uniform speed.

Newton believed (a). It might reasonably be said that he was in a position to
assert (b) even though he did not explicitly do so. We have already seen how
Newton argued for (c): first, by arguing that the wave theory introduces
auxiliary hypotheses that are improbable on the basis of the observations
(though very probable given the wave theory); second, by arguing more di-
rectly that the wave theory is made improbable by the observations.

This would explain why Newton thought it important to criticize the wave
theory: doing so, and supposing that observations of other causes suggest
that various properties of light are due either to particles or waves, would
allow him to conclude, on the basis of observation, that light is a particle
phenomenon. On this interpretation, it is possible to satisfy Newton's de-
mand for analysis as well as synthesis. It is possible to satisfy the conditions
of schema (3).

8. BROUGHAM'S STRATEGY

In section 1 it was noted that in 1803 Henry Brougham, in a review of Thomas
Young's wave theory, defended the particle theory and attacked Young's hy-
potheses on methodological grounds. According to Brougham, the particle
theory receives inductive support from experiments while the wave theory
employs an indefensible method of hypothesis. What did Brougham have in
mind by an "inductive" inference?

In his Discourse on Natural Theology Brougham makes general remarks
on the nature of inference in science. He counts it as reasonable to draw
conclusions from what we can observe not only to other observable facts but
also (following Newton) to unobservable ones. Thus he agrees that "the exam-
ination of certain visible objects and appearances enables us to ascertain the
laws of light and of vision." But we can also infer from what we can observe
to what we cannot:

But that light, which can be perceived directly by none of our senses, exists, as a
separate body, we can only infer by a process of reasoning from things which our
senses do perceive. So we are acquainted with the effects of heat; we know that it
extends the dimensions of whatever matter it penetrates; we feel its effects upon our
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own nerves when subjected to its operation; and we see its effects in augmenting,
liquefying, and decomposing other bodies; but its existence as a separate substance
we do not know, except by reasoning and analogy.42

Brougham emphasizes that such reasoning is from observed effects to some
(unobserved or unobservable) cause:

A certain sensation is excited in the mind through the sense of vision; it is an
inference of reason that this must have been excited by something, or must have had
a cause. . . . Experience and reasoning, therefore, are required to teach us the
existence of external objects; and all that relates to their relations of size, colour,
motion, habits, in a word, the whole philosophy of them, must of course be the
result of still longer and more complicated processes of reasoning. (pp. 24-25)

Finally, Brougham argues that such reasoning, which he takes to be "common
to Natural Philosophy and Natural Theology," (p. 42) is inductive. Speaking
of the kind of reasoning used in natural theology and comparing it to that in
natural philosophy, he writes:

Is not this last process [reasoning in Natural Theology] as much one of strict
induction as the other? It is plainly only a generalization of many particular facts; a
reasoning from things known to unknown; an inference of a new or unknown
relation from other relations formerly observed and known, (p. 43)

Brougham does not spell out the form or forms of such inferences. But
since they proceed from what is observed to what is not (even to what is
unobservable, such as heat or light as "bodies"), and since they involve, or can
involve, arguing from effects to causes, perhaps Brougham's inductive infer-
ences include ones having argument form (2) of the previous section, or some
variant of it such as

(1) X's are observed to have property P.
X's are observed to have property Q.
In other cases, when something with Q has P this is observed to be
caused only (or usually) by cause C.

Therefore (probably)
The fact that X's have P is caused by C.

This form of reasoning would allow Brougham to argue from observed effects
to unobserved or unobservable causes.43

42. Henry Brougham, Discourse on Natural Theology, 2nd ed. (London, 1835), pp. 21-22.
43. Later in his book Brougham offers a more general characterization of induction: "The

inductive principle is this —that from observing a number of particular facts, we reason to others
of the same kind —that from observing a certain thing to happen in certain circumstances, we
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In developing his particle theory of light Brougham does employ reasoning
that conforms to this pattern, at least in part. He performed an experiment in
which rays of light impinge on a curved surface of a small polished pin. The
reflected light is decomposed into various colors, and rays of different colors
are reflected at different angles. Brougham notes, for example, that when the
angle of incidence of the ray is 77°20' the angle of reflection for red (at one
end of the spectrum) is 75°50', while that for violet (at the other end) is
78°51'. Brougham then proceeds to infer a cause of this phenomenon:

I shall conclude this part of the subject with a few remarks on the physical cause of
reflexibility. As light is reflected by a power extending to some distance from the
reflecting surface, the different reflexibility of its parts arises from a constitutional
disposition of these to be acted on differently by the power. And as these parts are
of different sizes, those which are largest will be acted on most strongly.44

Brougham goes on to derive a formula relating the reflecting force to the
velocity of the light, the sine of the sum of the angles of incidence and
reflection, and the sine of the angle of reflection. From this, together with the
assumption that the force exerted on the light of a given color is proportional
to the size of the particle of light, he derives the result that "the size of red
particles are to the violet as 1275 to 1253" (p. 738). Following this he notes
that

All this follows mathematically, on the supposition that the parts of light are in
proportion to their sizes; and to say the truth, I see no other proportion in which we
can reasonably suppose them to be influenced; for such an action is not only
conformable to the universal laws of attraction and repulsion, and but also to the
following arguments.45

One important part of Brougham's argument might be reconstructed as fol-
lows:

(2) Light of different colors is observed to be reflected from a curved pin
at different angles (red is reflected closest to the normal, violet fur-
thest).
Light consists of particles.
In other cases, when particles are reflected from their paths, they are

expect the same thing to happen in the like circumstances" (Discourse, p. 167). Schema (1) above
would conform to this idea, since from an observed causal relationship between C and P in
objects with Q we are inferring a causal relationship between C and P in X's, since X's have Q.

44. Henry Brougham, "Experiments and Observations on the Inflection, Reflection, and
Colours of Light," Philosophical Transactions 1791-1796, p. 738.

45. p. 738. Brougham argues that if the force varied according to some other ratio then we
would get unacceptable conclusions regarding intensities of the various colors.
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reflected (only) by a force acting on them, and this force acts differ-
ently on particles of different sizes (masses); e.g., gravitation.

Therefore (probably)
Light is reflected from the curved pin by forces acting differently on
different particles according to their size (mass).

This conforms to the inductive pattern (1) above, with the exception of the
second premise. Brougham's argument requires an assumption that light con-
sists of particles which, of course, are not observable. Nor does Brougham
offer an argument for the second premise from observations. He simply
assumes that this is so. In the 1790s, before Thomas Young's revival of the
wave theory, Newton's particle theory was widely believed, and Brougham
probably thought that at this point the assumption that light consists of
particles needed no argument. What was necessary was to work out the
theory in certain areas.

Assuming, then, that the premise that light consists of particles could itself
be inferred inductively from observations (perhaps in the manner of (4)' of
the previous section), Brougham could offer an argument — namely, (2)—to
the conclusion that the reflected light from the curved pin is caused by forces
on the light particles that vary with the size of the particle. Such an argument
would be inductive in a sense that Brougham could reasonably endorse.

One additional feature of Brougham's methodology deserves to be noted.
Brougham follows Newton in speaking of analysis and synthesis as parts or
aspects of one's methodology:

But it may be said that in this classification of the objects of science we omit one
ordinarily reckoned essential—the explanation of phenomena. The answer is, that
such a classification is not strictly accurate, as no definite line can be drawn
between the explanation of phenomena and the analytical process by which the
truths themselves are established: in a word, between analysis and synthesis in the
sciences of contingent truth. For the same phenomena which form the materials of
the analytical investigation—the steps that lead us to the proposition or discov-
ery—would, in a reversed order, become the subjects of the synthetical operation;
that is, the things to be explained by means of the proposition or discovery, if we
had been led to it by another route, in other words, if we had reached it by means of
other phenomena of the like kind, referable to the same class, and falling within the
same principle or rule. Thus the experiments upon the prismatic spectrum prove
the sun's light to be composed of rays of different refrangibility. This being demon-
strated, we may explain by means of it the phenomena which form the proofs of the
first propositions of the "Optics" that lights which differ in colour differ in re-
frangibility—as that a parallelogram of two colours refracted through a prism has
its sides no longer parallel.46

46. Brougham, Discourse, pp. 159-160.
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Brougham's point is that if one infers an hypothesis inductively from ob-
served phenomena, one is in a position to use that hypothesis to explain the
phenomena themselves as well as other similar ones. This is clearly the case if
the inductive arguments Brougham had in mind are arguments from effects to
causes, such as (1) above or variants of it. If we infer inductively that the fact
that X's have property P is caused by C, then we can appeal to C in explaining
why X's have property P. And it may be the case that similar properties of X's
can also be explained as due to C. Brougham stresses that the phenomena the
inferred hypothesis is used to explain in the process of "synthesis" must be
ones that would have provided the basis for an inductive inference to that
hypothesis. To use the hypothesis to explain other sorts of phenomena as well
would be illegitimate.

Brougham explicitly rejects the method of hypothesis:

The fundamental rule of inductive science is, that no hypothesis shall be admit-
ted—that nothing shall be assumed merely because, if true, it would explain the
facts.47

Nevertheless, as we have noted, Brougham admits that explanatory hy-
potheses about unobservables can be legitimate. Conceivably, he saw the
explanatory power of the hypothesis as providing, or helping to provide, some
reason to believe it. But if he did, then a necessary condition for this is that
the hypothesis have inductive support from the explained phenomena.

9. BREWSTER

The final physicist I shall (very briefly) consider is David Brewster, who
defended the particle theory during the first four decades of the nineteenth
century. Unlike Brougham, Brewster did not write any general treatise ex-
pounding his methodology, although there are methodological claims in some
of his papers and reviews. Thus in a short paper criticizing the wave theory, he
has this to say in rejection of the method of hypothesis:

The power of a theory, however, to explain and predict facts, is by no means a test
of its truth. . . . Twenty theories, indeed, may all enjoy the merit of accounting for
a certain class of facts, provided they have all contrived to interweave some com-
mon principle to which these facts are actually related.48

47. Ibid., p. 164.
48. David Brewster, "Observations on the Absorption of Specific Rays, in Reference to the

Undulatory Theory of Light," Philosophical Magazine 2 (1833), pp. 360-363.
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Although Brewster emphasizes the importance of experiments in physics
(which he performed on numerous occasions), and although frequently in his
writings he does not adopt physical hypotheses postulating unobserved causes
to explain these experiments,49 he by no means rejects the use of such hy-
potheses. In a critical review of Comte's Cours de Philosophie Positive, Brew-
ster claims that hypotheses can serve three useful roles: as mnemonic devices
in organizing observed phenomena, as devices to explain observed phenome-
na (so long as the explanation makes no assumption incompatible with the
observations), and as devices to predict new facts.50

Does Brewster ever allow that the explanatory and predictive success of an
hypothesis can count as some reason for believing it to be true or probable?
He does under suitable conditions. To illustrate this, I shall note the results of
one of Brewster's investigations of double refraction and the polarization of
light.51

When polarized light is transmitted along the axis of a uniaxial crystal,
circular concentric colored rings are produced that contain all the tints in
Newton's table of the colors of thin plates (p. 210). If the crystal is thinner,
the rings are larger. Now, notes Brewster, if we combine two crystals and
transmit light through them symmetrically, a difference can be noted between
two types of crystals. In some (e.g., combining beryl and calcareous spar) the
system of rings exhibited will be diminished and will be the same as would be
produced by one crystal whose thickness is equal to the sum of the thicknesses
of the two combined (p. 215). With other combinations (e.g., zircon and
calcareous spar) the system of rings is increased and "is equal to the system
which would have been produced by a thin plate of calcareous spar, whose
thickness is equal to the difference of the thicknesses of the plate of calcare-
ous spar, that would give rings of the same size as those given by the zircon,
etc., alone" (p. 216). Brewster notes that this difference was first observed by
Biot, who classified crystals into categories: repulsive (rings diminish) and
attractive (rings increase). Biot explained the difference as being due to a
single force in a given type of crystal that is either repulsive or attractive.
Brewster rejects this as "hypothetical" and suggests that combinations of
attractive and repulsive forces could produce the same effect:

If we consider a material particle in motion as under the influence of forces, the
nature and the source of which are unknown, we may ascribe any change of

49. For example, "In these enquiries I have made use of no hypothetical assumptions."
Philosophical Transactions of the Royal Society 105 (1815), pp. 158-159.

50. David Brewster, Edinburgh Review 67 (1838), p. 306.
51. David Brewster, "On the Laws of Polarisation and Double Refraction in Regularly Crys-

tallized Bodies," Philosophical Transactions of the Royal Society 108 (1818), pp. 199-273. For a
brief discussion of this case, and of Brewster's methodological views, see Cantor, Optics after
Newton, pp. 76-78, 179ff.
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direction which it experiences, either to a single attractive, or a single repulsive
force, emanating from different sources; or we may regard it as the resultant of a
variety of forces of the same, or of opposite characters. . . . The deviation of the
extraordinary ray in beryl, may be the result of a repulsive force emanating from
the axis of the prism, or of an attractive force emanating from two equal rectangu-
lar axes lying in a plane perpendicular to the axis of the prism, or of various other
combinations of forces, either of the same or of opposite names.52

Despite these various possibilities, Brewster claims that there is some rea-
son to believe in the existence of opposite forces coexisting in crystals:

With regard to the nature of the forces we are not left entirely without some general
indications. In magnetism and electricity, the various phenomena are produced by
two opposite and co-existent forces which modify each other's action; and since
opposite forces are obviously indicated by the phenomena of polarisation, we have
the strongest reasons, from analogy, to believe that they are also co-existent in
crystals. (pp. 252-253)

Accordingly, Brewster proposes a reason for postulating such unobserved
forces that contains an explanatory part. (The hypothesis of opposite forces
in a crystal acting on polarized light would, if true, explain certain observed
phenomena involving the transmission of polarized light through crystals.) It
also contains "independent warrant." (In other known cases such as electricity
and magnetism, where we have a modification of actions, there are opposite
coexistent forces.) Indeed, Brewster explicitly mentions both the explanatory
aspect and the independent warrant (from analogy) in the following passage:

I trust I shall be able to demonstrate, not only that the phenomena of double
refraction and polarisation may be explained by forces or combinations of forces
different from those which have been given by Laplace and Biot, but that there are
certain analogies of nature, and certain physical circumstances in the phenomena,
which may lead us to select one combination of forces in preference to others, as
the means which nature has employed in the accomplishment for her purposes,
(pp. 245-246)

10. ARE THERE IMPORTANT DIFFERENCES BETWEEN
METHODOLOGICAL STRATEGIES OF WAVE AND
PARTICLE THEORISTS?

By contrast to claims suggested by certain historians and philosophers of
science, as well as by Brougham in his attack on Young, wave theorists, in
following the strategy of section 3 in their actual practice and in their philo-
sophical reflections about this practice, were not supporters of the method of
hypothesis in any of its (simple or sophisticated) versions outlined in sec-

52. Brewster, "On the Laws . . . ,"p. 246.
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tion 2. Rather, they followed a strategy that, in very general terms, can be
characterized as consisting of two components: (a) Show that the probability
of T is high, given certain observed phenomena and accepted background
information, (b) Show that theory T, if true, would correctly explain a range
of phenomena beyond those in (a). In the case of the wave theory, at least, (a)
is shown by a type of eliminative reasoning. Component (b) requires the
satisfaction of an explanatory condition demanded by the method of hypoth-
esis. But component (a) requires the satisfaction of an "independent warrant"
condition that is absent from this method.

To compare this with strategies of particle theorists, note to begin with that
Brewster, a particle theorist, in defending the hypothesis that opposite forces
act on polarized light in crystals, argues that this hypothesis has independent
warrant from analogies with electricity and magnetism. And he shows how
this hypothesis, if true, would explain certain observed effects of polariza-
tion. However, let us focus on inductive strategies of Newton and Brougham,
since it is these that are generally picked out when contrasts are drawn be-
tween wave and particle theorists.

Newton's inductivism, as well as that of Brougham, permits reasoning
from observed effects to unobserved causes. From the fact that X's have
observed properties P1, . . . ,Pn and that, in other cases it is observed that
these properties are caused by C, it is concluded that probably C causes X's to
have these properties as well. Such an argument can be valid even if cause C in
the case of X's is unobservable (e.g., qualities of light particles, forces at the
aperture), so long as the fact that C causes these properties in other cases is
observable.

Accordingly, one similarity between the methodologies of wave and parti-
cle theorists is that both allow inferences to hypotheses about unobservables.
It is not true that the inductivism of Newton or Brougham permits inferences
only to entities or processes that can be seen. Furthermore, both methodolo-
gies, not just that of the particle theorists, stress the need for independent
empirical warrant. For the particle theorist in the most general case this will
require an inference from observed effects to an unobserved cause via similar
causes in other observed cases. But for the wave theorist too, such an infer-
ence, or one of a similar type, will typically be involved in showing (a) above,
namely, that the probability of T is high given certain observed phenomena
and background information. It is possible that, at least in their philosophical
doctrines describing their methodologies, particle theorists would have de-
manded more independent empirical warrant (say higher probabilities or
probabilities based on more instances) than wave theorists. But in their prac-
tice this is not generally so. By his own admission, Newton provides "syn-
theses" (explanations), but only "hints" of "analyses" (inductions). Even if, as
I think reasonable, we count his arguments against the wave theory as induc-
tive, these do not provide stronger independent empirical warrant for his
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theory than wave theorists, employing a similar strategy, provide for their
theory. If anything, it is the reverse.

Is there anything in the inductivist strategy of the particle theorists that
corresponds to the wave theorist's explanatory condition that T if true cor-
rectly explains a range of phenomena? The answer seems to be yes. As
Brougham explicitly notes, an inductive inference of the sort he has in mind —
one proceeding from the fact that X's have observed properties P1, . . . ,Pn,
and the fact that in other cases these properties are caused by C, to C causes X
to have these properties as well —can be used to produce explanations. The
cause C that one infers can be used to explain why X's have the properties P1,
. . . ,Pn. Brougham does not restrict the explanations that can legitimately be
given by postulating C to explanations of the properties P1, . . . ,Pn. One can
explain others as well, so long as inductive inferences to C are possible from
these properties.

Whether Newton, from whom Brougham took many of his methodologi-
cal and physical ideas, placed such a restriction on the explanations produced
in "synthesis" is not so clear. Newton does add "and proving the Explanation"
to his description of synthesis, although he offers no clarification of this.
Conceivably this could be construed in a very strong sense as requiring an
inductive argument from each type of phenomenon explained to the hypothe-
sis. Alternatively, it might suffice to provide such an argument from only
some of the explained phenomena (or other phenomena) to the explanatory
hypothesis. And in his actual practice, when he uses the particle theory to
explain various phenomena he does not present inductive arguments from
each of these phenomena to the postulates of the particle theory. Finally,
Brewster in his practice as well as in his methodological remarks on hy-
potheses does not insist on an inductive argument from each phenomenon
explained to the explanatory hypothesis.53

Accordingly, with regard to explanation, Brougham may have held the
strongest view of the three, which might be formulated as follows. A theory T
postulating unobservables may be used to explain various types of observed
phenomena O1, . . . ,On. But if p(T/O1 , . . . ,On&b) is to be high, then an
inductive inference must be possible from each O, together with b, to T. By
contrast, the weaker view, which may well have been Brewster's as well as
Newton's, allows p(T/O1 , . . . ,On&b) to be high if some though not all of the
O's provide an inductive basis for T, so long as T can explain the remaining
O's. So when it conies to explanation there is a methodological difference
between Brougham and the wave theorists. The latter allow the fact that T
explains O to help sustain Ts high probability, even where O does not provide

53. See, for example, various particle theory explanations, and the comparison with wave
theory ones, in his "Optics," Edinburgh Encyclopedia, vol. 14 (American ed., Philadelphia,
1832), pp. 589-789.
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inductive grounds for T. Brougham disallows this. On the other hand, New-
ton and Brewster seem more liberal. Indeed the type of reasoning I have
supposed Newton might be employing in defending his particle theory is very
like that used by wave theorists in defending their theory: given certain obser-
vations and background information, it is very likely that light is either a
particle or a wave phenomenon. But the wave theory introduces auxiliary
hypotheses whose probability on that theory is much, much greater than
without it. Therefore, the probability of the particle theory is high, and since
that theory explains other phenomena, its probability remains high in the
light of these phenomena.

In sum, even if there is a methodological difference between some of the
particle theorists and the wave theorists about the use of explanations, there
are also close methodological similarities. Both groups reject the method of
hypothesis; both allow explanations of observed phenomena that appeal to
unobservables; both require independent inductive warrant; and at least New-
ton and Brewster, like the wave theorists, allow explanations of phenomena to
help support an hypothesis even when inductive arguments are not supplied
from each of those phenomena to the hypothesis.

By the first third of the nineteenth century, when the wave theorists had
obtained the upper hand in the debate, their position was not that they
employed a superior methodology, but that using the methodology they did
there were good reasons to believe their theory rather than the particle theory.
This position was based on two claims, each justifiable in accordance with the
methodology I have outlined.

First, wave theorists claimed that experiments and observations such as
those involving diffraction and interference supported the wave theory rather
than the particle theory. This can be justified on the grounds that although
both theories provide explanations for these phenomena, the particle theory
in doing so introduces auxiliary hypotheses that are probable given that theo-
ry but very improbable without it; by contrast, the wave theory needs to
introduce no such hypotheses.

Second, wave theorists claimed support for their theory on the grounds
that it explained numerous optical phenomena, more than did the particle
theory. See, for example, the "success table" (Figure 1 in Essay 1) drawn up in
1833 by Baden Powell. Even though particle theorists could claim that this
table was not complete,54 it was generally thought that the wave theory was
more successful in producing explanations than the particle theory. Accord-
ingly, wave theorists could base their (high) probability claim on more obser-
vations than could particle theorists.

54. See Cantor, Optics after Newton, p. 192.
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11. CONCLUSIONS

1. Contrary to what some have supposed, in their actual practice as well as
in their reflections on this practice, nineteenth-century wave theorists em-
ployed a strategy that is importantly different from the method of hypothesis.
This strategy requires not only an explanatory part, demanded by hypothe-
sists, but independent empirical warrant as well. For the wave theorist, the
latter involved a type of eliminative reasoning from observations that can be
analyzed in inductive and probabilistic terms.

2. Particle theorists in their actual practice as well as in their reflections on
this followed a strategy that also involves explanatory and independent war-
rant components. In "analysis" one provides independent empirical warrant
for causal hypotheses via inductive arguments from observed causes and
effects. In "synthesis" one uses the causal hypotheses to explain observed
phenomena. Some particle theorists, unlike wave theorists, may have required
an inductive argument from each (rather than only some) of the phenomena
explained to the explanatory hypothesis, though this idea is not always reflect-
ed in actual practice, which, in this regard, frequently resembles that of the
wave theorists.

3. Particle theorists on occasion provided independent warrant by using a
type of eliminative argument that is exactly analogous to the one employed by
wave theorists. Wave theorists in their eliminative argument introduced induc-
tive steps that are exact counterparts of those employed by particle theorists.
And both theorists sanctioned inferences to unobservable entities and pro-
cesses.

4. I conclude that there are strong similarities, if not identities, between
the methodologies of wave and particle theorists, and that the important
difference between the two is over questions of physics, not method.

APPENDIX

Suppose that in developing theory T to explain some observed phenomenon O
a scientist introduces an auxiliary hypothesis h. Under what conditions can
this affect the probability of T, given O and the background information b?
Several cases will be considered.

1. We find an auxiliary hypothesis h such that T + h—if true—will cor-
rectly explain O. But p(h/T&O&b) > > p(h/O&b). This is the type of case
discussed earlier in which (the wave theorist alleges), to explain some optical
phenomenon O, the particle theorist introduces an auxiliary assumption h
whose probability given the particle theory is much, much greater than its
probability without that assumption. In such a case, by proposition (A) of
section 5,p(T/O&b), the probability of the particle theory, given the observa-
tions and background information, is close to zero. So in this case, the
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introduction of an auxiliary hypothesis h to enable T to explain some observa-
tion O shows that Tis extremely improbable.

2. We find an auxiliary hypothesis h such that p(h/ + h--if true -will cor-
rectly explain O and for this h we also find that p(h/O&b) > k and p(h/
T&O&b) > k. That is, we find that the probability of h with or without the
assumption of Fis high. Will the explanatory power of Tand h, together with
these high probabilities for h both with and without T, allow us to conclude
that T has a high probability, that is, that p(T/O&b) > K? No, it will not.
Under these assumptions T's probability can still be low. Consider the follow-
ing simple nonscientific case:

T = John has received the news that he has won the lottery.
h = John is happy whenever he wins money.
O = John is happy over the news he has just received.
b = People generally are happy when they receive money; John holds 1

ticket out of 1000 sold in a fair lottery.

T&h — if true —would correctly explain O. The following probability claims
seem reasonable, where, let us say, the threshold value k is 1/2:

p(hlT&O&b) > k

p(h/O&b) > k

Yet p(T/O&b) < k. Accordingly, the fact that an auxiliary hypothesis h is
such that it, together with a theory T, will —if true — correctly explain O and
the fact that this auxiliary hypothesis has high probability both with and
without the theory does not suffice to show that the probability of the theory
Tis high.

3. We find an auxiliary hypothesis h such that T + A — i f true —will cor-
rectly explain O, and we also find thatp(h/O&b) < k, and p(hl T&O&b) <
k. That is, we find that the probability of h with or without the assumption of
T is low. Does this suffice to show that p(T/O&b) < k? No, it does not. To
show this we can use the case described in point 2, simply switching h and T.
Now, p(h/O&b) < k and p(h/T&O&b) < k. But p(T/O&b) > k. Accord-
ingly, a theory can have high probability, even when an auxiliary assumption
used to explain some phenomenon has low probability with and without the
theory.

4. We find an auxiliary hypothesis h such that T + h — if true —will cor-
rectly explain O, and we also find that the probability of the auxiliary hy-
pothesis is high, that is, p(h/O&b) > k, but the probability of the auxiliary
hypothesis, given the theory T, is low, that is, p(h/T&O&b) < k. Will this
suffice to show that the probability of theory T is low, that is, p(T/O&b) <
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k? No, it will not, because under the conditions specified, if p(T/h&O&b) >
k, thenp(T/O&b) > k. That is,

If (a) p(h/O&b) > k (k > 0), (b) p(h/T&O&b) < k, and (c) p(TI
h&O&b) > k, thenp(T/0&b) > k.

Proof. From (b), using Bayes' theorem

So

Since, from (c), p(T/h&O&b) > k, we get p(T/O&b) > n X p(h/O&b),
where n > 1. But from (a), p(hlO&b) > k; so we can get p(T/O&b) > k.
Q.E.D.

This probability theorem shows, for example, that for the wave theorist to
argue against the particle theory it is not sufficient to show that some auxilia-
ry hypothesis introduced by a particle theorist to explain some phenomenon
has high probability without the assumption of the particle theory but low
probability with this assumption. Under these conditions it is still possible for
the particle theory to have high probability.

This theorem also suggests one way to provide independent warrant for a
theory T: find independent warrant for an auxiliary assumption h used by the
theory; however, not just any assumption, but one whose probability given
the theory is low, and one on the assumption of which the probability of the
theory is high.

5. We find an auxiliary assumption h such that T + h — if true —will cor-
rectly explain O, and we also find that the probability of h is low, the proba-
bility of h on the assumption of Tis high, and the probability of T assuming
h is low. Under these conditions the probability of T is low. This is established
by the following theorem:

If (i)p(h/O&b) < k, and (ii) p(h/T&O&b) > k, and (iii) p(T/h&O&b) <
k,then p(T/O&b) < k.

Proof. By Bayes' theorem and assumption (ii),
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Therefore

But from (iii), p(T/h&O&b) < k. Therefore n x p(T/h&O&b) < nk. So we
get p(T/O&b) < n X p(T/h&O&b) < nk. But since n < 1, we get p(TI
O&b) < k. Q.E.D.

This theorem shows one way to argue against a theory T that introduces an
auxiliary hypothesis h to explain some phenomenon O: show that without the
assumption of T, h's probability is low, with it it is high, while the probability
of T given h is low. For example, let

T = John had a ticket marked 3 in a lottery, and the winning ticket was
marked 3.

h = John won $1 million.
O = John bought an expensive car.
b = John bought 1 ticket in a fair lottery of 1000 tickets, and the winning

ticket received $1 million.

Theory T together with h — if true — correctly explains O. Furthermore, p(hl
O&b) < k; p(h/T&O&b) > k; p(T/h&O&b) < k; and p(T/O&b) < k.
Given the truth of the second and third of these probability claims, we can
argue against theory T in this case by arguing against hypothesis h, that is, by
trying to show that h's probability is low.

6. T by itself, if true, does not correctly explain O, and we have as yet
found no auxiliary hypothesis h that is such that T + h — if true—will cor-
rectly explain O. Can we conclude that the probability of T is low? Obviously
not, since independently of O, T may have high probability that is not affect-
ed by O. For example, let T = this man is mortal, O = this man is 100 years
old, b = in the past all men have eventually died. T if true does not correctly
explain O, and let us suppose we have found no auxiliary hypothesis h such
that T + h-- if true --will correctly explain O. Yet p(T/O&b) is high.

This type of case is relevant for theories of light. As noted, Powell in 1833
claimed that although the wave theory could explain many more optical
phenomena than the particle theory, there were still certain phenomena that
the wave theory (and indeed the particle theory) had not succeeded in explain-
ing. The wave theory by itself did not explain such phenomena, nor had wave
theorists found auxiliary hypotheses that would work. This would not be

From (i), p(h/O&b) < k. So p(T/O&b) < n x p(T/h&O&b), where n < 1.
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sufficient to show that the wave theory is improbable. Using an eliminative
argument of the sort described in section 3, suppose we conclude that the
probability of the wave theory, given other observed optical phenomena, is
high. We incorporate these phenomena into the background information b
and write p(wave theory/6) > k. Now we take some observed optical phe-
nomenon O (say polarization at metallic surfaces) that neither the wave theo-
ry nor the particle theory has yet succeeded in explaining. It may well be the
case that p(wave theory/O&b) = p(wave theory/6) > k. This will occur when
p(O/wave theory + b) = p(O/b), that is, when the assumption that the wave
theory is true does not alter the probability that the phenomenon O occurs.

7. rby itself, if true, does not correctly explain O, but we find an auxiliary
hypothesis h such that T + h — if true — will correctly explain O, and also find
some data O' that provide independent warrant for T + h, so that p(T + h/
O'&b) > k. Then (assuming that T + h entails O), it will follow that
p(T + h/O'&O&b) > k. This type of case is also relevant for theories of
light. Certain optical phenomena O (e.g., dispersion) were not explained by
the wave theory T. What was sought was some auxiliary assumption h that
together with T would yield those phenomena. If independent warrant for
T + h could be found, then the probability of T + h could remain high giv-
en O.

8. Finally, to consider a type of case that does not involve the introduction
of auxiliary hypotheses, we suppose that theory T1, if true, will explain more
phenomena than T2. Can we conclude that the probability of 71, is greater
than that of T2? No, we cannot, as is shown by the following type of example.
Let O1 be explainable by derivation from theory Tl as well as from theory T2.
Let O2 be explainable by derivation from Tl but not from T2 (from which it
is not even derivable). And let both O1 and O2 be phenomena that are known
to be true, so that p(O1) = 1 = p(O2). Then, using Bayes' theorem, we can
show that p(T1/O1&O2) = P(T1) and p(T2/O1&O2) = p(T2). So if the prior
probability of T1 is less than or equal to that of T2, that is, if p(T1) < p(T2),
then p(Tl/Ol&O2) < p (T2/Ol&O2), even though Tt explains more phenomena
than T2.*

*For very helpful suggestions I am indebted to Geoffrey Cantor, John Barman, Gary Hat-
field, Robert Kargon, Alan Karr, Larry Laudan, Michael Liston and Robert Rynasiewicz.
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ESSAY 4

Hypotheses, Probability,
and Waves

1. INTRODUCTION

It is well known that Mill and Whewell debated the verification of hypotheses
in science. Mill defines an hypothesis as

any supposition which we make (either without actual evidence, or on evidence
avowedly insufficient) in order to endeavor to deduce from it conclusions in accord-
ance with facts which are known to be real; under the idea that if the conclusions to
which the hypothesis leads are known truths, the hypothesis itself either must be,
or at least is likely to be, true.1

The so-called method of hypothesis consists of deriving consequences from
an hypothesis, and if the consequences are observed to be true, concluding
that the hypothesis is true or at least probable. Mill rejects this as a method
for establishing either the truth or the probability of hypotheses, on the
grounds that conflicting hypotheses are possible from which the same true
consequences can be derived; unless such alternatives can be excluded, noth-
ing can be inferred about the truth or probability of any hypothesis being
considered. The fact that the consequences derived from an hypothesis are
observed to be true shows only that the hypothesis is possible, that it is
consistent with the data obtained so far. It will be rendered probable only if
the data derived or other data provide the basis for an inductive argument to
the hypothesis.

Whewell, of whom Mill was sharply critical, defends a particular version
of the method of hypothesis that requires not only that an hypothesis explain
known phenomena but that it explain and/or predict new ones as well, partic-

1. John Stuart Mill, A System of Logic (London, 1959), p. 322.
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ularly ones different in kind from those it was initially designed to explain
("consilience"). Recognizing that hypotheses being considered are usually ad-
ditions to larger systems, Whewell also imposes a requirement that such
additions render the system more coherent.2 If an hypothesis meets these
conditions, Whewell concludes that it is true. Indeed, he is prepared to say
that if it satisfies just consilience then it is "certain" (p. 65). Perhaps because
of this he does not speak in terms of probability. Mill, however, uses the term
probability and its cognates, and he explicitly denies that an hypothesis is
even probable under conditions of the sort Whewell mentions. In what fol-
lows only the probabilistic thesis will be considered.

Both Whewell and Mill apply their views regarding hypotheses to one of
the most famous controversies in physics of their day: that between wave and
particle theories of light. Whewell defends the wave theory on the grounds
that it meets all of the conditions of the method of hypothesis that he advo-
cates.3 Mill attacks those who use the method of hypothesis to defend the
wave theory, and in particular the hypothesis of the unobservable luminifer-
ous ether on which that theory depends. Concerning this hypothesis he
writes:

The existence of the ether still rests on the possibility of deducing from its assumed
laws a considerable number of actual phenomena. . . . Most thinkers of any degree
of sobriety allow, that an hypothesis of this kind is not to be received as probably
true because it accounts for all the known phenomena, since this is a condition
sometimes fulfilled tolerably well by two conflicting hypotheses; while there are
probably many others which are equally possible, but which, for want of anything
analogous in our experience, our minds are unfitted to conceive.4

In this passage Mill goes on to deny that the hypothesis "is entitled to a more
favourable reception" if besides accounting for known phenomena it generates
new ones that are later observed.

When Whewell and Mill cite the wave theory as an example of the use of
the method of hypothesis each seems to suppose that it is by the employment
of this method that nineteenth-century physicists such as Young, Fresnel,
Herschel, and others actually developed and defended their theory.5 Indeed, it
is a thesis of some contemporary writers that nineteenth-century wave theo-

2. William Whewell, The Philosophy of the Inductive Sciences (New York, 1967), vol. 2, p.
68.

3. Ibid., pp. 71-72.
4. Mill, op. cit., p. 328.
5. Whewell is explicitly committed to this in both his historical and his philosophical writ-

ings. (See History of the Inductive Sciences (New York, 1873), vol. 2, chs. 11-13; The Philosophy
of the Inductive Sciences, vol. 2, pp. 65ff.) And when Mill writes that "the existence of the ether
still rests on the possibility of deducing from its assumed laws a considerable number of actual
phenomena," he seems to be referring to what physicists who defend the theory give in its
defense.
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rists used the method of hypothesis, whereas their particle theory opponents
in the eighteenth and nineteenth centuries were committed to an antithetical
form of inductivism.6

There is no doubt that scientists generally, and wave theorists in particular,
who introduce hypotheses and from them derive true observational conclu-
sions find some type of support for hypotheses from this fact. Is Mill right in
thinking that this shows only that the hypotheses may be true, that they are
consistent with the data? Is Whewell right in drawing the much stronger
conclusion that under appropriate conditions (when there is consilience and
coherence), this shows, at least, that the hypotheses are probably true?

2. DEDUCTION, EXPLANATION, AND PROBABILITY

More clarification of the opposing positions is needed. When Mill discusses
the method of hypothesis generally he speaks of deductions of conclusions
from the hypothesis. But on occasion he also speaks of the hypothesis as
explaining the phenomena. His examples of the relationships between hy-
potheses and conclusions come from theoretical physics (derivation of Kep-
ler's laws from Newtonian celestial mechanics; wave theory explaining various
optical phenomena). Here the explanations tend to be, or at least to involve,
derivations of conclusions from hypotheses using mathematics. Accordingly,
it is reasonable to suppose that Mill's position on hypotheses is at least this:
the fact that we can explain various phenomena by deductively deriving de-
scriptions of them from an hypothesis does not suffice to render that hypoth-
esis probable.

Whewell speaks of both explanatory and predictive relationships between
hypothesis and phenomena. Since his examples, even more than Mill's, are
from theoretical physics where the explanations (and predictions) are, or
involve, deductions of the phenomena, his position is at least this: the fact
that we can explain (and/or predict) various phenomena by deductively deriv-
ing descriptions of them from an hypothesis will (under certain appropriate
conditions) suffice to render that hypothesis probable.

When Mill and Whewell speak of the phenomena as being explained by, or
derived from, an hypothesis h, the concept of explanation or derivation they
employ does not require the truth or probability of h itself. In the terminology
of the contemporary deductive-nomological model of explanation, what is
being supposed is that h provides a "potential" explanation — one that would

6. See Geoffrey Cantor, "The Reception of the Wave Theory of Light in Britain: A Case
Study Illustrating the Role of Methodology in Scientific Debate," Historical Studies in the
Physical Sciences 6 (1975), pp. 109-132; Larry Laudan, "The Medium and Its Message," in G. N.
Cantor and M. J. Hodge, eds., Conceptions of the Ether (Cambridge, England, 1981), pp. 157-
185).
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be correct if h were true or probable. Otherwise, there would be no debate
between Mill and Whewell. If a derivation or explanation of the sort Whewell
and Mill had in mind were to require h's truth or probability, then, trivially,
the fact that we can explain various phenomena by deriving them from h
guarantees that h is true or probable. Nor are Mill and Whewell ruling out, at
least as a logical possibility, that conflicting hypotheses may also explain and
entail these phenomena. Both, indeed, recognize that various optical phe-
nomena can be accounted for by the wave and particle theories.

Finally, in stating the opposing positions I have spoken of "rendering an
hypothesis probable." Two obvious interpretations present themselves: (i) en-
suring that the hypothesis has high probability and (ii) increasing the proba-
bility of the hypothesis. For the present let us ignore consilience and coher-
ence (which will be taken up in sections 4 and 5) and formulate simplified
positions reflecting (i) and (ii). On (i) the position would be that if phenome-
na O1, ... ,On (here presumably what Whewell and Mill mean are types
rather than tokens) are explainable via a derivation from h, then h's probabili-
ty, given O1, . . . ,On, is greater than some threshold value k for "high" proba-
bility. Symbolically, where b is accepted background information, n > 1,7

and p(hlb) 0 (an assumption made throughout in what follows),

(1a) p(h/O1 t . . . ,On&b) > k, if O1, . . . ,On are explainable via deriva-
tion from h, or from h together with b.

Alternatively, in a weaker form, the position might be that for each hypothe-
sis h there is some number n such that if n phenomena O1,. . . ,On are1, On are
explainable via derivation from h, then h's probability is greater than k, that
is,

(1b) p(hlO1, . . . ,On&b) > k, for some n, if 01, . . . ,On are explainable
via derivation from h and b.

On (ii) the position might encompass one or both of the following ideas.
First, h's probability, given observable phenomena Ol, . . . ,On (n > 1), is
greater than h's probability in the absence of O1; . . . ,On, if the latter are
explainable via derivation from h and b:

(2a) p(h/O1, . . . ,On&b) > p(hlb)if O1, . . . ,On are explainable via der-
ivation from h and b.

7. We could take n to be greater than or equal to any number we wish, thus, in effect,
requiring a certain number of observed phenomena to be explained by h before we say that h's
probability is "high." In what follows what I say for n > I holds for n > a where a is any
number greater than zero.
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Second, h's probability continues to increase toward 1 as a limit as n becomes
larger, that is, as the number of observable phenomena explainable via deri-
vation from h increases:

(2b) lim p(h/O1, . . . ,On&b) = 1, where O1, . . . ,On are explainable
n—
via derivation from h and b.

In what follows all four claims will be examined. When Mill writes that "an
hypothesis ... is not to be received as probably true because it accounts for
all the known phenomena," I shall construe him to be saying at least this: the
fact that an hypothesis accounts for all known phenomena, even where these
are numerous, does not ensure either that it is highly probable or that its
probability increases toward the maximum possible the more phenomena it
explains. That is, Mill is rejecting at least (1a), (1b), and (2b). Whether he is
also rejecting the weaker (2a) I shall not speculate. On the other hand, I shall
understand Whewell to be saying that, under appropriate conditions, if an
hypothesis explains a range of phenomena, then at least its probability has
increased (so that (2a) or some variant is correct). But Whewell is committed
to more than this, since he claims that we can infer, with considerable assur-
ance, that the hypothesis is true. To achieve such assurance there will need to
be concern not only with conditions under which the probability of an hy-
pothesis has increased but also with those under which the probability is
"high" and under which it tends to a maximum ("certainty"). The Whewellian
position, formulated probabilistically, will be understood as saying that, in
some suitable variation, not only is (2a) correct, but so are (1a), (1b), and
(2b).

If we wish to assess (1) and (2) we will need to make some assumptions
about probability. In what follows it will be supposed simply that the concept
of probability satisfies the usual axioms of the probability calculus. Although
no particular interpretation of that calculus is assumed, probability will be
construed as a measure of rational credibility, since the disputants are dis-
agreeing about the conditions under which there are good reasons to believe
an hypothesis.8

8. When Mill criticizes probabilistic versions of Whewell's thesis he does not characterize any
particular concept of probability for this purpose. In a later chapter on probability (ch. 18) he
does urge that probability is a measure of rational credibility. And he speaks of the probability
calculus for which he advocates a frequency interpretation and which he believes is applicable to
propositions about causes of phenomena. It is not my claim that Mill did apply, or would have
applied, the probability calculus to hypotheses about unobservables, or that he and Whewell
carried out their debate in the probability terms I shall be discussing. My interest in what follows
is in trying to determine whether, and if so to what extent, standard probabilities can be utilized
in clarifying issues raised by Mill and Whewell and offering some evaluation of their conclusions.
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3. A "COMPETING HYPOTHESES" OBJECTION

Positions (1) and (2), which as yet do not reflect Whewellian consilience or
coherence but do express basic ideas of an "hypothesist" viewpoint, can be
shown to be objectionable on Millian grounds: (1) and (2) will be false for a
given hypothesis h if certain kinds of competitors to h exist. Although Mill
does not produce the required probabilistic argument, one way to do so is by
introducing the notion of an On-partition, defined as follows. A set of hy-
potheses h1, . . . ,hk forms an On-partition on b relative to O1, . . . ,On if
(i) h1,... ,hk are mutually exclusive, (ii) p(h1 or h2 ... or hk/b) = 1, and
(iii)O1, . . . ,On are deVrivable from each h1 in the set together with b. General-
ly in what follows I will speak simply of an O-partition where the subscript n
will be omitted and the relativization to O1, . . . ,On and to b will be implicit.
Briefly, an O-partition is a set of mutually exclusive hypotheses that is exhaus-
tive on b and that contains members each of which entails the observed
phenomena. The following is provable (see the appendix):

(3) If h1, . . . ,hk form an O-partition, then for each h1 in the partition
p(h

This tells us that if we have a set of mutually exclusive hypotheses that is
exhaustive on b, and each member of the set plus the background informa-
tion entails the observed phenomena, then the probability of any hypothesis
in the set given those phenomena remains the same as its prior probability,
that is, the same as its probability without those phenomena.

Now (3) can be used to show that (1) and (2) will be false for a given h if
certain kinds of competitors to h exist. Taking (2) first, suppose that the
phenomena O1, . . . ,On are explainable via derivation from h together with
b. This does not guarantee that p(h/O1 , . . . ,On&b) > p(hlb), because the
fact that O1, . . . ,On are explainable via derivation from h and b is perfectly
compatible with the existence of an O-partition containing h. That is, there
may be one or more competing hypotheses that, together with h, are exhaus-
tive on b, and that with b also entail O1, . . . ,On. If there are, then by (3), h's
probability given the phenomena is the same as its prior probability, thus
rendering (2a) false for such an h. Extending the argument, suppose that h
and b are such that for any n phenomena explainable by derivation from
h and b there is an O-partition containing h. If so, then by (3), h's probability
will continue to remain the same as its prior probability, thus falsifying (2b)
for such an h. Furthermore, if h's probability on b is less than k—an assump-
tion perfectly compatible with h's entailing O1; . . . ,On for any n—then by
(3) h's probability on O1, . . . ,On and b will be and will remain less than k,
thus falsifying both (1a) and (1b) for this h.

This shows that explaining the observed phenomena by deriving them from
your favorite hypothesis will not by itself suffice either to give your hypothesis
high probability, or even to increase its probability. A sticking point — as Mill

p(h/O1, . . . ,On&b) = p(h1 /b).
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noted — is the possibility that all the phenomena you have are derivable from
competitors. (The latter need not have been formulated by you or anyone else,
and indeed may include hypotheses that, in Mill's words, "our minds are
unfitted to conceive.") If such competitors exist and if they are exhaustive on
your background information, then the probability of your favorite hypothe-
sis is not guaranteed to be high no matter how many phenomena it explains,
and will not increase as more and more phenomena are explained.9

Now let us see what happens when Whewell's additional requirements are
added to (1) and (2).

4. CONSILIENCE

Two ideas are usually associated with Whewell's concept. One is that the
phenomena derived from h should not all be known to be true by the scientist
or community proposing h; at least some should be predictions not yet ob-
served:

The hypotheses which we accept ought to explain phenomena which we have ob-
served. But they ought to do more than this: our hypotheses ought to foretel
phenomena which have not yet been observed.10

The second idea is that the phenomena derived from h should not all be of
the same kind as those that prompted the hypothesis:

But the evidence in favour of our induction is of a much higher and more forcible
character when it enables us to explain and determine cases of a kind different from
those which were contemplated in the formation of our hypothesis.11

To revive (1) and (2) we need to give these ideas probabilistic interpreta-
tions. If the phenomena are known by observation, their probability might be

9. This is not the only way to show that (1) and (2) can be false for a given hypothesis. Here is
another that does not invoke the idea of competing hypotheses. If h and b entail O1,...,On,1, On,
then by Bayes' theorem, p(h/O1 . . . ,On&b) = p(h/b)/p(O1, . . . ,On/b). Suppose h is such that
p(O1, . . . ,Onlb) = 1 for each O1 explainable via derivation from h. (This is compatible with the
assumptions of (1) and (2).) Then p(h/O1, . . . ,On&b) = p(h/b), which violates (2a) for such an
h. If p(h/b) < k, then (la), (Ib), and (2b) will also be violated. My aim here is not simply to show
that (1) and (2) will be false if certain kinds of hypotheses exist, but to see whether it is possible to
give a Millian argument for this, that is, one that appeals to the idea of competing hypotheses
that also explain the phenomena. In the next section an even stronger competing hypotheses
argument will be presented.

10. Whewell, The Philosophy of the Inductive Sciences, vol. 2, p. 62.
11. Ibid., p. 65. Although Whewell clearly espouses both of these ideas, he reserves the

phrase "consilience of inductions" for the second. However, Whewell's interpreters frequently
include both under "consilience," and I will follow this practice.
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construed as maximal; if they are predictions that have not been observed,
their probability is not maximal. Accordingly, the first idea might be under-
stood as requiring that in the set O1, . . . ,On derivable from h, not all the O's
have a probability of 1 given the current background information. Let me call
this weak consilienceA. Alternatively, a much stronger requirement would be
that in the set O1t .. . . ,On derivable from h, each of the O's have a probabili-
ty less than 1 (strong consilienceA).12

Whewell does not define the notion of "same kind." Presumably he has in
mind not simply the concept of a set, but of a "natural" kind —a concept
which, as Quine has argued, resists successful definition.13 However, without
defining it, we might note a connection often made between natural kinds and
projectibility. (The predicate "green," but not "grue," is projectible because it
denotes a natural kind.) This, in turn, suggests a connection with probability.
(An arbitrarily chosen emerald's being green increases the probability that
another is; the same is not true for grue.) Accordingly, we might say that if
two phenomena Oi and Oj are of the same kind from the viewpoint of some
body of information b, then the probability that one occurs is increased by
the occurrence of the other, that is, p(O i /O j&b) > p(Ot /b). And if two
phenomena are of different kinds from the viewpoint of b, then the probabili-
ty that one occurs is not increased by the occurrence of the other. With this
the second consilience idea might be understood as requiring that in the set of
phenomena derivable from h, at least two, Oi and Ojt be such that p(Ot /
Oj &b) < p(O i /b).14 In a much stronger form the requirement might be that
this hold for each pair of phenomena derivable from h. Let me call these
weak and strong consilienceB, respectively. The idea is not that p(O i I
Oj &b) < p(O i /b) should be construed as sufficient for Oi and Oj to be of
"different kinds," only necessary. But this condition might be taken to provide
a probabilistic representation of a central thought underlying the second of
Whewell's ideas about consilience.15

12. In both cases we might change the condition and require that (some of) the O's have a
probability not just less than 1 but less than some threshold value for "high" probability. This is
suggested by one of the several interpretations of consilience offered by Larry Laudan, Science
and Hypothesis (Dordrecht, 1981), p. 165. In what follows I shall use probability less than 1 since
what I shall say about this is applicable as well to the condition suggested by Laudan's interpreta-
tion.

13. W. V. Quine, "Natural Kinds," in N. Rescher, ed., Essays in Honor of Carl G. Hempel
(Dordrecht, 1969), pp. 5-23.

14. Whewell would add that the latter is to hold where Oj but not Oi is among the phenomena
that prompted h in the first place. But this is a pragmatic notion not readily captured in
probabilistic terms. We can ensure that this further proviso is satisfied with the stronger consi-
lience requirement that follows.

15. This thought might be put in terms of an example of a sort Whewell himself could offer.
The wave theory of light explains the refraction of light by a lens, its refraction by a prism, and its
reflection by a mirror. The first and second optical phenomena are of the "same kind," but the
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Putting these ideas together, a set of phenomena O1, . . . ,On is consilient
with respect to h and b (or in more Whewellian terms, an "induction" from
O1, . . . ,On and b to h is consilient) if O1, . . . ,On are explainable via deriva-
tion from h and b and

i/b)  1 for at least one of the O's (weak consilienceA), or for
each of the O's (strong consilienceA);

(B) p(O/ IOj &b) < p(O i Ib) for at least two of the O's (weak consil-
ienceB), or for each pair of O's (strong consilienceB).

Requiring just consilienceA (either strong or weak) will in fact block the
particular arguments used against (1) and (2) in the previous section. To see
this, let us revise (1) and (2), as follows:

(la)' p(h/O1, . . . ,On&b) > k, for every n, if the set O1, . . . ,On is con-
silientA with respect to h and b, that is, if each member of the set is
explainable via derivation from h and b, and p(O1 Ib) 1 for at
least one of the O's (weak consilienceA) or for all the O's (strong
consilienceA).

(1b)' This is like (1a)' except that "for every n" is replaced by "for some n."

(2a)' p(hlO\1 . . . ,On&b) > p(hlb) if the set O1, . . . ,On is consilientA

with respect to h and b.

(2b)' lim p(h/O1 , . . . ,On&b) = 1 if the set O1, . . . ,On is consilient A
n—

with respect to h and b.

The previous arguments against (1) and (2) are now blocked, since if h is a
member of an O-partition, then p(O i /b) = 1 for each Oi,

16 (This follows from
the fact that if h1, . . . ,hk form an O-partition, then p(h1 or . . . or hklb) = 1
and the disjunction of the h's entails each Oi.) Accordingly, if we suppose that
h is a member of an O-partition — if we suppose that there are conflicting

first and third are not. So —and this underlies the consilienceB condition —given that light is
refracted by a lens, the probability that it is refracted by a prism is increased; but given that light
is refracted by a lens, the probability that it is reflected by a mirror does not increase. Therefore,
it is more surprising that the wave theory can explain both refraction by a lens and reflection by a
mirror than it is that it can explain both refraction by a lens and refraction by a prism. According-
ly, the wave theory receives more probability from explaining the former pair than from explain-
ing the latter. And this probability becomes "high" as more and more consilient phenomena are
explained. If this is Whewell's thinking, or something like it, then the probability condition
expressed in consilienceB is central.

16. The argument of note 9 is also blocked since this too makes the assumption that the
probability of each Oi is 1.

(A) p(Oi/b)  1 for at least one of the O's (weak consilienceA), or for(A)
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hypotheses each of which entails the phenomena and the probability of the
disjunction is maximal—then the phenomena in question must have maximal
probability. If they do, then h's probability given these phenomena cannot be
greater than h's prior probability (thus falsifying (2a) outright for such an h,
and (1) where h's prior probability is less than k, and (2b) where h's prior
probability is less than 1). In short, if h is a member of an O-partition, then
we generate the so-called problem of old evidence — evidence that we know to
obtain and that cannot increase the probability of h.17 With the requirement
of consilienceA we disallow the possibility that all the evidence that we are
considering that is generated by h is old evidence. Does this work?

Partly. It yields (2a)', but not (1a)', (1b)', or (2b)'. If p(Oi Ib) * 1 for some
OiinO1, . . . ,On, then p(O1, . . . ,On/b) < 1. Using Bayes' theorem, if h&b
entails each Oi, then p(h/O1, . . . ,On&b) = p(h/b)/p(O1, . . . ,On/b). So if
the denominator of the fraction on the right is less than 1, the probability on
the left is greater than the numerator of the fraction on the right, thus
yielding (2a)'.18

However, (1a)' and (1b)'-with k = 1/2-and (2b)' will all be false, if
certain conditions obtain.19 To show this we can again appeal to the Millian
idea of competing hypotheses. This time, however, we need not suppose that
h is a member of an O-partition, but only that h has one competitor of a
certain sort. The relevant probability theorems are these:

(4a) Let h together with b entail O1, O2, . . . . If h has at least one
incompatible competitor h' that together with b also entails O1, O2,
. . . , and whose probability on b is greater than zero, then lim p(hl
O 1 , . . . ,0n&b) * 1.

This result holds even if p(O i /b) 1 for each Oi. So if such a competitor to h
exists, then (2b)' is false for h in the case of both strong and weak consil-
ienceA.

(4b) Let h together with b entail O1, O2, . . . . If h has at least one
incompatible competitor h' that together with b also entails O1t O2,
. . . , and is such that p(h'lb) > p(h/b), then for any n no matter

17. See Clark Glymour, Theory and Evidence (Princeton. 1980), pp. 85-92.
18. In fact, something even stronger than (2a)'is readily provable: if O1, . . . ,On are explain-

able via derivation from h and b, then p(h/Ol, . . . ,On&b) > p(h/b) if and only if p(Oilb)  1
for at least one Oi.

19. They are false even if consilienceA is construed in Laudan's stronger sense as requiring
p(O i /b) < k for some Oi derivable from h. See note 12.

how large, p(h/O1, . . . ,On&b) < .5.
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This is so even if p(Oi /b) 1 1 for each Oi, which, for k = 1/2, will falsify
both (1a)' and (1b)' for both strong and weak consilienceA in the case of any
hypothesis for which such a competitor exists.20

The claim here is not that every hypothesis h that explains some data will in
fact have a competitor of the sort described in (4a) and (4b). It is only that if
such a competitor does exist — a state of affairs perfectly compatible with h's
satisfying strong consilienceA — then h's probability will not increase toward 1
as a limit and will not even be "high." However, it does seem reasonable to
suppose that there are at least some hypotheses with competitors of the sort in
question. If so, then we can conclude that (1a)', (1b)', and (2b)' are false if
construed generally as applying to all hypotheses satisfying their conditions.21

We may conclude, then, that consilienceA will suffice to yield an increase in
the probability of the hypothesis. But it will not guarantee that the limit of the
probability will be 1 or that the probability will even be "high."

What about consilienceB? By itself it will not save either (1) or (2), since it
is compatible with/»(Oi /b) = 1 for each Oi derivable from h. Accordingly, if
each of the O's derivable from h has maximal probability, then for any n,
p(h/O1 , . . . ,On&b) = p(h/b), which violates (1a), (1b), and (2a); and if p(hl
b) 1, it violates (2b) as well.

Suppose, then, we put consilienceA and consilienceB together. Consil-
ienceA, we already have seen, is sufficient by itself to yield (2a), but not (1) or
(2b). Does adding consilienceB to consilienceA save (1) or (2b)? No, it does
not. This is shown by appeal once more to (4a) and (4b), which hold even if
p(O i /b) 1 for each Oi and p(O i /Oj&b) p(O i /b) for each Oi and Oj.

ConsilienceB is not without value. It can result in higher probabilities for
an hypothesis than without it. Suppose Ol and O2 are both derivable from h
and b, so that

20. Proofs of (4a) and (4b) can be found in John Earman, "Concepts of Projectibility and
the Problems of Induction," Nous 19 (1985), pp. 521-535. In note 9 I pointed out that Bayes'
theorem, which does not invoke competing hypotheses, can be used to show that (1) and (2) can
be false for a given h. Is the same possible here? Not quite. Bayes' theorem will show that (1a)'
can be false for both strong and weak consilienceA, and that (1b)' and (2b)' can both be false for
weak consilienceA. But, unlike (4a) and (4b), it will not suffice to show that (1b)' and (2b)' can be
false for strong consilienceA. So (4a) and (4b) have wider applicability. And more important, they
allow us to formulate a Millian objection to the Whewellian position.

21. Earman's claim in the reference cited in note 20 is indeed that "once we move beyond
direct observational generalizations to theories that outrun the data, it is surely true that there are
many rival theories that cover the same data" (p. 529). If at least some of these theories have
competitors satisfying the conditions of (4a) and (4b), then (1a)', (1b)', and (2b)' are not true in
general.
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Now if consilienceB is satisfied, so that p(O2/O1&.b) p(O2/b), the denomi-
nator of the fraction on the right will be smaller than it would be if consil-
ienceB is not satisfied and p(O2/O1&b) > p(O2/b). So if consilienceB is satis-
fied, the probability on the left, p(h/Ol&O2&b), will be greater than if it is not
satisfied.22 However, even with consilienceA, consilienceB will not suffice to
ensure that the limit of the probability will be 1 as more and more O's are
derived, or even that the probability will be greater than 1/2.

Two replies will be noted. It might be claimed that we should be satisfied if
there is a notion of consilience that guarantees increase in probability, that is,
(2a)', even if it does not assure high probability (1a)' or (1b)', or an increase
toward maximal probability (2b)'. The reason we should be satisfied is that
increase in probability is both necessary and sufficient for evidence. (O is
evidence for h, given b, if and only if p(h/O&b) > p(hlb).) And the debate
between Mill and Whewell can be construed as a debate over what is to count
as evidence for hypotheses.

It is extremely dubious that increase in probability is either necessary or
sufficient for evidence.23 But even if we were to accept the idea that there is a
concept of evidence for which increase in probability is both necessary and
sufficient, it is not the case that evidence in this sense is all that Mill and
Whewell were arguing about. Whewell claims (and Mill denies) that consil-
ience provides a good reason to believe an hypothesis, something that requires
more than merely increasing its probability. (If I buy one ticket in a million-
ticket lottery I increase the probability that I will win; but my buying a ticket
does not provide a good reason to believe the hypothesis that I will win.)
Admittedly it is desirable to seek phenomena that will increase the probability
of one's hypothesis. And this aim can be realized by invoking phenomena that

22. Assuming that with consilience the prior probability of h will not need to be changed to
such an extent that the effect of consilience is canceled. In this argument it is being supposed that
O1 and O2 stay the same but that the background information b is varied so that we have
consilienceB in one case but not the other. Example: Let O1 = bodies on the earth obey Newton's
laws of motion, O2 = bodies on the moon obey Newton's laws of motion, h = all bodies obey
Newton's laws of motion. h entails both Ol and O2. Now consider two different, conflicting
background assumptions b\ and b2. b1 includes the information that the behavior of things on
earth (where motion is not being considered) is generally different from that of things on the
moon; b2 includes the information that it is generally the same. In this case O1 and O2 are
consilient with respect to h and b1 but not with respect to h and b2, since p(O2/O1&b1) < p(O2l
b), but p(O2/O1&b2) > p(O2/b2). Now, consistent with the above, assume the following proba-
bilities: p(h/b1 ) = .1, p(O1/b1) = .7, p(O2/O1&b1) = .2, p(h/b2) = .3, p(O[/b2) = .7, p(O2l
Ol&b2) = .8, and p(O2/b1) = p(O2/b2) = A. Then, using the formula in the text above, where
the background information is b\ and there is consilience, p(h/O1&O2&b1) = 20/28; where the
background information is b2 and there is no consilience, p(h/O1&O2&b2) = 15/28. So in this
case h has higher probability when the O's are consilient with respect to h and b1 than when they
are not with respect to h and b2. In these two cases the prior probabilities of h are not the same,
but the difference is not sufficient to cancel the effect of consilience.

23. For arguments against the necessity and the sufficiency of this condition see Peter Achin-
stein, The Nature of Explanation (New York, 1983), ch. 10.
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satisfy consilienceA. But if, in addition, one wants to provide a good reason to
believe the hypothesis, and for this purpose to determine whether it has
"high" probability and whether that probability tends to a maximum as more
and more phenomena are explained, then consilience will not suffice. It will
save (2a), but not (la), (1b), or (2b).

A second reply is that the probabilistic concepts of consilience we have
introduced, particularly consilienceB, are not strong enough to reflect Whe-
well's ideas completely. Thus, as already noted, even if we construe p(Ot /
Oj) p(Oi) as necessary for O, and 0j to be phenomena of "different kinds,"
it is not sufficient. And despite the kind of argument offered in note 15, more
might be demanded for our representation of Whewell's second consilience
idea. If so, can whatever else is required be formulated in probabilistic terms
so that (1) and (2b) are generated? This seems dubious for the following
reason.

Suppose that some set of phenomena O1 O2, ... is explainable via deri-
vation from h and b where these phenomena are of "different kinds" in some
fuller sense intended by Whewell. What theorem (4b) tells us is that if these
same phenomena are explainable via derivation from some incompatible h',
where the probability of h' on b is at least as great as that of h on b, then h's
probability, given these phenomena, cannot be greater than .5. But why
should the fact that the O's derived from h and b are of "different kinds"
preclude the possibility of such a competitor? I can suggest no logical reason
for this. Indeed, even historically it seems false. Various optical phenomena
that Whewell himself regarded as being of "different kinds" — for example,
rectilinear propagation, reflection, and refraction — are explainable via deri-
vation from the wave theory of light. Yet at the turn of the nineteenth century,
before the work of Young and Fresnel on interference and diffraction, the
probability of the rival particle theory, which also explained these phenome-
na, was justifiably regarded as higher than that of the wave theory on the
basis of background information then available (which excluded interference
and certain diffraction phenomena). If such phenomena are of "different
kinds," then even without a probabilistic account of the latter, this is suffi-
cient to reject the general claim that whenever any set of phenomena is
explainable via derivation from an hypothesis then that hypothesis receives
high probability if the phenomena are of "different kinds."

Let us turn then to another important idea Whewell introduces — coher-
ence. Can it be used to generate (la), (1b), or (2b)?

5. COHERENCE

Coherence is a vague notion, for which Whewell (like most others who invoke
this idea) offers no definition. He does say that in a coherent system "differ-
ent members of the theory run together," and that in a system in which this is
lacking "the new suppositions are something altogether additional; — not sug-
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gested by the original scheme; perhaps difficult to reconcile with it."24 Can a
probabilistic definition capture something of these ideas and get (1) and (2b)
off the ground?

For this purpose we might introduce the idea of coherence in two stages.
First, an hypothesis might be said to be coherent with a set of hypotheses if
that hypothesis has a high probability given all the other hypotheses in the set,
higher than without those other hypotheses:

(5) h1 is coherent with h2, . . . ,hm, on b, if and only if p(h1/h2, . . . ,
hm&b) > k, and p(h1/h2 hm&b) > p(h1/b).

Then we introduce coherence for a set of hypotheses by saying:

(6) A set of hypotheses h1, . . . . ,hm is coherent, on b, if and only if each
hypothesis is coherent with the other members of the set on b.

I take this to be a fairly intuitive probabilistic representation of coherence,
one intended to provide an interpretation, in terms of probabilities, of Whe-
well's idea that "different members of the theory run together" (and of Har-
man's idea that "if one's beliefs are coherent, they are mutually supporting"—
see note 24): each hypothesis in a coherent set will be probable given all the
other hypotheses in the set, and this probability will be greater than its prior
probability.

Now let us apply this concept of coherence to (1) and (2b). Can we show
that if O1, . . . ,On (for n 1, or at least for some n) are explainable by
derivation from the set h1, . . . ,hm together with b, and if the set h1 . . . ,hm

is coherent, then (1) p(h1, . . . ,hm/O1, . . . ,On&b) > k, and (2b) lim
n — oo

p(h1, . . . ,hm/O1 . . . ,On&b) = 1? No, we cannot. To see this, we note first
that from the fact that h1, . . . ,hm is coherent on b, it does not follow that
p(h1, . . . ,hm/b) is high.

Proof: p (h 1 . . . ,hm /b) = p ( h 1 / b ) x p(h2/hl&b) x . . . x p(
. . . , . Now if the set h1, . . . ,hm is coherent on b, then by definition
the last term on the right— p(hmlh1, . . . ) — expresses high probabili-
ty, higher than p(hm/b). But this is perfectly compatible with the first term on
the right— p(h1/b) — expressing very low probability. Suppose it does. Then
because we are multiplying probabilities on the right, and these are less than
or equal to 1, the term on the left— p(h1 . . . , )—will be less than or
equal to p(h1/b). If the latter is low, so will the former be. Q.E.D.

24. Whewell, The Philosophy of the Inductive Sciences, vol. 2, p. 68. Compare this with a
contemporary account: "According to the coherence theory, the assessment of a challenged belief
is always holistic. Whether such a belief is justified depends on how well it fits together with
everything else one believes. If one's beliefs are coherent, they are mutually supporting." Gilbert
Harman, Change in View (Cambridge, Mass., 1986), pp. 32-33. Emphasis mine.
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Suppose now that p(h1/b) is low, so that p(h1, . . . ,hm/b) is low too. (Let
p(h1, . . . ,hm/b) = r < k.) And suppose that for any n O's derivable from
h1 . . . ,hm there is an O-partition containing h 1 , . . . ,hm as one disjunct.
Then by (3), p(h1, . . . ,hm//O1 . . . ,On&b) = p(h1, . . . ,hm/b). So p(h1,

. . . ,hm/Ol On&b) = r < k. And this violates both (la) and (1b) de-
spite the fact that h1 . . . ,hm is a coherent set of hypotheses on b. Since
under these conditions, p(h1 hm/O1,, . . . ,On&b) = p(h1, . . . ,hm/b)),
we also have a violation of (2b) (as well as (2a)). Accordingly, we do not save
(1) or (2b) by adding the requirement that the set of hypotheses from which
O1, . . . ,Onare explainable by derivation be coherent, as this notion is given
by (6).

What about adding (strong) consilience to coherence and explanatory deri-
vations, and requiring that p(O1/b) < 1 for each O, and p(O i /Oj &b)
p(Oi /b) for each pair of O's derived? This will block the argument just given,
which invokes O-partitions. But it will still not suffice to generate high proba-
bility in the sense of (1) or (2b). Suppose that h1 hm is coherent. Sup-
pose also that there is some competitor to h 1 , . . . ,hm, namely, h1', . . . ,hm',
which, like the former, entails all the O's and is such thatp(h t ' hm'lb)
p(h1 ,hm/b).25 Then by theorem (4b),h1, . . . ,hm/b)h1, . . . ,hm/Ol On&b)
.5, no matter how many O's are derivable from h1, . . . ,hm, even if consi-

lience is satisfied. Thus neither (1) nor (2b) will be satisfied. Coherence
together with consilience will not guarantee a high probability or a probability
that approaches 1 in the limit.

An advocate of coherence may suggest strengthening that requirement by
saying that what should be coherent is not the set of hypotheses by itself but
the set containing these together with the observed phenomena O1, . . . ,On.
Using (5) and (6), this will mean that for each hi (or Oi) in this set p(h i (O,)/
other h's in set and (other) O's&b) > k, and p(ht (Oj)/other h's in set and
(other) O's&b) > p(ht (Oi,)/b). Although this gives us much more coherence

25. Is this possible? Here is an example. Background information tells us that a coin being
tossed is perfectly symmetrical. Let ht = God intervenes to make the fth toss result in heads. Let
hi = the Devil, not God, intervenes to make the ith toss result in heads. Each hi is incompatible
with each hi. Let Oi, = the ith toss results in heads. For any m, the phenomena O1 . . . ,Om can
be explained by derivation from h1 . . . ,hm, as well as from h1, . . . ,hm'. Also for some m and
for any hi not in hl hm, p(hi/h1, . . . ,hm/b) hm&.b) > k, p(hi/h1, . . . ,hm/b) > p ( h i / b ) . .
Equally, p(h1,'/h1' . . . ,hm'&b) > k andp(hi;'h1,' hm'&b) > p(hi'lb). So h1 . . . ,hm and
the competing h1, '. . . ,hm'are both coherent on in the sense of (6). Assuming our background
information is such as to provide no more reason to think that God exists and intervenes in coin-
tossing events than that the Devil does, we may also suppose that the prior probability of the
Devil-intervening set of hypotheses is no less than that of the God-intervening set. Finally, strong
consilienceA is satisfied if we assume that the tosses have not yet been observed, so that p(Oj/
b) < 1 for each Oj. And strong consilienceB is satisfied since the background information tells us
that the coin is perfectly symmetrical; accordingly, in the absence of intervention assumptions
involving God or the Devil, we may assume probabilistic independence, so that for each pair of
O's, p(Oj/Oi&b) = p(Ojlb). The conditions in the text are now satisfied.
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than before, it still will not yield (1) or (2b). Even if h1,, . . . ,hm, O,, . . . ,On

is coherent on b, it can be the case that for some ht in this set, p(h, I
Oi On&b) is low for any n.26 If it is, then since p(hlt . . . ,hm/
O1 On&b) can never be greater than p(h/ /O1, . . . ,On&b), we have a
violation of both (1) and (2b) with or without consilience.

Despite all this, it is possible to propose a coherence condition that will
yield high probability in the sense of (1). Instead of requiring that some set of
hypotheses h1, . . . ,hm (and phenomena) be coherent—as we have been doing
so far—we may simply require that h1 . . . ,hm be coherent with the observed
phenomena O1, . . . ,Onin the sense given by (5).27 This will mean that p(h/
O1t . . . ,On&b) > k. Accordingly, (1) will be satisfied immediately.

The problem is that this does not at all do justice to the Whewellian idea of
coherence. Suppose that a set of hypotheses h1, . . . ,hm is coherent with
phenomena O1, . . . ,On and b in the sense given by (5). This will mean that
P(1, hm/O1, On&b) > k, and p (h1,, . . . ,hm/O1 . . . ,On&b) >
p(ht, . . . ,hm/b). But this is perfectly compatible with the following situ-
ation: the original theory contains h1 and h2, proposed on the basis of phe-
nomena Ol and O2 in such a way that p(hl8Lh2/Ol&,O2&.b) > k and
p(hl&h2/Ol&O2&b) > p(h{&h2/b). Now a completely unrelated hypothesis
h3 is added in light of a completely unrelated phenomenon O}. It is possible
that /K/z1&/z2&/z3/O1&O2&O3&&) > k and p(hl&.h2&.h^Oi&.O2&.O,,&.b) >
p(hl&h2&h3/b), even though the new hypothesis /23 is (in WhewelFs words)
"something altogether additional—not suggested by the original scheme; per-
haps difficult to reconcile with it." We may continue adding new unrelated
hypotheses to the system, each of which has high probability on the basis of
some new unrelated phenomenon. The resulting system of hypotheses
hi, . . . ,/zm may be coherent with the set of phenomena Olt . . . ,On&6inthe
sense of (5). Yet the system of hypotheses created is an incoherent monster
containing hypotheses that in no reasonable sense "run together." (Note that
A,, ... ,hm can be coherent with the phenomena O,, . . . ,On in the sense of
(5) without being a coherent set in the sense of (6).)

Is it possible to find a coherence requirement of the sort desired? We seek
one that captures the idea of a set of hypotheses "running together" in a more
or less natural way. Suppose some set of hypotheses hlt . . . ,hm satisfies this
(admittedly vague) description, and that phenomena OltO2, ... are explain-
able by derivation from this set. What we must ask is this: Are there some
incompatible hypotheses A/, ... ,hm' that also "run together" in a more or
less natural way and from which Olt O2, . . . can be explained by derivation?
If so, and if the prior probability of this alternative set is at least as great as
the prior probability of A, hm, then by theorem (4b), the probability of
hi, . . . ,hm will never rise above .5 no matter how many phenomena that set

26. For a case of this sort see the example in note 25.
27. Keith Lehrer, Knowledge (Oxford, 1974), ch. 8, offers a somewhat similar account of

"coherent with."
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entails. This violates (1) for k — 1/2, and (2b) (even if there is consilience). So
the question is whether the idea of coherence necessarily precludes the possi-
bility of two competing systems of hypotheses that are coherent, both of
which explain by derivation the observed phenomena, and that satisfy the
prior probability condition mentioned. Those such as Whewell who introduce
the idea of coherence, but characterize it simply as "running together" in a
natural way or "mutually supporting," give no reason to suppose such com-
peting coherent systems to be impossible. Nor can I supply any. If they are
possible, then the coherence of a set of hypotheses from which the phenome-
na can be explained by derivation will not suffice to guarantee "high" proba-
bility for that set.28

Whewell claims that in practice in the history of science you cannot find
two conflicting scientific theories or sets of hypotheses of this sort. If you
look at competing theories or systems which were in fact defended (his exam-
ples include Copernican vs. Ptolemaic astronomy, the Cartesian system of
vortices vs. Newton's theory of gravitation, and the wave vs. particle theories
of light), you will find that one system in each pair is not coherent. Even if we
grant Whewell's historical claim, the logical point remains. If coherence al-
lows conflicting systems of the type mentioned in the previous paragraph,
even ones that were never in fact defended or proposed, then "high" probabili-
ty is not guaranteed.

A coherence requirement that does preclude such conflicting systems is
that ,hm be coherent with the observed phenomena in the sense given
by (5). But this fails to reflect adequately what Whewell (and others) mean by
the coherence of a set of hypotheses. By contrast, the sense of coherence
defined in (6) does more justice to that concept (especially the sense of
"mutual support"). But the requirement that the set of hypotheses hl hm

be coherent on b in this sense (or even that it be coherent on ,O1,...,On&b)be coherent on b in this sense (or even that it be coherent on ,On&b)
will not exclude a competing set of the sort in question. So (1) and (2b) are
not generated.

6. INDEPENDENT WARRANT AND
AN ELIMINATIVE STRATEGY

Where do we stand? We began by asking whether the explanatory derivation
of phenomena from an hypothesis will suffice to make the hypothesis proba-
ble. The answer is that it will not, either in the sense of "high" probability,

28. The competing sets of "God-intervening" and "Devil-intervening" hypotheses in note 25
both satisfy coherence in the sense of (6); phenomena O1, O2 . . are explainable via derivation
from each set; and both satisfy the prior probability condition. Are these sets "coherent" in the
intended sense? If they are, then in the intended sense the coherence of a set of hypotheses from
which the phenomena can be explained by derivation does not guarantee the high probability of
the set.
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(1a) or (1b), or of "increase in probability," (2a) or (2b). Next the question was
whether consilience or coherence will suffice (if taken together with explana-
tion). Consilience, understood in the proposed manner, will guarantee an
increase in probability in the sense of (2a) but not (2b), and it will not
guarantee high probability. Coherence, if understood in one fairly intuitive
way, will not yield either high probability or increase in probability. If under-
stood in another way it will yield high probability. But this interpretation
seems foreign to Whewell's idea that coherent hypotheses must "run together"
naturally. So the question remains whether we can find some plausible condi-
tion that, together with explanation, will guarantee high probability. In the
present section such a condition will be noted, and a strategy for satisfying it
will be explored. At the end of the section increase in probability in the sense
of (2b) will briefly be discussed.

By contrast to Whewell, Mill and a number of other nineteenth-century
theorists, including John Herschel, do not invoke consilience or coherence
but a very different condition. Their basic idea is that in addition to requiring
that an hypothesis postulating unobservables explain observed phenomena,
there should be data providing some independent warrant for the hypothesis.
This is warrant independent of the explanatory power of the hypothesis,
whether the latter includes the number of phenomena explained, their consil-
ience, or the coherence of the system.

In place of the method of hypothesis (which he also calls the "hypothetical
method") Mill speaks of the "deductive method." It consists of three parts: an
induction to the hypothesis, "ratiocination" (which includes explanation by
derivation), and verification.29 The "hypothetical method," Mill writes, "sup-
presses the first of these three steps, the induction to ascertain the law, and
contents itself with the other two operations, ratiocination and verification."

John Herschel, one of the more philosophical physicists defending the
wave theory in the nineteenth century, advocates a doctrine that combines
explanations with the idea that the explanatory hypothesis should receive
independent inductive support from data. He writes:

In framing a theory which shall render a rational account of any natural phenome-
non, we have first to consider the agents on which it depends, or the causes to
which we regard it as ultimately referable. These agents are not to be arbitrarily
assumed; they must be such as we have good inductive grounds to believe do exist in
nature, and do perform a part in phenomena analogous to those we would render
an account of; or such whose presence in the actual case can be demonstrated by
unequivocal signs.30

29. Mill, op. cit., p. 323.
30. J. F. W. Herschel, Preliminary Discourse on the Study of Natural Philosophy (London,

1830), pp. 196-197. See Essay 3 for a more extensive excerpt from this passage and further
discussion.
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On both accounts we might say that for the fact that an hypothesis that
explains a range of phenomena to count as (part of) a good reason to believe
the hypothesis, the latter should be probable in the light of other data that
provide inductive grounds for believing it. I shall not at this point be con-
cerned with the character of these grounds but simply with the requirement
that h be probable in the light of other data. (In section 7 when the idea of
independent warrant is illustrated by means of the wave theory, the kinds
of inductive grounds Herschel and other wave theorists had in mind will
be noted.) Let the data providing independent warrant for h be included
in the background information b. Then (1) could be given this new formula-
tion:

(1)" p(h/Ot, . . . ,On&b) > k (for any >1) if . ,On are explain-
able via derivation from h and b, and if p(h/b) > k.

The second clause reflects the warrant for h supplied by the data in b. The
condition that p(h/b) > k, if added to (2a) and (2b), would not suffice to
make these true. However, (1)" is true. If O1, On are derivable from
h and b, then p(h/O , . . . ,On&b) p(hlb). So if p(hlb) > k, then p(hl

This result suggests an important, nonsuperfluous role for explanation.
Suppose there are some initial data b in the light of which the probability of h
iis high. Now some seemingly relevant phenomena O1...,On are observed,s high. Now some seemingly relevant phenomena are observed,
and we would like to determine the probability of h on these phenomena plus
the initial data, that is, p(h/O t . . . ,On&b). Without any further assump-
tions, this probability is not necessarily the same as p(h/b). However, if we can
show that the phenomena ,On are explainable by derivation from h
together with b, then it follows necessarily that p(h/O . . . ,On&b) p(h/
b). So if our initial data b give h high probability, then the explanatory power
of h with regard to the other phenomena guarantees that h retains this high
probability.

Accordingly, while explanations (no matter how numerous or varied) do
not suffice to give an hypothesis high probability, they will ensure that the
hypothesis retains whatever probability it has on other data. If the latter is
high then the probability of h on all the evidence will be high. This sustaining
role of explanations will be illustrated later when I turn to the form of
argument used by nineteenth-century wave theorists.

Let us assume now that we have an hypothesis h together with some
phenomena O,, . . . ,On and some background information b. We want to
determine whether p(h/Olt . . . ,On&b) > k. (I)" provides a

Basic Strategy:

1. Determine whether p(hlb) > k;

2. Determine whether Oj, . . . ,On are explainable via derivation from h.

Oo
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In step 1 we determine the independent warrant for h, in step 2 the explanato-
ry warrant. If both are found, then, by (1)", p(hlO^, . . . ,On&b) > k. One
way to determine whether p(hlb) > k is directly by showing that b provides
some type of inductive support for h. Another way—one that nineteenth-
century wave theorists adopted — is indirectly by elimination: on the basis of
inductive reasoning from b we establish that some set of h's competitors has
low probability. Various eliminative strategies are possible for determining
whether/KA/Ou . . . ,On&b) > A:, of which I shall note one here, since it is, I
believe, reflected in the wave theorist's procedures.

To introduce it we will speak simply of a partition of hypotheses on & as a
set of mutually exclusive hypotheses, the probability of whose disjunction on
b is 1. The strategy requires finding some observed phenomenon O that
renders improbable each of the other hypotheses in some partition that in-
cludes h. The following is provable (see appendix):

(7) If /z,/z,, . . . ,hk form a partition on b, then for some O and for
each ht ( h) in the partition, p( O&b) < 1 - r if and only if
p(h/O&b) > r.

This tells us that if we have a set of mutually exclusive hypotheses that are
exhaustive on b, then the probability of any hypothesis in the set, given some
phenomenon, will be greater than r if and only if the sum of the probabilities
of all the other hypotheses in the set, given that phenomenon, is less than 1 —
r. In view of this, the following strategy is possible for determining whether

. ,On&O&b) > k:

Eliminative Strategy:

1. Find some partition on b that includes h;
2. Find some observable phenomenon O such that for each of the other

hypotheses h, in the partition p( /O&b) < 1 - k;
i

3. Determine whether ,, . . . ,On are derivable from h.

In step 2, if we find such an O, then from (7) it follows that p(h/O&b) > k.
From this, assuming (via step 3) that ,, . . . ,On are derivable from h, it
follows that p , . . . ,On&O&b) > k. This is an eliminative strategy,
since we determine that h has a probability on all the phenomena that is
greater than k by showing that there is some phenomenon on the basis of
which the sum of the probabilities of each competing hypothesis in a partition
that includes h is less than 1 — k.

This strategy can be viewed as one form of the basic strategy, in which we
determine h's probability on b and whether the observed phenomena are

P
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explainable via derivation from h. The eliminative strategy makes the first
determination by considering competitors to h and determining whether the
sum of their probabilities is < 1 — k. If it is, then independent warrant for h
is secured. Moreover, if the observed phenomena are explainable by deriva-
tion from h, then this explanatory fact will ensure that h retains the high
probability supplied by independent warrant.

I am not claiming that an eliminative strategy such as the one above is
necessary for establishing high probability for an hypothesis, only that it is
sufficient. But in addition I am saying this: If our strategy for trying to
establish high probability for h depends on an appeal to the fact that certain
phenomena are explainable via derivations from h, then this is not sufficient.
An explanatory strategy of the sort advocated by Whewell and other sup-
porters of the method of hypothesis will not be enough to guarantee high
probability for h, no matter how many phenomena h explains, even if consil-
ience and coherence, as understood earlier, are satisfied. In this regard Mill
was correct, Whewell mistaken.

Indeed, taking this further, to establish the high probability of h on the
phenomena O , . . . ,On it will not be sufficient to show that these phenome-
na are all derivable from h and that none is derivable from any of h's competi-
tors in some partition containing h. To see this, suppose that h is a member of
some O-partition. Then h entails On, and by (3), p( , . . . ,
On&b) = p(h/b). We may takep(h/b), and therefore p(h/O t . . . ,On&b), to
be as low as we like. Now h is always a member of the partition containing h
and not-/?. And, assuming that the O's are not logical truths, if h entails O,,
. . . ,On, it will not be the case that not-h entails , . . . ,On. Accordingly,
we have a partition containing an hypothesis h that entails the phenomena O ,
. . . ,On, and no competing hypothesis in that partition entails these phenom-
ena. Yet the probability of h, given those phenomena, is not high.

In this section I have been discussing a role that explanation by derivation
can play in establishing the high probability of an hypothesis on all the
observed phenomena. High probability has been construed as probability
greater than some threshold value, that is, in accordance with (1). And an
eliminative strategy that involves explanation has been shown sufficient to
yield high probability in this sense. However, this strategy does not guarantee
that this probability approaches 1 as a limit as more and more phenomena are
explained. Let us return to (2b) and ask whether we can supply general
conditions that are both necessary and sufficient for the limit of the probabil-
ity of h to be 1 as the phenomena increase. The following is provable (see
appendix):

(8) lim p(h / , On&b) = 1 if and only if there is at least one

partition on b containing h such that for each ht ( h) in the parti-
tion, lim p(hi/O , . . . ,On&b) = 0.
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In accordance with this theorem, one strategy to show that h's probability
increases toward 1 is eliminative: show that the probability of each of h's
competitors in at least one partition decreases toward 0. However, in pursuing
this strategy, explanation by itself will not suffice. Nor will it suffice if con-
joined with consilience and independent warrant from b. This is shown as
follows.

Suppose we have a partition containing h in which each of the O's is
explainable by derivation from h but from no other hypothesis h/ in the
partition. We cannot conclude from this that, for each h, lim p( /

Or, . . . ,On&b) = 0. (We cannot even conclude from this that p(h /O,,
. . . ,On&b) > p( , . . . ,On&b), i.e., that h's probability is greater than
that of each competitor in the partition.) If the O's are explainable by deriva-
tion from h, and if p(Ot /b) < 1 for each O, derivable (strong consilienceA),
we can conclude that p(h/O t . . . ,On&Onn&b) > p(h/Ol On&b) for
each n (i.e., that as more and more phenomena are explained by h, h's prob-
ability rises where these phenomena are not certain). But we cannot conclude
from this that h's probability approaches 1 as a limit under such conditions
even if h has strong independent inductive warrant from b so that its probabil-
ity on b is high. By theorem (4a), if h has some competitor that also explains
all the O's and whose probability on b is greater than zero, then h's probabili-
ty cannot approach 1 as a limit no matter how many O's it explains, even if h's
probability on b is high.

The conclusion to be drawn is this. If we can find independent warrant for
h from b, then h's explaining phenomena O1; . . . ,On will (a) at least sustain
the probability supplied by that warrant, and (b) increase that probability if
the O's exhibit consilience. But it will not suffice to increase that probability
tol .

7. WAVES31

The methodological points in the previous section pertaining to the achieve-
ment of high probability will now be illustrated by means of the nineteenth-
century wave theorists' defense of their theory of light. Their strategy depends
in part on invoking the fact that the wave theory explains a variety of optical
phenomena. To this extent both Whewell and Mill, who cite the wave theory
as an example of the use of the method of hypothesis, are correct. But in
conformity with the remarks in the last section, the wave theorists' strategy
contains an important eliminative part as well, which Whewell and Mill fail to
mention. The explanatory part of the strategy will not suffice to give the
theory high probability. For this purpose the eliminative part is essential.

31. Much of the material in this section is covered in Essay 3. Readers familiar with the latter
might wish to turn straightway to the last two paragraphs of the present section.
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A typical strategy actually used by wave theorists in defending their theory
is this:

1. Start with the assumption that light is either a wave or a particle phenome-
non. On the wave theory, light consists of a wave motion transmitted through a
medium, the luminiferous ether. On the particle theory, light consists of a
stream of particles emanating from luminous bodies; these particles are subject
to forces obeying Newton's laws, so that if no forces are acting they move in
straight lines with constant speed. Thomas Young (who first resuscitated the
wave theory at the beginning of the nineteenth century), Fresnel (who devel-
oped it mathematically and applied it to diffraction), and Herschel and Lloyd
(each of whom gave detailed presentations and defenses of the theory), all begin
with this assumption in their actual presentations of the wave theory.32

Wave theorists who make the first assumption do not do so simply for the
sake of argument to see what follows, but offer reasons. These involve either
an appeal to what the best authorities believe ("leading physicists support one
or the other assumption"), or an appeal to certain observed facts about light.
In the latter category, for example, Lloyd notes that it is an observed fact
about light that it travels in space from one point to another with a finite
velocity, and that in nature generally one observes that finite motion is com-
municated from one point to another by the motion of a body and by the
motion of a wave disturbance through a medium.33

2. Show how each theory explains various optical phenomena. A host of
optical phenomena had been observed, including rectilinear propagation,
reflection, refraction, dispersion, and diffraction. The wave theorist typically
proceeds in his argument by showing not only how his theory proposes to
explain a given phenomenon, but how the rival particle theory does so as well.
Both wave and particle theorists had worked out explanations of many
(though by no means all) of the known optical phenomena.

3. Argue that in explaining one or more of the observed optical phenome-
na the particle theory introduces improbable hypotheses but the wave theory
does not. Light is observed to bend around (be diffracted by) small obstacles
and to form diffraction bands both inside and outside the shadow. As wave
theorists note, particle theorists explained this phenomenon by postulating
the existence of both attractive and repulsive forces emanating from the ob-
stacle and acting at a distance on the particles of light so as to bend some of

32. Thomas Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts
(London, 1845), pp. 359ff.; A. Fresnel, "Memoir on the Diffraction of Light" (1816), reprinted
(in part) in Henry Crew, ed., The Wave Theory of Light (New York, 1900); J. F. W. Herschel,
"Light," Encyclopedia Metropolitan (1845), vol. 4, pp. 341-586; Humphrey Lloyd, "Report on
the Progress and Present State of Physical Optics," Reports of British Association for Advance-
ment of Science (1834), pp. 295-413.

33. Lloyd, op. cit., pp. 297-298.
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them away from the shadow and others into it. Wave theorists such as Fresnel
point out that observed data show that diffraction patterns do not vary with
the mass or shape of the obstacle. Since known attractive and repulsive forces
do depend on such factors, they conclude that the existence of such forces in
the case of diffraction is very improbable.34 By contrast, wave theorists argue
that diffraction is explainable from the wave theory (on the basis of Huygens'
principle that each point in a wave front can be considered a source of waves),
without the introduction of any new assumptions (at least without any new
ones that are improbable given the data). Wave theorists try to show how in
the explanations of numbers of other optical phenomena (particularly inter-
ference and the observed constant velocity of light), the particle theorists
introduce improbable auxiliary assumptions which are avoided with their own
theory.

4. Conclude from steps 1 through 3 that the probability of the wave theory
is high.

Now let us try to reconstruct this argument probabilistically. In step 1 the
wave theorist begins by assuming that the probability is very high — close to
1 —that light is either a particle or a wave phenomenon. (We may simplify the
argument a bit if we suppose this probability to be equal to 1; for an argu-
ment based on the less idealized assumption see note 35.) Schematically,

where W asserts that light consists of a wave motion in some medium; P
asserts that light consists of discrete particles emanating from luminous bod-
ies and subject to forces obeying Newton's laws of motion; the background
information includes facts about the known modes of travel in other cases
(the only known ones being waves and bodies), and about the reputation and
previous success of the advocates of each theory, (i) is defended inductively on
the basis of such facts.

Let us avoid step 2 for the moment, turning our attention to step 3. Here
wave theorists argue that to explain some observed optical phenomenon parti-
cle theorists introduce some new ("auxiliary") hypothesis h that is very im-
probable, given all the background information available. For example, h
might be that attractive and repulsive forces emanate from an obstacle in the
path of light and act at a distance to produce the observed diffraction pat-
terns. Od describes these patterns and includes the observed fact that they do
not vary with the mass or shape of the obstacle. Hypothesis h is very improb-
able, given Od and given the character of other known forces. So we may
write:

34. Fresnel, op. cit., p. 99.
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Somehow the wave theorist gets from (i) and (ii) (and the claim in step 2
that the wave theory explains a range of observed phenomena) to the conclu-
sion that the wave theory is very probable given all the data. How can this
inference be justified? It can if the conditional probability of the auxiliary
assumption h is close to 1, given the particle theory P and the diffraction
phenomena Od, that is, if

Even more weakly, the inference can be justified if the probability in (iii) is
much, much greater than that in (ii), even if the probability in (iii) is not close
to 1, that is, if

From (ii) and (iii), or from (iv) by itself, it follows that

That is, the probability of the particle theory, given observed diffraction
phenomena and the background information, is close to zero. So we need to
defend assumption (iii), or at least the weaker (iv), and to prove that (v)
follows from (ii) and (iii), and from (iv) by itself. For proofs of these entail-
ments see Essay 3, section 5. Here I shall show how (iii)—or at least (iv) —is
defensible.

If by P light consists of particles subject to Newton's laws, and if by Od

light is diffracted from its rectilinear path into as well as away from the
shadow, then by Newton's first law some force or set of forces must be acting
on the light. Since it is observed that only bodies exert forces on other bodies,
and since the only body observed to be present is the obstacle, it is very likely
on inductive grounds that the obstacle exerts a force (or set of forces) on the
light particles. Moreover, since some particles are deflected away from the
obstacle and others toward it, it is likely, by analogy with other known forces,
that both attractive and repulsive forces emanate from the obstacle, and that
these act at a distance, that is, h. Now, to be sure, in the case of other known
forces that act at a distance, varying the mass and shape of the body from
which the force emanates will alter the observed path. However, given the
assumption P that light consists of particles subject to Newton's three laws of
motion, the inductive weight on the side of h from known facts about the
action of forces in producing changes of directions in particles would over-
whelm contrary evidence against h, making the probability of h, given P and
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Od, much, much greater than the probability of h without P (thus yielding
(iv)) and perhaps even close to 1 (which would generate (iii)). In short, very
extensive information about forces acting to produce changes in direction is
considered to swamp less extensive information about forces emanating from
bodies and varying with the mass and shape of those bodies. In this manner
(iv) (if not the stronger (iii)) can be justified.

Now let us return to (i). In general, for any propositions h, e , and e2, if
p( ) = 1, then p( = 1 (where e2 is assumed to be compatible with
el and h). So from (i) we get

where we have simply added the diffraction phenomena to the background
information. In virtue of the fact that the classical wave and particle theories
are mutually exclusive, from (v) and (vi) we get

that is, the probability of the wave theory, given the diffraction phenomena
and background information, is close to 1.

Finally, we can turn to step 2—the explanatory one. The wave theorist is
confronted with the existence of numerous observed optical phenomena in
addition to diffraction Od and the observed motion of light (in b). Let us call
these other observed optical phenomena O t . . . ,On. The wave theorist
wants to know something about the probability of his theory, given all these
phenomena as well. That is, he wants to know something about p (W/

, . . . ,On&Od&b). It does not follow that this probability « 1 just be-
cause p( /Od&.b) 1. (This would follow only if the former probability =
1.) Enter explanation. If the wave theorist can explain each of the phenomena
O t . . . ,On by deriving it from the wave theory, then he can show that p (W/

, . . . ,On&Od&b) > p(W/Od&.b). That is, explanation will at least sustain
whatever probability the wave theory has on other data. Accordingly, where

i, . . . ,On are the optical phenomena derivable from the wave theory, it
follows from (vii) that

which is the conclusion of the wave theorist's argument.
Explanation is an important part of the wave theorist's strategy, since it is

used in getting from (vii) to (viii). But the present argument also conforms
with my earlier claim that explanation is not sufficient to establish the high
probability of an hypothesis. In fact it is readily seen that the preceding
argument follows the eliminative strategy outlined in the previous section. In
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step (i) there is a partition on b that consists of the wave theory and the
particle theory.35 This reflects the first part of the eliminative strategy, which
requires some partition on b that includes the hypothesis in question. Steps
(ii) through (v) argue to the conclusion that the probability of the parti-
cle theory, given the observed diffraction phenomena, is very low, and thus
that of the wave theory is very high. This conforms to the second part
of the eliminative strategy, which requires that some phenomenon O be
found that makes the sum of the probabilities of the other hypotheses in
the partition < 1 — k. (Assume that k, the threshold value for high proba-
bility, is greater than or equal to 1/2.) Finally, from the fact that the observed
optical phenomena O , . . . ,On are explainable by derivation from the wave
theory, it is concluded in step (viii) that the probability of the wave theory,
given these phenomena, is very high. This reflects the third part of the
eliminative strategy, which requires determining whether O,, . . . ,On are de-
rivable from h.

From this example we may draw several conclusions. Contrary to the
claims of Whewell and Mill (and some contemporary historians of science),
wave theorists were not employing a method of hypothesis. Their strategy is
not reflected in principles (1) and (2), or in these modified by consilience and
coherence. These principles will not suffice to generate either a probability
greater than some threshold value, or, in the limit, a probability of 1 as more
and more phenomena are explained. And although explanatory derivations of
phenomena will suffice to increase the probability of the hypothesis if the
phenomena derived are consilient, this does not yet adequately reflect the
wave theorists' strategy. Their aim was not simply to increase the probability
of their theory but to show that it was highly probable. Moreover, they were
attempting to provide not only explanations of phenomena (whether or not
these phenomena were consilient), but also independent warrant for their
theory. This they did by using an eliminative strategy that contains inductive
steps. If such warrant could be secured, then explanations of other phenome-
na would play the important role of sustaining whatever high probability the
theory achieved from the independent warrant.

35. This assumption can be relaxed by supposing there are other theories with very low, but
nonzero, probabilities. Let us define a "virtual" partition on b to be a set of mutually exclusive
hypotheses each of which has a nonzero probability, and the disjunction of which has a probabil-
ity, given b, that is close to but not equal to 1. A strategy based on the use of a virtual partition is
this: (a) Find a virtual partition on O&b that includes h. (b) Determine whether O is derivable
from h&b but is such that for each other hypothesis ht in the partition, p(hj/O&b) » 0. (c)
Determine whether G!, . . . ,On are derivable from h. If the results are positive, it will follow that
p(h/O\, . . . ,On&O&b) » 1. It is possible to interpret the wave theorist as following this strate-
gy, which is a variant of the eliminative strategy of section 6, where O = observed diffraction
phenomena.
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8. CONCLUSIONS

If the Mill-Whewell debate is viewed in the present terms, who won? Al-
though both are correct in certain judgments and mistaken about others,
Mill, I think, should be given the edge.

Mill claims that an hypothesis is not probable simply because it explains
observed phenomena, even if those phenomena are consilient. If we construe
"probable" in the sense either of probability greater than some threshold
value, say .5, or of probability that approaches 1 as the number of phenome-
na increases, then what Mill says is correct, and the reason he gives is valid.
Conflicting hypotheses can also explain the observed data. Even if there is
just one competing hypothesis that like h entails the O's and whose probabili-
ty on b is at least as great as that of h on b, the probability of h cannot rise
above .5 no matter how many phenomena it explains even if they are consil-
ient. Mill does claim that the fact that h explains some range of phenomena
shows only that h is possible. If this means that such an explanatory fact can
show nothing at all about h's probability, then Mill is mistaken. When h
explains the phenomena and the latter are consilient, h's probability increases.
On the other hand, Mill correctly sees the value of independent warrant. His
"deductive method" requires such warrant in addition to ratiocination and
verification. This comports with the basic strategy of section 6, although Mill
does not formulate this strategy, or its eliminative variation, in the way that I
have done.

WhewelPs position, expressed in probabilistic terms, is that an hypothesis
is probable if it explains observed phenomena where those phenomena are
consilient and where h introduces greater coherence into a system. If we
construe "probable" in the sense of "increase in probability," and "consil-
ience" in the sense of section 4, then what Whewell says is correct. (Coherence
understood in the sense of (6) of section 5 becomes irrelevant.) Explanation
of the phenomena by derivation from h does suffice to increase h's probabili-
ty, if the phenomena are consilient. However, if we construe "probable" either
as probability greater than some threshold value for high probability, say .5,
or as probability that approaches 1 as the number of phenomena increases
(which seems quite appropriate for a probabilistic formulation of WhewelFs
position), then what Whewell says is mistaken. The fact that the observed
phenomena are explainable by derivation from h does not suffice to make h
probable in either of these senses, even with consilience and coherence.

Moreover, Whewell is mistaken in supposing, as he seems to do, that where
h explains the phenomena h's probability is high only if consilience and
coherence are satisfied. If h has independent inductive warrant from b so that
h's probability on b is high, then if O{, . . . ,On are explainable by derivation
from h and b, h's high probability on the O's and b is sustained, whether or
not there is consilience or coherence. This last consideration is important in
understanding the strategy of nineteenth-century wave theorists who, con-
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trary to what both Whewell and Mill say about it, were not defending their
theory simply by employing some variant of the method of hypothesis.

But from the lemma, since ht, . . . ,hk is a set of mutually exclusive hy-
potheses, and since p(h\v . . . vhklb) = 1,

APPENDIX

Proof of Theorem (3)

We need the following:

Lemma: If / ; , , . . . ,hk comprise a set of mutually exclusive hypotheses
k

and if p(h}vh2 v . . . vhklb) = 1, then ]£ p(h, /O,, . . . ,

On&b) = 1, for any n.

Proof: Since p(hi v . . . v h^b) — 1, it follows that p(h{v . . . vhk /O,,
. . . ,On&b) = 1. But since the h's are mutually exclusive the lemma follows.

Proof of (3): Suppose A,, . . . ,hk form an O-partition. Then for each /?, in
this O-partition, ht + b entails O{, . . . ,On. If so, then using Bayes' theorem,
p(ht /O,, . . . ,0n&b) = p(ht lb)lp(0,, . . . ,0n /b). Now p(Olt . . . ,On/
b) < 1, so

Since/z, hk form an O-partition,

Now suppose that there is some hj such that

Then from (1) and (2),
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Since (4) and (5) conflict, assumption (3) is false. That is, there is no hj such
that p(hj /O,, . . . ,On&b) > p(hj Ib). Therefore, from (1), each h, is such
that pQi, /O,, . . . ,On&b) = p(h, Ib). Q.E.D.

Proof of Theorem (7)

A:

1. Suppose h,hlt . . . ,hk form a partition on b, and Ep(ht /O&b) = Ea, <
1 - r, for each /z, * h. We want to show that p(h/O&b) > r.

2. Since we have a partition on b, p(hvh{v . . . vhk/b) = 1, and therefore
p(hvh\v . . . vhk/O&b) = 1, so p(h/O&b) + Zp(h/O&b) = 1; that is,
p(h/O&b) + Ea, = 1, or Ea, = 1 - p(h/O&b).

3. From 1 and 2, 1 - p(h/O&b) < 1 - r, so that p(h/O&b) > r. Q.E.D.

B:

1. Suppose that h,hlt . . . ,hk form a partition on b andp(h/O&b) > r. We
want to show that for each h,(± h), T,p(h, /O&b) < 1 - r.

2. Since we have a partition, p(hvh\v . . . vhk/b) = 1. Therefore, /»(^v/z,v
. . . vhk/O&b) = 1, sop(h/O&b) + E/?(fy /O&b) = 1.

3. Letp(h,/O&b) = at. From 2, p(h/O&b) + Ea, = 1, so p(h/O&b) = 1 -
Ear,..

4. From 1 and 3, 1 - Ear, > r; so 1 - r > La,, that is, EC, < 1 - r.
Q.E.D.

Proof of Theorem (8)

Only if:

1. Suppose lim/K/!/0i, . . . ,On&b) = 1.
«—00

2. There is a partition on b, namely, /z, —h, such thatp(h/O l 9 . . . ,On&b) =
1 - rt-hlOi, on&b).

3. So lim p(h/O{, . . . ,On&b) = 1 iff lim p(-h/Olt . . . ,On&b) = 0.
n— oo n—oo

Q.E.D.

If:

1. Suppose there is some partition on b containing h such that for each /z,
(=£ h) in the partition lim />(/?, /O,, . . . ,On&Z?) = 0. Call this partition
Mi ,A*.

2. Since we have a partition, we havep(/zv/z, v . . . vhklb) = 1.
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3. So p(h/Olt . . . ,On&b) + E/WO,, . . . ,On&b) = 1. So p(h/O}, . . . ,
On&b) = 1 - E/KW, On&b).

4. From 1, lim p(htIO{, . . . ,On&b) = 0 for each fy. So V lim p(ht IO{,
n—oo ~ n—oo

. . . ,0n&b) = 0.

5. From 4, lim £/?(#, /O,, . . . ,On&b) = 0.
n— oo

6. From 3, lim [p(h/Ot, . . . ,On&b) + Zp(h, /O{, . . . ,On&b)] = 1. So lim

p(h/Oi, . . . ,On&b) + lim Ep(/j,. /Olt . . . ,On&b) = 1.
n— oo

7. From 5 and 6, lim p(h/Oi, . . . ,On&b) = 1. Q.E.D
«— oo

*For this essay Robert Rynasiewicz offered important criticisms and suggestions.
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PART II

Maxwell and the
Kinetic Theory of Gases



James Clerk Maxwell.
(Courtesy National Portrait Gallery, London.)



ESSAY 5

Introduction

1. HISTORICAL BACKGROUND1

James Clerk Maxwell, the first Cavendish Professor of Physics at Cambridge
and probably the greatest theoretical physicist of the nineteenth century,
made substantial contributions to the kinetic theory of gases. His first paper
on the subject, "Illustrations of the Dynamical Theory of Gases,"2 published
in 1860, begins as follows:

So many of the properties of matter, especially when in the gaseous form, can be
deduced from the hypothesis that their minute parts are in rapid motion, the
velocity increasing with the temperature, that the precise nature of this motion
becomes a subject of rational curiosity. Daniel Bernouilli, Herapath, Joule,
Kronig, Clausius, etc. have shewn that the relations between pressure, temperature,
and density in a perfect gas can be explained by supposing the particles to move
with uniform velocity in straight lines, striking against the sides of the containing
vessel and thus producing pressure, (vol. I, p. 377)

The basic assumption of the kinetic theory was that observable properties
of gases, including pressure, volume, and temperature, are to be explained by
the motions of the unobservable particles, the molecules, of which gases are

1. For detailed historical accounts, various works of Stephen G. Brush are recommended,
particularly The Kind of Motion We Call Heat (Amsterdam, 1976), Kinetic Theory (Oxford,
1965), and Statistical Physics and the Atomic Theory of Matter (Princeton, 1983). Maxwell's
published and unpublished writings on kinetic theory are collected in Elizabeth Garber, Stephen
G. Brush, and C. W. F. Everitt, eds., Maxwell on Molecules and Gases (Cambridge, Mass.,
1986). The latter contains a very informative 47-page historical introduction by the editors. I
reviewed this volume in Foundations of Physics 17 (1987), pp. 425-433, and in what follows I
have used some material from this review.

2. W. D. Niven, ed., The Scientific Papers of James Clerk Maxwell (New York, 1965), vol. I,
pp. 377-409. Unless otherwise specified, page references to Maxwell will be from this collection.
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composed. This was contrary to a number of other accounts. There was a
static theory, derived from Newton, according to which gas particles are
stationary, not kinetic, and retain their positions because of the mutually
repulsive forces they exert. This idea was incorporated into the caloric theory,
the account of heat widely accepted during the eighteenth and early nine-
teenth centuries, according to which heat is a fluid that penetrates all matter.
It consists of particles that repel each other but at the same time are attracted
to the particles of ordinary matter. A second, contrasting theory was the wave
theory of heat, developed particularly by Ampere in articles in 1832 and 1835.
By that time, as noted in Part I of this volume, the wave theory of light had
become much more widely accepted, as a result of the work of Young and
Fresnel. This, together with experiments on radiant heat which, like light,
exhibits reflection, refraction, and interference, made it quite easy for some to
accept the idea that heat is associated with the vibrations of the ether, in
particular with the kinetic energy of those vibrations.

The kinetic theory rejects the assumption of the caloric theory that heat is
a substance; and it rejects the assumption of the wave theory that heat is a
property of the all-pervading ether. Instead it takes it to be a property of the
particles of ordinary matter comprising bodies, namely, molecular motion. It
remains for kinetic theorists to say what sort of motion this is, and how
molecules of a gas interact with each other and with the walls of the gas'
container.

In the passage just quoted Maxwell mentions Bernouilli, Herapath, Joule,
Kronig, and Clausius. Daniel Bernouilli, a Swiss mathematician, is generally
regarded as the first to develop the kinetic theory in the eighteenth century. In
Chapter 10 of his book Hydrodynamica, published in 1738, Bernouilli pro-
posed to explain various properties of gases, including their weight and their
capacity to expand and to be compressed, by assuming that they consist of
"very small particles in rapid motion."3 These particles he assumed to be
spherical, each with the same diameter. He supposed that all the particles of
the gas have the same velocity, and that the temperature of the gas is a
function of this velocity. Using these assumptions he derived Boyle's law —
that at a given temperature, the pressure of the gas is inversely proportional to
its volume—for the case in which the diameter of a particle is much smaller
than the distance between the centers of particles. Despite this result, Ber-
nouilli's speculations did not convince anyone, since at that time heat was
widely thought to be a substance rather than a property of matter.

In 1820, the Englishman John Herapath submitted a manuscript to the
Royal Society which was rejected but subsequently published in the Annals of
Philosophy in 1821. In it he developed a kinetic theory of gases based on
various postulates, including that matter is composed of perfectly hard, inde-
structible atoms; that in gases atoms move with "perfect freedom"; that heat

3. Reprinted in Brush, Kinetic Theory, vol. 1, p. 58.



INTRODUCTION 153

aris  the "intestine" motion of the atoms and is proportional to their
momentum.4 From the latter proportionality Herapath derived the result that
the pressure of a gas times its volume is proportional to the square of the
temperature (rather than to the first power, as in the ideal gas law). Another
British scientist, John James Waterston, although not mentioned by Maxwell,
developed a more sophisticated version of the kinetic theory in 1845. Unlike
Herapath, he assumed that molecules are perfectly elastic, so that he could
introduce the principle of conservation of mechanical energy. Moreover, un-
like Herapath who assumed that temperature is proportional to momentum,
Waterston took it to be proportional to mean square translational velocity of
the molecules, as in contemporary formulations. He derived various results
including that the pressure of a gas with a constant mean molecular velocity is
proportional to the number of molecules per unit volume, from which Boyle's
law follows. He also deduced that the pressure of a gas is proportional to its
density times mean square molecular velocity, from which the ideal gas law
(PV a T) follows. Like Herapath's paper, Waterston's was rejected by the Royal
Society. However, in this case the Royal Society retained the paper and pub-
lished it posthumously in 1892 when Lord Rayleigh discovered it. Because of
this delay Waterston's work had no impact on other scientists during the mid-
nineteenth century when kinetic theory was most extensively developed.

James Prescott Joule's major contribution was to establish a quantitative
relationship between mechanical work and heat. During the 1840s he con-
ducted a series of experiments from which he concluded

... 1st that the quantity of heat produced by the friction of bodies, whether solid
or liquid, is always proportional to the quantity of force expended; 2nd that the
quantity of heat capable of increasing the temperature of a pound of water ... by
1 degree F. requires for its evolution the expenditure of a mechanical force repre-
sented by the fall of 772 Ibs through the space of one foot.5

Joule took the idea of the mechanical equivalent of heat to suggest that heat
is not a substance but some form of molecular motion. However, unlike other
kinetic theorists, he associated temperature with the rotation of molecules
about their axes, rather than with translational motion.

In 1856, the German chemist August Karl Kronig published a short paper
on kinetic theory in which he derived various results, including the ideal gas
law, from assumptions involving perfectly elastic spherical molecules moving
with the same velocity. The paper did not make new advances, but because of
Kronig's professional status it was influential in generating study and re-
sponses by others. For example, Rudolf Clausius begins his important 1857

4. Reprinted in Henry A. Boorse and Lloyd Motz, eds., The World of the Atom (New York,
1966), vol. 1, pp. 198-205.

h55. Reprinted in Boorse and Motz, op.cit., p. 255..5. Reprinted in Boorse and Motz, op. cit., p. 255.5. Reprinted in Boorse and Motz, op. ., p. 255.5.
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paper, "The Nature of the Motion Which We Call Heat,"6 with reference to
Kronig's views, with which he is in substantial agreement, although he pro-
ceeds to show how the theory needs to be much further developed. It was this
paper of Clausius', together with one published in 1859, that sparked Max-
well's interest in kinetic theory.

Clausius begins his 1857 paper by assuming that in addition to the transla-
tory motion postulated by Kronig, molecules exhibit rotational motion and
vibrations due to the atoms they contain. He gives qualitative kinetic theory
explanations of various phenomena, including the pressure of a gas, Boyle's
law, the claim that temperature is proportional to the translatory vis viva
(kinetic energy) of the molecules, and the specific heat of a gas. Then intro-
ducing certain idealizations he derives three quantitative relationships. The
first relates the product of pressure and volume to the mean square velocity of
a molecule. Using this he derives values of mean molecular velocities for
oxygen, nitrogen, and hydrogen at the temperature of melting ice (461 m/s,
492 m/s, 1844 m/s). Finally, he derives a formula relating the ratio of transla-
tory kinetic energy of the molecules in a gas and total internal energy of the
gas to specific heats.

In 1858 the Dutch meteorologist C. H. D. Buys-Ballot, responding to the
mean molecular velocities Clausius computed, observed that if the molecules
of a gas move as fast as Clausius claimed, then mixing of gases by diffusion
should occur much more rapidly than it does. For example, malodorous
hydrogen sulfide emitted in one corner of the room should be detected much
more quickly than it is. Clausius replies in a paper in 1858 by modifying the
theory in an important way. He attributes the phenomenon Buys-Ballot notes
to the forces between molecules, which prevent molecules from covering large
distances quickly. Accordingly, he abandons the idealizing assumption used
for his quantitative derivations that intermolecular forces act only at infinites-
imally small distances. Instead he introduces the idea of two intermolecular
forces: one, a force of attraction between molecules that is exerted at some
significant distance and increases as the distance diminishes; the other, a force
of repulsion exerted when molecules are in the immediate neighborhood of
one another. He speaks of a "sphere of action" as a sphere of radius r sur-
rounding a molecule in which the force of repulsion acts. He then proposes
what turned out to be an important new concept, that of mean free path,
"how far on an average can the molecule move, before its center of gravity
comes into the sphere of action of another molecule."7

Following this Clausius introduces the first probabilistic considerations in
kinetic theory. He supposes that the gas in which a molecule is moving is
divided into parallel layers perpendicular to the motion of the molecule. And

6. Reprinted in Brush, Kinetic Theory, pp. 111-134.
7. Rudolf Clausius, "On the Mean Lengths of the Paths Described by the Separate Molecules

of Gaseous Bodies," reprinted in Brush, Kinetic Theory, p. 139.
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he asks for the probability that a molecule will pass through a layer of a
certain thickness without encountering the sphere of action of another mole-
cule. He derives the formula W = e-( p2/ 3)x, where W = the probability of
the molecule traveling a distance x, X = the mean distance between the cen-
ters of neighboring molecules for a gas at a given density, and p = the radius
of the sphere of action of the molecule. Using this formula Clausius then
derives the formula l = 3/4 2/ p2, which, for the case in which all molecules
move with equal velocity, relates the mean free path of a molecule to the
quantities above. However, Clausius did not know how to compute an actual
magnitude for l, since he had no way to determine the radius of the sphere of
action or the mean distance between molecules for a gas at a given density.

Maxwell's 1860 kinetic theory paper, which begins with the quotation given
earlier, makes very considerable advances on Clausius' work. On the first
page, Maxwell notes that Clausius derived the formula relating mean free
path to X and p without being able to determine either of the latter. However,
he claims that (what are now called) transport phenomena—internal friction
of gases (viscosity), heat conduction, and diffusion — may lead to a numerical
determination of the mean free path. And, he continues:

In order to lay the foundation of such investigations on strict mechanical princi-
ples, I shall demonstrate the laws of motion of an indefinite number of small, hard,
and perfectly elastic spheres acting on one another only during impact. (vol. I, p.
377)

Maxwell uses the term sphere, and more frequently particle, rather than
molecule. And in this paper, as indicated by the quotation, he assumes that
the only forces between the particles are contact forces. Maxwell proceeds to
furnish a unified, comprehensive, mathematical treatment of various known
gaseous phenomena, particularly heat conduction, viscosity, and diffusion,
which prior to this had been investigated only rarely and had not been inte-
grated. He introduces the idea that these processes involve a transfer of
energy, momentum, and mass, respectively.

In his theoretical treatment of viscosity Maxwell derives a formula relating
the coefficient of viscosity to the mean molecular velocity. From this, togeth-
er with experimentally determined values of viscosity and density, he com-
putes the mean free path for molecules of air at 60 degrees to be 1/447,000th
of an inch. Even more important, the theoretical viscosity equation implies
that the coefficient of viscosity is independent of the density of the gas and,
therefore, of its pressure, a result Maxwell found intuitively very surprising.
Not content with his role as armchair theoretician, in 1865 Maxwell together
with his wife performed experiments on viscosity at various pressures and
temperatures. In a Bakerian lecture of 1866 Maxwell describes these experi-
ments and notes that at constant temperature the value of the coefficient of
viscosity does indeed remain the same for different densities. This experimen-
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tal verification of a surprising theoretical consequence of his 1860 theory
increased Maxwell's confidence that he was not simply building castles in the
air.

While Clausius had recognized that molecular velocities exhibit a wide
range, he used only averages in his calculations. Maxwell in his 1860 paper
concentrated on the range of velocities and derived the first velocity distribu-
tion law for molecules. It gives a mathematical expression for the number of
molecules whose speed is between v and v + dv as an exponential function of
v. This is the most important contribution of the paper and the law has come
to bear his name. (A precise formulation of the law and Maxwell's derivation
of it are presented in Essay 6.) With this law Maxwell followed Clausius in
continuing to introduce statistical methods into physics.8 In 1871, comment-
ing on this important methodological innovation, he writes:

The method of dealing with groups of atoms, which I may call the statistical
method, and which in the present state of our knowledge is the only available
method of studying the properties of real bodies, involves an abandonment of
strict dynamical principles, and an adoption of the mathematical methods belong-
ing to the theory of probability. (vol. II, p. 253)

For someone steeped as Maxwell was in the Newtonian mechanical tradition,
in which problems of motion are solved by analyzing a system into compo-
nent parts and determining the forces acting on each, this is a bold departure.

Maxwell's 1860 paper is based on a billiard-ball model involving perfectly
elastic spheres interacting only at impact. From this, together with other
assumptions, he derives the theoretical result that the ratio of total molecular
kinetic energy to translational kinetic energy is 2. But he notes that the
experimentally obtained value is 1.634, a result that he thinks is "decisive
against the unqualified acceptation of the hypothesis that gases are such
systems of hard elastic particles" (p. 318). There is another result Maxwell
obtains in his 1860 paper which, he realized later, is incompatible with experi-
ments. He derives the theorem that the coefficient of viscosity is propor-
tional to the mean molecular velocity v. But since absolute temperature T is
proportional to v2, must be proportional to the square root of T. Yet
experiments he performed a few years later showed that is proportional to
T, not to the square root of T. In the Bakerian lecture of 1866 he takes this
experimental result to require a change in kinetic theory from contact forces
between molecules to action at a distance.

This work led directly to Maxwell's second major paper on kinetic theory,
published in 1867, in which he proposes "to consider the molecules of a gas,

8. See Elizabeth Garber, "Aspects of the Introduction of Probability into Physics," Cen-
taurus 17 (1972), pp. 11-39; Theodore M. Porter, "A Statistical Survey of Gases: Maxwell's
Social Physics," Historical Studies in the Physical Sciences 12 (1981), pp. 77-116.
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not as elastic spheres of definite radius, but as small bodies or groups of
smaller molecules repelling one another with a force whose direction always
passes very nearly through the centres of gravity of the molecules, and whose
magnitude is represented very nearly by some function of the distance of the
centres of gravity" (vol. II, p. 29). From his experiments on viscosity Maxwell
"deduces" that the repulsive force varies inversely as the fifth power of the
distance, "any other law of force being at variance with the observed fact that
the viscosity is proportional to the absolute temperature."9 In this second
paper Maxwell develops a new generalized transport theory based on mole-
cules as centers of repulsive force. However, later experiments on viscosity by
Meyer and others, which Maxwell acknowledged in an 1879 paper, showed
that the viscosity of air does not vary with the first power of the temperature
but with a lower one, "probably the 0.77 power." These experiments seemed to
vitiate the model based on an inverse fifth-power repulsive force. Moreover,
other phenomena noted by Maxwell suggested that attractive forces between
molecules also exist.

The final atomic model to which Maxwell gave some support was that of
the atom as a vortex ring. The proposal was made by Kelvin following some
ideas of Helmholtz regarding rotational motion of a homogeneous incom-
pressible fluid devoid of viscosity. Vortex rings, Maxwell wrote in an 1870
address to the British Association, "may be seen when an experienced smoker
sends out a dexterous puff of smoke into the still air" (vol. II, p. 223). Once
generated in the absence of viscosity, vortex rings "would go on whirling for-
ever, would always consist of the very same portion of the fluid which was
first set whirling, and could never be cut in two by any natural cause."
Accordingly, they have the properties of individuality and permanence re-
quired of atoms. Moreover, unlike the elastic sphere and action-at-a-distance
models

In the vortex theory we have nothing arbitrary, no central forces or occult proper-
ties of any kind. We have nothing but matter and motion, and when the vortex is
once started its properties are all determined from the original impetus, and no
further assumptions are possible. (vol. II, p. 223)

Maxwell recognized that these ideas provided only the qualitative beginnings
of a theory and that "the difficulties of this method are enormous, but the
glory of surmounting them would be unique" (vol. II, p. 472).

Although Maxwell used each of the atom models noted here on different
occasions—billiard ball, center of force, and vortex — he was never altogether
satisfied with any of them. Each had significant problems and could be used
only to apply to a restricted set of experimental facts. Indeed, even after
Maxwell realized that the billiard-ball model was incompatible with experi-

9. Garber, Brush, and Everitt, op. cit., p. 416.
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mental data giving the relationship between viscosity and temperature, in an
1873 paper on Loschmidt's experiments on diffusion he relied on that very
model to "proceed for a few steps on more hazardous ground, and inquire
into the actual size of molecules" (vol. II, p. 348). For this purpose he as-
sumed that molecules are spherical and that they collide only at impact, so
that a mean-free-path formula could be used to derive values for diameters of
various molecules. Estimates of the size of molecules were important to physi-
cists such as Maxwell who came to believe in their real existence and wanted to
develop a precise and comprehensive, quantitative theory about them. It also
led Maxwell to an estimate of another very important quantity, Avogadro's
number, the number of molecules in the gram equivalent of the molecular
weight of a substance.

2. METHODOLOGICAL ISSUES

Maxwell's work in kinetic theory is a gold mine for the philosopher of sci-
ence, especially since Maxwell himself held methodological views that he
expressed in numerous writings and that influenced his own work in physics.
A basic methodological problem — one that Maxwell explicitly addresses — is
how one should understand and justify a theory that postulates entities such
as molecules which one has no idea how to observe and for which there is
scanty evidence at best.

In his two major kinetic theory papers of 1860 and 1867 Maxwell notes the
results of only a few experiments conducted by himself and others, and he
does not describe how they were done. The papers are highly theoretical,
mathematical, and abstract. They consist almost entirely of theoretical deri-
vations, which proceed by using the basic assumptions of the theory, together
with others, and applying mathematical and logical operations to generate a
conclusion in a series of steps. What role do these play? Do they serve to
justify Maxwell's molecular hypotheses?

According to standard methodologies, such as hypothetico-deductivism
and Millian inductivism, the only, or at least the principal, role of any theo-
retical derivation is to provide an empirical test for a theory or to explain
some known empirical fact. Once theoretical postulates have been proposed
these methodologies focus on generating observational conclusions: either
new predictions to test the theory or old observations that the theory can
explain. Yet this does not seem to be true in the case of Maxwell's most
famous and important derivation in kinetic theory, that in which he derives
his distribution law for molecular velocities. That law was not a "known
empirical fact" or even "observational." Indeed, its truth was first established
experimentally only in the 1920s with molecular beam experiments. Nor did
Maxwell or anyone else at the time regard its derivation as providing an
empirical test for kinetic theory. Why did Maxwell and others consider it so
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important? If the derivation failed to yield an empirical test for the theory or
explain some known fact, did it serve some other function that helped to
secure Maxwell's theoretical hypotheses? This question is considered in Essay
6, and the various roles of theoretical derivations in general are examined. By
reference to Maxwell's case it is shown how a derivation may enable a scientist
to discover some new theoretical proposition and provide a foundation for it
that is theoretical rather than observational.

Throughout his career as a physicist Maxwell showed a concern for the
proper scientific method to use in dealing with theories postulating entities
that cannot be observed or measured. Should such theories be construed in a
"realist" manner as making commitments to the existence of such hypotheti-
cal entities and attributing properties to them? Or should they be understood
without such commitments, perhaps as providing useful analogies with ob-
served items? Even before turning to kinetic theory, Maxwell confronted this
issue in 1855 in his first paper on electromagnetic theory, "On Faraday's Lines
of Force" (vol. II, pp. 155-229).

Maxwell notes that "electrical science" at that time contained various laws
of electricity and magnetism that had been empirically established but not
related or systematized. His aim is to produce a "simplification and reduction
of the results of previous investigation to a form in which the mind can grasp
them." But he rejects two scientific methods for doing so: the use of purely
mathematical formulas, and the use of physical hypotheses that postulate the
existence of unobservable entities and causes. Using the first method, we
"entirely lose sight of the phenomena to be explained" and we lack a "clear
physical conception." The second method, although employing a physical
conception, leads to a "blindness to facts and rashness in assumption," since
hypotheses are generated on the basis of little or no evidence. Instead, Max-
well advocates the method of physical analogies, which, unlike pure mathe-
matical formulas, yields a physical conception but, unlike the use of physical
hypotheses, avoids unwarranted speculations about unobservables. In this
paper Maxwell constructs an analogy between the electromagnetic field and a
purely imaginary, incompressible fluid flowing through tubes of varying sec-
tion. An electrical property (e.g., the electrical force at a point in the field) is
represented by some appropriate fluid property (e.g., velocity of the fluid at a
point), and it is demonstrated that the electrical property satisfies a law
mathematically similar to one satisfied by the corresponding fluid property
(e.g., an inverse square law). In constructing the analogy Maxwell makes no
assumptions about unobserved features of the electromagnetic field that
cause it to have the properties and to satisfy the laws mentioned in the
analogy. Indeed, he emphasizes that the incompressible fluid is purely imagi-
nary and is not being assumed to exist. A physical analogy serves to organize
ideas in one domain by providing such an organization in an analogous one.
It also affords a way of working out unsolved problems in one system by
considering solutions achieved in the analogue system.
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Does Maxwell rely on this method in the development of kinetic theory? In
his 1860 paper he does speak in terms of an analogy. After introducing his
kinetic theory assumptions about the system of particles, he writes:

If the properties of such a system of bodies are found to correspond to those of
gases, an important physical analogy will be established which may lead to more
accurate knowledge of the properties of matter. (vol. I, p. 378)

And just before writing this paper, in a letter to Stokes in 1859, Maxwell says
that he intends to arrange his "propositions about the motions of elastic
spheres in a manner independent of the speculations about gases" (Garber et
al., p. 282). Accordingly, it may seem that in this paper Maxwell is simply
constructing a physical analogy between a gas and a dynamical system of
particles by showing that the latter has a set of properties and satisfies laws
that are analogues of ones associated with gases. As with the earlier electro-
magnetic analogy, this would be possible to do without assuming the hypoth-
esis that the "original" system, a gas, is composed of the particles comprising
the analogue system, or indeed that the latter even exists. Yet in actual prac-
tice in this 1860 paper, despite what he writes to Stokes, Maxwell seems to go
beyond the analogy by introducing the speculative physical hypothesis that
gases are composed of the system of unobservable particles he postulates. For
example, after he derives the pressure law for gases he writes:

We have seen that, on the hypothesis of elastic particles moving in straight lines, the
pressure of a gas can be explained by the assumption that the square of the velocity
[of the particles] is proportional directly to the absolute temperature [of the gas],
and inversely to the specific gravity of the gas at constant temperature. . . . (vol. I,
p. 389)

Whether it is possible to construct a Maxwellian physical analogy between
a gas and a dynamical system of particles, whether Maxwell's paper should be
viewed solely in this analogical manner, and if Maxwell needs to go beyond
the analogy, why he does, are questions explored in Essay 7. It is a conclusion
of this essay that Maxwell does in fact transcend analogy and assume that
gases are composed of the particles he describes. Indeed, he has to do so.
Only in this way can he generate dynamical explanations of gaseous phenom-
ena. Analogies that preclude hypotheses about the unobserved constituents of
gases would not give Maxwell explanations of the properties and laws of gases
of the sort he wants.

An important question remains for Maxwell, which is discussed in Essay 8.
When can we say that one's hypotheses — particularly those postulating unob-
servables — have been shown to be verified or at least probable? Maxwell
explicitly rejects the method of hypothesis, or hypothetico-deductivism,
which in a paper of 1875 he characterizes as follows:
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Forming an hypothesis and calculating what would happen if the hypothesis were
true. If these results agree with the actual phenomena, the hypothesis is said to be
verified, so long, at least, as someone else does not invent another hypothesis
which agrees still better with the phenomena. (vol. II, p. 419)

Maxwell claims that those who employ this method are "compelled either to
leave their ideas vague and therefore useless, or to present them in a form the
details of which could be supplied only by the illegitimate use of the imagina-
tion" (ibid.).

If one wants to go beyond analogies and introduce explanatory hypotheses
about unobservables, for example, molecules, but if one rejects the flights of
fancy of hypothetico-deductivism, what method should one choose? Max-
well's answer is what he calls the "method of physical speculation" (p. 420).
On this idea, the fact that an hypothesis entails or explains known phenome-
na will be considered a reason for believing it to be true provided that there is
independent empirical warrant for the hypothesis from other observed phe-
nomena. Maxwell offers no general definition of independent empirical war-
rant, only a few examples. But it is this idea that distinguishes his viewpoint
from the method of hypothesis, which requires no such warrant.

As far as kinetic theory is concerned, Maxwell believed he had independent
warrant for some of the hypotheses of this theory. For example, in his article
"Atom" in the Encyclopedia Britannica (1875), he writes:

We begin by assuming that bodies are made up of parts, each of which is capable of
motion, and that these parts act on each other in a manner consistent with the
principle of the conservation of energy. In making these assumptions, we are
justified by the facts that bodies may be divided into smaller parts, and that all
bodies with which we are acquainted are conservative systems, which would not be
the case unless their parts were also conservative systems. We may also assume that
these small parts are in motion. This is the most general assumption we can make,
for it includes, as a particular case, the theory that the small parts are at rest. The
phenomena of the diffusion of gases and liquids through each other show that
there may be a motion of the small parts of a body which is not perceptible to us.
(vol. II, p. 451)

However, there are important assumptions that Maxwell introduces in one
version or another of kinetic theory for which he has no independent empiri-
cal warrant. For example, in his 1860 paper he assumes that the force between
molecules is zero except at impact. This allows a calculation of momentum
transfer, and thus a derivation of Boyle's law relating the pressure and density
of a gas. But because Maxwell provides no independent empirical warrant for
the molecular force law, the fact that Boyle's law is derivable using it does not
constitute a reason for believing that theoretical force law. And indeed in his
1860 paper Maxwell makes no claim that his derivation supports the assump-
tion that molecules interact only when colliding. Despite this it may be very
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reasonable on pragmatic grounds to introduce such an assumption. Maxwell
seeks to develop kinetic theory in a quantitative way "on strict mechanical
principles" — an aim facilitated by some assumption about the forces govern-
ing molecules. In the absence of any empirical reason for choosing this rather
than another force law, the fact that the one in question is simple and mathe-
matically tractable may suffice to make it worth trying out to see what conse-
quences will follow from its use.

In short, in kinetic theory from the very beginning Maxwell permits "spec-
ulations." He allows hypotheses about unobservables to be used to see what
conclusions, if any, they yield about observed gaseous phenomena. In a sec-
ond letter to Stokes in 1859 when speaking about his first kinetic theory paper
he makes this explicit:

I do not know how far such speculations may be found to agree with facts, . . . and
at any rate as I found myself able and willing to deduce the laws of motion of
systems of particles acting on each other only by impact, I have done so as an
exercise in mechanics. Now do you think that there is any so complete a refutation
of this theory of gases as would make it absurd to investigate it further so as to
found arguments upon measurements of strictly "molecular" quantities before we
know whether there be any molecules?10

Maxwell here expresses the thought that it can be worthwhile to consider
and mathematically work out theoretical principles even if one hasn't any idea
whether they are likely to be correct. This idea is reflected again in Maxwell's
treatment of the vortex atom. He allows speculations about a vortex atom and
shows how, if they are true, various observable properties of matter are ex-
plained. But he refrains from concluding, with the method of hypothesis, that
this shows the vortex theory to be true or probable. To return to an earlier
point, it is possible for Maxwell to be an opportunist about molecular mod-
els — to introduce various models and mathematically derive consequences
pertaining to diffusion, viscosity, and so forth — without definitely commit-
ting himself to any particular model. This raises a general methodological
question: Under what conditions is it reasonable to consider, "play with," or
take seriously an hypothesis in the absence of independent empirical warrant?
Is a speculative hypothesis worth considering when, or only when, it explains
known phenomena? Are other conditions required? These issues, in addition
to the ones mentioned in the last few paragraphs, are discussed in Essay 8.

Part II concludes with a general philosophical essay that examines one
particularly interesting defense of the method of hypothesis against a stan-
dard attack. As we saw in Part I, a typical criticism of this method is one
raised by Mill in the mid-nineteenth century: There may be competing hy-
potheses that entail the same observed phenomena as the favored hypothesis.

10. Garber et al., p. 279.



INTRODUCTION 163

In response to Mill, William Whewell (as well as some philosophers in the
twentieth century) offers an "only-game-in-town" argument. Suppose that
hypothesis h entails a range of observed phenomena — some observed before
the hypothesis was formulated and some afterward. And suppose that the
experts in the scientific community cannot find a plausible competitor that
will also generate these phenomena. Under these conditions we can say that
the hypothesis h is "the only game in town." The fact that it is, is taken by
some to count strongly in its favor.

In Essay 9 I consider various probabilistic and nonprobabilistic ways an
only-game defense might be construed, and I argue that none of these is
legitimate. Among the examples I invoke is Maxwell's 1860 kinetic theory,
since in 1860 it was the only game in town with respect to a considerable range
of observed gaseous phenomena. Yet, I argue, this fact did not render the
probability of that theory high, or even increase it. Nor did it make the theory
worth pursuing. I conclude that Mill's attack on the method of hypothesis is
not vitiated by an only-game argument.
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ESSAY 6

Theoretical Derivations

Scientific papers, especially the more theoretical ones, often contain deriva-
tions that may be the most important and novel parts of the material present-
ed. These derivations proceed by using assumptions of one or more theories
and applying mathematical and logical operations to generate some conclu-
sion in a series of steps. I call them theoretical derivations. They are intended
to show that something follows from something else. But why is it important
do to that? What role do such derivations play? Why would a theoretical
paper without them often be regarded as inferior to one in which they are
present?

There is, I think, a serious lacuna on this topic in standard accounts of
scientific method. I will begin by sketching four widely discussed methods in
sufficient detail to bring out the role each accords theoretical derivations.
This will be important later in defending my claim that these views offer a
very incomplete account.

1. FOUR METHODOLOGIES

The Method of Hypothesis

The physicist Richard Feynman is a staunch supporter of this method, which
today is usually called the hypothetico-deductive (h-d) method. He writes:

In general we look for a new law by the following process. First, we guess it. Then
we compute the consequences of the guess to see what would be implied if this law
that we guessed is right. Then we compare the result of the computation to nature,
with experiment or experience, compare it directly with observation, to see if it
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works. If it disagrees with experiment it is wrong. In that simple statement is the
key to science.1

Feynman thus notes three stages in the development of a new scientific law
(or hypothesis generally). First, a "guess" is made. Second, consequences are
"computed." Third, these consequences are tested by experiment and observa-
tion. Presumably the second stage is the one in which derivations appear. We
have a derivation — using mathematics and (at least implicitly) logic — because
we need to test the law or hypothesis we have guessed. If the latter is highly
theoretical, as it often is, then it cannot be tested directly. What must be done
is to derive observable consequences from it together with auxiliary assump-
tions. The derivation is the intermediate step between the guess and the
experiment or observation.2

This is not to say that every derivation from a new law or theory will
necessarily result in a directly testable proposition. There may be intermediate
stages, as Braithwaite, another h-d theorist, notes.3 A derivation from a
"high-level" law (Braithwaite's example is Galileo's law that unsupported bod-
ies fall with an acceleration of 32 ft/s2) may lead, via mathematical opera-
tions, to a lower level hypothesis ("unsupported bodies fall 16t2 feet in t
seconds"); and this in turn, through the application of logic, will generate
"singular" propositions that are directly testable ("this unsupported body falls
16 feet in 1 second"). Such a series of derivations, says Braithwaite, is meant
to yield propositions of "diminishing generality" in order that the highest level
propositions in the theory — those that are underived — can be empirically
tested.

Many who defend a version of the method of hypothesis also emphasize
the role of derivations in explaining and predicting observed phenomena.
Whewell, 100 years before contemporary hypothetico-deductivists, asserted
that new hypotheses, which are discovered by guessing,

ought to explain phenomena which we have observed. But they ought to do more
than this: our hypotheses ought to foretel phenomena which have not yet been
observed.4

To do so, according to Whewell, deductive reasoning is required:

. . . in Deduction we infer particular from general truths; while in Induction we
infer general from particular. . . . Deduction is a necessary part of Induction.
Deduction justifies by calculation what Induction had happily guessed.5

1. Richard Feynman, The Character of Physical Law (Cambridge, Mass., 1965), p. 156.
2. Similar accounts are to be found in Karl Popper, The Logic of Scientific Discovery (New

York, 1968), and Carl G. Hempel, Philosophy of Natural Science (Englewood Cliffs, N.J., 1966).
3. R. B. Braithwaite, Scientific Explanation (Cambridge, England, 1953), pp. 12-21.
4. William Whewell, The Philosophy of the Inductive Sciences (New York, 1967), vol. 2,

p. 62.
5. Ibid., pp. 92-93.
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For Whewell, the role of deduction is to derive — and therefore explain or
predict — particular observable facts from general hypotheses that have been
selected by sagacious guesswork.

Mill's "Deductive Method"

When the phenomena to be investigated are too indirect and complex for
observation and experiment alone we use what Mill calls the "deductive
method":

The mode of investigation which, from the proved inapplicability of direct methods
of observation and experiment, remains to us as the main source of the knowledge
we possess or can acquire respecting the conditions and laws of recurrence of the
more complex phenomena, is called, in its most general expression, the Deductive
Method, and consists of three operations — the first, one of direct induction; the
second, of ratiocination; the third, of verification.6

According to Mill, we use the "deductive method" when we want to discover
some effect, or some law of effect, when a given phenomenon is governed by
a multitude of causes. He cites as an example determining the velocity and
range of a cannon ball (p. 302). We need to determine the various "causes,"
for example, the force on the cannonball by the gunpowder, the angle of
elevation of the cannon, the density of the air, and the strength and direction
of the wind. These causes and the laws governing them are inferred by induc-
tion from previous observations and experiments. This is Mill's "first opera-
tion."

Second, there is "ratiocination," which is an operation of

. . . determining from the laws of the causes what effect any given combination of
those causes will produce. This is a process of calculation. . . . when our knowledge
of the causes is so perfect as to extend to the exact numerical laws which they
observe in producing their effects, the ratiocination may reckon among its premises
the theorems of the science of number, in the whole immense extent of that sci-
ence.7

From the "causes" (or determining factors) of the motion of a projectile we
use mathematics to compute the effect (e.g., the velocity and range) — which
as Mill notes, can be a very difficult task indeed.8

6. John Stuart Mill, A System of Logic (London, 1959), p. 299.
7. Ibid., p. 302.
8. Mill admits that mathematical reasoning is not always a part of ratiocination, especially in

those sciences that are not quantitative. In ratiocination, "all that is essential," he writes, "is
reasoning from a general law to a particular case, that is, determining by means of the particular
circumstances of that case what result is required in that instance to fulfill the law" (p. 303).
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The third process is verification:

To warrant reliance on the general conclusions arrived at by deduction, these
conclusions must be found, on careful comparison, to accord with the results of
direct observation wherever it can be had.9

For Mill, then, derivations occur in "ratiocination," the second process in
the deductive method. Such derivations yield the effect of a set of causes
governed by various laws. And this effect must accord with the results of
direct observations. Mill makes it clear that ratiocination is a process directed
toward the "calculation" of propositions capable of direct empirical testing.
On this issue Mill is in agreement with hypothetico-deductivists. Their princi-
pal difference lies in the fact that Mill requires an induction in the first stage
of theorizing, h-d theorists do not.

Retroduction

Champions of retroduction such as Peirce and Hanson reject the h-d idea that
a new hypothesis is simply guessed: it is inferred. However, they do not regard
the reasoning as inductive generalization (a la Mill), but as retroductive or
explanatory. The scientist begins with some observed phenomenon and then
reasons that an hypothesis is plausible, or worth considering, on the grounds
that if true it would correctly explain that phenomenon. Peirce believes that
retroduction has "a perfectly definite logical form," which he puts as follows:

The surprising fact C is observed.
But if A were true, C would be a matter of course.

Hence
There is reason to suspect that A is true.10

What role, if any, do derivations play in this account? They may enter at
two points. First, they may be part of the retroductive reasoning itself, em-
ployed in showing that the observed fact does follow from, or is explained by,
the hypothesis which is retroduced. Despite the fact that both Peirce and
Hanson use the expression "(as) a matter of course" in describing the manner
in which the observed fact would follow from, or be explained by, the hypoth-
esis, I do not think this commits them to the view that the observed fact is

9. Ibid., p. 303.
10. Charles Peirce, Collected Papers, Charles Hartshorne and Paul Weiss, eds. (Cambridge,

Mass., 1960), vol. 5, 5.189. Hanson offers various schemas. One of his simplest, which makes
explicit the explanatory character of the reasoning, is this: "Some surprising phenomenon P is
observed; P would be explicable as a matter of course if H were true; hence, there is reason to
think that H is true." N. R. Hanson, Patterns of Discovery (Cambridge, England, 1958), p. 86.
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necessarily an obvious or immediate corollary of the hypothesis, requiring no
demonstration. Thus, Hanson offers the following as an example of retroduc-
tive reasoning to Newton's law of universal gravitation:

1. The surprising, astonishing discovery that all planetary orbits are elliptical
was made by Kepler (1605 to 1619).

2. But such an orbit would not be surprising or astonishing if, in addition to
other familiar laws, an inversely varying law of gravitation obtained. Kep-
ler's first law would follow as a matter of course; indeed the hypothesis
could even explain why (since the sun is in but one of the foci) the orbits
are ellipses on which the planets travel with non-uniform velocity.

3. Therefore, there is good reason for elaborating this hypothesis further, for
proposing it as that from the assumption of which Kepler's first law might
be explained.11

Now Kepler's first law is no obvious, immediate consequence of Newton's law
of gravitation together with the three laws of motion. A derivation is re-
quired. More generally, derivations may need to be constructed in showing
that the observed phenomenon would indeed follow "as a matter of course"
from the retroduced hypothesis.

There is a second use of derivations that retroductivists recognize. This
comes after the hypothesis has been retroduced, after the scientist discovers
that if H were true the observed phenomenon P would follow. It comes in the
"context of justification" when the hypothesis is being tested. Here, by con-
trast to the "context of discovery," Hanson is willing to follow the h-d theo-
rist. Consequences (in addition to those observed phenomena from which the
hypothesis H is originally retroduced) are derived from H, and these are
subject to empirical test. However, Hanson urges that although such reason-
ing exists, it is not reasoning of the most original kind:

By the time a law has been fixed into an H-D system, really original physical
thinking is over. The pedestrian process of deducing observational statements from
hypotheses comes only after the physicist sees that the hypothesis will at least
explain the initial data requiring explanation. This H-D account is helpful only
when discussing the argument of a finished research report, or for understanding
how the experimentalist or the engineer develops the theoretical physicist's hy-
potheses; the analysis leaves undiscussed the [retroductive] reasoning which often
points to the first tentative proposals of laws.12

11. N. R. Hanson, "The Logic of Discovery," in The Concept of Evidence, Peter Achinstein,
ed. (Oxford, 1983), pp. 60-61.

12. Hanson, Patterns of Discovery, pp. 70-71.
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Bootstrapping

Clark Glymour, who introduces this idea as an alternative to the method of
hypothesis, is particularly concerned with the testing of theories.13 On this
view an hypothesis in a theory is tested by using the theory to make computa-
tions from observed experimental values to instances of the hypothesis to be
tested. Let e be observed values of certain quantities, h the hypothesis we are
testing, and T a theory. Then according to the bootstrapping idea, e confirms
hypothesis h with respect to theory T if and only if from e it is possible, using
the theory T itself, to derive an instance of h, where the derivation is such as
not to guarantee an instance of h no matter what e had been chosen.

Glymour offers a simple schematic example of a theory T consisting of the
following linear equations:

(1)   A1 = E1

(2) B1 = G1 + G2 + E2

(3) A2 = E1 + E2

(4) B2 = G1 + G2

(5) A3 = G1 + E1

(6) B3 = G2 + E2

The A's and B's are directly measurable quantities; the E's and G's are "theo-
retical" quantities whose values can be determined only indirectly through the
theory by determining the values of the A's and B's. Here is how we obtain
evidence for hypothesis (1). We determine a value for A1l directly from experi-
ment. We obtain a value for the "theoretical" quantity E1 by obtaining valuesl by obtaining values
for the "observables" B1,1

, B3,3
, A3 and then, by using hypotheses (2), (5), and (6)

from the theory, we mathematically compute a value for E1. If the value for
A1 determined by experiment is the same as the computed value for E1, then
the observed values of A1, B1, B3, and A3 constitute confirming evidence for
hypothesis (1) in the theory.

On this view, derivations will occur in the testing of a theory. They will
begin with observed values of certain quantities, and by using the principles
of the theory together with mathematics and logic they will proceed to com-
pute values for theoretical quantities. Glymour notes an important difference
between this view and the method of hypothesis. According to the latter,
derivations go from theories to observations. According to bootstrapping,
derivations go from observations via a theory to an instance of a theoretical
hypothesis.

13. Clark Glymour, Theory and Evidence (Princeton, 1980).
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Conclusions

On all four methodologies theoretical derivati re used in the testing of a
theory. Hypothetico-deductivists, Mill, and retroductivists may disagree on
the conditions necessary for the initial proposing of a hypothesis. But once it
has been proposed it is tested by constructing a derivation, or perhaps a series
of derivations, that will lead from that hypothesis, together with the theory in
which it appears, to observational conclusions, which are then tested directly.
On the bootstrap idea, derivations occur in the testing of hypotheses, but the
direction is reversed. In addition, hypothetico-deductivists and retroduc-
tivists, at least, emphasize the role of derivations in the explanation of ob-
served phenomena.

In sum, then, on all four methodologies derivations are constructed

to test theories empirically, or to explain some known fact that has already been
tested empirically, or both.

If those who defend these methodologies hold that there are other major roles
for theoretical derivations they do not say. It is possible they think these are
the only ones, or perhaps the only important ones.

2. MAXWELL'S DISTRIBUTION LAW

To examine these ideas I shall begin with a famous derivation. In 1860 James
Clerk Maxwell published the first of his two great papers on kinetic theory. It
was entitled "Illustrations of the Dynamical Theory of Gases."14 In it he de-
rives a law — the distribution for molecular velocities — that may well be the
most important contribution of the paper. The derivation is fairly brief (un-
like that given in some contemporary texts), and I will reconstruct it, fre-
quently using Maxwell's own words.

Let N be the total number of molecules in a sample of gas. Let x, y, z be
the components of velocity for a molecule using rectangular coordinates. Let
Nf(x)dx be the number of molecules whose x-component of velocity lies
between x and x + dx, where f(x) is some function of x to be determined.
(f(x)dx can be thought of as the fraction of molecules with x velocities be-
tween x and x + dx, or as the probability that a molecule in the sample has
an x coordinate of velocity in that range.) Similar definitions are given for
Nf(y)dy and Nf(z)dz.

Now Maxwell assumes that the velocities x, y, and z are independent, so

14. W. D. Niven, ed., The Scientific Papers of James Clerk Maxwell (New York, 1965), vol.
I, pp. 377-409.



Another way to look at this is to think of a three-dimensional "velocity"
space, each coordinate of which represents one of three velocity coordinates.
A point in this space will represent the velocity of some molecule. The num-
ber of points in some small volume dx dy dz in this space represents the
number of molecules with components of velocity between x and x + dx, y
and y + dy, and z and z + dz. The number of molecules in this unit volume
is given by (2), the fraction of the total by (3).

Maxwell next assumes that since the directions of the coordinates are
arbitrary, the number of molecules in the unit volume dx dy dz depends only
on the distance of this volume element from the origin. This is to assume that
the fraction of molecules in a unit volume of velocity space is a function of
the distance of that volume from the origin (i.e., the fraction does not depend
on the direction of molecules in that volume but only on their speeds). But the
square of the distance of a point in a space given by coordinates x, y, z is x2 +
y2 + z2. So Maxwell is assuming that the fraction of molecules with velocities
between x and x + dx and y and y + dy and z and z + dz is some function
of x2 + y2 + z2, that is,

And the fraction of the total N in that volume element will be

If we think of f(x)dx as the probability that a molecule will have an x-
component of velocity between x and x + dx, then what Maxwell is assuming
here is that this probability is independent of the probability that the same
molecule has a y-component between y and y + dy, and also of the probabili-
ty that it has a z-component between z and z + dz. Since these probabilities
are independent, they can be multiplied to yield the probability that the
molecule has an x-component between x and x + dx, a y-component between
y and y + dy, and a z-component between z and z + dz.

Now we suppose that the N molecules in the sample of gas start from some
common origin at the same time. Then from (1), the number of molecules in
an element of volume dx dy dz will be
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that the number of molecules with x-components of velocity between x and
x + dx, and with y-components between y and y + dy, and with z-compo-
nents between z and z + dz, is
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The only mathematical solution possible is an exponential one

and similarly for y and z, where C and A are to be determined. If A is
positive, then the number of molecules given by (2) will increase with velocity
toward infinity. Therefore, we make A negative and equal to - 1/ 2 so that the
number of molecules with x-components of velocity between x and x + dx is

Now if we integrate this from x = - to x = + the result is equal to N,
the total number of molecules, since we are integrating over all possible x-
components of velocity. The result of this integration is NC . Equating
this to N and solving for C we get C = l/ . Therefore, from (5) we derive
that the number of molecules whose x-components of velocity lie between x
and x + dx is

We get similar expressions for y- and z-components of velocity.
The number of molecules whose speed (independent of direction) is be-

tween v and v + dv can be determined to be

(6) and (7) express Maxwell's formulation of the distribution law for molecu-
lar velocities and speeds.

The "independence" assumption leading to (1) Maxwell later regarded as
questionable,15 and in his second major paper on kinetic theory, "The Dy-
namical Theory of Gases," written in 1866, he gave a different derivation of
the distribution law based on assumptions about molecular encounters. But
in what follows I will focus on the original derivation.

3. METHODOLOGIES REVISITED

According to the method of hypothesis, the scientist begins by guessing a new
law, rather than by inferring it deductively or inductively. Now Maxwell's

15. For a defense of this assumption and a critique of another part of the derivation, see
John Maynard Keynes, A Treatise on Probability (London, 1921), pp. 173-174.
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distribution law for molecular velocities was certainly a new law in physics.
Earlier formulations of kinetic theory by Bernoulli, Herapath, and Clausius,
for example, contained no such law. Yet there is no strong reason to suppose
that Maxwell began simply by guessing the law after which he sought to de-
rive formally what he had conjectured informally. Some nine years before
the publication of his paper Maxwell may have read a review of a work of
Adolphe Quetelet written by John Herschel in the Edinburgh Review in
1850.16 In this review Herschel gives an argument for the law of errors that is
similar in certain respects to Maxwell's derivation of the velocity distribution
law.

Herschel cites as an example a ball dropped from a given height with the
intention that it fall on a given mark. The "error" is the deviation from the
mark. Herschel makes two assumptions that are analogous to ones Maxwell
makes for velocities. He assumes that the error along one coordinate is inde-
pendent of errors along the others (so that the probabilities can be multi-
plied). And he assumes that the probability of any deviation depends solely
on its magnitude and not on its direction. This will yield an equation with the
same form as Maxwell's (4), whose solution is an exponential function involv-
ing the square of the error. If Maxwell did read Herschel's review, which is by
no means certain, and if he used Herschel's derivation as a basis for his own,
then Maxwell could not properly be said to have begun by guessing the
distribution law. If these were the conditions that obtained, then he began by
making assumptions about the distribution of molecular velocities that were
analogues of those made by Herschel about the distribution of errors; from
which he derived a law about the distribution of molecular velocities that is
analogous to a law about the distribution of errors. But even if Herschel's
review had little if any influence on Maxwell, there is no evidence to show that
Maxwell began by simply guessing that the law is exponential in character or
that the function will involve a term for the square of the velocity. The
exponential function he introduces is not the simplest or most intuitive one he
might have tried; nor is there any record of Maxwell systematically trying out
a number of functions, as might be the case if he first guessed the result and
afterward tried to derive it. Rather what seems most plausible is that Maxwell
arrived at the law not first by guessing it but by deriving it in the manner he
indicates in his paper.

If this is right then Maxwell did not arrive at his law by making an induc-
tive inference in Mill's sense. According to Mill,

16. John Herschel, Edinburgh Review 92 (1850), pp. 1-57. For discussions of the possible
effect of Herschel's review on Maxwell, see Stephen G. Brush, The Kind of Motion We Call Heat
(Amsterdam, 1976), book I, pp. 183-186; Elizabeth Garber, "Aspects of the Introduction of
Probability into Physics," Centaurus 17 (1972), pp. 11-39; Theodore M. Porter, "A Statistical
Survey of Gases," Historical Studies in the Physical Sciences 12 (1981), pp. 77-116.
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Induction is the process by which we conclude that what is true of certain individu-
als of a class is true of the whole class, or that what is true at certain times will be
true in similar circumstances at all times. . . . it proceeds from the known to the
unknown. . . . 17

But Maxwell did not arrive at his distribution law by inferring from the fact
that it is known to hold of such and such gases that it holds of all gases.
Although Maxwell asserts the applicability of the law to all gases (i.e., to all
molecular systems of which gases are supposed to be composed), he does not
infer this from the fact that he has established this for particular ones.

Nor is there evidence to suggest that Maxwell began with some set of
observations and proceeded to infer the law retroductively on the grounds
that it explains those observations. He mentions no observations leading to
the proposing of his law that would be explained by the law if it were true.
Gas molecules are unobservable, and Maxwell had no empirical data regard-
ing molecular velocities that could be organized and explained using his law.

Well, what is so surprising about that? Don't h-d theorists, Mill, retroduc-
tivists, and bootstrappers all recognize the deductive character of science?
Don't they admit that the scientist spends a good deal of time deriving conclu-
sions? So here is how Maxwell operated, they will say. First, he set down his
basic assumptions of kinetic theory. Never mind how he got these — whether
by guessing, inductive inference, or retroduction. Then from the assumptions
he proceeded to derive conclusions, including the distribution law, which can
be subjected to empirical test (perhaps even by bootstrapping). As I will try to
show in the next two sections, this gives an inaccurate picture of Maxwell's
problem situation when he attempted to derive the distribution law, as well as
a questionable account of the role of this derivation and others in the testing
of theories.

4. PROBLEM SITUATIONS

Maxwell does, indeed, begin his paper with basic assumptions of the kinetic
theory. He assumes that gases are composed of minute molecules in rapid
motion; that the velocity of the molecules increases with the temperature of
the gas; that the molecules move with uniform velocity in straight lines strik-
ing against the sides of the container, thus producing pressure; that the mole-
cules are perfectly elastic spheres acting on each other only during impact;
and that the motion of the molecules is subject to mechanical principles of
Newtonian mechanics.18 These are fairly standard assumptions of kinetic

17. Mill, op. cit., p. 188.
18. Maxwell, op. cit., p. 377.



The question marks to the right of the line indicate that what is sought is a
derivation of the observed facts from the theory + A.S.

19. Hilary Putnam, Mathematics, Matter and Method (Cambridge, England, 1975), p. 261.

"In the first type of problem," writes Putnam, "we have a theory, we have
some A.S., we have derived a prediction, and the problem is to see if the
prediction is true or false. . . . "

H-D theorists, Mill, and retroductivists do indeed recognize situations of
the schema I variety, in which one has already derived a prediction from the
theory + A.S. and the problem is to test that prediction. But another sort of
problem situation occurs in what Feynman calls the "computational" stage
and Mill calls "ratiocination." It is a situation in which one has a theory +
A.S., one has some observed facts that the theory may be able to explain, and
the problem is to see whether the theory can do so. The problem is to be
solved by constructing a derivation of those facts from the theory. Let me call
this

Schema IA
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theory which, as Maxwell notes, were made by numbers of previous physi-
cists.

However, the most important assumptions he needs for the proof are not
ones in this set, but rather (a) the assumption of the independence of the x-,
y-, and z-components of velocity of a molecule and (b) the assumption that
the fraction of molecules in a unit volume in velocity space is a function of the
distance of that volume from the origin. Both of these are special assump-
tions Maxwell introduces just for the purposes of this derivation.

What is strange about that? Philosophers of science frequently recognize
that you cannot derive very much from the basic assumptions of the theory
alone. You need a set of "auxiliary assumptions" that pertain to the special
systems to which you are applying the more general theory. Hilary Putnam,
who has discussed various "schemas for scientific problems," calls this "sche-
ma I," which he thinks is emphasized by standard philosophy of science19:

Schema I

Theory
Auxiliary statements (A.S.)

Prediction—true or false?

Theory
Auxiliary statements

???
Observed facts
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Now Maxwell's situation is not that of schemas I or IA. Maxwell does not
begin with a theory and a set of auxiliary statements. He begins with a theory
and his problem is to find a set of auxiliary statements from which he can
derive a distribution law. Indeed, Maxwell's Proposition 4 sets the following
problem:

To find the average number of particles [molecules] whose velocities lie between
given limits, after a great number of collisions among a great number of equal
particles.

To solve this problem he has to discover auxiliary statements to add to this
theory.

Putnam would agree with this. He thinks that "standard philosophy of
science" has concentrated only on schema I and has failed to recognize other
schemas. Putnam's second schema, which seems closer to Maxwell's situa-
tion, is this:

Schema II

"In this type of problem," writes Putnam, "we have a theory, we have a fact to
be explained, but the A.S. are missing: the problem is to find A.S. if we can,
which are true, or approximately true (i.e., useful oversimplifications of the
truth), and which have to be conjoined to the theory to get an explanation of
the fact."20 Putnam believes that schema II, rather than schema I, is exhibited
in the Kuhnian "puzzle solving" of "normal science."21 And he thinks that
schema II will "enable us better to appreciate both the relative unfalsifiability
of theories which have attained paradigm status, and the fact that the 'predic-
tions' of physical theory are frequently facts which were known beforehand,
and not things which are surprising relative to background knowledge."22

If Putnam's question marks represent what is sought in a problem situa-
tion, then schema II does not completely reflect what Putnam has in mind.
We begin with a theory and a fact to be explained. What we seek is not only a
set of auxiliary statements which when added to the theory will yield the fact,
but also a derivation showing how to get the fact to be explained from the
theory + A. S. (Maxwell was searching not simply for a set of additional
assumptions that, when added to the theory, would entail the distribution

20. Ibid., p. 261.
21. Ibid., p. 264.
22. Ibid., p. 265.

Theory
???

Fact to be explained
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law; he sought to construct a derivation showing this entailment.) According-
ly, as with schema IA, we can introduce question marks to the right of the line
separating premises and conclusion in schema II to indicate that what is also
sought is a derivation of the conclusion from the premises:

Schema IIA

Theory
???
???
Fact to be explained

In one respect Maxwell's situation is represented by schemas II and IIA.
Maxwell does begin with certain standard assumptions of kinetic theory, and
his problem is to find auxiliary assumptions and to generate a distribution
law. But there are two features of Maxwell's situation that schemas II and IIA
do not reflect very accurately. First, the auxiliary assumptions Maxwell seeks
are not of the sort that Putnam seems to have in mind. They are not initial or
boundary conditions of some particular system (such as earth and sun), or of
some particular type of system (such as two bodies) to which the more general
theory is applicable. Rather they are assumptions about molecular velocities
that are as general as those with which Maxwell begins his paper. More
important, at least on one reasonable historical interpretation, Maxwell did
not start with kinetic theory plus his distribution law (given by (6) and (7))
and then seek additional assumptions from which to derive that law. The
reason is that he did not begin with the distribution law at all. His task, as he
says himself in Proposition 4, is "to find" such a law. It is not to explain a law
that he has already found.

Before he begins his derivation of the law Maxwell explains why he thinks
there is such a law:

If a great many equal spherical particles were in motion in a perfectly elastic vessel,
collisions would take place among the particles, and their velocities would be
altered at every collision; so that after a certain time the vis viva [kinetic energy] will
be divided among the particles according to some regular law, the average number
of particles whose velocity lies between certain limits being ascertainable, though
the velocity of each particle changes at every collision.23

If the molecules were simply point particles colliding elastically there would
be no changes in speeds (only in directions). But Maxwell is assuming that
molecules are spherical, and spheres can collide in different ways, with differ-
ent speeds resulting. Since Maxwell is assuming that the collisions are elastic,
the total kinetic energy of all molecules remains constant. So the different

23. Maxwell, op. cit., p. 380.

???
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speeds of molecules must be consistent with conservation of kinetic energy,
which leads him to think that there may be a general law governing the
number of molecules with velocities within given limits, even if individual
molecules are constantly changing their velocities.

Maxwell, in short, does not begin with the distribution law, but with a
general description of the type of law he seeks (one that will give the number
of molecules with velocities within given limits), and with some reason why he
thinks there may be such a law. Putnam's schema II (or IIA) is therefore not
quite applicable to Maxwell's situation, since the law was not a "fact known
beforehand" by Maxwell.

Putnam does give a third schema, his final one, which like schema II he
thinks is "neglected by standard philosophy of science":

Schema III

Theory
Auxiliary statements

???

Here one begins with a theory and auxiliary statements, and the problem is
to discover what consequences we can derive (and presumably to derive them,
so that we might add question marks to the right of the line). "Knowing
whether a set of statements has testable consequences at all depends upon
the solution to this type of problem, and the problem is frequently of great
difficulty. . . . "24

I think Putnam is mistaken when he claims that standard philosophy of
science neglects schema III. For hypothetico-deductivists, as well as for Mill,
this schema represents one possible problem situation in the "computational"
stage of theorizing (the other possible situation in this stage for these method-
ologists is that of IA). After the theory and auxiliary statements have been
proposed the problem is to determine what new observational conclusions
follow that can be tested directly. Schema III — or rather a variation of it in
which there are question marks to the right of the line indicating the need to
construct a derivation — reflects this quite nicely.

Schema III partly captures Maxwell's situation, since his problem is to
discover a velocity distribution law that will be a consequence of kinetic
theory plus additional assumptions. But in several respects it is not applicable
to Maxwell. As noted in the discussion of schema II, Maxwell does not begin
with a set of auxiliary statements. He needs to find such statements. Second,
unlike the situation suggested by schema III, Maxwell's problem is not to
discover what (interesting, testable) consequences, if any, follow from his
theory + A.S., but to discover a law of a particular type, one that gives

24. Putnam, op. cit., p. 262.
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molecular velocities. Third — and this is something I will discuss in section
5 — contrary to what I believe Putnam would claim about schema III, Max-
well, at least at the point at which he is attempting to find a distribution law,
is not seeking consequences of his theory that he can test.

Included among Putnam's schemas and variations of them I have suggest-
ed are ones represented in standard methodologies of section 1 as applied to
problem situations in which derivations are constructed from theories. But
the schemas given above fail to do justice to Maxwell's problem situation.25 To
give a schema that would fare better here we might write:

Schema IV

Theory
???
11! 79?
??? (fact of a certain specified kind to be derived)

Here one begins with a theory, say standard assumptions Maxwell gives for
kinetic theory. One seeks to discover a fact or law of a certain kind (e.g., one
that gives the number of molecules with velocities between given limits)
although the particular fact or law is not known beforehand. One seeks t
discover new assumptions to be added to the theory presented at the outset,
which, together with that theory, will yield a specific fact or law of the kind
desired. And one seeks to construct a derivation that will demonstrate this
(hence the question marks to the right of the line). The specific fact to be
derived may or may not be directly testable. And the new assumptions to be
added to the theory may or may not involve initial or boundary conditions for
a particular type of system to which the more general theory applies.

As noted earlier, Putnam thinks that schema II rather than schema I
represents the "puzzle solving" of "normal science." And he holds that this
observation will enable us to appreciate the "relative unfalsifiability of theo-
ries which have attained paradigm status." In the problem situation of schema
II the theory is not a candidate for confirmation or falsification, since "it is
not functioning in a hypothetical role."26 Putnam also claims that schema II
will enable us to understand why what is derived from a theory are frequently

25. Nor would the bootstrapping schema, which would look like this:

Observations
Theory + A.S.

???(Computation)
Instance of hypothesis tested

Maxwell does not begin with observations and then compute values for quantities in the distribu-
tion law. See section 5.

26. Putnam, op. cit., p. 264.
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facts already known. Now, with schema IV, as with Putnam's II, we are
dealing with a problem situation in which the theory is "unfalsifiable in the
context."27 In attempting to derive a velocity distribution law Maxwell is
assuming basic tenets of kinetic theory. In this context the point is not to find
confirmation or disconfirmation for those tenets. However, with schema IV,
unlike Putnam's II, we have a problem situation in which the fact to be
derived is not known beforehand, although the type of fact is. This situation
may well be as common as the one Putnam emphasizes. Admittedly, some of
the propositions that Maxwell derives in his paper were known beforehand by
Maxwell and other kinetic theorists. Prime examples are the law relating the
pressure of a gas to the mean square molecular velocity,28 and Avogadro's law
that equal volumes of gases under the same pressure and temperature have the
same number of molecules.29 But there are many other derivations yielding
propositions (laws, formulas, etc.) not known beforehand. For example, giv-
en two systems of particles moving in accordance with his distribution law,
Maxwell derives a formula for the number of pairs of particles, one from each
system, whose relative velocity lies between given limits (Proposition 5); and
he derives a formula relating the coefficient of internal friction to the mean
velocity of molecules, their mean free path, and the density of the gas (Propo-
sition 13).

I am not, of course, saying that all derivations are constructed in problem
situations represented by schema IV. But many are. And when they are, as
with Maxwell's distribution law, we have examples of one sort of scientific
discovery (a theme that will be developed in section 6). The previous metho-
dologies, which emphasize schemas I, IA, and III, as well as Putnam's II, fail
to represent problem situations of this sort adequately.

It is this failure, I think, that accounts for the thought on the part of some
that the "computational" stage of theorizing—when derivations are con-
structed—is of no physical interest (though it may present mathematical chal-
lenges). Thus, recall Hanson's view that when a law or hypothesis is fixed into
an h-d system "original physical thinking is over."30 The rest is just the "pedes-
trian process of deducing observational statements." But this is to ignore the
fact that a law or an hypothesis fixed into an h-d system may generate ques-
tions calling for the discovery of new laws of certain types. And the deduction
of such laws may require the introduction of new hypotheses and thus very
original physical thinking. It is also to ignore the fact that what is to be
derived may be just as "theoretical" as the hypotheses employed as premises.
The derivation of Maxwell's distribution law is no "pedestrian process of

27. Ibid.
28. Maxwell, op. cit., p. 389.
29. Ibid., p. 390.
30. Hanson, Patterns of Discovery, p. 70.
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deducing observational statements." Moreover, the derivation introduces im-
portant new physical assumptions that are statistical in nature.

5. TESTING AND EXPLAINING

The methodologies of section 1 stress the idea that derivations are constructed

(a) To test theories empirically, or to explain some known fact that has already
been tested empirically, or both.31

This thesis can be given different interpretations. But only on the weakest of
these ((a4) and (a5) below) — ones that I think say considerably less than stan-
dard methodologies intend —does the thesis become plausible. According to
the first interpretation, the claim that (a) is the reason for constructing a
derivation is to be understood as implying that

(a1) A theoretical derivation is constructed by a scientist solely or principally to
enable him or scientific contemporaries to test a theory empirically or to explain
something that has been or can be tested by him or contemporaries.

If a scientist derives a proposition that neither he nor his peers know how to
test, then his principal aim in producing the derivation has been defeated,
since neither he nor his peers are in a position to use the result to test the
theory.

Now the distribution law that Maxwell derived was not a tested fact known
beforehand by him or other physicists. Nor was it tested empirically by Max-
well following its derivation. Indeed, he offers no clues about how it could be
tested. Gas molecules are not directly observable, and Maxwell had no experi-
mental way to determine or compare molecular velocities. Nor was Maxwell
in a position to test the law by bootstrapping, a procedure that would require
a computation of specific values for each quantity in the law from observed
values of quantities. Expressing the distribution law for velocities as

the left-hand side gives the number of molecules whose velocity lies between v

31. This is represented in Putnam's schema I, in which what is derived are predictions, and
the problem is to see whether the predictions are true. It is also represented in Putnam's schema
III, in which we begin with a theory + A.S. and the aim is to discover testable consequences.
And it is represented in schemas IA, II, and IIA, in which what is derived is a fact already known,
presumably having been tested.
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and v + dv. Although Maxwell was able to compute a value for a (see
below), and a value for v is chosen arbitrarily, he did not know how to
compute N—the number of molecules in the gas.32 But even if Maxwell had
been able to determine all the quantities on the right side of the equation, he
had no procedure for computing a value for Nv,dv for a given v, other than by
computing values for quantities on the right side, which is precluded in
bootstrapping. There are no other hypotheses in his theory that will permit an
independent computation of a value for Nv,dv. In fact, direct experimental
tests of Maxwell's distribution law became possible only in the twentieth
century with molecular beam experiments.33

A defender of (a1) can remain undaunted. It is not required that every
derivation yield a prediction or fact that has been, or can be, tested by the
scientist or the community. Following Braithwaite we can stress the idea of
intermediate stages. The scientist constructs a series of derivations to proposi-
tions of diminishing generality. The point of a derivation is to generate some
proposition that is itself testable by the scientist or community, or to generate
something that, by means of other derivations, will ultimately yield such a
proposition. So if Maxwell's derivation does not generate a testable distribu-
tion law, that is not sufficient to show that (a1) fails to express the central role
this derivation is intended to serve. We must look to see what, if anything,
Maxwell derives from his distribution law.

Maxwell does indeed use this law as a premise in other derivations. But
none of the propositions derived is empirically testable by Maxwell or his
contemporaries. For example, from the distribution law Maxwell derives the
following formulas for the mean velocity of molecules and for the mean
square velocity:

32. Maxwell did not know how to determine Avogadro's number; if he had he could have
determined N by choosing a quantity of gas equal in mass to the molecular weight of the gas.

33. For a description of some initial experiments in the 1920s see Jas. P. Andrews, "The
Direct Verification of Maxwell's Law of Molecular Velocities," Science Progress 23 (1928-1929),
pp. 118-123. Andrews does not regard even these experiments as conclusive but only as a
beginning. Indeed he remarks at the outset of his paper: "It is a curious fact that a law of such
fundamental importance as Maxwell's Law of Distribution of Molecular Velocities should have
so little direct experimental verification, and should have had to wait so long for such verification
as does exist. So far as I am aware, no frontal attack was made upon such a problem until well
into this [twentieth] century, in spite of the fact that Maxwell's first paper on the subject appeared
in 1860" (p. 118).
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where is the undetermined constant in Maxwell's distribution law. (The first
derivation, for example, proceeds by solving the integral

whose function is Maxwell's velocity distribution function, and dividing the
result by N, the total number of molecules in the sample.) Since a is undeter-
mined, the consequences are obviously not testable. Later in his paper Max-
well does relate a to the pressure and the density of the gas. (He derives the
law p = (l/3)MNv2, relating the pressure p of a gas to the mean square
velocity v2. Taking Boyle's law as p = kp, where p = density, from the pres-
sure law and (2) above he derives a2 = 2k. So if we know the pressure and the
density of the gas at constant temperature we can compute a.) Therefore, at a
given temperature, from measurements of pressure and density we can com-
pute values for mean velocity and mean square velocity. But this is not by
itself enough to test (1) and (2). For this purpose, as emphasized in the
bootstrap approach, we need either another, independent way to compute a,
or a way to compute mean molecular velocity independently of (1), neither of
which Maxwell supplies.

In an earlier (1857) paper on kinetic theory that Maxwell read, Rudolf
Clausius also computes mean velocities of various molecules at a temperature
of 0°C.34 He computes specific speeds for molecules of oxygen, nitrogen, and
hydrogen. And although Maxwell makes no such specific computations in his
paper, we might suggest using the ideas he does present to compute these
values. If they conform to the values computed by Clausius, this might be
thought to be some empirical test, albeit indirect, for Maxwell's distribution
law.35

Unfortunately, this is not the case. Clausius' computation, like Maxwell's
derivation of a = 2k, is based on the use of the formula relating pressure to
mean square molecular velocity. Clausius' calculation of mean molecular
velocity at a given temperature depends on determining pressure, volume, and
total mass of the gas. This is essentially the same in Maxwell, whose calcula-
tions (if he gave them) of mean molecular velocity, at a given temperature,
would depend on determining pressure and density (total mass divided by
volume). And Clausius, like Maxwell, offers no other method for determining
molecular velocities.

Once more, however, defenders of (a1) need not abandon course. If the law
derived is not testable by the scientist or community, and if it is not used as a

34. Rudolf Clausius, "The Nature of the Motion Which we call Heat," in S. G. Brush, ed.,
Kinetic Theory (Oxford, 1965), vol. 1, pp. 111-134; see pp. 130-131.

35. This would not satisfy Glymour's bootstrapping, which would require in this case that
Nv,dv be computable.
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premise in a derivation of something testable, then at least some proposition
that is derived at some point from that law or from some consequence of the
law is used as a premise in the derivation of something testable. In other
words, the law generated in a derivation ultimately plays some role, however
minimal and indirect, in the derivation of something that can be, or has been,
tested by the scientist or his contemporaries. This, I think, is true of Max-
well's distribution law.

Maxwell does use a proposition derived from his distribution law, namely,
(1) above (mean velocity = 2 / ) as one assumption, among many, in a
derivation of a formula for the mean free path of a molecule. (He gives the
derivation in the course of discussing the internal friction of a gas.) The
derived formula for mean free path (l) is this:

where is the coefficient of internal friction of a gas. He takes a value for /
supplied by Stokes in experiments on air, and from this and the value k =
930 feet per second for air at 60° (for which he provides no calculation) he
derives l = 1/447,000th of an inch for the mean distance traveled by a mole-
cule between collisions. Later in the paper (when he is discussing the diffusion
of two gases through each other) he also uses the same consequence of the
distribution law, namely (1), as one assumption, among many, in deriving a
different formula for mean free path. Using this second formula,36 and using
the results of an experiment by Graham, which is quoted by Herapath, he
derives a value of l = l/389,000th of an inch for mean free path. Maxwell at
the end of the paper37 notes that these two values for l are "not very differ-
ent." Although he does not say so explicitly, he may well have taken this fact
to provide some support for the hypotheses of kinetic theory. (On the boot-
strapping approach the results of the experiments would provide support for
the hypothesis

but not nec ly for other hypotheses in the theory.)
Maxwell also uses a consequence of the distribution law in a complex

derivation of a proposition according to which the final state "of any number
of systems of moving particles of any form is that in which the average vis

36. Maxwell, op. cit., p. 403 (formula [57]).
37. Ibid.,-p. 409.
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viva of translation along each of three axes is the same in all systems, and
equal to the average vis viva of rotation about each of the three principal axes
of each particle."38 This result can be tested by comparison with experiments
on the ratio of specific heat at constant pressure to specific heat at constant
volume. The experimental value of the specific heat ratio is 1.408, which
requires that the ratio of total vis viva to translational vis viva be 1.634,
whereas Maxwell's theoretical value for the latter ratio is 2. Accordingly, by
contrast with the mean-free-path results, he takes the present results to be
"decisive against the unqualified acceptation of the hypothesis that gases are
such systems of hard elastic particles" (p. 409). (I take Maxwell at his word
here. He does not regard this as a complete refutation of the ideas of kinetic
theory, but only as decisive against the particular version he is considering,
which depends on molecules exerting only contact forces; in his later 1866
paper he modifies this idea by assuming that molecules exert forces on each
other that vary as the inverse fifth power of the distance.)

In any case, it seems clear—in the two instances I have mentioned—that
there are some propositions derived from his distribution law that Maxwell
uses as premises in the derivation of something testable. Accordingly, he does
satisfy the aim expressed in a weak version of (a1). But if a derivation is to
generate consequences that can be tested by the scientist or community, or
to lead to other derivations that do, then, although Maxwell's derivation
of his distribution law satisfies this condition, it does not do so in a par-
ticularly robust way. So far as I can determine, these are the only testable
consequences Maxwell generates in which at least some use is made of a con-
sequence of the distribution law. (In general, although Maxwell constructs
numerous derivations in his paper, not very many yield testable or tested
conclusions.)

Do we want to say that at least the weak condition on derivations must be
satisfied? If a derivation constructed by a scientist leads to a conclusion he
cannot test, must he use this conclusion to construct another derivation, or a
series, that eventually yields a testable proposition? Even if this were required,
it would not follow that the only or even the principal role of any derivation is
ultimately to generate such consequences. There may be other equally impor-
tant roles (which will be discussed in subsequent sections). With this in mind,
we might weaken (a1) still further:

(a2) Among the reasons a theoretical derivation is constructed by a scientist
(though not necessarily the only or even the principal one) is to obtain some
proposition — either from the derivation itself or from other derivations that use the
conclusion of this one — that he or his peers can test and use to support or discon-
firm the theory.

38. Ibid., pp. 408-409.
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However, even the aim expressed here is not always satisfied by papers in
theoretical physics.

In an important paper that preceded Maxwell's, Clausius gives three deri-
vations from kinetic theory.39 In none of the three does he generate a proposi-
tion that he or his peers could test; nor does he use the proposition derived, or
any consequence of it, to generate testable propositions. Clausius first derives
the pressure law in the form

in which p = pressure of a gas, v = volume, n = total number of molecules,
m = mass of a molecule, and u = mean velocity of a molecule. This is not a
testable proposition, since Clausius has no independent way to determine u.
He then uses this law, as a premise in a second derivation, to derive values of
mean velocities of various molecules, also not testable. In his third and final
derivation he derives a numerical value for the ratio of translatory kinetic
energy of the molecules in a gas to the total internal energy of the gas (again
not testable). And, of course, Clausius offers no experimental evidence in
favor of any of the three propositions derived.

It is interesting to note that, unlike some kinetic theorists, Clausius does
not derive the ideal gas law PV = constant x T, which might be taken to be
a known empirical fact. Instead he uses this law as a separate assumption, and
from it, together with the pressure law, derives

Thus he deduces that the absolute temperature of a gas is proportional to u2,
the mean square velocity of the molecules.

To reject (a1) and (a2) is not to imply that testing a theory or using it to
explain what has been tested is unimportant to the physicist or that it is done
without benefit of derivations. Indeed many theoretical derivations do per-
form one or both of these functions. Maxwell gives a derivation of Boyle's
law from kinetic theory that can be said to explain that law — one previously
tested. (Unlike Clausius, Maxwell does not use Boyle's law, or rather the ideal
gas law, as an additional assumption, from which to deduce that the tempera-
ture of a gas is proportional to the mean square molecular velocity.) More-
over, Maxwell does derive a new observational prediction from kinetic theory,
namely, that the coefficient of internal friction of a gas (the coefficient of
viscosity) is independent of the density of the gas. (Indeed, he remarks that

39. Clausius, op. cit., pp. 125-134.
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the only experiment he has met with on this subject does not seem to confirm
this prediction, but he does not indicate what this experiment is.)40 What I am
questioning is the idea that a derivation is always constructed by a scientist to
enable him or peers to test a theory empirically or to explain something that
has been or can be tested. If this idea were true, then we could not accord a
very high value to Maxwell's derivation of his velocity distribution law in his
first paper on kinetic theory or any value to Clausius' three derivations in his
paper.

As I construe the four methodologies of section 1 they imply: (i) that at
least one of the purposes in constructing any derivation (if not the only or the
principal one) is to test a theory empirically, or to explain some tested fact, or
both, and (ii) that a derivation should generate some proposition (either from
the derivation itself or from subsequent ones) that can be tested by the scien-
tist constructing the derivation or by peers. Therefore, I regard these method-
ologies as being committed at least to (a2), if (a1) seems too strong. However, it
is possible that some defenders of one of these methodologies might propose
a view weaker than either of these:

(a3) Among the reasons a theoretical derivation is constructed by a scientist is to
obtain some proposition (either from the derivation itself or a subsequent one) that
may someday be capable of being used to test the theory, even if neither those who
construct the derivation nor their peers have or will have any idea how to test the
proposition derived from this derivation or the subsequent ones.

T introd es "testability at some later date"; such testability need not be
the only or even the principal aim in producing a derivation; and it does not
require each conclusion of the derivation to be testable even at a later date.

The idea that a theory should be testable, at least at some point in time,
would seem to be a basic, if minimal, commitment of empiricist methodolo-
gy. And if the theory is highly "theoretical," then constructing derivations
may be necessary, even if not sufficient, for generating propositions that can
be used to test the theory. Even so, (a3) is too strong.

To see why, we need to distinguish the (or a) purpose or reason for which
something is constructed or created from conditions that (one hopes or in-
tends) the construction will satisfy. A bridge may be constructed over a chan-
nel to enable cars to cross the channel. A condition may be imposed that the
bridge is to be aesthetically attractive. But the bridge is not (or need not be)
constructed for the purpose of making something that is aesthetically attrac-
tive. Similarly, a theoretical derivation may be constructed subject to the
condition (or with the hope or intention) that it is mathematically valid, or
that it generate something testable that can be used to test the theory. But it
does not necessarily follow that the derivation is constructed for the purpose

40. Maxwell, op. cit., p. 391.
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of producing something that is mathematically valid or for the purpose of
generating something testable that can be used to test the theory. Accordingly,
we might put the acceptable ideas of (a3) as follows:

(a4) Although this is not necessarily a reason or purpose for which a scientist
constructs a given theoretical derivation, a scientist wants the derivation to satisfy
the condition that what is derived should at some point in time be capable of being
tested and being used to test the theory.

I am prepare o accept (a4). But it is substantially different from the
position of standard methodologies, which I take to be a thesis about at least
one (principal) reason or purpose for which theoretical derivations are con-
structed, and not simply about a condition that scientists impose on such
derivations or hope they will satisfy. Moreover, when standard methodologies
speak of testing theories and of the role of derivation in this regard, I con-
strue this to require something stronger than "testability at some later date."
A scientist can hardly be testing a theory if he derives consequences from it
that neither he nor anyone else in the scientific community knows how to test.

All of this is not to deny

(a5) Some theoretical derivations are constructed by a scientist principally to
enable him or his peers to test a theory empirically or to explain something that has
been or can be tested by him or his peers.

This is the only plausible thesis I can suggest that speaks of a role of deriva-
tions and contains a reasonably strong notion of testability. What I reject is a
generalization of this to all derivations. Because standard methodologies
mention only the "testing" and "explanatory" roles of theoretical derivations,
someone reading such methodologies may be left with two false impressions:
that derivations are always constructed to serve these roles and that there are
no others.

6. THE ROLE OF THEORETICAL DERIVATIONS
IN DISCOVERY

There is, I suggest, a different role a theoretical derivation may have, namely,
that of enabling a scientist

(b) To discover a new theoretical proposition (law, etc.)

I do not mean that a derivation necessarily yields a discovery that some
proposition is true. (The derivation may contain false assumptions or incor-
rect mathematical steps.) I mean only that such a derivation enables the
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scientist to discover some new proposition (putative law). What's so impor-
tant about that?

Let us look again at Maxwell's kinetic theory. The basic assumptions of his
theory—those he gives at the outset, which are the well-known ones shared by
most other kinetic theorists — do not provide a wealth of information about
gases. They tell us that gases are composed of minute particles moving rapidly
in straight lines, that collide elastically with each other and with the container,
and that act on each other only during impact. Maxwell also assumes that
these particles are spherical rather than simple point masses, and that they
obey Newtonian mechanics.

But without further effort on Maxwell's part by way of drawing conclu-
sions from these assumptions and adding new ones, those in the basic set are
silent on many issues. What exactly is the motion of molecules after collision?
Are all directions of rebound equally likely? What is the distribution of
molecular velocities? What is the mean distance traveled by a molecule before
striking another (mean free path)? What is the precise relationship between
the pressure of a gas and the velocity of the molecules? What is the friction
between layers of molecules in a gas? And so on. Maxwell's main concern at
this point is to articulate the theory further, to develop it so that it can answer
these theoretical questions. The method he adopts for this purpose is that of
deriving answers from the basic assumptions together with new ones that
must be added. In short, his situation is that of schema IV, which can now be
developed further.

In schema IV, how does the scientist decide what type of fact needs to be
discovered? Maxwell's kinetic theory entails that in a gas containing N mole-
cules there is some number of molecules (ranging from zero to N) with
velocities within some small range between v and v + dv for each v. Maxwell
raises the question: What is that number for each different velocity? The
answer he seeks is to be subject to certain constraints, or as I prefer to say, it is
to satisfy certain instructions.41 The instructions Maxwell is following include
at least these: find a mathematical formula; one that gives the number of
molecules with velocities between v and v + dv as a function of v and dv; one
containing a fairly simple function. Such instructions, of course, do not
determine a unique answer, but they do aid in the search. They tell us some-
thing about the kind of answer wanted (e.g., one involving a function of v
and dv) as well as about kinds not wanted (e.g., a qualitative answer like
"molecular velocities are distributed in the same manner as bullet holes
around the bull's eye"—an answer Maxwell gives in his later paper "On the
Dynamical Evidence of the Molecular Constitution of Bodies.")42

41. For a discussion of the concept of "instructions" and its role in explanations, see Peter
Achinstein, The Nature of Explanation (New York, 1983).

42. Maxwell, op. cit., vol. II, p. 428.
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More generally, I shall say that a theory T generates a question Qx of the
form

Qx: What is the quantity or relationship x?

if T entails that there is a quantity or relationship x. (If Qx is generated by T,
then we may refer to the question as Qx,T.) Maxwell's kinetic theory generates
the question: What is the number of molecules with velocities between v and
v + dv for each v?, because it entails that there is such a number. His theory
also generates the question: What is the relationship between the pressure of a
gas and the motion of its molecules?, since it entails the existence of such a
relationship.

Let me speak of / as a set of instructions for answering a question Q if I is
a rule or set of rules imposing conditions on answers to Q. The instructions
may be brief or detailed; they may reflect very general methodological values
("give an answer that is quantitative") or specific empirical constraints ("give
an answer that satisfies the principle of conservation of kinetic energy").
Among the constraints a scientist imposes on his answer to Q will be some
pertaining specifically to theory T(e.g., that the answer be compatible with T
or that it satisfy some particular principle in T). But there may be conditions
imposed in / (e.g., give a numerical formula) that do not presuppose any
particular claims of T.

Now let us construct the following schema to replace IV:

Schema V

T,QrT,I

(proposition that answers Qx in a way that satisfies /)

Schema V represents a problem situation in which the scientist begins not just
with a theory T, but with a question QxT generated by the theory, and a set of
instructions / for answering that question; and in which some new proposi-
tion is to be discovered rather than tested or explained. That proposition is to
answer the question generated by the theory in a way that satisfies the instruc-
tions, and it is to be discovered by constructing a derivation from the theory
together with additional assumptions. These conditions are obviously not
sufficient to generate a new proposition. But they set a direction for research.
We know what kind of proposition we are seeking (one that answers QxTin a
way that satisfies /); we know a theory whose assumptions, among others, we
must use; and we know we must derive the law from these assumptions plus
others. These conditions provide at least as much guidance for the discovery
of a new proposition as the h-d maxim "first guess the new law," or as Mill's
condition that the law be inductively inferred from instances, or as the retro-

???
???

???
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ductivist condition that the new law, if true, be capable of explaining observed
phenomena.

Still, it might be asked, what advantage is there in articulating a theory
further by discovering new propositions in this manner if not to provide a
means of testing that theory empirically or of using it to explain what has
been tested empirically? Isn't doing (b) simply a means along the way of
doing (a)? Here we face the fundamental question of the aims of scientific
theorizing. Without attempting to deal exhaustively with this issue, let me
simply note that the latter question would be answered in the negative by each
of two opposing viewpoints — realism and antirealism — as these have been
formulated by Bas van Fraassen. According to van Fraassen's realist, "Science
aims to give us, in its theories, a literally true story of what the world is like;
and acceptance of a theory involves the belief that it is true."43 By contrast,
van Fraassen's particular form of antirealism — "constructive empiricism"—is
the view that "Science aims to give us theories which are empirically adequate;
and acceptance of a theory involves a belief only that it is empirically ade-
quate."44

If you are a realist, then, you view (b)—the discovery of new theoretical
propositions — as a means of giving "a literally true story of what the world is
like" (though, of course, not a means that is guaranteed to produce literal
truth). Accordingly, you will find Maxwell's derivation of scientific value to
the extent that it enables the construction of such a story by adding new parts
to that story, and not simply to the extent that it enables kinetic theory to be
tested empirically or to be used in explanations of observable phenomena.

By contrast, if you are an antirealist of van Fraassen's sort, you view (b) —
the discovery of new theoretical propositions — as a means of furnishing "the-
ories that are empirically adequate." A theory is empirically adequate "if
what it says about observable things and events in the world is true—exactly if
it 'saves the phenomena'. . . . Such a theory has at least one model that all
the actual phenomena fit inside."45 But you may supply a theory that is
empirically adequate in van Fraassen's sense — a theory that has a model for
all observable (not just observed) phenomena—without showing that it does
have such a model, without testing that theory. In other words, the discovery
of a new theoretical proposition via derivation can be of value to van Fraas-
sen's antirealist, it can serve the aim of scientific theorizing, independently of
whether it enables the scientist to test the theory empirically.

On both of these views, then, we can value a derivation for yielding new
theoretical propositions, and thus for articulating a theory further, whether
or not that derivation furnishes a test for the theory or an explanation of what
has been tested.

43. Bas van Fraassen, The Scientific Image (Oxford, 1980), p. 8.
44. Ibid., p. 12.
45. Ibid.
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Maxwell's own views on the aims of theorizing are not easy to determine.
And he may have changed them from one paper to another. But I think it is
clear that although some of the theoretical derivations in his first kinetic
theory paper are constructed to enable the physicist to test the theory empiri-
cally or to explain known phenomena, many others, such as the velocity
distribution derivation, are given (among other reasons at least) to discover
new theoretical propositions, particularly quantitative ones. At the outset of
his paper he indicates that his aim is to investigate the "precise nature" of
molecular motion, and to do so he seeks to "demonstrate the laws of motion
of an indefinite number of small, hard and perfectly elastic spheres acting on
one another only during impact."46 Some of the laws giving this precise
nature —such as the velocity distribution law —are not yet known. His aim is
to discover them "by demonstration"—by deriving them from mechanical
principles applied to a large number of elastic particles. Accordingly, at least
part of what Maxwell is trying to do in such derivations is given by (b) above.
His situation in these cases is depicted in schema V.

Maxwell does add the following famous paragraph:

If the properties of such a system of bodies are found to correspond to those of
gases, an important physical analogy will be established, which may lead to more
accurate knowledge of the properties of matter. If experiments on gases are incon-
sistent with the hypothesis of these propositions, then our theory, though consis-
tent with itself, is proved to be incapable of explaining the phenomena of gases. In
either case it is necessary to follow out the consequences of the hypothesis.47

I take Maxwell to be saying the following. If the mechanical hypotheses he
makes about the elastic spheres lead (via derivations) to observed properties
of gases or to properties of gases that later become observed via experiments,
we can conclude that there is a physical analogy between gases and such
systems of elastic spheres. Even if we don't identify gases and systems of
particles, the derivations will allow us to discover dynamical theorems about
systems of elastic spheres, some of which may have analogues in the theory of
gases; such derivations will also enable us to test the claim that gases and such
mechanical systems are analogous. In point of fact, Maxwell in this paper
does not stick consistently to his analogy talk, but frequently assumes that
gases are, or are composed of, such systems of elastic spheres.48 Several
theorems he obtains pertaining to viscosity and specific heats are expressed in
terms of gases, and these are taken to provide some test for the theory.

So it seems clear that Maxwell did want to produce derivations that would
test kinetic theory, or minimally that would test whether there is a "physical

46. Maxwell, op. cit., p. 377.
47. Ibid., p. 378.
48. There is a discussion of this issue in Essay 7.
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analogy" between gases and systems of elastic spheres. Such derivations
would yield propositions about observed or at least observable properties of
gases, so that they would satisfy (a). But it is equally clear that Maxwell
wanted to produce derivations that would enable the discovery of new theo-
retical propositions about the "precise nature" of molecular motion, and
hence satisfy (b). In the paper there are some derivations of the former sort.
However, there are others that lead to the discovery of new theoretical propo-
sitions but only minimally and indirectly to the testing of the theory.

7. THE FOUNDATIONAL ROLE OF THEORETICAL
DERIVATIONS

So far I have noted the role of theoretical derivations in enabling a scientist

(a) To test theories empirically, or to explain what has been tested empirically,
or both.

(b) To discover a new theoretical proposition.

There is a third major role a derivation may have, namely, that of enabling a
scientist

(c) To provide a theoretical foundation for some proposition (law, etc.).

In using the term "foundation" I deliberately follow Maxwell who says that
his aim is "to lay the foundation of such investigations on strict mechanical
principles. . . . "49 Here and elsewhere Maxwell advocates a program of
"strict mechanical reasoning" in which the motions of particles and the forces
producing such motions are considered. Maxwell recognizes that there are
sciences (he mentions astronomy and "molecular mechanics") that need as-
sumptions beyond those of ordinary mechanics. Admittedly, he writes,

this science of molecular mechanics rests upon a much less certain basis than that
of Astronomy. The superstructure however is an example of strict mechanical
reasoning and may be found of use even when the fundamental assumptions have
proved to be erroneous.50

The theoretical foundation supplied by mechanical reasoning will provide
explanations of various things, and in doing so it will (under conditions I will
note in a moment) provide theoretical support and systematization for certain

49. Maxwell, op. cit., p. 377.
50. Maxwell, "Inaugural Lecture at Aberdeen," Notes and Records of the Royal Society,

1973, pp. 69-81.
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propositions. To be sure, in discussing (a), the role of derivations in producing
explanations has already been noted. But these are explanations of empirical-
ly tested or at least testable laws, such as Boyle's law. What I have in mind in
(c) is something broader. It includes explanations (as well as justifications and
systematizations) of theoretical facts that are not directly testable.

For example, Maxwell produces a derivation of Avogadro's law—that
equal volumes of gases at the same pressure and temperature contain the same
number of molecules. This law is not directly testable. Yet Maxwell seems to
regard his derivation as providing a proof of the law, something indicated at
the end of his paper when he summarizes his results:

We have also proved that when two different gases act freely on each other (that is,
when at the same temperature), the mass of the single particles of each is inversely
proportional to the square of the molecular velocity; and therefore, at equal tem-
perature and pressure, the number of particles in unit of volume is the same.
[Maxwell's italics; they give Avogadro's law]51

Even if Maxwell is using "proof here only in the sense of "derived from the
assumptions" —a sense that does not entail that what is proved is true —I
think he regards the derivation as providing some theoretical support for the
law. Avogadro's law when first proposed in 1811 had no such support. Avoga-
dro did not derive it from mechanical assumptions about gases, but postulat-
ed it to help explain Gay-Lussac's law that gases combine in simple ratios by
volume. In a later paper entitled "On the Dynamical Evidence of the Molecu-
lar Constitution of Bodies," Maxwell gives a more qualitative derivation of
Avogadro's law (which he mistakenly identifies as being due to Gay-Lussac),
and he writes:

This law, however, has hitherto rested on purely chemical evidence, the relative
masses of the molecules of different substances having been deduced from the
proportions in which the substances enter into chemical combination. It is now
demonstrated on dynamical principles.52

At the beginning of this paper Maxwell emphasizes the importance of "dy-
namical" explanations:

When a physical phenomenon can be completely described as a change in the
configuration and motion of a material system, the dynamical explanation of that
phenomenon is said to be complete. We cannot conceive any further explanation to
be either necessary, desirable, or possible, for as soon as we know what is meant by
the words configuration, motion, mass, and force, we see that the ideas which they

51. Maxwell, Scientific Papers I, p. 409.
52. Maxwell, Scientific Papers II, p. 430; emphasis mine.
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represent are so elementary that they cannot be explained by means of anything
else."

I take Maxwell to be claiming something like this. The derivation of Avo-
gadro's law from kinetic theory (a theory built on dynamical principles per-
taining to the configuration, motion, mass, and forces of molecules in gases)
shows that kinetic theory provides theoretical support for that law. It does so
because (i) the dynamical principles of the kinetic theory, if true, would in all
probability correctly explain that law via the derivation, and because (ii) those
principles themselves have some evidential support.

More generally, we might say that, given background information b, a
theory T provides (at least some) theoretical support for a proposition L by
means of a derivation d if and only if

1. p(Tcorrectly explains/, via d/T&L&b &Der(L,T,d)) > k
(Der(L, T,d) means that L is derivable from T via d).

2. b is or contains some evidence for T.54

53. Ibid., p. 418. Peter Heimann (now Harman), "Molecular Forces, Statistical Representa-
tion, and Maxwell's Demon," Studies in History and Philosophy of Science 1 (1970), pp. 189-
211, claims that after 1870 Maxwell used the expression "dynamical method" to refer to one
involving equations of motion that permit tracing the course of each particle in a system; and
that he contrasted this with the "statistical method." Consequently (according to Harman) Max-
well came to regard the statistical method, but not the dynamical one, as applicable to gases. In a
review of a book on kinetic theory by H. W. Watson [Nature 16 (1877), pp. 242-246], Maxwell
does use "strict dynamical method" in the manner Harman indicates. But in "The Dynamical
Evidence of the Molecular Constitution of Bodies" (1875) — from which the quotation in the text
is taken —Maxwell is clearly using a broader concept of dynamical. Maxwell's characterization of
"dynamical" in this paper does not require the possibility of tracing each particle in the system;
nor does it preclude statistical concepts. All that Maxwell requires for a dynamical approach is
that the system contain bodies in motion subject to forces obeying Newtonian laws and that it be
describable using concepts such as configuration, motion, mass, and force (and others definable
by reference to these). Statistical concepts such as mean square velocity can be readily introduced
by definition in terms of these. And there are numerous occasions in the paper on which Maxwell
claims to be applying a "dynamical method" to gases, even when he is employing statistical
concepts.

54. Definitions of "correct explanation" and "evidence" that can be used to supplement this
are to be found in Peter Achinstein, The Nature of Explanation, ch. 10. For a general account of
when and how derivations are explanatory, see ibid., pp. 237-243, and "A Type of Non-Causal
Explanation," Midwest Studies in Philosophy IX (1984), pp. 221-243. It should not be assumed
that any derivation of L from T is explanatory (and therefore that the probability value in the
definition is necessarily 1). Also, it should be noted that the definition of theoretical support
given above is relativized to the background information. If a part b' of b is evidence for T, then
it must be so relative to b. On the definition of evidence I advocate in The Nature of Explanation,
this entails that p(Tlb'&b) must be greater than some threshold value k. If this condition for
evidence is satisfied, and if k > 1/2, then, given b, if b' is evidence for T, there can be no part of
b that is evidence that T is false. Finally, if L is derivable from T, then the occurrence of L on the
right side of the probability in condition 1 is redundant. However, it will be retained for ease of
comparison with other concepts in the appendix.
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The first condition is that the probability that T correctly explains L via d,
given that T and L and b are true and that L is derivable from T via d, is
greater than some threshold value k. The second condition will be construed
as requiring some evidence for each of the theory's assumptions, or at least
for those utilized in d. (See the appendix for a discussion of a weaker version
of this second condition and for other matters pertaining to theoretical sup-
port.)

Is this a reasonable interpretation of Maxwell's claim for Avogadro's law
with respect to kinetic theory? Since Maxwell derives Avogadro's law from
dynamical assumptions about molecules — assumptions he explicitly regards
as providing the very best sort of explanation — I believe that condition 1 is
satisfied (at least as far as he is concerned). To determine whether condition 2
is satisfied we need to know whether Maxwell had background information
that provided at least some evidence for kinetic theory.

There were, I suggest, two sorts of considerations that Maxwell regarded as
relevant here. First, there were observations concerning heat. In his book
Theory of Heat, published in 1871, Maxwell invokes in support of kinetic
theory certain facts known to him well before the publication of his first
kinetic theory paper. He points out that heat is transferable from a hotter to a
colder body by radiation, which must involve some motion of matter in the
intervening space between the bodies. Such motion could only be caused by
motion in the body radiating the heat. But, Maxwell continues, this is not a
motion of the body as a whole, nor of any of its visible parts (which during
heat transfer are observed to be stationary). So, he concludes,

The motion which we call heat must therefore be a motion of parts too small to be
observed separately. . . . We have now arrived at the conception of a body as
consisting of a great many small parts, each of which is in motion. We shall call any
one of these parts a molecule of the substance. . . . 55

Thus, Maxwell believed that known facts about heat radiation constituted at
least some evidence for the assumption that invisible particles exist as constit-
uents of bodies, that these particles are in motion, and that their motion is
responsible for heat radiation. In fact Joule (who discovered the mechanical
equivalent of heat) had offered a somewhat similar argument in 1847, and
Maxwell was aware of Joule's work.

Second, Maxwell explicitly cites the success of dynamical theories in other
domains as providing at least some evidential support for kinetic theory. In
his paper "On the Dynamical Evidence of the Molecular Constitution of
Bodies," Maxwell claims that astronomy has been successful in analyzing
observed motions of the heavenly bodies in accordance with dynamical prin-

55. Maxwell, Theory of Heat (London, 1875), pp. 304-305.
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ciples applied to systems of bodies. He notes that "electrical science" has had
similar success in analyzing the observed motions of electrified bodies. His
reasoning seems to be this. If bodies are composed of particles in motion,
then the success of Newtonian dynamical theory in other domains provides at
least some evidence that this theory is applicable to the moving parts of
bodies such as gases, even though these moving parts are unobservable. (Ref-
erence to the success of dynamical theories elsewhere is also made in Max-
well's Inaugural Lecture at Aberdeen in 1856, four years before his first
kinetic theory paper was published, as well as in his Inaugural Lecture at
King's College, London, in 1860.)

Of course, this is not to say that the background information establishes
the kinetic theory or makes it extremely probable—a point Maxwell would
have strongly urged, since he emphasizes the tentative and speculative charac-
ter of the assumptions of kinetic theory. But he may well have been commit-
ted to the plausibility of that theory, based on what he regarded as some
evidential support provided by observations of heat radiation and the success
of other dynamical theories.

Unfortunately, this is something of an idealization. At best, Maxwell's
background information provides evidence for only part of kinetic theory. He
had no evidence for a number of crucial assumptions he makes in his theory.
For example, he had no evidence to support his assumption that the only
forces between molecules are contact forces (and hence that molecules travel
in straight lines between collisions), or that molecules are spherical in shape
(assumptions he in fact abandons in his second kinetic theory paper). Al-
though these assumptions are fairly simple ones on the basis of which to make
calculations, and perhaps for that reason alone are worth trying out, he had
no empirical reason to support them. Both of these assumptions play central
roles in Maxwell's derivation of Avogadro's law. On the definition of "theoret-
ical support" given above — as I have been construing it — for Maxwell's kinet-
ic theory to provide theoretical support for Avogadro's law by means of
Maxwell's derivation, it is required that each of the assumptions of the theo-
ry—or at least those used to derive and explain the law—have some evidential
support.

Perhaps this requirement is unnecessary. Why isn't the first condition —
that p(T correctly explains L via d/T&L&b & Dei(L,T,d)) > k-by itself
sufficient for theoretical support? As I am construing theoretical support if,
given background information b, a theory provides such support for a propo-
sition L by means of a derivation, then, given b, there is at least some reason
to think that L is true. But given b, the fact that the probability is greater than
some threshold value that T correctly explains L via d, given T&L&b
& Der(L, T,d), by itself yields no reason at all to think that L is true. There are
numerous theories — some perfectly wild—which, if true, would probably
correctly explain L via some derivation. But these provide no support for L.
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To take a simple nonscientific example, let L - my car won't start. Let theory
T = last night five monkeys escaped from the zoo, siphoned all the gas from
my tank and substituted crushed bananas; let Talso contain the principle that
a car without gas won't start. An obvious derivation d may be constructed
from T to L. Let b be "normal" background information which includes the
fact that monkeys have never been known to do such things. Still T if true
would in all probability correctly explain L via d.56 But, given b, no support is
accorded L by means of the derivation in theory T. The problem in such a
case is that b provides no evidence whatever in support of T; if anything, it
provides evidence that 7" is false.

The fact that a proposition can be derived from a theory in a way that
would count as a correct explanation if the theory were true does not neces-
sarily mean that the proposition receives support from that theory. However,
when a theory that satisfies the explanation condition 1 does have some
evidence in its favor, it can provide support for theoretical propositions that it
explains. Even if, given Maxwell's background information, his kinetic theory
did not furnish theoretical support for Avogadro's law by means of his deriva-
tion, this does not preclude theoretical support for this law based on other
versions of kinetic theory or on additional background information. Under
appropriate conditions there may be theoretical support for the law derived.

In discussing a "theoretical foundation" for a proposition I have spoken of
explanation and support. There is one further aspect that deserves mention,
the idea of systematization. The scientist may seek an explanation not just for
a single law but for many. And if he thinks that these laws govern the same or
similar systems, then he seeks one set of theoretical principles to explain them
all. Let me say that

Theory T can be used to systematize L1, . . . ,Ln if and only if, for each Lt, T if
true correctly explains Lt.

A systematization will be construed as a set of explanations:

A set of explanations E1, . . . ,En is a systematization of L1 . . . ,Ln relative to
theory Tif and only if T can be used to systematize L1 . . . ,Ln, and for each pair
(Ei,Li) in which Ei is an explanation of Li, Ei uses principles of T.

Even if Maxwell's kinetic theory does not provide theoretical support for laws
he derives from it, the theory can be used to systematize a set containing,

56. The probability here is not necessarily 1, since even assuming the truth of T it is possible
that my car won't start for a different reason. For example, although the monkeys did siphon all
the gas from my tank, they later replaced it; but my car won't start because the battery is dead.
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among other things, the velocity distribution law, Boyle's law, and Avogadro's
law. Maxwell constructs a set of derivations of these laws which explain why
they hold. These explanatory derivations systematize this set of laws relative
to the principles of kinetic theory. In general, derivations can play central
roles in systematizing sets of laws that might otherwise be regarded as inde-
pendent.

Suppose that, given the background information b, theory T provides
theoretical support for each of the laws L1, . . . ,Ln by means of a set of
derivations. Suppose further that for each Li,T if true correctly explains L,.
Then by the foregoing definition, theory T can be used to systematize
L1, . . . ,Ln. But the converse is not true, since for each Lt, T if true can
correctly explain Li even though b contains no evidence for T. Capability of
systematization is one reason for valuing a theory. It is not by itself a reason
to think that what the theory says is true.

8. CONCLUSIONS

The derivation of Maxwell's distribution law has been used to challenge the
idea that the only or at least a principal role of any theoretical derivation is (a)
to provide an empirical test for a theory or to explain some known empirical
fact. Such an idea is based on several schemas for problem situations. In one
(schema IA) the scientist has a theory + auxiliary statements, together with
some observed facts that the theory may be able to explain. The problem
consists in constructing a derivation of those facts from the theory. In another
(schema III) the scientist has a theory + auxiliary statements, and the prob-
lem is to construct a derivation or a series of derivations yielding new observa-
tional conclusions. Admittedly, theoretical derivations are constructed in such
problem situations. But there are other problem situations — including the one
faced by Maxwell in arriving at his distribution law —that are substantially
different and that usual methodologies ignore. In these (represented by sche-
ma V) the scientist begins with a theory, a question generated by the theory,
and instructions for answering that question. The problem is to find a propo-
sition that will answer the question in a way satisfying the instructions, and to
do so by adding new assumptions to the theory and constructing a derivation
from them plus the theory to such a proposition. In this situation a derivation
may enable the scientist (b) to discover some new theoretical proposition and
(c) to provide a foundation for it that is theoretical rather than observational.

These are major roles of theoretical derivations which standard methodol-
ogies fail to explore. Such methodologies, I suggest, tend to be overly empiri-
cal in their orientation. Once a set of theoretical postulates has been pro-
posed, these methodologies tend to stress only generating observational
conclusions, either new predictions to test the theory or old observations that
the theory can explain. And derivations are looked upon as the means of



THEORETICAL DERIVATIONS 201

generating these observational conclusions. But if we think more broadly
about the aims of theorizing — whether these include the answering of ques-
tions, or the telling of a "literally true story of what the world is like" (van
Fraassen's realist) or even the search for "empirical adequacy" (van Fraassen's
antirealist)—then the discovery of new theoretical propositions, and the fur-
nishing of a theoretical foundation for them, become important desiderata.
Theoretical derivations can play crucial roles in satisfying these ends.

APPENDIX. THEORETICAL SUPPORT

Several questions raised by the definition of theoretical support in section 7
are discussed in the following.

1. The proposed definition requires evidence for each assumption in the
theory. Can we supply a plausible evidence condition for theoretical support
that is weaker than this? Here is one possibility:

(2) There are assumptions T* in theory T such that b contains evidence for T*;
there are no assumptions T in T such that b contains evidence that T' is false.

This requires that the background information contain evidence for some
assumptions in the theory, while not containing evidence that other parts of
the theory are false. If we combine (2)' with the first condition—namely, that
p(T correctly explains L via d/T&L&b & Der(L,T,d)) > k -- then we can
show that, given Maxwell's background information b, his kinetic theory does
provide theoretical support for Avogadro's law. (His background informa-
tion, we agreed, does contain evidence for some, though not all, assumptions
in his theory.) Moreover, (2)' is still strong enough to prevent the "monkey
theory" of section 7 from providing theoretical support for the claim that my
car won't start. (In this case there is an assumption in the theory, namely, the
monkey hypothesis, for which the background information provides discon-
firming evidence.)

Unfortunately, (2)' permits too much. Again consider a simple nonscientif-
ic example. Let L — Jones is dead. Let theory T contain three assumptions:
(i) Smith disliked Jones; (ii) Smith decapitated Jones in a duel; (iii) a person
who is decapitated in a duel dies. (There is an obvious derivation from T to
L.) Let the background information b contain the fact that Jones insulted
Smith, which, I shall assume, is evidence that (i) is true but is not strong
enough to be evidence that (ii) is true. Furthermore, I shall assume that b
contains no evidence that (ii) is false, or that L is true. (The background
information simply gives us a reason to think that Smith disliked Jones, but
gives us no reason to think that Smith did — or did not — dislike Jones enough
to decapitate him in a duel, or indeed to think that Jones is dead.) Therefore,
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condition (2)' is satisfied. So is the first condition for theoretical support,
which requires that p(T correctly explains L via d/T&L&b & Der(L,T,d)) >
k. If we combine (2)' with the latter we shall have to say that, given our
background information, by means of the derivation from T to L, theory T
above provides theoretical support for the claim that Jones is dead. But this
conclusion seems unwarranted since, despite the theory and the derivation,
there is no reason to think that Jones is dead. Our background information
does furnish evidence for part of the theory (for the claim that Smith disliked
Jones). But it does not supply evidence for a central part of the theory needed
to explain Jones' putative death (viz., that Smith decapitated Jones in a
duel) — which seems to be required in order to obtain theoretical support for
the claim of death. Accordingly, I suggest retaining the stronger evidence
condition in section 7.

2. If we adopt the definition of theoretical support in section 7, could there
be theoretical support for a law in the absence of observational evidence in its
favor? If, given observational background information b, theory T provides
theoretical support for a law L by means of derivation d, must b itself be or
contain evidence for L?

To try to answer this, let me invoke a definition of evidence that I defend
elsewhere,57 according to which

(1) b is evidence that L if and only if (i) b is true; (ii) b does not entail L;
(iii) p(L/b) > k; (iv) p(there is an explanatory connection between L and b/
L&b) > k.

There is an "explanatory connection" between L and b if L correctly explains
b, or b correctly explains L, or some hypothesis correctly explains why both b
and-L are true.

Now recall our definition of theoretical support, according to which:

(2) Given b, theory T provides theoretical support for L by means of d if
and only if (a) p(Tcorrectly explains L via d/T&L&b & Der(L, T,d)) > k;
(b) b is or contains some evidence for T.

Suppose that, given b, theory T does provide theoretical support for L by
means of d. To simplify, suppose that b (rather than some proper part) is
evidence for T. Then from (1) and (2) we have

(3) (i) b is true; (ii) b does not entail T; (iii)p(T/b) > k; (iv)/?(there is an
explanatory connection between T and b/T&b) > k.

57. The Nature of Explanation, ch. 10.



THEORETICAL DERIVATIONS 203

From (3) (iii) we have p( T/b) > k. But if L is derivable from T, then

And (4) is one condition that must be satisfied if [by definition (1)] b is to be
evidence that L. So far so good.

Now, if given b, T provides theoretical support for L by means of d, then
from (2)

I am not assuming that (5) is true for every T, L, b, and d. Whether the
probability is high that T correctly explains L via d depends on the particular
theory and derivation. I am simply supposing that if, given b, T provides
theoretical support for L by means of d, then (5) will hold.

Let us assume further that

This is to make an assumption about the relationship between theory T and
the background information b that is analogous to that made about the
relationship between T and L in (5). Finally, to construct the most favorable
case for the claim we are considering, let us assume that

(7) p(T correctly explains L via d, and T correctly explains b via d'l
T&L&b & Der(L, T,d) & Der(b, T,d')) > k

Now "T correctly explains L via d" entails "T correctly explains L." Therefore,
from (7) we get

(8) p(T correctly explains L, and T correctly explains blT&L&b &
Der(L,7;cOandDer(&,7;rf')) > k

In virtue of the definition of "explanatory connection" given above, "T cor-
rectly explains L, and T correctly explains b" in (8) entails "there is an explan-
atory connection between L and b." Therefore, from (8) we infer

(9) p(there is an explanatory connection between L and b/T&L&b &
Der(L,T,d)andDer(b,T,d')) > k

If it were not for the appearance of T, Der(L, T,d) and Der(b, T,d') on the
right side of the conditional probability in (9), then (4) and (9) —together with
the assumption that b is true and does not entail L — would yield the conclu-
sion that b is evidence that L.

(4) p(Llb) > k

(5) p(Tcorrectly explains/, viad/T&L&b &D<x(L,T,d)) > k

(6) p(rcorrectly explains b via d'/T&L&b & Der(6, T,d')) > k
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The problem is just that for the probability of an explanatory connection
between L and b to reach the k-threshold we need to relativize to theory T and
to the fact that L and b are derivable from T. For b to be evidence that L —
where, given b, T provides theoretical support for L by means of d—v/e want
to derive

(10) p(there is an explanatory connection between L and b/L&b) > k

But we have only been able to derive (9), which is not strong enough. Given
the theory T and the facts that Der(L, T,d) and Der(b, T,d'), and given L and
b, the probability of an explanatory connection between L and b is greater
than k (in virtue of the fact that T explains L via d and b via d'). But without
the assumption of T and of Der(L, T,d) and Der(b, T,d') — given just L and
b—we are not able to guarantee that the probability of an explanatory con-
nection between L and b is greater than k. We are unable to guarantee that
(10) is true. Nor can we do so even if we drop the relativization to the
derivations and make the following assumption, which is even stronger than
(8):

(11) p(T correctly explains L, and T correctly explains b/T&L&b) > k

From (11) we infer p(there is an explanatory connection between L and b/
T&L&b) > k, which is still not strong enough, since it relativizes the proba-
bility to T. I suggest, therefore, that it is possible for a theory to provide
theoretical support for a law L by means of some derivation, where b is
evidence for T, without b's being evidence for L. This can occur when, given
just b and L, the probability of an explanatory connection between b and L is
less than k.

Suppose (counterfactually) that Maxwell did have evidence that the only
forces between molecules are contact forces, and that molecules are perfect-
ly elastic spheres. (Ignore gravity and electromagnetic forces and suppose
that all the other forces in nature known to Maxwell were contact forces,
and that all small particles he had observed were elastic spheres.) Combine
this with the evidence he did have pertaining to heat radiation and the success
of dynamical theories in other domains, and assume that he had evidence for
each of the assumptions in kinetic theory he needs to produce a derivation of
Avogadro's law. Would all this evidence also be evidence for Avogadro's law?
Not necessarily. Given just this evidence and Avogadro's law — and not assum-
ing the postulates of kinetic theory or any derivations from those postulates —
the probability of an explanatory connection between just this evidence and
Avogadro's law might not be high. In the absence of kinetic theory and
derivations, facts of the sort we have described concerning heat radiation, the
success of dynamical theories elsewhere, and observations of contact forces
between spherical particles, do not by themselves constitute evidence for
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Avogadro's law, even if they do constitute evidence for the postulates of
kinetic theory, from which Avogadro's law can be derived.

We might be reminded here of the controversy surrounding the "special
consequence" condition of evidence, according to which if e is evidence for h,
and h entails h', then e is evidence for h'. On the definition of evidence given
in (1), and on the concept of explanation which I advocate, this condition is
not always satisfied.58

3. Can we broaden the account of theoretical support in section 7 to include
the possibility of an "explanatory connection" between T and L, so that (2a)
above is changed to

(2a)' p(there is an explanatory connection between T and L via d/
T&L&b & via d either L is derivable from T, or T from L, or both from
some other hypothesis) > k

This is too broad for theoretical support. For example, let L = Boyle's law,
and let T = kinetic theory. Then, where b is background information that
includes results of tests on Boyle's law, and d is a derivation of Boyle's law
from kinetic theory,

(i) p(there is an explanatory connection between L and T via d/ T&L&b
&Der(L,T,d)) > k

(ii) b contains evidence for L.

We would then have to conclude that Boyle's law provides theoretical support
for kinetic theory by means of derivation d, which is false.

4. It might be noted that on the definitions of "evidence" and "theoretical
support," some L could be evidence that T, while T provides theoretical sup-
port for L. For example, let L give the regularities observed in molecular beam
experiments; let T be Maxwell's distribution law; let d be a derivation of the
results of the experiments from the law; and let the background information b
include L among other things. Then, given b, L is evidence that T. But given b,
T provides theoretical support for L by means of d. Since this theoretical
support for L is relativized to b, which includes L, there may appear to be
something untoward here. But all we are saying is that given the observed results
of molecular beam experiments, we have a theoretical reason—in addition to
an observational one—for believing that those results obtain.

58. See The Nature of Explanation, pp. 362ff.
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5. Is a more general definition of theoretical support possible that does not
require a derivation (but includes the latter case as a possibility)? An obvious
candidate is

(12) Given b, theory T provides theoretical support for L if and only if
(a) p(T correctly explains L/T&L&b) > k; (b) b is or contains some evi-
dence for T.

This permits T to provide theoretical support for L by means other than a
derivation. (We need not assume that all theoretical explanations require
derivations.)

6. Finally, it will be noted that on the definitions of theoretical support given
by (2) and (12) it is possible for a theory T to provide theoretical support for L
even though T does not in fact correctly explain L. (Indeed T might not
correctly explain L even though both Tand L are true and L is derivable from
T.) Following a procedure I advocate in the case of evidence,59 we might want
to distinguish two concepts of theoretical support. First, and most basically,
there is a concept given by (2) and (12). (We might call this "potential"
theoretical support.) Second, and derivatively, there is a concept of "veridi-
cal" theoretical support. Given b, theory T provides veridical theoretical sup-
port for L if and only if, given b, it provides potential theoretical support for
L and T correctly explains L.*

59. Ibid., ch. 10.
*For helpful comments I am indebted to Robert Kargon, William Taschek, Michael Listen,

Abner Shimony, and John Earman.



ESSAY 7

Maxwell's Analogies
and Kinetic Theory

"In studying the constitution of bodies we are forced at the very
beginning to deal with particles which we cannot observe."

J. C. MAXWELL

In the middle of the nineteenth century James Clerk Maxwell promulgated
the use of analogies as a legitimate method of science. In his paper, "On
Faraday's Lines of Force,"1 Maxwell focused on what he called "electrical
science," which, at the time, contained various laws of electricity and magnet-
ism that had been empirically established but had not been related or syste-
matized. His aim was to produce a "simplification and reduction of the
results of previous investigation to a form in which the mind can grasp them"
(vol. I, p. 155). There were two scientific methods for doing so that Maxwell
rejected. First, the simplification might "take the form of a purely mathemati-
cal formula." But to use such formulas is to "entirely lose sight of the phe-
nomena to be explained; and though we may trace out the consequences of
given laws, we can never obtain more extended views of the connexions of the
subject" (ibid.). The second method involves the use of physical hypotheses,
which Maxwell treated as postulating the existence of unobservable, or at
least unobserved, parts, structures, or causes. This he rejected on the grounds
that it leads to a "blindness to facts and rashness in assumption which a
partial explanation encourages." Hypotheses are generated on the basis of
little or no evidence. By contrast, Maxwell sought a method of investigation
that, unlike the use of pure mathematical formulas, would yield a "clear
physical conception," but that, unlike the use of physical hypotheses, would
not involve empirically unwarranted speculations about unobservable causes

1. W. D. Niven, ed., The Scientific Papers of James Clerk Maxwell (New York, 1965), vol. I,
pp. 155-229. Unless otherwise noted, page references for Maxwell will be to this collection.
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of electromagnetic phenomena. The method he advocated is the use of physi-
cal analogies.

Four years after the appearance of his first major paper on electromagne-
tism Maxwell published his first important work on kinetic theory ("Illustra-
tions of the Dynamical Theory of Gases," vol. I, pp. 377-409). Here, as in the
case of electromagnetism, Maxwell was aware of numerous empirically estab-
lished generalizations about properties of gases, including pressure, tempera-
ture, volume, density, and specific heats, which he sought to relate and sys-
tematize. And, as might be expected, he says that he will do so by
constructing a physical analogy. Yet his use of the concept of analogy in the
latter case seems very different from that in electromagnetism — something
that historians of methodology who have discussed Maxwell's analogy pro-
gram have not, I think, sufficiently appreciated.2

In this essay I propose to describe Maxwell's method of physical analogy in
his early work on electromagnetism, to ask whether he is employing an analo-
gy when he first develops his kinetic theory, and to consider to what extent he
goes beyond the idea of analogy in that theory and introduces hypotheses.
This will help to illuminate both the advantages and limitations of the meth-
od. It will also have implications for the use of hypotheses about unobserved
causes. Are such hypotheses methodologically important for a theory such as
the one Maxwell develops about gases, and if so, why? Can they serve useful
purposes even if the scientist who employs them is not committed to their
truth or probability?

1. MAXWELL'S CONCEPT OF ANALOGY IN EARLY
ELECTROMAGNETIC THEORY

Maxwell characterizes a physical analogyh as follows:

By a physical analogy I mean that partial similarity between the laws of one science
and those of another which makes each of them illustrate the other, (vol. I, p. 156)

The best way to see what Maxwell means is to study his examples, particularly
the one to which his paper is devoted. Let me characterize a part of this
analogy briefly; this will suffice to enable us to draw a contrast between the
present case and kinetic theory.

2. For papers on Maxwell's use of analogies that focus on electromagnetism, see Joseph
Turner, "Maxwell on the Method of Physical Analogy," British Journal for the Philosophy of
Science 6 (1955), pp. 226-238; Robert Kargon, "Maxwell and Analogy in Victorian Science,"
Journal of the History hf Ideas XXX (1969), pp. 423-436; A. F. Chalmers, "Maxwell's Method-
ology and His Application of It to Electromagnetism," Studies in History and Philosophy of
Science 4 (1973), pp. 107-164; Mary Hesse, The Structure of Scientific Inference (Berkeley,
Calif., 1974), ch. 11.
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Maxwell constructs an analogy between the electromagnetic field and a
purely imaginary, incompressible fluid flowing through tubes of varying sec-
tion. The velocity of the fluid at a given point represents the electrical force at
that point, and the direction of the tube represents the direction of the electri-
cal force. Particles of electricity are represented in the analogue as sources
and sinks of fluid. And the electrical potential is represented by the pressure
of the fluid. Maxwell shows that the velocity of the imaginary fluid at a
distance r from a source will vary as 1/r2. Since velocity in the fluid represents
the electrical force, we have a law for the fluid that is analogous in form to the
law in the electrical case that the electrical force at a distance r from a source
of electricity varies as 1/r2. We can tabulate these analogues as follows:

Electromagnetic field Incompressible fluid

Electrical force at a point in the field Velocity of fluid at a point in the fluid
Particle of positive electricity Source of fluid

Electrical potential at a point Pressure of fluid at a point
Satisfies law that the force due to a Satisfies law that the velocity of fluid
charged particle at a distance r from at a distance r from the source of fluid
the particle varies as 1/r2 varies as 1/r2

The general idea is to represent an electrical property Pi by some appropri-
ate fluid property Qi, and then demonstrate that Qi satisfies a law similar to
one satisfied by Pi. Maxwell makes it clear that in utilizing the analogy he is
not supposing that the electromagnetic field is identical with, or is composed
of, an incompressible fluid. Nor is he supposing that the fact that the electro-
magnetic field has a certain property is caused by an incompressible fluid's
having some property. He is not assuming, for example, that what causes a
charged body to exert an electrical force at a distance r is the fact that some
fluid has a certain velocity at a distance r from its source (or that it is some
fact that causes the fluid to have that velocity). As Maxwell writes,

The substance here treated ... is not even a hypothetical fluid which is introduced
to explain actual phenomena. It is merely a collection of imaginary properties
which may be employed for establishing certain theorems in pure mathematics in a
way more intelligible to many minds than that in which algebraic symbols alone are
used. (vol. I, p. 160)

Finally, in constructing the analogy Maxwell is making no assumptions about
unobserved features of the electromagnetic field which cause it to have the
properties and to satisfy the laws mentioned in the analogy. Although he may
describe such causes for the analogue system, he does not assume that corre-
sponding causes exist in the original system.

More generally, then, in a Maxwellian physical analogy we start with an
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original system that is known by observation to have properties P1, . . . ,Pn

and to satisfy laws L 1 , . . . ,Lk. We make assumptions about a second system
(which may or may not exist) by ascribing properties to that system that
represent properties of the original system, and we demonstrate that (and
how) such properties satisfy laws similar to known laws governing corre-
sponding properties in the original system. In the description of the second
system we may invoke causes of properties ascribed to that system. But we do
not assume that analogous causes exist in the original system if doing so
would commit us to the existence of unobserved features of that system.

In what does the similarity between laws of the two systems consist? Max-
well uses the expression "resemblance in form" between the laws of the two
systems. For example, the law of the velocity of the imaginary fluid has the
same mathematical form (1/r2) as the law of electrical force. However, I do
not think he means to deny the fact that certain physical resemblances in
properties involved in these laws are part of the analogy.3 In both cases, for
example, we have a point that is at a distance r from the source of something
(in the one case a source of fluid, in the other, of electricity). The important
point for present purposes is only that in constructing an analogy between
two systems involving two sets of properties, Maxwell does not suppose that
the systems are identical, or that one system is contained in the other, or that
the fact that one system has a certain property is caused by the other system's
having some property. Nor does he assume that whatever causes the second
system to have one of the mentioned properties has some (unobserved) ana-
logue in the original system that causes it to have the corresponding property.

3. Mary Hesse, op. cit., pp. 265-266, emphasizes this point. However, I take issue with her
over a number of claims she goes on to make. First, she says that a Maxwellian physical analogy
"begins with two or more existing physical systems" (p. 268, emphasis mine). Sometimes this is
so, sometimes not. In "On Faraday's Lines of Force," where the idea of physical analogy is first
introduced, the analogy is between the electromagnetic field and a nonexisting, imaginary, in-
compressible fluid. Second, she claims that "the general laws constituting the formal analogy
between systems are themselves derived by direct inductive generalization from experiments."
Again, this is not necessarily the case. In "On Faraday's Lines of Force," Maxwell does not derive
laws governing the imaginary fluid by direct inductive generalization from experiments. He
makes certain arbitrary hassumptions about the fluid in order to generate laws that will be
formally similar to those governing the electromagnetic field. Third, Hesse agrees that a Maxwel-
lian physical analogy does not postulate unobservable entities or causes. Nevertheless, she seems
to think (although I do not findh this completely clear in her account) that such analogies permit
some analogical inferences to unobservable entities or causes — perhaps to the laws that govern
them—even if they do not permit a detailed specification of these entities or causes. However, in
"On Faraday's Lines of Force," Maxwell seems to be denying this. He does not assume, or permit
an inference to the assumption, that whatever causes the incompressible fluid to have a certain
property has some unobserved analogue (however indefinitely described) in the electromagnetic
field that causes it to have the corresponding property. Nor (a fortiori) does he permit an
inference to laws that govern such an unobserved cause.
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In general, to make these suppositions would be to introduce "phy cal hy-
potheses" about the unobserved parts and structure of the origina system,
which is something Maxwell's method of physical analogy is designed to
avoid. Moreover, although he does use mathematical formulas in his con-
struction, they are not "pure" ones. They describe a physical situation that the
"mind can grasp," namely, the relationship between properties of the imagi-
nary fluid.

Although a physical analogy does not introduce hypotheses about unob-
served causes in the original system, it might be asked whether it provides the
basis for analogical inferences to such causes. That is, given such an analogy,
from the fact that C is the cause of some property in the analogue system can
one legitimately infer that some unobserved analogous cause C' is responsible
for the corresponding property in the original system? Maxwell does not
discuss this, but I suggest that his answer ought to be: not necessarily. There
are several types of physical analogies, including the following, in which such
inferences would be precluded: (a) A physical analogy (such as the present
electromagnetic one) in which the analogue system is purely imaginary and in
which causes of properties P1; . . . ,Pn in the analogue are stipulated but
these are "arbitrary" in the following sense: no reason is known or given to pre-
clude the description of other analogue systems with properties P1, . . . ,
Pn, or with other analogues of properties in the original, that are produced by
quite different causes. (b) A physical analogy that is based on purely formal
similarities between laws governing the systems, not on physical similarities
between the systems or between the properties invoked in the laws. (c) A
physical analogy in which no causes for properties of the analogue system are
postulated or known. (d) A physical analogy between some of the properties
of the two systems that, because of the disanalogies that also exist, is too
limited or weak to permit inferences from causes in one system to causes in
the other.

However, even if some physical analogies provide a basis for analogical
inferences to unobserved causes of properties in the original system, this
would not alter what Maxwell says about the use of physical analogies. His
aim in using an analogy is to "obtain physical ideas without adopting a
physical theory" (vol. I, p. 156). By "adopting" a physical theory (concerning
unobserved causes or parts) I take Maxwell to include one or both of the
following: assuming, for the sake of argument, that such a theory is true and
using it to explain and predict phenomena; believing such a theory to be true
or probable. Should some physical analogy provide the basis for an analogi-
cal inference to a physical theory concerning unobserved causes, one can still
utilize the analogy—one can use certain properties in the analogue system to
represent properties in the original and show that laws relating these proper-
ties are similar in form to laws relating corresponding properties in the origi-
nal—without adopting that physical theory. In constructing and employing
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the analogy one need not assume or believe that such a theory is true and use
it to explain and predict phenomena. One need not draw the inference for
which the analogy may provide some basis.

Nevertheless, I take Maxwell's viewpoint to be stronger than this. If a
physical analogy provides the basis for a legitimate inference to an hypothesis
regarding unobservable features of the original system, then, even if the
scientist does not "adopt" that hypothesis, he is in a position to do so. If there
is a physical analogy that sanctions such an inference, why should such an
hypothesis be avoided? Yet in "On Faraday's Lines of Force" Maxwell explicit-
ly seeks to avoid such hypotheses. Accordingly, at least in this paper I take
Maxwell's position to be this: Granted it is possible to construct a physical
analogy that makes use of hypotheses about unobservables, or that provides
the basis for an analogical inference to such hypotheses, the method of physi-
cal analogy is to be used when there is no legitimate basis for such hypotheses
(from the analogy or elsewhere). Therefore, when Maxwell speaks of this
method I take him to have in mind the use of those analogies that avoid such
hypotheses and that do not sanction valid inferences to them.

2. KINETIC THEORY

In 1860, four years after "On Faraday's Lines of Force," Maxwell published
"Illustrations of the Dynamical Theory of Gases," his first major contribu-
tion to kinetic theory. He begins the paper thus:

So many of the properties of matter, especially when in the gaseous form, can be
deduced from the hypothesis that their minute parts are in rapid motion, the
velocity increasing with the temperature, that the precise nature of this motion
becomes a subject of rational curiosity. (vol. I, p. 377)

He proceeds to indicate assumptions that have been made about such parti-
cles by Bernoulli, Herapath, Joule, Kronig, and Clausius, among others, and
that (as it turns out) he also makes in his paper. For example, it is assumed
that gases are composed of unobservable particles, that these particles are in
motion, that their velocity increases with the temperature of the gas, that they
move with uniform velocity in straight lines striking against the sides of the
container, producing pressure, that the particles are perfectly elastic spheres
acting on each other only during impact, and that their motion is subject to
mechanical principles of Newtonian mechanics (p. 378).

At this point Maxwell introduces the idea of physical analogy:

If the properties of such a system of bodies are found to correspond to those of
gases, an important physical analogy will be established, which may lead to more
accurate knowledge of the properties of matter. (p. 378)
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At the end of the paper just before summarizing his results Maxwell speaks
once more in terms of analogy:

We have now followed the mathematical theory of the collisions of hard elastic
particles through various cases, in which there seems to be an analogy with the
phenomena of gases. (p. 409)

Although Maxwell uses the analogy idiom in his paper, there seems to be
an important difference between the use of the method of analogy here and
that in "On Faraday's Lines of Force." In the latter Maxwell uses the method
of analogy to avoid physical hypotheses. That is one of its chief merits, since
it can be used in such a way that unestablished speculations are excluded. Yet
in his kinetic theory paper Maxwell seems not to be avoiding physical hy-
potheses about gases but to be reveling in them! He introduces the very
speculative idea that gases are composed of an enormous number of unob-
servable spherical bodies of the sort he describes. Using these physical hy-
potheses about gases he proceeds to derive various theoretical and observa-
tional results about gases, including his distribution law for molecular
velocities, Avogadro's law, Boyle's law, and a host of others.

Indeed, his procedure here might be thought to involve a fairly typical use
of the method of hypothesis, or hypothetico-deductive method, which Max-
well characterized in later writings and rejected:

In attempting the extension of dynamical methods to the explanation of chemical
phenomena, we have to form an idea of the configuration and motion of a number
of material systems, each of which is so small that it cannot be directly observed.
We have, in fact, to determine, from the observed external actions of an unseen
piece of machinery, its internal construction.

The method which has been for the most part employed in conducting such
inquiries is that of forming an hypothesis, and calculating what would happen
if the hypothesis were true. If these results agree with the actual phenomena,
the hypothesis is said to be verified, so long, at least, as some one else does not
invent another hypothesis which agrees still better with the phenomena. (vol. II, p.
419)

In this later paper, Maxwell rejects the method of hypothesis on the grounds
that those who use it either "leave their ideas vague or ... present them in a
form the details of which could be supplied only by the illegitimate use of the
imagination" (p. 419). In its place he advocates, not the method of physical
analogy, but what he calls the "method of physical speculation," which I shall
not pursue here but will comment on in section 5.

The important point for present purposes is that in his first kinetic theory
paper Maxwell introduces a set of very speculative hypotheses about the
unobserved physical composition of gases and uses these to derive conclu-
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sions, some of which at least he hopes will enable the theory to be tested. Yet
he refers to what he is doing as attempting to establish a physical analogy
between gases and the system of particles he describes. How can this be if the
method of physical analogy is supposed to be used to avoid speculative hy-
potheses? Is Maxwell simply misleading us and himself by speaking of analo-
gies here? Does he perhaps have some concept of analogy in his kinetic theory
paper that differs from that in the earlier electromagnetic paper? Or is there a
way of rendering Maxwell's earlier views about analogies consistent with what
he does in the kinetic theory?

3. A CONCEPT OF ANALOGY IN KINETIC THEORY

Let me suggest a way of understanding Maxwell's use of physical analogy in
kinetic theory that will render this use compatible with that in his earlier
paper. (Whether Maxwell actually viewed the situation in this way I shall take
up in section 4).

Our "original" system is a gas that exists within the walls of a container.
The analogue system consists of particles of the sort Maxwell describes at the
beginning of his paper. It is a dynamical system that contains "an indefinite
number of small, hard, and perfectly elastic spheres acting on one another
only during impact," and that satisfies Newtonian mechanics. Suppose we
want to establish a physical analogy between a gas in its container and such a
system within the walls of a second container. One way to proceed is to focus
on various properties and laws of gases and ask how a dynamical system of
particles could exhibit those properties and laws.

For example, a gas exerts pressure on the walls of the container. How could
a dynamical system of particles of the sort Maxwell describes exert pressure
on the walls of its container? Maxwell's answer: " . . . the particles . . . move
with uniform velocity in straight lines, striking against the sides of the con-
taining vessel and thus producing pressure" (vol. I, p. 377).

A gas has a certain density. How could a dynamical system of particles
have density? The answer: Each particle has mass, and the density of the
system of particles is the sum of the masses of the particles divided by the
total volume which the particles occupy.

A gas exhibits viscosity (internal friction). How could a dynamical system
of particles do so? Maxwell's answer: The particles exist in various layers with
those in different layers having different mean velocities. But particles in one
layer may pass out of that layer into another, striking the particles in another
layer and exerting a tangential force, which constitutes the viscosity of the
system.

A gas has a certain temperature. How could a dynamical system of parti-
cles have temperature? The answer: The system has this property in virtue of
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the fact that it contains particles that have motion, and thus kinetic energy,
the mean value of this kinetic energy for the system being proportional to the
temperature of the system.4

A gas satisfies Boyle's law, which Maxwell writes as p = kp, where p is
pressure, k is a constant at constant temperature, and p is the density. How
could the dynamical system of particles satisfy Boyle's law? The answer:
From the assumptions he makes about the dynamical system Maxwell derives

where p = pressure of the system of particles on the walls of its container,
M - mass of each particle, N = number of particles in a unit volume, and
v = mean velocity of a particle. Now Maxwell notes that the product MN
gives the density of the system of particles (the total mass divided by volume).
If we then assume that v2 = 3k, we can transform (1) into

which is Boyle's law, understood now as being applied not to a gas but to a
dynamical system of particles. In such an application the law is to be under-
stood as saying that the pressure exerted by the dynamical system is equal to k
times the density of that system.

In general, then, we might construe Maxwell's analogy program in kinetic
theory as follows. We have a system —a gas that has known properties P1,
. . . ,Pn and satisfies known laws L1, . . . ,Lk. We describe a second system —
a dynamical system of particles — in terms of a set of assumptions (including
Newtonian mechanics). Our problem is to determine whether (and how) the
second system also has the properties P1, . . .,Pn and satisfies the laws L1,1, ,Pn and satisfies the laws L1,
. . . ,Lk (understood now as applying to the second system). To the extent that
it does, we have established a physical analogy between the two systems.

The result of our investigation can be tabulated as follows:

4. Temperature, unlike pressure, density, and viscosity, is not a mechanical property that can
be understood solely in terms of concepts such as force, mass, distance, and time. And Maxwell
in this paper, although he notes that the velocity of the particles increases with the temperature of
the system, says little else about it. To produce the present analogy with respect to temperature it
is assumed that the dynamical system of particles exhibits temperature and that this is explained
by the fact that the system exhibits kinetic energy. What is left open is why the system exhibits
temperature in virtue of its having kinetic energy. For example, does one cause the other? Are the
properties identical? The above explanation of temperature in terms of mean kinetic energy of
particles seems less complete than explanations of those properties of the dynamical system that
can be understood entirely in mechanical terms.
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Gas Dynamical System of Particles

Exerts pressure on sides of its Exerts pressure on sides of its container (in
container virtue of particles striking sides)

Has temperature Has temperature (in virtue of its having
mean kinetic energy)

Satisfies Boyle's law Satisfies Boyle's law (in virtue of satisfying
p = l/3MNv2)

Has a physical analogy been produced of the sort Maxwell has in mind in
his earlier electromagnetic paper? There are, I think, three features of physi-
cal analogies that Maxwell stresses in the earlier paper.

1. Such an analogy gives a physical conception for the mind to grasp. It is not
a pure mathematical formula.

Maxwell would certainly gard this feature as satisfied by kinetic theory,
which introduces physical assumptions about spherical particles.

2. A physical analogy between system 1 (a gas) and system 2 (a dynamical
system of particles) avoids speculative physical hypotheses about system 1
that attribute to that system unobserved parts or an unobserved structure
or an unobserved causal relationship to other systems. To achieve this end
it does not assume that the two systems are identical, or that system 2 is
contained within system 1, or that the fact that system 1 has a certain
property is caused by system 2's having some property. And even when it
postulates a cause of system 2's having one of the mentioned properties, it
does not assume, or provide a basis for inferring, that there is some
(unobserved) analogue in system 1 causing that system to have the corre-
sponding property.

Are the features in (2) present in the kinetic theory analogy? The answer is:
Yes, as we have set up the analogy in the present section. We have avoided any
speculative hypotheses about gases. In particular, we have not assumed that
gases are identical with, or are composed of, a dynamical system of particles
of the sort Maxwell describes. Nor have we assumed that the fact that gases
have a certain property (e.g., that they exert a force on the walls of their
container) is caused by the fact that some dynamical system of particles exerts
a force on its container. We have made no assumptions about what gases are
composed of, or about what causes gases to exhibit the properties they do.
Indeed, we have not even assumed as an hypothesis that the analogue system
of particles exists. We can treat the analogue system as a purely "imaginary"
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one, just as Maxwell treats the incompressible fluid in the earlier electromag-
netic analogy. And we may as yet have no reason to preclude the description
of other imaginary analogue systems in which properties such as pressure and
temperature are not caused by the motions of particles. (Presumably if no
assumptions are made about the existence of the analogue system we cannot
be said to be introducing hypotheses about that system either.) The only
system whose existence the analogy commits us to is that of gases, and the
only properties and laws we are assuming gases to have are the known obser-
vational ones. No assumptions are made or sanctioned about what causes
gases to have such properties and exhibit these laws.

3. We construct a physical analogy between system 1 and system 2 by indicat-
ing properties of system 2 that "represent" (are the analogues of) those in
system 1 and by showing that these properties satisfy similar laws.

This too has been accomplished. For example, pressure in the case of a gas
is represented by (is analogous to) pressure in the case of the dynamical
system of particles Gust as the color red in Napoleon's uniform can be repre-
sented by the color red in a portrait). And both pressure, as exerted by a
system of particles, and pressure, as exerted by a gas, satisfy a form of Boyle's
law.

If these are the important features of physical analogies, then, at least in
the present section, we have constructed (the beginnings of) a physical analo-
gy between a gas and a system of dynamical particles.

Still there is a difference between the present case and Maxwell's electro-
magnetic analogy. In the latter the properties in system 2 (the imaginary fluid)
are not identical with the properties they represent in system 1 (the elec-
tromagnetic field). For example, the electrical force at a point a distance r
units from a source is represented by the velocity of a fluid at a distance
r units from a source. But the property denoted by "electrical force at a point"
is not identical with that denoted by "velocity of fluid at a point." Neverthe-
less, the properties are analogous because they both satisfy an inverse square
law. By contrast, in the kinetic theory analogy we do have identical proper-
ties, for example, pressure (due to a gas) and pressure (due to the system of
particles). In both cases the term pressure has the same meaning (force per
unit area) and the property denoted is subject to the same laws. Does this
difference with the electromagnetic situation make a difference, as far as
classifying both as physical analogies in the sense Maxwell intended?

The three features of Maxwellian physical analogies that I have mentioned
do not preclude the possibility that analogous systems have certain properties
that are identical —so long as it is not being supposed that the systems them-
selves are identical. Do the roles Maxwell construed physical analogies as



218 MAXWELL AND THE KINETIC THEORY OF GASES

playing allow identical properties of the sort found in the kinetic theory
analogy?

Maxwell saw two important roles for physical analogies. First, they aid the
mind in organizing, simplifying, and understanding laws, generalizations,
and concepts. We have a set of ideas about system 1, involving electromagnet-
ism, that are incompletely related, organized, or understood. Let us construct
an analogous system, involving an imaginary fluid, and see whether we can
produce analogues of these ideas in a way that will aid us in better relating,
organizing, and understanding our ideas in electrical science.

Second, physical analogies may afford a way of working out certain un-
solved problems (particularly mathematical ones) in one system by consider-
ing solutions already achieved, or more readily produced, in the analogue
system; and they may suggest new problems for the first system that can be
solved using the analogue system. Thus, Maxwell observes that there is a
physical analogy (noted first by Kelvin) between the laws of heat conduction
in uniform media and laws of electrostatic attraction. And he writes:

We have only to substitute source of heat for centre of attraction, flow of heat for
accelerating effect of attraction at any point, and temperature for potential, and the
solution of a problem in attraction is transformed into that of a problem in heat.
(vol. I, p. 157)

Both of these roles seem to be served by the kinetic theory analogy. The
results of gas theory consisted of a not well-related or organized set of laws
and generalizations pertaining to the pressure, volume, temperature, viscosi-
ty, diffusion, and specific heats of gases. Maxwell no doubt thought that the
mind would be aided in organizing and relating these ideas if corresponding
laws and generalizations about the pressure, volume, temperature, and so on
of an analogue system of dynamical particles could be derived from assump-
tions about that system. Even more important, the analogy permitted the
formulation and solution of new problems about gases by considering corre-
sponding ones for the particles. For example, by "representing" the viscosity,
or internal friction, of a gas in terms of internal friction between layers of
particles, Maxwell is able to obtain a possible solution for the problem of the
mathematical relationship between the viscosity of a gas and its density. By
working out the corresponding problem for the system of particles, he arrives
at the surprising result that the coefficient of viscosity of a gas is independent
of its density. Moreover, both of these functions can be satisfied even though
(a) certain properties in both systems are identical and (b) no speculative
hypotheses are being stated or inferred about the unobserved structure of
gases or about what causes gases to exhibit viscosity or any other observable
property.

No wonder Maxwell thought so highly of physical analogies. They seem
able to produce so much with so little commitment!
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4. AN IMPORTANT DIFFERENCE BETWEEN ANALOGIES IN
KINETIC THEORY AND ELECTROMAGNETISM

In actual fact Maxwell does not present his kinetic theory quite in the way I
have done in the previous section. As noted, he does speak of what he is doing
as constructing an analogy. Moreover, his paper contains twenty-three num-
bered propositions, each of which sets a task. (For example, Proposition 13 is
"To find the internal friction in a system of moving particles.") And these
propositions refer only to the system of particles and not to gases.5 So it may
seem as if Maxwell in working out the problems he sets for himself is making
assumptions only about particles and not about gases (in accordance with the
procedure of the previous section). But in practice he does not always follow
this strategy. For example, after explaining how a system of particles can
exhibit viscosity and deriving the equation = l/3plv, which relates the coef-
ficient of viscosity to the density p of the system of particles, the mean free
path l of those particles, and their mean velocity v, Maxwell writes:

A remarkable result here presented to us in equation 24 [ = l/3plv] is that if this
explanation of gaseous friction be true, the coefficient of friction is independent of
the density, (vol. I, p. 391)

Maxwell here is clearly treating assumptions about moving particles as a
possible explanation of gaseous friction, not just of the internal friction of
the system of particles. In doing so he is supposing that gases might be
composed of unobserved moving particles of the sort he describes.

Again, after deriving Boyle's law p = kp, Maxwell writes:

We have seen that, on the hypothesis of elastic particles moving in straight lines, the
pressure of a gas can be explained by the assumption that the square of the velocity
is proportional directly to the absolute temperature and inversely to the specific
gravity of the gas at constant temperature. ... (p. 389; my emphasis)

Once more Maxwell supposes that a property of a gas, in this case its pres-
sure, can be explained by hypotheses about unobserved moving particles,
which (presumably) comprise the gas.

In sum, although Maxwell could in principle have avoided speculative
hypotheses about unobserved parts of gases by following the method of
analogy of section 3, in practice he does not always do so. There is a good
reason for this.

5. In a letter to Stokes of October 8, 1859, Maxwell emphasizes this point: "I intend to
arrange my propositions about the motions of elastic spheres in a manner independent of the
speculations about gases, . . . " Memoir and Scientific Correspondence of the Late Sir George
Gabriel Stokes, Bart., J. Larmor, ed. (Cambridge, England, 1907), vol. 2, p. 11.
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Suppose we construct a physical analogy between systems 1 and 2 of the
following kind (which I shall call an identical property analogy):

(a) System 2 is described as exhibiting properties P1, . . . ,Pn and laws L1,
. . . ,Lk, that are the same as (not just formally similar to) some set that system 1 is
known to exhibit.

(b) For system 2 principles are invoked that explain why system 2 has properties
P 1 , . . . ,Pn and satisfies laws L1, . . . ,Lk.

Then (going beyond the analogy) if we assume as an hypothesis about system
1 that system 1 is identical with, or is composed of, system 2,6 we could use
the principles invoked in system 2 to explain why system 1 has P 1 , . . . ,Pn

and satisfies L1, . . . ,Lk.
Suppose, for example, that we construct a physical analogy of the sort

described in section 3. Both gases and the dynamical system of particles exert
pressure on the walls of the container; both have density, temperature, viscosi-
ty, and so on. And both obey Boyle's law. Furthermore, in the case of the
dynamical system of particles, Maxwell uses a set of principles about the
motion of the particles to explain why the system of particles exerts pressure
on the walls of its container, why it has density, temperature, viscosity, and so
on, and why it obeys Boyle's law. If we now assume as a speculative hypothe-
sis about gases that gases are, or are composed of, such dynamical systems of
particles, then we can explain why a gas exhibits .P1,. . . ,Pn by simply taking1, Pn by simply taking
over the explanation of why dynamical systems of particles exhibit those
properties. For example, a gas exerts pressure on the walls of its container for
the reason that the particles comprising it strike the walls of the container,
exerting pressure on it.

By contrast, this procedure is not possible if we use as a basis a physical
analogy in which the analogous properties and laws are not identical or in
which properties of the analogue do not cause those of the original system.
Recall Maxwell's analogy between the electromagnetic field and the incom-
pressible fluid. One of the important features of this analogy is that the
electric force at a distance r from a charged particle varies as 1/r2, while the
velocity of a fluid at a distance r from a source of fluid varies as 1/r2. Suppose
(contrary to what Maxwell intends) we were to assume that an electromagnet-
ic field is composed of the incompresshible fluid flowing through tubes of
varying section. Under this assumption could we explain why the electromag-
netic field satisfies the law F 1/r2 by explaining why the fluid that comprises
it satisfies the law v 1/r2? Only if we assume either that electric force is the
same (property) as fluid velocity or that the velocity of the fluid of which the

6. This assumption, of course, commits us to assuming that system 2 exists, since we are
assuming that system 1 does.
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electromagnetic field is composed causes the electrical force. Otherwise all we
have explained is why the fluid of which the electromagnetic field is composed
satisfies v 1/r2. We still have to explain what this has to do with electrical
force. But in this analogy Maxwell is unwilling to make the assumption that
analogous properties are identical or causally related.

Accordingly, there is an important difference between those physical analo-
gies involving identical properties and those involving properties that are not
identical or causally related. In the former case, but not the latter, it is
possible to go beyond the analogy and use principles explaining the properties
and laws of the second system to construct speculative hypotheses about the
first system—by supposing that the two systems are identical or that system 1
is composed of system 2. This is precisely what Maxwell does on a number of
occasions when he develops the kinetic theory where analogous properties of
gases and systems of particles are identical. By contrast, he does not proceed
in this manner when he develops the electromagnetic analogy where analo-
gous properties (he is supposing) are not identical or causally related.

5. HYPOTHESES

Now we must squarely face the issue of hypotheses. Let us suppose that Max-
well does use an identical property analogy—such as the one in kinetic theory—
as a basis for constructing speculative hypotheses about gases. Even if such
hypotheses are not part of the analogy itself, isn't he violating his own cher-
ished idea that physical analogies are used when we want to avoid hypotheses?
And if he is, why does he go beyond the analogy to introduce such hypotheses?
Does he need to do so? In what follows I will argue (a) that the introduction of
speculative hypotheses about gases does not commit Maxwell to the truth or
even the probability of such hypotheses and (b) that he needs to introduce such
hypotheses in order to give dynamical explanations of why gases have the
properties and satisfy the laws they do—something that he wants to do but that
cannot be done using only a Maxwellian physical analogy.

As shown in section 3, it is possible to construct a physical analogy in
kinetic theory without introducing, or providing the basis for a legitimate
inference to, any speculative physical hypotheses about the unobserved struc-
ture of gases. We show that (and how) it is possible for dynamical systems of
particles to have properties of gases such as pressure, temperature, density,
and to obey laws such as Boyle's law—without assuming that gases are or are
composed of such systems of particles (indeed, without even assuming that
such a system of particles exists), and without assuming any other hypotheses
about the unobserved structure of gases.

In actual practice, however, Maxwell goes beyond this and does identify
gases as such systems of unobserved particles. This procedure is possible since
various analogues in the analogy are identical. However, introducing such
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speculative hypotheses about gases is not the same thing as using the "method
of hypothesis," which Maxwell explicitly rejects. This, I suggest, is quite im-
portant in understanding exactly what commitments Maxwell is making in his
kinetic theory paper, so I will pursue this further.

Recall that according to the method of hypothesis, as Maxwell formulates
it (and as it is ordinarily understood), the physicist proceeds by

forming an hypothesis, and calculating what would happen if the hypothesis were
true. If these results agree with actual phenomena the hypothesis is said to be
verified, so long at least as some one else does not invent another hypothesis which
agrees still better with the phenomena. (vol. II, p. 419)

The crucial point for our purposes is the second sentence. According to the
method of hypothesis, if the results of the hypothesis agree with actual phe-
nomena—if the hypothesis explains known phenomena or correctly predicts
some new ones, or both—then (in the absence of more successful hypotheses)
it is verified, or at least strongly supported.

I suggest that when Maxwell introduces hypotheses about gases on the
basis of the kinetic theory analogy he is not employing the method of hypoth-
esis. The hypothesis that gases are dynamical systems of particles of the sort
he describes would, if true, correctly explain why gases obey Boyle's law and
Avogadro's law (as Maxwell notes). However, it does not follow that such an
hypothesis is verified, strongly supported, or even probable. For there are
conflicting hypotheses that, if true, would also explain the same laws.7 Max-
well is aware of this methodological point and explicitly notes it in comment-
ing on a model of the electromagnetic field he constructs in a later paper
entitled "On Physical Lines of Force" (1861-1862; vol. I, pp. 451-513). (Max-
well shows how a purely mechanical fluid containing rotating vortices and
particles between the vortices to act as idle wheels could produce electromag-
netic properties. As in the kinetic theory paper he proceeds to invoke specula-
tive hypotheses by explicitly identifying the electromagnetic field with the
mechanical system he describes.) In his Treatise on Electricity and Magnetism
(1873), Maxwell makes the following comment about this:

The attempt which I then made [in "Physical Lines of Force"] to imagine a working
model must be taken for no more than it really is, a demonstration that mechanism
may be imagined capable of producing a connexion mechanically equivalent to the
actual connexion of parts of the electromagnetic field. The problem of determining
the mechanism required to establish a given species of connexion between the
motions of the parts of a system always admits of an infinite number of solutions.8

7. See earlier essays, especially Essay 4.
8. James Clerk Maxwell, A Treatise on Electricity and Magnetism (New York, 1954), vol. 2,

p. 470.
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For Maxwell, in order for an hypothesis about the unobserved structure of a
system to be considered verified, supported, or even probable it is not enough
that the hypothesis be capable of explaining observed facts about that system,
since a multitude of different structures might do that. What more does
Maxwell require?

In section 2, I mentioned that in his paper "On the Dynamical Evidence of
the Molecular Constitution of Bodies" Maxwell rejects the method of hypoth-
esis in favor of what he calls the "method of physical speculation." This
requires that an hypothesis have independent warrant for it to be believable.
Although he never formulates this method in a general or precise way, when
applying it to molecular hypotheses he begins by saying:

Of all hypotheses as to the constitution of bodies, that is surely the most warrant-
able which assumes no more than that they are material systems, and proposes to
deduce from the observed phenomena just as much information about the condi-
tions and connections of the material system as these phenomena can legitimately
furnish.

When examples of this method of physical speculation have been properly set
forth and explained, we shall hear fewer complaints of the looseness of the reason-
ing of men of science, and the method of inductive philosophy will no longer be
derided as mere guess-work. (vol. II, p. 420)

Following this, Maxwell assumes that bodies are composed of unobservable
particles, an hypothesis he regards as warranted by "experimental proof
(which he does not give). He then shows how a form of Clausius' virial
equation relating the pressure and volume of a gas to the kinetic energy of the
system of particles it contains and to the distance between particles and the
forces between them can be used to explain observed deviations from Boyle's
law at high densities (vol. II, pp. 421-423). And he takes this as providing
some support for the virial equation. He does so because he believes there is
independent warrant for this equation.

Maxwell offers only a few general remarks about how independent warrant
is to be demonstrated. As noted above, he speaks of the need to "deduce from
the observed phenomena just as much information about the conditions and
connections of the material system as these phenomena can legitimately fur-
nish." And he claims that those speculators employing the flawed method of
hypothesis are not provided with a means "to express the results of their
induction in its early stages" (vol. II, p. 419). It is reasonable to suppose that
he thought that independent warrant accrued to the general form of the virial
equation in virtue of its derivability from Newton's second law, which is
inductively supported.

More generally, we might represent Maxwell's idea of independent warrant
by the condition that the hypothesis have some significant probability in the
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light of observed phenomena.9 I take this condition to be satisfied for Max-
well if there is an inductive (or causal-inductive) connection between these
phenomena and the hypothesis in question (or between the phenomena and
principles from which the hypothesis follows). Whether Maxwell allows other
types of independent warrant is not clear. He explicitly rejects the idea that
the phenomena support the hypothesis simply in virtue of the fact that they
are explained by it (if they are). The phenomena providing the independent
warrant will be part of the background information and will typically include
ones different from those explained by the hypothesis.

To draw a contrast with the method of hypothesis, let us consider Max-
well's method of physical speculation in so far as it is applicable to explana-
tions, and formulate the two views as follows:

Method of hypothesis: Given the background information b, the fact that
h, if true, would correctly explain observed phenomena O1, . . . ,On consti-
tutes at least some reason for believing h.

Maxwell's method of physical speculation: Given b, the fact that h, if true,
would correctly explain observed phenomena O1, . . . ,On constitutes some
reason for believing h only if p(h/b) > k.

The latter proviso in the second method, which requires that the probability
of h given the background information be greater than some threshold value
k, represents the idea that independent warrant is required.10 If explanations
involve deductions, as they so frequently do for Maxwell, then, as we saw in
Part I of this book, the independent warrant condition together with explana-
tion will guarantee significant probability in light of all the data: If p(h/b) >
k, and if O1, . . . ,On are explainable via derivation from h and b, then
p(h/O1, . . . ,On&b) > k.

Now we can return to hypotheses that are formulated by considering iden-
tical property analogies such as the kinetic theory analogy. Suppose that on
the basis of an analogy between a gas and a system of dynamical particles of
the sort outlined in section 3 we construct the hypothesis that gases are, or are
composed of, such systems of dynamical particles. We then explain various
properties and laws of gases by means of the principles we have used to
explain those properties and laws in the case of the particles. Let h represent
these principles as applied to gases, and let O1, . . . ,On be the statements
describing various known properties and laws of gases. We are supposing that

9. Richard Olson, Scottish Philosophy and British Physics (Princeton, 1975), ch. 12, ties
Maxwell's requirement for independent warrant to basic tenets of Scottish Common-Sense phi-
losophy. See particularly pages 308-309.

10. For a somewhat different interpretation of Maxwell's method of physical speculation see
Jon Dorling, "Maxwell's Attempts to Arrive at Non-Speculative Foundations for the Kinetic
Theory," Studies in History and Philosophy of Science 1 (1970), pp. 229-248.
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h if true would correctly explain O1, . . . ,On. On the method of hypothesis,
which Maxwell rejects, this would constitute at least some reason to believe
the hypothesis h about the unobserved structure of gases. On Maxwell's
method of physical speculation this would constitute such a reason only if
p(h/b) > k, that is, only if the hypothesis h has some independent warrant.
But the fact that h if true would correctly explain O1, . . . ,On does not by
itself guarantee that h has any independent warrant—a point Maxwell makes
by noting that, in general, innumerably many conflicting hypotheses, if true,
could also correctly explain O1, . . . ,On. So unless such independent warrant
is forthcoming, the fact that an identical property analogy can be used to
generate an hypothesis that, if true, will correctly explain a range of facts,
does not lead to any commitment whatever to that hypothesis.

In short, the use of identical property analogies to generate hypotheses
about unobservables carries no epistemic risk. And this absence of epistemic
risk is one of the important things that Maxwell sees in physical analogies:

We must therefore discover some method of investigation which allows the mind at
every step to lay hold of a clear physical conception, without being committed to
any theory founded on the physical science from which that conception is bor-
rowed. . . . (vol. I, p. 156; emphasis mine)

The fact that the kinetic theory hypotheses would if true correctly explain a
range of facts about gases carries no commitment to such hypotheses. This is
crucial to Maxwell, especially in his first kinetic theory paper, in which he is
extremely guarded about kinetic theory.

If there is, or at least needs to be, no epistemic commitment to the kinetic
theory hypotheses, why invoke them at all? Why should Maxwell have gone
beyond constructing an analogy between a gas and a system of dynamical
particles? A Maxwellian analogy avoids an epistemic commitment to hy-
potheses about unobservable constituents of a gas, but it also avoids the use
of such hypotheses for any purposes. What advantage is gained if one now
introduces the hypothesis that gases are systems of dynamical particles?

Maxwell wants to be able to explain a range of phenomena about gases
(and not just about the analogue system). This is clear from the numerous
occasions in his paper in which he explicitly claims to be explaining viscosity,
pressure, diffusion, and other properties of gases. Moreover, the explanations
he seeks are dynamical ones. They are to invoke a system containing parts in
motion between which forces are acting. Recall the statement at the beginning
of his paper:

So many of the properties of matter, especially when in the gaseous form, can be
deduced from the hypothesis that their minute parts are in rapid motion . . . that
the precise nature of this motion becomes a subject of rational curiosity. (vol. I,
p. 377)
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As he stresses in a later paper, dynamical explanations appealing to the mo-
tions of a system of material parts are the most desirable and the most
fundamental explanations to be found:

. . . when a physical phenomenon can be completely described as a change in the
configuration and motion of a material system, the dynamical explanation of that
phenomenon is said to be complete. We cannot conceive any further explanation to
be either necessary, desirable, or possible, for as soon as we know what is meant by
the words configuration, motion, mass, and force, we see that the ideas which they
represent are so elementary that they cannot be explained by means of anything
else.11 (vol. II, p. 418)

Now to produce a dynamical explanation of gaseous phenomena will re-
quire assumptions about some dynamical system — a system whose parts are
in motion and are subject to forces. If these parts are ones of which gases are
composed then the explanation will require hypotheses about gases — since no
moving parts of gases are observable.12 If these parts are not ones of which
gases are composed, but are ones of some second, analogue system, then no
hypotheses about gases will be invoked. But then no explanations of gaseous
phenomena will be forthcoming either. A dynamical analogy of the sort
Maxwell wants (one neither containing nor supporting hypotheses about gas-
es) will not explain properties and laws of gases. One cannot explain why a
gas exerts pressure on the walls of its container by saying only that the reason
the analogue system of dynamical particles exerts pressure on the walls of its
container is that the particles being in motion continually strike the walls,
producing pressure. The only way the analogy will generate a dynamical
explanation of gaseous phenomena is by generating the hypothesis that gases
are, or are composed of, such systems of (unobserved) particles, or that there
is some (unobserved) causal relationship between the two systems. The for-
mulation of some such hypothesis about the nature of gases is a necessary
condition for the program of dynamical explanation that Maxwell wants to
pursue.

It is a necessary condition but not a sufficient one. Maxwell's program is
not simply to formulate dynamical hypotheses that, if true, would correctly
explain gaseous phenomena, but to produce dynamical hypotheses that do

11. This emphasis on dynamical explanation also appears in Maxwell's earlier writings, for
example, in his Inaugural Lecture at Aberdeen in 1856. But see Essay 6, note 53.

12. Comparing dynamical explanations in molecular theory with those in astronomy and
electrical theory, Maxwell writes: "The investigation of the mode in which the minute particles of
bodies act on each other is rendered more difficult from the fact that both the bodies we consider
and their distances are so small that we cannot perceive or measure them, and we are therefore
unable to observe their motions as we do those of planets, or of electrified and magnetized
bodies." James Clerk Maxwell, Matter and Motion (New York, n.d.); pp. 121-122.
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correctly explain these phenomena. As he says in commenting on the hy-
potheses generated by his analogy:

If experiments on gases are inconsistent with the hypothesis of these propositions,
then our theory, though consistent with itself, is proved to be incapable of [correct-
ly] explaining the phenomena of gases, (vol. I, p. 378)

Hypotheses about gases are necessary (but not sufficient) for correct dynami-
cal explanations of gaseous phenomena, which is something Maxwell seeks.
A physical analogy, such as the one expressed in section 3, neither contains
nor provides a legitimate inference to hypotheses about the unobserved dy-
namical structure of gases (only about the analogue system of particles, and
even then it does not assume such particles actually exist). This is why Max-
well goes beyond such an analogy and constructs dynamical hypotheses about
the unobserved structure of gases.

This is not to assert that analogies can never be explanatory. An analogy
may contain some explanatory hypothesis, even a dynamical one, about the
original system. We might draw an analogy between the way in which (real)
molecules that comprise a gas cause the gas to exert pressure on the walls of
its container and the way imagined (idealized) particles in a second dynamical
system cause that system to exert pressure on the walls of its container. But
this is not a Maxwellian physical analogy, in which the original system is
described so as to avoid hypotheses about its unobserved structure.

In this early kinetic theory paper Maxwell wants to have his cake and eat it
too. He wants to be able to offer dynamical explanations of the properties
and laws of gases, which he can do only by introducing physical hypotheses
about gases. Yet he wants to avoid physical hypotheses about gases, since he
has insufficient evidence to establish them. That is the advantage of using the
method of physical analogy, and that is why he speaks in terms of such an
analogy. The outcome is a compromise. Hypotheses are introduced for ex-
planatory purposes, so they are not avoided. What Maxwell does avoid is an
epistemic commitment to the ones he uses based on their explanatory success.
He is not saying (with the method of hypothesis) that because kinetic theory
hypotheses, if true, would correctly explain various facts about gases, such
hypotheses are confirmed or probable. The compromise allows him to use
hypotheses to explain phenomena, while remaining a skeptic about their va-
lidity once the explanations have been produced. (In his second paper on
kinetic theory, and in later articles "Molecules" and "Atom," where Maxwell
is more confident about his hypotheses, the analogy talk is dropped.)

Why, then, doesn't Maxwell do the same in his early paper on electromag-
netic theory? Why doesn't he go beyond the analogy he constructs between
the electromagnetic field and the imaginary fluid and assume as an hypothesis
that the electromagnetic field is composed of such an unobserved fluid?
Wouldn't this allow Maxwell to explain properties and laws of the electromag-
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netic field? It would, I have suggested, only if he is prepared to say that
analogous properties are identical or causally related. Only if Maxwell as-
sumes that the electric force is the same property as the fluid velocity, or that
the velocity of the fluid causes the electric force to be what it is, can he explain
why the electric force varies as the inverse square of the distance from its
source by explaining why the velocity of the fluid varies as the inverse square
of the distance from its source. But Maxwell is not prepared to make such
assumptions. The analogy here is not an identical property analogy nor one
involving causally related properties. This is why in describing the imaginary
fluid Maxwell writes: "It is not even a hypothetical fluid which is introduced
to explain actual phenomena" (vol. I, p. 160).

6. MAXWELL'S COMMITMENT TO KINETIC THEORY

In his kinetic theory, I have argued, Maxwell sought to introduce hypotheses
about the unobserved parts and structure of gases; otherwise dynamical ex-
planations of gaseous phenomena would not be forthcoming. But he wanted
to avoid an epistemic commitment to those hypotheses that is based solely on
their explanatory success. This was certainly possible for him to do. He could
show that such hypotheses if true could explain gaseous phenomena without
concluding from this fact that the hypotheses are true or even probable. But
this does not necessarily mean that Maxwell remained epistemically neutral
with respect to those hypotheses. There may have been facts other than the
explanatory success of the theory that Maxwell took to provide some support
(or disconfirmation) for the theory. To what extent did Maxwell actually
remain uncommitted?

During the period in which he wrote his first kinetic theory paper he
certainly had no empirical evidence that he thought would establish the theo-
ry. Nor did he have evidence that would altogether refute it. Nevertheless, his
position was not complete epistemic neutrality. Let me mention four facts
that are relevant here.13

1. In the paper he obtains the theoretical result that the ratio of the total
vis viva (kinetic energy) to translational vis viva is 2, whereas, he notes, the
experimental value is 1.634. And he takes this result to be "decisive against the
unqualified acceptation of the hypothesis that gases are such systems of hard
elastic particles" (vol. I, p. 409). I take Maxwell's word "unqualified" serious-
ly here. This result does not, I think, lead him to reject the total theory, only
that part of it that assumes particles act on one another only during impact.
In his second kinetic theory paper he replaces this with the idea that intermo-
lecular forces vary as the inverse fifth power of the distance between mole-

13. These have been noted in a different context in Essay 6, sections 5 and 7.
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cules. Still this result led him to believe that theory in the exact form presented
in his first kinetic theory paper was false and would require modification.

2. Maxwell derives the theoretical result that the coefficient of viscosity is
independent of the density of the gas. He writes that this is "very startling,
and the only experiment I have met on the subject does not seem to confirm
it," (vol. I, p. 391), although there is no mention of the experiment or how it is
disconfirming. In addition, it follows from his theoretical result concerning
viscosity that the coefficient of viscosity is proportional to the mean molec-
ular velocity v. But since absolute temperature T is proportional to v2, it
follows that is proportional to T. Maxwell does not mention this in the
present paper. But in a later (1865-1866) paper "On the Viscosity or Internal
Friction of Air and Other Gases," (vol. II, pp. 1-25), he indicates how elabo-
rate experiments he performed show that is proportional to T. However, in
this later paper Maxwell does not take this experimental result as refuting
kinetic theory but as requiring a change in that theory from contact forces
between molecules to forces varying inversely as the fifth power of the dis-
tance (vol. II, p. 11).

3. Maxwell obtains results pertaining to mean free paths that, given certain
experimentally determined values, he takes to provide some positive support
for the theory. He derives the following theoretical formula for mean free
path:

where is the coefficient of internal friction of a gas and p is density. From a
value for /p supplied by Stokes in experiments on air, and from the value k =
930 ft/s for air at 60°, he derives l = 1/447,000th of an inch for the mean
distance traveled by a molecule between collisions. Later in the paper when
discussing the diffusion of two gases through each other, he derives a different
formula for mean free path (formula (57), vol. I, p. 403). On the basis of this
formula, using the result of an experiment by Graham, he calculates a value
of l = 1/389,000 for mean free path. At the end of his paper he notes
approvingly that these two values for ( are "not very different."

4. It is reasonable to suppose that Maxwell thought that at least the basic
ideas of kinetic theory—that gases are composed of unobservable particles,
that these particles are in motion, that this motion is responsible for heat, and
that the motion satisfies Newtonian dynamics — have some independent war-
rant. There are two reasons, the first of which derives from observations of
heat. In his book Theory of Heat, first published in 1871, Maxwell invokes
certain facts about heat known to him before the publication of his first
kinetic theory paper. He notes that heat is transferable from a hotter to a
colder body by radiation, which must involve some motion of matter in the
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intervening space between the bodies. This motion can only be produced by
motion in the body radiating the heat. But this is not a motion of the body as
a whole, nor of any of its observable parts (which during the heat transfer are
stationary). So Maxwell concludes:

The motion which we call heat must therefore be a motion of parts too small to be
observed separately. ... We have now arrived at the conception of a body as
consisting of a great many small parts, each of which is in motion. We shall call any
one of these parts a molecule of the substance. . . . 14

Thus facts about heat transfer (together with certain assumptions about
motion) provided Maxwell with some reason to suppose that invisible parti-
cles exist as constituents of bodies, that these particles are in motion, and that
their motion is responsible for the radiation of heat. In fact Joule, the discov-
erer of the mechanical equivalent of heat, had proposed a somewhat similar
argument in 1847, and Maxwell was aware of Joule's work.

The second reason Maxwell regarded basic ideas of kinetic theory as hav-
ing some independent warrant is that they involve dynamical hypotheses. This
is explicit in his later paper "On the Dynamical Evidence of the Molecular
Constitution of Bodies," in which he mentions that both astronomy and
electrical science have been successful in analyzing the observed motions of
bodies in accordance with dynamical principles applied to systems of bodies.
He seems to count this success as some reason, albeit by no means conclusive,
to suppose that the same dynamical principles can be applied to the parts of
which gases are composed, even though these parts are not observable. This
reference to the success of dynamical theories is also made in Maxwell's
Inaugural Lecture at Aberdeen in 1856, four years before the publication of
his first kinetic theory paper, and in his Inaugural Lecture at Kings College,
London, in 1860. I suggest that Maxwell was committed at least to the plausi-
bility of (some form of) kinetic theory, based on the success of other dynami-
cal theories dealing with systems of moving parts.

Accordingly, at the time of his first kinetic theory paper Maxwell had some
commitment to basic ideas of kinetic theory, though he recognized that cer-
tain assumptions (particularly those pertaining to intermolecular forces)
would need altering. Experimental results concerning specific heats and vis-
cosity contradicted kinetic theory, precluding an "unqualified" acceptance of
the theory. But there was an experimental result pertaining to mean free paths
that obviously impressed Maxwell. And there was some independent warrant
for (central parts of) the theory from observations of heat transfer and the
success of dynamical theories in other domains — perhaps even enough to
reach the k-threshold of the method of physical speculation discussed in

14. James Clerk Maxwell, Theory of Heat (London, 1875), pp. 304-305.
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section 5. If so, he had at least some reason for believing the theory, even
though his commitment was guarded and tentative. Many more experimental
results would be needed to establish (or refute) the theory. In any case his
commitment was not generated by using the method of hypothesis. He did
not suppose that the success of kinetic theory in explaining gaseous phenome-
na by itself provided support for that theory.

7. CONCLUSIONS

It is possible to construct a physical analogy between a gas and a dynamical
system of particles by showing that (and how) the dynamical system has a set
of properties P 1 , . . . ,Pn and satisfies laws L1, . . . ,Lk, which gases also do.
Such an analogy can have the features Maxwell requires of physical analogies.
It gives a physical rather than a purely mathematical conception for the mind
to grasp; it avoids speculative hypotheses about the unobservable structure of
gases; it represents properties of the gas by analogous (in this case, identical)
properties of the dynamical system and by showing that these properties
satisfy similar (in this case, identical) laws; and it serves the two important
roles that Maxwell imputes to analogies: organization and simplification of
ideas, and working out of problems in one system by solving them in the
other.

In his first kinetic theory paper Maxwell speaks of the kinetic theory as
providing a physical analogy for gases. Yet he goes beyond this analogy by
introducing the speculative physical hypothesis that gases are composed of
systems of unobservable particles. Only in this way can he generate dynamical
explanations of gaseous phenomena. Analogies that preclude hypotheses
about gases will not give Maxwell dynamical explanations of properties and
laws of gases. But the introduction of hypotheses about unobservable parts of
gases violates one of the principal aims of the method of physical analogy. So
a compromise is effected. Maxwell uses explanatory hypotheses about gases
but avoids becoming epistemically committed to them just because they are
explanatorily successful. He does not employ the "method of hypothesis,"
since he does not conclude from the fact that the hypothesis if true would
explain known facts that the hypothesis is true or probable. The reason it is
possible for Maxwell to use the analogy between a gas and a dynamical
system of particles to generate explanatory hypotheses about gases is that this
analogy involves properties in both systems that are identical. By contrast,
Maxwell's analogy between the electromagnetic field and the imaginary fluid
does not involve properties Maxwell regarded as identical (or causally relat-
ed). Consequently, he could not use it to produce hypotheses about the elec-
tromagnetic field.

Although Maxwell avoided becoming committed to kinetic theory on the
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grounds of its explanatory success, he did not adopt a stance of complete
epistemic neutrality. Some experimental results, as well as consideration of
heat transfer and the success of dynamical theories in other areas, tended to
support the theory. And although other experimental results were negative, he
may well have thought that these did not completely refute the theory but
showed only that it requires modification.*

*I have benefited considerably from discussions with Robert Kargon, Gary Hatfield, Michael
Liston, and Mary Hesse.



ESSAY 8

Scientific Discovery
and Maxwell's Kinetic Theory

"Physics is play,"

R. FEYNMAN

"We must bear in mind that the scientific or science-producing value
of the efforts made to answer these old standing questions is not to
be measured by the prospect of ultimately obtaining a solution, but
by their effect in stimulating men to a thorough investigation of
nature."

J. C. MAXWELL

For the hypothetico-deductivist the initial proposing of a new hypothesis or
theory in the "context of discovery," by contrast to its testing in the "context
of justification," is a nonrational event. It involves a guess or conjecture, that
may have a variety of causes, but not an inference subject to logical analysis.
Since N. R. Hanson's revival in the 1950s of Peirce's account of retroduction,
this h-d view has become much less popular than it once was. Using as an
example James Clerk Maxwell's early kinetic theory, I want to argue that
there is an important element of truth in what h-d theorists say about the
context of discovery.

1. MAXWELL'S EARLY KINETIC THEORY

In 1860 Maxwell published "Illustrations of the Dynamical Theory of Gases,"
the first of his two great papers on kinetic theory.1 In it he proposes to work
out a theory of gases "on strict mechanical principles" by demonstrating "the

1. W. D. Niven, ed., The Scientific Papers of James Clerk Maxwell (New York, 1965), vol. I,
pp.377-409.
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laws of motion of an indefinite number of small, hard, and perfectly elastic
spheres acting on one another only during contact" (p. 377). At the beginning
of the paper he sets down basic assumptions of the theory: that gases are
composed of minute particles in rapid motion; that the velocity of the parti-
cles increases with the temperature of the gas; that the particles move with
uniform velocity in straight lines striking against the sides of the container,
producing pressure; that the particles are perfectly elastic spheres; that they
act on each other only during impact; and that their motion is subject to
mechanical principles of Newtonian mechanics.

These assumptions suggest to Maxwell a set of questions: What exactly is
the motion of the particles after they collide? Are all directions of rebound
equally likely? What is the distribution of velocities among the particles?
What is the mean distance traveled by a particle before striking another? And
so forth. Maxwell's project in this paper is to develop the kinetic theory so
that it can answer these and other theoretical questions. The method he
employs to carry out this task is to construct mathematical derivations from
the basic assumptions to theorems that will contain answers to these ques-
tions. In the course of doing so Maxwell introduces further underived as-
sumptions. (For example, in deriving his important distribution law he as-
sumes that the x-, y-, and z-components of velocity are independent; see
Essay 6.)

With the exception of the first page, the paper is devoted entirely to the
derivation of the theorems. Very little attention is given to the origin of the
basic assumptions of the theory. How did Maxwell arrive at them? They are
highly speculative, involving as they do the postulation of unobserved parti-
cles exhibiting unobserved motion. Maxwell does provide two clues concern-
ing their origin. One is that other physicists —Bernoulli, Herapath, Kronig,
and Clausius — also supposed that gases contain particles moving with uni-
form velocity in straight lines. (Hypothetico-deductivists, as we shall see, will
make something of this.) The other is the claim that various observable
properties of gases can be deduced and explained from the assumptions of
kinetic theory postulating motions of particles. (Retroductivists, as we shall
see, will make something of this.)

Let me begin with hypothetico-deductivism. On this view, Maxwell did not
infer his basic assumptions from anything; he guessed them. The physicist
Richard Feynman offers a succinct version of the h-d position:

In general we look for a new law by the following process. First, we guess it. Then
we compute the consequences of the guess to see what would be implied if this law
that we guessed is right. Then we compare the result of the computation to nature,
with experiment or experience, compare it directly with observation, to see if it
works. If it disagrees with experiment it is wrong. In that simple statement is the
key to science.2

2. Richard Feynman, The Character of Physical Law (Cambridge, Mass., 1965), p. 156.
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The initial stage in the process — the guess — may occur as a result of various
causal influences. As with Maxwell, these may include the fact that certain
other physicists had proposed similar ideas. Maxwell was particularly influ-
enced by reading a paper of Clausius entitled "The Nature of Motion Which
We Call Heat," which was published in 1857, some three years before his own
publication. But Maxwell does not draw an inference from the fact that
Clausius and some others have proposed the basic assumptions to the as-
sumptions themselves. He simply appropriates some of the assumptions as
part of his own theory. He makes the same, or some of the same, guesses as
Clausius does. And he proceeds to use these guesses, as well as new ones of
his own, to develop the theory mathematically.

To be sure, guessing is not incompatible with inferring. "Educated" guesses
are inferences from somewhat meager data to conclusions deemed plausible.
However, when h-d theorists speak of guessing they mean guessing that is not
based on an inference from any data or facts. On this view Maxwell did not
draw an inference, did not engage in any reasoning, to the fundamental
assumptions of kinetic theory. In the context of discovery, when Maxwell first
arrived at the hypotheses he wished to consider further he had no data or
facts that provided reasons for believing them.

By contrast, the retroductivist would say that Maxwell did not blindly
guess the basic assumptions of his theory, or simply plagiarize them from
others. He inferred them. He did have reasons for believing them before he
constructed the derivations that constitute the bulk of his paper. More gener-
ally, according to the retroductivist, in the context of discovery a scientist does
and should have some reasons to believe an hypothesis before considering it
further. He or she does and should engage in a type of reasoning that does not
establish an hypothesis but provides (at least some) basis for thinking it is
true. Hanson proposes that it takes this form:

Some surprising phenomenon P is observed.
P would be explicable as a matter of course if H were true.
Hence there is reason to think that H true.3

Peirce suggests

The surprising fact C is observed.
But if A were true, C would be a matter of course.
Hence there is reason to suspect that A is true.4

And Peirce makes it clear that he has in mind an explanatory relation between
A and C.

3. N. R. Hanson, Patterns of Discovery (Cambridge, England, 1958), p. 86.
4. Charles Peirce, Collected Papers. C. Hartshorne and P. Weiss, eds. (Cambridge, Mass.,

1960), vol. 5, 5.189.
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In general, I take retroductivists to be claiming that in the context of
discovery, when an hypothesis is first proposed (and before conclusions from
it — other than those that prompted it in the first place — are drawn and test-
ed), there is an inference, the conclusion of which is that there is some reason
to believe the hypothesis. The inference is based on the idea that the hypothe-
sis if true would explain certain observed data.

Maxwell indeed notes at the beginning of his paper that various properties
of gases can be explained by supposing that gases are composed of minute
parts in rapid motion. Thus, in the paper that preceded his, Clausius, by
means of this assumption, offered qualitative explanations of the pressure
exerted by gases, the work performed by gases when heated, and Gay-
Lussac's law of combining volumes. And Maxwell, before he begins to derive
consequences from the theory, explicitly notes that if gases are composed of
minute particles in motion, then the pressure of the gas on the container is
thereby (qualitatively) explained as being due to the impact of the particles on
the sides of the container. However, whether (as retroductivists would claim)
Maxwell concluded from this and similar explanatory facts that there is a
reason to think his kinetic theory hypotheses are true—whether he made a
retroductive inference—is another matter, to which I will now turn.

2. MAXWELL'S DEMAND FOR "INDEPENDENT WARRANT"5

To begin with, Maxwell does not explicitly draw an inference of the retroduc-
tive sort described above. He does not say that the previous explanatory
success of kinetic theory provides some reason to think that kinetic theory is
true. His conclusion is much more guarded. It is that the previous explanatory
success of a theory that assumes that gases have their minute parts in rapid
motion makes "the precise nature of this motion ... a subject of rational
curiosity" (vol. I, p. 377). The most that Maxwell concludes from the (prelim-
inary) explanatory success of the theory is that it is reasonable to consider it
further. (As I will argue below, it may be reasonable to consider a theory
further without there being reasons to think that it is true.)

Second, in later writings (particularly in a paper published in 1875) Max-
well explicitly rejects reasoning similar in important respects to that described
above. He notes that a method frequently used in getting from the observed
to the unobserved

is that of forming an hypothesis, and calculating what would happen if the hypoth-
esis were true. If these results agree with the actual phenomena, the hypothesis is
said to be verified, so long, at least, as some one else does not invent another
hypothesis which agrees still better with the phenomena. (vol. II, p. 419)

5. Much, although not all, of the material in this section is covered in Essay 7, sections 5 and 6.
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In accordance with this method, if the hypothesis entails and (thereby) ex-
plains known phenomena, then (in the absence of more successful hy-
potheses) it is verified or at least strongly supported. Maxwell objects to this
method on the ground that if the hypotheses are not left vague and useless but
their details are filled in, there will be an "illegitimate use of the imagination."
There will be insufficient empirical grounds to favor one hypothesis over a
multitude of others that also entail and explain the known phenomena.

Moreover, although Maxwell does not explicitly mention this, there will be
"crazy" hypotheses —ones that, given all of our background information,
have a probability as close to zero as you like—that nevertheless (together
with background information) entail observed data, and if true, would ex-
plain those data.6 Yet this would constitute no reason for thinking them true.
To take a nonscientific example, let the observed fact be that I am happy
about the news I have just received. Let the hypothesis h be that I have just
received the news that I have won the Nobel prize in literature. Let the
background information include the fact that anyone who is awarded a Nobel
prize is happy when he or she receives the news. Hypothesis h together with
this background information entails that I am happy about the news I have
just received, and if h were true it would correctly explain my happiness. But
this fact provides no reason for thinking I have just received news I have won
the Nobel prize.7

To avoid these illegitimate flights of fancy, but still allow certain hy-
potheses to be introduced, Maxwell in this paper of 1875 proposes what he
calls a "method of physical speculation" (vol. II, p. 420), which requires that
an hypothesis have independent warrant for it to be believable. It is not
sufficient that some observed phenomena be derived or explained via an
hypothesis. However, Maxwell does derive and explain known phenomena
from hypotheses, and there are occasions on which he takes such derivations

6. Peirce was aware that retroductive reasoning can yield such hypotheses, but he seems not
to take this as a mark against retroduction. To the question: Why then do scientists make
retroductions to the hypotheses they do —retroductions to the "reasonable" rather than the
"unreasonable" ones?, his answer is that we possess a certain faculty of insight: "This Faculty is
at the same time of the general nature of Instinct, resembling the instincts of the animals in its so
far surpassing the general powers of our reason and for its directing us as if we were in possession
of facts that are entirely beyond the reach of our senses" (Peirce, op. cit., 5.173).

7. In this example there is only one observed fact being explained. But the same problem
arises even if the hypothesis inferred is required to explain or to entail numerous, varied observa-
tions. Let O1, . . . ,On be a conjunction containing as many and varied observed facts as you
like, including, for example, "the sky is blue," "grass is green," and "the sea is salty." Our
hypothesis h is a conjunction of two propositions, the first of which postulates the existence of
X, where X is anything you like, however implausible. The second conjunct in h is of the form "If
X exists, then X causes it to be the case that O1, . . . ,On," where the latter are the many and
varied observation reports above. Hypothesis h entails these observation reports, and if true
correctly explains them. Yet this fact provides no reason for thinking that h is true.
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or explanations as providing some positive support for the hypotheses. For
example, he cites a version of Clausius' virial equation that relates the pres-
sure and volume of a gas to the kinetic energy of the particles it contains and
to the distances between particles and the forces between them. He shows how
this equation can be used in deriving and explaining Boyle's law as well as
observed deviations from Boyle's law at low temperatures and high densities.
And he takes this as providing support for ideas contained in the virial equa-
tion. From the fact that the virial equation entails and explains deviations
from Boyle's law at high densities and the fact that such deviations are ob-
served, Maxwell concludes that at high densities there are significant forces
between molecules and that these are mainly attractive — in accordance with
the ideas of the virial equation. But if the h-d and retroductive accounts are to
be rejected, how can these facts provide such support? What Maxwell is
assuming, I suggest, is that they can provided there is independent warrant for
the virial equation, which Maxwell thought there was, since this equation in
its general form is derivable from Newton's second law, which enjoys induc-
tive observational support.

Although Maxwell does not use this terminology, the requirement of inde-
pendent warrant might be understood as demanding that the hypothesis have
some significant probability in the light of observed phenomena that are part
of the background information. I take this to be satisfied for Maxwell if there
is an inductive, or causal-inductive, connection between such phenomena and
the hypothesis, or between the phenomena and principles from which the
hypothesis follows — connections of the kinds illustrated in Part I of this
volume in the case of wave and particle theories of light. Maxwell himself
insists that the independent warrant is to be supplied by the "observed phe-
nomena"; and he uses the term induction, to be sure without defining it,
although the example he employs in the present context, and others I
shall note below, are plausibly understood as involving inductive and causal-
inductive generalizations. (See also the quote from his article "Atom" in Essay
5, p. 161.) Since he explicitly rejects the method of hypothesis, Maxwell's
requirement of independent warrant will not be satisfied simply if the hypoth-
esis explains the observed phenomena. (Perhaps Maxwell would recognize
other sources of independent warrant, but if so this is not clear.)

To draw a contrast with retroduction, I shall consider Maxwell's method of
physical speculation insofar as it is applicable to explanations. Both method-
ologies can be understood as committed to views about when the fact that an
hypothesis explains something can be taken as some reason to believe it true.
Let me formulate these two views initially as follows:

Basic retroduction. Given the background information b, the fact that
hypothesis h, if true, would correctly explain observed facts O1, . . . ,On
constitutes at least some reason for thinking that h is true.
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Maxwell's method of physical speculation. Given the background informa-
tion b, the fact that h, if true, would correctly explain observed facts
O1, . . . ,On constitutes at least some reason for thinking that h is true
provided that p(hlb) > k.

Basic retroduction has as its only condition that h if true correctly explains
O. Further conditions can be added (for example, conditions on the explana-
tion) to obtain more complex versions. But as I will understand retroduction,
it will not require that there be independent warrant for h.8 The second
condition in Maxwell's method represents this requirement. My Nobel prize
hypothesis, if true, would correctly explain why I am happy over the news I
have received. But this fact constitutes no reason for thinking this hypothesis
is true, since, given the relevant background information, its probability is as
close to zero as you like. It has no independent warrant. I suggest that
Maxwell was right in rejecting basic retroduction, and that his indepen-
dent warrant condition, or something like it, is required in addition. (If it is
satisfied, then h at least retains its significant probability in the light of

8. Do retroductivists such as Hanson and Peirce have in mind additional conditions for
retroduction? If so do these include independent warrant? Hanson, after introducing the retro-
ductive inference form cited earlier, indicates two conditions he attaches to the idea of "explicable
as a matter of course" (pp. 87-88). One involves the idea of providing what he calls a "pattern" in
terms of which to understand the observed phenomena. The other stipulates that "if h is meant to
explain P, then h cannot itself rest upon the features in P which require explanation" (p. 88). (His
example is that you can't explain the green color of chlorine by appeal to green atoms.) Whatever
these conditions amount to, they do not seem to require any significant probability for h. Just
before Peirce introduces his retroductive schema he writes:

Long before I first classed abduction [retroduction] as an inference it was recognized by logicians that the
operation of adopting an explanatory hypothesis — which is just what abduction is—was subject to certain
conditions. Namely, the hypothesis cannot be admitted, even as a hypothesis, unless it be supposed that it
would account for the facts or some of them. (5.189)

In the present passage the only condition on retroductive inference that Peirce suggests is the
explanatory one. In other writings, however, Peirce mentions two additional conditions (7.220).
One is that the hypothesis be empirically testable. The other is that it be "economical." Among
the several considerations that Peirce includes under economy is the "expectation that a given
hypothesis may be true," which may be based on "positive facts which render a given hypothesis
objectively probable." However, Peirce does not demand such probability as a necessary condi-
tion for a retroductive inference. He writes:

Nothing has caused so much waste of time and means, in all sorts of researches, as inquirers becoming so
wedded to certain likelihoods as to forget all the other factors of the economy of research; so that, unless it
be very solidly grounded, likelihood is far better disregarded, or nearly so; and even when it seems solidly
grounded, it should be proceeded upon with a cautious tread, with an eye to other considerations, and a
recollection of the disasters it has caused. (7.220)

Accordingly, while Peirce's position in the present passage is more complex than that expressed in
his own retroductive schema given above, it would be incorrect to equate it to Maxwell's method
of physical speculation.
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O1, . . . ,On if the latter are explainable via derivation from h and b; if some
of the O's are predictions with a probability less than one, then h's probability
increases. See Essays 3 and 4.)

To return now to his first kinetic theory paper, for Maxwell to have reason-
ably concluded that the success of kinetic theory in explaining the pressure
and other observed properties of gases constitutes some reason for believing
true the assumptions of kinetic theory, there would need to be background
information that gave some significant probability to these assumptions. Did
Maxwell have such independent warrant?

There are, I think, two plausible candidates for such warrant: observations
of heat and the success of dynamical theories.

Argument from Observations of Heat

In his book Theory of Heat, first published in 1871, Maxwell offers indepen-
dent support for certain basic ideas in kinetic theory from facts about heat
(facts known to him and the physics community before the publication of his
first kinetic theory paper), together with widely shared assumptions about
motion. Heat is known to be transferable from a hotter to a colder body by
radiation. Now, says Maxwell,

Whatever theory we adopt about the kind of motion which constitutes radiation, it
is manifest that radiation consists of motion of some kind, either the projection of
the particles of a substance called caloric across the intervening space, or a wave-
like motion propagated through a medium filling that space. In either case, during
the interval between the time when the heat leaves the hot body and the time when
it reaches the cold body, its energy exists in the intervening space in the form of
motion of matter.9

Now this motion of matter in the intervening space can only be caused by
motion in the body radiating the heat.

Every hot body, therefore, is in motion. We have next to enquire into the nature of
this motion. It is evidently not a motion of the whole body in one direction, for
however small we make the body by mechanical processes, each visible particle
remains apparently in the same place, however hot it is. The motion which we call
heat must therefore be a motion of parts too small to be observed separately. . . .

We have now arrived at the conception of a body as consisting of a great many
small parts, each of which is in motion. We shall call any one of these parts a
molecule of the substance. . . . (pp. 303-305)

Maxwell's argument from considerations of heat transfer depends on various
assumptions about motion that he seems to regard as plausible, for example,
that motion can only be caused by other motion, that if something is moved

9. James Clerk Maxwell, Theory of Heat (London, 1875), p. 303.
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from A to B there is motion at A, and that if there is motion at A but this is
unobservable, then there is unobserved matter in motion. Presumably, such
assumptions are based on inductions from observable cases of motion. The
argument is written with a degree of certainty about the existence of mole-
cules that was lacking years earlier when he published his first kinetic theory
paper. But it is conceivable that the known facts about heat transfer, together
with assumptions about motion, would have provided Maxwell with at least
some independent warrant for (a) the existence of invisible particles as con-
stituents of bodies, (b) the claim that these particles are in motion, and (c) the
claim that the motion of these particles is responsible for the radiation of
heat. In fact a somewhat similar argument had been given in 1847 by Joule
(who discovered the mechanical equivalent of heat).10 And Maxwell was aware
of Joule's work.

I will not here try to assess the claim that these observations of heat
radiation (in the light of assumptions about motion) provide at least some
independent warrant for (a) through (c). It is plausible to suppose that Max-
well took them to do so. More generally, kinetic theorists of this period cited
such facts, together with Joule's discovery of the mechanical equivalent of
heat and the problems besetting the caloric theory, as providing some support
for the idea that heat is molecular motion.

Argument from the Previous Success of Dynamical Theories

In 1856 in his Inaugural Lecture at Aberdeen, as well as in 1860 in his
Inaugural Lecture at King's College, London, Maxwell stressed the success of
dynamical theories—those that describe systems containing parts in motion
between which forces that obey Newtonian laws are acting. He notes the
success of dynamical theories in astronomy and he takes this success as
providing at least some inductive reason, though by no means a conclusive
one, to think that dynamical principles are applicable to any physical system
composed of moving parts, whether or not these parts and their motion are
observable. In 1875 in his paper "On the Dynamical Evidence of the Molecu-
lar Constitution of Bodies" Maxwell reiterates the success of dynamical theo-
ries in other domains—this time adding "electrical science" to astronomy—
and he again takes this as some reason to suppose that Newtonian principles
are applicable to unobservable parts of bodies.

In sum, then, we have the following two ideas:

(i) Considerations of heat transfer (together with widely held assumptions about
motion, and also, let us say, with Joule's determination of the mechanical
equivalent of heat and the difficulties of caloric theory) lend some support to

10. See James Joule, "On Matter, Living Force, and Heat," in S. G. Brush, ed., Kinetic
Theory, vol. 1 (Oxford, 1965), pp. 78-88.
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the claim that bodies contain unobservable parts, that these parts are in mo-
tion, and that this motion is responsible for heat.

(ii) Considerations of the success of Newtonian dynamical principles in other
domains suggest that if bodies are composed of unobservable parts in motion,
then this motion too is subject to Newtonian dynamical principles.

Combining (i) and (ii) we get some independent warrant for basic ideas of
kinetic theory. I shall assume that Maxwell did have both (i) and (ii) on his
mind when he proposed his fundamental assumptions of kinetic theory. If so,
it looks as if retroductivists are right on at least one important point. Maxwell
did not simply guess these assumptions. He inferred them from certain facts.
Where those who support the basic retroductive position go awry—at least
from the Maxwellian point of view — is in supposing that the fact that kinetic
theory, if true, would correctly explain certain observed properties of gases
suffices to justify an inference to that theory. As required by Maxwell's own
method of physical speculation, such an inference is reasonable only if there
is at least some independent warrant for the assumptions of kinetic theory.
On the present considerations such an inference is reasonable, since there was
independent warrant.

3. IS HYPOTHETICO-DEDUCTIVISM REFUTED?

If Maxwell inferred the basic assumptions of kinetic theory, and if his infer-
ence was reasonable, is hypothetico-deductivism refuted? I want to challenge
this conclusion by challenging the premises. Although Maxwell was in a posi-
tion to reasonably infer some of his assumptions in kinetic theory—and for
the sake of the argument let us suppose he did so — he was not in a position to
reasonably infer the entire set. From the fact that h1, . . . ,hk if true would
correctly explain 01 . . . ,On we are permitted to infer that (there is some
reason to think that) hl, . . . ,hk are true only if there is independent warrant
for h1, . . . ,hk. But from the fact that there is independent warrant for some
members of this conjunction, it does not follow that there is independent
warrant for the entire conjunction.

Let us look again at the two independent warrant considerations. What
they make plausible are certain assumptions about matter generally, not just
about gases. Considerations of heat radiation — whether from gases, liquids,
or solids — suggest that there is motion of unobservable parts in the matter
that is heated. And considerations from the success of dynamical theories
suggest that the motion of these parts obeys Newtonian dynamics. But these
considerations have nothing to say about:

1. The paths of the molecules in a gas. Maxwell assumes that the particles
travel in straight lines only. But considerations from heat transfer and
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from the success of dynamical theories in astronomy and electrical science
do not preclude stationary molecules that exhibit rotational motion. (A
rotational theory had been suggested in 1847 by Joule.11) And if we do not
assume that the forces acting between the particles are contact forces, the
independent warrant considerations permit nonlinear translatory motion.
(Indeed, in his second paper on kinetic theory Maxwell abandons contact
forces in favor of a law according to which the force between two mole-
cules varies as the inverse fifth power of the distance between them.)

2. The particular force law governing molecules in a gas. Maxwell assumes
in this paper that the only forces are contact forces. Newtonian principles
require that the force, whatever it is, satisfy F = ma. But these principles
do not require contact forces. As in astronomy and electrical theory, mole-
cules may exert forces at a distance. That is, what is known about other
forces in nature does not provide more support for contact than for non-
contact forces.

3. The shape of molecules. Although Maxwell assumes molecules are spheri-
cal, this is not required by Newtonian dynamics or by considerations from
heat transfer. In his second kinetic theory paper Maxwell abandons this
assumption.12

4. The relationship between components of molecular velocity. Although it
is not one of the assumptions given at the outset of his paper, to derive a
velocity distribution law Maxwell assumes (without any argument) that the
different spatial components of velocity are independent. This allows him
to suppose that the probability that a molecule has an x-component of
velocity between x and x + dx is independent of the probability that it has
a y-component between y and y + dy, and of the probability that it has a
z-component between z and z + dz. (See Essay 6.) This assumption is not
required by Newtonian dynamics or by heat transfer considerations. In his
second kinetic theory paper he abandons this assumption and offers an
alternative derivation of his distribution law.

At most, the two independent warrant considerations provided the basis
for an inference to assumptions that Maxwell made that gases are composed
of unobservable particles, that these particles are in motion that is also unob-
servable, that this motion is responsible for heat (so that the temperature of

11. Ibid., p. 86.
12. "In the present paper I propose to consider the molecules of a gas, not as elastic spheres

of definite radius, but as small bodies or groups of smaller molecules repelling one another with a
force whose direction always passes very nearly through the centres of gravity of the molecules,
and whose magnitude is represented very nearly by some function of the distance of the centres of
gravity" (Maxwell, Scientific Papers, vol. II, p. 29).
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the gas increases with the velocity of the particles), and that the motion of the
particles satisfies Newtonian dynamics. But the independent warrant consid-
erations do not provide a basis for an inference to a number of very central
assumptions that Maxwell made pertaining to the paths of molecules, the
forces between them, their shapes, and the relationships between components
of their velocity. At best, the retroductivist is right in claiming that there were
fundamental assumptions in kinetic theory to which Maxwell made, or was in
a position to make, a reasonable inference at the outset when he proposed
them. But unless we can find more independent warrant than we have so far,
there were other fundamental hypotheses to which Maxwell was not in a
position to make a reasonable inference at the outset. Indeed, Maxwell most
likely introduced the method of physical speculation with just this situation
in mind. Certain quite general assumptions concerning the existence and mo-
tion of gas particles have independent warrant. But these are not enough to
yield a specific model, which requires further hypotheses concerning the
forces between particles, their shapes, and so on. Can we conclude with the
hypothetico-deductivist that Maxwell made no inferences to such hypotheses
but simply guessed them?

4. SIMPLICITY AND ANALOGY

Before we draw this conclusion, two additional factors might be noted. The
first is simplicity. Doesn't the fact that Maxwell's basic explanatory assump-
tions were simple ones provide some reason to believe them? That depends on
the source of their simplicity.

Consider Maxwell's assumption about the paths of molecules. Straight-
line motion is simpler than rotational motion or than translation along, say,
an elliptical path. The source of this simplicity is mathematical. Linear equa-
tions of the form Ax + By + C = 0 are mathematically simpler than those
for conic sections (which include ellipses) of the form Ax2 + By2 + Cxy +
Dx + Ey + F = 0. But does the fact that the equation for a straight line is
simpler than that for an ellipse make the hypothesis that molecules travel in
straight lines more probable than that they travel in elliptical orbits? (Keep in
mind that we are assuming nothing about the motion of particles except that
it obeys Newton's laws; in particular we are making no assumption about the
type of force between molecules.) Suppose you take the same walk each night,
but I know nothing about the path you take. Does the fact that the equation
for a straight line is simpler than that for an ellipse make it more likely that
your path is linear than elliptical? Such a conclusion seems very dubious.

Or take Maxwell's assumption about the forces between molecules. A force
law of the form F = 0 (except when the distance between the centers of two
molecules equals the sum of their radii) is mathematically simpler than one of
the form Fa 1 / n . But does this fact make the hypothesis that molecules exert
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no forces on each other except at contact more probable than that they exert a
noncontact force that varies inversely as some power of the distance between
them? Again the reasoning is not persuasive.

I am not here making the more general claim that simplicity is always
irrelevant for probability. I assume only that where one physical hypothesis is
simpler than another solely because an equation in one is mathematically
simpler than an equation in the other we cannot on this basis alone conclude
that one is more probable than the other. Since the source of simplicity in the
hypotheses about the paths of molecules and the forces between them derives
(as I see it) entirely from such mathematical simplicity, we do not yet have a
reason to believe such hypotheses. This does not mean that the mathematical
simplicity of the equations is irrelevant in determining whether to consider a
certain hypothesis (more of this later). What I am disputing is only that it
necessarily enhances the probability of the hypothesis or renders it high.

It has been argued that analogies can provide support for basic assump-
tions of a theory.13 Maxwell himself emphasizes the use of analogies in devel-
oping theories, particularly in his early work in electromagnetism. In the
present paper on kinetic theory he also mentions at two points that he is
seeking to draw a "physical analogy" between a gas and a system of unobserv-
able particles of the sort he describes in his basic assumptions. Unfortunately,
Maxwell does not spell out his analogy idea in kinetic theory the way he does
in electromagnetism. But he may have had in mind something like this (see
also Essay 7).

We have an "original" system—in this case a gas—that has certain known
properties and satisfies known laws. For example, a gas exerts pressure on the
walls of its container; it has a certain density and temperature; it exhibits
viscosity; and it satisfies Boyle's law. We now describe a second system, the
"analogue" system, in terms of a set of assumptions. For example, we de-
scribe a dynamical system containing an enormous number of unobservable
particles satisfying all of the assumptions that Maxwell makes at the begin-
ning of his paper, including the assumption that molecules are spherical, that
they travel in straight lines, that they are subject only to contact forces, and so
forth. We then show that (and how) this analogue system has (some or all of)
the same properties and satisfies (some or all of) the same laws as the original
system. Thus we show that (and how) the dynamical system of particles exerts
pressure on the walls of its container; that it has density, temperature, and
viscosity; and that it satisfies Boyle's law.

Could this analogy provide some support for those assumptions of kinetic
theory for which we found no independent warrant in section 3? If so, pre-
sumably there would be a reasonable argument with a form such as this:

13. See Mary Hesse, The Structure of Scientific Inference (Berkeley, Calif., 1974); Robert
McLaughlin, "Invention and Appraisal," in R. McLaughlin, ed., What? Where? When? Why?
(Dordrecht, 1982), pp. 69-100.
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Gases have properties P1, . . . ,Pn.
The analogue system of particles also has properties P1, . . . ,Pn, and it
does so because it satisfies molecular assumptions hl, . . . ,hn.
Hence there is reason to suppose that gases also satisfy molecular assump-
tions h1, . . . ,hn (or assumptions similar to these).

But such an argument is legitimate only if there is some reason to preclude the
description of analogue systems in which properties P1, . . . ,Pn are produced
by quite different causes. If no reason is given to think that a system satisfying
molecular assumptions A1, . . . ,hn is the only one capable of manifesting
properties P1, ... ,Pn, or, if not the only one capable, is more likely to exist
than the others, then the argument above carries no force.

Now from our earlier discussion let us grant that there is some reason to
believe that there exists a set of unobservable particles that satisfy Newtonian
laws and are responsible for heat transfer. But (so far at least) we have no
support for the assumption that in addition those particles are spherical,
move in straight lines, exert contact forces, and have independent components
of velocity. We have no support for the claim that there exists a set of particles
of just the kind postulated by Maxwell in his kinetic theory. Nor do we have
support for the claim that only such a system of particles can satisfy the
properties and laws of gases, or that if various systems can, this one is the
most likely to exist. The fact that we can imagine such particles and show that
as a consequence of all of Maxwell's assumptions a set of such particles has
certain properties (for example, pressure and viscosity) and satisfies certain
laws (for example, Boyle's law) identical to those of gases does not by itself
provide a reason for thinking that gases are such systems.

The situation here is similar to the earlier one involving basic retroduction.
The fact that we can describe a hypothetical system that, if it existed (as
described), would explain some phenomenon cannot by itself, according to
Maxwell, be taken as a reason to suppose that system exists. Similarly, the fact
that a certain system, if it existed (as described), would have many of the same
properties as gases cannot by itself be taken as a reason to suppose that such a
system exists, or to conclude by analogy that gases have many properties
identical or similar to the ones attributed to the hypothetical system. Indeed,
in his early work on electromagnetism Maxwell makes it clear that his use of
analogies avoids any commitment to hypotheses about unobservables. In his
paper "On Faraday's Lines of Force" Maxwell constructs a physical analogy
between the electromagnetic field and an incompressible fluid flowing
through tubes of varying section. But from the fact that the fluid he describes
has certain properties and satisfies certain laws analogous to those of the
electromagnetic field, he does not conclude that there is any reason to sup-
pose that such a fluid exists or that the electromagnetic field has analogous
microproperties.
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5. WHAT MAKES AN HYPOTHESIS WORTH CONSIDERING?

Let us grant that Maxwell inferred some of his basic assumptions, and that he
did so on the basis of considerations from heat transfer and the success of
dynamical theories in other domains. This still leaves important assumptions
for which these considerations provide no independent warrant. To be sure,
these assumptions (plus the others) if true would correctly explain a range of
gaseous properties. But unless there was some independent warrant for them,
Maxwell was not in a position to infer from this that there is a reason to think
that these assumptions are true. He (rightly) rejected the basic retroductive
account.

Here I propose to agree with the hypothetico-deductivists. Maxwell did not
make any inference to a number of his central postulates when he first pro-
posed them for consideration. He had no reason at all to think they were true.
Although Maxwell had some reason to think that gases are composed of
unobservable particles in motion satisfying Newtonian laws, he had no reason
at all to think that such particles are spherical in shape, or that they exert only
contact forces, or that their motion is linear rather than nonlinear, or that
their velocity components are independent.

Does this mean that h-d theorists would be correct in saying that Maxwell
simply guessed these hypotheses? Suppose that a detective has ruled out all
but ten suspects as perpetrators of the crime. The rest have airtight alibis. He
then chooses one at a time to investigate. In choosing a particular one of these
to investigate first the detective is not, or need not be, guessing that this
person is guilty. That would be too strong an epistemic commitment for him
to have. Rather, the detective is investigating the possibility that the person in
question is guilty. Similarly, although Maxwell did not infer that molecules
are spherical from any considerations, neither did he guess that this is so. In
proposing this as a basic assumption he was simply considering that possibili-
ty. In doing so he was exhibiting no epistemic commitment to the truth or
probability of this assumption.

But if Maxwell had no reason at all to think that molecules are spherical
how could he have rationally proposed to consider that possibility? Such an
hypothesis was worth considering even if it had no independent warrant, even
if there was no reason to think it was true. How can this be so?

For the retroductivist, as we have described his position so far, it cannot be
so. An hypothesis is worth considering only if there is some reason to think it
is true. However, we might alter retroductivism by dropping this requirement
and substituting

(1) Given observations O, hypothesis h is worth considering if and only if
h if true would correctly explain O.
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We would then be construing retroductivism as a position about when an
hypothesis is worth considering, and not about when there is reason to think
it true. Indeed, although Hanson does formulate retroductive reasoning in
such a way that it has "therefore there is reason to think that h is true" as the
conclusion, on occasion he also formulates it so that the conclusion is "there-
fore h is worth considering" or "therefore there is good reason for elaborating
h."14 If we do not construe this as implying that there is reason to think that h
is true, we allow for the possibility that h may be worth considering even if
there is no reason to think it is true.

Unfortunately, the alternative retroductive thesis (1) provides a condition
that is neither necessary nor sufficient. That it is not necessary will be shown
by an example below used to criticize an even stronger version (2). That it is
not sufficient is demonstrated by means of examples that invalidate the pre-
vious version as well. There are numerous hypotheses that if true would
correctly explain some observations but are not worth considering on the
basis of those observations. To use an earlier example, let O be that I am
happy about the news I have just received. Let h be that I have just received
the news that I have won the Nobel prize in literature. Hypothesis h if true
would correctly explain O. But h is not worth consideration given O and
background information.15

Maxwell and others who reject retroduction as well as the h-d method
might suggest that the reason the Nobel hypothesis is not worth considering is
that it is absolutely crazy. That is, given my background information b, the
probability of h on b is approximately zero. Accordingly, we might write

(2) Given background information b and observations O,
hypothesis h is worth considering if and only if
(a) h if true would correctly explain O.
(b) p(hlb) is not (approximately) 0.

This can be construed as weaker than the Maxwellian independent warrant
condition, since the second clause requires only that the probability of h given
b not be very close to 0. It does not require that there be some independent
reason to think h true, only no overwhelming reason to think h false.

I suggest that (2) is too strong. Neither (a) nor (b) is a necessary condition.
Given the background information and a set of observations O, h may be
worth considering even if h is incompatible with O —so that h if true would
not correctly explain O. For example, given Maxwell's background informa-
tion, and given observations about the viscosity of gases — including the ob-

14. See N. R. Hanson, "The Logic of Discovery," in P. Achinstein, ed., The Concept of
Evidence (Oxford, 1983), pp. 60-61.

15. The same problem arises even if we ngthen (1) by requiring that h explain a variety of
observations. See note 7.
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servation that the coefficient of viscosity varies with the absolute temperature
of the gas — Maxwell's molecular hypothesis about viscosity may well have
been worth considering. (Maxwell's hypothesis was that molecules exist in
various layers in the gas, those in different layers having different mean
velocities; those in one layer may pass into another layer, striking the particles
in it and exerting a tangential force that produces the viscosity of the gas.) Yet
Maxwell's molecular hypothesis about viscosity (together with the rest of his
kinetic theory) entailed that the coefficient of viscosity is proportional not to
the temperature of the gas but to the square root of the temperature. Accord-
ingly, his hypothesis, if true, would not correctly explain an important ob-
served fact about viscosity, thus violating (2a).

Moreover, suppose we consider some different observation entailed by his
theory, for example, that the coefficient of viscosity of a gas is independent of
the density of the gas. This observational conclusion would be correctly
explained by Maxwell's "layer" hypothesis if the latter were true. Suppose now
we include in the background information b the observed fact that the coeffi-
cient of viscosity varies with the absolute temperature of the gas. Since Max-
well's "layer" hypothesis h is incompatible with the latter, p(hlb) = 0. Despite
this fact, given the observed independence of viscosity and density, Maxwell's
"layer" hypothesis might have been worth considering, thus violating (2b).

One might be tempted to weaken (2) by requiring not that (a) and (b) be
true but that they be reasonable to believe (thus obviating the last objection).
But this is still too strong a requirement. Maxwell may have had no reason
whatever to believe that his molecular hypothesis about viscosity, if true,
would correctly explain various known facts about gaseous viscosity. He did
have a good reason to suppose that if true it would correctly explain (in a
qualitative way) the existence of viscosity. But whether, if true, it would offer
a quantitative explanation of the observed relationship between viscosity and
other known quantities such as temperature was another matter. His hope was
that it would. But he may have had no reason to suppose that it would.
Moreover, he may have had no reason to believe anything about the probabili-
ty of his molecular hypothesis about viscosity, given his background informa-
tion and given the observation that viscosity varies with temperature. It may
have been reasonable to suspend belief on this probability. Still on the basis of
the background information and observed facts about viscosity his particular
hypothesis about viscosity may well have been worth considering.

Indeed, an hypothesis may be worth considering even when the scientist as
yet has no observational data that that hypothesis could in principle explain.
Maxwell had no observational data regarding the distribution of molecular
velocities. (See Essay 6. Such data became available only in the 1920s with the
introduction of molecular beam experiments.) Yet in order to determine a
theoretical law giving the distribution of molecular velocities, Maxwell intro-
duced the hypothesis that velocity components are independent. This hypoth-
esis was worth considering even though it did not explain observational data
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that Maxwell had concerning molecular velocity components or the distribu-
tion of velocities.

How can these things be so? How can an hypothesis be worth considering
even though, if true, it would not explain the data one has, or if one as yet has
no data for it to explain?

6. A BROADER PROPOSAL

Let me propose a new way of looking at the situation. On the basis of certain
considerations, Maxwell makes these assumptions:

1. Gases are composed of unobservable particles.
2. These particles are in motion, which is also unobservable.
3. The motion of the particles is responsible for heat transfer.
4. The motion of the particles satisfies Newtonian dynamics.

Call this set Ti (initial assumptions). In Maxwell's case Ti consists of those
assumptions for which he had some independent warrant. But we need not
suppose that this is necessary. Perhaps Ti contains assumptions made by
others, or just formulated de novo by the scientist — assumptions for which
the scientist has no independent warrant and with respect to which he or she
is, for the moment, epistemically neutral.

The assumptions in Ti generate a set of questions, for example,

a. What is the motion of the particles? What paths do they take?
b. What are the forces between particles?
c. What is the shape of the particles?
d. How are velocities distributed among particles?

More generally, T (together possibly with other background assumptions
being made) will be said to generate a question Q if T (together with these
additional assumptions) entails a complete presupposition of Q. A question
such as (a) presupposes a number of propositions, for example,

(i) There are particles.
(ii) There is motion.

(iii) The particles have some motion.

Any proposition entailed by a proposition presupposed by a question will also
be said to be presupposed by that question. A complete presupposition of a
question is a proposition that entails all and only the presuppositions of that
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question.16 Of the three propositions in the foregoing set only (iii) is a com-
plete presupposition of question (a). Since this proposition is entailed by Tt

the question (a) is generated by 7t. Similarly, questions (b), (c), and (d) are
generated by Tt (together with certain other assumptions Maxwell was mak-
ing). For example, assumptions (1), (2), and (4), together with the additional
assumption (which Maxwell would have taken as plausible) that particles are
three-dimensional bodies, entail "the particles have some shape." Since this is
a complete presupposition of question (c), the latter is generated by T,. By
contrast, question

e. Why did God create unobservable moving particles?

also presupposes (i) through (iii). But its complete presupposition:

God created unobservable moving particles for some reason

is not entailed by 7t. Accordingly, Tt does not generate (e).
Sometimes an answer to a generated question is mathematically or logical-

ly derivable from the set 7). But very often it is not. Such an answer, when
forthcoming, will be a new underived assumption in the theory. Many such
answers to a given question may be possible. For example, to question (b) one
might respond with the law F = 0 (except at impact), or with any law of the
form F 1/rn. Such answers to (b) would entail different answers to (a). When
is it reasonable to consider one of the assumptions? Let me offer the follow-
ing sufficient condition:

Given Ti, a new assumption A is worth considering if it answers a question
Q generated by 7) in such a way as to satisfy a set of appropriate instruc-
tions for Q.

Instructions are rules for answering a question. They provide constraints on
the answer, and include typical methodological considerations, for example,

1. Very general methodological criteria valued in science. Instructions may
require that the answer to Q satisfy some standard of generality (for exam-
ple, that it employ laws), that it be mathematically formulated, that there
be some empirical evidence supporting it, that it be simple, unifying, and
so on.

2. More specific empirical constraints. Instructions may require that the an-
swer to Q satisfy Boyle's law, or the principle of conservation of energy, or
the principle that there are no preferred directions in space.

16. See Peter Achinstein, The Nature of Explanation (New York, 1983) pp. 29ff.
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3. Pragmatic constraints. The instructions may require that the answer be
one that is mathematically tractable, or one the empirical testing of which
is relatively simple.

Obviously given considerations of types (2) and (3), the question of wheth-
er some set of instructions is appropriate is highly contextual. What specific
empirical constraints it is appropriate to impose will depend upon what is
known or knowable by the scientist and his community. It would not be
appropriate to require Maxwell to propose answers that satisfy special relativ-
ity. Similarly, whether a given answer is mathematically tractable or testable
depends on the mathematical and empirical procedures usable by those in the
scientific community. Indeed, even the applicability of criteria in (1) is context
dependent. These criteria (I have argued in The Nature of Explanation, ch. 4)
provide neither necessary nor sufficient conditions. Whether generality, preci-
sion, empirical support, simplicity, or other conditions are needed for an
hypothesis to be worth considering will depend in part on the specific knowl-
edge of the community and on the kinds of answers it is interested in achiev-
ing. Yet they are relevant criteria. They set a direction for what kind of
hypotheses scientists should try to consider at some point. To determine
whether some particular set of instructions is appropriate, these criteria must
be used in conjunction with contextual facts.

Moreover, whether a particular answer to Q satisfies appropriate instruc-
tions will depend on whether the question itself is worth pursuing. Questions
generated by a theory that pertain to some quantity such as motion or to some
quantitative relationship such as mutual forces — questions such as (a) and
(b) — are usually of intrinsic interest to those articulating the theory, and will
also be of value because of their tendency to aid in further developing the
theory, especially mathematically. But this can vary depending on knowledge
and interests. (In certain contexts there may be no appropriate instructions
for Q even though it is generated by T.)

Let us see how this works in the case of Maxwell. Maxwell has the set Ti

given at the beginning of this section. He proposes to add assumption

p: The force between molecules is zero except at impact.

p answers the question

Q: What is the force between molecules?

which, in virtue of Newtonian dynamics, is generated by Ti. Does p satisfy
some set of appropriate instructions for Q? It satisfies some of the broad
methodological criteria valued in science: it is very general, it is mathemati-
cally formulated, and it is quite simple. Moreover, it satisfies the pragmatic
constraint of being mathematically tractable. It readily allows a calculation of
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momentum transfer, and thus a derivation of the pressure law. To be sure,
there is no empirical evidence supporting it (or any other force law). But
where there is no empirical evidence for this or any other force law, it may still
be worth considering if the hypothesis satisfies instructions incorporating
other desirable ends. This is precisely the case with Maxwell's force law. It was
worth considering because it answered a question generated by a theory he
was developing, and did so by providing a general, mathematically formulat-
able, simple answer, that could readily be used by Maxwell to generate an-
swers to further questions. Moreover, this question was one Maxwell was
interested in answering. His avowed aim at the beginning of his paper was to
develop kinetic theory in a quantitative way "on strict mechanical princi-
ples"—an aim that requires, or at least is facilitated by, some assumption
about the forces governing molecules. In the absence of any empirical reason
for choosing this rather than another force law, these facts suffice to make his
answer worth considering. In the context in which Maxwell was operating—
given his knowledge and that of his community—it would not have been
appropriate to invoke instructions requiring that the answer considered have
empirical support.

If this is so how do we preclude considering "crazy" hypotheses such as
the Nobel hypothesis? We begin in this case not with a theory, but with the
observed fact that I am happy over the news I have just received, and with the
assumption that there is some reason for my happiness. These generate
the question: Why am I happy?, which, let us assume, members of the
audience want to answer. If empirical support for an hypothesis is not always
required, what makes the Nobel hypothesis unworthy of consideration? In
this situation we have much more information than in Maxwell's case. Max-
well had no empirical reasons to prefer one force law over another. But we
know that philosophers have rarely won the Nobel prize and we know some-
thing about my literary talents. Moreover, we know from past experience that
there are other much more likely explanations. In short, we do have strong
empirical reasons for not considering the Nobel hypothesis. Maxwell, at the
outset at least, had no such reasons for not considering contact forces be-
tween molecules.

The physicist Feynman in the quote at the beginning of this essay asserts
that physics is play. I interpret this to mean that it can be worthwhile to
consider and work out theoretical principles even if one hasn't any idea
whether they are likely to be correct, even if they have no independent war-
rant. One can play with an idea and see where it leads, even if there is
no reason to think it is true. However, it is crucial to distinguish between
(a) having a reason to think an hypothesis is true (having a reason to believe
it), and (b) having a reason to consider it. Maxwell had a perfectly good
reason to consider (to "play with") the hypothesis that forces between mole-
cules are contact forces, even if he had no reason to think it true or likely. His
reason was that it answered a question generated by his theory—one that he
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was interested in answering so that his theory could be further developed —
and did so in a way that satisfied appropriate instructions calling for a gener-
al, quantitative, simple answer that is mathematically tractable. He was not in
a position to satisfy instructions calling for an answer for which there was
independent warrant. Such instructions would have been inappropriate for
his situation. They would have prevented further development of the theory.

Having argued that an hypothesis can be worth considering even if one has
no reason to think it is true, let me take this further. An hypothesis can be
worth considering even if one has some reason—indeed a conclusive one—for
thinking it is false. What matters is the aim of the consideration. Here are
several situations in which this is possible.

1. Criticizing a theory. There is a theory accepted by most in the community
that I want to criticize. I consider a certain hypothesis from that theory—
which on independent grounds I know or believe to be false —and show
that it leads to false predictions. The hypothesis is worth considering
because of its widespread acceptance. Yet I have strong reason for thinking
it false.

2. Showing that a certain type of theory is possible. In his paper "On Physi-
cal Lines of Force," Maxwell's aim is to show that a mechanical theory of
the electromagnetic field is possible by imagining a purely mechanical
system that will reproduce known electromagnetic properties. He is not
supposing that the particular mechanism he introduces for this purpose is
true or even probable. At certain points he introduces hypotheses that he
believes are probably false (for example, the idea of vortices within the
electromagnetic field connected by particles that are in rolling contact with
the vortices).17 In this situation Maxwell is trying to determine whether
there could in principle be a mechanical conception of the electromagnetic
field. There is also a premium on hypotheses that can be easily investigated
mathematically. Accordingly, it can be reasonable to consider specific
mechanisms even if one has independent reasons for believing them false
or improbable.

3. Producing idealizations. I introduce an hypothesis that I have some inde-
pendent reason for believing to be false; yet it may be approximately true.
If the hypothesis has other virtues (mathematical tractability, etc.), it may
be worth considering.

17. Maxwell (Scientific Papers, vol. I, p. 487) writes: "The conception of a particle having its
motion connected with that of a vortex by perfect rolling contact may appear somewhat awk-
ward. I do not bring it forward as a mode of connexion existing in nature, or even as that which I
would willingly assent to as an electrical hypothesis. It is, however, a mode of connexion which is
mechanically conceivable, and easily investigated. . . . "
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No doubt those who defend the idea that an hypothesis is worth consider-
ing only if it has some independent warrant will reply that they are not
speaking of situations of types (1) through (3). They are speaking of:

4. Proposing a theory in order to correctly explain a range of phenomena.

While doing (1) through (3) may serve as a useful prolegomenon to (4), it is
not sufficient. What I have been arguing is that in the case of (4), no less than
in (1), (2), and (3), hypotheses which there is no reason to believe true or
probable may be worth considering.

There is a moral here for agencies that provide financial support for scien-
tific research projects. Suppose that in 1858 Maxwell had submitted a propos-
al to a government agency to support his theoretical research in kinetic theory.
He proposes to "lay the foundation of such investigations on strict mechani-
cal principles" by deriving consequences from a set of assumptions he makes
about molecules. For some of these he has some independent warrant. But for
a number of the central ones he has no such warrant; he has no reason at all to
think they are true. Nor does his proposal contain a description of any
experiments he will conduct to test these or any other assumptions in the
theory. Whether his proposal should be funded will depend on several factors
in addition to its scientific value (for example, the amount of money avail-
able, the quality of other proposals, his scientific credentials, etc.). But most
important, it will depend on whether the theory he proposes to develop is
worth considering. Accordingly, in his proposal to the funding agency he
should provide good reasons for considering the theory. If he has reasons for
thinking that the theory, or some part of it, is true, he should say what they
are. But he may not yet be in a position to do so. Depending on the circum-
stances, it may be legitimately decided to fund his proposal to work out the
idea that molecules are perfectly elastic spheres subject to contact forces, even
though there are no reasons to think that this idea is true. Funding agencies
should not require such reasons as a necessary condition for support.

As noted, Maxwell had independent warrant for some of the assumptions
of kinetic theory. But suppose he didn't have. Suppose that he had simply
appropriated the four kinetic theory assumptions comprising Ti from
Clausius and others, and could offer no independent warrant for any of
them. He then proposes to consider the hypothesis p that the force between
molecules is zero except at impact. On the proposal of the present section, this
hypothesis could still be worth considering. There is no requirement that the
assumptions in the initial set have independent warrant. We must keep in
mind, however, that the condition for "worth considering" is relativized to the
assumptions in the initial set: p is (or is not) worth considering, given Ti.
Relative to some other set the verdict may be quite different. But this just
prompts the question: What about the initial set itself? Are these hypotheses
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worth considering? On the present account they could be even in the absence
of independent warrant for any of them. How could this be so? Here is one
possible scenario.

Maxwell begins with certain background information about known regu-
larities exhibited by gases — regularities concerning pressure, viscosity, heat
transfer, and so forth. On the basis of these he makes the supposition

S: There is some set of (relatively simple, unified) hypotheses about gases that
can explain, or can be further developed to explain, the variety of observed
regularities associated with gases.

S generates the question

Q: What set of (simple, unified) hypotheses about gases can explain, or can be
further developed to explain, the variety of observed regularities associated
with gases?

Now, in accordance with the present proposal, given the supposition S, the set
TI containing kinetic theory assumptions can be worth considering. Ti an-
swers question Q generated by S. And, in the extreme case, even in the
absence of any independent warrant for 7), it may do so in a way satisfying
appropriate instructions for Q. For example, the context may be one in which
no other simple, unifying theory has as yet been proposed, or in which any
others proposed (for example, caloric theory) have devastating objections,
although TI does not. To be sure, there may be independent warrant for the
supposition S. But since S makes no assumptions about the content of the set
of simple, unifying hypotheses, there need be no independent warrant for
theory Ti. In the absence of independent warrant for any of the assumptions
of kinetic theory, those assumptions can still be worth considering.

7. IMPLICATIONS FOR HYPOTHETICO-DEDUCTIVISM AND
RETRODUCTION

Hypothetico-deductivism is correct in one important respect. To consider an
hypothesis, to take it seriously, one does not need a reason to think it is true or
probable. In the context of discovery there need be no inference from any data
to the truth or probability of an hypothesis before one attempts to construct
derivations from that hypothesis to testable conclusions. However, to say this
much one need not adopt some of the other tenets of the h-d position.
Hypothetico-deductivists seem eager to avoid making restrictions on which
hypothesis it is worth considering (with the possible exception that it provide
an answer to a question being raised). Their restrictions are saved for the
context of justification in which the hypothesis is being tested. Here I part
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company with them. Even if one does not demand a reason to believe each
hypothesis being considered, there are constraints to be imposed on which
hypotheses to consider. The "context of discovery" is not irrational or ara-
tional or one in which "anything goes." There may be good reasons for
considering a given hypothesis, or for considering hypothesis 1 before hy-
pothesis 2. Maxwell had very good reasons for considering the hypothesis that
gas molecules exert contact forces, even if he had no reason for supposing this
true or probable.

Similarly, I reject that version of retroduction that requires at least some
reason to think each of the assumptions of one's theory to be true before one
draws new conclusions from the theory and begins empirical testing. Instead I
would support that version that requires only reasons for considering h
(which need not be reasons for thinking h true). However, I reject the retro-
ductive position that makes the requirement that h if true would correctly
explain some observed data either a necessary or a sufficient condition for h's
being worth considering. An hypothesis h may not be worth considering even
when h, if true, would correctly explain O (for example, the Nobel prize
hypothesis). And an hypothesis may be worth considering even when, if true,
it would not correctly explain any observed data we have. The hypothesis may
be incompatible with our data—as in the case of Maxwell's viscosity hypothe-
sis. Or we may as yet have no observational data that that hypothesis could
explain — as in the case of Maxwell's independence assumption about compo-
nents of molecular velocity. In the latter case the hypothesis was worth con-
sidering even though it did not explain observational data Maxwell had, but
because it enabled him to derive, in a fairly simple way, a quantitative answer
to the question: How are velocities distributed among particles in a gas? This
question was generated by the initial assumptions of his theory. It was one
that Maxwell was particularly interested in pursuing, both for its own sake
and for enabling the kinetic theory to be given further mathematical develop-
ment.*

*I am indebted to Gary Hatfield and Michael Listen for very helpful suggestions.
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ESSAY 9

The Only Game in Town

1. INTRODUCTION

The most frequent criticism of the method of hypothesis, or hypothetico-
deductivism, is the "possibility of competitors" argument. You propose an
hypothesis that entails known observational phenomena and successfully pre-
dicts new ones. Because of this you claim support for your hypothesis. If a
range of different phenomena is derived (what Whewell, for example, calls
consilience—see Essay 4), you may indeed claim high probability for your
hypothesis. Now a criticism of this procedure — one typically voiced by cham-
pions of induction such as Newton and Mill —is this. There may be competing
hypotheses that entail the very same phenomena. If such competitors exist,
you cannot claim substantial probability for your favorite hypothesis.

Mill uses this argument to criticize what he takes to be the standard defense
of the nineteenth-century wave theory of light, and in particular the hypothe-
sis that there exists an unobservable luminiferous ether. Concerning this hy-
pothesis he writes:

The existence of the ether still rests on the possibility of deducing from its assumed
laws a considerable number of actual phenomena. . . . Most thinkers of any degree
of sobriety allow, that an hypothesis of this kind is not to be received as probably
true because it accounts for all the known phenomena, since this is a condition
sometimes fulfilled tolerably well by two conflicting hypotheses; while there are
probably many others which are equally possible, but which, for want of anything
analogous in our experience, our minds are unfitted to conceive.1

Mill goes on to deny that the hypothesis "is entitled to a more favorable
reception" if besides accounting for known phenomena it generates new ones
that are later observed.

1. John Stuart Mill, A System of Logic (London, 1959), p. 328.

259
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Enter the "only-game-in-town" defense. Suppose your hypothesis h does
yield a range of observable phenomena, some already known and some pre-
dicted and later confirmed. And suppose that you cannot find a plausible
competitor that will also generate these phenomena.2 Either you can find no
competitor at all that will yield these phenomena, or those you can find are
less (perhaps much less) plausible than h, that is, their probability given all
the phenomena and background information is (considerably) lower than that
of h. Now let "you" become the community at large, or better yet, the experts
in the community, so that h becomes the "only game in town" to deal success-
fully with the phenomena in question. Shouldn't the fact that the experts in
the community at large cannot find a plausible competitor to h, together with
the fact that h does save the phenomena, count in h's favor?3

In what follows I shall consider three different ways in which the only-
game-in-town argument might be used. First, it might be claimed that it will
suffice to show that h's probability is high, given that it is the only game in
town. Second, even if it will not show this, it will show at least that h's
probability has increased. Third, even if it shows neither of these things, it
will still demonstrate that it is a good "research strategy" to proceed to devel-
op and test h.4 I will argue that none of these general claims can legitimately
be made for the only-game-in-town argument.

2. HIGH PROBABILITY AND THE ONLY GAME IN TOWN

Let us start with the question of whether the only-game-in-town argument
ensures high probability for an hypothesis. By high probability I shall mean

2. "You cannot find a plausible competitor" here might be understood to cover a range of
cases, (a) Minimally, it means that you are not aware of any such competitor, (b) More strongly, it
could mean that not only are you not aware of any, but at present you would not become aware of
any if you were to think about it; you would be unable to find any if you were to search, (c) Or it
could mean that you have made a search and did not find any. What I shall say is meant to hold
for all these versions.

3. Whewell appeals to an only-game-in-town argument when defending his position against
Mill. In response to Mill's claim that for any hypothesis that entails the phenomena there may be
a conflicting one that does the same, Whewell replies "I can only say that I know of no such case
in the history of Science, where the phenomena are at all numerous and complicated." And to
Mill's claim that "a person of fertile imagination can always devise a hundred modes of account-
ing for any given fact," Whewell responds with a challenge: try it, and you will find that you
cannot do it. (William Whewell, "Mr. Mill's Logic," reprinted in Robert E. Butts, William
Whewell's Theory of Scientific Method (Pittsburgh, 1968), pp. 291-293.) Whewell, then, seems
committed to the following idea: when a theory accounts for a range of data, this fact counts
heavily in favor of the theory, because in such cases, as the history of science shows, there are no
known competitors that will account for the same data, nor can one easily invent them.

A contemporary proponent of the only-game argument is Jerry Fodor. In his Language of
Thought (New York, 1975), he uses such an argument to defend computational models of
cognitive processes. See pp. 27ff.

4. Fodor, op. cit., uses the argument in the latter way.



THE ONLY GAME IN TOWN 261

probability that is greater than some threshold value, say 1/2. On this propos-
al, if observable phenomena O1, . . . ,On, n 1, are derivable from hypoth-
esis h together with background information b, and if h is the only game in
town, then h's probability is high. Moreover as the number of O's derivable
from h increases, where h continues to be the only game in town, then h's
probability increases toward a maximal value of 1.

The only-game-in-town idea will be understood as an assumption with
three parts, (i) The expert investigators are aware that hypothesis h, together
with background information b, entails O1, . . . ,On (which, to simplify the
notation, I shall frequently write as On). (ii) The investigators are unable to
find a competing hypothesis that, together with b, also entails On, or else they
have found only ones with a (much) lower probability on On & b than h has.
(In what follows both types of cases will be considered.) (iii) The competitors
in question are, in some sense, of the "same kind" as h. For example, suppose
that h is some microtheory of physical optics postulating unobservable light
corpuscles to explain observable optical phenomena. This theory may be the
only game in town, even if there is another more probable macrotheory of
geometrical optics that explains the same data. The "kind" of theory the
experts have in mind is a microtheory that analyzes light rays into some
physical parts. The letter k will be used to refer to a condition on the kind of
hypothesis sought (e.g., that it be a microtheory, that it satisfy Newtonian
mechanics, or whatever).

The only-game-in-town assumption is one satisfying conditions (i) through
(iii). I shall write it as G(h,On,b,k) for "h is the only game in town of type k
with respect to On, b, and the investigators in question." When the h, the O's,
b, and k are obvious in the context I shall simply write G. Also in what
follows K will mean "an hypothesis of type k (one that satisfies the k-condi-
tion, which is satisfied by h) is true."

The first suggestion for the only-game-in-town idea is this. Where n > 1,
and p(hlb) is not 0,

(la) p(h/G&K&O1, . . . ,On&b) > 1/2, if Ol On are derivable from
h together with b. (1/2 is here being taken as the threshold value for
high probability.)

According to (la), if a set of observable phenomena is derivable from h and b,
then the probability of h is greater than one-half, given the phenomena, the
fact that some hypothesis of type k is true, and the fact that h is the only game
in town.

Alternatively, in a weaker form, the position might be that for each hy-
pothesis h there is some number n such that if n phenomena O1, . . . ,On are
derivable from h, then h's probability is greater than one-half, conditional on
the same assumptions as before, including the only game one, that is,
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(1b) p(h/G&K&O1, . . . ,On&b) > 1/2, for some n, if O1, . . . ,On are de-
rivable from h and b.

Moreover, as the number of derivable phenomena increases, h's probability
tends toward 1 as a limit, that is,

(2) lim p(h/G&K&O1, . . . ,On&b) = 1, where O1, . . . ,On are derivable
n—

from h and b.

(1a), (1b), and (2) reflect the idea that the only-game-in-town assumption will
guarantee high probability for h. There is a weaker probability idea expressed
by

(3) p(h/G&K&O

This asserts that at least h's probability on the O's, b, and K will increase if h
is the only game in town. (K, remember, is the assumption that an hypothesis
that satisfies the K-condition satisfied by h is true.)

Before we examine (1) through (3) there is one further question of interpre-
tation. Obviously a defender of the only-game argument is not claiming that
(1) through (3) hold for every function p satisfying the probability calculus.
This position would be trivially false, since some probability assignments will
satisfy the probability calculus but violate (1) through (3), which do not
follow from that calculus. Instead I shall interpret only-gamers to be asserting
that (1) through (3) hold for any "reasonable" probability function — for any
reasonable scheme for assigning probabilities. Accordingly, such only-game
defenders cannot be pure subjectivists. They cannot hold that any assign-
ments of probabilities are reasonable if the probability calculus is satisfied.
However, they can, if they wish, interpret probabilities as representing ration-
ally corrected subjective degrees of belief, that is, what one's degrees of belief
are or become when they are subject to various rational principles including
the probability calculus. On this approach, such rational principles do not
determine a unique probability function but allow subjective choices among a
range of different ones.5

In what follows let us grant only-gamers the assumption that within the set
of probability functions there is some proper subset that is "reasonable." And
let us construe them to be saying that (1) through (3) hold for every probabili-
ty function in this proper subset. (When discussing (l)-(3) I will attempt to
choose examples involving assignments of probabilities that will generally be
regarded as "reasonable.") My claim is that (la), (1b), (2), and (3) are all false,

5. See Rudolf Carnap, The Continuum of Inductive Methods (Chicago, 1952).

(3) p(h/G&K&O1, . . . ,On&b) > p(h/K&O1, . . . ,On&b), for n> 1.
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even if construed as applying only to the set of all "reasonable" probability
functions. In the next section I will consider just (la), (1b), and (2). For the
sake of argument I will assume that the weaker only-game principle (3) holds
for all reasonable probability functions. In sections 4 and 5 I will show why
even this weaker idea is to be rejected.

3. THREE EXAMPLES

Let me begin with an example in which there are several type-k: competitors
known to the experts that explain the data, one of which is considerably more
probable than any of the others. Afterward cases will be suggested in which
the experts can think of only one hypothesis that explains the data.

The "Twenty Lotteries" Example

b = there are twenty lotteries. Five tickets from lottery 1 will win a prize; two
tickets from each of lotteries 2 through 19 will win a prize; one ticket from
lottery 20 will win a prize. Each prize consists of a sum of money to be paid
each day to the recipient for the rest of his life (to idealize: indefinitely for
generations to come). The tickets from all the lotteries are mixed together at
the outset, and John buys one ticket. Afterward the numbers are separated
into the 20 respective lotteries, from which winners will be drawn as outlined.
Finally, the only way a person can receive a sum of money for n consecutive
days (n > 1) is by being a winner in one of the 20 lotteries.

h1 = John was a winner in the first lottery.

h2 = John was a winner in the second lottery.

O1 = John receives a sum of money on the ith day following that in which he
purchased a ticket to one of the lotteries.

k = the condition that the hypothesis give a winner of a specific lottery
among the 20 lotteries (i.e., it should be of the form "x was a winner in lottery
i").

K = some hypothesis giving a winner of a specific lottery is true.

G(h1,O1, On,b,k) = with respect to the investigators h1 is the only (type-
k) game in town. That is, the investigators are aware of hl and believe that
O1, . . . ,On are derivable from h1 and b. Moreover, they can think of no type-
k competitor that entails the O's and is as probable as h1. (We may assume
that they have thought of conflicting hypotheses h2, . . . ,h20—from which,
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together with b, the O's are derivable. But each of these has a probability on
the O's and b that is considerably less than that of h1.)

In accordance with (3), I will assume that the fact that an hypothesis is the
only game in town increases its probability. For the sake of argument suppose
that in the present case it doubles the probability, that is,

(4) p(h1/G&K&On&b) = 2 4p(h1/K&On&b), for any n.6

I will also assume that in this example it is reasonable to assign probabilities a
priori in the standard way. In such an assignment, with the specific facts of
the lottery presented in b, the probability that John is a winner in the first
lottery, given K&On&b — indeed given just On&b—is 5/42. (There are 42 win-
ning tickets in all the lotteries together, 5 of which are from the first lottery.)
That is,

(5) ph1/K&On&b) = 5/42, for any n > 1.7

From (4) and (5) it follows that

(6) p(h1/G&K&On&b) = 10/42, for any n > 1,

which violates (la), (1b), and (2). The probability of h1 does not rise above 1/2
even though h is the only (type-k) game in town with respect to the O's and b.

In this argument I have supposed (4), namely, that h1's probability, given
that it is the only game in town, is twice h1's probability without that assump-
tion. Obviously a lottery example analogous to the one just given can be
presented for any generalization of (4) of the form

where m is any number greater than 1. With a suitable choice of a lottery, the
probability of a specific lottery hypothesis will be and will remain less than
1/2, despite the fact that this hypothesis is the only game in town, thus
violating (la), (1b), and (2).

6. This will require compensating changes in probabilities of competitors. Where hi is some
type-k competitor of h1, if (4) is satisfied in the twenty lotteries case, the following condition on
competitors will have to be satisfied, for all n:

7. p(hi/K&On&b) = 2/42, where 2 i 19. p(h20/K&On&b) = 1/42. So h1's probability
on K&On&b is 2.5 times greater than that of the next most probable type-k competitor.

p(h/G&K&On&b) = m x p(h/K&On&b)
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The general point here should be obvious. It may be the case that a type-k
hypothesis is (considerably) more probable than any type-k competitor the
experts can think of. It may be more probable than every such competitor—
regardless of whether the experts can think of all of them.8 Yet even with the
assumption that a type-k hypothesis is true (i.e., even assuming K), the proba-
bility of the hypothesis may still be low, despite the fact that it entails all the
known and predicted phenomena. And this can remain true even if we sup-
pose that the fact that this hypothesis is the only game in town increases its
probability by some significant factor.

In the "twenty lotteries" case numerous hypotheses are known to the ex-
perts each of which entails the O's. What happens if only one such hypothesis
h is known? Two sorts of cases might be considered: ones in which the experts
can think of type-k competitors to h that explain the O's but each of which is
precluded by other known facts; ones in which the experts can think of no
type-A: competitors to h whatever that will explain the O's. An example of
each will be given.

Second Lottery Example

The background information includes these facts. There is a society in which
each person owns one ticket in a single lottery. In this society certain people
receive a sum of money each day. Of those who do, 10 percent do so because
they have won a prize in the lottery, while the remaining 90 percent do so for
other reasons. (Those who receive money each day do so only from a single
source.) Let h = Bill was a winner in the lottery; Oi = Bill receives a sum of
money on the ith day following that in which he purchased a ticket to the
lottery; k = the condition that the hypothesis give a specific source of Bill's
daily income (e.g., the lottery); K = some hypothesis giving a specific source
of Bill's daily income is true. Now we ask our experts to investigate this
society. With the exception of the lottery winners, those who receive a sum of
money each day are very secretive concerning the source of their income, and
our experts are unable to discover this source. However, they are able to
discover that various hypotheses about possible sources of income are pre-
cluded, for example, inheritance, salary from work, stock dividends, bribery,
and so on. And, with the exception of the lottery, our experts are unable to
think of any source of daily income that is not precluded by the facts about
this society they have discovered.

8. In the lottery example it was assumed that the experts could think of all twenty type-k
hypotheses to explain On. But this assumption is not essential. We might have supposed that in
addition to h1 the experts could think of h2-h19, but not h20, which has the lowest of all the
probabilities. Still h1 has the highest probability of all the competing hypotheses of type k they
were able to think of, and its probability is not greater than 1/2, despite the fact that the experts
could not think of all the type-k hypotheses.
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With the situation just specified, I shall suppose that it is reasonable to
assign probabilities in such a way that the probability that Bill was a winner in
the lottery (h), given that he receives a sum of money for n consecutive days
(On), given that some hypothesis identifying his daily source of income is true
(K), and given the background information (b), is .1, that is, p(h/K&On&b) =
.1, for any n > 1. It is also the case that G(h,On,b,k), that is, for the experts,
h is the only type-k hypothesis in town. In this case, by contrast to the
previous one, h is the only type-k hypothesis the experts can come up with to
explain On that is not completely precluded by other facts.

In accordance with (3), we assume that the fact that an hypothesis is the
only game in town increases its probability. As with the previous example, let
us suppose it doubles it, so that p(h/G&K&On&b) = 2 p(h/K&On&b), for
any n. Since p(h/K&On&b) = .1, for any n > 1, we get p(h/G&K&On&b) =
.2, for any n > 1, which again violates (1a), (1b), and (2).

In both of the examples so far a certain hypothesis is the only game in town
despite the fact that the experts can think of type-k competing hypotheses to
explain On. In the first example, each of the competing hypotheses has a
probability that, although considerably lower than that of the "only game"
hypothesis, is nevertheless not zero. In the second example, each of the com-
peting hypotheses the experts can think of has a probability of zero, given the
established facts. What about a case in which the experts can think of one
type-k hypothesis to explain the O's, where they can think of no competitors
at all to explain the O's, even ones precluded by other facts? Here let me
propose a new type of example, this time an historical one.

Maxwell's First Kinetic Theory

In 1860 James Clerk Maxwell published his first paper on kinetic theory.9 In it
he postulated that gases are composed of numerous spherical molecules that
move in rapid motion and exert forces only at impact. From these assump-
tions and others, together with background information assuming Newtonian
mechanics, Maxwell derived various observed phenomena regarding gases
(e.g., phenomena involving pressure, volume, viscosity, heat conduction, and
diffusion). Maxwell was searching for a mechanical hypothesis—one postu-
lating bodies exerting forces subject to Newton's three laws of motion. (The
condition k includes the stipulation that the hypothesis give a specific force
subject to these laws.) He was aware of competing mechanical hypotheses to
explain some of these phenomena (e.g., a kinetic theory involving point
molecules, a nonkinetic theory with spherical molecules exhibiting vibratory
motion but not translation). But these theories did not explain all the phe-

9. James Clerk Maxwell, "Illustrations of the Dynamical Theory of Gases," in W. D. Niven,
ed., Scientific Papers, vol. I (New York, 1965), pp. 377-409.
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nomena th Maxwell's did. (His was the first to provide a unified treat-
ment of the so-called transport phenomena of heat conduction, viscosity,
and diffusion.) At least in 1860 his kinetic theory was the only game in
town in the sense of being the only mechanical hypothesis known to him
or to any other physicist from which the gaseous phenomena in question
could be derived.

Nevertheless, Maxwell — quite plausibly—did not regard the probability of
his kinetic theory as very high. Even if molecules existed,10 the probability
that they conformed to some of the specific postulates of his theory (e.g., that
they were spherical, that they exerted only contact forces), he did not take to
be high.11 What Maxwell did believe is this: Given the success of mechanical
theories in other domains (in other writings he mentioned astronomy and
electricity), and given certain considerations involving heat transfer, including
Joule's earlier determination of the mechanical equivalent of heat, it was
likely that some mechanical hypothesis was true that would explain the ob-
served gaseous phenomena.12 However, as he explicitly recognized, numerous
mechanical models were possible. And the probability of the particular one
he published in 1860 was not regarded by him as high, despite the fact that
it was the only known theory to yield the phenomena in question.13 He de-
veloped the one he did because it used particularly simple and mathemat-
ically tractable assumptions. Its being the only game in town did not suf-
fice to make Maxwell, or anyone else at the time, believe it was likely to be
true.

4. INCREASE IN PROBABILITY

I turn now to the weaker principle

(3) p(h/G&K&O1, . . . ,On&b) > p(h/K&O1, . . . ,On&b),
for n 1,

10. See quote from Maxwell's 1859 letter to Stokes, in Essay 5, p. 162.
11. In the same letter to Stokes mentioned in note 10, Maxwell writes that he regarded this

first attempt as an "exercise in mechanics." And indeed in his second kinetic theory paper six
years later he rejects the assumption that molecules are spherical and that they exert forces only at
impact.

12. See Essays 7 and 8.
13. Maxwell was aware that it did not generate all known gaseous phenomena. For example,

at the end of his paper he noted that his theory could not explain, indeed seemed inconsistent
with, the experimental result that the specific heat ratio for various gases is 1.408. However,
independently of this, I am suggesting that, although Maxwell regarded the probability of a
mechanical explanation of gaseous phenomena as high, he did not accord that privilege to this
particular version, and would not have even if he had not obtained the negative result concerning
specific heats.
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which has been presupposed so far. Since (3) is false if p(h/K&On&b) = 1, let
us restrict (3) to cases in which this is not so. Will this make it reasonable? To
decide let us ask why one might be tempted to assert (3). The answer might be
this: we trust the experts. No doubt this is commendable, but how is (3)
supposed to follow? Two proposals will be examined in this section and one in
the next.

(A) The experts are so good that if they are unable to think of any competitors
to some hypothesis in their area of expertise, that fact increases the proba-
bility that there are none.

Suppose that K and b imply that some type-k hypothesis is true that is
compatible with b and together with b entails On. And suppose that h is the
only type-k hypothesis the experts can think of that is compatible with b and
together with it entails On. This is a strong only-game assumption, since it
precludes the experts' thinking of less probable competitors. Let me write it as
G'(h). And let me use the letter N for the proposition "there are no type-k
hypotheses compatible with b other than h that together with b entail On."
Then (A) can be written as

(A) p(N/G'(h)&K&On&b) > p(N/K&On&b)

That is, the fact that h is the only type-k hypothesis the experts can think of to
explain On increases the probability that there are no others. Now since we are
supposing that K and b imply that some type-A: hypothesis is true that entails
On, N together with K and b implies h. Therefore, given K&b, if G'(h)
increases TVs probability, that is, if (A) is the case, then since N, together with
K&b, implies h, it will follow that, given K&b, G'(h) will also increase h's
probability. That is, the following will be true, which is a special case of the
only-game principle (3):

(3)' h/G'(h)&K&On&b) > p(h/K&On&b)

This argument is fallacious. It assumes that if something, say e, increases
the probability of an hypothesis hlt and if hl implies h2, then e must increase
the probability of h2. But this is incorrect.14 In the preceding argument, from
the fact that G'(h) increases TVs probability, given K&b, and the fact that TV
(together with K&b) implies h, it does not follow that G'(h) increases h's
probability.

14. To see this in a simple case, let e = I pick a 4 from an ordinary deck of cards; hl = I pick
a 4 of hearts; h2 = I pick a heart. Then p(h1/e) = 1/4 > p(h1) = 1/52; p(h2/e) = 1/4 = p(h2);
yet h1 implies h2.
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Moreover, (A) is not universally true. The background information b may
be such as to make the probability of N unaffected by the fact that the experts
can only think of h. In the second lottery example, hypothesis h (that Bill won
the lottery) is the only type-k hypothesis, compatible with b, that the experts
can think of to explain On (his receiving a sum of money for n consecutive
days). That is, G'(h). Yet this fact does not increase the probability that there
are no type-A: hypotheses compatible with b other than h that entail On. Given
the background information b, the probability that there are no other such
type-k competitors is zero, irrespective of whether the experts can think of
any.

(B) The experts are so good that if there is an hypothesis in their area of
expertise that they are unable to think of from which to derive a given set of
phenomena, this fact decreases the probability of that hypothesis on those
phenomena.

Let us suppose, as we did in (A), that h is the only type-A: hypothesis the
experts can think of that is compatible with b and that with b entails On, that
is, G'(h). Let [/be the set containing h and all type-k competitors to h that
with b entail On. Assume this set contains hypotheses h1, . . . ,hm in addition
to h. Suppose that K&On&b is such that the probability is 1 that some
member of the set U is true. Since the experts are unable to think of h1,
. . . ,hm from which to derive On, they are also unable to think of the disjunc-
tion of these, and therefore by (B), p(h10 v . . . v hm/G'(h)&K&On&b) < p(h1

v ... v hm/K&On&b). But given that the probability is 1 that some member
of the set U is true, and given that h1, . . . ,hm are all competitors of h, it
follows that p(h/K&On&b) + p(h: v . . . v hm/K&On&b) = 1, and also that
p(h/G'(h)&K&On&b) + p(h, v . . . v hm/G'(h)&K&On&b) = 1. Therefore,

(3)' p(hlG'(h)&K&On&b) > p(h/K&On&b)

which is the version of principle (3) in which the only-game assumption is the
strong one that h is the only type-k hypothesis the experts are able to think of
to explain On.

The problem with this is that (B) is not true in general. Let us consider first
objective probabilities. One reason the experts may be unable to think of
some hypothesis is that its probability is very small. (The experts don't clutter
their minds with very unlikely hypotheses.) In the twenty lotteries case, sup-
pose that, for this reason, the experts are unable to think of h20—that John
was a winner in the twentieth lottery —to explain his winnings. Despite this
fact, given b (which indicates that of the forty-two winning tickets only one is
from lottery 20) the objective a priori probability of h20 is 1/42. The fact that
the experts are unable to think of this hypothesis would not decrease its
probability on the background information b. Assuming the twenty lotteries
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are fair ones, 1/42 represents the standard objective a priori probability as-
signable to h20, no matter what the experts can or cannot think of.15

What if probabilities are construed more subjectively? Let h be some
hypothesis that the experts are unable to think of to explain On. Let the
subjective probability of h represent the rationally corrected degree of belief
of someone other than these experts, say that of a relative newcomer to the
field. This newcomer thinks of some hypothesis h to explain On, although the
recognized experts are unable to come up with h. To be rationally corrected
should the newcomer's degree of belief in h be decreased by the fact that the
experts are unable to think of h to explain On? Not necessarily.

There are a variety of reasons why the experts may have been unable to
come up with some hypothesis h to explain On which should not decrease
one's degree of belief in h. For example, the experts have not thought about
the problem long or hard enough; they were trying to work out some compet-
ing set of assumptions, which took a good deal of time and prevented them
from thinking of h; they were not attempting to unify these particular phe-
nomena (e.g., transport phenomena); h contains concepts very different from
those the experts are used to employing, although they are not concepts the
use of which decreases h's probability; h is just very difficult to think of.
Maxwell might have offered a number of these reasons to explain why physi-
cists before him were unable to come up with the particular theory he did.16

He would not have regarded the fact that they were unable to think of his
hypotheses as a reason to decrease his degree of belief in them.

Reasons of the sort just noted indicate conditions that may have prevented
the experts from thinking of a given hypothesis to explain certain phenomena.
If those conditions did obtain and did prevent the experts from thinking of h
to explain On, I shall call them disturbing conditions for the experts with

15. Or, to take a case in which probabilities are construed as relative frequencies, suppose
that when symptoms S are present a patient has disease d in 70 percent of the cases, so that
p(disease d/symptoms S) = .7. But suppose the experts are unaware of disease d (it has not yet
been identified as a disease). The fact that the experts are unaware of disease d, and therefore are
unable to think of this hypothesis to explain symptoms S, does not decrease the probability that a
patient has d, given that he has S—where this probability is construed objectively as a frequency.
In this case the experts are unable to think of hypothesis h not because h's probability is very
small, but because h invokes a cause with which the experts are completely unfamiliar. On a
frequency view, h's probability need not be affected by what the experts can or cannot think of.

Later I will consider how a frequency theory might take into account what the experts think.
But even then (3) will not be true in general.

16. For example, before statistical concepts were introduced into physics by Maxwell (and
Clausius), the experts in the physics community were unable to come up with certain statistical
hypotheses about molecules employed by Maxwell in 1860. But this fact did not decrease Max-
well's degree of belief in such hypotheses. He would have claimed that the reason the experts were
unable to think of them is that they contain statistical ideas that were foreign to the physics
establishment. And he would have rejected the idea that statistical hypotheses are more likely to
be false than nonstatistical ones.
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respect to h and On. These conditions are of two kinds. Some (as we have
seen) do not decrease the probability of the hypothesis itself. I will call these
neutral disturbing conditions.17 Other conditions, "negative" disturbing ones,
do decrease the probability of the hypothesis.

What would a negative disturbing condition be? To take a nonscientific
example, suppose that the police investigating a murder are unable to come
up with the hypothesis that Detective Robinson (one of the police investiga-
tors) committed the murder. The reason they are unable to think of this
hypothesis is that police detectives rarely commit murders, especially those
they are investigating. Assuming that this fact decreases the probability that
Detective Robinson committed the murder, we have here a negative disturbing
condition. It prevents the experts from thinking of the hypothesis in question
and it decreases the probability of that hypothesis.

If negative disturbing conditions are present, or if the probability is high
that they are, will an only-game argument work? As before, we let U be the
set that contains not only an hypothesis h that with b entails On, but also all
the type-k competitors to h that with b entail On. Suppose that given K&On&b
the probability is 1 that some member of U is true. Suppose that the experts
can only think of h to explain On; they cannot think of h1, ... ,hm, the
remaining members of U. And suppose that the probability is high that
negative disturbing conditions, and not just neutral ones, obtain for these
experts with respect to the competitors h1, . . . ,hm. Given these suppositions,
the probability of each of the competitors H11, hm is decreased. Can we
now use the argument at the beginning of (B) to show that the only-game
principle (3)'holds?18

Before we draw such a conclusion two points must be noted. First, these
suppositions are special. They cannot be made in general when some hypothe-
sis is the only game in town. That is, (a) K&On&b will not in general make the
probability 1 that some member of the set U is true. (K implies only that some
type-A: hypothesis is true, but U does not necessarily contain all the type-k
hypotheses, even all those that entail On.) (b) The probability will not always
be high that negative disturbing conditions are present. In the Maxwell case
we noted only neutral disturbing conditions, not negative ones.

Second, and most important, if negative disturbing conditions are present,
then what does the work in this argument is not the only-game assumption
but the presence of the negative disturbing conditions. Let

F = certain conditions obtain, not in On&b, that decrease the probabili-

17. Probability here can be construed either objectively or subjectively; in which case we can
also distinguish between objective and subjective disturbing conditions. But the latter distinction
will not be important in what follows in determining whether the only-game principle (3)' holds.

18. We need to assume the existence of type-k competitors to h that entail On. Otherwise the
present argument cannot be invoked.



272 MAXWELL AND THE KINETIC THEORY OF GASES

ty of each type-k competitor to h that entails On, and these conditions
prevented the experts from thinking of these competitors to explain On.

F reports the existence of negative disturbing conditions for each of the type-
k competitors to h that entail On. Now in the formulas in the argument near
the beginning of (B), replace G'(h) — the only-game assumption — with F. The
argument goes through, and we obtain

(3)'' p(h/F&K&On&b) > p(h/K&On&b)

Moreover, if we retain G'(h), then the argument does not go through, since in
its original form it assumes the principle (B), which is not true in general. But
(3)" is not an only-game principle. It does not say that h's being the only
game in town increases its probability. Indeed, what makes (3)" derivable is
not really all of F but only part of it. Let

FA = certain conditions obtain, not in On&b, that decrease the probabil-
ity of each type-k competitor to h that entails On.

Then, again assuming that on K&On&b the probability is 1 that some member
of U is true, we can derive

p(h/FA&K&On&b) > p(h/K&On&b)

This says that the existence of certain conditions not contained in On&b that
decrease the probability of each type-& competitor to h that entails On in-
creases h's probability on K&On&b. But this is not an only-game principle. It
is not the fact that the experts are unable to think of any type-k competitors to
h that increases h's probability. (This is neither necessary nor sufficient for
doing so.) Rather it is the fact that certain conditions obtain — empirical facts
such as that police detectives rarely commit the murders they investigate —
that count against each of the type-k competitors. In short, an increase in h's
probability occurs not because it is the only game in town, but because of the
existence of empirical facts that decrease the probability of h's competitors.

5. THE SUCCESS OF THE EXPERTS

(C) In their area of expertise the experts are quite successful in finding hy-
potheses that are true.

To relate this to the only-game assumption (3), let us suppose that in
general when an hypothesis in their area of expertise is the only game in town
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for the experts it turns out to be correct r percent of the time. Call this
information S(r), for "the success rate of the experts' only-game hypothe-
ses = r."19 To get at an idea behind (C) that might generate (3), let us suppose
that the probability of h, given that it is the only game in town for the experts,
is determined solely by r, the success rate of the experts' only-game hy-
potheses. We might write:

(7) p(h/G&K&On&b&S(r)) = r

On this idea, the information S(r) giving the success rate for the experts' only-
game hypotheses completely determines the probability of h, independently
of the information in K&On&b. Now suppose that the experts' success rate r
for only-game hypotheses is quite high, say .7. And suppose that a particular
hypothesis h, although it is the only game in town for the experts, has a
probability on K&On&b&S(r) but not G-that is less than .7. (This is its
probability without the assumption that it is the only game in town.) Then

(8) p(h/G&K&On&b&S(.7)) > p(h/K&On&b&S(.7))

which is in accord with the principle (3). (To make it look exactly like (3) we
could incorporate the success rate information S(.7) into the background
information b.)

However, if we proceed in this manner, it is obvious that principle (3) will
not always be satisfied. Suppose that some hypothesis h is the only game in
town for the experts, but instead of having a low probability it has a high one,
indeed higher than the experts' success rate r. Then, using (7) above we would
have to conclude that p(h/G&K&On&b&S(r)) < p(h/K&On&b&S(r)), in vio-
lation of principle (3).20

19. There are various options here. The broadest one is to consider the success rate of all
only-game hypotheses for the experts in their area of expertise, whether or not such hypotheses
are similar to the particular only-game hypothesis being considered. For example, if the experts
are physicists, we look at their success rate for only-game hypotheses in physics generally, even
though the specific hypothesis in question pertains to optics. More narrowly, we could focus on
their success rate with respect to only-game hypotheses bearing some similarity to the one in
question, say from the same field. If we have reliable statistics in the latter sort of case, I shall
assume that the narrower concept of success rate is to be used.

20. Admittedly, (7) is a strong principle, urging that the success rate of the experts completely
determines h's probability. We might modify this by taking the probability in (7) to be some
weighted mean of this success rate and the value of the probability of h without the only-game
assumption, that is, the value of p(h/K&On&b&S(r)). If the latter probability = s, then we
replace (7) with (7)' p(h/G&K&On&b&S(r)) = w(r,s), where w(r,s) is some weighted mean of
r and s. This still won't guarantee (3) in general. Suppose r = s, that is, the experts' success rate
for only-game hypotheses is the same as the probability of hypothesis h on K&On&b&S(r).
Then, using (7)', if h is the only game in town, we can derive (9) p(h/G&K&On&b&S(r)) =
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I am not here objecting to the idea of taking into account the success rate
of the experts with regard to only-game hypotheses and of relativizing the
probability of h to this information. If we do so, then when the success rate of
the experts with regard to only-game hypotheses is higher than the probability
of h, the only-game-in-town principle will be satisfied: h's probability will be
increased by the fact that it is the only game in town. On the other hand,
when the success rate of the experts with regard to only-game hypotheses is
less than or equal to the probability of h, principle (3) will not be satisfied; h's
probability will not be increased by the fact that it is the only game in town.
And we cannot in general assume that the success rate of the experts with
regard to only-game hypotheses will be higher than the probability of particu-
lar only-game hypotheses.

Indeed, in many cases we expect them to be the same. To see this let us
recall the "twenty lotteries" example. Suppose such lotteries are run very
often, and that each time, in explaining why some particular person receives a
sum of money each day, the experts recognize that the hypothesis that such a
person was a winner of the first lottery is the most probable of the type-k
competitors. (Its a priori probability is 5/42.) Furthermore, suppose that —as
we might indeed expect to happen —in the long run such type-k only-game
hypotheses turn out to be true 5/42nds of the time. Accordingly, the success
rate of the experts = 5/42 = the probability of the only-game hypothesis h1
(that John won lottery 1). Therefore p(h1/G&K&On&b&S(5/42)) = p(hj
K&On&b&S(5/42)), in violation of principle (3).

I suggest that such a case is not untypical; indeed, it is an ideal one for
illustrating the success of the experts. When the lottery experts claim that the
probability that John won the first lottery = 5/42, they fully expect nature to
cooperate in such cases. That is, they expect that in general, in the past as well
as in the future, analogous hypotheses for analogous lotteries will come out
true approximately 5/42nds of the time. If nature does cooperate in this way
with the probability assessments of the experts, their success rate with such
hypotheses will match the probability of these hypotheses, and the only-game
principle (3), with the success rate information built in, will not hold.

Indeed, I suggest that the best way to judge the success of the experts is by
seeing to what extent their success rate for hypotheses of a given kind matches
the probability of specific hypotheses of that kind. Perfect success = a per-
fect match. If so, then perfect success will imply propositions such as (9) of
note 20 in which the only-game assumption does not increase h's probability.

p(h/K&On&b&S(r)), in violation of (3). Or suppose that r = success rate = .6, s = p(h/
K&On&b&S(r)) = .8, and we take the weighted mean w(r,s) to be a simple mean, so that w(r,s) =
.7.Thenusing(7)'we get p(h/G&A"&On&S(r)) = .7 < p(h/K&On&b&S(r)) = .8, again in viola-
tion of principle (3).
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6. THE ONLY GAME AS A RESEARCH STRATEGY

I have argued that h's probability is not necessarily or generally increased by
its being the only game in town. When it is increased by the success of only-
game hypotheses, the circumstances are extraordinary. Alternatively, what
may be increasing h's probability is not really its only-game status but certain
empirical facts that decrease the probability of its competitors. If h's proba-
bility is not necessarily or generally increased by its being the only game in
town, then when it is low to begin with, its only-game status does not neces-
sarily give it high probability.

Suppose, then, we abandon the idea that the only game in town argument
necessarily makes the probability of an hypothesis high or even increases it.
Despite this, might it be construed as a reasonable research strategy? That is,
can we say the following:

(R) If h is the only game in town then it is reasonable to pursue h.

By "pursue" h I mean to include a host of things scientists and many others
typically do when they work out their ideas, including formulating 0h as
precisely as possible, relating it to other hypotheses, applying it to new areas,
drawing out consequences, and testing them. What I mean to exclude is
taking some epistemic stand with respect to it, such as believing it, or believ-
ing that it is probable, or believing that it is more probable than it was before
considering competitors.

I suggest that (R) is not true in general. Sometimes it will not be reasonable
to pursue h even when h is the only game in town. Sometimes it will be
reasonable to pursue h under this condition. But that may result not from its
being the only game in town, or not primarily from this, but from other
considerations. Let me note one case of each kind.

The lord of the manor has been murdered; he has strangulation marks on
his neck. There are several other clues as well. The police examining all the
clues note that the hypothesis that the victim was strangled by his butler
would, if true, explain these clues. However, because of certain background
facts about the butler (his lack of strength, his height) the police take the
probability of the butler hypothesis, given all the clues and background infor-
mation, to be low. Moreover, either they can think of no other hypothesis
that, if true, would explain the clues, or else any others they can think of are
even less probable.

What strategy should the police follow? That depends on their goal and
resources. I shall suppose that their goal is "truth," that is, to find the real
murderer, or at least to come up with an hypothesis that, on the basis of the
evidence, the jury can accept "beyond reasonable doubt." There is already
very reasonable doubt regarding the butler hypothesis, despite its being the
only game in town. The police resources — money and manpower—are finite.
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If they pursue the butler hypothesis — if they try to dig up more facts about
the butler's past, interview his friends, and so on —this will preclude other
pursuits. The police have at least two other alternatives, each of which may be
more reasonable than pursuing the butler hypothesis:

1. Look for competitors to the butler hypothesis that are different from those
already considered.

2. Suspend the investigation of this murder and turn to some other pressing
crime that needs solving.

Given the "truth" goal — or at least the goal of presenting a convincing case to
a jury—it may not be reasonable for the police to pursue the butler hypothe-
sis, despite the fact that at the moment it is the only game in town. The
analogy with scientific cases should be obvious.

Finally, for an example of a different kind consider once more Maxwell's
first kinetic theory. I shall assume that it was reasonable for Maxwell to
pursue his hypothesis involving spherical molecules that exert only contact
forces. Moreover, I shall suppose that the probability of this hypothesis was
not high on all the evidence then available, but that in 1860 this was the only
game in town. Was the latter fact the only reason, or even the main one, that
Maxwell pursued his theory?

Maxwell's central aim in this paper was not to present the "true" theory, or
to produce evidence that would convince physicists of its truth beyond reason-
able doubt. It was rather to see whether it was even possible to work out a
mechanical theory of gases —one based on the assumption that gases are
composed of particles subject only to principles of Newtonian mechanics.
Earlier mechanical theories had been proposed by other physicists. But these
had not been developed with the detail or mathematical sophistication that
Maxwell desired, or applied to as many observed gaseous phenomena as
Maxwell would like. He pursued the version he did — involving spherical mol-
ecules and contact forces — because it was mechanical, simple, and easily
investigated, and not solely or principally because it was the only game in
town.

Was its only-game status, then, among the reasons Maxwell pursued it?
Only indirectly. There is one question about Maxwell's choice that can be
answered by appeal to the only-game-in-town argument. If we had asked
Maxwell why he pursued this theory rather than some other simple, manipu-
latable, mechanical hypothesis that explains gaseous phenomena, he proba-
bly would have replied: he can't think of any others; it is the only game in
town. More generally, one may pursue an hypothesis h because it has features
f(it is mechanical, simple, manipulatable, etc.). To the question: Why did you
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pursue this hypothesis rather than some other with featuresf?, an only-game
response may be appropriate.

Even if this is granted, it does not follow that an hypothesis is worth
considering only if it is the only game in town. It could have been reasonable
for Maxwell to pursue his theory even if it had lacked this status. If one wants
to know whether a mechanical theory of gases is possible from which gaseous
phenomena can be derived, it is reasonable, as Maxwell did, to start with a
simple, manipulatable hypothesis, even if that hypothesis is less probable
than some less idealized competitor one knows about; that is, even if that
hypothesis is not the only game in town.

The first example above shows that some hypothesis h's being the only
game in town is not sufficient to pursue h, and hence that (R) is false. The
second example shows that h's being the only game in town is not a necessary
condition for pursuing it. It also shows that when h is reasonable to pursue
and h is the only game in town, it does not follow that h is reasonable to
pursue solely or primarily because it is the only game in town.

7. CONCLUSIONS

If some hypothesis is the only game in town, what should one do or believe
about it?

1. Its being the only game in town does not give us license to conclude that
the probability of the hypothesis is high or that it has increased. Nor does it
necessarily follow that pursuing it is a good strategy, or, even when it is, that
this is so simply or primarily because the hypothesis is the only game in town.
2. Under certain special circumstances it might be argued that an hypothesis'
probability increases when it is the only game in town. One such circumstance
occurs when the probability is 1 that some member of the set U is true (where
U contains the only-game hypothesis h and in addition all type-k competitors
to h that entail On); and when the probability is high that there are negative
disturbing conditions with respect to each of the type-k competitors to h that
entails On. But such circumstances do not obtain in general. Moreover, when
they do, what is increasing h's probability is not its only-game status but
certain empirical facts that count against each of the type-k competitors. A
second special circumstance occurs when the probability of the hypothesis is
exceeded by the experts' success rate for only-game hypotheses of that type.
But such situations do not normally occur. If, as we generally expect, nature
conforms to the probabilities the experts assign, then the experts' success rate
will match the probabilities they assign. Normally, then, there will be no
reason to infer from the success of the experts with regard to only-game
hypotheses to an increase in the probability of such hypotheses.
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3. Mill's attack on the method of h thesis is not vitiated by an only-game
argument. Mill argues that the fact that an hypothesis entails a range of
phenomena—both established facts and predictions later confirmed—is not
sufficient to confer high probability on it. One cannot respond by saying that
if scientists are unable to find plausible competitors, then the probability of
the hypothesis in question must be high or at least must have increased.*

*I am indebted to Don Garrett, Brad Petrie, Doren Recker, and Robert Rynasiewicz for very
helpful suggestions.
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ESSAY 10

Introduction

"When you hear hoofbeats think horses, not zebras."

STANDARD ADVICE TO PHYSICIANS

1. HISTORICAL BACKGROUND1

The discharge of electricity through gases is a phenomenon known since the
eighteenth century. In a standard type of experiment, a glass tube filled with
air, containing positive and negative electrodes, is used. When the pressure of
the air in the tube is reduced to a few millimeters of mercury and a source of
high potential is connected to the positive electrode, an electrical discharge
fills the space between the electrodes with a pink or reddish glow. If the
pressure is reduced to about 0.1 millimeters of mercury the appearance of the
glow changes, as indicated in Figure 2.

In 1855 Geissler invented a pump that allowed much lower gas pressures to
be produced in the discharge tube. This permitted an important discovery
to be made by Plucker in 1859. When the pressure is reduced to approximately
0.001 mm of mercury, Plucker noted that the glass near the negative elec-
trode, or cathode, glows with a greenish phosphorescence, and that the posi-
tion of the glow changes when a magnetic field is introduced. He attributed
this to something emanating from the cathode that was distinct from the
ordinary electrical discharge. Plucker's student Hittorf in 1869 discovered
that if a solid body is placed between the cathode and the walls of the tube it
casts a shadow. He concluded that rays are emitted from the cathode that
travel in straight lines. There followed a series of experiments by Eugen

1. More complete historical accounts can be found in Isobel Falconer, "Corpuscles, Electrons
and Cathode Rays: J. J. Thomson and the 'Discovery of the Electron'," British Journal for the
History of Science 20 (1987), pp. 241-276; David L. Anderson, The Discovery of the Electron
(New York, 1981; reprint of 1964 ed.); John Heilbron, article on J. J. Thomson in Dictionary of
Scientific Biography, vol. 13, pp. 362-372. Stuart M. Feffer, "Arthur Schuster, J.J. Thomson,
and the Discovery of the Electron," Historical Studies in the Physical and Biological Sciences 20
(1989), pp. 33-51. I have benefited considerably from these works.
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FIG. 2*

Goldstein in 1871 on a variety of different cathodes, which showed that the
rays are perpendicular to the surface of the cathode; that they are emitted and
generate the same effects whether the cathode is made of platinum, gold, or
other metals; and that they produce chemical reactions (e.g., they cause silver
salts to change color).

In 1879 the English physicist William Crookes, after conducting new ex-
periments with a variety of cathode tubes he devised, concluded that cathode
rays are molecules of the gas in the tube that have gained a negative charge
when they collide with the cathode. Because of this negative charge they are
strongly repelled by the negative cathode and travel at high velocity in a
direction perpendicular to the cathode, striking the glass and producing fluo-
rescence. This "charged molecules" theory could explain a number of known
properties of the rays, including their rectilinear motion, the fact that they
travel in a direction perpendicular to the cathode, that they are deflected by a
magnetic field, and that they cause fluorescence. In response to Crookes'
theory, Goldstein, as well as fellow Germans Wiedemann and Hertz, argued
that the rays are not molecules, or indeed particles of any sort, but some type
of ether waves, like light in certain respects but not in others. Unlike light,
they are bent by a magnetic field and they are emitted only perpendicularly
from a surface. But in other respects they are similar to light, for example,
they travel in straight lines, they can cause glass to fluoresce, they produce a
shadow if intercepted by an opaque object, and they can convey energy.

The German wave theorists produced a variety of arguments against the
charged particle theory, two of which came to be regarded by particle theo-

*Figure 3-5 from Introduction to Atomic and Nuclear Physics, Fourth Edition, by Henry
Semat, copyright © 1962 and renewed 1990 by Henry Semat, reprinted by permission of Saun-
ders College Publishing, a division of Holt, Rinehart and Winston, Inc., reprinted by permission
of the publisher.
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rists as particularly important. First, if cathode rays are negatively charged
particles, then they should be deflected not only by a magnetic field but by an
electrical one as well. In a series of experiments in 1883 Hertz failed to detect
any displacement of a cathode ray beam in the presence of an electrostatic
field. He concluded:

These cathode rays are electrically indifferent, and amongst known agents the phe-
nomenon most nearly allied to them is light. The rotation of the plane of polarization
of light is the nearest analog to the bending of cathode rays by a magnet.2

The second major problem for particle theorists arose as a result of a
discovery by Hertz in 1891 that cathode rays could pass through thin layers of
gold, silver, and other metals. Hertz' student Philipp Lenard extended this
research, showing that cathode rays penetrate thin layers of metal and travel
about half a centimeter outside the tube before the phosphorescence pro-
duced is reduced to about half its original value. Now the metal foils used
were much too thick to allow molecules or atoms to pass through. (This was
demonstrated experimentally, since the metal foils attached to the tube al-
lowed no hydrogen or any other gas to accumulate on the other side.) Since
atoms and molecules were considered the smallest particles, the conclusion
was that cathode rays cannot be particles. By contrast, light, a wave phenom-
enon, was known to be capable of penetrating thin gold foils.

In 1890 the British physicist Arthur Schuster used quantitative results he
had obtained with the magnetic deflection of cathode rays, together with
theoretical assumptions about the maximum kinetic energy putative cathode
particles might have, and information about known molecular velocities, to
obtain upper and lower bounds for the ratio of mass to charge of the parti-
cles. He pointed out that the hydrogen atom in electrolysis was known to have
a ratio of mass to charge that lies between the upper and lower limits he
obtained for the cathode rays. So he defended Crookes' idea that cathode rays
are molecules or atoms that have become negatively charged. However, unlike
Crookes, he held that these negatively charged particles arise from the disso-
ciation of neutral molecules into positive and negative parts, with the negative
ones being repelled by the cathode.

In 1894, J. J. Thomson, Cavendish Professor of Experimental Physics at
Cambridge, conducted experiments to measure the velocity of the cathode
rays. He concluded (erroneously) that their velocity is about 200,000 meters
per second, much less than the velocity of light. In 1895 the French physicist
Jean Perrin arranged a cathode ray tube with a charge collector inside the
tube. By showing that the collector became negatively charged when the
cathode rays entered it, he concluded that cathode rays carry a negative
charge. In 1897 Thomson repeated Perrin's experiment, using a somewhat
different arrangement so as to avoid the objection that the rays are initially
accompanied by, but not constituted of, negatively charged particles. (Thom-

2. H. Hertz, Miscellaneous Papers (London, 1896), p. 254.
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FIG. 3

son's experimental arrangement is described in Essay 11.) "This experiment,"
he writes, "shows that however we twist and deflect the cathode rays by
magnetic forces, the negative electrification follows the same path as the rays,
and that this negative electrification is indissolubly connected with the cath-
ode rays."3

Next, to meet Hertz' objection to the particle theory that no electrical
deflection of cathode rays had been observed, Thomson proceeded to repeat
Hertz' experiment, but this time attempting to achieve a much higher exhaus-
tion of the gas in the tube. He believed that "the cathode rays, when they pass
through a gas, make it a conductor, so that the gas acting like a conductor
screens off the electric force from the charged particle. . . . "4 This effect
should be reduced if the gas in the tube is more extensively evacuated.

The apparatus Thomson used is represented in Figure 3. Cathode rays
travel from C through a slit in anode A, through a second slit in a metal plug
B connected with the earth, through parallel aluminum plates D and E, and
finally fall on the end of the tube where they produce a phosphorescent patch.
At very high exhaustion, the rays were indeed observed to be deflected when
the plates were connected with electrical terminals of a series of batteries.

From the results of these experiments Thomson concludes that cathode
rays are negatively charged particles:

As the cathode rays carry a charge of negative electricity, are deflected by an
electrostatic force as if they were negatively electrified, and are acted on by a
magnetic force in just the way in which this force would act on a negatively
electrified body moving along the path of these rays, I can see no escape from the
conclusion that they are charges of negative electricity carried by particles of
matter.5

Thomson next proceeds to ask what these particles are: "Are they atoms,
or molecules, or matter in a still finer state of subdivision?" (p. 302). To

3. 3. 3. Thomson, "Cathode Rays," Philosophical Magazine 44 (October, 1897), p. 295.
4. J. J. Thomson, "Cathode Rays," The Electrician 39 (May 21, 1897), p. 107.
5. Thomson, "Cathode Rays," Philosophical Magazine, p. 302.
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answer this question, Thomson performed experiments designed to measure
the ratio of the mass of these particles to the charge they carry. He used two
methods, one involving the use of a cathode tube of the sort depicted in
Figure 3 but without the plates D and E. Cathode rays carrying a total charge
Q across some section of their beam are subjected to a uniform magnetic field
of strength H and as a result are deflected in a path with radius of curvature r.
The rays then strike a solid body and convert their total kinetic energy Winto
heating that body. Thomson derives a formula relating the mass to charge
ratio mle to the quantities Q, H, r, and W (see Essay 11). All of these
quantities are measurable in ways he specifies. By experiment he shows that
m/e is independent of the nature of the gas in the tube and of the metal of the
cathode, and that it has a value whose order of magnitude is 10-7. He notes
that this is very small by comparison with 10-4, the value of m/e for the
hydrogen ion in electrolysis (the smallest value for mle then known). He states
that this could be due to the "smallness of m or the largeness of e, or to a
combination of these two." But from Lenard's results concerning distances
traveled by cathode rays after penetrating thin layers of metal, he concludes
that "the carrier, then, must be small compared with ordinary molecules" (p.
310).

Finally, Thomson introduces a general explanation of the observed facts
regarding cathode rays —one he considers the "most simple and straight-
forward" — according to which the cathode particles are the "primordial at-
oms" of which all matter consists. "If these corpuscles are charged with
electricity and projected from the cathode by the electric field, they would
behave exactly like the cathode rays" (p. 311). The question arises concerning
how a chemical atom could be stable if it were composed of such mutually
repellent negatively charged corpuscles. To explain this possibility Thomson
invokes a model of floating magnets, introduced by Mayer, in which magnets
achieve equilibrium under mutual repulsions and a central attraction pro-
duced by the pole of a large magnet placed above the floating ones.

In December 1899, two years after his October 1897 "Cathode Rays" paper,
Thomson published results of experiments with negatively charged particles
produced by ultraviolet light falling on an electrified metal plate and also by
heating carbon filaments in an atmosphere of hydrogen.6 Thomson experimen-
tally determined the value of mle in both cases, and found it to be the same as
that for cathode rays. In the case of the charged particles produced by ultravio-
let light, he also determined a separate value for the charge e that is the same as
that carried by the hydrogen atom in electrolysis. He regarded this as

6. J. J. Thomson, "On the Masses of the Ions in Gases at Low Pressures," Philosophical
Magazine 48 (1899), pp. 547-567.
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clear proof that the ions have a much smaller mass than ordinary atoms; so that in
the convection of negative electricity at low pressures we have something smaller
even than the atom, something which involves the splitting up of the atom, inas-
much as we have taken from it a part, though only a small one, of its mass. (p. 548)

Toward the end of this 1899 paper he says that he adopts the following as a
"working hypothesis":

I regard the atom as containing a large number of smaller bodies which I will call
corpuscles; these corpuscles are equal to each other; the mass of a corpuscle is the
mass of the negative ion in a gas at low pressure, i.e. about 3 x 10~26 of a gramme.
In the normal atom, this assemblage of corpuscles forms a system which is electri-
cally neutral. Though the individual corpuscles behave like negative ions, yet when
they are assembled in a neutral atom the negative effect is balanced by something
which causes the space through which the corpuscles are spread to act as if it had a
charge of positive electricity equal in amount to the sum of the negative charges on
the corpuscles, (p. 565)

Although Thomson used the term "corpuscle," others such as FitzGerald, and
by 1902 Thomson's student Rutherford,7 appropriated the term "electron" for
them. As a result of his cathode ray experiments and his hypotheses to explain
them, Thomson is recognized as the discoverer of the electron.8

Thomson's primary interest in electrical discharge in gases beginning in
1884 did not emerge as a result of the cathode ray dispute. Rather it was
sparked by the subject of vortex rings, which, as Helmholtz had shown, have
a certain permanence. As noted in Essay 5, Kelvin and Maxwell had proposed
a model of the atom as a vortex ring, which had advantages over elastic sphere
and action-at-a-distance models. In 1882 Thomson won the Adams prize for
an essay on this topic. His first work on electrical discharge was guided by
this theory which, he believed, had implications for the dissociation of mole-
cules. But the theory was not a fruitful one, and by 1890 Thomson aban-
doned this model. Falconer has argued that the cathode ray controversy
between German and English physicists became important in England only in
1896 following Roentgen's 1895 discovery of x-rays, which are produced when
cathode rays strike a target. This discovery led Thomson to develop a success-
ful quantitative theory of gaseous discharge and, according to Falconer, hav-

7. See E. Rutherford, "The Existence of Bodies Smaller than Atoms," in The Collected
Papers of Lord Rutherford (London, 1962), vol. 1, pp. 403-409.

8. The term electron was introduced by Dr. Johnstone Stoney in 1891, and was also employed
by Joseph Larmor and H. A. Lorentz. But these physicists were referring to particles or charges
or both that could be positive as well as negative, and not to the negative particles that comprise
cathode rays.
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ing produced this Thomson then turned o "such extraneous problems as the
nature of cathode rays which x-rays had thrust into prominence."9

2. METHODOLOGICAL ISSUES

Let me ask more specifically about the kind of reasoning Thomson was
employing in 1897, the year generally chosen as the one in which Thomson
discovered the electron. Whatever its nature, Heilbron has claimed that the
argument Thomson was offering in 1897 was faulty, since it claimed "far more
for the 'corpuscle' than the data authorized."10 He notes that "few physicists
in 1897 were prepared to believe on this basis that the world was made of
corpuscles." In discussing the evidence, Falconer states that "Thomson was
prone to ambitious theoretical conjecture based on very little experimental
data,"11 and that he made a "bold, unsubstantiated leap."

Both Heilbron and Falconer are referring to a particular set of claims
Thomson made about the particles comprising cathode rays (the "corpus-
cles"). These claims are as follows:

1. Cathode particles are much smaller than atoms and molecules.
2. They are constituents of atoms.
3. They are the only constituents of atoms.

Does Thomson present an argument for these claims, and if so, how should
it be understood? In the light of methodological discussions of historical
episodes considered earlier in this book, as well as of Thomson's own meth-
odological remarks in various places, three possible interpretations will be
noted.

9. Falconer, op. cit., p. 253. In add n, both Falconer and Feffer (op. cit.) have argued that
Thomson's "corpuscles" were not discrete particles with empty spaces between them but certain
configurations in an all-pervading ether. This idea was derived originally from the view of atoms
as vortex rings in the ether; in 1895 Thomson altered this by supposing the atom to consist of a
system of motions akin to those produced by "a number of gyrostats all spinning in one way
round the outwardly drawn normals to their surface" ("The Relation between the Atom and the
Charge of Electricity Carried by it," Philosophical Magazine 40 [1895], p. 513). Feffer claims that
"the corpuscles that Thomson discovered in 1897 were the gyrostats he had spoken of in the final
weeks of 1895" (p. 58). Thomson does not mention this conception explicitly in his 1897 papers
on cathode rays. Indeed, in his May 21, 1897 paper, p. 108, he writes that "the atoms of the
ordinary elements are made up of corpuscles and holes, the holes being predominant."

10. Heilbron, op. cit., p. 367.
11. Falconer, op. cit., p. 270.
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Interpretation 1

It might be thought that Thomson is using a form of the method of hypothe-
sis, or hypothetico-deductive reasoning, to infer the truth or probability of his
claims (1) through (3). Such an interpretation is suggested by various passages
in his 1897 works. For example, in his "Cathode Rays" paper in The Electri-
cian he writes:

Let us trace the consequence of supposing that the atoms of the elements are
aggregations of very small particles, all similar to each other; we shall call such
particles corpuscles, so that the atoms of the ordinary elements are made up of
corpuscles and holes, the holes being predominant. Let us suppose that at the
cathode some of the molecules of the gas get split up into these corpuscles, and that
these, charged with negative electricity, and moving at a high velocity form the
cathode rays. (pp. 108-109)

Thomson goes on to show h  these suppositions generate certain observed
phenomena, in particular Lenard's results and the result that the magnetic
deflection of the cathode rays is the same whatever the nature of the gas (p.
109).

The argument is repeated almost verbatim in a book published in 1898, but
based on lectures given at Princeton in October 1896.12 In his October 1897
"Cathode Rays" paper, the argument appears again, this time formulated in
terms of explanation:

The explanation which seems to me to account in the most simple and straight-
forward manner for the facts is founded on a view of the chemical elements which
has been favourably entertained by many chemists. . . . (p. 311)

There follows a description of the theory and of how it accounts for various
known properties of cathode rays.

On this interpretation, then, from the fact that assumptions (1) through (3)
yield, or explain, a range of known properties of cathode rays, Thomson
argues to the truth or probability of (1) through (3). Accordingly, those who
(following the tradition of Newton and Mill) reject the method of hypothesis
will fault Thomson's reasoning. No matter how many phenomena Thomson
can derive or explain from his theory, critics of this method will object that he
cannot infer the truth or probability of his theory in this manner. They will
point out that some competing theory may also have these features.

Indeed, FitzGerald does exactly that in the same May 21, 1897, issue of
The Electrician in which Thomson's paper appears. He writes:

12. J. J. Thomson, The Discharge of Electricity Through Gases (Cambridge, Mass., 1898),
pp. 198-199.
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In fact, there seems an embarras de richesse in the way of possible explanations of
the transparency of media to cathode rays without supposing that we are in the
presence of a possible method of transmutation of matter.13

One hypothesis FitzGerald suggests is that cathode rays are composed of
(what FitzGerald calls) free electrons. He writes:

This is somewhat like Prof. J. J. Thomson's hypothesis, except that it does not
assume the electron to be a constituent part of an atom, nor that we are dissociat-
ing atoms, nor consequently that we are on the track of the alchemists, (p. 104)

If Thomson were employing h-d reasoning in the case of cathode rays, it
would be contrary to an antipathy he expresses toward such reasoning in the
kinetic theory. For example, in 1883 in a work on vortex rings, he begins by
noting that the vortex theory, like the kinetic theory, explains various proper-
ties of matter. However, he claims, the former is based on known principles of
hydrodynamics as well as on independently establishable facts concerning the
stability of vortex rings. By contrast, the kinetic theory postulates intermole-
cular forces subject to "arbitrary" laws, that is, those whose only justification
is that they yield known phenomena.14 In this regard his views were similar to
those of Maxwell (the first Cavendish Professor) who, when considering the
vortex theory, writes:

But the greatest recommendation of this theory, from a philosophical point of view,
is that its success in explaining phenomena does not depend on the ingenuity with
which its contrivers "save appearances," by introducing first one hypothetical force
and then another.15

Interpretation 2

An alternative way to construe what Thomson is doing is to deny that he is
inferring the truth or probability of hypotheses (1) through (3). How could
this be? Recall our earlier discussion of Maxwell's first kinetic theory. Max-
well was in a position to give reasons to believe some of the basic assumptions
of his theory (e.g., that gases are composed of invisible particles in motion).
But in the case of other such assumptions (e.g., that the gas particles are
spherical, that they exert only contact forces) he was not in such a position.

13. G. FitzGerald, "Dissociation of Atoms," The Electrician 39 (May 21, 1897), p. 104.
14. J. J. Thomson, A Treatise on the Motion of Vortex Rings (London, 1883), pp. 1-2. For a

discussion of this and other aspects of Thomson's methodological views, see D. R. Topper, "'To
Reason by Means of Images': J. J. Thomson and the Mechanical Picture of Nature," Annals of
Science 37 (1980), pp. 31-57.

15. W. D. Niven, ed., The Scientific Papers of James Clerk Maxwell (New York, 1965), vol.
II, p. 471.



290 CATHODE RAYS AND THE ELECTRON

Nevertheless, he did have good reasons for considering or pursuing such
hypotheses. More generally, I spoke of reasons for considering an hypothesis
that will not always be reasons for believing it to be true or probable.

It might be suggested that Thomson's situation is akin to Maxwell's.
Thomson presents reasons for believing some of the assumptions of his theo-
ry (e.g., that cathode rays are composed of negatively charged particles). But
he is not in a position to offer reasons for believing others (e.g., that these
negatively charged particles are constituents of atoms). Instead he provides
only reasons for considering or pursuing such assumptions.

In a later work (1907) Thomson himself expresses a general approach to
physics that might be appealed to in support of this interpretation:

From the point of view of the physicist, a theory of matter is a policy rather than a
creed; its object is to connect or co-ordinate apparently diverse phenomena, and
above all to suggest, stimulate and direct experiment. It ought to furnish a compass
which, if followed, will lead the observer further and further into previously unex-
plored regions.16

Thomson expresses this viewpoint in other writings as well, where it is formu-
lated as a defense of the use of physical models in science. He distinguishes
mathematical and physical theories:

Now, theories of physics are of two types, the one mathematical, the other physi-
cal. In the mathematical type the various physical quantities are represented by
algebraic symbols, the laws of physics by equations between these symbols; the
consequences of the laws are developed by attempting to solve these equations by
the methods of pure mathematics. No attempt is made to connect this analysis with
a mental picture of the physical processes occurring in the problem. . . . In the
physical type of theory an attempt is made to form an idea of something concrete, a
model, for example, which will supply us with a mental picture of what may be
taking place in the physical phenomena under consideration.17

Theories of the physical sort, which Thomson also calls models, are "ex-
pressed in terms of concrete quantities of which we have experience . . . . and
not merely in terms of algebraic symbols" (p. 21). Now, writes Thomson,

The usual objection raised against the physical method is that the model may have
other properties besides those for which it was designed, and thus may imply more
than the facts justify. This, to my mind, is a point in favour of the model, for it
suggests further research. (p. 19)

16. J. J. Thomson, The Corpuscular Theory of Matter (New York, 1907), p. 1.
17. J. J. Thomson, Tendencies of Recent Investigations in the Field of Physics (London,

1930), pp. 15-16.
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And, echoing his 1907 work, Thomson writes that those who employ such
models "regard a theory as a tool and not a creed, as an instrument for
directing research, and not as something which it is heresy to doubt . . . " (p.
23).

Although these passages appear in a work of 1930, they reflect ideas
Thomson seems to have had throughout his career. For example, in 1893 —
before his cathode ray results — he distinguishes physical from purely mathe-
matical methods when he uses Faraday's idea of tubes of force to illustrate
properties of the electric field:

physical method has all the advantages in vividness which ari  from the use of
concrete quantities instead of abstract symbols to represent the state of the electric
field; it is more easily wielded, and is thus more suitable for obtaining rapidly the
main features of any problem . . . . It is no doubt true that these physical theories
are liable to imply more than is justified by the analytical theory they are used to
illustrate. This however is not important if we remember that the object of such
theories is suggestion and not demonstration.18

Thomson does recognize that "either Experiment or rigorous Analysis must
always be the final Court of Appeal." But he claims that "it is the province of
these physical theories to supply cases to be tried in such a court" (p. vii).

On the present interpretation, then, Thomson's claim that atoms are com-
posed of negatively charged corpuscles is, or is part of, a physical theory (or
model) of matter, rather than a mathematical one. As such, it is not presented
as something to be believed (as a "creed"), but something to be explored,
something to direct research. Accordingly, arguments "for" the theory are not
ones showing why it should be believed, but only why it should be pursued.
FitzGerald, at the end of his paper, seems to be suggesting that this is a
reasonable way to construe Thomson's arguments:

In conclusion, I may express a hope that Prof. J. J. Thomson is quite right in his by
no means impossible hypothesis. It would be the beginning of great advances in
science, and the results it would be likely to lead to in the near future might easily
eclipse most of the other great discoveries of the nineteenth century, and be a
magnificent scientific contribution to this Jubilee year.19

Interpretation 3

The third interpretation of Thomson's procedure is to claim that he did intend
to provide reasons to think his theory true or probable, and not merely

18. J. J. Thomson, Notes on Recent Researches in Electricity and Magnetism (Oxford, 1893),
pp. vi-vii.

19. FitzGerald, op. cit., p. 104.
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reasons to pursue it, but that he was not using the method of hypothesis. How
could this be?

Thomson was employing explanatory reasoning, but it is possible that
crucial steps in the reasoning had (what in this volume I have called) "inde-
pendent warrant." Or at least Thomson may have taken them to have such
warrant. Here is a possible reconstruction of Thomson's reasoning in favor of
assumption (2), that cathode particles are constituent parts of all atoms:

1. Cathode rays are composed of negatively charged particles emitted from
the cathode. (Thomson considered this to be demonstrated by his magnet-
ic and electrical deflection experiments.)

2. Cathode particles come from some matter present in the tube in the vicini-
ty of the cathode.

3. Cathode particles are smaller in size than atoms. (Thomson argued for this
from the absorption experiments of Lenard.)20

20. Heilbron represents Thomson's reasoning in 1897 as follows: " . . . from its large elm
[i.e., small m/e] he inferred its small mass (by assuming that its charge was of the order of the
electrolytic unit); from its small mass he inferred (what scarcely follows) its small size; from its
small size, its penetrability, and an answer to Lenard. . . . " (op. cit., p. 367). This does not strike
me as an accurate representation of Thomson's reasoning. In his October 1897 paper Thomson
writes that "the smallness of mle may be due to the smallness of m or to the largeness of e, or to a
combination of these two" (p. 310). He then argues that Lenard's results show that the carriers of
the charges in the cathode rays are small in size compared to ordinary molecules. Lenard showed
that after penetrating a thin layer of metal a cathode ray travels about half a centimeter through
air at atmospheric pressure before the brightness of the phosphorescence produced falls to about
half its value. Thomson regarded this distance as comparable to the mean free path of the
cathode particle, and noted that the mean free path of a molecule of air at this pressure is about
10-5 cm. From the very considerable difference in mean free paths, and assuming the larger the
mean free path the smaller the particle, Thomson concludes that the cathode particle "must be
small compared with ordinary molecules." Accordingly, from "penetrability" he infers small size
(not the reverse, as Heilbron suggests). Then, although this is not needed for the argument I
reconstruct above, either from small size he infers small mass, rather than the reverse, as Heil-
bron again suggests. Or else from the fact that corpuscles are much smaller than atoms and
molecules, together with the assumption that atoms are composed of such corpuscles, he infers
the comparative small mass of corpuscles.

Finally, contrary to Heilbron, he does not assume (at least not in his October 1897 paper) that
the charge of the corpuscle is of the order of the electrolytic unit. Instead he writes that "there
seems to me to be some evidence that the charges carried by the corpuscles in the atom are large
compared with those carried by the ions of an electrolyte" (p. 312). Accordingly, he concludes
that "the smallness of the value of mle is, I think, due to the largeness of e as well as the smallness
of m" (ibid.). As I noted in section 1 above, two years later, in 1899, with new experiments on
negative electrification produced by ultraviolet light, Thomson revised his conclusion, claiming
that "e is the same in magnitude as the charge carried by the hydrogen atom in the electrolysis of
solutions" (Philosophical Magazine 48 (1899), p. 548).
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4. But all (gross) matter is composed of atoms. (By 1897 atomic theory was
widely accepted.)

5. Now (given 4) the "most simple and straightforward" explanation of 2 and
3 is that the cathode particles are constituents of the atoms comprising the
gas present in the tube in the vicinity of the cathode.

6. But cathode particles with the same mle are found in all cathode ray
experiments whatever gas is present at or near the cathode.

7. So (from 5 and 6), probably cathode particles are constituents of all
atoms.

Look at step 2. It is invoked to explain the origin of those particles as-
sumed in step 1. The idea is that the presence of the particles at the cathode is
most naturally explained as coming from some matter that is present (by
contrast to being created anew), and since they emerge from the cathode, it is
natural to explain their presence by assuming that they emerge from matter at
or near the cathode (rather than, say, outside the tube). Thomson might have
supposed that such assumptions are quite reasonable because the situation is
similar to what experience has shown in macro cases that have been observed.
(If, for example, water droplets are emerging from some source, one observes
the presence of water in the vicinity of the source or the presence of sub-
stances combining to produce water.) Thomson, like many British physicists
of the late nineteenth century who championed mechanical theories, believed
that micro processes are subject to the same principles as those for macro
ones.21 The idea, then, is that step 2 involves not simply an explanatory claim,
but one that gains some independent warrant from similar or analogous cases
that have been observed. Thomson does not cite any such cases, but it is
possible that he has such in mind when he speaks of his explanations as
accounting for the facts "in the most simple and straightforward manner."
One of the things that makes them simple and straightforward is that they
invoke assumptions known to hold in similar cases.

Another explanatory step is 5, which is invoked to explain why 2 and 3
hold. Cathode particles come from matter present in the vicinity of the
cathode, and they are smaller than atoms, because they are constituents of
the atoms present in the gas in the vicinity of the cathode. According to
FitzGerald this step is the most problematic. He would say that the previous
steps, even if accepted, are all compatible with the idea that cathode particles
although present in the matter in the tube are "free" and not constituents of
atoms. Thomson does not even consider this possibility but defends his as-
sumption by citing a view of the constitution of chemical elements "fa-
vourably entertained by many chemists," according to which "atoms of the

21. See Falconer, op. cit., Topper, op. cit.
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different chemical elements are different aggregations of atoms of the same
kind."22 He notes that Prout's version of this, in which atoms of different
elements are hydrogen atoms, is not acceptable. But he claims that this does
not preclude other elements. And he points out that the assumption of the
divisibility of atoms has been supported recently by studies by Norman Lock-
yer on stellar spectra. (Lockyer observed that the same elements can exhibit
different spectra under varying conditions, and took this as some reason in
favor of the subatomic hypothesis.)

In addition to whatever independent warrant Thomson took Lockyer's
studies to provide, his thinking was very likely more centrally tied to two
related ideas. The first, and more general, one is the program of reductionism
in physics to which Thomson was committed — a program to reduce matter to
smaller and more fundamental parts of which it is composed.23 He may well
have regarded the success of this program with respect to various phenomena
as making it plausible to suppose that if there are particles smaller than atoms
that emerge from matter itself composed of atoms, then these particles are
constituents of the atoms. One of these phenomena, with which Thomson
was thoroughly familiar, is molecular dissociation. The second, more specific
idea that may have supplied some independent warrant for Thomson's as-
sumption is an analogy with this phenomenon. When ordinary table salt, for
example, is dissolved in water there is separation ("dissociation") of the salt
molecule into negatively charged atoms of chlorine and positively charged
atoms of sodium. If an electric current is passed through the solution, the
(ionized) sodium atoms move toward the cathode, the chlorine atoms toward
the anode. The assumption is that atoms that emerge at different electrodes
during electrolysis were originally parts of the salt molecule, rather than
"free." Although Thomson does not cite this or any other specific example, he
very clearly has the general idea of dissociation in mind when he develops his
theory.24 It is possible that examples such as this provide analogies that are at
least part of the basis for his claim that the explanation that the corpuscles

22. "Cathode Rays," October, 1897, p. 311.
23. See Heilbron, op. cit. and Topper, op. cit.
24. In his October 1897 paper (p. 311) he speaks of the molecules of the gas being dissociated

in the neighborhood of the cathode, and being split up "not into the ordinary chemical atoms,
but into these primordial atoms." And in his 1899 paper in the Philosophical Magazine he ex-
plicitly notes the similarity between ordinary molecular dissociation and the "corpuscular" situa-
tion: "Electrification of a gas I regard as due to the splitting up of some of the atoms of the gas,
resulting in the detachment of a corpuscle from some of the atoms. The detached corpuscles
behave like negative ions, each carrying a constant negative charge . . . , while the part of the
atom left behind behaves like a positive ion with the unit positive charge and a mass large
compared with that of the negative ion" (p. 565). Perhaps it was this analogy that prevented
Thomson from considering the possibility that the corpuscles come from the cathode itself.
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come from the dissociation of atoms comprising the gas in the tube is the
most simple and straightforward one.25

Philosophers of science have tended to speak of the simplicity of a set of
hypotheses in terms of the number of independent assumptions or entities
introduced or the complexity of the mathematical formulations. But another
way in which hypotheses can be simple and straightforward is by introducing
causes, or properties, or whatever that are similar to known, familiar ones.
This is the basis for the adage quoted at the beginning of the essay. If one
hears hoofbeats, the simplest and most straightforward explanation is that
they are being produced by horses, not zebras, because hoofbeats —at least in
situations familiar to us —are usually those of horses, not zebras. Indeed, this
comports with Thomson's idea that a "physical" theory (as opposed to a
"mathematical" one) is "expressed in terms of concrete quantities of which we
have experience" (Tendencies, p. 21). He means that such a theory introduces
physical ideas that are similar or analogous to ones that have been observed.
The present interpretation of Thomson's reasoning is based on the idea that
such similarities with observed cases can provide independent warrant for the
physical conception introduced by the theory. It is reasonable to believe the
theory, then, not simply because it can explain a range of phenomena, but
because of this and the fact that the physical ideas it introduces have indepen-
dent warrant.

If this is Thomson's thinking, then his reasoning is akin to that of the wave
theorists of light who, as we saw in Part I, to explain the observed motion of
light invoke the explanatory assumption that light consists either of waves or
of particles. Such an assumption receives independent warrant from the fact
that (as Lloyd puts it) "nature affords numerous examples of each of these
modes of propagated movement." The advantage of construing his reasoning
in this manner, rather than as hypothetico-deductive reasoning, is that the
former can, at least in principle, be justified probabilistically (as we saw in
our discussion in essays in Part I). By contrast, pure hypothetico-deductive
reasoning to the truth or probability of an hypothesis is illegitimate. Because

25. By 1901, when Thomson is more confident in his beliefs, he takes the fact that cathode
particles come from matter inside the tube, together with facts about their mass and charge, to
clearly show that they are atomic constituents: "These particles occurred in the cathode rays
inside a discharge tube, so that we have obtained from the matter inside such a tube particles
having a much smaller mass than that of the atom of hydrogen, the smallest mass hitherto
recognised. These negatively electrified particles, which I have called corpuscles, have the same
electric charge and the same mass whatever be the nature of the gas inside the tube or whatever
the nature of the electrodes; the charge and mass are invariable. They therefore form an invaria-
ble constituent of the atoms or molecules of all gases, and presumably of all liquids and solids."
Thomson, "The Existence of Bodies Smaller than Atoms," Proceedings of the Royal Institution
16(1901), p. 577.
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of this, and because of the fact that Thomson never explicitly advocates h-d
reasoning and even seems to repudiate it at one point, and because there are
plausible alternatives, I am inclined to construe Thomson's reasoning in the
case of hypotheses (1) through (3) as conforming to interpretation 2 or 3 or
both rather than to 1. However, if we do interpret it in accordance with
interpretation 3, that is, as based on both explanatory steps and independent
warrant, we must construe much of the independent warrant as implicit.

Will understanding Thomson to be arguing in accordance with either 2 or
3 vitiate criticism of the reasoning made by Heilbron and Falconer? Yes, if we
adopt 2, not necessarily if 3 is the correct interpretation. If Thomson was
simply presenting reasons to pursue hypotheses (1) through (3) that were not
intended as reasons to believe them, the fact that they go well beyond what the
data authorize is not by itself a sufficient reason to drop (1) through (3) from
consideration. On the other hand, if Thomson was presenting reasons to
believe them, then the situation is not so clear. It seems fair to say that in 1897
he had good reasons (deriving from Lenard's results) in favor of believing
hypothesis (1)—that cathode particles are much smaller than atoms and mol-
ecules (see footnote 20). Based on the sort of argument reconstructed above,
assuming he had in mind independent warrant of the kinds mentioned, he
had some, but not as strong, reasons in favor of believing hypothesis (2) —
that cathode particles are constituents of atoms. (With respect to step 5 in the
previous reconstruction, although there are similarities or analogies with ob-
served cases of molecular dissociation, there are obvious dissimilarities as
well.) But he had few if any reasons in favor of believing hypothesis (3) —that
cathode particles are the only constituents of atoms.

Accordingly, a charitable, though (in virtue of his own professed method-
ology) by no means an unreasonable, way to construe Thomson's procedure is
this. Since reasons for believing hypothesis (3) were not presented, this hy-
pothesis was being proposed solely in the manner suggested by interpreta-
tion 2. Thomson was not inferring the truth or probability of the claim that
atoms consist only of "corpuscles" but simply proposing it for consideration.
It is, or suggests, a physical representation of matter that deserves study. So
construed, the fact that, as Heilbron puts it, Thomson's theory claimed "far
more for the 'corpuscle' than the data authorized" does not detract from
Thomson's procedure. Indeed, as noted earlier, Thomson himself would re-
gard this as a "point in favour of the model, for it suggests further research"
(Tendencies, p. 19). By contrast, hypothesis (1) was being proposed in the
manner suggested by interpretation 3. Reasons for believing (1) and not sim-
ply for considering it were proposed. Similarly, in the case of hypothesis (2)
Thomson was offering some reasons for believing it, though not ones that he
took to be as strong as those for hypothesis (1). To be sure, in each of these
cases he was presenting reasons to consider the hypothesis. But with (1) and
(2) these also constitute at least some justification for belief. Thomson's
"leap" to the electron (to use Falconer's term), although bold, was not entirely
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unsubstantiated in the case of two of the central electron assumptions. Given
his methodological and physical remarks, it is plausible to suggest that he
combined explanatory reasoning with independent warrant based on similari-
ties or analogies with familiar phenomena. Hearing (faint) hoofbeats, Thom-
son thought of (small) horses.

Thomson's hypotheses (1) through (3) are not the only ones he proposes in
his paper of October 1897. Indeed, he does not begin with these at all but
simply with the claim that cathode rays are not waves in the ether but are
composed of negatively charged particles. His first concern is to conclusively
establish this hypothesis and thereby refute the wave theory of the German
physicists. (He is not simply providing reasons to consider the particle theo-
ry.) He proceeds to do so by conducting a series of experiments and obtaining
results which, he believes, experimentally confirm the particle theory. How do
they do so? More generally, what is the relationship between Thomson's
theory and his experimental results? Are they derived from the theory? I
believe they are not. But then how could they provide support for that theory?
Although philosophers of science have devoted much attention to the rela-
tionship between theories and (what they call) "observation," the connection
between theory and experiment is much less explored. These issues are ad-
dressed in the next essay.
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ESSAY 11

Theory, Experiment,
and Cathode Rays

"Of course, if you can predict the consequences of your own
experiments before they commence, your research is very likely to be
boring."

SOLOMON SNYDER, Brainstorming

How are theories related to the experiments to which they lead? Are the latter
always derived from the former? If so, how? If not, why not? How, if at all,
can theories be derived from experiments? In what follows these questions
will be explored by reference to J. J. Thomson's cathode ray experiments
leading to the discovery of the electron, and implications will be noted for
several current topics in the philosophy of science.

1. J. J. THOMSON'S FIRST CATHODE RAY EXPERIMENT

In October 1897 J. J. Thomson published a famous paper on cathode rays in
which he reports a series of experiments that, he argues, confirm the theory
that cathode rays are negatively charged particles rather than ether waves.1

Prior to Thomson's experiments various facts about cathode rays were known
by physicists. These included that such rays are emitted from the cathode in a
discharge tube through which an electric current passes when the pressure of
the gas in the tube is reduced; that the direction of the rays is perpendicular to
that of the emitting surface of the cathode; that the rays travel in straight lines
perpendicular to the surface of the cathode; that they cause the glass of the
tube to fluoresce; that they also cause fluorescence in zinc sulfide screens; that
they are deflected by a magnetic field; that the rays can produce a tempera-

1. J. J. Thomson, "Cathode Rays," Philosophical Magazine 44 (1897), pp. 293-316. Earlier
that year, on May 21, 1897, Thomson published a preliminary version in The Electrician, vol. 39
(1897), pp. 104-108.
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ture rise in a thin foil on which they are focused; and that they produce
these effects whether the cathode is made of platinum, gold, or other metals.
These known facts prompted two conflicting theories about the nature of
cathode rays. One, defended by Wiedemann, Goldstein, and Hertz in Germa-
ny, claimed that cathode rays are some form of electromagnetic waves. The
other, defended by the English physicists Crookes and Schuster, held that they
are negatively charged particles.2

Thomson begins his paper by noting this dispute between the English and
the German physicists, and indicating that the experiments to be discussed in
his paper were "made to test some of the consequences of the electrified-
particle theory."3 The first consequence is this:

If these rays are negatively electrified particles, then when they enter an enclosure
they ought to carry into it a charge of negative electricity.4

He notes that the French physicist Jean Perrin argued by means of an experi-
ment that this consequence in fact obtains. Thomson describes Perrin's exper-
iment in which a charge collector was placed inside an anode within the
cathode ray tube. This collector was connected to an electroscope. When
the cathode rays entered the charge collector in the anode the electroscope
received a charge of negative electricity. However, when the cathode rays were
deflected by a magnet so as to avoid the anode the electroscope remained
uncharged. This proves, Thomson agrees, that something negatively charged
is emitted from the cathode and is deflected by a magnet, but it does not
prove that this something is cathode rays. It may be that the electrified
substance that causes the electroscope to become charged is something tem-
porarily associated with the cathode rays but is distinct from them. (He cites
the analogy of a rifle ball and the flash when the rifle is fired, which are
distinct but associated.)

To avoid this objection Thomson reports that he repeated Perrin's experi-
ment with a somewhat different apparatus. It involves a bulb connected with
a cathode ray tube. Two coaxial cylinders with slits in them are placed in the
bulb. (See Fig. 4.) The cathode rays from the cathode A travel into the bulb
through a slit in a metal plug in the neck of the cathode ray tube. The path of
the cathode rays is traced by the phosphorescence they produce on the glass.
When the cathode rays are deflected by a magnet so as to enter the holes in the
cylinders, an electrometer attached to the inner cylinder shows a large charge
of negative electricity. When the cathode rays do not enter the holes in the

2. See Essay 10.
3. Thomson, op. cit., p. 294.
4. Ibid. Whether Thomson thought of these particles as discrete bodies in empty space or as

particular configurations in an all-pervading ether is another matter. For a defense of the latter
viewpoint, see the references cited in Essay 10, note 9.



THEORY, EXPERIMENT, AND CATHODE RAYS 301

FIG. 4

cylinders, the electric charge sent to the electrometer is small and irregular.
Thomson concludes that this experiment shows that however the cathode rays
are deflected by magnetic forces "the negative electrification follows the same
path as the rays, and . . . this negative electrification is indissolubly connect-
ed with the cathode rays."5

This is not the only experiment on cathode rays, or even the most famous
one, that Thomson reports. But before considering any others, let me note
some general points about this experiment and introduce some terminology in
the next two sections.

2. EXPERIMENTAL RESULT CLAIMS

Thomson's description of his first experiment involves reference to

1. An apparatus: the cathode ray tube, bulb, magnet, and coaxial cylinders.
2. An interaction between the "substance" under study and the apparatus:

Thomson describes how the rays from the cathode tube enter the bulb and
are deflected by a magnet into the inner coaxial cylinder.

5. Thomson, op. cit., p. 295.
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3. A detector or measuring device: the electrometer.
4. An experimental result: Thomson describes what the detector or measur-

ing device indicates (large charge) when the cathode rays are deflected by a
magnet so as to enter the inner cylinder and interact with the measuring
device. And he describes what the detector or measuring device indicates
(small, irregular charge) when the cathode rays are not deflected into the
inner cylinder.

The last item will be of particular concern in what follows. Let me portray
it in a more general way. A claim regarding the results of an experiment of the
sort above might be formulated schematically as follows:

Experimental result claim: When "substance" S is made to interact in such and such
a way with an experimental apparatus, which is also described, changes indicating
so and so are produced in some specified detector or measuring device(s) associated
with the apparatus.

In what follows I shall use the phrase experimental result claim to refer to any
such proposition, whether or not that proposition is true, and whether or not
an assertion of it is based on some experiment that has actually been per-
formed. I want to allow for the possibility that the proposition is asserted by
someone who is making a prediction about an untried experiment. And I
want to allow the possibility that what is claimed is in fact false.

An experimental result claim may be formulated quite fully by giving a
detailed description of the apparatus, the interaction, the detector or measur-
ing device, and what the latter indicates. Or it may be made with a minimum
of details about each (the way Thomson presents Perrin's experimental re-
sults). Not all experiments involve what might reasonably be called a sub-
stance, apparatus, interaction, and detector or measuring device. However, a
significant number of them do, especially in particle physics, and what I shall
say is meant to be applicable to these.

It is not my claim that the results of experiments involving an apparatus,
interaction, and measuring device must always be formulated with explicit
reference to these items. For example, one might describe the results of Thom-
son's first experiment by saying simply that in the experiment cathode rays
carried a negative charge no matter how they were deflected by a magnetic
field. However, an advantage of the type of experimental result claim de-
scribed schematically above over the one just given is that by providing the
sort of information in question it gives scientists, particularly those unaware
of these items, a better chance of performing the experiment for themselves
and determining whether the experimental result obtains. In what follows,
then, when I use the phrase "experimental result claim" I shall be referring
only to ones of this sort. This is not to say that the apparatus, the interaction,
the detector or measuring device, and what the latter indicates, are the only
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aspects of an experiment worth mentioning.6 My aim is to focus on one type
of experimental claim frequently made. By giving the result of the experi-
ment, such a claim, if substantiated, can provide a basis for inferences to
theoretical assumptions of the theory. Moreover, by presenting information
about the apparatus and so on, the possibility of substantiating the claim is
enhanced.

An experimental result claim may be such that neither the theory being
tested, nor some conflicting theory with which it is being compared, is pre-
supposed by the manner in which it is given. Thomson's first experimental
results were presented without supposing that cathode rays are either particles
or waves. What Thomson reported was roughly this:

(1) When cathode rays from the cathode ray tube are deflected by a magnet in
the bulb in such a way as to enter the inner coaxial cylinder, a large charge of
negative electricity is sent to the electrometer; when the cathode rays are not
deflected by a magnet, or are deflected in such a way as not to enter the
inner cylinder, the electric charge sent to the electrometer is small and
irregular.

These experimental results, he believed, would be obtained by anyone repeat-
ing the experiment, whether that person subscribed to the particle or the wave
theory of cathode rays. No doubt Thomson's experimental results can be
described in terms presupposing the particle theory, by saying that when the
negatively charged particles are emitted from the cathode and are deflected by
a magnet then . . . . But in what follows I shall assume that they need not be
reported in such ways. An advantage in a neutral presentation is that the
experimenter can hope to gain agreement by both partisans and opponents of
his theory, as well as by those uncommitted, that, whatever their theoretical
views, at least the result expressed in the experimental claim does obtain.

Just as the "substance" and its interaction with the apparatus can be de-
scribed in different ways, so can what is indicated by the detector or measur-
ing device. In his first experimental result Thomson reported that the elec-
trometer indicated a large electric charge when the cathode rays were
deflected into the inner cylinder. Much more guardedly, he could have de-
scribed the result by saying that when cathode rays were deflected into the
inner cylinder the electrometer indicated the presence of something that was
not there in such abundance when the rays were not so deflected. Or, in a
stronger vein, he could have said that what is indicated by the electrometer is

6. Hacking, for example, notes seven "elements in laboratory experimentation," including the
question(s) being raised about the subject matter, background theories being assumed, the mate-
riel (apparatus, detector), the data and data processing, and so forth. Ian Hacking, "On the
Stability of the Laboratory Sciences," Journal of Philosophy 85 (1988), pp. 507-514; see pp. 508-
511.
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that the cathode rays that are deflected into the inner cylinder carry a negative
charge. In general, there will be several nonequivalent ways to formulate
experimental results, some of which presuppose the theory, some of which
involve bolder inferences than others concerning what the detector or measur-
ing device indicates.

An experimental result claim may report the result of a particular experi-
ment actually performed one or more times. For example, sometimes Thom-
son uses the past tense to historically record what did in fact take place in
particular experiments he conducted.7 By contrast, even though based on
particular experiments that were carried out, an experimental result claim
may be expressed in a more general way. Thomson frequently uses tenseless
verbs to report what in general happens in such experiments.8 The latter might
be construed as inductive generalizations from other more specific claims that
are historical reports of actual experiments conducted. In what follows I shall
allow both types of experimental result claims.

3. THEORETICAL CONSEQUENCES

Thomson's theory, which he is testing by means of his first experiment, is
simply that cathode rays are negatively charged particles, not waves. The first
consequence he draws is that

(2) When cathode rays enter an enclosure they carry into it a charge of negative
electricity.

This consequence, he thinks, is proved by Perrin's simpler experiment. But
that experiment does not show something stronger, that is, that

(3) When cathode rays enter an enclosure then, no matter how they are de-
flected by a magnetic force in that enclosure, they carry a negative charge.

It is this stronger consequence that Thomson seeks to test by means of his
first experiment. I shall call (2) and (3) theoretical consequences of Thom-
son's theory. He does not deduce them by producing a derivation. He simply
claims that they follow from the assumption that cathode rays are negatively

7. "When the cathode rays . . . did not fall on the slit, the electrical charge sent to the
electrometer . . . was small and irregular; when, however, the rays were bent by a magnet so as to
fall on the slit there was a large charge of negative electricity sent to the electrometer." Thomson,
op. cit., p. 294.

8. "When the rays are turned by the magnet so as to pass through the slit in the inner cylinder,
the deflection of the electrometer connected with this cylinder increases up to a certain value, and
then remains stationary although the rays continue to pour into the cylinder." Thomson, op. cit.,
p. 295.
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charged particles. Perhaps Thomson's thinking can be reconstructed by
means of a simple argument containing the following two premises, the sec-
ond of which is a "background" assumption:

Cathode rays are negatively charged particles. When negatively charged parti-
cles enter an enclosure they carry their charge with them no matter how they are
deflected in that enclosure by a magnetic force.

(3) follows immediately.
More generally, a proposition will be called a theoretical consequence of a

scientist's theory if it follows from the theory together possibly with other
auxiliary assumptions the scientist is making when he proposes the theory. Do
experimental result claims figure among the theoretical consequences? This
question will be taken up later. For the moment let me simply note that (2)
and (3) are different from what I have called experimental result claims. No
measuring device or detector is invoked and no information given concerning
how it is placed in the apparatus or of changes in it that would indicate the
presence of negative electricity. To be sure, the very idea of cathode rays
carries implicit reference to a cathode tube in which they are produced. And
(2) and (3) mention an enclosure. But cathode tubes and enclosures are of
quite different sorts, and no description is given of ones that might be appro-
priate to use or of how, or indeed whether, they are connected. I have admit-
ted that experimental result claims will not always present a wealth of details
concerning the apparatus, interaction, and measuring device. But (2) and (3)
are just too incomplete in this regard. One could draw the theoretical conse-
quences (2) and (3) from Thomson's charged particle theory of cathode rays
with little if any idea how to set up an experiment to test those consequences.

Let me turn to theoretical consequences for which Thomson actually
produces derivations. Having satisfied himself that cathode rays are negative-
ly charged particles, he writes:

The question next arises, what are these particles? Are they atoms, or molecules, or
matter in a still finer state of subdivision? To throw some light on this point, I have
made a series of measurements of the ratio of the mass of these particles to the
charge carried by it.9

At this point Thomson introduces some quantitative assumptions into his
theory. The first is

(4) Ne = Q

where N is the number of particles in some beam of cathode rays passing

9. Thomson, op. cit., p. 302.
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across any section of the beam in unit time; e is the charge on an individual
particle, assumed to be the same for each; Q is the quantity of electricity
carried by these N particles. The theoretical assumption (4) is simply that the
total quantity of electricity (the total charge) carried by the N particles is
equal to the charge carried by each times the number of particles.

Next Thomson writes an expression for the total kinetic theory of the
particles

W = total kinetic energy of the particles; 1l2mv2 = kinetic energy of a given
particle. He assumes that when the cathode rays strike a solid body all of the
kinetic energy of the cathode particles will be converted into heat. So if we
can measure the increase in the temperature of the target body when the
cathode rays hit it, we can determine the kinetic energy W experimentally.
(However, at this point he offers no indication of how such an experiment is
to be carried out.)

Finally, Thomson assumes that if a cathode particle is subjected to a
magnetic force, the magnetic force on the particle is equal to the centripetal
force for circular motion. He writes this as

(6) mvle = Hr = I

where m = mass of particle, v = velocity, e = charge on particle, H =
strength of magnetic field, r = radius of curvature of particle, and I is short
for Hr. (To express the idea that the magnetic force = centripetal force for
circular motion he could have written Hev = mv2lr, which is equivalent to
(6).)

Now from (4), (5), and (6) he constructs a simple derivation of

(7) mle = PQ/2W

(7) is a theoretical consequence. However, Thomson's aim is not to test (7)
experimentally, but simply to determine values for /, Q, and W experimental-
ly. This, together with (7), will then yield a value for mle, the ratio of mass to
charge of the cathode particles. Thomson clearly believes that mle should be
a constant, that is, it should have the same value for different gases, different
types of cathodes, and so on. This may be considered a further assumption of
his particle theory. From this assumption, together with (7), it is possible to
derive

(8) PQ/2W = constant

which is a theoretical consequence of his theory that Thomson will test exper-
imentally.

(5) 1/2Nmv2=W
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(8) is based on the following idea: cathode rays, which carry a total quanti-
ty of charge Q across some section of their beam, are being subjected to a
uniform magnetic field whose strength is H, and as a result are deflected in a
path whose radius of curvature is r (where / by definition is Hr). The rays are
then to strike a solid body and convert their total kinetic energy W into
heating that body. ((8) expresses a relationship between the physical quanti-
ties just mentioned.) This idea might or might not suggest some particular
experimental apparatus and measuring devices to someone who understands
it. Whether it does so or not, it is statable — indeed Thomson so stated it —
without telling us what kind of apparatus is to be used (what sort of cathode
ray tube), how a uniform magnetic field is to be created and measured, how
the total charge Q, the total kinetic energy W, and the radius of curvature r of
the rays are to measured. As with the earlier theoretical consequences (2) and
(3), one could draw consequence (8) from Thomson's theoretical assumptions
without knowing how to test it experimentally, or indeed, whether it is test-
able.

Having drawn the theoretical consequence (7) and, at least implicitly, (8),
Thomson now proceeds to describe the experiments that he performed to
measure the quantities in question, and thus to determine a value for m/e, and
a test for (8). He describes three different types of cathode ray tubes he
employed. In one, for example, the rays are emitted from the cathode and fall
on the anode, which is a metal plug with a horizontal slit. The cathode rays
pass through this slit, travel to the far end of the tube, strike coaxial cables in
which slits are cut, and pass into the inside of the inner cylinder. This cylinder
is connected to an electrometer whose deflection measures the quantity of
electricity carried by the cathode rays into that cylinder. Thomson proceeds to
describe the specific devices in the apparatus used to measure the rise in
temperature produced by the cathode rays (and thus the kinetic energy carried
by the rays), the magnitude of the magnetic field, and the radius of curvature
of the rays. Finally, he indicates in a table the results of the measurements of
these quantities when various different gases are present in the tube. Part of
Thomson's table for the tube in question looks like this:

Value of W/Q I m/e

Air 4.6 x 1011 230 .57 x 10-7

Air 1.8 x 1012 350 .34 x 10-7

Air 6.1 x 1011 230 .43 X 10-7

CO2

The values obtained for m/e, based on the measurements recorded for this
tube, range from .32 x 10 -7to.57 x 10-7. Thomson's experimental results in
this series of experiments can be formulated (schematically) in the following
"historical"

Hydrogen 6.0 x 1012 205 .35 x 10-7
8.4 x 1011 260 .40 x 10-7
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(9) Experimental result claim (from Thomson's third series of experiments):
When cathode rays from a cathode ray tube of such and such a kind were
deflected by a magnetic field produced in a way that is specified, then mea-
surements of the quantities W/Q and / taken using devices of the sort
Thomson describes yielded results given in the preceding table.

A more general, ahistorical experimental result claim is this:

(10) When cathode rays from a cathode ray tube are deflected by a magnetic
field produced in such and such a way, then measurements of the quantities
W/Q and / made using devices of the sort Thomson describes indicate that
mle has a value whose order of magnitude is 10-7.

Now, to be sure, (9) and (10) presuppose the particle theory of cathode rays.
W = the kinetic energy of the charged particles, and mle is the ratio of mass
to charge of these particles. However, these experimental results could just as
well have been recorded using increase in temperature produced by cathode
rays (instead of kinetic energy), and using I2Q/2W instead of mle. In any
case, one might well formulate and accept Thomson's experimental result
claims without necessarily being committed to the theory that cathode rays
are negatively charged particles whose ratio of mass to charge is a constant.

4. RELATIONSHIPS BETWEEN THEORY, THEORETICAL
CONSEQUENCES, AND EXPERIMENTAL RESULT
CLAIMS: THESES 1 AND 2

I shall propose seven theses concerning relationships that frequently obtain
between theories, theoretical consequences, and experimental result claims.
Each will be illustrated by reference to the Thomson example, which I take to
be typical of a range of theories in physics that postulate some unobservable
substance and that involve for their confirmation interactions between the
substance, an experimental apparatus, and measuring devices.

Thesis 1: There are theories a scientist tests by determining the truth of experimen-
tal result claims few if any of which the scientist derives or could derive from his
theory.

From his theory Thomson does not deduce experimental result claims such as
(1), (9), and (10) above and then proceed to test them by performing experi-
ments. Nor could he, for the simple reason that his theory that cathode rays
are negatively charged particles remains silent on the question of experimen-
tal apparatus and measuring device. From the fact that cathode rays are
negatively charged particles that can be deflected by a magnetic force it does
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not follow that in the particular experimental set-up described by Thomson in
his first experiment the cathode rays will send a large charge of negative
electricity to the electrometer. Much more is needed than Thomson's theory to
derive this result.

To this the obvious response is to agree, but insist that Thomson did, or at
least could, derive his experimental result claims not from his theory alone
but from this together with other assumptions he was making, including ones
about the specific experimental apparatus he used to perform the experi-
ments. With respect to this response, I offer

Thesis 2: (a) There are theories that a scientist tests by determining the truth of
experimental result claims few if any of which are in fact derived by the scientist
prior to the experiment from that theory plus other assumptions the scientist is
making, including ones about the specific experimental apparatus, (b) There are
theories a scientist tests by determining the truth of experimental result claims
many (including some of the most important) of which are not derivable from that
theory together with other assumptions the scientist is making or is willing to make
prior to the experiment.

Thomson does not derive any of his experimental result claims as predic-
tions from his theory plus auxiliary assumptions. He does not start with
the charged particle theory of cathode rays and assumptions about the ex-
perimental apparatus and from these generate predictions about what the
experimental results will be when the experiments are performed. To this the
response might be that the manner of presenting the results in a publication
(in the "context of justification") does not necessarily reflect the original
order of thought (in the "context of discovery"). So let me defend the idea of
thesis 2 that even here many (including some of the most important) of the
experimental result claims are not in fact derived theoretically because prior
to performing the experiment they are not derivable in this manner.10 There
are two reasons for this.

First, theories are frequently not rich enough even if conjoined with other
assumptions one is willing to make to yield the quite specific information that
can appear in experimental result claims. This is evident particularly when the
latter supply values for various quantities introduced by the theory. In such
cases these values, if obtainable at all, are obtainable only by actually per-

10. Putnam criticizes Popper for claiming that predictions in the form of "basic sentences"
are deducible from theories. By contrast, Putnam claims, "theories do not imply predictions; it is
only the conjunction of a theory with certain 'auxiliary statements' . . . that, in general, implies
a prediction." Hilary Putnam, Mathematics, Matter, and Method (Cambridge, England, 1979),
p. 258. If the predictions we are considering are experimental result claims, then Putnam is
supporting thesis 1. What I am now claiming is something stronger, namely, that many experi-
mental result claims made in testing a theory are neither derived nor derivable as predictions from
the theory, even if you add auxiliary assumptions the scientist is willing to make.
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forming the experiment. This is most obviou in historical experimental
claims such as (9). Even if in advance of his experiment Thomson had known
what particular magnitudes of the magnetic field strength would be used,
neither the theory itself nor any assumptions he was willing to make prior to
the experiment would furnish specific values for W (kinetic energy measured
as heat), Q (total charge carried in unit time), and I (magnetic field strength
times radius of curvature of the rays) —for a given magnetic field strength.
These values, which generate the numbers in the first two columns in the table
given earlier, were neither derived nor derivable from Thomson's theory of
cathode rays plus auxiliary assumptions he was willing to make about the
experimental set-up. They were obtained solely from the experiment itself.

The same is true even when we consider a more general, ahistorical experi-
mental claim such as (10) that assigns a value to a quantity. Thomson's theory
by itself does not yield the ratio of mass to charge of the cathode particles.
It generates only (7) — which relates that ratio to a ratio of measurable quanti-
ties—and (8) —which indicates that the latter ratio is a constant. But his
theory does not furnish a value for that constant, something left for experi-
ment to determine. Even if Thomson had combined his theory with assump-
tions describing the experimental apparatus and measuring device he used he
would not have been able to derive the experimental result (10).

There is a second important reason for thesis 2(b). Although there may be
assumptions which, together with the theory, will yield the experimental re-
sult, the scientist may be unaware of them or unwilling to make them. Before
Thomson's experiments, a major objection to the charged particle theory of
cathode rays (an objection raised by the German wave theorists) was that if
cathode rays are charged particles, they should be deflected not only by a
magnetic field but by an electrical one as well. However, prior to Thomson's
work no such deflection could be produced in cathode ray tubes. Thomson
reports that he repeated the experiments of the German physicists, particular-
ly of Hertz.11 And he too observed no electrostatic deflection of the rays.
Finally, he got the idea to conduct the experiments by removing most of the
gas in the tube. Commenting on this years later, Thomson points out that at
the time during which the experiments were conducted it was very difficult to
rid the cathode tube of gas condensed on its walls.12 From his description of
the experiment it is reasonable to suppose that prior to performing the experi-
ments with cathode tubes containing reduced density gases, Thomson would
not have drawn the inference that in the tubes he was actually to use there
would be electrical deflection of the rays. His attitude was most probably:

11. For a recent discussion of Hertz' experiment, see Giora Hon, "H. Hertz: 'The Electro-
static and Electromagnetic Properties of the Cathode Rays Are Either Nil or Very Feeble.' A Case
Study of an Experimental Error," Studies in the History and Philosophy of Science 18 (1987), pp.
367-382.

12. J. J. Thomson, Recollections and Reflections (New York, 1937), pp. 334-335.
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let's perform the experiments and see what happens. Perhaps he was willing to
assume that if the cathode tube was sufficiently evacuated then the cathode
rays would be deflected by an electrostatic force.13 But to derive the experi-
mental result from this he would also need to have assumed that the cathode
tube in his experiments was sufficiently evacuated. And this assumption he
was unwilling to make until after the experiments had been performed.

More generally, a scientist may propose to test an hypothesis by means of
an experiment. Before actually performing the experiment he may be unwill-
ing to infer an experimental result. To do so would require assumptions about
the efficacy of the experimental set-up that the scientist is completely unsure
of, and in any case, does not need to make, until the experiment is performed.
He may be completely unsure of the assumptions because he has had to de-
sign the apparatus ab initio, or modify some existing apparatus, or use some
existing apparatus in a new way or in an uncharted area. For these reasons,
before conducting the experiment and obtaining the results he is unwilling to
assume that the apparatus will work or is appropriate to test the hypothesis in
question.

Nor can the derivability idea rejected in thesis 2(b) be revived if we replace
deductive derivation by a weaker inductive or probabilistic one. The two
reasons given in the case of deduction—the limited power of the theory and
the uncertainty regarding the experimental set-up — operate here as well.
Thomson's theory together with assumptions he was willing to make did not
provide the basis for an inductive argument to the claim that in his electro-
static experiment cathode rays would probably be deflected in the apparatus
in question. Even this weaker thesis would require assumptions Thomson was
willing to make only after the experiment was performed. To be sure, before
the experiment Thomson might well have made the modal assumption that it
is possible that the tube was sufficiently evacuated. If so, then in advance of
the experiment he could have concluded that it is possible that cathode rays
will be deflected by an electric field produced in this apparatus. But the latter
is too weak to be what I have called an experimental result claim. It is not
what the scientist aims to establish by means of his experiment. Nor does its
establishment confirm the theory being tested.

This is not to deny the existence of theories for which the scientist makes
assumptions in advance about an experimental set-up, from which, together
with this theory, he derives genuine experimental predictions. He may have

13. In 1893, before his 1897 experiments, Thomson speculated that the absence of electrical
deflection in Hertz' experiment "may be because the gas through which the discharge is passing
acts as a conductor and screens off the electric force." J. J. Thomson, Notes on Recent Research-
es in Electricity and Magnetism (Oxford, 1893), p. 121. See Isobel Falconer, "Corpuscles, Elec-
trons, and Cathode Rays: J. J. Thomson and the 'Discovery of the Electron'," British Journal for
the History of Science 20 (1987), p. 248. So prior to the experiment Thomson probably believed
that with sufficient evacuation deflection would be produced.
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considerable confidence in the efficacy of an experimental arrangement, and
the theory may be sufficiently rich, so that a specific experimental result with
the apparatus, interaction, and measuring device is predicted in advance. And
of course there are experimental results known before the theory that may be
derivable from the theory together with assumptions the scientist is willing to
make, even if he does not in fact derive them. My claim is only that there are
theories with respect to which most if not all experimental result claims made
in testing those theories are not in fact derived in this way; and that, for the
reasons I have given, many, including some of the most important ones, are
not so derivable. Among experimental results regarded by the scientist as the
most important for testing his theory are (a) results obtained by altering
previous experimental arrangements to meet possible objections (as with
Thomson's (1)), and (b) results unlike those that prompted the theory in the
first place (e.g., Thomson's (9) and (10)). With (a) we have the idea of an
improvement of experimental conditions. With (b) we have the Whewellian
idea of consilience (see Essay 4). Both cases include experimental results not
derived or derivable from the theory plus auxiliary assumptions.

Finally, in Thomson's case and others I am not denying that it is possible to
add assumptions to the theory from which, together with the originals, exper-
imental results such as (1) and (9) are derivable. For example, to Thomson's
assumptions we could add ones giving specific values for I2Q/2W for each of
the gases to be tested. From these (together with additional assumptions
about the experimental arrangement) Thomson could have derived the experi-
mental result (9) giving the m/e ratios. But this is a trivial logical exercise.
Thomson did not in fact do this for two good reasons. Prior to the experiment
he had no grounds at all for assuming any such specific values for I2Q/2 W for
each of the gases to be tested. He was in no position to make any such
additional assumptions. Nor, secondly, did he need to, since the experiment
itself would determine the specific values. A theory not rich enough to yield
values for I2Q/2W, and hence for m/e, need not be enriched to do so prior to
an experiment if (i) there is no basis for doing so prior to the experiment and
(ii) the experiment itself will determine these values.

5. THESES 3, 4, AND 5

If there are theories a scientist tests by determining the truth of experimental
result claims, few if any of which are derived from the theory even with other
assumptions, what is the origin of such claims? The answer is provided by

Thesis 3: There are theories a scientist tests by determining the truth of experimen-
tal result claims most if not all of which are made by observing the results of the
experiments rather than in advance of those experiments by derivation from theo-
retical and experimental assumptions.
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Thomson made his experimental result claims (1), (9), (10), and the rest not by
first deriving them as predictions from his theory but by performing the
experiments, observing the results, and then formulating his experimental
claims. Thomson may have used his theory in expressing some of the latter.
Instead of writing (1) in terms of the deflection of cathode rays, he could have
used his theoretical assumption that cathode rays are negatively charged par-
ticles and described the result by speaking of the deflection of such particles.
If so, we could say that Thomson obtained his experimental result claim —so
formulated—by inference from his experiment together with an assumption
from his theory. Accordingly, it is not being denied that experimental result
claims are inferred. But in the cases in question, this inference is made after
the experiment from what is observed in that experiment together possibly
with other assumptions, including theoretical ones. It is not made prior to the
experiment solely on the basis of the theory and auxiliary assumptions.

All this might be granted. Still it might be supposed that any theory will
yield information about an experimental arrangement for testing it, even if it
does not entail what will happen using such an arrangement (i.e., it does not
entail an experimental result claim). This supposition is too strong. Thom-
son's charged particle theory does not contain information about an experi-
mental arrangement for testing it. Thomson had to think up his own experi-
ments. No doubt he was influenced in his thinking by arrangements used by
other physicists, although these were different in important respects from
his.14 My point is only that whether the experimental arrangements were
entirely new or some modifications of others, they were not contained in the
theory itself.

Let me use the expression experimental arrangement claim (with respect to
a theory T) for a claim that such and such an experimental arrangement is a
sufficient one for testing (some part of) T. For example: an experimental
arrangement consisting of a cathode tube, bulb, coaxial cylinders, and elec-
troscope as depicted in Figure 4 is sufficient for testing theoretical conse-
quences (2) and (3). Unlike what I have been calling an experimental result
claim, such a proposition does not state experimental results (it does not say
what changes are produced in the detectors or measuring devices or what
these indicate). My thesis about such claims is this:

Thesis 4: There are theories the testing of which involves the establishment of
experimental arrangement claims such that (a) few if any of these claims are derived
or derivable from the theory; (b) before an experiment is performed the scientist is
not assuming the truth or high probability of an experimental arrangement claim,
nor does he need to do so; (c) such a claim is established only after the experiment
is performed.

14. For example, in Perrin's experiment of 1895, unlike Thomson's first experiment reported
above, the charge collector was placed inside rather than outside the cathode ray tube.
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From his theory Thomson did not derive the claim that the experimental
arrangement used to test for electrical deflection is sufficient for that pur-
pose; nor is such a claim derivable. Before the experiment was performed
Thomson did not assume that this experimental arrangement was sufficient to
test for electrical deflection; he was quite unsure of that. Nor did he need to
make such an assumption, since the experiment itself would establish that.

Suppose that an experimental arrangement claim is established after the
experiment is performed. It might be suggested that the scientist now pro-
ceeds to derive an experimental result claim from his theory together with the
newly established experimental arrangement claim and possibly other auxilia-
ry assumptions that were not inferred from observing the experiment. At this
point, it might be supposed, the scientist is sure enough about the efficacy of
the experimental apparatus to derive his experimental results from his theory.
In response I offer

Thesis 5: (a) In general, after the experiment, experimental result claims made by a
scientist testing a theory are not in fact derived by that scientist from the theory
plus experimental arrangement claims the scientist is then willing to make togeth-
er with other assumptions that were not inferred from observing the experiment;
(b) after the experiment even if an experimental result claim is so derivable there is
no need to derive it.

I have admitted that, where experimental results are stated using assump-
tions from the theory, Thomson inferred such results from what he observed
in the experiment together with assumptions from the theory. My present
claim is simply that after the experiment he did not in fact derive his experi-
mental result claims (either deductively or inductively) from his theory togeth-
er with experimental arrangement claims and other assumptions that were not
themselves inferred from observing the experiment. Even if they were so
derivable there was no point in deriving them. After the experiment there was
no need to derive such claims for purposes of prediction. It was too late for
that. Nor, as I shall argue in sections 6 and 8, was there any need to derive
them in order to test the theory.

6. THESES 6 AND 7

If there are theories from which experimental result and arrangement claims
are not in general derived, what is derived? In such cases the following ob-
tains.

Thesis 6: What the scientist does derive from his theory are theoretical conse-
quences that for the most part are considerably more general than experimental
result or arrangement claims and make little if any reference to an experimental
apparatus, interaction, or measuring device.
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The first consequence Thomson draws from his theory is that when
cathode rays enter an enclosure they will carry into it a charge of negative
electricity. This says nothing about any specific kind of cathode tube or
enclosure, how to get the cathode rays into the enclosure, or how to determine
whether they carry a charge when they are in an enclosure. That is, there is no
mention of any experimental apparatus, how the substance in question inter-
acts with such an apparatus, or how the effect produced is to be detected or
measured. At the same time it is a more general claim than that of the
experimental result (1), which does contain such information. It is more
general because it makes a claim that is not restricted to the type of experi-
mental apparatus described in (1).

Again the theoretical consequences (7) and (8) are based on the idea that
cathode rays will be deflected in their paths by a magnetic field, and if al-
lowed to strike a solid body will convert their kinetic energy into heating that
body. But this idea makes no mention of any particular kind of experimental
apparatus or how the quantities involved are to be measured—ideas made
explicit in the experimental result (9) when schemas in the latter are properly
filled in. Yet (7) and (8) are more general than (9) since they are not restricted
to the type of experimental arrangement described in a completed version of
(9).

One disadvantage in deriving theoretical consequences such as (2) and (3)
instead of an experimental result claim such as (1) is that in doing so one may
have no idea how to test them experimentally. However, there are obvious
advantages. One is generality. With theoretical consequences (2) and (3)
Thomson has derived something that tells us what cathode rays generally do
when they enter an enclosure, not just in some particular experimental set-up.
Moreover, at least in certain cases, a theoretical consequence may not be as
readily subject to experimental refutation as is some corresponding experi-
mental result claim. One of Thomson's theoretical consequences is that cath-
ode rays will be deflected by an electric field (under certain circumstances,
which he does not specify). This consequence he does not take to be refuted
by the more specific experimental results obtained by Hertz and by himself in
earlier experiments. Due to unspecificity in its conditions, a theoretical conse-
quence may be more resilient than a corresponding experimental claim in the
face of negative experimental results. To be sure, complete resilience with
respect to negative experimental results is unacceptable. But some is advanta-
geous.

Philosophers have frequently cited the predictive power of a theory as one
of its main assets. I am claiming that there are theories from which what is
predicted, even with the addition of auxiliary assumptions, are not experi-
mental result claims but more general propositions making little reference to
experimental arrangements. An example has been used that I think is typical
of a range of theories in physics, postulating an unobserved substance capa-
ble of interacting with an experimental apparatus and measuring device. The
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appendix contains brief discussions of two other cases of this sort, both of
which involve later discoveries of properties of the electron.

Even if an experimental result claim is not derived as a prediction from a
theory, there is an inference in the other direction. Let me use the term
theoretical claim very generally to refer to any proposition attributing proper-
ties to entities postulated by the theory, whether or not that proposition is
included among the initial assumptions or the theoretical consequences of the
theory. My final thesis is this:

Thesis 7: (a) In general, the scientist makes an inference from experimental results
to a theoretical claim. This inference is not deductive but involves both explanatory
reasoning and inductive generalization; (b) if such an inference is justified (or to
the extent that it is), the experimental results constitute evidence for, or confirm,
the theoretical claim.

After describing his first experiment and its results, Thomson writes:

Thus this experiment shows that however we twist and deflect the cathode rays by
magnetic forces, the negative electrification follows the same path as the rays, and
that this negative electrification is indissolubly connected with the cathode rays.15

This is more or less theoretical consequence (3) above. And Thomson is in-
ferring it from his experimental results and claiming that these results confirm
that consequence. Although he does not spell out the steps of this inference, the
following seems to me a plausible reconstruction:

1. Experimental result. When the cathode rays from a cathode ray tube de-
picted in Figure 4 are deflected by a magnet in the bulb in such a way as to
enter the inner coaxial cylinder, a large charge of negative electricity is sent
to the electrometer. When the cathode rays are not so deflected the electric
charge sent to the electrometer is small and irregular.16

2. Explanatory step. The fact that cathode rays carry a negative charge into
the inner cylinder is the most likely explanation of the large negative
charge sent to the electrometer when cathode rays enter the cylinder and of
the small irregular charge when they do not enter the cylinder.

3. So probably cathode rays carry a negative charge when they are deflected
by a magnet in such a way as to enter the inner cylinder of the apparatus
depicted in Figure 4.

15. Thomson, op. cit., p. 295.
16. This experimental claim, which is formulated in a timeless manner, could itself be con-

strued as an inductive generalization of more particular experimental claims that historically
report the results of experiments performed (see section 2).
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4. I eneralization to theoretical consequence. Therefore, probably,
however one twists and deflects the cathode rays by magnetic forces, the
negative electricity follows the path of the rays.

The second step involves an assumption concerning the explanation of the
observed effect on the measuring device. (This assumption, to be justified,
should receive independent warrant from similarities with other observed
cases.) The final step involves generalizations concerning various angles at
which the cathode rays are deflected (not just those conducted in the experi-
ment) and concerning the types of situations in which the deflection occurs
(not just with the apparatus described). Accordingly, one might accept Thom-
son's experimental results in step 1 as correct, but refuse to draw an inference
from this to the theoretical consequence 4. One might find some reason to
reject the claim in step 2 that the cathode rays' carrying a negative charge into
the cylinder is the most likely explanation of the charge sent to the electrome-
ter. Or one might find some reason to reject the inductive generalization to
other angles and other arrangements in step 4. (Perhaps experiments at other
angles and with different arrangements are known to yield different results.)
If so, one can challenge the claim that Thomson's experimental results as
reported in step 1 confirm the theoretical consequence in step 4.

In the example just given the theoretical claim inferred is a theoretical
consequence of the theory. But this need not be the case. From an experimen-
tal result, or set of them, a scientist may make an inference to a new theoreti-
cal claim that was not an assumption or a theoretical consequence of the
original theory. This is precisely what Thomson does toward the end of his
paper when, from the results of his experiments giving the m/e ratios, and
from the results of Lenard's experiments concerning distances traveled by
cathode rays outside the tube, he infers that cathode particles are much
smaller than molecules. The latter, then, becomes a new part of a more fully
developed theory.

I turn next to implications of the foregoing theses for several issues in the
philosophy of science.

7. HYPOTHETICO-DEDUCTIVISM

According to this viewpoint, the scientist thinks up some hypotheses compris-
ing a theory from which, together with auxiliary assumptions, he or she
derives conclusions. The theory is tested by determining the truth of these
conclusions. It is confirmed particularly if the latter include predictions
whose truth is first determined after they are derived from the theory. Accord-
ingly, we have the following:
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First h-d testing thesis: Every scientific theory is tested by a scientist by determining
the truth of propositions each of which the scientist derives from the theory plus
auxiliary assumptions, and some of which are predictions.

This thesis is to be understood as implying that the only claims the scientist
uses to test the theory are those he or she derives from that theory. This
comports with the h-d idea of confirmation: to test a theory, that is, to
provide confirmation or disconfirmation for it, one derives conclusions from
it and determines whether they are true or false.

So understood, the first h-d testing thesis must be rejected. Thomson's
establishment of his experimental result claim (10), giving an experimentally
determined order of magnitude for the ratio of mass to charge of cathode
particles, provided an important test for the theory that cathode rays are
negatively charged particles. Yet Thomson did not derive (10) from his theory
together with auxiliary assumptions he was willing to make; nor were his
theory and auxiliary assumptions sufficiently rich to make (10) derivable.

More generally, there are theories that a scientist tests by determining the
truth of experimental result claims few if any of which he derives, from that
theory plus auxiliary assumptions, either as predictions (thesis 2) or after they
already have been experimentally tested (thesis 5). Moreover, for reasons I
gave in defense of thesis 2, many of the most important experimental result
claims a scientist makes in testing his theory may not be derivable as predic-
tions. And, as I maintained in thesis 5, after the experiment even if an
experimental result claim is derivable there is no need to derive it. What
makes an experimental result claim such as (10) capable of testing a theory is
not the existence of a deductive connection between it and the theory. Rather
it is the fact that an inference involving explanatory reasoning and induc-
tive generalization is justified from that experimental result to the theory
(thesis 7).

In response, an h-d theorist might urge a weaker testing thesis that does
not require that all propositions whose establishment tests the theory be
derived or derivable from the theory:

Second h-d testing thesis: Every scientific theory is tested by a scientist by determin-
ing the truth of propositions some of which (including predictions) the scientist
derives from the theory plus auxiliary assumptions.

This will permit experimental result claims to be used to test a theory even if
they are not derived from it. So far as it goes, the second h-d testing thesis is
reasonable. Thomson did test his theory that cathode rays are negatively
charged particles by determining the truth of proposition (3) --that when
cathode rays enter an enclosure, no matter how they are deflected by a mag-
netic field in that enclosure, they carry a negative charge. And he derived (3)
from his theory. More generally, a scientist does test a theory by determining
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the truth of theoretical consequences. The problem here is not with what the
second testing thesis asserts, but with what it omits.

For one thing, it does not say how the establishment of other proposi-
tions — such as (10)—that are not derived or derivable from the theory can test
the theory. Moreover, neither the second nor the first thesis does full justice to
what some would-regard as essential to the h-d position. This is the idea that
not all consequences of a theory are suitable for testing, but only those that
are "observational." It is by establishing these consequences that scientists
provide empirical tests for a theory. Admittedly, the sense of observational in
question is not sharply defined and has been the focus of much debate.
However, perhaps it is fair to ascribe at least the following two features to
observational claims of h-d theorists.

First, "observational" claims are contrasted with "theoretical" ones. The
latter presuppose the theory, the former do not. Observational claims are, or
can be, formulated independently of the theory in a manner that does not
presuppose the entities or processes postulated by the theory. Second, "obser-
vational" claims wear their methods of testing on their sleeves. They contain
within themselves information on how to test them. Or at least any scientist
who understood an observational claim would thereby know how to confirm
or disconfirm it whether he or she subscribed to, or even understood, the
theory from which it is derived.

These two features are most apparent in certain logical positivist presenta-
tions of the h-d viewpoint. Here there is an explicit division of terms and
sentences into "theoretical" and "observational," and the claim is that the
theory is tested by, and only by, determining the truth of observational sen-
tences which are deduced from theoretical ones together with so-called corre-
spondence rules that contain both theoretical and observational terms. The
observational sentences are theory neutral, and one knows how to test them in
virtue of knowing the meanings of the terms they employ. However, the two-
vocabulary approach of the logical positivists need not be defended to em-
phasize the present "observability" idea. We have

Third h-d testing thesis: Every scientific theory is tested by a scientist by determin-
ing the truth of observational claims each (or some) of which (including predic-
tions) the scientist derives from the theory plus auxiliary assumptions.

The stronger claim will require "each," the weaker one only "some."
Now this third thesis, in either its strong or weak version, is dubious, if the

two features of observability are kept in mind. From his charged particle
theory Thomson derives (8), the establishment of which does test the theory.
Yet (8) presupposes the theoretical assumption that cathode rays are particles
that carry a negative charge. Moreover, theoretical consequence (8) (as well as
ones such as (2) and (3)) is not such that an understanding of what it means
guarantees, or even makes likely, a knowledge of how to confirm or discon-
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firm it. In short, consequences that Thomson derives from his theory and
which test that theory do not have the two observational features above.

By contrast, these two features are present, or at least are more likely to be
present, in experimental result claims, such as (1) and (9). Such claims are, or
at least can be, formulated without presupposing the theory. And more than
is typically the case with theoretical consequences, they wear their method of
testing on their sleeves. They contain within themselves at least some descrip-
tion of an apparatus and measuring device used in confirming or disconfirm-
ing them. Having understood such statements one is in a better position to
know how they are to be tested than is generally the case with theoretical
consequences. And, as I have stated, Thomson did test his theory by deter-
mining the truth of such experimental result claims. Yet in no case did he
derive one from the theory plus auxiliary assumptions.

In short, the third h-d testing thesis is objectionable because there are
theories tested by (a) determining the truth of claims each of which is derived
from the theory, but none of which is "observational" in the required sense,
and (b) determining the truth of claims each of which is "observational," but
none of which is derived from the theory.

Hypothetico-deductivists who want to pick out a special class of conse-
quences for testing might propose substituting "testable" for "observational"
in the third testing thesis. On this view, the h-d theorist requires the derivation
of testable propositions from a theory, whether or not such propositions are
construed as observational. If testable means (or includes) capable of being
tested by experiments, then (some) theoretical consequences will be testable,
and of course they will be derived from the theory. Thomson's theoretical
consequence (8) is testable by the experiment he designed, and it is derived
from his theory plus auxiliary assumptions. Won't this suffice for the h-d
theorist?

This proposal will, in effect, reduce the third h-d testing thesis to the first
or second. That is, the term testable in the claim that every scientific theory is
tested by a scientist by determining the truth of testable propositions, and so
on, is redundant. Moreover, those who emphasize the observationality of the
consequences tested will not accept this substitution. On the present account
of testability, a scientist may derive a testable consequence from a theory (i)
without knowing how to test it, and (ii) without even knowing whether it is
testable. Thus from his theory Thomson derives the theoretical consequence
(7), m/e = I2Q/2W, which relates the mass to charge ratio of the cathode
particles to certain measurable quantities. This consequence is testable, but
since Thomson had no independent way to determine the mass to charge
ratio, he did not know how to test it, or indeed whether it is testable. How-
ever, when an h-d theorist speaks of a scientist deriving observational conse-
quences from a theory, I take it he is not speaking of propositions for which
(i) and (ii) hold. As understood by the h-d theorists in question, observational
consequences are supposed to carry their method of testing with them. If so,
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then a scientist may test a theory without deriving any such propositions from
the theory.

A second h-d reply is to admit that even if an experimental result claim
introduced by a scientist is not derived from the theory together with addi-
tional assumptions the scientist is actually making, it is derivable from the
theory plus assumptions the scientist could in principle make. What is the
force of "in principle" here? If it means that given any theoretical conse-
quence C and any experimental result claim E compatible with it there is
always some assumption A such that E is derivable from C and A, then the
claim is a trivial logical one. (Let A = if C then E.) If it means that the
scientist is always willing or in a position to make some further assumption A
and derive from this and theoretical consequence C some experimental result
that will test C, then the claim is not trivial, but not true in general either. The
scientist may have no idea how to test a given theoretical consequence experi-
mentally. So he or she may be in no position to make assumptions about some
experimental set-up that would test the consequence. Even if the scientist has
an idea about some possible experimental arrangement, he or she may be
unwilling to make assumptions about it from which to derive experimental
predictions. The scientist may be completely unsure about the efficacy of the
experimental apparatus until the experiment is performed. And, in such a
case, one does not need to make any such assumption, since the experiment
itself will provide an answer.

According to one version of hypothetico-deductivism that has become
fairly standard, testing a theory experimentally requires (1) deriving observa-
tional conclusions from it, (2) establishing these conclusions by experiments,
and (3) making nondeductive inferences from the established conclusions to
the theory. According to the view I defend, testing a theory experimentally
requires (1) deriving theoretical consequences from it, (2) establishing the
truth of experimental result claims by experiment, and (3) making nondeduc-
tive inferences from experimental result claims to the theoretical conse-
quences. Contrary to the h-d position, I am claiming that the propositions
derived in (1) are frequently not the same as those established in (2)'. The
former by contrast to the latter are not observational in a sense propounded
by h-d theorists. Accordingly, while testing a theory experimentally does re-
quire establishing the truth of observational claims, I reject the view that it
requires the derivation of such claims from the theory.

Hypothetico-deductivists stress the idea that the scientist must think up,
devise, or invent the fundamental theoretical assumptions of the theory. Gen-
erally these are not derived or inferred from anything else. What h-d propo-
nents fail to note is that the same can be said with respect to testing the theory
by means of experiments: generally the scientist must think up, devise, invent
some experiment to test theoretical consequences. What experiments to per-
form—what apparatus and measuring instruments to use and how to do so
(i.e., what experimental arrangement claims to make) —is frequently not giv-
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en, or presupposed, or even suggested by the theory (thesis 4).17 Before run-
ning an experiment the scientist obviously thinks up the experimental ar-
rangement. But prior to the experiment, instead of making a categorical
experimental arrangement claim he may make a weaker modal one of the
form "it is possible that this arrangement is sufficient for testing T." Whether
categorical or modal, his claim is not usually derived from the theory. And,
for the reasons given in the discussion of thesis 2, frequently the results of the
experiments, formulated as experimental claims, are not derived, or indeed
derivable, from the theory even with the addition of auxiliary assumptions
about the experimental arrangement the scientist is willing to make.

One final point. Falsificationist versions of the h-d viewpoint, such as
Popper's, stress the idea that an hypothesis is experimentally falsified by
deriving observational conclusions from it which turn out to be false when
experiments are conducted. A typical response —due to Duhem and Quine—
is to say that falsification of an hypothesis is difficult if not impossible
because the observational conclusion is typically inferred from the hypothesis
together with auxiliary assumptions. But there is an equally important reason
for difficulty in falsification by experiment. What is inferred from the hy-
pothesis plus auxiliary assumptions is typically not a specific experimental
result claim but a less specific theoretical one that may at least implicitly
contain clauses such as "in appropriate circumstances" or "if sufficiently
evacuated." Thomson drew the theoretical consequence that cathode rays are
deflected by an electric field (in appropriate circumstances). He did not re-
gard this consequence as falsified by the experimental results obtained by
Hertz and himself in which there was no electrical deflection of cathode rays.
He simply questioned whether the circumstances of the experiment were ap-
propriate. Since the experimental claim that cathode rays will be deflected by
an electric field in the sort of experimental set-up devised by Hertz was not
something he derived from his theory plus assumptions, the falsification of
the latter claim by experiment was not sufficient to refute the theory.

8. CONFIRMATION

Suppose there are some experimental results e that bear on a theoretical
hypothesis h. In deciding whether, or how much, to believe h, given e, scien-
tists often seek new empirical information, including possibly new experimen-
tal results. To determine whether, or to what extent, to believe the wave theory
of cathode rays, rather than the charged particle theory, in the light of Hertz'

17. Indeed, it may not be known by the scientist who derives the consequence. In 1860 James
Clerk Maxwell derived his distribution law of molecular velocities from assumptions of kinetic
theory. Yet an experimental test for that law was devised only in the 1920s with molecular beam
experiments. See Essay 6.
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negative results, Thomson sought to perform new experiments in which the
cathode tube was more completely evacuated. Why did he do so? This can be
understood by appeal to thesis 7, but not, as we shall see, by invoking certain
standard philosophical accounts of confirmation or evidence.

In deciding whether, or to what extent, to believe an hypothesis h, given e,
one may attempt to construct an inference from e to h. According to thesis 7,
a typical inference from an experimental result to a theoretical proposition
involves both explanatory reasoning and inductive generalization. But each of
these steps may require that additional experimental results be obtained. For
example, to get from Hertz' experimental results in which no electrical deflec-
tion was observed to the theoretical claim that cathode rays are waves, not
charged particles, one argues that the fact that cathode rays are not negatively
charged particles but waves in the ether is the most likely explanation of why
no electrical deflection was detected in Hertz' experiments. But to determine
whether this explanatory claim is reasonable, Thomson wanted to consider an
alternative explanation, namely, that the cathode tube was not sufficiently
evacuated, as a result of which the electric field intensity was too small to
produce detectable deflection. To evaluate the plausibility of this alternative
explanation Thomson constructed new experiments in which the cathode tube
used was more completely evacuated.

Now the concept of confirmation or evidence is related to that of belief. If
e confirms or is evidence for h, that can and ought to have an effect on
whether, or to what extent, to believe h, given e.18 Moreover, I have claimed
(thesis 7) that if (or to the extent that) an inference involving explanatory and
inductive reasoning is justified from an experimental result eto a theoretical
claim h, e is evidence for, or confirms, h. Yet typical philosophical accounts
of confirmation provide inadequate motivation for seeking additional empiri-
cal information beyond e in determining whether such an inference is justified
and hence whether e confirms h. In what follows I shall mention theories of
two general sorts. The first, which will take up most of the discussion, in-
cludes theories according to which confirmation is completely decidable by a
priori calculation. The second is subjective Bayesianism.

On the a priori view, to determine whether, or to what extent, an experi-
mental result e confirms an hypothesis h one simply performs some logical or
mathematical computations.19 Now suppose we have obtained some informa-

18. See Peter Achinstein, The Nature of Explanation (New York, 1983), ch. 10.
19. For example, according to a simple version of hypothetico-deductivism, e confirms h if

and only if e is deductively derivable from h. On Hempel's satisfaction theory, e confirms h if e
entails the development of h for the individuals mentioned in e. (Carl G. Hempel, "Studies in the
Logic of Confirmation," reprinted in Peter Achinstein, ed., The Concept of Evidence (Oxford,
1983), pp. 10-43.) On Glymour's more sophisticated bootstrap version of this, e confirms h with
respect to a theory T" if and only if using Tit is possible to derive from e an instance of h, and the
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tion e and we are considering hypothesis h. If confirmation is solely a matter
of such a priori calculation, then no new empirical information is needed — no
new experimental results —to determine whether (or to what extent) e does, or
does not, confirm h. So far, then, there is no reason to obtain any new
information. Do a priori theories provide any such reason?

An idea frequently associated with such theories is the requirement of total
evidence. According to Carnap,

In the application of inductive logic to a given knowledge situation, the total
evidence available must be taken as a basis for determining the degree of confirma-
tion.20

By "total evidence available" Carnap means facts that have been observed
(rather than ones that are observable but have not yet been observed). Sup-
pose that the degree of confirmation that e confers upon h is r. Then, writes
Carnap:

If e expresses the total knowledge of [person] X at the time t, that is to say, his total
knowledge of the results of his observations, then X is justified at this time to
believe h to the degree r. . . . (p. 211)

The latter version of the total evidence requirement is the one of concern to
me here. It supplies a sufficient condition for being justified in having a
(degree of) belief in some proposition. This version furnishes a motivation for
taking into account some piece of information, provided that it is part of the
scientist's total observational knowledge. But if it is not —if it is information
the scientist has not yet obtained—the requirement of total evidence offers no
reason to search for it. If e reflects the scientist's total observational knowl-
edge at time t, and if e confirms h (to degree r), then by the above principle at
time t the scientist is justified in believing h (to degree r), no matter what else
may be true. At some later time t' if the scientist has obtained new informa-
tion he or she may no longer be justified in this belief. But the principle itself
gives the scientist no reason to obtain new information. It simply allows
basing beliefs on, and only on, all the observational knowledge the scientist
has.

derivation is such as not to guarantee an instance of h no matter what e is chosen. (Clark
Glymour, "Relevant Evidence," reprinted in Achinstein, op. cit., pp. 124-144.) According to
Carnap's probabilistic version, e confirms h to degree r if and only if the ratio of the sum of the
measures of the state descriptions that entail h&e to the sum of the measures of those that entail e
is equal to r; and e confirms h if the degree to which e confirms h is greater than h's prior degree
of confirmation. (Rudolf Carnap, Logical Foundations of Probability (Chicago, 1962).) In all
these cases a priori computation settles the issue of confirmation.

20. Carnap, op. cit., p. 211.
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In short, on standard a priori theories of confirmation you do not need
new empirical information to determine whether, or to what extent, some old
empirical information e confirms an hypothesis h. And if e is your total
(relevant) empirical information at time t, then you do not need any new
empirical information to determine how justified you are at time t in believing
h. So why seek any new information? The only reason I can see standard a
priori theories offering is this: new information may change the (degree of)
confirmation of h, and therefore change the extent to which you are justified
at some later time t' in believing h.

I do not regard this mere possibility as a sufficient reason to pursue new
information, since it is also possible that new information may leave the
(degree of) confirmation of h unchanged. Perhaps the following is really
being supposed. Let the degree of confirmation of h, given e, be r, and
assume that e itself provides a reason to think that some new evidence will be
forthcoming that will change h's degree of confirmation. Then we should try
to pursue that new evidence. The problem with this supposition is that it is
self-contradictory. If e itself provides a reason to think that new evidence will
be forthcoming that makes h's degree of confirmation unequal to r, then this
should contradict the assumption with which we began, that is, that h's
degree of confirmation, given e, is r.

Now let us return to Thomson's response to the absence of electrical de-
flection of the cathode rays in experiments of the sort conducted by Hertz and
by Thomson himself before his later experiments. Instead of taking these
experimental results to constitute a justification to believe that cathode rays
are waves, not charged particles, Thomson proceeds to seek new information
by performing a new experiment. Can this strategy be defended?

It can if we abandon the view that confirmation is always decidable a
priori, or abandon the previous version of the requirement of total evidence,
or both. First, we might say that whether some information e confirms or
disconfirms an hypothesis h is not always settleable by a priori calculation.
Indeed, this is perfectly compatible with the type of inference involving ex-
planatory reasoning and inductive generalization considered in the discussion
of thesis 7. To ascertain whether Hertz' and Thomson's earlier experimental
results confirm the wave hypothesis one may want to consider whether the
most likely explanation for the lack of electrical deflection with the apparatus
in question is that cathode rays are waves, not charged particles, and whether
the lack of electrical deflection with this apparatus can be generalized to other
experimental arrangements in which the cathode tube is more extensively
evacuated. To draw either the explanatory inference or the inductive general-
ization to other experimental arrangements, new empirical information may
be sought concerning what happens when more gas is removed from the
cathode ray tube. If so, then to determine whether Hertz' and Thomson's
earlier experiments confirm the wave hypothesis, additional empirical infor-
mation is relevant. On this proposal, Thomson sought such new information
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to justify his (empirical) claim that Hertz' experimental results do not confirm
the wave hypothesis. More generally, a scientist will seek new empirical infor-
mation if that will help to show whether some current information confirms
an hypothesis. Here, then, is one motivation for seeking new information that
helps to explain why Thomson performed a new experiment.

Second, we might deny that if e confirms h (to degree r) and if e represents
a scientist's total evidence, then necessarily the scientist is justified in believ-
ing h (to degree r). We may deny this if we think the scientist should have
obtained additional information. Even if Thomson were to agree that Hertz'
experiments confirm the hypothesis that cathode rays are waves, not particles,
and even if these experiments had constituted Thomson's total relevant availa-
ble evidence before 1897, Thomson might have argued that he was not justi-
fied in believing that hypothesis. The reason is that the available experimental
evidence, even if confirmatory, is too meager or incomplete to justify a belief.
Here, then, is a second motivation for seeking new information that if valid
helps to explain why Thomson performed a new experiment.21

In fact I believe that both proposals are reasonable: confirmation is not
always decidable by a priori calculation, and Carnap's version of the require-
ment of total evidence is false. I shall not pursue these matters further here,
except to note one advantage in abandoning a completely a priori view of
confirmation. A priori accounts of confirmation fail to explain, or indeed
even to mention, the fact that confirmation of a scientific hypothesis is fre-
quently controversial. To be sure, scientists may disagree over the experimen-
tal result claims themselves — whether the results they report were actually
obtained or are repeatable. But this is not the controversy I mean. Two
scientists may agree about the experimental results — as did Hertz and Thom-
son about the absence of electrical deflection of the cathode rays in experi-
ments of the sort conducted by Hertz. Yet they may, and frequently do,
disagree over whether these results confirm or disconfirm a given hypothesis.
But if confirmation is solely a matter of a priori computation, then—where
scientists agree on the experimental claims — why should there be much if any
controversy over whether an hypothesis is confirmed? Just perform the com-
putation and settle the issue!

Frequently, however, it is not a computation that settles the dispute. Rather

21. An a priorist might respond by saying that although the absence of deflection (A) does
not by itself disconfirm the particle theory (P), this together with the assumption that the gas in
the tube is sufficiently evacuated (E) does. And that A and E disconfirm P is an a priori fact.
Accordingly, Thomson performed a new experiment to determine the truth of E so that he would
know whether there is evidence that a priori disconfirms P. But this response makes little sense in
the light of the requirement of total evidence. If A together with all the other relevant evidence
Thomson has does not disconfirm P, then Thomson should not disbelieve P on the basis of A.
Moreover, if all other available information together tends to confirm P, then Thomson should
believe P on the basis of this evidence. Thomson should base his beliefs on evidence he has, not
on (possible) evidence he does not have.
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appeal is also made to some empirical claim. In determining whether Hertz'
experimental results e disconfirmed the particle hypothesis h Thomson de-
cides to find out whether (i) cathode rays will be deflected when the tube is
much more completely evacuated. There is disagreement between Hertz and
Thomson because Hertz is committed to the view that (i) is false, while
Thomson suspends belief about (i) until his new experiment is performed. If
in this case the claim that e disconfirms h is construed as empirical, rather
than a priori, we can understand the dispute between Thomson and Hertz,
and why Thomson seeks a new experiment rather than an a priori argument
purporting to show that e does not disconfirm h.

Finally, let me turn briefly to a very different approach to confirmation,
namely, subjective Bayesianism. According to this, e confirms h for a particu-
lar person if e increases h's subjective probability for that person. Suppose,
for example, that in 1897, before new experiments on electrical deflection had
been performed, a typical wave theorist's subjective probability associated
with the particle theory was considerably lower than Thomson's. On the
subjective viewpoint, Thomson sought to perform the new experiment with a
more evacuated tube because whatever its outcome it would bring his and his
opponents' degrees of belief in the particle theory closer. If deflection oc-
curred, an opponent's degree of belief in the particle theory would become
higher and closer to what Thomson's would be. If deflection did not occur,
Thomson's degree of belief in the particle theory would become lower, and
closer to what an opponent's would be. And, on this approach, whatever can
be done to achieve (more) intersubjective agreement in science is of value. So
Thomson performed the new experiment to obtain an empirical result that
would cause changes in degrees of subjective belief in such a way as to
produce more intersubjective agreement.

Granted that Thomson did want more agreement, why did he choose to
achieve this by conducting a new experiment? If intersubjective agreement
was paramount, then without performing any new experiment he could sim-
ply have altered his own degree of belief in the particle theory to match that of
the wave theorist (just as one alters one's beliefs on discovering them to be
incoherent). He might have chosen to follow the cherished principle: go along
to get along. Or he might have tried to use this principle to convince the wave
theorist to change his beliefs.22

A subjectivist may respond that what Thomson wanted was not simply to

22. This can be formulated in terms of the usual conditionalization principle accepted by
Bayesians. Let pht1) (P) be Hertz' degree of belief in P (particle theory) at time t1. Suppose this is
equal to .3. Now suppose that Hertz is moved by the "go along to get along" principle and is
motivated to change his beliefs when there is disagreement and appeal is made to this principle,
so that the conditional probability ph,(t1) (P/there is disagreement at t2 with particle theorists and
appeals are made to Hertz to go along) = .7. By the conditionalization principlePh(t2) (P) = .7.
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obtain intersubjective agreement but to do so by empirical means, in this case,
by obtaining new experimental results. But the question is why Thomson
would want to do so by those means rather than others that might have been
simpler to achieve. If Thomson's main concern in seeking more informa-
tion was to produce more intersubjective agreement, this might well have been
accomplished without performing any experiment at all.

The proposal I have been making is that Thomson's primary motive in
performing the new experiment was not to get more intersubjective agree-
ment, but to determine whether Hertz' and his earlier experiments did, as
Hertz claimed, confirm the wave theory and disconfirm the particle theory.
Contrary to subjective Bayesians, I am saying that this is an objective, not a
subjective, question. Contrary to a priori theorists, I am claiming that Thom-
son settled the question empirically, not a priori. If the question is an objec-
tive empirical one, then, by contrast to the subjective viewpoint, the only
thing Thomson could do in settling it was to obtain new empirical informa-
tion of a sort provided by an experiment. Moreover, if he could settle the issue
in this fashion, he could get intersubjective agreement as a byproduct.

9. DATA AND PHENOMENA

Recently Bogen and Woodward have claimed that a distinction between data
and phenomena needs to be recognized.23 This distinction is important, they
claim, because, by contrast to what is frequently assumed, what is observed
are data, not phenomena; and what is explained are phenomena, not data.
For example, when the melting point of lead is determined by experiment, a
series of temperature measurements is made, not just one measurement. The
particular thermometer readings, which form a scatter, constitute the data.
These readings are what is observed. From this scatter in the data some "true"
melting point is inferred or estimated using a theory of statistical inference.
This true melting point (327°C), or the fact that lead melts at this tempera-
ture, is a phenomenon, not a datum or a part of the data. Moreover, it is not
something that is observed. Rather it is inferred from various data that are
observed. However, it is something that a scientist will try to explain. By
contrast, the specific set of thermometer readings obtained—the scatter—is
not something a scientist will attempt to explain, since it depends not only on
the nature of lead but on a confluence of factors pertaining to the mechanism
of the particular thermometer and how and when it was applied and read.

Suppose we think of those experimental result claims that have been estab-
lished by experiments as data, and the theoretical claims one infers from them

23. James Bogen and James Woodward, "Saving the Phenomena," Philosophical Review 97
(1988), pp. 303-352.
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(in the manner of thesis 7) as phenomena. Then, if Bogen and Woodward are
right, we can understand why theses 1 through 7 of earlier sections hold.
Those experimental result (as well as arrangement) claims that have been
established (the data) are not in general derived or derivable from a theory—
theses 1, 2, 4, and 5. (No theory of lead, or of solids, will yield the particular
scatter of thermometer readings obtained in an experiment.) Rather they (as
well as experimental arrangement claims) emerge by observation from the
experiment itself (theses 3 and 4). What is derivable (or more generally ex-
plainable) from the theory are the theoretical consequences (the phenome-
na)—thesis 6. However, these theoretical consequences are not observed.
Rather they are nondeductively inferred from the experimental results (the
data) that are observed —thesis 7.

I reject this facile explanation of my earlier theses. To begin with, what I
have been calling (established) experimental result claims include some that
Bogen and Woodward would clearly call data, but many others that I think
they would not. Among the former is (9) of section 3, which contains specific
sets of values Thomson actually obtained for W/Q and I in his third set of
experiments. Bogen and Woodward, I take it, would include (9) among the
data, just as they do in the case of some particular temperature measurements
obtained for lead. However, my (established) experimental result claims also
include many more general, ahistorical claims, such as (10), which contain no
recorded "data points" and seem different from what Bogen and Woodward
classify as part of the data. Indeed, they are more like what these authors call
phenomena, being inferred from various recorded "data points." Yet (10), no
less than (9), is not derivable from Thomson's theory. Accordingly, while the
Bogen and Woodward idea might explain why some experimental claims are
not derivable from the theory being tested, there are many others for which it
will not provide such an explanation.

Moreover, some of their assertions about what they regard as phenomena
and data I find dubious. For example, they say that phenomena are not
observable. The deflection of cathode rays by a magnetic field (or the fact
that cathode rays are so deflected) is the sort of thing they would call a
phenomenon. Yet it can readily be observed. To be sure, it is observed by
observing immediate effects such as the fluorescence. But there are contexts in
which it is perfectly correct to speak of observing the deflection of cathode
rays by a magnetic field.24 Bogen and Woodward also say that data, although
observable, are not generally explained. Now if to "explain the data" means to
answer some explanatory questions about them,25 then I suggest that Bogen
and Woodward are correct in some cases and incorrect in others. For example,
one question about the data obtained by Thomson in the mle experiments is

24. See Peter Achinstein, Concepts of Science (Baltimore, 1968).
25. See Achinstein, The Nature of Explanation.
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this: Why are the specific values of W/Q and I in the first row of Thomson's
table 4.6 x 1011 and 230, respectively? Clearly Thomson does not explain
this. But another question about Thomson's data is this: Why are the specific
values for I, Q, and W obtained in these experiments such that PQ/2 W is
approximately constant? Clearly Thomson does explain this by reference to
his charged particle theory of cathode rays.

The concept of "data" is context dependent. Whether some body of infor-
mation constitutes data depends on what, in the circumstances, can be taken
for granted or can be taken as having been established. For example, for both
the wave and particle theorists of cathode rays, the following would have been
considered data, in virtue of having been established to the satisfaction of
both sides: cathode rays are emitted in a cathode ray tube; they travel in
straight lines; they produce fluorescence in glass; they are deflected by a
magnetic field. Admittedly each of these claims —which Bogen and Wood-
ward would call phenomena—were inferred from other things. But once es-
tablished to the satisfaction of all sides, they now function as data for further
inferences. If data comprise only what is not and never was inferred but
"immediately perceived without inference," then many of the items Bogen
and Woodward classify as data—including measurement results —will need
reclassification.

10. CONCLUSIONS

1. There are theories a scientist tests by determining the truth of experi-
mental result claims few if any of which, prior to the experiment, are derived
by the scientist from the theory together with auxiliary assumptions. Because
of the limited power of the theory and uncertainties about the experimental
set-up, many such claims are not even derivable in principle. Instead they
emerge by observation of the results of the experiment. What is derived from
the theory prior to the experiment are consequences that typically are much
more general than experimental result claims and make little or no reference
to an experimental apparatus.

2. Confirming a theory may involve establishing the truth of experimental
result claims. But, contrary to hypothetico-deductivism, it does not require
the derivation of such claims from the theory. What suffices is the derivation
of more general and experimentally "silent" theoretical consequences, and an
inference in the opposite direction from experimental results to these theoreti-
cal consequences. The latter inference is not deductive, but involves both
explanatory reasoning to theoretical causes of the experimental result and an
inductive generalization to the more general conditions expressed in the theo-
retical consequence. Because of such reasoning, contrary to a priori accounts,
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whether some experimental result confirms a theory is not in general settle-
able by a priori calculation.

APPENDIX

Here I shall briefly note two famous cases involving theoretical predictions
that were experimentally confirmed. The question is whether experimental
result claims were derived from the theory. The first case is mentioned by
Popper as "the most beautiful instance" of a theoretical prediction of an
observable effect: de Broglie's prediction of the wave character of electrons
first confirmed experimentally by Davisson and Germer.26

De Broglie's basic idea is that every particle of matter has an associated
wave whose wavelength X is related to its mass m and velocity v by the formula
X = h/mv, where h = Planck's constant. He applies this idea to electrons
that acquire a velocity v under the action of a difference of potential P. The
kinetic energy of any such electron is 1/2mv2 = eP, where e = the charge of
an electron. Solving for v and substituting the result in the formula X = h/mv
yields = h/2meP. Substituting known values for h, m, and e, he obtains
X = 12 x 24/P x 10-8 cm, where P is in volts. De Broglie notes that for
electrons under the action of a difference of potential of at least some tens of
volts the associated wavelengths will be of the order of 10-8 cm, which is also
the order of magnitude of wavelengths of x-rays. But, he points out, x-rays
are known to be diffracted by crystals. So he concludes, "we may fairly expect
to obtain a scattering of this [electron] wave by crystals, in complete analogy
to the Laue phenomenon [involving scattering of x-rays by crystals]."27 The
argument to the conclusion that electrons can be diffracted by crystals in-
volves deductive steps and a crucial analogical one. But what is inferred is a
value for the electron wavelength as a function of potential difference and the
claim that electrons can (probably) be diffracted by crystals, neither of which
is an experimental result claim. De Broglie goes on to mention that Davisson
and Germer devised an experiment to show electron diffraction and confirm
the quantitative prediction about electron wavelengths. But he does not de-
rive experimental results from his theory, which indeed was worked out before
de Broglie knew of these experiments.

My second example involves a case that recent philosophers and historians
of science have focused on, Millikan's oil drop experiment. Millikan writes
that one of his aims in conducting this experiment is to present confirming

26. Karl Popper, Logic of Scientific Discovery (London, 1959), pp. 107-108.
27. Louis V. de Broglie, "The Undulatory Aspects of the Electron," Nobel prize address,

Stockholm, 1929, reprinted in Henry A. Boorse and Lloyd Motz, eds., The World of the Atom,
vol. 2 (New York, 1966), pp. 1048-1059; quotation on p. 1057.
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evidence for the theory that "all electrical charges, however produced, are
exact multiples of one definite, elementary electrical charge, or in other
words, that an electrical charge instead of being spread uniformly over the
charged surface has a definite granular structure. . . . "28

Millikan begins by describing his experimental apparatus, which consists
of an atomizer that sprays fine oil droplets into a space between two parallel
plates. An oil droplet will fall under the influence of gravity, but because of
air resistance will soon reach a terminal velocity V1 that can be determined by
measuring the time and distance of the fall. Next the plates are charged so as
to drive the droplet upward with a force given by Fen — mg, where F is the
magnitude of the electric field between the plates, en is the charge on the
droplet, m is the mass of the droplet, and g is the gravitational constant. The
electrical field produces an upward terminal velocity v2 for the droplet, which
can be determined by measuring the time and distance of the rise. Millikan
describes the experimental apparatus in detail, as well as the method of
observing the droplets and the times of their fall and rise.

He then proceeds to derive the following formula:

All the quantities on the right side of equation (11) are measurable in the oil
drop experiment, ( = coefficient of viscosity of the medium through which
the droplet moves; p = density of this medium; = density of the drop.) The
experiment is then run and various values of v1 and v2 are determined experi-
mentally. Millikan then uses equation (11) to obtain values for en, the charge
on the oil droplet.

His most important experimental result claim might be formulated (sche-
matically) as follows:

(12) When oil drops in the experimental arrangement described by Milli-
kan are allowed to fall in a gravitational field between the plates and
then are pushed upward by an electric field, the charge on the drops,
as determined from measurements of various quantities, are all whole
multiples of an elementary charge whose mean value is 4.917 x 1010.

In advance of the experiment Millikan did not derive this claim from the
theory that electric charges are whole multiples of an elementary charge, or
even from this theory together with (11) above. Nor indeed is (12) so deriv-
able. Rather, he inferred (12) from observing the results of the experiment by

28. R. A. Millikan, "The Isolation of an Ion, a Precision Measurement of Its Charge, and
the Correction of Stokes's Law," The Physical Review 32 (1911), pp. 349-397; quotation on p.
350.
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making use of (11) to compute en from other quantities measured in the
experiment.

What about (11)? Did Millikan derive it from the theory, and is it an
experimental result claim? My answer to both questions is no. To derive (11),
Millikan uses Stokes' law and a number of assumptions from classical me-
chanics and electrostatics, but not the assumption that charges are "atomic"
rather than continuous. Furthermore, (11) is not an experimental result
claim. Even if one adds to (11) information about the experimental arrange-
ment and the results of measurement of all the measurable quantities on the
right side, (11) would not be inferable, since no independent way of measur-
ing en is given. Although (11) itself is not an experimental result claim, nor a
theoretical consequence of the "atomistic" theory being tested, it is neverthe-
less used by Millikan in establishing his experimental result claim (12).

In brief, then, the theoretical prediction that charges come in whole multi-
ples of an elementary charge is confirmed by establishing the experimental
result claim (12), using the derived formula (11). (12) is not derived or deriv-
able from the theory, even if assumption (11) is added. Instead Millikan infers
it, using (11), by observing the results of the experiments.*

*I am indebted to Robert Rynasiewicz for critical comments.
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