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Prologue 

The Ground Has Shifted 

Two things stand out in the physics department of San Jose State University. First, 
our teaching load is 12 units plus five office hours per week. Second, undergraduate 
research and publications with students as coauthors are very much encouraged. To 
get some fun out of these challenging demands and to maintain my own vitality 
as a research physicist, in the Fall of 1988 onwards, I created two new courses in 
nonlinear physics to teach. At that time, there were no suitable textbooks; reviews 
and research papers were used as teaching materials or recommended reading. There 
was much excitement in the classroom, for both the students and the instructor, 
mostly due to the freshness and novelty of the material we learned together. 

Today, ten years later, with nonlinear science enjoying much more publicity and 
so many chaos and fractals books on the market, there is still no single textbook 
that contains all the topics in nonlinear physics that I would like covered. Then, 
seemingly quite suddenly, but actually long in the making, the physics profession 
finds itself in an employment crisis. In response, a broadening of research and 
curriculum in physics was urged. What else, if not nonlinear science, is more suited 
to answer this call for action? In fact, nonlinear science is so broad that it covers 
all the disciplines, in both natural and social sciences. Judging by the titles of 
papers published in physics journals alone - where the words DNA, traffic, river 
and evolution frequently appear - there is strong indication that the frontier of 
physics has shifted. 

And shifted indeed. A quick survey discovered the existence of eight special 
journals and two magazines serving nonlinear science. Most began their publica- 
tions in the last few years. The journals are Physica D, Nonlinearity, Nonlinear 
Science, Chaos, Chaos Solitons and Fractals, International Journal of Bifurcation 
and Chaos, Fractals and Complex Systems. The magazines are Nonlinear Science 
Today and Complexity. In the last 10 to 15 years, a number of centers around the 
world, which caters to the study of nonlinear and complex systems, has popped up 
one after the other. More recently, a graduate program for the study of complex 
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systems was established in Ann Arbor. A Topical Group in statistical physics and 
nonlinear physics has just been established within the American Physical Society. 

We hope that this book will help the reader to understand this important shift 
in paradigm, and to share the excitement of new developments in nonlinear science. 
The basic principles expounded in the book are very general and applicable beyond 
physics. The book can be used for self-study, as a textbook for a one-semester course, 
or as a supplement to other courses in linear or nonlinear systems. No mathematical 
knowledge beyond calculus and no computer literacy are required. (On the other 
hand, with the help of the listed programs in Part 111, it may be a good time for 
the student to learn some computer skills.) Beginners referred to in the book title 
are those who have a background in introductory college physics. 

With a few exceptions, the chapters in Part I are quite independent of each 
other. It is recommended that Chapter 2 be read before Chapters 3 and 5 ,  or, the 
reader may start from any chapter and go back to the earlier sections when the 
need arises. Consequently, the book can also be used for a one- or two-unit course 
if a subset of the topics is covered. Supplementary materials can be found from the 
further-reading list in Chapter 8. 



PART I 

OVERVIEW 
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1 Introduction 

1.1 A Quiet Revolution 

Over the last two decades or so, something very important happened in the de- 
velopment of science. It was a revolution, albeit a quiet one. Like a revolution 
these developments touched the soul of many people, changed their outlooks of the 
world, and in some cases, even their lives. Unlike in revolutions, these changes did 
not always happen abruptly; but there are some important years, if not dates, that 
one can quote. It is quiet, because no one called a press conference to announce it 
and so there were no headlines in the newspapers. 

Here we are talking about what is now called nonlinear science. Nonlinear science 
is not a new branch of science in the usual sense. It does not add a new subject of 
study, such as chemical physics being added to chemistry or physics. Rather, non- 
linear science encompasses all the existing disciplines in science - in both natural 
and social sciences. 

To put things in perspective, consider quantum mechanics and relativity, the two 
discoveries in physics which were developed at the beginning of this century. They 
are justifiably recognized as revolutions. These two revolutions present unexpected 
concepts and insights by going beyond the classical domains (Fig. 1.1). In fact, new 
results are obtained in quantum mechanics when one goes to the microscopic level 
(< lo-* cm) and, in the case of relativity, when the speed of the object is close to 
that of light (- lo1' cm/s). 

Nonlinear science, like quantum mechanics and relativity, delivers a whole set of 
fundamentally new ideas and surprising results. Yet , unlike quantum mechanics and 
relativity, nonlinear science covers systems of every scale and objects moving with 
any speed, i.e., the whole area displayed in Fig. 1.1. Then, by the same standard, 
nonlinear science is more than qualified to be called a revolution. The fact that 
nonlinear science delivers within the conventional system sizes and speed limits 
should not be counted as negative toward its novelty. On the contrary, in view of 
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universe 

atom 
0 

mechanics 

Fig. 1.1. Sketch of the limited domains of applicability of quantum mechanics and relativity theory, 
the two well-recognized revolutions in physics. In contrast, nonlinear science applies to the whole 
domain displayed here (not to scale). 

its wide applicability, nonlinear science is made more important and powerful as a 

true revolution. 
As a consequence of the multidisplinary nature of nonlinear science, people work- 

ing in very different disciplines such as in economics and earthquakes now have some 
common vocabularies and can communicate with each other. Moreover, the applica- 
bility of nonlinear science in a broad sprectrum of scales implies that one can study 
the same phenomenon in very different systems with corresponding experimental 
tools. For example, one can study fractals on the kitchen table by photograph- 
ing potato chips with an ordinary camera, while someone else with a sophisticated 
and expensive electron microscope will do it in a clean room with semiconductor 
chips. And, amazingly, they could be both working in the forefront of research 
in nonlinear science. In short, nonlinear science can really bring people together! 
Nonlinear science is a game everyone can play! 

For pedagogical purposes, one may divide the content of nonlinear science into 
six categories, viz., fractals, chaos, solitons, pattern formation, cellular automata, 
and complex systems. The common theme underlying this diversity of subjects is 
the nonlinearity of the systems under study. 

1.2 Nonlinearity 

A system is nonlinear if the output from the system is not proportional to the input 
(Fig. 1.2). For example, a dielectric crystal becomes nonlinear if the output light 
intensity is no longer proportional to  the incident light intensity. The examination 
system used by a professor is nonlinear if the grade points earned by a student do 
not increase linearly as a function of the number of hours put in by the student, 
which is usually the case. 



Fig. 1.2. Definition of a nonlinear system. The broken line represents a linear system with the 
output proportional to the input. The solid line represents a nonlinear system. 

It is not that difficult to see that nonlinearity is more common than linearity. 
Consider the differential equation 

dxldt = ax" (1.1) 

where a and a are constants. Equation (1) states that the rate of increase of a 
certain quantity x(t)  is proportional to the present value raised to some power a,  
a rather common occurrence in real systems. Among all the possible choices of a, 
the solution of Eq. (1.1) is linear in t (given by x = a t  + b )  only when Q = 0. For 
other values of a,  x(t) is a nonlinar function of t.  [For a = 1, the solution becomes 
x = bexp(at). For a # 1, x = [(l - a)(at  + b)]l/(l-a), which becomes a power law 
when b = 0. Here b is a constant.] 

In fact, almost all known systems in natural or social sciences are nonlinear 
when the input is large enough. A well-known example is a spring. When the 
displacement of the spring becomes large, Hook's law breaks down and the spring 
becomes a nonlinear oscillator. A second example is a simple pendulum. Only when 
the displacement angle of the pendulum is small does the pendulum behave linearly. 
There are important qualitative differences between the behavior of a system in its 
linear and nonlinear regimes. For example, the period of the pendulum oscillation 
does not depend on the amplitude (the maximum displacement angle) in the linear 
regime, but it does so in the nonlinear regime. 

Mathematically, the signature of a nonlinear system is the breakdown of the 
superposition principle which states that the sum of two solutions of the equation(s) 
describing the system is again a solution. The physical consequence is that in a 
nonlinear system, the behavior of the whole is more than the sum of its parts. (Life 
is an example that easily comes to mind.) 

There are two ways that the superposition principle may break down. First, the 
equation itself is nonlinear. For example, the equation of motion for the point mass 
in a simple pendulum is given by 

d2Q/dt2 + ( g / L )  sin 0 = 0 (1.2) 
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Fig. 1.3. Sketch of a simple pendulum. 

where 8 is the angle between the vertical and the pendulum, g the acceleration due 
to gravity, and L the length of the pendulum (Fig. 1.3). It  is easy to show that 
if &(t )  and 8,(t) are each a solution of Eq. (1.2), then the sum &(t)  + &(t)  is 
not a solution, a consequence of the simple fact that sin81 + sin82 # sin(& + 82). 
Consequently, Eq. (1.2) is a nonlinear equation due to  the presence of the nonlinear 
term sin 8. [In contrast, in the linear regime where 8 is small, one could replace sin 8 
by 8, a linear term, in Eq. (1.2) and the superposition principle becomes valid.] 

Second, the equation itself may be linear but the boundary is unknown or moving. 
For example, in the viscous fingering problem of pattern formation in a Hele-Shaw 
cell (which is nothing but a volume of liquid enclosed between two narrowly spaced 
parallel plates), one tries to determine the shape and movement of a single, unknown 
interface separating two immiscible liquids when one of them is pushed into the 
other. The pressure field P in each type of liquid is simply given by the Laplace 
equation, V 2 P  = 0, which is a linear equation. However, the superposition of two 
solutions of this problem (corresponding to different external conditions set at the 
far ends of the cell) contain two “interfaces,” and obviously does not represent a 
solution of the original problem. 

The nonlinearity of a system makes the system highly nontrivial and its analysis 
difficult. For example: 

(9 

(ii) 

For a nonlinear system, a small disturbance such as a slight change of the initial 
conditions, can result in a big difference in the behavior of the system at a later 
time. This could make the behavior of a nonlinear system very complex [as in 
the case of chaos (see Chapter 3)]. 
If the equations describing the nonlinear system are known, the breakdown of 
the superposition principle renders the Fourier transform technique - which 
makes the analysis of a linear problem so “easy” - inapplicable. And there is 
no similar systematic method in solving nonlinear equations (for example, the 
celebrated inverse scattering method in soliton theory is applicable only to a 
subset of integrable systems, and there is still no way to know, a priori, which 
integrable system is susceptible to this method). 
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(iii) In many cases, from the simple diffusion-limited aggregation model of fractal 
pattern growth (Section 9.1) to many examples in complex systems such as the 
economic system (Section 10.4), the equations are not even known or simply 
may not exist. 

All these complications make the use of computers an invaluable tool in the study 
of nonlinear systems since computers do not differentiate linear equations from non- 
linear equations, can be used for direct simulations and can display complex results 
for easy visualization. The important role played by computers is partly responsible 
for the fact that the rise of nonlinear science is a quite recent phenomenon, corre- 
lated with the widespread accessibility of personal computers. The other reason for 
the late coming of nonlinear science is that it takes time for the “easy” problems of 
linear systems to be exhausted first, especially because many linear problems such as 
the propagation of electromagnetic waves in telecommunications, are technologically 
very important in our daily lives. 





2 Fractals 

Many spatial structures in nature result from the self-assembly of a large number of 
identical components. To be efficient, the self-assembly process takes advantage of 
and occurs via some simple prescriptions, which we call the principles of organiza- 
tion. The two simplest principles are the principle of regularity and the principle of 
randomness. With the former, the components arrange themselves in a periodic or 
quasiperiodic regular fashion, resulting in crystals, alloys, a formation of soldiers in 
a parade, etc. Examples of structures (or nonstructures) resulting from the latter 
are those in gases and the distribution of animal hairs. 

Between these two extremes there is the principle of self-similarity, leading to self- 
similar structures called fractals. In a self-similar fractal, part of the system, when 
blown up in scale (with the same magnification in different directions), resembles 
the whole. A fractal usually has a fractional dimension. These concepts can be 
illustrated by the example of a Sierpinski gasket (SG). To construct the SG, in the 
first step (n = 0) let us start with an equilateral triangle with each side equal to 
one. In the next step (n = 1) cut out the middle inverted triangle; in step n = 2, do 
the same for each of the three triangles left over from the previous step (Fig. 2.1). 
Repeat this cutting procedure until n = 00. (Of course, this can be done only in 
your mind but not in practice.) The set of “triangles” left at step n = 00 is the 
Sierpinski gasket. It is easy to see that every small part of the SG has the same 
shape as the whole; the SG is thus a self-similar fractal. [The SG can be generated 
by a computer in at least four different ways (Sections 9.6, 13.2, 14.1.1 and 14.1.2).] 

The dimension of an object D is given by 

where N, is the minimal number of identical small objects (of linear size E each) 
needed to cover the original object. Here the tilde denotes “proportional to when 
E += 0.” The dimension D so defined by Eq. (2.1) is called the box dimension 
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(Section 14.1.3). Note that Eq. (2.1) is equivalent to 

(2.2) D = lim (- log N E /  log E )  
E+O 

[That Eq. (2.1) indeed gives D = 2 for a square can be checked easily by using small 
squares to cover up the original square. The procedure is similar to what is shown 
in Fig. 2.1 below.] 

p refractal n E 

A 
A ta 

0 1 1 

1 2 - 1  3 

2 2'2 32 

A 3 2-3 33 

n 2-" 3" 

Fig. 2.1. The construction of the Sierpinski gasket, and the procedure in determining its (fractal) 
dimension. Equilateral triangles of linear size E are used to cover the gasket. The figure at n = 0 
is called the initiator; the one at n = 1 is called the generator; each figure at step n is called a 
prefractal. 

To determine the dimension of the SG, let us try to cover it with small equilateral 
triangles. Note that the SG cannot be drawn out explicitly (it exists only at n = m). 

However, one can still proceed as shown in Fig. 2.1. For each E ,  the number of small 
triangles NE, shown on each row, definitely cover the figure on that row and hence 
the SG itself, since the SG is a subset of this figure. One therefore has N, = 3n for 
E = l/2.. Using Eq. (2.2) and the fact that log NE/logE = (nlog3)/(-nlog2), one 
obtains D = log 3/ log 2 M 1.58, which is not an integer. 

For fractals generated from growth processes, one can define the fractal dimen- 
sion by 

M - R D  (2.3) 



M = .nR2 M = ARD M = N R ~  
(D = 2) (2 >D >I) (D = 1) 

Fig. 2.2. The definition of dimension D and the origin of a fractional dimension in a growth process. 
M is the mass which is proportional to the black area. R is the radius, the linear size of the object. 
A in (b) is a constant; N is the number of lines in (c). In (a) the growth object is a solid circle; in 
(b) a fractal “tree” with branching; and in (c), a simple tree without branching. We thus see that 
branching is an essential ingredient in the formation of a fractal tree. 

where M is the mass of the object when its linear size is R. Here the tilde means 
“proportional to when R -+ 00.” The reason that Eq. (2.3) can give rise to a nonin- 
tegral value of D is illustrated in Fig. 2.2. [The dimensions obtained from Eqs. (2.1) 
and (2.3) are usually equal to each other.] Two well-known fractal growth models 
are the diffusion-limited aggregation model (Sections 9.1 and 14.1.4) and the dielec- 
tric breakdown model (Sections 12.2 and 14.1.5). In these models, self-similarity is 
valid in the statistical sense. 

The ubiquitous existence of fractals in natural and mathematical systems became 
widely known to scientists in the early 1980s after the book The Fractal Geometry of 
Nature by Benoit Mandelbrot was published. Examples of fractals include crumpled 
paper balls (Section 9.2), aggregates and colloids, trees, rocks, mountains, clouds, 
galaxies (Section 9.3), polymers, materials with lock-in properties (Section 9.4), 
fractures (Section 16.3), and the stock market. 

When it is required to blow up a part of the object with dzflerent magnifications 
in different directions for it to resemble the whole, the object is said to be a self-affine 
fractal. Interfaces and rough surfaces are such examples (Fig. 2.3). Many fractals 
are also multifractals, which can be roughly considered as a collection of fractals 
(Sections 9.5 and 9.6). 

in Eq. (2.1) or Eq. (2.3). The power law 
A hint of the secret of fractals lies in their power-law behavior, such as the one 

y = Axa (2.4) 

y(Xx) = Xay(x), for all X > 0 (2.5) 

is equivalent to 
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Fig. 2.3. The upper irregular curve is a self-affine fractal. The image resulted from the dried liquid 
splashed on the floor of the author’s laboratory after the liquid underwent a free fall from a leaking 
pipe at the ceiling of the room. 

The fact that Eq. (2.4) implies Eq. (2.5) is established by direct substitution. Since 
X is arbitrary, one may choose X = l / x  and Eq. (2.5) reduces to y(x) = y( l )xa ,  
which is Eq. (2.4) with A = ~ ( 1 ) .  The two equations are thus equivalent to each 
other. (The positiveness of X ensures that X u  is always a real number.) 

Mathematically, any function y(x) that satisfies Eq. (2.5) is called a homogeneous 
function. A homogeneous function is scale invariant, i.e., if we change the scale of 
measuring z so that x -+ x’ (= Ax), the new function y’(x’) [- y(x)] still has the 
same form as the old one y(z). This fact is guaranteed since y(x) = X-”y(x’) by 
Eq. (2.5), and hence y’(x:’) - y(x’). 

Scale invariance means that if a part of a system is magnified to the size of 
the original system, this magnified part and the original system will look similar 
to each other. In other words, there is no intrinsic scale in the original system. A 
scale-invariant system must be self-similar and vice versa. 

Thus we see that self-similarity, spatial power laws and scale invariance are three 
equivalent ways of expressing the fact that the system lacks a characteristic length 
scale. Similarly, the absence of a characteristic time scale in the system leads to 
temporal power laws (e.g., the l/f noise, another ubiquitous phenomenon in nature). 
It must be noted that power laws are nonlinear equations except when the exponent 
is unity. To explain the widespread existence of fractals and scale-free behaviors 
in nonequilibrium systems, the hypothesis of self-organized criticality was proposed 
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by Per Bak, Chao Tang and Kurt Wiesenfeld in 1987, which is supposed to be 
applicable to sandpiles and many other natural and social systems (Section 13.3). 

Lastly, let us note that the fractal concept has found applications in the social 
sciences, as evidenced by Hans-Jiirgan Warnecken’s book The Fractal Company: A 
Revolution in Corporate Culture (Springer, 1993). 
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3 Chaos 

In the realm of science, chaos is a technical word representing the phenomenon that 
the behavior of some nonlinear systems depend sensitively on the initial conditions 
(Section 10.1). This usage of the word obviously differs from that adopted in our 
daily lives, in which chaos is synonymous to “a state of utter confusion” (Fig. 3.1). 
(The word work is another example of this kind of free borrowing by the scientists. 
When you breathe heavily after carrying a heavy object up ten stories in the school 
building and back to the same spot, and your teacher says that you have done zero 
work, then you know you and your teacher are not speaking the same language.) 
Chaos as envisioned by the artists is sampled in Fig. 3.2. 

Chaos has been investigated by Henri Poincark at about the turn of the cen- 
tury and subsequently by a number of mathematicians. Recent frenzy about chaos 
occurred in the late 1970s, after Mitchell Feigenbaum discovered the universality 
properties of some simple maps, which was preceded by the important but obscure 
work of Edward Lorentz related to weather predictions. Not every nonlinear sys- 
tem is chaotic, but chaos does occur in many mathematical (Section 14.2.1) and 
real systems such as a dripping faucet (Section 10.2), a waterwheel (Section 14.2.2), 
thermal convection of liquids, electronic circuits, chemical reactions, heart beats, 
etc. 

The signature of chaos in a dissipative system is the existence of strange 
attractor(s) in the phase space, which is a fractal. In contrast, the ordinary attrac- 
tors existing in nonchaotic systems have simple structures and integral dimensions 
(Fig. 3.3). The basins of attraction could also be fractals (Section 10.3). These 
linkages between chaos and fractals are not fully understood. 

Two findings of chaotic systems are particularly significant: 

(i) In the chaotic regime, the behavior of a deterministic system appears ran- 
dom. This single finding forces every experimentalist to reexamine their data 
to determine whether some random behavior attributed to noise is due to de- 
terministic chaos instead. 



INSIDE THE BELTWAY 
Political Chaos And Uncertainty Prod Scientists Into Action 
by Michael S. Lubell, APS Director of Public Affairs 

Ean Trancisco QronicIe 
MONDAY, JUNE 10,1996 

Creative 
Control 
Lac ki n g 
Technology confab 
verges on chaotic 
BY LAURA EVENSON 
Chronicle Staff Wifer 

hat sounded like a high-tech, W artsy love-fest called “The 
Imagination Conference” starring 
Brian Eno, Laurie Anderson and 
Spike Lee may more aptly have 
been called “Out of Control,” after 
Kevin Kelly’s book about technolo- 
gy and the future. 

The event Saturday evening at 
Bill Graham Civic Auditorium 
drew a visibly hip crowd of 3,000 
who paid a steep $45 each to hear 
and see record producer Eno, mul- 
timedia shaman Anderson and in- 
novative director Lee present a co- 
hesive evening of performance 
and discussion about the interac- 
tion of creativity and technology. 
What they got instead were mus- 
ings so random as to look like an 
exercise in chaos theory. 

Fig. 3.1. Samples of the use of the word chaos in newspaper headlines. 



Fig. 3.2. CHAOS 11. An oil painting by George Cladis, 1989; photographed by Jennifer Kotter. 
Original size: 84" x 60". Medium: acrylic, rope and steel plates on canvas. 



20 Part I Overview 3 Chaos 

Fig. 3.3.  Ordinary attractors in nonchaotic dissipative systems. (a) A point; dimension D = 0. 
(b) Limit cycle; D = 1. (c) Torus; D = 2. Other tori could have higher integral dimensions. 
(The limit cycle is like a besieged fortress: Outsiders want to get in; insiders want to get out. 
Incidentally, The Besieged Fortress is the title of a 1940s novel by the Chinese writer, Qian 
Zhongshu, in which marriage is metaphored its a fortress besieged.) 

(ii) Nonlinear systems with only a few degrees of freedom can be chaotic and appear 
to be very complex. This finding gives hope that the complex behavior observed 
in many real systems may have a simple origin and may indeed be discernable. 

The apparent unpredictability of a chaotic, deterministic, real system (such as 
the weather) arises from the system’s sensitive dependence on initial conditions and 
the fact that the system’s initial conditions can be measured or determined only 
approximately in practice, due to the finite resolution of any measuring instrument. 
Even if the physical initial conditions are known exactly, the rounding error intro- 
duced by a computer in numerical calculations amounts to producing inaccurate 
initial conditions for the subsequent steps in that calculation. These difficulties pre- 
clude the long-term predictability of any chaotic, real system. On the other hand, 
for a system that is deterministic and chaotic in nature, there is order behind its 
seemingly complex behavior and short-term predictability is possible. The prob- 
lems are how to determine whether there is a chaotic origin behind a complicated 
behavior and how to do a short-term prediction. 

For systems such as the weather or the stock market, due to the insurmountable 
complexity, the complete equations describing the system, if they exist, may never be 
known. Or, when the equations can be written down, there may not be a computer 
powerful enough to solve them. Besides, for practical reasons a successful short- 
term prediction for these systems is usually good enough (for example, one only 
needs to know the trend of the stocks slightly ahead of time - without knowing 
the mechanisms of the market - to make a killing in the market). Short-term 
prediction of the behavior of complex systems (Section 10.4) has become one of the 
two most exciting practical applications of chaos. 

The other important application is controlling chaos (Section 10.5). This appli- 
cation is based on the fact there are many unstable periodic orbits embedded within 
a strange attractor, and one of these, if desirable, can be made stable and reached 
by the chaotic system with a small perturbation applied to the system, without 
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knowing the system’s dynamics in advance. The technique has been applied suc- 
cessfully in the control of mechanical systems, electronics, lasers, chemical systems 
and heart tissues. 

For classical conservative systems - in particular, Hamiltonian systems - 
chaotic behavior can still manifest as irregular orbits in the phase space while 
attractors of any kind do not exist. In the quantum mechanical regime of such 
Hamiltonian systems, orbits in phase space are no longer well defined due to the 
uncertainty principle. Then, will there be chaos in the quantum regime? If yes, how 
will it show up? Quantum chaos is now at the very forefront of chaos research; the 
whole question of the correspondence between the classical and quantum regimes of 
a dynamical system is being studied again from new perspectives (Section 10.6). 

Two other recent developments should be mentioned. One is the application 
of chaos to the practical problems in materials science (see the article by Alan 
Markworth et al., in MRS Bulletin, July 1995). The other is the merging of chaos 
theory with social sciences [see Chaos Theory in Psychology and the Life Sciences, 
edited by Robin Robertson and Allan Combs (Lawrence Erlbaum Associated, 
Mahwah, NJ, 1995); and Chaos and Order: Complex Dynamics in Literature and 
Science, edited by N. K. Hayles (University of Chicago Press, Chicago, 1991)l. 

Finally, one should remember that there are still unsolved fundamental questions 
raised by chaos, such a s  the relationship between the deterministic and probabilistic 
descriptions of Newtonian dynamics (Section 10.7). 
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4 Solitons 

Solitons are spatially localized waves traveling with constant speeds and shapes. 
They are special solutions of some partial differential equations (Section 11.1). 

In some nonlinear media, such as a layer of shallow water or an optical fiber, 
under suitable conditions, the widening of a wave packet due to dispersion could be 
balanced exactly by the narrowing effects due to the nonlinearity of the medium. 
In these cases, it is possible to have solitons. For example, the equation describing 
wave propagation in shallow water is given by the Korteweg-deVries equation 

ao/at - ae(ao/ax) + a30/ax3 = 0 ( 4 4  

where a is a constant. The second term on the left hand side of Eq. (4.1) is the 
nonlinear term and the third one, the dispersion term. A soliton solution is given 

bY 
e(x, t )  = -(12/a)a2 sech2[a(x - 4a2t - zO)] (4.2) 

where a and 20 are arbitrary constants. Equation (4.2) represents a solitary wave 
(Fig. 4.1), i.e., a traveling wave whose transition from the asymptotic state at 
T = -m to the other asymptotic state at T = 00 is localized in T. Here T = x - ct, 
with c = const (=4a2 in this case). Note that the amplitude ( a 2 ) ,  the wave width 
(l /a) and the velocity (4a2) are related to each other ~ a property shared by many 
solitons. In this case, the “tall and thin” soliton travels faster. 

Another example of a solitonic equation is the nonlinear diffusion equation 

ao/at = a20/ax2 - O(0 - a)(O - 1) (4.3) 

where 0 < a < 1. One of the possible soliton solutions [Fig. 4.2(a)] is given by 

8 = (1 + exp[(x - ct)/JZ])-l  (4.4) 

with 

c = (1 - 2a)/JZ (4.5) 
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The existence of this solution may be understood as follows. Let O(z, t )  = X ( T )  and 
define V(O) through O(O - u)(O - 1) = -aV(O)/aO. Equation (4.3) becomes 

a2x/ar2 = -cax/ar - avpx (4.6) 

which represents the motion of a particle of unit mass moving in a potential V with 
damping coefficient c, with X and r being the “displacement” of the particle and 
“time,” respectively. When c is suitably chosen, the particle may roll down from 
the high hilltop (at X = 1) with zero velocity (ax/& = 0), pass through the valley 
(at X = a ) ,  and then stop exactly at the lower hilltop (at X = 0) [Fig. 4.2(b)]. 

t e  

w 
0 -c X 0 c 

Fig. 4.2. (a) A soliton solution of Eq. (4.3). (b) Physical picture of the soliton solution. 

Thus we see that solitons could appear either in the bell shape (Fig. 4.1) or in 
the form of a kink [Fig. 4.2(a) is actually an antikink]. In mathematics literature, 
these localized waves are called solitons only if they further possess the elastic col- 
lision property that two such waves will emerge from a head-on collision with their 
velocities and shapes unchanged. I t  turns out that such an elastic collision property 
is related to the integrability of the system (such as the Korteweg-deVries equation) 
and appears only rarely in nonintegrable systems (such as the nonlinear diffusion 
equations). Since most real systems are nonintegrable, in physics literature, the elas- 
tic collision property is dropped as a requirement in the definition of solitons which, 
under perturbations, may even have their velocities and shapes slightly distorted 
during propagation. 



Even though solitons were first observed by John Scott Russell in 1834, it was 
only after 1965 - the year that the word soliton was coined by Norman Zabusky and 
Martin Kruskal - that the significance of solitons was widely appreciated and the 
study of solitons as a discipline took shape. Since then solitons, as both nonlinear 
waves and nonlinear excitations in materials, have been intensely studied in various 
systems including liquid crystals (Section 11.2 and Fig. 4.3), conducting polymers, 
high-temperature superconductors (Section 11.3), optical fibers, and even Jupiter 
(Fig. 4.4). In particular, optical solitons in glass fibers are becoming very important 
because of their demonstrated applicability in multigigabits optical transmissions 
over very long distances, say, four thousand times around the world. 

Fig. 4.3. Propagation of a two-dimensional soliton, in the form of a white ring, generated in a 
liquid crystal cell of radius 5 cm and thickness 20 pm. The pressure at the rim of the radial cell 
was maintained at atmospheric pressure. The pressure at the center was first increased above and 
then decreased below atmospheric pressure. The long liquid crystal molecules in the cell were 
vertical initially, and were out of the vertical plane within the white-ring region. The white ring 
propagated inward by shrinking in size, as shown from left to right in the series of photographs 
displayed here. 

Fig. 4.4. The Great Red Spot on Jupiter’s atmosphere is a soliton, coexisting with a turbulent 
environment. 





5 Pattern Formation 

One can hardly fail to notice the striking similarity between the ramified patterns 
formed by rivers, trees, leaf veins and lightning. These branching patterns are 
different from compact patterns observed in snowflakes, clouds and algae colonies. 
How does nature generate these patterns? Is there a simple principle or univer- 
sal mechanism behind these pattern-forming phenomena? These are the profound 
questions that interest lay people and experts alike. Athough final answers to these 
questions are still lacking, tremendous progress has been made in the last 15 years. 

Patterns existing in nature and laboratories may be classified into two types: 
(A) those involving an interface, and (B) those that do not. Type A patterns can 
be further separated into two classes, viz., (Al )  filamentary, or (A2) compact. Of 
course, when filamentary patterns are much magnified, they appear as compact. 
The distinction between A1 and A2 depends on the scale used in the observations. 

Some A1 patterns, apart from those mentioned in the beginning of this chapter, 
are shown in Figs. 5.1 and 5.2. To generate A1 patterns, models for aggregation 
and diffusive growth have been much studied and are quite successful in mimicking 
many real systems, which are often fractals (Sections 9.1 and 14.1.5). Examples from 
the biased random walk model (Section 14.3.1), in conjunction with experimental 
electrodeposit patterns, are shown in Fig. 5.3. Recently, a unified way of generating 
filamentary patterns (and others) is provided by the active walk model (AWM), 
as proposed by Lui Lam and his coworkers (Section 13.4). The model is based on 
the observations that (i) a filament may be represented by the track of a walker; 
(ii) to grow a track, one has only to specify how the walker chooses its next step; 
and (iii) the walker may distort the landscape (or environment) as it walks, and 
its next step is influenced by the changed landscape. It is in the sense of point 
(iii) that the walker is active. A representative result from the AWM is shown in 
Fig. 5.4. (A computer program of the AWM is given in Appendix Al.) 

Physical examples of A2 patterns include those in electrodeposits (Fig. 5.5) and 
solidifications, viscous fingers in Hele-Shaw cells (Sections 12.1 and 16.2) , snowflakes 
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Fig. 5.1 
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Fig. 5.2. Sensitive dependence of electrodeposit morphology on cell thickness. The voltage (20 V) 
and concentration of CuSO4 solution (0.05 M) are the same in the four cells shown here. The cell 
thickness, from left to right, is 0.1 mm, 0.4 mm, 0.6 mm and 0.7 mm, respectively. 

(Section l2.2), and water columns (Section 16.1). Some of these compact patterns 
can be generated from aggregation models, such as those in Sections 12.2 and 14.3.2, 
and the BPAW model in Section 13.4. (See also Section 14.3.3.) Others can be stud- 
ied by theoretical or numerical solutions of the underlying equation of the interface. 
In particular, a unified description of the formation of viscous fingers and solidifi- 
cation interfaces seems to have been achieved (Section 12.1). 

Type B patterns include the thermal (Rayleigh-Bknard) convection patterns in 
fluids and the very similar electroconvection patterns in liquid crystals (Sections 12.3 
and l2.4), and those in chemical waves (Section 12.5). For type B, the patterns are 
the self-organized structures of certain quantities (such as the fluid velocity or the 
chemical densities), resulting from the linear instabilities of a homogeneous state. 
Secondary and higher instabilities also appear, giving rise to a series of patterns 
as the control parameters are varied. The similarity among type B patterns from 
various systems is explained by the unified theory of amplitude equations. The 
spirit of this approach is really simple. In this theory, the various quantities Xj (r, t )  

Fig. 5.1. Physical examples of filamentary A 1  patterns. TOP: Ivy on the wall of Walquist Library, 
San Jose State University. MIDDLE LEFT: Cracks on the basement floor of Science Building, 
SJSU. MIDDLE RIGHT: Chemical reaction tracks induced by dielectric breakdown in a thin layer 
of mineral oil. The oil was placed between two glass plates, with their inner surfaces coated by 
conductive indium tin oxide. The tracks appeared on the inner surfaces after a uniform electric field 
above a threshold was applied perpendicular to the cell. BOTTOM LEFT: An acrylic beamtree 
created by placing the acrylic in the path of an electron accelerator, then discharging the electric 
charge through a conductive spike placed in the acrylic. Beamtrees like the one shown here are made 
at the Stanford Linear Accelerator Center, California, as gifts to their retiring staff. BOTTOM 
RIGHT: An electrodeposit “tree,” formed by the aggregation of positive Zn ions attracted towards 
the Zn cathode, shown near the bottom. The Zn anode at the top, not shown here, was parallel to 
the cathode. ZnS04 solution of concentration 0.01 M was used in this cell (thickness 0.1 mm). A 
voltage of 5 V is applied between the two electrodes. 
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Fig. 5.4. MIDDLE: Patterns enclosed in the rectangle, from left to right, represent the time 
development of a computer generated pattern from the active walk model. The arrows outside 
the rectangle point toward the experimental patterns, with which the corresponding computer 
patterns should be compared. TOP LEFT: Chemical reaction pattern induced by dielectric break- 
down in a thin layer of oil. The experimental setup is similar to that described in Fig. 5.1. T O P  
RIGHT: A dense radial morphology (DRM) from electrodeposit in a ZnS04 cell. BOTTOM: A 
retinal neuron. Note the similarities between the corresponding patterns. It is interesting to see 
whether, given enough time, the chemical reaction pattern and the neuron pattern will each grow 
into the DRM. 
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Fig. 5.5 .  Physical examples of compact A2 patterns. LEFT: Electrodeposit pattern formed in an 
open cell of CuSO4 solution. RIGHT: Viscous finger pattern formed in a radial cell. Air pumped 
into the center of the cell displaced nematic liquid crystals which initially filled up the whole cell. 
(The circular grooves in the cell plate did not seem to have much effect.) Note the existence of tip 
splitting in both cases. 

( j  = 1 , 2 , .  . . ) involved in the equations of motion are forced to share the same 
amplitude function A(r, t ) .  For example, it is assumed that 

Xj(r, t )  = A(r, t )  exp[i(kz - w t ) ]  + complex conjugate ( 5 4  

for all j. Clearly, this cannot be exactly valid. By forcing these expressions for 
different j to be consistent with each other, to the first few orders in a perturbation 
calculation, one obtains a consistency requirement (called the solvability condition) 
in the form of an equation governing A(r,t)  ~ the amplitude equation ~ which 
may look like this: 

where the coefficients may be complex numbers. Equation (5.2) is called the complex 
Ginzburg-Landau equation. The exact form of the equation depends largely on the 
symmetry of the problem, and the details of the system affect only the coefficients of 
the equation. Consequently, through the amplitude equation, a unified description 
of a whole class of systems is possible. 

In conclusion, we see that some unified pattern-formation principle has emerged 
in each of the three types of patterns, but a universal principle valid for all patterns 
is still absent. 

We note that two types of abnormal pattern growth ~ transformational and 
irreproducible growths - are often observed. Examples of the former in electrode- 
posit experiments are shown in Fig. 5.6. The possibility that both types of abnormal 
growth can be caused by noise and hence are instrinsic in nature, is demonstrated 
in computer models (Section 13.4). Experiments seem to support this conjecture. 
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Fig. 5.6. Examples of transformational growth in electrodeposit experiments, in which morpholog- 
ical changes appeared while control parameters (voltage and cell thickness) were kept constant. In 
upper right and bottom, note the existence of multiple morphology transitions, the origin of which 
is not yet completely understood. 
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6 Cellular Automata 

Cellular automata are discrete dynamical systems whose evolution is dictated by 
local rules. In practice, they are usually realized on a lattice of cells, with a finite 
number of discrete states associated with each cell, and with local rules specifying 
how the state of each cell should be updated in discrete time steps (Section 14.4.1). 
Because of the discreteness of all the quantities involved, cellular automata calcu- 
lations obtained from computers are exact. Note that a cellular automaton is just 
a computer algorithm and is not a real machine. 

Cellular automata were introduced by John von Neumann in the late 1940s, soon 
after the creation of electronic computers. He used cellular automata to prove that, 
in principle, self-reproducing machines were possible. Then, in the early 1970s, 
the “game of life” - a very simple two-dimensional cellular automaton capable of 
creating lifelike ‘‘creatures” on the lattice - invented by John Conway, became very 
popular with the public. But scientifically, nothing serious happened. 

In 1986 Uriel Frisch, Brosl Hasslacher and Yves Pomeau demonstrated that it is 
possible to simulate the Navier-Stokes equations of fluid flows by using a cellular 
automaton of gas particles on a hexagonal lattice, with extremely simple transla- 
tion and collision rules governing the movement of the particles. That a mitre 
scopic system of interacting particles with oversimplified dynamics could result in 
the physically correct macroscopic Navier-Stokes equations (the generally accepted 
equations describing fluid flow) is due to the fact that the Navier-Stokes equations 
are the consequence of appropriate conservation laws and are quite insensitive to 
microscopic details, as long as the appropriate symmetries are obeyed by the micro- 
scopic dynamics. The spirit of this lattice gas approach in “simulating” nature 
runs opposite to that of the molecular dynamics or Monte Carlo approach, where 
the more realistic the molecular interactions are, the better. By using very simple 
rules in the cellular automata, the lattice gas approach provides gains in computa- 
tional speed, is error free, and can easily take care of very irregular boundaries. It 
is one of the rare occasions that nature can be “cheated”, if only on the computer. 
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Presently, lattice gas automata provide the most efficient method in calculating 
fluid flow through real porous media and has found application in the oil indus- 
try. Armed with the same “cheating” principle, lattice gas automata with different 
updating rules have been devised to simulate various partial differential equations. 

Moreover, cellular automata are being investigated as complex systems per se 
(Section 13.2), and as simple devices in simulating real processes in biological, phys- 
ical and chemical systems (Section 14.4.2). Finally, it is interesting to note that 
the “game of life” has been credited with leading Christopher Langton to the very 
concept of artificial life that is now established as a vigorous discipline of its own. 
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7 Complex Systems 

The fact that there is one and only one doctoral degree, the Doctor of Philosophy 
(Ph.D.), but not the Doctor of Physics or Doctor of Economics, attests to the fact 
that not too long ago, science was considered and studied as a whole. There was 
no division of social and natural sciences, not to mention no fragmentation of the 
natural science into physics, chemistry, biology, etc. As suspected by some, this 
compartmentalization of science is due more to administrative convenience than to 
the nature of science itself. 

The hope of being able to return to the appealing state of a unified science was 
rekindled in the 1970s (as exemplified by the works of Hermann Haken and Ilya 
Prigogine) and early 1980s (such as the establishment of the Santa Fe Institute). 
The more recent development was influenced by the success of chaos theory. At 
that time chaos was better understood and time series obtained in almost every 
discipline - from both social and natural sciences - were subjected to the same 
analyses as inspired by chaos theory. The importance of this development was that 
chaos theory seemed to offer scientists a handle or an excuse, if one was needed, to 
tackle problems from any field of their liking. A psychological barrier was broken; 
no complex system was too complex to be touched. 

A secondary but crucial influence that helps to propel and sustain complex sys- 
tems as a viable research discipline is the prevalence of personal computers and the 
availability of powerful computational tools such as parallel processing computers. 
While theoretical study of complex systems is usually quite difficult and sometimes 
appears impossible, one can always resort to some form of computer simulation, or 
computer experiment, as some like to call it. 

What is a complex system? A complex system could be one which consists of a 
large number of simple elements or “intelligent” agents, interacting with each other 
and the environment. The elements/agents may or may not evolve in time and the 
behavior of the system cannot be learned by reduction methods (Section 13.1). 
But such a definition is not without problems. For example, a system may appear 
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complex only because we do not understand it yet, by reduction methods or not. 
Once understood, it becomes a simple system. Moreover, whether a system is com- 
plex or not may depend on the aspect of it that one wants to study. If we want 
to know the inner structure and formation mechanism of a piece of rock, the rock 
could be a complex system. But if we want only to know how the rock will move 
when given a kick, then Newtonian dynamics will do and the rock is simple. 

A precise definition of a complex system is thus difficult to come by, as is fre- 
quently the case in the early stages of a new research field. However, this difficulty 
does not seem to hinder the study of complex systems much. In practice, it is safe to 
say that almost all the subjects covered in the various departments of a university 
~ except for those in the conventional curriculums of the physics, chemistry and 
engineering departments - are in the realm of complex systems. The topics stud- 
ied span a wide spectrum, including human languages, the origin of life, DNA and 
information, evolutionary biology and spin glasses, economics, psychology, ecology, 
ant swarms, earthquakes, immunology, self-organization of nonequilibrium systems, 
cellular automata (Section 13.2), neural networks (Section 15.2), etc. 

While some general concepts such as complex adaptive systems and symmetry 
breaking have been found to be useful in their descriptions, no unifying theory 
governing all complex systems exists yet. However, two simple ideas capable of ex- 
plaining the behavior of many complex systems have emerged. One is self-organized 
criticality (Section 13.3) and the other is the principle of active walks (Section 13.4). 
The former asserts that large dynamical systems tend to drive themselves to a criti- 
cal state with no characteristic spatial and temporal scales. The latter describes how 
elements in a complex system communicate with their environment and with each 
other, through the interaction with the landscape they share. The principle of active 
walks has been applied successfully to very different problems such as the formation 
of surface reaction patterns (Fig. 5.4), ion transport in glasses, the cooperation of 
ants in food collection, and increasing returns in economics (Section 13.5). 

In the study of complex systems such as biological evolution and human history, 
the relative importance of chance in determining the outcome is constantly under 
debate. This problem is sometimes described as the interplay of nurture and nature, 
or, of chance and necessity. The difficulty in solving this problem is due to (i) the 
scarcity of data from the field, (ii) the impossibility of recreating the events, and 
(iii) the absence of realistic mathematical models for these rather complex systems. 
Scientists are then frequently forced to come up with the best educated guess, which 
may put the role of chance as extremely important, non-consequential, or somewhere 
in between these two extremes. However, through our study of the active walk 
models, we have discovered that there could be a completely new answer to this 
question: it depends. This means that the relative importance of chance depends 
on the state of the system under study (specifically, to what region in the parameter 
space the system belongs; see below). 
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This new phenomenon is best demonstrated by the Boundary Probabilistic Active 
Walk (BPAW) model (see Section 13.4). In the BPAW model, one starts with a 
single particle. The landscape around this particle is changed by a landscaping rule; 
one of the perimeter sites of the aggregate is chosen with a probabilistic rule; then 
a new particle is added to this chosen site. This is followed by the change of the 
landscape (with the same landscaping rule) around this new particle. In a special 
version of this model, there are two parameters q and p (the exact meaning of these 
parameters is immaterial to our discussion here). When and p are varied, the 
model is capable of producing five types of morphologies: blob, jellyfish, diamond, 
lollipop, and needle (Fig. 7.1). As shown in the morphogram (or the state diagram) 
in Fig. 7.2, there is a region in the middle bounded by the two solid lines - the 
sensitive zone - within which, for the same set of model parameters, more than 
one type of morphology is generated from different computer runs. The mechanism 
behind this is the active role played by noise (i.e. the source of contingency) within 
the sensitive zone. 

Fig. 7.1. The five types of morphologies obtained from the BPAW model. (a) Blob; (b) jellyfish; 
(c) diamond; (d) lollipop; (e) and (f)  needle. 
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Fig. 7.2. Morphogram in the ( 7 , ~ )  plane from the BPAW model. The pie chart at each point 
represents the percentage of each type of morphology obtained from 30 runs of the algorithm. The 
parameters used in these 30 runs are the same, but the random number sequence (noise) used in the 
probabilistic rule in selecting the perimeter sites of the aggregate varies from run to run. The grid 
corresponds to blob, grey to jellyfish, black to diamond, horizontal shades to lollipop, and white to 
needle. 

In other words, if experiments are performed and repeated with the same control- 
ling parameters inside the sensitive zone, qualitatively different experimental results 
can appear - the result is intrinsically irreproducible. This could be the reason why 
some cold fusion experiments are currently observed to be irreproducible. (Scientif- 
ically, there is nothing wrong with an experiment being irreproducible when noise is 
involved. Whether the experimental result is technologically useful - which usually 
requires reproducibility - is a separate issue altogether.) 

The existence of sensitive zones in biological, chemical and physical experiments 
are known to exist. An example from the empirical data on the survival and repro- 
duction of the plant common teasel is presented in Fig. 7.3.  
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Fig. 7.3. The empirically determined state diagram of common teasel. Each pie chart represents the 
probabilities that the three states are found. The three possible states are (1) dying, (2) remaining 
vegetative, and (3) flowering. The two parameters are age (1 to 5 years, given in the first column) 
and the size of the rosette (in centimeters, given in the first line) in the preceding year. 

Histories, be it the evolution history in biology or the human history in our real 
world, result from the combined effect of chance and some basic rules. This all im- 
portant coexistence of chance and necessity is a feature captured by the probabilistic 
versions of the active walk models, of which the BPAW is a special case. Now, if our 
real world is believed to be such an active walk system, and the algorithm of life is 
allowed to be replayed - like the algorithm in the BPAW model being rerun ~ we 
may or may not recover a similar (but never identical) history of life, according to 
whether our world happens to sit outside or inside a sensitive zone. This observation 
differs from that of Stephen Gould, who argued in Wonderful Lzfe (Norton, 1989) 
that history would always be very different if life’s tape was ever replayed. 

Some remarks are in order. First, the history of life (or the world) is identified 
with the morphology of the pattern output by an algorithm run, not the pattern 
itself in all its details. Second, the identification of a life’s replay as the rerun of an 
algorithm (with noise as an ingredient) adopted here, seems to be more appropriate 
than identifying it as a replay of a (video)tape, the metaphor used by Gould. In 
this regard, life is more like a game, whereby there are some basic laws the players 
have to follow while the actual outcome of each game differs in details and in the 
final scores. 

Needless to say, we are still far from a quantitative theory of history. But active 
walk could be helpful as a model in reaching this goal, as well as in modeling other 
path dependent, branching phenomena. 
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8 Remarks and Further Reading 

Nonlinear science involves the interplay of order and disorder, as well as the simple 
and the complex. Technically, what makes the fascinating outcomes possible is 
nonlinearity. It is the nonlinearity that makes the behavior of the systems nontrivial 
and interesting, and the world as complex as it is. 

The basic theories and principles expounded in this book are applicable to all 
branches of science, although most of the examples covered are taken from physics. 

Nonlinear science is still a science in the making. Exciting results keep appearing 
in leading research journals such as Physical Review Letters, and in special journals 
such as Physica D, Chaos, and Complexity. Conference proceedings are also good 
sources for the latest developments. 

Due to the multidisciplinary nature of nonlinear science, it is not easy for new- 
comers or even practitioners to be knowledgeable in all the subjects covered in the 
applications. In this regard, the general magazine Scientific American is a valuable 
source of information. For further reading beyond this book, a list is provided here. 

Further Reading 

The elementary books listed below are at the undergraduate level; the advanced 
books are at graduate level; but overlaps do exist. All the popular books, except the 
last one, are available in paperbacks. They provide perspectives linking up different 
topics and enjoyable reading. However, watch out for occasional inaccuracies and 
hypes. 

Elementary 

H J.-F. Gouyet, Physics and Fractal Structures (Springer, New York, 1996). Clear 
exposition of concepts, contains a lot of real examples. 
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H G. L. Baker and J .  P. Gollub, Chaotic Dynamics: An Introduction (Cambridge 
University, Cambridge, 1996). Uses the damped driven pendulum as the primary 
model, contains a list of computer programs in True BASIC. 

H M. Remoissenet , Waves Called Solitons: Concepts and Experiments (Springer, 
New York, 1994). Includes some simple experiments performable by the read- 
ers; covers solitons in transmission lines, hydrodynamics, mechanical systems, 
Josephson junctions, optical fibers, and lattice dynamics. 

H D. Kaplan and L. Glass, Understanding Nonlinear Dynamics (Springer, New 
York, 1995). Four chapters on chaos, including a long one on time series anal- 
ysis; one chapter on cellular automata; another on fractals; calculus is the only 
prerequisite; most examples from life sciences. 

Advanced 
H L. Lam (ed.), Introduction to Nonlinear Physics (Springer, New York, 1997). A 

graduate textbook with homework problems, covers topics similar to those here, 
each part written by pioneers or experts in the field. 

A. Bunde and S. Halvin (eds.), Fractals in Science (Springer, New York, 1994). 
Collection of survey articles written by leading scientists; covers self-organized 
criticality, fractals in biology and medicine, interfaces, polymers and chemistry; 
a chapter on random walks; another on computer simulations, accompanied by a 

PC or Macintosh diskette. 

H H. G. Schuster, Deterministic Chaos: An Introduction (VCH, New York, 1995). 
Up-to-date accounts of all aspects of chaos, leans on theory, with physical 
examples. 

G. Weisbuch, Complex Systems Dynamics (Addison-Wesley, Menlo Park, 1991). 
Covers cellular automata, neural networks, random Boolean networks, genotypes 
and phenotypes. 

Popular 
H J .  Briggs and F. D. Peat, Turbulent Mirror: An Illustrated Guide to Chaos Theory 

and the Science of Wholeness (Harper & Row, San Francisco, 1990). Concise, 
enjoyable accounts of fractals, chaos, solitons, feedbacks and complex systems; 
connection to so-called Chinese legends is shaky. 

M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Inifinite Paradise 
(Freeman, New York, 1991). A must, more mathematical sections can be skipped 
on first reading. 

H J. Gleick, Chaos: Making a New Science (Viking, New York, 1987). Written by 
a non-scientist; exciting stories and clear explanations about chaos. 
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W. Poundstone, The Recursive Universe: Cosmic Complexity and the Limits  of 
Scientific Knowledge (Contemporary Books, Chicago, 1985). A detailed expo- 
sition on “game of life,” with PC programs in BASIC and assembly language; 
very interesting discussion on self-reproducing life and other profound questions 
connected with cellular automata. 

M. M. Waldrop, Complexity: The  Emerging Science at the Edge of Order and 
Chaos (Simon & Schuster, New York, 1992). Captures the excitement of studying 
complex systems by people at or associated with the Santa Fe Institute, their lives 
are described and works explained. 

P. Bak, How Nature Works: The  Science of Self-organized Criticality (Coperni- 
cus, New York, 1996). A personal account of the discovery, concept and applica- 
tion of self-organized criticality, with selected references. 
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Most of the papers reprinted here are reviews or essays written by pioneers. They 
are selected for their pedagogical values and their accessibility to undergraduates. 
The others are research papers divided between experimental (Sections 9.2, 10.2, 
11.2, 12.3 and 12.4) and theoretical/computational (Sections 9.3, 9.6, 10.4, 11.3, 
12.2 and 13.5). With perhaps the exception of one or two in the latter category, all 
these papers are reasonably easy to read. 

It is our experience and conviction that for a good education in any subject, 
nonlinear physics in particular, there is no substitute for reading articles by the 
original contributors. However, like looking at an abstract painting, it is not always 
necessary to understand the content in order to be inspired by it. 
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Fractal growth processes 
Leonard M. Sander 

Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA 

The methods of fractal geometry allow the classijication of non-equilibrium growth processes according 
to their scaling properties. This classijication and computer simulations give insight into a great variety 
of complex structures. 

ALMOST every theoretical tool of the condensed-matter scientist 
uses the assumption that the system considered is of high sym- 
metry and is in equilibrium. These assumptions have led to 
enormous progress; however, to much, if not most, of the natural 
world such tools cannot be applied. Many systems that we would 
like to understand are very far indeed from perfectly ordered 
symmetry and are not even in local equilibrium. Perhaps the 
most extreme example is disorderly irreversible growth. We 
mean by this the sort of process which is very familiar in the 
formation of dust, soot, colloids, cell colonies and many other 
examples; roughly speaking, things often stick together and do 
not become unstuck. For example, a particle of soot grows by 
adding bits of carbon and coagulating with other particles in a 
random way. A possible result is shown in Fig. 1. We are thinking 
about cases which are, in some sense, as far from equilibrium 
as possible, and which have no obvious order. 

It is remarkable that the introduction of simplified models 
has led to quite a good understanding of the morphology of 
such growth, despite the inapplicability of our usual modes of 
thinking. Here I will discuss this progress, drawing examples 
mostly from subjects which have traditionally interested physi- 
cists and chemists. However, disorderly growth is ubiquitous in 
the world around us, and is certainly not limited to inanimate 
matter. For example, some of the ideas which I will discuss, 
such as anomalous scaling in kinetic processes, will be useful 
to biologists. The purpose of the review is to introduce ideas 
from the area which may be of general use. 

The key to our recent progress is the recognition that the most 
‘interesting’ non-equilibrium structures (say, from a visual point 
of view) are not merely amorphous blobs; they still have a 
symmetry, despite their random growth habit, albeit a different 
one than they might have had, had they grown near equilibrium. 
For example, consider the soot of Fig. 1 ,  or the electrolytic 
deposit of zinc shown in Fig. 2. Many people will be familiar 
with branched deposits such as this, and with similar looking 
objects which form on automobile windshields on cold morn- 
ings. In all these cases the structure is disordered, but it is not 
random. A manifestation of this is that each section of the 
picture contains holes in the structure comparable in size with 
that of the section itself. This can only occur if there are long- 
range correlations in the pattern; particles ‘know’ about each 
other over distances far in excess of the range of the forces 
between them. A truly random pattern, such as that of salt 
scattered on a table top, shows no such scaling of holes, and 
correlations are of short range only. 

Studies of fractal growth have focused on two questions: how 
can we characterize and quantify the hidden order in complex 
patterns of this type, and when and how do such correlations 
arise? The answer to the first question is now relatively clear, 
and lies in an application of the fractal geometry of Mandelbrot’. 
The next section gives a brief review of relevant aspects of this 
subject. The second question has received a partial answer in 
the formulation and analysis of models suitable for computer 

Fig. 1 Electron micrograph of soot. (Supplied by G.  Smith, 
General Motors.) 

simulation, which will also be reviewed. For more extensive 
treatments see refs 2-4. 

Fractals and scale invariance 
In pure mathematics, it has long been common to study certain 
‘pathological’ geometric shapes that elude ordinary notions such 
as those of length and area. Figure 3 shows a famous example, 
which has, in some sense, infinite length, but zero area. It falls 
between our usual notions of line and solid. Mandelbrot’ sys- 
tematized and organized mathematical ideas concerning such 
objects due to Hausdo&, Besicovitch and others. But, more 
importantly, he pointed out that such patterns share a central 
property with complex natural objects such as trees, coastlines, 
patterns of stars and (as was later discovered) the non-equili- 
brium growths of Figs 1 and 2. This property is a symmetry 
which may be called scale invariance. These objects are invariant 
under a transformation which replaces a small part by a bigger 
part, that is, under a change in scale of the picture. Scale- 
invariant structures are called fractals. 

There are a number of related properties which follow from 
the assumption of scale invariance. Consider, for example, the 
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Fig. 2 Zinc electrodeposit produced in athin cell under conditions 
of low ZnSO, concentration (0.01 mol I- ' ) .  The outer electrode 
(not shown) is in the form of a ring 6.3 cm in radius. (Supplied 

by D. Grier, University of Michigan.) 

density correlation function c ( r ) ,  of a fractal. This is defined as 
the average density of the object at distance r from a point on 
the object, and is a measure of the average environment of a 
particle. Clearly, c (  r )  must reflect the scale invariance. It is easy 
to show that the only way that c may vary is as a power law in 
r ;  any other function would have an intrinsic scale. It is con- 
venient to write c in the following form: 

c( r )  = kr-(d-D) ( 1 )  
Here, k is a constant, and the exponent is written in terms of 
the dimension of space, d, and a new quantity, D, the fractal 
dimension. The reason for this terminology will become evident 
in a moment. As the objects we are dealing with are tenuous, 
c ( r )  is a decreasing function of r :  the average density decreases 
as the object becomes larger. Now consider how the total mass 
of the object, M ,  scales with the mean radius, R. We can estimate 
this by multiplying a typical density, from above, by the volume: 

M ( R ) =  K R ~ - ~ R ~  = K R ~  (2) 
Here, K is another constant. We can now see why D is called 
a dimension. For an ordinary curve, D =  1 :  twice the length 
gives twice the mass. For a disk, D = 2 .  For simple objects D 
coincides with the usual notion of dimension. But in the cases 
we are discussing D is not an integer; it has been measured to 
be -1.7 for the deposit in Fig. 2, and is 1.26 for the fractal of 
Fig. 3. 

This anomalous scaling with radius, measured by 0, is a very 
useful means of characterization because the fractal dimension 
is a 'robust' quantity. Like the famous scaling exponents of 
phase-transition physics, it has to do with long-range properties, 
indeed, with the relationship between properties at different 
scales. Thus we can expect it to be universal in the sense that 
it should be independent of the details of the interactions 
between the objects which stick together during the growth, of 
their detailed composition, and so forth. But, as we will see, the 
mechanism of growth does affect D. 

Growth models 
How might one visualize the growth of an object such as the 
electrolytic deposit in Fig. 2? As we are interested in long-range 
properties we can ignore the complications of electrochemistry 
and simply imagine that ions wander randomly in solution (in 
many cases the electric field is screened out so that this is a 
good approximation) and stick to the deposit when they happen 
to get near it. 

Fig. 3 Four stages in the growth of an exact fractal, the Koch 
curve. This and many other examples are discussed in ref. 1. The 
fractal dimension may be deduced by thinking of each picture as 
a part of the picture above, with a change of scale. For each scale 
change by three, we need four such parts. Thus, according to 

equation (2), D =log 4/log 3 = 1.26. 

To make a computer model which is a literal translation of 
this process we start with a centre. Then we liberate a diffusing 
particle, a 'random walker', and let it wander freely until it is 
within a fixed distance of the centre, where it sticks. Then we 
liberate another particle and let it walk until it sticks to the 
centre or the first particle, and so on. We may, for our purposes 
here, idealize the process of formation as being completely 
irreversible: we ignore the possibility that the particles rearrange 
after sticking to find a more energetically favourable location. 
This is the diffusion-limited aggregation (DLA) model of Witten 
and S a t ~ d e r ~ . ~ .  The application of DLA to electrodeposition is 
due to Brady and Ball' and Matsushita et aL8. 

Figure 4 shows the result of an extensive simulation according 
to the DLA rules; its resemblance to Fig. 2 is evident. Measure- 
ments of DLA clusters have shown them to scale according to 
the relations quoted above, with D = 1.7 for d = 2, and D = 2.4 
for d = 3. Note that the structure is tenuous and open because 
holes are formed and not filled up. Filling up the holes would 
require wandering down one of the channels in the cluster 
without getting stuck on the sides; a random walker cannot do 
this. 

There are several features of the DLA model which should 
be mentioned. Although it is simple to describe, no progress 
has been made towards 'solving' it. That is, although we suspect, 
on the basis of simulations, that DLA clusters are fractals, we 
cannot prove it. And we have no method of calculating D (or 
any other property): we must measure it. There are several 
reasons for this ( I  will mention a rather technical one below), 
the primary one being that DLA presents us with a situation in 
which our experience in equilibrium systems doesn't seem to 
help. Note that 0, along with other scaling properties, arises in 
a non-trivial way from the kinetics of growth: there is no simple 
geometric argument with which to predict them. 

The DLA model can be generalized in various ways, for 
example, to describe deposition on a surface' rather than a 
point. A more profound generalization is to use the model to 
describe systems which apparently have nothing to do with 
particle aggregation, but which share the same universal proper- 
ties. We may see how one is led to do this by observing5~'" that 
the probability, u, of finding a random walker at some point on 
its way to the aggregate has the following well-known properties: 
the flux of walkers; v, is proportional to the gradient of u, and, 
because walkers are absorbed only on the aggregate, this flux 
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- 1,250 lattice units - 
Fig. 4 A large DLA cluster (-50,000 particles) grown on a square 
lattice. Note the resemblance to Fig. 2 ,  and the beginning of 
distortion towards a dendritic outline, as discussed in the text. 

(Supplied by P. Meakin, Duponl.) 

has no divergence: 

VKVU (3) 

(4) v * v = v 2 u  = 0 

As walkers are not allowed to escape from the aggregate, we 
set u = 0 on the surface. The growth of the aggregate is given 
by the flux at its surface, that is, by Vu. 

As Niemeyer et ~ 1 ‘ ~  pointed out, a set of equations of identical 
form govern dielectric breakdown of a solid if we ignore many 
short-range details. As we are looking for universal features, 
making such simple, indeed, crude approximations is justified. 
I f  we think of u as the electrostatic potential in a solid about 
to be destroyed by a discharge, its negative gradient is, of course, 
the electric field. But u then obeys the Laplace equation of 
electrostatics, which is of the same form as the steady-state 
diffusion equation, equation (4), above. The breakdown channel 
will grow in a way determined by the electric field, that is, the 
gradient of u, on its surface. If the growth rate is linear in the 
field, we expect to have exactly the same situation as in DLA, 
and indeed, direct solutions of the equations, as well as measure- 
ments of photographs of real discharges, give the same fractal 
dimension as DLA. Nonlinear breakdowns (lightning in the 
atmosphere is probably an example) give rise to patterns with 
different values of D. 

Paterson” noticed an even more remarkable manifestation of 
the wide applicability of the model. When a fluid flows under 
conditions of large friction, inertial effects are- negligible and 
the flow rate can be taken to be proportional to the hydrostatic 
force, that is, to the gradient of the pressure: this is known as 
D’Arcy’s law. The situation is commonly realized in the labora- 
tory by letting fluid flow between thinly spaced plates, a so-called 
Hele-Shaw cell. In  nature, the flow of crude oil through the 
porous rock in which it is found is an example of quite serious 
interest. Suppose we try to force such flow by blowing a bubble 
of air or another low-viscosity substance into the cell (or by 
pumping water into an oil field-a scheme known as enhanced 
recovery). It has long been known that the air will not uniformly 
displace the fluid; instead it will break up into a complex 

Fig. 5 Columnar microstructure in ballistic aggregation. Particles 
stick to the substrate and to each other after raining onto the 
structure in parallel trajectories at an angle to the vertical somewhat 
smaller than that of  the columns. The fluctuations of the upper 
surface scale with the height for small height, and with the total 
width for large height. (Simulation performed by P. Ramanlal, 

University of Michigan.) 

structure with many armsI2, which are called ‘viscous fingers’. 
This phenomenon has an obvious detrimental effect on enhanced 
recovery. 

Paterson’s” speculation was that the pattern of the viscous 
fingering would scale like DLA. His reasoning was as above: 
the pressure in an incompressible fluid obeys equation (4), with 
u now standing for pressure, because fluid, like particles, is 
conserved. D’Arcy’s law is of the same form as equation (3). 
Once more, many details have been ignored. In particular, the 
role of surface tension in this and similar situations will be 
discussed below. 

The reasoning has been verified most directly by Chen and 
Wilkinson13, who introduced discrete randomness into a Hele- 
Shaw cell-the effect should be that of the random arrivals of 
particles. Their patterns look almost exactly like Figs 2 and 4. 
Another experiment, by Nittmann et used the clever trick 
of eliminating surface effects by taking for the two fluids water 
and an aqueous polymer solution; the fluids are miscible but 
mix slowly. Once more the pattern of fingering resembled the 
simulations. There seems to be a source of randomness in this 
experiment, probably arising from the non-newtonian flow 
characteristics of the polymer solution; such shear thinning 
could amplify noise. Even more startling is the experiment of 
Ben-Jacob et aLL5, who used a smooth Hele-Shaw cell, and one 
with a periodic pattern, with newtonian fluids. In some condi- 
tions they observed DLA-like scaling without an evident source 
of randomness, and without discrete ‘particles’. 

Experts will notice that equations (3) and (4) are of the same 
form (except for surface effects) as the description of 
solidification when the limiting factor in growth is diffusion of 
latent heat away from the surface of the growing crystallite. 
Why, then, does a snowflake (unlike the crystalline deposit of 
Fig. 2) not look like DLA, but is instead dominated by the 
crystal symmetry? I will return to this aspect of growth in the 
final section. 

If particle aggregation doesn’t need particles, what does it 
need? More generally, we can ask what different types of model 
give rise to scaling objects. For example, it is often the case that 
aggregates are formed by adding particles with a long mean free 
path, for example, in the formation of thin films by vapour-phase 
deposition16. In this case we may assume that the paths of the 
particles are straight lines. This model has become known as 
ballistic aggregation, and it has a number of very curious 
features. It is now known that the deposit itself is not a tenuous 
object but achieves a constant density”,’*. (In contrast, 
diffusion-limited growth on a surface’ yields an open deposit 
whose average density decreases with height.) It is of great 
interest to understand the upper surface of the film, which is a 
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model of a random rough surface. It has been shown numeri- 
cally'' that for normal incidence of the depositing particles this 
surface also has scaling properties: for example, the fluctuation 
of the height scales with a non-integral power of the height, for 
small height. This surface is probably not an ordinary fractal 
curve, like Fig. 2, but is probably an example of a self-affine 
fractal'.'". 'Self-affine' means that the scaling in two different 
directions (width and height in this example) is different. 

For non-normal incidence another effect appears, which is 
well-known in thin-film technology'6. T?'s is the columnar 
microstructure: the film spontaneously forms as a set of nearly 
parallel columns as it grows (see Fig. 5 ) .  The beginnings of a 
theory of this effect exist2', but it is not known what, if any, 
relationship these giant fluctuations have with the scaling fluctu- 
ations at normal incidence. 

The simplest aggregation process of all was introduced into 
mathematical biology by Eden". This is a model for the growth 
of a cell colony: a cluster is grown by adding particles at random 
to perimeter sites. Once again the object is compact, but the 
surface has interesting scaling properties which seem to be the 
same as for ballistic aggregates with normal incidencez3. Scaling 
is ubiquitous, and tends to have common features despite widely 
different details of growth. 

We still have not described how soot forms. The structure of 
Fig. 1 is far more open than a DLA cluster: its fractal dimension 
is -1.8 (DLA in three dimensions has D=2.4). Extensive 
measurements of sootz4, colloids2' and other similar objects 
leads one to suspect that a different class of clusters is involved. 
In fact, we have omitted a central feature of the formation 
process of clusters which can coagulate, namely the aggregation 
of clusters with each ~ t h e r ~ ~ . ~ ' .  Figure 6 shows two stages of a 
simulation of this process in two dimensions. We start with a 
vapour of freely moving particles which stick together whenever 
they come into contact, and then allow the clusters to continue 
to move with, perhaps, a smaller diffusion constant. The large 
fractals which are eventually formed have D =  1.4. The corre- 
sponding simulations in three dimensions give D = 1.8 and yield 
the open structure of real colloids and aerosols. At each stage 
of the process almost all of the clusters are of roughly the same 
size. 

The open structure and low fractal dimension which charac- 
terize cluster-cluster aggregation are relatively easy to under- 
stand. I t  is difficult for a random-walking particle to penetrate 
a significant fraction of the radius of a growing cluster for 
particle aggregation; it is even more difficult for an aggregate 
of comparable size to do so. Thus, as aggregation proceeds, 
open, fluffy structures are produced. 

One variant of this model which is worth mentioning is 
reaction-limited (chemically limited) aggregationz8. In many 
cases, because of the details of the growth process, the sticking 
is inefficient, and many attempts are required to form a new 
cluster. In the limit of a very large number of attempts, the 
fractal dimension increases from 1.8 to -2. Reaction-limited 
aggregation was probably discovered experimentally2', before 
the simulations were done. Later experiments'" have carefully 

Fig. 6 Two stages in the formation of cluster-cluster 
aggregates: a, f =3,669; b, t =  17,409. Note the 
resemblance of the clusters in b to the soot particle of 

Fig. 1.  (Supplied by P. Meakin, Dupont.) 

controlled the growth conditions and shown both growth 
mechanisms, and both types of geometry, in the same system 
for different growth rates. The encoding of kinetics in the scaling 
in a form independent of details should be a powerful tool for 
identifying growth mechanisms. 

Attempts at theory 
There is no general theory of irreversible growth. The descrip- 
tions given in the previous section must be regarded as a kind 
of phenomenology, albeit a useful one. We can point to situ- 
ations in which there is scaling, but we are compelled to do 
experiments, either in the laboratory or on the computer to 
calculate anything. We do have a few analytical results, but they 
give only partial information. 

The best understood type of aggregation is the cluster-cluster 
process. Suppose we assume, as stated above, that the dominant 
cluster-cluster collision is between clusters of similar mass. If 
we make the masses strictly equal we have a hierarchical model3'. 
It is easy to believe then that we do have a fractal: agglomerating 
parts in this way is exactly how the artificial fractal of Fig. 2 
was made. (Note that particle aggregation is not hierarchical, 
but it seems to be fractal nonetheless.) The specification of the 
size distribution of clusters in the vapour, and the verification 
of the hierarchical assumption, have been the objects of detailed 
studies3' which have shown that, indeed, the most common 
collision is between clusters of nearly equal mass. Some of these 
investigations use the techniques of colloid chemistry, in par- 
ticular the Schmoluchowski kinetic equations, as well as com- 
puter simulations. 

There remains the problem of finding the geometry of the 
clusters formed. Some progress has been made here because of 
a detail which allows one of the favourite tricks of the theoretical 
physicist to be applied. The real difficulty in visualizing the 
process is excluded volume, that is, the tendency of clusters to 
get in each other's way because they can attach to each other 
only on the outside. If they could attach anywhere it would be 
much simpler to sort out what is going on. It is quite obvious 
that excluded volume problems become less serious in high 
spatial dimensions: there are more ways into a three-dimensional 
cluster than into a two-dimensional one. Often, in equilibrium 
studies, it is found that for sufficiently large dimension of space, 
d, excluded volume is no problem at all: essentially any part of 
a cluster is accessible from outside. The dimension at which this 
starts to happen is called the upper critical dimension. 

Above the upper critical dimension, calculations are simple, 
anomalous scaling is independent of d, and there exist methods 
(for equilibrium problems) which allow us to extrapolate to the 
physical world of d =3.  For cluster-cluster processes, this is 
exactly what happens3'. The fractal dimension, D, for a cluster- 
cluster aggregate cannot grow above -3.4 and it attains this 
value at about d = 7. This is rather far from the real world, of 
course, and no one has yet figured out how to extrapolate. 

The situation for particle aggregation is very different. Sup- 
pose that the entire cluster were to become accessible to added 
particles for a large enough value of d. Then the mass in the 
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interior would grow without adding to the volume. The cluster 
would quickly become so dense that it would no longer be 
accessible. Thus, there is no upper critical dimension for DLA. 
In fact, careful considerations of this sort can be turned into a 
bound33 on D :  

The fractal dimension is never independent of the spatial 
dimension, and the standard technique cannot be applied. 

Some progress has been made in the study of particle aggrega- 
tion by exploiting the similarity of the process to the famous 
'snohlake' problem, that is, the study of dendritic crystalliz- 
a t i ~ n ~ ~ .  We can see, for example, why tenuous structures are 
likely to arise in DLA and not in ballistic aggregation by noting 
that in the DLA case we have a growth instability of exactly 
the same form as the well-known M~l l ins -Sekerka~~ instability 
of crystal growth. The r e a s ~ n i n g ~ , ~ ~  goes as follows: suppose 
we start with a smooth aggregate and ask why it grows sharp 
tips. If we start with a tiny bump on the surface it will be 
magnified into a tip by the fact that the bump will grow faster 
than the rest of the surface: it will catch random walkers more 
efficiently than the flat portions of the surface, and certainly 
much more efficiently than the holes in the aggregate. The 
analogous dielectric breakdown case will make this even clearer: 
recall that the growth rate of any point on the surface of the 
structure is proportional to the electric field there. Sharp tips 
have large electric fields (the lightning rod effect). They grow 
ever sharper and dominate the growth. In the viscous fingering 
problem the same instability arises because it is easy for viscous 
fluid to flow away from a growing tip. It is even possible to 
specify a relationship between D and the characteristic opening 
angle of the tips36 by using the mathematical theory of lightning 
rods. Unfortunately, no one knows how to calculate these angles. 
In fact, recent work indicates that there is an array of sharp tips 
on the surface of the fractal DLA cluster whose distribution is 
itself fractaP7. 

For ballistic aggregates or for the Eden model there is no 
growth instability: it is easy to see that a bump on the surface 
neither grows or shrinks, but just adds a uniform skin, and tips 
do not grow. The bulk of the material remains compact. 

d - 1 S D S d  (5) 

Fractals and snowflakes 
In the last section we noted the usefulness of the analogy of 
DLA with the kind of solidification most familiar (at least to 
those in cold climates) in the formation of snowflakes, that is, 
branched (dendritic) crystals. But particle aggregates do not 
look like snowflakes. To be precise, in a typical dendrite, a 
growing tip forms by the Mullins-Sekerka instability but then 
stabilizes. It retains its shape and continues in a definite direc- 
tion, although it may spawn side-branches as it grows. In DLA 
(and in, for example, the zinc deposit of Fig. 2) the tips 
repeatedly split and wander. 
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There are three obvious differences between DLA clusters 
and dendritic crystals: DLA has essentially zero surface tension, 
it has a significant source of noise in the discrete arrivals of the 
particles, and it has (at least in some versions of the model) no 
analogue of crystal anisotropy. Sorting out how these affect the 
process is a subject of current controversy and great intrinsic 
interest. 

Surface effects can be added in various ways to DLA simula- 
t i o n ~ ~ , ~ ~ , ~ ~ ;  the result is to thicken the branches of the aggregate, 
but the scaling is unaffected for large sizes. Nor do surface 
effects, by themselves, make the equations of crystallization give 
rise to snowflakes40341. Instead, something unexpected happens: 
a growing tip with surface tension does not stabilize, but under- 
goes repeated splittings, which are caused by the surface tension 
itself. This is because surface tension slows the growth of sharply 
curved surfaces and the end of the tip is the most sharply curved. 
In order to make real dendrites, anisotropy arising from the 
crystal structure must be introduced. The relationship of 
anisotropy to tip-splitting was verified e~perimental ly '~ using 
fluid flow in a Hele-Shaw cell with a lattice of grooves. 

How does this relate to DLA? It is common to do DLA 
simulations on a lattice (for convenience). Will the same thing 
happen here as in the noise-free case; that is, will stable tips 
form because of lattice anisotropy? It seems that the answer is 
yes42z43: sufficiently large clusters on a lattice have the outline 
of a crystallite, with tip splitting only on a small scale. But why, 
without surface tension, do we ever get tip splitting? This is 
because noise due to the discreteness of the arriving particles 
can split the tips. This can be verified in various ways, for 
example, by experiments and calculations which vary the noiseI3 
at fixed anisotropy. In cases where tip splitting is mainly due 
to surface tension rather than noise, will we get an object which 
scales? The answer to this question is not yet clear, but there 
are indications'5344 that there is scaling, and that it is close to 
that of DLA. 

These considerations are of more than technical interest, 
because they show how small effects (such as anisotropy) can 
make qualitative changes in growth habit. A series of recent 
e ~ p e r i m e n t s ~ ~ , ~ ~  have shown, for example, how changes in 
growth conditions, such as an increase in voltage in electrodepo- 
sition, can change a fractal pattern like Fig. 2 into an ordered 
dendritic crystal by increasing the effective anisotropy. This is 
a fascinating example of the competition between scaling sym- 
metry and ordinary spatial symmetry. 
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The geometry of crumpled paper balls is examined. The analysis stresse5 w m e  phy\ical, 
mathematical, and intuitive aspects of the problem, introducing the concept of fractal dimen5ion 
which underlies many areas of modern physics. 

Fractals are now a topic of wide interest’ and here we 
describe an interesting example of fractal dimension de- 
fined via the mass-size exponent. In what follows, we dis- 
cuss this example which has been used with success in the 
last two years in the freshman course Experimental Physics 
1 at UFPE.  

With two sheets of paper divided in the way indicated in 
Fig. 1 we constrwt after crumpling ( n  + 1 )  handmade 
balls of different sizes and masses (Fig. 2 ) .  We assign mass 
M =  1 to the smallest ball and mass M =  2“ for the 
( n  + 1)th ball, with n increasing with the size of the paper 
(see Fig. 1 ). In our case 1 <M<2I7, with the largest mass 
corresponding to a sheet of paper of 98 cm X 65 cm. Typi- 
cal log-log graphs of the average diameter ( L )  versus mass 
( M )  for such crumpled paper balls are quite well described 
by L = k M ’ / D .  D is interpreted as the fractal dimension of 
the balls and k -  ( l / ~ ) ” ~  is a measure of the average 
mass-density p on these fractal structures. The values ob- 
tained for D and k were D = 2.51 0.19, k = 5.75 & 0.71 
for writing paper of surface density (T- 80 g/m2. The frac- 
tal dimension D in this case tells about the complexity or 
degree of contortion of the area, since a fixed measure of 
rounded smooth area can enclose a larger volume than a 
complicated one can. The values ofD and k are statistically 
independent of the students’ weight and height. It is experi- 
mentally evident that k (lacunarity’) has a percent mean 
square deviation approximately two times larger than that 
of D, and (Ap/p)  = D( Ak / k )  =d.3 1. These values show 
that D is much less affected by the way of crumpling (pres- 
sure applied, haste or not, etc.) than the density is. The 
topological dimension of these balls is D ,  = 2, since they 
are made of sheets of paper, which conform with D ,  = 2. 
On the other hand, they are embedded in the Euclidean 
three-dimensional space ( E  = 3) ,  so their fractal D satis- 
fies D ,  = 2<D<E = 3. In Fig. 3 we givea diagram indicat- 
ing the frequency distribution of the Ds obtained in the last 
semester with 89 students. From the geomettical point of 

32 

16 
a 

+f 
Fig. I .  Dividing two shects of p p e r  t o  grner;ite the crumpled paper balls 
shown in Fig. 2. I n  this case ti = 6 (see text). 

view our crumpled paper balls are self-avoiding surfaces. 
In this case the Flory argument2 predicts that the size L 
obeys L - l ” ,  where v = 4 / ( E  + 2 ) ,  1 is the linear size of 
the uncrumpled paper, and E is the dimension of the im- 
bedding space. Since the mass scalcs with 1 according to 

, with 
D = [ ( E  + 2 ) / 2 ]  = 2.5, for E = 3, as cxperimentally ob- 
tained. 

On the other hand, the experimental dependence of D 
with the surface density o(g /m2)  of the paper is shown in 

M-12 we obtain L-M”/2  = M 2 / 0 :  4 2 )  = M I / D  - 

Fig. 2.  A typical set.ofcrumpled paper balls wilh masses 1.2,4, ...,a. 

10 

~~ 5 2 .o 

~ 2.5 
3.0 D 

Fig. 3. The frequency distribution of  the  fr:icccil diiiicnsion Din crumpled 
paper ball\ (surface density of thc paper u- $0 g/ni2) froin data obtained 
by89studcl l t \ .b=2.51 h O . l Y ,  
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3.0 

D 

2.8 

2.6 

2 4  

Fig. 4. Using these data we find that D varies according to 
D = c f f ,  with c=4.06 and a =  -0.11- - 1/9. The 
last equation says that for D = u3= 15.7 g/m2, D = 3 and 
for D = a,=624 g/m2, D = 2. Evidently we have also 
D = 2 for D> u2 and D = 3 for D < g3. Deviations from the 
value D = 5/2 observed for (T 5 5 5  g/m2 and D> 120 g/m2 
(Fig. 4)  are indicative that ( i )  the crumpled surface for 
low density paper ( D S  55g/m2) is certainly not self-avoid- 
ing (at  least in some regions) and (ii) a high density paper 
( D 2 120 g/m2) cannot be considered as having D ,  = 2 to 
our ends. 
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D = 4 . 0 6 ~  " . Nelson, Phys. Rev. Lett 57, 791 (1986) .  
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The systematic properties of the large scale structure of the universe can be explained in the 
string model with fractal dimension taken to be 1.4. 

Several systematic properties among various distributions of objects, such as galaxies, 
clusters and superclusters, have recently been found by means of two-point correlation 
function:’ 

(i) all correlation functions can be fitted by the power law t ( r )  = ar-’, the index 
1 = 1.8 is the same for all types of objects;2 

(ii) the correlation strength c1 increases with the richness of the system ( N )  as 
01 = B(N)” ,  m = 0.7; 3, c1 should also increase with the mean separation d of objects 
in the system being considered by a power law c1 = yd”. 

Here, it will be shown that the above-mentioned results can be explained in the string 
model of the large scale structure formation in the universe. In particular, the indexes 
I ,  rn and n are completely consistent with the predictions of the fractal in string model. 
The fractal dimension is found to be 1.4. 

String model3 pictures the formation of objects as an accretion process by density 
perturbation seeds of cosmic strings, which are topologically stable, macroscopic 
defects formed during phase transition of grand unified symmetry breaking in the early 
universe. At the time of formation, the system of strings consists of Brownian closed 
loops and infinite Brownian strings. The evolution of strings depends on the inter- 
commuting processes when strings cross each other. The re-connection of intersecting 
strings will lead to the formation of loops with the rate of about one or few per horizon 
volume per expansion time. Since the number density of such loops is not high enough 
to have frequent collision among themselves, the following evolution of loops are 
dominated by self-intersection which produces new closed loops with smaller size 
called “daughter” loops. This “daughter” generative processor is self-similar. In this 
case, the system of loops can be described by a fractal dimensional D4. Namely, the 
number density of loops with size larger than R is given by 

n( > R )  - R - D ,  
601 
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or the number density of loops with size R to R + dR is 

n(R)dR - R-D-' d R .  (2) 

The length L of the loops also depends on the length R to be used as a unit in the 
measurement, i.e., the L per unit volume is 

L - R'-". (3) 

The expansion of the universe stretches all configuration of the strings in a conformal 
manner. Therefore, the large scale structure in the distribution of objects formed along 
the string loops by accretion should have about the same statistical properties shown 
in Eqs. (2) and (3). 

The correlation function of objects in a system with length scale R is mainly 
determined by loops with radius of the order of R.  It is because the number of loops 
with radius larger than R drops rapidly with R and all small scale loops are smoothed 
out under the scale of R. The distribution of daughter loops are random along its 
parent loop. In this case the correlation function of objects in a system of scale R 
depends only on the number density of loops and the configuration of loops themself. 

If all R loops are circular with radius R, it can be shown that 

From (4)  one can find that the dependance of ( ( r )  with r is given by the term 

f(i) E I/(;)*/-, which can be fitted by a power law (;)-I with 

index 1 - 1.8 in the range r < R.  In fact, 1 - 2 at r - 0 and 1 - 1.7 at r - R. This 
means that ( ( r )  should have a slight flattening from I - 0 to r - R.  Therefore, it is 
important to do a further analysis on the confidence of flattening, to be shown in the 

Bahcall-Soneira statistics.2 The singularity of r = 2R in f is obviously due to 

the assumption that all loops are of radius R. It is not important, because when r - 2R, 
( ( r )  is already decreased to noise level. For instance, the available ranges of observed 
correlation functions for galaxies and clusters are, r < 20h-' Mpc and r 100h-1 Mpc 
(h  = H,/lOO), respectively, i.e., all cases being r I (2-4)d. Then the scale R in the scale 

invariant function f - can be taken as the object's mean separation d in the system (2 
being considered. 

Eq. (4) gives the dimensional correlation strength as follows 
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( 5 )  
1 

4 z 2 n ( R ) R  ' 
a =  

From Eq. (2) one finds a - R D  or 

On the other hand, the richness is the mean number of objects belonging to R system 
in volume R 3 .  Since the length of strings in a system depends on R by Eq. (3), the linear 
density of objects, such as galaxies, should be r~ - L-l - RD-'. The number of objects 
on a R loop is then OR - RD. The number of loops in volume R3 in n(R)R3 - R-D+2.  
The richness is then given by 

( N )  - oRn(R)R3 - R Z .  (7) 

From Eqs. (5) and (7) we have the relation of a and ( N )  as 

Eqs. (7) and (8) show that the indexes rn and n should satisfy 

(9) 
1 
2 

m = - n .  
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Fig. 1. The dependence of the correlation strength ct on the mean separation d of objects in the system. 
Dash line represents a d ' . 4  dependence. Solid line is the d ' . 8  dependence, only clusters being considered.' 
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This prediction is remarkably consistent with observed results which are (Fig. 1) 

n = 1.4, m = 0.7. (10) 

This means the fractal dimension of cosmic string is D = 1.4. It should be noted that 
the index n = 1.8, found by Bahcall-Burgett', is obtained when only clusters are 
considered (Fig. l), while n = 1.4 when galaxies are also taken into account. 

The dimensionless correlation strength can also be found from Eq. (4) to be 

1 
4x2n(R)R3 ' 

a' = 

Szalay-Schramm,' Turok6 and Bahcall-Burgett' noted that a' is constant among the 
samples of clusters (poor, rich R 2 1 and R 2 2). Equivalently one can also assume 
that the fractal dimension D = 2. They explained the difference in a' values of galaxies 
and clusters by gravitational enhancement. However, this explanation runs into dif- 
ficulty, when answering the following question: Why is there such a difference shown 
in the relation of a and ( N ) ?  In fact, both relations of a - ( N )  and a - d should be 
explained in the same way. Result (10) implies that gravitational enhancement may not 
be important in the formation of structure with scale larger than a few Mpc. 

Finally, it should be stressed that the explanation for the difference in a' between 
galaxies and cluster can also be given by the model developed here. The key parameter 
used in phenomenological model7 is the fraction F of galaxies associated with clusters. 
Since the number density of objects associated with the system of richness ( N )  is given 
by Eq. (7) as 

< N > I R ~  ~ I R ,  (12) 

the fraction of objects with scale R' that participate in the ( N )  system is then 

F - R'/R. (13) 

Using d' N 5 Mpc for galaxies and d - 50 Mpc for clusters, one finds the fraction 
of galaxies associated with clusters is ten percent, which is about the same as the 
parameter used in Bahcall's model.- 
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The Devil’s staircase 
RFTMANN ARCHIVE 

‘The swing, a painting by Nicholas Lancret, 1690-1 743 The swing and attendant illustrate 
Figure 1 phase locking in systems containing two competing frequencies 
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When the interaction between an oscillator and its driver is strong enough, 
the oscillator will resonate at, or “lock” onto, an infinity of driving frequencies, 
giving rise to steps with a fractal dimension between 0 and 1. 

Per Bak 

In the 17th century the Dutch physicist 
Christian Huyghens observed’ that two 
clocks hanging back to back on the wall 
tend to synchronize their motion. This 
phenomenon is known as phase lock- 
ing, frequency locking or resonance, 
and is generally present in dynamical 
systems with two competing frequen- 
cies. The two frequencies may arise 
dynamically within the system, as with 
Huyghens’s coupled clocks, or through 
the coupling of an oscillator to an 
external periodic force, as with the 
swing and attendant shown in figure 1. 
If some parameter is varied-the 
length of a pendulum or the frequency 
of the force that drives it, for instance- 
the system will pass through regimes 
that are phase locked and regimes that 
are not. When systems are phase 
locked the ratio between their frequen- 
cies is a rational number. For weak 
coupling the phase-locked intervals are 
narrow, so that even if there is an 
infinity of intervals, the motion is 
quasiperiodic for most driving frequen- 
cies; that is, the ratio between the two 
frequencies is more likely to be irra- 
tional. When the coupling increases, 
the phase-locked portions increase, and 
it becomes less likely that the motion is 
quasiperiodic. This is a unique situa- 
tion, where it makes sense, despite 
experimental uncertainty, to ask 
whether a physical quantity is rational 
or irrational. 

We shall see that if one plots the 
frequency of the oscillator against the 
frequency of the applied force the 
resulting curve may consist of an infin- 
ity of steps-the Devil’s staircase. In 
this article I discuss the conditions 
under which such a staircase appears 
and how one can understand it through 

the modern theory of dynamical sys- 
tems. The Devil’s staircase emerges 
not only in dynamical systems but also 
in long-range spatially periodic solid 
structures, so many of my examples 
will come from condensed-matter 
physics. 

Origins of staircases 
Figure 2 shows dynamical behavior 

as a function of a frequency for a few 
systems of very different physical na- 
ture. The curves all show a character- 
istic staircase structure where the pla- 
teaus of the curves indicate locking at 
various rational frequency ratios. The 
current-driven Josephson junction (fig- 
ure 2a) obeys an equation very similar 
to that of a damped driven pendulum; 
the voltage across the junction is a 
direct measure of the frequency, so the 
plot essentially shows’ the current as a 
function of frequency. Figure 2b shows 
the frequency of oscillations in a com- 
plex chemical reaction, the Belusov- 
Zabotinsky reaction, measured3 at the 
University of Texas by Jerzy Maselko 
and Harry Swinney. Figure 2c shows 
the frequency of voltage oscillations in 
the ionic conductor barium sodium 
niobate, as measured4 at Frankfurt 
University by Samuel Martin and 
Werner Martienssen; in such a conduc- 
tor the current is carried by ions rather 
than electrons. Other examples range 
from Rayleigh-Benard hydrodynamic 
convection and charge-den- 
sity-wave systems7 to periodically 
forced embryonic chicken hearts’ and 
firing neurons subjected to external 
electrical pulses.g 

As the interaction between two com- 
peting frequencies increases, the oscil- 
lations eventually begin to interfere 

with each other, and there is a transi- 
tion to a state that features chaotic 
motion in addition to the periodic and 
quasiperiodic motion. Mogens Jensen, 
Tomas Bohr and I, working at the 
University of Copenhagen, recently in- 
vestigated phase locking in great de- 
tail. We found” that at the transition 
to chaos the motion is always locked: 
As one changes the frequency of either 
oscillator-for example, by changing 
the length of a pendulum or the fre- 
quency of a driving force-the ratio 
between the two frequencies locks onto 
every single rational value pJq. If one 
subjects a pendulum to a fixed driving 
frequency and plots the actual frequen- 
cy of the pendulum against the natural 
frequency or length of the pendulum, 
one obtains a curve consisting of an 
infinity of steps. 

Stated slightly differently, a simple 
pendulum that for weak coupling al- 
most never locks onto the driving 
frequency (because the resonances are 
extremely narrow) will for strong 
enough coupling always lock onto one 
of the infinity of resonant frequencies. 
If one then slowly changes the driving 
frequency, the pendulum will lock onto 
each resonant frequency, jumping from 
one to the next, forming an infinite 
series of steps. 

Between any two steps there is an 
infinity of steps, because between any 
two rational numbers there is an infin- 
ity of rational numbers. It is this 
property of the curve that has given 
rise to the name “the Devil’s staircase.” 
If part of the curve is blown up, the 

Per Bak leads the condensed-matter theory 
group at Brookhaven National Laboratory, in 
Upton, New York. 
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Dynamical-system staircases. The 
fractions are the ratios of competing 
frequencies that have locked to form the 
plateaus. a: Current-voltage 
characteristics of a niobium Josephson 
junction driven by a 295-GHz microwave 
current. The voltage is a measure of the 
frequency. (From reference 2.) 
b: Frequency of oscillations in a complex 
chemical reaction as a function of the 
reaction rate. (From reference 3.) 
c: Frequency of voltage oscillations in a 
superionic conductor, barium sodium 
niobate, driven by a direct current. (From 
reference 4.) Figure 2 

resulting curve looks very much like 
the original curve. One can use a 
scaling index d to describe this self- 
similarity under magnification. The 
most striking property of the staircase 
is that this scaling index is “univer- 
sal”-the same for all dynamical sys- 
tems undergoing a mode-locking transi- 
tion to chaos. The index d is thus a 
constant of nature. This view has been 
confirmed for several of the systems 
mentioned above. 

The scaling index d has an interest- 
ing mathematical interpretation. Con- 
sider the horizontal frequency axis, and 
remove all the intervals where the 
frequency is locked. What remains is a 
set of points. This set of points, called a 
Cantor set after Georg Cantor, the 
mathematician who first constructed 
such sets, has measure zero because the 
frequency-locked intervals fill the en- 
tire axis. The total width of all the 
points is zero. However, the dimension 
of the set is not 0 as it would be for a 
countable set of points, nor is it 1 as it 
would be for a line segment or collec- 
tion of line segments. In fact, the 
scaling index d is approximately 0.87 
and can be interpreted as the Cantor 
set’s dimension-in this case a “frac- 
tal” dimension between 0 and 1. 

The fractal dimension is a general- 
ization of our usual concept of dimen- 
sion, and can be explained in the 
following way. Consider a circle or 
sphere of radius r around a point 
belonging to the Cantor set of points. If 
the number of points within the sphere 
scales as r d ,  then d is the fractal 
dimension of the set. Clearly, for a line 
the number of points is directly propor- 
tional to the radius, so the fractal 
dimension d is 1, and for a plane the 
number of points goes as r2 ,  so d is 2. 

The Cantor set has traditionally been 
thought of as an artificial mathemat- 
ical construction with no physical ap- 
plication. I t  is thus quite fascinating 
that one can relate it directly to a 
system’s mode locking and that one can 
measure its characteristic scaling di- 
mension directly in rather simple ex- 
periments despite its zero measure. I 
return to the theory and the numerous 
experimental realizations below. 

Solids. The Devil’s staircase also 
shows up in an entirely different con- 
text-periodic structures with long spa- 
tial periods. Several intermetallic com- 
pounds, such as Ag,Mg, CuAu, Cu,Pt, 
Au,Mn, Au,Cd and Au,Zn, form“ crys- 
tals with extremely long periodicities 
along a unique direction. The long- 
range structures can be built from 
blocks of the form X Y ,  by putting them 

together with or without stacking 
faults, as figure 3a indicates. The 
figure shows the structure 11111.. . , 
which has distance 1 between stacking 
faults, and the structure 22222.. . , 
which has distance 2 between stacking 
faults. The composition of the com- 
pound clearly depends on the density of 
stacking faults because each fault re- 
moves a layer of the majority Y atoms. 
If a crystal structure with period q has 
p stacking faults over a distance of q 
unit lengths, then the structure’s aver- 
age periodicity M is defined as q / p .  

Figure 3a also shows a plot of the 
average periodicity M as a function 
of temperature for the compounds 
Til+,AI3-,, as measured” by a 
French group. Note again the stair- 
caselike dependence where M assumes 
only rational values. The stairs appear 
even though the quantity M plotted 
here is the ratio between two spatial 
periodicities-that of the ordered struc- 
ture and that of the lattice-in contrast 
to the dynamical systems such as the 
pendulum, where we plotted the ratio 
between two temporal periods or fre- 
quencies. The analog in a structurally 
modulated system of the frequency in a 
dynamical system is the wavevector. 

This phenomenon of compounds 
crystallizing in a multitude of long- 
range periodic structures is known as 
polytypism. Structures arising from 
the stacking of individual atomic layers 
that have hexagonal or triangular 
symmetry are another example of poly- 
typism. Hexagonal close-packed struc- 
tures can be formed by stacking 
hexagonal layers in the pattern 
ABABAB . . . ; face-centered-cubic 
phases have the pattern ABCABC . . . . 
Using a notation where h means that 
near neighbors are identically stacked 
and c means opposite stacking, these 
structures can be written hhhhhh . . . 
and cccccc . . . . Certain magnesium- 
based ternary alloys crystallize in long- 
range periodic structures with a mixed 
stacking pattern hchchc . . . . Figure 3b 
shows the length of the period divided 
by the number of c’s, or stacking faults, 
as a function of composition in these 
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alloys, as measured“ at the University 
of Hiroshima, Japan. 

Figure 3c shows the periodicity of the 
magnetic structure of the rare-earth 
element erbium as a function of tem- 
perature. Physicists at Brookhaven 
m e a ~ u r e d ’ ~  this curve by the novel 
technique of magnetic x-ray scattering. 
Erbium has a modulated magnetic 
structure with aligned spins. The var- 
ious spin configurations are formed by 
periodic sequences of layers of up spins 
and layers of down spins. The struc- 
ture with period 4 (and wavevector ‘/d 
for example, has two layers of up spins 
followed by two layers of down spins 
and so on. Similar structures have 
been found14 in the rare-earth element 
holmium and in cerium antimonide. 
Other systems e ~ h i b i t i n g ‘ ~  structural 
staircases are  ferroelectrics and the 
stacking structures of graphite interca- 
lation compounds. 

All these structures arise from com- 
petition between spatial periodicities. 
Despite the seemingly enormous com- 
plexity of these structures and the wide 
range of physics that underlies them, 
two simple models explain the main 
features of them all. The first16 is a 
simple Ising system with long-range 
repulsive interactions; such a system 
has a complete Devil’s staircase with 
all possible rational periodicities. The 
second is the “axial next-nearest-neigh- 
bor Ising model,” which  exhibit^'^ the 
most spectacular phase diagram of any 
model studied so far; shown in figure 4, 
the diagram is a “Devil’s flower” con- 
sisting of an infinity of leaves that 
represent periodic phases and that 
spring from a “multiphase point.” 

Experiments with dynamical systems 
Theoretical analysis of dynamical 

systems leads to the conjecture (see the 
box on page 44) that  the Devil’s stair- 
case is universal at the transition to 
chaos. It is interesting to examine in 
this light the real physical systems 
considered above and illustrated in 
figure 2. 

For the driven pendulum, one can 
show” numerically that (in the termin- 
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‘Devil’s flower.’ In 
this phase diagram,for 
the axial next-nearest- 
neighbor king model, 
the horizontal axis is 

the ratio of 
antiferromagnetic 

interactions to 
ferromagnetic 

interactions. The white 
areas contain yet more 

leaves, representing 
infinities of periodic 

phases with 
incommensurate 
phases between. 

Arrows indicate the 
sequences of 

ferromagnetic layers. 
(From ref. 17.) Figure 4 

ology of the theoretical analysis given 
in the box) the return map indeed 
develops an inflection point at a critical 
surface in the parameter space. Nu- 
merical simulations by groups at Stony 
Brook” and the University of Copenha- 
genlg confirm the existence of a com- 
plete Devil’s staircase along a line 
where the map has an inflection point. 
Preben Alstrom and Mogens Levinsen 
at the University of Copenhagen found 
that the fractal dimension of the stair- 
case is about 0.87, in agreement with 
prediction. Stewart Brown, George 
Mozurkewich and George Griiner at 
UCLA also found7 indications of a 
complete Devil’s staircase, with dimen- 
sion about 0.92, for charge-density 
waves in niobium triselenide driven by 
the combination of a constant current 
and an oscillating current, but they 
made little attempt to verify that the 
system was indeed at the transition 
line. The most accurate experiments 
are probably the Rayleigh-Benard ex- 
perimentfi by Albert Libchaber’s group 
at the University of Chicago and the 
experiments4 on the ionic conductor 
BSN by Martin and Martienssen at  
Frankfurt University (figure 2c). 

The Chicago group used a cell filled 
with mercury and heated from below. 
At a critical point above the onset of 
convection there is an oscillatory insta- 
bility into a time-dependent state in- 
volving an ac vertical vorticity in the 
fluid. The period of this oscillation de- 
fines one frequency. The experimen- 
ters generated the second oscillator by 
applying a small horizontal dc magnet- 
ic field parallel to the axis of the con- 
vection cells in the fluid and by apply- 
ing a vertical sheet of current through 

t t t l  
0/1 

RATIO OF INTERACTIONS J,/J, 

the fluid. The Lorenz force induces an 
ac vorticity in the fluid’s velocity. This 
is the second oscillator. By varying the 
amplitude and frequency of the cur- 
rent, they were able to scan a very large 
range of winding numbers and ampli- 
tudes, resulting in a phase diagram 
with numerous Arnold tongues, similar 
to the one shown for a circle map in 
figure 5b. They identified the critical 
curve by tuning the experiment to 
quasiperiodic states and looking to see 
when broadband noise, indicating cha- 
os, appears in the spectrum. They 
determined the fractal dimension by 
looking at the scaling of the mode- 
locked steps at the critical curve. In- 
deed, they verified that the mode- 
locked steps form a complete Devil’s 
staircase, and found the fractal dimen- 
sion to be 0.86 t- 3%, in agreement with 
theoretical predictions. The Chicago 
experiment is a spectacular example of 
the physical relevance of the Cantor 
set. The universal scaling behavior 
allows one to extrapolate to the limit- 
ing set in a situation where one can 
only measure a finite number of steps. 

The ionic conductor BSN is unique in 
that a constant driving current gives 
rise to an oscillating voltage. In the 
experiment by Martin and Martiens- 
sen the periodic voltage oscillations 
define one frequency. An additional ac 
current defines the second frequency, 
and again one can scan a large range of 
winding numbers and amplitudes by 
varying the frequency and strength of 
the ac current. The measured return 
map indeed appears to develop an 
inflection point at a transition to chao- 
tic voltage oscillations. Thus the the- 
ory described in the box applies to this 

system. Martin and Martienssen stud- 
ied the scaling behavior of the staircase 
formed by the mode-locked steps (figure 
2c) following our procedures described 
in the box. They confirmed that the 
staircase is complete and has fractal 
dimension 0.93, in reasonable agree- 
ment with theory. 

Long-range periodic structures 
We can understand the essential 

features of the magnetic structures, 
ferroelectric structures and crystal 
structures, whether long-range period- 
ic or incommensurate, in terms of two 
very simple models. The first“ is the 
one-dimensional Ising model with long- 
range repulsive interactions whose en- 
ergy E is given by 

E =  -CHSi  

Here S,  are the spins, which are k ‘/z, 
His  the magnetic field and the function 
J(i - j )  is the antiferromagnetic inter- 
action between up spins at sites i and j .  
The antiferromagnetic interaction 
could, for instance, decay as a power 
law or exponentially. 

It is easy to relate the spins and their 
interactions to physical quantities for 
the systems discussed at the beginning 
of this article. For long-range periodic 
crystal structures such as Ti,+,Alsp,, 
the spin-up state represents“ the pres- 
ence of a defect (figure 3a) and the spin- 
down state the absence of a defect. In 
this case, the interaction J(i - j )  is the 
interaction between defects, and the 
background H a “chemical potential” 
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Circle map, phase diagram and self-similar staircase. a: Sine 
circle map with periodic orbit (color) for nonlinear coupling equal to 
I-the critical point for the transition to chaos. The curve appears 
broken because it is plotted modulo 1. b: Phase diagram for the 
circle map. Note the “Arnold tongues” (color) where the winding 
number assumes rational values. c: Winding number at the 
transition to chaos. Note the self-similaritv of the curve under 
magnification. 

for defects that depends on the tem- 
perature and composition. For the 
magnesium-based ternary alloys’2 (fig- 
ure 3b), which crystallize in  long-range 
periodic structures with mixed stack- 
ing hhchchc . . . , spin - ‘/2 could repre- 
sent h stacking, so that  a chain of down 
spins would represent a hexagonal 
close-packed structure, and spin + ‘/2 

could represent c stacking, so that a 
chain of up spins would represent a 
face-centered cubic structure. The in- 
teraction J(i - j )  would be the interac- 
tion between the c stacking “defects.” 
Robijn Bruinsma a t  UCLA and Andy 
Zangwill a t  the Polytechnic Institute of 

Figure 5 

New York have constructed’’ a micro- 
scopic theory for the origin of these 
interactions based on the electronic 
structure and elastic properties of the 
compounds. An interpretation similar 
to the one for long-range periodic struc- 
tures would apply to the stacking 
sequences in  graphite intercalation 
compounds; Roy Clarke and M. J. Win- 
okur have studiedI5 these sequences at 
the University of Michigan. 

Bruinsma and I originally construct- 
ed16 the Ising model with long-range 
interactions (equation 1) to study neu- 
tral-ionic t ransi t ions i n  organic 
charge-transfer compounds, where the 

parameter H represents the electron 
ionization energy and J the  interaction 
between ionized layers. For a given 
fraction q of up spins, the position x ,  of 
the i th  up spin in  the stable configura- 
tion is given by the simple formula 

Hence, for q = ‘/2 the structure is 

For q = “/23 the  ground state is 

Trivially, these structures translate 
into 222 and 2223223223, respectively, 
for the ternary alloys, and hchc and 
hchchchhchchchhchchchhc for t h e  
Ti& structures. All the structures 
that have been found experimentally 
can be expressed in  terms of equation 2. 
When the fraction q of up spins is 
irrational-for instance, for q equal to 
the golden mean, (v‘5 - 1)/2--the se- 
quence given by equation 2 is not 
periodic, and the resulting crystal 
structures have been called2’ “quasi- 
crystalline.” The Ising model of equa- 
tion l thus is an extremely simple 
microscopic model for quasicrystals. 

I t  turns out that for every rational 
concentration q equal to m/n there 
exists a n  interval AH(m/n) in which 
the structure is stable, and these inter- 
vals fill the  entire H interval. Hence 
the concentration of up spins plotted 
against the parameter H constitutes a 
complete Devil’s staircase. Figure 6 
shows the staircase for a n  interaction 
of the form J(n) = 1/n2. Note the self- 
similarity of the staircase under magni- 
fication. The dimension d for the 
Cantor set can easily be determined 

x ,  = integer(i/q) (2)  

- + - + - + . . .  

- + - + -  + -  - + -  f -  + - -  + -  + . . .  
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by a periodic force A second-order differ- 

tems mentioned in the article, the situation 
is even worse We do not even know with 
any confidence the equations that govern 
their behavior However, we shall see that 
this ignorance does not prevent us from 
making quantitative predictions about 
mode locking in the systems 

Let us look at the pendulum with a 
stroboscopic light that flashes at the dis- 
crete times t = n, where n is an integer 
We are in a sense using the external force 
as a clock. Let 8, be the phase, or angle, 
of the pendulum, and let 8, be its deriva- 
tive at time t = n Because the equation IS 
of second order the phase at time n + I is 
an (unknown) function h of the phase and 

t the mode-locked steps will eventual1 

re is no room 

The two-dimensional map h has thus col- 
lapsed into a one-dimensional map, which 
is called a “circle map” because it maps 
one point 8, on the circle 0 < 8 < Z r r  onto 
another point O n + ,  on the circle 

For given values of the parameters we 
do not know whether or not this dimension- 
al reduction actually takes place The best 
we can do is to generate the return map 
either by solving the differential equation 
numerically or by measuring it experimen- 
tally. Figure 5a shows an example of a 
one-dimensional map f(8) where we have 

BSN, a system fo 
equations are not 
also yielded a one- 
advantage of study 
form is obvious 
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analytically. For power-law interac- 
tions of the form n - a ,  the  dimension d 
is 2/(1 + a). This dimension is obvious- 
ly not universal because it depends on 
the exponent a,  and it is not possible to 
predict the dimension from a simple 
general theory. 

For the magnetic structures of ceri- 
um antimonide and erbium (figure 3c), 
and for many of the ferroelectric struc- 
tures with staircase behavior, the tem- 
perature and hence the entropy play a n  
essential role in determining the se- 
quence of the periodic phases. Also, 
there often appear to be incommensu- 
rate phases between the high-order 
periodic ones. It is essential to con- 
struct a real three-dimensional thermo- 
dynamic model for these systems. To 
accomplish this, Juhani  von Boehm 
and I, then a t  the Bohr Institute in  
Copenhagen, c o n s t r ~ c t e d ' ~  a simple 
Ising model with competing nearest- 
and next-nearest-neighbor interac- 
tions. The model was later named the 
axial next-nearest-neighbor k i n g  mod- 
el. Within each layer the model has 
nearest-neighbor ferromagnetic inter- 
actions 5,. In the axial direction the 
model has ferromagnetic nearest- 
neighbor interactions J1, but antiferro- 
magnetic next-nearest-neighbor inter- 
actions J,. When the ratio Jz/Jl  is 
small, it  is energetically favorable for 
the system to order ferromagnetically 
into a structure of the form + + + +,  
where the pluses indicate a sequence of 
up layers. When the ratio J,/Jl is 
large, it  is energetically favorable for 
the system to order into a structure of 
period 4, or wavevector '/4, of the form 

Figure 4 shows the resulting phase 
+ + - -  + + - - + + - - .  

diagram of the model. The diagram is 
possibly the most spectacular found for 
any statistical-mechanical model what- 
soever. At zero temperature only the 
+ + + and + + - - + + phases can exist. 
At finite temperatures there is a n  
infinity of periodic phases with wave- 
vectors between 0 and '/4; these spring 
out of a multiphase point at T =  0. It 
can be shown that near the transition 
line to the paramagnetic phase all 
possible rational phases become stable, 
so there is a Devil's staircase. The 
white areas between the leaves of the 
Devil's flower in  figure 4 indicate 
regimes with yet more leaves, leaves of 
infinities of long-range periodic phases 
with incommensurate phases between. 
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The neologism 'multifractal phenomena' describes the concept that diflerent regions of an object have 
diflerent fractal properties. Multifractal scaling provides a quantitative description of a broad range 
of heterogeneous phenomena. 

A WIDE range of complex structures of interest to physicists 
and chemists have in recent years been quantitatively character- 
ized using the idea of a fractal dimension; a dimension that 
corresponds in a unique fashion to the geometrical shape under 
study and that often is not an integer'.'. The key to this progress 
has been the recognition that many objects with random struc- 
ture possess a scale symmetry. Scale symmetry implies that 
objects look the same on many different scales of observation. 

To be more specific, consider an object with fractal dimension 
d,. Imagine that we digitize the object by representing it by the 
pixels of a computer. If a unit mass is associated with each 
pixel, the total mass M of the object corresponds to its volume 
and its 'density' p = M / L d  is a measure of the fraction of 
d-dimensional space occupied by the object. Here L is a charac- 
teristic diameter, such as the caliper diameter or radius of 
gyration. If, however, d( < d, the mass increases more slowly 
than Ld as the size of the object increases; for example, if we 
double L ( L +  L' = 2L)  then M increases by a power less than 

2d (that is, M + M'=2drM < 2 d M ) .  Thus the density decreases 

As long as a unit mass is associated with each pixel, a single 
scaling exponent df characterizes the structure of the object. In 
recent years, however, very interesting phenomena have been 
studied which seem to require not one but an infinite number 
of exponents for their description. Such multifractal phenomena 
have recently become an extremely active area of investigation 
and here we provide the non-specialist with a brief introduction 
to them. There are many types of multifractal phenomena but 
we shall concentrate on two examples, the behaviour of complex 
surfaces and interfaces*, and fluid flow in porous media. 

( p + p ' = 2 d ' d p < p ) .  

Complex surfaces 
Figure l a  shows an object formed by a process called diffusion- 
limited aggregation ( DLA)93'o; such structures arise naturally 
in many processes currently of interest to physicists and 
chemists, ranging from electrochemical deposition".'*, thin-film 

Fig. 1 The harmonic measure for a 
50,000 particle off-lattice two- 
dimensional DLA aggregate. a, The 
cluster; b, all 6,803 perimeter sites 
that have been contacted by at least 
one out of lo6 random walkers, fol- 
lowing off-lattice trajectories. c, All 
the perimeter sites that have been 
contacted 50 or more times. d, The 
sites that have been contacted 2,500 
or more times. The maximum num- 
ber of contacts for any perimeter site 
8,197, so that pmax = 8.2 x lo-' (after 

ref. 27). 
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Fig. 2 Comparison be- 
tween: a, b, the distribu- 
tion functions n ( p )  and c, 
d, the critical exponents 
T ( q ) =  ( 4 -  l )D(q)  for vis- 
cous fingering patterns. a, 
Theoretical and experi- 
mental values for n ( p ) ,  
where n (  p ) S p  is the num- 
ber of perimeter sites with 
growth probabilities in the 
range [ p , p + 6 p ] .  The 
simulated patterns and 
their growth probabilities 
were obtained3' using 
the dielectric breakdown 
model. The growth prob- 
abilities for the experi- 
mental patterns were 
obtained by numerically 
solving Laplace's equa- 
tion in the vicinity of a 
digitized representation of 
the pattern with absorbing 
boundary conditions on 
the sites occupied by the 
pattern. Similar results 
were obtained for small a 
by directly subtracting two 
successive experimental 
patterns. c, Theoretical 
and ( d )  experimental 
values for T ( q )  in both 
cases was obtained 
numerically as in a and b 

(refs 31 and 32). 
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Fig. 3 Comparison between theoretical 
( a )  and experimental ( b )  plots of the func- 
tion f ( a )  (see Box 1) (refs 31 and 32). 

morphology" and dendritic s ~ l i d i f i c a t i o n l ~ ~ ~ '  to various 'break- 
down phenomena' such as dielectric viscous 
f i ~ ~ g e r i n g ~ ' - ~ ~ ,  and chemical d i s s ~ l u t i o n ~ ~ ~ ~ ~ .  If patterns such as 
the one shown in Fig. l a  are digitized, the fractal dimension 
d , =  1.7 is obtained. Thus df- d = -0.3, and p decreases as the 
object grows due to the presence of 'fjords' whose size increases 
as the DLA cluster grows. 

What is meant by the surface of the DLA cluster in Fig. l a  
depends on the way it is to be measured. The exposed tips define 
one surface that is most likely to matter when diffusion is the 
essential feature, for example, if the surface is probed by parti- 

cles undergoing random-walk motion. Figure 1 b-d shows where 
the same object has been 'hit' by lo6 random walkers2', highlight- 
ing the surface sites touched by one, 50 and 2,500 random 
walkers respectively. Any of these three figures could be used 
to define the accessible surface, but the actual surfaces shown 
in Fig. 1 b-d differ a great deal from one another. This example 
emphasizes that there is no unambiguous definition of the sur- 
face of this object. 

An unambiguous quantity is the 'hit probability' p , ,  defined 
as the probability that surface site i is the next to be hit. 
Operationally, we calculate p ,  = N J  NT, where N, is the number 
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Fig. 4 A multifractal lat- 
tice: a, generator; h, 
second stage of construc- 
tion; c, results after 8 gen- 
erations. Lattice shown 
contains 2' pixels along 
each edge and shading is 
proportional to the value 
of T ,  for pixel i. Here T,  

is the product of the 8 
probabilities assigned to 
that pixel as  a result of the 

8 generations (ref. 61). 

a 

P 1  p 2  

p3 p 4  

'4'2 

of trajectories that hit site i and NT = C ,  N ,  is the total number 
of trajectories (for the example of Fig. 1 N,= lo6). The set of 
numbers p ,  may be used to form a probability distribution 
function n ( p ) ,  where n ( p ) S p  is the number of p r  in the range 
[ p ,  p + S p ] ,  as shown in Fig. 2. This probability distribution, like 
all probability distributions, is characterized by its moments 

A central dogma of critical point phenomena has been the 
statement that the probability distributions that arise are charac- 
terized by only two independent exponents2'. This means that 
we obtain no more information about the system by studying 
increasingly higher moments: moment q + 1 is described by an 
exponent related to that of moment q by a simple gap exponent 
A. In  general, one finds that 

Z (  q )  - L-""' (2) 
If the central dogma were correct, then T ( q )  would be a linear 
function of q so that only two independent exponents would 
be needed to specify T ( 4 ) .  It was discovered recently that this 
idea fails for the probability distribution n( p )  for DLA: both 
~ i m u l a t i o n ~ ' ~ ~ ~ ~ ~ ' ,  (Fig. 2 c )  and experiments3* (Fig. 2 d )  show 
that T (  q )  is a continuous curve. An infinite hierarchy of indepen- 
dent exponents is required. The Legendre transform f( a )  of the 
function T ( q )  contains the same information as T ( q )  itself (see 
Fig. 3 and Box A), and is the characteristic customarily studied 
when dealing with m u l t i f r a ~ t a l s ? ' ~ ~ " ~ ~ ~ .  

Fluid flow in complex media 
Consider a second example, fluid flow in random porous media. 
Such flow is customarily represented by considering an idealized 
network of bonds, a fraction p of which are open, and the 
remaining fraction 1 - p  of which are blocked43. For p lower 
than a critical value p c ,  termed the percolation threshold, no 
fluid passes across a macroscopic system. At p c  a single macro- 
scopic cluster appears, called the incipient infinite cluster, which 
carries fluid across the entire system. The singly connected bonds 

C 

A. Analogies of multifractals with thermodynamics and 
multifractal scaling 

Consider the sum in equation (1) in the form 

Z ( q )  =I $'"' ( A l )  
I' 

where 

F ( p )  = l o g  n ( p ) +  q log p (A2) 

The sum in (A] )  is dominated by some value p = p * ,  where p* 
is the value o f  p that  maximizes F (  p ) .  Thus 

Z(q)-e"""= n ( p * ) ( p * ) "  (A31 
For fixed q, p* and  ( n ( p * )  both depend on  the system size L, 
leading one to define the new y-dependent exponents 01 and .f by 

P*5L-U.  , n ( p * ) - L '  (A4) 

Substituting (A4) into (A3) gives 

z ( q ) - L ' - " 4  (AS) 
Comparing (AS) with equation (2),  we find the desired result 

d q ) = q a ( q ) - . f ( q ) .  (A61 
From (A2) it follows that 

d 
~ ' ( 4 )  = a ( q ) .  (A71 
dq 

Hence we can interpret f ( a )  as  the negative of the Legendre 
transform of the function ' (4) 

f ( a ) = - ( T ( q ) - q a )  (A81 
where a = d r / d q .  The function Z ( q )  is formally analogous to 
the partition function Z ( p )  in thermodynamics, so that ~ ( p )  is 
like the free energy. The Legendre transform f (  a )  is thus the 
analogue of the entropy, with a being the analogue of the energy 
E. Indeed, the Characteristic shape of plots of . f (a )  against a 
(compare Fig. 3)  are reminiscent of plots of the dependence on 
E of the entropy for a thermodynamic system. 
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B. Random multiplicative processes 
[A cautionary note for random sampling algorithms] 

Multifractal phenomena seem to be associated with systems 
where the underlying physics is governed by a random multiplica- 
tive process. A simple random additive process might be the sum 
of 8 numbers, each number being chosen to be either a -  1 or 
a + l  (this has a geometrical interpretation as an 8-step random 
walk on a one-dimensional lattice). Similarly, a simple random 
multiplicative process could be the product of 8 numbers, each 
number randomly chosen to be either a 1/2 or a/2 ( S .  Redner, 
personal communication). The results of simulations of such a 
process are shown in Fig. 5. The y-axis is the running average 
of the product after R realizations and the x-axis is the number 
of realizations R.  

-.. 

Average 

10 

-. - 
I ‘ * R  

256 400 

Fig. 5 A computer simulation of a random multiplicative 
process in which a string of 8 numbers is multiplied 
together. Each number is chosen with equal probability 
to be either 2 or 1/2. The limiting or asymptotic value of 
the product is (5/4)*= 5.96. The simulations do not give 
this value unless the number of realizations R is approxi- 
mately the same as the total number of configurations of 
this product, 2* = 256. Simulation provided by R. Selinger. 

In  total there are 28, or 256, possible configurations of such 
random products. Normally, random sampling procedures give 
approximately correct answers when only a small fraction of the 
possible 256 configurations has been realized. Here, however, 
one sees from Fig. 5 that the correct asymptotic value of the 
product is attained only after -256 realizations (S. Redner, 
personal communication). Monte Carlo sampling of only a small 
fraction of the 256 configurations is doomed to failure because 
a rare few configurations-consisting, of, say, all 2s or seven 2s 
and a single 1-bias the average significantly and give rise to the 
upward steps in the running average shown in Fig. 5. 

A simple random multiplicative process that gives rise to 
multifractal phenomena is found in the simple hierarchical model 
of the percolation backbone shown in Fig. 6. If the potential 

of this incipient infinite cluster carry the entire current and so 
sustain the largest potential drops, whereas the multiply con- 
nected bonds partition the current among them and so have 
smaller potential drops. The analogue of the hit-probability 
distribution n (  p )  for DLA is the potential-drop distribution 
n (  V), where n(  V) d V  is the number of bonds whose current 
lies in the interval [ V, V+dV]44-53. The distribution n(  V) is 
characterized by its moments and the analogue of ( 1 )  is Z ( q )  = 
1 n(  V) Vq. I f  the size of the random network is doubled, the 
distribution function n ( V )  changes and so d o  the moments 
Z(q). An infinite hierarchy of exponents T ( q )  is found and 
again T ( q )  is not linear in q. 

It is natural to ask why the constant gap or single exponent 
idea breaks down when studying the surface of a DLA cluster. 
The key idea is that the underlying probability distribution n(  p )  
develops a long ‘tail’ extending to extremely small values of the 
variable p (Fig. 2). For DLA, this tail arises from the presence 
of extremely deep cluster ‘fjords’. As the cluster grows, the hit 
probability p ,  for all cluster sites decreases. The hit probability 
p ,  for a site deep in a fjord, however, decreases much faster 

0 ti ti 

Fig. 6 A hierarchical model of the percolation backbone 
which displays multifractal scaling of the potential distri- 
bution n(V). A unit potential is applied across the 
extremities of the cluster. The potentials shown are given 

by V, =2 /5  and V,= 1/5 (after ref. 37). 

drop across the singly connected links is V, and that across the 
multiply-connected links is V,, then when this structure is iter- 
ated, the potential drops across each of the bonds are products 
of the potential drops of the original structure. For this hierar- 
chical structure Z(q) = ( Vq + Vq)”, where N is the number of 
iterations carried out. It turns out that Z(q) obeys a power-law 
relation of the form of equation (2), with an infinite hierarchy 
of exponents given by 7 ( q )  = 1 +log [ Vf + Vf]/log 2. To obtain 
this result, the relation N ,  = L3’4 must be used, where N ,  is the 
number of singly connected bondss4-”. 

than pL for a site on the exposed tips. Thus the long tail of the 
n ( p )  distribution shifts its relative weight to smaller and smaller 
values of p as the cluster grows. 

Similarly for flow in porous media, the distribution function 
n(  V) has a long tail extending to extremely small values of the 
potential V.  This tail arises from the presence of large multiply 
connected regions of the network, termed  blob^'^-^^. When 
L+ L’ = 2L, the characteristic size of the largest blobs increases 
from A4 to M’ = 2’ 62M (ref. 58). Thus the minimum potential 
drops decrease dramatically and the distribution function n( V) 
has a larger fraction of its weight from very small values of V .  

Generality 
It is not necessary to have a fractal structure to find multifractal 
phenomena. For example, consider the electric field E, at every 
point i on the surface of a charged needle-a non-fractal object 
of dimension one. The set { E,}  of electric-field values is formally 
analogous to the set { p [ }  of DLA growth probabilities, and 
indeed one finds that the { E L }  also form a multifractal set27,35. 
A question that arises naturally concerns the conditions under 
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which multifractal phenomena can be expected. As the example 
of the needle suggests, it is necessary to define a 'measure' on 
an object such that this measure has a different fractal dimension 
in different regions of the object59. Thus when the length of a 
needle is doubled, the electric field near its tip changes by a 
factor which differs from the factor by which the electric field 
near the centre changes. Similarly, when the mass of DLA is 
doubled, the growth probability near the tips of a DLA structure 
changes by a factor different from the growth probability deep 
in the fiords. This is because the screening in the deep fjords 
increases dramatically with increasing cluster size. 

Multifractal theory permits the characterization of complex 
phenomena in a fully quantitative fashion. Just as completely 
random phenomena in nature may generate shapes that are 
fractal, phenomena with spatial correlations are sometimes 
multifractals. For example, randomly porous media are tradi- 
tionally modelled by the random-resistor network of percolation 
theory: the resistance of each element corresponds to the per- 
meability in a suitable digitization of the porous medium 
Although this model captures much of the essential physics, it 
neglects the phenomenon of spatial correlation that in turn leads 
to both short- and long-range heterogeneities in the porous 
medium. For this reason, it has been recently proposed that 
atmospheric turbulence and porous media should be modelled 
by a multifractal I a t t i ~ e ~ O - ~ ~ .  This is obtained by a random 
multiplicative process (see Fig. 4 and Box B). Transport in such 
a lattice can be anomalously slow, just as it is in the random- 
resistor network model. But the exponent d, describing the 
anomaly can be continuously tuned; in fact the slowing down 
can, under suitable conditions, become large without limit. A 
similar model has been solved analytically in one dimension76. 

Analogous phenomena are found for a wide variety of sys- 
tems; in fact, multifractal phenomena were first found in studies 
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of fluid t u r b ~ l e n c e ~ ~ , ~ ~ ,  and in analysis of non-linear dynamical 
s y ~ t e m s ~ ~ - ~ ~ .  Recently it has been d e m ~ n s t r a t e d ~ ~  that experi- 
mental data concerning the onset of turbulence can be analysed 
using a method derived from multifractal theory. Various multi- 
fractal sets have been mapped on to the thermodynamics 
of one-dimensional spin models70. In a study of the deple- 
tion of a diffusion substance near an absorbing polymer it 
has been found that the scaling with distance r of each 
moment of the Laplace field is governed by an independent 
exponent71. 

Several authors have examined the multifractal properties of 
random ~ a l k s ~ ~ - ~ ~ .  In particular, it has been s h o ~ n ~ ~ - ~ ~  that the 
fractal dimension d, is a member of a continuous set of scaling 
exponents; consideration of the entire hierarchy of scaling 
exponents provides a more complete description of random 
walks than was possible previously. The main idea is to charac- 
terize an infinite walk with an exponent a that measures how 
fast its total probability decays to zero with increasing mass of 
the walk. The analogue of the function f (  a )  discussed above is 
the growth rate z ( a )  for the subset of walks with decay rate a. 
The analogue of T ( q )  is the Legendre transform of z ( a ) .  A 
log-normal distribution has been found for the first-passage time 
in p e r ~ o l a t i o n ~ ~ ,  and some understanding of the conditions 
under which such a log-normal distribution will occur has also 
developed r e ~ e n t l y ~ ~ . ~ ~ .  

We thank our collaborators P. Alstrbm, A. Coniglio, G. Dac- 
cord, T. C. Halsey, J. Nittmann, I. Procaccia, D. Stassinopoulos, 
E. Touboul and T. A. Witten. We are also grateful to C. 
Amitrano, L. de Arcangelis, F. di Liberto, L. Pietronero and S. 
Redner for helpful discussions. A. Bunde, P. Grassberger and 
S. Havlin commented on the first draft of this article. The work 
at Boston University was supported by grants from NSF and 
ONR. 

38. Meakin, P. Phgs Rer; A 34, 710-713 (1986). 
39. Grassberger, P. & Procaccia, 1. Phvrrca 13D, 34-54 (1984) 
40. Grassberger, P. Phys. Lett 107A, 101-105 (1985). 
41. Benzi, R., Paladin, G., Pansi, G & Vulpnn i .  A. J. Phyr. A 17, 3521-3531 (1984); lbld. 18, 

42. Radii, R. & Politi, A. J.  ~rafzir. Phve 40, 725-750 (1985) 
43. Stauffer, D. Infroduelion ro Percolairon Theory (Taylor and Francis, Philadelphia. 1985). 
44. Rammal, R., Tannous, C., Breton, P & Tremhlay, A. M. S. Phys Rev Lerr. 54, 1718-1721 

45 de Arcangelis, L., Redner, S. & Caniglia, A Phvs Re" B 31, 4725-4727 (1985); Phys. Rev. 

46. Rammal, R., Tannous, C. & Tremhlay, A. M .  S. Phyr. Re". A 31. 2662-2671 (1985). 
47. Rammal, R. 3. Phy.s, Panr 46, L129 (1985); Phys. Rev Lerr 55. 1428 (1985)  
48. Meir, Y., Blumenfeld, R., Aharony, A. & Harris, A. B. Phi's. Rev. B 34, 3424-3428 (1986).  
49. Blumenfeld, R., Meir, Y., Harris, A. B. & Aharony, A J.  Phys A 19, L791LL796 (1986) 
50. Blumenfeld, R., Meir, Y., Aharmy, A. & Harris, A B. Phyr. Rev. B 35, 3524-3535 (1987). 
51. Meir, Y. & Aharony, A. Phys. Reti A 37, 596-600 (1988). 
52. Rammal, R. & Tremhlay, A . ~ M .  S. P h w  Re" Lerr. 58, 415-418 (1987). 
53. Fourcade, B., Breton, P & Tremhlay, A -M S. Phyr. Rev. Lerr. (I" the press). 
54. Stank),  H. E. J.  Phys. A 10, L211-L220 (1977). 
55. Coniglio, A. Phys. Re". Lerr. 46, 250-253 (1981). 
56. Coniglio, A J Phys. A 15, 3829-2844 (1981). 
57. Pike, R & Stanley, H. E. J. Phyr. A 14, L169-LI77 (1981). 
58. Herrmann, H. J .  &Stanley, H. E. Phvs. Rev. Lerr. 53, 1121-1124 (1984) 
59. AlstrBm, P. In Trme-Dependent EJJecrs ,n Disordered Moreriah (eds Pynn, R. & Rlste, T . )  

185-193 (Plenum, New Yark, 1987). Phys Rer;. A 37, 1378-1380 (1988); Phyr. Re". A 
36, 827-833 (1987). 

2157-2165 (1985) 

(1985) 

B 34, 4656-4673 (1986). 

60. Frisch, U., Sulem, P. & Nelkin, M. J.  Fluid Mech. 87, 719-736 (1978).  
61. Medkin, P. Phyr. Re". A36,  2833.2837; J. Phys. A 20, L779-L784 (1987). 
62. Lovejoy, S. & Schertzer, D Bull Am. met. SOC. 67, 221 (1986). 
63. Lovejoy, S., Schertrer, D. & Tsanis, A A. Science 231, 1036-1038 (1987). 
64. Schertzer, D. & Lovejoy, S. in IUTAM Symposium on Turbulence ond Chaorrc Phenomena 

65. Mandelhrot, B. B. 3. Fluid Mech. 62, 331-358 (1974). 
66 Mandelbrot, R. B. in Proc. 131h IUPAP Conference on Srorisricai Phyrm (eda Cahib, E., 

67. Grassberger, P. Phyr. Lerr. A 97, 277-230 (1983). 
68. Hentschel, H. G. E. & Procacc!a, 1. P h v x o  8D. 435-444 (1983). 
69. Frisch, U. & Parisi, G. in Turbulence and Predlcrabillry m Geophyrrcal Fluid Dynarntcs and 

Climare Dynamics Proc. In1 School of Physics Enrica Fermi, Course LXXXVl l l  (eds 
Ghil, M , Benzt, R. & Parw G.) (North-Holland, Amsterdam. 1985). 

~n Fluids, Kyoto, Jupapan 141-144 (1983) 

Kuper, C. G .  & Reiss, 1.) (Hilger, Rnstol, 1978) 

70. Katzen, D. & Procaccia, 1. Phys Rev. Left .  58, 1169-1172 (1987) 
71. Cates, M. E. & Witten, T. A. Phyr Rev. Lerr. 56. 2497-2500 (19861, Phys. Rev A 35, 

72. Evertsz, C. & Lyklema, J .  W. Phys Rev. Lerr. 58, 397-400 (1987). 
73. Lyklema, J .  W , Evertsz, C & Pietronero, L. Europhys. Lerr. 2, 77-82 (1986). 
74. Lyklema, J W. & Evertsr, C. J.  Phus. A 19, L895-L900 (1986). 
75. Pietronero, L. & Siebesma, A. Phys. Re". Lair. 57, 1098-1101 (1986) 
76. Waissmann, H & Havlin, S Phvc Re" B 37, 5994-5997 (1988). 
77. Trus. B , Havlin, S & StauHer, D. J.  Phvr. A 20, 6627-6630 (1987) 

1809-1824 (1987) 



76 Part II Reprints 9 Fractals 

Simple Mult i fr act als with Sier pins ki 
Gasket Supports 

L. Lam, R.D. Freimuth and J.L. Drake 

Nonlinear Physics Group, Department of Physics, 
San Jose State University, San Jose, CA 95192-0106 

Abstract. Simple multifractals with Sierpinski gasket supports are constructed. The 
construction is based on the process of multiplicative cascade. Properties of these 
multifractals are given analytically. Generalizations to random multifractals 
embedded in a space of dimension other than two are given. The case of negative 
fractal dimension is dicussed. These multifractals can be generated by a computer 
with very brief algorithms. Two methods are shown: The first one is based on the 
use of logic function, the second is the generalized chaos game. 

I. INTRODUCTION 

Multifractals [ 1,2] have been studied intensely in the ~ t u r a l  sciences in recent years 
[3-61. A multifractal may be considered as an object consisting of subsets of varying 
fractal dimensions. The spatial distribution of the constituents of the object may be 
deterministic or random. 

In many cases, mathematical multifractals are constructed for which exact 
calculations can be made. In addition to elucidate the basic properties of 
multifractals in general, these mathematical multifractals serve as the supports on 
which random walks and growth models are studied. Examples include the Cantor 
type multifractals which are embedded in onedimensional space with either fractal 
or nonfractai support [5 ] ,  and the multifractal filling up a two-dimensional square on 
which growth processes are studied [q. (Note that in the latter, the support is two- 
dimensional and is nonfractal in nature.) 

Here, we are interested in the construction of simple multifractals with fractal 
supports. Similar to the examples mentioned above, these multifractais are 
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constructed by a recursive process and possess analytic results (Sec. 11). They can 
be considered as generalizations of the Cantor types [2] to a two-dimensional 
embedding space, or the multifractals on a two-dimensional square to similar ones 
on a Sierpinski gasket. Generalizations are presented in Sec. 111. The most simple 
of these multifractals can be generated with a computer by a novel use of the logic 
function AND (or OR) in an extremely brief algorithm. The more general ones 
can be generated with a generalized "chaos game" (Sec. IV). 

These multifractals are simple and analytical, and can be easily generated with 
a computer. They are interesting for their pedagogical value as introductory 
examples to multifractals. These simple multifractals may also be used as the 
substrates on which additional properties can be studied. 

11. A SIMPLE MULTIFRACTAL 

The construction of the multifractal can be described by a curdling process starting 
with a square. The simplest case is introduced in this section. 

Let us start with a square piece of paper. Without loss of generality, the 
linear size and the total mass are each taken to be unity. Divide the square into 
four equal smaller squares; cut and stack the upper left square onto the lower left 
square. The mass of each square is now changed (Fig. I). This process of cutting 
and stacking is repeated ad inJnimrn. The end product is our multifractal. 

This construction process may be described equivalently as follows. At the 
first step (n = l ) ,  divide the square into four equal squares; redistribute the total 
mass of the original square into the three smaller squares at the right and at the 

n = O  n = l  n = 2  
FIGURE 1. The "cut and stack" process in constructing the simple 
multifractal. Numbers in each square indicate the mass contained 
in that square. Note that the total mass at each step is conserved 
and is equal to one. 
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bottom (Fig. 2) according to the fractional distribution of p, and pz such that pc 
+ 2p2 = 1, 0 < p1 < 1, j = 1 and 2, where p,  = 1/2 and p z  = 1/4. 
Repeat this process for each of the small squares. The case of n = 2 is shown in 
Fig. 2. It can be shown that at the n-th step, the linear size of each square is E = 

2-*, and there are (n+ 1) different types of squares when classified according to 
their masses. Each type can be designated by an integer k (k = 0, 1, . . . , n) such 
that the mass of each of the k-type squares is give by pk = ph-* pk . The 
number of the k-type squares Nk is given by Nk = 2' (t). 

These results can be easily seen by observing that the different masses in the 
n-th step can be obtained in a multiplicative process. At the n-th step, the possible 
masses in the squares are given by all the terms in the expression of (p,+ 2 ~ = ) ~ ,  
which is equivalent to 

1 2 

A. Mass Exponents ~(q)  

The fraction of mass in the i-th cell p 
The sequence of mass exponents ~ ( q )  is defined by [5] 

can be taken to be the fractal measure. 

n = O  n = l  n = 2  

FIGURE 2. An equivalent construction process of the simple 
multifractal. The quantity in each square indicates the mass 
contained there. The case in Fig. 1 corresponds to p , = 1/2 and 
p z  = 1/4. 
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as E --+ 0, where E is the size of each cell. Specialized to our case here, one 
obtains 

By (1) and (2), we have 

% %  
7(q) = [In (P, + p,)I/ln 2 

Numerical plot of r(q) is shown in Fig. 3. 

B. The f(a) Curve 

Using the transformations [5] , 

a(@ - dT(q)/dq 

one obtains the f(a) curve, 

& &  f(a) = q a  + [In @, + pO)]/ln 2 

(5) 
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FIGURE 3. The 7(q) curve corresponding to the multifractal of 
Fig. 2. p, = 1/2 and p,=1/4.  

where q = q(a) and is given by 

In [2(h p2 + a! In 2)/(-ln p4 - CY In 2)J 
9 =  

In (P, /P2) 
Q 

The f(a) curve corresponding to the ~ ( q )  of Fig. 3 is plotted in Fig. 4. Note that 
the fractal dimension of the support is given by T(q=O) = In 3/ln 2, which, as 
expected, is that of Sierpinski gasket. 

2.0 

0.5 

0.0 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

d 

FIGURE 4. The f(a) curve corresponding to the multifractal of 
Fig. 2. p ,  = 1/2 and p z  = 1/4. 
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In Fig. 4, CY ranges from 1 to 2; f(1) = 0 and f(2) = 1. The subset in the 
multifiactal represented by (Y = 1 is a single point at the extreme left end; the one 
represented by (Y = 2 is a solid vertical line at the extreme right (see Fig. 5 in 
Sec. IV). 

C. Mass Density Distributions 

In the n-th step, the position of each square may be denoted by the pair of 
numbers (i,j), i j  = 0,1,2,. . . ,2 -1. The position of the lower left comer of the 
square is given by (x,y) = (ieje), where E = 2 , the linear size of the square. 
Since 0 5 x,y < 1, one can use the binary fraction representation with x = 

O.x,xz . . .xn, where x ,, = 0 or 1, v = 1,2,. . . ,n; similarly for y. By definition, 

rL 

-n  

Given ( i j )  and hence the two sets of numbers {x y }  and {yu }, it is easy to show 
that the mass density at the square (x,y) is given by 

where rv = g(xJ ,yu ) such that g(0,O) = 2, g(0,l) = 0, g(1,O) = 1 and g(1,l) 
= 1. The proof of (9) is given in the Appendix. We thus see that all the 
properties of the multifractal are given analytically. 

111. GENERALIZATIONS 

The multifractal in Sec I1 can be easily generalized in several different directions. 
For example, one may redistribute the mass of a square in the n-th step into the 
three smaller ones in the next step with the fractions p, , p, and p3 . Similar to 
the derivations in Sec. TI, Eq. (1) now becomes 
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n-k-s s b n M - P  
leading to pcs = p , p, p3 and Nts = ( )( ), where each type of 
square is characterized by the pair (k,s). Similar to (3), one has 

and 

Note that the constraint p , + p = 1 is not used in obtaining these 
results and can thus be discarded. (The multifractal of Sec. I1 is a special case 
with p, = 1/2 and p 2  = p 3  = 1/4.) 

In fact, the derivation of (1 1) remains valid if we take an arbitrary object of 
any shape of Euclidean spatial dimension d; shrink it in size by a fraction x; make 
three identical copies of this shrunken object; distribute these three copies in either 
orderly or random fashion in space without overlapping with each other (even 
though touching contact is allowed); then redistribute the mass of the original 
object into these three smaller replicas with fractional distribution p, , p2 and 
p3. Now shrink each of the three objects by the same fraction E and repeat the 
above process for each one of them. The location and orientation of each 
shrunken object, and the placement of the three distributions in each set of three 
replicas may or may not be the same at each step, or between different steps. 
Consequently, both ordered or random multifractals [including the two cases of 
(i) random subsets on ordered substrate, and (ii) random subsets on random 
substrate] may be generated. 

+ p 

In any case, Eq. (12) is now replaced by 

If any two of the three p+’s are equal to each other, say, p z  = p, , then f(a) is 
given by (5) and (1 3), with 

In [2(ln pz - CY In €) / (a  In E - In p, )] 
4 =  

In 0, /P2) 

Another generalization is to replace the number of replicas, three, by any 
positive integer m. Equation (13) becomes 
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From (15) one sees that the fractal dimension of the support, ~ ( 0 )  = (-In m)/ 
(In E ) ,  can be negative when E > 1. It means that at each stage of generation of 
the multifractal, the size of the replica is larger than the original. If one looks at 
this as a growth process with a source (or several sources) being added 
continuously, this can be a real physical process. Examples include the formation 
of galaxies or structures in space, the formation of clusters in colloidal aggregates 
[6] and the growth of droplets from saturated vapors [9]. (Of course, the negative 
"fractal dimension" so defined differs from the usual definition of a positive 
fractal dimension. The latter refers to the scaling during the growth process of a 
set.) Since growth processes are quite common in nature, such a concept of 
negative fractal dimension should be of some value in their descriptions. 

IV. COMPUTER GENERATION OF MULTIFRACTALS 

A. Method with Logic Function 

A very brief algorithm can be constructed to generate with a computer the simple 
multifractal of Sec. 11. The trick is to take advantage of the logic function AND 
(denoted by A here) which is built into many computer languages such as BASIC 
and C. 

Given (xv ,y, ) one can solve the following equation, 

to obtain (A,}. The A operation is standard and is defined as follows: y ,, = 1 
if x u  = 1 and A = 1; y,, = 0 otherwise. Solutions of (16) are given in Table 
I. From Table I one sees that, given (xJ ,y,, ), the number of possible solutions 

TABLE I. Solution of Eq. (16). Here s L, is the number of solutions of A r, , 
given (XY,Y3). 

V X Y A ,  S 

0 0 071 2 
0 0 1 

1 0 0 1 
1 1 1 1 

* 

* Does not exist. 
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of A , s J  , has the same properties as r of (9). One may thus make the 
identification of r v  = sy , in (9). 

A computer algorithm written in QUICK BASIC consisting of 8 lines is 
given as follows. 

n = ?  
DO 

x = INT(RND * 2^n) 
lambda = INT(RND * 2^n) 
y = (x AND lambda)/2^n 
x = xI2-n 
PSET(x , Y 1 

LOOP 

The multifractal generated with n = 15, using this algorithm, is shown in Fig. 5a. 
It this algorithm, (i) x and A are generated randomly, where A = 0. A, A = .  . .AH.. 
(ii) Equation (16) is used to find the possible y’s. (iii) The computer automatically 
stores the cell location (x,y) in the binary representation during the calculation. 
(iv) The key point is that the random sampling reflects directly the density of 
points in the (x,y) plane. 

One may replace the AND by another logic function, e.g., OR. One still 
gets a multifractal (see figure 5b). Note that if any two quadrants at the n = 1 
step have zero mass, one still has a multifractal with a solid straight line as 
support. When the square is divided into m equal parts, the case covered by (15), 
one may not be able to find a suitable logic function to generate the multifractal 
in the fashion described here. However, in this case, it is always possible to write 
an algorithm to generate the multifractal by using a look-up table similar to that 
in Table I .  

B. The Generalized Chaos Game 

Another method for producing the multifractal of Sec. 11, as well as its 
generalizations described by (10)-(12), is to proceed as follows. One starts with 
three points (denoted by i = 1, 2, and 3) on a plane which are the vertices of an 
arbitrary triangle. A random point is chosen as the starting point of an iterative 
process. The i-th vertex is chosen randomly with a weight p i ,  where p, + pa+ 
p3 = 1. The midpoint of the line formed by connecting the starting point and the 
chosen vertex is marked and used as the starting point for the next step. The set 
of “initial” points, with the exception of the first few, form the multifractal 
described by (10)-(12), the support of which is a Sierpinski gasket. 
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C b) 

FIGURE 5. Simple multifractals generated by the algorithm of 
S e c .  IVA. n = 15; 5000 iterations. (a) With the use of the AND 
logic function; (b) with AND replaced by OR, another logic 
function. 
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This repetitive algorithm is easily programmed in almost all computer 
languages. An example of the algorithm is shown below in C. 

int Select - Direction (void) 
{ 

int a - adjust, b - adjust; 
int number; 
int direction; 
number = random (loo00); 
a - adjust = 

(int)((p 1 weight/@ -- 1 weight+p2_weight+p - -  3 weitht)) 

b - adjust = 

(int)((p _ -  2 weight/@ -- 1 weight+p _ _  2 weight+p _ _  3 weitht)) 

if (number < = a - adjust) 

*loooo); 

* loooo); 
direction = 1; 

else 
if (number < = a-adjust + b - adjust) 
else direction = 3; 
return direction; 

direction = 2 

1 

for (count = 0; count < = max - count; count+ +) 
{ 

direction = Select - Direction (); 
*x = *x + ((vertex[direction][O] - **); 
*y = *y + ((vertex[direction][O] - *y)/2); 

Plot - Point (x,y); 
1 

Here, 'Vertex' is a 3 x 2 array containing the coordinates of the vertices of the 
triangle. "Select Direction" is a function that will randomly pick which vertex is 
to be used for the calculation, taking into account specified weightings of the 
vertices. The function "Plot - Point" is self-explanatory. 

The density of points generated by the process is determined by the 
weights (see Fig. 6). When p , = p, = p, , this algorithm becomes the simple 
"chaos game" [9 ] .  The result is a simple fractal-the Sierpinski gasket. For the 
case in Sec. 11, the appropriate weights are p, = 2, p,= 1 and p, = 1. Therefore 
this method for generating a multifractal covers the results of the previous method 
as a special case. 
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FIGURE 6 .  The multifractal generated by the algorithm of Sec. 
= 5 and p IVB. p ,  = 3, p, = 1 .  10,OOO iterations. 
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APPENDIX: DERIVATION OF EQUATION (9) 

The proof of (9) is by induction. For n = 1, the locations of the four squares are 
represented by the four points a, a, , a z  and a3 ,  respectively (Fig. 7). In the 
binary fraction representation, each point is given by (x,y) = (O.X, , O . x  ) with 
(Zl ,yi ) = (O,O), (l,O), (0,l) and (1,l) for a, a ,  , a 2  and a3 ,  respectively. 
According to the definition of the function g, defined after (9), we see 
immediately that r, [ = g(Xi ,y, ) = T, ] assumes the value for each of the four 
quadrants as shown in Fig. 7. From the n = 1 diagram in Fig. 1,  we see that the 
mass densities p, (obtained by dividing the mass in each quadrant there by 1/4, 
the area of each quadrant) coincides with the numbers shown in Fig. 7. In other 
words, Eq. (9) is proved for n = 1. 

Now assume that at the n-th step, S, , the mass density of an arbitrary 
square with position represented by the point b (Fig. 8), is given correctly by (9), 

i.e., S, = n r y ,  with ru = g(x,,,yu). Here, b is given by (O.x, x2...xn, 
v= t 

O.y, y2.. .y,) in the binary fraction representation. According to the construction 
of the multifractal, the (n+ 1)-th step is obtained by dividing this square into four 
equal quadrants with mass density in each quadrant as shown in Fig. 8, resulting 
in p n t ,  = S, xT, . The crucial point is to note that the four points b, b, , b, 
and b, , representing the locations of these four quadrants, are given by 

(1,l) for b, b, , b, and b,, respectwely, while x y  and y, with v = 1,. . . ,n are 
the same as those in the n-th step for all these four points. Comparing with the 

(0.X,X2...X~X~+,, 0-Y, y, ... Y,YfiC!) with (Xn+,,Ya+l) = (O,O), (1,0), (0,U and 

a3 

n = l  
FIGURE 7. The mass density p 
at the n = 1 step. 

for each of the four quadrants 
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b b b i  

n n + l  

FIGURE 8.  The mass densities p 
(n+ l)-th steps, respectively. 

and pa+, at the n-th and 

- n = 1 case above, since ( x ~ + ~  ,yn+, ) = (F, ,y, ) we see that rh+ ,  = r, , where 

- - g('O+I 7yn+i ). Therefore, p,+, = S, x r H S I  =T ry . This completes 

the proof of (9) for the n +  1 case. By induction, Eq. (9) is valid for an arbitrary 
n (2 1). 

It is easy to see that the above proof remains valid if the binary 
representation (instead of the binary fraction representation) is used in denoting 
all the a and b points. In-this case, b is given by (x n. .  .x x , y, . . .yz yI ) at the 
n-th step. In fact, binary representation is the one used in the algorithm of Sec 
N A .  In a computer with k-bit word, say, b is actually represented by 
(OO...Ox,., ... xzxl  , OO...Oy, ...yz yI ) where there are (k-n) zeros preceding x,, 
or y, . Since g(0,O) = 2, the density of points in the multifractal generated by the 
algorithm is actually equal to the actual value multiplied by 2 '- '. However, this 
will not affect the overall qualitative appearance of the pictures in Fig. 5. The 
reason is that due to the finite number of iterations and the finite resolution of the 
printer, the densities of points in these pictures should not be understood to 
represent the real values anyway. 

fl+l 

rH+, 
Y - I  

4l 
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Chaos 
There is order in chaos: randomness has an underlying geometric 
form. Chaos imposes fundamental limits on prediction, but  it also 
suggests causal relationships where none were previously suspected 

by James P. Crutchfield, J. Doyne Farmer, Norman H. Packard and Robert S. Shaw 

he great power of science lies in 
the ability to relate cause and ef- T fect. On the basis of the laws of 

gravitation, for example, eclipses can 
be predicted thousands of years in ad- 
vance. There are other natural phe- 
nomena that are not as predictable. Al- 
though the movements of the atmos- 
phere obey the laws of physics just as 
much as the movements of the planets 
do, weather forecasts are still stated in 
terms of probabilities. The weather, 
the flow of a mountain stream, the roll 
of the dice all have unpredictable as- 
pects. Since there is no clear relation 
between cause and effect, such phe- 
nomena are said to have random el- 
ements. Yet until recently there was 
little reason to doubt that precise 
predictability could in principle be 
achieved. It was assumed that it was 
only necessary to gather and process a 
sufficient amount of information. 

Such a viewpoint has been altered 
by a striking discovery: simple deter- 
ministic systems with only a few ele- 
ments can generate random behavior. 
The randomness is fundamental; gath- 
ering more information does not make 
it go away. Randomness generated in 
this way has come to be called chaos. 

A seeming paradox is that chaos is 
deterministic, generated by fixed rules 
that do not themselves involve any ele- 
ments of chance. In principle the fu- 
ture is completely determined by the 
past, but  in practice small uncertain- 
ties are amplified, so that even though 
the behavior is predictable in the short 
term, it is unpredictable in the long 
term. There is order in chaos: underly- 
ing chaotic behavior there are elegant 
geometric forms that create random- 
ness in the same way as a card dealer 
shuffles a deck of cards or a blender 
mixes cake batter. 

The discovery of chaos has created a 
new paradigm in scientific modeling. 
On one hand, it implies new funda- 
mental limits on the ability to make 
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predictions. On the other hand, the 
determinism inherent in chaos im- 
plies that many random phenomena 
are more predictable than had been 
thought. Random-looking informa- 
tion gathered in the past-and shelved 
because it was assumed to be too com- 
plicated-can now be explained in 
terms of simple laws. Chaos allows or- 
der to be found in such diverse systems 
as the atmosphere, dripping faucets 
and the heart. The result is a revolu- 
tion that is affecting many different 
branches of science. 

hat are the origins of random be- W havior? Brownian motion pro- 
vides a classic example of randomness. 
A speck of dust observed through a 
microscope is seen to move in a contin- 
uous and erratic jiggle. This is owing to 
the bombardment of the dust particle 
by the surrounding water molecules 
in thermal motion. Because the water 
molecules are unseen and exist in great 
number, the detailed motion of the 
dust particle is thoroughly unpredict- 
able. Here the web of causal influences 
among the subunits can become so 
tangled that the resulting pattern of 
behavior becomes quite random. 

The chaos to be discussed here re- 
quires no large number of subunits 

or unseen influences. The existence of 
random behavior in very simple sys- 
tems motivates a reexamination of the 
sources of randomness even in large 
systems such as weather. 

What makes the motion of the at- 
mosphere so much harder to antic- 
ipate than the motion of the solar 
system? Both are made up of many 
parts, and both are governed by New- 
ton’s second law, F = ma, which can 
be viewed as a simple prescription for 
predicting the future. If the forces F 
acting on a given mass m are known, 
then so is the acceleration a.  It then 
follows from the rules of calculus that 
if the position and velocity of an object 
can be measured at a given instant, 
they are determined forever. This is 
such a powerful idea that the 1 Sth-cen- 
tury French mathematician Pierre Si- 
mon de Laplace once boasted that giv- 
en the position and velocity of every 
particle in the universe, he could pre- 
dict the future for the rest of time. Al- 
though there are several obvious prac- 
tical difficulties to achieving Laplace’s 
goal, for more than 100 years there 
seemed to be no reason for his not be- 
ing right, at least in principle. The liter- 
al application of Laplace’s dictum to 
human behavior led to the philosophi- 
cal conclusion that human behavior 

CHAOS results from the geometric operation of stretching. The effect is illustrated for a 
painting of the French mathematician Henri Poincarb, the originator of dynamical sys- 
tems theory. The initial image (top left) was digitized so that a computer could perform 
the stretching operation. A simple mathematical transformation stretches the image diag- 
onally as though it were painted on a sheet of rubber. Where the sheet leaves the box it is 
cut and reinserted on the other side, as is shown in panel 1. (The number above each 
panel indicates how many times the transformation has been made.) Applying the trans- 
formation repeatedly has the effect of scrambling the face (panels 2-4). The net effect is a 
random combination of colors, producing a homogeneous field of green (panels 10 and 
18). Sometimes it happens that some of the points come back near their initial locations, 
causing a brief appearance of the original image (panels 47-48, 239-241). The transfor- 
mation shown here is special in that the phenomenon of “PoincarB recurrence” (as it is 
called in statistical mechanics) happens much more often than usual; in a typical chaotic 
transformation recurrence is exceedingly rare, occurring perhaps only once in the lifetime 
of the universe. In the presence of any amount of background fluctuations the time be- 
tween recurrences is usually so long that all information about the original image is lost. 
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was completely predetermined: free 
will did not exist. 

Twentieth-century science has seen 
the downfall of Laplacian determin- 
ism, for two very different reasons. 
The first reason is quantum mechan- 
ics. A central dogma of that theory 
is the Heisenberg uncertainty princi- 
ple, which states that there is a funda- 
mental limitation to the accuracy with 
which the position and velocity of a 
particle can be measured. Such uncer- 
tainty gives a good explanation for 
some random phenomena, such as ra- 
dioactive decay. A nucleus is so small 

that the uncertainty principle puts a 
fundamental limit on the knowledge 
of its motion, and so it is impossible to 
gather enough information to predict 
when it will disintegrate. 

The source of unpredictability on a 
large scale must be sought elsewhere, 
however. Some large-scale phenome- 
na are predictable and others are not. 
The distinction has nothing to do with 
quantum mechanics. The trajectory of 
a baseball, for example, is inherently 
predictable; a fielder intuitively makes 
use of the fact every time he or she 
catches the ball. The trajectory of a 

PoincarB, 1903 
“A very small cause which esc 

able effect that we cannot fail to see. 
nsider- 
IS due to 

PoincarB, 1903 
“A very small cause which escapes our notice determines a consider- 

ableeffectthatwecannotfail tosee. andthenwesavthattheeffect isdueto 

initial conditions produce very gr 
error in the former will produce an 

OUTLOOKS OF TWO LUMINARIES on chance and probability are contrasted. The 
French mathematician Pierre Simon de Laplace proposed that the laws of nature imply 
strict determinism and complete predictability, although imperfections in observations 
make the introduction of probabilistic theory necessary. The quotation from Poincarb 
foreshadows the contemporary view that arbitrarily small uncertainties in the state of a 
system may be amplified in time and so predictions of the distant future cannot be made. 

48 

flying balloon with the air rushing out 
of it, in contrast, is not predictable; the 
balloon lurches and turns erratically at 
times and places that are impossible to 
predict. The balloon obeys Newton’s 
laws just as much as the baseball does; 
then why is its behavior so much hard- 
er to predict than that of the ball? 

The classic example of such a di- 
chotomy is fluid motion. Under some 
circumstances the motion of a fluid 
is laminar-even, steady and regular- 
and easily predicted from equations. 
Under other circumstances fluid mo- 
tion is turbulent-uneven, unsteady 
and irregular-and difficult to predict. 
The transition from laminar to turbu- 
lent behavior is familiar to anyone 
who has been in an airplane in calm 
weather and then suddenly encoun- 
tered a thunderstorm. What causes the 
essential difference between laminar 
and turbulent motion? 

o understand fully why that is such T a riddle, imagine sitting by a 
mountain stream. The water swirls 
and splashes as though it had a mind of 
its own, moving first one way and then 
another. Nevertheless, the rocks in the 
stream bed are firmly fixed in place, 
and the tributaries enter at a nearly 
constant rate of flow. Where, then, 
does the random motion of the water 
come from? 

The late Soviet physicist Lev D. 
Landau is credited with an explanation 
of random fluid motion that held sway 
for many years, namely that the mo- 
tion of a turbulent fluid contains many 
different, independent oscillations. As 
the fluid is made to move faster, caus- 
ing it to become more turbulent, the 
oscillations enter the motion one at a 
time. Although each separate oscilla- 
tion may be simple, the complicated 
combined motion renders the flow im- 
possible to predict. 

Landau’s theory has been disproved, 
however. Random behavior occurs 
even in very simple systems, without 
any need for complication or indeter- 
minacy. The French mathematician 
Henri PoincarC realized this at the turn 
of the century when he noted that un- 
predictable, “fortuitous” phenomena 
may occur in systems where a small 
change in the present causes a much 
larger change in the future. The notion 
is clear if one thinks of a rock poised at 
the top of a hill. A tiny push one way 
or another is enough to send it tum- 
bling down widely differing paths. Al- 
though the rock is sensitive to small 
influences only at the top of the hill, 
chaotic systems are sensitive at every 
point in their motion. 

A simple example serves to illus- 
trate just how sensitive some physical 



systems can be to external influences. 
Imagine a game of billiards, somewhat 
idealized so that the balls move across 
the table and collide with a negligible 
loss of energy. With a single shot the 
billiard player sends the collection of 
balls into a protracted sequence of col- 
lisions. The player naturally wants to 
know the effects of the shot. For how 
long could a player with perfect con- 
trol over his or her stroke predict the 
cue ball’s trajectory? If the player ig- 
nored an effect even as minuscule as 
the gravitational attraction of an elec- 
tron at the edge of the galaxy, the 
prediction would become wrong after 
one minute! 

The large growth in uncertainty 
comes about because the balls are 
curved, and small differences at the 
point of impact are amplified with 
each collision. The amplification is ex- 
ponential: it is compounded at every 
collision, like the successive reproduc- 
tion of bacteria with unlimited space 
and food. Any effect, no matter how 
small, quickly reaches macroscopic 
proportions. That is one of the basic 
properties of chaos. 

It is the exponential amplification 
of errors due to chaotic dynamics that 
provides the second reason for La- 
place’s undoing. Quantum mechanics 
implies that initial measurements are 
always uncertain, and chaos ensures 
that the uncertainties will quickly 
overwhelm the ability to make predic- 
tions. Without chaos Laplace might 
have hoped that errors would remain 
bounded, or at least grow slowly 
enough to allow him to make predic- 
tions over a long period. With cha- 
os, predictions are rapidly doomed to 
gross inaccuracy. 

he larger framework that chaos T emerges from is the so-called the- 
ory of dynamical systems. A dynami- 
cal system consists of two parts: the 
notions of a state (the essential infor- 
mation about a system) and a dynamic 
(a rule that describes how the state 
evolves with time). The evolution can 
be visualized in a state space, an ab- 
stract construct whose coordinates are 
the components of the state. In gener- 
al the coordinates of the state space 
vary with the context; for a mechani- 
cal system they might be position and 
velocity, but for an ecological mod- 
el they might be the populations of 
different species. 

A good example of a dynamical sys- 
tem is found in the simple pendulum. 
All that is needed to determine its mo- 
tion are two variables: position and ve- 
locity. The state is thus a point in a 
plane, whose coordinates are position 
and velocity. Newton’s laws provide 
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STATE SPACE is a useful concept for visualizing the behavior of a dynamical system. It  
is an abstract space whose coordinates are the degrees of freedom of the system’s motion. 
The motion of a pendulum (top), for example, is completely determined by its initial 
position and velocity. Its state is thus a point in a plane whose coordinates are position 
and velocity (bottom). As the pendulum swings back and forth it follows an “orbit,” or 
path, through the state space. For an ideal, frictionless pendulum the orbit is a closed 
curve (bottom left); otherwise, with friction, the orbit spirals to a point (bottom right). 

a rule, expressed mathematically as 
a differential equation, that describes 
how the state evolves. As the pendu- 
lum swings back and forth the state 
moves along an “orbit,” or path, in the 
plane. In the ideal case of a frictionless 
pendulum the orbit is a loop; failing 
that, the orbit spirals to a point as the 
pendulum comes to rest. 

A dynamical system’s temporal ev- 
olution may happen in either continu- 
ous time or in discrete time. The for- 
mer is called a flow, the latter a map- 
ping. A pendulum moves continuously 
from one state to another, and so it is 
described by a continuous-time flow. 
The number of insects born each year 
in a specific area and the time interval 
between drops from a dripping faucet 
are more naturally described by a dis- 
crete-time mapping. 

To find how a system evolves from a 
given initial state one can employ the 
dynamic (equations of motion) to 
move incrementally along an orbit. 
This method of deducing the system’s 
behavior requires computational ef- 
fort proportional to the desired length 
of time to follow the orbit. For simple 
systems such as a frictionless pendu- 
lum the equations of motion may oc- 
casionally have a closed-form solu- 
tion, which is a formula that expresses 
any future state in terms of the initial 
state. A closed-form solution provides 
a short cut, a simpler algorithm that 
needs only the initial state and the final 
time to predict the future without step- 
ping through intermediate states. With 
such a solution the algorithmic effort 

required to follow the motion of the 
system is roughly independent of the 
time desired. Given the equations of 
planetary and lunar motion and the 
earth’s and moon’s positions and ve- 
locities, for instance, eclipses may be 
predicted years in advance. 

Success in finding closed-form solu- 
tions for a variety of simple systems 
during the early development of phys- 
ics led to the hope that such solu- 
tions exist for any mechanical system. 
Unfortunately, it is now known that 
this is not true in general. The unpre- 
dictable behavior of chaotic dynami- 
cal systems cannot be expressed in a 
closed-form solution. Consequently 
there are no possible short cuts to pre- 
dicting their behavior. 

he state space nonetheless provides T a powerful tool for describing the 
behavior of chaotic systems. The use- 
fulness of the state-space picture lies 
in the ability to represent behavior in 
geometric form. For example, a pen- 
dulum that moves with friction even- 
tually comes to a halt, which in the 
state space means the orbit approaches 
a point. The point does not move-it 
is a fixed point-and since it attracts 
nearby orbits, it is known as an attrac- 
tor. If the pendulum is given a small 
push, it returns to the same fixed-point 
attractor. Any system that comes to 
rest with the passage of time can be 
characterized by a fixed point in state 
space. This is an example of a very 
general phenomenon, where losses due 
to friction or viscosity, for example, 
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cause orbits to be attracted to a small- 
er region of the state space with lower 
dimension. Any such region is called 
an attractor. Roughly speaking, an at- 
tractor is what the behavior of a sys- 
tem settles down to, or is attracted to. 

Some systems do not come to rest 
in the long term but instead cycle peri- 
odically through a sequence of states. 
An example is the pendulum clock, 
in which energy lost to friction is re- 
placed by a mainspring or weights. 
The pendulum repeats the same mo- 
tion over and over again. In the state 
space such a motion corresponds to a 
cycle, or periodic orbit. No matter 
how the pendulum is set swinging, the 
cycle approached in the long-term lim- 
it is the same. Such attractors are 
therefore called limit cycles. Another 
familiar system with a limit-cycle at- 
tractor is the heart. 

T 

A system may have several attrac- 
tors. If that is the case, different initial 
conditions may evolve to different at- 
tractors. The set of points that evolve 
to an attractor is called its basin of at- 
traction. The pendulum clock has two 
such basins: small displacements of 
the pendulum from its rest position re- 
sult in a return to rest; with large dis- 
placements, however, the clock begins 
to tick as the pendulum executes a sta- 
ble oscillation. 

The next most complicated form of 
attractor is a torus, which resembles 
the surface of a doughnut. This shape 
describes motion made up of two inde- 
pendent oscillations, sometimes called 
quasi-periodic motion. (Physical ex- 
amples can be constructed from driv- 
en electrical oscillators.) The orbit 
winds around the torus in state space, 
one frequency determined by how fast 
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the orbit circles the doughnut in the 
short direction, the other regulated by 
how fast the orbit circles the long 
way around. Attractors may also be 
higher-dimensional tori, since they 
represent the combination of more 
than two oscillations. 

The important feature of quasi-peri- 
odic motion is that in spite of its com- 
plexity it is predictable. Even though 
the orbit may never exactly repeat it- 
self, if the frequencies that make up 
the motion have no common divisor, 
the motion remains regular. Orbits 
that start on the torus near one another 
remain near one another, and long- 
term predictability is guaranteed. 

ntil fairly recently, fixed points, U limit cycles and tori were the only 
known attractors. In 1963 Edward N. 
Lorenz of the Massachusetts Institute 

i ' f  
ATTRACTORS are geometric forms that characterize long-term 
behavior in the state space. Roughly speaking, an attractor is 
what the behavior of a system settles down to, or is attracted to. 
Here attractors are shown in blue and initial states in red. Trajec- 
tories (green) from the initial states eventually approach the at- 
tractors. The simplest kind of attractor is a fixed point (top left). 
Such an attractor corresponds to a pendulum subject to friction; 
the pendulum always comes to the same rest position, regardless 
of how it is started swinging (see right half of illustration on pre- 
ceding page). The next most complicated attractor is a limit cycle 
(top middle), which forms a closed loop in the state space. A limit 

cycle describes stable oscillations, such as the motion of a pen- 
dulum clock and the beating of a heart. Compound oscillations, 
or quasi-periodic behavior, correspond to a torus attractor (top 
right). All three attractors are predictable: their behavior can be 
forecast as accurately as desired. Chaotic attractors, on the other 
hand, correspond to unpredictable motions and have a more com- 
plicated geometric form. Three examples of chaotic attractors are 
shown in the bottom row; from left to right they are the work of 
Edward N. Lorenz, Otto E. Rossler and one of the authors (Shaw) 
respectively. The images were prepared by using simple systems 
of differential equations having a three-dimensional state space. 
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of Technology discovered a concrete 
example of a low-dimensional system 
that displayed complex behavior. Mo- 
tivated by the desire to  understand the 
unpredictability of the weather, he be- 
gan with the equations of motion for 
fluid flow (the atmosphere can be con- 
sidered a fluid), and by simplifying 
them he obtained a system that had 
just three degrees of freedom. Never- 

parently random fashion that could 
not be adequately characterized by 
any of the three attractors then known. 
The attractor he observed, which is 
now known as the Lorenz attractor, 
was the first example of a chaotic, or 

A 

theless, the system behaved in an ap- B 

strange, attractor. 
Employing a digital computer to 

simulate his simple model, Lorenz elu- 
cidated the basic mechanism responsi- 
ble for the randomness he observed: 
microscopic perturbations are ampli- 
fied to affect macroscopic behavior. 
Two orbits with nearby initial condi- 
tions diverge exponentially fast and so 
stay close together for only a short 
time. The situation is qualitatively dif- 
ferent for nonchaotic attractors. For 
these, nearby orbits stay close to one 
another, small errors remain bounded 
and the behavior is predictable. 

The key to understanding chaotic 
behavior lies in understanding a sim- 
ple stretching and folding operation, 
which takes place in the state space. 
Exponential divergence is a local fea- 
ture: because attractors have finite 
size, two orbits on a chaotic attractor 
cannot diverge exponentially forever. 
Consequently the attractor must fold 
over onto itself. Although orbits di- 
verge and follow increasingly different 
paths, they eventually must pass close 
to one another again. The orbits on a 
chaotic attractor are shuffled by this 
process, much as a deck of cards is 
shuffled by a dealer. The randomness 
of the chaotic orbits is the result of 
the shuffling process. The process of 
stretching and folding happens repeat- 
edly, creating folds within foIds ad in- 
finitum. A chaotic attractor is, in other 
words, a fractal: an object that reveals 
more detail as it is increasingly magni- 
fied [see illustration on page 531. 

Chaos mixes the orbits in state space 
in precisely the same way as a baker 
mixes bread dough by kneading it. One 
can imagine what happens to nearby 
trajectories on a chaotic attractor by 
placing a drop of blue food coloring in 
the dough. The kneading is a combina- 
tion of two actions: rolling out the 
dough, in which the food coloring is 
spread out, and folding the dough 
over. At first the blob of food coloring 
simply gets longer, but eventually it is 
folded, and after considerable time the 
blob is stretched and refolded many 

CHAOTIC ATTRACTOR has a much more complicated structure than a predictable at- 
tractor such as a point, a limit cycle or a torus. Observed at large scales, a chaotic attrac- 
tor is not a smooth surface but one with folds in it. The illustration shows the steps in 
making a chaotic attractor for the simplest case: the Rossler attractor (bottom). First, 
nearby trajectories on the object must “stretch,” or diverge, exponentially ( top) ;  here the 
distance between neighboring trajectories roughly doubles. Second, to keep the object 
compact, it must “fold” hack onto itself (middle): the surface bends onto itself so that the 
two ends meet. The Rossler attractor has been observed in many systems, from fluid flows 
to chemical reactions, illustrating Einstein’s maxim that nature prefers simple forms. 
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times. On close inspection the dough 
consists of many layers of alternating 
blue and white. After only 20 steps the 
initial blob has been stretched to more 
than a million times its original length, 
and its thickness has shrunk to the mo- 
lecular level. The blue dye is thor- 
oughly mixed with the dough. Chaos 

0 I 

works the same way, except that in- 
stead of mixing dough it mixes the 
state space. Inspired by this picture of 
mixing, Otto E. Rossler of the Univer- 
sity of Tubingen created the simplest 
example of a chaotic attractor in a 
flow [see illustration on preceding page]. 

When observations are made on a 

physical system, it is impossible to 
specify the state of the system exactly 
owing to the inevitable errors in meas- 
urement. Instead the state of the sys- 
tem is located not at a single point but 
rather within a small region of state 
space. Although quantum uncertainty 
sets the ultimate size of the region, in 
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DIVERGENCE of nearby trajectories is the underlying reason 
chaos leads to unpredictability. A perfect measurement would cor- 
respond to a point in the state space, but any real measurement is 
inaccurate, generating a cloud of uncertainty. The true state might 
be anywhere inside the cloud. As shown here for the Lorenz at- 
tractor, the uncertainty of the initial measurement is represented 
by 10,000 red dots, initially so close together that they are indis- 
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tinguishable. As each point moves under the action of the equa- 
tions, the cloud is stretched into a long, thin thread, which then 
folds over onto itself many times, until the points are spread over 
the entire attractor. Prediction has now become impossible: the 
final state can be anywhere on the attractor. For a predictable 
attractor, in contrast, all the final states remain close together. 
The numbers above the illustrations are in units of 1/200 second. 



practice different kinds of noise limit 
measurement precision by introducing 
substantially larger errors. The small 
region specified by a measurement is 
analogous to the blob of blue dye in 
the dough. 

ocating the system in a small region L of state space by carrying out a 
measurement yields a certain amount 
of information about the system. The 
more accurate the measurement is, 
the more knowledge an observer gains 
about the system’s state. Conversely, 
the larger the region, the more uncer- 
tain the observer. Since nearby points 
in nonchaotic systems stay close as 
they evolve in time, a measurement 
provides a certain amount of informa- 
tion that is preserved with time. This is 
exactly the sense in which such sys- 
tems are predictable: initial measure- 
ments contain information that can be 
used to predict future behavior. In oth- 
er words, predictable dynamical sys- 
tems are not particularly sensitive to 
measurement errors. 

The stretching and folding opera- 
tion of a chaotic attractor systemati- 
cally removes the initial information 
and replaces it with new information: 
the stretch makes small-scale uncer- 
tainties larger, the fold brings wide- 
ly separated trajectories together and 
erases large-scale information. Thus 
chaotic attractors act as a kind of 
pump bringing microscopic fluctua- 
tions up to a macroscopic expression. 
In this light it is clear that no exact so- 
lution, no short cut to tell the future, 
can exist. After a brief time interval 
the uncertainty specified by the initial 
measurement covers the entire attrac- 
tor and all predictive power is lost: 
there is simply no causal connection 
between past and future. 

Chaotic attractors function locally 
as noise amplifiers. A small fluctua- 
tion due perhaps to thermal noise will 
cause a large deflection in the orbit po- 
sition soon afterward. But there is an 
important sense in which chaotic at- 
tractors differ from simple noise am- 
plifiers. Because the stretching and 
folding operation is assumed to be re- 
petitive and continuous, any tiny fluc- 
tuation will eventually dominate the 
motion, and the qualitative behavior is 
independent of noise level. Hence cha- 
otic systems cannot directly be “qui- 
eted,” by lowering the temperature, 
for example. Chaotic systems generate 
randomness on their own without the 
need for any external random inputs. 
Random behavior comes from more 
than just the amplification of errors 
and the loss of the ability to predict; it 
is due to the complex orbits generated 
by stretching and folding. 

It should be noted that chaotic as 
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CHAOTIC ATTRACTORS are fractals: objects that reveal more detail as they are in- 
creasingly magnified. Chaos naturally produces fractals. As nearby trajectories expand 
they must eventually fold over close to one another for the motion to remain finite. This 
is repeated again and again, generating folds within folds, ad infinitum. As a result chaot- 
ic attractors have a beautiful microscopic structure. Michel Henon of the Nice Observa- 
tory in France discovered a simple rule that stretches and folds the plane, moving each 
point to a new location. Starting from a single initial point, each successive point ob- 
tained by repeatedly applying Henon’s rule is plotted. The resulting geometric form (a) 
provides a simple example of a chaotic attractor. The small box is magnified by a factor of 
10 in 6. By repeating the process (c, d) the microscopic structure of the attractor is 
revealed in detail. The bottom illustration depicts another part of the Henon attractor. 
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well as nonchaotic behavior can occur 
in dissipationless, energy-conserving 
systems. Here orbits do not relax onto 
an attractor but instead are confined to 
an energy surface. Dissipation is, how- 
ever, important in many if not most 
real-world systems, and one can ex- 
pect the concept of attractor to be gen- 
erally useful. 

ow-dimensional chaotic attractors L open a new realm of dynamical 
systems theory, but the question re- 
mains of whether they are relevant to 
randomness observed in physical sys- 
tems. The first experimental evidence 
supporting the hypothesis that chaotic 
attractors underlie random motion in 
fluid flow was rather indirect. The ex- 

periment was done in 1974 by Jerry 
P. Gollub of Haverford College and 
Harry L. Swinney of the University of 
Texas at Austin. The evidence was in- 
direct because the investigators fo- 
cused not on the attractor itself but 
rather on statistical properties charac- 
terizing the attractor. 

The system they examined was a 
Couette cell, which consists of two 
concentric cylinders. The space be- 
tween the cylinders is filled with a flu- 
id, and one or both cylinders are rotat- 
ed with a fixed angular velocity. As 
the angular velocity increases, the flu- 
id shows progressively more complex 
flow patterns, with a complicated time 
dependence [see illustration on this 
page]. Gollub and Swinney essentially 
measured the velocity of the fluid at  a 
given spot. As they increased the rota- 
tion rate, they observed transitions 
from a velocity that is constant in time 
to a periodically varying velocity and 
finally to an aperiodically varying ve- 
locity. The transition to aperiodic mo- 
tion was the focus of the experiment. 

The experiment was designed to dis- 
tinguish between two theoretical pic- 
tures that predicted different scenarios 
for the behavior of the fluid as the ro- 
tation rate of the fluid was varied. The 
Landau picture of random fluid mo- 
tion predicted that an ever higher 
number of independent fluid oscilla- 
tions should be excited as the rotation 
rate is increased. The associated at- 
tractor would be a high-dimensional 
torus. The Landau picture had been 
challenged by Dayid Ruelle of the In- 
stitut des Hautes Etudes Scientifiques 
near Paris and Floris Takens of the 
University of Groningen in the Neth- 
erlands. They gave mathematical ar- 
guments suggesting that the attrac- 
tor associated with the Landau picture 
would not be likely to occur in fluid 
motion. Instead their results suggested 
that any possible high-dimensional 
tori might give way to a chaotic attrac- 
tor, as originally postulated by Lorenz. 

Gollub and Swinney found that for 
low rates of rotation the flow of the 
fluid did not change in time: the under- 

EXPERIMENTAL EVIDENCE supports 
the hypothesis that chaotic attractors un- 
derlie some kinds of random motion in flu- 
id flow. Shown here are successive pictures 
of water in a Couette cell, which consists 
of two nested cylinders. The space between 
the cylinders is filled with water and the 
inner cylinder is rotated with a certain an- 
gular velocity (a) .  As the angular velocity 
is increased, the fluid shows a progressive- 
ly more complex flow pattern (b ) ,  which 
becomes irregular (c) and then chaotic ( d ) .  

lying attractor was a fixed point. As 
the rotation was increased the water 
began to oscillate with one indepen- 
dent frequency. corresponding to a 
limit-cycle attractor (a periodic orbit), 
and as the rotation was increased still 
further the oscillation took on two in- 
dependent frequencies, corresponding 
to a two-dimensional torus attractor. 
Landau’s theory predicted that as the 
rotation rate was further increased the 
pattern would continue: more distinct 
frequencies would gradually appear. 
Instead, at a critical rotation rate a 
continuous range of frequencies sud- 
denly appeared. Such an observa- 
tion was consistent with Lorenz’ “de- 
terministic nonperiodic flow,” lending 
credence to his idea that chaotic at- 
tractors underlie fluid turbulence. 

lthough the analysis of Gollub and A Swinney bolstered the notion that 
chaotic attractors might underlie some 
random motion in fluid flow, their 
work was by no means conclusive. 
One would like to explicitly demon- 
strate the existence in experimental 
data of a simple chaotic attractor. 
Typically, however, an experiment 
does not record all facets of a system 
but only a few. Gollub and Swinney 
could not record, for example, the en- 
tire Couette flow but only the fluid ve- 
locity at a single point. The task of the 
investigator is to “reconstruct” the at- 
tractor from the limited data. Clearly 
that cannot always be done; if the at- 
tractor is too complicated, something 
will be lost. In some cases, however, it 
is possible to reconstruct the dynamics 
on the basis of limited data. 

A technique introduced by us and 
put on a firm mathematical founda- 
tion by Takens made it possible to re- 
construct a state space and look for 
chaotic attractors. The basic idea is 
that the evolution of any single com- 
ponent of a system is determined by 
the other components with which it 
interacts. Information about the rele- 
vant components is thus implicitly 
contained in the history of any single 
component. To reconstruct an “equiv- 
alent” state space, one simply looks at 
a single component and treats the 
measured values at fixed time delays 
(one second ago, two seconds ago and 
so on, for example) as though they 
were new dimensions. 

The delayed values can be viewed as 
new coordinates, defining a Single 
point in a multidimensional state 
space. Repeating the procedure and 
taking delays relative to different 
times generates many such points. One 
can then use other techniques to test 
whether or not these points lie on a 



chaotic attractor. Although this repre- 
sentation is in many respects arbitrary, 
it turns out that the important proper- 
ties of an attractor are preserved by it 
and do not depend on the details of 
how the reconstruction is done. 

The example we shall use to illus- 
trate the technique has the advan- 
tage of being familiar and accessible 
to nearly everyone. Most people are 
aware of the periodic pattern of drops 
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emerging from a dripping faucet. The 
time between successive drops can be 
quite regular, and more than one in- 
somniac has been kept awake waiting 
for the next drop to fall. Less familiar 
is the behavior of a faucet at a some- 
what higher flow rate. One can often 
find a regime where the drops, while 
still falling separately, fall in a never 
repeating patter, like an infinitely in- 
ventive drummer. (This is an experi- 

ment easily carried out personally; the 
faucets without the little screens work 
best.) The changes between periodic 
and random-seeming patterns are rem- 
iniscent of the transition between lami- 
nar and turbulent fluid flow. Could a 
simple chaotic attractor underlie this 
randomness? 

The experimental study of a drip- 
ping faucet was done at the University 
of California at Santa Cruz by one of 
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DRIPPING FAUCET is an example of a common system that can 
undergo a chaotic transition. The underlying attractor is recon- 
structed by plotting the time intervals between successive drops in 
pairs, as is shown at the top of the illustration. Attractors recon- 
structed from an actual dripping faucet (a, c )  compare favorably 
with attractors generated by following variants of Henon's rule (6, 
d). (The entire HCnon attractor is shown on page 53.) Illustra- 
tions e andf were reconstructed from high rates of water flow and 

presumably represent the cross sections of hitherto unseen chaotic 
attractors. Time-delay coordinates were employed in each of the 
plots. The horizontal coordinate is f ,> ,  the time interval between 
drop n and drop n - 1. The vertical coordinate is the next time 
interval, f , ,  and the third coordinate, visualized as coming out 
of the page, is t,> + 2. Each point is thus determined by a triplex of 
numbers ( f , z ,  f , ,  + ,, t,, + J that have been plotted for a set of 4,094 
data samples. Simulated noise was added to illustrations b and d. 
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us (Shaw) in collaboration with Peter 
L. Scott, Stephen C. Pope and Philip J. 
Martein. The first form of the experi- 
ment consisted in allowing the drops 
from an ordinary faucet to fall on a 
microphone and measuring the time 
intervals between the resulting sound 
pulses. Typical results from a some- 
what more refined experiment are 
shown on the preceding page. By plot- 
ting the time intervals between drops 
in pairs, one effectively takes a cross 
section of the underlying attractor. In 
the periodic regime, for example, the 
meniscus where the drops are detach- 
ing is moving in a smooth, repetitive 
manner, which could be represented 
by a limit cycle in the state space. But 
this smooth motion is inaccessible in 
the actual experiment; all that is re- 
corded is the time intervals between 
the breaking off of the individual 
drops. This is like applying a strobo- 
scopic light to regular motion around 
a loop. If the timing is right, one sees 
only a fixed point. 

The exciting result of the experi- 
ment was that chaotic attractors were 
indeed found in the nonperiodic re- 
gime of the dripping faucet. It could 
have been the case that the random- 
ness of the drops was due to unseen in- 
fluences, such as small vibrations or 
air currents. If that was so, there would 
be no particular relation between one 
interval and the next, and the plot of 
the data taken in pairs would have 
shown only a featureless blob. The 
fact that any structure at all appears in 
the plots shows the randomness has a 
deterministic underpinning. In partic- 
ular, many data sets show the horse- 
shoelike shape that is the signature of 
the simple stretching and folding proc- 
ess discussed above. The characteristic 
shape can be thought of as a “snap- 
shot” of a fold in progress, for exam- 
ple, a cross section partway around the 
Rossler attractor shown on page 51. 
Other data sets seem more complicat- 
ed; these may be cross sections of high- 
er-dimensional attractors. The geome- 
try of attractors above three dimen- 
sions is almost completely unknown at 
this time. 

f a system is chaotic, how chaotic is I it? A measure of chaos is the “en- 
tropy” of the motion, which roughly 
speaking is the average rate of stretch- 
ing and folding, or the average rate at 
which information is produced. An- 
other statistic is the “dimension” of the 
attractor. If a system is simple, its be- 
havior should be described by a low- 
dimensional attractor in the state 
space, such as the examples given in 
this article. Several numbers may be 
required to specify the state of a more 
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complicated system, and its corre- 
sponding attractor would therefore be 
higher-dimensional. 

The technique of reconstruction, 
combined with measurements of en- 
tropy and dimension, makes it possible 
to reexamine the fluid flow originally 
studied by Gollub and Swinney. This 
was done by members of Swinney’s 
group in collaboration with two of 
us (Crutchfield and Farmer). The re- 
construction technique enabled us to 
make images of the underlying attrac- 
tor. The images do not give the striking 
demonstration of a low-dimensional 
attractor that studies of other systems, 
such as the dripping faucet, do. Meas- 
urements of the entropy and dimen- 
sion reveal, however, that irregular 
fluid motion near the transition in 
Couette flow can be described by cha- 
otic attractors. As the rotation rate of 
the Couette cell increases so do the en- 
tropy and dimension of the underlying 
attractors. 

In the past few years a growing num- 
ber of systems have been shown to ex- 
hibit randomness due to a simple cha- 
otic attractor. Among them are the 
convection pattern of fluid heated in 
a small box, oscillating concentration 
levels in a stirred-chemical reaction, 
the beating of chicken-heart cells and 
a large number of electrical and me- 
chanical oscillators. In addition com- 
puter models of phenomena ranging 
from epidemics to the electrical activi- 
ty of a nerve cell to stellar oscillations 
have been shown to possess this simple 
type of randomness. There are even 
experiments now under way that are 
searching for chaos in areas as dispa- 
rate as brain waves and economics. 

It should be emphasized, however, 
that chaos theory is far from a pana- 
cea. Many degrees of freedom can also 
make for complicated motions that 
are effectively random. Even though a 
given system may be known to be cha- 
otic, the fact alone does not reveal 
very much. A good example is mole- 
cules bouncing off one another in a 
gas. Although such a system is known 
to be chaotic, that in itself does not 
make prediction of its behavior easier. 
So many particles are involved that all 
that can be hoped for is a statistical de- 
scription, and the essential- statistical 
properties can be derived without tak- 
ing chaos into account. 

There are other uncharted questions 
for which the role of chaos is un- 
known. What of constantly changing 
patterns that are spatially extended, 
such as the dunes of the Sahara and 
fully developed turbulence? It is not 
clear whether complex spatial patterns 
can be usefully described by a single 
attractor in a single state space. Per- 

haps, though, experience with the sim- 
plest attractors can serve as a guide to 
a more advanced picture, which may 
involve entire assemblages of spatial- 
ly mobile deterministic forms akin to 
chaotic attractors. 

he existence of chaos affects the T scientific method itself. The classic 
approach to verifying a theory is to 
make predictions and test them against 
experimental data. If the phenomena 
are chaotic, however, long-term pre- 
dictions are intrinsically impossible. 
This has to be taken into account in 
judging the merits of the theory. The 
process of verifying a theory thus be- 
comes a much more delicate opera- 
tion, relying on statistical and geomet- 
ric properties rather than on detailed 
prediction. 

Chaos brings a new challenge to the 
reductionist view that a system can be 
understood by breaking it down and 
studying each piece. This view has 
been prevalent in science in part be- 
cause there are so many systems for 
which the behavior of the whole is 
indeed the sum of its parts. Chaos 
demonstrates, however, that a system 
can have complicated behavior that 
emerges as a consequence of simple, 
nonlinear interaction of only a few 
components. 

The problem is becoming acute in 
a wide range of scientific disciplines, 
from describing microscopic physics 
to modeling macroscopic behavior of 
biological organisms. The ability to 
obtain detailed knowledge of a sys- 
tem’s structure has undergone a tre- 
mendous advance in recent years, but 
the ability to integrate this knowledge 
has been stymied by the lack of a prop- 
er conceptual framework within which 
to describe qualitative behavior. For 
example, even with a complete map of 
the nervous system of a simple organ- 
ism, such as the nematode studied by 
Sidney Brenner of the University of 
Cambridge, the organism’s behavior 
cannot be deduced. Similarly, the hope 
that physics could be complete with an 
increasingly detailed understanding of 
fundamental physical forces and con- 
stituents is unfounded. The interaction 
of components on one scale can lead to 
complex global behavior on a larger 
scale that in general cannot be de- 
duced from knowledge of the individ- 
ual components. 

Chaos is often seen in terms of the 
limitations it implies, such as lack of 
predictability. Nature may, however, 
employ chaos constructively. Through 
amplification of small fluctuations it 
can provide natural systems with ac- 
cess to novelty. A prey escaping a 
predator’s attack could use chaotic 



flight control as an element of surprise Even the process of intellectual herent mental states that are experi- 
to evade capture. Biological evolu- progress relies on the injection of new enced as thoughts. In some cases the 
tion demands genetic variability; cha- ideas and on  new ways of connecting thoughts may be decisions, or what are 
0s provides a means of structuring old ideas. Innate creativity may have perceived to be the exercise of will. In 
random changes, thereby providing an underlying chaotic process that se- this light, chaos provides a mechanism 
the possibility of putting variability lectively amplifies small fluctuations that allows for free will within a world 
under evolutionary control. and molds them into macroscopic co- governed by deterministic laws. 

CONTROL PARAMETER ( k )  

TRANSITION T O  CHAOS is depicfed schematically by means 
of a bifurcation diagram: a plot of a family of attractors (vertical 
axis) versus a control parameter (horizontal axis). The diagram 
was generated by a simple dynamical system that maps one num- 
ber to another. The dynamical system used here is called a circle 
map, which is specified by the iterative equation x,, , = o + 
x , ~  + k/2r4n(Z?rx,2). For each chosen value of the control param- 
eter k a computer plotted the corresponding attractor. The colors 
encode the probability of finding points on the attractors: red cor- 
responds to regions that  are visited frequently, green to regions 
that are visited less frequently and blue to regions that are  rarely 
visited. As k is increased from 0 to 2 (see drawing at left), the 
diagram shows two paths to chaos: a quasi-periodic route (from 
k = 0 to k = 1, which corresponds to the green region above) and a 
“period doubling” route (from k = 1.4 to k = 2). The quasi-period- 
ic route is mathematically equivalent to a path that passes 
through a torus attractor. I n  the period-doubling route, which is 
based on the limit-cycle attractor, branches appear in pairs, fol- 
lowing the geometric series 2, 4, 8, 16, 32 and so on. The iterates 
oscillate among the pairs of branches. (At a particular value of k- 
1.6, for instance-the iterates visit only two values.) Ultimately 
the branch structure becomes so fine that  a continuous band struc- 
ture emerges: a threshold is reached beyond which chaos appears. 
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Abstract. An advanced undergraduate experiment on 
the chaotic behaviour of a dripping faucet is presented. 
The experiment can be ltsed for the demonstration of 
typical features of chaotic phenomena and also allows the 
advanced physics student to learn about the use of 
microcomputers as data-taking devices. For convenience 
a brief introduction to the basic concepts of non-linear 
dynamics and to the period-doubling route to chaos are 
included. 

1. Introduction 
Chaodynamics is a recent area of research (Ott 
1981, Ford 1983, Bai Lin 1984, Jensen 1987); even 
its name is recent (Andrey 1986). It concerns the 
occurrence of complex and seemingly random pheno- 
mena in non-linear but otherwise deterministic 
systems. Common examples of this behaviour 
include the results of tossing a coin, or the swirling 
paths of leaves falling from a tree on a windy day. 
Similar aperiodic phenomena have been observed in 
an impressive number of experimental systems, 
even in some previously thought to  be very well 
understood, as is the case of the driven pendulum 
(Koch et a1 1983). Electrical, optical, mechanical, 
chemical, hydrodynamical and biological systems 
can all exhibit the kind of dynamical instabilities that 
produce chaotic behaviour (Jensen 1987 and refer- 
ences therein). Despite this, recent discoveries in 
the field of non-linear dynamics are still not well 
known to many undergraduate physics students. 

With the above ideas in mind, we have developed 
an experiment that can be useful for introducing 
some of the ideas and methods used in the descrip- 
tion of non-linear chaotic systems. Our experiment 
follows the work of Martien et a1 (1985), based on a 

Resumen. 
comportamiento cadtico del goteo en una Nave ma1 
cerrada. Este resulta util para la demonstracion de 
caracteristicas tipicas de 10s fendmenos caoticos, y 
permite que 10s estudiantes de fisica aprendan a usar una 
microcomputadora para la toma de datos en un 
experimento. Hemos creido conveniente incluir una 
breve introduccion a la dinimica no lineal y, en 
particular, a la aparicion de caos por sucesivas 
bifurcaciones subarmonicas. 

Se propone un experimento sobre el 

suggestion of Rossler (1977), which shows that 
drops falling from a leaky faucet behave chaotically 
under appropriate conditions. Other experiments, 
demonstrations or computer simulations have been 
recently proposed to  introduce students to the field 
of non-linear phenomena (e.g. Berry 1981, Viet et a1 
1983, Salas Brito and Vargas 1986, Briggs 1987), but 
curiously none of them deals with liquids despite the 
fact that much original work has been done on such 
systems. In our experiment the students investigate 
the dripping behaviour of a leaky faucet, a system 
which remains incompletely understood and hence 
may still offer some surprises to  both teachers and 
students. In this system, the students can measure 
the time interval between successive drops, the drip 
interval-as we, following Martien et a1 (1985), will 
call it-as a function of the flow rate of water. 

The students become acquainted with the con- 
cepts of non-linear dynamics (as deterministic 
chaos, attractors, subharmonic bifurcations, and the 
like) by reading the basic literature, paying particu- 
lar attention to  the logistic map (May 1976, 
Feigenbaum 1980, Hofstadter 1981, Schuster 1984, 
Jensen 1987). Then, since many aspects of this 
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mapping are common to a large class of dynamical 
systems showing chaotic behaviour, they are encour- 
aged to explore it on a microcomputer to obtain 
firsthand experience of the behaviour of a chaotic 
system, before they begin the experiment. 

In the following we summarise the experimental 
set-up and show the results obtained so far in our 
laboratories. Since the dripping faucet seems to  
follow the period-doubling route to  chaos (Martien 
et a1 1985), after a brief introduction to illustrate the 
basic concepts of the field, in 0 2  we examine in 
some detail the logistic map, a paradigmatic exam- 
ple of a system following such a route to  chaos. In 
0 3 we describe our experimental device and show 
the return maps obtained from the data collected. 
These data confirm the existence of a sequence of 
period doublings in the system, at  least up  to period 
four, before the onset of chaos. Finally, we present 
our conclusions in $4 .  

H N Nuriez Yepez et a1 

2. Basic concepts and the period-doubling route to 
chaos 
Let us first introduce some basic notions and termi- 
nology of non-linear dynamics. Consider an harmo- 
nically driven pendulum: given the frequency and 
strength of the driving force, the motion of the 
system is cgmp!etely determined if the angle 8 and 
angular speed 0 of the pendulum are known. These 
variables can be used as coordinates in the phase 
space of the pendulum; as it swings back and forth, 
the point representing its state moves along an orbit 
in phase space. For example, if the strength of the 
driving force vanishes, due to the effect of friction, 
no matter how we start its motion the pendulum will 
come to rest at its point of stable equilibrium after a 
number of oscillations. From the point of view of 
phase space, the orbit spirals to the fixed point at the 
origin. The motion is quite different for non-zero 
values of the driving force; in this case the pendulum 
settles to a stationary oscillation with the same 
frequency as the external driving force. These sta- 
tionary motions in which the system settles after the 
transients have died out are examples of attractors, a 
term which conveys the idea that many nearby orbits 
are 'attracted' to  them. We have mentioned two 
types of attractors, a stable fixed point and a stable 
limit cycle, but there exists a more complicated 
attractor, the so-called strange attractors which only 
occur in dissipative non-linear systems. They cap- 
ture the solution of a deterministic system into a 
perfectly defined region of phase space, but in which 
there is a very complex structure (these objects are 
usually fractals) and the motion shows every feature 
associated with random motion. Such behaviour is a 
manifestation of the very sensitive dependence on 
the initial conditions developed by the system 
(Ruelle 1980). The existence of strange attractors is 
one of the fingerprints of chaos i.e. the loss of long- 

term predictability in a supposedly deterministic 
system. 

Various attractors may be present in the long- 
term behaviour of a dynamical system; in most, its 
presence or absence is governed by the value of a 
single control parameter. For example, the magni- 
tude the driving force determines if the pendulum 
settles to  a point or to a limit cycle (or possibly even 
to a more complex attractor (D'Humieres et a f  
1982)). In the case of the dripping faucet, it is the 
flow rate of water which governs its dynamics: for 
low values of flow, the dripping is simply periodic 
and the system is attracted to a stable fixed point; 
but for much larger values of flow, strange attractors 
can appear. The succession of stationary states 
which a system follows prior of the onset of chaos, as 
the control parameter is varied, determines what is 
called the route to chaos followed by the system 
(Kadanoff 1983). The dripping faucet seems to fol- 
low the period-doubling route to  chaos (Martien et 
a1 1985). We will explain this route in some detail 
below. 

The evolution of a dynamical system can be des- 
cribed in either continuous time (a flow) or in 
discrete time (a mapping). The pendulum is a good 
example of a system that may be described by a flow 
in phase space-although it can also be described by 
a mapping (Testa et a f  1982). O n  the other hand, the 
sequence of drip intervals in a leaky faucet is natur- 
ally described by a discrete map. For any given value 
of the dripping rate, a plot of the next drip interval 
versus the previous one can give a clear idea of its 
dripping behaviour and of the possible existence of 
attractors. This is the representation we use for the 
data obtained in the experiment (see figure 5 ) ;  it is 
called a return or Poincark map.  

As an illustration of some of these ideas, and 
because they offer perhaps the simplest examples of 
systems undergoing a period-doubling transition to 
chaos, we shall consider iterative processes of the 
form 

where f ( x )  is a continuous function defined in a 
suitable one-dimensional interval. Discussing only 
one-dimensional mappings as (1) is not as restrictive 
as it may seem at first, since it can be viewed as a 
discrete time version of a continuous but dissipative 
dynamical system. The dissipative terms shrink the 
volume of phase space occupied by the system until 
it becomes effectively one-dimensional. In this 
instance it can be modelled, a t  least in its universal 
qualitative features, by a simple mapping as (1) 
(Collet and Eckmann 1980). In fact, such iterations 
have been advocated frequently as qualitative 
models for many complex physical systems, from the 
behaviour of a driven non-linear oscillator (Linsay 
1981, Testa et a f  1982) to  the onset of turbulence in 
the Rayleigh-Benard phenomena (Gollub and 
Benson 1980). Most of the results here do not 
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Figure 1. Return maps, i.e. plots of x, + ,  versus x,, for large values of n ,  obtained from the logistic map for different 
values o f u :  ( a ) u =  1.5: (6) u=3.3; ( c ) p = 3 . 5 ;  ( d ) p = 3 . 8 .  This illustrates the dynamics of t i e  map up to the four 
cycle as well as the chaotic attractor for p>p,  

depend on the precise form of the function f (x ) ,  as 
long as it has a single quadratic maximum but to be 
specific we will analyse the dynamics of the logistic 
map. This mapping is defined by 

f(x) = p 4 1  -x)  (2) 

where OSp<4 is a parameter measuring the 
strength of the non-linearity. With this choice for 
f (x ) ,  equation (1) describes a non-linear and non- 
invertible map of the unit interval on itself. The 
evolution of the sequence of x, generated by this 
simple equation exhibits a transformation from per- 
iodic to chaotic behaviour as the control parameter 
p is increased. Let us see how this occurs. The 
behaviour of the sequence of iterates is trivial when 
p = 0: for every initial value XI, all the iterates are 
zero. We can say then that the solution quickly 
reaches an attractor, the single point x=O; this is 
called a period-one cycle, orbit or attractor. For 
values of p between 0 and 1, the large n behaviour of 
the x,, is identical; they approach the point x=O 
after a certain number of steps. But for larger values 
of p the dynamics is much more interesting as can be 
easily verified using a hand-held calculator. Various 
types of stationary solutions of the logistic map are 
exemplified by figures 1 and 2. 

Figure 1 shows return maps (plots of x,+, versus 
x,) for p = 1.5, 3.3, 3.5 and 3.8. The successive 

appearance of attractors of period one, two, four 
and of a one-dimensional chaotic attractor can be 
appreciated in these plots. Figure 2 illustrates this 
kind of behaviour in a different and more global 
way; it shows a plot of the large n behaviour of the 
iterates (i.e. the attractors) of the logistic map as a 
function of the value of p. This graph gives a 
‘pictorial meaning’ to  the way the onset of chaos 
occurs via a sequence of ‘pitchfork’ (period- 
doubling) bifurcations as the value of p changes. It 
also shows the critical dependence of the behaviour 
with the value of this parameter. For values of p 
between 1 and 3, and almost all initial values xl , ,  
there is a single point attractor (figure l(a)). Then, 
as p is increased between 3 and 4, the dynamics 
changes in surprising ways. First, for 3<p<(l+ V%) 
the stationary solution bifurcates to  a period-two 
attractor-the period of the solution has doubled 
and its frequency halved, hence the names of 
period-doubling or subharmonic bifurcation given to  
the phenomena-as can be seen in the bifurcation 
diagram (figure 2), where the solution hops back 
and forth between the upper and lower branches of 
the pitchfork, and in figure l ( b ) .  As p is increased 
further, the solution bifurcates again to  a period- 
four attractor, then to a period-eight attractor and 
so on. This sequence (or cascade) of bifurcations 
continues indefinitely, but the interval of values of p 
in which a given periodic orbit acts as an attractor 
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shrinks very quickly at  a rate governed by the 
universal parameter 

H N Nunez Yepez et a1 

(3 )  
Pn -P"-l 

n - m  P,+1 - A  
d = l i m  -- -4.6692. . . 

until a critical value p, =3.5699 ... is reached (Fei- 
genbaum 1978, 1979). This value marks the begin- 
ning of the aperiodic regime: the iterates seem to 
wander erratically around a subset of the unit inter- 
val. If we increase p further, windows of periodic 
motion of every integer period reappear. Chaotic or 
periodic motion can be found for suitable values of 
p>p,. A complete discussion of the properties of 
the logistic map can be found in the account given by 
Feigenbaum (1983). For a more complete discussion 
of the period doubling as well as other possible 
routes to chaos in a dynamical system see Kadanoff 
(1983). 

As with many other properties discovered in 
systems making a period-doubling transition to  
chaos, the constant 6 is universal in the sense that it 
is found to be valid for a large number of systems 
and not only for the logistic map. For example, if the 
dripping faucet effectively follows the period- 
doubling route to chaos and we were able to  calcu- 
late 6, we should find a numerical value very close to  
that given in (3). Now, obviously, not every feature 
of the logistic map is shared by other systems, for 
example, the values quoted above for the onset of 

instabilities in the attractors are not universal-they 
are  specific for the logistic map. 

3. The dripping faucet experiment 
The apparatus used in the experiment is rather 
simple and widely available. We use a Commodore 
64 microcomputer for data acquisition and subse- 
quent analysis and display. The inclusion of an 
automatic data-taking procedure is fundamental in 
an experiment which requires the taking of 2000 
data points every time it is run. In fact, this repre- 
sents an additional advantage, for it allows the 
students to  learn simple interfacing techniques and 
to  work with a microcomputer-assisted experiment. 

The basic apparatus is shown schematically in 
figure 3. It consists of a large reservoir of water (a 
large Mariotte bottle) kept at a constant pressure 
with the help of a float valve. The water can flow 
through a valve to  a plastic tube with a nozzle at the 
end. This valve, as well as the float valve, were 
obtained from a used automobile carburetor. With 
its help we can control the dripping rate, which is the 
control parameter in our experiment. Drops falling 
from the nozzle pass through an optocoupler 
(General Electric H23L1, with a Schmidt trigger 
included at the output) which produces a TTL. pulse 
for each drop. The pulses are sent, via a very simple 
interface (figure 4), to  the user port of the 
Commodore 64 microcomputer. The computer is 
used to store the data, to  compute the drip interval 

Figure 2. A section of the bifurcation diagram of the logistic map. The graph shows the asymptotic behaviour of x ,  for 
values of ,LA between 2.94 and 4. 
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Figure3. Schematic diagram of the experimental set-up. We use a float valve (marked 'level control' in the diagram) 
to maintain the water level in an upper reservoir (not shown). 

and to display the return maps obtained. With this 
arrangement students are able to  take, store and 
analyse up to  3072 drips (using 6 Kbyte of memory). 

The machine-language subroutine used for 
acquiring the data and measuring the drip interval 
T, is capable of taking data up to  a rate of 1.2 kHz, 
far above the dripping rates occurring in the experi- 
ment, and has an estimated resolution of Sops. This 
estimation has been tested with good results with the 
help of a signal generator (Wavetek 181) used as the 
input of our data-taking device. 

The flow rate is controlled by means of the car- 
buretor valve, but we d o  not measure it directly, 

preferring instead to use the valve setting as an 
indicator. The program we use to  analyse the data 
computes a mean dripping rate. The mean dripping 
rates students are able to investigate under experi- 
mental conditions vary from 0.1 to 40 drip&, a rate 
at which the drops become a continuous stream of 
water. In this interval, the system moves from a 
stable period-one attractor and undergoes period 
doublings until strange attractors appear for drip- 
ping rates greater than 7 dripsls. At  such large 
dripping rates the behaviour is irregular and, surely, 
is very complex (figures S and 6). In fact, much to  
our surprise the dynamics of the system is very rich 

Figure 4. The interface is a single 74LSOO chip. The connections to the microcomputer user's port are shown 
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Figures. Example of the experimental results shown as T,,,, (vertical axes) versus T,, (horizontal axes) graphs 
redrawn from the printout of our data. Periodic behaviour, (u)-(c): complex chaotic behavlour, (d ) - ( f ) ,  All values of 
time are in milliseconds. 

and shows patterns not discussed in Martien et al .  
All of this has generated a great deal of interest 
among our students. 

Typical experimental results are shown as T,,, 
versus T, plots in figures 5 and 6 (notice the qualita- 
tive similarity of figures 5(a)-(c) with figures l(a)- 
(c). These are plots of the 2000 typical points taken 
each time the experiment is run. The beginning of a 

130 

122 

11 4 
114 122 130 

Figure 6. Another example of an attractor in the chaotic 
region. Note the lolding and separation developed as it 
becomes a more complex attractor. Axes and units as for 
figure 5. 

period-doubling sequence can be appreciated; the 
dripping behaviour shows attractors of period one, 
two and four prior to the chaotic regime. With the 
current experimental arrangement it is not possible 
to ascertain precisely the ranges of stability of the 
attractors but, roughly, the students have found the 
periodic attractors to be present up to 7 dripsk. For 
greater dripping rates we observe chaotic behaviour, 
signalled by what seem to be strange attractors; 
typical examples are shown in figures S(d)-(f) and in 
figure 6. This last attractor has been singled out 
because it illustrates the folding, stretching and 
fractioning that occur in the attractors in the process 
of becoming more complex, as a result of increasing 
the dripping rate. We have not been able to see 
periodic attractors of period larger than four, due 
perhaps to  the inherent noise in the system or to the 
somewhat poor control of dripping rates allowed 
by the carburetor valve. But, occasionally, students 
were able to observe cycles of period three 
immersed in the chaotic regime. As these obser- 
vations are very sensitive to the valve setting and to 
vibrations produced near the apparatus, we have 
been unable to reproduce them at will with the 
current experimental arrangement. 

The result of the experiment has been taken as an 
indication of a period-doubling route to  chaos in the 
system, but to be conclusive further evaluation is 
needed. For example, it may require the compu- 
tation of universal parameters like 6. But before we 
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can determine such parameters we must be able to  
measure with greater confidence the stability inter- 
vals of the attractors and to  discern at  least a period- 
eight attractor. 

As figures 5 and 6 show, the aperiodic regime 
exhibits patterns of behaviour which seem to have 
an underlying one-dimensional structure somewhat 
blurred by the noise in the system. This quasi-one- 
dimensional appearance of the attractors is an indi- 
cator of chaotic behaviour as a characteristic of the 
system and not a result of external noise generated, 
for example, by the carburetor valve or produced 
by small air currents. On the other hand, these 
results show that a qualitative model in terms of a 
one-dimensional mapping may be appropriate. In 
fact, to analyse the results of their experiment 
Martien et a1 proposed a very simple one- 
dimensional analogue model. It is worth mentioning 
here that the system exhibits hysteresis and the 
bifurcation points may differ for increasing and 
decreasing dripping rates. Despite the fact that the 
system is expected to  show hysteresis, we believe 
our observations to  be due mainly to the valve used 
to control the flow of water. We are now trying to 
improve the arrangement and to  use a good needle 
valve in order to  determine this. 

4. Conclusions 
In summary, we have presented an experiment in 
which students can investigate the non-linear behav- 
iour and the route to chaos in a dripping faucet. 
Students are able to observe a sequence of period 
doublings preceding chaos and the existence of a 
chaotic regime with various types of strange attrac- 
tors. They can also convince themselves that despite 
the large number of variables involved in the pheno- 
menon it can be qualitatively modelled by a one- 
dimensional mapping (although we may expect bet- 
ter agreement with a mapping of greater dimensio- 
nality). 

In view of the above results, and to  the relative 
simplicity of the experimental arrangement, we 
think that this system is very suitable for introducing 
the concept of non-linear dynamics and the tech- 
niques for its experimental study. The experiment is 
a very good example of the type of behaviour 
possible in classical dynamic systems. Our  experi- 
mental set-up can also be useful as an exhibit or to 
inform conferences addressing wider audiences. On 
the other hand, when used in an open-ended investi- 
gation, it has allowed our students to  explore the 
many features of the transition to  chaos at their own 
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level and interest. Another useful feature of the 
experiment is that it allows advanced physics stu- 
dents to  learn about simple interfacing techniques 
and the use of microcomputers as data-taking 
devices in physics experiments. 

Finally, we must say that a similar experiment is 
being developed at Universidad Simon Bolivar 
(Venezuela) by Professor C L Ladera at the sugges- 
tion of one of us (ALSB). 
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Chaos, Strange Attractors, and Fractal Basin 
Boundaries in Nonlinear Dynamics 

CELSQ GREBOGI, EDWARD Om, JAMES A. YORKE 

Recently research has shown that many simple nonlinear 
deterministic systems can behave in an apparently unpre- 
dictable and chaotic manner. This realization has broad 
implications for many fields of science. Basic develop- 
ments in the field of chaotic dynamics of dissipative 
systems are reviewed in this article. Topics covered in- 
clude strange attractors, how chaos comes about with 
variation of a system parameter, universality, fractal basin 
boundaries and their effect on predictability, and applica- 
tions to physical systems. 

N THIS ARTICLE WE PRESENT A REVIEW OF THE F I E L D  OF 

chaotic dynamics of dissipative svstems including recent devel- I opments. The existence of chaotic dynamics has been discussed 
in the mathematical literature for many decades with important 
contributions by Poincark, Birkhoff, Camvright and Littlewood, 
Levinson, Smale, and Kolmogorov and his students, among others. 
Nevertheless, it is only recently that the wide-ranging impact of 
chaos has been recognized. Consequently, the field is now undergo- 
ing explosive growth, and many applications have been made across 
a broad spectrum of scientific disciplines-ecology, economics, 
physics, chemistry, engineering, fluid mechanics, to name several. 
Specific examples of chaotic time dependence include convection of 
a fluid heated from below, simple models for the yearly variation of 
insect populations, stirred chemical reactor systems, and the deter- 
mination of limits on the length of reliable weather forecasting. It is 
our  belicf that the number of these applications will continue to 
grow. 

We start with some basic definitions of terms used in the rest of 
the article. 

Dissipative system. In Hamiltonian (conservative) systems such as 
arise in Newtonian mechanics of particles (without friction), phase 
space volumes are preserved by the time evolution. (The phase space 
is the space of variables that specify the state of the system.) 
Consider, for example, a two-dimensional phase space (4 ,  pj, where 
q denotes a position variable and p a momentum variable. Hamil- 
ton’s equations of motion take the set of initial conditions at time 
t = to  and evolve them in time to the set at time t = tl. Although the 
shapes of the sets are different, their areas are the same. By a 
dissipative system we mean one that does not have this property 
(and cannot be made to have this property by a change of variables). 
Areas should typically decrease (dissipate) in time so that the area of 

C. Grebogi is a research scienust at the Laboratory for Plasma and Fusion Energy 
Studies, E. On is a professor in the departments of electrical engineering and physics, 
and J. A. Yorke is a professor of mathematics and IS the director of the Institute for 
Physical Science and Technology, Iiniversity of Maryland, College Park, MD 20742. 
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the final set would be less than the area of the initial set. As a 
consequence of this, dissipative systems typically are characterized 
by the presence of attractors. 

Attmctar. If one considers a system and its phase space, then the 
initial conditions may be attracted to some subset ofthe phase space 
(the attractor) as time t + a. For example, for a damped harmonic 
oscillator (Fig. la)  the attractor is the point at  rest (in this case the 
origin). For a periodically driven oscillator in its limit cycle the limit 
set is a closed curve in the phase space (Fig. lb ) .  

Strange attyactoy. In the above two examples, the attractors were a 
point (Fig. la), which is a set of dimension zero, and a closed curve 
(Fig. l b ) ,  which is a set of dimension one. For many other attractors 
the attracting set can be much more irregular (some would say 
pathological) and, in fact, can have a dimension that is not an 
integer. Such sets have been called “fractal” and, when they are 
attractors, they are called strange attractors. [For a more precise 
definition see (I).] The existence of a strange attractor in a physically 
interesting model was first demonstrated by Lorenz (2). 

Dimension. There are many definitions of the dimension d (3) .  
The simplest is called the box-counting or capacity hmension and is 
defined as follows: 

In N ( € )  d = 2z0 - 
In( 1k) 

where we imagine the attracting set in the phase space to be covered 
by small U-dimensional cubes of edge length E, with D the 
dimension of the phase space. N ( E )  is the minimum number of such 
cubes needed to cover the set. For example, for a point attractor 
(Fig. la) ,  N ( E )  = 1 independent of E, and Eq. 1 yields d = 0 (as it 
should). For a limit cycle attractor, as in Fig. lb, we have that 
N ( E )  - t / ~ ,  where t is the length of the closed curve in the figure 
(dotted line); hence, for this case, d = 1, by Eq. 1. A less trivial 
example is illustrated in Fig. 2, in the form of a Cantor set. This set is 

Fig. 1. (a) Phase-space diagram for a damped harmonic oscillator. (b) Phase- 
space dagram for a system that is approaching a limit cyc1.z. 
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Fig. 2. Construction of a Can- 0 1 
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formed by taking the line interval from 0 to 1, dividing it in thirds, 
then discarding the middle third, then dividing the two remaining 
thirds into thirds and discarding their middle thirds, and so on ad 
infinitum. The Cantor set is the closed set of points that are left in 
the limit of this repeated process. If we take E = 3-" with n an 
integer, then we see that N(E) = 2" an.1 Eq. 1 (in which E -+ 0 
corresponds to n -+ m) yields d = (In 2)/(ln 3), a number between 0 
and 1, hence, a fractal. The topic of the dimension of strange 
attractors is a large subject on which much research has been done. 
One of the most interesting aspects concerning dimension arises 
from the fact that the distribution of points on a chaotic attractor 
can be nonuniform in a very singular way. In particular, there can be 
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an arbitrarily fine-scaled interwoven structure of regions where orbit 
trajectories are dense and sparse. Such attractors have been called 
multifractals and can be characterized by subsidiary quantities that 
essentially give the dimensions of the dense and sparse regions of the 
attractor. In this review we shall not attempt to survey this work. 
Several papers provide an introduction to recent work on the 
dimension of chaotic attractors (3-5). 

Chhaotic attractor. By this term we mean that if we take two typical 
points on the attractor that are separated from each other by a small 
distance A(0) at t = 0, then for increasing t they move apart 
exponentially fast. That is, in some average sense A(t) - A(O)exp(ht) 
with h > 0 (where h is called the Lyapunov exponent). Thus a small 
uncertainty in the initial state of the system rapidly leads to inability 
to forecast its future. [It is not surprising, therefore, that the 
pioneering work of Lorenz (2) was in the context of meteorology.] 
It is typically the case that strange attractors are also chaotic 
[although this is not always so; see ( 1 ,  6 ) ] .  

Dynamual system. This is a system of equations that allows one, in 
principle, to predict the future given the past. One example is a 
system of first-order ordinary Ifferential equations in time, dx(t) /  
dt = G(x, t ) ,  where x(t) is a D-dimensional vector and G is a D- 
dimensional vector function of x and t. Another example is a map. 

Map. A map is an equation of the form x , + ~  = F(x,), where the 
"time" t is discrete and integer valued. Thus, given Q, the map gives 
x,. Given x,, the map gives x2, and so on. Maps can arise in 
continuous time physical systems in the form of a Poincark surface 
of section. Figure 3 illustrates this. The plane x3 = constant is the 
surface of section (S in the figure), and A denotes a trajectory of the 
system. Every time A pierces S going downward (as at points A and 
B in the figure), we record the coordinates (xI ,xz ) .  Clearly the 
coordinates of A uniquely determine those of B. Thus there exists a 
map, B = F(A), and this map (if we knew it) could be iterated to 
find all subsequent piercings of S. 

Chaotic Attractors 
As an example of a strange attractor consider the map first studied 

by Henon (7): 

xntl = --d + Pyn (2) 
Y,+l =xfl (3) 

Figure 4a shows the result of plotting lo4 successive points obtained 
by iterating Eqs. 2 and 3 with parameters a = 1.4 and f3 = 0.3 (and 
the initial transient is deleted). The result is essentially a picture of 
the chaotic attractor. Figure 4, b and c, shows successive enlarge- 
ments of the small square in the preceding figure. Scale invariant, 
Cantor set-like structure transverse to the linear structure is evident. 
This suggests that we may regard the attractor in Fig. 4c, for 
example, as being essentially a Cantor set of approximately straight 
parallel lines. In fact, the dimension d in Eq. 1 can be estimated 
numerically (8) to be d -- 1.26 so that the attractor is strange. 

As another example consider a forced damped pendulum de- 
scribed by the equation 

d20/dt2 + v d ~ d t  + &sine = f i o s ( w t )  (4) 
where 0 is the angle between the pendulum arm and the rest 
position, u is the coefficient of friction, oo is the frequency of natural 
oscillation, and f i s  the strength of the forcing. In Eq. 4, the first 
term represents the inertia of the pendulum, the second term 
represents friction at the pivot, the third represents the gravitational 
force, and the right side represents an external sinusoidally varying 
torque of strengthfand frequency w applied to the pendulum at the 
pivot. In Fig. 5a, we plot the Poincark surface of section of a strange 
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Fig. 5. (a) PoincarC sur- 
face of section of a pendu- 
lum strange attractor. (b) 
Enlargement of region de- 
fined by rectangle in (a). 
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attractor for the pendulum, where we choose v = 0.22, wo = 1.0, 
w = 1.0, andf= 2.7 in Eq. 4. This surface of section is obtained by 
plotting 50,000 dots, one dot for every cycle of the forcing term, 
that is, one dot at every time t = t, = 2 ~ r n  (where n is an integer). 
The strange attractor shown in Fig. 5a exhibits a Cantor set-like 
structure transverse to the linear structure. This is evident in Fig. 5b, 
which shows an enlargement of the square region in Fig. 5a. The 
dimension of this strange attractor in the surface of section is 
d = 1.38. Figure 6 shows the angular velocity dO/dt as a function o f t  
for the parameters of Fig. 5. Note the apparently erratic nature of 
this plot. 

In general, the form of chaotic attractors varies greatly from 
system to system and even within the same system. This is indicated 
by the sequence of chaotic attractors shown in Fig. 7. All of these 
attractors were generated from the same map (9) ,  

+ n + t  = [+n + 01 + Q t ( + n , O n ) l  mod 1 

O,, I = [ O n  + wz + EP2(Jln,On)l mod 1 
(5) 

(6) 

where PI and P2 are periodic with period one in both their 
arguments. The PI and P2 are the same in all of the cases shown in 
Fig. 7; only the parameters wI, 02, and E have been varied. The 
results show the great variety of form and structure possible in 
chaotic attractors as well as their aesthetic appeal. Since + and O may 
be regarded as angles, Eqs. 5 and 6 are a map on a two-dimensional 
toroidal surface. [This map is used in (9 )  to study the transition 
from quasiperiodicity to chaos.] 

Because of the exponential divergence of nearby orbits on chaotic 
attractors, there is a question as to how much of the structure in 
these pictures of chaotic attractors (Figs. 4, 5, and 7) is an artifact 
due to chaos-amplified roundoff error. Although a numerical trajec- 
tory will diverge rapidly from the true trajectory with the same 
initial point, it has been demonstrated rigorously (10) in important 
cases [includ~ng the Htnon map ( ] I ) ]  that there exists a true 
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The Evolution of Chaotic Attractors 
In dissipative dynamics it is common to find that for some value 

of a system parameter only a nonchaotic attracting orbit (a limit 
cycle, for example) occurs, whereas at some other value of the 
parameter a chaotic attractor occurs. It is therefore natural to ask 
how the one comes about from the other as the system parameter is 
varied continuously. This is a fundamental question that has elicited 
a great deal of attention (9, 22-19). 

To understand the nature of this question and some of the 
possible answers to it, we consider Fig. Sa, the so-called bifurcation 
dagram for the map. 

X,+I = C - x i  ( 7) 
where C is a constant. Figure 8a can be constructed as follows: take 
C = -0.4, set xo = -0.5, iterate the map 100 times (to eliminate 
transients), then plot the next 1000 values ofx; increase C by a small 
amount, say 0.001, and repeat what was done for C = -0.4; 
increase again, and repeat; and so on, until C = 2.1 is reached. We 
see from Fig. 8a that below a certain value, C = C, = -0.25, there 
is no attractor in -2 < x < 2. In fact, in this case all orbits go to 
x + -m, hence the absence of points on the plot. This is also true 
for C above the “crisis value” C, = 2.0. Between these two values 
there is an attractor. As C is increased we have an attracting orbit of 
“period one,” which, at  C = 0.75, bifurcates to a period-two 
attracting orbit (x, + xp -+ x,  -+ xp ---* * . .), which then bifurcates 
(at C = 1.25) to a period-four orbit (x ,  + xb + x, + xd + 

x, + xb -+ x, + xd + x,  + . * .). In fact, there are an infinite num- 
ber of such bifurcations of period 2“ to period 2”” orbits, and these 
accumulate as n -+ m at  a finite value of C, which we denote C, 
(from Fig. 8a, C, 1.4). [The practical importance of this phe- 
nomenology was emphasized early on by May (12) .] 

What is the situation for C,< C < C,? Numerically what one 
sees is that for many C values in this range the orbits appear to be 
chaotic, whereas for others there are periodic orbits. For example, 
Fig. 8b shows an enlargement of Fig. 8a for C in the range 
1.72 < C < 1.82. We see what appear to be chaotic orbits below 
C = CJ3’ = 1.75. However, just above this value, a period-three 
orbit appears, supplanting the chaos. The period-three orbit then 
goes through a period-doubling cascade, becomes chaotic, widens 
into a three-piece chaotic attractor, and then finally at 
C = C,(3) I- 1.79 widens back into a single chaotic band. We call 
the region Ck3) < C < Cc(3) a period-three window. (Such win- 
dows, but of higher period, appear throughout the region C, 
< C < C,, but are not as discernible in Fig. 8a because they are 

much narrower than the period-three window.) 
An infinite period-doubling cascade is one way that a chaotic 

attractor can come about from a nonchaotic one (13). There are also 
two other possible routes to chaos exemplified in Fig. 8, a and b. 
These are the intermittency route (14) and the crisis route (15). 

Intemzzttency. Consider Fig. 8b. For C just above CJ3’ there is a 
period-three orbit. For C just below CJ3) there appears to be a 
chaotic orbit. To understand the character of this transition it is 
useful to examine the chaotic orbit for C just below CJ3’. The 
character of this orbit is as follows: The orbit appears to be a period- 
three orbit for long stretches of time after which there is a short 
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Fig. 7. Sequence of chaot- 
ic attractors for system 
represented by Eqs. 5 and 
6. Plot shows iterated 
mapping on a torus for 
different values of wlr  w2, 
and r. (TOP) wI = 0.54657, 
02 = 0.36736, and = 

0.45922, ~2 = 0.53968, 
0.75. (Center) w1 = 

and E = 0.50. (Bottom) 
wI = 0.41500, w2 = 

0.73500. and e = 0.60. 

interval -2 5 x 5 2, and then rapidly begins to move to large 
negative x values (that is, it begins to approach x = -00). This is 
called a chaotic transient (15). The length of a chaotic transient will 
depend on the particular initial condition chosen. One can define a 
mean transient duration by averaging over, for example, a uniform 
dstribution of initial condtions in the interval - 2  < x < 2. For the 
quadratic map, this average duration is 

3 

7 - l/(C - C,)Y (8) 

with the exponent y given by y = 112. Thus as C approaches C, 
from above, the lifetime of a chaotic transient goes to infinity and 
the transient is converted to a chaotic attractor for C < C,. Again, 
this type of phenomenon occurs widely in chaotic systems. For 
example, the model of Lorenz (2) for the nonlinear evolution of the 
Rayleigh-Benard instability of a fluid subjected to gravity and 
heated from below has a chaotic onset of the crisis type and an 
accompanying chaotic transient. In that case, y in Eq. 8 is y - 4 
(20). In addtion, a theory for determining the exponent y for two- 
&mensional maps and systems such as the forced damped pendulum 
has recently been published (21). Thus we have seen that the period 
doubling, intermittency, and crisis routes to chaos are illustrated by 
the slmple quadratic map (Eq. 7). 

We emphasize that, although a map was used for illustrating these 
routes, a l l  of these phenomena are present in continuous-the 
systems and have been observed in experiments. As an example of 

of three autonomous ordinary hfferential equatlons studied by 
Lorenz ( 2 )  as a model of the Rayleigh-Benard instability, 

1 

3 

0 0 2  0 4  0 6  0 8  1.0 
R chaotic transitions in a continuous time system, we consider the set 

h l d t  = Py - PX 

dyldt = -XZ + KX - y 

dzldt = XY - bz 

(9) 
(10) 
(11) 

burst (the “intermittent burst”) of chaotic-like behavior, followed by 
another long stretch of almost period-three behavior, followed by a 
chaotic burst, and so on. As C approaches CJ3) from below, the 
average duration of the long stretches between the intermittent 
bursts becomes longer and longer (14), a proaching infinity and 

three orbit appears at C = CJ3). Alternatively we may say that the 
attracting periodic attractor of period three is converted to a chaotic 
attractor as the parameter C decreases through the critical value 
CJ3). It should be emphasized that, although our illustration of the 
transition to chaos by way of intermittency is within the context of 
the period-three window of the quadratic map given by Eq. 7 ,  this 
phenomenon (as well as period-doubling cascades and crises) is very 
general; in other systems it occurs for other periods (period one, for 
example) in easily observable form. 

Criter. From Fig. 8a we see that there is a chaotic attractor for 
C < C, = 2, but no chaotic attractor for C > C,. Thus, as C is 
lowered through C,, a chaotic attractor is born. How does this 
occur? Note that at C = C, the chaotic orbit occupies the interval 
-2  5 x 5 2.  If C is just slightly larger than C,, an orbit with initial 
condition in the interval -2 < x < 2 will typically follow a chaotic- 
like path for a finite time, after which it finds its way out of the 

proportional to (CJ3) - C)-”’ as C + CJ3 P . Thus the pure period- 
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where P and b are adjustable parameters. Fixing P = 10 and b = 813 
and varying the remaining parameter, Y,  we obtain numerical 
solutions that are clear examples of the intermittency and crisis types 
of chaotic transitions discussed above. We illustrate these in Fig. 9, a 
through d; the behavior of this system is as follows: 

1) For Y between 166.0 and 166.2 there is an intermittency 
transition from a periodic attractor ( Y  = 166.0, Fig. 9a) to a chaotic 
attractor (Y  = 166.2, Fig. 9b) with intermittent turbulent bursts. 
Between the bursts there are long stretches of time for which the 
orbit oscillates in nearly the same way as for the periodic attractor 
(14) (Fig. 9a). 

2) For a range of Y values below Y = 24.06 there are two periodic 
attractors, that represent clockwise and counterclockwise convec- 
tions. For Y slightly above 24.06, however, there are three attractors, 
one that is chaotic (shown in the phase space trajectory in Fig. Sc), 
whereas the other two attractors are the previously mentioned 
periodic attractors. The chaotic attractor comes into existence as Y 

increases through Y = 24.06 by conversion of a chaotic transient. 
Figure 9d shows an orbit in phase space executing a chaotic 
transient before settling down to its final resting place at  one of the 
periodic attractors. Note the similarity of the chaotic transient 
trajectory in Fig. 9d with the chaotic trajectory in Fig. 9c. 

The various routes to chaos have also received exhaustive experi- 
mental support. For instance, period-doubling cascades have been 
observed in the Rayleigh-Benard convection (22, 23), in nonlinear 
circuits (24), and in lasers (2.5); intermittency has been observed in 
the Rayleigh-Benard convection (26) and in the Belousov-Zhabo- 
tinsky reaction (27); and crises have been observed in nonlinear 
circuits (28-301, in the Josephson junction (31), and in lasers (32). 

Finally, we note that period doubling, intermittency, and crises 
do not exhaust the possible list of routes to chaos. (Indeed, the 
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routes are not all known.) In particular, chaotic onsets involving 
quasiperiodicity have not been discussed here (9, 16, 18). 

Universality 
Universality refers to the fact that systems behave in certain 

quantitative ways that depend not on the detailed physics or model 
description but rather only on some general properties of the 
system. Universality has been examined by renormalization group 
(33) techniques developed for the study of critical phenomena in 
condensed matter physics. In the context of dynamics, Feigenbaum 
(13) was the first to apply these ideas, and he has extensively 
developed them, particularly for period doubling for dssipative 
systems. [See (17) for a collection of papers on universality in 
nonlinear dynamics.] For period doubling in dissipative systems, 
results have been obtained on the scaling behavior of power spectra 
for time series of the dynamical process ( 3 4 ,  on the effect of noise 
on period doubling (35), and on the dependence of the Lyapunov 
exponent (36) on a system parameter. Applications of the renormali- 
zation group have also been made to intermittency (19,37), and the 
breakdown of quasi periodicity in dissipative (18) and conservative 
(38) systems. 

As examples, two "universal" results can be stated within the 
context of the bifurcation diagrams (Fig. 8, a and b). Let C,, denote 
the value of C at which a period 2" cycle period doubles to become a 
period 2" cycle. Then, for the bifurcation diagram in Fig. 8a, one 
obtains 

= 4.669201 lim GI - Cn-l 
C n + l  - cn n -m 

The result given in Eq. 12 is not restricted to the quadratic map. In 
fact, it applies to a broad class of systems that undergo period 
doubling cascades (13, 39). In practice such cascades are very 
common, and the associated universal numbers are observed to be 
well approximated by means of fairly low order bifurcations (for 
example, n = 2,3,4). This scaling behavior has been observed in 

636 

many experiments, including ones on fluids, nonlinear circuits, laser 
systems, and so forth. Although universality arguments do not 
explain why cascades must exist, such explanations are available from 
bifurcation theory (40). 

Figure 8b shows the period-three window within the chaotic 
range of the quadratic map. As already mentioned, there are an 
infinite number of such periodic windows. [In fact, they are 
generally believed to be dense in the chaotic range. For example, if k 
is prime, there are (2k - 2)i(2k) period-k windows.] Let CJk) and 
C,(k) denote the upper and lower values of C bounding the period-k 
window and let CJk)  denote the value of C at which the period-k 
attractor bifurcates to period 2k. Then we have that, for typical k 
windows (41). 

In fact, even for the k = 3 window (Fig. 8b) the 914 value is closely 
approximated (it is 9i4 - 0.074 . . .). This result is universal for 
one-dimensional maps (and possibly more generally for any chaotic 
dynamical process) with windows. 

Fractal Basin Boundaries 
In addition to chaotic attractors, there can be sets in phase space 

on which orbits are chaotic but for which points near the set move 
away from the set. That is, they are repelled. Nevertheless, such 
chaotic repellers can still have important macroscopically observable 
effects, and we consider one such effect (42, 43) in this section. 

Typical nonlinear dynamical systems may have more than one 
time-asymptotic final state (attractor), and it is important to consid- 
er the extent to which uncertainty in initial conditions leads to 
uncertainty in the final state. Consider the simple two-dimensional 
phase space diagram schematically depicted in Fig. 10. There are 
two attractors denoted A and B. Initial conditions on one side of the 
boundary, 2, eventually asymptotically approach B; those on the 
other side of Z eventually go to A. The region to the left or right of 
Z is the basin of attraction for attractor A or B, respectively, and Z is 
the basin boundary. If the initial conditions are uncertain by an 
amount E, then for those initial conditions within E of the boundary 
we cannot say a priori to which attractor the orbit eventually tends. 

a b 

+Chaotic Oscillation-/-Decay- 
d 

Fig. 9. Intermittency, crisis, and period doubling in continuous time 
systems. Intermittency in the Lorenz equations (a) r = 166.0; (b) 
r = 166.2. Crisis transition to a chaotic attractor in the Lorenz equations: 
(c) r = 28; (d) r = 22. 
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Fig. 10. A region of phase space divided by 
the basin boundary Z: into basins of attraction 
for the two attractors A and €3. Points 1 and 2 
arc initial conditions with error E .  

For example, in Fig. 10, points 1 and 2 are initial conditions with an 
uncertainty E. The orbit generated by initial condition 1 is attracted 
to attractor R. Initial condition 2, however, is uncertain in the sense 
that the orbit generated by 2 may be attracted either to A or B. In 
particular, consider the fraction of the uncertain phase space volume 
within the rectangle shown and denote this fractionf For the case 
shown in Fig. 10, we clearly havef- E. The main point we wish to 
make in what follows is that, from the point of view of prediction, 
much worse scalings o f f  with E frequently occur in nonlinear 
dynamics. Namely, the fraction can scale as 

f- E“ (14) 
with the “uncertainty exponent” a satisfying a < 1 (42, 43). In fact, 
a << 1 is fairly common. In such a case, a substantial reduction in 
the initial condition uncertainty, E, yields only a relatively small 
decrease in the uncertainty of the final state as measured byf: 

Although a is equal to unity for simple basin boundaries, such as 
that depicted in Fig. 10, boundaries with noninteger (fractal) 
dimension also occur. We use here the capacity definition of 
dimension, Eq. 1. In general, since the basin boundary divides the 
phase space, its dimension d must satistji d 2 D - 1, where L) is the 
dimension of the phase space. It can be proven that the following 
relation between the index a and the basin boundary dimension 
holds (42, 43) 

a = D - d  (15) 

For a simple bounddry, such as that depicted in Fig. 10, we have 
d = D - 1, and Eq. 15 then gives a = 1, as expected, For a fractal 
basin boundary, d > D - 1, and Eq. 15 gives a < 1. 

We now illustrate the above with a concrete example. Consider 
the forced damped pendulum as given by Eq. 4. For parameter 
values v = 0.2, wo = 1.0, w = 1.0, andf= 2.0, we find numerically 
that the only attractors in the surface of section ( 0 ,  d0idt) are the 
fixed points (-0.477, -0.609) and (-0.471, 2.037). They repre- 
sent solutions with average counterclockwise and clockwise rotation 
at the period of the forcing. The cover shows a computer-generated 
picture of the basins of attraction for the two fixed point attractors. 
Each initial condition in a 1024 by 1024 point grid is integrated 
until it is close to one of the two attractors (typically 100 cycles). If 
an orbit goes to the attractor at 0 = -0.477, a blue dot is plotted at 
the corresponding initial condition. If the orbit goes to the other 
attractor, a red dot is plotted. Thus the blue and red regions are 
essentially pictures of the basins of attraction for the two attractors 
to the accuracy of the grid of the computer plotter. Fine-scale 
structure in the basins of attraction is evident. This is a consequence 
of the Cantor-set nature of the basin boundary. In fact, magnifica- 
tions ofthe basin boundary show that, as we examine it on a smaller 
and smaller scale, it continues to have structure. 

We now wish to explore the consequences for prediction of this 
infinitely fine-scaled structure. To do this, consider an initial 
condition (0, deldr). What is the effect of a small change E in the 0- 
coordinate? Thus we integrate the forced pendulum equation with 
the initial conditions (0 ,  deldt), ( 0 ,  + E), and (0, d0idt - E) 
until they approach one of the attractors. If either or both of the 
perturbed initial conditions yield orbits that do not approach the 
same attractor as the unperturbed initial condtion, we say that ( 0 ,  
deldt) is uncertain. Now we randomly choose a large number of 
initial conditions and let f denote the fraction of these that we find 
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to be uncertain. As a result of these calculations, we find thatf - 
where & -- 0.275 ? 0.005, If we assume thatf, determined in the 
way stated above, is approximately proportional tof [there is some 
support for this conjecture from theoretical work ( # ) I ,  then a = &. 
Thus, from Eq. 15, the dimension of the basin boundary is 
d = 1.725 * 0.005, We conclude, from Eq. 14, that in this case if 
we are to gain a factor of 2 in the ability to predict the asymptotic 
final state of the system, it is necessary to increase the accuracy in the 
measurement of the initial conditions by a factor substantially 
greater than 2 (namely by 2’” 275 10). Hence, fractal basin 
boundaries (a < 1) represent an obstruction to predictability in 
nonlinear dynamics. 

Some representative works on fractal basin boundaries, including 
applications, are listed in ( 4 2 4 3 .  Notable basic questions that have 
recently been answered are the following: 

1) How does a nonfractal basin boundary become a fractal basin 
boundary as a parameter of the system is varied (45)? This question 
is similar, in spirit, to the question of how chaotic attractors come 
about. 

2) Can fractal basin boundaries have different dimension values in 
different regions of the boundar)., and what boundary structures 
lead to this situation? This question is addressed in (46) where it is 
shown that regions of dfferent dimension can be intertwined on an 
arbitrarily fine scale. 

3) What are the effects of a fractal basin boundary when the 
system is subject to noise? This has been addressed in the Josephson 
junction experiments of (31). 

Conclusion 
Chaotic nonlinear dynamics is a vigorous, rapidlv expanding field. 

Many important future applications are to  be expected in a variety of 
areas. In addition to its practical aspects, the field also has funda- 
mental implications. Accordng to Laplace, determination of the 
future depends only on the present state. Chaos adds a basic new 
aspect to this rule: small errors in our knowledge can grow 
exponentially with time, thus malung the long-term prediction of 
the hture  impossible. 

Although the field has advanced at a great rate in recent years; 
there is still a wealth of challenging fundamental questions that have 
yet to be adequately dealt with. For example, most concepts 
developed so far have been discovered in what are effectively low- 
dimensional systems; what undscovered important phenomena will 
appear only in higher dmensions? Why are transiently chaotic 
motions so prevalent in higher dimensions? In what ways is it 
possible to use the dimension of a chaotic attractor to determine the 
chmension of the phase space necessary to describe the dynamics? 
Can renormalization group techniques be extended past the border- 
line of chaos into the strongly chaotic regime? These are only a few 
questions. There are many more, and probably the most important 
questions are those that have not yet been asked. 
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Nonlinear forecasting as a way of 
distinguishing chaos from 
measurement error in time series 
George Sugihara* & Robert M. Mayt 
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An approach is presented for making short-term 
predictions about the trajectories of chaotic 
dynamical systems. The method is applied to data 
on measles, chickenpox, and marine phytoplankton 
populations, to show how apparent noise associ- 
ated with deterministic chaos can be distinguished 
from sampling error and other sources of externally 
induced environmental noise. 
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FIG. 1 a,Time series of 1,000 points (which in many ways is indistinguishable 
from white noise) generated by taking first-differences, A ,  =xt+? - x t ,  of 
the tent map: xr, ,=2x, for 0 . 5 > x r > 0  ~ , + ~ = 2 - 2 x ,  for 1 > x r > 0 . 5 .  b, 
Predicted values two steps into the future (T, =2) versus observed values 
for the tent delta time series depicted in a. Specifically, the first 500 points 
in the series were used to generate a library of patterns, which were then 
used as a basis for making predictions for each of the second 500 points. 
As described in the text, the predictions were made using a simplex 
projection method, and in this figure the embedding dimension and lag time 
are E = 3 and T = 1. respectively. Here the coefficient of correlation between 
predicted and actual values is p =0.997 (N=500). For comparison, we note 
that the corresponding correlation coefficient obtained using the first half 
of the series to predict the second half with an autoregressive linear model 

TWO sources of uncertainty in forecasting the motion of natural 
dynamical systems, such as the annual densities of plant or 
animal populations, are the errors and fluctuations associated 
with making measurements (for example, sampling errors in 
estimating sizes, or fluctuations associated with unpredictable 
environmental changes from year to year), and the complexity 
of the dynamics themselves (where deterministic dynamics can 
easily lead to chaotic trajectories). 

Here we combine some new ideas with previously developed 
techniques 1-7.16.24-261 , to make short-term predictions that are 
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(where the predictions are based on the weighted average of three linear 
maps, one for each of the three different s-values that give the best results 
in such a linear scheme) is p=0.04. c, Exactly as for Fig. b, except here the 
predictions are five time steps into the future (T, =5) .  The correlation 
coefficient between predicted and actual values is now p =0.89 (N = 500). 
d, Summary of the trend between b and c, by showing p between predicted 
and observed values in the second half (second 500 points) of the time 
series of a, as a function of 7,. As in b and c, the simplex projection method 
here uses E = 3  and ~ = 1 .  That prediction accuracy (as measured by the 
coefficient of correlation between predicted and observed values) falls as 
predictions extend further into the future is a characteristic signature of a 
chaotic attractor. 
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based on a librar) of past patterns in a time series'.  By comparing 
the predicted and  actual trajectories. we can make tentative 
distinctions between dynamical chaos and  measurement error: 
for a chaotic time series the accuracy of the nonlinear forecast 
falls off with increasing prediction-time interval ( a t  a rate which 
gives an estimate of the Lyapunov exponent').  whereas lor  
uncorrelated noiae. the forecasting accuracy is roughly indepen- 
dent of prediction interval. For a relatively short time series. 
distinguishing between autocorrelated noise and  chaos is more 
difficult; we suggest a way of distinguishing such 'coloured' 
noise from chaos in our  scheme. but queations remain, at least 
for time series of tinite length. 

The method aI\o provides a n  estimate of the number ot' 
dimensions. o r  'active variables', of the attractor underlying a 
time aeries that is identified as  chaotic. Unlike many current 
dpproache\ to this problem ( for  example. that of Crassberger 
and Procaccia'i. our  method does not require a large number 
of data points, but seems to be useful when the observed time 
series has relatilely few points ( a s  is the case in essentiall? ; i l l  

ecological and epidemiological data  sets) .  

Forecasting for a chaotic time series 
HeloM, we outline the method and  show how i t  works by applh- 
ing i t  to a chaotic time series generated artificially from the 
deterministic 'tent map'. We then apply it to actual data  on  
measles and chickenpox in human populations (which ha \  e 
been previously analysed using different techniques"~")  and  on  
diatom populations. We conclude that the method ma! be 
capable of distinguishing chaos from measurement error e \en  
in {uch relaticely 5hort runs of real data. 

As an example of the difficulties in short-range Forecasting, 
we consider the chaotic time series shown in Fig. l a .  This time 
series was generated from the first-difference transformation 
( . v , ,  I ~- v, ) on the deterministic tent map or  triangular 'return 
map' (described in detail in the legend to Fig. l a ) .  Here a n d  
elsewhere is this report, we first-difference the data  partly to  
give greater density in phase space to such chaotic attractors as  
may exist, and partly to clarify nonlinearities by reducing the 
effects of any short-term linear autocorrelations. It should be 
noted, however, that both in our  artificial examples and  in our  
later analysis of real data, we obtain essentially the same results 
il'we work with the raw time series (without first-differencing). 
With the exception of a slight negative correlation between 
immediately adjacent values, the sequence in Fig. l a  is uncorre- 
lated. and is in many ways indistinguishable from white noise: 
the null hypothesis of a flat Fourier spectrum cannot  be rejected 
using Hartlett's Kolmogorov-Smirnov test, with P = 0.85. 
Because nonadjacent values in the time series are  completely 
uncorrelated. standard statistical methods ( that  is, linear 
autoregression i cannot be used to generate predictions two or  
more steps into the future that are  significantly better than the 
mean ia lue  ( tha t  is. zero) for the series. 

Figure I h and c show the results of local forecasting with the 
above data. The basic idea here, as outlined below, i s  that i l  
deterministic laws govern the system, then, even if the dynamical 
hehaviour is chaotic, the future may to some extent he predicted 
from the heh;i\iour of past values that are  similar to those o f  
the present. 

Specificall!, we first choose an 'embedding dimension', E. 
and then use lagged coordinates to represent each lagged 
sequence o f  data points { x l ,  .Y,- :, as  a point 
in this E-dimensional space; for this example we choose T = 1. 
hut the results d o  not seem to be very sensitive to  the value of 
T, provided that i t  is not largei'.". For our  original time series, 
shown in Fig. la ,  each sequence for which we wish to make a 
prediction-each 'predictee'-is now to be regarded as  an E- 
dimensional point, comprising the present value a n d  the E - l 
previous values each separated by one  lag time T. We now locate 
all nearby E-dimensional points in the state space, a n d  choose 
a minimal neighhourhood defined to be such that the predictee 
is contained within the smallest simplex ( the  simplex with 

, . . . , x ,  ( b  

minimum diameter)  I'ormed from its E + I closeht neighhours; 
a simplex containing E +  1 vertices (neighbours)  is the smallest 
simplex that can contain a n  E-dimensional point as  an interior 
point ( f o r  points o n  the boundary, we use a lower-dimensional 
simplex of nearest neighbours). The prediction is now obtained 
by projecting the domain of the simplex into its range, that is 
by keeping track of where the points in the simplex end up  after 
p time steps. To obtain the predicted value, we compute where 
the original predictee has moved within the range of this simplex, 
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FIG 2 a Solid line shows p between predicted and observed values for the 
second half of the time series defined in b (which is in fact a sine wave 
with additive noise) a s  a function of 7, As discussed in the text the accuracy 
of the prediction a s  measured by p shows no systematic dependence on 
7, By contrast the time series shown in c (which is the s u m  of two separate 
tent map series) does show the decrease in p with increasing To a s  
illustrated by the dashed line that is characteristic of a chaotic sequence 
Both curves are based on the simplex methods described in the text with 
E = 3  and ~ = 1  b First 150 points in the time series generated by taking 
discrete points on a sine wave with unit amplitude ( x ,  =sin (0 5 t ) )  and adding 
a random variable chosen (independently at each step) uniformly from the 
interval [ -0 5 0 51 That is the series is generated a s  a sine wave +50% 
noise c Time series illustrated here is generated by adding together two 
independent tent map sequences 
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giving exponential weight to its original distances from the 
relevant neighbours. This is a nonparametric method, which 
uses no prior information about the model used to generate the 
time series, only the information in the output itself. It should 
apply to any stationary or quasi-ergodic dynamic process, 
including chaos. This method is a simpler variant of several 
more complicated techniques explored recently by Farmer and 
Sidorowich3 and by Casdagli'. 

Figure 1 b compares predicted with actual results, two time 
steps into the future. Figure l r  makes the same comparison, 
but at five time steps into the future. There is obviously more 
scatter in Fig. 1 c than in Fig. 1 b. Figure 1 d quantifies how error 
increases as we predict further into the future in this example, 
by plotting the conventional statistical coefficient of correlation, 
p, between predicted and observed values as a function of the 
prediction-time interval, q, (or the number of time steps into 
the future, p ). Such decrease in the correlation coefficient with 
increasing prediction time is a characteristic feature of chaos 
(or equivalently, of the presence of a positive Lyapunov 
exponent, with the magnitude of the exponent related to the 
rate of decrease of p with T,,). This property is noteworthy, 
because i t  indicates a simple way to differentiate additive noise 
from deterministic chaos: predictions with additive noise that 
is uncorrelated (in the first-differences) will seem to have a fixed 
amount of error, regardless of how far, or close, into the future 
one tries to project, whereas predictions with deterministic chaos 
will tend to deteriorate as one tries to forecast further into the 
future. Farmer and Sidorowich'.'' have derived asymptotic 
results (for very long time series, N >> 1)  that describe how this 
error typically propagates, over time, in simple chaotic systems. 
The standard correlation coefficient is one of several alternative 
measures of the agreement between predicted and observed 
values; results essentially identical to those recorded in Figs 1-6 
can be obtained with other measures (such as the mean squared 
difference between predicted and observed values as a ratio to 
the mean squared error). 

Forecasting with uncorrelated noise 
Figure 2n (solid line) shows that, indeed, this signature of p 
decreasing with T, does not arise when the erratic time series 
is in fact a noisy limit cycle. Here we have uncorrelated additive 
noise superimposed on a sine wave (Fig. 2 6 ) .  Such uncorrelated 
noise is reckoned to be characteristic of sampling variation. 
Here the error remains constant as the simplex is projected 
further into the future; past sequences of roulette-wheel numbers 
that are similar to present ones tell as much or little about the 
next spin as the next hundredth spin. By contrast, the dashed 
line in Fig. 2a represents p as a function of T,,, for a chaotic 
sequence generated as the sum of two independent runs of tent 
map; that is, for the time series illustrated in Fig. 2c. Although 
the two time series in Fig. 2b and Fig. 2c can both look like the 
sample functions of some random process, the characteristic 
signatures in Fig. 2a distinguish the deterministic chaos in Fig. 
2c  from the additive noise in Fig. 2b. 

The embedding dimension 
The predictions in Figs 1 and 2 are based on an embedding 
dimension of E = 3 .  The results are, however, sensitive to the 
choice of €. Figure 3a compares predicted and actual results 
for the tent map two time steps ahead (T,, =2), as in Fig. l b ,  
except that now E = 10 (versus E = 3 in Fig. l b ) .  Clearly the 
predictions are less accurate with this higher embedding 
dimension. More generally, Fig. 3 b shows p between predicted 
and actual results one time step into the future ( Tp = 1 )  as a 
function of E, for two different choices of the lag time ( T = 1 
and T = 2). It may seem surprising that having potentially more 
information-more data summarized in each €-dimensional 
point, and a higher-dimensional simplex of neighbours of the 
predictee-reduces the accuracy of the predictions; in this 
respect, these results differ from results reported by Farmer and 
Sidorowich for parametric forecasting involving linear interpo- 
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FIG. 3 a, Similar to Fig. 16. this figure shows predictions one time step into 
the future (l,=l) versus observed values, for the second 500 points in 
the tent map time series of Fig l a ,  with the difference that here we used 
an embedding dimension € = I 0  (in contrast to E = 3  in Fig. I b ;  the lag time 
remains unchanged at 7=1) .  As discussed in the text, the accuracy of the 
prediction deteriorates as E gets too large p =0.25, N = 500) b, Correlation 
coefficient between predicted and observed results, p, is shown as a function 
of E for predictions one time step into the future ( lp = 1). The relationship 
is shown for ~ = l  and ~ = 2 .  The figure indicates how such empirical studies 
of the relation between p and E may be used to assess the optimal E. 

lation to construct local polynomial maps'. We think this effect 
is caused by contamination of nearby points in the higher- 
dimensional embeddings with points whose earlier coordinates 
are close, but whose recent (and more relevant) coordinates are 
distant. If this is so, our method may have additional applica- 
tions as a trial-and-error method of computing an upper-bound 
on the embedding dimension, and thence on the dimensionality 
of the attractor (see also refs 2, 6, 7). 

Problems and other approaches 
We have applied these ideas to a variety of other 'toy models', 
including the quadratic map along with other first-order 
difference equations and time series obtained by taking points 
at discrete time intervals from continuous chaotic systems such 
as those of the Lorenz and Rossler models (in which the chaotic 
orbits are generated by three coupled, nonlinear differential 
equations). The results for p as a function of T,, are in all cases 
very similar to those shown in Fig. Id. Even in more complicated 
cases, such as those involving the superposition of different 
chaotic maps, we observe a decline in p versus T,,; here, however, 
the signature can show a step pattern, with each step correspond- 
ing to the dominant Lyapunov exponent for each map. 

So far, we have compared relationships between p and T,, for 
chaotic time series with the corresponding relations for white 
noise. More problematic, however, is the comparison with p -  T,, 
relationships generated by coloured noise spectra, in which there 
are significant short-term autocorrelations, although not long- 



10.4 Nonlinear Forecasting as a Way of Distinguishing Chaos . . . 121 

term ones. Such autocorrelated noise can clearly lead to correla- 
tions, p, between predicted and observed values that decrease 
as T,, lengthens. Indeed, it seems likely that a specific pattern 
of autocorrelations could be hand-tailored, to mimic any given 
relationship between p and T,, (such as that shown in Fig. Id)  
obtained from a finite time series. We conjecture, however, that 
such an artifically designed pattern of autocorrelation would in 
general give a flatter p-versus-E relationship than those of simple 
chaotic time series corresponding to low-dimensional attractors 
(for example, see Fig. 3h) .  Working from the scaling relations 
for error versus T,, in chaotic systems'.'', Farmer (personal 
communication) has indeed suggested that asymptotically 
(for very large N ) ,  the p-T, ,  relationships generated by 
autocorrelated noise may characteristically scale differently from 
those generated by deterministic chaos. Although we have no 
solution to this central problem-which ultimately may not have 
any general solution, at least for time series of the sizes found 
in population biology-we suggest that an observed time series 
may tentatively be regarded as deterministically chaotic if, in 
addition to a decaying p-T,, signature, the correlation, p, 
between predicted and observed values obtained by our methods 

is significantly better than the corresponding correlation 
coefficient obtained by the best-fitting autoregressive linear pre- 
dictor (see also, ref. 16). For the tent map, as detailed in the 
legend to Fig. 1, b and c, our nonlinear method gives p values 
significantly better than those from autoregressive linear models 
(composed of the weighted average of the three best linear 
maps). 

Most previous work applying nonlinear theory to experi- 
mental data begins with some estimate of the dimension of the 
underlying attractor'-'. The usual procedure (for exceptions, 
see refs 2, 6 ,  7, 25) is to construct a state-space embedding for 
the time series, and then to calculate the dimension of the 
putative attractor using some variant of the Grassberger- 
Procaccia algorithm'. A correlation integral is calculated that is 
essentially the number of points in E space separated by a 
distance less than 1, and the power-law behaviour of this correla- 
tion integral ( I " )  is then used to estimate the dimension, D, of 
the attractor ( D a  v). This dimension is presumed to give a 
measure of the effective number of degrees of freedom or 'active 
modes' of the system. An upper bound on a minimal embedding 
dimension (which can be exceeded when the axes of the embed- 
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FIG. 4 a, Time series generated by taking first differences, xr+l  - x r ,  of the 
monthly number of cases of measles reported in New York City between 
1928 and 1972 (the first 532 points in the sequence shown here). After 
1963, the introduction of immunization against measles had a qualitative 
effect on the dynamics of infection: this can be seen in the later part of 
the sequence illustrated here. b. Using the methods described earlier, the 
first part of the series in Fig. 4a (216 points, 1928 to 1946)) was used to 
construct a library of past patterns, which were then used as a basis for 
predicting forward from each point in the second part of the series, from 
1946 to 1963. Predicted and observed values are shown here for predictions 
one time step into the future (T,=l) ,  using E = 6  and r = l .  The correlation 
coefficient between predicted and observed values is p =0.85 ( P i  
for N=216). For comparison, the corresponding prediction based on an 
autoregressive linear model (composed of five optimal linear maps, compare 
Fig. l b )  gives p =0.72 (which is significantly different from p=O.85 at the 

P i  0.0005 level). c, As in Fig. 30. p between predicted and observed results, 
is shown as a function of E (for T p = l  and ~=1). This  figure indicates an 
optimal embedding dimension of E - 5-7, corresponding to a chaotic attrac- 
tor with dimension 2-3. d, Here p, between predicted and observed results 
for measles, is shown as a function of To (for E=6  and ~=l). For the 
points connected by the solid lines, the predictions are for the second half 
of the time series (based on a library of patterns compiled from the first 
half). For the points connected by the dashed lines, the forecasts and the 
library of patterns span the same time period (the first half of the data). 
The similarity between solid and dashed curves indicates that secular trends 
in underlying parameters do not introduce significant complications here. 
The overall decline in prediction accuracy with increasing time into the future 
is, as discussed in the text, a signature of chaotic dynamics as distinct from 
uncorrelated additive noise. 
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ding are not truly orthogonal) is Em,, < 2 D +  1,  where D is the 
attractor d i m e n ~ i o n ~ . ' ~ .  The scaling regions used to estimate 
power laws by these methods are typically small and, as a 
consequence, such calculations of dimension involve only a 
small fraction of the points in the series (that is, they involve 
only a small subset of pairs of points in the state space). In 
other words, the standard methods discard much of the informa- 
tion in a time series, which, because many natural time series 
are of limited size, can be a serious problem. Furthermore, the 
Grassberger-Procaccia and related methods are somewhat more 
qualitative, requiring subjective judgement about whether there 
is an attractor of given dimensions. Prediction methods, by 
contrast, have the advantage that standard statistical criteria can 
be used to evaluate the significance of the correlation between 
predicted and observed values. As Farmer and Sidorowich3.l6, 
and Casdagli', have also emphasized, prediction methods 
should provide a more stringent test of underlying determinism 
in situations of given complexity. Prediction is, after all, the sine 
qua non of determinism. 

Time series from the natural world 
Measles. For reported cases of measles in New York City, there 
is a monthly time series extending from 1928 (ref. 17). After 
1963, immunization began to alter the intrinsic dynamics of this 
system, and so we use only the data from 1928 to 1963 ( N  = 432). 
These particular data have received a lot of attention recently, 
and they are the focus of a controversy about whether the 
dynamics reflect a noisy limit cycle' or low-dimensional chaos 
superimposed on a seasonal c y ~ l e ' ~ - ' ~ .  In particular, the data 
have been carefully studied by Schaffer and  other^'^-'^,^', who 

have tested for low-dimensional chaos using a variety of 
methods, including the Grassberger-Procaccia algorithm", esti- 
mation of Lyapunov  exponent^'^, reconstruction of Poincare 
return maps"*", and model  simulation^'^^'^. Although it is not 
claimed that any of these tests are individually conclusive, 
together they support the hypothesis that the measles data are 
described by a two- to three-dimensional chaotic attractor. 

Figure 4a shows the time series obtained by taking first 
differences, X, , ,  - X , ,  of these data. As discussed above, the 
first difference was taken to 'whiten' the series (that is, reduce 
autocorrelation) and to diminish any signals associated with 
simple cycles (a possibility raised by proponents of the additive 
noise hypothesis'). We then generated our predictions by using 
the first half of the series (216 points) to construct an ensemble 
of points in an  E-dimensional state space, that is, to construct 
a library of past patterns. The resulting information was then 
used to predict the remaining 216 values in the series, along the 
lines described above, for each chosen value of E. Figure 46, 
for example, compares predicted and observed results, one time 
step into the future (T ,  = 1 month), with E = 6. Figure 4c shows 
p between predicted and observed results as a function of E 
for T, = 1. Taking the optimal embedding dimension to be that 
yielding the highest correlation coefficient (or least error) 
between prediction and observation in one time step, it is seen 
from Fig. 4c that E = 5 - 7 .  This accords with previous 
 estimate^'^-'^ made using various other methods, and is con- 
sistent with the finding of an attractor with dimension D = 2-3. 

The points joined by the solid lines in Fig. 4d show p as a 
function of T, (for E = 6).  Prediction error seems to propagate 
in a manner consistent with chaotic dynamics. This result, in 
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FIG. 5 a, As for Fig. 4a. except the time series comes from taking first- 
differences of the monthly numbers of reported cases of chickenpox in New 
York City from 1928 to 1972. b, As in Fig. 4b, predicted and observed 
numbers of cases of chickenpox are compared, the predictions being one 
time step into the future, T,=1 (here, E = 5  and ~=1). The correlation 
coefficient between predicted and observed values is p=0.82 an 
autoregressive linear model alternatively gives predictions which have p = 
0.84. In contrast to Fig. 46 for measles, here there is no significant difference 
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between our prediction technique and standard linear autoregressive 
methods. c, Correlation coefficient between predicted and observed results 
for chickenpox, p, shown as a function of E for predictions one time step 
into the future (T ,= l  and ~=1). d, Compare with Fig. 4 d  p, between 
predicted and observed values, as a function of T, (with E =5 and ~ = l )  is 
shown. Here the lack of dependence of p on Tp, which is in marked contrast 
with the pattern for measles in Fig. 4d, indicates pure additive noise 
(superimposed on a basic seasonal cycle). 
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combination with the significantly better performance ( P < 
0.0005) of our nonlinear predictor as compared with an optimal 
linear autoregressive model (see legend to Fig. 4b)  agrees with 
the conclusion that the noisy dynamics shown in Fig. 4a are, 
i n  fact, deterministic chaos"' ' ' .  

For data from the natural world, as distinct from artificial 
models, physical or biological parameters, or both, can undergo 
systematic changes over time. In this event, libraries of past 
patterns can be of dubious relevance to an altered present and 
even-more-different future. In  a different context, there is the 
example of how secular trends in environmental variables can 
complicate an analysis of patterns of fluctuation in the abund- 
ance of bird speciesix."'. We can gauge the extent to which 
secular trends might confound our forecasting methods in the 
following way. Rather than using the first half of the time series 
to compile the library ofpatterns, and the second halfto compute 
correlations between predictions and observations, we instead 
investigate the case in which the library and forecasts span the 
same time period. Therefore we focus our predictions in the 
first half of the series, from which the library was drawn. To 
avoid redundancy, however, between our forecasts and the 
model, we sequentially exclude points from the library that are 
in the neighbourhood of each predictee (specifically, the ET 
points preceding and following each forecast). The points con- 

nected by the dashed lines in Fig. 4d show the p versus Tp 
relationship that results from treating the measles data in this 
way (again with E =6) .  The fairly close agreement between 
these results (for which the library of patterns and the forecasts 
span the same time period) and those of the simpler previous 
analysis (the solid line in Fig. 4 d )  indicates that within these 
time frames, secular trends in underlying parameters are not 
qualitatively important. 
Chickenpox. Figure 5a-d repeat the process just described for 
measles, but now for monthly records of cases of chickenpox 
in New York City from 1949 to 1972 (ref. 20). Figure 5a shows 
the time series of differences, X,,, - X , .  The 532 points in Fig. 
5a are divided into two halves, with the first half used to 
construct the library, on which predictions are made for the 
second 266 points. These predictions are compared with the 
actual data points, as shown for predictions one time step ahead 
(T,, = 1 month) in Fig. 56. In Fig. 5b, E = 5; Fig. 5c  shows that 
an optimum value of E, in the sense just defined, is about 5 to 
6. By contrast with Fig.4d for measles, p between predicted 
and observed results for chickenpox shows no dependence on 
T,,: one does as well at  predicting the incidence next year as 
next month. Moreover, the optimal linear autoregressive model 
performs as well as our nonlinear predictor. We take this to 
indicate that chickenpox has a strong annual cycle (as does 
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FIG. 6 a. Time series of first differences, x ,  - x , .  of the weekly numbers 
of diatoms in seawater samples taken at Scripps Pier, San Diego. from 1929 
to 1939 (N=830) b. Using the first half of the time series in a to construct 
a library of patterns, we use the simplex projection methods described in 
the text to predict one week ( T , = l )  into the future from each point in the 
second half of the series (N=415); here E=3. and ~ = 1 .  The correlation 
coefficient between predicted and observed values is p =0.42 ( P  < 
for N =415): the best autoregressive linear predictions (composed of three 
optimal linear maps) give p=O.13, which is significantly less than the 
nonlinear result ( P  0 0005) c, As in Figs 4c and 5c. p between predicted 
and observed values is shown as a function of the choice of E for predictions 
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two time steps into the future ( T p = 2  and ~ = 1 ) .  This figure indicates an 
optimal E of about 3, consistent with an attractor of dimension about 2. d, 
As in Figs 4d and 54 p is shown as a function of the T, (for E = 3  and 
T =I ) .  Here the correlation coefficient decreases with increasing prediction 
interval, in the manner characteristic of chaotic dynamics generated by a 
some low-dimensional attractor. That p is about 50% at best, however, 
indicates that roughly half the variance in the time series comes from 
additive noise. The dynamics of this system therefore seem to be intermedi- 
ate between those of measles (for which Fig. 4d indicates deterministically 
chaotic dynamics) and chickenpox (for which Fig. 5d indicates purely additive 
noise superimposed on a seasonal cycle). 



124 Part II Reprints 10 Chaos 

measles), with the fluctuations being additive noise (in contrast 
to measles, for which the fluctuations derive mainly from the 
dynamics). 

The contrast between measles and chickenpox can be 
explained on biological grounds2’. Measles has a fairly high 
‘basic reproductive rate’ ( R ,  = 10-20), and, after a brief interval 
of infectiousness, recovered individuals are immune and unin- 
fectious for life; these conditions tend to produce long-lasting 
‘interepidemic’ oscillations, with a period of about 2 years, even 
in the simplest models’’. This, in combination with seasonal 
patterns, makes it plausible that measles has complex dynamics. 
Chickenpox is less ‘highly reproductive’ (with Ro values of about 
8 to lo), and may recrudesce as shingles in later life; this makes 
for an infection less prone to show periodicities other than basic 
seasonal ones associated with schools opening an,d closing, and 
therefore indicates seasonal cycles with additive noise. Further- 
more, reporting was compulsory for measles but not for chicken- 
pox over the time period in question, which itself would be 
likely to make sampling error greater for chickenpox. Whatever 
the underlying biological explanation, the patterns in Figs 4d 
and 5d differ in much the same way as those illustrated in Fig. 
2a for the artificially generated time series of Fig. 2, a and b. 
Marine plankton. A time series is provided by Allen’s weekly 
record of marine planktonic diatoms gathered at  Scripps Pier, 
San Diego, between 1920 and 1939 ( N  = 830). With the excep- 
tion of the work of TontZ3, this collection of information has 
been little analysed, and not at all in the light of contemporary 
notions about nonlinear dynamics. The data comprise weekly 
totals of the numbers of individuals of all diatom species, tallied 
in daily seawater samples collected over -20 years. As for our 
analysis of the measles and chickenpox data above, we do  not 
‘smooth’ the diatom data in any of the usual ways, although we 
take first-differences for reasons stated earlier. The resulting 
time series is shown in Fig. 6a. 

The results of using the first half of the diatom series to predict 
the second half are shown in the usual way in Fig. 6b. Figure 
6c shows p between predicted and observed results looking one 
time step ahead (T ,  = l ) ,  as a function of E. The optimum 
embedding dimension seems to be about 3. This value for E is 
consistent with our independent analysis of the data using the 
Grassberger-Procaccia algorithm, which indicates that D = 2. 
Figure 6d shows p as a function of T, (for E = 3). The consistent 

decay in predictive power as one extrapolates further into the 
future is consistent with the dynamics of the diatom population 
being partly governed by a chaotic attractor. This view is suppor- 
ted by the significantly better fit of the nonlinear predictor as 
compared with the optimal linear autoregressive model ( P  < 
0.0005). We note, however, that deterministic chaos at best 
accounts for about 50% of the variance, with the rest presumably 
deriving from additive noise; the relatively low dimension of 
the attractor for diatoms compared with measles makes it plaus- 
ible that the noisier fit of predicted weekly fluctuations in 
diatoms, versus the predicted monthly fluctuations in measles, 
reflects a much higher sampling variance for diatoms than for 
reported measles cases. 

Conclusion 
The forecasting technique discussed here is phenomenological 
in that it attempts to assess the qualitative character of a system’s 
dynamics-and to make short-range predictions based on that 
understanding-without attempting to provide an understand- 
ing of the biological or physical mechanisms that ultimately 
govern the behaviour of the system. This often contrasts strongly 
with the laboratory and field-experiment approaches that are 
used to elucidate detailed mechanisms by, for example, many 
population biologists. The approach outlined here splits the 
time series into two parts, and makes inferences about the 
dynamical nature of the system by examining the way in which 
p (the correlation coefficient between predicted and observed 
results for the second part of the series) varies with prediction 
interval, Tp, and embedding dimension, E ;  given the low 
densities of most time series in population biology, we share 
Ruelle’sz8 lack of confidence in a direct assessment of the 
dimension of any putative attractor by Grassberger-Procaccia 
or other algorithms. Our approach works with artificially gener- 
ated time series (for which we know the actual dynamics, and 
the underlying mechanisms, by definition), and it seems to give 
sensible answers with the observed time series for measles, 
chickenpox and diatoms (deterministic chaos in one case, seas- 
onal cycles with additive noise in another, and a mixture of 
chaos and additive noise in the third). We hope to see the 
approach applied to other examples of noisy time series in 
population biology, and in other disciplines in which time series 
are typically sparse. 0 
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CONTROLLING 
CHAOS 

The extreme sensitivity and complex behavior that 
characterize chaotic systems prohibit long-range prediction of 

their behavior but paradoxically allow one to control them 
with tiny perturbations. 

Edward Ott and Mark Spano 

A violent order is disorder; and 
A great disorder is an  order. These 
Two things are one. 

-Wallace Stevens, Connoisseur of Chaos (1942) 

cientists in many fields are recognizing that the systems S they study often exhibit a type of time evolution known 
as chaos. Its hallmark is wild, unpredictable behavior, a 
state often perplexing and unwelcome to those who en- 
counter it. Indeed this highly structured and determinis- 
tic phenomenon was in the past frequently mistaken for 
noise and viewed as something to be avoided in most 
applications. Recently researchers have realized that 
chaos can actually be advantageous in many situations 
and that when it is unavoidably present, it can often be 
controlled to obtain desired results. In this article, we 
present some of the basic ideas behind the feedback control 
of chaos, revlew a few illustrative experimental results 
and assess the status and future promise of the fie1d.l 

Dynamical systems 
A dynamical. system is one whose evolution is determinis- 
tic in the sense that its future motion is determined by 
its current state and past history. The system may be as 
simple as a swinging pendulum or as complicated as a 
turbulent fluid. 

Figure 1 shows a simple mechanical system set up at 
the Naval Surface Warfare Center by William Ditto, now 
at the Georgia Institute of Technology, and his coworkers. 
The system consists of a magnetoelastic metal ribbon 
clamped at  its lower end. The Young’s modulus of the 
ribbon can be decreased by more than an order of mag- 
nitude by applying a magnetic field parallel to the ribbon, 
thereby causing it to buckle.2 This highly nonlinear sys- 
tem is placed in a vertical magnetic field of the form H(t) 
= Hdc +Ha,cos(2.rrft), where f is on the order of 1 hertz. 
The position of one point on the ribbon is monitored by 
an optical sensor located at a spot near the ribbon’s base. 
With appropriate choices of the dc and ac field amplitudes, 

EDWARD OTT zs a 

the temporal motion of this simple system is observed to 
be chaotic. Here time is a continuous variable t .  In other 
dynamical systems time can be a discrete integer-valued 
variable n. A continuous-time dynamical system like the 
ribbon can be represented by ordinary differential equa- 
tions. 

An example of a discrete-time dynamical system is a 
d-dimensional map, 

Y n + l =  G (Y,) ( 1) 

where y is d-dimensional. Given an  initial condition yo 
at time n = 0, the system state at time n = 1 is y1 = G(y,); 
at time n = 2, it is yz = G(y,); and so on. 

Physicists are used to  dealing with continuous-time 
systems. Newton’s equations of motion, Maxwell’s equa- 
tions and Schrodinger’s equation are all formulated in 
continuous time. However, continuous-time dynamical 
systems can often profitably be reduced to  discrete-time 
systems. 

For example, assume that we sample the state of the 
periodically driven magnetoelastic ribbon (figure 1) once 
every drive period-at the times t =T, 2T, 3T,.  . . ,nT, 
where T=l/f. Then y, denotes the system state at  time 
nT. Because the system is deterministic, the state at  time 
(n + 1)T is uniquely determined by the state at  time nT. 
That is, an equation of the form of equation 1 holds. It 
turns out to  be quite easy to do this sampling for driven 
experimental systems by strobing the experimental data 
acquisition a t  the drive frequency. 

In experiments it is sometimes difficult to measure 
the full state vector of the system. As an extreme exam- 
ple, assume that one can measure only a single scalar 
function of the system state. In this case, it  has been 
shown that a delay coordinate embedding provides a useful 
representation of the system state.3 For example, for a 
discrete-time system, if the observed scalar is w,, then 
the delay coordinate vector W, replaces the vector y, from 
equation 1, where 

The number of delays y should be large enough to 
reproduce the dynamics of the system. Essentially the 
information contained in a measurement of all of a sys- 
tem’s variables at a single time is reconstructed from 
measurements of a single variable at y different times. 

A common feature of (non-Hamiltonian) dynamical 
systems is the presence of “attractors.” If typical initial 
conditions located in some region of phase space (or a 
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delay coordinate embedding) approach a set of values 
asymptotically with time, we call that set the attractor. 
A chaotic attractor is a geometric object that is neither 
pointlike nor space filling. Chaotic attractors typically 
have fractal (noninteger) dimensions and so are often 
called strange attractors. Figure 2b shows a chaotic 
attractor (gray) from the magnetoelastic ribbon experi- 
ment pictured in figure 1. All initial conditions eventually 
evolve into motion confined to this set of points. 

Once on the attractor, the system state bounces 
around it ergodically. That is, the state eventually comes 
arbitrarily close to any point on the attracting set. Even 
when the actual state space dimension, (the dimensional- 
ity of y in equation 1) is large (or, as in the case of a 
spatially continuous system like the ribbon, infinite), the 
fractal dimension of the strange attractor is often fairly 
low (between 1 and 2 for the ribbon attractor in figure 
2b). For the most part, chaos control techniques have 
been formulated and implemented for low-dimensional 
strange attractors (attractor dimensions less than four or 
five), and we will limit our discussion to this situation. 

Sensitivity and orbit complexity 
The two most common ways of characterizing chaos are 
exponential sensitivity and orbit complexity. These are 
not independent properties, but rather two sides of the 
same chaos coin. Either may be viewed as a way of 
defining chaos. 

MAGNETOELASTIC 
RIBBON that undergoes 
chaotic motion. The 
10-cm-long metallic 
glass ribbon changes its 
Young’s modulus by 
more than an order of 
magnitude in response 
to an applied magnetic 
field. The related 
change in its stiffness 
causes it to buckle 
under the force of 
gravity. An optical 
sensor measures its 
position at a single 
point near its base once 
each drive period. 
FIGURE 1 

Exponential sensitivity refers to  the fact that if we 
consider two chaotic orbits initially displaced only slightly 
from each other, then the displacement between the two 
orbits grows exponentially with time. What might have 
been a very tiny separation between the orbits eventually 
becomes a large displacement (on the order of the attractor 
size). Thus small errors eventually defeat any attempt 
to predict the exact longtime evolution of a chaotic system. 

Orbit complexity means that many different kinds of 
motion are possible on a chaotic attractor. One manifestation 
of this is that chaotic attradors t y p i d y  have embedded 
within them an infinity of unstable periodic orbits. By a 
periodic orbit we mean an orbit that repeats itself aRer some 
characteristic time. The colored regions in figure 2b mark 
the location of periodic orbits on the attractor. In particular, 
an initial condition yo in the center of the green dots maps 
to a y1 located at the same point, y1 = yo, which maps to a 
y2 also at  the same point, yz  = yo; this point is a period-one 
orbit. An initial condition in the center of one of the red 
regions maps to the center of the other red region and then 
back to  the original red region; the orbit cycles repeatedly 
between the two red regions, which makes it a period-two 
orbit. The four blue regions in figure 2b show the location 
of a period-four orbit. 

The periodic orbits embedded in a chaotic attractor 
are all unstable in that if one displaces the system state 
slightly from a periodic orbit, this displacement grows 
exponentially in time. Thus periodic orbits are typically 
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CHAOTIC AND 
CONTROLLED MOTION of 

a magnetoelastic ribbon 
prone to chaotic motion. a: 

Position of a point on the 
ribbon, plotted as a time 
series. b: The same data 

plotted as a delay coordinate 
embedding using a delay of 
one drive period. The data 

in gray indicate chaotic 
motion; green, period-one 

control; red, period-two 
control; blue, period-four 

control. Note that because 
the period-four control is 

achieved by altering the 
control signal once every 
four driving periods, the 

sensitivity of the chaos to 
small perturbations 

(including noise) causes the 
data to become progressively 

more noisy, until it 
approaches the original 

unstable fixed point (lowest 
trace), where the correcting 

signal is applied anew. 
Effective higher-period 

control requires that the 
control signal be adjusted 

more often-every few drive 
periods. This is the case for 

the diode resonator 
(in figure 4). FIGURE 2 
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not observed in a free-running chaotic system. Very 
infrequently a chaotic orbit may, in its ergodic wandering, 
approach close to a given periodic orbit. If this happens, 
the orbit may approximately follow the periodic orbit for 
a few cycles, but it subsequently moves away, resuming 
its wandering over the chaotic attractor. 

Control based on unstable periodic orbits 
Both exponential sensitivity and orbit complexity provide 
points of view that are relevant to controlling the motion 
on a chaotic attractor. In most of what follows we will 
concentrate on orbit complexity-in particular, the pres- 
ence of embedded unstable periodic orbits. Later, when 
we briefly discuss the idea of targeting, exponential sen- 
sitivity will assume center stage. 

Because we wish to control the motion using only 
small perturbations, we do not expect to be able to create 
orbits very different from those already allowed by the 
dynamics on the strange attractor. Thus we will seek to 
exploit the already existing unstable periodic orbits em- 
bedded in the attractor. 

The approach is as f01lows:~ We first determine some 
of the low-period unstable orbits that are embedded in 

b I 

POSITION x , .~  (arbitrary units) 

the attractor. For each such orbit we determine the 
system performance that would result if that periodic orbit 
were actually followed by the system. (If we use a laser 
as an  example, the relevant measure of performance might 
be its output power at  a given wavelength.) Typically, 
some of the periodic orbits will yield improved performance 
compared to the free-running chaotic motion, and some 
will not. We tailor our small time-dependent controls in 
such a way as to stabilize one of the unstable periodic 
orbits that yields improved performance. 

Loosely speaking, we can think of the controls as 
small kicks that place the actual orbit back onto the 
desired unstable periodic orbit. We apply these kicks 
whenever we sense that the actual orbit has wandered 
slightly away from the desired orbit. This wandering 
might occur, for example, because the orbit is unstable 
and noise or some other perturbation is present. Because 
chaotic orbits are ergodic on the attractor, they eventually 
wander close to the desired periodic orbit and then because 
of this proximity, can be captured by a small control. Once 
captured, the required controls remain small-on the 
order of the inherent system noise. 

If chaos control is practical in a system, then the 
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presence of chaos can be an  advantage. Any one of a 
number of different orbits can be stabilized, and one can 
select the orbit that gives the best system performance. 
Thus we have the flexibility of easily switching the system 
behavior by controlling a different periodic orbit. On the 
other hand, if the attractor is not chaotic but is, say, 
periodic, then small perturbations typically can change 
the orbit only slightly. We are stuck with whatever 
system performance the stable periodic orbit gives, and 
we have no option for substantial improvement, short of 
making large alterations in the system. 

To be concrete, one might wish to build chaos into a 
system for the same reason that the newer “fly-by-wire’’ 
fighter planes are designed to  be unstable: The built-in 
instability gives the planes more maneuverability and lets 
them respond quickly to the pilot’s commands. In a 
similar fashion, building chaos into a system might provide 
it with more flexibility than would otherwise be possible. 

Methods for controlling chaos 
There are various methods by which one may control a 
chaotic system. One such method is based on the fact 
that the points on the attractor do not bounce around 
randomly, but instead approach and depart from the 
vicinity of unstable periodic orbits in a highly structured 
fashion. In a region near each periodic orbit, the system 
state point tends to move toward the periodic orbit from 
certain positions (stable manifolds) and to move away from 
the periodic orbit from other positions (unstable mani- 
folds). The exponentially increasing speed with which the 
state point moves in each direction is governed by the 

stable and unstable eigenvalues, respectively. 
For simplicity, consider a two-dimensional map that 

has one stable direction (implying an  eigenvalue with 
magnitude less than unity) and one unstable direction 
(with eigenvalue greater than unity). This situation is 
analogous to a ball rolling under the influence of gravity 
on a saddle-shaped surface. Chaos control reduces to 
finding a way to move this saddle so that the ball remains 
balanced on the saddle’s (unstable) equilibrium point. 

The procedure goes as follows (see figure 3): When 
a point begins to move away from the desired periodic 
orbit (the saddle’s equilibrium point) along the unstable 
manifold, we shift the saddle slightly (by perturbing some 
system parameter) so that the point now lies on the stable 
manifold. The natural motion of the system will now tend 
to  move it toward the unstable periodic point rather than 
away from it. In a perfect world we could turn off the 
perturbation when the system arrives at  the desired pe- 
riodic orbit. But small errors in our control calculations 
and the noise inherent in any experimental system will 
tend to knock the system off this desired orbit again, so 
we will repeat the previous step as needed to keep the 
system under control. 

An important point to remember is that this procedure 
does not require a model of the system. All that is needed 
is to determine experimentally the local geometry around 
the chosen unstable periodic point: the position of the 
saddle, the stable and unstable directions, the steepness 
of these directions (that is, the stable and unstable eigen- 
values) and, finally, the shift in the position of the saddle 
with a small change in some system parameter. As has 
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red indicate chaotic interludes; green and blue 
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been demonstrated in many cases, these can be deter- 
mined in real time during an  experiment. 

Real experiments are always subject to noise, both in 
the system itself and in the measurement process. As 
might be expected, the basic effect is that noise increases 
the minimum size of the control perturbations required 
for effective operation. 

Controlling chaos experimentally 
Chaos control techniques of the type just described have 
been implemented in a large number of experiments across 
a wide variety of fields. Here are a few representative 
examples. 

A simple mechanical system. As mentioned above, 
using discrete time measurements, a simple delay coordi- 
nate embedding was constructed for the experiment in 
figures 1 and 2 by plotting the current position of the 
ribbon against its position one drive cycle previously (q = 2 
in equation 2). The time evolution of the system reflected 
in this embedding was used to identify the stable and 
unstable manifolds. The application of small perturba- 
tions to the dc magnetic field, according to the scheme 
described above, controlled the system onto an unstable 
period-one motion embedded in the attractor. By embed- 
ding the data with delays of two, three, four or more drive 
cycles, orbits of higher period were also located. The same 
control technique was used to select out these higher 
period motions. 

Figure 2a shows the time series data moving from chaos 
to period-four control to period-one control to period-two 
control and so on, with short interludes of chaos between 
each instance of control. These interludes arise because of 
the necessity to wait for the ergodicity of the chaotic system 
to bring it from the vicinity of the previous control point to 
the neighborhood of the new control point. Such waiting 
times can be mitigated by employing a technique known as 
targeting, which we will describe later. 

Earle Hunt of Ohio University used 
modification of the method described above to control a 
driven, chaotic diode resonator c i r c ~ i t . ~  In this method, 
one periodically applies a control proportional to devia- 

Electronics. 

tions of the chaotic variable from a set point. The coef- 
ficient of proportionality is determined empirically by 
varying the control parameter until control is achieved. 
Although the choice of periodic orbits is less easily made, 
the method is simple, entails little overhead and enables 
control at  frequencies exceeding 50 kHz. As with the 
original control scheme, unstable periodic orbits may be 
stabilized with an extremely small feedback control. How- 
ever, if a slightly larger feedback signal is allowed, one 
may also stabilize orbits of very high periods. Figure 4a 
shows a delay coordinate embedding for Hunt's system 
when it oscillates chaotically, while figure 4b shows the 
same embedding during period-62 control. 

Lasers. Rajarshi Roy and his coworkers at  Georgia 
performed an  experiment of great practical interest.6 
They examined the output of a solid-state Nd-doped yt- 
trium-aluminum-garnet laser with a KTP frequency-dou- 
bling crystal in the laser cavity. As the pumping power 
of the laser was increased, the output became chaotic. 
The system was observed to undergo chaotic relaxation 
oscillations with a characteristic time scale of roughly 10 
microseconds. Using an embedding constructed with this 
natural time as the delay, the researchers were able to 
control the system. Figure 5a shows the laser intensity 
as a function of time during chaotic oscillation. The 
corresponding fast-Fourier transform is broad and of lower 
amplitude than that obtained during period-one control, 
as seen in figure 5b. We see that the output power at 
specific Fourier frequencies can be boosted significantly 
by these methods. 

Chemical systems. The oscillatory Belousov-Zhabot- 
insky chemical reaction becomes chaotic for suitable values 
of the flow rates of reactants into the reaction tank. The 
system may be monitored electrically by measuring the 
voltage of a bromide electrode placed in the tank. Ken 
Showalter and his group at West Virginia University were 
able to stabilize both period-one and period-two oscillations 
in the reactor by adjusting one of the flow rates using the 
same method used on the magnetoelastic r i b b ~ n . ~  

Roger Rollins and his coworkers at Ohio University 
applied chaos control to an  electrochemical cell.7 Their 

SYSTEM STATE POINT'S TENDENCIES near any periodic 
orbit. By moving the saddle, the control signal puts yn+,  on 
the stable manifold of y.,. FIGURE 3 

38 MAY 1995 PHYSICS TODAY 



130 Part II Reprints 10 Chaos 

DIODE RESONATOR DATA. The system 
consists of two coupled diode resonators, each a 

series combination of an inductor and a p-n 
junction diode. It is driven sinusoidally at 

50-100 kHz. a: PoincarC section formed by 
sampling the currents through the two 

branches each drive cycle. b: Stabilized 
period-62 orbit. Only half of the attractor is 

shown. (Courtesy of Earle Hunt, Ohio 
University.) FIGURE 4 

approach, based on the work of Ute Dressler 
and Gregor Nitsche of the Daimler-Benz 
Research Institute in germ an^,^ uses a re- 
cursive method to  make available a wider 
choice of system parameters for control. 

Heart tissue. An experiment on an in 
uitro rabbit heart septum used the drug 
ouabain to induce arrhythmias in the  
autonomous beating of the heart tissue.s A 
discrete-time embedding was constructed 
using the intervals between heartbeats as 
the system variable of interest. For this 
induced arrhythmia, the presence of deter- 
ministic chaos was confirmed by the obser- 
vation of repeated approaches of the system 
state to a period-one orbit, with each ap- 
proach along the same stable direction and 
with corresponding departures along the 
same unstable direction. In this case, how- 
ever, it was not possible to find a system 
parameter that would move the system state 
point onto the stable manifold. But it was 
possible to intervene directly in the system 
by injecting a premature heartbeat at an 
interval timed to place the system state 
point onto the stable manifold. The dynam- 
ics of the system then naturally tended to 
carry it toward the (unstable) period-one 
motion. However, because it was possible 
only to shorten the interbeat interval and 
not to lengthen it, the control achieved was, 
at best, period three. Further control ex- 
periments are studying an artificially per- 
fused canine heart undergoing ventricular 
fibrillation.’ 

New directions 
The arena of chaos control is growing at an accelerating 
pace. Here we present some new directions; one of the 
more exciting and controversial results appears in the box 
on page 37. 

Communications. In work by Scott Hayes and his 
coworkers a t  the Army Research Laboratory, a chaotically 
behaving oscillator is manipulated by a small control so 
that the oscillator output can carry information. As an 
example, they controlled a signal from an  oscillator whose 
free-running state is a sequence of positive and negative 
peaks. Taking these peaks to  represent the binary digits 
1 and 0, respectively, they used the controlled signal to  
encode information.1° The same idea should be applicable 
to other kinds of signal sources, such as a chaotic laser. 

One situation often encountered in ex- 
periments is that the system undergoes some slow change 
with time (sometimes called “drift”), either intentionally 

Tracking. 

or unintentionally. Once chaos control has been estab- 
lished, an important concern is whether it will be possible 
to maintain control despite this drift. Recent methods 
developed by Ira Schwartz and his coworkers a t  the Naval 
Research Laboratory accommodate such slow changes by 
tracking the location of the controlled unstable orbit as 
well as its stability properties.ll 

This tracking technique has been used by Tom Carroll 
and his coworkers (also of the Naval Research Lab) in an 
electronic circuit, by Zelda Gills and her coworkers at 
Georgia Tech in a multimode laser system, by Valery 
Petrov and his coworkers at West Virginia University in 
the B-Z reaction and by Visarath In and his coworkers 
at Georgia Tech in the magnetoelastic ribbon.I2 

Targeting. As we saw in the ribbon experiment, it 
might take an  unacceptably long time for the ergodically 
wandering, uncontrolled system to come close enough to 
the desired orbit to be captured by a small control. Given 
an initial condition A and a small target region B, how 
can we apply small controlling perturbations in such a 
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LASER DATA. a: Chaotic fluctuations in the intensity of a Nd-doped 
yttrium-aluminum-garnet laser and the corresponding fast-Fourier transform of that data. b: 
The same laser during period-one control. The Fourier transform has narrowed dramatically 
and increased significantly in amplitude. (Courtesy of Rajarshi Roy, Georgia Institute of 
Technology.) FIGURE 5 

way as to bring the orbit quickly to B? This should be 
possible because of the exponential sensitivity of chaotic 
orbits to small perturbations. If the small perturbations 
are carefully chosen, then one might hope to effect a 
desired large change. Such "targeting" has been developed 
and experimentally im~lemented. '~ 

An example predating these considerations, but nev- 
ertheless illustrating the general principle, was provided 
by NASA scientists, who were able to turn the Interna- 
tional Sun-Earth Explorer-3 spacecraft into the Interna- 
tional Cometary Explorer by redirecting it from its orbit 
near Earth t o  an encounter with a comet halfway across 
the solar system, using only small amounts of fuel.I4 This 
first-ever cometary encounter was made possible by util- 
izing the chaotic sensitivity of the three-body system in 
celestial mechanics, those bodies being the Earth, the 
Moon and the spacecraft. 

The last few years have seen substantial theoretical, 
numerical and experimental research demonstrating the 
feasibility of controlling systems that behave cha0tical1y.l~ 
The remaining question is whether it will prove possible 
to move from laboratory demonstrations on model systems 
to real-world situations of economic, engineering and so- 
cietal importance. The ubiquity of chaotic dynamics leads 
us to suspect that this will indeed be the case. 
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132 Part II Reprints 10 Chaos 

Quantum Chaos 
Does chaos lurk in the smooth, wavelike quantum world? 

Recent work shows that the answer is yes-symptoms of chaos enter 
even into the wave patterns associated with atomic energy levels 

by Martin C. Gutzwder 

n 1917 Albert Einstein wrote a pa- 
per that was completely ignored I for 40 years. In it he raised a ques- 

tion that physicists have only recently 
begun aslung themselves: What would 
classical chaos, which lurks everywhere 
in our world, do to quantum mechan- 
ics, the theory describing the atomic 
and subatomic worlds? The effects of 
classical chaos, of course, have long 
been observed-Kepler knew about the 
irregular motion of the moon around 
the earth, and Newton complained bit- 
terly about the phenomenon. At the end 
of the 19th century, the American as- 
tronomer George Wdiam W demon- 
strated that the irregularity is the result 
entirely of the gravitational pull of the 
sun. Shortly thereafter, the great French 
mathematician-astronomer-physicist 
Henri Poincare surmised that the moon’s 
motion is only a mild case of a congen- 
ital disease affecting nearly everythmg. 
In the long run, Poincare realized, most 
dynamic systems show no discernible 
regularity or repetitive pattern. Thebe- 

avior of even a simple system can de- 
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pend so sensitively on its initial condi- 
tions that the h a l  outcome is uncertain 
[see “The Amateur Scientist,” page 1441. 

At about the time of Poincare’s semi- 
nal work on classical chaos, Max Planck 
started another revolution, which would 
lead to the modern theory of quantum 
mechanics. The s i p l e  systems that 
Newton had studied were investigated 
again, but th~s time on the atomic scale. 
The quantum analogue of the humble 
pendulum is the laser; the flying can- 
nonballs of the atomic world consist of 
beams of protons or electrons, and the 
rotating wheel is the spinning electron 
(the basis of magnetic tapes). Even the 
solar system itself is mirrored in each 
of the atoms found in the periodic 
table of the elements. 

Perhaps the single most outstanding 
feature of the quantum world is its 
smooth and wavelike nature. This fea- 
ture leads to the question of how chaos 
makes itself felt when moving from the 
classical world to the quantum world. 
How can the extremely irregular char- 
acter of classical chaos be reconciled 
with the smooth and wavelike nature 
of phenomena on the atomic scale? 
Does chaos exist in the quantum world? 

F ’ r e h a r y  work seems to show that 
it does. Chaos is found in the distribu- 
tion of energy levels of certain atomic 
systems; it even appears to sneak into 
the wave patterns associated with those 
levels. Chaos is also found when elec- 
trons scatter from small molecules. I 
must emphasize, however, that the term 
“quantum chaos” serves more to de- 
scribe a conundrum than to define a 
well-posed problem. 

onsidering the following inter- 
pretation of the bigger picture C may be helpful in coming to 

grips with quantum chaos. All our the- 
oretical dscussions of mechanics can 
be somewhat artificially divided into 
three compartments [see illustration on 
page 801-although nature recognizes 
none of these divisions. 

Elementary classical mechanics falls 

in the first compartment. This box con- 
tains all the nice, clean systems exhibit- 
ing simple and regular behavior, and so 
I shall call it R, for regular. Also con- 
tained in R is an elaborate mathemati- 
cal tool called perturbation theory, 
which is used to calculate the effects of 
small interactions and extraneous dis- 
turbances, such as the influence of the 
sun on the moon’s motion around the 
earth. With the help of perturbation 
theory, a large part of physics is under- 
stood nowadays as malung relatively 
mild modifications of regular systems. 
Reality, though, is much more compli- 
cated; chaotic systems lie outside the 
range of perturbation theory, and they 
constitute the second compartment. 

Since the first detailed analyses of 
the systems of the second compart- 
ment were done by Poincare, I shall 
name t h s  box P in h s  honor. It is 
stuffed with the chaotic dynamic sys- 
tems that are the bread and butter 
of science [see “Chaos,” by James 
P. Crutchfield, J. Doyne Farmer, Nor- 
man H. Packard and Robert S. Shaw; 
SCIENTIFIC AMERICAN, December 19861. 
Among these systems are all the funda- 
mental problems of mechanics, starting 
with three, rather than only two, bodies 
interacting with one another, such as 
the earth, moon and sun, or the three 
atoms in the water molecule, or the 
three quarks in the proton. 

Quantum mechanics, as it has been 
practiced for about 90 years, belongs 
in the thrd compartment, called Q. Af- 
ter the pioneering work of Planck, Ein- 
stein and Niels Bohr, quantum mechan- 
ics was given its defmtive form in four 
short years, starting in 1924. The semi- 
nal work of Louis de Broglie, Werner 
Heisenberg, Erwin Schrodinger, Max 
Born, Wolfgang Pauli and Paul Dirac 
has stood the test of the laboratory 
without the slightest lapse. Mraculous- 
ly, it provides physics with a mathe- 
matical framework that, according to 
Dirac, has ylelded a deep understand- 
ing of “most of physics and all of chem- 
istry.” Nevertheless, even though most 
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physicists and chemists have learned 
how to solve special problems in quan- 
tum mechanics, they have yet to come 
to terms with the incredible subtleties 
of the field. These subtleties are quite 
separate from the difficult, conceptual 
issues having to do with the interpreta- 
tion of quantum mechanics. 

The three boxes R (classic, simple sys- 
tems), P (classic chaotic systems) and Q 
(quantum systems) are linked by several 
connections. The connection between 
R and Q is known as Bohr’s correspon- 

dence principle. The correspondence 
principle claims, quite reasonably, that 
classical mechanics must be contained 
in quantum mechanics in the limit where 
objects become much larger than the 
size of atoms. The main connection be- 
tween R and P is the Kolmogorov- 
Arnold-Moser (KAM) theorem. The KAM 
theorem provides a powerful tool for 
calculating how much of the structure 
of a regular system survives when a 
small perturbation is introduced, and 
the theorem can thus identify perturba- 

tions that will cause a regular system 
to undergo chaotic behavior. 

Quantum chaos is concerned with es- 
tablishmg the relation between boxes P 
(chaotic systems) and Q (quantum sys- 
tems). In establishing this relation, it 
is useful to introduce a concept called 
phase space. Quite amazingly, this con- 
‘cept, whch is now so widely exploited 
by experts in the field of dynamic sys- 
tems, dates back to Newton. 

The notion of phase space can be 
found in Newton’s Mathematical Princi- 

STATIONARY STATES, or wave patterns, associated with the 
energy levels of a Rydberg atom (a highly excited hydrogen 
atom) in a strong magnetic field can exhibit chaotic qualities. 
The states shown in the top two images seem regular; the 

bottom two are chaotic. At the bottom left, the state lies most- 
ly along a periodic orbit; at the bottom right, it does not and 
is difficult to interpret, except for the four mirror symmetries 
with respect to the vertical, horizontal and two diagonal lines. 
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ples of Natural Philosophy, published in 
1687. In the second definition of the 
first chapter, entitled “Definitions,” 
Newton states (as translated from the 
original Latin in 1729): “The quantity of 
motion is the measure of the same, 
arising from the velocity and quantity 
of matter conjointly.” In modern En- 
glish, this means that for every object 
there is a quantity, called momentum, 
which is the product of the mass and 
velocity of the object. 

Newton gives his laws of motion in 
the second chapter, entitled “Moms,  
or Laws of Motion.” The second law 
says that the change of motion is pro- 
portional to the motive force im- 
pressed. Newton relates the force to 
the change of momentum (not to the 
acceleration, as most textbooks do). 

Momentum is actually one of two 
quantities that, taken together, yield 
the complete information about a dy- 
namic system at any instant. The other 
quantity is simply position, which de- 
termines the strength and direction of 
the force. Newton’s insight into the 
dual nature of momentum and posi- 
tion was put on firmer ground some 
150 years later by two mathematicians, 
William Rowan Hamilton and Karl Gus- 
tav Jacob Jacobi. The pairing of mo- 
mentum and position is no longer 
viewed in the good old Euclidean space 
of three dimensions; instead it is 
viewed in phase space, which has six 
dimensions, three dimensions for posi- 
tion and three for momentum. 

The introduction of phase space was 
a wonderful step from a mathematical 
point of view, but it represents a seri- 
ous setback from the standpoint of hu- 
man intuition. Who can visualize six di- 
mensions? In some cases, fortunately, 
the phase space can be reduced to 
three or, even better, two dimensions. 

Such a reduction is possible in exam- 

ining the behavior of a hydrogen atom 
in a strong magnetic field. The hydro- 
gen atom has long been a highly desir- 
able system because of its simplicity: a 
lone electron moves around a lone pro- 
ton. And yet the classical motion of the 
electron becomes chaotic when the 
magnetic field is turned on. How can 
we claim to understand physics if we 
cannot explain this basic problem? 

nder normal condtions, the elec- 
tron of a hydrogen atom is U tightly bound to the proton. The 

behavior of the atom is governed by 
quantum mechanics. The atom is not 
free to take on any arbitrary energy; it 
can take on only discrete, or quantized, 
energies. At low energies, the allowed 
values are spread relatively far apart. 
As the energy of the atom is increased, 
the atom grows bigger, because the 
electron moves farther from the pro- 
ton, and the allowed enerDes get closer 
together. At high enough energies (but 
not too high, or the atom ulll be 
stripped of its electron!), the allowed 
energies get very close together into 
what is effectively a continuum, and it 
now becomes fair to apply the rules of 
classical mechanics. 

Such a hghly excited atom is called a 
Rydberg atom [see “mghly Excited 
Atoms,” by Daniel Kleppner, Michael G. 
Littman and Myron L. Zimmerman; SCI- 
ENTIFIC AMERICAN, May 19811. Rydberg 
atoms mhabit the middle ground be- 
tween the quantum and the classical 
worlds, and they are therefore ideal 
candidates for exploring Bohr’s corre- 
spondence principle, which connects 
boxes Q (quantum phenomena) and R 
(classic phenomena). If a Rydberg atom 
could be made to exhibit chaotic be- 
havior in the classical sense, it might 
provide a clue as to the nature of quan- 
tum chaos and thereby shed light on 

the middle ground between boxes Q 
and P (chaotic phenomena). 

A Rydberg atom exhlbits chaotic 
behavior in a strong magnetic field, but 
to see this behavior we must reduce the 
dimension of the phase space. The first 
step is to note that the applied magnet- 
ic field defines an axis of symmetry 
through the atom. The motion of the 
electron takes place effectively in a 
two-dunensional plane, and the motion 
around the axis can be separated out; 
only the distances along the axis and 
from the axis matter. The symmetry of 
motion reduces the dimension of the 
Dhase mace from six to four. 

MECHANICS is traditionally (and artificially) divided into the three compartments 
depicted here, which are linked together by several connections. Quantum chaos is 
concerned with establishing the relation between boxes P and Q. 

~ Addkonal help comes from the fact 
that no outside force does any work on 
the electron. As a consequence, the to- 
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tal energy does not change with time. 
By focusing attention on a particular 
value of the energy, one can take a 
three-dimensional slice-called an en- 
ergy shell-out of the four-dimensional 
phase space. The energy shell allows 
one to watch the twists and turns of 
the electron, and one can actually see 
something resembling a tangled wire 
sculpture. The resulting picture can be 
simplified even further through a sim- 
ple idea that occurred to Poincare. He 
suggested taking a fixed two-dimen- 
sional plane (called a Poincare section, 
or a surface of section) through the en- 
ergy shell and watching the points at 
which the trajectory intersects the sur- 
face. The Poincare section reduces the 
tangled wire sculpture to a sequence of 
points in an ordinary plane. 

A Poincare section for a highly excit- 
ed hydrogen atom in a strong magnetic 
field is shown on the opposite page. 
The regions of the phase space where 
the points are badly scattered indicate 
chaotic behavior. Such scattering is a 
clear symptom of classical chaos, and 
it allows one to separate systems into 
either box P or box R. w ‘hat does the Rydberg atom 

reveal about the relation be- 
tween boxes P and Q? I have 

mentioned that one of the trademarks 
of a quantum mechanical system is its 
quantized energy levels, and in fact the 
energy levels are the first place to look 
for quantum chaos. Chaos does not 
make itself felt at any particular energy 
level, however; rather its presence is 
seen in the spectrum, or distribution, 
of the levels. Perhaps somewhat para- 
doxically, in a nonchaotic quantum sys- 
tem the energy levels are distribut- 
ed randomly and without correlation, 
whereas the energy levels of a chaotic 
quantum system exhibit strong correla- 
tions [see top illustration on page  821. 
The levels of the regular system are of- 
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ten close to one another, because a reg- 
ular system is composed of smaller 
subsystems that are completely decou- 
pled. The energy levels of the chaotic 
system, however, almost seem to be 
aware of one another and try to keep a 
safe distance. A chaotic system cannot 
be decomposed; the motion along one 
coordinate axis is always coupled to 
what happens along the other axis. 

The spectrum of a chaotic quantum 
system was first suggested by Eugene 
P. Wigner, another early master of quan- 

tum mechanics. Wigner observed, as 
had many others, that nuclear physics 
does not possess the safe underpin- 
nings of atomic and molecular physics; 
the origin of the nuclear force is still 
not clearly understood. He therefore 
asked whether the statistical properties 
of nuclear spectra could be derived 
from the assumption that many pa- 
rameters in the problem have definite, 
but unknown, values. This rather vague 
starting point allowed h m  to find the 
most probable formula for the distri- 

bution. Oriol Bolvgas and Marie-Joya 
Giannoni of the Institute of Nuclear 
Physics in Orsay, France, first pointed 
out that Wigner’s distribution happens 
to be exactly what is found for the 
spectrum of a chaotic dynamic system. 

haos does not seem to limit it- 
self to the distribution of quan- C tum energy levels, however; it 

even appears to work its way into the 
wavelike nature of the quantum world. 
The position of the electron in the hy- 

POlNCA& SECTION OF A HYDROGEN ATOM in a strong mag- 
netic field has regions (orange) where the points of the elec- 
tron’s trajectory scatter wildly, indicating chaotic behavior. 

The section is a slice out of phase space, an abstract six-di- 
mensional space: the usual three for the position of a particle 
and an additional three for the particle’s momentum. 
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ENERGY SPECTRUM, or distribution of 
energy levels, differs markedly between 
chaotic and nonchaotic quantum sys- 
tems. For a nonchaotic system, such as 
a molecular hydrogen ion (Hz+), the 
probability of finding two energy levels 
close to each other is quite high. In the 
case of a chaotic system such as a Ryd- 
berg atom in a strong magnetic field, the 
probability is low. The chaotic spectrum 
closely matches the typical nuclear spec- 
trum derived many years ago by Eu- 
gene P. Wigner. 
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drogen atom is described by a wave 
pattern. The electron cannot be pin- 
pointed in space; it is a cloudlike smear 
hovering near the proton. Associated 
with each allowed energy level is a sta- 
tionary state, which is a wave pattern 
that does not change with time. A sta- 
tionary state corresponds quite closely 
to the vibrational pattern of a mem- 
brane that is stretched over a rigid 
frame, such as a drum. 

The stationary states of a chaotic 
system have surprisingly interesting 

structure, as demonstrated in the early 
1980s by Eric Heller of the University 
of Washington. He and his students 
calculated a series of stationary states 
for a two-dunensional cavity in the 
shape of a stadium. The corresponding 
problem in classical mechanics was 
known to be chaotic, for a typical tra- 
jectory quickly covers most of the 
available ground quite evenly. Such be- 
havior suggests that the stationary 
states might also look random, as if 
they had been designed without rhyme 

INCREASING ENERGY 

TIME (PERIOD) 

ABSORPTION OF LIGHT by a hydrogen atom in a strong magnetic field appears to 
vary randomly as a function of energy (fop), but when the data are analyzed ac- 
cording to the mathematical procedure called Fourier analysis, a distinct pattern 
emerges (bottom). Each peak in the bottom panel has associated with it a specific 
classical periodic orbit (red figures next to peaks). 
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or reason. In contrast, Heller discov- 
ered that most stationary states are con- 
centrated around narrow channels that 
form simple shapes inside the stadium, 
and he called these channels “scars” 
[see illustration on opposite page]. Simi- 
lar structure can also be found in the 
stationary states of a hydrogen atom in 
a strong magnetic field [see illustration 
on page 791. The smoothness of the 
quantum wave forms is preserved from 
point to point, but when one steps back 
to view the whole picture, the finger- 
print of chaos emerges. 

It is possible to connect the chaotic 
signature of the energy spectrum to or- 
dinary classical mechanics. A clue to 
the prescription is provided in Ein- 
stein’s 1917 paper. He examined the 
phase space of a regular system from 
box R and described it geometrically as 
filled with surfaces in the shape of a 
donut; the motion of the system corre- 
sponds to the trajectory of a point over 
the surface of a particular donut. The 
trajectory winds its way around the 
surface of the donut in a regular man- 
ner, but it does not necessarily close on 
itself. 

In Einstein’s picture, the application 
of Bohr’s correspondence principle to 
find the energy levels of the analogous 
quantum mechanical system is simple. 
The only trajectories that can occur in 
nature are those in which the cross 
section of the donut encloses an area 
equal to an integral multiple of Planck’s 
constant, h ( 2 7 ~  times the fundamental 
quantum of angular momentum, having 
the units of momentum multiplied by 
length). It turns out that the integral 
multiple is precisely the number that 
speclfies the corresponding energy level 
in the quantum system. 

Unfortunately, as Einstein clearly saw, 
his method cannot be applied if the 
system is chaotic, for the trajectory 
does not lie on a donut, and there is no 
natural area to enclose an integral mul- 
tiple of Planck‘s constant. A new ap- 
proach must be sought to explain the 
distribution of quantum mechanical 
energy levels in terms of the chaotic or- 
bits of classical mechanics. 

Which features of the trajectory of 
classical mechanics help us to under- 
stand quantum chaos? Hill’s discussion 
of the moon’s irregular orbit because 
of the presence of the sun provides a 
clue. His work represented the first in- 
stance where a particular periodic orbit 
is found to be at the bottom of a diffi- 
cult mechanical problem. (A periodic 
orbit is like a closed track on which the 
system is made to run; there are many 
of them, although they are isolated and 
unstable.) Inspiration can also be drawn 
from Poincare, who emphasized the 
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PARTICLE IN A STADIUM-SHAPED BOX has chaotic stationary 
states with associated wave patterns that look less random 

than one might expect. Most of the states are concentrated 
around narrow channels that form simple shapes, called scars. 

general importance of periodic orbits. 
In the beginning of his three-volume 
work, The New Methods of Celestial Me- 
chanics, which appeared in 1892, he ex- 
presses the belief that periodic orbits 
“offer the only opening through which 
we might penetrate into the fortress 
that has the reputation of being im- 
pregnable.” Phase space for a chaotic 
system can be organized, at least par- 
tially, around periodic orbits, even 
though they are sometimes quite diffi- 
cult to find. 

n 1970 I discovered a very general 
way to extract mformation about I the quantum mechanical spectrum 

from a complete enumeration of the 
classical periodic orbits. The mathe- 
matics of the approach is too difficult 
to delve into here, but the main result 
of the method is a relatively simple ex- 
pression called a trace formula. The ap- 
proach has now been used by a num- 
ber of investigators, including Michael 
V. Berry of the University of Bristol, 
who has used the formula to derive the 
statistical properties of the spectrum. 

I have applied the trace formula to 
compute the lowest two dozen energy 
levels for an electron in a semiconduc- 
tor lattice, near one of the carefully 
controlled impurities. (The semicon- 
ductor, of course, is the basis of the 
marvelous devices on which modern 
life depends; because of its impurities, 
the electrical conductivity of the mate- 
rial is halfway between that of an insu- 
lator, such as plastic, and that of a con- 
ductor, such as copper.) The trajectory 
of the electron can be uniquely charac- 
terized by a string of symbols, which 
has a straightforward interpretation. 
The string is produced by defining an 
axis through the semiconductor and 
simply noting when the trajectory cross- 

es the axis. A crossing to the “positive” 
side of the axis gets the symbol +, and 
a crossing to the “negative” side gets 
the symbol -. 

A trajectory then looks exactly like 
the record of a coin toss. Even if the 
past is known in all detail-even if all 
the crossings have been recorded-the 
future is still wide open. The sequence 
of crossings can be chosen arbitrarily. 
Now, a periodic orbit consists of a bi- 
nary sequence that repeats itself; the 
simplest such sequence is (+ -), the 
next is (+ + -), and so on. (Two cross- 
ings in a row having the same sign indi- 
cate that the electron has been trapped 
temporarily.) All periodic orbits are 
thereby enumerated, and it is possible 
to calculate an approximate spectrum 
with the help of the trace formula. In 
other words, the quantum mechanical 
energy levels are obtained in an ap- 
proximation that relies on quantities 
from classical mechanics only. 

The classical periodic orbits and the 
quantum mechanical spectrum are 
closely bound together through the 
mathematical process called Fourier 
analysis [see “The Fourier Transform,” 
by Ronald N. Bracewell; SCIENTIFIC 
AMERICAN, June 19891. The hidden reg- 
ularities in one set, and the frequency 
with which they show up, are exactly 
given by the other set. This idea was 
used by John B. Delos of the College of 
William and Mary and Dieter Wintgen 
of the Max Planck Institute for Nuclear 
Physics in Heidelberg to interpret the 
spectrum of the hydrogen atom in a 
strong magnetic field. 

Experimental work on such spectra 
has been done by Karl H. Welge and 
his colleagues at the University of 
Bielefeld, who have excited hydrogen 
atoms nearly to the point of ionization, 
where the electron tears itself free of 

the proton. The energies at which the 
atoms absorb radiation appear to be 
quite random [see upper part of bottom 
illustration on opposite page], but a 
Fourier analysis converts the jumble of 
peaks into a set of well-separated peaks 
[see lower part of bottom illustration on 
opposite page]. The important feature 
here is that each of the well-separated 
peaks corresponds precisely to one of 
several standard classical periodic or- 
bits. Poincare’s insistence on the impor- 
tance of periodic orbits now takes on a 
new meaning. Not only does the classi- 
cal organization of phase space depend 
critically on the classical periodlc orbits, 
but so too does the understanding of a 
chaotic quantum spectrum. 

o far I have talked only about 
quantum systems in which an S electron is trapped or spatially 

confined. Chaotic effects are also pres- 
ent in atomic systems where an elec- 
tron can roam freely, as it does when it 
is scattered from the atoms in a mole- 
cule. Here energy is no longer quan- 
tized, and the electron can take on any 
value, but the effectiveness of the scat- 
tering depends on the energy. 

Chaos shows up in quantum scatter- 
ing as variations in the amount of time 
the electron is temporarily caught in- 
side the molecule during the scattering 
process. For simplicity, the problem 
can be examined in two dunensions. To 
the electron, a molecule consisting of 
four atoms looks like a small maze. 
When the electron approaches one of 
the atoms, it has two choices: it can 
turn left or right. Each possible tra- 
jectory of the electron through the 
molecule can be recorded as a series of 
left and right turns around the atoms, 
until the particle finally emerges. All of 
the trajectories are unstable: even a 
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minute change in the energy or the 
initial direction of the approach will 
cause a large change in the drection in 
whch the electron eventually leaves 
the molecule. 

The chaos in the scattering process 
comes from the fact that the number 
of possible trajectories increases rapid- 
ly with path length. Only an interpreta- 
tion from the quantum mechanical 
point of view gives reasonable results; 
a purely classical calculation yields 
nonsensical results. In quantum me- 
chanics, each classical trajectory of the 
electron is used to define a little 
wavelet that winds its way through the 
molecule. The quantum mechanical re- 
sult follows from simply adding up all 
such wavelets. 

Recently I have done a calculation of 
the scattering process for a special case 
in which the sum of the wavelets is ex- 
act. An electron of known momentum 
h t s  a molecule and emerges with the 
same momentum. The arrival time for 
the electron to reach a fixed monitor- 
ing station varies as a function of the 
momentum, and the way in whch it 
varies is what is so fascinating about 
this problem. The arrival time fluctu- 
ates smoothly over small changes in 
the momentum, but over large changes 
a chaotic imprint emerges, whch never 
settles down to any simple pattern [see 
right part of illustration above]. 

particularly tantalizing aspect of 
the chaotic scattering process is A that it may connect the myster- 

ies of quantum chaos with the myster- 
ies of number theory. The calculation 

TRAJECTORY OF AN ELECTRON through a molecule during 
scattering can be recorded as a series of left and right turns 
around the atoms making up the molecule (left). Chaotic 
variation (above) characterizes the time it takes for a scat- 
tered electron of known momentum to reach a fixed monitor- 
ing station. Arrival time varies as a function of the electron’s 
momentum. The variation is smooth when changes in the 
momentum are small but exhibits a complex chaotic pattern 
when the changes are large. The quantity shown on the verti- 
cal axis, the phase shift, is a measure of the time delay. 

of the time delay leads straight into 
what is probably the most enigmatic 
object in mathematics, Riemann’s zeta 
function. Actually, it was first employed 
by Leonhard Euler in the middle of the 
18th century to show the existence of 
an infinite number of prime numbers 
(integers that cannot be divided by any 
smaller integer other than one). About 
a century later Bernhard hemann, one 
of the founders of modern mathemat- 
ics, employed the function to delve 
into the distribution of the primes. In 
h s  only paper on the subject, he called 
the function by the Greek letter zep. 

The zeta function is a function of 
two variables, x and y (which exist in the 
complex plane). To understand the dis- 
tribution of prime numbers, hemann 
needed to know when the zeta func- 
tion has the value of zero. Without giv- 
ing a valid argument, he stated that 
it is zero only when x is set equal to 
1/2. Vast calculations have shown that 
he was right without exception for the 
first billion zeros, but no mathemati- 
cian has come even close to providing 
a proof. If hemann’s conjecture is cor- 
rect, all lunds of interesting properties 
of prime numbers could be proved. 

The values of y for whch the zeta 
function is zero form a set of numbers 
that is much hke the spectrum of ener- 
gies of an atom. Just as one can study 
the distribution of energy levels in the 
spectrum, so can one study the distri- 
bution of zeros for the zeta function. 
Here the prime numbers play the same 
role as the classical closed orbits of the 
hydrogen atom in a magnetic field: the 
primes indicate some of the hidden 

correlations among the zeros of the 
zeta function. 

In the scattering problem the zeros 
of the zeta function give the values of 
the momentum where the time delay 
changes strongly. The chaos of the he-  
mann zeta function is particularly ap- 
parent in a theorem that has only re- 
cently been proved: the zeta function 
fits locally any smooth function. The 
theorem suggests that the function may 
describe all the chaotic behavior a quan- 
tum system can exhlbit. If the mathe- 
matics of quantum mechanics could be 
handled more shllfully, many exam- 
ples of locally smooth, yet globally 
chaotic, phenomena might be found. 
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How random is a coin toss? 
In examining the differences between orderly and chaotic behavior in the solutions 
of nonlinear dynamical problems, we are led to explore algorithmic complexity theory, 
the computability of numbers and the measurability of the continuum. 

Joseph Ford 

We ought then to regard the present state of 
the Universe as the effect of its preceding 
state and as the cause of its succeeding state. 

Lap 1 ace 

The true logic of this world is the calculus of 
probabilities. 

Maxwell 

Probabilistic and deterministic descrip- 
tions of macroscopic phenomena have 
coexisted for centuries. During the 
period 1650-1750, for example, Newton 
developed his calculus of determinism 
for dynamics while the Bernoullis si- 
multaneously constructed their calcu- 
lus of probability for games of chance 
and various other many-body prob- 
lems. In retrospect, it  would appear 
strange indeed that no major confron- 
tation ever arose between these seem- 
ingly contradictory world views were it 
not for the remarkable success of La- 
place in elevating Newtonian deter- 
minism to the level of dogma in the 
scientific faith. Thereafter, probabili- 
tistic descriptions of classical systems 
were regarded as no more than useful 
conveniences to be invoked when, for 
one reason or another, the determinis- 
tic equations of motion were difficult or 
impossible to solve exactly. Moreover, 
these probabilistic descriptions were 
presumed derivable from the underly- 
ing determinism, although no one ever 
indicated exactly how this feat was to 
be accomplished. 

Despite this clearly stated orthodoxy 
in classical physics, science has none- 
theless exhibited a great deal of unease 
and ambivalence regarding the coexis- 
tence of apparently random and appar- 
ently determinate behavior. Telltale 
evidence of this ambivalence appears 
in the almost capricious decisions 
which catalog systems as predominant- 
ly random or determinate. 

Roulette wheel spins, dice throws 
and idealized coin tosses are universal- 
ly presumed completely random de- 
spite their obvious underlying deter- 

Joseph Ford is Regents’ Professor of Physics 
at the Georgia Institute of Technology and is 
an editor of Physica D: Nonlinear Phenomena. 

minism. Weather, human behavior 
and the stock market are, on the other 
hand, commonly regarded as strictly 
deterministic, notwithstanding their 
seemingly frivolous unpredictability. 
But perhaps nowhere in science does 
there exist greater confusion over the 
random-determinate question than 
that  which arises for analytic Hamil- 
tonian systems 

H=Ho(q,,p,) +RHi(q , ,p , )  (1) 

where H, describes a n  analytically 
exactly solvable system with N degrees 
of freedom, the small parameter A 
determines the strength of the pertur- 
bation H I ,  and the argument (q, , p k )  is 
shorthand for the full argument 
(q l , .  . . q N , p i , .  . . p N ) .  The traditional 
folklore of this topic asserts that Ham- 
iltonians of this form are  analytically 
solvable and determinate when the 
number of degrees of freedom N is 
small; when N is large, statistical 
mechanics and the law of large 
numbers are  presumed valid. Doubts 
regarding this folklore immediately 
arise, however, when one recalls the 
notorious insolubility of the three-body 
problem or even the nonseparable two- 
body problem, when one considers 
Poincare’s warning that, independent 
of N, Hamiltonian systems quite gener- 
ally have no well-behaved constants of 
the motion other than H itself, when 
one notes that no analytic solution for 
dice throwing has ever been used to 
derive the laws of probability, and 
finally when one notices the infinite 
class of analytically solvable many- 
body problems for arbitrarily large N 
which can easily be obtained using 
classical perturbation theory.’ Quite 
obviously, there is confusion here over 
the random-determinate conundrum, 
but much worse, there is even greater 
confusion over what kind of behavior is 
to be expected of the solutions of any 
specific Hamiltonian. Yet incredibly 
enough, the classrooms, the textbooks, 
the teachers, and the researchers of 
science have maintained a remarkable, 
almost total silence’ on these matters 

for many decades, as if the Hamilton- 
ian of equation 1 had a n  incurable 
disease unmentionable in polite so- 
ciety. But then around 1950, some 
three hundred years after the birth of 
Newton, a new multidisciplinary area, 
now called nonlinear dynamics, began 
a concerted effort to solve some of the 
deeper puzzles presented by these 
Hamiltonians. The following few para- 
graphs briefly discuss one new result of 
especial relevance to this paper. More 
comprehensive presentations appear in 
tutorial review papers by Joel Lebowitz 
and Oliver Penrose3 and by Michael 
Berry.4 

Contemporary results 
The success of astronomical pertur- 

bation theory for the solar system and 
other few-body problems and the equal 
success of statistical mechanics for 
many-body problems is prima facie 
evidence supporting the existence of a 
transition from orderly to highly erra- 
tic orbital motion in Hamiltonian sys- 
tems as particle number is increased. 
However, this evidence provides little 
insight into the root cause of the 
transition or into the detailed structure 
of the resulting erratic orbits. Al- 
though nonlinear dynamics has much 
to say concerning these  matter^,^,^ let 
me confine myself here to establishing 
as understandably as possible that  
deterministic Hamiltonian systems can 
exhibit orbits whose phase-space wan- 
derings are so erratic that  the words 
“unpredictable,” “chaotic,” and even 
“random” leap to mind. For this pur- 
pose, the startingly simple Hamilton- 
ian with two degrees of freedom 

admirably suits our purpose. When the 
system energy E is sufficiently small, 
equation 2 very nearly describes two 
uncoupled, harmonic oscillators; as the 
system energy is increased, the nonlin- 
ear cubic coupling begins to exert a 
noticeable effect on orbital motion. 
This Hamiltonian was brought to pub- 
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lic attention in the much quoted, now 
classic paper' of Michel Henon and 
Carl Heiles. A reader who finds the 
following brief resume confusing could 
do no better than seek clarification in 
the original source. 

The astronomers Henon and Heiles 
recognized that if the Hamiltonian in 
equation 2 were analytically solvable 
in the same sense as all the problems in 
advanced classical mechanics text- 
books, then this system would possess 
two functionally independent, well-be- 
haved constants of the motion. In 
consequence, system orbits would be 
constrained to lie on two-dimensional 
integral surfaces in the four-dimen- 
sional system phase space. On the 
other hand, if the Hamiltonian ever 
gives rise to statistical or chaotic be- 
havior, then H itself must be the only 
well-behaved constant of the motion, 
and the system orbits may wander 
freely over part or all of the three- 
dimensional energy surface. In short, 
one regards the orbits of this Hamilton- 
ian as orderly if they lie on two- 
dimensional surfaces and erratic or 
chaotic if they wander freely over a 
three-dimensional surface. At this 
point, a wary reader may be tempted to 
consider this emphasis on two- as op- 
posed to three-dimensional surfaces as 
artificial and irrelevant to the issue at 
hand; such is in fact not the case, as we 
now show. 

Henon and Heiles numerically inte- 
grated the equations of motion for their 
Hamiltonian, obtaining many orbits at 
various energies. To make it visually 
obvious whether a given orbit moves on 
a two-dimensional or a three-dimen- 
sional surface in the four-dimensional 
phase space, they plotted the points at 
which the orbits intersect the (q2, p z )  
plane. If a given orbit lies on a two- 
dimensional surface, then the points at 
which it intersects the (q2 ,pz )  plane 
would lie on a curve. Alternatively, if 
the orbit roams freely over part or all of 
a three-dimensional surface, then the 
points at which the orbit crosses the 
(q2, p z )  plane would fill some area in the 
plane. The figure on page 42 shows the 
points a t  which orbits of various ener- 
gies cross the (q2p2)  plane. At an 
energy E = 'h, we observe that each 
orbit generates a curve, indicating that 
all motion a t  this energy is orderly and 
that the Hamiltonian is analytically 
solvable or integrable. At an energy 
E = 'k, Henon and Heiles found the 
then startling result that even simple 
systems can exhibit apparently chaotic 
behavior. The energy E = '/s shows the 
transition from order to chaos. For 
both these energies the splatter of dots 
was generated by a single orbit. It is 

Random behavior. The handshake and coin toss, opening ceremonies at a football game 
National Football League regulations, like the rules for many other games, provide for a coin toss 
to determine a random and unpredictable starting order of play (Photo by Scott Cunningham ) 

Orderly behavior. The Federal Reserve Board and others claim that the motion of money can be 
controlled. Despite numerous unanticipated financial crises, analysts perceive no similarity 
between the behavior of money on Wall Street and in Las Vegas; this view is shared by casino 
owners, who run an avowedly random business but never lose. (Photo by E. C. Topple, NYSE.) 
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the complete lack of apparent order in 
the patterns which causes one to think 
of “chaos” or “random.” Indeed, if one 
watches a video terminal sequentially 
plot the orbital dots a t  E = ‘16, one is 
unable to discern any spatial or tempo- 
ral order. In short, the transition of 
orbital motion from a two-dimensional 
to a three-dimensional surface carries 
with it the introduction of a chaotic 
element in the motion. We can per- 
haps begin to gain an intuitive under- 
standing of these matters by noticing 
that points initially close in the (q2 ,p2 )  
plane separate linearly with time when 
E = ‘/‘z, whereas at E = ‘ /6, initially 
close points separate at an exponential 
rate. Similar behavior is seen at a 
glance in the photo on page 44, which 
shows the transition to turbulence in 
the flow of cigarette smoke. By ana- 
logy, if a set of chaotic Henon-Heiles 
orbits could be similarly visualized, 
they would look for all the world like an 
incredibly mixed up plate of spaghetti. 
Finally, it must be mentioned that 
chaos of the Henon-Heiles type is now 
known to be a commonplace in Hamil- 
tonian dynamics and elsewhere. 

Chaotic orbits 
By chaotic orbit, we have thus far 

meant little more than that the orbit 
does not lie on a smooth invariant 
integral surface of dimension less than 

the energy surface itself. But in what 
precise sense is such a n  orbit more 
random or less deterministic than one 
lying on a smooth, lower-dimensional 
invariant surface? Nonlinear dynam- 
ics provides a whole hierarchy of 
answers;34 here we discuss only one 
relevant to our central theme. Specifi- 
cally, let us imagine that  a given 
energy surface for a dynamical system 
has been completely partitioned into a 
finite set of non-overlapping numbered 
cells, as if we were trying to make this 
energy surface resemble a wheel of 
fortune. Suppose now that  someone 
having precise knowledge of a system 
orbit begins sequentially revealing to 
us a t  one-second intervals the number 
of the cell in which the system state 
then resides, somewhat analogous to 
being told a t  one-second intervals the 
number under the pointer of a wheel of 
fortune. If we consider the orbits of a 
nonchaotic system-a simple harmonic 
oscillator, say, or a low-energy orbit of 
the Henon-Heiles system-we will find 
that  the numbers fall into a fairly 
regular pattern. Even if the period of 
the oscillator is not an integral number 
of seconds, we will see a regular pro- 
gression in the cell numbers once we 
have accumulated data over several 
periods. For chaotic orbits-such as 
those of the Henon-Heiles system for 
larger energies, or for a particle of 

f p2 

t 

cigarette smoke above the transition to 
turbulence-no such regularity ever 
becomes apparent. We might as well 
be looking at the numbers from a wheel 
of fortune. That is, for a chaotic orbit 
we can at best give only probabilities 
for transitions from one cell number to 
the next, we cannot predict the transi- 
tions. 

We can thus define a n  orbit to be 
chaotic if complete knowledge of which 
cells the system occupied in the past, 
that is, all the cell numbers up to the 
present t ,  does not allow us to deter- 
mine the cell number a t  t + 1 or any 
other future time. (This definition may 
appear unorthodox, but we will see its 
usefulness.) For chaotic orbits, the 
coarse-grained past does not uniquely 
determine the coarse-grained future; 
nothing less than a full sequence of 
finite-precision measurements made at 
finite intervals from t =  - cc to + cc 

can ever specify a precise orbit, and the 
specification may not be unique even 
then. For nonchaotic orbits, the  coarse- 
grained past does uniquely and comple- 
tely determine the future; non-chaotic 
systems retain a coarse-grained deter- 
minism even in the presence of finite 
observational precision. 

It may seem that  the chaotic unpre- 
dictability described here arises solely 
from the self-inflicted ignorance of the 
precise state of the system imposed by 

P2 

Computed orbits for the nonlinear Hamiltonian of equation 2 The 
graphs show the intersections of the orbits with the (q2p2) plane At left 
the system energy is Each of the curves in the plot consists of in- 
tersection points for a single orbit, the fact that the curves are clearly 
continuous and closed indicates that the orbits lie on two-dimensional 
surfaces in the four-dimensional (4, q2,pl,p,) phase space In the 
central figure the system energy IS ’/* Some orbits still lie on two-di- 

mensional surfaces, the erratically splattered dots, however, were 
generated by a single orbit that fills a three-dimensional volume, its en- 
ergy being the only constant of the motion In the graph at right the en- 
ergy is ’/e The dots in the figure were all generated by a single orbit, 
which clearly wanders freely over a region of the three-dimensional 
energy surface At this energy, almost all pairs of points that start close 
together in the (qZ.p2) plane separate exponentially with time 
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our division of the phase space into 
finite cells-that is, that  the unpredic- 
tability is due to the coarse-graining. 
Let me hasten to reemphasize that  this 
same ignorance induces no similar 
unpredictability on nonchaotic orbits 
and to point out that no restrictions on 
the fineness of the partition have been 
made. That is, nothing less than the 
full cell-number sequence can uniquely 
determine a chaotic orbit no matter 
how small the cells are chosen in the 
finite partition. If a physical system is 
proceeding along a precise chaotic orbit 
and if a finite number of observations 
having finite precision are  made, then, 
no matter how many the observations 
nor how great their accuracy, these 
measurements will appear random and 
will show no evidence of the presumed 
underlying determinism. This then 
provides the first hint that, for chaotic 
systems, Newtonian determinism may 
be only a theorist’s unattainable 
dream. Almost all dynamical systems 
are  now known to exhibit chaotic 
orbits. 

A simple model 
To one untutored in the algorithmic 

art of generating pseudorandom num- 
bers, forward iteration of the first- 
order difference equation 

X,,, = 2 X ,  (Mod 1) (3) 

appears guilelessly determinate. In 
this equation (Mod 1) means drop the 
integer part; equation 3 is thus a 
mapping of the unit interval upon 
itself. This simple difference equation 
has the equally simple analytic solu- 
tion 

X ,  = 2”X0 (Mod 1) (4) 

An even more imaginative form of the 
solution may be obtained by writing the 
initial value X, as a base-two, binary 
numeral in the form 

x, = 0.11000011101111.. . (5)  
Forward iterates of equation are  now 
generated merely by moving the deci- 
mal point sequentially to the right, 
each time dropping the integer part to 
the left of the decimal point. It is truly 
difficult to imagine a more transpar- 
ently deterministic system than the 
one specified by equation 3, and yet 
almost all its orbits are chaotic! 

To see this, first note that  all iterates 
of equation 3 lie on the unit interval 
(0,l) and hence that the “energy sur- 
face” here is precisely this unit inter- 
val. We partition this “energy surface” 
into two cells, a left cell (O<X < ‘/d and 
a right cell (‘/;?<X < 1). One can now 
easily recognize from the form of the 
binary representation in equation 5 
that a given iterate X ,  is in the left or 
the right cell of the unit interval as its 
first digit to the right of the moving 
decimal point is a zero or a one. If now 

someone knowing a precise orbit of the 
system tells us only whether the se- 
quential iterates x, are  in the right or 
left cell, we can write down a cell 
number sequence composed of zeros 
and ones, zero meaning the left cell and 
one the right cell. When completed, 
this cell number sequence will be iden- 
tical to the binary decimal expansion of 
X ,  for the given orbit. Simply put, the 
person knowing the orbit is in essence 
merely reading out the binary string 
for X ,  and the listener (or observer) is 
merely copying it down. Since we 
cannot in general determine future 
digits of X ,  from any past finite part of 
the digit string for X,,, the true orbit is 
chaotic by our previous definition. 

The chaotic orbits generated by equa- 
tion 3 permit us to expose a quite 
general unpredictability in chaotic or- 
bit behavior that comes perilously close 
to true randomness. 

Consider again the procedure in 
which someone with precise knowledge 
of a given orbit in effect reads us the 
sequential digits in X,,. Is there any 
way we can definitively ascertain 
whether this person is sequentially 
telling us the first binary digit in each 
X ,  computed from equation 3 or 
whether he is obtaining this digital 
string merely by flipping a n  honest 
coin having no underlying determin- 
ism? In seeking to answer this, let us 
first consider the binary digit strings 
for each X, in the set of all possible X,, 
on the unit interval. Then, if we let 
unity represent heads and zero tails, we 
perceive that the set of all X ,  provides a 
set of semi-infinite digit strings which 
is one to one with the set of all possible 
semi-infinite coin-toss sequences. But 
this clearly means that  the digit string 
in the binary representation of X,, is as 
random as a coin-toss sequence. In 
turn, despite the underlying determin- 
ism assigned to the system described by 
equation 3, if we make only a coarse- 
grained left-right determination on 
sequential iterates X ,  , then these de- 
terministically computed iterates hop 
between left and right according to a 
rule that cannot be distinguished from 
a truly random coin-toss sequence. 
Here sequential left-right measure- 
ments are  totally uncorrelated and 
yield a so-called Bernoulli process; if we 
divide the unit interval into many 
equal cells, each orbit would generate 
cell-number sequences representing 
Markov processes. 

No hint of determinism would ap- 
pear as long as the partition is finite. 
Now let us throw caution to the winds 
and consider infinite partitions having 
zero cell size. Here a cell number 
sequence is just the precise X ,  se- 
quence itself. Nonetheless, this deter- 
ministic X ,  sequence is in fact also a 
set of random numbers as one can see 
from the presumed randomness of the 

digit string of the initial X,. Because of 
this property, equation 3 is sometimes 
used as a computer algorithm for ob- 
taining pseudorandom numbers-pseu- 
dorandom because a computer per- 
forms only finite arithmetic. 

These considerations point toward a 
body of theory6 in nonlinear dynamics 
that  rigorously proves that strictly 
deterministic systems can in varying 
degrees mimic true randomness. But I 
have not yet outlined the rigorous 
theory that can confirm the possibility 
that a deterministic system can actual- 
ly also be truly random. To move 
toward that  goal, let us recall that 
chaotic orbits can, under a partitioning 
of phase space, always be associated 
with sequences of integer cell numbers. 
Moreover, if the cell-number digit 
string for an orbit can be shown to be 
random, then the orbit itself is also 
r a n d ~ m . ~  But this immediately raises 
the question of how any specified digit 
string such as the decimal representa- 
tion for  or the digit string in a table of 
random numbers can ever be termed 
truly random. Here we are  at last 
being led to one of the deepest ques- 
tions in all of probability theory: the 
definition of randomness in given digit 
strings . 

Algorithmic complexity theory 
Without loss of generality, we may 

confine our attention to binary digit 
sequences and, initially, we shall con- 
sider only finite sequences. Each single 
binary digit carries one bit of informa- 
tion by definition. Therefore, an n- 
digit binary sequence could provide n 
bits of information; however, frequent- 
ly the digits in the sequence are  obvi- 
ously correlated, and the information 
contained in the n-digit sequence can 
be expressed by a much shorter se- 
quence. The shorter digit sequence 
could, for example, be a relatively brief 
computer code that  can generate the 
longer original n-digit string on some 
machine M. With these thoughts in 
mind, Andrey N. Kolmogorov, Gregory 
J. Chaitin, and Ray J. Solomonov inde- 
pendently defined’ the complexity 
K,‘”’ of a n  n-digit sequence as the 
integer bit length of the shortest com- 
puter program that can print the given 
sequence using machine M. Later, 
Kolmogorov showed, in essence, that  
there is a universal computer providing 
the minimum K,(”); thus, there is no 
generality lost by dropping the sub- 
script M. Consider now the complexity 

of the simple sequence consisting 
of all ones. A minimal program might 
read “PRINT 1, n times.” The bit length 
of this program is very nearly equal to 
log,(n) for sufficiently large n. Indeed, 
for any sequence calculable via repeti- 
tion of some finite computer algorithm, 
its complexity IT’” also very nearly 
equals log&) as n become large. On 
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the other hand, the complexity of a n  n- 
digit sequence { G, ] can never appre- 
ciably exceed n since the sequence can 
always be produced by the computer 
program “PRINT G,,G,. . . G,” which 
contains very nearly n bits for large n. 
By the definition of complexity, n-digit 
sequences which actually have this 
maximum complexity cannot be calcu- 
lated by any algorithm whose bit 
length is appreciably less than the bit 
length of the sequence itself. The 
information contained in a sequence of 
maximum complexity has thus been 
irreducibly encoded, and the simplest 
way to specify the sequence is to 
provide a copy of it. As a consequence, 
the sequential digits in these maxi- 
mum-complexity sequences are  so in- 
calculable and hence so unpredictable 
that the word “random” seems inescap- 
able. Thus, let us follow Kolmogorov 
and others and define a finite, specified 
digit string to be random provided it 
has maximum complexity. Using this 
definition, it may be shown that most 
finite digit strings are random. 

As the digitial length of the binary 
sequence tends to infinity, one might be 
tempted, as Kolmogorov originally was, 
to define a random infinite sequence as 
one for which A‘“’ goes as n for large n. 
Unfortunately, Per Martin-Lof proved 
this to be an empty definition because 
Ic”’ for chaotic sequences can oscillate 
appreciably below the expected value 
on the order of n even as n tends to 
infinity. As a reasonable way to elimi- 
nate or ”damp out” these oscillations, 
let us define8 the complexity of an 
infinite sequence by 

K = lim [h?”’ln] (6) 

Although there are minor problems of 
convergence here, the limit may be 
shown to exist in general. Using a 
slight abuse of language, we shall 
sometimes continue to speak of maxi- 
mum complexity for a n  infinite se- 
quence when its K computed from 
equation 6 is non-zero. As before, a 
sequence having maximum complexity 
is defined to be random. The virtue of 
this definition rests with its intuitive 
appeal. Infinite sequences having max- 
imum complexity are so unpredictable 
they are incalculable by any finite 
algorithm; moreover, the simplest way 
to specify such sequences is to provide 
copies of them. On the other hand, this 
definition suffers the defect of not 
clearly revealing its complete equiv- 
alence to earlier definitions of random- 
ness. We now move to close this 
loophole. In the following discussion, I 
shall always mean infinite sequences 
when I refer to sequences. 

A “calculable test” is one expressible 
by a finite algorithm. Because random- 
ness implies a certain lack of order, and 
because disorder can occur in infinite 

1L- w 

variety, there is no single calculable 
test that can rigorously prove a se- 
quence to be random. Individual calcu- 
lable tests form necessary but not 
sufficient tests for randomness. How- 
ever, by combining all possible such 
calculable tests into a single composite 
test, we can determine when a se- 
quence passes every humanly computa- 
ble test for randomness. We shall call 
this the “Universal Test” for random- 
ness. We now know that almost all 
sequences having maximum complex- 
ity pass the Universal Test. This 
theorem, which Martin-Lof proved in 
1966, justifies our defining a sequence 
to be random when it has maximum 
complexity since no human will ever be 
able to distinguish this definition from 
earlier ones. Finally, Martin-Lof has 
proved that almost ail sequences actu- 
ally have maximum complexity and 
are  therefore random. This proof im- 
mediately implies that  almost all the 
individual orbits defined by equation 3 
are  truly random in addition to being 
strictly deterministic, a point which we 
discuss more fully below. 

Returning now to Hamiltonian dy- 
namics, recall that a chaotic orbit is 
defined as one yielding a cell number 
sequence whose future is not deter- 
mined by its past. Quite clearly, a 
chaotic orbit generates a random cell- 
number sequence having maximal 
c ~ m p l e x i t y . ~  The chaotic orbit itself is 
therefore truly random in the sense 
ths t  such a n  orbit cannot be computed 
by any finite algorithm and its informa- 
tion content is both infinite and incom- 
pressible. Finally, for chaotic orbits, 
Newtonian dynamics must determinis- 
tically compute random cell number 
sequences. In general then, Newton’s 
laws are  merely formal, humanly incal- 
culable algorithms. For centuries, ran- 
domness has been deemed a useful, but 
subservient citizen in a deterministic 
universe. Algorithmic complexity the- 
ory and nonlinear dynamics together 
establish the fact that determinism 
actually reigns only over a quite finite 
domain; outside this small haven of 
order lies a largely uncharted, vast 
wasteland of chaos where determinism 
has faded into a n  ephemeral memory of 
existence theorems and only random- 
ness survives. 

As additional consequences of algor- 
ithmic complexity theory, we note the 
mildly amusing fact that  T and e do not 
yield random digit strings since both 
can be calculated via indefinite repeti- 
tion of short algorithms, implying 
K = 0 in equation 6. Moreover, if we 
define a n  incalculable number” as one 
whose digit string has maximum com- 
plexity, then almost all real numbers 
are  incalculable and cannot be comput- 
ed by any finite algorithm. As Mark 
Kac phrases it,” most numbers in the 
continuum are  not, definable using a 

finite number of words. The contin- 
uum therefore has the distinction of 
being a well-defined collection of most- 
ly undefinable objects. Thus, despite 
its illusions, science can actually com- 
pute at most only with the dense set of 
calculable numbers having zero com- 
plexity (as given by equation 6). Para- 
doxically, while this dense set of calcu- 
lable numbers has measure zero, it is 
not a countable set as may be easily 
proved. 

How random is a coin toss? 
We now apply the notions developed 

thus far to a specific example. An 
idealized, deterministic “coin toss” is 
quite well described by the difference in 
equation 3. Given a n  X,,, we may 
deterministically compute sequential 
X ,  and thence determine whether we 
obtain 1 or 0, heads or tails, a t  each 
iteration according to the first binary 
digit of each X ,  . The process is strictly 
deterministic; existence and unique- 
ness theorems are  easily derived for it. 
But equally, this process is completely 
random because the digit strings for 
almost all X, are  random. Yet how can 
this be? Why is there not a contradic- 
tion in terms here? Doesn’t full deter- 
minism preclude randomness? Doesn’t 
complete randomness preclude any un- 
derlying determinism? 

Of itself, equation 3 is merely a finite 
algorithm which upon iteration com- 
putes all X ,  given X,; no lack of 
determinism exists in this iteration 
process. Equally, no lack of determin- 
ism is to be found in the existence and 
uniqueness theorem where, of course, 
X ,  is again presumed given. Determin- 
ism or its lack in the coin-toss sequence 
thus rests soley upon the minor details 
of specifying or determining X,, a task 
of such apparent triviality that no 
mention of it appears in the literature. 
But is this task in fact a trivial one? In 
response, algorithmic complexity the- 
ory points out that almost all numbers 
X ,  are  not only incalculable but also 
undefinable. Despite three centuries of 
prejudice to the contrary, specifying or 
determining X ,  is now seen to require 
superhuman skills. One can maintain 
determinism for equation 3 or for the 
idealized coin it describes only if one 
presumes a n  ability to compute infinite 
algorithms of maximum complexity 
and to understand definitions having 
infinite word lengths. One must also 
presume a n  ability to make infinitesi- 
mal distinctions-as fine as any we 
expect from gods-for equation 3, like 
all its fully chaotic brothers, is harshly 
intolerant of even the slightest error: 
Any initial uncertainty in the specifica- 
tion of X ,  will grow exponentially with 
increasing iteration number n. Be- 
cause of this exponential error growth, 
determinism is, from a practical point 
of view, a t  best only a temporally local 
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property which rapidly vanishes with- 
out a trace under a n  avalanche of 
overwhelming error. 

Popiilar belief to the contrary not- 
withstanding, the “coin” of equation 3 
now emerges as completely random, 
but has determinism thereby been com- 
pletely eliminated? Certainly not, for 
the traditional notions of probability 
theory contain just as large a n  unexa- 
mined tacit assumption as do the tradi- 
tional notions of determinism. Specifi- 
cally, the notion that  randomness 
precludes determinism is based on the 
assumption that  infinite computa- 
tional or observational precision is 
impossible. If infinite observational 
and computational skills be assumed, 
then equation 3 provides a determinis- 
tic scheme for computing a random 
coin-toss process. Historically, theories 
of determinism have failed to recognize 
that their tacit assumption of infinite 
precision was sufficient to compute 
random orbits just as probability theor- 
ies failed to recognize that infinite 
precision could provide a link to deter- 
minism. We shall return shortly to the 
question of whether or not infinite 
precision is a physically meaningful 
concept. 

As a final note here, let us briefly 
seek to allay a confusion that might 
arise from our earlier discussion of the 
difference equation 3. Specifically, I 
have emphasized that the randomness 
of iterates arises strictly out of the 
randomness in the digit string for each 
initial condition X,]. Randomness thus 
appears to depend solely upon the 
random and incalculable character of 
the initial state X,. Yet a thoughtful 
reader will immediately note that most 
solutions to difference equations evolve 
from initial data X,, having random 
digit strings. Why then, according to 
our arguments, aren’t all difference 
equations random? To answer this 
question without a lengthy foray into 
technical details, let us note that al- 
though iterates of a difference equation 
are a t  liberty to depend sensitively 
upon the random character of the 
initial state X,, they are not required 
to. For example, consider the simple 
difference equation or mapping 

X,,, = X, + b (Mod 1) (7) 

Transition from laminar to turbulent flow in a 
rising column of cigarette smoke The 

laminar flow here is analogous to the smooth 
orbit structure of the Henon-Heiles system 

shown in the left graph on page 42 The 
turbulent flow at higher Re,nolds number 

gives a hint of the orbit structure underlying 
the high-energy behavior of the Henon- 

Heiles system shown in the right-hand graph 
The experiment shown in this  photo may 

also illustrate one of the few medically 
acceptable uses of a cigarette (Photo by 

Vincent Malette, Georgia Tech ) 
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where 6 is an irrational number. Here 
the solution reads 

X ,  = nb + X, (Mod 1) (8) 
Because the number 6 is irrational, the 
iterates X,, of Eq. (7) are  rigorously 
known to be dense and uniformly 
distributed on the unit interval. Yet 
this weakest and non-random version 
of “chaos,” called e r g ~ d i c i t y , ~ , ~  in no 
way depends on any randomness in the 
digit string for X,. For, suppose there 
is a small error AX,, in the initial state 
X,, then from equation 8 we immedi- 
ately find that AX, = AX, and hence 
that there is no growth of error upon 
iteration. Thus equation 7 maps entire 
finite intervals as rigid units; in conse- 
quence, digital randomness (or its lack) 
of an interior point X ,  is clearly irrele- 
vant to the subsequent orbital history. 
The essential point to notice here is 
that fully chaotic, random systems 
propagate error exponentially. The 
orbits of such systems thus are  forced to 
depend with exquisite sensitivity upon 
the precise initial state and its random 
character. For nonchaotic systems, er- 
ror propagates less rapidly and, as 
mentioned earlier, even a coarse- 
grained past suffices to determine pre- 
cisely a coarse-grained future. To sum- 
marize, a chaotic orbit is random and 
incalculable; its information content is 
both infinite and incompressible. In 
seeking to specify a chaotic orbit, one is 
at liberty to place the requisite infinite 
amount of information in the initial 
state X,, in the governing difference- 
equation algorithm, or in some mixture 
of the two; it is purely a matter of taste. 

Consequences 
Almost all physical theories-includ- 

ing quantum mechanics-are charac- 
terized by deterministic rate equations 
for continuum variables. Advocates of 
these theories defend use of the contin- 
uum chiefly on the grounds that noth- 
ing in principle presently limits mea- 

surement accuracy for any single 
variable. Nonetheless, not even the 
staunchest of these advocates suggests 
that  our observational precision is or 
ever will be infinite. But without this 
infinite precision, the continuum be- 
comes, physically speaking, meaning- 
less, as complexity theory so clearly 
shows. Much more than a minor peda- 
gogical issue or a small mathematical 
footnote is involved here. For speaking 
strictly in laboratory terms, a n  initial 
observational error in  a nonchaotic 
system increases slowly as some power 
of the time t for subsequent observa- 

tions; these systems therefore general- 
ly allow us to maintain the fiction of 
determinism and the continuum, at 
least over laboratory time scales. Un- 
fortunately, nonchaotic systems are  
very nearly as scarce as hen’s teeth, 
despite the fact that our physical un- 
derstanding of nature is largely based 
upon their study. On the other hand, 
for the much more common, over- 
whelmingly dominant class of chaotic 
systems, initial observational error 
grows exponentially, in general, and 
determinism and the continuum be- 
come meaningless on a n  impressively 
short human time scale. For example, 
even if we assume a n  error in the X ,  of 
equation 3 as small as determin- 
ism is nonetheless completely lost at 
about the hundredth iteration. 

What consequences flow from these 
statements? Can algorithmic complex- 
ity theory provide road guides for our 
ongoing trip to the future? 

Newtonian dynamics has, over the 
centuries, twice foundered on assump- 
tions that  something was infinite when 
in fact it  was not: the speed of light, c, 
and the reciprocal of Planck’s constant 
l lh .  Reformulations omitting these 
infinities led first to special relativity 
and then to quantum mechanics. Com- 
plexity theory now reveals a third 
tacitly assumed infinity in classical 
dynamics, namely the assumption of 
infinite computational and observa- 
tional precision. In consequence, New- 
tonian dynamics now faces a third 
reformulation whose impact on science 
may be as significant as the first two. 
Moreover, quantum mechanics, itself 
the second revolution, will not long 
remain exempt from the upcoming 
third revolution, for quantum mechan- 
ics also assumes infinite computational 
and observational precision. But in 
addition, quantum theory is now seen 
to be incomplete, just as Einstein sug- 
gested. For, if quantum investigators 
have the power of infinite precision 
required to compute the precise time 
evolution of continuum variables, then 
clearly they can also deterministically 
compute all the random variables that 
appear in the presently incomplete 
theory. Alternatively, if infinite preci- 
sion be abandoned, then reformulation 
of quantum mechanics will be just as 
extensive as that  of classical dynamics. 

Over the centuries, we have, with 
great reluctance, recognized discrete- 
ness and finiteness in this universe. 
Centuries ago, the Greeks suggested 
that the matter continuum should be 
replaced by discrete atoms, and, even- 
tually, Avagadro counted the atoms in 
a box, finding their number to be finite. 
In this century, Einstein denied the 
Newtonian notion of a n  infinite speed, 
and Planck deprived us of our energy 
continuum. More recently, Heisenberg 
reminded us of limits on observational 
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precision for conjugate variables. And 
finally, algorithmic complexity theory 
is gently asserting that no variable can 
ever be measured precisely. The num- 
ber continuum is, physically speaking, 
a fiction. 

Complexity theory can guide us to- 
ward a humanly meaningful number 
set that does not involve the assump- 
tion of infinite precision, and which can 
replace the number continuum-al- 
though complexity theory can not, of 
course, provide us with a natural bound 
on observational precision. 

The first numbers to be deleted from 
the continuum are  the incalculable 
irrational numbers having positive 
Kolmogarov complexity. These totally 
inhuman numbers require infinite in- 
formation t.o compute, to store, and to 
define. Next to go are the seemingly 
innocent numbers whose computation 
requires infinite repetition of a finite 
algorithm. The problem here is that 
the digit strings for these numbers also 
contain an infinite amount of informa- 
tion (log,n as  n tends to infinity), 
require infinite storage c-pacity, and 
take an infinite time to compute. Fol- 
lowing this second elimination, each 
number in the remaining countably 
dense set has only a finite number of 
digits in its decimal representation. 
The individual remaining numbers a re  
now quite acceptable, but the set as a 

Newtonian but 
random processes 
The photos on these 
pages illustrate 
process that may be 
described by 
deterrninisttc equations 
of motion, but whose 
later state depends so 
exquisitely on the initial 
conditions that it is 
unpredictable These 
processes thus serve 
as models for 
randomness, in spite of 
their underlying 
Newtonian character 

whole is not, because it st.ill contains 
infinite information. We t.hus elimi- 
nate the last infinities, the infinitely 
large 

m = ( l + l + l +  ... ) 

0=(1+ 1 + 1 +  . . .  1-1 

In addition, we insist that. the algebraic 
difference between a n y  two se t  
members be bounded away from these 
two “infinities.” The number contin- 
uum is now reduced to a bounded, finite 
points set which, without loss of gener- 
ality, may be taken to be a finite set of 
integers. I t  is this number set which 
suggests itself as  the base for reformu- 
lating physical theories. Perhaps the 
most striking feature of this reformula- 
tion that  we can anticipate is that all 
physical variables will be quantized. In 
dosing, much of what I have said in this 
entire article” can be summarized in 
the following fable. 

Long ago, before the beginning of 
time, the gods gave man the in- 
teger 1 to provide amusement for 
idle moments. Thereupon, man 
became so delighted with the num- 
ber 1 that he sought and found a 
duplicate, calling it 2, and another 
duplicate, calling it 3. On a subse- 
quent day, as man was contemplat- 
ing the truth and beauty of the 

and the infinitely small 

integer N, his mate arrived with a 
tempting fruit. which the serpent 
who supplied it had called N,. 
Immediately upon the first bite, 
man became intoxicated and his 
mind reached and  fleetingly 
g r a s p e d  t h e  m e a n i n g  of 
(1 + 1 + 1 + . . . ), but by morning 
he retained only the empty sym- 
bols . . . . 
Moral: Do not let your reach exceed 
your grasp. 

* * *  

To Russia with Love: ThLs article is the tnd 
product o f  many tutorial hours and numer- 
ous encouragements generously bestoued 
upon the author by his colleague and friend, 
Professor Boris V. Chirikou of the Soviet 
Union. Praise should be shipped FOB, 
hToL>osibirsk; blame should be forwarded 
direct1.y to Atlanta. 
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R K BULLOUGH 

SOLITONS 
Solitons are mathematical objects which have excited theoreticians 
because of their wide ranging applications in physics. They appear 
as solutions of particular nonlinear wave equations which often 
have a certain universal significance. In this article Professor 
Bullough indicates the importance of solitons t o  modern physics 

The first recorded observation of a soliton 
was that made by John Scott Russell in 
August 1834 when he saw ‘a rounded 
smooth well defined heap of water’ detach 
itself from the prow of a stopped barge 
and proceed without change of shape or 
diminution of speed for over two miles 
along a channel. supposedly the Edin- 
burgh-Glasgow canal. In the following 
ten years Russell dubbed this object ‘the 
wave of translation’ or ‘great solitary 
wave’, created similar objects in smaller 
water channels only six inches deep and 
divined theempirical formula c2 = g ( h  + /1) 
connecting the speed c of the disturbance 
with its height k above the undisturbed 
water surface and with h the undisturbed 
depth (notice that bigger disturbances 
travel faster than smaller ones). He dis- 
agreed strongly with Airy who proposed a 
different formula for c, and observed the 
break up of a larger disturbance into two 
of his solitary waves travelling at different 
speeds, the taller preceding the smaller as 
his formula demands. Waves of perma- 
nent shape in one dimension are now 
called solitary waves ~ most especially and 
appropriately when they are roughly bell 
shaped and isolated from other waves. 
The solitary wave Russell saw and named 
in 1834 is, however, a soliton as it has the 
collision properties we associate with soli- 
tons. These collision properties are also 
the origin of the break up into solitary 
waves Russell observed. 

Russell believed that in his solitary wave 
he had found a universal phenomenon. In 
a posthumous book published in 1885 
entitled The Wave of Translation in the 
Oceans of Water, Air and Ether he used his 
formula c2 = g ( h + k )  to compute from the 
velocity of sound the depth of the atmo- 
sphere (5  mile) and from the velocity of 
light the depth of the universe (5 x 1017 
mile). The book does not have the perma- 
nent value of his early work published in 
the British Association ‘Report on waves’ 
(1844), but Russell may have divined more 
than he knew. In the 12 years since the 
word soliton was coined in 1965 we have 
seen its appearance in every branch of 
physics - not least in sound waves in 

78 

crystals and plasmas and as a natural 
model of a particle in particle physics. 

There are now two sorts of soliton, the 
classical c-number soliton, and the quan- 
tal, that is quantised, soliton. I shall say a 
little about each type. A rough description 
of a classical soliton is that of a solitary 
wave which shows great stability in colli- 
sion with other solitary waves. A solitary 
wave, as we have seen, does not change its 
shape: it is a disturbance ~ ( x - c t )  which 
travels by translating along the .r axis 
with speed c. This disturbance is in one 
space dimension x only: 1 come to the 
more general case later. This solution is no 
surprise if the wave equation governing its 
motion is simple enough: u(x - ct) solves 
the linear dispersionless wave equation 
ux+ cut = 0 (subscripts denote partial 
differentiation with respect to that vari- 
able) for any shape of the function u. But 
all physicists know that most systems are 
dispersive and in the case of the wave 
equation u, - uxxx = 0, for example, only 
the solutions cosk(x- Vt)and sink(.u- V t )  
have permanent profile. These waves have 
V = k2 and arbitrary disturbances dis- 
perse as the large k modes run away from 
the small k ones. 
Nonlinearity and solitons 
Nonlinearity introduces a new feature. 
The simplest nonlinear wave is perhaps 
ut+uu, = 0. This is a wave in which the 
speed is the disturbance u itself. Thus 
points of large u overtake points of small 
u, the wave shocks and ultimately breaks. 
The solitary wave solution of a nonlinear 
dispersive wave equation cleverly balances 
the nonlinearity against the dispersion so 
that the wave retains its shape. A remark- 
able example is the solitary wave solution 
12&ech2~(x - 4E2t) of the Korteweg-de 
Vries (Kdv) equation utf-,uux+ uxxx = 0. 
The Kdv describes the propagation of 
gravity waves in shallow water and its 
solitary wave is precisely that observed by 
Scott Russell in 1834. Notice again how 
the speed 4 t 2  is proportional to the ampli- 
tude 12c2 and increases with it1. 

There is no superposition principle for 
nonlinear wave equations: two solutions 
do not add to form another solution. Thus 

if two solitary waves of the Kdv collide we 
would expect each to scatter off the other 
and some new disturbance emerge. In 
practice this does not happen: the solitary 
waves simply pass through each other and 
emerge essentially unchanged. It is this 
collisional stability which characterises 
the soliton. Figure I shows results ob- 
tained by Ikezi, Taylor and Baker in 1970 
for ion acoustic waves in a plasma. The 
waves are governed by the Kdv or an equa- 
tion closely related to it. The figure well 
illustrates the behaviour of ion acoustic 
solitons travelling in the same or opposite 
directions, though the former collision is 
rather heavily damped. Notice that break 
up is also an aspect of collision : this is why 
Scott Russell could observe a break up 
into two of his solitary water waves. The 
number and speeds of the emergent soli- 
tons depend on the initial disturbance. 

This behaviour is striking but it might 
simply be an oddity of one small corner of 
physics. This could not be wholly true 
because the Kdv is a good approximate 
equation governing any weakly nonlinear, 
weakly dispersive, system. The Kdv, or a 
modified form of it, governs shallow 
water waves, ion acoustic waves, Alfven 
waves in a cold collisionless plasma and 
the propagation of sound waves in anhar- 
monic crystals, for example. Its impor- 
tance to crystal lattice theory is that it ex- 
plains the recurrence phenomena observed 
in numerical work by Fermi, Pasta and 
Ulam on one-dimensional lattices (the 
FPU problem). An initial excitation in a 
single linear mode spikes and breaks up 
into solitons: these pass through each 
other and can ultimately reassemble to 
simulate the initial excitation. Energy 
swings between only a few crystal modes 
and then is largely restored to the initially 
excited mode. The relevance of this non- 
ergodic behaviour to thermal transport in 
real crystals is not yet fully understood. 
But Debye’s idea, that energy excited in 

I The speed does not match Russell’s empirical 
formula because the Kdv equation has been 
written in a moving coordinate system. 
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work of Frenkel on crystal dislocations in 2 
1939. It appeared in differential geometry 
before 1882 when Backlund found an im- 
portant transformation for it. The Back- 
lund transformation adds one more soliton 
to any multisoliton solution of the SG 
including the zero or ‘vacuum’ solution - 
it creates a particle. As the equation is 
relativistically invariant (it does not change 
its form under Lorentz transformations) it 

any crystal mode diffuses to all other 
modes in a time characterising the thermal 
conductivity of the crystal, is not applic- 
able to one-dimensional anharmonic crys- 
tals. Figure 2 shows the spiking of a har- 
monic crystal wave into at least eight 
solitons and is taken from the article in 
which the word soliton was coined 
(Zabusky N J and Kruskal M D 1965 
Phys. Rev. Lett. 15 240). 
Nonlinear Schrodinger equation 
If solitons were simply solutions of the 
Kdvequation there would be little more to 
say. But in 1971 Zakharov and Shabat 
published an exact analytical solution of 
the nonlinear Schrodinger (NLS) equation 
i ur = - uxr -  2ulu12 (in which u now takes 
on complex values). The NLS looks like the 
time-dependent equation of wave mechan- 
ics iw,- ~ tyxx+ V(x)v/ in which the 
potential V ( s )  = -2 /wIL  and is deter- 
mined by the disturbance itself (the usual 
factor h2/8rr2rn on - v / . ~ ~  is scaled away; 
all equations I discuss are scaled in some 
way). The NLS has soliton, that is mu//i- 
soliton, solutions, just as the Kdv has. 

The connection between Schrodinger‘s 
famous equation and the NLS raises 
interesting points concerning the quantisa- 
tion of the NLS; but as the NLS is not relati- 
vistically invariant its quantised form has 
so far not proved important. The classical 
form has a large number of physical appli- 
cations, however, which have nothing to 
do with quantum mechanics. Gravity 
waves in deep water are governed by the 
NLS. The interesting solutions are envelope 
solitons. Here a bell shaped hyperbolic 
secant envelope modulates a harmonic 
(cosine) wave. Figure 3 shows observations 
reported by Yuen and Lake (Phys. Fluids 
1975 18 956). On the left is shown a single 
envelope soliton; in the centre a single 
envelope breaks up into two envelope 
solitons; on the right the single envelope 
soliton collides with the second envelope 
which continues to break up undisturbed. 
In the case of deep water a dozen harmonic 
oscillations lie within the sech envelope. 
This is the origin of the fisherman’s warn- 
ing that the seventh wave to come will be 
the largest! 

The NLS also governs the self-focusing 
of intense laser light in a dielectric. Intui- 
tively one sees that if the refractive index 
depends on the light intensity the NLS 
could result. The simplest behaviour arises 
in a steady, time-independent situation 
when the electric field envelope E satisfies 
icz = ~ ~ ~ + ~ ~ , + 2 c ~ ~ l ~ : x , y  and z are space 
coordinates but the direction of propaga- 
tion z is ‘time like’. If we consider x and z 
only, for the moment, laser light at  z = 0 
breaks up into hyperbolic secant solitons 
following straight line tracks at different 
angles to the z axis. The tangents of these 
angles are the ‘speeds’ of the solitons. The 
intensity across a single track is a sech2 
and the laser light has broken up into fila- 
ments with these intensity profiles. Figure 
4 shows a side view of damage tracks 
created by filamentation, now in two space 
dimensions, induced in Perspex by a 
20 TW pulse from a Nd:YAG/glass laser/ 
amplifier prior to the formation of plasma. 
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In the interaction of a laser with plasma 
itself radiation pressure can blow plasma 
out of regions occupied by intense light. 
Regions emptied of plasma have been 
called cavitons, and these have been ob- 
served whilst ‘photon bubbles’ have also 
been talked about. Filamentation may 
influence the transfer of energy from a 
laser to imploding plasma and extensive 
numerical studies of it form a part of the 
current laser-fusion programme at Los 
Alamos. Studies of optical filamentation 
are also in hand in the United Kingdom. 

Two other applications of the NLS of 
particular interest to theoreticians are a 
recent demonstration that a model one- 
dimensional Heisenberg ferromagnet2 can 
be mapped on to the NLS and an earlier one 
that a hydrodynamical vortex problem 
also maps onto the NLS. These results 
illustrate that the exact solution of one 
nonlinear problem can also solve a num- 
ber of other apparently unrelated model 
physical problems. These particular exam- 
ples do not end the list of applications of 
the NLS to physics. Typically it governs any 
weakly nonlinear strongly dispersive phe- 
nomenon. 
SineGordon equation 
Perhaps the most striking of the one- 
dimensional wave equations with soliton 
solutions is the sine-Gordon equation 
(SG) uxx-  u,, = sinu. Particle physicists, 
and plasma physicists for that matter, will 
recognise in the linearised form of the SG 
the Klein-Gordon equation u,, - urr = u. 
The sobriquet for the nonlinear equation 
may be due to Martin Kruskal who with 
colleagues at Princeton solved the Kdv in 
1967, but it may not (on this and other 
matters compare Sydney Coleman’s (1 975) 
‘Classical lumps and their quantum des- 
cendents’ Lectures at the 1975 Interna- 
tional School of Subnuclear Physics 
‘Ettore Majorana’). 

The SO first appeared in physics in the 

1 

relativistically invariant generalised Klein- 
Gordon equation uxx- urf = F(u) has soli- 
ton solutions if and essentially only if F(u) 
is sin u. This puts the SG in a very special 

2 The one-dimensional Heisenberg model of 
a ferromagnet consists of spins oj occupying 
lattice sites i=l, . . .,Nand interacting, with 

first --lor.oibi(Aisacouplingconstant,i=l,. neighbows only, with interaction . .,N 
labels the spin). The related Ising model was 
solved in two dimensions by Lars Onsager in 
1944. The onedimensional model which maps 
onto the NLS is a continuum approximation to 
the Heisenberg model in which the lattice 
spacing is reduced to zero. In a different con- 
tinuum limit the problem maps onto the quan- 
tised sine-Gordon equation discussed below. 

place in particle physics. I return to this 
application of the SG shortly. 

The SG can be modelled by a line of 
coupled pendulums undergoing large 
oscillations including complete rotations. 
Recall that a single pendulum is governed 
by urf = -sin u :  it is only the more usual 
small oscillations case which is governed 
by urf  = - u and exemplifies simple har- 
monic motion. If the pendulum is inverted 
(u  = -z) and then nudged from this tin- 
stable equilibrium point it turns through 
I I  = 0 to return eventually (very eventually 
for i t  takes an infinite time) to u = +n. 
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Figure 1 Ion acoustic solitons: a collision of 
solitons in the same direction; b in opposite 
directions. The smaller soliton is at rest in 
case a and the larger approaches it with speed 
v (from Ikezi, Taylor and Baker 1970 Phys. 
Rev. Lett. 25 11) 

Figure 2 Spiking of a harmonic wave in an 
anharmonic crystal at t = 0 (A) into eight soli- 
tons at later times t = te(B) and t = 3 6 t g  (C) 
Figure 3 Envelope solitons in deep water 
(from Yuen H C and Lake B M 1915 Phys. 
Fluids 18 956) 
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Figure 4 Self-focusing damage tracks induced 
in Perspex by a 2 x loL3 W cm-$ laser pulse. 
Note the totally internally reflected filaments 

Figure 5 Reversal of magnetisation in a do. 
main wall. The magnetic crystal is uniaxial 
with the direction of easy magnetisation 
along y 

This unstable to unstable motion is 
u =  -n+4tan-’et. There is a corre- 
sponding static solution in x, a solution of 
uxx = +sin u, namely u = 4 tan-’ ex. This 
is called a ‘kink’. In a ferromagnet, spins 
interact through a combination of an 
exchange interaction and a magnetic aniso- 
tropy field. The combination yields 
uxx = sin u and the kink is a description of 
the Bloch wall which lies between two 
domains of oppositely directed magnetisa- 
tion. The directions of the spins are given 
by +u and within the wall spins twist 
smoothly from 0 to n as figure 5 shows. 

The Bloch wall is stable because it con- 
nects energetically stable equilibrium 
points at u = 0 and u = 2x. It can move 
and in one perhaps imperfect approxima- 
tion the SG results. The moving solution is 
easily obtained by a Lorentz transforma- 
tion to velocity V 

u = 4tan-’[ f ( x -  Vt)/(l- Va)l’z]. (1) 

Two signs are included to describe kinks 
(+) and antikinks (-): walls can twist in 
either a right-handed or left-handed way. 

Other equations have wall solutions like 
this: the ‘$-four equation’ $ x x - $ t r  = 
-$+V has the kink (antikink) solu- 
tions $ = f tanh[(x- V t ) ( l -  V2)-1’2/21’2]. 
Comparison with the SG shows that it has 
potential energy ,&+ $95-4 $2 (recall the 
pendulum has potential energy (1 - cos u) 
and this is +u2 only in the small oscillations 
approximation). With this potential the 
$-four has stable equilibrium points at 
$ = f 1 .  Its kink solution takes $ from - 1 
to + I ,  the antikink from $ = + 1 to 
$ = - 1 .  Experts in phase transition 
theory or familiar with work on the transi- 
tion of a laser through threshold (see the 
article on synergetics by H Haken Physics 
Bulletin September 1977 p412) will see 
in this potential a familiar model. Figure 
6a illustrates it: figure 6b shows the cosine 
potential for the SG. 

The $-four has been used as a model 

80 
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Figare 6 Potential energy functions associated with: a the 9-four equation; b the sine- 
Gordon equation 

field theory. Another particular applica- 
tion has been to the study of displacive 
phase transitions in one-dimensional crys- 
tals. A form of it in two space dimensions 
models the configuration of oxygen atoms 
in strontium titanate. This crystal under- 
goes an antiferrodistortive phase transi- 
tion in which a unit cell contains four 
oxygen atoms rather than the two appro- 
priate to higher temperatures. Atoms with 
the same configuration tend to surround 
each other in the displacive phase forming 
clusters. The kinks bound such clus- 
ters just as the Bloch wall bounds clusters 
of similar spins. These kinks act like par- 
ticles and may explain unusual features 
(‘central peaks’) observed in the dynami- 
cal form factor S(k,w) of SrTiO, close to 
the transition temperature. 

We learn a little more about the nature 
of the soliton if we contrast the kinks of 
the $-four with those of the SG. The $-four 
has two stable equilibrium points i: 1 : the 
SG has an infinity (u = 0, k 2n, T 4n, etc). 
Kinks or antikinks join these points. Thus 
the kink of the @-four must be followed by 
the antikink, and vice versa: if they collide 
they bump. The kink of the SG can however 
be followed by an antikink or another 
kink. Hence the SG kinks can pass through 
each when they collide and so act like 
solitons. This is what they do. 

The kinks of the $-four are physically 
important quasiparticles. They are not 
true solitons but it is not useful to extend 
the definition of a soliton and include them 
because no exact analytical machinery has 
yet been developed which can handle 
them. They do not simply bump in colli- 
sion : they radiate oscillatory phonon-like 
modes and have weaker stability than the 
solitons. 
Notional spins 
Two important applications of the SG arise 
in physical situations where the interacting 
spins are notional rather than real as in a 
ferromagnet. Consider first a short intense 
optical pulse s, 100  W cm-a at peak) 
with electric field envelope E modulating 
a carrier wave at optical frequency 
(10l6 Hz). The pulse traverses a medium 
and the carrier is on resonance with an 
atomic transition within the medium. The 
resonant transition will be strongly excited 
and we can ignore all other nonresonant 

atomic transitions. If the resonant transi- 
tion is not degenerate it concerns two 
atomic states only. These can be mapped 
on to a ‘spin-down’ state and ‘spin-up’ 
state - a spin-+ system. The motion of an 
atom in the field E is now described by the 
motion of this ‘spin’. The atoms in the 
medium couple through Maxwell’s equa- 
tions, the atomic pseudospins act like 
pendulums, and the motion is described 
by the SG! 

One finds that E K ut and u satisfies a 
form of the SG. From the kink solution (1) 
one finds E cx sech(x- Vf) / ( l  - V)lIa. This 
optical pulse has time ‘area’ +gut dtl 
= 2n and the pulse is called a 2n pulse. 
Since this pulse travels without change of 
shape or energy the medium is transparent 
to it. This is the phenomenon of self- 
induced transparency (SIT). Figure 7 
shows the break up of larger area resonant 
pulses in *‘Rb vapour into two or three 272 
pulses as well as the reshaping of a single 
2n pulse. They are optical solitons and the 
medium is transparent to them. It is 
interesting to note that as the pulses have 
finite transverse profiles self-focusing also 
occurs. Break up takes place but one can 
measure intensity transmission factors of 
several hundredper cent at the centre of the 
intensity profile! These pulses are another 
example of soliton-like objects in more 
than one space dimension. 

Another application of the pseudospin 
formalism is to large area Josephson junc- 
tions - 1 mm2 pieces of superconductor 
sandwiching an oxide layer cm thick. 
Voltage pulses satisfy the Josephson rela- 
tion V = (h/2e)ot in this junction: V is the 
voltage and o is the phase difference be- 
tween the two sides of the junction and 
satisfies oxx- oft = sin o. The sine term is 
just the Josephson current. Voltage pulses 
therefore break up into voltage solitons. 
They carry a transverse magnetic field and 
the total flux threading the junction proves 
to be an integral multiple of the single 
‘fluxon’ hc/2e because it is carried by kinks 
or antikinks. Work at Bell Laboratories 
has shown that these solitons can change 
the voltage/current characteristics. Figure 
8 shows extra branches for the I/  V curves 
- assigned by the workers at Bell to the 
presence of pairs of kinks and antikinks. 
Kinks can be pinned by micro-shorts or 
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external magnetic fields and perturbatlon 
theory about the kink solutions of the SG 
describes this. A fast shift register, the flux 
shuttle, based on this has been proposed 
at Bell. Access time is lo-” s (1 mm x r - ’ ;  
c is the velocity of light). 

Kinks have been invoked to describe the 
electrical conductivity of one-dimensional 
conductors like TTF-TCNQ. Depending on 
the electron-phonon coupling constant a 
one-dimensional lattice of positive ions 
surrounded by electrons can lower its 
energy by a periodic displacement of the 
lattice positions. The electrons lock to the 
displaced ions forming a charge density 
wave (CDW), the configuration of the one 
stabilising the other. The system forms a 
‘condensate’ (Frohlich-Peierls conden- 
sate) with some of the properties of a 
superfluid. If the periodicities of lattice 
and displacement are incommensurate the 
system can translate without energy 
change. The translating CDW constitutes a 
current since electrons translate whilst the 
ions merely oscillate about average posi- 
tions. In practice the condensate is pinned 
by impurity centres, lattice commensura- 
bility, interchain coupling, or other fac- 
tors. Local distortions of the phase u of the 
CDW then induce a local charge propor- 
tional to ax. These can move as kinks or 
antikinks. If in particular a pinning poten- 
tial of period 2x/a is well approximated by 
1-cos(aa), the kinks and antikinks are 
sine-Gordon kinks and antikinks and 
carry charges proportional to ? 2n/a. At 
thermal energies below the pinning poten- 
tial these kinks or antikinks carry the cur- 
rent. Agreement between this theory and 
experiments in the range 16-4.2 K looks 
promising. It is fair to add that enhanced 
conductivity is also predicted from a one- 

Figure 7 Self-induced transparency in g’Rb 
vapour: dotted (solid) lines show the optical 
pulse profile at input (output). The weak 
pulse A attenuates. Stronger pulses reshape 
to solitons (B and C), and still more intense 
ones break up into several solitons (D and E) 
(from Slusher R E and Gibbs H M 1912 Phys. 
Rev. A 5 1634) 
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dimensional model involvmg electron- 
electron rather than electron-phonon 
interactions. Remarkably this theory maps 
on to the quantised sine-Gordon equation 
which we discuss below in the context of 
particle physics. 

Yet another application of the SG has 
been to discern a Josephson junction in 
liquid *He. This isotope of helium under- 
goes a superconducting-type phase transi- 
tion at 2.6 mK and 35 atm to the so called 
A-phase. This is believed to involve the 
pairing of the uncompensated nuclear 
spins of two 3He atoms. To prevent close 
approach the pairs take on unit orbital 
angular momentum. The spin state is then 
the triplet state S = 1 (the metallic super- 
conductor has I = 0 and S = 0). In the 
A-phase spin fluctuations ensure that only 
spin-up and spin-down states play any 
role. The system now consists of two inter- 
penetrating superfluids labelled by spin-up 
and spin-down. These couple through the 
weak spin-dipole interaction. The result 
is the so for the phase difference between 
spins in the two states. A-phase spin waves 
thus become kinks of the SG.  

These kinks consist of the rotation of a 
spin vector u against the supposedly uni- 
form direction 1 of the orbital angular 
momentum. A more general kink is a 
composite kink involving changes in the 
directions of both 1 and u. Such a compo- 
site kink may be at rest in equilibrium and 
oscillations of u against its equilibrium 
position can then be excited: satellite 
frequencies in the nuclear magnetic reso- 
nance (NMR) spectrum have been pre- 
dicted from such motions and certainly 
satellite frequencies have recently been 
observed. This evidence from composite 
kinks at rest is perhaps the best evidence 
for spatially extended kinks in 3He A at 
this time, although, in the time domain, I 
Wheatley has made extensive observations 
of NMR signals characteristic of the in- 
verted pendulum solution of the pendulum 
equation which I mentioned earlier. 

These results and properties apply to 
the A-phase. At lower temperatures and 
pressures 3He enters the B-phase. Spin 
waves satisfy a ‘double SG’ axx-crttt = 
-(sin a+ isin $0) with remarkable solu- 
tions. Figure 9 shows the collision of a 
kink-antikink pair each of area 4n-26 
(6 = 2cos-’( - ))). In the long trough the 
pair changes to a 26-antikink-kink pair, 
this loses energy by radiation and the pair 
reverts back to a 472- 26 pair. These kinks 
are not solitons in the way that $-four 
kinks are not solitons but they are remark- 
able enough. Interestingly SIT obeys the 
double SG with positive sign on the right 
side in a case when the resonant atomic 
transition is degenerate. Optical pulses 
now prove to be boundpairs of 2n-hyper- 
bolic secant pulses and these can wobble. 
Pictures of this wobbler appear in the 
article ‘Solitons’ referenced below. It has 
been observed in degenerate D1 transi- 
tions in sodium vapour. 
Particle physics 
I turn finally to particle physics. Kinks are 
particles: their energy is localised at a 
point, they are stable and have finite self- 

energy. When the velocity V = 0 the rest 
energy of the kink solution of the SG 
uxx- I ! , ,  = m2sin u is 8my-1 ( y  is a coupling 
constant: i t  appears in the Hamiltonian 
but not in theequation). There is an impor- 
tant solution ofthesGIhavenot mentioned. 
This is the ‘breather’. The breather is a 
bound kink-antikink pair and itsexactana- 
lytical form is known. It acts like a soliton 
andpasses throughother solitons- kinksor 
breathers. Itsmass is 16my- ’sinp. Thepara- 
meter p is associated with an internal oscil- 
latory degree of freedom of the breather. 
For y <  1 kinks and breathers become 
massive particles much heavier than the 
‘meson’ mass m. 

Theoreticians impose commutation re- 
lations on the field u(x,t) and ‘quantise’ it. 
The usual Hilbert space of vacuum plus 
meson states is now extended by the soliton 
states. The soliton states are not accessible 
by perturbation theory and the soliton 
masses, of order y-l, show this. The quan- 
tised SG in particular has a mass spectrum 
consisting of mesons, mass rn, kinks and 
antikinks, mass 8my-’, and a discrete 
breather spectrum 16my-’sin(ny/l6) where 
n = 1, 2 . ., Nand N is that integer just 
below 8ny-’. If y <  1 the lowest states 
have masses nm and can be thought of as 
states made up of n mesons. 

This beautiful model must be a stimulus 
for further work since it has no known 
relevance to the distribution of particle 

Figure 8 Extra branches on the I /  Vcharac- 
teristics of a large area Josephson junction 
believed due to sine-Gordon kink-antikink 
pairs (from Fulton T A  and Dynes R C 1973 
Sol. Stat. Commun. 12 57) 

Figure 9 Computer simulation of a colliding 
spin wave kink-antikink pair of area 472-26 
in the B-phase of aHe below 2.6 mK 
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masses which have been observed. One 
extension must be to  three space dimen- 
sions, but we know that Derrick’s theorem 
then excludes kink-like solutions of the 
SG although certain time dependent solu- 
tions like the breather remain possible. 
Derrick’s theorem is one reason for ex- 
ploring relativistically invariant classical 
gauge theories3. Equations with soliton 
solutions are usually ‘infinite dimensional 
completely-integrable Hamiltonian’ sys- 
tems. This means they have a n  infinite 
number of constants of the motion over 
and above those o f  energy and momentum. 
A completely integrable infinite-dimen- 
sional relativistically invariant equation in 
three space dimensions is not ruled out. I t  
could provide a lot of answers if and  when 
it can be found 

3 There arc no problems, except increasing 
difficulty of the mathematics, in finding 
examples of localised multisoliton solutions 
of nonrelativistic waveequations in more than 
one space dimension. The Kadomtsev- 
Petviashvili equation uUu- (utf 6uux+ uxxx)x 
= O  has such solutions. 

Further reading 
A short biography of Russell appears in the 
Dictionary of National Biography 1897 49 
465-6. He was an outstanding example of the 
Victorian entrepreneur. In middle life he 
built the Great Emtern for Brunel in his own 
dockyard on the Thames and was held to 
have tried to steal more credit for the vessel 
than was his due. The new biography John 
Scott Russell by G S Emmerson (London: 
Murray 1977) presents a very different 
picture. The Wave of Translation was first 
published by Teubner in 1878 with a new, 
London, edition in 1885. The 5 miles estimate 
agrees with the actual equivalent depth at 
uniform density; the 5 x 10” miles is out by 
at least five orders of magnitude and in any 
case apparently relies on a g reduced by a 
factor 

Review or semirevicw articles are ‘The 
soliton: a new concept in applied science’ by 
A C Scott, F Y F Chu and D W McLaughlin 
(Proc. IEEE 1973 61 1443-83); ‘Solitons’ by 
the author in Interaction of Radiation with 
Condensed Mutter Vol I (IAEA-SMR-20/51, 
Vienna: International Atomic Energy Agency 
1977); ‘Quantum meaning of classical field 
theory’ by R Jackiw (Rev. Mod. Phys. 1977 
49 681-706). Jackiw also discusses ‘instan- 
tons’. These multidimensional solutions (of 
classical gauge theories) are not solitons and 
not particles; but they connect two vacuum 
states (rather like those of the $-four shown 
in one dimension in figure 6a) and tell us about 
the possibility of penetrating the potential 
barrier between them. They may be able to 
say something on the problem of quark 
confinement. 

Note that techniques developed in soliton 
theory may also solve some of the problems 
Haken discusses in his article on synergetics in 
the September 1977 issue of Physics Bulletin. 

I am grateful to J E Balmer for figure 4 and 
P W Kitchenside for figure 9. The other 
figures are taken from the published literature. 

This article is dedicated to friends and 
colleagues in the soliton community. May it 
serve to indicate their very exacting standards! 

R K Bullough, FInst P, is Professor of 
Mathematical Physics at the University of 
Manchester Institute of Science and 
Technology 
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Soliton Propagation in Liquid Crystals 

Lin Lei,(=) Shu C hangqing, and Shen Juelian 
Institute of Phjsics,  Chinese Acndrmy of Scieiiccs, Beijing, CIziiia 

and 

P. M. Lam 
Instilute of Theoretical Physics, ChiTiese Academy of Sciences, Beijitlg, Chills 

and 

Huang Yun 
Depart irzeiit of Ph?lsics, Bcijiiig- rlnivcrsit y ,  Beijing, Chiiia 

(Received 5 hlay 1982) 

Soliton propagation in nematic liquid crystals  under shear  is shown to be possible and 
studied theoretically. Calculations including those pertaining to  the modulation of mono- 
chromatic o r  white light passing through such a liquid-crystal cell are presented. Recent 
experiments are interpreted accordingly and are in good agreement  with the theory pre- 
sented here. 

PACS numbers: 61.30.-v, 03.40.Kf, 05.70.Ln, 4 7 . 1 5 . ~ ~  

Solitons are important and have been found in 
various objects ranging f r o m  celestial  bodies to 
laboratory systems.’.2 However, unlike the f i r s t  
observation of soli tons in shallow water  by Scott 
Russell,  many of the recent  experimental  evi- 
dences of solitons in condensed matter  are indi- 
rect  in nature.  The experiments3 on the o rde red  
fluid 3He are no exception. In this  r ega rd ,  we 
note that in another type of o rde red  fluid, viz., 
liquid crystal ,  because of the s t rong coupling of 
the director with light, it may be possible to ob- 
serve the motion of the molecules and the solitons 
rather directly.  

Discussions of solitons in liquid crystals4 was 

f i r s t  given by Helfrich’ and subsequently by 
de Gennes; Brochard; and Leger.’ In their  work 
in nematics ,  the soli tons (called “walls”) are 
magnetically generated and are sma l l  in width 
(e.g., a few microns) .  Experimentally,  the ob- 
servation7 of these soli tons is delicate and a po- 
larizing microscope has  to be used. Recently, 
t he re  h a s  been more  but s t i l l  limited attention’ 
paid to the ro l e  of solitons in the physics of liquid 
c rys t a l s .  

In this  Le t t e r ,  we  f i r s t  point out and discuss  a 
new c a s e  in liquid c rys t a l s ,  viz., nematics  under 
uniform s h e a r ,  in which solitons can exis t  and 
propagate.  In contrast  to the magnetic ~ a s e ~ - ~  

@ 1982 The American Physical Society 1335 
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the propagation of these solitons can be observed 
even by the naked eye and easily measured. We 
then give an analysis and explanations of some 
recent experimentsg.l0 which a re  found to be in 
good agreement with our theory. 

Let us consider a nematic under uniform shear  
such that the velocity i s  given by : = (~(y),  0 ,O)  
and s =av/ay  = const. The incompressibility con- 
dition V .:= 0 i s  clearly satisfied. Under the as- 
sumptions that the director ; = (sine, cos0, 0) and 
8 = O(x , t )  we find, according to the Ericksen- 
Leslie equations, that" 

where the one-constant assumption ( K ,  =K,=K,  
= K )  is used. Here, iLI i s  the moment of inertia,  
K the elastic constant, y 1  and y z  the viscosity co- 
efficients, and dO/dt=aO/at +ua0/ax -a8/at i s  
assumed. Equation (1) i s  the damped driven sine- 
Gordon equation which i s  known to have soliton 
sohtions." When 8 i s  a traveling wave of veloc- 
ity c ,  Eq. (1) becomes 

mtY=-qi-au/ao, (2) 

where e = O ( Z ) ,  Z r X - q T ,  X - x / h ,  T r t / r ,  X 

(2y21yzl), y = y l / / y z ( ,  C' = Y O + $  sin20, and B E ~ o /  
d Z .  In (2),  the experimental fact  that y z  0 is 
adopted and s > 0 i s  assumed. Note that if 8 i s  
the soliton for s > 0 then - 8 is that for s < 0. 

Equation (2) describes the damped motion of a 
particle with mass m in an apparent potential U .  
The damping coefficient i s  77 and 2 plays the role  
of time. For  0 < y  < 1, U has a series of maxima 
at 8 = 8,+kn and minima at  8 = - O,+kn  where k is 
an arbitrary integer and n/4 < 8,- $ cos-'(- y )  
<n/2. There a re  only three types of solitons 
corresponding respectively to the particle s ta r t -  
ing (with zero velocity) at  the maximum at 8 = 0, 
and ending in (A) the adjacent minimum at 8 = - O0, 
(B) the minimum at 8 = n - O , ,  o r  (C) the maximum 
at 0 = 8, - n .  Type C appears only when 17 = q ,  but 
type A (B) i s  possible for all q >?I, (77 > O ) .  Here, 
IJ, i s  a parameter which increases monotonically 
with y from zero at y =  0 to 0 . 8 4 ~ ~ ~ "  at y =  1 (see 
Fig. 7 of Ref .  12). Note that there i s  no soliton 
for  y > 1.  F o r  y = 1, type A reduces to type C. 
With the experiment of Ref .  10 in mind, we will 
discuss below only the strongly damped case of 

( ~ / l y z ( S ) " 2 ,  T =  & / S ,  q = C T / A ,  m = l  - h ' f S q 2 /  

7731. 
To this end, (2) i s  expanded in 1/77 resulting in 

(3)  B = - ( y  + C O S ~ ~ ) / V  - 2(sin20)8/772+0(1/q~) 

which has been solved analytically.'3 Numerical- 
ly, soliton solutions of type A may be approxi- 
mated very accurately by the more simple ex- 
pression 

0 = tan-'{w tanh[(y - l)wZ/q]}, (4) 

where w- [(l + y ) / ( l  - y ) ] ' " ,  which i s  actually the 
solution of (3) to O( l /q ) .  A s  expected, 8 decreas- 
es monotonically from B o  at 2 = - m to - 8, at 2 
=+- ( y  < l),  the two uniform states allowed by 
the shear  flow. In (3)  and (4), without loss of 
generality, m = 1 is assumed. 

When the shearing nematic i s  placed between 
two crossed polarizers which are in the x - z  
plane with the polarizing direction at 45" with the 
x axis,  the par t  of the soliton corresponding to 
0 = 0 will appear as a dark line moving with veloc- 
ity c in the x direction. The illuminating light is 
assumed to be in the y direction. 

Fo r  monochromatic light of wavelength X, the 
ratio of output to input intensities I / I ,  as a func- 
tion of 2/77 is calculated. It var ies  from 0 to 1 
consisting of a se r i e s  of minima and maxima. 
The positions of the points with I / I o =  0.5 a re  de- 
picted in Fig. 1. The region between two adjacent 
points with a minimum in between i s  painted 
black. In Fig. 2, the curve I / I ,  for  white light 
is shown. The width of the dark line at the center,  
A ,  i s  found to decrease with y as shown in Fig. 3. 
In these calculations, (4) i s  used; thickness df 
the nematic 2d= 20 p m ,  refractive indexes no 
=1.54 and n, f rom Fig. 6 of Ref. 1 4  for  N-[p-  
methoxybenzylidenel-P -butylaniline (MBBA) a re  
adopted. 

What we discussed above i s  the appearance of 
the solitons once they are created. There re-  
mains the question of how the solitons can be 
excited. In the experiments of Ref. 10, nematic 

- 8 - = 0 . 9 6  ,a, 

Tz0.96 , b ,  

0. 6 
0 -_ -  - 

0 1 2 3 4 5  
z/ 7 

FIG. 1. Theoretical " photograph" of transmitted 
monochromatic light derived from the calculated I / I ,  
vs z/q curve (see text). The picture is symmetric in  
z and -2. (a) A,= 6328 A,  y =  0.96; (b) h,= 6000 A ,  
y=O.96, 0.8, 0. 
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0.5 H 0 0.5 y 3  
Ah 

FIG. 2. Transmitted white light intensity I / I o  v s  
Z / q .  y =  0.96. A is the width of the dark  line defined 
at the half maximum intensity. 

MBBA i s  honieotropic and at r e s t  initially. To 
excite the solitons, a Mylar plate placed a t  one 
end of the liquid-crystal cell i s  either pushed o r  
pulled steadily along the cell. In our  opinion, 
the movement of this plate creates  velocity gradi- 
ents in the n e m a t i ~ . ' ~  To f i r s t  approximation, 
the velocity profile may be assumed to be steady 
and of the form shown in Fig. 4. The problem 
becomes one dimensional and our resul ts  pre- 
sented above may be applied withaut modification 
to each of the layers (of thickness d )  near the 
surfaces of the cell. 

experimental results" a r e  evidenced by the fol- 
lowing. (i) The behavior of the dark lines in the 
two cases of pushing andpulling of the plate are 
similar to each other." Our theory predicts 
identical behavior when all other conditions are 
identical. (ii) Experimentally, c'>>u. Our theory 
gives 6~ M = ( c / s ) 2 y f ( y )  wheref(y) i s  the curve 
in Fig. 3, implying that a thick dark line (under 
white light) moves fas te r  than a thin one, in 
agreement (at least qualitatively) with experi- 
ments." (iii) Experiment and our theory both 
show that the dark line corresponds to molecules 
normal to the glass plates. (iv) The character-  
istics of I / I  shown in our  Fig. 1 are in agree- 
ment with that in Ref. 10. In fact ,  the experi- 
mental pattern of the transmitted monochromatic 

The good agreement between our  theory and the 

"i d 

.x 

( a )  ( b l  
FIG. 4. Velocity profiles created by the pushing (a) 

or pulling (b) of the Mylar plate a t  the left of the cell. 
The maximum velocity in the profile is V . 

o 02 a4 no 0.8 I. r 
FIG. 3 .  Dependence of the width of the dark line A/q 

on y. 

light may be understood as resulting from the 
overlapping of three patterns of the type s imilar  
to Fig. 1 (corresponding to three solitons) as 
evidenced from theoretical r e s u l t ~ ' ~  shown in 
Fig. 5. (v) Fo r  a cell of 30 cm in length, 5 cm 
inwidth,  a n d d = l O  p m ,  K = 1 V 6  dyn, y=0.96, 
c = 1 0  cni/sec, and V=O.O5 cm/sec (resulting in 
B O =  81.9", 77 = 1.6x lo3),  the power required to 
generate and maintain the propagation of one 
soliton i s  calculated to be - 193 erg/sec.  The ex- 
perimental resul t  (for three solitons)'6 is - 10' 
erg/sec.  With the same  set of parameters  and 
from our  Fig, 3 we find 6 = 0-8 mm while experi- 
ment gives 6 - 1 mm. Note that physically V is 
always smaller  than the velocity of the pushing 
plate. (vi) The dark line (under white light) i s  
sandwiched between two bright narrow lines (see 
Fig. 2). This i s  clearly observed experiniental- 
ly.10 

Knowing the temperature d e p e n d e n ~ e ' ~  of y s  no ,  
and n, one may obtain 6 as a function of tem- 
perature.  Also, using s = V / d  our  theory predicts 
6 /c  = 2 y f ( y ) d / V .  This can be checked easily by 
varying the thickness of the cell o r  of the pushing 
plate. The occurrence of three dark lines in the 
experiment'" i s  related to the input power and the 

t - 
FIG. 5. Modulated monocliromatic light pat tern cor- 

respondiw to two solitons (see Ref. 13). A, = G328 A, 
y =  0.96. 
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shear rate. Only one dark line is observed when 
a thinner pushing plate is used,16 o r  when the 
soliton i s  generated by applying pressure gradi- 
ents.2' l8  

tained above for  a traveling wave are applicable 
only in the time region in which the velocity of 
the dark lines i s  almost ~ 0 n s t a n t . l ~  The major 
features and conclusions of the above one-dimen- 
sional analysis a r e  retained in a more refined 
two-dimensional study.13 

Solitons of type B should be observable for 
nematics initially in planar c~nf igura t ion . '~  With 
the setup described in Ref. 10 dark lines (under 
white light) cannot be (and have not been16) ob- 
served when the homeotropic configuration i s  re-  
placed by the planar one. F o r  both homeotropic 
and planar configurations, type C solitons should 
be observable. Note that the method used in Ref. 
10 to excite solitons i s  not unique. Further dis- 
cussions and other resul ts  can be found in Refs .  
2 and 13. 

We thank Zhu Guozhen for  providing his experi- 
mental results of Ref. 10 to us before publication 
and many helpful discussions. 

Strictly speaking, those theoretical resul ts  ob- 
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ERRATUM 

Soliton Propagation in Liquid Crystals. LIN LEI, SHU CHANGQING, SHEN JUELIAN, P. M. LAM, and 
HUANG YUN [Phys. Rev. Lett. 49, 1335 (1982)l. 

On p. 1336, the seventh line above Eq. (3), 0.84 m"2 should be replaced by 1.68 m'" 
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Possible relevance of soliton solutions 
to superconductivity 
T. D. Lee 
Department of Physics, Columbia University, 538 West 120th Street, 
New York, New York 10027, USA 

The newly discovered high-temperature superconductors’ indi- 
cate that there might exist another underlying mechanism for 
superconductivity, different from the BCS theory’. Recent sug- 
gestions of bipolar on^'.^ and resonant valence bonds5, among 
others (see, for example, refs 6 , 7 ) ,  point to the importance of 
an effective complex boson field +(x). For example,+(x) could 
be formed from a pair of electron fields JI and (I 1 of opposite 
spin: ~ ( X ) - ( ~ ~ ( X + I ) J I ~ ( X - I ~ ) ~  where 0 1  denotes the 
appropriate average over the spacing I. The corresponding 
phenomenological Lagrangian density may be written as 

where as 141 + 0, 

u - t m 2 4 + 4 + g ( + + 4 ) ’ + . . .  ( 2 )  
with rn acting as the effective mass and g as a nonlinear coupling. 
The replacement of J, (where g denotes the space-time indices) 
by J, - 2eA, gives the modification when there is a n  electromag- 
netic field A,. In models that assume a relatively tight binding 
between the electron pair, one might expect the coefficient m’ 
to be positive and insensitive to the temperature T (for T less 
than the transition temperature T J ,  in contrast to that in the 
standard Ginzburg-Landau equation’ (which has m’ negative 
and proportional to T -  T,). This difference changes the charac- 
ter of the solution, making the customary acquisition of a non- 
zero 141 through the Higgs mechanism inapplicable. The purpose 
of this note is to call attention to the property that, when m2 > 0 
and if there exists some attractive nonlinear interaction, the 
low-energy states of equation (1) may be dominated by solitons, 
instead of by the usual plane-wave solutions of particles of mass 
m. 

Define E = u - m ’ 4 ’ 4 ,  which contains all the nonlinear inter- 
actions of 4. We assume that, at least for a limited range of 141, 
E is negative; that is, 

& < O f o r  u i < ~ # I < u I + 6  (3) 

where al and S are both positive. (If g < 0 in equation (2), then 
ul = 0.) As we shall see, when the space-dimension D is 1, 
independently of the behaviour of E outside the range given in 
equation ( 3 )  and no matter how small E and S are within that 
range, there always exist non-topological soliton solutions. Such 
solutions can also exist in any higher dimension D > 1, but there 

Fig. 1 The solid line gives an example of u ( u )  = m 2 a z +  &(a) ,  
where e ( u )  < 0 for u, < u <  uI + 6; the short-dashed line is m’a’ 

and the long-dashed line is W 2 u 2 ,  which is tangent to u ( a + ) .  

is a condition on E and 6 ;  this condition becomes more stringent 
as  D increases. Furthermore, these solutions are valid in classical 
physics as well as in quantum mechanics’. 

Consider first D =  1 and assume ~$=u(x)e- ’”” .  From 
equation (1) it follows that o ( x )  satisfies w’o+d’u/dx’- 
$ d u / d u  = 0, which, together with the boundary condition a = 0 
at 1x1 =a, gives 

(g)’ - ll + w z o 2  = o  (4) 

This is analogous to the equation of energy conservation for a 
non-relativistic particle of ‘position’ o and ‘time’ x moving in 
a ‘potential’ v ( o ) -  w 2 u 2 -  u ( a ) .  Both u ( u )  and v ( a )  are illus- 
trated in Figs 1 and 2. Because of expression ( 3 ) ,  there exists 
an 6’ < rn’ such that the parabola G’a’ is tangent to u ( a ) ,  as 
shown in Fig. 1. Hence, for any w 2  between W 2  and m’, there 
exists a soliton solution given by 

x - x o =  *{:,u(o)-”’du ( 5 )  

as  shown in Fig. 3.  When x +  *a, u = e ~ p [ - ( r n ~ - w ~ ) ~ ” l x l ] ;  
this gives a correlation length ( m’ - w2)-”’ which approaches 
a when w + m. As a result, there could be a phase transition 
even in one dimension. 

If for small o, &(u)=gu4+g‘o6+. . . with’g<O, then ui = O  
in equation (3).  In this case, solitons exist for any particle 
number N, u p  to a maximum value N (corresponding to w = W ) ;  
it can be shown’ that because d M / d N  = w < rn, the soliton 
energy M(N) is always less than Nm, insuring its stability. 
Thus, at low temperature, the thermodynamics of the system 
becomes dominated by the soliton phase, which resembles that 
of a Bose gas of rest mass M (  N ) ,  where N refers to the average 
particle number N (  T )  varying with T. Because M (  N, + N,) 5 
M ( N , )  + M( N,) for any Nl and N2, we have at T = 0, N = N 
(depending on  the model, N can be quite large). As T increases, 
N (  T )  decreases, and it becomes of order unity near T,; corre- 

“I 

I 

Fig. 2 Schematic plot of u ( a )  = W*D’ - u ( u ) ,  for 6 < w < rn 

Fig. 3 Example of a non-topological boliton, thus called because 
as 1x1 +a, / c # ~ + O  (in any dimension), where 4 = ue-““‘. 
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spondingly, w increases from 0 to m, accompanied by the related 
change of correlation length from ( m2 - G 2 ) - - L / 2  to 00. For D = 1,  
the specific heat is proportional to where n > 0. The value 
of n depends on the nonlinear interaction E,  and is associated 
with the gradual change of N (  T ) .  

For D> 1, the radial part of V2 is J2/Jr2+(D- I)r-lJ,lar;-the 
latter gives a dissipative 'friction' to the corresponding 'energy' 
expression in the mechanical analogue given by equation (4). 
This sets a lower limit on the magnitude of the negative part of 
E .  In order to have solitons, E cannot be arbitrarily small. 
Furthermore, stable solitons (that is, for M (  N )  < N m )  now-exist 
only yithin a relatively limited range of N between, say, N - A 
and N. Again, the low-lying states are those of solitons, not 
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particles of mass rn. The corresponding specific heat is propor- 
tional to TD/*+". If A is narrow, then n is positive but small; 
this leads to, when D = 2, a nearly linear dependence on T for 
the specific heat. 

A system of these solitons, like that of any bosons, can undergo 
Bose-Einstein condensation and thereby may exhibit supercon- 
ductivity, in accordance with the work of M. R. Schafroth". 

In view of the rapid accumulation of new experimental results 
in this field and the apparent inadequacy of our present theoreti- 
cal understanding, exploration of different theoretical avenues 
may be necessary. It is in this spirit that this note is written. 
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Dendrites, Viscous Fingers, and the Theory of 
Pattern Formation 

J. S. LANGER 

There has emerged recently a new theoretical picture of 
the way in which patterns are formed in dendritic crystal 
growth and in the closely analogous phenomenon of 
viscous fingering in fluids. Some interesting questions 
that arise in connection with this theory include: How 
broad is its range of validity? How do we understand 
dynamic stability in systems of this kind? What is the 
origin of sidebranches? Can weak noise, or even micro- 
scopic thermal fluctuations, play a role in determining the 
macroscopic features of these systems? 

HE THEORY OF PAlTERN FORMATION IN NONLINEAR DISSI- 

pative systems has taken some surprising turns in the last T several years. One of the most interesting developments has 
been the discovery that weak capillary forces act as singular pertur- 
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bations which lead to beautifully delicate and very nearly identical 
selection mechanisms both in dendritic crystal growth and in the 
fingering patterns which emerge when a viscous fluid is displaced by 
a less viscous one. It now appears likely that important progress has 
been made, but pieces of the puzzle still seem to be missing. 

For most of us, dendritic crystal growth brings to mind pictures 
of snowflakes. Materials scientists may think also about metallurgical 
microstructures, which provide very practical reasons for research in 
this field; but it is the snowflake that most quickly captures our 
imaginations. Kepler‘s 161 1 monograph “On the Six-Cornered 
Snowflake” ( 1 )  is often cited as the first published work in which 
morphogenesis-the spontaneous emergence of patterns in na- 
ture-was treated as a scientific rather than a theological topic. At a 
time in which the existence of atoms was merely speculation, Kepler 
mused about hexagonal paclungs of spheres, but concluded that the 
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problem was beyond his reach. Its solution would have to be left for 
future generations. In fact, scientists have waited more than three 
centuries before finding much hint of an answer to the question that 
Kepler posed. 

One part of the answer, of course, is the understanding of 
crystalline symmetries and their relation to atomic structure. Anoth- 
er part is our modern statistical theory of the fluctuations and 
dmipative processes that ultimately govern pattern formation. But it 
is only in very recent years that we have begun to understand how 
these irreversible processes can amplify weak anisotropies and even 
very small noisy fluctuations in such a way as to produce intricate 
patterns in ostensibly featureless systems. 

In the pattern-forming systems of interest here, we are dealing 
with dynamic processes, not just molecular structures or macroscop- 
ic forms. Unlike D'Arcy Thompson (2) (who could describe and 
measure but not explain) or Nakaya (3)  (who produced one of the 
world's most complete and beautiful catalogues of snowflakes), we 
now have the experimental and analytic tools that we need to find 
out, for example, how the growth rate of a dendrite and the spacing 
between its sidebranches are determined by the temperature and 
composition ofthe solidifying substance. We may even have most of 
the tools-if not yet the information-that we need to understand 
the growth of biological forms. Of the analytic tools, the two which 
seem most essential are the theory of morphological instabilities in 
systems far from equilibrium, and the computer, which enables us to 
explore quantitatively the nonlinear behavior of such systems. [For 
both of these we must pay tribute to the remarkable insights of 
Turing ( 4 ) . ]  The work to be described here arises largely from the 
modern interplay between physical insight, mathematical analysis, 
and numerical methods. 

In this article, I shall review briefly the recent history of the 
dendrite (5) and viscous fingering problems and shall attempt to 
communicate at least the general flavor of recent developments, 
specifically, the so-called "solvability theory" (6). As an illustration 
of this theory, I shall describe Couder's remarkable bubble effect, 
which, by seemingly turning fingers into dendrites, provides an 
excellent illustration of the singular perturbation in action. I shall 
conclude with some conjectures about the range of validity of the 
solvability theory and its implications for our understanding of more 
complex dynamical effects such as sidebranching. 

Dendritic Solidification of a Pure Substance 
In the conventional thermodynamic model of the solidification of 

a pure substance from its melt, the fundamental rate-controlling 
mechanism is the diffusion of latent heat away from the interface 
between the liquid and solid phases. The latent heat that is released 
in the transformation warms the material in the neighborhood of the 
solidification front and must be removed before further solidifica- 
tion can take place. This is a morphologically unstable process which 
characteristically produces dendrites, that is, treelike or snowflake- 
like structures. In a typical sequence of events, an initially featureless 
crystalline seed immersed in an undercooled melt develops bulges in 
crystallographically preferred directions. The bulges grow into 
needleshaped arms whose tips move outward at constant speed. 
These primary arms are unstable against sidebranching and the 
sidebranches, in turn, are unstable against further sidebranching, so 
that each outward growing tip leaves behind itself a complicated 
dendritic structure like that shown in Fig. 1. 

The dimensionless thermal diffusion field in this model for 
convenience is chosen to be 

Fig. 1. Primary dendrite of succinonitrile (a transparent plastic crystal with 
cubic symmetry) growing in its undercooled melt. Note the smooth 
paraboloidal tip, the secondary sidebranching oscillations emerging behind 
the tip, and the beginnings of tertiary stmcture on the well-developed 
secondaries. (Photograph courtesy of M. E. Glicksman.) 
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where T, is the temperature of the liquid infinitely far from the 
growing solid, and the ratio of the latent heat L to the specific heat c 
is an appropriate unit of undercooling. The field u satisfies the 
dihsion equation 

au 
at 
- = DV2u 

where D is the thermal diffusion constant, which can be taken to be 
the same in both liquid and solid phases. The remaining ingredients 
of the model are the boundary conditions imposed at the solidifica- 
tion front. First, there is heat conservation: 

v, = -[Di'i*Vu] (3) 
where i'i is the unit normal directed outward from the solid, v, is the 
normal growth velocity, and the square brackets denote the disconti- 
nuity of the flux across the boundary. In these units, the left-hand 
side of Eq. 3 is the rate at which latent heat is generated at the 
boundary and the right-hand side is the rate at which it is being 
dihsed away. The physically more interesting boundary condition 
is the statement of local thermodynamic equilibrium, which deter- 
mines the temperature us at the two-phase interface: 

us = A - dOK (4) 
where 

(5) 

and T M  is the melting temperature. A is the dimensionless under- 
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Fig. 2. Schematic illustration of a Hele-Shaw experiment adapted from a 
photograph by J. Maher. The inviscid fluid is entering from the left and the 
viscous fluid (shown shaded) is being pushed to the right. The motion is 
effectively two-dmensional, constrained by narrowly separated glass plates in 
the plane of the figure. As shown here, the flow takes place in a channel of 
width 2W. The initially irregular pattern formed by the instability of the 
interface between the two fluids is developing into a single finger of width 
2h w. 

cooling, a measure of the driving force for the processes that we are 
considering. The second term on the right-hand side of Eq. 4 is the 
Gibbs-Thomson correction for the melting temperature at a curved 
surface: K is the sum of the principal curvatures and do = Y c T M / L ~  is 
a length, ordinarily of order angstroms, which is proportional to the 
solid-liquid surface tension y. The latter quantity and, accordingly, 
do may be functions of the angle of orientation of the interface 
relative to the axes of symmetry of the crystal. In particular, for a 
cubic crystal in the ( 1 ,  0, 0) plane, do is proportional to ( 1  - acos 
48), where 8 is the angle just mentioned and a is a measure of the 
strength of the anisotrophy. 

Viscous Fingering 
The hydrodynamic analog of dendritic solidification is the finger- 

ing instability that occurs when one causes an inviscid fluid to drive 
a viscous one through a porous medium. The two-dimensional 
version of this situation (7) is a Hele-Shaw cell in which the two 
immiscible fluids are constrained to move between narrowly separat- 
ed parallel plates. The configuration is shown schematically in Fig. 
2. The invading inviscid fluid can be visualized as playing the role of 
the growing solid, and the more viscous fluid that is being pushed 
away is like the melt. The analog of the thermal field u is the pressure 
P, which can be taken to be constant in the “solid” and to satisfy 
Laplace’s equation in the “melt.” Here is the main difference 
between fingering and solidification; the Laplace equation is not the 
diffusion equation. The velocity of the viscous fluid in the porous 
medium is given by Darcy‘s law to be simply proportional to -VP; 
thus the expression for the velocity of the interface between the two 
fluids is precisely the analog of the conservation law, Eq. 3. Finally, 
the interfacial tension y causes the pressure at the interface to be 
reduced by an amount proportional to YK, in exact analogy to the 
thermodynamic boundary condition, Eq. 4. There is, however, no 
crystalline anisotrophy associated with this y. Directional informa- 
tion can be provided only by the interaction between the long- 
ranged pressure field and the walls of the container, or else by 
adding to the model-“by hand,” so to speak-some anisotropy of 
the medium through which the fluids are moving. 

Pattern Selection 
There are sharply defined problems of pattern selection associated 

with both of these models. In solidification, it is known that the 

growth rate v and the tip radius p of a dendrite are determined 
uniquely by the undercooling A. In the hydrodynamic case, specifi- 
cally, the two-dimensional Saffman-Taylor (7 )  experiment in which 
a steady-state finger forms in a long channel, the ratio A of the width 
of the finger to the width of the channel is determined uniquely by 
the flow speed. In both cases, surface tension appears at first glance 
to be a negligible perturbation; the length do is orders of magnitude 
smaller than other characteristic lengths. However, the omission of 
surface tension in either problem leads to continuous families of 
solutions and, thus, to no explanation whatsoever of the experimen- 
tally observed selection principles. It turns out that surface tension is 
playing an especially subtle role in these processes. 

In the case of the dendrite, if one neglects surface tension 
altogether, one arrives at Ivantsov’s paradox (8). Instead of there 
being a unique growth velocity v and tip radius p at a fixed A, as 
required by experiment, there exists a continuous family of steady- 
state, shape-preserving solidification fronts-paraboloids of revolu- 
tion-that satisfy the Ivantsov relation 

wherep = pd2D is the thermal Pkclet number. The tips ofdendrites 
often do look very paraboloidal, and quantitative experiments 
generally indicate that the Ivantsov relation, Eq. 6, is satisfied. But 
obviously some essential ingredient of the theory is missing. 

Over a decade ago, Miiller-Krumbhaar and I (9) explored the idea 
[originally suggested by Oldfield ( l o ) ]  that the missing element of 
the theory might have something to do with stability of the growth 
form. We performed many complicated calculations, but what was 
left in the end was a relatively simple conjecture that has since been 
confirmed remarkably well by experiment. In the simplest possible 
terms, our conjecture was that the tip radius p might scale like the 
Mullins-Sekerka ( 1 1 )  wavelength A, = 2 ~ ( 2 D d d v ) ” ~ .  Note that A, 
is the geometric mean of the microscopic capillary length do and the 
macroscopic difision length 2Dlv; it is of roughly the right 
magnitude to characterize dendritic structures. A planar solidifica- 
tion front moving at speed o is linearly unstable against sinusoidal 
deformations whose wavelengths are larger than A,. Therefore, we 
reasoned, a dendrite with tip radius p appreciably greater than A, 
must be unstable against sharpening or splitting. The dynamical 
process that leads to the formation of the dendritic tip might 
naturally come to rest at a state of marginal stability, that is, at a state 
for which the dimensionless group of parameters 

(7) 

is a constant, independent of A. Moreover, if we take the idea 
literally and set p equal to A,, then the value of this constant should 
be u* = ( 1 / 2 ~ ) ~  g0.025.  The assumption u = u* = constant is 
consistent with a wide range of experimental observations (12) 
(when convective effects are eliminated or otherwise taken into 
account) and the specific value u* = 0.0195 for succinonitrile-by 
far the most carefully studied material-is quite close to the naive 
prediction. 

What, then, is wrong with the marginal stability theory? It seems 
that its mathematical foundation has been knocked from under it by 
the discovery that the Ivantsov family of solutions does not survive 
in the presence of surface tension (13-17). A nonvanishing do, no 
matter how small, reduces the continuum of solutions to, at most, a 
discrete set; and the existence of any solution whatsoever depends 
on there being some angular dependence of the surface tension, that 
is, a nonvanishing anisotropy strength a. Thus, the stability calcula- 
tion that Miiller-Krumbhaar and I thought we were performing was 
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unfounded because the family of steady-state solutions whose 
stability we supposedly were testing did not exist. 

All is not lost, however, because the mathematics immediately 
suggests an alternative selection mechanism, albeit one that has 
little of the intuitive appeal of marginal stability. A natural guess is 
that the selected dendrite is the one for which a stable solution 
exists. In more formal language, we guess that the condition for 
solvability of the steady-state equations is equivalent to a condition 
for the existence of a stable fixed point with a large basin of 
attraction in the space of configurations of this dynamical system. If 
this conjecture is correct, orderly, steady-state dendritic growth does 
not occur at all in isotropic materials. In suitably anisotropic 
systems, a growing body of analytic and computational evidence 
suggests that there is a denumerably infinite set of solutions, and 
that only the fastest (and thus sharpest) of these solutions can be 
dynamically stable. The hypothesis that this unique solution exists 
and that it describes the tip of a dynamically selected dendrite has 
come to be known as the “solvability theory.” 

Special Features of the Solvability Theory 
This is not the place for a detailed exposition of the mathematics 

of the solvability theory, but there are several features that do need 
to be mentioned. In the limit of small Ptclet number p ,  the 
controlling group of parameters in the theory is the same quantity u, 
defined in Eq. 7, that appeared in the stability analysis. This happens 
because one is looking for a small surface tension-induced correc- 

Fig. 3. Hele-Shaw experiment in which the inviscid fluid enters through a 
central oritice and forms fingers that move radially outward. One of these 
fingers has trapped a small bubble at its tip. As a result, it is growing stably at 
constant speed and is emitting sidebranches. (Photograph courtesy of Y. 
Couder.) 

tion to the shape of the Ivantsov parabola and, in computing this 
correction, one encounters an equation quite similar to the one 
which arises in linear stability theory. [As shown by Pomeau and 
coworkers ( 1 4 ,  linearization is not a necessary ingredient of the 
argument for solvability.] To be precise, u enters the theory as a 
singular perturbation; it describes the strength of the curvature 
effect in Eq. 4 and, accordingly, multiplies the highest derivative in 
the equation for the shape correction once one has reduced this 
equation to dimensionless form. 

There is a very nice way to visualize the effect of this perturbation. 
In practical numerical calculations (l8-20), and also in the analyuc 
approaches that have been applied successfully to this problem (14, 
17), one can generally assure the existence of some kind of solution 
by relaxing a boundary condition-most commonly the condition of 
smoothness at the tip. Suppose one allows the tip to have a cusp of 
outer angle 0 and then, either numerically or analytically, computes 
what value 0 must have in order to achieve a solution at a given 
value of u. Because 0 must vanish for a physically acceptable 
solution, a formally exact statement of the solvability condition is 

O(u,p,a) = 0 (8) 
We may think of 0 as a measure of how close we have come to 
finding a solution at an arbitrary value of u. The special values of cr 
for which Eq. 8 is satisfied are denoted u*(p,a). 

If one tries to compute 0 by expanding it in powers of cr, one 
finds that 0 vanishes at all orders, a result that would be consistent 
with the original expectation of a continuous family of solutions. If 
the calculation is performed more carefully, however, the answer- 
at small p and zero anisotropy a-has the form 

This function has an essential singularity at u = 0 and no possible 
expansion about that point. It is extremely s m d  for small u, but it 
does not vanish exactly unless u = 0. Thus, an arbitrarily small 
amount of isotropic surface tension destroys all solutions. For small, 
positive anisotropy a, however, the function O(u) has the same 
form 11s Eq. 9 for large u but oscillates rapidly in the limit u + 0. 
The largest value of u at which 0 passes through zero occurs at u = 
u* the latter approximation being valid only in the limit of 
very small a. 

The solvability theory for the SaEman-Taylor (21-23) problem is 
strikingly similar to the analysis for the dendrite. In this case, the 
system is automatically in the limit p + 0 because p = upl2D and the 
diffusion equation, Eq. 2, reduces to the Laplace equation in the 
limit D + m. The parameter u is replaced by the dimensionless 
group of parameters uST: 

yb2a2 
12pUW2(1 - A)’ (10) UST = 

where y is the surface tension, b the spacing between the plates, p 
the viscosity, U the speed of the finger, 2 Wthe width of the channel, 
and 2A W the width of the finger. All other essential ingredients of 
the solvability function OST(U,A) defined in analogy to @(a, p --P 0, 
a) are the same except that the function (1 - a cos 48) is replaced by 
a function of 8 and A. It then turns out that the boundary-related 
quantity A - 112 plays a role in this problem that is closely 
analogous to that played by the anisotropy strength a for the 
dendrite. For A < 1/2, OST looks like 0 in Eq. 9 and there are no 
solutions of OsT = 0. For A < 1/2, on the other hand, OST oscillates 
for s m d  values of UST, and the physically meanin@ solution of the 
solvability condition has the form U& m (A - l/2)3’2. The 
convergence of A to the value 112 at small UST (large U) is consistent 
with experiment (7). 
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The picture summarized above-an apparently accurate analytic 
description of a mechanism for selecting steady-state configurations 
in two different nonlinear dissipative systems-seems elegant and 
mathematically compelling. The mathematics looks especially sound 
in view of recent work of Combescot et al. (22) in which a nonlinear 
formulation originally suggested by Kruskal and Segur (24) has been 
developed into an amazingly complete solution of the viscous 
fingering problem. There remains the possibility, however, that the 
solvability theory might be mathematically correct but physically 
irrelevant-that real systems might simply ignore these steady-state 
solutions and find other, perhaps oscillatory or even irregular, states 
of motion. With this possibility in mind, let us consider some of the 
evidence regarding the validity-r lack thereof-f the solvability 
theory. 

Dendritic Growth Rates 
First, there is the question of whether the solvability theory really 

agrees with experiment for the dendrites and, if so, what is its range 
of validity? Experiments (22) indicate that the parameter u, as 
predicted, is a A-independent constant at small A (apart from 
corrections at very small A where convection in the melt becomes 
important). The solvability theory also provides a natural explana- 
tion for the previously unexplained fact that free dendrites grow 
only in directions parallel to crystalline axes of symmetry; lack of 
symmetry precludes the existence of solutions in other directions. 

The trouble is that we do not know yet whether the values of a* 
predicted by the theory agree quantitatively with those found 
experimentally. At the moment, the available evidence seems incon- 
clusive, and we are waiting both for new measurements and for 
more extensive, three-dimensional calculations. A particularly worri- 
some aspect of the situation is that the theory predicts a strong 
dependence of u* on the anisotro y strength a; specifically, u* is 
predicted to be proportional to af4 in the limit a + 0 and to be 
roughly linear in a. for most of its accessible range of values (29, 25, 
26). No such strong dependence on anisotropy has so far been 
confirmed experimentally. 

In my opinion, it is most likely that the solvability theory will turn 
out to be a correct description of a large but limited class of relatively 
simple dendritic phenomena. It may break down in complex 
situations where competing processes such as thermal and solutal 
diffusion might produce time-dependent behavior that would be 
invisible in the present steady-state theory. It may also break down 
at large crystalline anisouopies where the solvability calculations 
become extremely difficult and perhaps intrinsically impossible. 
Almost certainly, the solvability theory will fail at small anisotropies, 
and the law will turn out not to be physically meaningful. The 
last conjecture is based on considerations of stability that deserve a 
few paragraphs of their own. I shall return to that topic shortly. 

Couder’s Bubbles 
A second category of evidence regarding validity of the solvability 

theory is the bubble effect discovered by Couder and co-workers 
(27), which indicates that something very much like solvability is 
occurring in variants of the Saffman-Taylor problem. For both the 
dendrite and the Saffman-Taylor finger, physically acceptable solu- 
tions require 0 = 0, that is, the structure is not allowed to have a 
cusplike discontinuity at its tip. However, if one were able to 
perturb the system in such a way as to fix 0 at some nonvanishing 
positive value, then the mathematics tells us that dendrites should 
exist in the absence of anisotropy and that viscous fingers should 
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occur with relative widths A less than 1/2. Couder et al. have 
produced such perturbations of the fingers by attaching small 
bubbles to their tips, and in this way have succeeded in observing 
anomalously small values of A. Their results for the dependence of A 
on the channel width W (a function whose form should not depend 
on details of the flow in the neighborhood of the tip) are in excellent 
agreement with the solvability theory (23).  Moreover, in the 
circularly symmetric geometry where radial fingers ordinarily suffer 
tip-splitting instabilities, they have shown that fingers with bubbles 
at their tips behave very much like dendrites, complete with 
sidebranches! A picture of such a finger-behaving like a dendrite- 
is shown in Fig. 3. 

Stability and Sidebranching 
Perhaps the most dramatic of the conceptual developments 

stemming from the solvability theory is a growing understanding of 
the dynamics of pattern-forming systems. In particular, we are 
beginning to understand the stability of dendritic tips and the 
manner in which perturbations of these tips may be amplified to 
form complex arrays of sidebranches. 

Note the following apparent paradox. It has been known for some 
time that, in the absence of surface tension (a = 0), Ivantsov’s 
needlelike solutions of the solidification problem are manifestly 
unstable (9) .  In fact, the u = 0 problems for both the dendrite and 
the viscous finger are not even dynamically well defined because 
interfaces destabilized arbitrarily rapidly at arbitrarily short-length 
scales. On the other hand, the most complete stability analyses 
performed to date (28) indicate that the Ups offingers and dendrites 
remain linearly stable at all n o m r o  values of u = u*. How can it 
happen that an indefinitely small amount of surface tension can so 
completely change the behavior of this system? 

The answer to this question, and to several others of related 
interest, can be seen in the result of a simple calculation. It will be 
convenient to describe this calculation in terms appropriate to the 
dendrite; the analogous result for the viscous finger is slightly 
different in technical aspects that need not concern us here. 

In principle, the correct way to study stability of a moving, open- 
ended system like the dendrite is to look at its response to a localized 
perturbation, for example, a short pulse of heat applied near the tip. 
The analysis that is needed for this purpose is similar to that used by 
Zel’dovich and colleagues to study the stability offlame fronts (29). 
To linear order in the deviation from a steady-state solution 
determined by solvability, we find that this pulse generates a wave- 
packet-like deformation whose center moves away from the tip as 
shown schematically in Fig. 4. More precisely, the center of the 
wavepacket stays at a fixed position along the side of the dendrite as 
viewed in the laboratory frame of reference, while the tip grows at 
constant speed away from the perturbation. 

This wavepacket has several important properties (30-32). First, 
its amplitude A(s) continues to grow as its center moves away from 
the tip. More specifically, 

where s is the distance measured along the front from the tip of the 
dendrite to the center of the packet. Equation 11 is an asymptotic 
estimate valid for s % p. Second, the packet spreads and stretches in 
such a way that, as it grows, it acquires a sharply defined wavelength 
that increases slowly with distance from the tip. Finally, although 
this deformation grows as it moves, it leaves the tip of the dendrite 
unchanged after a sufficiently long time. That is, any point on the 
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t Fig. 4. Schematic illustration of two 
stages in the growth of a locaked 
sidebranching deformation. An ini- 
tial noisy pulse is indcated at the tip 
of an otherwise unperturbed parabol- 
ic needle crystal. At a later time, the 
tip has regained its shape and has 
moved beyond the point of permrba- 
tion, leaving behind it a smooth 
wavepacket that will grow into side- 
branches. 

solidification front at  a fixed distance from the tip ultimately will 
return to its original position after the wavepacket has passed. This 
is the sense in which the front is stable despite the fact that 
sidebranches continue to grow. 

A crucial aspect of Eq. 11 is its singular dependence on  u*, which 
is reminiscent of the u-dependence of the solvability function in Eq. 
9. We immediately can see from this how the crossover occurs from 
stability at u* > 0 to manifest instability at cr* = 0; as u* becomes 
small, perturbations become increasingly amplified before leaving 
the neighborhood of the tip. We also can see why the solvability 
theory is likely to break down at small anisotropy strength a. If 
taken literally at arbitrarily small a, the theory predicts arbitrarily 
small values of u* and, according to Eq. 7, tip radii p that are much 
larger than the stability length A,. Intuition tells us that such tips 
should be unstable. According to Eq. 11, the linear instability is 
controlled because the perturbation moves away from the Up but 
not until it has grown by an amount which may be large enough to 
carry it beyond the limits of validity of the linear theory. It seems 
likely, therefore, that dendrites with small crystalline anisotropies are 
nonlinearly unstable. Whether or not dendritic behavior occurs in 
such situations is unknown at present. Perhaps such systems find 
stable oscillatory modes of growth, or perhaps sufficiently isotropic 
materials always form chaotic patterns when they solidify in under- 
cooled melts. 

The above considerations lead naturally to a theory of sidebranch- 
ing. Until quite recently, most workers in chis field had assumed that 
the tip of a real dendrite must be weakly-perhaps marginally- 
unstable against some oscillatory mode of deformation, and that this 
oscillation must generate the train of sidebranches that seems always 
to be observed in these systems. Couder‘s fingers with bubbles at 
their tips, when driven fast enough, quite definitely do oscillate and 
emit coherent trains of sidebranches. As mentioned above, however, 
neither the theorists nor the experimentalists have found any 
evidence for oscillatory tip modes in the purely thermal dendrites 
that we have been considering. 

One possibility that is suggested by the properties of the wave- 
packet described above is that dendritic sidebranches are generated 
by the selective amplification of noise (30, 32-34). In order to 
construct a satisfactory theory of sidebranching, it seems that we 
need only to identify the pulses that generate wavepackets with the 
ambient noise-perhaps just the thermal fluctuations-in the solidi- 
fying material. If we look at some fixed distance behind the tip, say, 
at the point where initially very small deformations have grown out 
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of the linear regime and are big enough to be visible, then it turns 
out that only a relatively narrow band of wavelengths has been 
selected from the original broad-band perturbation. This is what is 
meant by selective amplification; small, noisy perturbations near the 
tip produce large deformations away from the tip that look very 
much like sidebranches. One can even estimate the noise tempera- 
ture required to generate the sidebranches that are seen experimen- 
tally. Purely thermal noise seems too small accordmg to present best 
estimates, but only by about one order of magnitude. The important 
lesson is that the dendrite is an extremely sensitive and selective 
amplifier of weak fluctuations in its environment. 

Snodakes 
In conclusion, let us return to Kepler and ask what we now might 

tell him about snowflakes. We know that snowflakes, at least those 
that seem aesthetically attractive to us, are flat, hexagonal, ice crystals 
that have grown under conditions in which dendritic instabilities 
have taken place at the six comers. (The actual growth mechanisms 
for real ice crystals are more complex than any I have described in 
this article, but I do not think that these technical differences are 
relevant to the main points that I want to make.) We understand 
why these dendritic arms of snowflakes can grow only along the six 
preferred crystalline axes, and we know that their precise behavior- 
their growth rates, their thicknesses, the spacings of their side- 
branches, and so on-are extremely sensitive to small changes in the 
temperature and humidity of the vapor out of which they are being 
formed. Because these conditions are very nearly uniform across the 
millimeter or less that is occupied by a growing snow crystal, the six 
branches of a single snowflake will be nearly-but usually not 
quite-identical to one another. On the other hand, because the 
atmosphere in a snowstorm is generally turbulent on scales of meters 
and more, each tiny crystal encounters a different sequence of 
growth conditions. Thus, no two crystals, not even if they have 
started from neighboring seeds, are likely to be identical to one 
another. Of all the new ideas we have learned recently about pattern 
formation, I think it may be this quantitative understanding of the 
close relationship between instability and diversity that will turn out 
to be the most important. 
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Tip splitting without interfacial tension 
and dendritic growth patterns 

arising from molecular anisotropy 
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Two growth mechanisms of considerable recent interest are related to a single statistical mechanical model. Tip splitting 
without interfacial tension occurs when a fluid pushes into another misciblefluid of higher viscosity. Dendritic growth occurs 
when anisotropic molecules aggregate-a common example is the snowflake. Wejind that both structures are fractal objects, 
and can be obtained from a single statistical mechanical model, implying that there is a relation between the underlying 
physical processes involved. 

GROWING structures have fascinated mankind for centuries, 
and today the field of growth phenonena elicits interest from 
many disciplines, ranging from medicine and biology to fluid 
mechanics. Two growth forms that have attracted recent interest 
are the following: 

(1) Dendritic growth’-’. No two snowflakes are identical; 
each is assembled by the random aggregation of water molecules. 
Yet every child can distinguish a snowflake from other growth 
forms. The key scientific question is by what mechanism the 
anisotropy of a water molecule becomes amplified from its weak 
‘local’ effect at the molecular level to its pronounced ‘global’ 
effect at the macroscopic level of the snowflake. 

(2) Tip splitting’0‘20. A classic experiment in fluid mechanics 
concerns the splitting of a low-viscosity body of fluid which 
results when it is forced under pressure into a high-viscosity 
fluid. If the two fluids are immiscible, then the interfacial tension 
between them serves to establish a length scale at which tip 
splitting occurs. When the two fluids are miscible there is no 
interfacial tension, yet tip splitting nonetheless occurs. Thus an 
important question concerns the physical mechanism which 
determines the point at which the finger splits. 

The scientific questions in (1) and (2) have been the object 
of research for many years, in part because our present state of 
understanding is so incomplete2’ that even a little progress would 
be valuable. The two categories of growth mechanism (1) and 
(2) have been considered to be quite different, in the sense that 
the physical basis for one has no relation to that of the other. 
Here we develop a statistical mechanical model which incorpor- 
ates both dendritic growth and tip-splitting, thereby relating two 
disparate fields of enquiry. 

Relation between noise and tip splitting 
The model is most clearly explained if we begin with the dielec- 
tric breakdown model (DBM) of Niemeyer et aL22 on, for 
example, a triangular lattice. We first place a seed particle at 
the origin of a large circular domain of radius R. If we think 
of this seed particle as being the source of a fluid of 
infinitesimally small viscosity, which is being forced under pres- 
sure to displace a fluid with much higher v i s ~ o s i t y ~ ~ * ~ ~ ,  then the 
interface must move according to Darcy’s law: 

u, = - n .  V P  (1) 

Here u, is the velocity component normal to the interface, i is 
the normal unit vector and P is the pressure field. P is constant 
in the less viscous fluid and, because V . v = 0, P satisfies the 
Laplace equation 

V 2 P  = 0 (2) 

in the more viscous fluid. Hence the relevant boundary condi- 
tions are P( r, 0) = 1 anywhere in the low-viscosity body of fluid, 
and P ( R ,  0) = 0 along a circle of radius R. 

In a perfect medium with radial symmetry and no pressure 
fluctuations, the interface will spread out in concentric circles. 
However, because there is always some noise in the system, a 
fluid-dynamical i n ~ t a b i l i t y ~ ~  will occur and irregularities in the 
interface will grow. This noise phenomenon is reproduced in 
the DBM, which includes fluctuations by means of the following 
algorithm. First, V P  is calculated at every perimeter site of the 
cluster; this is done by solving equation (2) with an overrelaxa- 
tion technique. At step 1 there is a single seed on a triangular 
lattice with six perimeter sites. As all sites have equal values of 
VP, the first perimeter site is mapped to the numerical interval 
[0, a ]  the second to [A, 31, the third to [& 73 and so forth. Next, 
a random number generator is used to choose a number in the 
interval [0,1]. Suppose that this random number is 0.2603238: 
the second perimeter site is then occupied, and the procedure 
iterated. For this two-site cluster, VP is calculated at the eight 
perimeter sites, the values are normalized to unity, a new random 
number is chosen, and one of the eight sites occupied. Such a 
DBM cluster is characterized by a high degree of noise: as each 
growth step is determined by only one random number, it is 
always possible that the random number chosen corresponds to 
a perimeter site with an extremely small value of V P ,  which by 
equation (1) should almost never grow. Thus the DBM violates 
the fundamental Darcy law due to the noise inherent in the 
algorithm. 

We now describe a procedure whereby this noise can be 
systematically reduced in a controllable fashion. Clearly we 
need an algorithm such that perimeter sites with extremely small 
values of V P  are extremely unlikely to be chosen. This is accom- 
plished by advancing to a new perimeter site only after it has 
been chosen s times, where s is a parameter which can be tuned. 
Each perimeter site has a counter which registers how many 
times that particular site has been chosen. As s + a, the growth 
of the interface will approach Darcy-law growth, in which any 
point of the interface grows according to the true local pressure 
gradient. In the Darcy ‘zero-fluctuation’ or ‘mean-field’ limitz6 
(s  + a), the interface would be a perfect circle if there were no 
underlying lattice. 

Figure la -c  shows the results of calculations for successive 
values of s. We find that Fig. 1 b and c resemble tip splitting as 
observed in the viscous fingering of both newtonian (refs 19, 
27; J. D. Chen, personal communication; R. Lenormand, per- 
sonal communication) and non-newtonian1°”2”8 fluids. When 
s = 2  (Fig. l a ) ,  the structure resembles the DBM both qualita- 
tively (although the branches look thicker) and quantitatively 
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Fig. 2 A typical fractal structure on a square lattice with s = 50 
and a microscopic anisotropy (defined by equations (6) ,  (7)) of 

k- 1 = 10. The colour coding is the same as in Fig. 1. 

( d ,  = 1.7). Here df is the fractal dimension obtained, for example, 
from the slope of a log-log plot of the mass against the caliper 
diameter. For large s (for example, s = 20; Fig. 1 b), the qualita- 
tive appearance appears to differ: the system appears at first 
sight to cross over to a new ‘universality class’, with a larger 
value of df .  However, when we extrapolate the apparent fractal 
dimension to large cluster sizes we find that d, = 1.7 for all values 
of  s; that is, the growth forms are quantitatively identical, 
independent of the degree of noise reduction. 

Note that tip splitting always occurs by the same mechanism. 
First a cluster grows ‘smoothly’, without tip splitting. However, 
as the radius of curvature increases, the interface becomes 
‘rough’, with both positive (outward) and negative (inward) 
fluctuations. The positive fluctuations are not significant, as they 
are soon damped out; however, the negative fluctuations persist 
(Fig. 3). This is because, for a charged fractal object, the electric 
field inside a single notch is very small, and the equation relating 
the electric field to the gradient of the potential is formally 
identical to the Darcy law relating growth velocity to the gradient 
of the pressure. Hence, the tiny notch is not likely to be filled 
in so quickly as one would expect if interfacial tension were 
present (Fig. 3 d ) .  The tiny protrusions on both sides of the notch 
see a much larger field than does the notch, so they attract mass. 
The tiny notch thus becomes the terminus of a long fjord 
(Fig. 3e) .  A fjord is almost perfectly screened, and so is almost 
never filled in. In Fig. 3, s = 50. If s > 50 (less noise), then the 
same tip-splitting mechanism will apply but a negative fluctu- 
ation (notch) will decay more efficiently: the system is less 
susceptible to negative fluctuations and a fjord is formed only 
when the cluster has reached a larger radius of curvature. 

Although the asymptotic fractal dimension df is independent 
of s, the finger thickness W, clearly increases with s. Moreover, 
our model explains the existence of a well-defined W,: the less 
the noise, the thicker the finger (see Fig. 1). We find the quantita- 
tive law: 

W,=4.5logs+2 (3) 

Fig. 1 Examples of fractal structures generated when the anisotropy parameter k is held fixed at unity, but the noise parameter t / s  is decreased. 
In a, b and c, s = 2,20 and 200, respectively. For all finite values of s, we find that the fractal dimension is equal to the DBM value, d,= 1.7, 
providing we take care to extrapolate the apparent mass dependence of df to its asymptotic limit. The colour coding is as follows: the first one-sixth 

of the sites are white, the next sixth are blue, followed by magenta, yellow, green and red. 
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a <- 49 Fig. 3 Schematic illustration of the difference between an outward (‘positive’) and an 

rather quickly, as mass quickly attaches to the side of the extra site that is added. On 

both sides of the tiny notch. The notch itself has a lower and lower probability of being 
filled in, as it becomes the end of a longer and longer fjord. This is the underlying 

shows the advancing front (row a) of a cluster with s = 50. The heavy line separates 
the cluster sites (all of which were chosen 50 times) from the perimeter sites (all of 
which have counters registering less than 50). In a, no fluctuations in the counters of 
these three sites have occurred yet, and all three perimeter counters register 49. b shows 
a negative fluctuation, in which the central perimeter site is chosen slightly less frequently 
than the two on either side; the latter now register 50, and so they become cluster sites 
in row p. The perimeter site left in the notch between these two new cluster sites grows 

inward (‘negative’) interface fluctuation. A positive fluctuation tends to be damped out 

the other hand, a negative fluctuation grows, in the sense that mass accumulates on 

mechanism for the tip-splitting phenomenon when no interfacial tension is present. a 

@@+& *\. 6 

r -. b /,--I 

y- 

C ---r-----p 0 -  much less quickly because it is shielded by the two new cluster sites. For the sake of 
concreteness, let us assume it is chosen 10 times less frequently. Hence by the time the 

C‘-,O 

7 . .  
notch site is chosen one more time, the two perimeter sites at the tips have been chosen 
10 times ( c ) ,  The interface is once again smooth (row y ) ,  as it was before, except that 
the counters on the three perimeter sites differ. After 40 new counts per counter, the 
situation in d arises. Now we have a notch whose counter lags behind by 10, instead 
of by 1 as in b. Thus the original fluctuation has been amplified, due to the tremendous 
shielding of a single notch. Note that no new fluctuations were assumed: the original 
fluctuation of 1 in the counter number is amplified to 10 solely by electrostatic screening. 
This amplification of a negative ‘notch fluctuation’ has the effect that the tiny notch 
soon becomes the end of a long fjord. To see this, note that e shows the same situation 
after 50 more counts have been added to each of the two tip counters, and hence (by 
the 10: 1 rule) 5 new counts to the notch counter. The tip counters therefore become 
part of the cluster, but the notch counter has not yet reached 50 and remains a perimeter 

of this fjord is now exceedingly low. Indeed it is quite possible that the counter will 
never pass from 45 to 50 in the lifetime of the cluster. In our simulations we can see 
tiny notch fluctuations become the ends of long fiords, and all of the above remarks 

on the time-dependent dynamics of tip splitting are confirmed quantitatively. 

e 
site. The notch has become an incipient fjord of length 2, and the potential at the end /--;--; p-- 

We also find that Wf is independent of the magnitude of the 
pressure field. To see this, we varied the global pressure gradient 
by changing the size of our computational grid from 200 to 25 
units and found no variation of the finger thickness. This dis- 
covery is explained if one considers that the ratio of the local 
pressure gradient between a site at  a finger tip and a site within 
a fjord does not change if the global pressure gradient is 
changed: this in turn is a direct consequence of the fact that 
the pressure field satisfies a Laplace equation. 

Previous work on tip-splitting phenomena has focused on 
explaining the non-zero value of the finger thickness Wf as 
arising from the presence of interfacial tension v (ref. 28; see 
also ref.29). However this explanation cannot be applied to 
miscible fluids, such as those used in recent experi- 

our model interfacial tension does not exist (that is, u acts only 
on the length scale of a single fluid element or ‘pixel’); our 
observed finger thickness is thus related solely to the concept 
of noise. 

Before proceeding further we note that in the limiting case 
s = 1 the DBM is equivalent to diffusion-limited a g g r e g a t i ~ n ~ O - ~ ~  
(DLA). The diffusion analogue of the DBM for s > 1 is a 
DLA-type model in which growth occurs only after a perimeter 
site has been hit by s random walkers. If all the counters are 
reset to zero after each growth step, then we have the Meakin 

or the KertCsz-Vicsek model’, in which growth of the 
positive fluctuations (the tips) is amplified because a tip of size 
1 pixel is more likely to experience the next growth event-so 
the apparent value of d,  decreases toward unity as the cluster 
grows. The DLA-type analogue of our DBM-type model in 
which the counters are not reset to zero after each growth event 
is the Tang modelz6, for which it is not the positive fluctuations 
(the tips) that display amplified growth but the negative fluctu- 
ations (the notches). Amplified growth of negative fluctuations 
is the characteristic feature of DLA, explaining our result that 
d,  has its DLA value for all finite values of s. 

Thus we conclude that noise reduction-arising from sup- 

mentS10,12.18.27.28 , b ecause in this case, by definition, u = 0. In 

pression of f luctuat ionsdoes not change the overall ‘univer- 
sality class’, but does introduce a characteristic finger thickness. 

Local anisotropy and dendritic growth 
Real growth phenomena are never perfectly isotropic. In fact, 
anisotropy appears to dominate dendritic crystal growth; thus, 
for example, a snowflake is recognized by its six-fold anisotropy, 
although the noise is also reflected in the variability from one 
snowflake to anothe?‘. No two are alike, although the eye 
immediately recognizes the pattern of a snowflake. 

The problem of understanding the growth of a snowflake has 
a rich history. A large class of models has focused on introducing 
anisotropy in a ‘global’ or  macroscopic fashion by introducing 
angular variables and assuming that the growth depends sensi- 
tively upon these Although the resulting patterns 
have, by virtue of their rules of construction, the requisite 
six-fold symmetry, their resemblance to real snowflakes is not 
striking. Moreover, they lack the random variations that seem 
to characterize real snowflakes and also fractal objects. 

A snowflake grows by successive landings of water molecules, 
and we have therefore focused our attention on how microscopic 
irregularities in the landing surface can be translated into the 
macroscopic structure of the snowflake. To reflect the presence 
of these microscopic irregularities, we must incorporate into our 
model the essential fact that the landing sites seen by an incom- 
ing molecule are not all equivalent. Hence we replace equation 
(1) by 

u , = - n . ( k V P )  (4) 

where the conservation of mass condition V . v = 0 implies that 
equation ( 2 )  is replaced by 

V . ( k V P )  = 0 ( 5 )  

with the same boundary conditions as for k = 1. Here the 
anisotropy parameter k = k(x ,  y )  would be the permeability in 
a fluid problem. 
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Consider a square lattice. One simple choice for k(x, y) is 

k(x, Y) = 1 (6) 

k ( x , y ) = k > l  (7) 

(see Fig. 2) 

for x or y even, 

otherwise equations (6) and (7) express mathematically the fact 
that the surface affinity for incoming water molecules depends 
on the spatial coordinate: the incoming particles do not see a 
perfectly smooth and homogeneous ‘landing surface’. 

Moreover, our anisotropy is fundamentally different from that 
considered in, for example, refs 4 and 11. Schematically, in 
these models the interface is moved according to the rule 

= f ( K )  - f (O)u,  (8) 

where u is the growth velocity, f ( ~ )  is an interfacial tension 
term and u, is essentially the local pressure (or temperature, or 
concentration) gradient at the interface. The function f( 0) indi- 
cates the extent to which the growth is enhanced along directions 
separated by an angle 0. In marked contrast, our model assumes 
that the anisotropy is present on a molecular level at the inter- 
face. We assume that along the interface, the affinity for an 
incoming water molecule alternates from site to site: 

U=-f(x,Y)U, (9) 
Wz believe that our model is more realistic, as an incoming 
water molecule in snowflake formation cannot possibly sense 
the angle 0 = arc tan(y/x), but does see a ‘landing surface’ whose 
‘attraction’ fluctuates from point to point. 

Next we consider the effect of tuning the anisotropy parameter 
k Figure 5a-d shows structures grown with a succession of 
increasing values of k, ranging from 1 .1  to 11. We hold s fixed 
at the value s = 50; if s were too small, then noise effects would 
complicate visualization of the effect of anisotropy. Figure 5 is 
for a triangular lattice, for which equations (6) and (7) are 
replaced by a different rule: we set k > 1 for every fifth row of 
the three principal directions of the lattice (E-W, NE-SW, 
NW-SE). We see from Fig. 5 that as k increases there is a 
pronounced change from the isotropic case k = 1, and the result- 
ing growth (see, for example, Fig. 5d) resembles a ‘snowflake’ 
for reasons more subtle than merely the characteristic 6-fold 
axis of rotation34. Using standard methods (for example, all 
three methods of ref. 18), we measured d,  for this ‘snowflake’ 
and found values that decrease with the number of particles 
used in the calculation. Extrapolating to infinite size, we find35v36 
df=1.5*0.1. 

Although the structure at first sight appears to be somewhat 
ordered, we realize that this is a trick played by the 6-fold 
axis. In fact, an individual branch is quite disordered, with side 
branches of all sizes extending from it. The reason df > 1 is that 
the side branches occur with many different length scales. This 
is especially apparent from Fig. 5 4  where we see from the colour 
coding that the latest particle to arrive can attach to the side 
branches as well as to the tip. Figure 5 e  shows real snowflakes 
with side branches, which show a striking resemblance to the 
anisotropic simulations of Fig. 5d. The differences between Fig. 
5d and e are the subject of current investigation. 

We now address the actual structure of the fractal objects in 
the presence of anisotropy. It is important to note that there are 
distinct effects that cooperate to generate the final structure 
obtained. The first effect is the fine structure of the side branches 
(see Fig. 2), consisting of a set of ‘trees’ of varying height, as 
shown schematically in Fig. 4a. The trees are mainly without 
branches, as the anisotropy favours growth only in even- 
numbered rows or columns of the lattice. However the height 
of a tree varies widely from one tree to the next, due to the 
tendency of tall trees to screen shorter trees. An analo ous 
variation in the height of trees has been found by MeakiJ7 in 
his classic studies of DLA on a planar substrate: he found that 

b 

C 

d 

Fig. 4 Schematic illustration to explain the characteristic shape 
of the four arms of the ‘snowflake’ cluster in Fig. 2; a recalls the 
fundamental structure of aggregation onto an equipotential sur- 
face, first studied by Meakin3’. For simplicity, the ‘trees’ are drawn 
as straight line segments, and the hierachical or fractal distribution 
of tree height is indicated by a difference of a factor of 2 between 
successive sizes, together with a spacing, A (M), which increases 
as M’’d!, where M is the total cluster mass. b shows the 
modification expected from the fact that the regions of an arm 
near the centre have more time to accumulate mass than the regions 
near the tip. c shows the effect of the fact that V P  is much larger 
near the tip; d shows the result of combining a-c, and resembles 

the overall shape observed in Figs 2 and 5d. 

the resulting fractal structure is a ‘forest’ of trees, with fewer 
but taller trees surviving at large times due to their tendency to 
shield the shorter trees. 

The main difference between our work and the Meakin (planar 
substrate) DLA simulations is our lattice anisotropy (parameter- 
ized by k - 1 )  and our noise reduction (parameterized by l /s ) ,  
which have the effect of making the trees tall and straight instead 
of ramified. Consider now the overall profile for the height of 
the trees in the side branches. This profile can be understood 
mathematically as arising from the product of two functions. 
The first, a decreasing function from origin to tip, is related to 
the fact that the regions of the branches that were formed at 
early times tend to be larger than the regions of the branches 
that were formed at late times (Fig. 4b). The second, an increas- 
ing function, is related to ‘screening’; that is, to VP, which is 
larger near the tips and smaller near the origin (Fig. 4c). As 
v E V P ,  the growth rate is larger near the tips. The product of 
the increasing and decreasing functions gives the characteristic 
profile for the height of the trees in the side branches (Fig. 4 4 .  

We also measured as a function of cluster mass: ( 1 )  the caliper 
width of the side branches of Fig. 2, and (2) the caliper diameter 
of the entire cluster. Both log-log plots are parallel, with slope 
Vdf. 

Discussion 
We have shown that two fundamental physical phenomena that 
are not yet understood, dendritic growth and tip splitting in the 
absence of interfacial tension, can be related in that both arise 
from the same statistical mechanical model-a generalization 
of the DBM’’. This means that there are physical features 
common to both phenomena: they differ only in parameter 
values. In our model we can incorporate in a direct and system- 
atic fashion the crucial role played by fluctuation phenomena 
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Fig. 5 a-d, Examples of fractal structures formed when the noise 
parameter s is held constant at s = 50, but the anisotropy parameter 
k is chosen to be, respectively, k - 1  =0.1, 0.31622, 1.0 and 10.0 
(0.31622 interpolates logarithmically between 0.1 and 1.0). The 
limiting fractal dimension (as mass+co) is df= 1.5, independent 
of k, for all k >  1.  The colour coding is the same as in Fig. 1 .  e, 
Examples of real snowflakes (reproduced with permission from 

ref. 9) which show a striking resemblance to d. 

and anisotropy. The physical picture that we have proposed is 
embodied in two fundamental equations, (4) and ( 5 )  (or (1 )  
and (2) for k = 1).  The second equation describes the spatial 
change of the pressure field which drives the instability; the first 
represents the ‘growth law’, which relates the growth rate of the 
interface to the pressure field. We have used a generalized 
Darcy-type law, which enables us to selectively tune both noise 
and anisotropy. 

The overall physical picture that emerges is as follows: Tip- 
splitting phenomena in the absence of interfacial tension are 
triggered by microscopic fluctuations (that is, noise). Although 
positive and negative fluctuations of the interface occur sym- 
metrically, the stability (and hence the subsequent growth) of 
positive and negative fluctuations are totally different: tip split- 
ting is the direct consequence of this asymmetry in the stability 
of positive and negative fluctuations. A small protrusion of size 
1 pixel is much less long-lived than a small notch of the same 
size; in fact, it is remarkably difficult to fill even the shallowest 
notch. Zero noise (s=m) results in a compact (non-fractal) 
circular object. A very low noise level (large s )  has little effect 
when a cluster is small, but its effect becomes much more 
pronounced as the cluster grows larger. In the limit of infinite 
cluster size, an arbitrarily small but non-zero amount of noise 
is sufficient to make the cluster fractal. The measured fractal 
dimension is identical to that of DBM and DLA, two models 
designed to describe phenomena in the limit in which there is 
a very high noise level. 

The tip-splitting phenomena that occur in the case of zero 
anisotropy are generalized into a fractal hierachy of side 
branches in the presence of anisotropy. In the limit of infinite 
cluster size even a tiny degree of anisotropy changes the fractal 
dimension from the DLA value of 1.7 to the value 1.5. 

Thus, the complete phase diagram has l / s  on the abscissa 
and ( k  - 1)  on the ordinate. Asymptotically we find that df is 
constant, at the DBM value of -1.7,  everywhere on the x-axis, 
and d,  is also constant, at the value 1.5, everywhere else in the 
phase diagram except on the y-axis (zero noise), where d f =  1. 
Thus noise reduction is not a sufficient perturbation to change 
d,  from its DBM value, because the negative fluctuations persist 
for all values of s, and these negative fluctuations control the 
value of d,. On the other hand, anisotropy at the micrQscopic 
level does change d,. Further details of this phase diagram 
suggest an intriguing analogy to critical point phenomena, and 
this will be the subject of future investigation. 

Finally, we return to the question posed in the introduction, 
of how a tiny anisotropy can become ‘amplified’ from its local 
effect at the molecular level to a global effect at the macroscopic 
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Fig. 6 a, Initial growth of an interface on a square lattice for the 
q s e  s = 500. Growth can occur in any of the four space directions 
(four nearest neighbours). The interface is shown after 5, 21, 85, 
200,500 and 1,OOO growth steps. b, As in a, except that here growth 
can occur into eight directions (four nearest neighbours and four 
next-nearest neighbours). The interface is shown after 9, 21, 85, 
200, 500 and 1,OOO steps. c, Viscous fingering structure for s = 50, 
after 15,000 growth steps for eight-fold coordination on a square 
lattice. The first four contour lines are drawn after 100, 300, 650 
and 1,OOO steps; subsequent lines are drawn at intervals of 1,OOO 

steps. 

level. Our model directly demonstrates this fact: we have shown 
that in the presence of anisotropy, the resulting fractal dimension 
is not the DBM value of 1.7, but rather tends asymptotically 
toward 1.5, a new ‘universality class’. Our result is supported 
by Meakin’s very recent calculations for DLA3” without any 
local anisotropy, except for that arising from the square-lattice 
substrate. For this classic and well-studied system, ‘pure DLA, 
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Meakin finds the same behaviour that we find in the presence 
of anisotropy, but only after the cluster size reaches 5 million 
sites-almost three orders of magnitude larger than the clusters 
we study! Thus Meakin’s local anisotopy, arising solely from 
the effect of the square lattice itself on the trajectories of random 
walkers, can lead to a pronounced global effect, altering not 
only the overall appearance of the cluster but also the fractal 
dimension itself. As pure DLA is the limit of maximum noise 
(s = I ) ,  we have to wait for an extremely large cluster to see its 
effect. To support this idea, we systematically reduced s from 
50 to 1 while keeping the local anisotropy fixed at the value 
k = 2. When s = 50 it is easy to see the snowflake anisotropy 
pattern, but as s decreases the snowflake vanishes. 

To understand better the subtle role played by the anisotropy 
of the square lattice, we show in Fig. 6 a  the initial growth events 
for the case s = 500, k = 1. The early stage of growth is character- 
ized by the competition of ‘lattice anisotropy’, which attempts 
to pull the interface into the four principal directions of the 
plane, and ‘interface smoothing’ (due to the decay of positive 
and negative fluctuations), which initially prevents splitting. The 
competition between these two contradicting tendencies leads 
to an oscillation of the interface: the structure of the interface 
alternates between a circle and a diamond-shaped cusp until, 
eventually, the weak anisotropy of the lattice dominates. As in 
real systems, no cusp ~ ingular i t ies~~ occur: the noise in our 
systems smooths the sharp comers of the initial cusp as inter- 
facial tension would do. A well-defined finger thickness has 
developed. The larger the value of s, the smaller is the noise 
and the larger is W,. To weaken the lattice anisotropy, which 
results from the rule that growth is possible only in one of the 
four space directions (nearest neighbours), we can also allow 
growth into the four diagonal directions (next-nearest neigh- 
bours). Figure 66,c shows that such growth is initially almost 
circular until it reaches a critical radius, after which negative 
fluctuations are no longer filled in. This gives rise to the charac- 
teristic fingering structure shown in Fig. 6c. Thus this model 
seems to represent both qualitatively and quantitatively the 
viscous fingering phenomenon for the case of miscible fluids 
(zero interfacial tension). 
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We have experimentally discovered that in a nematic liquid crystal subjected to an ac electric 
field, the first convective structure at low frequencies is in fact a set of oblique rolls, contrary to the 
accepted picture. We show that it  is a new structure with a helical flow motion, and thus lower in 
symmetry than the usual normal rolls recovered at high frequencies. Besides indicating the limita- 
tions of the available theoretical models, these results clearly show that the highest-symmetry flow 
structure corresponds to the normal rolls 

PACS numbers: 61.30.-v, 47.20.Tg, 47.65. +a 

In order to study experimentally the disorganization 
of a convective flow inside an extended layer of fluid, 
it is preferable to start from an ordered flow with a 
well-defined wave vector. This means that the ordered 
structure must have an orientation fixed in space. In 
fully isotropic convection, i.e., when the fluid is 
isotropic and when there is no coupling to an aligning 
external field, the flow usually appears disordered at 
threshold (e.g., Rayleigh-Bhard’). In some cases the 
system may be rendered anisotropic and the flow 
oriented along a given direction by the coupling to a 
magnetic field2 (magnetohydrodynamic convection). 
Another possibility is to use an anisotropic fluid, for 
instance, a nematic liquid crystal-hereafter referred 
to simply as a nematic. It has recently been found3 
that in a nematic subjected to an increasing ac electric 
field there exists a complete sequence of prechaotic 
stationary structures. These structures are ordered and 
spontaneously oriented with respect to the initial aver- 
age molecular direction n (the anisotropy axis). How- 
ever, up to now, the essential features of the different 
flows were not recognized, and more importantly, the 
identification of the flow of highest symmetry at the 
first threshold could not be determined. 

It is presently well known that a layer of a nematic 
subjected to a transverse ac electric field undergoes a 
transition to a convective flow when the voltage 
reaches some threshold. After the first observation by 
Williams4 of an ordered spatial structure, a one- 
dimensional (1D) electrohydrodynamical model was 
constr~cted.~ In this model, the convective flow is 
made of parallel rolls oriented perpendicularly to the 
initial direction of the molecular axis. The frequency 
of the field is an additional parameter and it was estab- 
lished that the rolls would appear from dc to some cut- 
off frequency f,, in the so-called “conduction re- 
gime.” However it  was often experimentally found 

that the ordering was less effective at low frequencies 
and indeed it is clear that Williams’s observations are 
not accounted for by the model since his results show 
tilted domains of parallel rolls.4 Such a discrepancy 
was either disregarded6 or attributed to “inhomo- 
geneities” in the alignment. 

In this Letter, we present experimental results which 
show, in fact, that in a nematic under an ac electric 
field the convective structure is, at threshold and 
depending on the frequency, either a set of rolls per- 
pendicular to the molecular axis, or domains of parallel 
rolls oriented obliquely to this axis, contrary to the 
widely accepted description. Our purpose is to identify 
the essential features of each flow in order to deter- 
mine the highest-symmetry one. 

The experimental procedure is the usual one and 
special care is taken to ensure a correct homogeneous 
molecular alignment along x. The nematic is sand- 
wiched between two glass plates coated with semitrans- 
parent electrodes which are rubbed along x for planar 
alignment. The liquid crystal of negative dielectric an- 
isotropy used here is a Merck Phase-V compound. 
Similar results were also obtained with N-(p 
methoxybenzy1idine)-pbutylaniline, but are not re- 
ported here. The experiments are started with the fre- 
quency set at 60 Hz, well below the cutoff frequency 
f, ( == 120 Hz). At rest the sample is uniformly trans- 
parent. The voltage is increased by steps of 25 mV 
every minute. At V,= 14 V, a static periodic bending 
of the molecular axis appears along x as a set of bright 
parallel lines on a dark background [Fig. 1 (a)]. It cor- 
responds to parallel rolls uniformly oriented perpen- 
dicular to x. This structure is consistent with the 1D 
model and was named the “Williams domains”; how- 
ever, we shall refer to i t  as the normal-rolls (NR) 
structure. As the voltage is further increased, the NR 
structure becomes undulatory along the roll axis y at a 
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FIG. 1. Plan form of a sample observed under a micro- 
scope, and sketch of the velocity field. (a) Normal rolls. 
The bright lines are focal lines for the up and down flows. 
The up plane is a symmetry plane. (b) The undulatory 
rolls. (c) The oblique rolls, with symmetry about a point 0. 

well-defined voltage V, = 15.5 V. The deformation is 
static and has a sinusoidal shape with a spatial period 
A = 2 r / q Y  of order 5 to 7 times the roll diameter d 
[Fig. l(b)l. In order to describe the undulatory roll we 
shall measure the local tilt angle along y, 8 
=8,sin(qyy). The maximum tilt angle O m  over y, 
measured at the inflection points, increases with the 
voltage (Fig. 2), while A remains almost constant. 
Similar to the case of the NR, a control parameter is 
defined as = ( V2 - V i ) /  V i  and we have found that 
O m  - ~ , 0 . ~ ~ .  Such a behavior is characteristic of a direct 
bifurcation. At higher voltage, O m  remains constant 
while A increases sharply. The deformation is no 
longer sinusoidal but becomes angular while the rolls 
straighten [Fig. l(c)l. The increase in A is limited by 
the defects which nucleate more easily and pile up 
along y in order to form grain boundaries. The final 
stage of evolution of the system is an ensembie of 
domains of parallel rolls, tilted symmetrically with 
respect to y. We shall refer to this last state as the 
oblique-roll or zigzag structure. To our knowledge, 
the undulation instability has never been previously 
identified. Only the final state (the zigzag) has already 
been reported’ as a “modified Williams domain.” In 
order to track the streamlines of the flow we immerse 
small glass spheres (3-5 p m  in diameter) in the 

f = 2OOHz I 
I &z 

.05 
FIG. 2. Maximum tilt angle ern of the undulation as a 

function of E , =  V ‘ -  VA/ V z ,  where V,  is the voltage 
threshold value. 

nematic. In the NR the convective motion is a pure 
rotation around the roll axis y and has a tangential 
velocity u, = 5 pm/s at 2% above the threshold. In 
the oblique roll, there exists, in addition, a small axial 
component u, of the velocity, of order O.lu,. The u, 
component changes sign from one roll to the next, and 
the continuity of the flow along the roll axis is ensured 
through the grain boundaries.* In order to describe 
completely the state of the nematic, it is necessary to 
determine accurately the molecular axis orientation in- 
side the flow. While any inclination over the horizon- 
tal xOy plane is easily detected by the birefringence ef- 
fects, the azimuthal tilt out of a vertical plane xOz can- 
not be measured by a change in the state of polariza- 
tion of an outgoing light wave. This restriction is due 
to the Mauguin condition’ which is always fulfilled in 
our experiments. Up to now, we have not been able to 
measure accurately this azimuthal deviation a. How- 
ever, an estimation from the intensity ratios between 
the polarized and the depolarized intensities in a dif- 
fraction experiment would lead to a < 8. The experi- 
ments are repeated at a lower frequency value of 10 
Hz. At a threshold V, 7 V a new instability occurs. 
The resulting structure consists of domains of parallel 
straight rolls tilted symmetrically over y, by a fixed an- 
gle 8 = 30”. The motion of the glass spheres indicates 
an axial component for the velocity, as in the oblique 
rolls which were obtained at higher frequencies, and 
for higher voltages. We plot the different thresholds 
as a function of the frequency f and obtain a structure 
diagram with a triple point M (Fig. 3). Typically the 
point M occurs at a frequency fM = 30-40 Hz which 
increases with the conductivity (T. It decreases by 40% 
when a stabilizing magnetic field H = 5 kG is applied 
along x. It is clear that the oblique rolls, which are 
consistent with Williams’s observations4 rather than 
with the 1D model, correspond to a flow field with 
helicoidal streamlines, while in the normal rolls the 
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FIG. 3. Structure diagram. Below the triple point M the 
transition is direct to the oblique roll with a finite angle O m  
(f= 10 Hz). Beyond M, the normal rolls are met first, fol- 
lowed by the undulatory rolls which then change continu- 
ously into the oblique rolls (f=60 Hz). 

motion is a pure rotation around the roll axis. It is also 
clear that the symmetry in a vertical mirror of the nor- 
mal rolls is replaced in the oblique rolls by a symmetry 
about a point [Figs. 1 (a) and 1 (c)]. 

In the following, we would like to suggest some ele- 
ments and outline some conditions for an anisotropic 
mechanism of the undulation instability. We start 
from the stable convective flow of the NR where the 
molecule is subjected to two simple shears: s, = du,/dz 
along x and s,= du,/du along z In the initial 1D 
model only s, was considered. However, we notice 
that s, can be destabilizing, i.e., if s, were alone, a 
small fluctuation 6nv of n out of the xOz plane by an 
azimuthal angle 8 could be amplified. Such a condi- 
tion is similar to that of Pikin's instability," although 
the initial conditions are different here (the Leslie 
coefficient a3 is negative in our experiment). Once 
the molecular axis deviates from the xOz plane the 
ionic charges also deviated. If we suppose a fluctua- 
tion of splay of n such that 6 ny - 6 nyo sink+ then the 
charges are also periodically focused along y. This 
focusing induces a transverse component Ey for the to- 
tal electric field ET responsible for the dielectric torque 
which acts on the molecule. This torque adds up to 
the viscous torque exerted by the drag of charges in 
the destabilizing process. The result is a static undula- 
tion of the rotation axis of the flow, i.e., an undulatory 
roll. Such a mechanism would be a mere extension of 
the 1D mechani~m.~ However, here no characteristic 
length appears along y in order to impose a spatial 
period A at threshold. A homogeneous solution corre- 
sponds to a uniform value for the deviation angle 8 

along y, in the absence of boundary conditions in this 
direction. The final state is then a domain of parallel 
straight rolls at an angle 0 with y: the oblique-rolls 
structure. The misalignment of the molecular axis 
with respect to the rotation plane implies transverse 
forces j j  = a,$, where f,, is the complete viscous-stress 
tensor. These forces induce transverse components of 
the flow which create an axial component of the velo- 
city of reversed sign from one roll to the next one. A 
three-dimensional linear stability analysis has recently 
been given by Zimmermann and Kramer." This 
analysis confirms our previous observations regarding 
the stability domain for the normal rolls, but it does 
not account either for the undulation instability, or for 
the essential difference in the flow symmetry between 
the NR and the oblique rolls. 

In conclusion, we find that in laterally extended con- 
tainers, two intrinsically different structures may occur 
at the first convective threshold, depending on the fre- 
quency. At high frequencies, beyond a triple point it is 
the usual normal-roll structure consistent with the 1D 
theoretical model. At low frequencies the normal rolls 
are not a stable solution as shown by Zimmermann 
and Kramer and the 1D model is no longer valid here. 
Then the normal rolls are replaced by oblique rolls 
rather consistent with Williams's first observations. In 
the oblique rolls the velocity field is helicoidal. The 
normal rolls are of highest symmetry and, therefore, a 
hydrodynamic description of the evolution to the 
chaotic state must start from this structure. A purely 
anisotropic mechanism that could be based upon our 
suggestions remains to be built for the undulation 
which is the basic instability to the oblique rolls. 
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ABSTRACT 

Experimental results on the undulatory rolls and oblique 

rolls in the stability diagram of stationary electroconvective 

structures in nematic liquid crystals are presented. There 

exists a multicritical point which features a Lifshitz point. We 

find an anology with the NAC thermodynamic phase diagram of 

liquid crystals and we present a Landau-type functional with two 

order parameters, which enables us to describe quantitatively 

the stability diagram and other properties of the rolls. 
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Analogy between bifurcations in nonequilibrium systems and 

phase transitions in equilibrium systems has been noted 

before? For example, in the language of critical phenomena, the 

divergence of the coherence length? critical slowing down3 and 

tricritical point4 have been observed experimentally in the flow 

of either liquid crystals2 or simple liquids3I4. All these 

results can be described by a Landau "free energy" functional 

with one order parameter, in exact analogy to the case of phase 
transitions. Even though there are extensive investigations on 

multicritical phenomena in nonequilibrium systems (relating 

mostly to codimension-2 points" 6, , to our knowledge, the case 

of a Landau model with order parameters has not been 

established, either theoretically or experimentally. This raises 

the question of how far the analogy between nonequilibrium 

systems and equilibrium systems can be extended. 

kecently, a stability structure diagram in the (V2,f) plane 

describing the different stationary patterns obtained in a 

nematic liquid crystal subjected to an ac electric field was 

established experimentally? Here V is the voltage and f is the 

frequencey of the electric field, respectively. It was found 

that at low frequency, there is a discontinous transition from 

the rest state (RS) to the oblique roll (OR) structure at 

threshold Vzz, while at high frequency the RS transforms 

continuously to a normal roll (NR) structure at threshold Vr and 

at a second threshold Vuz (>  V ) the NR transforms continuouslv 

to undulatory rolls ( U R )  which then evolve gradually to OR as 

the voltage is increased further (Fig. 1). The three threstolds, 

Vr and Vuz, are functions of f and intersect at a triple 

point M at f = fM. If we identify the continuous transitions as 

r 

v z z  I 
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second-order transitions and the discontinuous ones as 

first-order transitions, then the resemblance of the structure 

diagram with phase transition diagram in equilibrium systems is 

very striking. 

In this Letter, the properties of the UR and the OR are 

investigated in detail. Specifically the wavelength A of the 

UR and the tilt angle e L  of the OR for f 2 fM, and the tilt 

angle e 0  of the OR at threshold for f < fM are measured. The UR 

4 is shown to be described rather well by the behavior of a e 

nonlinear oscillator. A Landau-type functional with two order 

parameters is next constructed, resulting in a "phaset1 diagram 

in excellent agreement with the structure diagram? The behavior 

of A ,  € I L  and e0 can also be understood within our theory. 

The experimental procedure is the same as in Ref. 7. Merck 

Phase-V compound in the nematic phase was used. For f > fH, 

sine-like curves of the U R  first appear at the threshold Vuz, 

which then become more angular in shape with increasing 

wavelength until finally a zigzag structure composed of 

rectilinear rolls (the OR) is reached? In Fig. 2 ,  the 

wavevector of the U R  at Vuz, qo = 2 T /Ao, where A. is the 

corresponding wavelength, and the tilt angle e L  of the OR as 
functions of f are shown. Both go and €IL decrease with f. For 

fixed f, as V is increased, the measured A of the UR as a 

function of em/e: is plotted in Fig. 3. Here em is the maximum 
tilt angle of the UR and is found to increase with V '. All the 
tilt angles are measured with respect to the y axis, the axis of 

the NR, which is perpendicular to both the cell normal and the 

aligning direction of the molecules at the cell surfaces (i.e., 

the x axis). As seen from Fig. 3, A increases slowly and then 

very rapidly as Om (or V) is increased. At high voltage, em 

2 
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tends to €3' and A seems to diverge. 

For f c fn, at the threshold Vzz the RS directly bifurcates 

to the OR with tilt angle e0. The angle e0 is found to decrease 

with f (Fig. 4 ) .  Note that the values for fM in Figs. 1,2 and 4 

differ from each other because of the use of different 

samples. while the purity or aging of the sample is found to 

have marked effect on f x ,  as usually is the case in liquid 

crystal experiments, the general trend of our results is not 

affected. 

To shed light on these experimental results let us note that 

phenomenologically the various type of rolls observed can be 

described by two quantities, Q and e', the amplitude and phase of 

the deviation of the director from the x axis, respectively. Let 

this deviation angle be +. We then have 
+ (XlY) = win[qxx - e ' ( Y ) ! .  (1) 

Here Q is independent of x and y ,  but p ,  

of V and f. A more convenient but equivalent quantity to e' is 0 ,  

the local tilt angle. The two are related by 

0 = tan (9, dg/dy). The RS corresponds to 9 = 0. For Q f 0, 

B(y) = cor.st. corresponds to the NR while a y-dependent 

0 corresponds to the UR and OR. 

gx and e' are functions 

-1 -1 

For fixed f and V > V,,,, 8(y) is governed by a nonlinear 

equation. The most simple one consistent with the physical 

symmetry 8 + -8 of the system is that derived from the variation 

of the functional, 

F~ = dy [-+ A e 2  + $ e 4  + 3 L(de/d~)~], A ,  L > 0. ( 2 )  

The corresponding Lagrange equation is that of a e 4  nonlinear 

oscillator. The oscillating solutions are the Jacobian elliptic 

functions, 8 = B,sn(ulk'), with u = yL-'I2 e L ( l + k  ) I 

e L  = A'/~, is 

2 -1/2 

and k = [2(eL/em) -11 -'I2. The period of 0(u) 
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4X(k ) where K(k2) is the complete elliptic integral of the 

first kind. For 0 5 ern < e L  we have 0 < k 5 1, and -8 5, 0 < e m  
for each k. We note that for k + 0 (em + 0) , one has 

sn(ulk2) -+ sin(u) ; for k -+ 1 (e rn -* e l )  , sn(ulk2) -$ tanh(u). The 

latter is a soliton-like solution with infinite wavelength 

corresponding to infinitely large domains of rectilinear rolls 

tilted by ? € I l .  These shapes are exactly those observed for the 

UR and the OR if we identify the ern and B L  here with that 

defined in the obsened experimental patterns. Xore 

quantitatively, we may transform 9 from the u space into the 

physical y space and obtain for the wavelength of the U R ,  

2 

m 

h / h o  = (1 + k2)1/2K(k2)/Ko, ( 3 )  

where KO K ( 0 )  and h o  3 h ( 0 ) .  By Eq. ( 3 ) ,  for the OR 

(ern -+ e L ) I  h diverges logarithmically. The theoretical 
2 2  universal curre, h / h o  vs em/BLI is plotted in Fig. 3 and is in 

good agreement with the experiments. The curve should be valid 

for different samples and different materials, and is 

independent of f. Note that 

Consequently, ho is finite at the threshold Vuz (ern -+ 0) , in 

complete agreement with the experiments (Fig. 2 ) .  Also, if we 

assume L to be independent of f we should have e l  proportional 

to qo. This seems to be the case experimentally. In view of the 

large uncertainty in the experimental data we have refrained 

from a quantitative check of this prediction. 

To describe the structure diagram we use Q and e m  as the two 

9 order parameters and construct a Landau-type "free energy" 

where all the coefficients may vary with V and f, in 

principle. However, for our purpose here we allow a to change 
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sign while all the other coefficients are restricted to be 

positive. The RS pattern corresponds to p = 0 = 8 - the NR to 9 
# 0, em = 0 ; the UR and OR to p # 0 # 8 m. The stable pattern is 

the one having the minimum free energy, in exact analogy to the 

case of phase transitions in equilibrium systems. Analytic 

results are obtained. For the particular choice of parameters, b 

= 94.77(ec)1’2, 62B = 2.3l(e~)l/~(80.026 - f) and a/e = 

-1 + 10.71[-V2 + 86.81 + 0.124(f - 2 9 . 8 2 6 )  1, a structure 

diagrzz in excellent agreement with the experiment is shown ir? 

Fig. 1. Here e f 6 A / B  ; both e and c are arbitrary positive 

constants ; V is in volt and f in hertz. In Fig. 1 the 

first-order line (RS-OR) at low frequency actually passes the 

m ’  

2 

7 

triple point M at f = 38 Hz and meets smoothly at a tricritical 

point at f = 39 Hz with the second-order line (NR-UR). Our 

experimental uncertainty near M precludes a precise comparison 

with the theory. 

Our theory also gives ern as a function of V and f in the UR 
and OR region, i.e. , ‘m = ern(V,f). By definition, e0 in Fig. 4 

for f < fM is given by e 0 ( f )  = 9,(VZz,f). We predict that eO(fM) 

is non zero ; for the parameters used in Fig. I, eo(f)/eo(f,) is 

a monotonic decreasing function of f (f < fM) with 

eo(o)/eo(fM) = 8.64. A l l  these results are consistent with the 

data in Fig. 4. 10 

For f > fM and f fixed, our theory gives 8 as an increasing 

function of V2 with an effective exponent‘’ p varying between 

0.25  and 0 . 5 .  p = 0.5 when E is extremely small. Here p is 

This is consistent defined by ern- € , with € (V - Vuz)/Vuz. 
with the experimental result Of p = 0.43 f 0.07 ? With the 

parameters used in Fig. 1, f = 60 Hz and 0 < € < 1, we obtain 
12 p = 0 . 4 3  . 

m 

2 
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The general agreement between experimental data and the 

theory gives us the confidence that, at least for the 

electroconvective nematic system under consideration and for the 

first few patterns (on the route to chaos'') discussed here, the 

Landau-type "free energy" description with two order parameters 

is valid and useful. However, we have not been able to give here 

a general functional, in the form of /dxdyF(x,y), say, from 

which Eqs.(2) and (5) can be derived in a unified way. Yet, this 

is not at all inpossible. In this regard, the amplitude-equation 

approach'' may also be helpful. 

The structure diagram in Fig. 1 contains a "modulated phase", 

the UR's. The point M may also be interpreted as a Lifshitz 

point. 15-17.  However, the wavevector in classical modulated 

phases increases from zero beyond the Lifshitz point, 

contrast to the trend shown in Fig.2. In their stability 

analysis of the OR, Zimmermann and Xramer18 found a nonlinear 

dependence of e0 of f near fM, while our Fig 4 shows a almost 
linear dependence. Our experimental uncertainties on the angle 

measurements are large ( 2  3 ' )  and do not allow us to conclude 

either way. Pesch and Kramer l9 have recently proposed an 

anisotropic nodel (not specific to the electroconvection) which 

is derived from a functional. Their phenomenological model 

accounts for the main features of these experimental results 

(e.g., the existence of a triple point). Unfortunately, we 

cannot compare their model to ours concerning the existence of 

the U R  and the variation of the wavelength. 

15 in 

In conclusion, we have experimentally found that the 

structure diagram of the convective flows in a nematic liquid 

crystal subjected to an ac electric field presents a 

multicritical triple point which may appear as a Lifshitz point 
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by analogy with the NXC transition point in equilibrium liquid 

crystals and the magnetic xodulated phases. The main results can 

be described by the use of a Landau-type functional with two 

coupled order parameters. We have denonstrated here that in such 

a nonequilibrium system where there does not exist yet any 

tractable model (a Landau functional) , the use of an & 

functional may reveal itself to be useful even though it cannot 

be 2 priorilv justified. 

We thank P.G.de Gennes, P.C. iiohenberg, P. Pfeuty and G. Xu 

for useful discussions. This work was supported by the Direction 

des Recherches et Etudes Techniques (DRET) under contract 
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FIGURE CAPTIONS 

F ig .  1. S t a b i l i t y  s t r u c t u r e  diagram. The p o i n t s  a r e  exper imenta l  

r e s u l t s  from Ref .7 .  The t h e o r e t i c a l  cuz-ves a r e  r e p r e s e n t e d  by 

t h e  s o l i d  l i n e s  (second-order  t r a n s i t i o n )  and t h e  broken l i n e  

( f i r s t - o r d e r  t r a n s i t i o n ) .  

F ig .  2 . A s  a func t ion  of t h e  e x c i t a t i o n  f requency  a r e  

r e p r e s e n t e d :  ( 0 )  t h e  wavevector q, of  t h e  Undulatory Rolls a t  

t h r e s h o l d  above t h e  t r i p l e  p o i n t  M ( f  2 f M )  and (+ )  t h e  tilt 

a n g l e  B L  of t h e  Oblique R o l l s  below M ( f  < f M ) .  

F ig .  3 Reduced s p a t i a l  wavelength A / A  of  t h e  Undulatory R o l l s  

a s  a f u n c t i o n  of t h e  reduced maximum tilt a n g l e  em/O'. The s o l i d  

l i n e  r e p r e s e n t s  t h e  t h e o r e t i c a l  curve .  

F ig .  4 .  T i l t  a n g l e  e0 a t  t h r e s h o l d ,  of t h e  Obl ique  R o l l s  

( f  < fM) , a s  a f u n c t i o n  of t h e  reduced  f requency  f / f M  f o r  two 

d i f f e r e n t  samples ((0) : fx = 1 2 0  Hz;(+): fM=155 H z ] .  ?hove f x  t h e  

Undulatory Rolls obvious ly  appea r  w i t h  a tilt a n g l e  8, = 0 .  
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Chemical Waves 
JOHN Ross, STEFAN C. MULLER, CHRISTIAN VIDAL 

Spatial structures may occur in nonlinear systems far 
from equilibrium. Chemical waves, which are concentra- 
tion variations of chemical species propagating in a sys- 
tem, are an example of such structures. A survey is given 
of some experiments on chemical waves by spectroscopic 
and microphotographic techniques, arranged according 
to different types of waves, Merent geometries, and 
various properties. 

HEMICAL FRONTS AND WAVES (I) ARE VARIATIONS IN 
concentrations of chemical species, or possibly in other state C variables such as temperature, which travel in space and 

occur in nonlinear reactive systems far from equilibrium. Waves in 
the so-called Belousov-Zhabotinsky (2-8) reaction were first report- 
ed by Zhabotinsky (9). The overall reaction is the oxidative bromi- 
nation by acidic bromate of an organic substrate such as malonic 
acid; it can be approximated by 

2Br03-  + 3CHz(COOH)2 + 2H+ -+ 

2BrCH(COOH)* + 3co2 + 4H20 (1) 

The reaction is catalyzed by an oxidation-reduction couple such as 
Ce3+/Ce4+ or ferroin-ferriin, Fe(~hen)~'+/Fe(phen)3~+, where phen 
is phenanthroline. The reaction can be oscillatory, in which case the 
concentrations of some chemical intermediates vary in time periodi- 
cally. The period of such oscillations is typically about 40 seconds, 
and the concentration of Br- may vary by over five orders of 
magnitude. 

There are many reports of visual observations of waves in this and 
a few other chemical systems [see (7, 8) and citations therein]. 
Detailed studies by spectroscopic and photographic methods of 
different types of waves, the structure of the fronts of waves, and 
other properties such as dispersion relations have appeared only in 
the last 2 years (10-19). In this article we present a brief survey of 
such experiments on chemical waves considered as reaction-diffusion 
processes but largely omit theory, calculations, and the interaction 
of such processes with convection. We begin with a categorization 
of waves: kinematic, trigger, and phase diffusion waves. We then 
discuss different geometries: plain, circular, spiral, multiarmed vorti- 
ces, and scroll waves. Then we consider different properties of 
waves: the amplitude, the velocity, the front structure, dispersion 
relations, and the relation of curvature and velocity. 

Chemical waves are described by solutions of reaction-diffusion 
equations 

J. Ross is in the Department of Chemistry, Stanford University, Stanford, CA 94305. S. 
C. Miiller is at the Max-Planck Institut fiir Ernihrungsphysiologie, Rheinlanddamm 
201, D 4600 Dortmund 1, West Germany. C. Vidal is in the Centre de Recherche Paul 
Pascal, Domaine Universitaire, F33405 Talence Cedex Bordeaux, France. 

a 9  - = DVZ9 + F [ 9 ]  a t  

where W is a vector of state variables, such as the concentrations of 
chemical species and possibly temperature, each dependent on space 
and time; D is a matrix of ,transport (diffusion) coefficients, each 
assumed to be constant; and F [ q ]  represents the variations in time 
that arise from the chemical reactions. These nonlinear equations 
can seldom be solved in closed form; a variety of approximations 
and numerical techniques lead to useful solutions. Reviews on the 
theory of reaction-diffusion equations are available (8, 20-23). 

The field of temporal and spatial structures in nonlinear chemical 
systems far from equilibrium, such as chemical systems with multi- 
ple stationary states, with oscillations in chemical intermediates and 
products, with chaotic variations of concentrations and other state 

Fig. 1. Kinematic wave in a row of ten adjacent cells. An initial phase (or 
frequency) gradient imposed on the oscillatory Briggs-Rauscher reaction 
leads to the apparent propagation of colored fronts. [From (39), reprinted 
with permission, copyright (1982) Actual. Cbim.] 

Fig. 2. Two-dunensional 
target patterns in the Be- 
lousov-Zhabotinsky re- 
action in a layer of solu- 
tion 1 mm deep. 
The scale of the photo- 
graph is about 5 cm. 
[From ( I 3 ) ,  reprinted 
with permission, copy- 
right (1986) I. Phys. 
( P a 4  1 

460 SCIENCE, VOL. 240 
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variables, and with spatial structures (24) such as chemical waves is 
receiving significant attention. Systems far from equilibrium are less 
well understood, both experimentally and theoretically, than sys- 
tems at equilibrium; yet most natural phenomena are indeed far 
from equilibrium. 

In the past 20 years many examples of oscillatory chemical, 
biochemical, and biological (both in vivo and in vitro) reactions 
have been reported (7, 25). Waves and fronts in biological systems 
have been studied for a long time: in signal propagation in nerves 
(26-28); in peristaltic motion (29); in the development of embryos 
(30, 31); in phage-bacterium systems (32); in the aggregation step 
of the life cycle of slime mold cells (33); in waves across the 
chambers of the heart (34, 35); in pulses of pheromone emission 
(odor song) (36); and in spreading depression in the cerebral cortex 
( 3 3 ,  among others. All these waves can only be electrochemical in 
origin, and this fact provides additional motivation for the study of 
the physical chemistry of chemical waves. 

Types of Waves 
Kinematic waves. Another oscillatory chemical system is the 

Briggs-Rauscher reaction (38). Consider such a solution placed in 
the long upper tube shown in Fig. 1 (39). On turning the tube so 
that the many sidetubes face downward, we observe that the vessels 
below the long tube become filled. If there exists initially either a 
small variation in frequency of oscillation from one end of the long 
tube to the other, induced, for example, by a temperature gradient 
imposed on that tube, or if there exists a phase gradient in the 
oscillations, then one will see the passage of waves across the 
separate beakers. Such a wave, which is an optical illusion, is called a 
kinematic wave (40, 41). It clearly does not involve mass transfer 
from one beaker to another. If an initial phase gradient or frequency 
gradient is set up in the long tube, then kinematic waves will also 
sweep from one end of the long tube to the other, initially without 
mass transfer. However, after a time, owing to concentration 
differences in neighboring spatial elements of the tube along its axis, 
diffusion will occur and different types of waves will appear. 

T r g p  waves. Let us return to the Belousov-Zhabotinsky reaction 
in an oscillatory state (42-49), say, a solution of that reaction in a 
shallow (1 mm or less) layer in a petri dish. The solution is first well 
stirred and then left quiescent. Homogeneous concentration oscilla- 
tions in the ratio of the oxidation reduction couple, say, Fe2+/Fe3+, 
are observed with an appropriate indicator ferroin [tris( 1,lO-phen- 
anthroline) ferrous sulfate] [Fe(phen)3*+ is pink, F e ( ~ h e n ) ~ ~ +  is 
blue]; the color changes from pink to blue and back to pink, 
repeatedly. After a while inhomogeneities appear, frequently with a 
gas bubble or dust particle at the center of the inhomogeneity. In 
time, a chemical front proceeds radially outward from the center of 
the inhomogeneity. A number of trigger waves are shown in a 
photograph (13) of such a solution in a petri dish (Fig. 2). 

The transmission profile of a propagating trigger wave (10) in the 
Belousov-Zhabotinsky reaction in an excitable stationary state is 
given in Fig. 3. An appropriate perturbation from such a stationary 
state, of a threshold magnitude, leads to large concentration varia- 
tions, just as in an oscillation, before return to the stationary state. 
The measurements were made by shining a diffuse laser beam onto 
the surface of the solution, perpendicular to the plane of the layer of 
the solution. The transmitted light is measured on a diode array 
system which consists of 1024 photosensitive spots located on a line 
25 pm apart. The array can be scanned about once a second, and the 
data are stored in a computer system and displayed on a screen. By 
repeating such measurements in time we obtain the concentration of  
Fe2+ (the dominant absorbing species) as a fkct ion of space and 
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Fig. 3. Wave propagation sequence 
from initiation at a single point; 
transmission of argon ion laser pulse 
at 488 nm as a function of &stance. 
Temperature is 18.O"C. Time (in sec- 
on&) since wave initiation is shown 
in the upper right comer of each 
scan. [From ( lo) ,  reprinted with per- 
mission, copyright (1985) American 
Institute of Physics] 
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time and hence a quantitative analysis of the front as it propagates in 
space and time. 

Trigger waves have sharp fronts, 0.1 to 0.5 mm in width 
[concentration gradients up to 17 d l m m  offerroin ( I S ) ]  that arise 
from a phase in the oscillatory Belousov-Zhabotinsky reaction 
during which rates are very rapid and hence concentration variations 
are steep in time. Both reaction and difision play crucial roles in the 
propagation of trigger waves. Trigger waves do not interpenetrate 
each other but annihilate each other on contact, when concentration 
gradients are equal and opposite in the two colliding waves; unlike 
kinematic waves, they are blocked by walls. 

Trigger waves in an excitable medium are induced by a distur- 
bance of the right direction and magnitude at one location, which 
leads to sharp concentration differences (gradents) with neighbor- 
ing locations. Difision occurs, which then sets off the same 
disturbance in the neighboring locations with consequent propaga- 
tion of a front. The mechanism ofwave propagation in an oscillatory 
reaction is the same. 

Phase dzjksiun waves. Consider a solution of the Belousov-Zhabo- 
tinsky reaction, in a petri dish, which oscillates autonomously. We 
impose a well-focused laser beam, of wavelength absorbed by Fe2+, 
on a small area (0.2 mm2) and irradiate the solution for a limited 
time (about 12 seconds). The photons absorbed are converted into 
heat, which raises the temperature of the volume beneath the small 
area and brings about a perturbation that sets off a trigger wave (see 
Fig. 4, first cycle, graphs at 108.1 to 113.3 seconds) ( 1 1 ) .  That 
wave, with sharp concentration fronts, propagates into the unper- 
turbed medium. When the phase of the oscillation of the concentra- 
tion of Fe2+ in the unperturbed medium matches that of the wave 
front, the front disappears (Fig. 4, first cycle, graph at 130.3 
seconds). However, because of the temperature dlfference between 
the irradiated spot and the remainder of the solution, there exists a 
difference in frequency of oscillation and after a passage of a cycle 
the wave reappears. With the elapse of some time, the energy 
deposited by the light, turned into heat in the solution, difises and 
the temperature gradient becomes shallower. As that happens, a 
different wave appears (Fig. 4, fourth cycle, graphs at 449.0 to 
453.0 seconds), called a phase difision wave (41, 50). The velocity 
of a phase difision wave is defined as the ratio of the variation of 
the phase with time divided by the variation of the phase in space 
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(3) 

Hence, as the heat in the solution at the irradiated spot difises 
away, the phase gradient in space becomes smaller and hence the 
velocity of the phase wave increases. When the velocity of the phase 
diffusion wave exceeds that of the trigger wave (of essentially 
constant velocity), then a phase wave and not a trigger wave 
propagates in the solution. Velocities of phase diffusion waves are 
nearly constant for a limited time interval and become very large as 
the phase difference between the wave and the solution disappears 
(see Eq. 3). The concentration gradients in a phase diffusion wave 
are much shallower than those in a trigger wave; compare, for 
instance, the gradients at 451.6 seconds with those at 110.7 seconds 
in Fig. 4. In an autonomous oscillatory reaction, phase diffusion 
waves appear only if concentration gradients are small; for large 
concentration gradients, trigger waves appear. 

Fronts in bistable system. Chemical reactions far from equilibrium 
may have multiple, stable stationary states. On transition from one 
such stable state to another, a front of concentration variations 
travels through space. Such fronts have been observed in the iodate- 
arsenous acid reaction (51) and others. 

Geometric Forms of Waves 
The fronts of waves of chemical activity may assume various 

shapes depending on the geometry and volume of the container. All 
the characteristic features of these shapes are best realized in 
quiescent solutions in which trigger waves can be excited. 

One-dimensional waves. These waves are formed in a confined 
space, as in a narrow (a few millimeters) test tube, and consist of a 
train of fronts following each other at a distance. Measurements in 
such simple geometries are performed, for instance, in order to 
study the effect of an externally applied electrical field on wave 
properties (52, 53). The dependence of the velocity of chemical 
waves on electric field intensity is nonlinear. Waves can be slowed 
with appropriate polarity of the field; at high fields, waves may be 
split and the direction of propagation may be altered. 

Two-dimensional waves. In a thin layer (about 1 mm2) of reactive 
solution in a petri dish there occur several types of two-dimensional 
wave forms. An apparatus (14-19) for computerized digital spec- 
trophotometry of structures in two dimensions consists of ultravio- 
let (UV) optical components mounted on a vibration-isolated table 
for illumination and imaging purposes, a UV-sensitive video camera 
serving as the two-dimensional intensity detector, and a fast, large- 
memory computer for storage of the digitized data and further data 
processing. The sample layer in an optically flat petri dish is 
illuminated from above with a parallel, spatially homogeneous light 
beam emerging from a 300-W xenon short-arc lamp (Cermax) that 
has high temporal stability. Square sections (1 by 1 mm2 to 15 by 15 
mm2) are imaged by a UV photo lens on the target of the video 
camera with an image raster resolution of 512 by 512 picture 
elements (pixels). The video signal is converted to digital data with 
256 digital units (gray levels) intensity resolution. The apparatus 
combines spatial, temporal, and intensity resolution satisfactory for 
the analysis of chemical patterns and their temporal evolution. A 
comprehensive software package for the presentation of two-dimen- 
sional data arrays includes extraction of profiles of transmitted light 
intensity, logarithmic conversion of intensities into concentrations, 
pseudocolor and three-dimensional perspective graphical presenta- 
tions, and fitting procedures for specific isointensity or isoconcen- 
tration lines. 

1) Distributed sets of concentric annuli (4249)  are frequently 
also called "target" patterns (Fig. 2 )  and have been discussed in the 
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section on trigger waves. One important property of these waves is 
their mutual annihilation upon collision, which leads to typical 
cusplike structures in the vicinity of the area of collision between 
two annuli. 

2) Spiral-shaped waves are formed by the disruption of an 
expanding circular wave front, as can be done in a controlled manner 
with a gentle blast of air from a pipette onto the surface of the 
reacting solution (15, 43, 45). The irregularly shaped open ends of 
the circular wave are then the starting points of a rapid evolution 
toward a structure composed of a pair of counterrotating spiral 
waves with highly regular geometry. The tips of these spiral-shaped 
vortices turn inward with a rotation period of 17 seconds, whereas 
the fronts move in the outward direction. Spiral waves have been 
studied in some detail (14-17'). Figure 5A shows the digital image 
of a pair of spiral waves in three-dimensional perspective presenta- 
tions with a specific isoconcentration level of the light-absorbing 
catalyst marked in black. Outside a small region surroundmg the 
center of rotation, the so-called spiral core, the structure follows in 
good approximation an Archimedean geometry, but the involute of 
a circle fits the structure equally well. These two curves are 
asymptotically identical and differ only slightly in the immediate 
neighborhood of the core, where the resolution of the measured 
data points is not yet sufficient to distinguish between them. 
Theoretical analysis of simplified models of this reaction yielded 
results close to the shape of the involute (54). The three-dimensional 
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Fig. 4. Sequence of transmission profiles after imposition of a perturbation 
on the oscillatory Belousov-Zhabotinsky reaction at a given point at time to. 
The perturbation consists of a laser pulse of intensity 90 pW. Each profile is 
marked by the time (t - to) and by the correspondmg phase of the 
unperturbed oscillatory reaction. [From (11) reprinted with permission, 
copyright (1987) American Institute of Physics] 
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Fig. 5. ( A )  Symmetric pair of counterrotating spiral 
waves m a thin layer of an excitable Belousov- 
Zhabotinsky reaction. The digital image shows an 8.2 
mm by 8.2 mm area and is composed of 410 x 410 
picture elements. Each element has one out of 256 
possible gray levels of transmitted light intensity, 
which is a measure of the local concentration of the 
catalyst ferroin. One concentration level is enhanced 
in black. (B) The inner section of (A) is rendered as a 
three-dimensional surface image by interpolation of 
the measured pixel values and subsequent projection 
on perspective. The level enhanced in black is the 
same as that in (A). [From ( 1 4  reprinted with 
permission, copyright (1987) Biophys. Cbem.] 

perspective image in Fig. 5B indicates the asymmetric shape of the 
wave profiles. The gradents of ferroin are about 10 mMlmm at the 
steep fronts and 1 mMlmrn at the gentler sloping backs. The 
rotation center is a singular site in that it is the only location in the 
system where the chemistry remains quasi-stationary; in the areas 
outside the center periodic redox transitions take place that are 
correlated with the outward propagation of the wave front. The size 
ofthe site is smaller than 10 pm. The core region is just that portion 
of the layer where a transition takes place from the spiral center to 
the outer area where the solution is excited to full-amplitude waves. 
This transition gives the core a “tomado”-like structure, as shown in 
the cover. 

3) Multiarmed vortices have been seen in a shallow layer of an 
excitable medium. They are obtained by the controlled addition of a 
drop of a chemical close to the center of rotation of a spiral wave. 
Two-, three-, and four-armed vortices, that is, spiral waves having 
the same center of rotation, have been produced (55). 

Three-dimensional waves. Evidence for three-dimensional wave 
spheres first came from experiments with stacks offilter paper (45). 
Later such waves were observed in a liquid medium contained in a 
cylinder (8 mm), whereby special care was taken to avoid distur- 
bances arising from bubbles and fluid motion. Predominant wave 
types ate toroidal scroll waves, but occasionally other types such as 
spheroidal waves are observed (56) .  Analytical and numerical pre- 
dictions have been made for the possibility of twisted and linked 
scroll rings (57). Their experimental realization, however, as well as 
the quantitative investigation of any three-dimensional structure 
remains a challenge for future work. 

All these experiments to produce dlfferent forms of waves are 
carried out in closed (batch) systems and not in the open reactors 
usually used for the investigation of oscillatory behavior in homoge- 
neous systems. Thus the reagent mixture undergoes aging, which 
results in a slow drift of the reacting system toward equilibrium. A 
first approach to experimentation on chemical waves in an open 
system has been reported; sustained wave patterns were realized in 
an open annular reactor (58). The structure consists of traveling 
azimuthal wave pieces which look very much like pinwheels. 

Properties of Chemical Waves 
Shape and amplitude. If we select a wave with a single bright (blue- 

oxidizing) wave front and measure the transmission profile along a 
diameter of the circular wave, then the results are as shown in Fig. 3 
for a trigger wave in the Belousov-Zhabotinsky reaction in an 
excitable stationary state. A three-dimensional representation of 
photographs of the same reaction in oscillatory conditions is shown 
in Fig. 6. The photographs are subjected to a quantitative analysis 
by first recording the images from a TV camera on video tape and 
then digitizing selected frames of pictures. With the techniques of 
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geometrical corrections, background subtraction, enhancement of 
pattern by filtering and thresholding, among others, characteristic 
features of the patterns can be obtained. The oxidation domain 
grows from a small area around the center. A flat cylinder appears 
with radius and height (amplitude) increasing monotonically. Be- 
yond a critical value of the radius, the reduction phase then begins at 
the center and the amplitude of the cylinder at the center decreases. 

The constancy of the front and shape of a trigger wave (10) is 
shown in Fig. 7. Figure 7A gives a measurement of the transmission 
profile of Fe2+ in space at a given time. Figure 7B is the transmission 
profile at a given point in space as a function of time. Figure 7C 
shows a superposition of the measurements in (A) and (B) translat- 
ed by the measured velocity of propagation of the front according to 
the equation C$ = X - at, where C$ is the phase, X is position, and t is 
time. The constancy of the shape in time is quantitatively confirmed. 
A wave initiated in water when a rock is dropped into it propagates 
with constantly decreasing amplitude due to the viscosity of the 
medlum. The comparison, however, is not fair since the water wave 
propagates into a medium at equilibrium. In the case of chemical 
trigger waves the disturbance propagates into a medium that is far 
from equilibrium. In spite of the fact that difision removes 
concentration gradients, the combination of reaction and d i h i o n  
propagates the wave with constant shape. The energy necessary for 
this process comes from the Gibbs free energy change of the 
reaction. With respect to the constancy of wave profile, energetics, 
and nonlinear origin, there are interesting similarities between these 
waves and nerve conduction; the velocity of chemical waves, 

Fig. 6. Three-dunensional perspective representation of light transmission 
by a layer of oscillatory Belousov-Zhabotinsky reaction. The eight successive 
snapshots, taken at 1-second intervals, show the buildup of the oxidzing 
wave front. [Courtesy of C. Vidal and A. Pagola, in preparation] 
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however, is considerably slower (by about a factor of 400,000). 
The range of variation in the concentration of Fe3+ in an 

oscillation is a factor of 2 or 3 (from 1 x ~ o - ~ M  to 3 x 1 0 - ~ i q .  
The &stance in which this sharp variation occurs, the front width, 
varies with initial concentration in the system in a manner that has 
not yet been explored. 

Velocity. At a given temperature the velocity of a trigger wave 
depends on the initial concentrations of reactants, 4.0 mm/min for 
the wave shown in Fig. 3. The velocity has a square root dependence 
(10, 46,47) on the concentrations of sulfuric acid and bromate ion, 
v - k[H2S04]”2[Br0,-]”2, in a limited range of initial concentra- 
tions, and is much less sensitive to the concentrations of the other 
chemical species. The variation of the coefficient k has been studied 
so far only over a narrow range of temperature (284 to 318 K) and 
is reasonably given by an Arrhenius law with an apparent activation 
energy of about 35 kJ mol-I. 

Dkpmion of chemical waves. Dispersion is the variation of the 
velocity of wave propagation with the period (of oscillation in an 
oscillatory chemical system). Consider the emission of a wave from a 
center with a period T into a medium of oscillatory period To. The 
first wave emitted from the center propagates into the medium with 
a velocity that is described by the concentrations in the medium. If 
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Fig. 7. Transmission profile of a trigger wave: (A) sequence similar to Fig. 3, 
as a function of distance on a reticon; (B) sequence as a function of time on 
one photosensitive spot on the reticon; (C) superposition of the measure- 
ments in (A) and (B) as described in text. The superposition shows the 
constancy of the wave profile in time. [From ( lo) ,  reprinted with permis- 
sion, copyright (1985) American Institute of Physics] 

464 

the period of emission is of the same order as TO, then the second 
and successive waves propagate into a medium that is essentially 
relaxed after the passage of the prior wave, and the velocity of the 
propagation is little affected. However, if the period of emission is 
below Td2, then successive waves propagate into a medium that is 
incompletely relaxed and a reduction in the velocity of propagation 
may be expected. Measurements of the dispersion relation (12) in an 
oscillatory Belousov-Zhabotinsky reaction show that for TITo larger 
than 0.5, the reduction in velocity in propagation is small, whereas 
for TITo smaller than 0.5 the reduction in propagation velocity is 
substantial. 

In order to solve reaction-diffusion equations numerically, we 
must have a reaction mechanism and rate coefficients for the various 
steps in that mechanism. Much effort has gone into unraveling the 
mechanism of complex reactions, in particular that of the Belousov- 
Zhabotinsky reaction, and a number of simplified models of the 
mechanism have been proposed. Even a two-variable model (54, 
59-61), which oversimplifies the mechanism and neglects &fusion 
of all but one of the reacting species (bromous acid), provides a 
fairly good description of the main features of the wave profile, the 
velocity of propagation, and dispersion. 

On@ of wer waves. A fundamental point, not yet settled, 
concerns the origin of trigger waves that appear spontaneously in a 
thin layer of solution of an oscillatory or excitable chemical system. 
Do these waves arise spontaneously (62) as a result of a symmetry- 
breaking fluctuation? Or  do these waves arise deterministically from 
a heterogeneous center (a dust particle, an impurity, a gaseous 
bubble)? Extensive measurements have been made (13) on samples 
of more than 500 centers, and distributions of velocities of wave 
propagation have been determined, with no conclusive decision as 
yet. Experiments on thoroughly filtered solutions of the Belousov- 
Zhabotinsky reaction show that formation of trigger waves can thus 
be suppressed in an excitable system but not in an oscillatory system. 
A theory has been proposed for these results, which favors heteroge- 
neous centers (61). 

Propqgatwn velocity and curvature in spiral waves. An important 
problem in the study of spiral waves is the relation between the 
curvature and the propagation velocity of a front (63). Quantitative 
confirmation of the curvature-velocity equation used by Keener and 
Tyson (54) has been obtained (64) by measuring the temporal 
evolution of the cusplike structures that form immediately after 
wave collision (compare the dip in the wave crests in Fig. 5B). Here 
one can easily produce areas of extremely high curvature and follow 
the very rapid changes with a video movie. 

Conclusions 
Chemical waves are an interesting phenomenon that characterizes 

many nonlinear reaction systems far from equilibrium. The quantita- 
tive investigation of these, waves is in the initial stage. Much work 
needs to be done including the study of their characteristics in the 
limit of zero velocity, that is, stable spatial (Turing) structures, and 
their application to biological systems. 
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More Is Different 

Broken symmetry and the nature of 
the hierarchical structure of science. 

P. W. Anderson 

SCIENCE 

The reductionist hypothesis may still 
be a topic for controversy among phi- 
losophers, but among the great majority 
of active scientists I think it is accepted 
without question. The workings of our 
minds and bodies, and of all the ani- 
mate or inanimate matter of which we 
have any detailed knowledge, are as- 
sumed to be controlled by the same set 
of fundamental laws, which except 
under certain extreme conditions we 
feel we know pretty well. 

It seems inevitable to go on  uncrit- 
ically to what appears at first sight to 
be an obvious corollary of reduction- 
ism: that if everything obeys the same 
fundamental laws, then the only sci- 
entists who are studying anything really 
fundamental are those who are working 
on those laws. In practice, that amounts 
to some astrophysicists, some elemen- 
tary particle physicists, some logicians 
and other mathematicians, and few 
others. This point of view, which it is 
the main purpose of this article to 
oppose, is expressed in a rather well- 
known passage by Weisskopf ( I )  : 

Looking at  the development of science 
in the Twentieth Century one can dis- 
tinguish two trends, which I will call 
“intensive” and “extensive” research, lack- 
ing a better terminology. In short: in- 
tensive research goes for the fundamental 
laws, extensive research goes for the ex- 

The author is a member of the technical staff 
of the Bell Telephone Laboratories, Murray Hill, 
New Jersey 07974, and visiting professor of 
lheoretical physics at Cavendish Laboratory, 
Cambridge, England. This article is an expanded 
version of a Regents’ Lecture given in 1967 at 
the University of California, La Jolla. 

planation of phenomena in terms of 
known fundamental laws. As alwzys, dis- 
tinctions of this kind are not unambiguous. 
but they ace clear in most cases. Solid 
state physics, plasma physics, and perhaps 
also biology are extensive. High energy 
physics and a good part of nuclear physics 
are intensive. There is always much less 
intensive research _eoing on than extensive. 
Once new fundamental laws are discov- 
ered, a large and ever increasing activity 
begins in order to apply the discoveries to 
hitherto unexplained phenomena. Thus, 
there are two dimensions to basic re- 
search. The frontier of science extends all 
along a long line from the newest and most 
modern intensive research, over the ex- 
tensive research recently spawned by the 
intensive research of yesterday, to the 
broad and well developed web of exten- 
sive research activities based on intensive 
research of past decades. 

The effectiveness of this message may 
be indicated by the fact that I heard it 
quoted recently by a leader in the field 
of materials science, who urged the 
participants at a meeting dedicated to 
“fundamental problems in condensed 
matter physics” to accept that there 
were few or no such problems and that 
nothing was left but extensive science, 
which he seemed to equate with device 
engineering. 

The main fallacy in this kind of 
thinking is that the reductionist hypoth- 
esis does not by any means imply a 
“constructionist” one: The ability to 
reduce everything to simple fundamen- 
tal laws does not imply the ability to 
start from those laws and reconstruct 
the universe. In fact, the more the ele- 
mentary particle physicists tell us about 
the nature of the fundamental laws, the 

less relevance they seem to have to the 
very real problems of the rest of sci- 
ence, much less to those of society. 

The constructionist hypothesis breaks 
down when confronted with the twin 
difficulties of scale and complexity. The 
behavior of large and complex aggre- 
gates of elementary particles, it turns 
out, is not to be understood in terms 
of a simple extrapolation of the prop- 
erties of a few particles. Instead, at 
each level of complexity entirely new 
properties appear, and the understand- 
ing of the new behaviors requires re- 
search which I think is as fundamental 
in its nature as any other. That is, it 
seems to me that one may array the 
sciences roughly linearly in a hierarchy, 
according to the idea: The elementary 
entities of science X obey the laws of 
science Y. 

X Y 
solid state or elementary particle 

many-body physics physics 
chemistry many-body physics 
molecular bioIogy chemistry 
cell biology molecular biology 

psychology physiology 
social sciences psychology 

But this hierarchy does not imply 
that science X is “just applied Y.” At 
each stage entirely new laws, concepts, 
and generalizations are necessary, re- 
quiring inspiration and creativity to just 
as great a degree as in the previous one. 
Psychology is not applied biology, nor 
is biology applied chemistry. 

In my own field of many-body phys- 
ics, we are, perhaps, closer to our fun- 
damental, intensive underpinnings than 
in any other science in which non- 
trivial complexities occur, and as a re- 
sult we have begun to formulate a 
general theory of just how this shift 
from quantitative to qualitative differ- 
entiation takes place. This formulation, 
called the theory of “broken sym- 
metry.” may be of help in making more 
generally clear the breakdown of the 
constructionist converse of reduction- 
ism. I will give an elementary and in- 
complete explanation of these ideas, and 
then go on to some more general spec- 
ulative comments about analogies at 

CopyrightQ 1972 by the American Association f o r  the Advancement of Science 
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other levels and about similar phe- 
nomena. 

Before beginning this I wish to sort 
out two possible sources of misunder- 
standing. First, when I speak of scale 
change causing fundamental change I 
do not mean the rather well-understood 
idea that phenomena at a new scale 
may obey actually different fundamen- 
tal laws-as, for example, general rela- 
tivity is required on the cosmological 
scale and quantum mechanics on the 
atomic. I think it will be accepted that 
all ordinary matter obeys simple elec- 
trodynamics and quantum theory, and 
that really covers most of what I shall 
discuss. (As I said, we must all start 
with reductionism, which I fully ac- 
cept.) A second source of confusion 
may be the fact that the concept of 
broken symmetry has been borrowed by 
the elementary particle physicists, but 
their use of the term is strictly an 
analogy, whether a deep or a specious 
one remaining to be understood. 

Let me then start my discussion with 
an example on the simplest possible 
level, a natural one for me because I 
worked with it when I was a graduate 
student: the ammonia molecule. At that 
time everyone knew about ammonia 
and used it to calibrate his theory or 
his apparatus, and I was no exception. 
The chemists will tell you that ammonia 
“is” a triangular pyramid 

H ( + I  ( + I  H 

with the nitrogen negatively charged 
and the hydrogens positively charged, 
so that it has an electric dipole mo- 
ment (p), negative toward the apex of 
the pyramid. Now this seemed very 
strange to me, because I was just being 
taught that nothing has an electric di- 
pole moment. The professor was really 
proving that no nucleus has a dipole 
moment, because he was teaching nu- 
clear physics, but as his arguments were 
based on the symmetry of space and 
time they should have been correct in 
general. 

I soon learned that, in fact, they were 
correct (or perhaps it would be more 
accurate to say not incorrect) because 
he had been careful to say that no 
stationary state of a system {that is, 
one which does not change in time) 
has an electric dipole moment. If am- 
monia starts out from the above un- 
symmetrical state, it will not stay in it 
very long. By means of quantum me- 
chanical tunneling, the nitrogen can 

leak through the triangle of hydrogens 
to the other side, turning the pyramid 
inside out, and, in fact, it can do so 
very rapidly. This is the so-called “in- 
version,” which occurs at a frequency 
of about 3 x 1O1O per second. A 
truly stationary state can only be an 
equal superposition of the unsymmetri- 
cal pyramid and its inverse. That mix- 
ture does not have a dipole moment. 
( I  warn the reader again that I am 
greatly oversimplifying and refer him 
to the textbooks for details.) 

I will not go through the proof, but 
the result is that the state of the system, 
if it is to be stationary, must always 
have the same symmetry as the laws of 
motion which govern it. A reason may 
be put very simply: In quantum me- 
chanics there is always a way, unless 
symmetry forbids, to get from one state 
to another. Thus, if we start from any 
one unsymmetrical state, the system will 
make transitions to others, so only by 
adding up all the possible unsymmet- 
rical states in a symmetrical way can 
we get a stationary state. The symmetry 
involved in the case of ammonia is 
parity, the equivalence of left- and 
right-handed ways of looking at things. 
(The elementary particle experimental- 
ists’ discovery of certain violations of 
parity is not relevant to this question; 
those effects are too weak to affect 
ordinary matter.) 

Having seen how the ammonia mol- 
ecule satisfies our theorem that there is 
no dipole moment, we may look into 
other cases and, in particular, study 
progressively bigger systems to see 
whether the state and the symmetry are 
always related. There are other similar 
pyramidal molecules, made of heavier 
atoms. Hydrogen phosphide, PH3, which 
is twice as heavy as ammonia, inverts, 
but at one-tenth the ammonia frequency. 
Phosphorus trifluoride, PF,, in which 
the much heavier fluorine is substituted 
for hydrogen, is not observed to invert 
at a measurable rate, although theo- 
retically one can be sure that a state 
prepared in one orientation would in- 
vert in a reasonable time. 

We may then go on to more compli- 
cated molecules, such as sugar, with 
about 40 atoms. For  these it no longer 
makes any sense to expect the molecule 
to invert itself. Every sugar molecule 
made by a living organism is spiral in 
the same sense, and they never invert, 
either by quantum mechanical tunnel- 
ing or even under thermal agitation at 
normal temperatures. At this point we 
must forget about the possibility of in- 
version and ignore the parity symmetry: 

the symmetry laws have been, not re- 
pealed, but broken. 

If, on the other hand, we synthesize 
our sugar molecules by a chemical re- 
action more or less in thermal equi- 
librium, we will find that there are not, 
on the average, more left- than right- 
handed ones or vice versa. In the ab- 
sence of anything more complicated 
than a collection of free molecules, the 
symmetry laws are never broken, on the 
average. We needed living matter to 
produce an actual unsymmetry in the 
populations. 

In really large, but still inanimate, 
aggregates of atoms, quite a different 
kind of broken symmetry can occur, 
again leading to a net dipole moment 
or to a net optical rotating power, or 
both. Many crystals have a net dipole 
moment in each elementary unit cell 
(pyroelectricity), and in some this mo- 
ment can be reversed by an electric 
field (ferroelectricity). This asymmetry 
is a spontaneous effect of the crystal’s 
seeking its lowest energy state. Of 
course, the state with the opposite mo- 
ment also exists and has, by symmetry, 
just the same energy, but the system is 
so large that no thermal or quantum 
mechanical force can cause a conversion 
of one to the other in a finite time com- 
pared to, say, the age of the universe. 

There are at least three inferences to 
be drawn from this. One is that sym- 
metry is of great importance in physics. 
By symmetry we mean the existence of 
different viewpoints from which the sys- 
tem appears the same. It is only slightly 
overstating the case to say that physics 
is the study of symmetry. The first 
demonstration of the power of this idea 
may have been by Newton, who may 
have asked himself the question: What 
if the matter here in my hand obeys 
the same laws as that up in the sky- 
that is, what if space and matter are 
homogeneous and isotropic? 

The second inference is that the in- 
ternal structure of a piece of matter 
need not be symmetrical even if the 
total state of it is. I would challenge you 
to start from the fundamental laws of 
quantum mechanics and predict the am- 
monia inversion and its easily observ- 
able properties without going through 
the stage of using the unsymmetrical 
pyramidal structure, even though no 
“state” ever has that structure. It is 
fascinating that it was not until a cou- 
ple of decades ago (2) that nuclear phys- 
icists stopped thinking of the nucleus as 
a featureless, symmetrical little ball and 
realized that while it really never has a 
dipole moment, it can become football- 
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shaped or plate-shaped. This has ob- 
servable consequences in the reactions 
and excitation spectra that are studied 
in nuclear physics, even though it is 
much more difficult to demonstrate di- 
rectly than the ammonia inversion. In 
my opinion, whether or not one calls 
this intensive research, it is as funda- 
mental in nature as many things one 
might so label. But it needed no new 
knowledge of fundamental laws and 
would have been extremely difficult to 
derive synthetically from those laws; it 
was simply an inspiration, based, to be 
sure, on everyday intuition, which sud- 
denly fitted everything together. 

The basic reason why this result 
would have been difficult to derive is 
an important one for our further think- 
ing. If the nucleus is sufficiently small 
there is no real way to define its shape 
rigorously: Three or four or ten par- 
ticles whirling about each other do not 
define a rotating “plate” or “football.” 
It is only as the nucleus is considered 
to be a many-body system-in what is 
often called the N --f m limit-that such 
behavior is rigorously definable. We say 
to ourselves: A macroscopic body of 
that shape would have such-and-such a 
spectrum of rotational and vibrational 
excitations, completely different in na- 
ture from those which would character- 
ize a featureless system. When we see 
such a spectrum, even not so separated, 
and somewhat imperfect, we recognize 
that the nucleus is, after all, not macro- 
scopic; it is merely approaching macro- 
scopic behavior. Starting with the fun- 
damental laws and a computer, we 
would have to do two impossible things 
-solve a problem with infinitely many 
bodies, and then apply the result to a 
finite system-before we synthesized 
this behavior. 

A third insight is that the state of a 
really big system does not at all have 
to have the symmetry of the laws which 
govern it; in fact, it usually has less 
symmetry. The outstanding example of 
this is the crystal: Built from a substrate 
of atoms and space according to laws 
which express the perfect homogeneity 
of space, the crystal suddenly and un- 
predictably displays an entirely new and 
very beautiful symmetry. The general 
rule, however, even in the case of the 
crystal, is that the large system is less 
symmetrical than the underlying struc- 
ture would suggest: Symmetrical as it 
is, a crystal is less symmetrical than 
perfect homogeneity. 

Perhaps in the case of crystals this 
appears to be merely an exercise in 
confusion. The regularity of crystals 

could be deduced semiempirically in 
the mid-19th century without any 
complicated reasoning at all. But some- 
times, as in the case of superconduc- 
tivity, the new symmetry-now called 
broken symmetry because the original 
symmetry is no longer evident-may be 
of an entirely unexpected kind and ex- 
tremely difficult to visualize. In the case 
of superconductivity, 30 years elapsed 
between the time when physicists were 
in possession of every fundamental law 
necessary for explaining it and the time 
when it was actually done. 

The phenomenon of superconductiv- 
ity is the most spectacular example of 
the broken symmetries which ordinary 
macroscopic bodies undergo, but it is 
of course not the only one. Antiferro- 
magnets, ferroelectrics, liquid crystals, 
and matter in many other states obey 
a certain rather general scheme of rules 
and ideas, which some many-body the- 
orists refer to under the general heading 
of broken symmetry. I shall not further 
discuss the history, but give a bibliog- 
raphy at the end of this article (3). 

The essential idea is that in the so- 
called N + w limit of large systems (on 
our own, macroscopic scale) it is not 
only convenient but essential to realize 
that matter will undergo mathematically 
sharp, singular “phase transitions” to 
states in which the microscopic sym- 
metries, and even the microscopic equa- 
tions of motion, are in a sense violated. 
The symmetry leaves behind as its ex- 
pression only certain characteristic be- 
haviors, for instance, long-wavelength 
vibrations, of which the familiar exam- 
ple is sound waves; or the unusual mac- 
roscopic conduction phenomena of the 
superconductor; or, in a very deep 
analogy, the very rigidity of crystal lat- 
tices, and thus of most solid matter. 
There is, of course, no question of the 
system’s really violating, as opposed to 
breaking, the symmetry of space and 
time, but because its parts lind it ener- 
getically more favorable to maintain cer- 
tain fixed relationships with each other, 
the symmetry allows only the body as 
a whole to respond to external forces. 

This leads to a “rigidity,” which is 
also an apt description of superconduc- 
tivity and superfluidity in spite of their 
apparent “fluid” behavior. [In the for- 
mer case, London noted this aspect 
very early (4).] Actually, for a hypo- 
thetical gaseous but intelligent citizen of 
Jupiter or of a hydrogen cloud some- 
where in the galactic center, the proper- 
ties of ordinary crystals might well be 
a more baffling and intriguing puzzle 
than those of superfluid helium. 

I do not mean to give the impression 
that all is settled. For instance, I think 
there are still fascinating questions of 
principle about glasses and other amor- 
phous phases, which may reveal even 
more complex types of behavior. Never- 
theless, the role of this type of broken 
symmetry in the properties of inert but 
macroscopic material bodies is now un- 
derstood, at least in principle. In this 
case we can see how the whole becomes 
not only more than but very different 
from the sum of its parts. 

The next order of business logically 
is to ask whether an even more com- 
plete destruction of the fundamental 
symmetries of space and time is possi- 
ble and whether new phenomena then 
arise, intrinsically different from the 
“simple” phase transition representing 
a condensation into a less symmetric 
state. 

We have already excluded the appar- 
ently unsymmetric cases of liquids, 
gases, and glasses. (In any real sense 
they are more symmetric.) It seems to 
me that the next stage is to consider the 
system which is regular but contains 
information. That is, it is regular in 
space in some sense so that it can be 
“read out,” but it contains elements 
which can be varied from one “cell” 
to the next. An obvious example is 
DNA; in everyday life, a line of type 
or  a movie film have the same struc- 
ture. This type of “information-bearing 
crystallinity” seems to be essential to 
life. Whether the development of life 
requires any further breaking of sym- 
metry is by no means clear. 

Keeping on with the attempt to char- 
acterize types of broken symmetry 
which occur in living things, I find that 
at least one further phenomenon seems 
to be identifiable and either universal or 
remarkably common, namely, ordering 
(regularity or  periodicity) in the time 
dimension. A number of theories of life 
processes have appeared in which reg- 
ular pulsing in time plays an important 
role: theories of development, of growth 
and growth limitation, and of the mem- 
ory. Temporal regularity is very com- 
monly observed in living objects. It 
plays at least two kinds of roles. First, 
most methods of extracting energy from 
the environment in order to set up a 
continuing, quasi-stable process involve 
time-periodic machines, such as oscil- 
lators and generators, and the processes 
of life work in the same way. Second, 
temporal regularity is a means of han- 
dling information, similar to informa- 
tion-bearing spatial regularity. Human 
spoken language is an example, and it 
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is noteworthy that all computing ma- 
chines use temporal pulsing. A possible 
third role is suggested in some of the 
theories mentioned above: the use of 
phase relationships of temporal pulses 
to handle information and control the 
growth and development of cells and 
organisms (5 ) .  

In some sense, structure-functiocal 
structure in a teleological sense, as op- 
posed to mere crystalline shape-must 
also be considered a stage, possibly in- 
termediate between crystallinity and in- 
formation strings, in the hierarchy of 
broken symmetries. 

To pile speculation on speculation, I 
would say that the next stage could be 
hierarchy or specialization of function, 
or both. At some point we have to stop 
talking about decreasing symmetry and 
start calling it increasing complication. 
Thus, with increasing complication at 
each stage, we go on up the hierarchy 
of the sciences. We expect to encounter 
fascinating and, I believe, very funda- 
mental questions at each stage in fitting 
together less complicated pieces into the 
more complicated system and under- 
standing the basically new types of be- 
havior which can result. 

There may well be no useful parallel 
to be drawn between the way in which 
complexity appears in the simplest cases 
of many-body theory and chemistry and 
the way it appears in the truly complex 
cultural and biological ones, except per- 
haps to say that, in general, the rela- 
tionship between the system and its 
parts is intellectually a one-way street. 
Synthesis is expected to be all but im- 

possible; analysis, on the other hand, 
may be not only possible but fruitful in 
all kinds of ways: Without an under- 
standing of the broken symmetry in 
superconductivity, for instance, Joseph- 
son would probably not have discovered 
his effect. [Another name for the Joseph- 
son effect is “macroscopic quantum-in- 
terference phenomena”: interference ef- 
fects observed between macroscopic 
wave functions of electrons in super- 
conductors, or of helium atoms in su- 
perfluid liquid helium. These phenom- 
ena have already enormously extended 
the accuracy of electromagnetic mea- 
surements, and can be expected to play 
a great role in future computers, among 
other possibilities, so that in the long 
run they may lead to some of the major 
technological achievements of this dec- 
ade (6).] For another example, biology 
has certainly taken on a whole new as- 
pect from the reduction of genetics to 
biochemistry and biophysics, which will 
have untold consequences. So it is not 
true, as a recent article would have it 
(7), that we each should “cultivate our 
own valley, and not attempt to build 
roads over the mountain ranges . . . 
between the sciences.” Rather, we 
should recognize that such roads, while 
often the quickest shortcut to another 
part of our own science, are not visible 
from the viewpoint of one science alone. 

The arrogance of the particle physi- 
cist and his intensive research may be 
behind us (the discoverer of the positron 
said “the rest is chemistry”), but we 
have yet to recover from that of some 
molecular biologists, who seem deter- 

mined to try to reduce everything about 
the human organism to “only” chem- 
istry, from the common cold and all 
mental disease to the religious instinct. 
Surely there are more levels of orga- 
nization between human ethology and 
DNA than there are between DNA and 
quantum electrodynamics, and each 
level can require a whole new concep- 
tual structure. 

In closing, I offer two examples from 
economics of what I hope to have said. 
Marx said that quantitative differences 
become qualitative ones, but a dialogue 
in Paris in the 1920’s sums it up even 
more clearly: 

FITZCERALD: The rich are different 
from us. 

HEMINGWAY: Yes, they have more 
money. 
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Cellular automata as models of complexity 
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Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The 
origins of such complexity can be investigated through mathematical models termed ‘cellular automata’. 
Cellular automata consist of many identical components, each simple, but together capable of complex 
behaviour. They are analysed both as discrete dynamical systems, and as information-processing 
systems. Here some of their universal features are discussed, and some general principles are suggested. 

IT is common in nature to find systems whose overall behaviour 
is extremely complex, yet whose fundamental component parts 
are each very simple. The complexity is generated by the cooper- 
ative effect of many simple identical components. Much has 
been discovered about the nature of the components in physical 
and biological systems; little is known about the mechanisms 
by which these components act together to give the overall 
complexity observed. What is now needed is a general math- 
ematical theory to describe the nature and generation of com- 
plexity. 

Cellular automata are examples of mathematical systems con- 
structed from many identical components, each simple, but 
together capable of complex behaviour. From their analysis, 
one may, on the one hand, develop specific models for particular 
systems, and, on the other hand, hope to abstract general 
principles applicable to a wide variety of complex systems. 
Some recent results on cellular automata will now be out- 
lined: more extensive accounts and references may be found in 
refs 1-4. 

Cellular automata 
A one-dimensional cellular automaton consists of a line of sites, 
with each site carrying a value 0 or 1 (or in general 0, . . . , k - 1 ) .  
The value a, of the site at each position i is updated in discrete 
time steps according to an identical deterministic rule depending 
on a neighbourhood of sites around it: 

a!“” = @[a!!!r, a!!!,+l,. . . , a!‘),] (1) 

Even with k = 2 and r = 1 or 2, the overall behaviour of cellular 
automata constructed in this simple way can be extremely 
complex. 

Consider first the patterns generated by cellular automata 
evolving from simple ‘seeds’ consisting of a few non-zero sites. 
Some local rules @ give rise to simple behaviour; others produce 
complicated patterns. An extensive empirical study suggests that 
the patterns take on four qualitative forms, illustrated in Fig. 1: 

(1) disappears with time; 
(2) evolves to a fixed finite size; 
(3) grows indefinitely at a fixed speed: 
(4) grows and contracts.irregularly. 

Patterns of type 3 are often found to be self-similar or scale 
invariant. Parts of such patterns, when magnified, are indistin- 
guishable from the whole. The patterns are characterized by a 
fractal dimension’; the value log, 3 = 1.59 is the most common. 
Many of the self-similar patterns seen in natural systems may, 
in fact, be generated by cellular automaton evolution. 

Figure 3 shows the evolution of cellular automata from initial 
states where each site is assigned each of its k possible values 
with an independent equal probability. Self-organization is seen: 
ordered structure is generated from these disordered initial 
states, and in some cases considerable complexity is evident. 

Different initial states with a particular cellular automaton 
rule yield patterns that differ in detail, but are similar in form 
and statistical properties. Different cellular automaton rules 
yield very different patterns. .4n empirical study, nevertheless, 
suggests xhat four qualitative classes may be identified, yielding 
four characteristic limiting forms: 

(1) spatially homogeneous state; 
(2) sequence of simple stable or periodic structures; 
(3) chaotic aperiodic behaviour; 
(4) complicated localized structures, some propagating. 
All cellular automata within each class, regardless of the 

details of their construction and evolution rules, exhibit qualita- 
tively similar behaviour. Such universality should make general 
results on these classes applicable to a wide variety of systems 
modelled by cellular automata. 

Applications 
Current mathematical models of natural systems are usually 
based on differential equations which describe the smooth van- 
ation of one parameter as a function of a few others. Cellular 
automata provide alternative and in some respects complemen- 

Fig. 1 Classes of patterns generated by the evolution of cellular automata from simple ‘seeds’. Successive rows correspond to successive 
time steps in the cellular automaton evolution. Each site is updated at each time step according to equation ( I )  by cellular automaton rules 
that depend on the values of a neighbourhood of sites at the previous time step. Sites with values 0 and 1 are represented by white and black 
squares, respectively. Despite the simplicity of their construction, patterns of some complexity are seen to be generated. The rules shown 
exemplify the four classes of behaviour found. (The first three are k =  2, r =  I rules with rule numbers’ 128, 4 and 126, respectively; the fourth 

is a k = 2, r = 2 rule with totalistic code’ 52.) In the third case, a self similar pattern is formed. 
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Fig. 2 Evolution of small initial perturbations in cellular automata, as shown by the difference (modulo two) between patterns generated 
from two disordered initial states differing in the value of a single site. The examples shown illustrate the four classes of behaviour found. 
Information on  changes in the initial state almost always propagates only a finite distance in the first two classes, but may propagate an 

arbitrary distance in the third and fourth classes. 

tary models, describing the discrete evolution of many (iden- 
tical) components. Models based on cellular automata are typi- 
cally most appropriate in highly nonlinear regimes of physical 
systems, and in chemical and biological systems where discrete 
thresholds occur. Cellular automata are particularly suitable as 
models when growth inhibition effects are important. 

As one example, cellular automata provide global models for 
the growth of dendritic crystals (such as snowflakes)6. Starting 
from a simple seed, sites with values representing the solid phase 
are aggregated according to a two-dimensional rule that 
accounts for the inhibition of growth near newly-aggregated 
sites, resulting in a fractal pattern of growth. Nonlinear chemical 
reaction-diffusion systems give another a simple 
cellular automaton rule with growth inhibition captures the 
essential features of the usual partial differential equations, and 
reproduces the spatial patterns seen. Turbulent fluids may also 
potentially be modelled as cellular automata with local interac- 
tions between discrete vortices on lattice sites. 

If probabilistic noise is added to the time evolution rule ( I ) ,  
then cellular automata may be identified as generalized Ising 
r n ~ d e l s ~ ~ ’ ~ .  Phase transitions may occur if I#I retains some deter- 
ministic components, or in more than one dimension. 

Cellular automata may serve as suitable models for a wide 
variety of biological systems. In particular, they may suggest 
mechanisms for biological pattern formation. For example, the 
patterns of pigmentation found on many mollusc shells bear a 
striking resemblance to patterns generated by class 2 and 3 
cellular automata (see refs 1 1 ,  12), and cellular automaton 
models for the growth of some pigmentation patterns have been 
constructed13. 

Mathematical approaches 
Rather than describing specific applications of cellular 
automata, this article concentrates on general mathematical 
features of their behaviour. Two complementary approaches 
provide characterizations of the four classes of behaviour seen 
in Fig. 3. 

In the first approach*, cellular automata are viewed as discrete 
dynamical systems (see ref. 141, or discrete idealizations of 
partial differential equations. The set of possible (infinite) con- 
figurations of a cellular automaton forms a Cantor set: cellular 
automaton evolution may be viewed as a continuous mapping 
on this Cantor set. Quantities such as entropies, dimensions and 
Lyapunov exponents may then be considered for cellular 
automata. 

In the second approach3, cellular automata are instead con- 
sidered as information-processing systems (see ref. 15), or 
parallel-processing computers of simple construction. Informa- 
tion represented by the initial configuration is protessed by the 
evolution of the cellular automaton. The results of this informa- 
tion processing may then be characterized in terms of the types 
of formal languages generated. (Note that the mechanisms for 
information processing in natural system appear to be much 
closer to those in cellular automata than in conventional serial- 
processing computers: cellular automata may, therefore, provide 
efficient media for practical simulations of many natural 
systems.) 

Entropies and dimensions 
Most cellular automaton rules have the important feature of 
irreversibility: several different configurations may evolve to a 
single configuration, and, with time, a contracting subset of all 
possible configurations appears. Starting from all possible initial 
configurations, the cellular automaton evolution may generate 
only special ‘organized’ configurations, and ‘self-organization’ 
may occur. 

For class 1 cellular automata, essentially all initial configur- 
ations evolve to a single final configuration, analogous to a limit 
point in a continuous dynamical system. Class 2 cellular 
automata evolve to limit sets containing essentially only periodic 
configurations, analogous to limit cycles. Class 3 cellular 
automata yield chaotic aperiodic limit sets, containing analogues 
of chaotic or ‘strange’ attractors. 

Entropies and dimensions give a generalized measure of the 
density of the configurations generated by cellular automaton 
evolution. The (set) dimension or limiting (topological) entropy 
for a set of cellular automaton configurations is defined as 
(compare ref. 14) 

where N ( X )  gives the number of distinct sequences of X site 
values that appear. For the set of possible initial configurations, 
d“’ = I .  For a limit set containing only a finite total number of 
configurations, d‘”’ = 0. For most class 3 cellular automata, d‘”’ 
decreases with time, giving, O <  d‘”’< I ,  and suggesting that a 
fractal subset of all possible configurations occurs. 

A dimension or limiting entropy d“’  corresponding to the 
time series of values of a single site may be defined in analogy 
with equation (2). (The analogue of equation (2) for a sufficiently 
wide patch of sites yields a topologically-invariant entropy for 
the cellular automaton mapping.) d“’ = 0 for periodic sets of 
configurations. 

di” and d“’ may be modified to account for the probabilities 
of configurations by defining 

and its analogue, where p, are probabilities for possible length 
X sequences. These measure dimensions may be used to 
delineate the large time behaviour of the different classes of 
cellular automata: 

(1)  d z ’ = d c ’ = O  
(2) dY ’>0 ,  d c ’ = O  
(3) d:’>O, d c ’ > O  

As discussed below, dimensions are usually undefined for class 
4 cellular automata. 

Information propagation 
Cellular automata may also be characterized by the stability or 
predictability of their behaviour under small perturbations in 
initial configurations. Figure 2 shows differences in patterns 
generated by cellular automata resulting from a change in a 



13.2 Cellular Automata as Models of Corndexitv 199 

Fig. 3 Evolution of various cellular automata from disordered initial states. In many cases, ordered structure is seen to be generated. The 
first row of pictures show examples of the four qualitative classes of behaviour found. (The rules shown are the same as in Fig. I . )  The lower 
two rows show examples of cellular automata with k = 5 (five possible values for each site) and r = I (nearest neighbour rules). Site values 0 
to 4 are represented by white, red, green, blue and yellow squares, respectively. (The rules shown have totalistic codes 10175, 566780, 570090, 

580020, 583330, 672900, 5694390, 59123000.) The 'orange' discoloration is a background, not part of the pattern. 

Fig. 4 Evolution of multiple phases in cellular automata. Pairs 
of sites are shown combined: 00 is represented by white, 01 by 
red, 10 by green and 1 I by blue. Alternate time steps are shown. 
Both rules simulate an additive rule (number 90) under a blocking 
transformation. In the first rule (number 18). the simulation is 
attractive: starting from a disordered initial state, the domains 
grow with time. In  the second rule (number 94), the simulation is 
repulsive: only evolution from a special initial state yields additive 
rule behaviour: a defect is seen to grow, and attractive simulation 

of the identity rule takes over. 

Fig. 5 Examples o f  the evolution o i  d typical class 4 cellular Fig. 6 Persistent structures generated In the evolution of the class 
automaton from disordered initial states. This and other class 4 
cellular automata are conjectured to be capable of arbitrary infor- 
mation processing, or universal computation. The rule shown has 
k = 3, r = I ,  and takes the value of a site to be 1 if the sum of the 
values of the sites in its three-site neighbourhood is 2 or 6, to be 2 

if the sum is 3, and to zero otherwise (totalistic code 792). 

4 c e h l a r  automaton of Fig. 5. The first four structures shown 
have periods 1, 20, 16 and 12 respectively: the last four structures 
(and their reflections) propagate: the first has period 32, the next 
three period 3, and the last period 6. These structures are some of  

the elements required to support universal computation. 
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Fig. 7 Evolution of some cellular automata with reverisble rules. Each configuration is a unique function of the two previous configurations. 
(Rule numbers 4, 22, 90 and 126 are shown.) As initial conditions, each site in two successive configurations is chosen to have value 1 with 

probability 0.1. 

single initial site value. Such perturbations have characteristic 
effects on the four classes of cellular automata: 

( I )  no change in final state; 
(2) changes only in a finite region; 
(3 )  changes over an ever-increasing region; 
(4) irregular changes. 
In class 1 and 2 cellular automata, information associated 

with site values in the initial state propagates only a finite 
distance; in class 3 cellular automata, it propagates an infinite 
distance at a fixed speed, while in class 4 cellular automata, it 
propagates irregularly, but over an infinite range. The speed of 
information propagation is related to the Lyapuncv exponent 
for the cellular automaton evolution, and measures the degree 
of sensitivity to initial conditions (see ref. 16). It leads to different 
degrees of predictability for the outcome of cellular automaton 
evolution: 

( I )  entirely predictable, independent of initial state; 
(2) local behaviour predictable from local initial state; 
(3)  behaviour depends on an ever-increasing initial region; 
(4) behaviour effectively unpredictable. 
Information propagation is particularly simple for the special 

class of additive cellular automata (whose local rule function 
4 is linear modulo k ) ,  in which patterns generated from arbitrary 
initial states may be obtained by superposition of patterns gener- 
ated by evolution of simple initial states containing a single 
non-zero site. A rather complete algebraic analysis of such 
cellular automata may be given”. Most cellular automata are 
not additive; however, with special initial configurations it is 
often possible for them to behave just like additive rules. Thus, 
for example, the evolution of an initial configuration consisting 
of a sequence of 00 and 01 digrams under one rule may be 
identical to the evolution of the corresponding ‘blocked’ con- 
figuration consisting of 0 and 1 under another rule. In this way, 
one rule may simulate another under a blocking transformation 
(analogous to a renormalization group transformation). Evo- 
lution from an arbitrary initial state may be attracted to (or 
repelled from) the special set of configurations for which such 
a simulation occurs. Often several phases exist, corresponding 
to different blocking transformations: sometimes phase boun- 
daries move at constant speed, and one phase rapidly takes 
over; in other cases, phase boundaries execute random walks, 
annihilating in pairs, and leading to a slow increase in the 
average domain size, as illustrated in Fig. 4. Many rules appear 
to follow attractive simulation paths to additive rules, which 
correspond to fixed points of blocking transformations, and thus 
exhibit self similarity. The behaviour of many rules at  large 
times, and on large spatial scales, is therefore determined by 
the behaviour of additive rules. 

Thermodynamics 
Decreases with time in the spatial entropies and dimensions of 
equations (2) and (3)  signal irreversibility in cellular automaton 
evolution. Some cellular automaton rules are, however, revers- 
ible, so that each and every configuration has a unique pre- 
decessor in the evolution, and the spatial entropy and dimension 
of equations (2) and (3) remain constant with time. Figure 7 
shows some examples of the evolution of such rules, constructed 
by adding a term -o~ ‘ - ’ ’  to equation ( I )  (ref. 20 and E. Fredkin, 
personal communication). Again, there are analogues of the 

four classes of behaviour seen in Fig. 3, distinguished by the 
range and speed of information propagation. 

Conventional thermodynamics gives a general description of 
systems whose microscopic evolution is reversible; it may, there- 
fore, be applied to reversible cellular automata such as those 
of Fig. 4. As usual, the ‘fine-grained’ entropy for sets (ensembles) 
of configurations, computed as in equation (3)  with perfect 
knowledge of each site value, remains constant in time. The 
‘coarse-grained’ entropy for configurations is, nevertheless, 
almost always non-decreasing with time, as required by the 
second law of thermodynamics. Coarse graining emulates the 
imprecision of practical measurements, and may be imple- 
mented by applying almost any contractive mapping to the 
configurations (a few iterations of an irreversible cellular 
automaton rule suffice). For example, coarse-grained entropy 
might be computed by applying equation (3 )  to every fifth site 
value. In an ensemble with low coarse-grained entropy, the 
values of every fifth site would be highly constrained, but 
arbitrary values for the intervening sites would be allowed. Then 
in the evolution of a class 3 or 4 cellular automaton the disorder 
of the intervening site values would ‘mix’ with the fifth-site 
values, and the coarse-grained entropy would tend towards its 
maximum value. Signs of self-organization in such systems must 
be sought in temporal correlations, often manifest in ‘fluctu- 
ations’ or metastable ‘pockets’ of order. 

While all fundamental physical laws appear to be reversible, 
macroscopic systems often behave irreversibly, and are 
appropriately described by irreversible laws. Thus, for example, 
although the microscopic molecular dynamics of fluids is revers- 
ible, the relevant macroscopic velocity field obeys the irreversible 
Navier-Stokes equations. Conventional thermodynamics does 
not apply to such intrinsically irreversible systems: new general 
principles must be found. Thus, for cellular automata with 
irreversible evolution rules, coarse-grained entropy typically 
increases for a short time, but then decreases to follow the 
fine-grained entropy. Measures of the structure generated by 
self-organization in the large time limit are usually affected very 
little by coarse graining. 

Formal language theory 
Quantities such as entropy and dimension, suggested by infor- 
mation theory, give only rough characterizations of cellular 
automaton behaviour. Computation theory suggests more com- 
plete descriptions of self-organization in cellular automata (and 
other systems). Sets of cellular automaton configurations may 
be viewed as formal languages, consisting of sequences of sym- 
bols (site values) forming words according to definite gram- 
matical rules. 

The set of all possible initial configurations corresponds to a 
trivial formal language. The set of configurations obtained after 
any finite number of time steps are found to form a regular 
language3. The words in a regular language correspond to the 
possible paths through a finite graph representing a finite state 
machine. It can be shown that a unique smallest finite graph 
reproduces any given regular language (see ref. 15). Examples 
of such graphs are shown in Fig. 8. These graphs give complete 
specifications for sets of cellular automaton configurations 
(ignoring probabilities). The number of nodes E in the smallest 
graph corresponding to a particular set of configurations may 
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t = o  

t = l  

t = 2  

Fig. 8 Graphs representing the sets of configurations generated in the first few time steps of evolution according to a typical class 3 cellular 
automaton rule ( k  = 2 ,  r = I ,  rule number 126). Possible configurations correspond to possible paths through the graphs, beginning at the 
encircled node. At f = 0, all possible configurations are allowed. With time, a contracting subset of configurations are generated. (After one 
time step, for example, no configuration containing the sequence of site value I01 can appear.) At each time step, the complete set of possible 
configurations forms a regular formal language: the graph gives a minimal complete specification of it. The number of nodes in the graph 
gives a measure of the complexity 3 of the set, viewed as a regular language. As for other class 3 cellular automata, the complexity of the 

sets grows rapidly with time; for f = 3, E = 107, and f = 4, 3 = 2,867. 

be defined as the ‘regular language complexity’ of the set. It 
specifies the size of the minimal description of the set in terms 
of regular languages. Larger f correspond to more complicated 
sets. (Note that the topological entropy of a set is given by the 
logarithm of the algebraic integer obtained as the largest root 
of the characteristic polynomial for the incidence matrix of the 
corresponding graph. The characteristic polynomials for the- 
graphs in Fig. 7 are 2 - A  (AmaX=2), 1 - A  +2A2-A3 (A,,,= 
1.755) and -1  + A  -A’  +2A3 -4A‘ + A 5  +3A6-5A7 +3A8-3A9+ 
5A10-6A1’ +4h”-AI3  ( A m a x =  1.732), respectively.) 

The regular language complexity E for sets generated by 
cellular automaton evolution almost always seems to be non- 
decreasing with time. Increasing E signals increasing self- 
organization. f may thus represent a fundamental property of 
self-organizing systems, complementary to entropy. It may, in 
principle, be extracted from experimental data. 

Cellular automata that exhibit only class 1 and 2 behaviour 
always appear to yields sets that correspond to regular languages 
in the large time limit. Class 3 and 4 behaviour typically gives 
rise, however, to a rapid increase of E with time, presumably 
leading to limiting sets not described by regular languages. 

Formal languages are recognized or generated by idealized 
computers with a ‘central processing unit’ containing a fixed 
finite number of internal states, together with a ‘memory’. Four 
types of formal languages are conventionally identified, corre- 
sponding to four types of computer: 
0 Regular languages: no memory required. 
0 Context-free languages: memory arranged as a last-in, first- 

0 Context-sensitive languages: memory as large as input word 

0 Unrestricted languages: arbitrarily large memory required 

Examples are known of cellular automata whose limiting sets 
correspond to all four types of language (L. Hurd, in prepar- 
ation). Arguments can be given that the limit sets for class 3 
cellular automata typically form context-sensitive languages, 
while those for class 4 cellular automata correspond to unrestric- 
ted languages. (Note that while a minimal specification for any 
regular language may always be found, there is no finite pro- 
cedure to obtain a minimal form for more complicated formal 
languages: no generalization of the regular language complexity 
E may thus be given.) 

out stack. 

required. 

(general Turing machine). 

Computation theory 
While dynamical systems theory concepts suffice to define class 
I ,  2 and 3 cellular automata, computation theory is apparently 
required for class 4 cellular automata. Examples of the evolution 
of a typical class 4 cellular automaton are shown in Fig. 5. 
Varied and complicated behaviour, involving many different 
time scales is evident. Persistent structures are often generated : 
the smallest few are illustrated in Fig. 6, and are seen to allow 
both storage and transmission of information. It seems that the 
structures supported by this and other class 4 cellular automata 
rule may be combined to implement arbitrary information pro- 
cessing operations. Class 4 cellular automata would then be 
capable of universal computation: with particular initial states, 
their evolution could implement any finite algorithm. (Universal 
computation has been proved for a k = 18, r = 1 rule”, and for 
two-dimensional cellular automata such as the ‘Game of 

.) A few per cent of cellular automaton rules with k > 2 
or r >  I are found to exhibit class 4 behaviour: all these would 
then, in fact, be capable of arbitrarily complicated behaviour. 
This capability precludes a smooth infinite size limit for entropy 
or other quantities: as the size of cellular automaton considered 
increases, more and more complicated phenomena may appear. 

Cellular automaton evolution may be viewed as a computa- 
tion. Effective preidiction of the outcome of cellular automaton 
evolution requires a short-cut that allows a more efficient compu- 
tation than the evolution itself. For class 1 and 2 cellular 
automata, such short cuts are clearly possible: simpie computa- 
tions suffice to predict their complete future. The computational 
capabilities of class 3 and 4 cellular automata may, however, 
be sufficiently great that, in general, they allow no short-cuts. 
The only effective way to determine their evolution from a given 
initial state would then be by explicit observation or simulation: 
no finite formulae for their general behaviour could be given. 
(If  class 4 cellular automata are indeed capable of universal 
computation, then the variety of their possible behaviour would 
preclude general prediction, and make explicit observation or 
simulation necessary.) Their infinite time limiting behaviour 
could then not, in general, be determined by any finite computa- 
tional process, and many of their limiting properties would be 
formally undecidable. Thus, for example, the ‘halting problem’ 
of determining whether a class 4 cellular automaton with a given 
finite initial configuration ever evolves to the null configuration 
would be undecidable. An explicit simulation could determine 

Life’ 22.23 
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only whether halting occurred before some fixed time, and not 
whether it occurred after an arbitrarily long time. 

For class 4 cellular automata, the outcome of evolution from 
almost all initial configurations can probably be determined 
only by explicit simulation, while for class 3 cellular automata 
this is the case for only a small fraction of initial states. Neverthe- 
less, this possibility suggests that the occurrence of particular 
site value sequences in the infinite time limit is in general 
undecidable. The large time limit of the entropy for class 3 and 
4 cellular automata would then, in general, be non-computable: 
bounds on it could be given, but there could be no finite 
procedure to compute it to arbitrary precision. (This would be 
the case if the limit sets for class 3 and 4 cellular automata 
formed at least context-sensitive languages.) 

While the occurrence of a particular length n site value 
sequence in the infinite time limit may be undecidable, its 
occurrence after any finite time t can, in principle, be determined 
by considering all length no = n +2rt  initial sequences that could 
evolve to it. For increasing n or t this procedure would, neverthe- 
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less, involve exponentially-growing computational resources, so 
that it would rapidly become computationally intractable. It 
seems likely that the identification of possible sequences gener- 
ated by class 3 and 4 cellular automata is, in general, an NP- 
complete problem (see ref. 15). It can, therefore, presumably 
not be solved in any time polynomial in n or f, and essentially 
requires explicit simulation of all possibilities. 

Undecidability and intractability are common in problems of 
mathematics and computation. They may well afflict all but the 
simplest cellular automata. One may speculate that they are 
widespread in natural systems, perhaps occumng almost 
whenever nonlinearity is present. No simple formulae for the 
behaviour of many natural systems could then be given; the 
consequences of their evolution could be found effectively only 
by direct simulation or observation. 
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COMPUTER 
SIMULATIONS I Catastrophes and Self-organized I Criticality 

Per Bak 

atastrophes are usually thought of as exceptional 
events in otherwise well-behaved dynamical sys- 
tems. The traditional view of the cause of a 

catastrophe is that a single external, cataclysmic force 
acting throughout the system is responsible, e.g., the fall of 
a meteor or a volcanic eruption leading to the extinction of 
dinosaurs, an unstable fault system causing large earth- 
quakes, and program trading leading to a collapse of the 
stock market. However, for specific events, such as the 
1930s Depression, it is often difficult to identify exogenous 
forces that affect many parts of the system in a similar 
manner. 

An alternative view, developed by Bak, Tang, and 
Wiesenfeld, is that large complex systems naturally 
evolve to a state where events of all sizes and all durations 
occur. The prototypical example is a sandpile, built by 
slowly dropping sand on a large surface with open edges. 
The sandpile will grow to a statistically stationary state 
where the amount of grains added is balanced by the 
amount of sand falling off the edge. This stationary state is 
an attractor for the dynamics. This attractor is very 
different from the attractor characterizing low-dimension- 
a1 chaotic systems because the number of degrees of 
freedom is proportional to the size of the system. Dhar has 
calculated analytically the number of different configura- 
tions and the entropy belonging to the a t t r a ~ t o r . ~  Michael 
Creutz has recently described numerical simulations of 
cellular automata sandpile  model^.^ 

The response to the dropping of a single grain of sand 
can be thought of as a critical chain reaction. At each step 
the probability that the activity will branch is exactly 
compensated by the probability that the activity will die. 
For sandpiles shaped so that their slope is less than the 
critical value, the processes will be subcritical; for steeper 
piles the process will be supercritical, i.e., the addition of a 
single grain could lead to global collapse. The critical state 
is self-organized in the sense that no external tuning is 
needed to carry the system to this state. In contrast, the 
concentration of fissionable material has to be carefully 
controlled for a nuclear chain reaction to be exactly 
critical. 

In a self-organized critical state, the number of large 
events is related to the number of small events by a scaling 
law. The distribution function for events of size s, e.g., s 
grains falling, scales as N ( s )  -s-  ’. If the exponent b were 
unity, there would be one large event of size 1000 for every 
lo00 events of size 1. This behavior is in contrast to the re- 
sult of combining a large number of independently acting 

Per Bak is a senior scientist at Brookhaven National Laboratory, 
Department of Physics, Upton, N Y  11973. 

random events. In this case the distribution of the sum is 
Gaussian, i.e., N(s)-exp[ - (S/S~)~], where there is a 
typical scale so, and the number of large events drops off 
exponentially. That is, in the latter case there would be no 
large events, whereas for a power law distribution there 
are events of all sizes. 

Models of self-organized criticality are perfect for 
computation on parallel computers, because they consist 
of many local degrees of freedom such as the height of the 
sandpile at each point of a regular periodic lattice. If one 
was making a connection to real sandpiles then the 
“height” in the model would correspond to the local slope 

FIG. 1. Sandpiles with grains added along the top row. The colors 
indicate different slopes; pink squares represent the steepest parts of the 
pile; black regions indicate flat regions. The simulation was done on a 
Connection Machine at Boston University by Eric Myers, but similar 
simulations can also be done on a personal computer. Such models can 
also be simulated very efficiently on personal computers with commer- 
cially available cellular automata model (CAM) boards. 

in the actual sandpile. The height at each point is updated 
simultaneously and hence can be updated in parallel. 
Figure 1 shows a configuration of a sandpile model 
computed on a Connection Machine. In this model the 
sand is added uniformly along one closed edge. Then each 
point is tested to determine if its height is greater than or 
equal to a threshold value equal to 4. If it is, then the point 
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has its height reduced by 4 (for a square lattice) and the 
heights of its four neighbors are increased by 1. The lattice 
is rechecked again and again until there are no points with 
heights exceeding the th re~ho ld .~  

Earthquakes. How do these considerations apply to 
earthquakes? Indeed, a scaling law, the Gutenberg- 
Richter law, has been empirically observed for earth- 
quakes. The number of earthquakes with energy release E 
obeys the power law, N ( E )  - E - ’, where b is about 0.5. 
The magnitude of earthquakes on the Richter scale is 
roughly equal to the logarithm of the energy released. 
Since we cannot make a realistic model of California, we 
must resort to the study of a simplified “toy” model. Of 
course, we would then have to argue that the behavior that 
we find is robust with respect to any modification of the 
model. 

We describe the crust of the earth as a periodic lattice 
with blocks on each site, connected by springs5 The 
blocks are subjected to static and dynamic friction. The 
blocks are pulled in a unique direction by the force exerted 
on them by the slow tectonic plate motion. Define a real 
variable z (  ij) on a two-dimensional square lattice, where 
z represents the force on the block at position i ,j ,  and let 
z,, be the critical threshold value. The linear dimension of 
the lattice is L, and the number of sites N is given by 
N = L2. As an example, we choose N = 100 and z,, = 4. 
The initial state of the lattice at time t = 0 is found by as- 
signing small random values to z ( i , j ) .  The lattice is 
updated according to the following rules. 

( 1 ) Increase z everywhere by a small amount p ,  e.g., 
choose p = O.oooO1, and increase t by unity. This step 
represents the increase of the force from tectonic plate 
motion. 

( 2 )  Check if z ( i j )  exceeds the critical value z,, 
anywhere on the lattice. If not, the system is stable since 
there is no activity anywhere and go to step 1. If yes, go to 
step 3. 

( 3 )  The release of force due to slippage of a block is 
represented by letting z+z - z,, at the appropriate 
position(s). The transfer of force is simulated by letting 
z - z + 1 at the four nearest neighbors. Periodic boundary 
conditions are not used so a site has only three neighbors 
at an edge and two neighbors at the corners. Go to step 1. 

In the beginning the blocks are at rest. After a while 
there will be small earthquakes. Later still the earthquakes 
become bigger, and eventually the system comes to a 
statistically stationary state, where the average value of 
the force z stops growing. We monitor the distribution of 
the sizes, where s is the total number of sliding blocks fol- 
lowing an initial triggering instability. Figure 2 shows the 
temporal activity in the critical state. Note that there are 
events of a great variety of sizes. Figure 3 shows the 
distribution of earthquake sizes on a log-log plot. The 
straight line behavior indicates a Gutenberg-Richter-type 
power law with a value of b equal to 1.4. Note that the dy- 
namics is deterministic and that once the initial values of z 
are specified, the time and size of the earthquakes in the 

3 0  

FIG. 2. Evolution of earthquakes at the self-organized critical state. 

future is given. All information is contained in the initial 
configuration and the rules. 

The scaling behavior for earthquake sizes indicates 
that there is nothing special about large events-they are 
simply large versions of small events. The only reason that 
we find earthquakes of magnitude 8 interesting is that they 
occur only a few times in a human lifetime and thus 
appear on the front page of newspapers. If a human 
lifetime were 10,000 years, nothing less than an earth- 
quake of magnitude 10 would excite us. 

Neither of these time scales are comparable with the 
geological time scale for plate tectonic motion. If we are 
interested in predicting the probability of very large 
earthquakes, where the statistics by definition are poor 
(large statistical fluctuations for large events are observed 
in the simulations), we could obtain good statistics for the 
more probable smaller events and then use the observed 
scaling behavior to find the probability for larger events. 

The simulation of the Gutenberg-Richter law is the 
most spectacular success of the concept of self-organized 
criticality. However, toy models of many other natural 
phenomena characterized by large scale structures have 
been studied. We urge the reader to study one or more of 
these models. 

The Game of Life. The “Game of Life” was conceived 
by the mathematician John H. Conway in an attempt to 
understand the emergence of organized structures in 
ecological systems.’ Define an integer variable z (  i , j )  on a 
two-dimensional square lattice; z can assume the values 1 
(presence of life) or 0 (absence of life). For each site ij de- 
termine n, the number of live sites of its four nearest plus 
its four next-nearest neighbors. Update all sites simulta- 
neously according to the rules: ( 1 ) if n < 2 or n > 3, then 
z-0 (death because of loneliness or overcrowding); ( 2 )  if 
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COMPUTER SIMULATIONS 

n = 2, then there is no change. ( 3 )  if n = 3, then z-+ 1 
(birth, if there were no life before). ( A  live site remains 
alive only if n = 2 or 3.) 

Chen, Bak, and Creutz* have simulated this model as 
follows. Start from a random configuration and continue 
until the system comes to rest at a state with only static or 
simple local periodic activity (births or deaths). Then 
perturb the system by adding at random a live individual. 
This addition is analogous to adding a grain of sand to the 
sandpile models, or to letting z+z + p  in the earthquake 
model. Each added individual causes a chain reaction. 
Update the system according to rules (1)-(3) until the 
system comes again to a stable configuration. The size of 
the response is the total number of sites that change 
following a single perturbation. Then add another live 
individual and so on. The distribution of responses follows 
a power law with a b-value of 1.4. 

Of course, the Game of Life is not a realistic 
representation of anything. Nevertheless, the results have 
lead to speculations that fluctuations in real ecological 
systems are indeed critical. Kauffman has suggested that 
the extinction of species can be thought of as earthquakes 
in a coevolutionary biological system.’ 

Turbulence. Turbulence in liquids is characterized by 
vortices of all sizes. Mandelbrot has suggested that in 
turbulent systems the dissipation of energy is confined to a 
fractal structure with features of all length scales. This 
behavior can be simulated by a simple forest-fire model. lo 

Distribute randomly a number of trees (green dots) and a 
number of fires (yellow dots) on a two-dimensional 
square lattice. Sites can also be empty. Update the system 
at each time t, as follows: ( 1 ) Grow new trees at time t 
randomly with a small probability p from sites that are 
empty at time t - 1; ( 2 )  trees on fire at time t - 1 die (be- 
come empty sites) and are removed at time t;  ( 3 )  a tree 
that has a fire as a nearest neighbor at t - 1 catches fire at 
time t .  

s 

Periodic boundary conditions are used. After a while 
the system evolves to a critical state with fire fronts of all 
sizes (Fig. 4). The fire indeed propagates by a self- 
organized critical branching process. 

Economics. Conventional economic models assume 
the existence of a strongly stable equilibrium position for 
the economy, where large aggregate fluctuations can 
result only from exogenous shocks that affect simulta- 
neously, in a similar manner, many different sectors of the 
economy. If on the other hand, the economy is a self-orga- 
nized critical system, more-or-less periodic large scale 
fiuctuations are to be expected even in the absence of any 
common shocks across sectors. In collaboration with 
economists Scheinkman and Woodford, Chen and Bak 
have constructed a toy model of interacting economics 
agents. ” We anticipate many other applications of self- 
organized criticality. 

Suggestions for further study 
1. Simulate the two-dimensional sandpile model4 

with a threshold value h, =4. Begin with an L,XL, 
lattice with each site ( i j )  assigned a random integer h ( i j )  
in the interval 0 to 3. (In the literature the variable h is 
loosely referred to as the height or “local slope.”) Add a 
grain of sand to the lattice at a random position (ij), i.e., 
let h (ij) -+ h (ij) + 1. If a site has h greater than 3, then 
this site is unstable and in the language of sandpiles such a 
site “topples.” One updating step consists of determining 
all the unstable sites and then simultaneously reducing all 
unstable sites by 4 and increasing the value of their four 
neighbors by 1. This action on an unstable site is referred 
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FIG. 3. Distribution of earthquake sizes from simulated earthquake catalogues. The data on real earthquakes was collected 
by Arch Johnston and Susan Nava.6 
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FIG. 4. Green trees grow with probability p from empty sites. Trees on 
fire (yellow sites) form fractal frontlike structures. 

to as a “toppling.” Continue this step until no further 
changes are needed. Determine s, the total number of 
topples. Add another grain at random and repeat the 
updating procedure. Use open boundary conditions so 
that a toppling on an edge loses one grain of sand and a 
toppling at a comer loses two. To visualize this process 
represent the heights of the sandpile in different colors. 
When the system has relaxed, h ( i j )  < 4 for all sites and 
there are only four colors for h = 0 to 3. For intermediate 
states h can be as large as 7, since a site can have h = 3 and 
have all four neighbors over the threshold. Compute the 
distribution N ( s )  that the addition of a grain at random 
causes s topples. 

2. A non-trivial one-dimensional sandpile model has 
been formulated by Kadanoff et al.” When a site topples, 
its height is reduced by two, and the height of its right 
nearest and next-nearest neighbors increase by one unit 
each. The boundary conditions are such that grains can 
flow out of the system from the right side only, i.e., there is 
a closed boundary at the left edge and an open boundary at 
the right edge. Simulate this model as in Problem 1 with h, 
= 2 and use different colors to represent different heights. 

3. Write a program to simulate the forest-fire model. 
You will need to specify the four parameters: L, the linear 
dimension of the lattice; p ,  , the initial probability of a site 
having a tree; p,., the initial probability of a site having a 
tree on fire; and p ,  the probability that an empty site will 
grow a tree. Use periodic boundary conditions. Some 
questions to explore include: ( a )  For what values ofp,, pf, 
and p will the forest maintain fires for all time? Note that 
as long as p > 0, new trees will always grow. (b)  What is 
the distribution of the number of sites on fire? Does it de- 
pend on the probability parameters? (c)  What is the 
distribution of the number of trees? Is the distribution 
simply related to the answer to (b)? Be sure to average 
over many updates of the lattice. 

4. Write a program to implement the Game of Life on 
a square lattice and the perturbation procedure discussed 
in the text. Use open (absorbing) boundary conditions. 
Start with a random distribution of live sites and evolve 

the system until it reaches a stable configuration. 
Compute the size distribution N ( s ) ,  where s is defined as 
the total number of births and deaths that follow a single 
perturbation until the lattice settles to a stable state or pe- 
riodic sequence of states. One site might be changed 
several times after a perturbation; each change counts as 
part of the response. The difficult part of the program is 
determining whether a configuration is part of a periodic 
cycle. For small periods the lattice can be stored for a few 
times and then compared to previous configurations to 
check whether the state has repeated itself. Note that it is 
very difficult to check for all types of periodic states but 
that if the system is started from a random distribution of 
live sites, cyclic structures with long periods are very rare. 

Acknowledgments 
Supported by the Division of Materials Science, US. 

Department of Energy under contract DE-ACO2- 
76CH00016. The author would like to thank Harvey 
Gould and Jan Tobochnik for helpful comments. W 

References 
1. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A 38, 364 (1987). 
2. For a popular account of self-organized criticality see P. Bak and K. 

3. D. Dhar, Phys. Rev. Lett. 64, 1613 (1990). 
4. M. Creutz, Comput. Phys. 5, 198 (1991). 
5. P. Bak and C. Tang, J. Geophys. Res. 94, 15635 (1989); P. Bak and 

K. Chen, “Fractal Dynamics of Earthquakes” in Fractals and their 
Application to Geology, edited by P. LaPointe and C. Barton 
(Geological Society of America, Denver, in press). 

6. For an excellent study of earthquake statistics for the New Madrid 
zone, see A. Johnson and S. J. Nava, J. Geophys. Res. B 90, 6737 
(1985). 

7. See M. Gardner in Sci. Am. 223(4), 120 (1970); 223(5), 118 
(1970); 223(6), 114 (1970); 224(1), 108 (1971); 224(2), 112 
(1971); 224(3), 108 (1971); 224(4), 116 (1971); 224(5), 120 
(1971); 226(1), 107 (1971); 233(6), 119 (1975). 

Chen, Sci. Am 246(1) ,  46 (1991). 

8. P. Bak, K. Chen, and M. Creutz, Nature 342, 780 (1989). 
9. S. A. Kauffman and S. Johnson, “Coevolution to the Edge of Chaos: 

Coupled Fitness Landscapes, Poised States, and Coevolutionary 
Avalanches,” J. Theor. Biol. (in press). 

10. P. Bak, K. Chen, and C. Tang, Phys. Lett. A 147, 297 (1990). 
11. P. Bak, K. Chen, J. Scheinkman, and M. Woodford, Santa Fe 

12. L. P. Kadanoff, S. R. Nagel, L. Wu, and S. Zhou, Phys. Rev. A 39, 
Institute Working Papers ( 199 1 ). 

6524 (1990). 

From the editors: Future columns are planned on quasi- 
crystals, classical spin models, and quantum Monte Carlo. 
Please address comments and requests to hgould aclarku 
or jant kzoo.edu. 

COMPUTERS IN PHYSICS, JULIAUG 1991 433 



13.4 Active Walker Models: Growth and Form in Noneauilibriurn Svsterns 207 

ACTlVE=WALKER MODELS: GROWTH AND FORM 
IN NONEQUlLlBRlUM SYSTEMS 

Lui Lam and Rocco Pochy 

lmost all interesting growth phenomena in nature A occur in open systems under nonequilibrium condi- 
tions. Life is a case in point-the human body changes 
continuously with the influx of air and food and never 
reaches an equilibrium state. The continuous expansion or 
shrinkage of a river is another example. On smaller scales, 
numerous examples are found in various physical, 
chemical, and biological systems and include the evolution 
of a cell, the growth of snowflakes, the formation of 
electrodeposit patterns, and the aggregation of colloids, 
soot, and molecules in thin films.’-’ 

Consider the phenomenon of pattern formation. One 
can hardly fail to notice the striking similarity between the 
ramified patterns formed by rivers, trees, leaf veins, and by 
lightning. These branching patterns are different from the 
compact patterns observed in clouds and algae colonies. 
How does nature generate these patterns? Is there a simple 
principle or universal mechanism behind these pattern- 
forming phenomena? 

Among the many growth processes underlying 
pattern formation, there are some exceptional, abnormal 
cases. We have in mind two types of abnormal growth: 
transformational growth, the occurrence of a (usually 
abrupt) qualitative change in behavior during a growth 
process, and irreproducible growth, the occurrence of 
distinctively different and unexpected patterns obtained 
from presumably identical samples. An example of 
transformational growth is the abrupt change in morphol- 
ogy observed in electrodeposit patterns.6 The evolution of 
cancerous cells’ is a well-known example belonging to 
both categories; the transformation of the AIDS virus* 
might be another example. 

The cause for both types of growth is usually 
attributed to an extrinsic mechanism. For transforma- 
tional growth, it is assumed that an external control 
parameter changes during the growth process, e.g., a 
mother’s intake of drugs can cause brain damage to the 
growing fetus. We might blame irreproducible growth on 
unnoticed differences in the preparation of the samples, 
the fluctuation of temperature, or perhaps the carelessness 
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of the student who performs the experiment. Although 
extrinsic mechanisms are responsible in many cases, is it 
possible that some growth patterns are intrinsically 
abnormal? 

The active-walker models’ discussed here serve as a 
starting point for addressing these important questions. 
The fact that many of the growth patterns produced by the 
active-walker models agree well with experiments suggests 
that there is a reasonable basis for these models in spite of 
their simplicity. 

The basic idea of an active-walker model (AWM) is 
simple. A walker walks on a landscape. At each step the 
walker changes the landscape according to a landscaping 

I (a) (b) 

Fig. 1: Two types of isotropic landscaping functions, W, and W,. 

rule; the walker’s next step is determined by the landscape 
near it according to a stepping rule. The landscape is 
represented by a single-valued scalar field, a potential or 
height function V(i ,n)  defined at every site i at time n, 
where n = 0 , 1 , 2  ,... . We let V ( i , n )  = V, ( i , n )  + V , ( i , n ) ,  
where V, is the external background. If the landscape 
changes are due only to the walkers, then the external 
background V,(i ,n)  = P’,)(i) is independent of time. At 
n = 0, a walker is placed on the initial landscape V,( i,O). 
Vl is updated by 

(1)  

where Vl(i,O) = 0, Wis the landscaping function, r, is the 
position of site i, and R( n )  is the position of the walker at 
time n. Two types of isotropic forms of Ware illustrated in 
Fig. 1. 

After the landscape is updated, the walker takes a 
step according to the rule specified by Pi, (n), the 

V,( i ,n  + 1) = V , ( i , n )  + W(r, - R ( n ) ) ,  
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probability for the walker to step from its present site i to a 
sitej. The set of auailable sites for the walker could be cho- 
sen to be the nearest-neighbor sites of R ( n ) .  If self- 
crossing of the walker’s track is forbidden, the available 
sites are restricted to the sites not yet visited by the walker. 
We assume self-crossing of the walker’s track is forbidden 
unless otherwise specified. ( A  slight modification of this 
procedure consists of first allowing the walker to walk and 
then updating the landscape. If self-crossing is forbidden, 
the two procedures are not equivalent.) 

An example of an AWM is the formation of a river, 
with the walker representing the flow of water from the 
melting of ice on a mountain. As the water flows, it erodes 
the landscape; the subsequent flow of the water is 
influenced by the eroded landscape. In this case, we would 
use an anisotropic W function that is more negative in the 
forward direction. The function V, can be used to mimic 
the initial landscape, such as an inclined plane or a valley. 

Three forms of P,, have been ~ t u d i e d : ~ - ’ ~  
0 The deterministic active walk (DAW). Among the 

available sites with potential Vfj,n) less than or equal to 
that at R (  n), the site with the lowest potential is chosen as 
the next position of the walker. 

0 The probabilistic active walk (PAW). This walk is 
specified by 

( 2 )  [ V(i ,n)  - Vf j ,n)]” ,  
0, otherwise. 

if V(i ,n)>Vf j ,n ) ,  P,(n) a [ 
The parameter 7 is to be specified. 

given by 
0 The Boltzmann active walk (BAW). This walk is 

( 3 )  

where the parameter T may be interpreted as the 
“temperature.” 

If all the available sites have the same value of V as 
R ( n ) ,  an available site is chosen at random. In the DAW 
and PAW models, the walk terminates if the potential at 
R ( n )  is a local minimum. In contrast, the walker can go 
uphill and downhill in the BAW model, and if self- 
crossing of the walker’s track is allowed, the walker can 
continue indefinitely. 

The track of the walker forms a filamentary 
pattern.’.‘’ An example of the PAW model is shown in 
Fig. 2. For this model the exponent v defined by the 
asymptotic n dependence of the ensemble averaged end- 
to-end distance R, -ny differs from a random walk 
( Y  = 0.5) and a self-avoiding walk ( v  = 0.75).” The 
exponent v is not universal, but depends on the parameters 
of W.9.’” In this and the following examples, unless 
otherwise specified, all the results are for a square lattice. 

Ants with a scent 
A landscape function such as W, (see Fig. l ) ,  might 
represent the distribution of scent left by an ant that 
continuously emits a scent as it walks. The track of the 
walker represents the path of a single ant. An alternative 
interpretation is important for understanding the behavior 

of an arit swarm, a subject of serious study in the context 
of complex, biological systems.13 If the scent is carried 
instantaneously by the ant, then the walker’s track 
corresponds to a file of ants coming out of an anthill. 
Roughly speaking, the strength of the scent is proportion- 
al to - W,. The dip in W ,  creates a trough on either side 
of the track so that if the track turns around, it tends to 

Fig. 2: An example of a filamentary pattern formed by the track of a 
single walker generated by the PAW model with q = 1. Self-crossing 
of the walker’s track is not allowed. The pattern is for V, = 0 and 
W =  W,, with W,= 15, r, = 10, and r, = 20. 

grow parallel to the previous steps. This effect mimics the 
behavior of ants that chat with their friends while keeping 
the file intact. If the ants wish to avoid each other, we 
could choose W = W,, for which the peak at r, creates a 
barrier. The background landscape V,, can be used to 
mimic many situations. For a flat surface, V, = 0, the ants 
might have a leisurely walk. If V,, represents an inclined 
plane, the ants might be fetching food on the other side. A 
V, with random or regular hills could represent the 
presence of obstacles such as grass. 

Let us return to the single-ant interpretation dis- 
cussed above. One extension of the model is to allow the 
scent template to be a time-dependent function, since we 
would expect that the ant’s scent spreads out in time. Let 
us assume that Wmaintains its form for a finite amount of 
time and introduce two characteristic times, the time lag 
m and the template lifetime T ,  both of which are non-nega- 
tive integers. The time lag m represents the time it takes 
for the scent to be effective. We assume that Wis zero (the 
scent is absent) for n ( m  and n > m + 7 and generalize Eq. 
(1) by 

V,( i ,n  + 1) = V , ( i , n )  + W(r, - R ( n  - m)) 

(4)  

Each W term is zero if the argument of R is negative. 
Equation (4) reduces to Eq. ( 1) when m = 0 and 7 = m .  

- W(r, - R ( n  - m - 7 ) ) .  

Multiwalkers 
The AWM can be generalized to include many walkers. 
For simplicity we assume that each walker has the same W 
function. When multiwalkers coexist, the walkers influ- 
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ence each other through the shared landscape. The 
evolution of their tracks depends on the order in which the 
walkers are updated. 

The track pattern becomes particularly interesting 
when branching is introduced and multiwalkers are 
generated as part of the dynamics. Suppose that the 
walker is at site i and moves to one of the available sitesj. 
Then choose one of the remaining available sites k and de- 
termine the difference [ V( R (  n )  , n )  - V (  k ,n)  1. If this 
difference is greater than y [  V ( R ( n ) , n )  - V f j , n ) ] ,  then 
this site k is occupied by a new walker and branching oc- 
curs. The parameter y is called the branching factor. 
Sequential and random methods of updating the walkers 
(with and without branching) are introduced in Ref. 10. 
In the former, the walkers move one step according to 
their seniority based on age (old walker moves first); in 
the latter they are chosen at random. In both versions, one 
cycle is completed after each walker is chosen. 

The filamentary patterns formed by the AWM are 
similar to the patterns found in many biological, chemical, 
and physical systems, including spirals,’ retinal neur- 
ons,” dielectric breakdown of liquids in a thin cell,’-” 
and the dense radial morphology in electrodeposits” (see 
Figs. 3 and 4) .  In these systems, the filamentary patterns 
are frozen in space once they are formed. For dielectric 
breakdown,’ the walker’s track represents the places c I t 

U 
Fig. 3: A multiwalker (without branching) track spiral pattern from the 
PAW model. The parameters are 7 = 1, m = 1, 7 = CC, V, = 0, and 
W =  W,, with W, = 5, r1 = 4.4, and r, = 11. The ten walkers are 
placed randomly at n = 0, updated sequentially and terminate 
naturally. The cross shows the center of the lattice and has a width of 
r,. Both left- and right-handed spirals may appear (not shown here). 
This pattern resembles the experimental growth of a spiral due to the 
oxidation of CO on a Pt(l10) surface (Ref. 14). Similar spiral patterns 
are found in many other systems (Ref. 15). 

where “burning,” a chemical reaction between the 
electrons and ions liberated by the dielectric breakdown 
process and the conducting materials on the inner surfaces 
of the cell, has occurred. The quantity - V( i ,n )  repre- 
sents the readiness of the surface reaction at site i to occur 
once the material is visited by the walker; the readiness re- 
sults from the combined effects of the amount of unburnt 
chemicals and heat. Similar interpretations can be made 

Fig. 4: A multiwalker track pattern from the probabilistic active walker 
model. The parameters are 7 = 1, m = 0, 7 = m ,  y = 0,99999, and 
W =  W,, with W,=5, r, = 12, and r2= 15. The height of the 
coneshaped V, is - 500 at (O,O), the center of the 100 x 100 lattice, 
and is zero when it intersects the boundary of the lattice. The circle 
has diameter 100. At n = 0, four walkers are placed at (0, 2) and 
( f 2,O). The seniority of the four initial walkers is in the clockwise di- 
rection starting from the west. The multiwalkers are updated 
sequentially. This pattern resembles the experimental electrodeposit 
pattern of Zn aggregates (Ref. 16). Dense radial morphology has 
been observed in various systems (Ref. 17). 

for the surface reaction of CO on Pt,14 where the diffusion 
of CO replaces the motion of the electrons and ions, and 
for the formation of retinal neurons (see Fig. 1 of Ref. 1 1 ) . 
These processes can be described” by two coupled 
partial-differential equations such as in diffusion-reaction 
processes found in combustion and thus can be studied 
theoretically. 

If the word is readiness is replaced by excitability, the 
system can be interpreted as an excitable medium.’’ The 
motion of the walker favoring lower-potential sites (as in 
the DAW and PAW models) can be interpreted as the 
evolution of a species, if the potential ~ V is understood 
as the fitness landscape; multiwalkers correspond to the 
case of adaptive coevolution.” Equivalently, the land- 
scape may be interpreted as the set of allowable 
configurations in various optimization problems consid- 
ered in computer science and in a spin glass. 

A moving worm 
Consider a single walker without branching and suppose 
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that at time n, only the latest N sites in the walker's track 
are retained as visited sites. As depicted in Fig. 5, the time 
evolution of the track can be interpreted as a moving 
worm of length N .  The different parts of the worm can in- 
fluence each other and the environment, tunable by the W 
function. The influence of obstacles can be described by a 
nonzero V,. If r = N, the worm moves in a tube of the 
same length in a way similar to that found in polymer rep- 
tation.21322 The length of the tube can be longer than the 
polymer by varying m and r.  The application of the AWM 
for studying polymer dynamics remains to be explored. 
This type of multiwalker model might also be used to 
simulate a can of worms. 

Abnormal growth 
The patterns generated by the AWM shown in Figs. 2-5 
are filamentary. We now describe a way of generating 
compact patterns. Begin with the central site occupied by 
a seed (an active walker). The walker changes the local 
landscape according to Eq. ( 1 ) and is frozen. One of the 
perimeter sites is then chosen and occupied by a new 
walker. The probability that perimeter s i te j  is chosen is 
given by 

(5)  

If there is more than one occupied site adjacent toj, then i 
is the position of the nearest-neighbor-occupied site that 
maximizes the difference V(i ,n)  - V(i,n). The newly 
added walker changes the local landscape as before and 
the process is repeated until the aggregate of occupied sites 
touches the boundary of the lattice. We call this model the 
boundary PAW. In this description of the model, the 
active walker does not walk, but we can equally interpret 
the model as follows. Almost every walker at the edge of 
the aggregate has a chance of being chosen, but only one is 
allowed to walk one step with the PAW stepping rule. See 
Ref. 23 for a comparison between this model and the 
dielectric breakdown 

The consequences of the boundary PAW are dramat- 
ic. By varying the parameters of W, we can obtain patterns 
ranging from compact to filamentary, with the Eden-like 
pattern and semicompact patterns in between (see Fig. 6 ) .  
In some cases, there is a morphological change in the 
growth pattern (see Fig. 7) ,  and we say that there is 

[ V(i ,n)  - V(i ,n)In,  if V(i,n) > V(i,n), +[ 0, otherwise. 

Fig. 5: A moving worm generated by the PAW. The parameters are 
q=1,  m = 0 ,  T = O O ,  Vo=O, W=W, ,  with W0=15, r , = 4 ,  and 
r, = 20, and N = 25. The worm is in black and the previous track is in 
gray. The worm is not allowed to cross itself, but is allowed to cross 
its previous tracks. (a) Time n = 25; the worm just climbs out of the 
hole at the center; (b) n = 100; (c) n = 150. 

intrinsic transformational growth. Some of these patterns 
closely resemble those observed in electrodeposits [see 
Fig. 9 (b )  of Ref. 61. For 7 < 5 and 7 > 6, we always obtain 
a statistically similar pattern for different runs. However 
in the range 5 ( ~ < 6 ,  the outcome of different runs may be 
one of two different types, i.e., the growth pattern is 
intrinsically irreproducible (see Fig. 6).  (To our knowl- 
edge, patterns from any other model are always statistical- 
ly reproducible. ) 

This behavior is represented schematically in Fig. 8. 
Within the sensitive zone (77 -5 .5 ) ,  the growth pattern 
depends sensitively on the random number sequence' 
generated in each run, i.e., the order in which the 
perimeter sites are occupied. Of course, this kind of 
behavior is possible because there is randomness built into 
the model. But stochasticity always is present in an open 
system, due to interactions with the environment. If we in- 
terpret the needles in Fig. 6 with 7 > 6 as a normal, benign 
growth and the more compact ones with 7 < 5  as a 
dangerous, cancerous growth, then we see that a normal 
cell can become cancerous if 7 is shifted to low values and 
can be intrinsically cancerous if 17 is in the sensitive zone. 

Rough surfaces 
The landscape'%l2 in the AWM forms a rough surface25 
resulting from the landscaping action of the walker. 
Examples of one-dimensional landscapes are shown in 
Figs. 9(a)  and 9(b).  Due to space limitations, we only 
give some highlights here. 

0 Grooved surfaces, similar to those observed in Si 
films grown by MBE,26 are formed using the PAW" and 
BAW2' models (see Fig. 9) .  These grooved surfaces result 
from the trapping of the walker that keeps digging on the 
landscape when W, < 2. 

For these grooved states, when W, < 2 the surface 
width (T does not appear to saturate. The width (T is 
defined as the rms height averaged over many runs,25 and 
o-nB.  The exponent p = l.lflsll 

0 For the BAW, the average height remains constant 
or changes with constant speed according to whether 
W, = 2 or W0#2, respectively. The roughness exponents 
a and B can be tuned by W, and T; they behave differently 
from the exponents found in other models.25 (Here a is 
defined by o-La, where L is the lattice size.) For 
example, for W,, = 2, u(L,n)  - F T Y ~ ( ~ / F ' ~ ' ~  ), indepen- 
dent of L, where y is a constant.12 This scaling expression 
has the same form as found for a flux line in the 
superconducting sandpile,28 a system similar to the 
sandpile model of self-organized criticality (SOC)  .29 This 
coincidence between the BAW and the flux-line motion 
may be more than accidental; both are thermally activated 
with a nonconstant activation energy." (See Ref. 9 for an 
interpretation of the SOC sandpile as an AWM.) 

0 The AWM is capable of generating two-dimension- 
al rough surfaces," which resemble sand-blasted brass 
surfaces produced in the laboratory [see Fig. 7.2(a) of 
Ref. 301. 

0 We also note that for the BAW, a first-order 
transition between grooved surfaces and fractal surfaces 
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Fig. 6: Patterns generated by the boundary PAW model. W =  W,, with W, = 20, r1 = 4, and r, = 20. (a) 7 = 0; (b) 7 = 2; (c) 7 = 4; (d), (e) 7 = 5; 
(f), (9) 7 = 6; (h)  7 = 7-9. The square represents the boundary of the 64x64  lattice. 

(as W,, is varied) is found'' and a reentrant soliton exists 
at T =  0.I2 

We hope that our discussion of AWMs convinces you 
that they are capable of generating, in a simple and unified 
way, many types of growth patterns that are observed in 
nonequilibrium systems. AWMs also provide an intrinsic 
mechanism for explaining both irreproducible and trans- 
formational growth. Much work remains to be done 
including investigating different landscaping functions 
and stepping rules to determine what other patterns can be 

found, studying the models analytically, and relating the 
functions and parameters in the active walker models to 
the relevant physical quantities and parameters of real 
systems. 

Chaos3' and SOCZ9 are two important paradigms 
that have been discovered recently. These paradigms have 
provided unexpected, intrinsic mechanisms for explaining 
phenomena that were thought to have extrinsic origins. 
The existence of chaos reminds us that some apparently 
random behavior can be explained by deterministic 
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nonlinear equations; the signature is strange attractors 
and sensitive dependence on initial conditions. The 
existence of SOC suggests that some complex, dissipative 
systems can adjust by themselves towards a critical state; 
the signature is power laws in space and time. The 
intrinsic abnormal growth exemplified by AWMs points 
to a new paradigm-the sensitive dependence of growth 
and form on noise; the signature is sensitive zones and per- 
haps something else still to be discovered. 

Suggestions for further study 
Active-walker models have been proposed only recently, 
and hence almost anything you study will be new. The fol- 

lowing suggestions may be considered as possible research 
projects. Please communicate your results to us. 

1. Write a program for the probabilistic active walk 
with a single walker and reproduce the results shown in 
Fig. 2. Vary the parameters and the W function to see 
what patterns can be produced. From the statistics of the 
tracks calculate, e.g., R, as a function of n, and N,,, the 
number of filaments with length greater than or equal to n. 
(See Refs. 9 and 10 for details.) 

2. Start from some experimental patterns, e.g., the set 
of electrode posit patterns in Ref. 32, and construct a 
model that produces similar patterns. You might wish to 
begin with the model summarized in the caption of Fig. 
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Fig. 7: Time evolution of transformational growth from the boundary 
PAW model. Color code: red, blue, ..., green, black, as time increases. 
(a) Same as Fig. 6(b); the pattern grows from a compact core to fila- 
mentary at the rim. (b) Same as Fig. 6(d); the pattern grows from a 
needle to a radially filamentary pattern. 

t 

10(d) of Ref. 10, which is similar to that in Fig. 4 except 
that the V, cone has a height of 600 at the center, y = 0.8, 
and W =  W, ( W , =  E = 5 ,  r ,  = r, = 10, and r3 = 15). 
See if you can tune only one parameter to generate the en- 
tire set of observed patterns. If this approach does not 
work, try a slightly different W function. 

3. The moving worm is fun to watch on the computer 
screen. Write a program for the probabilistic active- 

2 

n 
1 

0 1 2 3 4 5 6 7 8 9  
rl 

Fig. 8: Schematic representation of the outcome from 20 runs 
corresponding to the case of Fig. 6. The size of the dot represents 
the percentage of the outcome. The largest dot corresponds to 
loo%, the medium-size dot about 70%, and the smallest dot about 
30%. The sensitive zone is between the two broken lines. D is the 
box dimension and is taken to be the best linear fit in the log-log plot 
of the number of covering boxes versus the box size, even in the 
presence of a crossover due to morphological change. Although the 
box dimension is not a good quantity to characterize a pattern with 
morphological change, it is nevertheless used here, in lieu of a better 
choice, to produce a concise and quantitative summary of the 
results. 
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multiwalker model using the parameters given in Fig. 5 
and see how a can of worms will coexist. In two 
dimensions, some worms will go into a temporary sleep or 
die, but this state will be rare in three dimensions. You can 
confine the worms by letting the worms rebound from the 
boundary of the lattice. Read Refs. 21 and 22 to learn 
what quantities you need to calculate to compare your 
results with experiments in polymer dynamics and the 
predictions of de Gennes’s reptation model.2’ 

4. Plot the landscape found in the above problems 
and study its time evolution. Calculate the surface width CT 
as a function of the time n and the system size L and esti- 
mate the exponents a and f i  if power law behavior 
exists.25 

5. Write a program for the boundary PAW model for 
two or three dimensions. Repeat the results shown in Fig. 
6, and then use your imagination to invent your own 
model by changing the site-selection rule. 
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Fig. 9: Grooved surfaces. In (a) and (b), m = 0, T = CC, V, = 0, and 
W =  W,, with W, = 1, r ,  = 1, and r, = 2. Self-crossing is allowed. 
The initial one-dimensional surface is a flat line of length 100; 
periodic boundary conditions are used. (a) Simulation from the PAW 
model (Ref. 10) with 7 = 1. Multiwalkers are dropped sequentially; a 
new one is added randomly after the previous one terminates 
naturally and is removed. (b) A pattern from the BAW model (Ref. 27) 
with T =  1000. A single walker walks forever in this case. 
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Active walk is a paradigm for pattern formation and self-organization in complex 
systems. An active walker changes the landscape as it walks, and is influenced by the 
changed landscape in choosing its next step. Active walk models have been applied 
successfully to various biological and physical systems, including the formation of 
filamentary patterns in retinal neurons and surface reaction patterns in thin cells of 
liquids, anomalous ion transport in glasses, and food collection by ant swarms. In this 
paper, the basic ideas and important applications of active walks are summarized, with 
new applications in urban growth and path dependent phenomena suggested. In 
particular, the use of actme walk in describing increasing returns in economics is 
demonstrated. 

1. Introduction 

In the long pursuit of an understanding of the 
universe in which the humankind exists and of the 
human society itself [l], the emphasis has always 
been on the universal aspect of behaviors. As 
pointed out by Schrodinger [2], this fact is evident 
from the observation that university is the very name 
given to our institutions of highest learning. In this 
regard, one may note that the highest degree of 
learning conferred by a university is the Doctor of 
Philosophy (Ph.D.), independent of the specialties 
studied (see Section 1.3.6 of [3]), while philosophy 
is a Greek word meaning the "love of wisdom." 

It is interesting to recall that Aristotle (384-322 
BC), a Greek scholar, did not focus his attention on 
just one or two branches of knowledge but actually 

studied and contributed significantly to biology, 
psychology, physics, and literary theory, as well as 
invented formal logic and pioneered zoology. The 
fragmentation of learning and in the pursuit of 
knowledge into different dwiplmes (such as physics, 
chemistry, economics, etc.) is a rather recent 
phenomenon, occurring only in the last. few 
centuries. 

Recent attempts to recoup the unified approach 
to knowledge, with a view to pravidmg a common 
description of both natural and social systems, 
include the movement of cybernetics or general 
system theory [4] from the 1940s to 196Os, 
Prigogine's dissipative structure [S] and Haken's 
synergetics [6] in the 1970s (see [7] for a review of 
both), and the studies under the banner of complex 
systems since the 1980s [8,9]. 



216 Part I I  Reprints 13 Cellular Automata and Complex Systems 

The two signatures of a successful universal law 
applicable to all complex systems, in our opinion, 
should be: (i) The law should be simple enough to be 
stated in one or two reasonably short sentences. (ii) 
The law should conform to our daily experience. The 
former follows from the wide applicability of the 
law. The latter is due to the fact that each one of us 
humans is a complex system by herself or hmself. 
(As an example, these two requirements are easily 
satisfied by the second law of thermodynamics 
which states that “heat cannot flow on its own from 
cold to hot bdes .” )  

In principle, such a universal law for complex 
systems, if exists, could be (i) on the 
phenomenological level, extracted from the 
observation of the behavior of many complex 
systems. Or, the law could be (ii) on the 
organizational level, obtained by looking into the 
mechanism with which the complex systems self- 
organize themselves. The theory of self-organized 
criticality [lo] and the principle of active walks [ 1 11 
are two important results that came out by following 
the second approach. They seem to apply to many 
complex systems. Moreover, they do possess the two 
signatures required for any universal law of complex 
systems. In the rest of ths paper, only the principle 
of actwe walks will be discussed. 

2. Active Walks 

The use of a walker in modeling physical and other 
phenomena runs a long history. The most well 
known is a random walker, which has been used in 
mimicking the motion of a completely drunk person, 
the Brownian motion of a particle suspended in a 
liquid, or the fluctuations in a financial market. A 
random walker does not change anything in its 
environment and is what we call a passive walker. In 
contrast, an active walker is one who changes the 
landscape during its motion and is influenced by the 
changed landscape in choosing its next step [ 12,131. 

The description of an active walk (AW) thus 
involves two interacting components, viz., the 
location of the walker R(t) at time t and the 
deformable landscape V(r,t), a scalar potential, 
where r is the spatial coordinate. (The landscape can 
be a vector potential in other cases [14].) The 

dynamics of an active walk are determined by three 
constituent rules: (i) the landscaping rule, which 
specifies how the walker changes the landscape as it 
walks; (ii) the stepping rule, which tells how the 
walker chooses its next step; and (iii) the landscape’s 
self-evolving rule, whlch specifies any change of the 
landscape due to factors unrelated to the walker, 
such as diffision and external mfluences. The details 
of these three constituent rules should depend on the 
system under study 

The track of the active walker forms a 
filamentary pattern. The landscape becomes a rough 
surface with scaling properties. Several active 
walkers may coexist; they interact indu-ectly with 
each other through the shared landscape. Branchmg, 
the process giving rise to the birth of new walkers, 
can be incorporated. (See [ 14,151 for reviews.) 

The modification of the landscape due to the 
active walker at every time step could have a finite 
lifetime z. For z equals to one time step, the 
landscape modification is carried along by the walker 
(such is the case of the gravitaonal potential carried 
by a mass when the mass is considered as an active 
walker). For z greater than one time step, the future 
steps of the walker are influenced by the walker’s 
past locations; the system becomes a path (or 
history) dependent system. Many natural systems 
and almost all social systems (e.g., a person’s career 
path [16]) are path dependent. It is then not 
surprising that all the previous applications of AW 
[ l S ]  and the cases discussed in h s  paper, are path 
dependent sys tern. 

Examples of AW systems with physical 
landscapes include a woman walking on a sand 
dune, percolation in soft materials, chemotaxis of 
ants [ 13,17,18], and movement of bacteria [ 19,201 or 
fish. In particular, we will like to mention three 
successfully worked-out examples: the filamentary 
patterns in dielectric-breakdown induced surface 
reactions and retinal neurons (see Fig. 5.4 of [21], 
and [22]), the mixed alkali effect in glasses [ 14,231, 
and food collection by ants [18]. All these cases 
show good agreement between simulations and 
experiments. 

In other cases, the landscapes are purely 
mathematical artifacts. For example, urban growth 
can be modeled by the aggregation of active walkers. 
Initially, a “value” can be assigned to every piece of 
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u) 
u) 
a, 
5 
rF 

la"; lot 

Fig. 1 .  The value landscape in an urban growth model. 
Once a house, represented by the black dot, is added to a 
land lot. the value nearby is altered, as indicated by the 
broken line. 

vacant land lot accordmg to its location (Fig. 1). For 
example, a lot on the flatland will have a higher value 
than one located on the hills; a river nearby can 
increase the value of the lot. The value could be 
taken to be the probability that the lot will be 
developed, by having a house or factory built on it. 
Once this happens, the value of the lands nearby will 
be increased and a new house will be added 
somewhere. The process is repeated. In ths scheme, 
the house acts like an active walker, except that it 
does not actually walk. Such a model is more 
realistic and flexible than the correlated percolation 
model used by Makse et al[24]. (See also [25].) 

Another example is the fitness landscape 
employed in evolution biology [26]. Every species is 
in coevolution with other species. The presence of 
species A (Fig. 2a) affects the fitness landscape of 
species B (Fig. 2b), whch in turn changes the fitness 
landscape of A (Fig. 2c); the changed landscape of A 
then determines how A will move. Now if we want 
to describe this evolution process by a simple model 
involving A alone, we will go directly from Fig. 2a to 
Fig. 2c with Fig. 2b hidden. It then seems that A 
deforms its own fitness landscape at every step of its 
movement, i.e., A acts like an active walker. The 
thrd example concerns the phenomenon of 
increasing returns in economics [27] and is discussed 
in Section 3. 

It turns out that chance (or noise or contingency) 
plays a more important role in AW models than in 
other probabilistic models (such as the ddlksion- 
limited aggregation model). Repeated runs of the 

same computer algorithm for a probabilistic AW 
growth model, corresponding to the same set of 
model parameters but dlfferent sequences of random 
numbers, may give same or different morphological 
growth patterns, dependmg on where the system sits 
in the parameter space [13,28]. if our real world is 
believed to be such an AW system, then when "the 
life's tape is replayed," we may or may not recover a 
similar (but never identical) history of life (see 
Chapter 7 of [21]). a s  observation differs from that 
of Gould [29] who argues that contingency is so 
crucial that history would always be very different if 
life's tape was ever replayed. (See also [ 101.) 

A 

L B 

Ic A 

c 

Fig. 2. Sketch of coevolution of two species A and B (see 
text). 
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3. Increasing Returns in Economics 

Increasmg returns refer to self-reinforcing 
mechanisms in the economy, whereby chance events 
can tilt the competitive balance of technological 
products [30]. Th~s phenomenon can be modeled 
[31] by the motion of an active walker jumping 
among the sites on a fitness landscape of the product 
types (Fig. 3). The visit of the walker at a site 
represents that the product there is chosen by the 
customer, and so the local fitness is increased, as 
represented by the broken line in Fig. 3.  

Specifically, consider the simple case of two 
products A and B (e.g., the VHS and Beta versions 
of videotapes) so that there are only two sites on the 
landscape. Let the fitness of A be u(t), and that of B 
be v(t), where t is (discrete) time. At each time step, 
the probability that site A (B) will be occupied by the 
walker, the black dot in Fig. 3 ,  is proportional to f(u) 
[f(v)]. After one of the sites is chosen, the fitness of 
the chosen site is increased by an amount a and the 
other site has its fitness decreased by b. The process 
is repeated. 

Numencd results of a special case is shown in 
Fig. 4, where a = 0.1, b = 0, u(0) = v(0) = 0; f(u) = 

exp(pu); d = (u - v)/max (u,v>, where u and v are 
the time averages of u(t) and v(t), respectively, and 
t,,, = lo4, where tm is maximum of t used in the 
calculation. Here p can be interpreted as an inverse 
temperature. For p = 0, the “noise” level is high, the 
consumer is completely ignorant of the fitness of the 
products and chooses the product randomly. Each 
product has 50 YO share of the market on the average, 
with fluctuaoons, and hence d = 0. The opposite 
case of f3 being mfinity corresponds to a perfectly 

I I I 

A B pro7uct type 
Fig. 3. The AW description of competition between 
Werent products (see text). 
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Fig. 4. Variation of d, normalized time-averaged fitness 
dtfference between two products, versus p, the inverse 
temperature, in an AW model of increasing returns. For 
each p, the results from several runs of the algorithm are 
shown. 

informed and rational consumer who always chooses 
the product with the hgher fitness. Dependmg on 
which product is first chosen by accident, ths  
product will go on be bought by every subsequent 
consumer, resultmg in a complete domination of the 
market and hence d = 1 or -1 (the former 
corresponds to product A wins out, the latter product 
B). For p between zero and infinity, we have the 
usual case of a customer who is only partially 
rational or has only partial information about the 
products or both. In the initial stage, the two 
products dominate the market in turns but only 
slightly, until one of them wins out clearly over the 
other. Which product wins out cannot be predicted 
and is determined by chance. (These results are 
comparable to that in [32] concerning information 
contagon, even though the approach there is 
different from ours.) 

Further results from our model are presented in 
Figs. 5-10, which have the same parameters as in 
Fig. 4, unless otherwise specified. Figure 5 shows 
the effect of tm. For larger h, d tends to -1 faster as p 
increases. Thls means that for the same value of p, 
longer computing time will result in smaller value of 
d. %s can be understood in that once one product 
gained sufficient advantage over the other, it will 
more likely to be chosen in following steps and hence 
d tends to -1 (here we show only the case of v 
winning). 
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Fig. 5. Dependence of d on f3 for different maximum times 
t,. t ,  = 10‘ (solid line), 10’ (dash) and lo6 (dash-dot), 
respectively. 

In Fig. 6, we show the dependence of d on the 
random number seed N, (which dictates the 
sequence of random numbers used in the computer 
run). For different N,, the curves are different for 
low p, i.e., for processes that are completely or 
partially random. The higher p, the less random is 
the process and consequently, the less the influence 
of the random number seed. The choice of N, may 
also influence which of the products wins, as 
exemplified by the upper curve in Fig. 6,  where 
product A wins over product B. 

In Figs. 7 and 8 we show plots of the time 
dependence of the fitness functions u(t) and v(t). 
Figure 7 corresponds to p = 0. The choice of the 
customer is completely random and none of the 
products win; each product has a market share of 
50%. In Fig. 8 we show the case of p = 0.1. The 
customer has some information about the products. 
After an initial phase where the two products are 
chosen with equal probability, one product (here v) 
starts to gain some advantage. The partially informed 
customer will now start to prefer that product, and so 
v wins. 

Up to now, the two products have equal start 
chances: u(0) = v(0) = 0. In Figs. 9 and 10 we show 
the case that u has an initial advantage. For p = 0 
(Fig. 9), the choice of the customer is random. After 
some time, the initial advantage of u is washed out 

and both products are chosen with equal probability. 
For p = 0.1 (Fig. lo), the customer has some 
information about the products. The initial advantage 
of u cannot be overcome by v and u clearly wins. 

Analyhc solutions for the model studled in t h s  
section are found by Shu and Lam, and will be 
presented elsewhere 1331. In this paper, we are 
content to show that important problems in social 
systems, such as increasing returns in economics, 
can indeed be modeled by AW. The simple model 
proposed here can obviously be generalized (e.g., to 
more than two products) and made more realistic. 

1 
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P 
Fig. 6. Dependence of d on p for different random number 
seeds N,. N, = 10 (upper solid line), 1 (lower solid), 3 
(dash) and 6 (dash-dot), respectively. Here, t, = lo4. 

--I 

t 

Fig. 7. The fitness u(t) and v(t) as a function of time t. t, = 

lo3; f3 = 0. u(0) = v(0) = 0. Here and in all following 
figures, u(t) is plotted with a solid line, and v(t) with a 
dash line. 
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Fig. 8. Same as Fig. 7, except p = 0.1. 

t 

Fig. 9. The fitness u(t) and v(t) as a function of time t. tm = 
lo4; u(0) = 10 and v(0) = 0. p = 0. 

4. Discussions 

Active walk, as a field of research, is relatively new. 
For example, there is practically no systematic study 
of the statistical properhes of even a single walker, in 
contrast to the case in passive walks such as random 
walk or Levy walk. For a large number of active 
walkers, in the continuum limit and in special cases, 
AW can become a reaction-diffusion system. 

7w - 

800- 

t 

Fig. 10. Same as Fig. 9, except p = 0.1. 

As shown in thls paper, many non-physical 
systems with abstract landscapes can be handled by 
the AW model. Active walk could be understood as 
a general principle of organization in complex 
systems [ 1 11, in the sense that self-similarity, leading 
to fractals, is another such universal principle. In 
essence, AW is a description of nature using a 
potential function, the landscape; it is particularly 
effective in handling path dependent phenomena. It 
remains to be understood why nature seems to prefer 
a potential theory, not just for elementary particles 
but even for complex systems, and whether some 
basic symmetry principles are associated with the 
potential in these cases. 
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The projects presented in Part I11 are the works of students from San Jose State 
University. Here are the stories behind their creations. 

In my teaching of the freshman physics course on mechanics, after finishing the 
chapter on oscillations I would usually show the class the one-hour videotape of 
the Nova program on Chaos, which was followed by one lecture using the logistic 
map as an illustrative example. The idea was to emphasize to the students that 
not every oscillation in the world was small and simple harmonic and, of course, to 
introduce them to something new and exciting that was not yet in their textbooks. 
(That video program was splendidly made, in color, and guaranteed to excite any- 
body from all walks of life. The program included many demonstrations from the 
experts in chaos. For example, near the beginning, the chaos game was demon- 
strated by Michael Barnsley.) On one of these occasions, the day after I showed 
the video, a student in my freshman class, Prasanna Pendse, walked into my office, 
inserted his floppy disk into the obsolete Apple IIe computer belonging to my office- 
mate, and-voila!-the chaos game just jumped out of the screen. Prasanna’s effort, 
as inspired by the Nova progam, was recorded in Section 14.1.1. 

Another pleasant surprise occurred one day, a few years ago. A sophomore, Rolf 
Freimuth, whom I had never met before, walked in and said he wanted to do some 
nonlinear physics with me. As was routine, I asked why and what he had been up to. 
As it turned out, Rolf had seen the Nova program on TV and read James Gleick’s 
book on Chaos. He had written a program describing the chaotic waterwheel and 
its butterfly strange attractor (see Section 14.2.2). He wanted to learn more about 
chaos. Rolf subsequently joined my nonlinear physics group in research and took 
up my two courses in nonlinear physics. By the time he received his B.S. degree, he 
had written six papers with me. 

The rest of the projects collected in Part I11 have their origins in the two 
courses, PHYS 255N-Nonlinear Physics and PHYS 255s-Nonlinear Systems, that 
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I initiated and taught. These two courses were offered in alternate years in the 
fall term. The students were graduate students plus a few senior undergraduates. 
Occasionally, guest speakers came to the class to speak about their own research. 
There were homework assignments, a midterm exam and a final exam. The final 
consisted of a term project by the student, the topic of which was determined during 
the first month of the course. The student could and usually did choose the topic 
by himself or herself, subject to the approval of the instructor. Joint projects by 
two, and in very exceptional cases up to four, students were allowed. The project 
could be computational, theoretical or experimental; it could be a repeat of some 
published work, a review of literature on some special topic or a completely original 
undertaking. Original work was not required but highly encouraged. A written 
progress report was submitted by the student around the middle of the term, which 
sometimes was counted as the midterm exam in lieu of a written test. At the end of 
the term, a final report was demanded, and a one-day workshop open to the public 
was organized in which every student had to orally present his or her work. 

One such project, “Instabilities of Finite Water Columns” (Section 16.1), won the 
Allied-Signal Award of the Society of Physics Students. This project was initiated 
by Mark Fallis, a senior at the time, who discovered the undulatory instability of a 
water column when washing his hands some time back. 

A word should be said about the backgrounds of our graduate students. Since 
our university is located in the heart of the Silicon Valley, many of these students 
hold full-time jobs in the neighborhood industries and have special skills or access to 
equipment which may not be readily available to students in other cities. Nonlinear 
physics offers these students the chance to combine their specialties, whatever that 
may be, with something exciting in the making. The students themselves become, 
in the process of learning, contributors to the development of nonlinear physics. 
Rocco Pochy and Victor Castillo, who wrote a number of the projects included here 
in Part 111, are two such students. 

Apart from Sections 14.1.1 and 14.2.2, the projects presented in Part I11 are 
selected from the homework and term projects of the two courses described above. 
They serve the purposes of (i) showing what the student projects can be in a course 
on nonlinear physics and (ii) supplementing the materials in Parts I and 11, in 
particular, by providing computer programs for calculating some of the quantities 
or simulating some of the models described before. The reader can easily repeat 
or improve on the projects, or use them as the basis in formulating his or her own 
projects . 

In Part I11 the computer languages adopted in the various listed programs range 
from Basic to C; personal computers from Apple I1 to PC are used; printers from 
dot matrix to ink jet to laser are used in the drawings. These choices made by the 
contributors are deliberately kept here, to convey the message that one does not 
need to be rich or have expensive equipments to do nonlinear science. 
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Not included in Part I11 are some more original works which have been published 
as research papers, as listed in Appendix A2. 
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Computational 

14.1 Fractals 

14.1.1 The Chaos Game and Sierpinski Gasket 
Prasanna U. Pendse 

The Sierpinski gasket (SG) is defined as a recursive process which begins by cutting 
away the middle part of an equilateral triangle, followed by an infinte number of 
cutting and removal of smaller triangles (see Chapter 2). To carry out such a process 
is simple in principle but difficult in practice. 

There is another way of generating the SG by using random numbers. Pick any 
three points on the paper and label the first point 1,2;  the second point 3,4; and the 
third point 5,6.  Now pick any point on the paper as the initial point. Next, roll a 
die which has six faces representing the numbers 1 to 6. According to the number 
on the die, construct a point that is the midpoint of the line segment joining the 
initial point and one of three points according to the number of the die. Now treat 
this midpoint as the new initial point and repeat the above process many number 
of times; the resulting figure will be the SG. This process of constructing the SG is 
called the chaos game [l]. 

To carry out the chaos game by hand is a long and tedious process. Programming 
the computer to do the job is much easier. The following is a program in BASIC 
that will run on an Apple I1 computer. 

10 DIM X(6).  Y ( 6 )  

20 XX=150: YY=150 
30 HGR 
40 HCOLOR=3 
50 FOR K = 1 TO 6 
60 READ X ( K ) .  Y(K) 

1 Set up a one-dimensional a r ry  f o r  the  
1 X and Y data points 
1 Randomly se lec ted  i n i t i a l  point 
) High resolution graphics command 
1 Set white color 
) Set up a loop t o  read i n  the  d a t a  values 
) Read i n  t h e  d a t a  values 
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70 NEXT K 
80 FOR I = 1 TO 50000 
90 R = INT(RND(1)*6) + 1 ) Generate a random number from 1 to 6 
100 X X  = (XX+X(R))/2 ) Find x coordinate o f  midpoint 
110 Y Y  = (YY+Y(R))/2 ) Find y coordinate o f  midpoint 
120 HPLOT X X , Y Y  ) Plot the midpoint 
130 NEXT I 
140 DATA 1 4 0 , 5 , 1 4 0 , 5 , 4 0 ~ 1 4 0 ,  ) Data 

) Repeat process 50,000 times 

40,140,240,140,240,140 

If QuickBASIC is used, simply replace line 30 by “30 SCREEN 9”, discard line 
40, and replace line 120 by “120 PSET(X,Y)” . Unfortunately, the computer does 
not allow us to print out the picture. But one can see how it is formed step by step, 
and may use a (Polaroid) camera to take a picture of the screen. Although it may 
seem that generating a number of random points may fill up the whole triangle, it 
does not. It forms a definite shape; after the first few points are excluded, the shape 
is that of the SG. 

The sides of the triangle may in fact be of any length. Upon experimentation 
with 4, 5 or 6 points, it can be concluded that the method works only for 3 points. 

Reference 

1. M. F. Barnsley, “Fractal Modelling of Real World Images,” in The Science of Fractal 
Images, edited by H.-0. Peitgen and D. Saupe (Springer, New York, 1988). 
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14.1.2 Iteration Maps and the Sierpinski Fractals 
Rolf D. Freimuth 

Figures like the Sierpinski gasket, carpet, and tetrahedron can be constructed by 
a computer using an iteration loop which generates a new point from an old one 
repeatedly. After many iterations, a definite pattern will evolve, but even more 
astounding is that such interesting fractal patterns can be generated by a single map. 

The Map 

The iteration map in a two-dimensional space is defined by 

zn+1 = ax, + xi, yn+l = ay, + y,  
which, after one iteration, transforms the point (xn,yn) to (zn+l,yn+l). Here a is 
a constant, and the points Pi z (Xi, y Z ) ,  i = 1,. . . , m, are given constants. Before 
each new point (z,+1,y,+l) is calculated, one of the Pi points is chosen randomly 
by the computer. The randomly selected Pi is then used in the above equations to 
calculate the new point from (xn, y,). The first point (z1,yl)  is selected arbitrarily. 
The resulting pattern, after a large number of iterations (excluding the first few 
points), depends on a and the set of Pi. 

Fig. 1. The Sierpinski gasket. a = 1/2; Pi = (0.3,0.9), (0.2, -0.9), (-0.4,0.6). Here and in the 
following figures, "+" denotes locations of the Pi points. 
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Fig. 2. The Sierpinski carpet. a = 1/3; Pi = (1, l), (-1, l ) ,  (-1, -l), (1, -l), (0, l), (-1,O), 
(0 ,  -I), ( L O ) .  

Fig. 3. The pentagonal fractal. rn = 5, a = 112.7. For the values rn = 5 and a > 112.7 (approx- 
imately), the five clusters of points will overlap. When the clusters overlap they do not interfere 
with each other, but they can make this ordered pattern look like a big mess of dots. For smaller 
values of a ,  the clusters will become distinct and more distant from each other, and the overall 
figure will become smaller. Increasing R can help if one wants to try small values of a .  

When a = l / 2 ,  m = 3, and the three points Pi are not collinear, the Sierpinski 
gasket is obtained (Fig. 1). Note that, in general, the m points Pi are not necessarily 
part of, within, or even near the figure. 

Another fractal that may be generated is the Sierpinski carpet (Fig. 2). For this 
case, let a = 1/3, m = 8. The eight fixed points Pi are the four vertices and the 
four midpoints of the four sides of an arbitrarg square. 
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As well as producing the well-known figures above, the map can also generate 
a wide variety of other self-similar patterns. For example, the Pi points can be 
arranged symmetrically in a circle of radius R. For values of m > 3 and a < 1 / 2  
some interesting patterns can develop. An example of a fractal generated by this 
method is given in Fig. 3.  

Though the previous examples are all symmetric (except the Sierpinski gasket), 
their self-similarity does not depend on their symmetry. Figure 4 shows a slightly 
modified Sierpinski carpet which is not symmetrical but is self-similar. 

Fig. 4. This figure is generated by the program in Appendix B, after the following modifications 
have been typed: 

130 a = 1/4 
170 X(4) = 1.5 : Y(4) 1-1.5 : X(8) = 1 : Y(8) = 0 

The smaller value for a causes the eight clusters to separate so that they do not overlap, and the 
redefinition of X(4), Y(4) has an effect not only on the lower right cluster but on the whole figure. 

The Sierpinski Tetrahedron 

The two-dimensional map can be generalized to three dimensions, 

xn+1 = ax, + xi, Yn+l = ay, + y z ,  z,+1 = az, + zi 

where i = 1,. . . , rn. The Sierpinski tetrahedron (the fractal skewed web) is generated 
using four points in three dimensions (Fig. 5). The values of the set (Xi, y Z ,  Zi) can 
be any four noncoplanar points, but for simplicity we have let them be the vertices 
of a regular tetrahedron (having four equilateral triangular faces), defining three of 
them to be in the xy  plane ( z  = 0), and the fourth to be above them at a height h 
(x = 0 = y).  See Appendix D. 
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Fig. 5. The Sierpinski tetrahedron. a = 1/2, m = 4. 

Discussions 

By using different factors for each coordinate in the maps, e.g., z,+1 = ax, + Xi, 
yn+l = byy, + y Z ,  a # b, self-affine (instead of self-similar) fractals are generated. 
Note that each figure shown here is made up of m smaller copies of the entire figure, 
each of which is scaled down by a factor of a. The maps presented here are special 
cases of some more general iterated function systems [l] in which rotating as well 
as rescaling and translating the “subpatterns)) is involved. 

The programs given in the Appendices are written in QUICK BASIC. 

Appendix A: Program for the Sierpinski Gasket 

100 CLS : SCREEN 2 

120 D I M  X(3) .  Y(3) 
1 3 0 A = 1 / 2  

110 WINDOW (-2, -2) 2 .  2) 

= . 9  
= - . 9  
= .6 

n 

Setup the  
graphics screen 

Dimension the  arrays 
Define a 
Define constants for 

the  S ie rp insk i  
gasket 

A r b i t r a r y  i n i t i a l  p t  

220 NEXT L 
230 END 

’ Choose a random # 
’ Calculate the  new p t  
’ P l o t  t he  new p t  
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Appendix B: Program for the Sierpinski Carpet 

100 CLS : SCREEN 2 

120 D I M  X ( 8 ) .  Y(8)  
130 A =  1 / 3 
140 X ( 1 )  = 1: Y ( 1 )  = 1: X(5) = 0: Y(5)  = 1 ' 

110 WINDOW (-2. - 2 ) - ( 2 .  2) 

150 X(2) = -1: Y(2)  = 1: X(6)  = -1: Y(6)  = 0 ' 
160 X(3) = -1: Y(3)  = -1: X(7)  = 0: Y(7) = -1 ' 
170 X(4)  = 1: Y(4)  = -1: X(8)  = 1: Y(8)  = 0 ' 
180 X = 0 :  Y = 0 
190 FOR L = 1 TO 250!08 + 1) 
200 R = INT(RND 
210 X = A * X + X ( R ) :  Y = A * Y + Y ( R )  
220 PSET ( X .  Y )  
230 NEXT L 
240 END 

Setup the 
graphics screen 

Dimension the arrays 
Define a 
Define constants 

for the 
Sierpinski 
carpet 

Arbitrary in i t ia l  p t  

Choose a random # 
Calculate the new p t  
Plot the new p t  

Appendix C: Program for the Pentagonal Fractal 

100 CLS : SCREEN 2 

120 D I M  X ( 5 ) ,  Y(5) 
130 A = 1 / 2.7 

110 WINDOW (-2, -2)-(2. 2) 

140 X(1) = ,951 :  Y ( 1 )  = .309 
150 X(2) = ,588 :  Y(2) = -.809 
160 X(3) = - . 5 8 8 :  Y (3 )  = - .809  
170 X(4) = - . 9 5 1 :  Y (4 )  = ,309 
180 X(5) = 0: Y(5)  = 1 

' Setup the 
' graphics screen 
' Dimension the arrays 
' Define A 
' These points 
' are the 
' vertecies of 
' symmet ri c 
' pentagon 

190 x = 0 :  Y = 0 ' Arbitrary in i t ia l  p t  
200 FOR L = 1 TO 2 5 0 0 i  

+ 1) 210 I = INT(RND ' Choose random # 
220 X = A * X + X(1):  Y = A * Y + Y(1) ' Calculate the new p t  
230 PSET ( X ,  Y )  ' Plot the p t  
240 NEXT L 
250 END 

Appendix D: Program for the Sierpinski Tetrahedron 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 

CLS : SCREEN 2 

PI=3.14159 
ROT= 5*PI/180 
D I M  X(4) ,Y(4)  , Z ( 4 )  
A=1/2 
FOR 1=1 TO 3 

WINDOW ( - 2 ,  -2) - ( 2 , 2 )  

X ( I ) =  COS(I*PI*2/3 + ROT) 
Y ( I ) =  SIN( I*PI*2/3 + ROT) 
Z ( I ) =  0 

NEXT I 
X(4)= 0 : Y(4)= 0 : Z(4)= SQR(2 ) 
X=O:Y=O:Z=O 
FOR L=l TO 2500 

Setup the graphics 
screen 

Define pi 
Base rotation angle 
Dimension arrays 
Define A 
Calculate the 

three 
base 
points 

Define the "peak" p t  
Arbitrary i n i t i a l  p t  
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240 I=INT(RND*4+1) ' Choose random # 
250 X=A*X+X( I )  : Y=A*Y+Y(I) : Z=A*Z+Z(I) ' C a l c u l a t e  t h e  new p t  
260 PSET ( Y - . 3 * C  .Z - .3 *X-1  ) ' P l o t  t h e  new p t  
270 NEXT L 
280 END 

Reference 

1. Michael Barnsley, Fractals Everywhere (Academic, New York, 1988), Sec. 3.8. 
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14.1.3 Calculating the Box Dimension 

Victor M. Castillo 

To calculate the fractal dimension of an irregular shape, we can use a box counting 
method (see Chapter 2). The program in Appendix C is used to find the box dimen- 
sions of two typical fractals. (The programs listed below are written in Microsoft 
QuickBASIC version 4.5.) 

Fig. 1. The “snowflake” prefractal (n  = 4). 

In the first example, the deterministic “snowflake” prefractal wit,, n = 4 (shown 
as Fig. 1 here) is used as the fractal object. It is generated by inserting the program 
of Appendix A into that in Appendix C, and stored in a 256 x 256 array. The array 
is then divided into a grid of non-overlapping blocks of size E x E .  The program 
then scans to count the number of blocks that cover the pattern. This number is 
stored along with the block size E .  The blocks are then subdivided into ~ / 2  x ~ / 2  
blocks and the scan is repeated. This continues down to the pixel (or cell) level. 
Next a linear least-squares routine is used to determine the slope of the logarithm 
of the count vs the logarithm of the block size. The fractal dimension is obtained 
as the negative of the slope. For the snowflake example, the dimension is found to 
be 1.445 which is less than 2% off the expected value of 1.465 (M log 5/ log 3). 

For the second example, one may use the random walks generated by the program 
in Appendix B as the fractal object. More generally, one can place any set of fractal 
points in the space provided for the Pattern Generating Program in Appendix C, 
and try to find its box dimension. 
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Appendix A: Pattern Generating Program: “Snowflake” Fractal 

.................................................................. 
I P a t t e r n  Generat ing Program: “Snowflake” f r a c t a l  .................................................................. 

pmax = 4 ‘number o f  f r a c t a l  i t e r a t i o n s  
1 = ( 3  A (prnax + 1) - 1) I 2 
w = 2 ^ 8  
LET XO = 1: Y O  = 1: x l  = W :  y l  = w :  c = 10 
SCREEN 9 :  WINDOW (XO - 1, YO - l ) - ( X l  + 1, y l  + 1): CLS 

t = O  
PSET ( t  + w I 2,  t + w I 2 ) ,  
FOR p = 0 TO pmax 

L 

PSET 
PSET 

END I F  
NEXT 

NEXT 
t = ( 3  * s - 1) 1 2  

NEXT 

+ w / 2 ,  j +  
( i + s + w l  
( i + s + w l  
( i - s + w /  
( i  - s + w I  

w 1 2)  = 10 THEN 
2 , j + s + w 1 2 ) , c  
2 , j  - s + w / 2 ) , c  
2 ,  j + s + w 1 2 ) ,  c 
2, j - s + w / 2 ) ,  c 

Appendix B: Pattern Generating Program: Random Walks 

................................................... 

................................................... I P a t t e r n  Generat ing Program: Random Walks 

LINE ( x O  - 1. YO - l ) - ( X l  + 1, Y l  + 1). . B ’ draws bounding box 
j 0  = ( y l  - yo) / 2 
FOR i = x0 + 1 TO x l  

j l  = j o  + 20 * RND - 10 
LINE (i - 1, j O ) - ( i ,  j l ) .  c 
j 0  = j l  

NEXT 

Appendix C: The Box Counting Program 

This program uses the graphics memory to store the fractal pattern for the analysis. 
PSET(z ,  y), c and POINT(z ,  y) commands are used to store and read to pattern. 
Simple modifications can be done in order to analyze a pattern in a memory array. 

A possible improvement to this routine is having a collection of random z and y 
offsets for the grids. This must still enforce non-overlapping blocks and must require 
wrap-around searching. The average values would then be used for the least-squares 
analysis. 
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DEFINT I - J .  M .  P .  T .  W - Y  
D I M  logC(20) , logN(20)  

.................................................................. 
'P lace  " P a t t e r n  Generat ing Program" i n  t h e  space below. .................................................................. 

.................................................................. 

.................................................................. 
' Now t h e  image i s  scanned t o  determine t h e  f r a c t a l  dimension 

m = INT(LOG(x1 - x0)  / LOG(2)) 
FOR boxdiv  = 2 TO m 

count  = 0 
LET B = ( x l  - x0 + 1) / 2 * boxd iv  
FOR i 0  = x0 TO x l  STEP B 

FOR j0 = yo 
LET f l  
FOR j 

TO v l  STEP B 
ag o 
= j0 TO j0 + (B - 1) 
FOR i = i 0  TO i 0  + (B - 1) 

I F  POINT(1, j) = c THEN 
LET count  = count  + 1  
l = i O + B  J = J o + 8  

END I F  
NEXT 

NEXT 
NEXT 

NEXT 
SOUND 1000,  5 
logC(boxd1v) = LOG(count) 
l ogL (b0xd iv )  = LOG(B) 

NEXT boxdiv  

' L i n e a r  l e a s t  squares method i s  used t o  f i n d  t h e  s lope  ' 

' used i n  f i n d i n g  t h e  s lope  G e n e r a l l y ,  t h i s  p a r t  shou ld  be found ' by examining t h e  l o g - l o g  cu rve  b e f o r e  u s i n g  t h e  program below ) 

.................................................................. 

(Only t h e  s t r a i g h t - l i n e  p a r t  of t h e  l o g - l o g  cu rve  shou ld  be 

.................................................................. 

FOR boxdiv  = 2 TO m 
sumy = sumy + logC(boxdiv)  
sumx = sumx + l ogL (boxd iv )  
sumxy = sumxy + l o g L ( b o x d i v )  * logC(boxdiv)  

NEXT 
barx = sumx / ( m  - 1) 
bary = sumy / ( m  - 1) 
FOR boxdiv  = 2 TO m 

u = u + ( l ogL (boxd iv )  - b a r x )  * 2 
NEXT 
a = (sumxy - ( m  - 1) * b a r x  * b a r y )  / u 
PRINT "Box Dimension = " ;  -a 

END 
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14.1.4 Diffusion-Limited Aggregates in Radial Geometry 
Rocco D. Pochy 

The program below uses the random walk model to create a two-dimensional, 
diffusion-limited aggregation (see Section 9.1). The process is based on the idea 
that a particle will wander in space until it comes in contact with a cluster. There 
it will stick and become part of the cluster and a new particle will wander in. 

This implementation is designed to display the growth of this DLA fractal pat- 
tern. The system requirement are an IBM-PC compatible with at least 640K of 
memory and a VGA graphics display. This code was written to take advantage of 
the highest graphics resolution available on a generic VGA display. Changes to the 
size of the field array and graphics display initialization will allow porting to any 
other system. The computer language is C: Microsoft 6.00a. 

A typical DLA cluster generated by this program is shown in Fig. 1. 

of particles : 41247 

Fig. 1. A computer generated diffusion-limited aggregate (DLA). 
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# inc lude  < s t d i o . h >  
# inc lude  < s t d l i b . h >  
# inc lude  <math.h> 
#i n c l  ude <con; 0 .  h> 
# i n c l  ude <graph. h> 

I * - - - [  Def ine  Global Constants I--------------- 
#def ine  TRUE 1 
#def  i ne FALSE 0 

*/ 

# d e f i n e  P I  3.141592 
# d e f i n e  SET 1 
#def i ne EMPTY 0 
#de f ine  RELEASE 5 I* Release d i s t a n c e  o f  * I  

I* new p a r t i c l e .  * I  
#de f ine  NMAX 480 I* Size  o f  F i e l d  A r ray  *I 
#def i ne RANDOM randO/(RAND MAX+1.0) I* Random Number (0. . 1 1  */ 
#de f ine  COIN-FLIP randO>(RANDIMAX/Z) I* Random Value (011) */ 

s t a t i c  char  

s t a t i c  i n t  o f f s e t  = NMAXl2: 
- huge field[NMAXl[NMAXl: I* Growth F i e l d  A r ray  */ 

I* O f f s e t  t o  c e n t e r  o f  */ 
I* growth.  *I 

I * - - - [  Define Ex te rna l  Funct ions ] - - . . - - - . - - - - - . . - - . - - - - - - - - - - - - . - . - -  *I 
e x t e r n  v o i d  m o v e ( i n t * , i n t * , i n t * ) :  
e x t e r n  v o i d  p i c k  ( i n t  , i n t * ,  i n t * )  ; 
e x t e r n  v o i d  i n i t  d i s p l a y ( v o i d 1 :  
e x t e r n  v o i d  c l o s e  d i s p l a y ( v o i d ) ;  
e x t e r n  v o i d  d i s p l Z y ( v o i d ) :  

ma in ( )  

i n t  x . y :  I* P o s i t i o n  i n  F i e l d  A r ray  * I  
1 n t  r :  I* Radius f rom c e n t e r  o f  F i e l d  Array*/ 
i n t  rad ius=  1: I* Radius i s  c i r c l e  enc los ing  growth*/ 
i n t  rmax = o f f s e t - 1 :  I* Maximum r a d i u s  f o r  growth.  * I  
unsigned seed; I* Random Number Generat ion Seed */ 
long  s tuck = 0 :  I* # o f  p a r t i c l e s  i n  Growth P a t t e r n  */ 

/* ...[ I n i t i a l a t i o n  ] - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - . . . - - . - - - . - - - . - - - .  */ 

{ 

I* 
* I n i t i a l i z e  F i e l d  A r ray  t o  EMPTY and s e t  a seed i n  t h e  c e n t e r  o f  
* t h e  array. 
*/ 

f o r  (x=O:x<NMAX;x++) 
f o r  (y=O ;y<NMAX :y++) 

f i e l d [ x l [ y l  = EMPTY; 

f i e l d [ o f f s e t l [ o f f s e t l  = SET: 
p r i n t f ( " E n t e r  Random Seed:" ) ;  
scanf  ( "%d" ,&seed) ; 

/ *  Get Seed f o r  Random Number Gen. *I 

srand(seed) ; 
i n i  t -d i  sp l  ay( ) ; I* I n i t i a l i z e  Graphics D i s p l a y  */ 
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move(&r.&x,&y):  I* Create p a r t i c l e  & l e t  i t  walk.* /  
stuck++ : I* Count the  # o f  p a r t i c l e s  stuck*/ 
f i e l d [ x l [ y l  = SET: I* Log where the p a r t i c l e  stuck *I 

i f ( r> rad i  us )  
radius = r 

/* Define the  maximum radius o f  */ 
/* growth. *I 

i f  (stuck%1000==0) 

i f  ( k b h i t 0 )  break: 

I* Update d isp lay  every thousand *I 

*I 

d i s p l a y ( ) ;  /* p a r t i c l e s .  * I  

I* E x i t  Loop i f  key i s  h i t .  
1 
J 

d isp lay(  ) : /* Display F ina l  Conf igurat ion */ 
p r i  n t f  ( "#  o f  p a r t i c l e s :  %1 d" ,s tuck)  : 
wh i le  ( ! k b h i t ( ) )  ; I* E x i t  program when key i s  h i t .  *I 

re tu rn (  0) : 
c lose d i s p l a y ( ) :  I* Close Graphics Display *I 

vo id  
p i c k ( i n t  r .  i n t *  x.  i n t *  y )  
I* 
* Pick a random pos i t i on  on the  g r i d  t h a t  i s  r d i s t a n t  from 
* the  center .  
*I 

double the ta  = 2 . 0  * P I  * RANDOM: 
*x = (int)((double)(r)*sin(theta)) + o f f s e t :  
*y = (int)((double)(r)*cos(theta)) + o f f s e t :  

} 

i n t  
t e s t ( i n t  x .  i n t  y )  
I* 
* Test if p a r t i c l e  i s  next t o  a c l u s t e r  s i t e .  I f  s o ,  re tu rn  a 
* ono-zero value. 

i n t  count = 0 :  
i f ( f i e l  d[ x+1] [y]==SET) count++ : 
i f  ( f i e 1  d[x- 11 [y]==SET) count++: 
i f  ( f ie ld[x l [y+l ]==SET) count++: 
i f  ( f i e l d [ x ]  [ y -  l]==SET) count++: 
return(count1;  

i*' 

1 
vo id  
move(int* r . i n t *  x , i n t *  y )  
I* 
* Create a wandering p a r t i c l e  and l e t  i t  random walk u n t i l  i t  
* f i nds  the  c l u s t e r .  
*I 

i n t  *temp: 
i n t  done = FALSE: 
i n t  re1 = *r+RELEASE: /* Radius o f  Release o f  new p a r t i c l e * /  
i n t  step = 1; /*  Step Size o f  p a r t i c l e  movement *I 
long r 2 ;  /*  Square o f  d istance o f  p a r t i c l e  */ 

I* from the  center .  */ 

I* Square o f  Escape Radius. */ 
long re12 = ( l o n g ) ( r e l ) * r e l ;  I* Square o f  Release rad ius .  */ 
long rmax2 = 4 * re12: 
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long d x .  dy: 

pick(re1 . x . y )  

/* X and Y position of par t ic le  w i t h * /  
/* respect to  the center.  */ 
/* Release a new particle i n t o  the */ 
/* system. */ 

I* 
* Loop until wandering particle st ick t o  c luster .  If particle 
* wanders more t h a n  2*rmax. then particle i s  considered " lost"  
* a n d  a new part ic le  i s  created. 
*I 

while (!done) 
i 

i f  (COIN-FLIP) /* Choose walk direction ( x  or y )  */ 

else 

i f  ( C O I N  F L I P )  /*  Choose step interval *I 

else  

dx = *x-offset; 
dy = *y-offset; 
r2 = dx*dx + dy*dy: 

temp = x ;  

temp = y ;  

*temp-+= step: 

*temp -= step:  

/* Calculate distance from center */ 

i f  ( r2  > rmax2) /* If distant t o o  great ,  pick a new */ 

i f  ( r2  > re12+100) /* To optimize perfomance, step size*/ 
step = 2 :  /* i s  increased the further away from*/ 

i f  ( r2  > re12+400) /* the center the particle d r i f t s .  *I 
step = 4: */ 

i f  ( r2  > re12+1600) /* +20 = 4  */ 
step = 8:  /* +40 = 8  */ 

i f  ( r2  > re12+6400) I* +8 0 = 16 */ 
step = 16; /* R = Radius of Release Zone */ 

i f  ( r2  < re121 /* If particle i s  w i t h i n  range, then*/ 
i f  ( tes t (*x.*y))  /* t e s t  i f  particle i s  adjacent t o  */ 
done = T R U E ;  /* "stuck" cluster par t ic les .  */ 

pick(re1 . x . y ) ;  /* part ic le .  */ 

/* If r>R +10 step size = 2 

I 
&r = (int)(sqrt((double)(r2))):/* Return the distance a t  which */ 

/* particle stuck from the center. */ 
1 
vo id  
ini t-di spl ay(void) 
/* 
* Set Graphics Display t o  VGA 640x480 

set  v i  deomode (-VRES16COLOR) : 
i*/ 
1 -  

void 
cl ose-di spl a y ( v o i d )  
/*  
* Reset Graphics Display t o  default display Mode 
* I  

setvi deomode(-DEFAULTMODE) 
i 

- 
1 
void 
display(void1 
I* 
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* Display F i e l d  Array. Ce l l s  t h a t  con ta in  c l u s t e r  p a r t i c l e  a r e  
* drawn in white.  

short  i . j : i*’ 

f o r  ( i =O ; i<NMAX ; i ++) 
for  ( j = O  ; j<NMAX ; j++) 

i f ( f i e l  d [ i  1 [ j ]  !=EMPTY) 
- s e t p i x e l ( i  , j ) ;  

1 
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14.1.5 The Dielectric Breakdown Model with Noise Reduction 
Rocco D. Pochy 

The program below is designed to simulate the growth patterns found in the di- 
electric breakdown model with the option of noise reduction (see Section 12.2 and 
the comments in the program below). The computer language used is Microsoft 
C v.5.00. Typical fractal patterns produced by the program are shown in Fig. 1 
(without noise reduction) and Fig. 2 (with noise reduction). 

I* 
I" 
I* 
I" 
I* 
I* 
I* 
I* 
I" 
I* 
I* 
I* 
I* 
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I* 
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I" 
I* 
I* 
I* 
I* 
I" 
I* 
I* 
I* 
I* 
I* 
I* 
I* 
I" 
I* 
I* 
I" 
I* 
I* 
I* 
I" 
I" 
I* 
I" 
I* 
I" 
I" 
I*- ..... 

The model used defines a po ten t i a l  f i e l d  on a l a t t i c e ,  e x i s -  *I 
t i n g  between two coaxial  e lec t rodes .  The center electrode 
assumes a f i x e d  min. po ten t i a l  ( M I N  VALUE) and the ou ter .  
rad ia l  e lectrode w i th  the  max. Doten t ia l  (MAX VALUE). The 
po ten t i a l  f i e l d  between the  electrodes i s  ca lcu la ted  by 
Lap1 ace's equation solved numerical ly v i a  the re1  axat ion 
method. The allowed e r r o r  i n  the so lu t i on  i s  de f ine  by an 
eps i lon  (eps i l on ) .  i f  found w i t h i n  the  maximum number o f  
i n te ra t i ons  (ITER). 

. . . . . . . . . . . .  

. . . .  0 . . . . . . .  

. . .  oxo.0 . . . .  

. .  ooxooxo . . .  

.oxxxxxxoo.. 

..ooxooxxxo. 

. . . .  o..ooxo. 

. . . . . . . . .  0 . .  

o=s i te  (immediate neighbor) 
x=node (aggregation po in t )  
=mesh ( l a t t i c e  po in ts )  

Once the po ten t i a l  f i e l d  o f  the  system i s  def ined, one o f  
s i t e s  surrounding the center electrode i s  chosen v i a  a 
p r o b a b i l i t y  assigned t o  each o f  the  s i t e s  based on the 
po ten t i a l  f i e l d  s t rength .  To s imulate the  rap id  t i p  growth 
associated w i t h  some growth pa t te rns ,  a parameter " e t a "  i s  
assigned: 

probabi 1 i ty(si t e )  = ( f i e 1  d[ s i  t e l  )*eta I SUM(field^eta) 

By varying e t a ,  the  growth pa t te rn  changes from "blobs" t o  
" s t r i ngy . " 

There i s  a COUNT array t o  t rack  the  number o f  times a s i t e  
has been v i s i t e d  dur ing an i t e r a t i o n .  I f  the  s i t e  has been 
v i s i t e d  min-count. then "growth" w i l l  occur a t  t h a t  s i t e  and *I 

*I  
Growth occurs a t  nearest neighbor and next-nearest  neighbor *I 
s i t e s  . *I 

*I  
A f t e r  run i s  completed, data array i s  s to red  t o  d isk  f o r  */ 
l a t e r  ana lys is .  */ 
F i l e s  generated have the  extensions: *I 

HDR = header in fo rmat ion  */ 
DAT = D a t a  *I 

" I  

the COUNT array w i l l  be rese t  t o  zero.  *I 

*I  
*I  
*I  
*I  
*I 
*I 
*I  
* I  
*I  
*I  
*I  
*I  
*I  
" I  
*I  
*I  
*/ 
*/ 
*I 
*I  
*I 
*I 
* I  
*/ 
*I 
*I  
*I 
*I 
* I  
*I  
*I  
*/ 

.............................................................. *I 
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/'*--[FORWARD DEFINITIONS OF RELAX FUNCTIONSl-------------------------*/ 
extern vo id  I n i t  Mesh(void): I* 
extern vo id  RelaZ-Mesh( int , f loat) :  I* 
extern i n t  

I* 
extern vo id  Display-Mesh(void); I* 
extern vo id  Display-Node(int.int.int); I* 
extern vo id  Set -D isp lay( in t ) ;  I* 
extern vo id  Reset D i  spl  ay( voi d)  ; I* 
extern vo id  Pause-X(void) ; I* 
extern vo id  SaveArray(char *) ; I* 
extern vo id  

Save Header(char * . f l o a t . f l o a t ) :  I* 

Update Mesh( f l  o a t .  f l o a t ,  i n t )  ; 

I n i t i a l i z e  Mesh po in ts  *I 
Solve Mesh v ia  Relaxation *I 

extern Void 
Save-Data(char * , f l o a t , f l o a t ) ;  I* 

extern vo id  Pr int-Array(void1 ; I* 
I* hardcow 

Choose growth s i t e  *I 
Graphic Display o f  Mesh *I 
Display po in ts  on Screen *I 
Set Video Graphics D i  spl ay *I 
Restore t o  "normal " d i  spl  ay*l 
Pause u n i t 1  ' X '  i s  pressed *I 
Save F i e l d  Array t o  f i l e  *I 

I*- -[DEFINITIONS]-- 
#define TRUE 
#define FALSE 

#def i ne BOUND 
#def ine UNBOUND 

#define BOUNDARY 

#define UNAVAILABLE 

#define NMAX 
#define NODE 

#define MAX VALUE 
#define MIN-VALUE 
#def i ne EPSTLON 
#define ITER 

#define OUT COUNT 
#def 1 ne OUT11 NT1 

#def i ne OUT-I NT2 

#def ine NCOLOR 

#define BLACK 
#define WHITE 

Save Header I n f o  t o  f i l e  *I 

Save D a t a  (array & header) *I 
P r i n t  Contents o f  Array t o  *I 

*I 

1 
0 

1 I* S i t e  bounded t o  aggregate *I 
0 I* S i t e  no t  bounded, possible*/ 

I* growth s i t e  *I 
2 I* S i t e  i s  p a r t  o f  the  ou t -  *I 

I* s ide  boundary *I 
3 I* S i t e  no t  bounded, but un- *I 

I* ava i l ab le  as growth s i t e  *I 

256 
7000 

I* Max. Size o f  System F i e l d  *I 
I* Max. # o f  neighbor S i tes  *I 

10000 I* Max. Poten t ia l  Value *I 
0 I* Min. Poten t ia l  Value *I 
10 I* Max. Allowed Er ror  *I 
400 I* Max. # o f  I t e r a t i o n s  t o  *I 

/* f i n d  so lu t i on  *I 

5 I* F i r s t  Series Ouput *I 
100 I* Graphic Output Every *I 

I* i n t e r v a l  up t o  OUT COUNT *I 
1000 I* Graphic Output I n te rva l  *I 

I* f o r  g rea ter  than OUT-COUNT*/ 

6 /* Number o f  Colors de f ine  * I  

0 I* Max. Poten t ia l  F i e l d  Color*/ 
15 I* Min. Poten t ia l  F i e l d  Color*/ 

I* contour p l o t t i n g  *I 

s t a t i c  unsigned 
char huge tagCNMAX][NMAXl: I* Status Array o f  s i t e s  i n  *I 

I* Potent ia l  F i e l d  *I 
s t a t i c  unsigned 

char huge count[NMAXl[NMAXl; I* Count Array o f  s i t e  v i s t s  *I 
I* o f  Poten t ia l  F i e l d  s i t e s  *I 
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s t a t i c  i n t  f -s ize ;  /* Size o f  System F i e l d  */ 
/* where f-s i  ze<NMAX *I 

s t a t i c  f l o a t  huge nodeCNODE3; I* Probab l i t y  value o f  s i t e  *I 
s t a t i c  i n t  xtemp[NODEl ; I* x l oca t i on  o f  s i t e  *I 
s t a t i c  i n t  ytemp[NODEl ; /*  y l oca t i on  of s i t e  */ 
s t a t i c  i n t  m i  nval [NODE] ; I* Minimum value o f  bounded * I  

s t a t i c  f l o a t  r-va 1 ue=O ; /* Sum o f  Raduii? measured *I 

i n t  video : /* Video Display Type Flag */ 

/* neighbor */ 
/* f o r  Radius o f  Gyrat ion */ 

/* f o r  graphics func t ions  */ 
i n t  graph-f 1 ag ; /*  Graphics Output F1 ag * I  
i n t  txt-1 oc : /* X l o c a t i o n  o f  t e x t  */ 

/* p o s i t i o n  on screen */ 
*I 

/* - - . . . . . - - - - . - - - - - - . - . . - - - - - - . . . - - - - - - - - - - - - - -~- - - . . . . . -~~~~. . .~ . . .~* /  
vo id  main(void) 

* I  /* -....------..-------..-------.--------------------.------------.--. 

i n t  i = 0; /* Number o f  S i tes  occupied * I  
i n t  seed : /* Seed f o r  Random Generator * I  
i n t  gr-count=O; /* Graphics Output Counter */ 

f l o a t  eta ; /* Probabi 1 i t y  Parameter * I  
f l o a t  epsi 1 on : /* Smallest Non-zero value *I 
i n t  min-count; /*  Minimum Number o f  v i s t s  to*/  

char f i  lename[l3] ; /* F i l e  Name where t o  s to re  */ 

char *fmode="wb" : /* Set Binary F i l e  Wri te mode*/ 
F I L E  *fp; /* F i l e  Po in te r  */ 
i n t  f s i z e :  /* F i l e  Size *I 
i n t  counter=OUT-INTl; /* Graphics Output Count *I 

*/ /* ................................................................... 

/*..[Error Handling] .--------.-----.-...-.--.--....-------.--~~..~~.. 

I 
i n t  done = FALSE; /* End o f  Program Flag */ 

i n t  vtype ; / *  Video Type Flag *I 

/* "bound" a s i t e  */ 

/* data array and infomation*/ 

I* I n t e r v a l  */ 

p r i n t f ( " E n t e r  Size [max=%d 
scanf("%d" ,&f-s ize) ; 

p r i n t f ( " E n t e r  Random Seed 
scanf("%d" ,&seed) ; 
srand(seed) ; 

p r i n t f ( " E n t e r  E t a  Value (0 
scan f ( "%f " ,&e ta ) :  

: " , N M A X - l ) ;  

1-65000) : " I :  

0-10.0) : " I :  

p r i n t f ( " E n t e r  Epsi lon Value (1.0-0.001) : " )  ; 
scanf ( "%f"  .&epsi 1 on) ; 

p r i n t f ( " E n t e r  Maximum V i s i t  Count (1-255) : " ) ;  
scanf ( "%d" , &mi n-count 1 ; 

pr in t f ( "Graph ics  Display Output (l=Yes o r  O=No)?:") :  
scanf("%d" ,&graph-f lag); 

i f  (graph-flag==TRUE) 

p r in t f ( "En te r  Display Type (l=BW, 2=COLOR. 3=HiRes):"): 
scanf ( "%d" , &vtype) ; 
i f ( vtype==3) 
t x t  l o c  = 65: 
e l  sE 
t x t  l o c  = 27; 

I 

, - 
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p r i n t f ( " E n t e r  Filename (max. 8 c h a r a c t e r s ) : " ) ;  
s c a n f ( " % s " . f i l e n a m e ) ;  

p r i n t f  ( " I n i  ti a1 i z i n g  P o t e n t i a l  F i e l d  \ n " )  ; 

Set D i  s p l a y ( v t y p e )  ; 
IniT-Mesh( 1 ; 

Display-Mesh(); 

done = FALSE: 

i f  (graph-flag==TRUE) 

- s e t t e x t p o s i  t i o n ( 1 ,  t x t - l o c )  ; 
p r i n t f ( " e t a  : % 3 . 3 f "  , e t a ) ;  

s e t t e x t p o s i  t i on( 2, t x t - 1  OC) ; 
p r i n t f ( " e p s  : % 3 . 3 f "  . e p s i l o n )  
- 

- s e t t e x t p o s i  t i  on ( 3 ,  t x t - 1  oc 1 ; 
p r i n t f ( " c o u n t :  %d" .min-count) 

1 
w h i l e  (done==FALSE) 

/* Solve Lap lac ian  Every 4 t h  I t e r a t i o n  to */ 

i f  (i%4==0) 

I 
I* enhance performance *I 

I 
1 
Re1 ax-Mes h ( ITER . eps i 1 on ) ; 

/* Update D isp lay  o f  Graphics D i s p l a y  Devices */ 
i f  ( (g raph- f l  ag==TRUE)&&( i %counter==O) ) 

Display-Mesh( 1 ;  

++gr coun t ;  
i f  (gr-count>OUT-COUNT) counter=OUT-INTZ; 

done = Update-Mesh(eta.epsilon,rnin-count); 

{ 

1 

++i ; 

i f  (graph- f l  ag==TRUE) 

- settextposition(20.txt-loc); 
p r i n t f ( " P o i n t s :  %d ",i); 

- 1  

/* F i n a l  D i s p l a y  o f  P l o t  */ 
i f  (graph- f l  ag==TRUE) 

Display-Mesh(); 

- s e t t e x t p o s i  ti on(21, t x t - 1  oc)  ; 
p r i n t f ( " S i z e  : % d " , f - s i z e ) ;  

/* C lea r  Area to P r i n t  F i l e  Name o f  Data S to red  */ 

{ 

- s e t t e x t p o s i  t i  on( 23, t x t -1  oc )  ; 

- s e t t e x t p o s i  t i o n ( 2 4 ,  t x t - l o c )  ; 

p r i n t f ( " F i 1 e  : "1 :  

p r i n t f ( "  " 1 ;  
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- settextposition(24.txt-loc): 
pr i n t f ( "%s " , f i 1 ename ) : 

Pause-X() ; 
Reset-Di spl ay( 1 : 

1 
I* Save Data to D i s k  */ 
Save-Data(filename.epsilon.eta); 

1 

void Init - Mesh(void1 
/* ......---...---....--...-------------------------------.--.--.-....*/ 
/* Description: * I  
/* This routine initializes the values at each site on the *I 
/* mesh. Boundary conditions are set, all other sites are set * I  
/* to zero. Count Array is set to zero. * I  
/* *I 
/* .......-...----..--....--.--.--..---.----.---------------.--.-.--~~*/ 

register int i , j: /* Site indices */ 
register int iternp.jtemp; /* Relative site position * I  
register int offset=f-size/2; /* Location o f  center of mesh */ 
float r = f-size/2-1; /* Radius of active mesh */ 
float radius : /* Distance from center *I 

/* . . . . .---------. .----.---. .-----.----------------------.--.--.--. .- .*/  

for ( i =O : i <=f-si ze : i++) 

itemp = i - offset: 
itemp = itemp * itemp: 
for (j=O; j<=f-size: j++) 

{ 

/* Clear count array */ 
count[il[jl = 0: 

jtemp = j - offset; 
jternp = jtemp * jtemp; 
radius = sqrt((double)(itemp) + jtemp): 
/* Define circular boundary for radial electrode of radius *I 
/* offset (center of mesh) */ 
if (radi us>=r 1 
I 

i 

I 

field[i][j] = MAX VALUE; 
tag[iI[jl = BOUNDARY: 

I 
1 
else 

/* If center of mesh, initialize center electrode */ 
/* else set site to zero */ 
if (radi us==O . 0) 
{ 

1 

i 

field[il[jl = MIN VALUE: 
tag[il[jl = BOUND; 

else 
I 
I 

field[i][j] = MAX VALUE: 
tag[il[jl = UNBUUND: 
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void Relax-Mesh(int iter. float eps) 
/* . . . . . . - . - - . . . - . . . . . - - - . . - - - - - . . . . - . . . - . - - . - . . - - .~~~~~~~~~~~.~~~~.. .* /  
/*  Description: */ 
/* This routines calculates the field potential in the mesh *I 
/* model using Laplace's equation via the Relaxtion Method. */ 
/* --------------.-.----.---..--.-----.-.--.-.--------.----..-.....---*/ 
/* Parameters: */ 
/*  int i ter /* Maximum # of interactions */ 

/* float ePs /* Maximum allow percentage */ 
/* to solve field potential */ 

/*  value of solution to the */ 
/* potential field (barring */ 
/* # of iterations). */ 

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . - - . - - - - - . . . - * /  

/* .--.--.--.-----..-----.---.-----..----.-.-.--.--------------.-....-*/ 
register int i.j; /* Site indices */ 
regi ster i nt 1 =O : /* Current # of iterations */ 
i nt /* Calculated value of a site */ 
i nt residual ; /* Calculated error of a site */ 
i nt norm; /* Current error of the mesh */ 
i nt max-err : /* Maximum Error Value allowed*/ 

/*  . - - . - - . . - . - - - . - - - - .~.------ - - - - - - - - - - - - . - - - . - - . . . - . . . - - - - - -~~-~~.. .* /  

I 

average ; 

max-err = MAX-VALUE * eps; 
do 

norm = 0: 
for ( i = l ;  i<f-size: i++) 

{ 

'for (j=1; j<f-size; j++) 
I 

if (tag[i I[ j]==UNBOUND) 
I 

average = (field[il[j-11 + field[il[j+ll + 

residual= abs(average - field[il[jl): 
if (residual>norm) norm = residual : 

field[i-ll[jl + field[i+ll[jl)/4; 

field[i][j] = average; 

1++; 
} while ((norm>max-err)&&(l<i ter) 1 

if (graph - flag==TRUE) 

settextposi tion(24, txt-1 oc) : 
I 

1 
- printf("1ter: %3d ",l): 

1 

int Update-Mesh(f1oat exp.float eps,int min-count) 
/* - - - - - . - - - - . - - . - - - - - - - - - - - - - - - - . . - - - - - . - . - - . - . - - - - - - - - - - - - - - - - - - - - - .* /  
/* Description : */ 

I* This routine finds the neighboring sites of the growth */ 
I* pattern and assigns them a growth probability based on */ 
I* their potential field strenght. The equation to find the */ 
I* probability i s :  *I 
I* */ 
/* */ 
I* * I  

probabi 1 i ty ( s i  te) = ( f i el d[si tel )*exp / SUM( f i el d*exp) 

i* A site becomes BOUND if the site i s  visted min-count times. */ 
I* */ 
I* Note: All values less than MAX VALUE*eps are treated as zero.*/ 
I* This affects the probabiTity distribution. */ 
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/* */ 
/* ..........--.--...-----.-.----------..------------.-.--------.--..-*/ 
I* Parameter: */ 
I* f l o a t  exP /* Exponent mod i fe r  f o r  proba-*/ 

/* b i l i t y  growth f a c t o r  */ 
/* f l o a t  ePs / *  Maximum percentage e r r o r  */ 

/* a l l owed  i n  c a l c u l a t i o n  */ 
/* i n t  m i  n-count /* Minimum # o f  V i s t s  t o  " s e t " * /  

/* a s i t e  */ 
/* . _ . . _ _ _ _ _ _ . _ _ _ . . _ . . . ~ . . ~ . ~ ~ . ~ - ~ ~ ~ ~ . . . . ~ ~ . . . ~ ~ ~ ~ . . . . . ~ . . ~ . ~ ~ . ~ . ~ . . . ~ * /  

/*  -.....--..--.--...-----------------------..--------..----.-.-..-...*/ 
r e g i s t e r  i n t  i . j , k :  I* I n d i c e s  */ 
r e g i s t e r  i n t  m = 0; I* # o f  ne ighbor ing  s i t e s  */ 
r e g i s t e r  i n t  ne ighbor :  /* # o f  ne ighbors around a s i t e * /  
r e g i s t e r  i n t  i t emp. j t emp;  I* P o s i t i o n  w r t  Center o f  Mesh*/ 
i n t  o f f s e t = f  s i z e l 2 ;  I* O f f s e t  o f  Center o f  Mesh */ 
i n t  max-err=RAX-VALUE*eps ; I* Max. e r r o r  va lue  */ 
i n t  found ; I* f l a g  i f  s i t e  found */ 
i n t  m i n :  /* Minimum va lue  o f  bound s i t e * /  
f l o a t  i n t e r v a l  ; I* prob .  f o r  a g i v e n  s i t e  */ 
f l o a t  norm; I* Norma l i za t i on  f a c t o r  */ 
f l o a t  X ;  /*  random number [ O . .  11 */ 

/* .....-..--..-..--------.--.--..----------------------------.--..-..*/ 

f o r  (i=l; i < f - s i  ze:  i++) 

I 

1 
I* Test  l o c a t i o n  i s  occupied */ 
i f  (tagTil[jl==UNBOUND) 

/* Test  i f  nex t  t o  agg rega t ion  growth *I 
/* Count number o f  ne ighbor ing  occupied c e l l s  */ 
neighbor  = 0 :  
min = MAX-VALUE; 

{ 

I* Nearest Neighbors *I 
i f  ( t a g [  i+ll[ jI==BOUND) 
I 
i 

i f  ( m i n > f i e l d [ i + l l [ j ] )  min = f i e l d [ i + l I [ j l ;  
neighbor++: 

1 
i f  ( t a g [ i  I[ j+l]==BOUND) 

if ( m i n > f i e l d [ i l [ j + l ] )  min = f i e l d [ i l [ j + l l :  
neighbor++; 

i f ( tag [  i - 11 [ j ]==BOUND) 

i f  ( r n i n > f i e l d [ i - l l [ j ] )  min = f i e l d [ i - l l [ j l ;  
neighbor++ : 

I 

1 

{ 

1 

i f  ( tag [  i 1 [ j - lI==BOUND) 

i f  ( r n i n > f i e l d [ i l [ j - l I )  min = f i e l d [ i l [ j - 1 1 ;  
ne i g h bo r++ ; 

I* Neighbor i s  p resen t  */ 
i f  (neighbor>O) 
! 
1 

I* Tes t  f o r  p o t e n t i a l  e r r o r  *I 
i f  (m<NODE) 
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/* Get value of node */ 
int value = field[il[jl; 

if (value<max-err) 

tag[il[jl = UNAVAILABLE; 
I 

/*  Save Value and Location *I 
node [ml 
xtemp[ml = i: 
ytemp[ml = j: 
m i  nval [m]= mi n ; 

i 
= ( ( f 1 oat 1 ( va 1 ue 1 1 /MAX-VALUE ; 

m++ 
1 

1 
else 
I 
if (graph flag==TRUE) - 

- settextposition(l6. txt-loc) ; 
printf ( "overflow" ) ; 

/* Over-shot by one (sites = 0 . . m - 1 )  */ 
m = m - 1 :  

/* Define Normalization Constant */ 
norm = 0.0; 
for (k=O;k<=m;k++) 

/* Modify node[kl by algorithm to scale the growth *I 

nodeikl = pow(node[kl .exp); 

/*  Create normalization factor for growth probabi 1 i ty */ 
norm = norm + nodelk]; 

I 
/* probability based on potential and eta. *I 

1 
/* 
/* 
do 
I 

Iterate until a site has been found to have been visted */ 
min-count times (associated with "sticking" probability)*/ 

/* Define Random Number [0,13 and initialize index k */ 
k = 0 ;  
x = randOl32768.0; 
interval = 0.0; 
do 

interval = interval + node[k]/norm: 
if (interval>=x) 

i = xtemp[k]; 
j = ytemp[k] ; 
count[il[Jl++; 
found = TRUE; 

I 

i 

1 
I 
else 

found = FALSE; 
if (k>m) 
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I* Diagnostic Ouput */ 
if (graph - flag==TRUE) 

I 

settextposition(20.20) : 
I 
- printf ( "x=%5.4f i nterval=%5,4f" ,x,  interval ) ; 

)Pause-X0; 
found=TRUE ; 

1 

jlwhile (found==FALSE); 
} whi 1 e (count[ i ] [ j]<mi n-count ) : 

/ *  Set k-node to aggregation *I 
i = xtemp[kl: 
j = ytemp[kl; 
tag[i][jl = BOUND; 
field[i][j] = MIN-VALUE + minval[kl; 

/*  Add new radius to sum */ 
itemp = offset - i ;  
jtemp = offset - j; 
r-Val ue = r-Val ue + ( (float) (i temp*itemp) + (float) (jtemp*jtemp) ) ; 

/* Clear Count Array *I 
for (itemp=O; itemp<f size: ++itemp) 

for (jtemp=O: jtemp<f-size; ++jtemp) 
count[itempl[jtempl = 0: 

/* Test if edge of field reached (system shorted) */ 
if ( (tag[i+l][ j]==BOUNDARY) 

(tag[il[j+l]==BOUNDARY) 
(tag[ i - 11 [ j ]==BOUNDARY) 
(tag[il[j-ll==BOUNDARY) 

return (TRUE) ; 
else 

return (FALSE) ; 
1 

for ( i =1: i <f-si ze ; i ++) 

for (j=1; j<f-size; j++) 
I 

value = tag[il[jl: 
Display-Node(value.i, j); 

{ 
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switch (video) 

case 1 : if (value==BOUND) 
I 

setcolor(WH1TE) : 

setcolor(BLACK) : 
el sF 

break : 

if (value==MAX-VALUE) 

- setcol or (BLACK) : 

/ *  This requires modification for it to work properly in color */ 
case 2 : color = (NCOLOR * (1 - ((float)(value))/MAX_VALUE))+l: 

I 
1 
I 
else 

if (Val ue==BOUND) 

setcol or (WHITE) : 
I 
}- 

{ 

, 1- 

else 

setcolor(co1or) ; 

break : 

el se 

case 3 : if (value==BOUND) 
setcol or(WH1TE) ; 

setcolor(BLACK) : 
break ; 

1 
- setpixel(i ,j): 

1 

' case 1 : setvideomode(-MRESNOCOLOR) : 
break : 

case 2 : setvideomode(-MRES16COLOR) ; 
break : 

case 3 : setvideomode(-ERESCOLOR) 
break : 
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I 
char 
FILE 

out file[l6]: 
*OUTDUt ; 

1 ong fil - size: 

st rcpy(out fi 1 e, fi 1 ename) ; 
strcat (outIfi 1 e , " . DAT" ) : 

I* Create File and Store Data *I 
output = fopen(out file,"wb"): 
fil-size = fwrite(Tchar *) field, sizeof(int), NMAX*NMAX, output) 

fclose(output); 
1 

char out file[l6]: 

strcpy(out fi 1 e , fi 1 ename) ; 
s t rca t ( outIf i 1 e , " . HDR" 1 ; 

F I L E  *oufput; 

output = fopen 

fpri ntf (output 
fpri ntf (output 

fclose(output) 
1 

out - f i 1 e , " w " ) ; 

"%s\n",out file) : 
"%d %g %g\n",f_size,epsilon,eta); 

r *fi 1 ename , fl oat epsi 1 on, fl oat eta 1 

Save Header(filename,epsilon,eta) 
SaveIArray(fi lename) ; 

I 

1 
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4 

Fig. 1. Fractals generated by the dielectric breakdown model (DBM), without noise reduction. In 
the DBM, the aggregate (growing from a seed at the center of the lattice) assumes potential 4 = 0; 
an outer circle, with the seed at the center, assumes potential 4 = 1. The potential distribution 
between the aggregate and the circle is given by the Laplace equation Vz = 0. The probability of 
a perimeter site adjacent to the aggregate being chosen is proportional to (V4)". This process of 
choosing the perimeter sites is repeated until one of them is chosen s times. Then a new particle 
is added to this site. In (a)-(.) here, s = 1. The values of 17 are 0.5, 1, 2, 4 and 8 in (a)-(e), 
respectively. 

Fig. 2. Fractals generated by the dielectric breakdown model, with noise reduction. (a) = 1, 
s = 50. (b) q = 0.1, s = 2. 
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14.2 Chaos 

14.2.1 The Tent Map 
Rocco D. Pochy, Yuk S. Yung and William A. Baldwin 

The bifurcation diagram of the tent map is studied analytically and numerically. It 
is shown that period doubling does not occur in this case. Beyond a critical value 
of the control parameter, the system becomes immediately chaotic. A computer 
program to generate the bifurcation diagram is given. 

Absence of Periodicity 

The tent map, also called the Lozi map [l], is defined by the difference equation 

z,+1 = a (1 - 212, - ;I) = f (z,) 

where n = 0, 1, 2 , .  . . ; a is a constant satifying 0 < a 5 1, and 0 5 z, 5 1. Using 
the program in Appendix A, the bifurcation diagram of the tent map is obtained 
numerically and shown in Fig. 1. 

d 

Fig. 1.  The bifurcation diagram of the tent map obtained from the program in Appendix A 

As shown in Fig. 1, there is no periodicity beyond a = 0.5. This is due to the 
fact that the slope at any point in the f" map is given by Idfm/dzl  = ( 2 ~ ) ~ ,  which 
is always greater than one when a > 0.5. Consequently, no fixed points of f" can 
be stable and hence no periodicity of any order can exist if a > 0.5. (In Fig. 1, 
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the apparent periodicity of two just beyond a = 0.5 is an illusion due to the finite 
resolution of the graphical display.) 

Upper and Lower Bounds 

For 0.5 5 a 5 1, let the the upper and lower bounds in the bifurcation diagram be 
denoted by the two functions 7-2(a) and T ~ ( u ) ,  respectively. As suggested by Fig. 1, 
we assume 

For x 2 1/2,  i.e., 7-2 2 z 2 l / 2 ,  one has f(z) = a[l - 2 ( 2  - l /2 ) ]  = 2a(l - x). 
Hence 7-1 5 2a( 1 - x) 5 7-2 , which implies 7-2 = 2 ~ (  1 - xmin)  = 2a( 1 - l / 2 )  = a ,  and 
7-1 = 2 4 1  - x,,) = 2 4 1  - ~ 2 )  = 2 4 1  - a) .  In short, 

7-1 = 2 4 1  - a )  (4) 

For x 5 l / 2 ,  i.e., 1 /2  2 x > T I ,  one has f(x) = a[l - 2(1/2 - x)] = 2ax. Hence 
7-1 5 2az 5 7-2. But z,, = 1/2  implies that ( 2 ~ x ) , ~  = a = 7-2, and x,in = 7-1 

implies that ( 2 a x ) m i n  = 2ar1 2 7-1, since 1 2 a 2 0.5. Consequently, the 7-2 and 
7-1 of Eqs. (3) and (4) indeed satisfy the inequality 7-1 5 2ax 5 7-2 in the region of 
x 5 l / 2 ,  and are the desired upper and lower bounds. As a consistency check, note 
that 7-2 and 7-1 do satisfy the initial assumption of Eq. (2), and agree beautifully 
with the numerical results in Fig. 1. 

Appendix A: Program for the Bifurcation Diagram of the Tent Map 

This program is written in Microsoft QuickBASIC 4.0 and runs on an IBM PC/AT 
computer. The results are output to an Epson RX-80 dot matrix printer. 

PRINT "Tent Map Program" 
INPUT "Enter Display Type (O=CGA,l=EGA,3=Herc):", v t  

I f  v t  = 0 THEN 
video = 2 

ELSEIF v t  = 1 THEN 
video = 9 

video = 3 
E L S E  

E N D  IF  

SCREEN video 

s t a r t :  
CLS 

' *  Window o f  Graphics Display 
' *  

'* 



WINDOW (0. O ) - ( l .  1) 
LINE ( 0 .  O)-(l,l), 15, B 
Sl# = .5 
S2# = .5 

FOR ii = 1 TO 640 
'** I n t e r v a l  o f  I n t e r e s t  
A# = ii / 640# 

'** P l o t  " t r a j e c t o r y "  o f  s e r i e s  i n  A(n) vs A (n+ l )  space 
x l #  = Sl# 
x2# = S2# 

'** S k i o  f i r s t  200 i t e r a t i o n s  
FOR' i = 1 TO 200 

x2# = A# * ( l !  - 2 !  * ABS(.5 - X I # ) )  
xl# = x2# 

NEXT 

'** P l o t  " p o i n t s "  of s e r i e s  f o r  g i v e n  A 
FOR i = 1 t o  200 

x2# = A# * ( l !  - 2 !  * ABS(.5 - x l # ) )  
PSET (A#,  x l # ) ,  14 
xl# = x2# 

NEXT i 

NEXT ii 
WHILE I N K E Y $  = " ' I :  WEND 
END 

Reference 

1. R. Lozi, "Un Attracteur Etrange (?) du Type Attracteur de Hhon , "  J. Phys. (Paris) 39, 
Coll. C5, 9 (1978). 
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14.2.2 The Waterwheel 

Rolf D. Freimuth 

Chaos theory has recently received a great deal of attention from scientists and pop- 
ularists. The scientific explanations of chaos are usually incromprehensible to those 
of us without an extensive background in higher mathematics, and the popularists’ 
accounts are aggravating because of their lack of specifics. For example, one seg- 
ment of a recent Nova TV program on Chaos talked about Edward Lorenz and his 
model of a chaotic system. Although the equations that mimic the behavior of the 
system were given, there was no mention of where the equations came from, or how 
they were derived. Here, I will explain how I managed to work out an explanation 
of Lorenz equations with the help of a computer model of a similar but simpler 
system, the waterwheel. 

The Lorenz Equations 

The Lorenz equations were described in the Nova program as a model of heat driven 
convection current, in which heat is applied at the bottom of a container of liquid. 
The application of heat drove the liquid around in a circular convection rolls which 
will stabilize if the temperature of the applied heat source is not too high. If the 
source temperature is too high, the roll will not stabilize and the fluid flow velocity 
will fluctuate and even reverse with seeming randomness. 

The Lorenz equations involve three quantities that represent the state of the roll 
at any given time, and along with three constants, provide a scheme for predicting 
how the system will change depending on its current state. Specifically, the equations 
are given by 

d X / d t  = -OX + UY 

d Y / d t  = - X Z  + r X  - Y (1) 

dZ/dt = X Y  - bK 

The X coordinate represents the speed of the fluid flow in the rolls, Y characterizes 
the temperature difference between ascending and descending fluid elements, and Z 
corresponds to the deviations of the vertical temperature profile from its equilibrium 
value. Of these three quantities, the only one that I understand is X ;  the other 
two are meaningless to me (but very interesting) without more information. The 
constants U ,  T and b were not explained at all in the Nova program, but they probably 
have to do with the amount of heat applied, etc. 

The Lorenz equations can be graphed in three-dimensional space provided an 
initial set of values for X, Y and Z is supplied. If X ,  Y and 2 are considered to be 
space coordinates then their time derivatives represent velocity at each point in that 



14.2.2 The Waterwheel 261 

space. The given initial point will move according to  that  velocity and be brought 
to a nearby point which may have a different velocity (with different direction or 
magnitude), and from there the point will move again and so on. The path of 
the point is called a “trajectory” or a “flowline.” When a flowline is calculated 
by numerical integration, the resulting trajectory is not regular or periodic, but it 
never strays far from a specific region. The trajectory resembles an owl’s mask or a 
butterfly’s wings if the values of the constants are such that the equations describe 
a chaotic motion. For another set of the constants the trajectory may spiral in 
to a single point at  which d X / d t ,  d Y / d t  and d Z / d t  equal zero. This stable state 
represents a steady motion (constant velocity) of the convection rolls. 

I do not know anything about fluid dynamics and would have little hope of 
finding out any more about the Lorenz equations if it was not for another system 
that is described by the same equations. That system, described in the first chapter 
of Chaos: Making a New Science by James Gleick [l], is the Lorenzian waterwheel. 

The Waterwheel 

The waterwheel was designed with the equations in mind and is closely analogous 
to the convection roll. The waterwheel is similar to a Ferris wheel but has buckets 
instead of chairs. Water flows down onto the wheel from the top middle into the 
buckets which have small holes in their bottoms (Fig. 1). The wheel is free to turn 
and does so if it is out of balance due to  differing amounts of water in the buckets. 
If the flow of water into the buckets is slow, the turning of the wheel will eventually 
become stable; but if the flow is large, the wheel’s velocity will fluctuate and reverse 
just like that in the convection roll. 

I y  2 R b  1 

Fig. 1. Sketch of the vertical waterwheel. Each bucket is idealized as a mass point in the treatment 
of its dynamics. In the computer model, as water filling is concerned each bucket has a width 2 Rb; 
(xc, yc) = (0,O) and (zo,  yo) = (0, R) where R is the radius of the wheel. 
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It is important to realize that the wheel must be analogous to the convection 
roll if it is to be described by the same equations. The roll is driven by heat which 
causes the water at the bottom of the vessel to become less dense. Being less dense, 
the water is compelled to rise. On the other hand, the added water from the top 
of the wheel is the driving force. The waterwheel is essentially the convection roll 
turned upside down. In both systems, some “stuff’ is added at one end of a kind 
of “disk.” The “stuff’ is then forced to move to the other end by an outside force 
which, in the case of the wheel, is gravity. 

Computer Simulations 

The behavior of the wheel can be predicted in a simple manner by Newton’s laws. 
Unfortunately, Newton’s laws (without integration) do not give directly the position 
or velocity of the wheel as a function of time, even though they can be used to 
calculate the torque on the wheel as a function of the weight and position of each 
bucket. 

As a first step, it would be interesting to see if a computer model of the wheel 
could be made to exhibit chaotic motion. (It is not clear at this point, to me at least, 
exactly what is meant by “chaotic motion” so we will have to loosely define it as “a 
motion that does not seem to be regular or periodic.” An example of motion that 
is not irregular or nonperiodic would be the motion of a simple pendulum which 
wings back and forth taking equal amounts of time for each swing.) 

The general method of setting up my computer model of the wheel is similar to 
the method of numerical integration used in the calculation of the butterfly curve. 
For small periods of time, the wheel can be treated as if it is moving with constant 
angular acceleration. At the beginning of each time interval At, after calculating the 
change in mass of each bucket the instantaneous torque T on the wheel is calculated, 
and from that the angular acceleration a. The change of angular velocity during 
each time interval is simply given by aAt. In the model, constant filling and draining 
rates are assumed such that the total water mass in the buckets is conserved. Each 
bucket is assumed to have a radius Rb as filling of water is concerned, but is treated 
as a mass point in its dynamics. (See Appendix A.) 

My model of the waterwheel, after some difficulties, did exhibit chaotic behavior. 
The first of these difficulties was the problem of friction. In the first version of the 
program, without putting in friction, the wheel would continuously accelerate until 
the wheel was rotating through nearly an entire revolution through each iteration 
in time. For a reasonably accurate model, the maximum angular displacement of 
the wheel should be no more than about five degrees per iteration, which is about 
seventy iteration per revolution. To keep the wheel from running out of control, I 
decided to introduce a frictional torque Tj but it was unclear at first how ~f should 
vary with angular velocity w.  
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A real model would have frictional torques due to bearing friction at the hub, 
and due to the viscosity of air. A very simple relation would be to use a constant i-f, 
but that does not seem realistic because of the viscosity of air. The faster you try 
to move something through the air, the more resistance you get. There should be 
some dependence on velocity. So the first relation I tried was a direct proportionality 
between frictional torque and velocity, 

T j  = (const)w (2) 

After a few unsuccessful runs of the program I decided to try a proportionality with 
the square of velocity, 

( 3 )  
T j  = (const)w 2 

The velocity squared term did produce a chaotic motion in which the angular velocity 
of the wheel would fluctuate and reverse (Fig. 2(a)). 

However, there are two things wrong with the velocity squared relation. The first 
is that it is not realistic. At very high speeds, an airplane may experience resistance 
that goes nearly as the square of velocity, but the wheel does not seem to turn at 
velocities high enough for this to happen. Second, if we look at the Lorenz equations, 
there is no X 2  term anywhere in the equations. If the wheel is truly analogous to 
the Lorenz equations, the frictional torque should be linearly proportional to the 
velocity. 

Fig. 2. Variation of the angular velocity w of the wheel vs time obtained from the computer model. 
The points above (below) the center lines represent clockwise (anticlockwise) rotation of the wheel. 
(a) Results from an early version using Eq. (3). (b) Results from the final version listed in Appendix 
A with the use of Eq. (2). 



264 Part Ill Projects 14 Computational 

It turned out that my original linear friction equation did not produce chaotic 
motion because of a mistake in the sign of the frictional torque. The fact that 
squaring a number makes it positive was responsible for the success of the velocity 
squared relation. If I had used the linear relation with the absolute value of the 
velocity, it would have worked. Though the absolute value would have made the 
model go chaotic, it is possible to make a linear relation without the absolute value. 
This was just sloppy programing on my part. 

From the final program listed in Appendix A in which Eq. (2) is used, the chaotic 
motion of the waterwheel is demonstrated in Fig. 2(b) and Fig. 3. 

Though a real waterwheel has a finite number of buckets, to be truly analogous to 
the convection roll the wheel must have an extremely large number of buckets. The 
reason for this is that the fluid in the convection roll can absorb heat continuously. 
So to make the wheel have the same kind of continuity, it should have a large number 
of, or infinitely many buckets. As it turned out, in the computer model, as few as 
eight buckets will be enough to produce chaotic motion. 

Dynamics of the Waterwheel 

Now that it has been shown that a computer model of the wheel can exhibit chaotic 
behavior, it is reasonable to assume that all relevant considerations of the dynamics 
of the wheel have been included in the model. Even though the model is highly 
idealized, the assumptions do not leave out anything critical. From the results 
depicted in Figs. 2 and 3, w may be identified with X .  The constants 0, r and b, 
and the variables Y and 2 are still unknown, but we now have enough information 
to try to figure out what they are. 

The first to look at  is the d X / d t  term in the first of the Lorenz equations. If 
X = w ,  then d w / d t  = a,  the angular acceleration. Angular acceleration is equal to 
the torque divided by the rotational inertia of the wheel, Q = r / l ,  provided that 
the total rotational inertia I is constant in time. [More generally, d ( l w ) / d t  = 7.1 

It is reasonable to guess that in the equation d X / d t  = OX - aY, the term -aY 
(constant times angular velocity) is the frictional torque, because it always opposes 
the wheel’s current angular velocity. The aY term probably determines the angular 
acceleration of the wheel due to the imbalance in the amounts of water in the 
buckets (located on the two sides of the vertical line passing through the center of 
the wheel). But in the computer model of the wheel above, the acceleration due to 
water imbalance is calculated by summing up the individual contribution of torque 
applied by each bucket. In light of this, it would be interesting to see if we can find 
a way of calculating the torque on the wheel that does not depend on a knowledge 
of the number of buckets. 

To proceed, I choose a Cartesian coordinate system with the positive y axis to 
be the “up” direction. The hub is located at (xc, yc) and the water pours down onto 
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Fig. 3. Locations of the center of mass of the wheel from the computer model. The vertical 
(horizontal) coordinate is ycm (zzm). (a) In this plot, the outer ellipse is not part of the location 
curve. (b) Another run with shorter run time and different parameters. The innermost paths are 
moving upwards because the dominant influence on the change of the center of mass is the filling 
of the buckets. Near the outside the motion is downwards and predominantly a rotational motion. 
The bend at the bottom is caused by a tendency of the wheel to act like a pendulum after swinging 
down around the outside, but the motion is very quickly dampended. A low frictional constant 
would produce a large number of oscillations or bends at the bottom of the plot. 

the wheel at the point (zo,yo), i.e., the water need not be pouring from the top if 
one so chooses. Each bucket is represented as a point on the rim of the wheel. The 
rotational inertia of the wheel is assumed to come completely from the water in the 
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buckets (i.e., the wheel frame and the buckets are massless). The center of mass of 
all the water, or the whole wheel, is located at  (xcm,ycm)  which varies with time t .  

From the calculations of torque and the center of mass, it is possible to show that 
for a wheel with any number of buckets, the angular acceleration does has exactly 
the form -aY (constant times the unknown quantity Y )  in the dX/dt  equation! (See 
Appendix B.) It is reasonable at this point to identify Y with xcm, the x component 
of the wheel’s center of mass. 

We must now ask the question: What changes the x component of the center 
of mass? That is, we need to know what changes the quantity Y .  The draining 
and filling water change the mass of the wheel at different places, so they will also 
change the center of mass. The wheel is also in rotation, so the point at which the 
center of mass is located will also rotate about the hub of the wheel. But, when a 
point ( x , y )  is rotated in two dimensions, the amount that x changes is dependent 
on the quantity y (and vice versa). So if we are to calculate the time derivative of 
the xcm, we will also need to know ye,. The quantity ycm also changes with time; 
so we might guess that ye, is equal to 2 .  Each of the d Y / d t  and dZ /d t  equations 
has a binary term of velocity multiplied by the other variable (i.e., - X Z  in d Y / d t ,  
and X Y  in d Z / d t ) ,  which is what we might expect for a rotational motion. 

If we calculate the time change of x,, and ye, due to rotation and the change 
of mass arising from filling and draining, we get equations that look very much like 
the Lorenz equations (see Appendix C)! In short, we have now identified X ,  Y and 
Z as w ,  x,, and ye,, respectively. The equations of motion of the waterwheel are 
given by 

dw/dt  = -kw - ( g / R 2 ) x c ,  + (g /R2)xc  (4) 

Note that these equations have constants not found in the Lorenz equations. In 
Eq. (4), -kw is the frictional torque, g the acceleration due to gravity, and R the 
radius of the wheel. In the derivation of these equations, the total water mass is 
assumed to be constant. In Eqs. (5) and (6) the filling rate is assumed constant, but 
the draining rate of each bucket is proportional to the mass there, i.e., drn i ld t  = 

-srni. [In contrast, in the computer model d m i / d t  = const. If constant draining 
rate is used in the mathematical model here and ij one is willing to assume that 
x:, + Ye,  M const, then one can still obtain a set of equations similar in structure 
to those in Eqs. (5) and (6). But this assumption is not very physical as can be seen 
from Fig. 3.1 

As seen from the numerical solutions of the wheel equations plotted in Fig. 4, the 
general characteristics of the system is very similar to those of the Lorenz attractor 
(see p. 28 of Ref. [l]). 
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Fig. 4. Numerical solutions of equations of motion of the waterwheel. The upper plot is of the 
quantities w, zcm and ycm. The lower plot is of w vs time, in which points above (below) the line 
represent clockwise (anticlockwise) rotation of the wheel. 

The main idea of the process used to derive the wheel equations can conceivably 
be applied to many other dynamical systems. In this process the system is analyzed 
in order to determine what quantities are necessary to uniquely determine the state 
of the system at any given time. The rate of change of each quantity as a function 
of some or all of the other quantities is then determined. Though this process 
is applicable to the study of other phenomena, the study of chaos seems to be 
primarily concerned with the finding of order in situations that once were thought 
to be random or inconceivably complicated in their behavior. 

Editor's note: Rolf Freimuth did this work when he was a sophomore, just fin- 
ishing an introductory course in calculus physics. He was not aware of and did not 
have the benefit of the works of Refs. [a] and [3], in which a continuum version of 
the waterwheel is presented. 

The set of equations, Eqs. (4)-(6), is in fact closer to that of Eq. (1) than it 
looks. To see this, in Eqs. (4)-(6), let xc = yc = zo = 0, yo = R, w = X, 
x,, = -Y,  yCm = -2 + R, s = 1, and R = ( g / k ) ' / ' .  One then obtains Eq. (1) with 
o = k, T = R, and b = 1. Consequently, the Lorenz equations is a special case of 
Eqs. (4)-(6). 
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Appendix A: Computer P r o g r a m  for Simulating the 
Motion of the Waterwheel  

In this simulation of the motion of the waterwheel, everything is treated in a two- 
dimensional space. The wheel has radius R and is centered at (0,O). There are 
N buckets equally spaced on the rim of the wheel. The i th bucket is located at 
(x,,y,) = (Rcos8,,Rsin8,), where 8, is the polar angle which is a function of time t 
with i = 1, 2 , .  . . , N ;  dO,/dt = w .  Each bucket has a width of 2Rb. Water is injected 
from the top at (0, R)  with a constant rate f .  Consequently, water is added to the 
ith bucket if both conditions, )x,) < Rb and yz > 0, are satisfied. The constant 
draining rate of each bucket 6 is given by S = f/N. The water mass in the zth 
bucket is denoted by m,. 

The initial conditions written into the program below are: 81 = 0, ml = 1, and 
m, = 0 for i 2 2 (which can be easily changed). The iteration time interval is At. 
At the end of each time interval, m, -+ m, - S(At) due to draining alone. The 
total torque 7 = ~f + T ~ ,  where the frictional torque is given by 7f = -pw and the 
gravitational torque T~ = C,m,g(Rcos8,). The wheel frame and the empty buckets 
contribute WR2 to the total rotational inertia I ,  which is given by I = (W + m)R2 
where m = C z m z .  The angular acceleration Q = ~ / 1 ,  and w -+ w + cr(At), 8, + 
8, + a(At)'/2 at the end of the iteration. 

Finally, the center of mass is given by x,, = C,m,z,/m, and ycm = C,m,y,/m. 

100 'Computer model of t h e  Lorenzian waterwheel ( i n  quickBASIC1 
110 
120 ' D e f i n e  parameters ( i n  SI u n i t s )  
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 

N = 8  ' number o f  buckets  
R = . 5  ' wheel r a d i u s  ( m )  
w = 5  ' WRZ i s  r o t a t i o n a l  i n e r t i a  due t o  wheel frame/buckets ( kg )  
BR = .19 ' nonzero bucket  r a d i u s  Rb (m)  
G = 9.8 ' g r a v i t a t i o n a l  a c c e l e r a t i o n  (m/s2 )  
FC = 2 ' f r i c t i o n a l  cons tan t  p 
FR = .25 ' r a t e  o f  f l o w  on to  t h e  wheel f ( k g / s )  
DR = .25/N ' r a t e  o f  f l o w  o u t  o f  each bucket  6 ( k g / s )  
P = O  ' i n i t i a l  angular  p o s i t i o n  81 ( r a d )  
v = . 2  ' i n i t i a l  angular  v e l o c i t y  w ( r a d / s )  
DT = .1 ' t i m e  i n t e r v a l  o f  each i t e r a t i o n  A t  ( 5 )  
P I  = 3.141592654# 
D I M  P ( N )  . C ( N )  , S ( N )  . M ( N )  : M ( l ) = l  250 

260 ' 

300 'Ass ign i n i t i t a l  angular  p o s i t i o n s  t o  t h e  buckets  
310 For Z=1 TO N : P(Z)=(Z- l ) *2*PI /N : NEXT Z 

270 CLS: SCREEN 2 WINDOW (0,-6)-(300,6) 
280 LINE (0.0)-(300,0) 

320 ' 
330 ' B E G I N  LOOP 
340 M = 0 TG=O CMX=O CMY=O 
350 
360 'Compute s i n e  and cos ine  f o r  each bucket  
370 FOR Z=1 TO N C ( Z ) = C O S ( P + P ( Z ) )  . S ( Z ) = S I N ( P + P ( Z ) )  NEXT Z 
380 ' 



14.2.2 The Waterwheel 269 

390 'Determine which i f  any buckets  a r e  be ing  f i l l e d  and f i l l  them 
400 FOR Z = 1 TO N : IF ABS(R*C(Z))<BR AND S(Z)zO THEN M(Z)=M(Z)+FR*DT 
410 NEXT Z 
420 
430 ' D r a i n  a l l  buckets and compute t o t a l  mass 

450 M=M+M(Z) : NEXT Z 
460 ' 
470 'Compute t h e  to rque  on t h e  wheel due t o  g r a v i t y  

490 
500 'Add g r a v i t a t i o n a l  t o rque  and f r i c t i o n a l  t o rque  t o  o b t a i n  t o t a l  t o rque  
510 'and compute t h e  angular  a c c e l e r a t i o n ,  new p o s i t i o n  and angular  v e l o c i t y  

530 ' 
540 'Compute t h e  c e n t e r  o f  mass 
550 FOR Z=1 TO B : CMX=CMZ+M(Z)*R*C(Z) : CMY=CMY+M(Z)*R*S(Z) : NEXT Z 

440 FOR Z = 1 TO N : M(Z)=M(Z)-DR*DT : I F  M(Z)<O THEN M ( Z )  = 0 

480 FOR Z = 1 TO N : TG=TG-M(Z)*G*R*C(Z) NEXT Z 

520 T=TG-V*FC A=T/((W+M)*R*2) P=P+V*DT+DTA2*A/2 : V=V+A*DT 

560 CMX=CMX/M : CMY=CMY/M 
570 PSET ( C M X . C M Y )  : I F  INKEY$=" I '  THEN CLS 
580 GOT0 330 'Repeat l o o p  

Appendix B: Derivation of Eq. (4) 

The total torque has two parts, given by T = ~f + T ~ .  Adopting the assumption of 
Eq. (2) for the frictional torque, one has ~f = -kw where k is a constant. Referring 
to Fig. 1, the gravitational torque T~ = Cimi(-g)RcosBi (with the torque vector 
rg = T ~ Z ) .  Since 

x,, = 2,  + (R/m)Czmz cos 02 (7) 

thus T~ = -gm(z,, - 2,). 

The rotational inertia I = mR2. With the assumption of m = const, one obtains 
I(dw/dt) = T from the Newton's second law. Putting everything together Eq. (4) is 
obtained. 

Appendix C: Derivation of Eqs. (5) and (6) 

From Eq. (7), one has 

dx,,/dt = m-lCi(dmi/dt)(Rcos 64) + (R/rn)Cimi(-  sin&)(d&/dt) (8) 

We adopt three assumptions here. (i) The draining rate of each bucket is propor- 
tional to its mass, i.e., dmi/dt = -smi due to draining alone. (ii) There are enough 
number of buckets so that there is always a bucket at the location (x0,yo) to re- 
ceive the injected water at any time. (iii) The total water mass m is conserved. 
These three assumptions imply that water must be injected with a fixed rate given 
by sm.  It follows that the first term on the right hand side of Eq. (8) becomes 
m-1[smzo + ci(-smi)(RcosBi)] = s[20 - (x,, - 4 1 .  

Since d&/dt = w and 
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the second term on the right hand side of Eq. (8) becomes -w(yc, - ye). Equation 
(8) thus reduces to  Eq. (5). 

Similarly, Eq. (9) implies 

On the right hand side of Eq. ( lo) ,  the first term equals m-l[smyo + 
Ci(-snri)(RsinOi)] = s[yo - (ye, - ye)], and the second term equals w(z,, - z,). 
Consequently, Eq. (10) reduces to  Eq. (6). 
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14.3 Pattern Formation 

14.3.1 Biased Random Walks 
Mark A .  Guzman and Rocco D. Pochy 

The program below generates patterns from the three-directions biased random walk 
(BRW) model [l], which was introduced to simulate the tree patterns observed in 
electrodeposits in a linear cell [2,3]. In this model the random walker is allowed to 
walk sideward or downward, but not upward. There is only one parameter R with 
R = ( p ~  + p ~ , ) / p ~ ,  where p ~ ,  p ~ ,  and p~ are the probabilities of stepping to the 
right, left and down directions, respectively; p~ = p ~ ,  is always assumed. 

In this BRW model, a random walker is released at random from a top horizontal 
line, which is frozen when it touches the bottom line. Another walker is then released 
from the top line and sticks when it reaches the bottome line or the perimeter sites 
of the growing aggregate. The process is repeated. Periodic side boundary condition 
is assumed. Typical patterns obtained from this program are presented in Fig. 1. 

/* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
/*  B1ASWALK.C *I 
I* Language: M i c r o s o f t  C v7.0 *I 
I* *I 
/*  The R parameter d e f i n e s  t h e  r a t i o  between *I 
/*  t h e  s i d e  t o  s i d e  mo t ion  vs t h e  downward mo t ion .  *I 
I* R = 0 ,  o n l y  downward mo t ion ,  b a l l i s t i c  b e h a v i o r .  *I 
I* R = 10000. moves downward w i t h  t h e  p r o b a b i l i t y  o f  *I 
I* 1 o u t  o f  10001. *I 
/* . . . ____ . . . __ . ._ .__ -___________________ .~~~~~~~ . - . . . - -~~~ .~~~ . * /  

# inc lude  <s td io .h>  
#i n c l  ude < s t d l  i b .  h> 
# inc lude  <conio.  h> 
# inc lude  <graph. h> 

/ *  ...[ Define Constants ] - - . - - . . - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - -  *I 
#de f ine  XMAX 128 
#de f ine  YMAX 128 

#de f ine  TRUE 1 
#de f ine  FALSE 0 

#de f ine  OCCUPIED 1 
# d e f i  ne EMPTY 0 

s t a t i c  char field[XMAXI[YMAXl: 

I * - - . [  Define Funct ions ] - .---. .--. .-----------------. .-------- *I 
v o i d  I n i t i a l i z e ( ) ;  
v o i d  Random-wa1 k (  1 : 
v o i d  D i s p l a y - f i e l d ( ) :  
i n t  Wrap() ; 
double random( ) ; 

/* ...[ Define Global  Va r iab les  ]..-..--.---..--.....-.---..--~~*/ 
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I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

main( 1 
{ 

i n t  R ,  i ; 

p r i n t f ( " E n t e r  B ias  parameter R LO-100001 : " ) ;  
scan f ( "%d" ,&R) ;  
R = R + l ;  I* conver ted r a t i o  *I 

p r i n t f ( " E n t e r  Random Seed ( i n t e g e r )  : " ) ;  
scanf  ( "%d" , &i 1 : 
srand( i ) ; 

I n i t i a l i z e ( )  ; 

Randomwal k ( R ) ;  

p r i n t f ( " \ 0 0 7 " )  : 
w h i l e  ( ! k b h i t (  ) )  ; 

1 

{ 
v o i  d I n i  t i  a 1 i ze ( 1 

i n t  i, j ;  

- s e t v i  deornode(-MRESNOCOLOR) ; 

f o r  (i=O;i<XMAX;i++) 
/*-.-[ Clear  F i e l d  ]--.---.---...-----*/ 

f o r  (j=O ; j<YMAX ; j ++ )  
f i e l d [ i l [ j l  = ( c h a r )  0 ;  

I * - - - [  I n i t i a l i z e  "Bottom" 
j = YMAX - 1 ;  
f o r  ( i =O ; i <XMAX ; i ++) 

f i e l d [ i ] [ j ]  = OCCUPIED; 
1 

I * - - - [  I n i t i a l i z e  "Bottom" 
j = YMAX - 1 ;  
f o r  ( i =O ; i <XMAX ; i ++) 

f i e l d [ i ] [ j ]  = OCCUPIED; 
1 

v o i d  Randomwa lk ( i n t  R)  

i n t  i , j , n ;  
i n t  jmax = YMAX-1: 
i n t  stuck=FALSE; 
i n t  done =FALSE; 
i n t  count  ; 
char  t e x t [ 4 0 ] ;  

w h i l e  ( ! done)  

i 

I * - - - [  Get S t a r t i n g  Loca t ion  ] - - - - - - - - * I  
i = XMAX*randomO; 
j = jmax-1: 

s tuck = FALSE; 
count  = 0 :  

{ 

I * - - - [  Walking "Down" t o  t h e  Sur face I*/ 
w h i l e  ( ! s t u c k )  

i = Wrap(i1; 
i 

count  = f i e l d [ i l [ j + l l  + f i e l d [ W r a p ( i - l ) l [ J l  + 
f i e l d [ W r a p ( i + l ) l [ j l  + f i e l d [ i l [ j - 1 1 ;  

i f  (count!=O) I* Is i t  nex t  growth *I 
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stuck = TRUE; 
field[i][j] = OCCUPIED; 
if (j<=jmax) jmax--; /*  Decrement Re1 ease Boundary */ 

I 

if (random0 > I.O/(float)R) 
if (randomOc0.5) 

else 

/* Move left or Right*/ 
i++; 

I . . - .  . .  
else 

j++; /* Move downward */ 

if ((j<l) 1 1  (j<(jmax-3))) stuck=TRUE; /*  Lost particle */ 

if (jmax==l) 

Display-field(): 
done = TRUE: 

settextposition(23.0); 
spri ntf (text, "R = %d" , R )  
- outtext(text1; 

void Display-field() 

} 
- 

1 

I 
short i,j: 

for ( i =O ; i <XMAX : i ++) 

i f ( f i el d[ i 3 [ j l==OCCUPI ED) 
for (j=O : j<YMAX : j++) 

setpi xel ( i , j ) ; - 

1 

{ 
int Wrap(int n) 

if (n>=XMAX) return (n-XMAX); 
i f  in<O) return (n+XMAX) ; 
return(n) : 

double random() 
1 

i 
1 

return(rand( )/32767 .O); 
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J 

L- 
Fig. 1. Patterns generated by the bias random walk (BRW) model. R = O, 10, 100, 1000 and 10000, 
respectively, in (a)-(.). The case R = 0 is called the ballistic deposition model. 
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14.3.2 Surface Tension and the Evolution of 
Deformed Water Drops 
Victor M. Castillo 

A program is developed for the PC that simulates the effect of surface tension 
on fluid patterns. An algorithm similar to this was originally used by Liang [l] 
to model viscous fingers. Here the program is used to model the evolution of an 
irregular shape to a stable, round form similar to the way a deformed water droplet 
redistributes its mass as a result of surface tension. 

Surface Tension 

Surface tension is the result of the affinity that a fluid has for itself. Each discrete 
particle of a fluid is subjected to an attractive force from every other particle in that 
fluid. This phenomenon is responsible for keeping a liquid in a condensed phase and 
has a great influence on the shape that it takes. A liquid is not normally seen to 
have sharp edges because this would create points at the tip that have strong net 
forces opposing that geometry. It can be seen that the net force at a given point 
on the interface is inversely proportional to the local radius of curvature. If the 
point is near or on a sharp tip, the local radius of curvature is small, and the net 
force inward is large. If the point lies on a straight or slightly rounded edge, the 
curvature is large and the net force is small. If the point lies near the bottom of a 
crevice, the local radius is small, but negative; thus, the point is subject to a large 
net force away from the center of mass. 

A lattice gas model could be used to calculate the effects of the short range 
interactions of all the particles. However, to make this model workable on a PC, the 
local radius-of-curvature approximation is used instead. Details of this program is 
described below. The evolution of an irregular shape into a rounded shape obtained 
from the program is depicted in Fig. 1; it works as expected. Of course, other initial 
shapes can be used. 

Fig. 1. Evolution of an irregular shape into a rounded shape. The time from left to right is 0, 200, 
800 and 1600 iterations, respectively. 
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The Program 

This program was written in Microsoft QuickBASIC 4.5 for use on an IBM PC with 
graphics capability. First, an arbitrary, irregular shape is defined as a closed curve 
on a two-dimensional square lattice. The program then enters a loop of choosing 
two random points that exist on the boundary, determining their local “radius of 
curvature” by counting the number of occupied neighboring sites, and deciding 
which location will receive one particle and which will lose one particle. 

Cells of the lattice are chosen at random. The cell is determined to exist on the 
boundary if it satisfies two conditions: (i) The cell must be occupied. (ii) The cell 
must have less than 8 occupied neighbors in the 3 x 3 local neighborhood (the so- 
called Moore neighborhood in the language of cellular automata, which consists of 4 

nearest neighbors and 4 next-nearest neighbors in the diagonal directions); otherwise 
it must exist within the interior. The local “radius of curvature” is then determined 
by counting the number of occupied neighbors that a cell has. If the cell has a 
large number of occupied neighbors, then it must lie in a crevice with a negative 
radius of curvature. If the cell has a small number of occupied neighbors, then the 
cell must lie on a peak with a positive local radius of curvature. Since the local 
radius of curvature is related inversely to the number of neighbors, the program 
takes points with few occupied neighbors and puts them into the neighborhood of 
cells with more occupied neighbors. After a number of iterations, the pattern starts 
to lose the sharp corners and cavities. 

........................................................................ 
I BUBBLE. BAS . ....................................................................... 
RANDOMIZE T I M E R  
D I M  a%(50, 50) 
WXO = 0 :  wy0 = 0 :  wxl = 40: wyl = 40 

mcn = (wx l  - wx0) * (wyl - wy0) 
SCREEN 9 :  WINDOW ( W X O  - 10, WyO)-(WXl + 10. Wyl) 

‘monte c a r l o  number 
i t e r  = 10 * mcn 
D = 3:  surten = 9 
........................................................................ 
‘Loads D a t a  Array w i t h  i n i t i a l  pa t te rn  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

FOR i = 13 TO 33 
FOR j = 13 TO 18 

NEXT j 
NEXT i 
FOR i = 6 TO 25 

FOR j = 19 TO 23 
NEXT j 

L E T  a % ( i ,  j) = , l  

L E T  a % ( i ,  j) = 1 

NEXT i 
c = o  
FOR .i = 24 TO 29 

c = c + 1  
FOR i = 6 + C TO 33 

L E T  a % ( i .  j) = 1 
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NEXT i 
NEXT J 
FOR 1 = WXO TO Wxl 'Disp lays  a r r a y  d a t a  

FOR j = wy0 TO wyl 

NEXT 
I F  a % ( ] ,  j) THEN CIRCLE ( 1 ,  j), . l ,  10 

NEXT 

........................................................................ 
' M a i n  loop 

FOR s = 1 TO i t e r  
f l a g  = 0 
DO 

DO 

LOOP UNTIL a % ( x l .  y l )  
cn t l  = 0 
FOR i = x l  - 1 TO x l  + 1 

........................................................................ 

' look f o r  boundary p o i n t  #I 

x l  = INT(RND * wxl) + WXO 
y l  = INT(RND * wyl) + wy0 

FOR j = y l  - 1 TO y l  + 1 

NEXT 
cnt l  = c n t l  + a % ( i ,  J) 

NEXT 
I F  cnt l  < 9 THEN f l a g  = 1 

LOOP UNTIL f l a g  
f l a g  = 0 
DO 

' l ook  f o r  boundary p o i n t  #2 

DO 
x2 = INT(RND * wxl)  + WXO 
y2 = INT(RND * wyl) + WYO 

LOOP UNTIL a%(x2.  y2)  = 1 
c n t 2  = 0 
FOR i = x2 - 1 TO x2 + 1 

FOR j = y2 - 1 TO y2 + 1 

NEXT 
c n t 2  = cnt2  + a % ( i .  j) 

NEXT 
I F  c n t 2  < 9 THEN f l a g  = 1 
I F  x l  = x2 AND y l  = y2 THEN f l a g  = 0 
I F  cnt l  = c n t 2  THEN f l a q  = 0 

LOOP UNTIL f l a g  
c n t l  = 0 ' c a l c u l a t e  loca l  rad ius  of  c u r v a t u r e  
FOR i = x l  - D TO x l  + D 

FOR j = y l  - D TO y l  + D 

NEXT 
c n t l  = c n t l  + a % ( i ,  j) 

NEXT 
c n t 2  = 0 
FOR i = x2 - D TO x2 + D 

FOR j = y2 - D TO y2 + D 

NEXT 
c n t 2  = cnt2  + a % ( i ,  J )  

NEXT 
I F  cnt l  > c n t 2  THEN 

recx = x l :  recy = y l  
g ivx  = x2: givy = y2 

recx = x2: recy = y2 
g ivx  = x l :  givy = y l  

ELSE 

E N D  I F  
I F  ABS(cnt1 - c n t 2 )  > surten THEN 

a % ( g i v x ,  g ivy)  = 0 
CIRCLE ( g i v x .  g i v y ) ,  .1. 0 
DO 

LOOP UNTIL a % ( i ,  j) = 0 

i = INT(3  * RND - 1) + recx  
j = INT(3  * RND - 1) + recy 
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NEXT s 
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14.3.3 Ising-like Model of Ferrofluid Patterns 
Victor M.  Castillo 

Numerical simulations of fluid flows is one of the most computationally demanding 
tasks in applied physics. In order to precisely calculate the dynamics of the system, 
it would be necessary to determine the momentum, location, and the forces acting 
on every molecule of the fluid. Considering the enormous number of molecules in a 
volume of fluid large enough to be significant in most problems, it is not feasible to 
do this without a supercomputer. Approximation methods have been developded 
that will allow estimates to be made with a reasonable amount of computations. 
Examples of this are those involving dimensional analysis and cellular automata. 

An alternative is the lattice gas method based on the Ising model [l]. In the 
Ising model, a lattice site is assigned a value of +1 or -1 (spin up or spin down) 
to represent the local spin orientation. Two neighboring spins interact in such a 
way that parallel spins have lower energy than antiparallel spins. The energy of the 
system is then considered to be a function of the spin configuration of that system. 
The energy of the system is defined by 

E { s ~ }  = - C ~ i j ~ i ~ j  - HCsi  

where ( i j )  represents nearest neighboring pair. In a two-dimensional hexagonal lat- 
tice, for example, there would be six nearest neighbors for each site. The interaction 
energy ~ i j  and external field H are taken to be constants throughout the system. 

Ferrofluid Patterns 

Experiments done with a ferrofluid and an immiscible, nonmagnetic fluid placed 
together in a Hele-Shaw cell [a] reveal complex finger patterns forming in the pres- 
ence of a uniform magnetic field applied perpendicular to the cell. The patterns 
undergo a phase change as the magnetic field intensity Ho is changed. Within a 
certain range of Ho, fingers of the ferrofluid invade the nonmagnetic fluid to form a 

labyrinth pattern of self-avoiding finers. Under other conditions, the fluids exist in 
an emulsified state, bulk flow state, or a meniscus state. 

In 1986 Rosensweig [3] developed a lattice model similar to the Ising model, 
which produced patterns much like those formed by a ferrofluid in the presence of 
a magnetic field. The model uses a hexagonal lattice for the pragmatic reason that 
the experimental patterns contain nodes, with three branches oriented at  120" with 
respect to each other at each node. Each site at location (i,j) has a dipole/spin 
variable s ( i , j )  such that s ( i , j )  = 0 if the site is occupied (by the magnetic fluid), 
and s ( i , j )  = 1 if vacant (i.e., occupied by the nonmagnetic fluid). Initially, a flat 
interface is assumed. A vacant perimeter site is picked at random and the total 
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energy change due to the addition of a magnetic fluid to this site Ut is calculated. 
The vacant site is actually occupied if Ut < 0; otherwise, another vacant perimeter 
site is picked and the process is repeated. In dimensionless units, Ut = Us + U, + U,, 
where the dipole field energy Us = -1, the dipole-dipole energy U, = a l C s ( i , j ) ,  
and the interfacial energy U, = 2 a 2 [ 3  - Es(i,j)]. (See Ref. [3] for the origin of 
these terms.) 

Two computer programs have been written to demonstrate these models on the 
PC. The first, FERROFL.BAS in Appendix A, is written in QuickBASIC 4.5, 
which produces a dynamic EGA output of the pattern as the lattice is updated. 
The second, FERR0FL.M (not listed here), is written for MATHEMATICA 1.2, 
which produces a POSTCRIPT image of the equilibrium state that can be ren- 
dered on most video consoles and laser printers using MATHEMATICA'S utilities. 
Figures 1-3 repesent results from our program, in agreement with those in 
Ref. [ 3 ] .  

Appendix A: Computer Program in QuickBASIC 

'(*** D e f i n i n g  i n i t i a l  occupied s i t e s  ***) 
FOR v = 1 TO 2 

F ~ R  x = 1 TO w 
P (x ,  y )  = ( X  MOD 2) XOR (y MOD 2) 

NEXT 
NEXT 

'(*** D isp lays  G r i d  ***) 
FOR x = 1 TO w 

FOR v = 1 TO w I t  P(x .  v )  THEN 
CIRCLE ( x .  y ) ,  . 5 .  9 :  PAINT ( x ,  y ) ,  9 

END I F  
NEXT 

NEXT 

'(*** I n p u t  Values f o r  Constants ***I 
V I E W  PRINT 1 TO 5 
INPUT "ENTER ALPHA 1: " ,  a1  
INPUT "ENTER ALPHA 2 :  " a2  
LOCATE 4. 1: PRINT "TOTAL COUNT =I* 

DO 
DO 

DO 
LET x = INT(w * RND + 1) 
LET y = INT((w - 1) * RNO + 2) 

LOOP UNTIL ( ( y  MOD 2) XOR ( x  MOD 2)) AND ( P ( x ,  y )  = 0 )  
count  = P(x,  y + 2)  + P (x ,  y - 2) + P ( x  - 1. y - 1) 
count  = count  + P(x + 1, y + 1) + P(x - 1, y + 1) + P(x + 1. y - 1) 

LOOP UNTIL count  
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SELECT CASE count  
CASE 1: LET E = a 1  + 4 * a 2  - 1 
CASE 2:  LET E = 2 * a 1  + 2 * a 2  - 1 
CASE 3 :  LET E = 3 * a 1  - 1 
CASE 4:  LET E = 4 * a 1  - 2 * a 2  - 1 
CASE 5 :  LET E = 5 * a 1  - 4 * a 2  - 1 
CASE 6 :  LET E = 6 * a 1  - 6 * a 2  - 1 
CASE 0 :  LET E = 6 * a 2  - 1 

CIRCLE ( x .  y ) ,  . 5 .  9 :  PAINT ( x .  Y ) ,  
LET P(x,  y )  = 1: LET t o t  = t o t  + 1 
LET E i s i n g  = E i s i n g  + coun t  
LET Energy = Energy + E 

END SELECT 
I F  E < 0 THEN 

END I F  
LOCATE 4 ,  15: P R I N T  t o t  

LOOP UNTIL I N K E Y $  = "Q" 

9 

Fig. 1. The Labyrinth phase. a1 = 0.5, a2 = 0.1. 

I 

Fig. 2. The emulsification phase. 
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Curved Meniscus 

I I I 
a, 0 1/8 1/3 1/2 

Fig. 3. Phase diagram on the (01, 0 2 )  plane. 
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14.4 Cellular Automata 

14.4.1 One-Dimensional Totalistic Cellular Automata 
Rocco D. Pochy 

One of the simplest of cellular automata is that with one dimension, called a line 
automaton. It simply consists of a strip of automata that change their states based 
on a set of rules. At every iteration of the “state clock,” the state of the line 
of automata changes. Even with the simplest of rules, this system is capable of 
demonstrating the complex behavior of dynamical systems. 

A line automaton can be defined by two parameters and a rule of change. The 
two parameters are: (i) k ,  the number of states each automaton can be in, and (ii) T ,  

the radius of influence, i.e., the number of neighbors on each side of the automaton 
that can affect its change. 

The rule of change specifies how each automaton changes its state. One set of 
such rules is called totalistic, in which the new state of each automaton is a function 
of the sum of all the present automata states within T ,  with that automaton in the 
center. To be specific, let us assume that k = 3 and T = 2; the three possible states 
of each automaton is represented by the set K 3 {0,1, .  . . , ( k  - 1)) = {0,1, a}. Let 
us further assume that the present state of the line automata is given by 

. . .  2 1 0 0  1 1  0 0  1 2  1 0  2 1 0 0 2  1 0 0 0  1 1  2... 

t * l ‘  
For any automaton, the sum of the numbers within its radius of influence s may 
vary from 0 to 10 = ( k  - 1 ) ( 2 ~  + 1). Therefore, the rule of change can be specified 
by a lookup table such as this one below. 

10 9 8 7 6  5 4 3  2 1 0  

0 0 1 2 0 2 0 1 1 2 0  

Each number in the lower line gives the new state if s is equal to the number above 
it. Consequently, the new state of that automaton indicated by the double-line 
arrow above will be 0 according to this rule. 

We therefore see that a totalistic rule can be specified by a code consisting of a 
sequence of N [G (k - l ) (2r  + 1) + 11 integers, with each integer chosen from the 
set K .  In the program below, one is asked to input k (from 1 to 5), T (from 1 to 319), 
and the rule code (a sequence of N integers, with N 5 128). If less than N digits 
are given in the rule code, then the ungiven digits in the rest of the sequence will be 
assigned 0 automatically by the program. Furthermore, the program automatically 
start with a line consisting of numbers chosen randomly from the set K .  One 
particular result is shown in Fig. 1. 
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Fig. 1. History of a line automata. Time increases from top to bottom. 

The Program 

This program allows the user to enter I c ,  T and a rule code. Initial random state 
is drawn along the top of the screen. Periodic boundary condition is used. The 
time evolution of the line automaton is seen as it progresses down the screen. The 
language used is Microsoft QuickBASIC 4.0. 

'***** AUTOMATA.%,& .......................... 

SCREEN 9 

CONST 1ine.max = 640 
CONST max. rule = 128 
CONST start.line = 15 
CONST end. 1 i ne = 349 

D I M  ol d. array( 1 ine .max) 
DIM new.array( 1 ine .max) 
D I M  rule(max. rule) 

'** Define Palette Display Colors 
PALETTE 0. 0 '** 0 = black 
PALETTE 1. 63 '** 1 = white 
PALETTE 2, 2 '** 2 = green 
PALETTE 3, 4 '** 3 = red 
PALETTE 4, 13 '** 4 = ye1 low 
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RANDOM1 ZE 
LOCATE 2. 1: INPUT "Enter K value:": k 
LOCATE 3.  1: INPUT "Enter R value:": r 
LOCATE 4, 1: INPUT "Enter CODE:"; code$ 

CLS 
'** Break CODE string into rule array 
length = LEN(code$) 
j = O  
FOR i = length TO 1 STEP -1 

x = VAL(MID$(code$, i ,  1)) 
rule(j) = x 
j = j + l  

NEXT 

LOCATE 1, 1 : PRINT "CODE : " ; 
FOR i = length TO 0 STEP -1 

NEXT 
PRINT RIGHT$(STR$(rule(i ) ) ,  1) : 

LOCATE 1. 20: PRINT USING " K  = # R = # " ;  k :  r 
'** Initialize Old Array and Display 
FOR i = 0 TO 1ine.max 

old.array(i) = INT(RND * ( k  - 1) + .5)  
PSET ( i ,  start.line). old.array(i) 

NEXT 

display = start.line + 1 

WHILE (display < end.line AND INKEY$ = " ' I )  

'** Process Line 
FOR i = 0 TO 1ine.max 

sum = 0 
F O R j = i - r T O i + r  

n = j  
I F  n < 0 THEN n = 1ine.max + n 
IF n > 1ine.rnax THEN n = n - 1ine.max 
sum = sum + old.array(n) 

NEXT 
new.array(i) = rule(sum) 

NEXT 

'** Copy New to Old and Display 
FOR i = 0 TO 1ine.max 

old.array(i) = new.array(i) 
PSET (i. display), old.array(i) 

NEXT 

display = display + 1 

WEND 

WHILE (INKEY$ = ' I " ) :  WEND 
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14.4.2 Two-Dimensional Cellular Automata: Formation of 
Clusters 
Rocco D. Pochy 

On simple example of a two-dimensional cellular automata is the one with two states 
on each site and the use of the majority rule. Specifically, a Moore neighborhood 
is used. The new state in each cell is the one possessed by the majority of its eight 
neighbors; if there is no majority, the state remains unchanged. 

Fig. 1. Formation of clusters in a two-dimensional cellular automaton. Moore neighborhood, and 
the majority rule is used. The initial random state (a) evolves after 5 (b) and 10 (c) time steps, to 
the final stable state (d). 

In the prograni below, one begins with a random mix of states (Fig. l(a)) .  As 
time increases one sees more clusters formed (Figs. l (b)  and (c)). The boundaries 
of the clusters smooth with time, until a stable state is reached (Fig. l(d)).  For 
different mixture of states used initially, a stable state is always reached. 
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The Program 

The language used is Microsoft C v5.0. Each cell is either black or white. Each cell 
is tested with its eight neighbors. If more neighbors are black than white (white 
than black), the cell becomes black (white). Otherwise, the cell remains what it is. 
The boundary condition is set so that the states of cells on the four edges of the 
lattice are frozen throughout. 

#de f ine  S I Z E  170 
#de f ine  BLACK 0 
#de f ine  BLUE 1 
#de f ine  GRAY 6 
#de f ine  WHITE 15 
/* .......-..-........--.-..-----.-. 

s t a t i c  char  GRID[2][SIZE][SIZEl; /* Mat r i ces  o f  Change *I 
/* . - . . - . - - . - . - - - - . . . - .~ . . - - . - - . - - . .~ - - . . - - - . - - - . - . . - - - -~~~.~~~~~~~~~.* /  

main()  

unsigned long  i n t  i = 1; 

i n i  t i  a1 i ze( ) ; 

w h i l e  ( kbh i  t (  )==O) 

I 

I 

v o i d  i n i  t i a 1 i ze( v o i  d )  
I 

1 

r e g i s t e r  i n t  i ,  j , v a l u e ;  
i n t  seed ; 

pr in t f ( "ENTER RANDOM SEED (0-32000) : " ) ;  
scanf  ( "%d" ,&seed) ; 
srand(seed) ; 

I* Set up g raph ics  screen */ 
- s e t v i  deomode(-MRESNOCOLOR) ; 
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- settextposition(l.35): 
p r i n t f ( " I TE R : " ) ; 

/*  Generate a random matrix */ 
for ( i =O : i <=SIZE ; i ++) 

for( j=O: j<=SIZE: j++) 

if (randO>16384) 

value = 0: 

{ 

{ 

{ 

setcolor(BLACK) : 
> -  
I 

value = 1: 
- setcol or(WH1TE) : 

1 
GRID[O][i][jI = value; 
setpi xel ( i , j ) ; 

1- 
1 

1 

void update(unsigned long int gen) 

float junk, remain; 
register int a.b; 
register int i.j,n: 
register int 
char value; 

junk = gen/2.0; 
remain = junk - (int)(junk); 

if (rernain==O.O) 

I 

left, right, top, bot; 

a = 1: 
b = 0; 

I 

a = 0: 
b = 1: 

1 

{ 
for ( i =1: i <SIZE ; i ++) 

top = i + 1;  
bot = i - 1; 

for (j=l; j<SIZE; j++) 

right = j + 1 
left = j - 1 

/* Get Number of Neighbors */ 
n = 0: 

{ 

n = GRIDCal[toplCleftl + GRIDCal[topl[jl + GRID[alCtopl[rightl + 
+ + GRID[aliil[leftl 

GRID[al [botl [ l  eft1 + GRID[al [botl[ jl + GRID[al [botl [right] : 
GRID[a 1 [ i 1 [ ri ght I 

i f  (n>4) /* If more than 4 "White" neighbors */ 
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- setcolor(WH1TE): 
- s e t p i x e l ( ;  , j ) :  

= 
else 

i f  ( ~ 4 )  /* I f  more than  4 "Black"  ne ighbors */ 
I 

setcolor(BLACK) ; 
i 

1 

- 
- s e t p i x e l  (i , j ) :  
va lue  = 0; 

/* Equal number o f  White and Black */ e l s e  

va lue  = G R I D [ a ] [ i ] [ j ] :  
i f  (value==O) 

eTse 

- s e t p i x e l ( i  , j ) :  

{ 

setcolor(BLACK) ; 

- setcolor(WH1TE) : 

s e t t e x t p o s i  tion(2,36) - 
p r i n t f ( " % u "  ,gen) ; 

v o i d  done(void)  

s e t  v i  deomode (-DEFAULTMODE ) : 
i 

- 
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15 Theoretical 

15.1 Curve Length and the Scaling Parameter 
Thayer H. Watkins 

The fractal dimension of a curve is measured by means of the relationship between 
curve length (as estimated by applying a measuring rod to the curve) and the length 
of the measuring rod. This relationship may have to do with characteristics of the 
spectrum rather than the curve being a fractal. 

Introduction 

In determining the fractal dimension of a curve such as a coastline, one estimates 
the relationship between the measured length L and the length E of the “measuring 
rod.” For a nonfractal curve, L approaches a finite limit as E goes to zero. For a 
fractal curve, L increases without bound as E goes to zero, but after some point the 
functional dependence of L on E approaches where D is called the fractal 
dimension of the curve. The dimension D is thus given by unity minus the limit of 
d[lnL(&)]/d(ZnE) as E goes to zero. 

Although for nonfractal curves d[ln L(~)] /d( ln  E )  approaches zero in the limit, 
there is a dependence of curve length on E such that L(E) increases relatively rapidly 
for decreasing E ,  when E approaches a critical range of values associated with the 
spectrum of the curve. For a simple sinusoidal curve this critical range is between 
1 / 2  and 1/4 of the wavelength. 

The analysis here will be limited to a restricted case that more readily lends itself 
to mathematical analysis. Firstly, the curves that will be considered are those given 
by a function y = f(z), over an interval [O,S]. (The length of the interval S will 
be referred to as the span of the curve.) Secondly, instead of fitting a measuring 
rod of fixed length between points on the curve, the interval [O,S] will be divided 
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up into subintervals of length b (except for the last subinterval) and the distance 
determined from the corresponding points on the curve (Fig. 1). That is, 

where n is the integral part of S/b. 
The length of the curve, i.e., the limit of L(b) as b goes to zero, when it exists, 

can be expressed as the integral &{l + [ f ' ( ~ ) ] ~ } ) ' / ~ d z .  But in general, this integral 
cannot be evaluated analytically. 

,:.n x 

(S-nb 

Fig. 1. Sketch of the measuring process of a curve. 

The Simplest Case: A sinusoidal Curve 

When f(z) = as in (2~s /X) ,  a sinusoidal curve of wavelength X and amplitude a ,  the 
value of L(b) can easily be computed. This function has the special property that 
f (0)  = 0 and it will be assumed for convenience that S is an integral number of X 
so f(S) = 0. These are not essential assumptions but they conveniently eliminate 
some messy details that clutter up the analysis. 

When b is equal to an odd multiple of X/4, the value of L(b),  because of sym- 
metry, can be computed from simple geometry. When b is an even multiple of X/4, 
the scaled curve length is just S. It is more reasonable to look at L(b) /S ,  though 
this ratio does depend on S .  

The graph of L(b)/S vs b for S = 25, X = 1 and a = 1 is given in Fig. 2. 
The functional relationship, even for this simple case, is complicated. Particularly 
surprising is the sensitivity of the relationship in the vicinity of the scaling parameter 
b equal to X/2 and to X/4. Ignoring these anomalous cases, the relationship involves 
two different regions and an interval of transition between them. For b > X the 
curve length is approximately equal to the span of the curve, i.e., L(b)/S = 1.0. For 
b < X/4, L(b)/S is approximately 4 for this case. The region from X for X/4 is a 
zone of transition. 

In Fig. 2, the lower boundary of L(b)/S is obviously 1.0 and it is attained at 
the even multiples of X/4. This is because at these points the function is equal to 
zero and hence f ( j b )  - f ( ( j  - 1)b)  is zero. However, if b differs slightly from such 
a value, then after enough subintervals, the function is being evaluated at points 
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other than where it is equal to zero and hence f ( j b )  - f ( ( j  - 1)b)  is not zero. This 
is why L(b)/S increases quite rapidly from what seems to be small deviation of b 
from the even multiples of X/4. In order for a deviation of b from such points to be 
small, the deviation times S/b  must be small. 

I I I I I 

' b  2 

Fig. 2 .  Curve length L(b) /S  vs scaling parameter b. 

The values of L(b) /S  at the odd multiples of X/4 are given by (1 + a 2 / h 2 ) ' / 2 .  
This curve is not, however, an envelope of the L(b)/S function. 

If the relationship in Fig. 2 were expressed in terms of the logarithms of the 
variables, it would look like a step function. The height of the step depends on 
the amplitude of the sine function. A rough approximation of the increment gives 
[l + ( ~ c L / X ) ~ ] ~ / ~  - 1. It is arrived at by computing the difference between L(b) /S  at 
h = X/4 and h = A. The location of the step depends on the wavelength. The rapid 
increase in the curve length occurs for a scaling length b between X and X/4; so the 
location of the step could be taken to be roughly at X/2. 

Conclusions 

If the curve f(x) has components of different wavelengths, the curve of lnL(b) vs 
In b could look like a stairway of step functions. The slope of this stairway depends 
on the relationship between the wavelength and amplitude of the components of 
the curve ~ the so-called spectrum of the curve. Thus the measurement of fractal 
dimension using maps of coastlines are probably measuring properties of the spectral 
density function over a range of wavelengths, with the hypothesis being that the 
spectral density function has similar properties in the limit as wavelength goes to 
zero. 
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15.2 Analysis of the Back-Propagating Neural Network for the 
XOR Problem 
Victor M.  Castillo 

The downfall of the perceptron is that it is only able to solve problems that are 
linearly separable. More recent work on artificial neural networks have included 
the development of the back-propagating network that can solve highly nonlinear 
problems. The exclusive-OR (XOR) is a simple example of a problem that is not 
linearly separable. A five node neural network using the generalized delta Function 
to adjust the weights and a sigmoid transfer function has been used to solve this 
problem. In this paper, the set of weights that satisfy each of the XOR cases is 
evaluated for fixed points. The stability of these fixed points is determined and 
compared to those of the other cases. General conclusions of the system are then 
made. 

Introduction 

The first useful artificial neural network was the perceptron. The perceptron was 
developed by Frank Rosenblatt in 1957. This simple two-layered network was used 
to recognize characters of the English alphabet, even those with imperfections. The 
popularity of this computational method grew until 1969 when Minsky and Papert 
[l] published their book on the perceptron. By careful analysis of the dynamics 
of this system, they were able to prove that the perceptron was limited to making 
associations between similar patterns only. They showed that if the outputs were 
not linearly separable, that the problem could not be solved by the perceptron. 
Their classic example was the exclusive-OR (XOR) problem (shown in Table 1). 

Table 1. The XOR problem. 

Input Output 
x1 x2 0 

0 0 0 
0 1 1 
1 0 1 
1 1 0 

In 1982 Rumelhart and McClelland [a] showed that a multilayered neural network 
using an error propagation routine could be used to learn about complex relation- 
ships. Since then, neural networks have become the topic of much research. The 
back-propagating model has been used to solve a great variety of problems. 
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Fig. 1. A back-propagating network for the XOR problem. 

Dynamics 

The back-propagating neural network uses a two cycle procedure during the learning 
phase. The first cycle involves transforming the input pattern into an output pat- 
tern. The second involves calculating the error and propagating an error signal back 
throughout the network. The magnitude of an error signal at a particular node is 
proportional to how much that node influences the output pattern. The connection 
weights are then modified a small amount in a way that decreases the total error. 

Feed Forward 

Initially, the network is at some random state (configuration of weights). The first 
step is to allow the network to transform the input pattern to the output pattern 
so that the error can be measured. This is accomplished by the distribution of 
information to the individual nodes, and simple transformations at node level. The 
nodes at the input level linearly transforms the input pattern to the second layer. 
A single bias node is also part of this input layer and just outputs a +1 value. The 
output of these nodes is then weighted by the variable connection weights between 
the first and the second layer. The nodes of the second layer (single node in this 
case) do a more complex transformation. A sigmoid transformation is common. 
The output of this layer is then weighted before continuing to the output layer. The 
output layer does a final transformation (sigmoid) before evaluating the error value. 

In general, the net input to the i th node, 

pi = c wzjaj 
j<i  

The output of the i th node, 

a2 = f(p2) = (1 + exp-Pi) - 1 
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For the system in Fig. 1, 

Feed Back 

The next cycle propagates an error signal back through the network so that the 
weights may be adjusted. The error signal to the output node is just the square of 
the difference between the actual output 0 (a5 in this case), and the desired output 
D .  The magnitude of the error term for a given node is related to the weights of 
the connections between it and the output. Once the error terms for the nodes are 
calculated, the connection weights are modified using the generalized delta rule. 

Let E be the total net error (this is the square of D - us). The change to a 
particular weight must be proportional to how much a small change in that weight 
has on the global error. The learning rate constant is used to slow the change so 
that the convergence is smoother. The local error term bi is the error contribution 
of the i th node to the total net error. 

where 

and 

Therefore, 
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For the system in Fig. 1, 

The generalized delta rule leads to the set of weights that satisfy, 

f 4  : AW25 = 27u5(l  - u5) (0  - u5)Xz = 0 

f5 : AW35 = 2qu5(l  - u5)(D - u5) = 0 

We will now investigate the dynamics for each case, viz., 

The Jacobian Matrix Elements 

At this point, we will find the conditions that satisfy the equations in Eq. (10) 
and therefore give us the fixed points of the system. Then the eigenvalues of the 
Jacobian matrix are evaluated at these points to determine if they are stable or not. 

The matrix elements of the Jacobian are as follows. 

( J z j )  = 

where i, j = 1 , 2 , .  . . ,6.  

Fixed Points  and Stability Analysis 

For each input/output relationship required by the system, the fixed points of the 
system will be determined. The value of the maximum eigenvalue of the Jacobian 
matrix evaluated at that point will then be given. A positive eigenvalue indicates an 
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unstable state, a maximum of zero indicates a neutrally stable point, and a negative 
value indicates a stable fixed point (an attractor of the system). 

For {O,O} + {0}, one has XI = 0, X2 = 0, D = 0. This alone leads to, Awl4 = 

AW24 = Awl5 = AW25 = 0. So we are left with, AW35 = -277aE(1 - as) = 0, and 
AW45 = - 2 ~ & a ~ ( l  - a5) = 0, which are satisfied by a5 = 0 or 1. The Jacobian 
matrix is then reduced to 

So Max(Re(e)) = 277 exp(-ps)(l - a:). For a5 = 1 we get a positive real eigenvalue. 
For a5 = 0 we get an eigenvalue of 0. This shows that the weight configurations 
that lead to the incorrect solution are unstable. 

H For {1,0} + {l}, one has X1 = 1, X2 = 1 ,  D = 1. This leads to AW24 = 

AW25 = 0, and Awl4 = 2qa5(1 - ~ 5 ) ~ W 4 5  = 0,  Awl5 = 277a5(l - = 0, 
AW35 = 2 q a ~ ( l - a 5 ) ~  = 0, and AW45 = 2 q a 5 ( 1 - ~ 5 ) ~ a 4  = 0. So again we must have 
a5 = 0 or 1. Consequently, J = 0 for all cases since the term ( D  - 2u5 - 2a5D + 3ag) 
goes to zero for a5 = 1. 

H For {0,1} + {l}, on has XI = 0, X2 = 1 and D = 1, which leads to 

= 0, and AW45 = 2qa5(1 - ~ 5 ) ~ u 4  = 0. This also is satisfied 

H For {1,1}  -+ {0}, no weights drop out. One has Awl4 = 277az(l -a5)W45 = 0, 

AW35 = 2&(l - a5) = 0, and AW45 = 2&(1 - a5)u4 = 0. This leads to a5 = 0 
or 1, which again leads to eigenvalues of zero indicating that both solutions are 
neutrally stable. 

Awl4 = Awl5 = 0, Aw24 = 277a5(1 - U 5 ) 2 w 4 5  = 0, Aw25 = 277U5(1 - U5)2 = 0, 
AW35 = 2qa5(l - 
by a5 = 0 or 1, but as in the previous case both solutions are neutrally stable. 

Aw24 = 2qa{(l-a5)W45 = 0, Awl5 = 27a;(l-a5) = 0, Aw25 zz 2r]aE(l-a5) = 0, 

Conclusions 

For this neural network model, the fixed points in weight space can be determined 
analytically. These points represent the set of weights that satisfy the generalized 
delta rule, and do not necessarily represent a state that yields the desired output. 
An analysis of the stability of these fixed points by evaluating the eigenvalues of the 
Jacobian matrix for this system shows that the fixed points that lead to spurious 
solutions are unstable or metastable. Unfortunately, however, the analysis does not 
show any stable fixed points at all. Computer simulations of this model (with the 
program listed in Appendix A) showed that this system converges to yield a correct 
solution in every case tried. 
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Appendix A: Computer Program for Back-Propagation 

........................................................................ 
' ( *  BACKPROP.BAS ( i n  B A S I C )  * 
........................................................................ 

' Graphics Setup 
CLS : SCREEN 9 : w in  = 2000 : WINDOW ( 0 , 0 ) - ( w i n , 1 0 0 )  

' Dimension Arrays 
D I M  ~ ( 2 ) .  ~ ( 4 ) .  a ( 4 ) ,  b ( 4 ) ,  W(4.4)-  dw(4.4)  
' Set Learn ing Rate and Randomize Weights 
e t a  = 1 
RANDOMIZE TIMER 
FOR i = 1 TO 4 

FOR j = 1 TO 4 

NEXT 
W ( i , j )  = RND*8 - 4 

NEXT 

' S t a r t  Learn ing 
READ x ( l ) ,  ~ ( 2 ) .  d 

DO 
' Forward Propagat ion 
p (3 )  = W(1,3)*x( l )+W(2.3)*x(2)  
a (3 )  = ( l + E X P ( - p ( 3 ) ) ) * - 1  
p ( 4 )  = W(3,4)*a(3) 
E = ( d - a ( 4 ) )  ' e r r o r  t e rm 

I Feedback 
b ( 4 )  = E 
b ( 3 )  = W(3.4)*b(4)*a(3)*(1-a(3)) 
dw(3.4) = eta*b(4)*a(3)  
dw(2.3) = eta*b(3)*x(2)  
dw(1 ,3 j  = e t a * b ( 3 ) * x ( l )  

' Update Weights 
FOR i = 1 TO 4 

'update i n  p a r a l l e l  

FOR j = 1 TO 4 

NEXT 
W ( i . j )  = W ( i , j ) + d w ( i . j )  

NEXT 

' Graph Resu l t s  
LINE ( t -  1 ,  ABS( Esave)*100) - ( t  ,ABS( E)*100) , l o  
LINE (t-1, ABS(wsave)*100)-(t,ABS(w(3,4))*100~, 10+SGN(w(3,4j) 
Esave = E : wsave = W(3.4) 
t = t+l 

LOOP UNTIL ABS(E) < .01 
SOUND (1000)..1 : PRINT "t = " :  t : PRINT: "W = " :  W(3,4) : SLEEP 

' I n p u t  and Output 
DATA 0 . 0 . 0  

Reference 

1. M. L. Minsky and S. S. Papert, Perceptrons (MIT, Cambridge, 1969). 
2. D. E. Rumelhart and J. L. McClelland, "Learning Internal Representations by Error 

Propagation," in Parallel Distributed Processing, Vol. 1 (MIT, Cambridge, 1986). 





16 Experimental 

16.1 Instabilities of Finite Water Columns 
Mark C. Fallis, Michael M. Masuda, 
Rodney C. LeRoy and Nejat Neisan 

Water in vertical laminar flow exiting from a tube is stopped by a horizontal bar- 
rier. When the separation between the tube and the barrier h is large, the water-air 
interface of the water column is smooth. But for small flow rates and h smaller 
than a threshold value, the interface becomes unstable and bifurcates into a wrin- 
kled column. This wrinkling of the interface is related to surface tension (capillary) 
effects, and is accompanied by a meniscus-forming instability just above the barrier. 
This latter instablility is a hysteresis process as h is decreased or increased. Exper- 
imental results of these phenomena, measured quantitatively for the first time, are 
presented. Among other things, the average wavelength of the interfacial wrinkles 
is found to increase as a power law as h decreases. 

This wrinkling instability of a water column can be demonstrated easily with any 
faucet. First turn on the faucet slightly to allow for a smooth, narrow water column 
to flow downward, then use one finger to stop the column at some long length, and 
gradually raise your finger to shorten the water column. 

Experimental Procedure 

The apparatus setup is shown in Fig. 1. To maintain a constant flow rate, we use 
a five-liter Nalgene container of distilled water with an overflow valve near the top 
to keep the water level constant (- 50 cm deep), and thus to maintain a constant 
hydrostatic pressure at the base where water can exit through a valve. Water exits 
the container and passes through a spigot and a flow meter. The flow from the meter 
exits from a vertical metal tube (0.320 cm inner radius) in air above an aluminum 
rod (10 cm long and 0.5 cm in diameter). 
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Fig. 1. Sketch of the experimental setup. 

The spigot is used as an on/off valve and the meter is used to fine tune the flow 
rate. The meter (a gauge originally designed for air flow) is calibrated by correlating 
the markings on it to actual flow rates obtained by measuring the time it takes to 
fill a graduated cyclinder with 100 ml of water. The meter does not measure a wide 
range of flow rates; by using different sized ball bearings in it we can increase the 
range of the meter. To conserve water, water in the system is continously recycled 
via a water pump (not shown in the figure) which draws water from the catch basin 
and returns it to the container. 

We photograph the column impacting on the barrier using a zoom lens. Because 
a meniscus forms on the barrier causing the wrinkled column to jitter slightly, a 
black velvet backdrop is used as the background to eliminate unwanted glare. A 
vertical ruler is placed near the water column and is included in the pictures. A 
40 watt light bulb is used to illuminate the water column and ruler. From the 
photographs, the average wavelength of the wrinkles, A, is measured by counting 
the number of "waves" and dividing by the length of the region where the waves 
appear. We use an average because the wavelength of the wrinkles is not strictly 
sinusoidal but varies slightly along the column length. 

The separation between the tube opening and the barrier h is adjusted by com- 
pressing one of the two syringes which are filled with water and connected by a 
rubber tube filled with water, so that as one syringe is pushed in the other one, 
which holds the barrier, is extended upward. The change in h is measured directly 
off the syringe using a Venier calipers and double checked by making direct mea- 
surements on the photographs. 
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Results 

We have studied several flow rates using the method outlined above. For a fixed flow 
rate Q, as h is decreased the smooth water column starts to wrinkle with a finite 
(average) wavelength X for h 5 h,. The wavelength (amplitude) of the wrinkles 
increases (decreases) from bottom up along the column. For h 5 h, (<< hc) ,  a 
meniscus appears just above the barrier (see Figs. 2 and 3). 

Fig. 2. Sketch of the wrinkling instability as h is decreased. (a) h > h,. (b) h h,. (c) h < h, 
(< hc).  

Fig. 3. Typical photographs of the wrinkling instability. Q = 2.10 ml/s; h, = 63.35 mm; h, = 
38 mm and the meniscus is less than 2 mm high. (a) h = 68.30 mm. (b) h = 41.27 mm. (c) h = 
30.25 mm. (d) h = 18.66 mm. 
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Fig. 4. Variation of X vs h, as h is decreased. (a) Q = 1.93 ml/s; h, = 43.94 mm. (b) Q = 2.00 ml/s; 
h, = 65.8 mm. (c) Q = 2.97 ml/s; h, = 41.6 mm. 

In Fig. 4, the variation of X as a function of h is presented for three different flow 
rates. For Q = 1.25 ml/s, the water column breaks up into droplets at  a distance 
below the tube opening smaller than the critical h. A log-log plot of X vs h is 
shown in Fig. 5, with the data from different Q included. One obtains X - h-“ with 
(Y = 1.57. 

In fact, as h is decreased, there is a series of small changes at the bottom of the 
water column before the mensicus appears. When h is just above h, and when Q 
is small enough for the effect to be observed clearly, concentric circular “waves,” 
numbered 1, 2 and 3 in Fig. 6(a), form on the surface of the barrier around the foot 
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10’ 
4 5 6  

h 3  
Fig. 5. Log-log plot of X vs h, as h is decreased. The solid dots represent the data from Q = 
2.10 ml/s; the open circles are from other Qs. 

Fig. 6. The formation of circular “waves” above the barrier preceding the appearance of the 
meniscus, as h is decreased gradually from (a) to (h). In (h), the solid line represents the meniscus; 
the dotted line represents the situation just before the meniscus formation. 

of the column. (The lower part of the water column itself has waves also, but they 
are too small to be counted.) As h is gradually reduced, the waves on the column be- 
come more prominent, but more interesting is that the circular waves on the barrier 
become more spaced, only allowing two circular waves to form [Figs. 6(b) and 6(c)]. 
The innermost circular wave, #3, travels up into the foot of the water column. As 
h is further reduced, the innermost circular wave, #2, travels up into the column, 
leaving one circular wave, #1, on the surface of the barrier [Figs. 6(d) and 6(e)]. 
Initially it assumes the usual sinusoidal shape of a circular wave, but as h is re- 
duced further to  h,, the sinusoidal shape [Figs. 6(f) and 6(g)] is abandoned for 
a simpler and more stable configuration - the meniscus configuration [Fig. 6(h)]. 
The meniscus continues to be a stable configuration until h is zero. 

After the meniscus is formed the process is then reversed by gradually increasing 
h. The meniscus continues to be a stable configuration up to a certain h, say, h, 
at which the meniscus is spontaneously replaced by the “two concentric circular 
waves” configuration seen earlier [Fig. 6(b)]. In other words, the surface above the 
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barrier apparently skips the “one circular wave” configuration of Figs. 6(e)-6(g) as 
h is increased. The prolonged existence of the meniscus as h is increased shows that 
the water column behaves differently than if h is decreased - a hysteresis effect. 
It will not be surprising if hysteresis effect also shows up in the X vs h graph, but 
the measurement of X as h is increased has yet to be carried out. Furthermore, 
the diameter of the barrier surface will also be able to quantitatively affect the 
experiments. This “simple” experiment has become complicated with the advent of 
the meniscus observations. 

Discussions 

Closer observations show that the log X vs log h curve for Q = 2.10 ml/s in Fig. 5 
does seem to have a discontinuous drop at h - 45 mm, indicating a hysteresis loop. 
But more data is needed to confirm this. 

In analogy to the discussion of the varicose instability of a free-falling (infinite) 
water column [l], for a finite column here, we calculate the surface area of a column 
of radius r ( z ) ,  with 

~ ( z )  = a1 + u2(z)  sin[k(z - h)] (1) 

and k = 27r/X. Here the z axis is vertically downward, and 

a l ,  a and zo are constants. zo represents the damping length of the wave measured 
from the bottom of the water column. Equations (1) and ( 2 )  mimic the distorted 
surface as observed [see Fig. 2(b)]. Conservation of volume is used in comparing the 
two columns; a2 is assumed to be small and zo << h is assumed, for simplicity. We 
find that the surface area of this distorted column is less than that of an undistorted 
column of radius al .  Since surface energy is equal to the product of surface tension 
and the surface area, the distorted column of smaller energy is physically preferred. 
The observed wrinkling instability can thus be understood as a capillary instabil- 
ity. Note that the sudden appearance of a finite wavelength at the critical control 
parameter h, is analogous to the case of the undulatory rolls in electroconvective 
nematic liquid crystals [ a ] ,  and in many other systems. 

We noticed that the use of a curved barrier is able to eliminate the meniscus 
formation on the barrier. It has also been observed that a sharp object inserted into 
the water column induces a larger local instability as compared to the flat barrier for 
the same h. Other parameters of interest may include (i) the viscosity of the flowing 
liquid - since viscosity usually plays a stabilizing role, we expect the instability to 
diminish for higher viscosities; (ii) tube diameter, and (iii) barrier size, curvature 
and resilience. 

This work is supported by the Allied-Signal Award of the Society of Physics 
Students. 
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16.2 Viscous Fingering in Optical Cement Displaced by Water 
James W. Hillendahl 

Introduction 

Fractals have been studied in numerous experiments. Many such experiments involve 
viscous fingers because they are easy to make and are of fundamental importance 
in both basic and applied research. For example, Nittmann et al. [l] examined 
the fractal dimension of the boundaries of viscous fingers in linear Hele-Shaw cells 
containing a polymer solution, a non-newtonian fluid, displaced by water. The 
solution and water are miscible. Their findings suggest that for a wide range of 
experimental conditions the fractal dimension is constant and reproducible. 

In our experiments presented here, viscous fingers were produced using water to 
displace epoxy contained between two closely spaced, parallel glass plates in radial 
geometry. The experiments demonstrate a simple and direct dependence of the 
fractal dimension and the number of fractal lobes of the bound am^ of viscous fingers 
on a single control parameter, i.e., the injection time of a fixed amount of water. The 
functional dependence of the fractal dimension on the injection time is determined 
empirically. 

Experiments 

Twelve runs were made for this experiment. We started with 24 plates of 3 mm 
thick clear glass, each eight square inches. The plates were thoroughly cleaned, 
then arranged in pairs to make 12  sets. A 1 mm diameter hole was made in the 
center of the upper plate of each set. A silicone rubber sealant was applied to 
each of these holes. After hardening, a small hole was pierced through the sealant, 
providing an orifice that sealed itself when not in use. The edges of the bottom 
plate were taped with 0.050 mm (2 mil) Mylar tape to provide a uniform spacer 
between the plates when they were put together. 

With the plate sets separated, a calibrated syringe was used to place 10 ml of 
epoxy in the center of the lower, undrilled plate. This epoxy, or “optical cement,” 
was Norland Optical Adhesive NOA-65 (from Norland Products, New Brunswick, 
NJ) .  This highly viscous cement has a viscosity of 1145 cp and a density of 
1.231 g/cm3. The optical cement was dyed with felt pen ink for contrast prior 
to application. 

The two plates in each set were placed together to form a cell, taking care to 
avoid making bubbles in the epoxy. The plates were clamped along all edges and 
allowed to sit for 15 min. The pressure of the epoxy thus equilibrated, making a 
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uniform layer 0.050 mm thick between the clear glass plates. Small gaps were left 
in the spacer to allow excess optical cement to escape. 

The fingers were formed in each cell by injecting water into the epoxy between 
the clamped plates through the hole in the silicone sealant in the upper plate. Thus 
the fingers grew radially outward from the center of the plates. A small, calibrated 
syringe was used for the injections. The total volume of water injected was kept 
constant at 1.0 ml for all sets of plates. An electronic timer was used to vary the 
injection times t from 5 to 60 seconds. (Consequently, the average injection rate of 
water is proportional to t-l.) No water escaped from the plates during or after the 
injection due to the good sealing properties of the silicone. The injection process 
was easily controlled since there was no mixing or chemical interaction between the 
two fluids, and both are incompressible. The fingers were permanently solidified by 
curing the optical cement under an ultraviolet lamp. These experimental procedures 
are summarized in Fig. 1. 

L r 
01 

Fig. 1. Sketch of the fabrication method: (1) Make hole in top plate. (2) Add Mylar spacer. 
(3) Apply epoxy. (4) Assemble and remove bubbles. ( 5 )  Add clamps. (6) Inject water. (7) Cure 
epoxy using ultraviolet lamp. (8) Remove clamps. Finger complete. 

The solidified fingers were photographically duplicated by contact printing 
laying the fingers directly on the photographic paper and exposing the paper to 
the transmitted light. Upon development, the photographs showed exact, full-scale 
images of the cured fingers with very sharp contrast and no distortion. Several of 
these photographs are shown in Fig. 2. The central portion of each finger is not 
visible because the sealant used on the injection hole was opaque. 
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Fig. 2. Photographs of viscous fingers: (a) Sample F1, t = 5 s. (b) Sample F2, t = 9 s. ( c )  Sample 
F5, t = 25 s. (d) Sample F7, t = 35 s. (e) Sample F12, t = 60 s. 
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Fig. 2. (Continued) 
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Fig. 2. (Continued) 

Results 

The boundaries of the cured fingers form fractals. These fractals were examined 
visually for trends in their characteristic features. For discussion purposes, each 
fractal was broken down into “arms” covered with “lobes.” This provided qualitative 
information about the fractals. 

A 

B 
B 
4 
v 
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1000 

. . . .  . . . .  . . . .  . . . .  . . . .  . . . .  

0.50  1 .oo 10.00 

R(mm) 

Fig. 3. A typical log-log plot of curve length L vs box size R. 
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Fig. 4. Fractal dimension D vs injection time t .  

The fractal dimension D of the boundary of each cured finger was determined 
using the box counting method. Tracing paper with grids of progressively smaller 
sizes were overlayed on the boundary curve. For each grid size R, the number of 
boxes subtended by the curve was counted. The length of the curve L was calculated 
by taking the product of the number of boxes and the length of one side of a box. 
For each fractal, the log-log graph of L vs R is plotted; a typical result is shown in 
Fig. 3. The plots were linear for small R, and D was calculated as unity minus the 
slope of this linear part. The D vs t data was then fitted with a curve (Fig. 4). 

The data for lobes, arms, and fractal dimension are summarized in Table 1. 

Table 1. Experimental data. 

Sample Injection Number Number Fractal 
Number Time (s) of Arms of Lobes Dimension 

F1 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
F10 
F11 
F12 

5.0 
9.0 

13.0 
20.0 
25.0 
30.0 
35.0 
40.0 
45.0 
50.0 
55.0 
60.0 

8 
7 
6 
6 
7 
9 
7 
7 
6 
9 
7 
7 

many 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

few 

1.52 f .02 
1.45 f .02 
1.32 ZLC .02 
1.21 f .02 
1.17-f .02 
1.16f .02 
1.101.02 
1.07 i .02 
1.071.02 
1.06 f .02 
1.05 f .02 
1.03 f .02 
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A visual examination of the boundaries of the cured fingers provided clear ev- 
idence of trends in the characteristic features of the lobes and arms. The arms 
followed no general trends. The lobes, however, showed a distinct trend in size and 
number. The number decreases and size increases with increasing injection time. 
Thus the samples which were made slowly had only large, smooth features, while 
those made quickly had an abundance of fine, lacy structure. This is consistent with 
intuitive expectations based on inertia and other basic principles. 

The fractal dimension decreases monotonically with injection time, as shown in 
Fig. 4. This result is consistent with intuitive expectations from visual examination 
of the boundaries. 

An examination of the curve in Fig. 4 suggests the functional form D = 2 - 
(1 - exp[-f(t)]}, where t is in seconds; f ( t )  is a dimensionless function of t only, 
and f ( t )  2 0. This single-parameter model gives a D which is naturally bounded 
between 1 and 2. Attempting a fit of the form f ( t )  = t /A ,  with the constant A 
having dimensions in seconds, fails. Thus we try the form f ( t )  = t / A  + 1/B, with 
the constant A in seconds and the quantity 1/B is small and dimensionless. This 
approximates the data very well, within the limits of experimental error, and takes 
the form 

D = 2 - (1 - exp[(-t/19.3) - (1/2.55)]} (1) 

with D and t as before. It defines a characteristic time of 19.3 s which in some way 
describes the nature of the physical process involved in the creation of the fractals. 

Conclusions 

The fractal dimension of the boundaries of viscous fingers and the number of lobes 
of these boundaries depend directly on a single control parameter, the injection time 
t .  The fractal dimension decreases monotonically with increasing t ,  following the 
exponential function given in Eq. (1). The simplicity of this empirical equation is 
encouraging to those attempting theoretical models using first principles. 
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16.3 The Fractal Nature of Shock-Wave Induced Fractures 
Richard G. Klingler 

The theory of fractal dimensions is applied to quantitatively describe the fracture 
patterns in plexiglass generated by an almost instantaneous concussive force, viz., 
a concentrated detonation wave. 

Introduction 

Recently, the formation of irregular fractal patterns under nonequilibrium conditions 
has attracted much interest. Such patterns provide important information about 
materials under stress as well as the processes which cause the irregular patterns. 
The use of such patterns to characterize a material or process is limited by the fact 
that there is no simple quantitative method of describing the patterns, until the 
appearance of Mandelbrot’s concepts in fractal geometry. 

In this work, one particular example of such irregular patterns which appeared in 
fractures of plexiglass plates, was generated by shock waves. The fractal dimensions 
of these fracture patterns were calculaled. 

Experimental Procedures and Results 

The fractal medium for this study is plexiglass plates in the form of 2 inch diameter, 
0.1 inch thick discs for the first three experiments (Tests A, B and C) and a sold 

\ 
ws 

Fig. 1. Sketch of experimental setup. BC: blasting cap; PD: plexiglass discs; WS: wooden support 
stand. The five plexiglass discs starting from the top are numbered A1 to A5 for Test A, and 
similarly for Tests B and C. 
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Fig. 2. Photocopies of the fractured plexiglass discs in Test B. (a) B1, d = 6 inches; (b) B2, 
d = 6.1 inches; (c) B3, d = 6.2 inches; (d) B4, d = 6.3 inches; (e) B5, d = 6.5 inches. 

plexiglass cylinder for the fourth and final experiment. For each of the first three 
expriments, five discs were stacked and placed in a wooden support. A #S blasting 
cap was positioned 4 inches above the top disc for the first test, 6 inches for the 
second test, and 8 inches for the third test, respectively, before detonation (Fig. 1). 
Each fractured disc was then photocopied. The results from Test B are shown in 
Fig. 2. The patterns from Test A are slightly more compact, and those from Test C 
are slightly less compact. 

Each photocopied picture was then recorded on a graph paper [Fig. 3(a)], and 
N E ,  the minimal number of boxes of box size E required to cover the pattern, is 
counted by hand. The fractal dimension D of each pattern is given by the negative 
of the slope of the log N, vs log& curve [Fig. 3(b)], since N, - E - ~  is expected. The 
results for all three tests are shown in Fig. 4. 

For the sake of description, let us treat the five discs in each test as represent- 
ing the cross sections of a solid plexiglass cylinder (of thickness 0.5 inch). Upon 
detonation, a three-dimensional fracture pattern is created in the cylinder. Each 
cross sectional plane has a different distance d from the origin of the external force 
causing the fracture. It receives the concentrated shock wave in the same location 
on the disc albeit with a different intensity. (The shock wave intensities were not 
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Fig. 3. Results from the photocopied picture of disc B2. The number of boxes N, counted from (a) 
is plotted vs box size E in (b). 
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Fig. 4. Variation of fractal dimension D as a function of d ,  the distance between the disc from the 
shock wave origin. The dots represent experimental results; the broken lines in Tests A and B are 
inferred from the results of Test C. 
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measured in these experiments.) From Fig. 4, for Test B, we see D increases and 
then decreases as d varies from the top to the bottom of the cylinder. The curve 
for test A also shows increasing D as d increases, but the cylinder is too short to 
show the decreasing part. In contrast, Test C provides the full amount of required 
medium for the whole curve to show up. In this case, the separation of the top 
disc is at a larger distance from the shock wave origin; this additional distance 
allows the shock wave to dissipate somewhat before an impact with the plexiglass. 
The maxium D and range of D (minimum 0)  within each test decrease (increases) 
from Test A to Test C. It seems that there is a well defined trend in these fracture 
processes. 

From the results in Figs. 2 and 4, it can be assumed that a concentrated det- 
onation wave will produce a fracture pattern in a solid plexiglass with a fractal 
dimension between 2 and 3. (But there is no way that one can do a box counting 
with such a fractal embedded in a 3D space.) In fact, such a fractal was actually 
generated in our fourth test, with the use of a solid plexiglass cylinder. The result- 
ing fractal pattern was compared visually with the patterns formed in the discs and 
found to be very similar, with the minor exception of the very long radial cracks 
found in the discs but not in the cylinder. The strong visual similarity between the 
patterns in the discs and solid cylinder validates the use of the stack of discs to 
represent the cross sections of a cylinder. 

Discussions 

The fractal dimension was found to be a useful quantity in characterizing the fracture 
patterns. Further studies would require thinner plexiglass discs providing more cross 
sections, and more discs allowing deeper fractures to be observed. Several computer 
simulation studies have been done on fractures [1,2]. This type of simulation could 
also provide more insight into the fractal nature of shock-wave induced fractures. 
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Ep il ogu e 

The Real World 

More often than not, people become physicists because they love physics. But that 
does not mean that physicists do not love or care about other things in the real 
world such as the environment, art and literature, and social justices. In fact, most 
of them do! For example, after the June 4, 1989 Tiananmen massacre, six of the 21 
most wanted student leaders of the democracy movement were physicists, according 
to the October 1996 issue of APS News. [For a description of this movement, see, for 
example, Massacre in Bezjing: China’s Struggle for Democracy, edited by Donald 
Morrison (Warner Books, 1989) .] 

As we emphasized in this book, almost all real-world problems are nonlinear 
problems. Nonlinear science, being applicable to both natural and social systems, 
offers physicists the chance to do physics even when their topic of interest happens 
to come from the social arena or the humanities. 

In the natural sciences, a system may become nonlinear when the stress applied 
to the system is no longer small, as in the case of a simple pendulum. Or, the 
problem may be nonlinear from the outset, for example, in the study of solitons. 
By facing the nonlinearity head on and taking advantage of it,  scientists are able to 
improve the efficiency of liquids mixing, tame chaotic systems, or greatly enhance 
the information superhighway through the use of undistorted optical pulses. In 
other words, new technologies and industries are generated by going nonlinear. 

In the social sciences, recognition of the ubiquitous nonlinear behavior of social 
systems could offer new insights and new directions in solving real-world problems. 
For example, doubling the budget may not double the success in a project, but 
halving the number of administrators may triple the output of an institute. And, 
things may work suddenly beyond a turning point through simple perseverance or 
concentration of resources, a bifurcation phenomenon, as witnessed perhaps in the 
decrease of crime rates in New York City. More importantly, the mere act of placing 
social and natural systems on the same platform in the study of complex systems 
highlights the conviction that social phenomena can be and should be scientifically 



studied. In particular, theories of social developments, like theories in the physical 
science, should not be embraced wholeheartedly and put into full practice before 
they are proved to be valid. For those in power, who are ill-educated in science and 
cannot wait to do real experiments with their populations - that is, with real men, 
women and babies ~ let them try it out in computer simulations, which, hopefully, 
may soon become feasible. After all, with the advent of nonlinear science, these 
days more realistic computer simulation models of financial markets, traffic flows 
and city governance are emerging. 

Once again, a reminder: In the real world, nonlinearity is not an option; it is the 
way of life! 

Lui Lam 
Department of Physics, S a n  Jose State University 

S a n  Jose, Calijornia 951 92-01 06, USA 
Email: luilam@email.sjsu. edu 
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Appendix A1 

Computer Program for Active Walk 

The program here generates the tracks of an arbitrary number of probabilistic active 
walkers (the PAW model), with the possibility of branching, on a square lattice, 
using the WI landscaping function for each walker (see Section 13.4). The user is 
prompted to enter the parameters: The background cone height Vo (written as VO 
on screen), which could be positive or negative, if the cone background is desired. 
The three parameters for the WI function: Wo (WO on screen), 7-2 (r2 on screen), 
and p ( z r l / r 2 ,  rho on screen). The branching factor y (Gamma on screen), with 
no branching for y = 1 and sure branching for y = 0. Number of initial walkers, 
and their separations. 

The tracks of the walkers are shown on screen as they develop with time. The 
program stops by itself when one of the tracks reaches the lattice boundary, or 
when all walkers reach local minima in the landscape. An example of the outcome 
is shown in Fig. 5.4. 

/* AW96 ( i n  M i c r o s o f t  C )  */ 
/* P r o b a b i l i t y  a c t i v e  walk (PAW) model. s e l f - a v o i d i n g  wa lk ,  

w i t h  branching p o s s i b i l i t y ,  and cho ice  o f  a cone background 

Energy l ook  up t a b l e  i n c l u d e s  n e g a t i v e  values 
P o t e n t i a l  l ook  up t a b l e  U ,  200X200 array 
Occupancy l o o k I u p  t a b l e  0, 200X200 a r r a y  */ 

#I n c l  ude <graph. h> 
#i n c l  ude <coni 0. h> 
#i n c l  ude < s t d l  i b .  h> 
#i n c l  ude < s t d i  0. h> 
#i n c l  ude <t ime.  h> 
#i n c l  ude <math. h> 

#de f ine  round(x)  (i n t )  ( x+ .  5) 
#de f ine  m e t r i c ( x 1  . y l  , xZ.y.2) sqrt(pow(xl-x2,2)+pow(yl-y2,2) 1 
#de f ine  r n d  ( f l oa t ) randO/RAND MAX - 
#de f ine  P I  3.14159 
#de f ine  MAXWALKERS 200 /* s e t s  t h e  maximum number o f  c o e x i s t i n g  wa lke rs  */ 
#de f ine  LUT RLS 100 
#de f ine  LUT-RLS I N V  (f loat) l .O/LUT-RLS 
#de f ine  SIZE 200 



int xCMAXWALKERS1, y[MAXWALKERSI: 
float ~r51. dur51: 
float' huge U[SIjEl[SIZEI; 

short int huge O[SIZElCSIZEl; 
int nw: /* Current number of walkers 
int dx[51 = 0, 1,  0. -1, 
int dy[51 = 1 1. 0. -1. 0, 0 
int lowhigh[5] ; 
float E[LUT RES*(SIZE/2)+110]; /* the 
int LAG=O. Zz={O}; 

float rho, A, R MIN, BF;  

*/ 

+110 i s  for spil 1 over */ 

char dummy; 
int PEAK-ENERGY. VIEW. RADIUS, SEP; 

void i ni ti a1 i ze( void) ; 
void Init LUTneg(void): 
void Ini tILUTpos (voi d) : 
void changenergy(int xo, int yo); 
void get-deltas(int xi. int yi): 
void sortlowhigh(void) ; 
float get-probs(int xc, int yc): 

/* 
0 - Start at some location(s) 
1 - Calculate the potential diff., du, between neighbors 
2 - Assign a step probability (to all lower neighbors) 

3 - Check for branching 
4 - Step to randomly chosen neighbor 
5 - repeat 1 

proportional to du. 

* I  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
i nt main( voi d) 

int dir. i ,  stop, J .  n = 1: 
float total p. random number; 
i n t z [MAX WALKERS] = { 0 }7 
initialize(); /* initializes graphics, initial positios. energy, more */ 

do 

i 

for(i=O; i<nw; i++)  /* i referes to which walker i s  active */ 
i 

i 

p[O] = 0; /* initial probabilities */ 
p[11 = 0; 
p[21 = 0: 
pc31 = 0: 
p[41 = 1: /* default probability 

in case no step i s  possible */ 

lowhigh[Ol = 0: /* initialize to allow sorting by energy */ 
lowhigh[ll = 1: /* to be done by function sortlowhigh */ 
lowhighC21 = 2; 
lowhigh[3] = 3; 
lowhigh[4] = 4; /* lowhigh[4] i s  never changed 

Default for no step */ 

/* get du. delta potential, for neighboring positions */ 
get-deltas(x[il, yiil); 

/* sorts the potential difference from low to high energy.*/ 
sortlowhigh( ; 

/ *  For each neighbor, assign a probability and return sum of probabilities*/ 
total-p = get-probs(x[i I ,  y[i I) : 



Appendix A1 Computer Program for Active Walk 323 

I* Choose a random direction according to the calculated probabilities */ 
random-number = rnd * total-p: 
if( random-number < p[lowhigh[jll ) 

for( j = 0 : j <= 5 . j++ 

dir = lowhigh[jl; 
I 

1 
j = 5 .  

/* Check for branching */ 

if((dir==lowhigh[OI)&&(dir !=  4)) /***if dir was lowest in energy***/ 

if(du[lowhigh[lll BF*duClowhigh[Oll) 
I 

I 
if(nw < MAXWALKERS) 
L 

doubl e w=. 522 : 
x[nwl = x[il+dx[lowhigh[lll 
y[nwl = y[il+dy[lowhigh[lll 
changenergy(x[nwl ,y[nwl) : 

- setpixel ( x[nwl, y[nwl) ; 
O[x[nwll[y[nwl1 = nw+l; 
nw = nw + 1: 

/*  

/* 

/* 

/* 

Step in chosen dir */ 
x[il = xlil + dx[dir]: 
y[iI = y[il + dy[dir]: 

- setpixel( x[i]. y[i]): 
Show the track on the screen */ 

Update occupancy table */ 
O[x[ill[y[ill = i+l; 

Update energy table */ 
if (dir != 4) 

changenergy(xCi1 ,y[il) 

/*  check for walkers stopped */ 
if (dir == 4) 
z[il=l: 
stop = 0: 
for ( j = 0: j < nw : j++ ) 
{ stop+=z[ j 1 : } 
if (x[ i 1==1 1 x[ i ]==SIZE-3 I I y[ 1 l==SIZE-3 I I y[ i ]==1 I I stop==nw) 

I zz=  I : 
' break:} 

1 /*end i loop*/ 
- settextposi ti on( 2,l) : 

/*printf("# of Walker: %d".nw):*/ 

}while(zz==O): /* End do */ 
printf("\a"): 
dummy=getch() : 
- set v i deomode (-DEFAU LTMODE 1 
return 0: 

} / *  End main0 */ ............................................................................. 
void Ini t-LUTneg(void) 
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i n t  r ;  
{ 

f l o a t  i n te rcep t  down = PEAK ENERGY; 
f l o a t  slope down = -(PEAK EFJERGY+l ) lR  M I N ;  
f 1 oat s l  ope-up = ( f 1 oa t )  1TO/ (RADIUS- R-MI N 1 : 
f l o a t  intercept-up = RADIUS/(R-MIN-RADIUS) : 

f o r (  r = 0 ; r <= RADIUS * LUT - RES + 100 : r++ 1 
I 
I 

E [ r l  = slope down * r * LUT-RES-INV + intercept-down; 
i f (  r > LUT RES * R M I N  ) 

i f (  r > LUT-RES * RADIUS 1 
E [ r l  

E [ r l  = 0 :  

slope Up * r * LUT-RES-INV + intercept-up: 

1 
1 

{ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
vo id  I n i  t-LUTpos(void) 

i n t  r ;  

f l o a t  i n te rcep t  down = PEAK ENERGY; 
f 1 oat s l  ope-down = - ( f l o a t  )TPEAK-ENERGY 1 I ( f l  oa t )  RADIUS ; 

f o r (  r = 0 ;  r<=RADIUS*LUT-RES + 100; r++) 
I 
I 

E[r] = slope down * r * LUT-RES-INV + intercept-down 
i f ( r >  LUT RE5 * RADIUS) 

E[ rJ  = 0; 

............................................................................. 

{ 
vo id  changenergy(int xo, i n t  yo) 

i n t  i , j :  
double r :  

fo r (  i = xo-RADIUS-10 ; i < xo+RADIUS+10 ; i++ ) 

i f ( ( i >O) &&( i <SIZE )&&(  j>O I&&( j<SIZE) 1 
fo r (  j = yo-RADIUS-10; j<yo+RADIUS+lO; j++) 

1 
r = met r i c (  xo, yo,  i, j 1 ;  
i f (  r < RADIUS ) U [ i l [ j l  += E[round( r * LUT-RES )I; 

I 

) ........................................................................ 1 

I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
v o i d  sor t1  owhigh( v o i  d) 

i n t  swapflag = 1, i, j ;  

while(swapf1ag == 1) 

swapflag = 0; 
fo r ( i=O;  i<3:  i++)  

I 

if( du[ lowh igh [ i l l  > du [ lowh igh [ i+ l ] l )  
I 

1 
j = lowh igh [ i ] ;  
lowhigh[ i  3 = lowhigh[ i+1]  
l owh igh [ i+ l ]  = j ;  
swapflag = 1; 
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........................................................................... 1 
void initial ize(void1 

int i.j.seed, q q ,  conenergy=O; 
doubl e w=. 522 ; 
for ( i =O ; i <SIZE ; i ++) 

for(j=O; j4IZE; j++) 

/* initialize everything */ 
{ 

O[il[jl = 0: /* initialize occupancy table */ 
U[il[jl = 0; /* initialize potential table */ 

I 

1 
printf("do you wish to start with a cone(l=yes, O=no):"); 
scanf ( "%d" , &aa) ; 

conen ~ 

R A D I U S = ~ ~  
Ini t LUTpos( ) ; 
changenergy(SIZE/Z,SIZE/2) ; /* make a hill in the center */ 

I 
printf("enter W O : " ) :  
scanf ( "%d" , &PEAK ENERGY 1 : 
printf("enter r2:") : 
scanf( "%d" , &RADIUS) : 
Drintf("enter rho(. 01- .99) : " )  : . . .  

scanf("%f", &rho); /* rho=.2;*/ 
printf("enter seed number:"); 
scanf("%d". &seed); 
printf("enter # of walkers:"): 
scanf ( "%d" , &nw) ; 
SEP=O : 
if (nw > 1 ) 

scanf ( "%d" , &SEP) : } 
printf("enter gamma(between 0 and 1, gamma of 1 means no branching):") 
scanf("%f". &BF):  

A=R MIN= (rho*RADIUS); 
VIEW= RADIUS: 
/*randomi ze ;*/ 
srand(seed) : / *  seed the random number generator */ 

{printf("enter separation o f  walkers:"); 

Ini t-LUTneg( ) ; /* initialize the look up table */ 

x[O] = (SIZE/Z)+SEP: /* Starting */- 
y[O] = (SIZEI2); /* point */ 

/* by changing nw. more than one walker can start at the same time */ 
x[1] = (SIZE/Z); 
y[1] = (SIZE/2)+SEP: 
xr21 = (SIZE/Z)-SEP: 
y k j  =  SIZE^ 
x[3] = (SIZE/2); 

x[4] = (SIZE/2); 
y[41 = (SIZE/2); 
x[5] = (SIZE/2)+SEP: 

x[6] = (SIZE/2)+SEP; 
y[6] = (SIZE/2)+SEP: 

y[7] = (SIZE/2)+SEP: 

y[31 = (SIZE/2)-SEP: 

y[5] = (SIZE/2)-SEP; 

~[7] = (SIZE/2) -SEP: 
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~[8] = (SIZE/Z)-SEP: 
y[8] = (SIZE/2)-SEP: 

for(i=O: i m w :  i++) 
I* have the starting walkers affect the potential */ 

changenergy(xLi1 , y [ i l ) :  
/*~setpixel(x[il*4.y[il*4):*/ I* show walkers */ 

i 

1 

for(i=O: i<SIZE: i++) 

O[Ol[il = 1: /* set boundries as occupied, but don't change */ 
0[1991[i] = 1: /* the energy around the border. */ 
O[il[Ol = 1; 
O[i1[199] = 1: /* changenergy 1OO.i): */ 

/* initialize the graphics */ 

{ 

/* this keeps the walkers in bounds */ 

1 

- setvideomode( VRES16COLOR) : 
- setvi eworg(60740) ; 
- setviewport(200.15. (SIZE*2)+200, (S 
- setwindow(0,O. 0.0.0 ,SIZE,SIZE) ; 
setcolor(l5) : 

ZE*2)+15) : 

- 
- rectangl e(-GBORDER, 0.0. (SIZE), (SIZE) ) ; /*+30) 0,O. 639,440) : * I  

for (i=O: i<nw: i++) 
- setpixel (x[i 1 ,y[i 1) ; 

- settextposition(l.1); 

/* print parameters on screen */ 
printf("square lattice AW96\n") : 
printf(" r2 = %d\n". RADIUS); 
printf(" rho = %.3f\n". rho): 
printf(" WO = %d\n". PEAK ENERGY): 
printf(" Gamma = %1.3f\n"T B F ) :  
printf(" seed = %d\n". seed): 
printf(" # of\n walkers = %d\n". nw); 

if ( n w > l )  
{printf(" separation = %d\n", SEP);} 

printf(" cone height V O  = %d\n", conenergy): 

}I* end initialize *I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
void get-deltas(int xi, int yi) 
i 
i n t  ddxC31 = 

I* Find potential differences of nearest neighbors */ 

for( j = 0 : j < 4 : j++ ) 

du[jl = U[xi+dx[jll[yi+dy[jlI - U[xil[yil: 
c = 0; 
for(l=O: 1<3; 1++) 

{ 

for(m=O: m<3: m++) 
i f (O[xi +dx[ j l+ddx[ 1 1 1 [yi +dy [ j 1 +ddy [ml I ! = 0 1 

c = c + l ;  
i f ( c>2) 

du[jl = 0: 
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............................................................................ 1 
float get-probs(int xc, int yc) 

i n t  j: 
float total-u; 

total-u = 0; 

f o r (  j = 0 ; j < 4 : j++ ) 

if ( O[xc+dx[l owhigh[ jlll [yc+dy[l owhigh[jlll == 0 ) 
I 

if(du[lowhigh[jll < 0 1 
i 

total u -=  du[lowhigh[jIl : 
/* Subtracting makes total-u positive */ 
p[lowhigh[jll = total - u : 

I 

1 
else p[lowhigh[jll = 0; 

1 
else p[lowhigh[jll = 0: 

return total-u; 

1 
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A p p e n d i x  A2 

Publicat ions from Nonlinear 
Physics Group of SJSU 

To show that undergraduate and graduate students can contribute significantly to 
research in nonlinear physics, as a tribute to our students who succeeded in doing 
that, and as an evidence that a meaningful research program can be maintained by 
an instructor while teaching nonlinear physics, a selected list of publications from 
our Nonlinear Physics Group at San Jose State University is presented here. 

The first three reviews summarize our work on pattern formation in electrode- 
posits and on active walks. Both topics involve research in experiments, computer 
simulations and theory. The names of undergraduate authors are bolded; those of 
graduate students are in bold and underlined. 

Reviews 

1. L. Lam, “Electrodeposition Pattern Formation: An Overview,” in Defect Struc- 
ture, Morphology and Properties of Deposits, edited by H. Merchant (Mineral, 
Metals & Materials Society, Warrendale, PA, 1995). 

2. L. Lam, “Active Walkers Models for Complex Systems,” Chaos Solitons Fractals 
6, 267 (1995). 

3. L. Lam, “Chapter 15. Active Walks: Pattern Formation, Self-organization and 
Complex Systems,” in Introduction to Nonlinear Physics, edited by L. Lam 
(Springer, New York, 1997). 

Research Papers 

4. V. M. Castillo, R. D. Pochy and L. Lam, “Pattern Changes in Electrodeposit 
of CuSO4,” in Applications of Statistical and Field Theory Methods to Con- 
densed Matter, edited by D. Baeriswyl, A. R. Bishop and J .  Camelo (Plenum, 
New York, 1990). 
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5 .  L. Lam, R. D. Pochv and V. M. Castillo, “Pattern Formation in Electrode- 
posits,” in Nonlinear Structures in Physical Systems, edited by L. Lam and 
H. C. Morris (Springer, New York, 1990). 

6. M. A. Guzman, R. D. Freimuth, P. U. Pendse, M. C. Veinott and L. Lam, 
“Experiments on Electrodeposit Patterns,” in Nonlinear Structures in Physical 
Systems, edited by L. Lam and H. C. Morris (Springer, New York, 1990). 

7. L. Lam, “Unsolved Nonlinear Problems in Liquid Crystals,” in Nonlinear and 
Chaotic Phenomena, edited by W. Rozmus and J. A. Tuszynski (World Scien- 
tific, Teaneck, 1991). 

8. M. K. Pan and L. Lam, “Stability of Dense Morphologies in Electrodeposit 
Pattern Formation,” in Nonlinear and Chaotic Phenomena, edited by W. 
Rozmus and J. A. Tuszynski (World Scientific, Teaneck, 1991). 

9. L. Lam, R. D. F’reimuth and H. S. Lakkaraju, “Fractal Patterns in Burned 
Hele-Shaw Cells of Liquid Crystals and Oils,” Mol. Cryst. Liq. Cryst. 199, 
249 (1991). 

10. R. D. Pochv, A. Garcia, R. D. F’reirnuth, V. M. Castillo and L. Lam, “Elec- 
trodeposit Tree Patterns in Linear Cells: Experiment and Computer Models,” 
Physica D 51, 539 (1991). 

11. L. Lam and J. Prost, “Chapter 1. Introduction,” in Solitons in Liquid Crystals, 
edited by L. Lam and J. Prost (Springer, New York, 1992). 

12. L. Lam, ‘(Chapter 2. Solitons and Field Induced Solitons in Liquid Crystals,” in 
Solitons in Liquid Crystals, edited by L. Lam and J. Prost (Springer, New York, 
1992). 

13. L. Lam and C. Q. Shu, “Chapter 3. Solitons in Shearing Liquid Crystals,” in 
Solitons in Liquid Crystals, edited by L. Lam and J. Prost (Springer, New York, 
1992). 

14. C. Larsen and L. Lam, “Chaos and the Foreign Exchange Market,” in Mod- 
eling Complex Phenomena, edited by L. Lam and V. Naroditsky (Springer, 
New York, 1992). 

15. R. D. Freimuth and L. Lam, “Active Walker Models for Filamentary Growth 
Patterns,” in Modeling Complex Phenomena, edited by L. Lam and V. 
Naroditsky (Springer, New York, 1992). 

16. L. Lam, R. D. Freimuth, M. K. Pan, D. R. Kayser, J. T. F’redrick and 
R. D. Pochv, “Filamentary Patterns and Rough Surfaces,” in Pattern Forma- 
tion in Complex Dissipative Systems, edited by S .  Kai (World Scientific, River 
Edge, 1992). 



17. D. R. Kayser, L. Aberle, R. D. Pochv and L. Lam, “Active Walker Models 
for Filamentary Patterns and Rough Surfaces,’’ Physica A 191, 17 (1992). 

18. R. D. Pochv, D. R. Kayser, L. Aberle and L. Lam, “Boltzmann Active 
Walker and Rough Surfaces,” Physica D 66, 166 (1993). 

19. L. Lam and Y. S. Yung, “Optical Solitons in Liquid Crystals,” in Modern Top- 
ics in Liquid Crystals, edited by A. Buka (World Scientific, River Edge, 1993). 

20. L. Lam and R. D. Pochv, “Active Walker Models: Growth and Form in Non- 
equilibrium Systems,” Comput. Phys. 7, 534 (1993). 

21. L. Lam, “Chapter 10. Bowlics,” in Liquid Crystalline and Mesomorphic Liquid 
Crystals, edited by V. P. Shibaev and L. Lam (Springer, New York, 1994). 

22. Y. S. Yung and L. Lam, “Frequency and Temperature Dependence of Refrac- 
tive Indices of Liquid Crystals,” in Novel Laser Sources and Applications, edited 
by J. F. Becker, A. C. Tam, J. B. Gruber and L. Lam (SPIE Optical Engineer- 
ing Press, Bellington, WA, 1994). 

23. L. Lam, “Instrinsic Abnormal Growth,” Overseas Chinese Physics Association 
Newsletter 1(11), 13 (1994). 

24. L. Lam, “Active Walks,” in Lectures on Thermodynamics and Statistical Me- 
chanics, edited by M. Costas, R. Rodriquez and A. L. Benavides (World Scien- 
tific, River Edge, 1994). 

25. L. Lam, M. C. Veinott and R. D. Pochv, “Abnormal Spatiotemporal Growth,” 
in Spatiotemporal Patterns in Nonequilibrium Complex Systems, edited by P. E. 
Cladis and P. PalfFy-Muhoray (Addison-Wesley, Menlo Park, 1995). 

26. V. M. Castillo, M. C. Veinott and L. Lam, “Neural Network for Classification 
of Active Walker Patterns,” Chaos Solitons Fractals 6, 67 (1995). 

27. R. P. Pan, C. R. Sheu and L. Lam, “Dielectric Breakdown Patterns in Thin 
Layers of Oils,” Chaos Solitons Fractals 6, 495 (1995). 

28. G. Marshall, S. Tagtachian and L. Lam, “Growth Pattern Formation in Copper 
Electrodeposition: Experiments and Computational Modelling,” Chaos Solitons 
Fractals 6, 325 (1995). 

29. L. Lam, R. W. Koepeke and T. Y. Lin, “Active Walks and Soft Computing,” 
in Rough Sets and Soft Computing, edited by T.  Y. Lin (Society of Computer 
Simulation, San Diego, 1995). 

30. L. Lam, “Solitons in Liquid Crystals: Recent Developments,” Chaos Solitons 
Fractals 5 ,  2463 (1995). 



Appendix A2 Publications from Nonlinear Physics Group of SJSU 331 

31. L. Lam, M. C. Veinott, D. Ratoff and L. Lam, “Noise-Induced Abnormal 
Growth,” in Fluctuations and Order: A New Synthesis, edited by M. Millonas 
(Springer, New York, 1996). 
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