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Preface

This book deals with some micro and macroproperties of solids. Microproper-
ties are perceived at the lattice level and are generally studied by diffraction or
spectroscopic methods. The lattice constant, its temperature variation (mea-
sured through the property of thermal expansion), the amplitudes of atomic
thermal vibrations (reflected in the Debye–Waller factor) and the colour
centres are some examples of microproperties. In contrast, macroproperties
are studied through measurements on material in bulk. Elastic properties,
hardness, dielectric properties and melting temperature are examples of
macro-properties.

The approach is to discuss in detail the physics of some select properties.
Theoretical as well as experimental aspects are kept in view. The beginnings
of studies of these properties can be traced to the earlier part of the last cen-
tury. Due to the basic nature of these properties, there has been continuing
research interest and constant refinement of the experimental methods. New
levels of accuracy in measurement have made it possible to observe second-
order changes like the effects of temperature, pressure, magnetic field, radia-
tion, impurities and other defects; thin film and particle size effects have also
been studied. Apart from bringing out the fundamental aspects, the book also
provides considerable space for a discussion of current trends in research in
the form of a comprehensive ‘overview’. Typically, in each chapter, the ear-
liest reference pertains to the period 1910–1930 and the latest to the period
1995–2005. The behaviour of a variety of materials like metals, alloys, ionic
crystals, semiconductors, mixed valence compounds, optoelectronic materials
and biomaterials is discussed vis-à-vis these properties.

Chapter 1 deals with the lattice constant which is a fundamental attribute
of a crystal lattice. Various methods of accurate determination of lattice
constants are discussed. The accuracy in lattice constant measurement has
now reached almost the limit as it is of the same order as the accuracy in
wavelength measurements. Effects of irradiation, impurities, deuteration of
hydrogen-containing compounds and particle size are discussed. Chapter 2
is on thermal expansion of solids. A variety of experimental methods are
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described including some novel techniques which use holography and gamma
ray absorption. The intimate relation between thermal expansion and an-
harmonicity of lattice vibrations is brought out and the important role of
thermal expansion in throwing light on thermally generated defects is pointed
out. Chapter 3 is devoted to the Debye–Waller factor which is related to the
amplitudes of atomic thermal vibrations. Originally introduced as a correction
for X-ray diffraction intensities, it has emerged as a powerful solid-state probe.
It is related to the lattice dynamical models, the interatomic bond strength,
the lattice strain and surface forces. The hardness of crystals forms the subject
of Chap. 4. Starting with microhardness methods, recent techniques of ultra
and nanohardness are discussed. A variety of aspects are included like tem-
perature and pressure variation and effects of magnetic field, irradiation and
chemical bonding. An interesting new observation is the study of phase tran-
sitions through micro-Raman spectroscopy of indentations obviating the use
of a diamond anvil. Chapter 5 on the dielectric behaviour of materials starts
with the basics of dielectrics. Experimental techniques for different frequency
ranges are considered. It is shown that dielectric properties throw much light
on such diverse aspects as anharmonicity, spectroscopic phenomena, defects
and chemical bonding. Various conduction mechanisms are discussed includ-
ing polaron conduction. The dielectric behaviour of organic compounds and
biomaterials is considered along with inorganic compounds.

To complement the experimental approach, the theoretical approach to
solid-state properties is developed in Chap. 6. The evaluation of thermal
parameters like the Debye temperature and Gruneisen constants and also
mechanical properties like elastic constants is discussed. A new method for the
evaluation of the Raman mode Gruneisen parameter of fluorite type crystals
from dielectric properties is included. A comprehensive treatment of mixed
crystal physics is given in Chap. 7. The properties of mixed crystals are inter-
mediate between those of the parent compounds. This creates the possibility
of controlling the properties by controlling the mixed crystal composition.
Several properties like hardness, dielectric constant, formation energy of de-
fects, effective ionic charge, colour centre wavelengths, melting points, Debye–
Waller factors and transition temperatures are discussed with reference to
their composition dependence. Chapter 8 on the elastic properties of solids is
mainly focused on the serious problem of discrepancies in elastic properties
and some possible checks.

The choice of the properties included in this book was, to some extent,
influenced by the research interests of the authors. Considerable amount of
work was generated through the research programmes undertaken by the au-
thors over several decades. Instead of including the results of our work in the
‘overview’, they are presented as a separate section entitled ‘Some of our re-
sults’ in each chapter. We had the privilege of having Prof. K.A. Gschneidner
(Jr.) and Dr. B.J. Beaudry (Iowa State University), Prof. B.S. Shah (Saurash-
tra University) and Dr. B.R. Rao (Indian Institute of Chemical Technology)
as collaborators. A large number of Ph.D. and M.Phil. students were also
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associated with our work. While reference has been made to them at appro-
priate places as co-authors, we would like to place on record our appreciation
of their role in our research programmes.

We are thankful to Dr. K.S. Rajam and Dr. H.C. Barshilia (National
Aerospace Laboratory, Bangalore) for sharing information on nanoindenta-
tion. Thanks are also due to Prof. K.G. Nickel (University of Tubingen) for
providing material on micro-Raman spectroscopy of indentations. The chap-
ter; Elastic Properties of Solids – ‘A Critical Analysis’ is a modified version of
a recent Review Article: ‘Consistency Checks on Elastic Properties of Solids’
published by two of the authors (DBS, KGS) in the Journal of Materials
Science. Grateful thanks are offered to colleagues at Kluwer Publishers and
their successors, Springer, for kind permission to use substantial material from
the review.

We would like to thank Prof. K.G. Bansigir (Jiwaji, University), Dr. Ch.
V. Purushotham Reddy (Chaitanya Educational Institutes) and Mr. Vinod
Kumar (South Asian Publishers) for much interest. Thanks are offered to
colleagues at the Kakatiya University for their support and cooperation.

Finally, we are grateful to Dr. C. Ascheron of Springer-Verlag for timely
suggestions and valuable advice during the various stages of the preparation of
this book. The prompt response and patient guidance received from colleagues
at the Hiedelberg office of Springer and at SPi, India are acknowledged.
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1

Lattice Constant – A Solid State Probe

1.1 Introduction

The lattice constants are basic crystallographic parameters as they represent
the dimensions of the unit cell. The number of lattice constants varies from
1 to 6 as we pass from the most symmetric (cubic) to the least symmetric
(triclinic) crystal class. From the lattice constants, other crystal parameters
and properties like molar volume, density and ionic radii can be estimated. The
variations in lattice constants with temperature and pressure yield values of
the thermal expansion coefficient and compressibility, respectively. The effects
of thermally generated defects, doping and radiation induced defects can be
followed through small, but significant, changes in the lattice constants. When
determined with accuracy, the lattice constant provides rich information about
the crystal and is a powerful solid state probe.

1.2 Experimental Methods

1.2.1 Principle

The determination of lattice constant is based on Bragg’s law of X-ray dif-
fraction illustrated in Fig. 1.1 and stated in (1.1).

nλ = 2d sin θ, (1.1)

where, λ is the wavelength, d the interplanar spacing and θ the Bragg angle
and n is the diffraction order parameter. A set of indices h, k, l, (called the
Miller indices) is associated with each plane. Thus, (1.1) can be rewritten as

sin2 θ = λ2/4d2
hkl. (1.2)
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Fig. 1.1. Bragg’s law

Expressing dhkl in terms of the lattice constant ‘a’ and the Miller indices
h, k, l, (1.2) takes the form

sin2 θ = (λ2/4a2)(h2 + k2 + l2) (1.3)

for a cubic crystal. The order parameter n is included in the Miller indices.
There are similar but more complicated equations for crystals of lower

symmetry. Thus, in principle, the lattice constant can be determined with an
experimental set-up that permits recording of X-ray diffraction reflections and
the measurement of the associated Bragg angles.

1.2.2 Experimental Techniques

Several techniques are in use for recording X-ray diffraction patterns. For
lattice constant determination, generally, powder methods are preferred. A
comprehensive discussion of these methods is available in literature [1.1–1.4].
Some of the methods are discussed here.

The Debye–Scherrer Camera (DSC)

The geometry of this camera is shown in Fig. 1.2. Monochromatic X-rays en-
ter through the collimator and fall on a needle-like powder specimen. The
X-rays are diffracted both in the front and in the backward direction by dif-
ferent lattice planes. In the figure, lines with single arrow indicate incident
and undiffracted rays and those with double arrows indicate diffracted rays.
The undiffracted rays are absorbed in the exit port. The photographic film
stays pressed against the inner surface of the cylindrical camera of radius R.
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Fig. 1.2. Geometry of the Debye–Scherrer camera

Fig. 1.3. Debye–Scherrer photograph of Al

A typical photograph taken with this camera is shown in Fig. 1.3. Denoting
the diameter of a Bragg reflection by S, the Bragg angle is given by

θ = (S/4R)(180/π)◦ (1.4)

for forward reflection and

θ = (π/2) − φ = [(π/2) − (S/4R)] (180/π)◦ (1.5)

for back reflection. Generally, the diameter of a DSC is 11.46 cm. The mount-
ing of the film is called ‘Straumanis mounting’. It facilitates recording of the
ring systems in front reflection (θ < 90◦) as well as back reflection (θ > 90◦).
Further, by measuring the distance between the centers of the two punched
holes, the effective radius of the camera can be determined.

Unicam-Type Camera (UC)

A critical examination of the commercially available Unicam camera revealed
that it has the following drawbacks:
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1. It employs the Bradley–Jay mounting with two film strips. The center of
the ring system is not included on either strip making the use of knife
edges unavoidable.

2. The specimen centering device is not convenient to operate and is not
easily accessible. In the original design, the specimen is suspended from
above.

3. The platinum-wound heater is excellent but its spherical design makes any
repair impossible and replacement is too expensive.

A Unicam-type cylindrical camera with 19 cm diameter has been designed
and fabricated [1.5]. While the design is essentially similar to the Unicam
model, some of the drawbacks in the original design have been overcome. As
this camera was indigenously fabricated in the authors’ laboratory, the design
and operation are discussed in detail.

The principle of the cylindrical camera is shown in Fig. 1.4. This is similar
to the Debye–Scherrer camera (Fig. 1.2) but with a difference in film mounting
which will be discussed later. The film forms a cylinder at the axis of which the
powder sample in the form of a thin cylindrical rod is located; for thoroughly
random orientation of the crystallites, the specimen is rotated about its own
axis. The incident rays enter through a collimator and the direct ray is stopped
by a beam stopper. In a back reflection camera, the diffracted rays travel
backward (with respect to the incident beam) along a cone of angle 4φ where
φ = (π/2) − θ.

The essential parts of the camera are shown in Fig. 1.5. These are: the
main base (A), the base plate (B), the specimen holder (C), the central brass

Fig. 1.4. The principle of the Unicam-type cylindrical camera
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Fig. 1.5. Essential parts of the cylindrical camera

cylinder (D), the heater (E) (not shown in the figure), the evacuation chamber
(F) and the film cassette (G).

As mentioned earlier, the specimen holder is different from that in the
Unicam camera. Its design is shown in Fig. 1.6. The centering of the specimen
is accomplished by the device shown in Fig. 1.6a (top view) and Fig. 1.6b
(cross-section). The specimen is mounted in a cavity drilled in the top portion
of a thin brass rod (A) which has a circular base (B). The base is rigidly
fixed over a small horizontal table (C) which is fixed in a slot by means of a
screw (D) with stoppers at the ends. To obtain transverse motion of table (C)
another similar table (E) is fixed below (C). Table (E) is fixed with screw (F).
The two screws (D) and (F) are at right angles to each other and enable the
specimen to be moved linearly. A brass bush is fixed at the bottom of the lower
table (E). The entire arrangement is mounted on a shaft with a provision to
lock it on to the shaft or to release it. The sample filled in a thin capillary tube
is fixed in the cavity of the brass rod (A) using dental cement. Centering of
the specimen is checked by viewing it through a microscope fixed to the main
base. The sample holder is released from the shaft and rotated to bring screw
(D) to the right of the viewer. If the sample does not coincide with the vertical
cross-wire in the microscope, screw (D) is manipulated suitably. The sample
holder is then rotated through a right angle such that screw (F) is on the right
and the specimen is again centred using screw (F). This process is repeated
until no displacement is observed from the axis of rotation. The specimen
holder is now locked on to the shaft. The other end of the shaft connects with
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Fig. 1.6. (a) Top view, (b) cross-section of the specimen holder for the camera in
Fig. 1.5

the spindle of a 1 rpm motor. When the film cassette is in position, the sample
may be observed by its shadow on the fluorescent screen of the beam stop.

For determination of lattice constants at high temperature, a heating
arrangement is necessary. The chief requirements of high temperature opera-
tion are the temperature stability over a period of 6–10 h and the measurement
of specimen temperature. A suitable design is shown in Fig. 1.7. A hollow tube
(A) of length 6 cm and diameter 1.5 cm with a slot (B) and a hole (C) at the
center is brazed at its top to a circular disc (D). The slot is of width 10 mm ex-
tending around the tube over an angle of 220◦ and is at right angles to the axis
of the tube. The hole permits the incident X-ray beam to strike the specimen
and the slot allows the diffracted beam to pass out to the film. A refractory
hollow tube (E) of thickness 1 cm with a similar slot and hole is compounded
with the brass tube. The refractory tube snugly fits over the brass tube. The
refractory tube has linear holes all round through which a coiled super-kanthal
wire (G) is passed. A thin circular asbestos plate (H) with a central hole of
diameter 2 cm is fixed on the lower side of the disc (D) to prevent heat losses
due to conduction. The lead wires of the coils are brought out to the terminals
through a small two-holed ceramic tube (I) fixed in a hole drilled in the brass
disc. There is a hole at the center of the disc through which a brass bush (J)
of length 2.7 cm is press-fitted into the brass tube. Two two-holed ceramic
tubes (K, L) are rigidly fixed vertically in the holes drilled at the bottom of
the bush. The lower ends of the ceramic tubes just enter into the gap provided
for the passage of diffracted X-rays. Chromel–alumel thermocouple wires are
passed through the ceramic tubes such that their junctions (M, N) lie very
close to the specimen on either side of the portion of the sample exposed to
X-rays.

The entire assembly is inserted in the central brass cylinder. A circular
groove (F) is engraved in the disc (D) on the side facing the base of the
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Fig. 1.7. Heating unit for the camera in Fig. 1.5

camera and fits on the top of the central brass cylinder. The disc can be ro-
tated horizontally about the axis of rotation of the sample holder and can
be fixed such that the incident X-ray beam after passing through the hole in
the heater strikes the sample and diffracted X-rays reach the film arranged
to receive backward reflection. The heater wire and thermocouple wires out-
side the heater are passed through ceramic beads. The free ends of the heater
and thermocouple wires are connected to the terminals on the base plate of
the camera. The thermocouples are connected to two separate millivoltmeters.
The heater is fed from an AC supply through a stabilizer and a variac. A tem-
perature of about 800◦C can be attained within 20 min. The temperature sta-
bility is obtained by adjusting the output of the variac to give a constant
voltage. The temperature distribution in the heater was investigated by po-
sitioning the thermocouple along the exposed length of the specimen. It was
observed that the temperature remains fairly steady along the length of the
specimen exposed to X-rays. The temperature recorded by the two thermo-
couples always agreed within 0.5◦C. The constancy of temperature with time
is excellent once the equilibrium is reached. The fluctuation in temperature
during exposure was < ±1◦C up to 400◦C and < ±2◦C at higher tempera-
tures. The heater is so designed that it can be lifted in and out of the camera
as a single unit during the sample mounting and alignment procedure. Also
if the heater element is burnt out it can be replaced easily.

Unlike the original Unicam camera which employs Bradley–Jay film
mounting, Van Arkel type of mounting is employed in this camera. With this
mounting, both sides of the ring system are recorded and the ring diameters
of back reflection lines can be measured without the need for knife-edge or
any other calibration. A photograph of the camera in the assembled form is
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Fig. 1.8. Photograph of the cylindrical camera

Fig. 1.9. Diffraction pattern for (a) MgO and (b) PbF2 taken with the cylindrical
camera

shown in Fig. 1.8. As will be discussed later, the error function suitable for
this camera is f(θ) = (1/2) [(cos2 θ/ sin θ) + (cos2 θ/θ)].

As examples, the diffraction patterns of MgO and PbF2 obtained with this
camera are shown in Fig. 1.9. The extrapolation plots are shown in Fig. 1.10.

Symmetric Focusing Camera (SFC)

The geometry of a symmetric focusing camera is shown in Fig. 1.11. The basic
principle of the design of a symmetric focusing camera is that if a divergent
beam of X-rays falls on a sample spread over a cylindrical surface, the dif-
fracted beam is focused provided the slit, the sample and the film lie on a
circle called the focusing circle. When these conditions are satisfied, the re-
flections are sharp and intense. Further, since the effective film-to-specimen
distance is large, compared to that in a Debye–Scherrer camera of the same
radius, the resolution is larger.

A camera based on this principle designed by Sirdeshmukh and Deshpande
[1.6] is described. The camera is 15 cm in diameter. From a carefully cut
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Fig. 1.10. Extrapolation plots for (a) MgO and (b) PbF2

Fig. 1.11. Geometry of a symmetric focusing camera

cylinder, a minor segment is cut away. The major segment is the film-holder.
It can record reflections with Bragg angles in the range of 65◦ onwards. The
main parts of the camera are shown in Fig. 1.12. It has at its base a tripod
(A) with leveling screws (B). The tripod carries a horizontal bench (C) which
can rotate about a vertical axis. It can be locked onto the tripod by means
of the screw (D). The horizontal bench carries an upright (E) which consists
of a fixed piece and a sliding piece. The slider can be moved up and down



10 1 Lattice Constant – A Solid State Probe

Fig. 1.12. Main parts of the symmetric focusing camera

Fig. 1.13. Diffraction pattern of aluminium using the symmetric focusing camera

by the micrometer screw (F). At the top of the sliding piece is a platform
(G) which carries the film holding assembly (H) along with the collimator (I).
The upright (J) is mounted over the horizontal bench. The upright can be
displaced towards or away from the film-holder. There is also provision for
lateral displacement of the upright. At its top the upright carries the sample
holding tube (K) which can be displaced in the vertical direction by means of
the screw (L). The tube is coupled to a motor (M) through an eccentric cam.

For convenience a flat sample is used instead of a sample with a cylindrical
surface. The systematic errors in this camera have been analysed and it was
found that the function φ tan φ is a suitable error function. Here φ = (π/2)–θ.
A diffraction photograph of Al is shown in Fig. 1.13 and the extrapolation plot
for Al is shown in Fig. 1.14. The extrapolated value of 4.0499(2) Å agrees well
with the value 4.0499(1) Å obtained by Wilson [1.7].

For lattice constant measurement at higher temperatures, a tubular heater
is introduced such that the sample surface is at the central region of the heater.
The temperature is measured with a copper–constantan thermocouple welded
at the back of the sample holder.
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Fig. 1.14. Extrapolation plot for Al

Flat Film Camera (FFC)

The geometry of the flat film camera is shown in Fig. 1.15. As the name indi-
cates, a flat film is employed. For accurate determination of lattice constants,
the back-reflection geometry is used. Because of the limitation of size of the
film, only a few reflections are recorded (Fig. 1.16). If S is the diameter of a
ring and D the film-to-specimen distance, the angle θ is given by

θ = (π/2) − φ = [(π/2) − (1/2) tan−1(S/2D)] [180/π]◦. (1.6)

X-Ray Powder Diffractometer

The X-ray diffractometer is a versatile technique which facilitates at once the
measurement of the Bragg angle of a reflection, its intensity and its profile.

The detection of the diffracted beam is done with a GM counter (almost
obsolete now) or a proportional counter or a scintillation counter. The elec-
tronic circuitry for stability and detection is quite involved. Detailed discus-
sion of these aspects is given in the texts mentioned at the beginning of this
section. The specimen preparation is to be done with care (see Chap. 3). The
geometry of the system shown in Fig. 1.17 and described later follows the
treatment by Peiser et al. [1.1].

The point of divergence A is the line focus of the X-ray tube. BOB′ is the
trace of the specimen. The detector C is carried on the arm pivoted at O; OA
and OC are equal. The detector and the sample rotate maintaining a θ–2θ
relationship so that ON, the normal to BOB′ always bisects ∠AOC. AOC is
the focusing circle. The detector moves along the circle described about O.
The focusing circle AOC (which has no physical reality) changes continuously
as the sample and detector traverse. This is known as the Bragg–Brentano
focusing system.

While the instrument uses a divergent beam, it is also necessary to limit
the divergence. This is done with the help of special devices known as Soller
slits. As the detector occupies some length, its movement restricts the angular
region that can be explored – generally up to θ = 60◦. For accuracy in lattice
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Fig. 1.15. Geometry of the flat film camera

Fig. 1.16. Powder photograph of two silver gold alloys using a flat film camera
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Fig. 1.17. Geometry of the X-ray powder diffractometer

constant determination, higher angles are preferred (see Sect. 1.2.3). However,
because of the distances involved, the stringent geometry and the efficient
detection, the XRD has a high resolution even at low angles. A typical XRD
pattern is shown in Fig. 1.18.

Most of the commercial models of diffractometers are based on the prin-
ciples discussed in the preceding paragraphs. However, in Bond’s [1.8] dif-
fractometer, a single crystal is employed and two wide-aperture detectors are
placed in the symmetric back-reflection configuration (Fig. 1.19). The crystal
is turned so that a reflection from the crystal is recorded by the two detectors
in succession. A high precision is obtained by this method.

1.2.3 Strategies for Accuracy

Errors occur in the determination of lattice constants. These errors are of two
types: systematic and random. Differentiation of the Bragg equation leads to

(∆d/d) = −(cot θ)∆θ. (1.7)
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Fig. 1.18. Typical X-ray diffractogram of a powder sample (Ag)

Fig. 1.19. Geometry of Bond’s (single crystal) diffractometer

Thus an error ∆θ in the measurement of the angle results in a large error
(∆d/d) at low angles and a smaller error at high angles. In fact (∆d/d) → 0
as θ → 90◦. Hence, the first strategy for accurate determination is to use high
angle reflections, generally θ > 60◦.

But the effect of errors still remains to be attended. Systematic errors arise
due to errors in geometrical parameters or physical effects. For instance, in a
cylindrical camera, errors may arise due to the following causes:

1. Error in camera radius
2. Displacement of sample from camera center
3. Absorption of beam by sample
4. Divergence of beam
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Table 1.1. Error functions for different techniques

Technique f(θ) f(θ) at high θ

i Cylindrical (DSC and UC) camera 1
2

[
cos2 θ

θ
+ cos2 θ

sin θ

]
cos2 θ

ii Flat film camera (back reflection) cos 2φ − cos2 2φ cos2 θ
iii Symmetric focusing camera φ tan φ cos2 θ
iv Diffractometer cos θ cot θ cos2 θ

The errors have been worked out and it has been shown that (∆d/d) is a
function of the Bragg angle. Thus,

(∆d/d) = f(θ), (1.8)

where f(θ) is the error function. Error functions for various techniques are
given in Table 1.1. It may be seen from the table that in each case f(θ) → 0
as θ → 90◦. For a cubic crystal

∆d/d = ∆a/a. (1.9)

From (1.8) and (1.9), it follows that:

∆a = aobs − atrue = atrue f(θ). (1.10)

Hence, a plot of aobs obtained from each reflection against the corresponding
f(θ) will be a straight line. When this line is extrapolated to θ = 90◦ the
intercept gives atrue.

Random errors are minimized, first, by measuring θ repeatedly and taking
the mean and, second, by drawing the extrapolation plot by least square
analysis. Instead of a graphical extrapolation, Cohen [1.9] suggested error
elimination by a least square processing of the data starting with the sin2 θ
values.

1.2.4 Present Level of Accuracy

A summary of the accuracy in lattice constant measurement possible with
different methods is given in Table 1.2. It can be seen that an accuracy of
one part in (1–5) × 104 can be achieved with routine methods while a higher
accuracy of one part in (1–2) ×105 is possible with special methods. This is
just an order less than the accuracy in X-ray wavelengths [one part in (5–10)
×105]. Results of some studies where lattice constants have been measured
with very high accuracy are given in Table 1.3.

1.3 An Overview

There is an enormous amount of information on the lattice constants of ma-
terials. This information is scattered in a vast number of papers published
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Table 1.2. Accuracy of lattice parameter determination by various methods

Method Accuracy in a

1 part in
Rotating crystal camera < 10,000
Weissenberg camera < 10,000
Debye–Scherrer camera 15,000
Diffractometer (asymmetric) 15,000
Unicam camera 50,000
Focusing camera 50,000
Kossel line method 100,000
Bond’s method 200,000
Uncertainty (in λ) 500,000

Table 1.3. Accurate values of lattice constants (a) of some crystals; method and
accuracy given wherever mentioned in source

Crystal Method Temperature [◦C] a [Å] Ref.

Al 25 4.04958 [1.10]
Au 25 4.07825 [1.10]
Cu 18 3.61496 [1.10]
NaCl 26 5.64056 [1.10]
NaBr 26 5.97324 [1.10]
KCl 25 6.29294 [1.10]
KI 25 7.06555 [1.10]
Diamond FFC 25 3.56696(7) [1.11]
W DSC 25 3.16491(5) [1.13]
Ge Kossel 25 5.657736(8) [1.14]
GaAs Bond 25 5.653663(5) [1.14]

in various journals. Among them, mention may be made of Acta Crystallo-
graphica, Proceedings of the Physical Society (London), Journal of the Phys-
ical Society of Japan, Journal of Applied Physics and Journal of Chemical
Physics. Exhaustive compilations of data on lattice constants is available
in [1.10, 1.15, 1.16]. In this section, some studies where the measurement of
lattice constant has been used to probe various physical phenomena in solid
state are discussed.

1.3.1 Characterisation of Semiconductor Materials

For semiconductor devices, material with highest purity and free from defects
is required. The lattice parameter provides a useful control on device material.
Silicon being the most commonly used semiconductor material, its lattice
parameter has been determined with very high precision so much so that it is
now used as a standard in X-ray diffraction instrumentation. Some results on
the lattice parameter of silicon are given in Table 1.4. There is good internal
consistency among the values of the lattice parameters obtained by various
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Table 1.4. Lattice constant of silicon

Single crystal sample Powder sample

a [Å] Ref. a [Å] Ref.

5.43108 [1.17] 5.43085 [1.12]
5.43106 [1.18] 5.43090 [1.21]
5.43107 [1.19] 5.43089 [1.22]
5.43107 [1.20] 5.43092 [1.20]

workers using single crystal samples. Similarly, there is agreement among the
results obtained using powder samples But between the two sets of results
(single crystal and powder), there is a consistent difference of 0.00015 Å, the
value for the single crystal sample being larger. Parrish [1.12] suggested that
this difference may be caused by the formation of a layer of SiO2 formed in
the process of grinding. A more plausible explanation is given by Hubbard
et al. [1.20] in terms of crystal boundary effects.

Doping has significant effect on semiconductor behaviour. The addition of
impurities alters the carrier concentration and hence the electrical behaviour.
Tap et al. [1.23] and Gille and Schenk [1.24] studied the effect of doping PbTe
with Bi and Tl ions on the lattice parameter. The addition of Bi ions reduces
the lattice parameter. This is to be expected since the ionic radius of Bi3+ is
smaller than that of Pb2+. Although the radius of the Tl+ ions is larger than
that of Pb2+, the lattice parameter decreases on addition of Tl+ ions. This
is explained on the basis of a difference in the binding between Tl and Te in
relation to that between Pb and Te on the basis of complexes formed by Tl+

with the vacancies in PbTe.

1.3.2 Characterisation of Doped Crystals

Doping of crystals (addition of small but controlled quantities of impurities)
has an effect on many physical properties of crystals. The effect is particularly
prominent in optical, mechanical and electrical properties. Doping also has an
effect on the lattice parameter and hence the lattice parameter can be used
to characterize doped crystals.

Stott et al. [1.25] measured the lattice parameters of calcium fluoride doped
with La, Tm and Y ions. The results are shown in Fig. 1.20. It is seen that
the addition of rare earth ions results in an increase in the value of the lat-
tice parameter. The per cent change in lattice constant for unit molar frac-
tion of impurity has values 6, 6 and 13 for Y, Tm and La, respectively, and
thus seems to depend on the radius of the rare earth ion. Another obser-
vation is that the value of the lattice parameter varies slightly depending
on the section of the crystal boule from where the specimen is chosen. This
indicates that the distribution of the impurity within the crystal is slightly
inhomogeneous.
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Fig. 1.20. Lattice parameters of: (a) undoped CaF2; (b) CaF2 containing
0.074 mol% TmF3; (c) CaF2 containing 0.088 mol% YF3 and (d) CaF2 containing
0.045 mol% LaF3

1.3.3 Effect of Deuteration on Lattice Constants

The substitution of hydrogen by deuterium in hydrogen-containing substances
is seen in lattice constant changes. Zimmerman [1.26] made measurements of
lattice constant of crystals in the LiHxD1−x system. The lattice constants of
LiH and LiD are 4.0831(4) and 4.0684(5) Å. The composition dependence
of the partially substituted crystals was found to be linear.

Belouet et al. [1.27] studied the effect of deuteration on potassium dihy-
drogen phosphate (KDP) crystals. KDP is a tetragonal crystal. It can be seen
from Fig. 1.21 that the ‘a’ parameter varies continuously with the deuteration
parameter x. Further in the high x region, the measured values of ‘a’ show
negative deviations from additivity. On the other hand, there is no systematic
variation in the ‘c’ parameter due to deuteration.

1.3.4 Effect of Hydrogen on Lattice Parameters of Rare Earth
Elements

The rare earth elements easily absorb hydrogen and this causes changes
in the lattice parameter. A systematic study was made by Spedding and



1.3 An Overview 19

Fig. 1.21. Plot of lattice parameter a (Å) and lattice parameter c (Å) against
deuteration parameter x of KH2(1−x)D2xPO4 crystals. Dashed line represents addi-
tive variation of ‘a’

Beaudry [1.28]. Very pure rare earth metal samples were heated in a hydro-
gen atmosphere until saturation and the lattice parameters were determined
with the help of a Debye–Scherrer camera. The observed changes are shown
in Table 1.5 and also in Fig. 1.22. It is seen that (i) the lattice parameters in-
crease with hydrogen treatment, (ii) the increase in the ‘c’ parameter is more
than that in the ‘a’ parameter and (iii) the increments in ‘a’ and ‘c’ vary from
element to element.

1.3.5 Lattice Constants of Mixed Crystals

Mixed crystals are an important class of materials. Typical data on the com-
position variation of lattice parameters of the KI–RbI mixed crystal system
taken from Van Den Bosch et al. [1.29] are shown in Fig. 1.23. The lattice pa-
rameters aC of a mixed crystal system AxB1−x generally follow the equation:

an
C = xan

A + (1 − x)an
B, (1.11)



20 1 Lattice Constant – A Solid State Probe

Table 1.5. Lattice parameters of the ABAB rare earth metals [1.28]

Rare earth metal
Lattice parameter Increase in parameter

due to hydrogen

a[Å] c[Å] a [Å] c [Å]

Gadolinium 3.6336 ± 4 5.7810 ± 5 0.0003 0.0008
Terbium 3.6055 ± 4 5.6966 ± 6 0.0007 0.0001
Dysprosium 3.5915 ± 2 5.6501 ± 4 0.0013 0.0017
Holmium 3.5778 ± 2 5.6178 ± 3 0.0032 0.0052
Erbium 3.5592 ± 2 5.5850 ± 3 0.0052 0.0115
Thulium 3.5375 ± 4 5.5540 ± 2 0.0092 0.0216
Lutetium 3.5052 ± 4 5.5494 ± 5 0.0224 0.0598
Yttrium 3.6482 ± 2 5.7318 ± 6 0.0103 0.0383
Scandium 3.3088 ± 2 5.2680 ± 3 0.0371 0.0347

Fig. 1.22. Effect of hydrogen on the lattice parameters of rare earth metals

where aA and aB are the lattice parameters of the end members A and B,
respectively, and x is the molar fraction of crystal A in the mixture. From
the data on a number of systems, Sirdeshmukh and Srinivas [1.30] found that
(1.11) with n = 1 provides the best description of the composition dependence
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Fig. 1.23. Composition dependence of lattice parameters of K1−xRbxI mixed
crystal

of lattice parameter in a mixed crystal system. Data on several mixed crystal
systems will be discussed in Chap. 7.

Depending on the system, the composition of mixed crystals can be de-
termined by potentiometric titration, polarography, atomic absorption spec-
troscopy or X-ray fluorescence. The lattice parameter can also be used as a
means to estimate the composition. This method of characterisation has the
advantage that using a small quantity of the material, lattice parameters can
be measured with high accuracy.

1.3.6 Mixed Valence Effects in Lattice Constants

Mixed valence compounds have gained great prominence in recent years. The
typical situation in these compounds is that the 5d bands of the rare earth
ions are above the sharp 4f bands but the band gap is very narrow – often of
the order of 0.5 eV. Under stimulation like pressure and temperature changes
or by addition of other ions to the lattice, overlapping develops enabling the
4f electrons to participate in valence. Thus, several compounds belonging to
this category show sudden changes in valence which, further, assumes a non-
integral value.

In Fig. 1.24, the lattice parameter data obtained by Kaldis et al. [1.31]
for the system TmSexTe1−x are shown. This system has the NaCl structure.
The composition dependence of lattice parameter is very much different from
that in Fig. 1.23 where it is linear. With the addition of Se, the valence of Tm
suddenly changes from 2 to anywhere around 2.7. This results in the S-shaped
curve. Here also, a number of parallel lines can be drawn to represent the
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Fig. 1.24. Lattice parameters for the system TmSexTe1−x

Vegard’s law variation for a given value of valence. Thus the curve can be
used to characterize the valence in these compounds.

Sampathkumaran and Vijayaraghavan [1.32] studied another interesting
system – mixed crystals of CeNi2Si2 (which is a mixed valence crystal) and
CeCu2Si2 (which is a heavy Fermion system). The lattice parameter variation
with composition is shown in Fig. 1.25. Anomalous variation in the c parame-
ter is observed at x = 0.65. At the same composition, anomalous variation is
observed in magnetic susceptibility. It is suggested that the x-dependence of
c may be useful in identifying heavy Fermion materials.

1.3.7 Temperature Variation of Lattice Constant

The temperature variation of lattice constant provides an important method
for the determination of thermal expansion of crystals. The special advantage
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Fig. 1.25. Composition dependence of lattice parameters for the system
CeCu2−xNixSi2; dashed line indicates additive behaviour

of this method is that a very minute quantity of the material serves as sample.
Further, in anisotropic crystals, the thermal expansion in several directions
can be determined in a single experiment. Studies of temperature variation
of lattice constants reveal many interesting phenomena like negative thermal
expansion and phase transitions. Several studies of temperature variation of
lattice parameters of crystals are cited in Chap. 2.

1.3.8 Pressure Variation of Lattice Parameters

By enclosing the sample in a pressure medium or in a diamond anvil press,
the changes in lattice constant can be studied. From these changes, the linear
compressibilities can be evaluated. A minute crystal or a small quantity of
material in the powder form serves as sample. This method and results on
several materials are quoted in Chap. 8.

1.3.9 Effect of Magnetic Field on Lattice Constant

There is very little work on this aspect. Kida et al. [1.33] studied the effect
of magnetic field on the ‘c’ lattice constant of Dy which is antiferromagnetic
with TN = 179K and ferrimagnetic with TC = 91K. The study was carried
out by making measurements on the (006) reflection from a single crystal
using X-rays.

The variation of ‘c’ with magnetic field is shown in Fig. 1.26. There is a dis-
continuous change in ‘c’ in the experiments conducted at 130 and 150 K. This
‘gap’ in c-parameter vanishes at 170 K. The observations have been explained
in terms of exchange integrals.
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Fig. 1.26. Variation of lattice parameter c of Dy with magnetic field at different
temperatures

Fig. 1.27. Lattice parameter as a function of γ-irradiation time for NaClO3

1.3.10 Radiation Damage

Irradiation of solids by high energy radiation affects several physical proper-
ties. Irradiation effects are seen in lattice parameter values also.

Stapien et al. [1.34] studied the damage in NaClO3 crystals irradiated with
γ-rays from a 60Co source. The variation in the value of lattice parameter as
a function of irradiation time is shown in Fig. 1.27. There is a fast increase
in lattice parameter during the first 50 h of irradiation. Thereafter, the rate
of increase slows down and the lattice parameter reaches a saturation value.
There is considerable evidence to show that on irradiation the ClO3 ion breaks
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into a number of species including gaseous oxygen and ozone. The strains pro-
duced in the lattice by these radiolysis products result in the lattice parameter
variations.

Zircon is a mineral of gem quality. It is a tetragonal crystal. It has been ob-
served that zircon samples from different locations show a considerable range
of physical properties. This applies to the lattice parameter values also. These
variations cannot be explained in terms of differences in chemical composition.
It is known that zircon samples invariably contain uranium and thorium as
impurities. It has been suggested that the differences in lattice parameters are
due to effects of irradiation by α-particles originating in the radioactive dis-
integration of uranium and thorium. That it is so can be seen from the plots
of the lattice parameters a and c as a function of the α activity (Fig. 1.28).
These results are taken from the work of Holland and Gottfried [1.35]. The
plots are smooth curves. The observed variation could be due to a combination
of causes like ionisation by the α particles and displacement of atoms by recoil
nuclei.

The interesting result of this study of lattice parameters of zircon is that
since lattice parameters are found to correlate with α-activity and since the
latter correlates with the age of the mineral, it may be possible to use the
lattice parameter as a measure of the age in zircon samples.

1.3.11 Effect of Particle Size on Lattice Constant

A smaller particle size shows two effects on X-ray (or electron) diffraction
patterns. First, there is a broadening of the powder diffraction lines and, sec-
ond, there is a measurable change in the lattice constant. A detailed electron
diffraction investigation by Boswell [1.36] on a few metals and some alkali
halides clearly established that the lattice constant decreases with decreasing
particle size. This is further confirmed by numerous subsequent studies. Typ-
ical results obtained by Boswell are given in Table 1.6. The decrease in lattice
constants with decrease in particle size is consistent with the theory of surface
effects in crystals [1.37].

1.3.12 Lattice Constants and Point Defects in Crystals

Lattice parameter determination yields interesting information regarding
point defects in crystals. It is well known that the formation of vacancies
in metals or Schottky defects in ionic crystals leads to an increase in bulk vol-
ume as new atomic layers are formed on the crystal surface. This means that
the bulk density (ρm) decreases. No such change takes place when Frenkel de-
fects are formed. On the other hand, the existence of pure interstitials results
in an increase in bulk density.

The density of a crystal can be calculated from the lattice parameter from
the relation:

ρx = Mn /NA a3, (1.12)
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Fig. 1.28. Variation of lattice parameters c and a of zircon with α-activity

where M is the molecular weight, n the number of formula units in the unit
cell, NA Avogadro’s number and a the lattice constant. ρx is called the X-ray
density or ideal density. Its value is not affected by the presence of a small
number of defects. From the above discussion, we have the following relations
between ρm and ρx:

Schottky defects ρm < ρx

Frenkel defects ρm = ρx

Interstitials ρm > ρx
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Table 1.6. Change of lattice constant with particle size [1.36]

Gold NaCl

Particle size [Å] Lattice constant [Å] Particle size [Å] Lattice constant [Å]

14 3.983 48 5.614
18 3.993 75 5.622
33 4.059 80 5.626
40 4.062 150 5.630

Table 1.7. Value of lattice constant (a), ρx, ρm and concentration of Schottky
defects (nS) for the NaxK1−xCl mixed crystal system [1.38]

x a [Å] ρx [g cm−3] ρm[g cm−3] nS [%]

0 6.2916 1.9881 1.9880 0
0.1 6.2354 1.9982 1.9964 0.09
0.3 6.1185 2.0217 2.0117 0.49
0.5 5.9913 2.0538 2.0368 0.82
0.7 5.8571 2.0922 2.0683 1.14
0.9 5.7156 2.1363 2.1321 0.20

Thus, from a comparison of ρm and ρx it is possible to infer the type of
defect present and also to estimate its concentration.

As an example, the results obtained by Barrett and Wallace [1.38] on the
KxNa1−xCl system are reproduced in Table 1.7. It can be seen that there are
Schottky defects in this system. Further, the concentration of the defects (nS)
is maximum in the composition range 0.5–0.7.

It may be mentioned that some authors have used a different approach.
Thus, Straumanis [1.39] calculated the molecular weight Mx from (1.12) using
the measured density and compared it with the standard value of M . On
the other hand, Semiletov [1.40], compared the measured lattice constants
of III–VI semiconductors with those calculated from covalent radii and drew
information about vacancies and interstitials.

1.3.13 Lattice Constant Variations due to Dislocations

The stress fields associated with dislocations produce local variations in lat-
tice parameter. The effect gets averaged out and cannot be detected with
routine methods. However, if a sample can be scanned with an X-ray beam,
these variations can be observed. In Fig. 1.29, the experimental set up used by
Rozgonyi et al. [1.41] is shown. Here the computer-controlled diffractometer
positions the detector at the maximum of the Bragg peak as the specimen is
scanned and the value of the Bragg angle is recorded as a function of some
distance on the sample. An X-ray topograph (XRT) is also recorded and the
two records are superposed (Fig. 1.30). It is seen that the value of the Bragg
angle is constant up to a certain point (E) and then it decreases. This region is
a strained region and the strain can be computed from the variation in lattice
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Fig. 1.29. Diagram of automatic Bragg angle control (ABAC) to study variations
in lattice constant with dislocations

Fig. 1.30. ABAC trace superimposed on XRT for a Ga0.66Al0.34As/GaAs sam-
ple. As and Al are, respectively, ABAC trace for the substrate alone and the
layer/substrate combination. E is the edge of the LPE layer

parameter. These variations are obviously due to the stress produced by the
dislocations. Fig. 1.30 relates to a section of LPE layers of Ga1−xAlxAsyP1−y

on GaAs substrate. This information is very important in the performance
control of heterojunctions.
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Fig. 1.31. Plots of pressure derivatives of elastic constants vs. nearest neighbour
distance of alkali halides

1.3.14 Lattice Constant as a Scaling Parameter

A number of physical properties of crystals scale with the lattice constant
i.e., they vary smoothly with the lattice constant. In Figs. 1.31–1.33 plots of
the pressure derivatives, temperature derivatives of elastic constants and the
surface energy, of some alkali halides are shown with the nearest neighbour
distance as the variable. Such correlations are useful either in estimating un-
known values by interpolation or in understanding the nature of the property.

1.4 Some of our Results

1.4.1 Lattice Parameters – Data Generation

Using the techniques described in Sect. 1.2, the lattice parameters of several
cubic and a few tetragonal and hexagonal crystals have been determined. The
lattice parameter results are a by-product of the experiments aimed at ther-
mal expansion measurements and Debye–Waller factor studies. These values
are given in Tables 1.8 and 1.9. The data obtained by camera techniques are
systematically more accurate than those obtained from diffractometric mea-
surement. This is due to the inherent differences in the two techniques. Most
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Table 1.8. Lattice constant (a) and X-ray density (ρx) of some cubic crystals at
room temperature

Structure Crystal Temperature aa [Å] ρx[g cm−3] Methodb Ref.
[◦C]

FCC Al 28 4.0499(2) 2.598 SFC [1.42]
Pb 28 4.9505(2) 11.339 SFC [1.42]

NaCl NaCl 29 5.6407(2) 2.163 UC [1.43]
RbCl 26 6.5916(2) 2.832 FPC [1.42]
RbBr 27 6.8927(2) 3.357 FPC [1.42]
RbI 27 7.3466(2) 3.557 FPC [1.42]
MgO 26 4.2124(2) 3.581 SFC [1.42]
CdO 32 4.6954(3) 8.238 UC [1.43]
CaS 26 5.6951(2) 2.594 FPC [1.42]
PbS 26 5.9358(1) 7.599 SFC [1.42]
MnS 28 5.222(2) 4.058 XRD [1.44]
EuS 30 5.953(1) 5.793 XRD [1.45]
TmSe 28 5.703(2) 8.876 XRD [1.44]
SmS 28 5.962(2) 5.717 XRD [1.44]
SmSe 27 6.190(2) 6.4212 XRD [1.44]
SmTe 27 6.593(2) 6.4391 XRD [1.44]
ZrC 28 4.698(2) 6.612 XRD [1.46]
NbC 28 4.471(2) 7.796 XRD [1.46]
HfC 28 4.636(2) 12.697 XRD [1.46]
TaC 27 4.454(2) 14.503 XRD [1.46]
VN 29 4.135(2) 6.101 XRD [1.46]
HfN 29 4.510(3) 13.936 XRD [1.46]

CsCl CsBr 28 4.295(2) 4.459 XRD [1.44]
CsI 27 4.567(2) 4.528 XRD [1.44]
TlCl 27 3.842(2) 7.021 XRD [1.44]
TlBr 28 3.986(2) 7.453 XRD [1.44]
Gd–Zn 29 3.600(2) 7.923 XRD [1.44]
Gd–Mg 29 3.812(2) 5.442 XRD [1.44]
NH4Cl 27 3.8763(2) 1.525 FPC [1.42]
NH4Br 28 4.0603(2) 2.429 FPC [1.42]

ZnS CdTe 28 6.480(1) 5.858 XRD [1.47]
CaF2 CaF2 31 5.4650(2) 3.177 UC [1.43]

SrF2 28 5.7982(2) 4.280 SFC [1.42]
BaF2 27 6.1940(2) 4.900 SFC [1.42]
CdF2 30 5.398(3) 6.351 XRD [1.46]
PbF2 37 5.9421(2) 7.762 UC [1.43]
EuF2 30 5.835(4) 6.350 XRD [1.46]

Miscellaneous FeS2 28 5.4165(3) 5.014 SFC [1.42]
Sr(NO3)2 20 7.7798(2) 2.985 DSC [1.48]
NaBrO3 28 6.7072(2) 3.321 SFC [1.49]
Eu3Fe5O12 30 12.488(2) 6.323 XRD [1.45]

aAccuracy : The figure in parenthesis denotes uncertainty in the last decimal place.
bMethods: DSC – 11.46 cm Debye–Scherrer camera; FFC – Flat film camera; SFC
– 15 cm symmetric focusing camera; UC – 19 cm Unicam camera; XRD – X-ray
powder diffractometer
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Fig. 1.32. Plots of temperature derivatives of elastic constants; C′(C11–
C12)/2, C′

11(C11+C12+2C44)/2, BS = (C11+2C12)/3 vs nearest neighbour distance
of alkali halides

Fig. 1.33. Plots of surface energy σ vs. nearest neighbour distance of alkali halides
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Table 1.9. Lattice parameters (a, c) and X-ray density of some tetragonal and
hexagonal crystals (notation for accuracy and methods same as in Table 1.8)

Crystal class Temperature [◦C] Crystal a [Å] c [Å] X-ray
density

Method Ref.

Tetragonal 25 Sn 5.8318(3) 3.1819(3) 7.285 FFC [1.42]
26 KDP 7.4528(4) 6.9683(4) 2.335 FFC [1.42]

Hexagonal 26 ZnO 3.2495(2) 5.2064(3) 5.119 SFC [1.42]
25 PbI2 4.5562(4) 6.9830(4) 6.097 FFC [1.42]

of the values agree within limits of errors with accurate values reported by
others. Some of the values in Table 1.8 are now discussed.

In the case of Sr(NO3)2, the value of 7.7794 Å [1.48] differed consider-
ably from the value of 7.81 Å reported earlier by Vegard [1.50]. The densities
calculated from these two values using (1.12) are 2.930 and 2.985 [g cm−3].
Comparison of these values with the experimental value of 2.986 indicates
that our value of ‘a’ [1.48] is more reliable.

The value of 4.2124 Å for the lattice constant of MgO is based on mea-
surements on a ‘coarse’ sample of MgO powder supplied by the US Bureau
of Mines. The USBM also supplied a ‘fine’ sample of the same purity. Mea-
surements on this second sample yielded a lower value of 4.2117(2) Å. This
difference in the values for the two samples is consistent with the general ob-
servation that the lattice constant decreases with the grain size of the sample.

PbS is thermally stable and can be obtained in the pure form. Its powder
photograph has several reflections at high angles making an accurate measure-
ment of lattice constant possible. Razik [1.51] proposed PbS as a standard for
precision lattice parameter measurement. The value of 5.9358(1) Å for the lat-
tice constant of PbS [1.42] agrees well with the value 5.9350(7) Å obtained by
Razik [1.51].

1.4.2 Lattice Constant as a Scaling Parameter

Keyes [1.52] showed that the elastic constants of crystals with ZnS structure
scale with their lattice constants. Mitra and Marshall [1.53] showed that the
compressibility of alkali halides scales with the lattice constant. In our work,
we have observed that the lattice constant scales with (i) the Debye temper-
ature and (ii) the hardness.

Nagaiah et al. [1.54] obtained a linear plot between the Debye temperature
and the reciprocal of the lattice constant of some rare earth garnet crystals.
They used this plot (Fig. 1.34) to estimate the Debye temperatures of samar-
ium iron garnet, holmium iron garnet and lutecium iron garnet crystals from
their lattice constants. Similarly, Gopi Krishna et al. [1.55] calculated the
Debye temperatures of some rare earth monochalcogenides from known data
on elastic constants and obtained a linear plot between θ and a−1.
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Fig. 1.34. Plot of Debye temperatures of some rare earth garnets against the recip-
rocal of lattice constant (a)

Regarding the hardness, Thirmal Rao and Sirdeshmukh [1.56] and Sirdesh-
mukh et al. [1.57–1.59] showed that the lattice constant correlated with the
hardness of alkali halides with NaCl structure, divalent chalcogenides with
NaCl structure, the rare earth garnets and the cesium halides, respectively.
The plot for the cesium halides is shown in Fig. 1.35. Typically, the hardness
decreases with increasing lattice constant and the a vs. H plots are smooth
curves. The variation of the two parameters, one decreasing and the other
increasing is linked to the weakening of the interatomic binding. Details are
given in the Chap. 4.

1.4.3 Temperature Variation of Lattice Constant

The lattice constant generally increases as the temperature increases. This
variation provides an important method for the determination of the ther-
mal expansion coefficient of crystals. The temperature variation of the lattice
parameters of several crystals has been investigated. As an example, the tem-
perature variation of the lattice constants of CdF2 and PbF2 [1.60] is shown
in Fig. 1.36. Results on other crystals are given in Chap. 2.

1.4.4 Radiation Induced Changes in Lattice Constant of NaBrO3

Hussain et al. [1.49] measured the lattice constant of NaBrO3 subjected to
different dosages of γ radiation. The lattice constant was determined with
the help of a symmetric focusing camera; filtered Cu radiation was used.
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Fig. 1.35. Plot of microhardness (HV ) of cesium halides against the lattice con-
stant (a)

Fig. 1.36. Temperature variation of the lattice constants of CdF2 and PbF2
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Table 1.10. Lattice constant a of NaBrO3 at different γ-irradiation doses

Dosage [106 rad] a [Å] Dosage [106 rad] a [Å]

0.00 6.7072(2) 12.42 6.7092(2)
2.48 6.7074(2) 14.84 6.7104(2)
5.11 6.7075(2) 17.32 6.7106(2)
7.45 6.7081(2) 19.94 6.7109(2)

10.01 6.7090(2) 22.49 6.7114(2)

Fig. 1.37. Lattice constant vs. γ-irradiation dosage for NaBrO3

The γ-irradiation was carried out with a 1 kCi 60Co source at a dose rate of
1.38 × 105 rad h−1.

The lattice constants are given in Table 1.10. The dependence of the lattice
constant of NaBrO3 on irradiation is shown in Fig. 1.37. It is seen that in
NaBrO3 as well as NaClO3 (see Sect. 1.3.10), the lattice constant increases
with γ-ray dosage. This radiation induced lattice expansion is attributed to
the creation of radiolysis products like BrO−1,BrO−2,Br2O−

3 , etc. in NaBrO3

(and similar ions in NaClO3).

1.4.5 Lattice Constants of Mixed Crystals

The lattice constants of mixed crystals are a function of the composition. Gen-
erally, the composition dependence is linear. In some cases, on closer analy-
sis, a slight positive deviation from linearity is observed. The composition
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Fig. 1.38. Lattice constant vs composition (x) for the RbBrxI(1−x) mixed crystal
system

dependence of the lattice parameter of some mixed crystal systems has been
studied. As an example, the composition dependence of lattice constants in
the RbBrxI(1−x) system observed by Kumara Swamy et al. [1.61] is shown in
Fig. 1.38. Results on other systems are given in Chap. 7.
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Thermal Expansion

2.1 Introduction

The thermal expansion of solids is a basic physical property representing the
dimensional changes in a solid induced by a change in temperature. It is of
technical importance as it determines the thermal stability of a crystal. The
thermal shock resistance of crystals depends on the thermal expansion [2.1].
The thermal expansion characteristics decide the choice of material for con-
struction of metrological instruments. In modern epitaxial device technology,
lattice mismatch is an important factor; this is related to the thermal ex-
pansion behaviour [2.2]. In nuclear fuel technology, the thermal expansion is
a deciding factor in the choice of container material [2.3]. The knowledge of
thermal expansion is necessary in the experimental determination of the tem-
perature variation of elastic constants, refractive index, dielectric constants
and photoelastic constants. Thermal expansion data are also needed in the
conversion of CP into CV .

The thermal expansion of a solid is a consequence of the anharmonic nature
of the atomic vibrations of the atoms. When a solid is heated, the atoms
vibrate with increased amplitudes. The anharmonic increase in the amplitudes
results in the displacement of the effective mean positions of the atoms. As
a consequence, the volume of the solid increases. The intimate connection
between the anharmonicity of vibrations and the expansion coefficient can
be established by assuming a simple model, the monatomic one-dimensional
lattice [2.4].

If the equilibrium separation of the atoms increases by x, the change in
potential energy may be represented approximately by

U(x) = a1x
2 − a2x

3, (2.1)

where a1 and a2 are constants. Here, the first term represents harmonicity
and the second the anharmonicity of atomic vibrations. Using Boltzmann
statistics, we obtain for the average value of x

x̄ = 3a2kBT/4a2
1, (2.2)
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where kB is the Boltzmann constant and T the absolute temperature. The
linear coefficient of expansion α is given by

α = (dx̄/dT )/r0 = (3a2kB/4a2
1r0), (2.3)

where r0 is the interatomic distance at the initial temperature. According to
(2.3), the expansion coefficient is a constant. This is because of the classical
expression for the energy used in (2.2). If the quantum expression is employed,
one gets [2.5]

α = (dx̄/dT )/r0 = (3a2kB/4a2
1r0)(hν/kBT )2 exp(−hν/kBT ), (2.4)

where the terms have their usual significance. From (2.4), it can be seen that
the thermal expansion coefficient is directly related to the anharmonic term
in the expression for potential energy; there would be no thermal expansion in
the absence of anharmonicity. It can also be seen from (2.4) that the coefficient
of thermal expansion is temperature dependent as against (2.3) which gives a
temperature independent quantity. Further (2.4) predicts that the coefficient
of thermal expansion decreases as the temperature decreases and finally ap-
proaches zero, as the temperature tends to zero in conformity with the third
law of thermodynamics.

The thermal expansion behaviour of a solid is closely related to the inter-
atomic forces in the solid and its structure. The expansion coefficient is very
low for covalent crystals and quite large for Van der Waal solids, the metallic
and ionic solids having intermediate values of expansion coefficients. Krishnan
[2.6] pointed out that in ionic crystals the thermal expansion depends on the
valency of the ions. Megaw [2.7] gave a quantitative relation between the
coefficient of expansion and the electrostatic share, q. The relation is

α q2 = constant. (2.5)

The electrostatic share is defined as the ratio of the valency of the ion to the
number of ions of the opposite sign, which are its immediate neighbours.

The thermal expansion behaviour varies considerably with the structure
even when the constituent ions are the same. This can be seen from the
expansion of sphalerite and wurtzite [2.8], rutile and anatase [2.9] and the
tetragonal and hexagonal phases of GeO2 [2.10,2.11].

The difference in the interatomic binding in different directions has con-
siderable influence on the magnitude of thermal expansion anisotropy. The
anisotropy of expansion in layer and anti-layer structures is discussed by
Wooster [2.12] in terms of the intra-layer and inter-layer bonding. In com-
plex structures, where the constituents are groups of atoms, the change with
temperature in the shape of these groups and their orientation affects the
thermal expansion. This effect has been observed in the expansion of am-
monium dihydrogen phosphate [2.13], potassium iodate [2.14] and in several
other crystals [2.15].
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A theory of thermal expansion was proposed by Gruneisen [2.16].
Gruneisen defined a parameter, γ, which expresses the volume dependence
of the frequencies of vibration. The Gruneisen parameter is given by the
expression

γ = −(d log ν)/d log V ), (2.6)

where ν is the frequency of atomic vibrations and V the volume of the solid.
Gruneisen finally derived the equation:

α = (γ ψ CV )/3 V. (2.7)

Thus, the Gruneisen parameter relates the linear coefficient of thermal
expansion α to the isothermal compressibility ψ, the specific heat at constant
volume CV and the molar volume V .

Gruneisen assumes the same value for the constant γ for all frequencies.
As such, (2.6) may also be written as

γ = −(d log νm)/d log V ), (2.8)

where νm is the Debye characteristic frequency. In a more elaborate way,
each mode of vibration νi has its corresponding Gruneisen parameter γi and
also makes its contribution Ci to the specific heat. The thermal expansion
coefficient α is now given by

α = (ψ/3V )
∑

i

γiCi. (2.9)

The comparison of α calculated from the lattice vibration spectrum with the
experimental values provides a good check on the lattice dynamical model
[2.17,2.18].

2.2 Experimental Methods

2.2.1 General

The coefficient of thermal expansion α is defined as (1/∆T )(∆l/l) where ∆l is
the increase in length of a sample of length l corresponding to an increase ∆T
in temperature. For most solid materials, α is in the range 10–60×10−6(K−1).
The crystal samples used in measurements are generally a few mm thick. As
thermal expansion is temperature dependent, measurements have to be made
over small temperature intervals of a few degrees at a time. Thus, sensitiv-
ity of the order of 10−4–10−6 in (∆l/l) is generally required. Sometimes for
detecting smaller changes, a higher sensitivity is required. This demand has
led to development of a number of experimental techniques for measurement
of thermal expansion of crystals. These various methods may be grouped as
(i) optical methods, (ii) capacitance methods, (iii) diffraction methods, (iv)
dilatometric methods and (v) other methods. Several of these methods have
been discussed in [2.6, 2.19, 2.20]. Some of the important methods will be
briefly discussed.
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2.2.2 Optical Methods

Most optical methods make use of the phenomenon of interference. Fizeau
[2.21, 2.22] was the first to set up an interferometer for the measurement of
thermal expansion. The sample was a crystal block with one face polished.
A glass plate was supported above this face. A beam of approximately mono-
chromatic light travelled down the system and reflections occurred from the
lower surface of the glass plate and the upper surface of the specimen. When
these two surfaces were at a small angle, the two reflected beams resulted in a
set of straight line fringes. Displacement of the crystal surface due to heating
resulted in the displacement of the fringe system. From the shift of fringes the
thermal expansion can be calculated.

Several modifications of Fizeau interferometers have appeared [2.23–2.27].
The main difference between these versions and that of Fizeau are (i) the use
of quartz or glass optical flats, (ii) use of partially metallized plates, (iii) use
of three small pieces of the sample or a cylindrical sample, (iv) use of a laser
to give sharp fringes and (v) the use of a camera or other recording system.

Frazer and Hollis-Hallett [2.28] and Meincke and Graham [2.29] employed a
Fabry–Perot etalon for the measurement of thermal expansion. The specimen
was in the form of a cylinder 2 in. long and 1 in. in diameter with an axial hole
half inch in diameter. The ends were in the form of three feet with polished
co-planar optically flat surfaces. This sample was sandwiched between two
half-silvered optical flats. A beam of monochromatic light passes through the
etalon to the opposite side resulting in a fringe pattern. From a continuous
monitoring of the intensity of the central interference fringe as the etalon is
warmed, the thermal expansion coefficient can be obtained.

Kirby [2.30] modified an Abbey–Pulfrich interferometer for thermal ex-
pansion measurement. He devised a holder such that a large single crystal is
held inside an etalon. The design of the holder is such that experiments can be
done on the same crystal sample placed in different orientations in the etalon,
thus enabling the measurement of thermal expansion in different directions.
In yet another modification, Aurora et al. [2.31] used a Jamin interferome-
ter in conjunction with a laser for measuring the thermal expansion of some
superionic conductors.

2.2.3 Capacitance Methods

In this method a heterodyne oscillator is used. The plate separation of one
capacitance is controlled by the sample thickness and the other capacitance is
variable. When the sample expands on heating, it results in the change in the
capacitance of the first condenser which in turn alters the frequency. Either
the change in frequency ∆f is measured, or the change ∆C in capacitance C in
the second condenser necessary to restore the original frequency is measured.
It can be shown that 2∆f/f = ∆C/C = ∆l/l. Hence the expansion coefficient
can be calculated.
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Bijl and Pullan [2.32] were the first to use this method. Several capacitance
dilatometers with minor modifications have been proposed [2.33,2.34]. A ma-
jor refinement was introduced by Carr et al. [2.35] who designed a three ter-
minal capacitance cell. Two such capacitances are connected in a transformer
bridge and the small changes in capacitance are measured by means of an A.C.
bridge. The overall sensitivity of this method is very high (∆l/l ∼ 10−10).
White [2.36] used this set-up for the measurement of thermal expansion of a
number of solids at very low temperature. Jones and Richards [2.37] discuss
transducer designs for sensitive capacitance micrometry. Ema et al. [2.38] have
designed a capacitance dilatometer with a sensitivity of (∆C/C ∼ 10−7); they
used this arrangement to measure the changes in the expansion coefficient of
sodium nitrite through the transition.

2.2.4 Diffraction Methods

Bragg’s law of diffraction is

d = λ/(2 sin θ), (2.10)

where λ is the wavelength, θ the Bragg angle and d the interplanar spacing.
This law provides the basis for the diffraction methods of determining thermal
expansion. A change in temperature of a crystal causes a change in the value
of d, which is observed as a change in θ. Thus from the changes in the Bragg
angles, the expansion coefficients can be obtained. However, actually, instead
of finding changes in the d values of the individual lines, the lattice constants
are determined accurately by using all the available lines and the thermal
expansion is calculated from the temperature variation of lattice constants.
In terms of the lattice constant ‘a’ and the change ∆a corresponding to the
temperature change ∆T , α becomes (1/∆T )(∆a/a).

The accurate determination of lattice parameters from X-ray diffraction
is now a highly developed field. Excellent treatment of this topic is available
in treatises [2.39–2.41]. Single crystal methods are used rarely. The powder
method is more commonly used. A number of cameras based on different
geometries have been proposed. The geometries generally employed in powder
cameras are (i) flat film camera, (ii) cylindrical camera and (iii) focusing
cameras. Some of these cameras are described in Chap. 1.

Cameras with low temperature and high temperature facilities have been
designed by many workers and are also commercially available. The well-
known Unicam high temperature camera with 19-cm diameter has been em-
ployed by many workers for lattice parameter studies up to 1,000◦C. The
lattice parameters can be determined, generally, with an accuracy of ±0.0002
Å. This accuracy has been enhanced in some cases by using special tech-
niques [2.41]. Another X-ray diffraction technique is the X-ray diffractometer
wherein the diffraction pattern is recorded with the help of a detector. This
technique is also discussed in Chap. 1.
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2.2.5 Dilatometric Methods

Push-rod dilatometry is one of the techniques of measurement of thermal
expansion. Several push-rod dilatometers are commercially available. Fused
quartz dilatometers are simple and comparatively inexpensive. In a typical
dilatometer the sample is enclosed in a fused quartz tube. The end of the
sample is in contact with a sensitive dial-gauge. The composite holder (quartz
tube and sample) is placed in a heater and length changes are directly read
on the dial-gauge. Janson and Sjoblom [2.42] describe such a dilatometer.

A push-rod dilatometer was constructed and was used by Rao [2.43] for
studies of some crystals. The instrument is described in some detail since it
is simple in design, inexpensive and made from indigenously available compo-
nents. The main parts of the push-rod dilatometer and the procedure for its
use are discussed in this section.

The Push-Rod Assembly

The rods used in the present experimental set-up are made of fused silica. They
are cylindrical in shape and their surface is satin-glazed. The rod assembly
is made up of two parts. Three rods of equal length form the base of the
assembly and a set of four short rods makes its upper part. The three base
rods rest on two metal stands fixed to a wooden base. The metal stands
are provided with horizontal projections on either side. The two projections
facing each other have three grooves made in each of them to hold the rods.
The exterior projections are flat so as to support the dial-gauge micrometers.
The rod assembly as seen from the front is shown in Fig. 2.1a. The long rod,
designated BR is one of the base rods fixed to the metal stands. The two
shorter rods placed on the base rods rest lengthwise in the space provided by
the adjacent base rods. The sample is sandwiched between the two short rods
wherein the rod marked FR is the fixed rod and MR the movable rod. The
shaded portion marked S shows the position of the sample. The movable rod
MR is in communication with the dial-gauge DG. The position of the heater
is shown in the figure by H.

The differential arrangement of the rod assembly, along with the positions
of the specimen and the standard reference material, as seen from above is
presented in Fig. 2.1b. The shaded portions, S1 and S2, represent the two
specimens, i.e., the sample and the standard reference material. FR1 and FR2

are the two fixed short rods, fixed to the base rods by means of an adhesive
applied at the end away from the heater. MR1 and MR2 are the two movable
rods which are in communication with the two dial-gauge indicators DG1 and
DG2 kept on the two exterior projections of the metal stand. The position
of the heater with respect to the two samples is shown by H. When heated,
the specimen under study communicates its dilation to the micrometer kept
on the metal stand on one side of the assembly while the standard reference
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Fig. 2.1. (a) Front view, (b) top view and (c) cross-sectional view of the rod
assembly

material communicates its dilation to the micrometer on the other side. The
positions of the two thermocouples, T1 and T2 are as shown in the figure.

The cross-sectional view of the rod assembly is given in Fig. 2.1c. The
circles marked 1 and 2 represent the cross-sections of the short rods whereas
the circles marked 3 represent the base rods. The cross-section of the heater
as seen from one side of the assembly is indicated by the dotted circle.

The Dial-Gauge Micrometers

When the sample is heated, it expands and pushes the silica rod which is
in communication with the dial-gauge indicator. The push-rod is in contact
with the arm of the dial-gauge which passes through a small hole drilled in the
metal stand just above the horizontal projection. Two dial-gauge micrometers,
one for measuring the expansion of the standard reference material and the
other for measuring the expansion of the specimen, are used.

The construction and working of the dial-gauge have been described by
Cook and Rabinowicz [2.44]. The dial-gauge consists of levers and gears hav-
ing two toothed wheels one moving over the other. The input displacement
pushes an arm or shaft which communicates the displacement to a toothed
wheel. This toothed wheel moves another toothed wheel of lesser radius in the
opposite direction. A light pointer needle is attached radially to the second
toothed wheel. The needle moves on a graduated circular scale. The displace-
ment of the arm of the dial-gauge is magnified and the output may directly
be read on the circular scale.

In the present design, the dial indicators are Mitutoya circular dial-gauges
made in Japan. In this, the circular scale has two semi-circular parts each
marked 0–100 divisions, each division corresponding to 0.001 cm. One-fifth of
each division could be made out visually. Thus, this micrometer is capable of
measuring length changes to within two parts in 105. It may be mentioned
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that for most crystals the relative expansion ∆L/L for a rise of 1◦C is of the
order of 10−5 or more.

The Heating Arrangement

The heater H shown in Fig. 2.1 is a cylindrical tube and is made of asbestos.
The heating coil, a super-kanthal wire, was wound uniformly over the tube
over a length of about 6 cm. The heater coil was fed by AC supply from a
dimmerstat through a TEMPO temperature control. The temperature distri-
bution along the heater tube was investigated by placing the hot junction of
the thermocouple at different distances from an open-end. The samples and
the hot junctions of the respective thermocouples are placed in the region of
uniform temperature.

Measurement of Temperature

The temperature of the samples was measured with copper–constantan ther-
mocouples. The thermocouples are placed as shown in Fig. 2.1b. The hot junc-
tion of the thermocouple was kept very close to the sample, both being located
at the middle of the heater. Both the thermocouples are connected to a sensi-
tive galvanometer through a commutator arrangement. As the specimen under
study and the standard material are located in the same region of the heater,
the temperatures of both are nearly the same. However, occasionally a slight
difference of a degree or two was observed. But, as will be discussed in a later
section, this does not affect the results.

The temperature of the specimen could be measured with an accuracy of
0.5◦C. However, the true error may be ±1◦C, which is taken into consideration
while estimating the error in thermal expansion coefficients.

Experimental Procedure

The sample is mounted in its position and is sandwiched between the two short
rods, one fixed to the base rods and the other free to slide. The measurements
are made simultaneously on the specimen under investigation as well as on the
NBS copper sample kept by its side as shown in Fig. 2.1b. The dilations are
recorded at various temperatures for the sample and the standard substance.
Although the expansion of the small portion of the silica rods inside the heater
is very small compared to the expansion of the samples, this effect is eliminated
by the following procedure.

Let ∆R1 and ∆R2 be the observed dilations recorded in the dial-gauges
in communication with the specimen under study, say KCl, and with the
standard sample, respectively. These include the dilations ∆C1 and ∆C2 of
the silica rods inside the heater. As very nearly the same length of the silica
rods is heated with both the samples, we may write ∆C1 = ∆C2. Let ∆L1
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and ∆L2 be the true dilations of KCl and the standard material, respectively.
Then

∆R1 = ∆L1 + ∆C1, (2.11)
and

∆R2 = ∆L2 + ∆C2. (2.12)

As
∆C1 = ∆C2,

∆R1 − ∆R2 = ∆L1 − ∆L2

and
∆L1 = ∆R1 − ∆R2 + ∆L2. (2.13)

In (2.13) the factor (∆L2 − ∆R2) corresponds to the difference between the
correct dilation of the standard sample and its observed dilation due to any
expansion of the silica rods. This difference, when added to the observed dila-
tion for the specimen under study, gives the corrected dilation. The correction
factor (∆L2 − ∆R2) is a very small quantity when compared to ∆L1, even
at high temperatures. Thus, any slight difference of temperature between the
specimen and the standard material will give rise to only a negligible effect
on the value of the correction term (∆L2 − ∆R2).

A copper standard SRM-736 was obtained from the US National Bureau
of Standards. Kirby and Hahn [2.45] gave values of relative expansions for
the copper standard SRM-736 in the NBS certificate of analysis. A curve was
drawn between these relative expansions and temperature. From this curve,
values of relative expansion were obtained for a reference temperature of 30◦C.
The values of ∆L/L30 thus obtained were plotted against temperature. The
correct dilations of any sample of copper SRM-736 can be determined from
this curve, if its length is known.

The relative expansions ∆L/L30 of the specimen crystal are determined
after correcting with reference to the expansion of the SRM-736 copper sam-
ple at the appropriate temperatures as discussed in the preceding paragraph.
Here, ∆L is the length change and L30 is the length of the crystal at room
temperature measured with a micrometer screw gauge capable of measuring
lengths of the order of 0.001 cm. The length is then corrected for 30◦C us-
ing the room temperature expansion coefficient and the relative expansions,
∆L/L30, are found. A smooth curve is drawn between temperature (t◦C) and
relative expansion. The true coefficients of expansion are determined from this
curve at various temperatures from the slopes of the curve at those tempera-
tures. These are the observed coefficients of linear expansion of the crystal.

The experimental arrangement was standardized by measuring the thermal
expansion of a single crystal specimen of potassium chloride. From a least
square analysis of the observed data, the thermal expansion coefficient of KCl
is given by

α = (36.66 × 10−6 + 3.391 × 10−8t + 1.029 × 10−12t2)/◦C, (2.14)
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Table 2.1. Comparison of linear thermal expansion coefficient (α) of KCl by dif-
ferent methods

Temperature
[K]

α[10−6 K−1]

X-ray X-ray Interferometer X-ray Dilatometer
[2.46] [2.47] [2.48] [2.49] [2.43]

300 36.4 35.0 37.1 37.1 37.6
350 38.4 – 39.0 38.8 39.3
400 39.7 38.2 41.0 40.5 41.0
450 41.1 – 42.9 42.2 42.7
500 42.8 42.9 44.9 43.9 44.4
550 45.6 – 46.8 45.6 46.1

where t is the temperature in ◦C. In Table 2.1 a comparison is made between
the thermal expansion coefficients of KCl thus obtained [2.43] and those mea-
sured by other workers. It can be seen from Table 2.1 that the agreement
between the results of Rao [2.43] and those available in literature is good.
Considering the uncertainty in the measurement of length change and in the
determination of temperature, the uncertainty in the values of the coefficient
of thermal expansion obtained from this set-up is estimated as 5%.

2.2.6 Other Methods

Nielsen and Leipold [2.50] measured the thermal expansion of magnesium
oxide with the help of tele-microscopes. A 3 in. long specimen was heated in
an induction furnace. Through a window in the furnace, the displacement
of the tip of the sample was measured with a tele-microscope having a filar
micrometer eye-piece.

Jaakkola et al. [2.51] designed a hydrostatic weighing apparatus for pre-
cision measurement of volumes. The solid to be studied formed one arm of
a sensitive analytical balance. The suspended solid was kept in an enclosure
which was thermally insulated and vibration free. Further, a temperature con-
trol of 0.002 K was achieved. The heating was done by immersing the solid in
a liquid whose density is known.

Foster and Finnie [2.52] developed a method suitable for crystals with
very small coefficients of expansion. This method employs a single frequency
He–Ne laser. The beam from the laser is split. One beam passes through
an interferometer which includes the sample. The laser length is modulated
by a signal which modulates the output frequency. By mixing this with the
unmodulated beam the change is calibrated in terms of the laser length. In
the actual experiment, the laser length changes because of the expansion of
the crystal. The expansion is obtained from the change in frequency combined
with the calibration.

Shrivastava and Joshi [2.53] proposed a method for the measurement of
thermal expansion from a knowledge of the stress coefficient of electrical
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resistance. Two identical wires are used in the experiment, one is stretched
and the other is heated. The change in resistance of both the wires is mea-
sured and the change in length of the heated wire is calculated in terms of
the change in length due to stress. Obviously, this method is useful only for
conducting materials available in the form of wires.

2.3 An Overview

This overview is confined to some salient contributions dealing with experi-
mental techniques, theories and studies of whole families of crystals.

2.3.1 Some Novel Experimental Techniques

The commonly employed techniques for measurement of thermal expansion
have been discussed in Sect. 2.2. A few other methods have been proposed
and used for limited work. These are briefly discussed here because of their
novelty.

An Ultrasonic Method

Mantysalo [2.54, 2.55] developed an ultrasonic method which uses an ultra-
high-frequency (UHF) acoustic transmission probe and an UHF spectrometer.
The amplitude modulated UHF oscillator and a signal amplifier function as
a continuous wave spectrometer. When the UHF energy is fed into a trans-
mission line and then transferred to the resonance probe, a transducer con-
verts it into ultrasonic energy. These longitudinal ultrasonic waves propagated
through a crystal sample cause a flow of heat and a dissipation of energy. In
other words, the ultrasonic wave amplitude is attenuated. A second transducer
converts the ultrasonic energy into UHF signal.

Due to thermal expansion, the crystal expands and resonance occurs re-
sulting in standing waves. The result is an oscillating curve of the ultrasonic
attenuation as a function of temperature (Fig. 2.2). The period of these oscil-
lations (in units of temperature) is

∆T = λ/(2LT α) (2.15)

and
λ = υT /ν , (2.16)

where λ is the wavelength of the UHF wave, LT the length of the specimen at
temperature TK, ν the UHF frequency and υT the velocity of the UHF wave.
When the temperature difference is small, LT can be replaced by its room
temperature value L0 and (2.15) and (2.16) reduce to

α = υT /(2L0 ν ∆T ). (2.17)

Mantysalo used this method to determine the coefficient of expansion of Li
and obtained a value of 47 × 10−6 K−1.
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Fig. 2.2. Recorder traces of the ultrasonic attenuation in a lithium single crystal as
a function of temperature. (For the upper curve the acoustical surfaces are nearly
parallel. For the lower curve the parallelism is poor.)

Holographic Method

Heflinger et al. [2.56] developed a holographic method for the determination
of thermal expansion. Their set-up uses a He–Ne laser or a Ruby laser. A
reference beam and another beam (both from the same source) reflected from
the object are superposed to give a hologram. Further the superposition of
two holograms with the imposed temperature change occurring between the
two exposures results in a fringe pattern.

The fringes appear straight (Fig. 2.3a) when the two exposures occur at
the same temperature (i.e., no thermal expansion). This is so irrespective
of the shape of the object. On the other hand, the fringes develop curvature
(Fig. 2.3b) when there is a temperature difference. The authors describe a sim-
ple procedure of reading the fringe characteristics from which α is calculated.
This is a no-contact method and is applicable to objects of any shape.

γ-Ray Attenuation Method

A new technique for the thermal expansion of isotropic solids was proposed by
Drotning [2.57]. This method utilizes γ-ray attenuation to measure thermal
expansion. His set-up is shown in Fig. 2.4. A γ-ray beam passes through the
sample and is detected with a scintillation detector. The mass attenuation
coefficient σ is determined from the relation

I(T ) = I0(T ) exp[−σ ρ(T ) l(T )], (2.18)
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Fig. 2.3. (a) Straight fringes for an object in the absence of temperature change
and (b) curved fringes for an object heated through 9◦C

Fig. 2.4. Schematic diagram of gamma attenuation experimental apparatus

where I(T ) and I0(T ) are the γ-ray intensities at temperature T measured
after passage through the apparatus with and without the sample. ρ(T ) and
l(T ) are the density and length of the material at temperature T .

Quantities z and x are defined as:

z =
log[I(T1)I0(T2)/I(T2)I0(T1)]

σ ρ1 l1
, (2.19)
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x = (∆T )α, (2.20)

x is obtained by solving

6x3 + 3x2 − 2x − z = 0. (2.21)

The procedure, then, involves determination of I0(T ) and I(T ) as a function of
temperature and independent measurements of ρ1 and l1at some temperature
T1 (e.g. room temperature). The unique features of this method are that it is
a non-contact probe and it can be used for measuring the thermal expansion
of a sample in the solid state as well as the molten state through the melting
temperature. On the other hand, the method is limited to determination of
isotropic thermal expansion.

2.3.2 Experimental Data on Thermal Expansion of Crystals

The data that has been generated on the thermal expansion of crystals is
so enormous that it is not possible even to give a bibliography. We can only
give a few important sources and refer to some individual contributions where
whole families of crystals have been studied.

Krishnan [2.6] includes a chapter on thermal expansion in his book.
Deshpande and Mudholker [2.58] discussed analytical methods to obtain ther-
mal expansion coefficients from X-ray data. The book on thermal expansion
by Krishnan et al. [2.20] is more comprehensive and contains discussions of
experimental techniques, theories of thermal expansion and a large section
on experimental data. The most comprehensive data compilation is given by
Touloukian et al. [2.59] in which almost all possible experimental data on a
very large number of solids are reproduced.

While considering individual contributions, the pioneering work of Fizeau
[2.21] deserves mention. He developed the optical interferometric technique
which has been used by successive generations of researchers, with due modifi-
cations and improvements. Besides, he reported results on a very large number
of crystals (for numerical results and references, see [2.6, 2.20]). Many of the
crystals studied by him have been studied again by using recent techniques
but there is hardly a case where his data has been faulted. Fizeau’s results
have stood the test of time.

White [2.60] set up a 3-terminal capacitance dilatometer and established
stringent procedures for the measurement of thermal expansion at very low
temperatures (30–2 K). He used his method to determine the thermal ex-
pansion of a variety of solids like cubic, trigonal and hexagonal metals, ele-
mental semiconductors, alkali halides and fluorite type oxides (for references
see [2.20]).

Sharma [2.61] made systematic measurements of thermal expansion of sev-
eral crystals at high temperatures. Bailey and Yates [2.24] determined the
thermal expansion of the alkaline earth fluorides at low temperature. Accu-
rate measurements of the thermal expansion of mineral crystals were made by
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Falzone and Stacey [2.62]. The thermal expansion of binary oxides with fluo-
rite, antifluorite and rutile structures has been reviewed by Taylor [2.63]. The
results on measurements of thermal expansion of crystals with ADP, scheel-
ite, rutile and calcite structures have been analysed vis-à-vis their structural
features by Rao and Deshpande [2.64]. A systematic study of the thermal
expansion of crystals with the A-15 structure has been made by Somi Reddy
and Suryanarayana [2.65,2.66].

2.3.3 ‘Invar’

Invar stands for “invariable”. In a study of the physical properties of Fe–
Ni alloys, Guillaume [2.67] and his colleagues at the International Bureau
of Standards (located in France) were led to the discovery of an alloy “the
temperature coefficient of which is practically zero”. The composition of this
alloy is 64.4% Fe and 35.6% Ni and the actual value of thermal expansion is
1.2 (10−6 ◦C−1).

This near-zero expansion of Invar found applications in drawing geodesic
base lines, in railway signal transmission, in designing compensated clocks
and watches and in making standards of length. An interesting application
of INVAR is in detecting minute movements of the Eiffel tower due to atmo-
spheric temperature fluctuation.

Guillaume was awarded the 1920 Nobel Prize in physics.

2.3.4 Thermal Expansion of Inert Gas Solids

The inert gas solids are important as they are systems which closely ap-
proximate to the Lennard-Jones 6–12 potential which is suitable for Van der
Waal solids. The measurement of their thermal expansion presents difficulties
as the entire experiment, starting with the growth of crystals, their orienta-
tion and the recording of X-ray diffraction photographs, has to be done at
very low temperatures, typically in the range 3–20 K. The range of temper-
ature over which measurements are made being limited, a high accuracy is
required. In their X-ray diffraction work Simmons and coworkers (references
in Table 2.2) used a large film-to-specimen distance (∼50 cm) which permitted
a high accuracy of ±0.00008 Å in the lattice constant determination. However,
the difficulties are to some extent compensated by the large value of the ex-
pansion coefficients, which are typically 10 times those of metals and inorganic
crystals.

The values of thermal expansion coefficient at 20 K for the inert gas solids
are given in Table 2.2. Barron [2.68] theoretically constructed a universal curve
for the temperature variation of the Gruneisen constant for the inert gas solids
according to which the Gruneisen constant varies from 2.85 to 3.00. The values
calculated from experimental data are of this order.
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Table 2.2. Values of thermal expansion coefficient (αp of inert gas solids at a
temperature close to 20K

Inert gas solid α[10−6 ◦C−1] Ref.

Ar 185 [2.69]
Ne 1334 [2.70]
Kr 157 [2.71]
Xe 116 [2.72]

2.3.5 Correlations of Thermal Expansion with other Physical
Properties

The thermal expansion coefficient correlates with several other physical prop-
erties of solids. Some of these correlations are:

1. The product of the coefficient of expansion and the melting point is a
constant. This is known in literature as Lindemann’s formula. Application
to various families of crystals showed that the constant varies from family
to family. Van Uitert et al. [2.73] showed that α tm (tm being in ◦C) has
an average value of 0.027 for the alkali halides.

2. Touloukian et al. [2.59] plotted the expansion coefficient of the alkali
halides against the refractive index and obtained a linear plot.

3. Hannemann and Gatos [2.74] proposed the empirical relation:

α = Cψ, (2.22)

where C is a constant and ψ the compressibility. Hanneman and Gatos drew α
vs. ψ plots for several metal groups. Not all the plots were linear as predicted
by (2.22).

4. Askil [2.75] plotted α for metals against Ediff the activation energy for
diffusion. He obtained a hyperbolic plot which can be represented by

α Ediff = constant. (2.23)

2.3.6 Thermal Expansion and Vacancies in Solids

Solids contain vacancies in thermal equilibrium with the lattice. If N is the
total number of sites and ∆N the number of vacancies, the fractional concen-
tration (∆N/N) increases exponentially with temperature. The measurement
of thermal expansion provides an important method for a study of thermally
generated defects.

It has been mentioned that the thermal expansion of a solid can be mea-
sured by making measurements of length changes (∆L/L) in a bulk sample
or the lattice constant changes (∆a/a) caused by a change in temperature.
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For a given temperature interval, these two values should be equal. However,
if both the techniques are highly accurate, a slight but significant difference is
observed with (∆L/L) >(∆a/a). This is because in the bulk (or single crystal)
sample, the vacancies form new surface layers. The difference [(∆L/L) –
(∆a/a)] increases with temperature and is directly related to the concen-
tration of defects as given by

(∆N/N) = 3 [(∆L/L) − (∆a/a)] = Ae−Ef/kBT , (2.24)

where A is a constant, Ef the energy of formation of monovacancies, kB

the Boltzmann constant and T the absolute temperature. Thus a plot of log
[(∆L/L) – (∆a/a)] and T−1 will be a straight line with a slope of (Ef/kB).

Simmons and Balluffi [2.76–2.79] made careful measurements of (∆L/L)
and (∆a/a) on samples of Al, Ag, Au and Cu. The sample for the length
measurements was a rod (∼50 cm). The ∆L measurements were made with
filar micrometer microscopes by observing the shift of two indentation marks
on the rod. A single crystal grain was identified on the surface of the rod.
This was made the X-ray single crystal sample from which back reflection
photographs were recorded. The sample rod was kept in a furnace (∼300 cm
long) which provided a sufficiently large zone where the temperature was
constant within ±0.2 ◦C. As an example, the plot of (∆L/L) and (∆a/a) at
different temperatures for Al is shown in Fig. 2.5 and the corresponding plot
of log 3[(∆L/L) – (∆a/a)] vs. T−1 is shown in Fig. 2.6. The values of Ef , the
energy of formation of monovacancies for the metals studied by Simmons and
Balluffi are given in Table 2.3.

2.3.7 Effect of Gross Defects on Thermal Expansion

Effect of Dislocations

In the preceding section, the difference between the dilatometric and lattice
expansions in cubic crystals was discussed. In non-cubic crystals, in place of
(2.24), we get

(∆N/N) = 2 ∆a(T ) + ∆c(T )

= Ae−Ef/kBT (2.25)

Here,
∆a(T ) = (∆L/L)a − (∆a/a) (2.26)

and
∆c(T ) = (∆L/L)c − (∆c/c). (2.27)

Again, a plot of log [2 ∆a(T ) + ∆c(T )] vs. T−1, is a straight line with slope
Ef/kB.

Nowick and Feder [2.80] theoretically examined the role of dislocations on
the difference between the dilatometric and lattice expansions in hcp crystals.
They arrived at the following results:
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Fig. 2.5. Plot of ∆a/a and ∆L/L against temperature for aluminium

Fig. 2.6. Plot of log 3 [(∆L/L)–(∆a/a)] against T−1 for aluminium

(a) As the dislocations act as sources and sinks for vacancies, the ratio
(∆c/∆a) is dependent on the mechanism of dislocation climb.

(b) For diffusion-limited climb, (∆c/∆a) is independent of temperature.
(c) For climb-rate limitation, (∆c/∆a) is a function of temperature.
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Table 2.3. Values of formation energy (Ef) of monovacancies for some metals
obtained from thermal expansion measurements

Metal Ef [eV] Ref.

Al 0.76 [2.76]
Ag 1.09 [2.77]
Au 0.94 [2.78]
Cu 1.17 [2.79]

Table 2.4. Theoretical values of (∆c/∆a) for different values of φ

Plane cos2φ (∆c/∆a)

{011̄0} 1 2
{112̄2} 0.78 1.3
{101̄1} 0.83 1.4

(d) The ratio (∆c/∆a) is related to the distribution of dislocations and is,
hence, sample-dependent.

(e) Feder and Nowick [2.81] showed theoretically that the ratio (∆c/∆a) is
related to the orientation (φ) of the dislocation (Burgers vector) with the
normal to the slip plane. Values calculated by them for some typical cases
are given in Table 2.4.

Feder and Nowick [2.81] verified these predictions by making very accurate
dilatometric and lattice expansion measurements on cadmium crystals. They
observed that (∆c/∆a) is temperature independent in Cd which indicated
diffusion-limited climb. In contrast, Janot et al. [2.82] found that (∆c/∆a) was
strongly dependent in Mg which indicates a climb-rate limited mechanism.
Lastly, Feder and Nowick [2.81] found that (∆c/∆a) was, indeed, sample
dependent with values of 2.3 and 0.7 for different samples of Cd.

Effect of Mosaic Block Readjustment

Generally, the thermal expansion values obtained by bulk methods turn out
to be larger than those obtained by the lattice (X-ray) method. As men-
tioned in the preceding section, this difference is attributed to the effect of
thermally generated point defects. However, cases do occur where the lat-
tice values are larger than the bulk values. The thermal expansion of sodium
chlorate (NaClO3) is an example. The coefficients of linear thermal expansion
of NaClO3 obtained by Sharma [2.83] by the optical interferometric method
employing single crystal samples and those obtained by Deshpande and Mud-
holker [2.84] by the X-ray powder diffraction method are shown in Fig. 2.7. It
is clearly seen that the expansion coefficient by the bulk method is less than
that by the lattice method by about 15% at 200◦C.

To explain these differences, Deshpande and Mudholker [2.84] invoked the
effect of defects like dislocations and voids in the single crystal. They suggested
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Fig. 2.7. Thermal expansion coefficient (α) of NaClO3 against temprerature (t) by
the interferometric and X-ray methods

that due to these defects, a part of the lattice expansion of the individual
mosaic domains is accommodated in the interspaces between the domains and
is not shown up in macroscopic measurements. Calling this effect αreadjustment

and denoting the lattice expansion by αlattice and that due to point defects
by αSchottky, Deshpande and Mudholker proposed the relation

αmacroscopic = αlattice + αSchottky − αreadjustment. (2.28)

According to this relation, depending on the relative values of the last two
terms, αmacroscopic, the value determined by bulk methods, may be more or
less than αlattice.

Effect of Cracks and Voids

Graphite has a very good cleavage parallel to the layers and crystallites of
graphite have a large number of cracks and voids. The thermal expansion
coefficient of polycrystalline graphite measured by dilatometric method is less
than the ideal isotropic value (2αa + αc)/3 where αa and αc are the linear
coefficients of expansion in the a and c directions. Another way to obtain the
isotropic value is to consider the orientation distribution of the crystallites.
This is given by

α = Rαc + (1 − R)αa, (2.29)

where R is an integral representing the orientation distribution of the crys-
tallites [2.85, 2.86]. But the experimental value is still less than the value
calculated in this way. Price and Bohras [2.87] modified (2.29) to:

α = Rαc + (1 − R)fαa, (2.30)
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Table 2.5. Effect of γ-irradiation on the thermal expansion coefficient α of NaClO3

Irradiation [106 rad] α[10−6 ◦C−1]

0 45.51
5.0 45.72
7.5 46.73
9.0 47.06

10.5 47.63
12.0 46.75
14.0 46.26
17.0 45.85

where f is a constant called ‘accommodation factor’. This factor is introduced
to take into account the accommodation of the crystalline expansion into the
inter-crystallite spaces. Equation (2.30) gives better agreement with experi-
mental data than (2.29).

2.3.8 Effect of Irradiation

Merriam et al. [2.88] made measurements on X-ray irradiated NaCl. They em-
ployed a novel photoelastic method to determine the volume changes. They
made two types of measurements: (a) the fractional volume change (∆V /V )
caused by irradiation and (b) the fractional increase in thermal expansion
(∆α/α). Merriam et al. found that (i) there is an increase in thermal expan-
sion, (ii) the fractional increase in thermal expansion is a linear function of
the fractional volume change and (iii) the fractional increase in expansion co-
efficient is typically less than 1% and is about 14 times the concentration of
radiation-induced defects as measured by the volume expansion.

Stapien-Damm et al. [2.89] measured the lattice constant of NaClO3 irra-
diated by γ-rays from a 60Co source. The expected change in lattice constant
being small, the highly accurate Bond’s method was used. The values of the
linear coefficient of thermal expansion of NaClO3 at different γ-ray doses are
given in Table 2.5. It is seen that α increases from 45.5 to 47.6 (10−6 ◦C−1) up
to a dosage of 10.5 (106 rad) and then decreases reaching the normal (unirra-
diated) value at a dosage of 17 (106 rad). The effect is attributed to strains
created by the release of radiolysis products.

2.3.9 Surface Thermal Expansion

Many properties (Debye temperatures and hardness for instance) show a dif-
ference when measured at the surface and in the bulk of a crystal. The thermal
expansion has also been measured close to the surface. Nesterenko et al. [2.90]
used LEED to determine the temperature variation of lattice parameters of
Si, Ge and GaAs. Finzel et al. [2.91] used atomic beam diffraction (ABD) to
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measure the thermal expansion of NaF and LiF. Watanabe et al. [2.92] stud-
ied the temperature dependence of lattice parameters of LiF using ABD. In
ABD, neutral atoms are used with energies in the range of 10–100 MeV. ABD
probes only the upper surface layer. The lattice parameter a is calculated from
the relation

a = 2λ/(sin θf − sin θi), (2.31)

where θf and θi are the incident and scattered angles. The temperature vari-
ation of lattice parameters of LiF observed by Watanabe et al. [2.92] for the
surface layers and for the bulk crystal by Swanson and Tatge [2.93] are shown
in Fig. 2.8. The values of the ratio αsurface/αbulk are given in Table 2.6. In
all the cases studied, the surface thermal expansion is much higher than the
bulk expansion. It may be mentioned that theoretical calculations of the sur-
face thermal expansion coefficients [2.94] also show that αsurface is larger than
αbulk.

Fig. 2.8. Temperature dependence of the lattice parameter of the uppermost surface
layer of LiF. The dotted line indicates the bulk lattice parameter

Table 2.6. Values of (αsurface/αbulk) for some crystals

Crystal (αsurface/αbulk) Ref.

Si 8 [2.90]
Ge 4 [2.90]
GaAs 3 [2.90]
NaF 2 [2.91]
LiF 2 [2.91]

4 [2.92]
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Table 2.7. Values of the volume coefficient of expansion β = (1/V )(dV/dT ) at
different pressures

Crystal β[10−4 ◦C−1] Ref.

Experimental results (up to 30 kbar)
P (kbar) → 0 10 20 30
NaCl structure
LiF 0.96 0.93 0.87 0.79 [2.95]
NaCl 1.169 0.968 0.841 0.756 [2.96]

Experimental results (up to 80 kbar)
P (kbar) → 0 20 40 60 80
LiF 0.96 0.89 0.86 0.83 0.80 [2.97]
NaF 0.94 0.84 0.79 0.75 0.73 [2.97]
KF 0.97 0.84 0.78 – – [2.97]
CsCl structure
CsCl 1.38 0.85 0.54 – – [2.97]
High pressure CsCl phase
KF (1.78) 1.04 0.85 0.70 [2.97]

Extrapolated from
high pressure values

Theoretical results (up to 40 kbar)
P (kbar) → 0 10 29 30 40
NaCl structure
LiCl 1.32 1.07 0.90 0.78 0.69 [2.98]
LiBr 1.50 1.15 0.94 0.79 0.68 [2.98]
LiI 1.80 1.25 0.96 0.78 0.66 [2.98]
NaBr 1.26 0.96 0.77 0.65 0.56 [2.98]
NaI 1.37 0.96 0.74 0.60 0.51 [2.98]

2.3.10 Pressure Variation of Thermal Expansion

With the development of high-pressure X-ray diffraction techniques, it has
become possible to study the pressure variation of thermal expansion of solids.
Boehler and Kennedy [2.95, 2.96] made length measurements whereas Yagi
[2.97] made unit cell volume measurements at high pressures. Results on the
measurement of the volume expansion coefficient β at high pressures for some
alkali halides (in the NaCl and CsCl phases) are given in Table 2.7.

Yagi [2.97] pointed out that the ratio (β/ψ) is independent of pressure, ψ
being the compressibility. Kumar [2.98] calculated the pressure variation of α
for some alkali halides from the relation:

β(P ) = β(0) [1 + (δψ) + (P − P0)]−1, (2.32)

where δ is the Anderson–Gruneisen parameter. His calculated values agreed
with experimental values for NaCl and LiF. Hence, his calculated results for
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a few other alkali halides (for which experimental data are not available) are
included in Table 2.7.

2.3.11 Theories of Thermal Expansion

Gruneisen [2.16,2.99] was the first to propose a full-fledged theory of thermal
expansion. A detailed elaboration of Gruneisen’s theory is given in [2.100,
2.101]. The main results are (i) the introduction of a constant γ defined by

γ = −d log ν/d log V , (2.33)

where ν is a lattice frequency and V , the volume and (ii) the derivation of

α = CV

/
3Q[1 − KEth/Q)]2, (2.34)

where CV is the specific heat, Eth =
∫ T

0
CV dT , Q = V /γψ and K is a

constant.
Gruneisen [2.99] applied this equation to several crystals. Subsequently, the

equation has been used in different forms to analyse the thermal expansion
data on metals by Hume-Rothery [2.102] and on alkali halides by Fitschmeister
[2.103].

The constant γ was shown to be equal to

γ = 3α V /ψ CV , (2.35)

where ψ is the compressibility, CV the specific heat, α the linear expansion
coefficient and V the volume. γ was introduced by Gruneisen as a constant
independent of temperature. But calculations of γ from (2.35) using experi-
mental data at different temperatures revealed that it is not so. In fact, γ has
a low temperature limit (γ0) and a high temperature limit (γ∞).

Most of the later developments in theories of thermal expansion are related
to a more sophisticated definition of γ. With the development of lattice dy-
namics, it was clear that a mode Gruneisen constant γi should be associated
with each mode of vibration. The mean γ is given by

γ =
∑

γiCi

/∑
Ci, (2.36)

where Ci is the Einstein specific heat function for the ith mode. Different
models were assumed for the lattice vibration spectrum and so γ could be
evaluated for each model.

While much work has been done on different aspects of γ (its temperature
dependence, its volume dependence, its dependence on the lattice dynamical
model, its directional dependence), the mean value of γ remains the focal
point in all theoretical work on thermal expansion. It is rightly known after
its innovator as the Gruneisen constant.
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Table 2.8. Negative minimum values of α and the temperature at which the negative
minimum value is observed [2.104,2.105]

System T [K] α[10−6K−1]

IV –IV
Si ∼80 −0.77
Ge 28 −0.4
III–IV
GaSb 30 −1
GaAs 30 −0.5
InSb ∼30 −1.6
AlSb ∼38 −1.0
II–V I
ZnTe 28 −0.68
ZnS 28 −0.32
ZnSe 32 −0.69
CdTe 28 −3.3
I–V III
CuCl 32 −0.33
Alkali halides
RbCl 4.4 −0.02
RbBr 7.6 −0.58
RbI 7.6 −0.55

Table 2.9. Examples of systems having negative expansion in one direction; αc, αa

expansion coefficients in c and a directions respectively. Data for metals [2.106] and
for others [2.64]

System αc[10−6 K−1] αa[10−6 K−1]

As 15 −2.0
Graphite 28 −1.2
Se −4.5 69
Te −2.3 30
In −7.7 55
FeF2 −0.1 16.6
RuO2 −1.4 6.9
CrO2 −15.0 18.7
CaCO3 25.0 −3.68
CdCO3 19.0 −2.13

2.3.12 Negative Thermal Expansion

The negative thermal expansion displayed by some solids is an interesting
phenomenon. At very low temperatures, some crystals with diamond, zinc
blende and alkali halide structures have an overall negative thermal expansion.
This information is given in Table 2.8. Several anisotropic crystals have a
negative thermal coefficient in one of the principal directions even at ordinary
temperatures. Some examples of this type are given in Table 2.9.
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In anisotropic crystals, the observed thermal expansion in any direction is
the difference between the pure thermal expansion in that direction and the
Poisson’s contraction caused by expansion in other orthogonal directions. If
the Poisson contraction is larger than the pure thermal expansion, the net
observed thermal expansion in that direction is negative.

This qualitative explanation does not explain the overall negative expan-
sion in crystals mentioned in Table 2.8. For these as well as for the anisotropic
crystals showing negative expansion in one direction, recourse has to be made
to the role of the mode Gruneisen constants. A crystal has several mode
Gruneisen constants γi and the mean Gruneisen constant γ is the weighted
mean of the mode Gruneisen constants. The thermal expansion coefficient α
is given by

α = (ψ CV /3V )γ = (ψ CV /3V )(ΣγiCi/ΣCi), (2.37)

where Ci is the Einstein specific function for the ith mode of vibration and
the other quantities are already defined. Blackman [2.107] made the important
suggestion that in some crystals, some of the γi’s may be negative and if their
contribution dominates in the summation in (2.37), then the resulting value
of α may be negative.

Gerlich [2.108] evaluated the mode γ’s for crystals with diamond and ZnS
structures from data on the pressure variation of elastic constants. Talwar
et al. [2.104] calculated the γi’s from lattice dynamical calculations. They
obtained negative values for some γi’s and observed that α calculated from
(2.37) using these γi’s is indeed negative.

2.3.13 Anisotropy of Thermal Expansion

The coefficient of linear thermal expansion of a crystal is a second rank tensor.
Consequently, the number of principal expansion coefficients is 1 for cubic, 2
for tetragonal, hexagonal and trigonal, 3 for orthorhombic, 4 for monoclinic
and 6 for triclinic crystals. Quantitatively, the anisotropy of thermal expansion
differs from crystal to crystal and the theoretical explanation of the observed
anisotropy in expansion is difficult.

Gruneisen and Goens [2.109] modified Gruneisen’s [2.99] theory. By in-
troducing directional Gruneisen constants (γa and γc) and directional De-
bye temperatures (θa and θc) for hcp elements, they derived the following
expressions:

αa = (S11 + S12)qxx + S13qzz, (2.38)

αc = 2S13qxx + S33qzz, (2.39)

where the S’s are elastic constants and

qxx =
3R

V
γaC (θa/T ) , (2.40)
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qzz =
3R

V
γcC (θc/T ) , (2.41)

where the C’s are Debye functions for the specific heats. With these equa-
tions, Gruneisen and Goens could account for the anisotropy in the thermal
expansion of Zn including the negative value of αa at low temperatures. In fact,
Gruneisen and Goens theoretically predicted that αa will have negative values
for Cd at low temperatures. Such negative values were later confirmed experi-
mentally by McCammon and White [2.110]. Riley [2.111] extended Gruneisen
and Goens’ formulation to high temperatures to explain the anisotropic ther-
mal expansion of graphite.

Pastine [2.112], on the other hand, introduced anisotropy in the lattice
potential of a tetragonal crystal in the following way:

φj = −A (1 + ε Pz)
/
Rm

j + B
/
Rn

j , (2.42)

where A, B, ε, m and n are constants, Rj the interatomic distance and Pz =
−(1/2)(1 − 3 cos θj), θj being the angle between Rj and the z−axis. Pastine
finally obtained an expression for the anisotropy ratio αa/αc in terms of the
elastic constants and the directional Gruneisen constants. Pastine was able to
get values for αa/αc in agreement with experimental values for the thermal
expansion of In and γ-Mn.

2.4 Some of our Results

2.4.1 Coefficients of Thermal Expansion – Data Generation

The coefficients of thermal expansion of 26 crystals (22 cubic, 2 tetragonal
and 2 hexagonal) have been determined at elevated temperatures. For these
measurements a commercial Seifert flat film camera and two cameras fabri-
cated by us, one focusing and the other of the Unicam type, were used. The
design of the latter two cameras is discussed in Chap. 1. For six crystals a
push-rod dilatometer (described in Sect. 2.2.5) was used.

In each case the lattice constant ‘a’ (or the length change ∆l) was plot-
ted as a function of the temperature t. From the smooth curve the values of
da/dt (or dl/dt) were determined at different temperatures and the coeffi-
cient of thermal expansion α = (1/a0)(da/dt) or (1/l0)(dl/dt) was evaluated.
Here a0 and l0 are the lattice constant or length of the sample at the start-
ing temperature. These α values were fitted by least squares method to the
equation

α = (a1 + a2t + a3t
2). (2.43)

The values of α at room temperature [α (RT)] and the values of the constants
a1, a2 and a3 in (2.43) for the crystals studied are given in Tables 2.10 and
2.11. Some results derived from these data are discussed in the subsequent
sections.
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Table 2.10. Coefficient of thermal expansion at room temperature [α (RT)] and
constants a1, a2 and a3 in (2.43) for some cubic crystals [Methods: XC –X -ray
camera; XRD –X-ray diffractometer; DLM –Dilatometer]

Crystal Temperature
range [◦C]

Method α(RT)
[10−6

◦C−1]

a1

[10−6

◦C−1 ]

a2

[10−8

◦C−1]

a3

[10−10

◦C−1]

Ref.

NaCl structure
RbCl 30–200 XC 38.13 – – – [2.113]
RbBr 30–140 XC 37.43 38.00 −1.54 4.13 [2.113]
RbI 40–160 XC 39.7 40.23 −3.81 7.46 [2.114]
MgO 20–260 XC 10.2 9.73 2.53 −0.20 [2.115]
CaS 40–280 XC 11.4 11.23 1.93 0.18 [2.114]
PbS 30–260 XC 19.0 18.81 0.74 – [2.116]
EuS 20–700 XRD 14.3 14.16 0.32 – [2.117]
TiC 30–300 DLM 6.17 5.95 1.10 – [2.43]
CsCl structure
NH4Cl 30–55 XC 58.5 – – – [2.118]
NH4Br 30–130 XC 57.9 58.96 −11.98 35.00 [2.113]
CaF2 structure
CaF2 30–330 XC 18.35 18.28 0.24 – [2.119]
SrF2 30–340 XC 18.04 17.98 0.23 – [2.119]
BaF2 30–480 XC 19.04 18.93 0.42 – [2.119]
CdF2 30–380 XC 21.77 18.94 0.52 – [2.120]
PbF2 35–380 XC 25.43 25.00 1.56 – [2.120]
EuF2 20–200 DLM 14.70 14.23 −0.01 2.88 [2.121]

25–140 XRD 15.20 10.30 19.10 – [2.117]
140–240 XRD −29.00 – – – [2.117]

Miscellaneous structures
V3Si 20–300 DLM 8.54 8.15 1.98 −0.23 [2.122]
Bi4
(GeO4)3

40–300 DLM 7.40 6.01 3.38 – [2.123]

Bi4
(SiO4)3

40–300 DLM 7.40 6.01 3.38 – [2.123]

Bi12
SiO20

30–300 DLM 11.83 10.71 5.78 −1.01 [2.43]

Eu3

Fe5O12

20–700 XRD 10.40 – – – [2.117]

FeS2 30–360 XC 8.78 8.67 0.38 – [2.119]

2.4.2 USBM Inter-Laboratory Project on Thermal Expansion
of MgO

The United States Bureau of Mines (USBM) conducted an inter-laboratory
programme on thermal expansion of MgO. The USBM prepared pure MgO
powder and samples from a single batch were supplied to several participating
laboratories. The participants were asked to communicate the results on basic
measurements (‘a’ or ‘l’, the length of the brickets) at different temperatures to
the USBM where data processing was done. The results for all participating
laboratories were published by Campbell [2.1]. Here, only such results are
discussed which have a relevance to our contribution.



2.4 Some of our Results 65

Table 2.11. Coefficient of thermal expansion at room temperature [α (RT)] and
constants a1, a2 and a3 in (2.43) for some tetragonal and hexagonal crystals along
the a and c directions (method: XC)

Crystal Temperature Direction α(RT) a1 a2 a3 Ref.
range [◦C] [10−6 [10−6 [10−8 [10−10

◦C−1] ◦C−1] ◦C−1] ◦C−1]

Tetragonal
Sn (β) 35–150 a 38.13 14.64 6.00 −0.58 [2.124]

c 30.90 28.14 9.36 0.03 [2.124]
KH2PO4 40–140 a 18.80 10.10 21.68 −2.62 [2.125]

c 35.90 28.73 17.65 1.83 [2.125]
Hexagonal
ZnO 20–250 a 6.50 – – – [2.126]

c 3.20 – – – [2.126]
PbI2 25–115 a 31.00 26.36 16.50 – [2.127]

c 23.60 15.69 26.30 – [2.127]

1. Fig. 2.9 shows a plot of the per cent expansion [(∆a/a)×100] as a function
of temperature. Our results (Laboratory R) are shown along with results
from five other laboratories. All the six laboratories used X-ray camera
techniques. What is of interest is that our results are consistent with the
results obtained by several other participants.

2. The USBM had supplied two samples of equal purity but differing in grain
size. Measurements were made on both the samples. At room temperature,
the lattice constant for the fine sample (4.2117 Å) was found to be less
than that for the coarse sample (4.2124 Å). However, this relative differ-
ence in lattice constant continued throughout. The coefficients of thermal
expansion obtained for the two samples are given in Table 2.12. It can be
seen that the values for the two samples agree within limits of experimen-
tal errors. Since the difference in lattice constant for two particle sizes is
related to surface forces, the lack of difference in the thermal expansion
coefficients for the two samples indicates that the surface forces are not
(or are only slightly) temperature dependent.

2.4.3 Aspects of Gruneisen Theory

Gruneisen’s theory has been discussed earlier. Some of our results on thermal
expansion are analyzed in the light of Gruneisen’s theory.

The Thermal Gruneisen Constant

The Gruneisen constant is defined as

γ = −d log ν/d log V (2.44)
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Fig. 2.9. Linear expansion values of magnesium oxide

Table 2.12. Coefficient of thermal expansion (α) of coarse and fine samples of MgO
supplied by USBM

Temperature [◦C] α[10−6 ◦C−1]

Coarse sample Fine sample

20 10.2 10.3
60 11.2 11.1

100 12.1 11.9
140 12.9 12.6
180 13.6 13.2
220 14.3 13.8
260 15.0 14.9

where ν is a lattice frequency and V the lattice volume. Thus γ represents the
volume dependence of lattice frequencies. Phenomenologically, the Gruneisen
constant is given by

γth =
3αV

ψCV
(2.45)

where α is the coefficient of linear expansion, ψ is the compressibility, CV the
molar specific heat and V the molar volume. This value is called the thermal
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Table 2.13. Room temperature values of γth

Crystal γth Ref.

Sn 2.01 [2.124]
As 1.44 [2.128]
Sb 1.18 [2.128]
Bi 1.11 [2.128]
Te 1.28 [2.128]
Se 1.59 [2.128]
ZnO 0.64 [2.129]
BeO 1.19 [2.129]
ZnS 0.63 [2.129]
CdS 0.61 [2.129]
MgF2 1.02 [2.130]
ZrSiO4 1.08 [2.131]
Bi4(GeO4)3 1.18 [2.123]
Bi4(SiO4)3 1.88 [2.123]
EuF2 1.17 [2.121]

Gruneisen constant (γth) to distinguish it from values estimated from other
crystal properties.

γth has been evaluated for several crystals. For some of them [Sn,
Bi4(SiO4)3, Bi4(GeO4)3 and EuF2], values of α from Table 2.10 are used.
All other data are taken from literature. These values of γth are given in
Table 2.13.

The values of γth are generally in the range 1–3. For ionic crystals γth is
generally in the range 1–2. Srinivasan [2.132] pointed out purely empirically
that γth has smaller values for covalent and partially covalent crystals. Based
on Srinivasan’s [2.132] suggestion, it is concluded that ZnO and MgF2 are
ionic and BeO, ZnS, CdS are partially covalent. Further, on the same basis,
Rao et al. [2.123] concluded that Bi4(GeO4)3 is less ionic than Bi4(SiO4)3.

Gruneisen Constant from Other Properties

The Gruneisen constant can also be calculated by other methods. Two of these
are (a) from pressure variation of elastic moduli and (b) from interatomic
potentials. The results obtained from these methods are discussed in Chap. 6.

Temperature Variation of Thermal Expansion from Gruneisen’s
Theory

Several authors have analysed data on the temperature variation of thermal
expansion of metals and the alkali halides on the basis of Gruneisen’s theory.
Several AB2 type crystals have been studied [2.119] in our laboratory and the
results have been analysed in the context of Gruneisen’s theory.
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Gruneisen’s theory leads to the following equations:

α = (QCV

/
3(Q − KEth)2, (2.46)

Q = V /γψ, (2.47)

K = γ + (2/3) (2.48)

and

Eth =
∫ T

0

CV dT (2.49)

The value of K is obtained from γth and CV from known values of the Debye
temperature θ. The value of Q is obtained by normalizing the experimental
and calculated values of α at 300 K. Using the values of Q and K, α is calcu-
lated for temperatures in the range 300–700 K. From this, ∆α, the difference
in the values of α at 300 and 700 K is calculated. This value (∆α) is then
compared with experimental values of ∆α from different sources. The input
parameters for (2.46) and the ∆α values are given in Table 2.14. It can be
seen that the experimental ∆α values obtained by Hussain [2.119] are closer
to those estimated from (2.46) than most of the other experimental values.

2.4.4 Studies of Some Anomalous Phenomena

Lead Sulphide

The temperature variation of lattice constant of lead sulphide (Galena, PbS)
was studied by Deshpande [2.144] at elevated temperatures. Deshpande [2.144]
found an anomalous change in the rate of increase in ‘a’ at about 100◦C.
The thermal expansion coefficient which was 24.4 × 10−6 ◦C−1 at room tem-
perature decreased to 16.3 × 10−6 ◦C−1 at 100◦C and then increased again.
Deshpande [2.144] suggested that his observations needed a confirmation by
a more systematic study.

Deshpande [2.144] made measurements with a flat film camera which
recorded only two reflections. Further, the lattice constants were determined

Table 2.14. Values of ∆α (increase in α over the range 300–700K)

Input for (2.46) ∆α[10−6 K−1]

Crystal Q(105) K θ[K] Calc.(2.46) Experimental

CdF2 2.957 2.96 328 3.2 2.1 [2.119], 17.0 [2.133], 9.0 [2.134]

PbF2 2.422 2.74 237 6.3 6.2 [2.119], 28.1 [2.135]

CaF2 2.961 2.41 513 5.2 0.9 [2.119], 45 [2.136], 5.4 [2.137], 7.7 [2.138]

SrF2 3.215 2.29 380 3.3 0.9 [2.119], 6.2 [2.139]

BaF2 3.194 2.36 282 2.9 1.7 [2.119], 10.5 [2.140], 1.8 [2.141]

FeS2 5.613 2.13 645 1.9 1.5 [2.119], 5.9 [2.142], 2.3 [2.143]
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Table 2.15. Lattice constant ‘a’ and coefficient of expansion “α” of PbS at elevated
temperatures

t[◦C] a [Å] t[◦C] α[10−6 ◦C−1]

26 5.9358 30 19.0
28 5.9362 40 19.1
72 5.9416 60 19.2
88 5.9435 80 19.4

101 5.9452 100 19.5
116 5.9470 120 19.7
138 5.9494 140 19.9
170 5.9535 180 20.1
195 5.9569 220 20.4
227 5.9610 260 20.8
243 5.9628
271 5.9668

Fig. 2.10. Plot of lattice constant (a) versus temperature of PbS

only at five elevated temperatures up to 250◦C. Sirdeshmukh and Desh-
pande [2.116] carried out more systematic measurements with a symmetric
focusing camera which recorded five well-resolved doublets. Further, mea-
surements were made at eleven elevated temperatures. The lattice constants
obtained by Sirdeshmukh and Deshpande [2.116] are given in Table 2.15 and
are shown in Fig. 2.10. It can be seen that the temperature variation is smooth.
The coefficient of thermal expansion calculated from the data of Sirdeshmukh
and Deshpande [2.116] is also given in Table 2.15 and shown in Fig. 2.11.
Here also, the variation of α is smooth and there is no indication of any
anomaly.
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Fig. 2.11. Temperature variation of thermal expansion (α) of PbS

β Tin

The α–β transition in tin at low temperatures is well documented. A β–γ
transition has been conjectured at a temperature of about 100 ◦C on the basis
of studies of properties like malleability and thermoelectricity of tin-based
alloys; a rhombic structure has been suggested for this γ phase.

Deshpande and Sirdeshmukh [2.145] carried out a detailed X-ray study
with the help of a symmetric focusing camera making measurements at close
temperatures. The study did neither reveal any new reflections other than
those for the β phase nor any abnormal broadening of reflections. Further, the
plots of the lattice parameters and the corresponding coefficients of expansion
as a function of temperature were smooth over the temperature range where
the transition was suspected. Thus no evidence of a structural phase transition
was observed.

Europium Fluoride

An X-ray study of EuF2 at elevated temperatures was carried out by Hussain
and Sirdeshmukh [2.117] using a powder X-ray diffractometer. The tempera-
ture variation of the lattice constant for temperatures up to about 240◦C is
shown in Fig. 2.12. Up to about 140◦C, the temperature variation of the lattice
constant is normal. The coefficient of thermal expansion calculated for this
temperature range is given in Table 2.10. Above 140◦C, the lattice constant
shows a decrease with temperature. The angular shift of the (331) reflection
is shown in Fig. 2.13 which clearly shows a change in sign of the expansion
coefficient. The expansion coefficient for the temperature range 140–240◦C is
−29 × 10−6/◦C. The reflections associated with the CaF2 structure persist
right up to 240◦C. Other crystals with CaF2 structure do not show any such
anomaly. Although some crystals like CaCO3, ADP and NaNO2 show nega-
tive expansion in one direction and some crystals with ZnS structure show a
negative overall expansion at low temperatures, no crystal is known to have
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Fig. 2.12. Temperature variation of the lattice constant of EuF2; dashed curve,
guide to the eye

Fig. 2.13. The (331) reflection of EuF2 at different temperatures

an overall negative expansion coefficient at elevated temperatures. An inde-
pendent study of thermal expansion of this crystal and also studies of other
properties are desirable.

2.4.5 Empirical Relations

Relation Between Thermal Expansion Coefficient and Debye
Temperature

The Lindemann formula

θ = c(Tm/MV 2/3)1/2 (2.50)
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has been used by several authors to estimate the Debye temperatures θ.
Tm, M and V are the melting temperature, the molecular weight and the
molar volume, respectively; c is a constant. This formula is particularly useful
when the Debye temperature is not available from other properties like spe-
cific heats or elastic constants. Deshpande and Sirdeshmukh [2.146] pointed
out that for binary crystals it is more appropriate to use the reduced mass
µ = M1M2/(M1 + M2) where M1 and M2 are the masses of the two atoms.
One limitation of the Lindemann formula is that it cannot be applied to sub-
stances which decompose and hence, do not have a congruent melting point.
Lindemann has also proposed a relation between the thermal expansion coef-
ficient (α) and the melting point. This is given by:

α Tm = c′, (2.51)

where c′ is another constant.
Combining these two relations, Sirdeshmukh [2.147] obtained the relation:

θ2α µ a2 = c′′, (2.52)

where a is the lattice constant and c′′ is yet another constant. The values of
c′′ for some crystals with the NaCl structure are given in Table 2.16. c′′ has a
mean value of 115.4× 107 for this group of crystals. Using this value and the
known values of α, µ and a for CaS, Sirdeshmukh [2.147] estimated the value
of θ for CaS, which is not known from other methods. This value is given in
Table 2.16 in parenthesis.

Relation Between Thermal Expansion Coefficient (α) and the
Effective Ionic Charge (q*)

While proposing a theory of the dielectric constant of ionic crystals, Szigeti
[2.148] introduced the concept of the effective ionic charge (q*). This is the
ratio of the reduced charge ze* of an ion to its ideal ionic charge ze (q∗ =
ze∗/ze).

Sirdeshmukh [2.149] observed an empirical relation between the effective
ionic charge (q*) and the coefficient of thermal expansion (α) of the alkali

Table 2.16. Values of the constant c′′ in (2.52) for some crystals with NaCl structure

Crystal µ a[Å] α[10−6 K−1] θ [K] c′′ = θ2α µ a2 × 10−7

RbCl 25.06 6.591 38.1 171 133.4
RbBr 41.30 6.892 38.9 129 127.4
RbI 51.07 7.346 40.7 99 110.2
MgO 9.65 4.212 11.2 729 101.4
PbS 27.77 5.936 20.3 229 104.4
CaS 17.81 5.695 12.2 (403)
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Table 2.17. Values of α, q∗ and α(q∗)2 for alkali halides

Crystal α[10−6 K−1] q∗ α(q∗)2[10−6 K−1]

LiCl 44 0.74 24
LiBr 50 0.71 25
LiI 59 0.67 27
NaCl 40 0.76 23
NaBr 43 0.71 22
NaI 48 0.67 22
KCl 38 0.81 25
KBr 40 0.78 24
KI 45 0.68 21
RbCl 36 0.85 26
RbBr 38 0.78 23
RbI 43 0.70 21

halides. The relevant data on α and q* are given in Table 2.17. It is observed
that a gradation exists between α and q*, one increasing as the other decreases.
On careful examination, it is found that a simple relation exists between α
and q* viz:

α( q∗)2 = constant. (2.53)

The values of α(q∗)2 are given in Table 2.17.
Sirdeshmukh [2.149] gave a qualitative explanation of this observation in

terms of Megaw’s [2.7] concept of ionic share. If q is the ionic share, Megaw
[2.7] proposed the relation

α q2 = constant. (2.54)

According to (2.54), α should be the same for a family of crystals like the
alkali halides for which q = e/n, n being the coordination number. That it is
not so is seen from Table 2.17 where α has a range of values from 38 to 59.
Extending the concept of the effective ionic charge, the electrostatic share q
becomes q∗e/n; substitution in (2.54) leads to (2.53).

The data in Table 2.17 are reproduced from Sirdeshmukh [2.149]. Inclusion
of the alkali halides not included in Table 2.17 and use of more recent data on
α and q* (Sirdeshmukh et al. [2.105]) may slightly alter the values of α(q∗)2

but the conclusions remain unaffected.

Relation Between Thermal Expansion Coefficient (α) and the
Compressibility (ψ)

Hannemann and Gatos [2.74] proposed an empirical relation between the ther-
mal expansion coefficient (α) and the compressibility (ψ). The Hannemann–
Gatos relation is given by

α = k1ψ, (2.55)
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where k1 is a constant. It predicts a linear α vs. ψ plot. Hannemann and
Gatos [2.74] drew the α vs. ψ plots for fcc metals, the alkali metals and the
bcc metals. While two of the plots were linear, as predicted by (2.55), the third
was non-linear. Sirdeshmukh [2.150] drew the α vs. ψ plot for another crystal
family viz. the alkali halides and found that the data points were scattered
all over the plot with no indication of any curve connecting them.

Sirdeshmukh [2.150] suggested a modified relation:

α V = k2 ψ, (2.56)

where V is the volume and k2 is another constant. The (αV) vs. ψ plots for
three metal families considered by Hannemann and Gatos [2.74] as well as the
alkali halides are shown in Figs. 2.14 –2.17. It can be seen that for all the four

Fig. 2.14. α V − ψ plot for fcc metals (α in units of 10−6 C−1, ψ in units of
10−12 cm2dyne−1 and V in cm3g · atom−1)

Fig. 2.15. α V − ψ plot for bcc metals (units as in Fig. 2.14)
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Fig. 2.16. α V − ψ plot for alkali metals (units as in Fig. 2.14)

Fig. 2.17. α V − ψ plot for alkali halides (units as in Fig. 2.14)

families, linear plots are obtained as predicted by (2.56). Thus (2.56) appears
to represent the relation between α and ψ better than (2.55).

Sirdeshmukh [2.150] pointed out that the empirical relation (2 56) follows
from the expression for the coefficient of thermal expansion in terms of the
specific heat CV and the Gruneisen constant γ given by

α V = (γ CV ψ/3) (2.57)

if it is assumed that the product γCV is constant. Examination of data on γ
and CV for a large number of crystals shows that this is a reasonable approx-
imation.



3

Debye–Waller Factors of Crystals

3.1 Introduction

Soon after the discovery of diffraction of X-rays by crystals by Laue, Debye
undertook a theoretical study of the effect of temperature on the intensity of
diffracted X-rays. Through this theory he introduced a factor known in X-ray
literature as the Debye–Waller factor. Apart from providing a correction for
the temperature effect on intensities, the Debye–Waller factor is interrelated
to several physical properties and has emerged as an important solid state
parameter. Considerable work is now available in literature on the theoretical
as well as experimental aspects of the Debye–Waller factor.

3.2 Brief Outline of the Debye–Waller Theory

The effect of thermal vibration on the intensities of diffraction of X-rays in
crystals has been considered by Debye [3.1], Waller [3.2] and later workers
[3.3–3.8]. The theory as presented here follows the treatment of the subject
by Warren [3.9]. The most familiar effect of thermal vibrations is the reduction
of intensities of the reflections from crystal planes by a factor e−2M derived on
the basis of the Debye–Waller theory. In addition to reducing the intensities
of the Bragg reflections, the thermal vibrations produce a diffuse intensity.

Consider a monatomic cubic crystal. The vibrations of the different atoms
in a crystal are not independent of one another. The coupling between the
displacements of the atoms may be expressed by representing the thermal
vibrations in the crystal in terms of a set of elastic waves propagating in
several directions, the amplitudes and wavelengths of the individual waves
being different. At any instant the displacement of a particular atom is the
sum of the displacements due to each of the elastic waves.

The periodic nature of the lattice sets a lower bound to the wavelength
of the elastic waves propagating in the lattice. Waves shorter than twice the
repeat distance along a crystal direction are not possible. An elastic wave may
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be represented by a wave vector g, whose magnitude equals the reciprocal of
the wavelength of the wave and, whose direction is along the wave normal.
The lattice nature of the crystal restricts all possible g vectors to the first
Brillouin zone.

The finite size of the crystal further restricts the possible g vectors. For
a crystal containing N atoms, the number of g vectors possible is also N ,
the terminal points of these vectors being uniformly distributed throughout
the first Brillouin zone. To each of these vectors there correspond three inde-
pendent modes of vibration limiting the total number of waves to 3N . The
displacements of the lattice points due to thermal vibrations may be repre-
sented by the sum of the displacements due to the 3N independent elastic
waves, these constituting the normal coordinates of the system.

The vector displacement un of the atom n due to the lattice waves is
given by

un =
∑
gj

agjegj cos(ωgjt − 2πg . rn − δgj), (3.1)

where rn(= n1a1 + n2a2 + n3a3) is the position vector of the nth atom in
the crystal, egj (j = 1, 2, 3) a unit vector along the direction of vibration
associated with the wave vector g, ag j the amplitude of the wave, ωgj the
circular frequency and δgj an arbitrary phase factor accounting for the fact
that in an actual crystal, the phases of the elastic waves vary rapidly and
arbitrarily with time, so that no phase relations are possible among the waves.

For an undisturbed lattice composed of identical atoms, the X-ray dif-
fracted intensity expressed as a fraction of the waves scattered by a single
electron is given by

I = f2
∑
m

∑
n

eik S. (rm−rn), (3.2)

f being the atomic scattering factor, S = (s − s0), where s and s0 are the
unit vectors along the diffraction direction and the incident beam direction,
respectively, and k = 2π/λ, λ being the wavelength of X-rays. The vector S is
perpendicular to the reflecting planes and its magnitude |S| = 2 sin θ, where
2θ is the angle of scattering. Due to thermal vibrations, the atoms undergo
small displacements, rn → rn +un and the intensity at any instant is given by

I = f2
∑
m

∑
n

eik S. (rm−rn)eik S. (um−un). (3.3)

Writing
Pmn = kS.(um − un) (3.4)

the time average of the intensity is given by

I = f2
∑
m

∑
n

eik S. (rm−rn) < eiPmn > . (3.5)



3.2 Brief Outline of the Debye–Waller Theory 79

For small values of Pmn

< eiPmn >= e−<P 2
mn>/2. (3.6)

Using (3.1) and (3.4) and remembering that the phases of the waves are com-
pletely independent (resulting in the vanishing of cross terms), we may write

1
2

< P 2
mn >=

1
2

∑
gj

(kS . egj)2 < a2
gj > [1− < cos 2πg .(rm − rn) >]. (3.7)

The first term in this equation is given by

1
2

∑
gj

(k S. egj)2 < a2
gj > =

∑
gj

Ggj = 8π2(sin θ/λ)2
∑
gj

< a2
gj >s, (3.8)

where < a2
gj >s is the component of the mean square amplitude in the direc-

tion of S. Since the mean square displacement due to a wave is half the mean
square amplitude, < u2

s > the mean square of the component of displacement
parallel to the direction of S is given by

< u2
s > = 1

2

∑
gj

< a2
gj >s . (3.9)

Hence ∑
gj

Ggj = 16π2 < u2
s > (sin2 θ/λ2) = 2M, (3.10)

where

M = 8π2 < u2
s > (sin2 θ/λ2)

= B (sin2 θ/λ2)
(3.11)

with B = 8π2 < u2
s >. For a cubic crystal, the mean square displacement

< u2
s > is the same along the three perpendicular directions so that the total

mean square displacement < u2 > is equal to 3 < u2
s >. Then

B = 8π2 < u2
s > = (8π2/3) < u2 > . (3.12)

The intensity of diffraction by a crystal is therefore

I = f2e−2M
∑
m

∑
n

eik S . (rm−rn) e

∑
gj

Ggj cos 2πg . (rm−rn)

. (3.13)

Since
∑
gj

Ggj cos 2πg . (rm − rn) is small, the intensity may be written as

I = f2e−2M
∑
m

∑
n

eik S . (rm−rn) + f2e−2M
∑
m

∑
n

eik S . (rm−rn) (3.14)

∑
gj

Ggj cos 2π g . (rm − rn).
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The first term represents the ordinary Bragg intensity reduced by the factor
e−2M . The second term represents the first-order temperature diffuse scatter-
ing (TDS). The factor f e−M

∑
n

e(2π i/λ) S . rn represents the structure factor

FT of the lattice including the effect of thermal vibrations. For a crystal con-
taining more than one kind of atom in the unit cell, the structure factor is
expressed as

FT =
∑

n

fn e−Mne(2πi/λ) S . rn , (3.15)

where fn is the atomic scattering factor for atom of type n and Mn is the
corresponding temperature factor defined by

Mn = 8π2 < u2
ns > (sin θ/λ)2 (3.16)

< u2
ns > being the mean square displacement of atom of type n in the direction

of S.
The mean square amplitude of vibration may be expressed in terms of the

kinetic energy of thermal vibration. The kinetic energy is given by

Ekin = 1
2

∑
n

mu̇2
n, (3.17)

where m is the mass of the atoms in the crystal. The mean total energy < E >
is twice the mean kinetic energy and using (3.1) is given by

< E > = (1/2)Nm
∑
gj

ω2
gj < a2

gj >

=
∑
gj

< Egj >,
(3.18)

where < Egj > is the average energy per wave and N is the number of lattice
points in the crystal. If the elastic waves are treated as harmonic oscillators,
the energy per wave on the basis of the quantum theory is

< Egj > = [(ehνgj/kBT − 1)−1 + (1/2)] hνgj , (3.19)

where ωgj = 2πνgj and h and kB are the Planck and Boltzmann constants,
respectively. In terms of the average energy per wave, the mean square am-
plitude is given by

< a2
gj > = 2 < Egj > /Nmω2

gj . (3.20)

The temperature factor 2M can now be evaluated. Using (3.8), (3.10), (3.19)
and (3.20), 2M can be expressed as

2M = (h/4π2Nm)
∑
gj

(k S.egj)2[(ehνgj/kBT − 1)−1 + (1/2)] /νgj . (3.21)
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Three aspects of (3.21) may be noted. First, for the evaluation of M , a knowl-
edge of the complete vibration spectrum of the solid is necessary. Second, a
monatomic solid has been assumed so far. For a non-monatomic solid a tem-
perature factor is associated with each atom. Third, in non-cubic crystals, the
temperature factor is anisotropic.

It may be noted that the factors e−2M , M or B have all been referred to
by various authors as the temperature factor due to thermal displacements of
the atoms or the Debye–Waller factor [3.8–3.10]. To avoid ambiguity, e−2M ,
M or B factor will be referred to as the temperature correction, temperature
factor and the Debye–Waller factor, respectively.

Equation (3.21) takes a useful form if the Debye model is assumed for a
solid. A crystal is assumed by Debye to behave as a continuous solid with
regard to the propagation of elastic waves. Following Debye, the waves are
assumed to be pure transverse and pure longitudinal, the velocities of these
waves being independent of wavelength and direction. Though waves of the
same wavelength do not necessarily travel with the same speed in different
directions even in a cubic crystal, average values for the velocities of the
longitudinal and transverse waves may be taken to obtain a fair approximation
to M .

Since the number of g vectors is large, the summation over g in (3.21) is
facilitated by replacing it by an integration over a sphere of radius gm, where
gm represents the maximum possible value for g. The density of lattice points
in such a sphere is N/(4/3)πgm

3. The number of lattice points in an element
of volume for values of g between g and (g + dg) is (4πg2dg) [N/(4π/3)gm

3].
Since for a wave of given type j, the vibration direction egj takes all directions
with equal probability relative to S, we may write

< (kS.egj)2 >= k2
∣∣S2
∣∣ < cos2(S, e) >

= (4π sin θ/λ)2/3.
(3.22)

Equation (3.21) may now written as

2M =
[

h

12π2Nm

](
4π sin θ

λ

)2∑
j

∫ gm

0

[
1

ehνgj/kBT − 1
+

1
2

]
3Ng2dg

νgjg3
m

.

(3.23)
For a wave of given type j, νj = Vjg, where Vj is the average velocity for each
kind of wave. Changing the integration variable, (3.23) can be written as

2M =
[
4h

m

] (
sin θ

λ

)2∑
j

(1/ν3
mj)
∫ νmj

0

[
1

eh ν/kBT − 1
+

1
2

]
ν dν. (3.24)

Writing

φ(x) = (1/x)
∫ x

0

y dy/(ey − 1), (3.25)
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where y = (hν/kBT ) and xj = (hνmj/kBT ), (3.24) becomes

2M = (4kBT/m)(sin θ/λ)2
∑

j

(1/ν2
mj

) [φ (xj) + (xj/4)]. (3.26)

An average value of the expression under the summation in (3.26) for different
values of j is used to evaluate 2M . The function [φ(x) + (x/4)] can be shown
to have almost equal values for the transverse and longitudinal waves at not
too low temperatures. Debye’s theory of specific heats defines a characteristic
temperature θ = (hνm/kB). Since νmj depends on the velocity of the waves,
θ for the longitudinal and transverse waves cannot be the same. Instead, a
mean θM is defined for use in (3.26), given by

x = θM/T

and
(3/θ2

M) = (1/θ2
l ) + (2/θ2

t ), (3.27)

where the subscripts ‘l’ and ‘t’ referring to the longitudinal and transverse
waves, respectively. The mean Debye temperature defined by (3.27) differs
from θD in Debye’s theory of specific heats where

(3/θ3
D) = (1/θ3

l ) + (2/θ3
t ). (3.28)

With these approximations, we obtain

2M = 2B(sin θ/λ)2 = (12h2/mkBθM)
[
φ(x)

x
+

1
4

]
(sin θ/λ)2. (3.29)

3.3 Experimental Procedures

In this section, the procedures for the evaluation of the Debye–Waller factors
and the X-ray Debye temperatures from the measurement of X-ray diffraction
intensities are discussed in detail. The procedures followed in our work are
described; however, they have a general relevance to all work in this field.

3.3.1 Measurement of Integrated Intensity

Details of Diffractometric Procedure

The details of the diffractometric method are given here. Measurements were
made with a Phillips PW 1051 diffractometer using Cu Kα radiation, filtered
to eliminate Kβ radiation. In several cases, an argon-filled G.M. counter was
used to collect the intensity data. In our later work, an NaI (Tl) scintillation
counter was used. The integrated intensities were recorded on a strip chart
recorder. The X-ray tube was usually operated at 34–36 kV and 15–17 ma. The
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width of the receiving slit was 0.2 mm. For angles 2θ < 80◦ a 1◦ divergent slit
and for 2θ > 80◦ a 4◦ divergent slit were used. A scanning speed of 1/4◦

per minute was adopted. A time constant of 4 s was chosen for the counting
circuit. A 2θ scan was adopted. An initial adjustment with a standard silicon
sample ensured that the error in 2θ was not greater than 0.1◦. The chart speed
was adjusted to be 800mmh−1. The counter was operated at 1,650 V. For the
GM counter used, the dead time was 150 µ s. The diffractometer incorporates
a high degree of stabilization in the X-ray generator and receiving circuits,
minimizing the errors due to variations in intensity of the source or in the
efficiency of the receiving circuits, due to fluctuations in the line voltage. This
was confirmed by checking the integrated intensity of a peak after an interval
of about 8 h. The variation was always found to be negligible.

Sample Preparation

The starting material was reduced to a fine powder by slow grinding in an
agate mortar for periods ranging from 30 min to an hour (the grinding time
varying with the sample chosen), so that almost the whole of the powder
passed through a 325 mesh screen. Reduction of particle size by slow grinding
effectively minimizes the preferred orientation errors [3.11]. It also reduces
primary extinction to a negligible level [3.12]. This was found to hold in the
present investigation since no noticeable reduction in intensities of the low an-
gle reflections could be observed. The intensities were therefore not corrected
for extinction although a method of correcting for extinction in powders has
been proposed by Mitra and Chattopadhyay [3.13].

The sample mounting is done by the conventional method of packing the
powder in a rectangular sample holder. This consists of a rectangular sheet
of aluminium 4 × 2.5 × 0.2 cm in size, with a rectangular hole of dimensions
2× 1 cm. A glass plate is bound to the sample holder with tape. The powder
is then sifted into the rectangular cavity so formed. The powder is made to fill
the cavity evenly by tamping with a glass plate or with a spatula. The excess
powder is removed by means of a razor blade. Some more powder is added on
to the surface of the sample and lightly pressed with a glass plate, the excess
powder being once again removed. This process is repeated three to four times
until a nearly plane surface is obtained. The effect of prolonged grinding on the
effective temperature factor, due to the introduction of strains in the sample
has been studied by Inagaki et al. [3.14]. The presence of strains in a sample
affects the width of the Bragg peak, the width increasing with increase of
strain. However, for the substances chosen in the present study, grinding for
about an hour or less was often sufficient. Further, from the method adopted
for sample mounting, strain likely to be introduced as with pelleting under
high pressure was least probable. This was also supported by the absence of
unduly broad peaks in the diffractograms.

Some other sample characteristics affecting the intensities are porosity,
surface effects and preferred orientation. In accurate intensity measurement,
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it is necessary either to correct for the effects of these factors or to choose
the experimental conditions so as to minimize the effects of these factors. The
present mode of sample preparation was conducive to minimum preferred
orientation. However, since the samples were not packed at high pressures,
the sample densities may differ from the true density of the specimen. The
reduction in intensity due to the average structure of the specimen, termed the
porosity effect P0, is uniform, so that P0 may be included in the scale factor
in relative intensity measurements [3.15]. The surface roughness effect Ps due
to granularity in the surface layer depends on the Bragg angle only at low 2θ
values. In a typical case, Suortti [3.15] quotes an error of 2 % in the intensity of
a reflection at 2θ = 20◦ due to the surface roughness. However, the measured
Bragg peaks for the samples studied generally have values of 2θ > 20◦, so
that a neglect of the granularity correction is not totally unjustified. It may
be mentioned here that the choice of particle size and procedure of sample
preparation is very much similar to that followed by Blattner et al. [3.16]
who observe that under these conditions, the effects due to extinction and
preferred orientation are minimized.

An accurate value of the absorption correction is essential for absolute
intensity measurements. For a flat powder specimen the absorption correction
is not a function of the Bragg angle and hence can be included in the scale
factor for relative intensity measurements.

Measurement of Intensities

The intensities were measured on a relative basis. Filtered radiation was used
and a crystal monochromator was not used. Togawa [3.17] has pointed out that
‘the relative intensity method with use of filtered radiation has an advantage
because the reflection intensity is stronger than with a monochromator beam’
although it has the disadvantage of a slightly higher background. The line pro-
files of the Bragg peaks were recorded with the help of a strip chart recorder.
The counting rate was adjusted so that statistical counting errors were about
2%. The peaks were scanned for a range of values 2θ covering two degrees on
either side of the Bragg peak, so that the background could be determined
with minimum ambiguity. All measurable peaks corresponding to the range
of 2θ values between 20◦ and 140◦ were scanned. The relative intensities were
determined by measuring the area under a Bragg peak. A minimum of six
independent measurements were made for each peak and their average taken
as a measure of the intensity. The intensities measured in this way generally
agreed within 2%, and in no case did the disagreement exceed 5%. The agree-
ment between the relative values for the different peaks was good. The trace
of a typical peak is shown in Fig. 3.1.

A straight-line background scheme was adopted by drawing a common
tangent to the line profile on either side of the Bragg peak. The ratios of
the peak-to-background intensities were high so that standard errors due to
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Fig. 3.1. Trace of (100) and (110) reflections from a powder sample (CsCl0.58Br0.52)

background radiation were low. Since the α2 component of the Cu Kα radi-
ation cannot be eliminated, consideration of the relative contributions of the
α1 and α2 components to be in the ratio 2:1 enabled the intensity due to the
α1 component to be used in the final analysis.

The measured intensities were corrected for temperature diffuse scatter-
ing (TDS) by the method of Chipman and Paskin [3.18]. According to this
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method, the correction factor β for TDS is given by

β = qa0(cos θ/λ)QB(sin θ/λ)2, (3.30)

where a0 is the lattice parameter, Q the length of the 2θ scan in radians, θ
the Bragg angle, λ the wavelength and the factor q is (π/3)1/3 for the fcc
lattice and (2π/3)1/3 for the bcc lattice. The value of B, used to estimate the
correction β is obtained from an initial least square treatment of the intensity
data.

The correction for dead time to the measured intensities was applied by
an approximate method proposed by Chipman [3.19]. Since the count rate
continually varies as a peak is scanned, the true intensity is given by

∫
Nt dt =

∫
[N0/(1−N0τ)]dt, (3.31)

where Nt and N0 correspond to the instantaneous values of the true and mea-
sured count rates respectively. For a Gaussian peak Chipman obtains to a first
approximation [1 + (τNp/

√
2)] for the ratio between the true and measured

integrated intensities, τ being the dead time of the counting apparatus and
Np is the count rate at the peak.

The integrated intensity I0 is obtained from the measured intensity I0
′

from the relation

I0 =
I0

′

(1 + β)

(
1 +

τNp√
2

)
= I0

′(1 + ψ)/(1 + β), (3.32)

where ψ = τNp/
√

2 and β represent the dead time and TDS corrections,
respectively, (3.30) and (3.31). Finally, the integrated intensity I0 of a Bragg
reflection from a powder sample for unpolarised radiation [3.19] is given by

I0 =
[

P r2
e l t λ3

64π R2µl ω V 2
a

] [
1 + cos2 2θ

sin2 θ cos θ

]
J F 2

T. (3.33)

Here, I0 is the duly corrected experimental intensity (3.32). In (3.33), P is
the total power in the primary beam, re the classical electron radius, R the
specimen-to-receiving slit distance, Va the volume of the unit cell, µl the linear
absorption coefficient, ω the angular velocity of the receiving slit, λ the wave-
length, l and t the length and width of the receiving slit, J the multiplicity
factor and FT the structure factor. The factor (1 + cos2 2θ)/ sin2 θ cos θ is the
Lorentz-polarisation factor (LP), θ being the Bragg angle.

The measurement of intensities can be done either on an absolute basis
or a relative basis. Absolute intensity measurement can, again, be done from
preliminary measurements of the intensity of the incident beam with the help
of attenuators or by obtaining a scale factor whereby the relative intensities of
the substance examined are brought to an absolute scale. This is achieved by
comparison of the intensity of a particular reflection of the substance under
study with the intensity of a reflection from a standard substance.



3.3 Experimental Procedures 87

3.3.2 Analysis of Intensity Data

Determination of Debye–Waller Factors

From (3.33) the observed intensity I0 may be written as

I0 = C (LP)JFT
2, (3.34)

where C is called the scale factor. From (3.15) the structure factor is given by

F 2
T =
[∑

fie−Bi (sin θ/λ)2 cos 2π (hxi + kyi + lzi)
]2

+
[∑

fie−Bi (sin θ/λ)2 sin 2π (hxi + kyi + lzi)
]2

, (3.35)

where h, k, l are Miller indices and xi, yi, zi are the position coordinates of
the ith atom; the summation includes all atoms in the unit cell. For crystals
with simple structures, (3.35) gets simplified. The structure factors for some
simple structures are given in Table 3.1.

The Debye–Waller factors can be determined by three methods:

(a) By a least squares refinement of (3.34) and (3.35).

Table 3.1. Structure factor square (F 2) for some simple structures

Structure Indices F 2

1. fcc h,k,l all odd or all even [4fe−B(sin θ/λ)2 ]2

2. hcp

h + 2k = 3n, l even [4f2]e−(4π sin θ/λ)2[φ(u,ψ)]

h + 2k = 3n ± 1, l odd [3f2]e−(4π sin θ/λ)2[φ(u,ψ)]

h + 2k = 3n± 1, l even [f2]e−(4π sin θ/λ)2[φ(u,ψ)]

φ =< uc >2 cos2 ψ
− < ua >2 sin2 ψ

cos ψ = (la/c){(4/3)(h2

+hk + k2) + (la/c)2}−1/2

B = (8π2/3){2 < u2
a >

+ < u2
c >}

3. NaCl (AB) h,k,l all even [4fAe−BA(sin θ/λ)2 + 4fBe−BB(sin θ/λ)2 ]2

h,k,l all odd [4fAe−BA(sin θ/λ)2 − 4fBe−BB(sin θ/λ)2 ]2

4. CsCl (AB) h + k + l even [fAe−BA(sin θ/λ)2 + fBe−BB(sin θ/λ)2 ]2

h + k + l odd [fAe−BA(sin θ/λ)2 − fBe−BB(sin θ/λ)2 ]2

5. ZnS (AB) h + k + l = 4 n [4fAe−BA(sin θ/λ)2 + 4fBe−BB(sin θ/λ)2 ]2

h + k + l = 4 n + 2 [4fAe−BA(sin θ/λ)2 − 4fBe−BB(sin θ/λ)2 ]2

h + k + l = 4 n + 1 [4fAe−BA(sin θ/λ)2 ]2 + [4fBe−BB(sin θ/λ)2 ]2

6. CaF2(AB2) h + k + l = 4 n + 1 [4fAe−BA(sin θ/λ)2 ]2

h + k + l = 4 n [4fAe−BA(sin θ/λ)2 + 8fBe−BB(sin θ/λ)2 ]2

h + k + l = 4 n + 2 [4fAe−BA(sin θ/λ)2 − 8fBe−BB(sin θ/λ)2 ]2



88 3 Debye–Waller Factors of Crystals

(b) For certain structures, the structure factor FT takes a simple form (see
Table 3.1). In such cases, semigraphical–semianalytical procedure can be
used. As an example, we shall consider crystals with zinc blende structure.
The structure factors, as given in Table 3.1, are

FT
2 = 16

[
fAe−BA (sin θ/λ)2 + fBe−BB (sin θ/λ)2

]2
for h + k + l = 4n,

(3.36)
and

FT
2 = 16

[
fAe−BA (sin θ/λ)2 − fBe−BB (sin θ/λ)2

]2
for h + k + l = 4n + 2.

(3.37)
We may now introduce relative structure factors F ′

i [3.9] as

F ′
i = [I0/(LP) J ]1/2

. (3.38)

The plot of F ′
i vs. (sin θ/λ) is a smooth curve for reflections in (3.36) and

(3.37). Typical curves are shown in Fig. 3.2. From these curves, we can choose
values of F ′

4n and F ′
4n+2 at a given value of (sin θ/λ). The sum and difference

of these values give quantities f0
A and f0

B defined as follows:

f0
A =
(
F ′

4n + F ′
4n+2

)
= C1fAe−BA (sin θ/λ)2 (3.39)

Fig. 3.2. Plot of relative structure factor F ′
i vs (sin θ/λ) for HgSe
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Fig. 3.3. Plot of log (fA
0/fA) and log (fB

0/fB) vs (sin θ/λ)2 for HgSe

and
f0
B =
(
F ′

4n − F ′
4n+2

)
= C2fBe−BB (sin θ/λ)2. (3.40)

Equations (3.39) and (3.40) may be written in logarithmic form as

log (f0
A/fA) = log C1 − BA (sin θ/λ)2 (3.41)

and
log (f0

B/fB) = log C2 − BB (sin θ/λ)2. (3.42)

Typical plots representing (3.41) and (3.42) are shown in Fig. 3.3. From these
plots, BA and BB and the constants C1 and C2 can be evaluated; C1 and C2

are expected to be equal. The mean Debye–Waller factor B is obtained from

B =
mABA + mBBB

mA + mB
, (3.43)

where mA and mB are masses of atoms A and B, respectively.

(c) If BA and BB are expected to be close to each other (for instance, if
the two atoms do not differ much in mass or if the number of reflections
is not sufficient to permit determination of BA and BB separately), a
mean value B is assumed for both atoms. Then (3.34), (3.36) and (3.37)
yield

I0 = C (LP)J(fA ± fB)2e−2B(sin θ/λ)2 . (3.44)
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Fig. 3.4. Plot of log (I0/Ic) vs (sin θ/λ)2 for HgTe

A plot of log (I0 / Ic) vs. (sin θ/λ)2 yields the value of B with

Ic = C (LP)J(fA ± fB)2. (3.45)

A typical plot is shown in Fig. 3.4. From the plot, B can be evaluated. Values
of the Lorentz-polarisation factor (LP) and the multiplicity factor J can be
taken from standard books on X-ray crystallography. The values of the atomic
scattering factors are taken from Cromer and Waber [3.20] and are corrected
for anomalous dispersion [3.21].

Determination of Debye Temperature and Amplitudes
of Vibration

The value of the characteristic temperature θM corresponding to the B value
so obtained is calculated from

B = (6h2/mkBθM )
[
φ(x)

x
+

1
4

]
, (3.29)

where m is the average mass of the atoms, x = θM/T , T is the absolute
temperature and the function φ(x) is defined by (3.25). In (3.29), φ(x) is a
function of θM/T . In order to evaluate θM from the experimental value of B,
iterative procedures are in use. A value of θM is assumed to evaluate the rhs
of (3.29) and this is compared with the observed B. If there is a difference,
the value of θM is adjusted and the process repeated until there is agreement
between the values of B thus calculated and the experimental value. This
procedure has been followed by Baldwin and Tompson [3.22], Walford [3.23]
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and Naidu and Houska [3.24] among others. However, as will be shown below,
such iterative procedures are not necessary.

Equation (3.29) can be written as

W (x) =
[
φ(x)
x2

+
1
4x

]
=
(

BmkBT

6h2

)
. (3.46)

Values of the function W (x) have been tabulated by Benson and Gill [3.25] for
a wide range of values of x for small increments, so that the Debye temperature
can be easily determined from the mean Debye–Waller factor without recourse
to an iterative procedure.

From (3.11) the mean square displacement of the ions is related to the
mean B value by

B = (8π2/3) < u2 > . (3.47)

Evaluation of Errors

The errors quoted in the subsequent sections in the values of the X-ray De-
bye characteristic temperature θM, the Debye–Waller factor B and the rms
amplitude of vibration < u2 >1/2 refer to the random errors in the recorded
intensities. The standard error in the value of B is estimated from the relation

∆B = 1/2

[
n
∑

|eY |2

(n − 2) (n
∑

X2 − (
∑

X)2)

]1/2

. (3.48)

Here n refers to the number of reflections included in the least square analysis,
Y = log(I0/Ic), X = (sin2 θ/λ2) and |eY | refers to the magnitude of the dif-
ference between Ymeas and Ycalc., the latter being obtained from the equation
corresponding to the least squares line.

The error in B may be used to evaluate the corresponding errors in θM and
the rms amplitude of vibration. The error in θM is obtained by differentiating
the equations x = (θM/T ) and B = (6h2/mkBT )W (x), whence

∆θM =
W (x)

∆W (x)
∆B

B
T∆x. (3.49)

The fractional change ∆W (x)/W (x) corresponding to the change ∆x can be
estimated from the values of W (x) tabulated by Benson and Gill [3.25]. The
standard error in the rms amplitude of vibration is given by

∆ < u2 >1/2= (3/8π2B)1/2(∆B/2). (3.50)

The errors calculated in this manner refer only to random errors. As discussed
earlier, the systematic errors arising due to preferred orientation, extinction,
porosity and surface effects have been sought to be minimized under the con-
ditions chosen for the measurement of intensities. The neglect of these factors
may possibly give errors larger in magnitude than those quoted by 2–3%.
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3.3.3 Other Methods

The method of determination of B and θM from intensities measured at a
single temperature is discussed in earlier sections. For sake of completeness,
a couple of other methods are discussed in this section.

θM From Bragg Intensities at Different Temperatures

The Bragg intensity is a function of temperature. The intensity I(T ) of a
Bragg reflection at temperature T can be written as

I(T ) = constant (LP )JF 2e−2M . (3.51)

If I(T1) and I(T2) are the intensities at temperatures T1 and T2,

log [I(T1)/I(T2)] = log [(LP )1F 2
1 /(LP )2F 2

2 ] − 2M(T1) + 2M(T2) (3.52)

In view of. (3.29), (3.53) becomes

log[I(T1)/I(T2)] = log [(LP )1F 2
1 /(LP )2F 2

2 ]

− (12h2/mkBλ2)[T1 sin2 θ1{φ(x1) + (x1/4)}/θ2
M1

− T2 sin2 θ2{φ(x2) + (x2/4)}/θ2
M2

].

(3.53)

If one assumes that over small temperature increments the variation of θM is
small, and that θM1 = θM2 = θM (Av.), then θM (av.) can be found from the
equation

θM
2(Av.) =

(12h2/mkB) [T2φ(x2) − T1φ(x1)](sin2 θ/λ2)
[log I(T1)/I(T2)]

. (3.54)

Since the function φ(x) depends on θM, the calculation of θM from (3.54)
involves an iterative procedure. The reliability of the approximation in (3.54)
depends on the smallness of the temperature interval chosen over which θM

is assumed independent of temperature. Since the expression for θM involves
the logarithm of the intensity ratio, the intensities must be known accurately.
This sets a limit on the optimum value of the temperature increment.

Debye–Waller Factors From the Intensity of Temperature Diffuse
Scattering

Another method where both the atomic scattering factor and the Debye tem-
perature may be simultaneously obtained for an element was suggested by
Borie [3.26]. This involves the determination of the integrated intensities of
the Bragg peaks and also the contribution to the background from the tem-
perature diffuse scattering. The contribution to the background intensity from
the temperature diffuse scattering is given by

ITDS = f2[1 − e−2M ] G(sinθ/λ), (3.55)
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where the function G(sin θ/λ) is given in [3.9, 3.27, 3.28]. Thus from TDS,
f2[1 − e−2M ] is obtained as a function of (sin θ/λ) while from the Bragg
intensities f2e−2M is obtained as a function of (sin θ/λ). The sum of these
two curves gives f2 and their ratio yields M and hence θM. Borie [3.26] used
this method to obtain f , B and θM for copper.

3.4 An Overview

From the earlier sections, it can be seen that the determination of the Debye–
Waller factors has at least three applications viz. (a) they provide the tem-
perature corrections for observed intensities, (b) they can be compared with
lattice dynamical calculations to obtain information about the soundness of
the model and (c) they yield values of the X-ray Debye temperature which, by
itself, is an important solid state parameter. Further, the Debye–Waller factor
and the Debye temperature correlate with several other physical properties.
In view of this importance, there has been considerable activity in the field.
In this section, we consider some of the important contributions from various
groups and laboratories.

3.4.1 Earlier Work of Historical Importance

Soon after the theoretical work of Debye and Waller, experimental work was
undertaken to verify theoretical predictions. James [3.29] and James and
Furth [3.30] measured the intensities of reflections of NaCl at high and low
temperatures, respectively, and made only qualitative comparisons with the-
ory. Waller and James [3.31] reinterpreted the measurements of James [3.29]
and James and Furth [3.30] taking into account the diatomic nature of NaCl.
Further measurements and verification of the Debye–Waller theory was car-
ried out by James and Brindley [3.32] for KCl and James et al. [3.33] for Al.
Brindley [3.34] measured the intensities of reflexions for NaF, NaCl, LiF and
KCl and calculated the mean square amplitudes of vibrations from the defi-
nition of the Debye–Waller factor. Shonka [3.35] measured the intensities of
NaF and determined B and θM from the Debye–Waller theory. Brindley and
Ridley [3.36] applied temperature corrections to the measured intensities for
Al, Cu and KCl and obtained experimental values of the atomic scattering
factors, and compared them with theoretical values. Ribner and Wollan [3.37]
and Brindley and Ridley [3.38] determined B and θM for MgO from the mea-
sured X-ray diffraction intensities.

3.4.2 Experimental Values of Debye–Waller Factors at Room
Temperature

The principle of determination of the Debye–Waller factors and the X-ray
Debye temperature has been discussed in Sect. 3.2. There is a large amount
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Table 3.2. Experimental room-temperature B values of NaCl

BNa [Å2] BCl [Å2] Method Ref.

1.54 1.25 X-ray, single crystal [3.31]
1.25 1.12 X-ray, single crystal [3.44]
1.25 1.00 X-ray, single crystal [3.45]
1.29 1.15 X-ray, powder [3.46]
1.63 1.42 Neutron, single crystal [3.47]
1.639 ± 0.037 1.326 ± 0.023 X-ray, single crystal [3.48]
1.84 1.44 X-ray, powder [3.49]
1.89 1.61 X-ray, single crystal [3.50]
1.81 ± 0.03 1.49 ± 0.03 X-ray, powder [3.51]

of data on the room temperature values of these parameters. B-values for a
variety of crystals are given in International Tables for X-ray Crystallogra-
phy [3.39]. Recently, compilations of data on Debye–Waller factors and the
associated Debye temperatures have been published by Butt et al. [3.40] for
cubic elements, Butt et al. [3.41] for cubic compounds and Gopi Krishna and
Sirdeshmukh [3.42] for hcp elements. Several aspects of the Debye–Waller
factors of alkali halides have been discussed by Sirdeshmukh et al. [3.43].

NaCl, NaF, KCl and MgO are substances for which numerous measure-
ments have been made. Here, we shall examine the results on NaCl in detail
to bring out the problems in Debye–Waller factor measurements. The various
results on NaCl are given in Table 3.2. A look at the data in the table reveals
that there is wide variation in the values from report to report. For BNa, the
reported values vary from 1.25 to 1.89 Å2 – a variation of about 50%. For BCl,
the variation is from 1.00 to 1.61 Å2 – again, a variation of about 60%.

Several factors contribute to the uncertainties in the measured B values.
These include the uncertainty in intensity measurements, background correc-
tion, correction for thermal diffuse scattering and choice of atomic scattering
factors. Groenewegen and Huiszoon [3.52] mention that variations in the range
0.03–0.06 and 0.04–0.20 Å

2
arise in B because of different methods of TDS

correction employed in powder and single crystal measurements, respectively.
Lawrence [3.53] attributed the large difference in his B-values for MgO and
those reported by Togawa [3.17] to the difference in the angular range of re-
flexions used in the two studies. Besides, errors may be introduced by the
state of perfection and strains in the sample.

A closer look at the table indicates that the B values are systematically
lower in the earlier studies than in the more recent measurements. This may
be due to improvements in techniques of intensity measurements and also
improvements in methods of applying TDS correction.

3.4.3 Effect of Choice of Atomic Scattering Factors on Measured
B-values

In the determination of the Debye–Waller factors, the atomic scattering fac-
tors constitute an important input. Atomic scattering factors are available for
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Table 3.3. Debye–Waller factors and R factor for different states of V and N in VN

State BV [Å2] BN [Å2] R

(a) V0N0 0.367 0.318 2.83
(b) V+N− 0.295 0.224 2.84
(c) V+2N−2 0.311 0.321 1.10
(d) V+3N−3 0.456 0.337 1.13

different ionic states and also for different atomic models. The atomic scatter-
ing factors have to be chosen with care while determining the Debye–Waller
factors.

The Debye–Waller factors of VN determined by Hosoya et al. [3.54] em-
ploying atomic scattering factors appropriate to the (a) V0, N0, (b) V+1, N−1,
(c) V+2, N−2 and (d) V+3, N−3 states are shown in Table 3.3. Hosoya
et al. [3.54] found that the choice of atomic scattering factors had an effect
not only on the magnitudes of the B values but also on their relative values
(BV < BN in case (c) and otherwise in other cases). The R factor was also
calculated for each case. From the lowest value of R, it was concluded that
the V+2 N−2 state is probably the true electronic state for VN.

Stewart [3.55] analysed X-ray intensities for diamond powder specimens
using atomic scattering factors obtained from the Hartree–Fock and molecular
carbon models and obtained 0.20 and 0.172 Å

2
for the Debye–Waller factor.

Dawson and Howard [3.56] used atomic scattering factors for Li0, F0 and
Li+1, F−1 states in analyzing intensity data for LiF and found only a marginal
effect on the resulting B-values.

3.4.4 Debye–Waller Factor for a Real Crystal

From the dynamical theory of X-ray diffraction applicable to thick and perfect
crystals, we get I ∝ F e−M whereas from the kinematical theory applicable
to thin and mosaic crystals, we get I ∝ F 2e−2M . The expressions given in
Sect. 3.2, thus, assume that the sample is mosaic.

Parthasarathi [3.57] pointed out that since a real crystal may be interme-
diate between a perfect and imperfect crystal, its Debye–Waller factor may
be e−pM where 1 < p < 2. He also suggested that the value of p could be used
as a measure of the degree of perfection.

Batterman [3.58] found that the temperature factor is e−1.3M for a germa-
nium crystal. Batterman [3.59] verified experimentally that the temperature
factor is e−M for a perfect Si crystal and e−2M for Si powder samples. An-
naka [3.60] found that the temperature factor is e−1.3M for NaCl. Batterman
and Strock [3.61] obtained e−M for a perfect CaF2 crystal and e−1.6M for a
crystal which was not characterized for perfection. For powder samples and
for single crystals rendered mosaic by quenching, the temperature factor may
be assumed to be e−2M .
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3.4.5 Debye Temperatures of Thin Films and Fine Particles

The X-ray Debye temperature can be measured from intensities measured
either at a single temperature or at different temperatures. In the former
method, the atomic scattering factors are directly used whereas in the latter,
ratios of intensities are used which nearly cancels out the atomic scattering
factors.

Using the single temperature method, Carpenter [3.62] obtained a value of
1549 K for θM for diamond. On the other hand, Post [3.63] obtained a value
of 1,990 K for θM for diamond using the method of temperature variation
of intensities. In view of the difference in the two methods discussed in the
preceding paragraph, Barron et al. [3.64] concluded that the difference in the
two θM values could be due to some inadequacy in the atomic scattering factors
used by Carpenter [3.62]. Schoening and Vermuelen [3.65] made measurements
of θM on diamond powders of different particle sizes using the temperature
variation method and obtained a value of 1,880 and 1,500 K for θM for the
fine (6 µm) and coarse (780 Å) powders, respectively. These different values
have been obtained without involving the atomic scattering factors. Thus the
suggestion of Barron et al. [3.64] that atomic scattering factors for C need
revision is contradicted.

Mitra and Chaudhari [3.66] determined θM for Cu and Ag films of different
thickness using X-ray and electron diffraction methods and found that θM is
much lower for thin films than for bulk samples.

Blakeley [3.67] refers to a number of low energy electron diffraction studies
of Debye–Waller factors as a function of the electron energy. Electron beams
of different voltages probe surface layers of different thicknesses. The general
conclusion from these studies is that (u2)surface

/
(u2)bulk is about 2.

Ohshima and Harada [3.68] made X-ray measurements on fine particles of
Cu, Ag and Au in the range 60–2,000 Å. Their results are given in Table 3.4.
In all the cases the Debye temperature decreased as particle size increased.
This variation is attributed to a softening of the thermal vibrations in the
surface of the fine particles.

Considering a particle of radius r to consist of a core and a shell of thickness
∆r (Fig. 3.5) and associating Debye temperatures θc and θs with the core and
the shell, it can be shown that the Debye temperature θP of a particle is
given by

θ−2
P = θ−2

c + (3∆r/r)[θ−2
s − θ−2

c ]. (3.56)

Thus, a plot of θ−2
P and r−1 should be linear; such linear plots are shown in

Fig. 3.6. θc can be obtained from the intercept of the plot. θs is estimated from
the slope of the plot by assuming that the shell thickness ∆r is of the order
of the nearest neighbour distance. Values of θP, θs and θc are given in Table
3.4 along with θM values for bulk samples. The θc values are expectedly close
to θM values.
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Table 3.4. Values of θP , θs, θc and θM

Specimen
θP [K] θs [K] θc [K] θM [K] [3.69,3.70]

Metal Size [Å]

Cu 160(30) 284(9) 165(25) 306(7) 322(22)
400(50) 292(13)
560(70) 303(11)

Ag 130(20) 187(8) 120(12) 216(6) 212(7)
190(30) 204(9)
565(80) 204(9)

2000(500) 217(6)
Au 60(10) 134(5) 98(7) 165(5) 177(5)

115(30) 145(4)
150(40) 144(3)
230(50) 161(4)
380(70) 158(6)

Fig. 3.5. The ‘shell’ and ‘core’ of a particle of radius r

3.4.6 Effect of Lattice Strain on B

Inagaki et al. [3.14] measured the intensities of X-ray reflexions for several
powdered materials ground for different durations. They found that the slope
of the log (Io/Ic) vs. (sin2 θ/λ2) plot (which yields the value of B) changes
substantially with the time of grinding; the magnitude of the effect was dif-
ferent in different substances.

In a subsequent paper Inagaki et al. [3.71] determined the Debye–Waller
factor B and also the lattice strain for samples ground for different times. The
lattice strain was determined from the linear plots between (β cos θ/λ) and
(sin θ/λ) using the Scherrer equation:

(β cos θ/λ) = (K/L) + 2εl (sin θ/λ). (3.57)

Here β is the half-width of a reflexion, K the shape factor (∼1), L the particle
size and εl the lattice strain. Inagaki et al. [3.71] found that the B vs. εl plots
(Fig. 3.7) are smooth but differ for different substances.
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Fig. 3.6. Plot of θ−2
P vs. r−1

Inagaki et al. [3.71] were the first to systematically study the effect of
grinding (and the resulting strain) on the determination of Debye–Waller fac-
tors. They produced strain in several inorganic compound powders (CaF2,
TiO2, CdO, graphite and BaTiO3) by grinding and determined the mean
Debye–Waller factors. Inagaki et al. [3.71] found that in all the materials
studied by them, the measured Debye–Waller factor (Beff) increased with in-
creasing strain (εl). Further they found that above εl = 0.2×10−2, Beff tends
to saturate. The limiting (saturation) value of Beff is almost twice that of
the starting material. Graphite, however, was an exception where Beff con-
tinued to increase without any tendency to saturate up to the maximum
value of strain produced. Thus, lattice strain was shown to cause a large
effect on the measured values of the Debye–Waller factors of the materials
studied.

3.4.7 Anisotropy of Debye–Waller Factors

At a gross level, the Debye–Waller factor has the same symmetry as the crystal
itself. Thus, while B is isotropic for the cubic symmetry, there are two principal
Debye–Waller factors for the tetragonal, trigonal and hexagonal crystals, three
for the orthorhombic, four for the monoclinic and six for the triclinic systems.
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Fig. 3.7. Plot of effective Debye–Waller factor B vs. lattice strain (εl)

Gilbert and Lonsdale [3.72] measured the Debye–Waller factor for several
reflexions for urea (tetragonal) and found that the direction-dependence in
this crystal follows the rule B = a + b cos2 φ where a and b are the Debye–
Waller factors in the principal directions and φ is the angle between normals
to the (hkl) and (001) planes.

At a finer level, the temperature factor is anisotropic for each atom. This
anisotropy is represented by a thermal vibration ellipsoid given by

2M = β11h
2 + β22k

2 + β33l
2 + 2β12hk + 2β23kl + 2β31lh (3.58)

for each atom. By standard procedures, this is reduced to

2M = 8π2[u2
1l

2
1 + u2

2l
2

2 + u2
3l

2
3](sin

2 θ/λ2), (3.59)

where ui and li are the thermal vibration amplitude and direction cosine of the
ith axis of the ellipsoid with respect to the scattering vector. For purposes of
evaluating the mean Debye–Waller factor from the thermal vibration ellipsoid
parameters, McWhan et al. [3.73] suggest

Baverage = 8π2(u2)av = 8π2(1/k)
∑

k

Mku2
k, (3.60)

where uk
2 is the average for the ellipsoid of the kth atom. However, such

measurements are generally made while performing structure determination
of crystals containing a large number of atoms.
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3.4.8 Pressure Variation of θM

There is very little experimental work on this aspect. The X-ray Debye tem-
perature of Al was studied by Matsumoro et al. [3.74] at pressures up to 6 GPa
using synchrotron radiation. At each pressure, the intensities were measured
at 45◦C and 264◦C.

If I(T1) and I(T2) are the intensities at temperatures T1 and T2, then
starting with the equation

I(T ) = C (LP ) JF 2e−2M , (3.61)

we get
log [I(T2)/I(T1)] = 2 ∆B (sin θ/λ)2 + C. (3.62)

From a plot of log [I(T2)/(T1)] vs. (sin θ/λ)2 (Fig. 3.8) ∆B is determined. θM

is calculated from

θM
2 = (6h2/mkB) (∆T/∆B). (3.63)

This θM value is associated with the mean of the temperatures T1 and T2

and with the pressure at which I(T1) and I(T2) are measured. This whole
procedure is repeated at different pressures. The resulting values of θM at
different pressures are shown in Fig. 3.9. The parameter V/V0 is used instead
of P as the variable.

The observed pressure dependence of θM of Al can be fitted to the equation:

θM = (θM)0 exp{[γ(p) − γ(0)]/A}, (3.64)

γ(p) = γ(0)(V/V0)A, (3.65)

Fig. 3.8. Plot of log I(T2)/I(T1) vs. (sin θ/λ)2
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Fig. 3.9. Plot of θM vs. V/V0

where γ(p) and γ(0) are the Gruneisen constants at a given pressure and
zero pressure respectively. A is a constant ∼1. From the data, γ(0) and
(θM)0 are obtained as 3 and 367 K which agree with other independent
measurements.

3.4.9 Temperature Variation of B and θM

The temperature variation of the Debye–Waller factors of some alkali halides
has been reported by Bastow et al. [3.75]. Fig. 3.10 is a typical representa-
tion of the temperature variation of the Debye–Waller factors of the alkali
halides. Mention may be made of the determination of the B-values for KCl
and NaCl at temperatures close to the melting point by Viswamitra and Jay-
alaxmi [3.76]. Debye–Waller factors of some of the alkali halides have been
determined at low temperatures (∼80K); these are listed by Sirdeshmukh
et al. [3.43]. Systematic measurements of Debye–Waller factors of several
crystals with CaF2 structure have been made up to high temperatures using
neutron diffraction [3.77–3.79].

The temperature variation of θM of Al, Cu and Pb was studied by Owens
and Williams [3.80]. Wilson et al. [3.81] made measurements of θM of Ni as
a function of temperature. The temperature variation of θM of several alkali
halides at high temperatures has been studied by Pathak and his group and
their results have been listed by Sirdeshmukh et al. [3.43]. Results for the Rb
halides are shown in Fig. 3.11 as typical examples.

3.4.10 Anharmonic Effects in Debye–Waller Factors and Debye
Temperature

The theory of anharmonic effects in Debye–Waller factors and Debye temper-
atures has been discussed in different (but equivalent) forms in [3.82–3.86].
According to the treatment by Willis [3.86], the temperature factor is:
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Fig. 3.10. Temperature variation of Debye–Waller factors ([T/θD]3/2 is used as the
variable)

Fig. 3.11. Plots of X-ray Debye temperature (θM) vs temperature (T ) for RbCl,
RbBr and RbI
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2M = (2π/a0)2(h2 + k2 + l2)(1/α0)kBT + (2π/a0)2(h2 + k2 + l2)

× (2γβ/α0kB)(kBT )2 − (2π/a0)2(h2 + k2 + l2)(20γ0/α3
0)(kBT )2

+ (2π/a0)4(h2 + k2 + l2)(2γ0/α4
0)(kBT )3

− (2π/a0)4[h2k2 + k2l2 + l2h2 − (1/3)h2 − (1/3)k2 − (1/3)l2]

×(12δ0/5α4
0)(kBT )3. (3.66)

Here a0 is the lattice constant, γ the Gruneisen constant, β the volume ex-
pansion coefficient and kB the Boltzmann constant. α0, γ0 and δ0 are anhar-
monicity parameters.

The first term is the harmonic term, the second is the thermal expansion
correction to the harmonic term (quasiharmonic term), the third and fourth
terms are isotropic anharmonic terms and the fifth term is the anisotropic
anharmonic term. The fourth and fifth terms are negligible. Equation (3.66)
can finally be reduced to:

B(T ) = Bh(T )[1 + (2Tβγ) − 20TkB(γ0/α0
2)]. (3.67)

Here Bh(T ) is the harmonic B-factor given by

Bh(T ) = 8π2kBT/α0. (3.68)

To compare experimental results with theory, we use the parameter Y given by

Y = (λ/ sin θ)2 log [I(T )/I(T0)] = 2 [B(T0) − B(T )]. (3.69)

Further, (3.67) may be expressed in terms of the Debye temperature as

[1/θM(T )]2 = (mk2
B/3�

2α0)[1 + T (2βγ − 20kBγ0/α2
0)] (3.70)

The terms α0 and γ0 can be obtained by fitting experimental data at some
temperatures.

The experimental data on Al, Na and (α) iron have been interpreted in
terms of this theory by Jyoti Prakash et al. [3.87]. The Y –T plots and the
θM–T plots are shown in Figs. 3.12 and 3.13, respectively. The agreement is,
expectedly, better when the anharmonic term is included.

Similar comparisons of experimental data with the anharmonic theory
have been made for KCl and BaF2 by Willis [3.86], for KBr by Sureshchandra
et al. [3.88], for Ni, Mo and W by Sneh [3.89] and for NaCl, KCl and KBr by
Shepard et al. [3.90] with their new data.

3.4.11 Debye–Waller Factors from Lattice Dynamics

The Debye–Waller factor is related to the vibration spectrum of the crystal lat-
tice (Sect. 3.2). The vibration spectrum of a crystal can be calculated assuming
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Fig. 3.12. Plots of the parameter Y (3.69) vs. temperature T : (a) aluminium,
(b) sodium and (c) α-iron

different models. Once the vibration spectrum is evaluated the Debye–Waller
factor can be calculated.

Comparison of such calculated values with experimental values can serve
two purposes. If the experimental values are accurate and well-established and
if calculated values from different models differ, the comparison will help to
choose the better model. On the other hand, if calculated values from different
models are consistent among themselves and if the experimental values differ
widely, the comparison will help to sift the more acceptable value.

In Table 3.5, examples of both types are given. In MgO, calculated values
from two models are close but experimental values from two sources are very
different. By comparison, one can conclude that the experimental values by
Togawa [3.17] are inferior to the values by Lawrence [3.53]. On the other hand,
in LiF, experimental values from two sources are close but calculated values
from two models differ considerably. Here, it may be concluded that the shell
model [3.93] is better than the rigid ion model [3.94].

Drawing such conclusions is not always so straight forward. As an example,
we shall consider the results for NaCl. The lattice dynamical values from
different models are collected in Table 3.6. Buyers and Smith [3.97] have given
a detailed discussion of the factors which introduce uncertainties in the lattice
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Fig. 3.13. Plots of X-ray Debye temperature (θM) vs. temperature (T ) for (a)
aluminium, (b) sodium and (c) α-iron

Table 3.5. Experimental and theoretically calculated Debye–Waller factors (B1, B2)
of some crystals

Substance B1 [Å2] B2 [Å2] Model/method Ref.

MgO 0.30 0.33 Shell model [3.91]
0.315 0.341 8-parameter 3-body force model [3.92]
0.31 0.34 Powder X-ray diffraction [3.53]
0.24 0.19 Powder X-ray diffraction [3.17]

LiF 0.91 0.73 Shell model [3.93]
1.53 0.57 Rigid ion model [3.94]
1.10 0.67 Powder X-ray diffraction [3.45]
1.01 0.68 Powder X-ray diffraction [3.95]

dynamical values. Some of these are (a) inadequacies in the assumed model,
(b) uncertainties in the experimental input data, (c) computational procedures
and (d) anharmonicity correction.

With all these uncertainties, it is noted that the model-to-model differ-
ences in the B-values are much less than the differences in the experimental
values (given in Table 3.2). From a comparison with experimental data avail-
able at that point of time, Buyers and Smith [3.97] concluded that “theories
predict Debye–Waller factors that are higher than experimental determina-
tions”. However, if we compare the theoretical values with the more recent
experimental values (Table 3.2), this conclusion has to be revised. The ex-
perimental values, particularly those for BNa, are larger than the theoretical
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Table 3.6. Debye–Waller factors BNa and BCl for NaCl calculated at 295 K from
lattice dynamical models

Model BNa [Å2] BCl [Å2] Ref.

(1) Ionic deformation model 1.45 1.48 [3.96]
(2) Karo and Hardy’s deformation model 1.53 1.46 [3.97]
(3) Shell model 1.556 1.348 [3.98]
(4) 5-parameter rigid ion model 1.63 1.59 [3.52]
(5) 11-parameter breathing shell model 1.585 1.316 [3.99]

values. Considering the possibilities of differences in experimental values, it
may be concluded that there is fair agreement between experimental and the-
oretical values irrespective of the model used. Hence, whenever there is lack
of data (e.g. CsF) or very little data (e.g. RbF), lattice dynamical calculation
would be useful. References for several sources of lattice dynamical calcu-
lations of Debye–Waller factors of alkali halides are given by Sirdeshmukh
et al. [3.43]. A critical comparison of Debye–Waller factors of zinc blende type
crystals calculated from several models is given by Reid [3.100].

3.4.12 Debye–Waller Factors and Melting

According to the theory of melting by Lindemann [3.101], a crystalline solid
melts when the ratio of the square of the amplitude of vibration (u2) and
the interatomic distance r attains a certain value. This ratio (u2/r) is called
the Lindemann parameter. It is obvious that determination of the Debye–
Waller factors close to the melting point either experimentally or theoretically
provides a method to estimate the Lindemann parameter.

For the alkali halides, values of (u2) close to the melting point have been
reported only for NaCl and KCl by Viswamitra and Jayalaxmi [3.76]. They
obtained values ∼0.17 for the Lindemann parameter. Kushwaha [3.102] cal-
culated (u2)values close to the melting point lattice-dynamically and ob-
tained a mean value of 0.16 for the Lindemann parameter. Vetelino et al.
[3.103] calculated (u2) for several zinc-blende-type crystals lattice-dynamically
at high temperatures. The mean value of the Lindemann parameter from
their results is 0.25. Thus, in general, the Lindemann parameter is a con-
stant for a family of related solids but its value may differ from family to
family.

3.4.13 Debye–Waller Factors and Temperature Dependence of
Band-gap in Semiconductors

Band-gaps in semiconductors change with temperature. This temperature
variation is known experimentally for many semiconductors. Generally, the
temperature coefficient is negative i.e., the band-gap energy decreases as the
temperature increases.
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A theory for calculating the energy bands as a function of temperature
was proposed by Brooks and Yu [3.104]. In these calculations, the Debye–
Waller factors are used as input parameters. Using this procedure, Tsay et al.
[3.105] calculated the temperature coefficients of energy gaps for several III–
V semiconductors. For these calculations, they used the Debye–Waller factors
calculated theoretically by Vetelino et al. [3.103]. Comparing their results
with experimental data, Tsay et al. [3.105] concluded that the agreement
between theory and experiment is as good as the agreement between different
experimental results.

Generally, the Debye–Waller factor of a heavier ion is smaller than that of
a lighter ion. But in PbTe, Keffer et al. [3.106,3.107] observed experimentally
that BPb > BTe. Interestingly, a lattice dynamical calculation by the same
authors also showed that BPb > BTe. Earlier, Prakash [3.108] had observed
from absorption edge experiments that dEg/dT is positive in PbTe. Keffer
et al. [3.106,3.107] calculated dEg/dT for PbTe using the Brooks–Yu method.
For these calculations they used the Debye–Waller factors determined by them
as input parameters. They obtained a value of 2 × 10−5Ry K−1 for dEg/dT
compared to the value of 4 × 10−5Ry K−1 obtained by Prakash [3.108] from
experiments. Keffer et al. [3.107] showed that a part of this difference can be
explained in terms of uncertainties in the values of the Debye–Waller factors.

3.4.14 Debye Temperature in an Antiferromagnetic Transition

Chromium undergoes an antiferromagnetic transition at a Neel temperature
of about 313 K. The calculation of Debye temperatures from elastic constants
measured around this temperature by Wilson et al. [3.81] indicated a disconti-
nuity of 3 K in the Debye temperature. Wilson et al. [3.81] also determined the
X-ray Debye temperatures in the range 100–500 K by the method of tempera-
ture variation of intensities but the accuracy of their results was not sufficient
to establish the existence of a discontinuity in θM at the Neel point.

Koumelis [3.109] decided to restudy the problem by determining the
change in θM rather than θM itself. For this purpose, the X-ray diffraction in-
tensities from a powder sample were accurately measured at 310.2 and 313.2 K
and the change in Debye temperature ∆θM was calculated from

(∆I/I) = (12h2/mkB)(sin θ/λ)2[(1/4) − (ex − 1)−1

+ (3T 2/θ2
M)
∫ x

0

(ξdξ)/(eξ − 1)](∆θM/θM). (3.71)

From his experiment, Koumelis [3.109] obtained ∆θM = 7.9 ± 0.8 K. This
value, though of the same order, is larger than the value calculated from
elastic data.

Florias and Koumelis [3.110] repeated the measurement, this time using
a single crystal. Their new experiments yielded ∆θM = 3.6 ± 1.1 K which is
in better agreement with the elastic-θ results. Florias and Koumelis [3.110]
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Fig. 3.14. Plots of u2 vs. T for encapsulated (closed circles) and bulk particles
(closed squares) of TaC

attributed the difference from earlier result to possible plastic deformation
effect on the powder sample used.

The studies of Cr, besides being important with respect to the antiferro-
magnetic transition, are also an example of persistent and planned efforts to
improve the accuracy in θM measurements.

3.4.15 Nano Effect on Debye–Waller Factor and Debye
Temperature

Yosida [3.111] studied the effect of encapsulation of TaC particles in carbon
nanotubes on the Debye–Waller factor and X-ray Debye temperature. X-ray
diffraction experiments were made in the range 7–273 K on TaC using bulk
particles and particles encapsulated in carbon nanotubes. From TEM images,
the encapsulated particles were found to have a size of 72 Å in comparison of
3,000 Å for the bulk particles.

Considerable differences were observed between the thermal parameters of
the two samples. Thus, at 273 K, the (u2)1/2 values were 0.090 and 0.06 Å for
the encapsulated and bulk particles, respectively. The X-ray Debye tempera-
tures were found to be 340 and 489 K for the encapsulated and bulk samples,
respectively. The temperature variation of B (or (u2)) as shown in Fig. 3.14
is also different being more for the encapsulated than for the bulk samples.

3.4.16 Energy of Defect Formation from Debye Temperature

It was mentioned earlier that the Debye temperature is related to several
other physical properties. These relations may be used to estimate the Debye
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temperature from a known physical property or the property may be estimated
from the known value of the Debye temperature. As an example, we shall
consider the relation between the Debye temperature and the formation energy
of defects in crystals.

The concentration of defects in a solid at a given temperature depends
upon the value of the formation energy. The formation energy Ed is, thus,
an important parameter describing the defect state of the crystal. The main
defect in metals is a vacancy whereas in the case of ionic crystals, like the
alkali halides, the Schottky defects exist in pairs. Ed represents the formation
energy for a vacancy in metals and for a Schottky pair in ionic crystals. The
formation energy can be estimated experimentally from the data on ionic con-
ductivities and diffusion [3.112] for ionic crystals and from thermal expansion
for metals. The experimental values are available only for some metals and
ionic crystals. The formation energy can also be calculated on the basis of the
interionic potential [3.112]. As experimental values of the formation energy are
not available for several crystals attempts have been made by several workers
to establish empirical relations between the formation energy and other phys-
ical properties. That the formation energy of defects is related to the Debye
temperature through an equation like

θD = constant
(
Ed

/
MV 2/3

)1/2

(3.72)

was shown by Mukherji [3.113] empirically and by March [3.114], Glyde [3.115]
and Tewary [3.116] from different theoretical approaches. Here M is the mole-
cular weight and V , the molar volume. Glyde [3.115] further pointed out that
in these calculations the X-ray Debye temperature should be used rather than
the Debye temperature from the specific heats. Sastry and Mulimani [3.117]
verified the relation in the case of the alkali halides with the NaCl structure.
Pathak and Trivedi [3.118] verified the same relation for the alkali halides
with the NaCl structure employing Debye temperatures obtained from X-ray
data.

3.4.17 Effect of Electronic Environment on Debye–Waller Factor

The values of (B/a2) for some alkali halides are given in Table 3.7. The most
prominent feature in these values observed by Linkoaho [3.51] is that (B/a2) of
an individual ion increases when the number of electrons, ne, of its companion
ion increases. This dependence is observed to be quite linear in the case of
Cl ion and is reproduced in Fig. 3.15. There is no regularity of (B/a2) values
in the case of the cation. Cooper and Rouse [3.122] have pointed out that
the relative mean square amplitudes of the fluorine ions in CaF2, SrF2 and
BaF2 also show the same trend as observed by Linkoaho [3.51]. No theoretical
justification has been made for the validity of this relationship. It is desirable
to examine whether this relationship is generally valid.
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Table 3.7. Values of the relative mean square amplitudes of vibration for some
alkali halides; B1 for cation, B2 for anion

Substance [B1/a2] × 102 [B2/a2] × 102 Reference for B values

LiCl 8.81 ± 0.38 4.47 ± 0.38 [3.119]
NaCl 5.69 ± 0.11 4.68 ± 0.11 [3.51]
KCl 5.25 ± 0.13 5.20 ± 0.13 [3.120]
RbCl 5.27 ± 0.23 5.64 ± 0.23 [3.121]

Fig. 3.15. Plot of (B/a2) of the chlorine ion vs. the electron number (ne) for the
alkali ion for some alkali chlorides

3.4.18 Debye–Waller Factor of Mixed Crystals

Wasastjerna [3.123] studied the Debye–Waller factors of single compositions
of KCl–KBr and KCl–RbCl mixed crystals. Beg et al. [3.124] determined the
Debye–Waller factor of K0.5Rb0.5F mixed crystals. In all these cases, it was
observed that the Debye–Waller factor for intermediate compositions exceeds
the value for the end members. The Debye–Waller factors of Sm0.7Y0.3S and
Eu0.8Y0.2S mixed crystals have been measured by Dernier et al. [3.125]. The
values are anomalous and have been explained in terms of the mixed valence
effect.

It should also be noted here that the disorder in mixed crystals contributes
to the effective (measured) Debye–Waller factor. In order to obtain the true
Debye temperature, the measured Debye–Waller factor has to be corrected
for a static component.

3.4.19 Debye–Waller Factors of Protein Structures

In the earlier sections, we have mostly discussed ‘small crystals’ i.e. crystals
containing a small number of atoms in the unit cell. When the number of
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atoms is large, the simple analytical methods discussed earlier are not useful
and recourse is made to the least squares refinement of (3.35).

Proteins are important ‘large’ molecules and the determination of their
structures was a landmark in X-ray Crystallography resulting in the award of
the Nobel Prize to Dorothy Hodgkins. From the standpoint of Debye–Waller
factor determinations also, it may be some sort of a record that in the process
of determination of the structure of 2 Zn pig insulin, Baker et al. [3.126]
estimated the Debye–Waller factors of more than 1,100 atoms. An analysis
of these Debye–Waller factors led to some information about atomic motion
in the crystal. Fig. 3.16 shows plots of U , the rms displacements, against r,
the distance of each residue from the centre of mass. A correlation of these
parameters means that the structure is vibrating about its centre. The plots
show that (a) a correlation exists between Uand r (b) that the correlation
shows a larger spread for the side chains and (c) that the best correlation
exists for molecules 1 and 2 with the dimer and hexamer centroids.

Recently, Lenin et al. [3.127] investigated whether the B-values can be
correlated to the mutability of residues in globular proteins and whether an
assessment can be made of the degree of change in the Bvalues of structurally
equivalent residues in the course of evolution. For this purpose Lenin et al.
[3.127] considered available data on haemoglobin structures, trypsin structures
and triosephosphate isomerase structures. For each class, Lenin et al. [3.127]
correlated the smoothened B-value with (a) the aligned residue number, (b)
smoothened Dayhoff’s scores and (c) the pairwise correlation coefficients of
B-values were also correlated with pairwise Dayhoff’s scores. These correlation
plots for haemoglobin are shown in Figs. 3.17–3.19. The plot between B-values
and the aligned residue number (Fig. 3.17) consists of a number of bumps.
The correlations in Figs. 3.18 and 3.19 show considerable scatter. The plots
for the other two groups are very similar. Lenin et al. [3.127] concluded that
there is no systematic variation in B as the amino acid replacement increases.
This indicates that the protein flexibility is conserved during the course of
evolution.

3.5 Some of our Results

In view of the importance of the Debye–Waller factor as a solid state para-
meter, a comprehensive programme of study of various aspects of the X-ray
determination of the Debye–Waller factors and Debye temperatures was un-
dertaken in our laboratory. The systems studied belong to the fcc, hcp, NaCl,
CsCl, ZnS and CaF2 structures. The results are discussed in this section.

3.5.1 Debye–Waller Factors – Data Generation

Experimental values of Debye–Waller factors are given in Tables 3.8–3.13. In
the case of hcp metals, the Debye–Waller factors in the ‘a’ and ‘c’ directions
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Fig. 3.17. Plot of Debye–Waller factor B vs. the aligned residue number for
haemoglobin

Fig. 3.18. Plot of smoothened B values vs. smoothened Dayhoff’s scores for
haemoglobin

are given besides the mean Debye–Waller factor. In the other systems, the
mean Debye–Waller factor is given. However individual atomic Debye–Waller
factors are given wherever such determination was possible.

3.5.2 Debye–Waller Factors and Mass Ratio

There has been some controversy with regard to the relative values of the
Debye–Waller factors of atoms in a crystal. Brindley [3.34] observed that
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Fig. 3.19. Plot of pairwise correlation coefficient of B vs. pairwise Dayhoff’s scores
for haemoglobin

Table 3.8. Debye–Waller factor B of some fcc elements at room temperature; figures
in parenthesis in Tables 3.8–3.13 indicate uncertainties in the last two digits

Crystal B [Å2] Ref.

Al 0.88 (03) [3.128]
Yb 1.65 (15) [3.129]

in NaCl the lighter ion has the larger amplitude of vibration. The same
observation was made by Menz [3.153] from experimental data on Debye–
Waller factors for a few alkali halides obtained from electron diffraction.
In fact, Menz proposed an inverse proportionality between the ratios of
Debye–Waller factors and the mass ratios. However considering data on
Debye–Waller factors for a larger number of alkali halides, Linkoaho [3.51]
observed that such a proportionality does not exist. Huiszoon and Groenewe-
gen [3.154] pointed out that in AgCl [3.155] and PbTe [3.107] the heav-
ier atoms have a higher Debye–Waller factor. All these crystals have the
NaCl structure. Similar results on some crystals of other structures have also
been reported. These are HgSe [3.156], AuGe2 [3.157], Pb(NO3)2 [3.158] and
TlCl [3.159].

Huiszoon and Groenewegen [3.154] showed, with the aid of lattice dynam-
ics, that the Debye–Waller factors become mass-independent at temperatures
above the Debye temperature. Feldman [3.160] by an independent analysis
came to the same conclusion. But Scheringer [3.161] reconsidered this prob-
lem and pointed out that at higher temperatures, the mass dependence of the
Debye–Waller factors is weakened and not eliminated. As such, the ampli-
tudes of vibration should show a mass dependence, however feeble. Further,
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Table 3.9. Directional Debye–Waller factors Ba and Bc, and mean Debye–Waller
factor B of some hcp elements at room temperature

Crystal Ba [Å2] Bc [Å2] B [Å2] Ref.

Er 0.57 (07) 0.73 (07) 0.62 (07) [3.130]
Dy 0.81 (08) 0.89 (07) 0.84 (08) [3.131]
Gd 0.80 (01) 0.88 (02) 0.83 (01) [3.131]
Lu 0.86 (06) 0.97 (06) 0.90 (06) [3.131]
Y 0.83 (02) 0.80 (03) 0.82 (02) [3.131]
Sc 0.72 (01) 0.73 (01) 0.72 (01) [3.132]
Tb 0.67 (04) 0.71 (04) 0.68 (04) [3.132]
Ti (α) 0.54 (01) 0.48 (06) 0.52 (03) [3.133]
Zr 0.52 (01) 0.51 (04) 0.52 (02) [3.133]
Ru 0.14 (02) 0.15 (01) 0.14 (02) [3.133]
Tm 0.82 (01) 0.84 (01) 0.83 (01) [3.133]
Hf 0.41 (02) 0.41 (01) 0.41 (02) [3.133]

Scheringer suggested the desirability of a statistical analysis of Debye–Waller
factors vis-a-vis the atomic mass covering a large number of crystals.

Following Scheringer’s suggestion, the data on the ratios of the Debye–
Waller factors for a large number of crystals with NaCl structure are collected
in Table 3.14. These include some of the results obtained in this laboratory.
The mass ratios m1/m2 (m1 always being the heavier of the two masses) are
also given. It is seen that in most cases B2/B1 > 1.

Before we analyse these data, we shall discuss the three cases pointed out
by Huiszoon and Groenewegen [3.154] viz. MgO, AgCl and PbTe. In the case
of MgO, Huiszoon and Groenewegen [3.154] quote the experimental results
of Sanger [3.162]. But there are several later reports, particularly that of
Lawrence [3.53] where the reported values of the Debye–Waller factors lead to
a ratio B2/B1 = 1.11. Lattice dynamical calculations by Sanger [3.162] also
support this value for the ratio B2/B1. Again, in the case of AgCl, Huiszoon
and Groenewegen [3.154] quote the results of Korhonen and Linkoaoho [3.155].
Later measurements by Srinivas and Sirdeshmukh [3.140] yield a value of
B2/B1 > 1. Lattice dynamical values by Groenewegen and Huiszoon [3.52]
support this value. Thus MgO and AgCl cannot be considered as violating
the empirical mass-ratio rule and, hence, the values from later reports are
included in Table 3.14.

With regard to the third case mentioned by Huiszoon and Groenewegen
[3.154] viz. PbTe, the anomalous value of B2/B1 < 1 quoted by Huiszoon
and Groenewegen [3.154] from the report of Keffer et al. [3.106] has been
confirmed by independent experimental measurements by Noda et al. [3.163]
and Nagaiah [3.145]. Further this ratio (B2/B1 < 1) is also supported by
lattice dynamical calculations by Keffer et al. [3.107]. Hence, it has to be
considered as an established case where the mass ratio rule fails.
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Table 3.10. Atomic Debye–Waller factors (BA, BB, and mean Debye–Waller factors
B of crystals with NaCl structure (suffix A refers to first atom in formula and B to
second atom)

Crystal BA [Å2] BB [Å2] B [Å2] Ref.

LiCl 1.99 (16) 0. 62 (01) 1.13 (11) [3.134]
LiBr 2.52 (25) 0.90 (02) 1.14 (12) [3.134]
NaCl 1.52 (10) 1.15 (15) 1.56 (11) [3.134]
NaBr 1.55 (05) 1.14 (04) 1.67 (10) [3.134]
NaI 2.63 (08) 1.81 (05) 2.24 (19) [3.134]
KCl 1.93 (08) [3.135]
KBr 2.23 (05) [3.136]
KI 2.99 (13) [3.137]
RbCl 2.18 (08) [3.138]
RbBr 2.89 (18) [3.139]
RbI 3.36 (14) [3.139]
AgCl 2.13 (03) 2.38 (05) 2.19 (03) [3.140]
AgBr 2.14 (06) [3.140]
MnS 0.90 (09) [3.141]
CdO 0.84 (03) [3.141]
TmSe 0.90 (17) [3.142]
SmS 1.56 (15) [3.142]
SmSe 1.29 (24) [3.142]
SmTe 1.10 (29) [3.142]
EuS 0.39 (11) 1.12 (28) [3.143]
EuTe 1.43 (20) [3.143]
EuSe 1.22 (13) 1.37 (20) [3.144]
PbS 1.36 (10) 0.78 (03) 1.28 (08) [3.145]
PbTe 1.41 (20) 1.06 (15) 1.28 (20) [3.145]
TaC 0.21 (01) 0.47 (03) 0.23 (14) [3.146]
ZrC 0.19 (01) 0.37 (05) 0.21 (02) [3.146]
HfC 0.19 (03) 0.38 (05) 0.20 (04) [3.146]
NbC 0.20 (02) 0.37 (02) 0.22 (02) [3.146]
HfN 0.37 (02) 0.80 (05) 0.40 (02) [3.146]
VN 0.38 (02) 0.47 (08) 0.40 (03) [3.146]

Values of Debye–Waller factors with B2/B1 < 1 have been reported for
PbS and PbSe by Noda et al. [3.163] and for NiO and CoO by Meisalo and
Inkinen [3.164]. Out of these, the PbS results have been qualitatively con-
firmed by the experimental results of Nagaiah and Sirdeshmukh [3.165] and
also lattice dynamically by Gnanasoundari and Ramachandran [3.166]. Thus
this is another case where the violation of the mass ratio rule is confirmed.
Results on PbSe, NiO and CoO need independent experimental confirmation
as well as theoretical support.

While it is now established that the ratio B2/B1 is, in general, greater
than unity, it remains to be seen whether there is any relationship between



3.5 Some of our Results 117

Table 3.11. Mean Debye–Waller factor B of some crystals with CsCl structure

Crystal B [Å2] Ref.

CsCl 1.87 (10) [3.147]
CsBr 2.32 (24) [3.148]
CsI 2.59 (12) [3.148]
TlCl 2.79 (08) [3.148]
TlBr 2.72 (09) [3.148]
KRS-5
TlBr0.46I0.54 2.73 (06) [3.149]
KRS-6
TlCl0.46Br0.54 3.03 (10) [3.150]
NH4Cl 1.82 (16) [3.148]
NH4Br 2.60 (22) [3.148]
Gd-Zn 2.66 (16) [3.151]
Gd-Mg 3.70 (46) [3.151]

Table 3.12. Atomic Debye–Waller factors BA, BB, and mean Debye–Waller fac-
tors B of crystals with sphalerite (zinc blende) structure (formula AB) at room
temperature; Ref. [3.152]

Crystal BA [Å2] BB [Å2] B [Å2]

GaAs 0.80 (10)
InP 1.19 (08) 1.76 (20) 1.27 (10)
InSb 1.60 (23) 1.00 (16) 1.29 (19)
ZnTe 1.16 (09) 0.99 (02)
CdTe 1.86 (16)
HgSe 3.25 (15) 1.83 (18) 2.85 (16)
HgTe 2.70 (11)

Table 3.13. Atomic Debye–Waller factors BA, BB, and mean Debye–Waller factor
B of some crystals with fluorite structure (formula AB2) at room temperature;
Ref. [3.146]

Crystal BA [Å2] BB [Å2] B [Å2]

SrF2 0.55 (07) 1.04 (10) 0.70 (08)
BaF2 0.63 (08) 0.93 (09) 0.70 (08)
CdF2 0.54 (12) 1.16 (19) 0.70 (13)
PbF2(β) 0.50 (04) 1.31 (11) 0.63 (05)
EuF2 0.78 (27) 1.53 (23) 0.93 (26)

the values of m1/m2 and B2/B1. The values of m1/m2 and B2/B1 are plotted
in Fig. 3.20. It is observed that the data points are scattered about a curve.
The limits of scattering are indicated by the shaded region of width of 0.4 in
B2/B1. Within these limits of scattering, the trend is that B2/B1 increases
as m1/m2 increases. up to about m1/m2 ≈ 8 and thereafter it saturates to
B2/B1 ≈ 2.



118 3 Debye–Waller Factors of Crystals

Table 3.14. Mass ratio (m1/m2) and the ratio (B2/B1) for crystals with NaCl
structure

Crystal m1/m2 B1 B2 B2/B1 Ref.

1. LiF 2.74 1.05 0.65 1.616 [3.41]
2. LiCl 5.11 1.99 0.62 3.210 [3.134]
3. LiBr 11.51 2.52 0.90 2.80 [3.134]
4. NaF 1.21 0.91 0.91 1.00 [3.41]
5. NaCl 1.54 1.52 1.15 1.322 [3.134]
6. NaBr 3.47 1.55 1.14 1.360 [3.134]
7. NaI 5.52 2.63 1.81 1.453 [3.134]
8. KCl 1.10 2.17 2.16 0.995 [3.41]
9. KBr 2.04 2.36 2.38 0.992 [3.41]
10. RbCl 2.41 2.14 2.27 1.061 [3.41]
11. MgO 1.52 0.30 0.34 1.133 [3.53]
12. CaO 2.51 0.35 0.44 1.257 [3.167]
13. SrO 5.48 0.43 1.93 4.488 [3.167]
14. BaO 8.58 0.79 1.19 1.506 [3.167]
15. MnO 3.43 0.38 0.45 1.184 [3.164]
16. EuS 4.74 0.39 1.12 2.872 [3.143]
17. EuSe 1.93 1.22 1.37 1.123 [3.144]
18. TaC 15.07 0.21 0.47 2.268 [3.146]
19. HfC 14.86 0.19 0.38 1.973 [3.146]
20. NbC 7.74 0.20 0.37 1.858 [3.146]
21. ZrC 7.60 0.19 0.37 1.943 [3.146]
22. VN 3.64 0.38 0.47 1.249 [3.146]
23. HfN 12.74 0.37 0.80 2.160 [3.146]
24. AgCl 3.04 2.13 2.38 1.117 [3.140]
25. PbS 6.46 1.36 0.78 0.574 [3.145]
26. PbTe 1.62 1.41 1.06 0.752 [3.145]
27. PbSe 2.62 1.43 1.13 0.792 [3.163]
28. NiO 3.67 0.63 0.40 0.635 [3.164]
29. CoO 3.68 0.51 0.47 0.922 [3.164]
30. CdO 7.03 0.64 0.81 1.266 [3.168]

EuS, LiCl, SrO, CdO and BaO have m1/m2 > 1 and also B2/B1 > 1. But
their data points show very large deviations from the curve (beyond the shaded
region). The experimental results for these crystals need a redetermination.

3.5.3 Comparison of Experimental Results with Lattice Dynamical
Results

As mentioned earlier, the Debye–Waller factors can be calculated from lattice-
dynamical models. The comparison of such values with experimental values
throws light on the reliability of the model and/or the experimental data.
In Table 3.15, the experimental values of Debye–Waller factors obtained by
us for some crystals are compared with calculations from lattice dynamical
models.
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Fig. 3.20. Plot of mass ratio m1/m2 vs. the ratio B2/B1

From a comparison, the following conclusions may be drawn:

(1) In general, there is an order-of-magnitude agreement between the experi-
mental and theoretical values.

(2) In the rubidium halides, the experimental values show a better agreement
with 11-parameter shell model calculations by Govindarajan [3.170] using
neutron inelastic scattering data than with other models.

(3) In the other alkali halides, the experimental values agree more with values
reported by Kushwaha [3.102] based on the 7-parameter bond-bending
model than with other models.

(4) In AgCl, there is a fair agreement between experimental values and those
reported by Groenewegen and Huiszoon [3.52] based on a 5-parameter
rigid ion model.

(5) In PbS, calculations have been made by Gnanasoundari and Ramachan-
dran [3.166] from a simple shell model. The calculated value agrees well
with the experimental value for Pb. However, for S, the agreement is not
so good.

(6) For the transition metal carbides, lattice dynamical values are available
from Feldman [3.172]. There is very good agreement between the experi-
mental and theoretical values for the metal atoms. The agreement for the
carbon atoms is not so good and it worsens in the sequence ZrC–TaC.
The difference may be due partly to lesser accuracy in the experimental
values for the C atom and partly to the limitation of the model.
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Table 3.15. Comparison of experimentally determined Debye–Waller factors [in
Å2] with lattice dynamical models; experimental values from Table 3.10

Method BA BB BA BB

(a) Sodium halides NaBr NaI

Expt. 1.55 1.14 2.63 1.81

11-parameter shell model [3.169] 1.89 1.55 2.41 1.96

7-parameter bond-bending model [3.102] 1.75 1.70 2.47 2.21

(b) Rubidium halides RbCl RbBr RbI

B B B

Expt. 2.18 2.89 3.36

11-parameter shell model, neutron data [3.170] 2.331 2.708 3.265

11-parameter shell model, elastic constant [3.169] 1.992 2.361 2.909

Deformation shell model [3.171] 2.168 2.451 3.003

7-parameter bond-bending model 1.983 2.343 2.900

BA BB

(c) AgCl

Expt. 2.13 2.38

5-parameter rigid ion model [3.52] 2.13 2.15

(d) PbS

Expt. 1.36 0.78

Simple shell model [3.166] 1.42 1.07

(e) Transition metal carbides ZrC NbC HfC TaC

BA BB BA BB BA BB BA BB

Expt. 0.19 0.37 0.20 0.36 0.19 0.37 0.21 0.47

Double-shell model [3.172] 0.18 0.29 0.20 0.26 0.16 0.27 0.19 0.24

3.5.4 Anisotropy of Debye–Waller Factors

The relations between the anisotropy in physical properties have been dis-
cussed by Wooster [3.173] and Boas and Mackenzie [3.174]. These discussions
do not include the anisotropy of the Debye–Waller factors.

The Debye–Waller factors are anisotropic in anisotropic crystals. Thus,
hexagonal crystals have two principal Debye–Waller factors Ba and Bc asso-
ciated with the ‘a’ and ‘c’ directions. The values of Ba and Bc for several
hexagonal close-packed (hcp) metals are given in Table 3.16.

In hcp crystals, the ideal c/a ratio is 1.633. Such a crystal will be nearly
isotropic. A larger c/a ratio indicates weakening of interatomic forces in the
‘c’ direction. Since the Debye–Waller factor (or atomic amplitude) reflects the
interatomic bonding, the Bc/Ba ratio is expected to be > 1 for crystals with
c/a > 1 while Bc/Ba ≈ 1 for crystals with c/a close to 1.633.

Watanabe et al. [3.176] noted this feature in their study of Mg and Cd.
Further, they plotted a curve between Bc/Ba and c/a with data for only four
crystals available at that time. Now that experimental values are available for
a larger number of crystals, this aspect can be examined anew. In Table 3.16,
the Bc/Ba values and c/a values for seventeen hcp crystals are given. The
same data are shown in Fig. 3.21. The c/a value is significantly different from
1.633 only in the case of Cd and Zn. The Bc/Ba values are larger than 1 by
a significant amount in these two crystals. In all other cases, c/a ≈ 1.63 and
Bc/Ba values are also ∼1. No significance can be given to the cases where
Bc/Ba is slightly larger than 1 while c/a values are slightly less than 1.63.
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Table 3.16. c/a ratio and the ratio Bc/Ba for hcp metals (c/a values from [3.175];
Bc/Ba values for Be, Cd, Zn, Ho and Mg from [3.42] and rest from Table 3.9)

Crystal c [Å] a [Å] c/a Bc [Å2] Ba [Å2] Bc/Ba

Be 3.5833 2.2866 1.566 0.54 0.60 0.9
Cd 5.61 2.97 1.89 3.04 1.15 2.64
Dy 5.67 3.58 1.58 0.89 0.81 1.10
Er 5.59 3.55 1.57 0.73 0.57 1.28
Gd 5.79 3.63 1.59 0.88 0.80 1.10
Ho 5.61 3.58 1.57 0.97 0.96 1.00
Lu 5.55 3.50 1.58 0.97 0.86 1.12
Mg 5.21 3.21 1.62 1.58 1.34 1.18
Sc 5.27 3.31 1.59 0.73 0.72 1.00
Tb 5.69 3.60 1.58 0.71 0.67 1.06
Y 5.73 3.64 1.57 0.80 0.83 0.96
Zn 4.95 2.66 1.86 2.04 1.23 1.65
Ti (α) 4.68 2.95 1.58 0.48 0.54 0.88
Zr 5.15 3.23 1.59 0.51 0.52 0.98
Ru 4.28 2.70 1.58 0.15 0.14 1.07
Tm 5.55 3.53 1.57 0.84 0.82 1.02
Hf 5.05 3.19 1.58 0.41 0.41 1.00

Fig. 3.21. Plot of Bc/Ba vs. axial ratio (c/a) for hcp metals

This is obviously due to the errors in the Debye–Waller factors. The figure
shows a clear trend with Bc/Ba increasing with c/a. There is a gap in data
from c/a = 1.65 to c/a = 1.85. Data points in this range will help to firmly
establish the plot. This would be possible when the Debye–Waller factors of
hcp alloys with intermediate values of c/a are studied.
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3.5.5 Effect of Strain on Debye–Waller Factors

Inagaki et al. [3.71] showed that lattice strains affect the measured
Debye–Waller factor. All the materials studied by Inagaki et al. [3.71] were
inorganic compounds. It was considered worthwhile to examine this effect
in other materials like metals and semiconductors. The rare earth metal
Yb [3.177] and the semiconductor material CdTe [3.178] were chosen for
study.

The CdTe and Yb filings were subjected to slow grinding for varying pe-
riods. At different stages of grinding, the lattice strain and mean Debye–
Waller factor were determined. The lattice strain was determined from the
half-widths of X-ray diffraction lines by using the Scherrer equation:

(β cos θ/λ) = (K/L) + 2εl(sin θ/λ), (3.73)

where β is the half-width, K the shape factor, L the particle size and εl the
strain. The slope of the linear plot between (β cos θ/λ) and (sin θ/λ) gives 2εl.

The variation of B with εl for CdTe and Yb is shown in Figs. 3.22 and 3.23.
In both the materials, B increases with εl. In CdTe the variation of B with
εl shows the same trend as in the materials studied by Inagaki et al. [3.71].
B increases with εl and then tends to saturate at εl = 0.8 × 10−3. This is
much lower than the strain at which saturation begins in the work of Inagaki
et al. [3.71]. On the other hand, in Yb, the variation of B with εl is more like
that observed by Inagaki et al. [3.71] for graphite; B increases monotonously
with εl without attaining saturation.

Since the interest is in obtaining accurate values of the Debye–Waller fac-
tors, Gopi Krishna and Sirdeshmukh [3.177] and Sirdeshmukh et al. [3.178]
suggested the extrapolation of the B vs. εl plot to εl = 0 to get the strain-
corrected value of the Debye–Waller factor. The values of the Debye–Waller
factor at maximum strain, at initial strain and at zero strain are given in

Fig. 3.22. Variation of Debye–Waller factor B vs. the strain εl for CdTe
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Fig. 3.23. Variation of Debye–Waller factor B vs. the strain εl for Yb

Table 3.17. Values of the Debye–Waller factor (B) at different strains

B [Å2]
Max. strain Initial strain Zero strain Other values

CdTe 3.0 2.1 1.75 1.90 [3.179]
Yb 2.2 1.45 1.24 1.65 [3.129]

Table 3.17. The values of B reported by earlier workers are larger than those
for the strain-free values. It is quite possible that the samples used on those
studies were affected by strain.

Taking these results along with those of Inagaki et al. [3.71] it may be con-
cluded that the lattice strain introduced in the process of sample preparation
has an effect on the measured values of the Debye–Waller factors in all types
of materials. It is suggested that when the Debye–Waller factors are deter-
mined from X-ray diffraction intensities, it is desirable to make an estimate
of the strain and, should it be large, to make a suitable correction.

3.5.6 Effect of Atomic Scattering Factors on B

From (3.34)–(3.45), it can be seen that for the determination of the Debye–
Waller factor, the theoretical values of the scattering factors have to be used.
Scattering factors are available in literature for neutral atoms and for atoms
in different valence states. As mentioned earlier, Dawson and Howard [3.56]
found a small but significant difference in the Debye–Waller factors of LiF de-
termined with scattering factors for Li0F0 and Li−1F−1 states. Differences of
a larger magnitude were observed by Hosoya et al. [3.54] in the Debye–Waller
factors of VN determined with scattering factors for the V0N0, V+1N−1,
V+2N−2 and V+3N−3states.

There is some controversy regarding the bonding in CdO. From a compar-
ison of the calculated and observed values of the lattice energies and nearest
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neighbour distances De Noble [3.180] concluded that CdO is the most ionic of
all the cadmium chalcogenides. The ionicity value of Phillips [3.181] for CdO
is the lowest among crystals with NaCl structure. From their X-ray studies,
Linkoaho et al. [3.168] obtained ionic charges +3 ± 0.5 and –2 ± 0.5 for
the cadmium and oxygen ions, respectively. While these values are not ex-
actly what would be expected if CdO were completely ionic, Linkoaho et al.
concluded that CdO forms an ionic crystal. On the other hand, from the X-
ray intensities, Linkoaho et al. [3.168] calculated a parameter represented by
dZ/R2dR. This parameter is proportional to the charge density around the
cation and the anion. A low value of this parameter at the radius of best
separation is an indicator of high ionicity whereas a high value indicates ac-
cumulation of charge between the atoms and consequently a covalent nature
of the bond. Linkoaho et al. [3.168] have given the values of this parameter
for a few crystals with NaCl structure. CdO has the highest value for this
parameter suggesting a departure from ionicity. The nature of the bonding
in PbS is similarly not clear. It has a low hardness [3.182]) and an effective
ionic charge 0.8 characteristic of a highly ionic crystal [3.183]. However, other
properties of PbS like the optical properties, suggest a departure from ionic
bonding [3.184].

There is meager work on the physical properties of MnS. Not much in-
formation is available on the electronic state of the atoms in this substance.
From an X-ray study of MnO, Kuriyama and Hosoya [3.168] concluded that
the Mn and O atoms are in the state of divalent ions. Wells [3.184] makes the
general remark that an M-S bond is more covalent than an M–O bond where
M is a metal atom.

In view of the uncertainties regarding the valence states of atoms in these
substances, calculations of the mean Debye–Waller factors, the mean ampli-
tudes of vibration and the Debye temperature were carried out by Subhadra
and Sirdeshmukh [3.141] using scattering factors for the two extreme states
viz. neutral atoms and doubly charged ions. The results of these calculations
are summarized in Table 3.18. Although there is a small difference in the
values of R-factor for the two sets of calculations. the two sets of scattering
factors yield values of B and θ which agree within limits of estimated errors.
It may be mentioned that the substances studied contain atoms with fairly
large numbers of electrons and the use of atomic or ionic scattering factors in
these systems does not seem to have a noticeable effect on the derived values
of the Debye–Waller factor.

3.5.7 Debye–Waller Factors and the Electronic Environment

Linkoaho [3.51] observed an effect of the electronic environment of an ion on
its thermal vibration amplitude. This was shown in the form of a linear plot
between B/a2 and ne (‘B’ Debye–Waller factor of atom, ‘a’ lattice constant,
‘ne’ electron number of the neighbouring atom). Linkoaho’s observation was
confined to a few alkali halides.
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Table 3.18. Experimental results for PbS, MnS and CdO for the two electronic
states

Substance Electronic state for
scattering factors

B[Å2] θ [K] R

CdO (Cd0O0) 0.84 (04) 255 (6) 0.008
(Cd+2O−2) 0.83 (03) 255 (5) 0.006

PbS (Pb0S0) 1.37 (13) 145 (7) 0.018
(Pb+2S−2) 1.40 (13) 143 (6) 0.018

MnS (Mn0S0) 0.81 (11) 318 (22) 0.019
(Mn+2S−2) 0.90 (10) 299 (16) 0.016

Table 3.19. Relative mean square amplitudes of vibration for carbides with the
NaCl structure (B1 for metal atom, B2 for carbon atom)

Substance ne [B1/a2] × 102 [B2/a2] × 102 Ref. for B values

TiC 22 1.296 1.641 [3.185]
ZrC 40 0.852 1.692 [3.146]
NbC 41 0.991 1.806 [3.146]
HfC 72 0.897 1.745 [3.146]
TaC 73 1.053 2.389 [3.146]

Table 3.20. Values of the relative mean square amplitudes of vibration in some
CaF2 type crystals (B1 for anion, B2 for the F ion)

Substance ne [B1/a2] × 102 [B2/a2] × 102 Ref. for B values

CaF2 18 1.699 2.340 [3.122]
SrF2 38 1.647 3.060 [3.146]
CdF2 46 1.854 3.992 [3.146]
BaF2 54 1.643 2.425 [3.146]
EuF2 61 2.302 4.510 [3.146]
PbF2 80 1.418 3.729 [3.146]

This approach is extended to the transition metal carbides and the fluorite
type crystals for which the Debye–Waller factors have been determined. The
relevant data are shown in Tables 3.19 and 3.20 and the plots are shown in
Figs. 3.24 and 3.25. The plots are linear and they show that (B/a2) for C and
F increases with ne of the corresponding atoms. These results are consistent
with the observations of Linkoaho [3.51].

3.5.8 Debye–Waller Factors in Mixed Crystals

It was mentioned in Sect. 3.4.16 that the Debye–Waller factor in mixed crystals
is larger than that of the pure crystals. It was also pointed out that there is
only limited work. Systematic measurements on several mixed crystal systems
have been carried out by the authors and their coworkers and the composition
dependence studied. These results will be discussed in Chap. 7.
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Fig. 3.24. Plot of (B/a2) of the carbon atom vs. the electron number (ne) for the
metal atom in some carbides

Fig. 3.25. Plot of (B/a2) for the fluorine ion vs. the electron number (ne) for the
metal ions in some CaF2 type crystals

3.5.9 X-ray Debye Temperatures Derived from Debye–Waller
Factors

The procedure for deriving the X-ray Debye temperature θM from the mean
Debye–Waller factor B has been discussed in Sect. 3.3. The Debye tempera-
tures derived from Debye–Waller factors given in Tables 3.8–3.13 are given
in Table 3.21. This data on Debye temperatures is analyzed in the following
sections.

3.5.10 Comparison of θ from Different Methods

The Debye temperature θ is given by hνD/k where νD is either a characteristic
frequency or an average frequency. θ values can be derived from physical prop-
erties which depend on the vibrational spectrum of the solid. Blackman [3.186],
Herbstein [3.10] and Gschneidner [3.187] have critically examined the θ values
derived from different physical properties of a solid. Salter [3.188] showed that,
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Table 3.21. X-ray Debye temperatures (θM) of crystals derived from mean Debye–
Waller factors given in Tables 3.8–3.13. The Debye temperatures derived from spe-
cific heats (θD) and elastic constants (θE) are also given

Crystal θM [K] θD [K] θE [K]

(a) fcc
1. Al 387 (7) 390 403
2. Yb 109 (5)
(b) hcp
1. Er 182 (10) 163 186
2. Dy 160 (8) 158 177
3. Gd 165 (1) 155 171
4. Lu 148 (5) 166 184
5. Y 219 (3) 214 245
6. Sc 330 (2)
7. Tb 178 (7)
8. Ti (α) 391 (22)
9. Zr 267 (20)
10. Ru 495 (24)
11. Tm 155 (10)
12. Hf 217 (20)
(c) NaCl type
1. LiCl 387 (2) 477 394
2. LiBr 267 (14) 419 249
3. NaCl 278 (8) 288 322
4. NaBr 202 (6) 240 224
5. NaI 144 (6) 203 167
6. KCl 218 (3) 232 230
7. KBr 162 (2) 172 170
8. KI 118 (3) 156 131
9. RbCl 157 (5) 168 169
10. RbBr 121 (4) 134 129
11. RbI 99 (3) 106 102
12. AgCl 149 (2) 161 146
13. AgBr 131 (2) 144 137
14. MnS 299 (16) 419
15. CdO 255 (5)
16. TmSe 176 (6) 200 258
17. SmS 155 (7) 269 268
18. SmSe 153 (14) 206
19. SmTe 151 (20)
20. EuS 205 (16) 276
21. EuTe 134 (10) 189
22. EuSe 153 (9) 232
23. PbS 143 (6) 225 229
24. PbTe 127 (19) 125 177
25. TaC 459 (40) 616 572
26. ZrC 617 (33) 649 690
27. HfC 461 (65) 549 552
28. NbC 637 (37) 761 740
29. HfN 291 (7)
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Table 3.21. Continued

Crystal θM [K] θD [K] θE [K]

30. VN 527 (27)
(d) CsCl type
1. CsCl 148 (4) 174 159
2. CsBr 118 (6) 130 136
3. CsI 101 (2) 120 115
4. TlCl 101 (2) 125
5. TlBr 95 (2) 114
6. KRS-5 (TlBr0.46I0.54) 90 (1)
7. KRS-6 (TlCl0.7Br0.3) 97 (2)
8. NH4Cl 268 (11) 285 270
9. NH4Br 164 (7) 177
10. Gd-Zn 108 (3)
11. Gd-Mg 101 (6)
(e) ZnS (zinc blende) type
1. GaAs 246 (15) 360 348
2. InP 194 (8) 425 303
3. InSb 151 (11) 240 207
4. ZnTe 185 (4) 201 225
5. CdTe 124 (6) 200 163
6. HgSe 93 (3) 212 152
7. HgTe 88 (2) 112 142
(f) CaF2 type
1. SrF2 348 (20) 418 380
2. BaF2 294 (17) 360 282
3. CdF2 317 (29) 328
4. PbF2 260 (10) 219
5. EuF2 243 (27) 329

in general, the Debye temperatures obtained from one experimental method
cannot usually be used to describe some other physical property. Differences
between the values based on different properties have to be expected from
the fact that the contribution to these properties is not always from the same
region of the vibration spectrum of a solid. However, since Debye tempera-
tures from X-ray measurements and specific heats both involve averages over
the entire vibrational spectrum, comparison between these values could be
undertaken to a certain extent, though differences between these have to be
expected due to the different methods of averaging involved in the two cases.
This was first pointed out by Zener and Bilinsky [3.189], who showed that
the ratio θM/θD (the subscripts M and D referring to the X-ray and specific
heat values, respectively) can be expressed as a function of the Poisson’s ra-
tio of the substance. Barron et al. [3.190] have shown that this method of
relating the two Debye temperatures is not strictly correct. This is supported
by Herbstein [3.10]. Gschneidner [3.187] observes that even after correcting
for this factor the agreement between θM and θD is in general poor and for a
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majority of substances studied θM < θD, both values corresponding to room
temperature.

It is of interest to know the position regarding the relation between θM

and θE (from elastic constant data). Blackman [3.186] observes that θE and
θD are equal only at sufficiently low temperatures. Gschneidner [3.187] also
carried out a comparison of θE and θd at room temperature. He observed that
while equality between θD and θE does not generally hold at room tempera-
ture, no systematic pattern could be observed between the two (i.e. approxi-
mately equal numbers of values of θE are larger and smaller than θD). As such
Gschneidner concludes that θD ≈ θE at room temperature. Since θD > θM as
already pointed out, θE > θM. This is the general conclusion drawn by Black-
man [3.186], Herbstein [3.10], Gschneidner [3.187] and subsequent workers.

Our θM values are compared with θE and θD values wherever available.
These values are also given in Table 3.21. Since the present measurements
relate to room temperature, for the most part θE and θD values derived from
room temperature data are chosen. In the case of crystals for which room
temperature data are not available, the low temperature θ values are included.

It can be seen from the values in Table 3.21 that the present X-ray values
conform to the trend mentioned earlier viz., θM < θD or θE. A more detailed
statistical analysis of the data is given in Table 3.22. It is very clear that θM

and θD, are very close only in a few (about 10 %) cases. In a majority of cases
(85 %), it is found that θM < θD. This is in agreement with the observation
made by Gschneidner [3.187] in the case of metals. A comparison of the θM and
θE, values shows that these values are close (within ±5 K) in only a few cases
(∼10%). In a majority of cases (80%), θM < θE. This is in agreement with the
observations of Blackman [3.186], Herbstein [3.10] and Gschneidner [3.187].

3.5.11 A modified Expression for the X-ray Debye
Temperature (θM)

The expression for the Debye–Waller factors in terms of the Debye model
(given in Sect. 3.2) is derived for a monatomic solid. This expression was
initially applied to monatomic solids. It was soon extended to diatomic crystals
like KCl with the justification that the two atoms have nearly equal masses
and hence it can be approximated to a monatomic crystal with a mass equal
to the average mass of the two atoms. In course of time, the procedure has
been extended to diatomic and even triatomic crystals irrespective of whether
the masses are equal or not.

Table 3.22. Statistical comparison of θ values

Values compared Total no. Equal within ± 5 K θM < θD, θE

θM, θD 42 5 35
θM, θE 51 6 41
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The question of applicability of this expression to polyatomic crystals has
been critically examined by Horning and Staudenmann [3.191]. Their final re-
sult is that (3.29) for monatomic solids gets modified in the case of polyatomic
solids to

B =
(
6h2
/
pmkBθ′M

)
[(φ(x)/x) + (1/4)] . (3.74)

Here, p is the number of atoms per lattice point (2 for NaCl, 3 for CaF2,
etc.) and m is the average mass. The modification is applicable at higher
temperatures (T > θM). Horning and Staudenmann [3.191] suggested that θD

should be compared to θ′M rather than θM. According to them, θD may still
differ from θ′M.

Horning and Staudemann [3.191] calculated θ′M from reported values of θM

for some crystals having the NaCl, CsCl and ZnS structures and compared
them with θD values. There was better agreement between θ′M and θD com-
pared with that between θM and θD. We have applied this modification to
some crystals with NaCl structure studied in this work. The results are shown
in Table 3.23. While θM < θD, the modification overshoots θD, i.e. θ′M > θD

in several cases. The e.s.d.’s for (θD – θM) and (θD–θ′M) are comparable.

3.5.12 Energy of Defect Formation from Debye Temperatures

It was shown in Sect. 3.4 that the formation energy of defects (Ed) can be
estimated from the Debye temperature using a formula of the type

θM = constant
(
Ed

/
MV 2/3

)1/2

. (3.75)

We have extended these calculations to the crystals for which we have deter-
mined the Debye temperatures. The results are presented structurewise:

Table 3.23. Comparison of θM and θ′
M with θD for some diatomic crystals; θM and

θD from Table 3.21

Crystal θM [K] θ′
M [K] θD [K] |θD − θM| [K] |θD − θ′

M| [K]

EuS 205 290 262 57 28
EuSe 153 216 176 23 60
EuTe 134 189 140 6 49
RbCl 157 222 186 29 36
RbBr 121 171 135 14 36
RbI 99 140 115 16 25
NaCl 278 393 288 10 105
NaBr 202 286 240 32 46
NaI 144 204 203 59 1
LiCl 387 547 477 90 70
LiBr 267 378 419 52 41
KI 118 167 156 39 11
e.s.d 42 47
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Table 3.24. Comparison of the value of energy of Schottky defect formation Ed for
CsCl type compounds

Substance
Values of Ed [eV per pair]
From (3.75) From experiment From calculations by

Murthy and Murti [3.193]

CsCl 1.86 1.86 1.86
CsBr 1.56 2.00 1.74
CsI 1.58 1.90 1.46
NH4Cl 1.65 0.81 1.33
NH4Br 1.24 – 1.17
TlCl 1.03 1.30 1.27
TlBr 1.16 – 1.20

Crystals with CsCl structure

Using a value of 151 K for θM for CsCl [3.192] and the experimental value for
Ed quoted by Murthy and Murti [3.193], a value of 5,002 is obtained for the
constant. The values of Ed for some crystals with CsCl structure are given in
Table 3.24. The table also gives the values of the formation energy calculated
by Murthy and Murti [3.193]. It can be seen from the data that the values
obtained from the above relation agree reasonably with values obtained from
rigorous theoretical calculations.

With the exception of NH4Cl, there is fair agreement between the experi-
mental values and the values calculated here. Kroger [3.194] pointed out that
NH4Cl is a mixed conductor and if the electronic and protonic contributions
to the electrical conductivity are not taken into account, a spuriously low
value is likely to be obtained for the vacancy formation energy.

Crystals with CaF2 Structure

From the Born model, the formation energies were calculated for CaF2 by
Franklin [3.195]. The formation energy is 2.7± 0.4 eV for an anion Frenkel
pair, 7.5 ± 0.8 eV for a cation Frenkel pair and 5.1± 0.7 eV for a Schottky
trio. These calculations are in agreement with the experimental results of
Ure [3.196]. Thus the anion Frenkel (AF) pair is the more predominant defect
in CaF2 type crystals unlike the alkali halides in which the Schottky pair
is predominant. Using the value of formation energy for the anion Frenkel
pair for CaF2 and the Debye temperature of CaF2 calculated from the B
values obtained by Cooper and Rouse [3.122] the value of the constant in
(3.75) comes out to be 3,550. Using this constant the formation energies of
the anion–Frenkel pair are calculated for the other crystals. The results are
tabulated in Table 3.25.

The values obtained in here agree reasonably well with the values 2.39 eV
for SrF2 and 1.92 eV for BaF2 obtained by Catlow and Norgett [3.197] from
shell model calculations. For BaF2 the formation energy of the anion Frenkel
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Table 3.25. Formation energies for the anion Frenkel pair (Ed) in CaF2-type crys-
tals

Substance
Ed [eV per AF pair]
Equation (3.75) From [3.197,3.198]

CaF2 2.7
SrF2 2.48 2.39
CdF2 2.13

BaF2 2.82
1.92
1.5

EuF2 1.84
PbF2 2.82

Table 3.26. Values of energy of formation of neutral metal atom vacancies (Ed) for
ZnS type crystals

Crystal Ed [eV per vacancy] Crystal Ed [eV per vacancy]

GaAs 2.85 CdTe 1.49
InP 2.13 HgSe 0.88
InSb 1.88 HgTe 1.07

defect is obtained as 1.5 eV by Mizuta et al. [3.198] which is lower than
the calculated value. Rao [3.199] has attributed the difference between the
theoretically calculated and experimental values of linear thermal expansion
coefficients of some CaF2 type crystals to the formation of defects. The dis-
agreement was found to be the most in the case of EuF2 among the substances
studied. From this, he suggested that the formation energy of defects may be
the least for EuF2 among the fluorides with the CaF2 structure. The calcu-
lated values given in Table 3.25 also show that the value of the formation
energy for EuF2 is the least among the fluorides.

ZnS-Type Crystals

Bailly [3.200] has pointed out that in the semiconducting compounds with ZnS
structure, the covalently bound chalcogen atoms do not form defects and the
predominant defects are neutral metal vacancies. Balaiah [3.147] calculated
Ed for these crystals from (3.75).

A value of 2,900 was obtained for the constant using the value Ed = 2.85 eV
for GaAs. The calculated values of Ed are given in Table 3.26. The Ed values
are of the same order as that for GaAs.

Metals

For metals Tewary [3.116] gave a value of 32.8 for the constant in (3.75).
Using this value and the θM values given in Table 3.21, the Ed values for some
hcp metals were estimated by Gopi Krishna [3.130]. The values estimated are
given in Table 3.27.
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Table 3.27. Values of the energy of vacancy formation Ed for rare earth metals

Metals
Values of Ed [eV]

Experiment Equation (3.75)

Yb – 0.676
Gd – 1.165
Dy – 1.096
Er 1.721 1.430
Lu – 0.965
Y 1.439 1.154
Ho – 0.930

The estimated values agree reasonably well with the experimental values
1.721 eV for Er and 1.439 eV for Y quoted by Dariel [3.201]. The experimental
values for other rare earth metals are not available for comparison but the
estimated values could be taken as reasonable in view of the fair agreement
in cases where experimental data are available.
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Hardness

4.1 Introduction

“Hardness is like the storminess of the sea, easily appreciated but not readily
measured (or defined)” [4.1]

“Hardness is a measure of the resistance (of the material) to permanent
deformation or damage” [4.2]

It “(Hardness) is not a single property but rather a whole complex of
mechanical properties and at the same time a measure of intrinsic bonding of
the material” [4.3]

“(There are) clear connections between chemical bonding, hardness and
dislocation mobilities” [4.4]

“The precise definition (of hardness) depends entirely on the method of
measurement” [4.5]

“Resistance to the movement of dislocations will determine the hardness
of the material” [4.6]

The above quotes are an indication of the complexity of the concept of
hardness. However, if we choose the last two, it is possible to see how hard-
ness is related to one or other of several factors. For this purpose, one may
consider the commonest method of determining hardness. This consists of in-
denting a solid surface by a loaded indenter of a definite geometrical shape and
measuring the contact area between the indenter and the material. The ratio
of the load and the contact area is the experimental definition of hardness.

Assuming that the hardness is determined by the indentation method, let
us consider what happens when a loaded indenter is pressed against the sur-
face of the material. This is shown in Fig. 4.1. When the indenter is pressed,
it creates dislocations. As the indentation continues, newly created disloca-
tions push the dislocations created earlier. These dislocations move in some
preferred directions in the crystal depending on the slip system. This motion
of dislocations is obstructed by at least four factors, viz.:

1. Impurities and precipitates present in the material (impurity hardening)
2. Other dislocations present in the material (dislocation hardening)
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Fig. 4.1. Schematic of resistance to motion of dislocations

3. Grain boundaries (grain boundary hardening)
4. The chemical forces in the lattice of the material (intrinsic hardness)

Thus, the hardness of a pure (free from impurities) and well-annealed (free
from excessive number of dislocations and grain boundaries) crystal represents
the intrinsic hardness which reflects the bond strength.

The low-load indentation method of hardness testing is popular because
it offers several advantages viz.:

1. It is simple and does not consume much time
2. It can be used on samples with small areas, e.g. small crystals
3. It can be used on brittle materials which cannot withstand large loads,

e.g. glasses.

4.2 Experimental Methods

4.2.1 General

Several methods are available for the measurement of hardness. Shaw [4.7]
lists the following categories of methods:

1. Scratch tests in which one merely observes whether one material is capable
of scratching another. The Mohs and file hardness tests are of this type.

2. Plowing tests in which a blunt element (usually diamond) is moved across
a surface under controlled conditions of load and geometry and the width
of the groove is the measure of hardness. The Bierbaum test is of this
type.
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3. Rebound tests in which an object of standard mass and dimensions is
bounced from the test surface and the height of rebound is taken as a
measure of hardness. The Shore Scleroscope is an instrument of this type.

4. Damping tests in which the change in amplitude of a pendulum having
a hard pivot resting on the test surface is the measure of hardness. The
Herbert pendulum test is of this type.

5. Cutting tests in which a sharp tool of given geometry is caused to remove
a chip of standard dimensions.

6. Abrasion tests in which a specimen is loaded against a rotating disk and
the rate of wear is taken as a measure of hardness.

7. Erosion tests in which sand or abrasive grain is caused to impinge upon
the test surface under standard conditions and loss of material in a given
time is taken as the measure of hardness. Hardness of grinding wheels is
measured thus.

8. Static indentation tests in which a ball, cone or pyramid is forced into a
surface and the load per unit area of impression is taken as the measure
of hardness. Brinell, Vickers, Rockwell, Monotron and Knoop tests are of
this type.

Of these, the indentation method is most commonly employed. As men-
tioned, indentation hardness is defined as the ratio of the load to the surface
area of the indentation. Indentation hardness measurements can, in princi-
ple, be carried out at fairly high loads (∼100 kg). But, for most materials,
it is convenient to make measurements at low loads <200 g. This low-load
hardness is called microhardness. With specially designed instruments, mea-
surements can be made at very low loads (0.01–0.5 g). The hardness resulting
from such measurements is called ultra hardness. For thin films and coatings,
the recently developed method of nanoindentation is employed.

4.2.2 Leitz–Wetzlar Mini-Load 2 Microhardness Tester

The machine is shown in Fig. 4.2. The essential parts are the stage, a facility
for pre-selection of the indentation-site, the indenter, the load, an automatic
arrangement for slow release of the load, timer and a micrometer eye-piece
for measurement of the impression. In the Leitz Mini-Load 2 microhardness
tester loads of 5, 10, 15, 25, 50, 100 and 200 g can be applied. The basic force
of the indenting unit or the dead weight of the machine is 5 g ± 50mg. The
maximum diagonal length which can be measured by this machine is 220 µm.

The procedure described below is adopted for both the Vickers and the
Knoop hardness measurements alike. Samples of a minimum size of about
3×3×1mm3 are chosen for the microhardness measurements. Several inden-
tations are made taking care to see that neighbouring indentations are apart
by a distance of 3–4 times the size of the indentations. At each load, about 20
indentations are made and the mean of the measured diagonal lengths is used
to evaluate the hardness numbers. The method of histogram [4.5] is employed
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Fig. 4.2. The Leitz–Wetzlar hardness tester

to evaluate the average value of the diagonal lengths. The duration of the
indentation (the loading and the hold time or the indenting and the dwelling
time) at any load applied is 25 s and is maintained constant. The error in the
measurement of the diagonal length of an indentation impression in general
may be estimated to be about 0.25–0.5 µm. The computed hardness numbers
are accurate to ±1 kg mm−2.

The Vickers diamond pyramidal indenter has a square base with 136◦±30′

pyramidal angle. The faces of the indenter meet at a sharp point and are
optically flat. An indentation made with a Vickers indenter is shown in Fig. 4.3.
Vickers hardness number (HV) is expressed in terms of the contact area of
the indenter and is computed from the relation,

HV = 1854.4 (P/d2) in kg mm−2, (4.1)

where P is the load applied in g and d the diagonal length of the indentation
impression measured in µm.

The Knoop hardness indenter is an elongated pyramid such that the angles
between the long and short faces are 172◦ ± 30′ and 130◦ respectively. The



4.2 Experimental Methods 139

Fig. 4.3. The impression of a Vickers indentation

Fig. 4.4. The impression of a Knoop indentation

Knoop indenter is more blunt than the Vickers indenter and hence gives a
shallower impression. The Knoop indentation is in the form of a parallelogram
with one diagonal seven times longer than the shorter diagonal. An indentation
made with a Knoop indenter is shown in Fig. 4.4. The Knoop hardness number
(HK) is expressed in terms of the load and the projected area and is computed
from the relation,

HK = 14230 (P/d2) in kg mm−2, (4.2)

where P is the load in g and d the length of the indentation along the long
axis of the indenter measured in µm.

4.2.3 Shimadzu Dynamic Ultra Hardness Tester DUH 202

This instrument is essentially a Vickers tester with diamond pyramidal in-
denter. Some parameters of interest are: loading range 0.01–200 g; measurable
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Fig. 4.5. Indentation depth measuring device (DUH)

depth 0–15 µm; minimum unit of depth measurement 0.001 µm; error in dy-
namic hardness 30 kg mm−2 at ultraloads and 10 kg mm−2 at microloads.

There are distinct differences between this instrument and conventional
instruments. First, the loading is done with an electromagnetic force. Second,
the hardness is determined in the conventional way by measuring the diagonal
length of the impression under a microscope or by measuring the depth of the
impression by means of a differential transformer (Fig. 4.5). Third, as the
electromagnetic force is being applied, the depth is measured continuously at
every point of the descent of the indenter i.e. at each value of the applied force;
it is thus a dynamic measurement. At ultraloads, hardness can be measured
only from the value of the depth h as the diagonal length is too small to be
measured with the microscope. The dynamic ultrahardness HDU is given by

HDU = 37.835 (P/h2) in kg mm−2. (4.3)

Actually the computerized instrument yields data on P , h and HDU along
with a P vs. h plot. Thus one can study the depth variation of hardness.

4.2.4 Nanoindentation

Nanoindentation is used for measuring hardness at very small length scales.
The commonly used indenter for nanoindentation is the Berkovich diamond
indenter which is a triangular diamond pyramid. In this, the lateral dimen-
sion of the contact impression is approximately seven times the depth. So
measurements are possible for contact impressions with lateral dimensions
0.1 µm. A detailed procedure for the determination of mechanical properties
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Fig. 4.6. A schematic representation of load vs. displacement data for an indenta-
tion experiment

of very thin coatings and films using a nanoindentation technique was first
described by Oliver and Pharr [4.8].

The principle consists of the continuous measurement of force and displace-
ment as an indenter of known geometry is pressed into the sample material.
The force is usually applied via an electromagnetic coil and the current in
the coil determines the load. The displacement is measured, in most cases,
by a capacitive sensor. The indenter load is increased from zero to a certain
maximum value Pmax and then the load is gradually decreased to zero. During
the loading and unloading, the load and displacement data are automatically
stored in a computer. A typical load vs. indentation depth curve is shown in
Fig. 4.6. From the load and displacement (indentation depth) data, the hard-
ness (H) of the material can be calculated. In general, the loading data are
influenced more by the plastic properties of the material and the unloading
data by elastic properties. From Fig. 4.6 the loading part is AB, whereas un-
loading part is BC. The initial part (i.e., close to Pmax) of the unloading curve
is a straight line and then it becomes curved on further reduction in the load
due to the elastic recovery of the indentation depth. On complete removal of
the load, the residual displacement is hf . The unloading curve for ceramics is
of the shape shown in Fig. 4.6, with only the initial unloading part following
a straight line. In the case of soft metals, there is very little recovery of the
indentation depth on removal of the load. Therefore, the unloading curve for
metals is a straight line down to about 5% of the maximum applied load. If
there is no recovery of the indentation, the unloading curve will follow the
line BD. AD represents the contact depth of indentation and is denoted by
hc. Because of the elastic recovery of the indentation depth on load removal,
hc > hf .
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Fig. 4.7. Schematic representation of a section through an indentation, showing
various quantities used in the analysis

Oliver and Pharr [4.8] also proposed a method for the analysis of the
nanoindentation load vs. displacement data. Fig. 4.7 shows a cross-section of
an indentation and identifies the parameters used in the analysis. At any time
during loading, the total displacement h is written as h = hs + hc, where
hc is the vertical distance along which contact is made (hereafter called the
contact depth) and hs is the displacement of the surface at the perimeter of
the contact. At peak load, the load and displacement are Pmax and hmax,
respectively, and the radius of the contact circle is a. Upon unloading, the
elastic displacements are recovered, and when the indenter is fully withdrawn,
the final depth of the residual hardness impression is hf .

The hardness is defined as the mean contact pressure underneath the in-
denter at maximum load (Pmax .),

H = Pmax/Ac. (4.4)

The projected contact area Ac is determined from the area function of the
indenter tip Ac = f(hc). The contact depth is related to the maximum inden-
tation depth hmax by:

hc = hmax − ε Pmax/S. (4.5)

Here S is the contact stiffness, defined as an increment in load divided by
the resulting increment in displacement in the absence of plastic deformation;
ε = 0.75 for Berkovich diamond indenter. The relationship used to describe
the unloading data for stiffness measurement is

P = α(h − hf)m, (4.6)

where P is the load, α and m are constants. The unloading curve can be
differentiated analytically to determine the slope at maximum load:

S = (dP/dh)P=Pmax . (4.7)

Using (4.5), the contact depth is calculated and is used to determine the pro-
jected contact area Ac from the area function. The nanohardness is obtained
by substitution of Ac in (4.4).
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4.2.5 Relative Hardness Measurement

Hardness testing machines are generally expensive. The design of a simple
inexpensive instrument designed by Kishan Rao and Sirdeshmukh [4.9] which
facilitates measurement of relative hardness of crystals from measurements of
lengths of the indentation dislocation rosette (IDR) is described.

When a crystal is indented and subsequently etched, an array of disloca-
tion etch pits is observed. This array is termed as IDR. Hopkins et al. [4.10]
observed that the length of the IDR is related to the load on the indenter.
Inabe et al. [4.11] observed that the relation between the load and the length
of the IDR is exactly similar to that between the load and the diagonal length
of the Vickers indentation impression.

Gilman [4.12] observed that in crystals with the diamond structure and
ZnS structure, the critical shear stress for glide of dislocations is related to
the hardness through the relation

τ = kH, (4.8)

where k is a constant and τ is the shear stress. From a study of the IDR in
silicon produced by a spherical indenter, Hu [4.13] showed that

l = cP 1/2τ−1/2, (4.9)

where l is the length of the arm of the IDR, P , the load applied and c is a
constant. Combining (4.8) and (4.9), we get

l = AP 1/2H−1/2, (4.10)

where A is a new constant. This equation relates the length of the IDR to
the hardness. Although (4.8) and (4.9) have been proposed for silicon, similar
equations may hold for other systems also and hence (4.10) may have general
validity. Equation (4.10) predicts an l2–P relation for a given crystal. Fur-
ther, if two similar crystals having hardness H1 and H2 are indented at loads
resulting in rosettes of lengths l1 and l2, (4.10) leads to

H2 = (l1/l2)2H1, (4.11)

Thus, if H1 is known, H2 can be estimated. This is the principle of the design
of the instrument.

Figure 4.8 shows the line diagram of the instrument. It consists of two
pillars A and B. A brass bar F is attached to the pillar A with ball bearings
such that it is free to move about in a vertical plane. D is the sample holder
fixed to the pillar B; it can be raised or lowered using a rack-and-pinion
arrangement O. A fine steel pin S is fixed at one end of the bar F, which
carries a screw E at its other end with which the bar is balanced. When a
load P is applied on the pin, the bar is locked in the horizontal position using a
screw G. The crystal X placed on the sample holder is raised until the crystal
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Fig. 4.8. Line diagram of the indenter

surface is close to the tip of the pin. Indentation is made by slowly releasing
the locking screw until the pin touches the surface of the crystal. An electrical
arrangement C, results in the switching off of a bulb when there is a contact
between the pin and the crystal. All the indentations are made for 5 s. After
indentation, the crystals are etched with suitable etchants and the crystal
surface is observed under a microscope. The lengths of the rosette arms are
measured with a micrometer eye-piece.

Using the instrument, indentations have been made on freshly cleaved
surfaces of pure NaCl, doped NaCl, KCl, KBr and LiF. The crystals have
been etched with known etchants. Fig. 4.9 shows the IDR pattern of pure
NaCl. The l2 values are plotted against the load P for pure NaCl (Fig. 4.10).
A linear relationship is seen as predicted by (4.10). Hu [4.13] observed a similar
relationship in silicon indented with a spherical indenter. These results show
that the linear relationship is independent of the shape of the indenter or the
crystal system. The relative microhardness of crystals was estimated in terms
of the hardness of pure NaCl for which a value of 22.1 kg mm−2 [4.14] was
used. The results are given in Table 4.1. The values obtained agree well with
those obtained by others using sophisticated instruments; the gradation in the
hardness values of LiF, KCl and KBr is the same in the data obtained in the
present work and in data from literature. The instrument has been tested for
the alkali halides for hardness values up to 100 kg mm−2. The hardness of a
Sr2+-doped sample of NaCl was measured by this method and also directly
with a Vickers indenter. These values agree closely and indicate hardening
due to doping.

For accurate results, the indentation of the standard crystal (NaCl) and
the sample crystals has to be made under identical loading conditions. Care
has also to be taken to see that the indenter needle is exactly normal to
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Table 4.1. Relative hardness values [ kg mm−2]

Crystal
Hardness
IDR method Other values Ref.

LiF 99.8 103 [4.14]
KCl 8.4 10.2 [4.14]

13.1 [4.15]
KBr 7.6 10 [4.14]

7.4 [4.16]
NaCl doped with SrCl2 36.6 35.1 Direct measurement

with Vickers
hardness tester for
the same sample

Fig. 4.9. Indentation rosette pattern on (100) faces of NaCl

the crystal surface at the position of contact. Otherwise, the rosette develops
asymmetry and consequently the results will be in error. If these precautions
are taken, the accuracy of the results depends on the accuracy of measurement
of rosette arms and the value of the hardness of the standard. Keeping these
factors in view and the scatter existing in the hardness values of NaCl, the
errors in the hardness values obtained by this method are estimated to be
±5%.

The results obtained with this instrument compare well with those
obtained with commercial, sophisticated hardness testing machines. This
method is limited to crystals which are isomorphous and for which etchants
are well established. The method should prove useful for measurement
of changes in hardness of a crystal, due to any treatment given to the
crystal. Some possible areas of applications are: (a) temperature varia-
tion of hardness, (b) radiation hardening, (c) impurity hardening and (d)
annealing.
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Fig. 4.10. Plot of square of rosette length (l2) against load (P ) for NaCl

4.3 An Overview

4.3.1 General

For quite some time, only metallurgists and mineralogists were interested
in hardness. However, in the last several decades, physicists and chemists
also have involved themselves in studies of hardness. Discussion of various
aspects of hardness and data on a large number of materials are found in
books [4.1,4.3,4.5], compilations [4.17–4.19] and also in several articles strewn
over many scientific journals.

This section is an overview of the work done in several laboratories. It is
not possible to touch upon all aspects of the available work. The overview is
therefore, confined to inorganic crystals.

4.3.2 Load Variation of Hardness

The Vickers hardness is given by the relation

HV = 1854.4 (P/d2) in kg mm−2. (4.1)

According to this equation the diagonal length of the impression changes with
the applied load such that the ratio of P/d2 is constant and the hardness has
a constant value. However, in actual work when the hardness is measured
at different loads, the hardness is found to show a dependence on the load.
The load dependence is found to vary from material to material and from
experiment to experiment. Typically, four types of results have been reported.
These are shown in Fig. 4.11.

In ‘a’ type variation, the hardness is constant with respect to load. Such
a behaviour presumes an ideal instrument response and an ideal material
response. Such load-independent behaviour has been observed by several in-
vestigators [4.20–4.23].
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Fig. 4.11. Types of load variation of hardness

In the ‘b’ type variation, the load–hardness curve consists of kinks and
maxima and minima. Such behaviour has been observed in some organic
crystals [4.24–4.27]. These abrupt changes in the load vs. hardness curves
are attributed to the activation of slip processes triggered at certain loads.
This type of load dependence has also been observed in some polymeric ma-
terials [4.28–4.30]. In these materials such load variation has been attributed
to chain–chain slipping.

In the ‘c’ type variation, the hardness increases with increasing load and
at higher loads (above 25 g or so) the load variation becomes negligibly small.
Load variation of this type has been observed in several studies [4.31–4.33].
Such load-dependence can arise due to a defect in the diamond indenter
(chisel-tip indenter), or due to an elastic recovery of the depth of the im-
pression [4.31] or more commonly due to a systematic positive loading error.
This loading error (W ) can be estimated by drawing a P vs. d2 plot; the
negative intercept of the linear plot on the load axis gives the loading error
W . This correction is to be added to the applied load. The true hardness is
now given by

HV = 1854.4 (P + W )/d2, (4.12)

The most commonly observed load variation is of the ‘d’ type. Here, the
hardness has a relatively larger value at low loads. The hardness shows a steep
decrease with increasing loads up to about 25 g and thereafter the variation
of hardness is slight. Mott [4.5] quotes several reports where such behaviour
has been observed. Pratap and Hari Babu [4.34] in their study of ammonium
halide crystals and Kotru [4.35] in his study of rare-earth compound crystals
observed a similar load dependence.

According to the approach of Hayes and Kendall [4.36] this type of load
variation can be due to the sample exerting a Newtonian pressure on the
loaded indenter. This resultant pressure (W ) is a function of the material
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being tested and represents the minimum applied load to cause an indentation
as the load (W ) will allow no plastic deformation. With this approach (4.1)
may be written as

P − W = K d2, (4.13)

The P − d2 plot in such a case has a positive intercept on the P -axis. This
intercept represents the value of W . With the applied-load P reduced by the
term ‘W ’, the hardness is calculated from

HV = 1854.4 (P − W )/d2. (4.14)

It is load independent and represents the true value.

4.3.3 Solid Solution Hardening

It is observed that, generally, the hardness of a mixed crystal is much larger
than that of either pure member of the system. There is considerable interest
in this phenomenon. The utility of a device material is limited by its poor me-
chanical strength and solid solution hardening affords a method of enhancing
the strength.

Subba Rao and Hari Babu [4.15,4.37] reported the composition dependence
of the hardness of mixed crystals of KCl–KBr, KCl–KI, KCl–NaCl and KBr–
KI systems. In all the cases, the composition dependence was non-linear with
the mixed crystals in the equimolar region having a hardness much larger than
that of either end member. These authors suggested a model which includes
contributions from the lattice and from the disorder caused by the presence
of ions of different sizes. This model qualitatively accounts for the observed
composition variation. Shrivastava [4.38] calculated the hardness of several
alkali halide mixed crystals using a model that considers the effect of the
internal stress field of elastic interaction through dislocations.

Plendl [4.39] pointed out that the hardness of mixed crystals depends on
three factors: (a) the ionic–covalent binding ratio ψ (I), (b) overlap of atomic
shells ψ (A) and (c) the deformation of atomic polyhedra ψ (D). The hardness
is given by the function ψ (B) which is the product of ψ (I) ψ (A)−2 ψ (D).
The result compared very well with the experimental observations on CaF2–
SrF2 mixed crystals.

4.3.4 Impurity Hardening

Doping is the incorporation of impurities with a small concentration into the
crystal. The impurity generally occupies a substitutional position. In a few
cases, the impurity goes into interstitial positions. The impurity is generally
of a higher valency than the ions in the host lattice. Impurities generally
increase the hardness of a crystal.

Dryden et al. [4.40] studied the hardness of several alkali halide crystals
doped with divalent ions. The host crystals were NaCl, KCl and LiF and the
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dopant ions were Ca2+, Sr2+, Ba2+, Mg2+ and Mn2+. The crystals hardened
with doping and the increase in hardness was proportional to C2/3 where C
is the concentration. It may be noted that these authors did not measure the
hardness directly but measured the critical resolved shear stress which is a
measure of hardness.

Chin et al. [4.41] determined the yield stress as well as hardness of NaCl,
NaBr, KCl and KBr crystals doped with Ca2+, Sr2+and Ba2+ ions. They
found that the yield stress and hardness are related as follows:

τ = c (H − H0), (4.15)

where τ and H are the yield stress and hardness of a doped crystal and H0

the hardness of the pure crystal; c is a constant. Chin et al. [4.41] found
that the increase in hardness (and yield stress) is proportional to C1/2 where
C is the concentration of divalent ions. However, the increase is otherwise
independent of the species. Gilman [4.42] attempted a theoretical explanation
of these observations in terms of an ionic model.

Pratap and Hari Babu [4.34] observed increase in hardness of NH4Cl crys-
tals doped with Cu+ ions. Ascheron et al. [4.23] observed increase in hardness
of InP on doping with Sn. They also quote earlier results on impurity hard-
ening in Si and Ge.

4.3.5 Dislocation Hardening

The movement of a dislocation is impeded by other dislocations present in
the crystal. Thus, a larger dislocation density implies a larger hardness. Chen
and Hendrickson [4.43] measured the hardness of as-grown silver crystals and
crystals damaged by severe scratching (higher dislocation density); they found
that the hardness was larger for the latter than the former. Further, they
mapped the dislocation density on the surface of a single crystal. They also
mapped local hardness variation on the same crystal and observed a definite
correlation between the hardness and the dislocation density. Lastly, they
determined the dislocation density and the hardness of several silver crystals
and found that crystals with larger dislocation density were harder.

4.3.6 Radiation Hardening

The hardness is affected by irradiation. In the following, the effects of photon
irradiation and particle irradiation are discussed separately.

Photon irradiation effect on hardness

Earlier work on radiation hardening of alkali halides is summarized in
Table 4.2. Aerts et al. [4.44] made a detailed study of the effect of X-ray
irradiation on the hardness of NaCl. By measuring the hardness on two parts
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Table 4.2. Summary of hardening studies of alkali halides

Crystals [Ref.] Radiation Property Results
employed studied

LiF, LiCl, LiBr,
NaF, NaBr, NaCl,
NaI, KF, KCl,
KBr, KI, RbCl,
CsF [4.45,4.46]

γ-rays Flow stress Hardening ∝nF
1/2 (nF: F-centre

concentration)

NaCl [4.44] X-rays Hardness Quantitative (hardening increas-
ing with time of irradiation)

NaCl [4.47] X-rays Hardness Hardening ∝nF
1/2

KCl, KBr [4.48] X-rays Hardness Qualitative (hardening increasing
with time of irradiation)

KBr, KI [4.49] X-rays Hardness Qualitative (hardening increasing
with time of irradiation)

of the same crystal, one unirradiated and the other irradiated, an enhance-
ment in hardness by almost a factor of two was clearly established. Hardness
was found to increase rapidly initially and then to reach a saturation value.
No quantitative correlation could be established between the hardening and
the color-centre concentration.

Nadeau [4.45,4.46] carried out studies of hardness on several alkali halide
crystals subjected to γ-irradiation. As a measure of hardness he determined
the flow stress. Some of the observations by Nadeau deserve to be noted:

(a) There is an increase in flow stress with γ-ray irradiation though in some
cases, a softening was observed at intermediate doses.

(b) The flow stress vs. dosage curve is similar to the F-band vs. dosage curve
but not to the M-band vs. dosage curve, thereby indicating that the hard-
ening correlates with F-centre concentration.

(c) The flow stress and F-centre concentration empirically follow the equation:

∆τ = Kn2
F , (4.16)

where ∆τ is the flow stress, K a constant and nF the (4.15) concentration
of F-centres.

(d) Bleaching experiments show that the hardening is not directly due to
F-centers but due to interstitials which have the same concentration as
F-centers.

As mentioned earlier, Nadeau [4.45, 4.46] chose to study the flow stress
which is difficult to measure and is not a property directly related to hardness.
Thus, the flow stress does not correlate with other mechanical properties like
the elastic moduli [4.46] whereas hardness correlates with the shear modulus
[4.50].
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Boyarskaya and Zhitaru [4.47] tried to examine the relation between
hardening and color-centre concentration but employed X-rays instead of γ-
rays. Veeresham et al. [4.48] and Subba Rao et al. [4.49] studied the effect of
X-ray irradiation on the hardness of KCl, KBr, KI and their mixed crystals.
Radiation hardening was found to be less in mixed crystals than in the pure
crystals.

Among other systems studied, mention may be made of study of rochelle
salt by Krishnamoorthy and Murthy [4.51] by γ-ray irradiation. The increase
in hardness was attributed to an increase in dislocation density caused by
irradiation. Ansary et al. [4.52] studied the effect of gamma-irradiation on the
hardness of polymers.

Particle Irradiation

Rau and Lacefield [4.53] studied the effect of neutron irradiation on the hard-
ness of BeO. The hardness first increased rapidly and then reached a satura-
tion level. Patel and Desai [4.54] and Patel and Raju [4.55] observed changes
in hardness of mineral crystals of fluorite and gypsum respectively on neutron
irradiation.

Ascheron et al. [4.56] studied the effect of proton bombardment on the
hardness of GaP. They found no effect up to fluences of about 2 × 1016

cm−2. At higher fluences, the hardness increased linearly with the fluence D
according to the relation

H(D) = H0 + A log (D/D0), (4.17)

where H0 and H(D) are the hardness values before and after bombardment,
A is a constant and D0 the critical fluence where hardening starts.

Mukherjee [4.57] reported an increase in hardness of steel due to plasma
implantation of nitrogen ions. Evanov et al. [4.58] studied the effect of plasma
irradiation of deuterium on the hardness of vanadium.

4.3.7 Hardness and Chemical Bond

There is an intrinsic relation between hardness and the chemical bond.
Powarjonnych [4.59] suggested the following formula connecting hardness and
covalency:

HM = K Y c/r2, (4.18)

where HM is the hardness on Mohs scale, Y the sum of the valences, c a
constant, r the interionic distance and K is a factor depending on the cova-
lency (1 for 0% covalency and 2 for 100% covalency). Julg [4.60] proposed an
empirical formula for crystals with formula AmBn

HM = K (1 − 2
3I4), (4.19)
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where K is a constant determined by the number of rows in the periodic table
to which atoms A and B belong and I the ionicity. Julg extended the formula
to compounds where B is a polyatomic ion. Pillay [4.61] considered a large
number of crystals with hardness in the wide range 2–9 (on the Mohs scale)
having ionic, covalent and mixed bond character. The ionicities I of these
crystals were known. He found that the hardness (on the Mohs scale) and
ionicity I empirically fit the quadratic equation

HM = −15.79 I2 + 11.33 I + 7.63. (4.20)

Pillay used this equation to estimate the hardness of some crystals with known
ionicities and also to estimate the ionicity of some crystals with known hard-
ness.

Gilman [4.62] obtained a linear plot between the hardness H and the shear
elastic constant C44 for the alkali halides. Later, Chin [4.63] drew such plots
for several crystal families. He found that the ratio HV/C44 is constant for
a family of related crystals and that it has values 0.13, 0.013 and 0.0056 for
covalent, ionic and metallic crystals, respectively. This ratio is given the name
Gilman–Chin parameter [4.18].

4.3.8 Pressure Variation of Hardness

There is very little work on this aspect. Barbashov and Tkachenko [4.64] de-
termined the microhardness of MgO and a few alkali halide crystals up to a
pressure of 15 kbar. The indentations were carried out in a high-pressure cham-
ber with benzene as the pressure-transmitting fluid. The results are shown in
Table 4.3.

In all cases, the hardness was more at high pressure. At atmospheric pres-
sure, the hardness HV is related to the Young’s modulus E according to the
equation:

HV = 0.515 E1.66. (4.21)

Assuming the same relation to hold at high pressures, the hardness at, say,
P = 15 kbar can be calculated from Young’s modulus at the same pressure
using data on pressure variation of elastic constants. Such calculated values are

Table 4.3. Hardness HV [ kg mm−2] of some crystals with NaCl structure at high
pressures

Crystal
HV at HV (calc.)
P = 0 P = 15 kbar

MgO 799 831 773
LiF 119 128 167
NaCl 21 27 30
KCl 11 20 19
KBr 13 25 16
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also given in the table. There is qualitative agreement with the experimental
values.

4.3.9 Temperature Variation of Hardness

Atkins and Tabor [4.65] surveyed literature and pointed out that in W, Al,
Cu, Pb and Ge, the hardness decreases smoothly as the temperature increases.
They quoted similar results for the compounds MgO, WC and SiC. Further,
Atkins and Tabor made measurements of hardness at high temperatures on
several carbides and found that the indentation hardness falls steeply as the
temperature increases.

Merchant et al. [4.66] surveyed high temperature hardness data on a large
number of metals. In all the cases, the hardness decreases with increasing
temperatures and the temperature variation can be fitted to either of the
following two equations:

H = A exp(−bT ) (4.22)

or
H = A′ exp(b′/T ). (4.23)

Gilman [4.12] examined data on temperature variation of Si crystal. He found
that over a temperature range of 0–800◦C, the indentation hardness of Si falls
from 800 to 80 kg mm−2 and follows:

(H/H0) = 1 − (2kBθ/U) [coth (θ/T ) − 1], (4.24)

where H0 is the hardness at 0 K, U an energy barrier and θ the characteristic
temperature; U = 1.48 × 10−13 erg and θ = 750K. Jain and Patel [4.67]
measured the hardness of CaF2 at elevated temperatures. They found that at
350◦C, the hardness is 1/3 that at room temperature. Boyarskaya et al. [4.68]
measured the microhardness of alkali halide crystals in the range 77–423 K
and found that the ratio of hardness at 77 and 293 K was 4.8, 4.5, 2.6 and 2.8
for KCl, NaCl, NaF and LiF, respectively.

4.3.10 Empirical Relations with other Physical Properties

Several empirical relationships have been proposed between the hardness of
crystals and their various physical properties. These relations are useful in
estimating hardness from these properties or vice versa.

Wooster [4.69] proposed the relation

C ′ = (HM)7/4. (4.25)

Here HM is the hardness on Mohs scale and C ′ is an elastic constant. For
cubic crystals C ′ = C11 whereas for other symmetries C ′ is the average of
C11, C22 and C33. Chin et al. [4.16] found that for alkali halides
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HV = 5 × 10−3 E111. (4.26)

Here E111 is Young’s modulus in the <111> direction. While trying to find a
theoretical explanation for this relation, Gilman [4.62] was led to the relation

HV = 1.2 × 10−3 C44. (4.27)

Gerk [4.50] reported a linear relation between the hardness and the isotropic
shear modulus G. Interestingly, there is a single plot between HV and G for
such diverse crystals as diamond, metals and alkali halides though with some
scattering. Gerk pointed out that the scattering in the HV–G plot is reduced
by using a modified shear modulus G′ given by

G′ = (C44)[(C11 − C12)/2C44] / [1 + (C11 − C12)/2C44]. (4.28)

Plendl and Geilisse [4.17] showed the existence of smooth plots between the
Mohs hardness and the “volumetric lattice energy” (lattice energy U/molar
volume V ). A large number of crystals having covalent, ionic and mixed bind-
ing were included but not any metals. This relation was used to estimate the
lattice energies of some compounds from their scratch hardness.

Gilman [4.4] surveyed work on hardness and discussed several relationships
either proposed by others or some observed by him. These are:

1. A linear relation between hardness (HV) and yield stress (τ). HV = 3τ
for metals and HV = 35τ for alkali halides.

2. Linear relation between hardness and Young’s modulus for metals.
3. Linear relationships between hardness of covalent compounds and (a) glide

activation energy, (b) energy gap density and (c) bond distance.
4. A linear correlation between hardness and heat of formation for carbides.

4.3.11 Anisotropy of Hardness

Hardness shows directional dependence (anisotropy). The average hardness
measured on the face of a crystal differs from face to face. Also, the hardness
measured on a given face with a Knoop indenter varies with the orientation
of the indenter with reference to a reference direction. This can be seen from
Fig. 4.12 which shows the Knoop indentations with <110> and < 1̄00 >
directions on the (001) plane of diamond [4.70]. Figure 4.13 shows the orien-
tation dependence of hardness on the (100), (110) and (111) faces of an iron
crystal [4.71]. The hardness has a fourfold, twofold and threefold rotational
symmetry on these faces, respectively.

Table 4.4 gives information about the hardness anisotropy on the (001),
(110) and (111) planes of several cubic crystals having the NaCl, CaF2, fcc,
diamond and bcc structures.

In a remarkable paper, Brookes et al. [4.72] predicted the hardness
anisotropy in Knoop hardness considering the structure and slip system of



4.3 An Overview 155

Fig. 4.12. Knoop indentations in the [110] and [1̄00] directions on the (001) plane
of diamond

Fig. 4.13. Microhardness anisotropies of (100), (110) and (111) faces of iron crystal

the crystal. These predictions were verified in several cases. In Table 4.5, the
hardness anisotropy for some carbides is quoted from [4.70]. In some of these
carbides, the anisotropy changes with temperature. Hannink et al. [4.73],
attributed this change to a change in the slip system at high temperatures.
However, this correlation between slip system and hardness anisotropy was
contradicted by Chin et al. [4.74, 4.75] who determined hardness anisotropy
of several crystals with NaCl and CaF2 structures.
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Table 4.5. Knoop hardness anisotropy of (001) planes of carbides [4.72]

Knoop hardness [ kg mm−2]
Carbide Temperature [◦C] <100> <110> Slip systema

TiC 25 2,020 2,750 {110} <11̄0>
TiC 616 980 880 {111} <110>

TiC0.80 25 2,000 2,300 {110} <11̄0>b

VC −196 2,040 2,150 {110} <11̄0>
VC 350 1,390 1,140 {111} <11̄0>

VC 25 2,070 2,600 {110} <11̄0>b

HfC 25 1,850 2,500 {110} <11̄0>
ZrC 25 1,980 2,250 {110} <11̄0>

NbC 25 2,300 2,420 {110} <11̄0>b

TaC 25 1,650 1,500 {111} <11̄0>

a Slip system thought to control indentation process at relevant experimental
temperature.
b Predominant slip system at relevant experimental temperature with secondary
slip system beginning to affect hardness anisotropy.

Offenbacher and Roselman [4.76] measured the hardness on the prismatic
and basal planes of ice crystals over the temperature range −5◦C to −12◦C.
They observed that the quantity (Hprismatic–Hbasal) is positive below −8◦C
and negative at higher temperatures.

Gallaghar et al. [4.77] studied the hardness anisotropy in calcite and
sodium nitrate which are isomorphous. Although the rotational symmetry
in the anisotropy in hardness in both cases is similar, yet the direction of the
maxima is reversed. Gallaghar et al. conclude that the slip systems in the two
are different ({111̄} < 011 > in calcite and {011} < 100 > in sodium nitrate).

4.3.12 Surface Hardness

There is interest in the hardness in the surface region (depth ∼0.001 µm).
Information on this aspect is meager and conflicting. Morlin [4.78] observed
a decrease in hardness at low depths. Upit and Varchenya [4.79] studied the
load variation of hardness at low loads up to 0.3 g. They made measurements
on a few alkali halide crystals. Their range of loads covered the depth in the
range 5–60 µm. The hardness was found to increase as the surface layer was
approached. Upit and Varchenya [4.79] fitted their results to the equation

H = 1854 a dn−2, (4.29)

where d is the diagonal length and n an index. For the alkali halides, they ob-
tained n = 1.86. The coefficient a varied from crystal to crystal and correlated
with the surface energy as can be seen from the data in Table 4.6.

Gane [4.80] made ingenuous experiments on gold films employing loads as
low as 0.1 mg and incorporating the indenter inside a TEM. He observed a
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Table 4.6. Values of coefficient a in (4.29) and the surface energy (σ) of alkali
halides

Crystal a[ kg mm−2] σ [erg cm−2]

LiF 88 250
NaF 58 203
NaCl 15 114
KBr 8 89
KI 7 85

Table 4.7. Values of bulk hardness HB, index m and surface hardness HS

Crystal m HB [ kg mm−2] HS [ kg mm−2]

LiF 0.14 100 370
NaCl 0.14 20 60
KBr 0.14 9 31
KI 0.14 7 28
Cu 0.19 30 350
Al 0.25 12 215

substantial increase in hardness but, unfortunately, could not decide whether
the effect was genuine or caused by a polymeric film between the sample
surface and the indenter.

Upit and Varchenya [4.81] extended their earlier work by including some
metals in their study and having a gadget which could measure the depth h of
the impression. They found that (a) in all cases the hardness increased with
decreasing depth, (b) the variation with depth was given by H = ch−m, where
c was a constant and m had different values and (c) the surface hardness (HS)
obtained by extrapolation to h = a few lattice constants was much higher than
the bulk value (HB). Their results are summarized in Table 4.7.

4.3.13 Nanohardness of Thin Films

The recently developed technique of nanoindentation has facilitated the mea-
surement of hardness of thin films and coatings. Some recent results on Mo
thin films and TiN coatings are given in Table 4.8. The nanohardness changes
substantially with the state of the sample. Also, the thin film hardness is
much higher than the bulk hardness. The nanohardness is also influenced by
the thickness of the coating and by the choice of the substrate [4.84].

4.3.14 Effect of Magnetic Field on Hardness

Smirnov and Urusovskaya [4.85] studied the effect of applied magnetic field on
the hardness of LiF:Ni crystals. A static magnetic field of 1.6×108A m−1 was
applied for 20 s and then switched off. The hardness was measured as a func-
tion of time. The hardness was found to increase from 0.82 to 0.91 GPa at 2 s.
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Table 4.8. Nanohardness of some thin films and coatings; value of Mo from Yoder
et al. [4.82], rest from Rajam and Barshilia [4.83]

Material Nature of sample Hardness [ kg mm−2]

TiN Coating 2,400
Bulk 1,800

TiAlN Coating 3,600
TiAlN/CrN Multilayers 3,900
TiN/NbN Multilayers 4,000
TiN/a-c Nanocomposites 5,200
Mo Thin film 600–1,200

Bulk 156

It then decreased to the original value at 4 s. Thereafter it remained unaltered.
The same behaviour was observed in experiments at 200◦C with the difference
that the maximum occurred at 1 s. The observed variation was attributed to
the disturbance of the equilibrium of the crystal–magnetic impurity system
and the subsequent relaxation.

Golovin et al. [4.86] studied the effect of magnetic field on the microhard-
ness of NaCl. Microhardness measurements were made on an NaCl crystal to
which a magnetic field of 20 T with a gradient was applied for 100 µs. Micro-
hardness measurements were made at different positions along the gradient.
The hardness decreased from the zero field value and reached a saturation
value which was 20% less than the original value.

4.3.15 Hardness of Organic Crystals

Organic crystals are in general softer than inorganic crystals. There is limited
work on the hardness of organic crystals. Sasaki and Iwata [4.87] made mi-
crohardness measurements on anthracene crystals on the (001) plane with a
Knoop indenter. They found that the hardness has a maximum in the <110>
and < 1̄10 > directions. The mean value on the (001) plane was 4.3 kg mm−2.
Joshi and Shah [4.21] made Vickers microhardness measurements on single
crystals of anthracene, phenanthrene and benzoic acid and obtained values of
4, 8.2 and 5.2 kg mm−2, respectively. Marwaha and Shah [4.27] made detailed
measurements of microhardness as a function of load on benzoic acid crys-
tals. They found that instead of the usual smooth load vs. hardness curve,
the P–HV curve has peaks at 20 and 90 g. These peaks were attributed to
activation of slip in the < 010 > and < 100 > directions.

4.3.16 Micro-Raman Spectroscopy of Indentations

Many materials undergo structural phase transformations under the appli-
cation of high pressure. In indentation, although loads of a few grams are
applied, the indenter tip area being very small, high stresses are generated.
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Fig. 4.14. Sketch of the experimental procedure for micro-Raman spectroscopy of
indentations. A number of hardness indentations were produced (a), which were
then examined with a micro-Raman spectrometer

These stresses are sufficient to induce phase transformations which can be
probed through the technique of micro-Raman spectroscopy.

The experimental arrangement used by Kailer et al. [4.88] is shown in
Fig. 4.14. Indentations were produced by using Vickers or Rockwell indenters
and the Raman spectroscopy of the indentation impression was carried out
with a LabRam micro-Raman spectrometer using He–Ne or Ar+ lasers.

Examples of micro-Raman spectra of indented surfaces of a few materials
are shown in Fig. 4.15. Figure 4.15a is the spectrum of Si which is known to
undergo a phase transition at 10–13 GPa. The spectrum shows, apart from
the line for the original diamond structure (Si-I), lines corresponding to the
bc8 structure (Si-III) and a rhombohedral phase (Si-XII). In Fig. 4.15b, Ge-I
is the line for the original diamond structure. Lines indicated by • and � are
assigned to the bc8 and the st12 phases. A hexagonal diamond phase Ge-V is
also seen. In Fig. 4.15c, the micro-Raman spectra of indented ZrO2 are shown;
in addition to the tetragonal bands (marked t), those for the monoclinic phase
(marked m) are also seen. In the micro-Raman spectra of pristine and indented
quartz (Fig. 4.15d), amorphisation of quartz is clearly visible. Similar studies
on diamond and SiC have been made by Kailer et al. [4.89].

This is a fast and simple technique for studying phase transformations. It
does not need a diamond anvil and requires a small amount of the sample.

4.4 Some of our Results

4.4.1 Load Variation of Hardness

Ideally, the hardness measured by indentation methods should be load-
independent. However, in most measurements, the measured values show a
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Fig. 4.15. Micro-Raman spectra of: (a) Si, (b) Ge, (c) ZrO2 and (d) quartz before
and after indentation

load-dependence. The types of observed load variation and the methods of
correction to enable the determination of the true hardness have been dis-
cussed in Sect. 4.3.2. Here, we shall discuss some of our own observations.

Type ‘c’ Variation

Measurement of Vickers hardness of some metals (Zn, Sn, Pb, Bi) was carried
out with the help of a Vickers microscope fitted with a diamond pyramidal in-
denter. The load dependence is shown in Fig. 4.16. This variation corresponds
to type ‘c’ shown in Fig. 4.11. It was also pointed out that for this type of
variation, a load correction can be applied by drawing a plot between load (P )
and the square of the indentation diagonal (d2). The intercept of the linear
plot on the P -axis gives the correction W . The true hardness is then obtained
from (4.12). The values of the true hardness of some metals, thus determined,
are given in Table 4.9. The hardness of Zn obtained in these measurements is
33.3 kg mm−2 which agrees well with the reported value of 28 kg mm−2 [4.5].

Type ‘d’ Variation

Nearly a hundred crystals and polycrystalline samples have been studied with
the help of a miniload Leitz–Wetzlar hardness tester. The load variation, ob-
served in all the cases was of the ‘d’ type (Sect. 4.3.2) i.e. the hardness is large
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Table 4.9. True Vickers hardness HV of some metals [4.32]

Metal HV [ kg mm−2] Metal HV [ kg mm−2]

Zn 33.3 Bi 11.7
Sn 17.1 Pb 5.1

Fig. 4.16. Plot of hardness HV against load P for some metals

Fig. 4.17. Plot of hardness HV against load P for some crystals with NaCl structure

at very low loads, decreases steeply with increasing loads and becomes nearly
load-independent at loads of 50 gm and above. The load variation observed in
some crystals with NaCl structure is shown in Fig. 4.17.
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Table 4.10. Values of W and the true hardness of some crystals [4.90]

Crystal W [g] HV (true) [ kg mm−2] HV (L-Ind.) [ kg mm−2]

RbCl 2.8 9.3 9.5
RbBr 2.6 7.6 8.0
RbI 2.0 5.9 6.0
NaF 3.7 62.5 63.8
EuS 1.8 152.3 159.5
EuSe 2.4 112.4 116.0
PbTe 3.6 41.0 45.9

As mentioned in Sect. 4.3.2, load variation of this type can be taken into
account, again, by drawing a P–d2 plot. The intercept ‘W ’ on the P -axis in
such cases is positive. The true hardness can be obtained from (4.14). The
values of W pertaining to some crystals are given in Table 4.10. They are in the
range 2–4 g. The true values of HV are also given. The values of HV estimated
directly from the load-independent part of the P–HV curves denoted by HV

(L-Ind.) are also given in the table. It is to be noted that these two values
agree with the load–variation-corrected true values generally within 5%.

The Case of FeS2 (Pyrite)

For pyrite, widely differing values have been reported (in units of kg mm−2):
588–757, 857–1152 [4.5]; 1636–2814 [4.91]; 2951–3618 [4.92]. The values in the
lower range are smaller than the microhardness of quartz (≈ 1, 224 kg mm−2).
That these low values for the microhardness of pyrite are in error was shown by
indenting crystals of FeS2 and quartz at identical loads [4.91]; the indentations
on FeS2 were consistently smaller than those on quartz indicating that the
hardness of pyrite cannot be less than 1, 224 kg mm−2. Regarding the reported
values in the higher range (2,000–3,600 kg mm−2), it was speculated [4.90] that
these differences may be due to different loads employed by different workers
but a systematic study at different loads was not made.

Such a study was carried out by Thirmal Rao and Sirdeshmukh [4.93].
The microhardness was found to be load dependent. The values, ranging
from 2, 000 kg mm−2 at higher loads to 6, 000 kg mm−2 at lower loads, lie on a
smooth curve (Fig. 4.18). It is indeed observed that the several values in the
higher range reported earlier are close to the values obtained in the present
measurements at different loads, thus supporting the conjecture that the scat-
tering in earlier values may be due to differences in loads employed by different
workers.

This is a ‘d’-type load variation. A plot of P vs. d2 gives a straight line with
an intercept W and slope (HV/1854.4). For FeS2 this plot gives a value of 37 g
for W . As mentioned earlier, W represents the minimum load to be employed
to obtain an indentation. It was verified that no indentation could be observed
up to loads of 36 g. A value of 1, 743 kg mm−2 for HV is obtained from the
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Fig. 4.18. Values of microhardness (HV) of pyrite (FeS2) at different loads (P ); O
observed, • corrected

slope of the plot. As a check, HV can also be calculated by substituting the
value of W in (4.14). These corrected values are shown in Fig. 4.18. It is seen
that within experimental error the apparent load variation has disappeared.
Further, these values agree with the value obtained from the slope. The true
microhardness of pyrite is 1, 785±100 kg mm−2 corresponding to a hardness of
8 on the Mohs scale. Mineralogical texts [4.94,4.95] quote the Mohs hardness of
pyrite as 6–6.5. Since hardness is used for routine characterisation of minerals,
it is necessary to replace the old erroneous values with the new value (8 on the
Mohs scale). This study points out that hardness results will be more reliable
if they are based on systematic load-variation studies.

The Case of Lithium Niobate (LiNbO3)

Lithium niobate is an optically important crystal which has been studied in
detail. There is a large scatter in the reported hardness values of lithium
niobate and also the load-variation reported in an earlier study is not nor-
mal. Chai [4.96] lists a value of 5 on the Mohs scale for the hardness of
LiNbO3which is equivalent to a value of 400 kg mm−2 on the Vickers scale.
Brown et al. [4.97] made Knoop hardness measurements on the (001) plane
at a single load of 50 gm and obtained an average value of 570 kg mm−2. It
may be mentioned that Knoop and Vickers hardness values generally agree
to within 5% [4.5]. Dhanraj et al. [4.98] reported measurements of Vickers
hardness on the (001) plane, using crystals grown by them, and obtained a
value of about 780 kg mm−2 at a load of 50 gm (same load as used in [4.97]).



4.4 Some of our Results 165

Fig. 4.19. Plots of hardness HV against load (P ) for LiNbO3

Thus, there is a scatter of values from 400 to 800 kg mm−2 in the reported
microhardness values.

The other discrepancy is related to the load dependence of hardness of
LiNbO3. Dhanraj et al. [4.98] observed that the microhardness of LiNbO3 has
value of 700 kg mm−2 at a low load of 20 g. In the load range 20–30 g, they
observed a steep increase in hardness to nearly 900 kg mm−2. At higher loads
they observed a decrease in hardness with a value of 600 kg mm−2 at 100 g. The
increase in hardness in the 20–30 g load range was attributed to work hard-
ening and the decrease at higher loads to plastic flow. This load-dependence
(Fig. 4.19) is at variance with several earlier observations. Furthermore, the
interpretation of the observed behaviour as due to two different deformation
mechanisms in different load regions would have new implications on the in-
dentation process in LiNbO3. In view of these discrepancies, a systematic
study of the hardness of LiNbO3 was undertaken by Subhadra et al. [4.99]
who used two crystals of LiNbO3 of different origins, one of the crystals being
from the same batch as used in [4.98]. A crystal of Fe-doped LiNbO3 was also
included in the study.

Pure lithium niobate (LiNbO3) crystals (labeled A) were grown at the
Indian Institute of Science, Bangalore, by the Czochralski method. They were
oriented, cut and polished to reveal the (001) plane. Crystals of pure LiNbO3

(labeled B1) and LiNbO3 doped with 0.02 wt% Fe (labeled B2) were grown by
the same method at the Solid State Physics Laboratory, Delhi, and had the
same orientation as crystal A. Hardness measurements were made on the (001)
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Table 4.11. Load correction (W ) and true hardness (HV) of LiNbO3 [4.99]

Material Sample code W [g] HV [ kg mm−2]

Pure LiNbO3 A 4 630 ± 30
Pure LiNbO3 B1 7 620 ± 30
0.02% Fe-doped LiNbO3 B2 6 750 ± 50

plane at several loads in the range 15–200 g. Though hard, LiNbO3 crystals
are brittle. As a result, cracks show up in indentations made at loads above
100 g. With some care, measurements could be made up to 200 g on samples
A and B1 whereas in sample B2 the tendency to crack formation was more
and measurements were limited to 100 g. The measured hardness values at a
given load are consistent among themselves within 2%.

The variation of hardness with load is shown in Fig. 4.19. The observed
load dependence is of type ‘d’. The load-independent behaviour is seen to
occur beyond 100 g in samples A and B1; in sample B2, the load independent
region is not reached as measurements were limited to 100 g. These results
are analysed following the method discussed earlier for ‘d’ type variation. The
values of the load correction W obtained from the P − d2 plots are given in
Table 4.11. The values of the true hardness (HV) are also given in Table 4.11.

The type of two-regime P − HV plot, i.e. HV increasing up to some load
and then decreasing, observed in [4.98] has not been observed in these mea-
surements. Instead, the P − HV plots for all the three crystals are smooth
monotonous curves showing the same trend viz. a large hardness value at low
loads, followed by a steep fall with increasing loads, with a slower fall at still
higher loads.

Based on measurements on two crystals of different origin, the true hard-
ness value of LiNbO3 is estimated as 630 ± 30 kg mm−2 on the Vickers scale
and 5.6 on the Mohs scale. The value of 570 kg mm−2 [4.97] at 50 g load, and
the value of 600 kg mm−2 [4.98] at 100 g load reconcile with the present values.
The extreme values of 400 and 800 kg mm−2 referred to earlier, appear to have
resulted from some unidentified error.

Though the load vs. hardness plots for crystals A and B1 nearly converge
at high loads, there are large differences in the hardness values measured at
low loads (note values of 865 and 1, 000 kg mm−2 at P = 15 g for samples
A and B1 (Fig. 4.19). This re-emphasizes the point that hardness values of
different crystals can be compared only when they have been evaluated from
a systematic study of load variation.

These studies on load variation of hardness lead to the following conclu-
sions. Variations of type ‘c’ as well as type ‘d’ can be corrected by plotting
a P − d2 plot and recalculating the hardness by increasing P by a correction
W (type c) or decreasing P by a correction W (type d). In both cases, the
value obtained is close to the value read off from the flat part of the HV–P
curve (generally 50–100 g). If a flat region is reached the true hardness can be
obtained straight away. However, if the flat region is not reached even at high
loads (as in FeS2) or if higher loads cannot be applied due to crack formation
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(as in Fe-doped LiNbO3), a load correction becomes essential for obtaining
the true hardness.

4.4.2 Hardness and Bonding

It is mentioned in Sect. 4.1 that even in a pure (impurity free), well-annealed
(nearly dislocation free) crystal, the motion of a dislocation is resisted by the
chemical forces. This bestows an intrinsic hardness on the crystal. It follows
that the hardness of a crystal should reflect its bonding nature. In our work,
the hardness of a large number of crystals has been measured. This hardness
data will be analysed to obtain information on the nature of the bonding.

Crystals with the NaCl Structure

Thirmal Rao and Sirdeshmukh [4.100] pointed out that the hardness of the
alkali halides with NaCl structure decreases as the value of the lattice constant
increases and that a plot of these two parameters (Fig. 4.20) is a smooth curve.
Again, Sirdeshmukh et al. [4.18] plotted the values of the hardness of divalent
chalcogenides (Fig. 4.20) against the lattice constant and obtained a curve
similar to that for the alkali halides. It is well known that a weakening of the
interatomic bond-strength increases the lattice constant and decreases the
hardness. The HV –a plots are consistent with this idea but do not give any
further insight into the nature of the bonding.

The hardness will now be analysed in terms of the Gilman–Chin parame-
ter. Gilman [4.101] showed that in ionic crystals like alkali halides, the micro-
hardness HV correlates linearly with the elastic modulus S−1

11 . Gilman [4.62]
showed that a linear relation holds between HV and the shear elastic constant
C44 in the alkali halides and, by making several assumptions, obtained the
value of the proportionality constant. Chin [4.63] considered a large number

Fig. 4.20. Plots of lattice constant a vs. microhardness HV for: (a) alkali halides,
(b) divalent chalcogenides
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Table 4.12. Values of microhardness HV, the Gilman–Chin parameter HV/C44 and
effective ionic charge per electron (e*) for some crystals with NaCl structure [4.18]

Crystal HV [ kg mm−2] C44 [ kg mm−2] HV/C44 e* (HV/C44)(e*)2

TiC 2,896 1,7845 0.163 0.40 0.031
TaC 1,601 8,056 0.198 0.35 0.024
ZrC 2,701 1,4929 0.181 0.45 0.036
UC 900 6,598 0.136 0.44 0.026
LiF 103 6,404 0.016 0.87 0.012
NaF 64 2,855 0.022 0.93 0.019
NaCl 22 1,290 0.017 0.74 0.009
NaBr 13 1,035 0.013 0.69 0.006
NaI 10 740 0.014 0.71 0.007
KCl 13 642 0.020 0.80 0.013
KBr 10 518 0.019 0.76 0.011
KI 7 377 0.018 0.69 0.009
RbCl 9 484 0.020 0.84 0.014
RbBr 8 392 0.020 0.82 0.013
RbI 6 286 0.021 0.89 0.017
AgCl 9 628 0.015 0.69 0.007
MgO 400 15,439 0.026 0.55 0.008
MnO 252 8,056 0.031 0.54 0.009
NiO 575 10,707 0.054 0.42 0.009
CoO 315 8,158 0.039 0.44 0.007
MnS 140 5,303 0.026 – –
PbS 92 2,549 0.036 0.75 0.020
PbSe 51 1,621 0.031 0.70 0.015
PbTe 46 1,326 0.035 0.56 0.011
EuS 159 2,784 0.057 0.55 0.017
EuSe 119 2,325 0.051 0.48 0.012

of crystals with different structures and bonding and drew HV vs. C44 plots.
He showed that data points for ionic and covalent crystals cluster around two
distinctly different straight lines with slopes of 0.01 and 0.12. Data on micro-
hardness and the shear elastic constant for a large number of crystals with
NaCl structure are given in Table 4.12 along with values of the Gilman–Chin
parameter (HV/C44). The values of log HV and log C44 are also shown as a
plot in Fig. 4.21. Several interesting features can be noted from Table 4.12 and
Fig. 4.21.

Although all the crystals have the same structure, the data points do not
lie on a single log HV vs. log C44 plot, indicating that there is no unique value
for HV/C44 for this suite of crystals. In fact, the Gilman–Chin parameter
(HV/C44) has values ranging from 0.01 to 0.2. It is possible to draw straight
lines to represent the data points for three groups of crystals. In Fig. 4.21
line (a) represents the highly ionic alkali halides with NaCl structure and
also AgCl. The mean value of HV/C44 for this group is 0.018 which is 40%
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Fig. 4.21. Logarithmic plot of microhardness HV and shear modulus C44 for crystals
with NaCl structure: (a) alkali halides and AgCl, (b) chalcogenides, and (c) carbides
(H and C44 are in GPa)

larger than the value 0.013 given by Chin [4.63] for the alkali halides. The
data points cluster around this line with an e.s.d. of 0.003, i.e., about 15%.
The line (b) represents the chalcogenides. The mean value of HV/C44for this
group is 0.039. The data point for MgO, which deviated from the line for
alkali halides in Chin’s plot, is now close to this new line. The deviations of
the data points from the line are more severe than in the case of line (a) (note
that the plot is on log scale). This larger deviation is reflected in an e.s.d. of
0.011, i.e., about 35%. Lastly, the data points for the carbides are clustered
along line (c). This group of crystals has a much larger value of 0.169 for the
Gilman–Chin parameter. The e.s.d. is again, large with a value of 0.039, i.e.,
about 25%.

As mentioned earlier, all these crystals have the same structure. The dif-
ference in the value of HV/C44 for these three groups cannot be due to the
difference in the formal valency, since elementary considerations [4.62], show
that the formal valency affects HV and C44 in the same way and thus gets
cancelled out in HV/C44. Further, it is not possible to explain the large devi-
ations in the values of HV/C44 within each group, since each group has the
same formal valency.

It is known that the alkali halides are highly (though, not fully) ionic.
The chalcogenides are partially ionic and the carbides are highly (though,
not fully) covalent. It is conjectured that the difference in the mean values of
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the Gilman–Chin parameter for these three groups as well as the deviations
within each group are due to a continuous change in the bond type from
highly ionic to highly covalent as we scan across the whole group of crystals.
In other words, the change in the values of the Gilman–Chin parameter over
a wide range such as 0.01–0.2 is due to these crystals having different degrees
of ionicity.

For this purpose, it was considered worthwhile to seek a correlation be-
tween the values of (HV/C44) and the effective ionic charge e*. It is known
that e* is close to unity for highly ionic crystals, lesser than unity for partially
ionic crystals and still lower for covalent crystals. In Fig. 4.22, the values of
the Gilman–Chin parameter are plotted against e*. A broad correlation is
observed between the two parameters. The Gilman–Chin parameter assumes
large values for crystals with small values of effective charge i.e., low ionicity
and small values for crystals with larger values of e*, i.e., high ionicity. Fur-
ther, crystals with intermediate values for the Gilman–Chin parameter have
intermediate values of ionicity as indicated by the values of e*. Empirically, it
is observed that the product of HV/C44 and (e*)2 is a constant with a mean
value of 0.020 ± 0.015. The values of (HV/C44)(e*)2 do show some variation
(a factor of about five). This is much less than the variation in the values
of the Gilman–Chin parameter (a factor of 20) and also the variation in the
hardness values (a factor of 500). Hence, the product (HV/C44)(e*)2 may be
considered to be approximately constant.

Fig. 4.22. Plot of Gilman–Chin parameter (HV/C44) against the effective ionic
charge e*
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Table 4.13. Values of microhardness (HV), shear constant (C44) and Gilman–
Chin parameter (HV/C44) for some cubic crystals; hardness values for the nitrates
from [4.102] and the rest from [4.103]; C44 values from literature

Crystal Face on which hard-

ness was measured

HV [ kg mm−2] C44 [ kg mm−2] HV/C44

Sr(NO3)2 (111) 46 1,460 0.032

Pb(NO3)2 (111) 35 1,370 0.025

Ba(NO3)2 (111) 29 1,210 0.024

CaF2 (111) 185 3,450 0.054

SrF2 (111) 163 3,100 0.053

BaF2 (111) 149 2,400 0.062

PbF2 (111) 133 2,500 0.053

CdF2 (111) 153 2,100 0.073

EuF2 (111) 264 3,050 0.087

ThO2 (111) 750 8,100 0.092

NaClO3 (100) 107 1,179 0.091

NaBrO3 (100) 136 1,536 0.088

Bi4(GeO4)3 (100) 561 5,280 0.106

Bi4(SiO4)3 (100) 593 4,440 0.134

Bi12GeO20(BGO) (100) 372 2,600 0.143

Bi12SiO20(BSO) (100) 473

Some Miscellaneous Crystals

Vickers microhardness of 16 crystals with different structures has been
measured. The measurements were made only at single loads in the range
25–100 gm. The HV values are given in Table 4.13. The hardness values are
now analysed in terms of the Gilman–Chin parameter. It has been mentioned
in the preceding section that the Gilman–Chin parameter (HV/C44) has
values in the range 0.01–0.02 for highly ionic crystals, 0.03–0.05 for partially
ionic crystals and 0.1–0.2 for highly covalent crystals.

The values of the Gilman–Chin parameter are given in Table 4.13. For the
nitrates, the Gilman–Chin parameter has values close to 0.03 indicating a
highly ionic character. This is in agreement with inferences drawn from sev-
eral other physical properties [4.104]. The Gilman–Chin parameter has values
close to 0.06 for CaF2, SrF2, BaF2, CdF2 and PbF2, indicating a partially
ionic character. This is in agreement with other physical properties like lat-
tice energies [4.105] and thermal expansion [4.106]. In EuF2, ThO2, NaClO3

and NaBrO3, the value of the Gilman–Chin parameter is ∼0.09 which indi-
cates a partially covalent character. Finally, in Bi4(GeO4)3, Bi4(SiO4)3 and
BGO, the Gilman–Chin parameter is ∼0.13 which suggests covalency in these
compounds.
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Table 4.14. Values of the Vickers hardness HV, Mohs hardness HM , lattice constant
a, shear elastic constant C44, Gilman–Chin parameter (HV/C44) and the ionicity I;
hardness values from [4.107], C44 and a from literature

Sample Short

Symbol

HV

( kg

mm−2)

HM a(Å) C44

( kg

mm−2)

HV/C44 I

(4.20)

Gd3Ga5O12 GGG 1,350 ± 70 7.28 12.38 9, 220 0.146 0.75

Gd3Ga5O12 GGG (Nd) 1,300 ± 60 7.23

Y3Al5O12 YAG 1,700 ± 120 7.86 12.00 11, 730 0.145 0.71

Y3Al5O12 YAG (Nd) 1,740 ± 120 7.91

Gd3Sc2Ga3O12 GSGG (Nd, Cr) 1,250 ± 60 7.06 12.53 0.77

Eu3Ga5O12 EuGG 1,150 ± 50 6.91 12.50 7, 770 0.142 0.78

Y3Fe5O12 YIG 1,200 ± 60 7.0 12.38 7, 810 0.154 0.77

Nd3Ga5O12 NdGG 1,300 ± 65 7.19 12.50 8, 550 0.152 0.76

Y3Ga5O12 YGG (Nd) 1,500 ± 90 7.54 12.27 9, 740 0.154 0.73

Tb3Ga5O12 TbGG 1,600 ± 110 7.70 12.35 0.72

Pr2.96

Mn1.34Mg0.4

Zr0.4Ga2.9O12

}
Pr (Mn, Mg, 1,050 ± 50 6.70

Zr) GG

Sm2.6Ca0.31

Zr0.32Ga4.68O12

}
Sm (Ca, 1,250 ± 60 7.10

Zr) GG

Rare Earth Garnet Crystals

Rare earth garnets have a cubic structure [O10
h –Ia3d] with eight molecules per

unit cell. They have the general formula C3A2D3O12 where C, A and D denote
cations and O the oxygen ion. In the study by Sirdeshmukh et al. [4.107],
hardness measurements were made on 12 rare earth garnet samples including
some doped with 0.5% Nd, measurements were made on (111) planes. The
results are given in Table 4.14. The difference in HV between pure and Nd-
doped samples is within error limits. Hence, where only Nd-doped samples
were available, the measured hardness is taken to represent the hardness of
the pure crystal. The hardness values are analysed to derive information about
the binding.

The microhardness of the group of rare earth garnet crystals studied is
in the range 1,100–1,700 kg mm−2 (7.1–7.8 on the Mohs scale) which by itself
is indicative of strong interatomic binding. Within a group of related crys-
tals, the lattice constant is a measure of the strength of binding. Figure 4.23
shows a hardness vs. lattice constant plot for the rare earth garnets. The
data points are closely scattered about a line indicating decreasing hardness
with increasing lattice constant. Thus the variations of hardness and lattice
constant within the group are mutually consistent. The HV vs. a plot does
not yield any further information. The values of the Gilman–Chin parame-
ter (HV/C44) for the rare earth garnets, for which elastic constant values are
available, are given in Table 4.14. The values are in the range 0.14–0.15. This
indicates a high degree of covalency in the binding in these garnets.
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Fig. 4.23. Plot of hardness HV vs. lattice constant a for rare earth garnets

The Gilman–Chin parameter merely helps to distinguish between different
bond types. A different approach makes it possible to estimate the degree of
ionicity (I) (or the degree of covalency) from hardness values. Pillay [4.61] con-
sidered the hardness of several compounds with known ionicity and obtained
the empirical relation

HM = −15.79I2 + 11.33I + 7.63. (4.20)

This equation is valid for a wide range of materials. The ionicities of rare earth
garnets estimated using (4.20) are given in Table 4.14. The ionicity values
range from 0.71 for YAG to 0.78 for EuGG. These values are considerably
less than the ideal value of 1 for purely ionic crystals and are indicative of a
high degree of covalency. Further, these values are comparable with the values
for several silicates [4.61], which are known to be highly covalent.

Some light can be thrown on what is responsible for the high degree of
covalency in these garnets. There are three cation–anion bonds in the garnets
corresponding to the tetrahedral (or d) sites, octahedral (or a) sites and dodec-
ahedral (or c) sites. Most of the physical properties of garnets are essentially
determined by these bonds. Hofmeister and Campbell [4.108] calculated the
compressibility of rare earth garnets from a formula by Brout [4.109] formula
which involves the infrared frequencies and the three afore-mentioned bond
lengths. Since the calculated values of the compressibility were found to be
close to the experimental values, it may be inferred that the three cation–
anion bonds play a role in determining the mechanical properties of the rare
earth garnets. These bonds should be expected to play a role in determin-
ing the hardness also. Chin [4.110] has shown that covalently bonded crystals
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follow the empirical relation

C44 = 5.28 × 105r−5, (4.30)

where r is the length of the covalent bond involved. Since the Gilman–
Chin parameter (HV/C44) has a value of 0.15 for YAG, (4.30) may be modified
to

HV = 0.15 × 5.28 × 105r−5. (4.31)

The average cation–anion distance in YAG is 2.18 Å [4.111]. Substituting this
value in (4.31), we get a value of 1,500 kg mm−2 for the hardness of YAG which
may be compared with the experimental value of 1,700 ± 120 kg mm−2. This
agreement is fair, considering the approximations involved. Thus the cation–
anion bonds in the rare earth garnets appear to be responsible for the large
hardness and also, for the high degree of covalency in these crystals.

Crystals with Potassium Dihydrogen Phosphate Structure

Potassium dihydrogen phosphate (KDP) and its isomorphs are tetragonal
with space group I 4̄2d. Microhardness measurements on seven crystals with
the KDP structure were made [4.112] and the results are discussed in terms
of bonding and structural features. The natural habit of these crystals is a
tetragonal prism combined with a tetragonal bipyramid. The prism faces were
used for hardness measurements in the a-direction. For measurements in the
c-direction, the crystals were cut along the a-direction and the resulting (001)
faces were polished. The microhardness measurements were made at loads of
50 and 100 g. Measurements were made on the (100) and (001) faces in the
case of KDP, KDA, RbDP, RbDA, CsDP and ADP. The dimensions of the
ADA crystal were such that measurements could be made only on the (100)
face (i.e. in the <100> direction). The results of the measurements are given
in Table 4.15, each value being the mean of several values. The deviations from
the mean values are of the order of ±5 kg mm−2.

The microhardness values (HV) for these crystals are in the range
80–150 kg mm−2. On the Mohs scale, the values are in the range 3–4. These
crystals are thus a little harder than the alkali halides and are comparable
in hardness with the alkaline earth oxides or the alkaline earth fluorides
[4.17].

Haussuhl [4.113] has determined the elastic constants and has calculated
the linear compressibilities in the a- and c-directions for five of these crys-
tals. In the case of RbDP, ADP and ADA, the linear compressibility is less
in the a-direction than in the c-direction. Khan and Baur [4.114] pointed
out that the coefficient of linear expansion is less in the a-direction than
in the c-direction in the case of the potassium and rubidium salts. Further,
they suggested that the O–H–O bonds which are almost parallel to the basal
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plane make the structure strong in the a direction. The hardness in the a-
direction is, in general, more than that in the c-direction indicating that the
structure is stronger in the former than in the latter direction. However, the
anisotropy in hardness is not pronounced. In fact, the difference in the hard-
ness in the two directions is only slightly greater than the limits of error. As
such, with due hesitation, the larger hardness in the a-direction is attributed
to the role of the O–H–O bonds. Khan bonds. Khan and Baur [4.114] also
attribute the relatively low thermal expansion of the ammonium compounds
to the presence of the N–H—O bonds. But, the value of HV for the crystals
of the ammonium salts is distinctly less than that for the other crystals. Thus
the N–H—O bonds not appear to contribute to the hardness. Adhav [4.115]
measured the piezoelectric constants of these crystals and observed a system-
atic difference in the values of the piezoelectric constants of the phosphate
crystals and their arsenate counterparts; Adhav [4.115] attributed this dif-
ference to the difference in strength of the P–O bond and the As–O bond.
However, from the bond distance vs. bond strength relationship proposed by
Brown and Shannon [4.116], Khan and Baur [4.114] pointed out that the
strength of these two bonds is nearly the same. In any case, we have not ob-
served any systematic difference in the hardness of the phosphate and arsenate
crystals.

The KDP structure can be looked upon as a polar structure consisting of
the K+ and (H2PO4)− ions. Considering the interaction between these ions,
Hartman [4.117] could explain the growth habit of these crystals. Following
Hartman’s method, Kishan Rao and Sirdeshmukh [4.112] calculated the lattice
energy Uof these crystals. The values are included in Table 4.15. The lattice
energy values are given for unit volume (the ‘volumetric lattice energy’ [4.17]).
It can be seen that there is a correlation between the average hardness (HV)
and lattice energy per unit volume (U/V ), HV being greater for crystals with
higher UV. The gross hardness of these crystals thus seems to be determined
by the ionic bond.

Table 4.15. Values of microhardness (HV) and lattice energy per unit volume
(U/V ) for crystals with KDP structure [4.112]

Crystal
HV [ kg mm−2]

U/V [kcal mol−1 cm−3]
a-Direction c-Direction Average

KDP 145.5 132.0 138.7 2.354
KDA 145.2 145.5 145.5 2.126
RbDP 111.3 97.6 104.4 2.060
RbDA 119.5 93.0 106.2 1.869
ADP 89.0 83.3 86.1 1.978
ADA 75.8 – 75.8 1.802
CsDA 101.9 84.0 92.9 1.608
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Table 4.16. Values of k and m (4.33) for some alkali halides [4.90]

Crystal k M

RbCl 0.023 1.95
RbBr 0.79 0.35
RbI 0.020 2.00
NaF 2.13 0.95

4.4.3 Radiation Hardening

Some results on effect of irradiation on hardness of crystals have been dis-
cussed in Sect. 4.3. We have studied the effect of: (a) γ-ray irradiation on
the hardness of some alkali halides and (b) X-ray irradiation on hardness of
sodium bromate.

Studies on Alkali Halides

Reference has been made to the effect of irradiation on the hardness of crystals.
It was pointed out that hardening has been observed in NaCl and the potas-
sium halides irradiated with X-rays. Several alkali halides have been studied
using flow stress as the probe. The rubidium halides have not received any
attention.

Thirmal Rao [4.90] undertook a study of the effect of γ-ray irradiation on
the hardness of RbCl, RbBr, RbI and NaF. γ-ray irradiation produces colour
centers in alkali halides. The concentration nF of color centers was estimated
from the Smakula formula [4.118]

fnF = 1.37 × 1017[n
/
(n2 + 2)2] × ∆ × αmax/cm3, (4.32)

where f is the oscillator strength, n the refractive index, ∆ the half width of
the F-band (in eV) and αmax the absorption coefficient at the F-band peak
(in cm−1).

In Fig. 4.24 the increase in hardness (∆H) is plotted against nF, the con-
centration of F-centres. It is observed that the hardness increases with the
concentration of F-centres in all the four alkali halides. Assuming that the
relationship can be described by a general equation of type

∆H = k nm
F (4.33)

the data was processed to obtain the value of the hardening parameter k and
the index m. The values of k and m are given in Table 4.16.

The hardening parameter k has values ranging from 0.02 to 2(kg mm−2).
The rubidium halides have low values of k compared to NaF which has the
highest value. The index ‘m’ has values ranging from 0.35 to 2.0. While observ-
ing a strong correlation between the flow stress and F-centre concentration,
Nadeau [4.46] suggested that other factors like interstitials, colloids, clusters
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Fig. 4.24. Plot of increase in hardness (∆H) vs. F-centre concentration nF

may also contribute to the hardening. Boyarskaya and Zhitaru [4.47] also
suggested that defects other than F-centres may contribute to the observed
hardening. Aerts et al. [4.44] suggested the formation of colloids in the surface
layers and their possible effect on the hardness. The deviation of the values
of m from crystal to crystal could be due to the role of radiation-induced
defects other than F-centres which may differ from crystal to crystal in type
and concentration.

Studies on NaBrO3

Sodium bromate (NaBrO3) belongs to the cubic tetrahedral class with point
group 23. NaBrO3 is considerably susceptible to X-ray and γ-ray irradiation
and is reported to break into fragments on prolonged irradiation [4.119]. The
radiation damage in this crystal has been studied using optical absorption,
Raman spectroscopy and ESR techniques [4.119–4.121]. There is no report on
the effect of irradiation on the hardness. Kishan Rao and Sirdeshmukh [4.122]
undertook measurements of microhardness of NaBrO3 crystals subjected to
X-ray irradiation. Optical absorption and dislocation density measurements
were also made.

Measurements were made on the (111) planes. Hardness measurements
were made with a Vickers hardness tester at a load of 50 g. The irradiation
was carried out with X-rays from a copper target tube operated at 30 kV and
10 mA.

For the determination of the dislocation density, the crystals were etched
with an etchant made of eight parts of glacial acetic acid and two parts of
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Fig. 4.25. Dependence of hardness (HV) of NaBrO3 on time (t) of irradiation

formic acid containing 3 mg cm−3 of cupric nitrate. The absorption spectra
were recorded on a model MPS 5000 Shimadzu UV–visible spectrophotometer.

The variation of microhardness with time of irradiation is shown in
Fig. 4.25. The hardness of the unirradiated crystal is 137 ± 2 kg mm−2. It
can be seen that the microhardness initially increases with time of irradiation
and tends to assume a constant value after about 20 h.

Hardness is a measure of the resistance offered by a crystal to the move-
ment of dislocations. Defects like impurities impede the movement of a
dislocation. If the dislocation density is high, the motion of a given mobile
dislocation may be affected by the presence of other dislocations. Thus, the
observed increase in hardness of NaBrO3 could be attributed either to an in-
crease in dislocation density or to creation of defects which have their origin
in radiolysis or to both the mechanisms.

The crystals were etched, as described, before irradiation. An etched sur-
face of an unirradiated crystal is shown in Fig. 4.26a. Triangular etch pits can
be observed. The dislocation density (obtained by counting the etch pits in a
given area) was about 5 × 104 cm−2. The crystal surface was lightly polished
to remove a few layers, the crystal was irradiated for 20 h and etched again.
The etched surface of the irradiated crystal is shown in Fig. 4.26b. Most of
the pits present in Fig. 4.26a can be seen in Fig. 4.26b and there is no change
in the dislocation density. Thus, the observed increase in hardness is not due
to any increase in dislocation density.

X-ray irradiation of NaBrO3 causes the breaking up of the BrO3 ion into
several radiolysis products like BrO−, Br2 and O−

3 . The presence of O−
3 has

been clearly proved from Raman spectra of irradiated NaBrO3 [4.119].The
BrO− fragment gives a band at 330 nm in the absorption spectrum of the
X-ray irradiated crystal [4.120]. This is a stable band which is not bleached
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Fig. 4.26. Dislocation etch pits on (111) surface of NaBrO3 (a) before and (b) after
irradiation

Fig. 4.27. Relation between hardness HV of NaBrO3 and optical absorption coef-
ficient (α) at 330 nm for different irradiation times

by visible light. Absorption spectra were recorded for unirradiated crystals
and for crystals irradiated for different times. The absorption coefficient (α)
at 330 nm is taken as a measure of the population of BrO− in the irradiated
crystal. The microhardness and optical absorption measurements are made on
a given crystal irradiated for a given time. Such measurements are repeated for
increasing irradiation time. The values of the hardness (HV) and absorption
coefficient (α), thus obtained, are plotted in Fig. 4.27. A monotonous linear
relationship is seen indicating an increase in both HV and α as the irradiation
increases. A similar correlation might also exist between the hardening and
the population of other radiolysis products. Thus, the observed increase in
hardness is not due to any increase in the dislocation density but appears to
be caused by the radiolysis products which remain dispersed in the crystal
and obstruct the motion of dislocations.
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4.4.4 Hardness of Doped Crystals

Important observations on the effect of doping on the hardness of host crystals
have been referred to in Sect. 4.3; doping, generally, enhances the hardness.
The increase in hardness depends on the type and concentration of the dopant
as well as on the host crystal. In this section, we present our results on the
effect of strontium on the hardness of the rubidium halides.

While there is a good amount of work on the work on the hardness of doped
sodium, lithium and potassium halides (see Sect. 4.3), there is no work on the
impurity-hardening of rubidium halides. The rubidium halides have useful
infrared transmission characteristics and have, recently, been found [4.123] to
be efficient X-ray information storage sensors. The utility of alkali halides as
device materials is limited by their low hardness. Among the alkali halides for
which hardness data is known, the rubidium halides have the lowest hardness.
As such, a study of the hardness of rubidium halides doped with different
concentrations of Sr2+ was undertaken by Sirdeshmukh et al. [4.124].

The results are given in Table 4.17 and are also shown in Fig. 4.28. It is seen
that the hardness increases with increase in concentration C of the dopant.
The results were fitted to the relation

∆HV = k′ Cm′
, (4.34)

where ∆HV is the enhancement in hardness and k′ and m′ are constants;
values of k′ and m′ are given in Table 4.18. On comparing these results with
earlier results [4.41] on the hardness of sodium and potassium halides, it is

Table 4.17. Values of Vickers hardness (HV) for the rubidium halides at different
concentrations C of the Sr2+ ions

Crystal C[mol%] HV [ kg mm−2]

RbCl 0 9.50
0.27 15.75
0.40 17.82
0.59 19.30
0.83 22.50

RbBr 0 8.10
0.31 12.40
0.46 13.61
0.75 15.52
1.27 18.30

RbI 0 6.01
0.13 8.58
0.21 9.00
0.35 10.61
0.58 11.81
0.85 13.01
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Fig. 4.28. Hardness (HV) as a function of concentration C of Sr2+ ions in rubidium
halide crystals

Table 4.18. Values of the constants k′ and m′ in (4.34)

Crystal k′ [ kg mm−2] m′

RbCl 14.36 ± 1.00 0.63 ± 0.05
RbBr 8.96 ± 1.00 0.60 ± 0.05
RbI 8.15 ± 1.00 0.62 ± 0.05

noted that the observed value of m′ (∼0.6) is close to the value of 0.5 obtained
by Chin et al. [4.41] and, theoretically, by Gilman [4.42]. On the other hand,
the hardening is dependent on the host lattice increasing in the sequence
RbI—RbBr–RbCl, unlike in the case of the sodium and potassium halides.

Gilman [4.42] proposed a theory in which hardening is associated with the
change in electrostatic energy that occurs when a moving dislocation shears a
divalent ion–cation vacancy complex. According to this model, the hardening
is proportional to κ C1/2 where the hardening coefficient, κ, is given by

κ = 4.7 e2(εs a4)−1, (4.35)

here, e is the electron charge, εs the static dielectric constant and a the lattice
constant of the host crystal and C the concentration of the impurity. As
Gilman’s immediate interest was in providing an explanation for the results
of Chin et al. [4.41], he adopted the unusual procedure of assuming average
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values for the static dielectric constant and the lattice constants of the four
alkali halide crystals (NaCl, NaBr, KCl, KBr) and obtained an average value
for κ which was in fair agreement with the experimental value.

Chin et al. [4.41] have concluded that the impurity hardening observed
by them in their study of sodium and potassium halides is independent of
the host crystal. However, a close look at their diagrams reveals that the
data points for each crystal lie on different plots with slightly different slopes
which means that the hardening is not altogether independent of the host
lattice. Further, calculation of the term (εsa

4)−1 for the rubidium halides using
individual values for εs and a (in Å) from literature [4.19] yields values 1.1, 0.96
and 0.73 (all in 10−4) for RbCl, RbBr and RbI, respectively indicating that
the hardening expected from Gilman’s theory is host-dependent increasing in
the sequence RbI–RbBr–RbCl. Our results are thus consistent with Gilman’s
theory.

4.4.5 Hardness of Mixed Crystals

The hardness of several mixed crystal systems has been studied as a function
of their compositions. Typically, the hardness is a non-linear function of the
composition with positive deviations from linearity. In most of the systems,
the hardness of mixed crystals in the equimolar region is larger than the
hardness of either end members. These results will be discussed in detail in
Chap. 7.

4.4.6 Empirical Relations with other Physical Properties

The hardness of crystals correlates with several other physical properties.
Some of these have been mentioned in Sect. 4.3. Here we shall consider some
new relations.

Sirdeshmukh et al. [4.125] showed the existence of the following relations
between hardness H of the alkali halides and their Debye–Waller factors B,
the melting point Tm, and the compressibility ψ.

HM − C1 = C2(B/a), (4.36)

HM − C3 = C4(Tm/a3) (4.37)

and
HM − C5 = C6 ψ−1. (4.38)

where HM is the Mohs hardness and a is the lattice constant. The Ci’s are
constants. The corresponding plots are shown in Figs. 4.29–4.31. Sirdeshmukh
et al. [4.125] showed that these relations have a physical basis. For some
crystals for which data is not available, the values of HM were estimated from
these relations.
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Fig. 4.29. Plot of hardness HM vs. (Tm/a3) for alkali halides

Fig. 4.30. Plot of hardness HM vs. (1/Ba) for alkali halides

The relationship between hardness (HV) and the Debye temperature θ is
given by

θ = cH
1/2
V V 1/6 M−1/2, (4.39)

where c is a constant, V the molar volume and M the molar mass. This relation
has been used by several authors to estimate HV from θ or θ from HV. The
hardness of some rare earth metals was measured with a Leitz indenter and
the hardness was estimated from the flat part of the load-hardness curve (see
Sect. 4.4.1). The values of the true hardness are given in Table 4.19 along with
literature values. As a check on these values, the hardness was calculated from
(4.39) using a value of 5 × 10−5 for the constant. The Debye temperatures
are taken from Chap. 3. The resulting values are given in Table 4.19. It is seen
that there is fair agreement between these values and the experimental values.
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Fig. 4.31. Plot of hardness HM vs. (1/ψ) for alkali halides

Table 4.19. Hardness of some rare earth metals

Metal
Vickers hardness [ kg mm−2]

Experimental [4.126] Calculated from (4.39) Others [4.127]

Dy 71 78 39–99
Gd 69 79 33–74
Er 116 104 42–135
Y 88 79 38–130

Also the measured values as well as those calculated from (4.36) are within
the range of values quoted by Scott [4.127].

4.4.7 Temperature Variation of Hardness

Using the method of relative hardness, the temperature variation of hardness
has been studied in NaCl and KCl by Kishan Rao and Sirdeshmukh [4.128]
and in CaF2, SrF2 and BaF2 by Kishan Rao and Sirdeshmukh [4.129]. The
hardness is shown as a function of temperature in Fig. 4.32. In all cases, the
hardness decreases with increasing temperature, first steeply and then slowly.

For the temperature variation of hardness of metals, Ito [4.130] and
Shishokin [4.131] proposed an empirical relation

H = A exp (−bT ), (4.22)

where A and B are constants. Merchant et al. [4.66] proposed an Arrhenius
equation

H = A′ exp (b′/T ), (4.23)

where A′ and B′ are constants. Gilman [4.12] proposed

H/H0 = 1 − 2kBθ/U [coth (θ/T ) − 1] (4.24)
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Fig. 4.32. Variation of relative hardness (H) with temperature: (a) NaCl and KCl
(b) CaF2, SrF2 and BaF2

Fig. 4.33. Plot of log H against temperature T for NaCl and KCl

for the temperature variation of microhardness of silicon. Here H0 is the hard-
ness of the crystal at 0 K, kB the Boltzmann constant, θ the characteristic
temperature and U the energy barrier for plastic flow at 0 K. (4.24) may be
written in a linear form:

H = A′′ − b′′coth (θ/T ) (4.40)

with a′′ = H0 + 2kBθ H0/U and b′′ = 2kBθ H0/U .
An attempt is made to assess the applicability of the relations given above

to the alkali halides and fluorite type crystals. It can be seen from (4.22),
(4.23) and (4.40) that plots of: (a) log H vs. T , (b) log H vs. T−1 and (c) H
vs. coth (θ/T) should be linear. This has been done for NaCl and KCl. For
plotting (c) θ is taken as the Debye temperature and values of 281 and 231 K
have been used for NaCl and KCl, respectively [4.118]. The three plots are
shown in Figs. 4.33–4.35. The plots are linear with some scattering of data
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Fig. 4.34. Plot of log H against (1/T ) for NaCl and KCl

Fig. 4.35. Plot of hardness H against coth(θ/T ) for NaCl and KCl

points. By least square fitting the values of (A, b), (A′, b′) and (A′′, b′′) have
been obtained; these are given in Table 4.20 along with their standard errors.
It can be seen that for both the crystals the data fit (4.22) with least errors.
Next is (4.40). The fit with (4.23) is the poorest. However, it is not possible to
draw conclusions about the relative merits of these relations very forcefully in
view of the limited accuracy of the present experimental method. Equations
(4.22) and (4.40) can therefore be considered to represent empirically the
variation of the hardness with temperature for the alkali halides. In the case
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Table 4.20. Values of parameters in (4.22, 4.23, 4.39)

Crystal
log H vs. T log H vs. T−1 H vs. coth (θ/T )

A B A′ b′ A′′ B′′

NaCl 5.02 ± 0.29 0.0057 ± 0.0004 0.35 ± 0.55 1,135 ± 235 108.7 ± 13.1 42.76 ± 6.67

KCl 3.43 ± 0.14 0.0025 ± 0.0002 1.08 ± 0.21 1,197 ± 92 54.21 ± 4.17 14.30 ± 1.79

CaF2 6.58 0.0055

SrF2 7.26 0.0073

BaF2 5.95 0.0045

of the crystals of the fluorite type, the data were fitted only to (4.22); the
values of A and b are included in Table 4.20.

4.4.8 Surface Hardness of Crystals

There is considerable interest in the hardness in the surface region
(depth ∼0.001 µm). Information on this aspect is meager and also con-
flicting. A systematic study of dynamic hardness of crystals in the ultra-
and microload range was undertaken by Sirdeshmukh et al. [4.132]. Fifteen
crystals belonging to five different structures with their bonding varying
from ionic to partially covalent to covalent were studied. The measurements
were made by using the Shimadzu dynamic ultrahardness tester DUH 202
described in Sect. 4.2.2.

The results are examined with the following objectives: (a) Is the surface
hardness definitely larger than the bulk hardness? (b) Does surface hardness
satisfy the correlations with other physical properties observed with micro-
hardness? (c) Does surface hardness show any structural dependence?

Typical results on depth variation are shown in Fig. 4.36. The depth vari-
ation is non-linear. In Fig. 4.37 a log HDU–log h plot is shown. This plot is
nearly linear with slight non-linearity at low depths. The low-load region can
be fitted to an equation of the type

log HDU = −m log h + log c, (4.41)

which leads to the following law of depth variation:

HDU = ch−m. (4.42)

The values of c and m are given in Table 4.21. Also given in the table are
the surface hardness HS obtained by extrapolation of (4.42) to h = 0.001 µm
(∼10 Å), the bulk hardness value HB and the surface hardness coefficient
δ = HS/HB.

From the data in Table 4.21, the following conclusions can be drawn:

(1) In all cases HS � HB. In fact, HS is larger than HB by an order.
(2) The value of the index m is of the order 0.3–0.5
(3) In four cases δ is in the range 3–20. In eleven crystals, it has a much larger

value (20–40)
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Fig. 4.36. A typical plot of HDU as a function of depth (h)

Fig. 4.37. Plot of log HDU vs. log h corresponding to data in Fig. 4.36

In Table 4.22, data on some physical properties needed to obtain correla-
tions are given. These are: the interatomic distance (r), the surface energy
and the effective ionic charge (q*). The effective ionic charge q* indicates the
bonding in the crystals, having values close to unity for highly ionic crystals
and having low values for covalent crystals.

The interatomic distance is a useful scaling parameter. Many physical
properties like compressibility, elastic constants and Debye temperature form
smooth correlations with the interatomic distance [4.19]. The microhardness
of a family of crystals correlates with the interatomic distance (Sect. 4.4.2). In
Fig. 4.38, the surface hardness HS is plotted against the interatomic distance.
It can be seen that the HS vs. r plots for each structural family are linear
with HS decreasing as r increases. Since we have only one sample (Si) with
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Table 4.21. Values of bulk hardness HB , coefficients c and m of (4.42), surface
hardness HS , and the surface hardening coefficient δ

Crystal Plane c m HS [ kg mm−2] HB [ kg mm−2] δ

NaCl structure
NaF 100 67 0.44 1,400 65 21.5
NaCl 100 14 0.55 625 26 24.1
KCl 100 11 0.53 428 11 38.9
KBr 100 15 0.44 313 9 34.8
RbCl 100 14 0.49 413 10 41.3
RbBr 100 20 0.40 317 8 39.6
PbS 100 138 0.42 2,511 78 32.2
CsCl structure
CsBr 100 27 0.40 425 21 20.2
CsI 100 33 0.36 400 12 33.3
CaF 2 structure
CaF2 111 160 0.44 3,342 160 20.9
SrF2 111 257 0.35 2,883 154 18.7
BaF2 111 73 0.49 2,145 71 30.3
Zinc blende and diamond structure
CdTe 111 83 0.45 1,858 54 34.4
GaAs 111 452 0.32 4,122 724 5.7
Si 100 678 0.28 4,690 1228 3.8

diamond structure, we have associated the data point with the plot for the
closely related family of cubic ZnS-type crystals. The PbS data point deviates
from the plot for the crystals with NaCl structure. This may be because
PbS is a divalent crystal unlike the rest of the NaCl-type crystals which are
monovalent.

Upit and Varchenya [4.79] suggested a correlation between the microhard-
ness and surface energy of alkali halides; very few crystals were considered due
to lack of data on surface energy. Intuitively, it is felt that the surface energy
should be correlated with the surface hardness rather than the bulk hard-
ness. In Fig. 4.39, a plot of surface energy (σ) vs. the surface hardness (HS)
is shown. In the absence of experimental values of surface energy, we have
considered the theoretically calculated values. The plot is non-linear with HS

increasing as σ increases.
To examine the factors on which the surface hardening coefficient (δ =

HS/HB) depends, the values of δ are plotted against log HB in Fig. 4.40. In
spite of large scattering, a linear trend can be seen with δ decreasing as HB

increases. Here again, the data point for PbS deviates from the plot for crystals
with NaCl structure. Similarly, a plot between the effective ionic charge q*
and log δ (Fig. 4.41) indicates reduction in δ as q* decreases. Fig. 4.40 shows
that surface hardening is more for soft crystals than for hard crystals while
Fig. 4.47 shows that δ is more for ionic crystals and less for partially ionic and
covalent crystals.
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Table 4.22. Data for correlation

Crystal (r) [Å] [4.133] q* [4.19,4.134,4.135] σ [erg cm−2] [4.136,4.137]

NaCl structure
NaF 2.310 0.83 221
NaCl 2.814 0.77 158
KCl 3.146 0.81 145
KBr 3.300 0.78 130
RbCl 3.291 0.83 140
RbBr 3.427 0.80 125
RbI 3.671 0.77 110
PbS 2.968
CsCl structure
CsBr 3.720 0.82
CsI 3.955 0.78
CaF 2 structure
CaF2 2.364 0.833 543
SrF2 2.511 0.875 437
BaF2 2.672 0.896 393
Zinc blende and diamond structure
CdTe 2.80 0.74
GaAs 2.44 0.51
Si 2.34 0.0

Fig. 4.38. Plot of r vs. HS

Different structural families appear to have different ranges of HS values.
There is some overlapping between the ranges of different groups. Thus, crys-
tals with CsCl structure have HS values of the order of 400 kg mm−2, whereas
crystals with NaCl structure have values ranging from 300 to –2,500 kg mm−2.
Crystals with CaF2 structure have HS varying from 2,000 to 3,000 kg mm−2.
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Fig. 4.39. Plot of σ vs. HS

Fig. 4.40. Plot of log HB vs. δ

Crystals with the ZnS and diamond structure have the highest HS values
ranging from 2,000 to 4,700 kg mm−2.

With regard to the observed correlations, the HS vs. r plots (Fig. 4.38)
resolve into separate plots for each structure. The same applies to the log HB

vs. δ plot (Fig. 4.40). On the other hand, there is no structure-wise resolution
in the HS vs. σ lot (Fig. 4.39) and the q* vs. log δ plot (Fig. 4.41).
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Fig. 4.41. Plot of q* vs. log δ

4.4.9 Anisotropy of Hardness

Some observations on the anisotropy of hardness have been referred to in
Sect. 4.3. In this section, some of our results on anisotropy will be discussed.
In the case of crystals with KDP structure the anisotropy was studied by
measuring Vickers hardness on different faces. In all other cases, the anisotropy
was studied by measuring Knoop hardness with the long axis of the Knoop
indenter set at different angles (φ) with reference to the <100> direction on
the (100) plane.

Hardness Anisotropy vis-à-vis Point Group Symmetry

The variation of hardness with the orientation of the indenter on the (100)
plane for several crystals has been studied [4.100, 4.138]. The variation is
shown in Figs. 4.42 and 4.43. In the case of the three rubidium halides and
PbS which have NaCl structure and in NH4Cl which has the CsCl structure,
the polar diagram shows a maximum at φ = 0◦, 90◦ and 180◦ i.e. the feature
repeats after 90◦. Thus, the hardness shows a fourfold symmetry. The first
four crystals as well as NH4Cl have m3m point group in which the (100)
face has a fourfold symmetry. On the other hand, in NaClO3, NaBrO3 and
Ba(NO3)2, the maximum in hardness shows up at φ = 0◦ and 180◦. Thus,
the hardness anisotropy has twofold symmetry. NaClO3 and NaBrO3 have 23
point group and Ba(NO3)2 has m3 symmetry. In both these point groups, the
(100) plane has two fold symmetry. An interesting observation was made by
Kishan Rao and Sirdeshmukh [4.139] in the case of NaBrO3. Measuring the
Vickers hardness on the (111) and (1̄1̄1̄) faces, they found that the hardness
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Fig. 4.42. Plot of Knoop hardness HK against orientation φ

on these faces was different (137 kg mm−2 and 160 kg mm−2, respectively).
In this crystal which has 23 point group, there is no center of symmetry and
the two faces are not equivalent. Thus, the anisotropy of hardness is consistent
with the point group symmetry of the respective crystals.

Orientation Dependence of Hardness in NaCl Type Crystals

Thirmal Rao and Sirdeshmukh [4.100] measured the hardness of rubidium
halides corresponding to different orientations of the Knoop indenter and
found that the angular variation in hardness on the (100) plane of these crys-
tals can be represented by:

H(φ) = A + b cos2(2φ), (4.43)

where A and b are constants and φ is the angle between the direction of mea-
surement (direction of long axis of Knoop indenter) and the <100> direction.
The values of A and b for the rubidium halides are given in Table 4.23.

Hardness Anisotropy vis-à-vis Young’s Modulus Anisotropy

In Table 4.24 the experimental data on the hardness anisotropy (H100/H110)
are given for a number of cubic ionic crystals together with some related
information. H100 and H110 are the hardness values measured on the (100)
plane with the long axis of a Knoop indenter parallel to the <100> and <110>
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Fig. 4.43. Knoop hardness HK as a function of indenter orientation φ on (100)
faces of: (a) NH4Cl, (b) PbS, (c) Ba(NO3)2, (d) NaClO3 and (e) NaBrO3

Table 4.23. Values of A and b (in 4.43) for the rubidium halides

Crystal A[kg mm−2] b[kg mm−2]

RbCl 7.6 1.7
RbBr 7.4 0.9
RbI 6.6 0.7

directions, respectively. The crystals include those studied by us as well as
those studied by other workers. This appears to be all the information available
on hardness anisotropy in cubic ionic crystals. For most of the crystals listed
in the table H100/H110 is >1. However, for four crystals, LiF, MgO, MnO and
MnS, H100/H110 is <1.

Brookes et al. [4.72] concluded that materials having the same crystal
structure and common slip systems possess similar hardness anisotropy and,
on this basis, Hannink et al. [4.73] proceeded to predict slip systems from
the observed anisotropy in hardness. Chin et al. [4.75] pointed out that
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Table 4.24. Hardness anisotropy ratio (H100/H110), Young’s modulus anisotropy
ratio E100/E110 and related data for some cubic ionic crystals [4.90,4.140]

S. No. Crystal Structure Slip system H100 [kg mm−2] H100/H110 E100/E110

1 NaCl NaCl {110} < 1̄10> 17.0 1.11 1.20
2 NaBr NaCl {110} < 1̄10> – 1.17 1.28
3 KCl NaCl {110} < 1̄10> 9.5 1.24 1.90
4 KBr NaCl {110} < 1̄10> 8.1 1.28 2.05
5 KI NaCl {110} < 1̄10> 9.5 1.14 1.96
6 AgCl NaCl {110} < 1̄10> 6.3 1.23 1.63
7 MnS NaCl {110} < 1̄10> 122.0 0.86 –
8 LiF NaCl {110} < 1̄10> 96.0 0.93 0.78
9 MgO NaCl {110} < 1̄10> 400.0 0.51 0.80

10 MnO NaCl {110} < 1̄10> 252.0 0.88 0.77
11 CaF2 CaF2 {001} <110> 178.0 1.11 1.55
12 SrF2 CaF2 {001} <110> 154.0 1.10 1.36
13 BaF2 CaF2 {001} <110> 87.0 1.14 1.00
14 RbCl NaCl {001} < 1̄10> 9.3 1.23 2.20
15 RbBr NaCl {001} < 1̄10> 8.2 1.11 2.40
16 RbI NaCl {001} < 1̄10> 7.3 1.13 2.60
17 NH4Cl CsCl {110} <001> 9.2 1.12 1.77

there are several crystals with different slip systems having similar hard-
ness and anisotropy. This is also borne out from the data in Table 4.24.
KCl and CaF2 have different structures and different slip systems but similar
hardness anisotropy. On the other hand, KCl and LiF have same structure
and slip systems but different hardness anisotropy. Boyarskaya et al. [4.141]
suggested that hardness anisotropy depends on the magnitude of average
hardness. For soft crystals such as KCl and NaCl (average hardness ∼10–
20 kg mm−2) H100/H110 is >1, whereas for harder crystals such as LiF and
MgO (average hardness ∼100–800 kg mm−2) H100/H110 is <1. This sugges-
tion does not hold in the case of the crystals with fluorite structure. The
three crystals with this structure which are included in Table 4.24 have aver-
age hardness value comparable with LiF and MgO but have H100/H110 is <1.

Several correlations between the average hardness and elastic properties
of crystals have been suggested (Sect 4.3.10). While these relationships differ
among themselves, a common feature amongst them is that they connect hard-
ness with elastic properties of crystals. In view of this, it appears worthwhile
to examine whether a correlation also exists between the anisotropy of hard-
ness and the anisotropy of elastic modulus. For this purpose, the value of the
Young’s moduli in the <100> and <110> directions (E100 and E110, respec-
tively) and their ratio were calculated from literature data on single crystal
elastic constants; the values of the ratio E100/E110 are given in Table 4.24.
As in the case of the ratio H100/H110, the ratio E100/E110 also has values
>1 for some crystals and <1 for others. A striking feature is that the crys-
tals for which H100/H110 is >1 have E100/E110 >1 and vice versa. Thus, a
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Fig. 4.44. Plot of (H100/H110) against (E100/E110) (numbers as in Table 4.24)

correlation exists between the two ratios. In order to examine further the na-
ture of the correlation, the values of the two ratios are plotted in Fig. 4.44; a
near-linear relationship between H100/H110 and E100/E110 is revealed. Only
the data point for magnesium oxide deviates significantly from the linear plot
although it satisfies the correlation qualitatively inasmuch as the values of
H100/H110 and E100/E110 are both <1.

Thus, the anisotropy in Young’s modulus seems to be an important fac-
tor in determining the hardness anisotropy of a crystal. It is interesting to
note that the correlation between hardness anisotropy and elastic anisotropy
is applicable to the entire group of crystals listed in Table 4.24, unlike the
correlations with slip mode and magnitude of hardness proposed by earlier
workers [4.72, 4.73]. In addition, the earlier correlations were purely qualita-
tive whereas the present correlation is quantitative as a linear relationship
is clearly indicated. However, the present correlation is limited to ionic cu-
bic crystals; it does not, for instance, account for the hardness anisotropy in
the refractory carbides which have the NaCl structure but a complex-bonding
scheme.

Anisotropy of Hardness in Potassium Dihydrogen Phosphate and
its Isomorphs

Potassium dihydrogen phosphate (KDP) is tetragonal. Kishan Rao and Sird-
eshmukh [4.112] have measured the Vickers hardness on the (100) and (001)
faces of KDP and six of its isomorphs at a load of 100 gm. The hardness
on these faces and also the average hardness are given in Table 4.15. In all
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cases, the hardness in the a direction (100) is larger than in the c-direction
(001) although the relative difference differs from crystal to crystal. A dis-
cussion of these results in terms of the bonding in these crystals is given in
Sect. 4.4.2.



5

Dielectric and Electrical Properties of Solids

5.1 Introduction

The dielectric constant is a solid state property which is technically important
and is also helpful in understanding basic crystal physics. Combined with other
information like the refractive index and the absorption frequency it throws
light on the bonding in crystals. In theoretical studies of lattice dynamics, the
dielectric constant forms one of the input parameters.

Measurement of dielectric constant and loss as a function of frequency
and temperature helps in understanding the polarization mechanism, process
of conduction, influence of impurities and phase transition. AC conductivity
obtained from the dielectric properties combined with the data on DC conduc-
tivity yields useful information on defect formation and nature of conduction.

Theory of dielectric behaviour of solids is discussed in literature [5.1–5.4].
However, for completeness, the basic aspects are discussed in brief.

5.1.1 Dielectric Polarization

Polarization is the result of ordering of the electrically charged particles under
the action of external field. Macroscopically, it shows up as an increase in the
capacitance of a condenser in the presence of a dielectric. Microscopically, it
is described in terms of the induced electric moment.

The electric moment acquired by an atom or a molecule under the influence
of an electric field is proportional to the applied field. The proportionality
constant is known as the polarizability (α). It is the measure of the ability
of the material to respond to the field. The polarization P is defined as the
electric moment per unit volume of the dielectric and is given by

P = NαE, (5.1)

where N is the number of particles (atoms, ions or molecules) in unit volume
and E the applied field.
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In general, the electric moment may be induced by different mechanisms.
In a most general case the total polarizability α may be expressed as

α = αe + αa + αd + αs, (5.2)

where αe, the electronic polarizability, arises due to the deformation of the
spherical distribution of negative charge around the nucleus. In addition to
the deformation of the electronic cloud, the positively and negatively charged
ions are displaced. This leads to the atomic polarizability αa. If the mater-
ial consists of permanent dipoles, they align along the direction of the field
and an additional factor αd will be added. The fourth component αs is the
polarizability arising out of the space charge.

The electronic polarization Pe is related to the high frequency dielectric
constant through the well-known Clausius–Mossotti relation [5.5]:

Pe =
ε∞ − 1
ε∞ + 2

M

ρ
=

4
3
πNAαe, (5.3)

where, ε∞ is the high frequency (or optical) dielectric constant, M the mole-
cular weight, ρ the density and NA is the Avogadro number. The electronic
polarization Pe is also known as molar refraction and is related to the refrac-
tive index n and αe through the Lorentz–Lorenz formula

Pe =
n2 − 1
n2 + 2

M

ρ
=

4
3
πNAαe. (5.4)

For an ionic crystal

Pe + Pa =
εs − 1
εs + 2

M

ρ
=

4
3
πNA(αe + αa), (5.5)

where εs is the static dielectric constant. For a material with permanent
dipoles, the modified Clausius-Mossotti–Debye equation relates the dielectric
constant and the total polarization

Pe + Pa + Pd =
εs − 1
εs + 2

M

ρ
=

4
3
πNA(αe + αa + αd). (5.6)

For an ideal ionic crystal, (5.5) holds good. But in natural samples or crystals
grown in the laboratory, defects and impurities are present. Very often they
result in charges which are not locally bound to the crystal lattice. Under
the influence of the field such charges are capable of migrating through some
distance inside the dielectric and produce distortion of the field. In addition,
trapped electrons and holes, defects like grain boundaries, voids and dislo-
cations too lead to accumulation of charges on the surface of the material
and cause space charge polarization which is observed as additional polariz-
ability (αs). The frequency variation of the total polarizability (α) is shown
in Fig. 5.1. The space charge polarization results in the enhancement of the
capacitance and hence an increase in the measured dielectric constant.
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Fig. 5.1. Variation of polarizability with frequency in an ionic crystal

5.1.2 Dielectric Dispersion and Dielectric Loss

The variation of the dielectric constant with frequency of an ionic crystal
is similar to the variation of polarizability and polarization. At low frequen-
cies of the order of a few Hz, the dielectric constant is made up of contributions
from electronic, atomic and space charge polarization. When measurements
are carried out as a function of frequency, the space charge polarization ceases
after a certain frequency and the dielectric constant becomes frequency inde-
pendent. The frequency beyond which the variation ceases may fall in the
range of a few kHz to MHz [5.6]. The frequency-independent value is taken
as the true static dielectric constant.

Hence, generally, the dielectric constant is measured as a function of fre-
quency to obtain the true static dielectric constant. The dielectric constant
measured in the frequency independent region is taken as static or low fre-
quency dielectric constant εs (sometimes referred to as infrared dielectric con-
stant εir). As the frequency is increased further, the value remains unaffected
till the strong resonance absorption frequency is approached in the infrared
region. Beyond the resonant frequency, since the ions cannot follow the field,
the polarization due to electronic contribution alone persists. Hence the di-
electric constant in this region is termed ‘optical’ (εopt) or high frequency
dielectric constant (ε∞).

Under the influence of static field, the dielectric constant is treated as a
real number. The system is assumed to get polarized instantaneously on the
application of the field. When the dielectric is subjected to alternating field,
the displacement cannot follow the field due to inertial effects and spatially-
oriented defects. The dielectric constant is then treated as a complex quantity
ε̄(ω). The variation of real and imaginary parts of the complex dielectric
constant with frequency ω is given by the Debye equations [5.7]
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Fig. 5.2. Variation of (a) ε and (b) tan δ with frequency for an ionic crystal

ε̄(ω) = ε′(ω) − iε′′(ω), (5.7)

where
ε′(ω) = ε∞ +

εs − ε∞
1 + ω2τ2

(5.8)

and
ε′′(ω) = (εs − ε∞)

ωτ

1 + ω2τ2
, (5.9)

where τ is the relaxation time. ε′ is identified with the measured dielectric
constant ε and ε′′ is a measure of the average power loss in the system. Very
often, the loss is expressed in terms of the phase angle δ as

tan δ = ε′′/ε′. (5.10)

The frequency variation of dielectric constant and loss for a typical ionic
crystal is shown in Fig. 5.2.

5.1.3 Dielectric Loss and Conduction

The loss (tan δ) in general consists of two contributions; one, due to conduction
and the other due to relaxation effects. The loss due to conduction of free
carriers is expressed in terms of conductivity σ [5.5]:

tan δ = 4πσ/ωε′. (5.11)

A plot of log (tan δ) against log ω will give a straight line. If ε′′ (i.e. ε′ tan δ)
is proportional to inverse frequency, the conduction is frequency independent
and is equivalent to DC energy loss.

The dipolar impurities or dipoles created by defects show relaxation effects.
The loss due to relaxation effects is obtained by combining (5.8) and (5.9) as

tan δ = ε′′(ω)/ε′(ω) =
(εs − ε∞)ωτ

εs + ε∞ω2τ2
. (5.12)
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The frequency dependence of the loss due to relaxation effects differs from that
of conduction loss. Unlike the conduction loss, which shows a linear log (tan δ)
versus frequency plot, the loss due to relaxation effects shows a maximum
at a certain frequency. The net effect on the appearance of the curve when
both the effects are present will be a peak superimposed on a straight line.
The departure from a straight line depends on the features of the peak like
breadth, sharpness, etc.

The total contribution to dielectric loss (tan δ) is the sum of the conduction
loss given by (5.11) due to free vacancies and the dipolar Debye loss (5.12).
Thus

tan δ =
4πσ

ωε′
+

(εs − ε∞)ωτ

εs + ε∞ω2τ2
. (5.13)

At normal temperatures and low frequencies up to a few kHz the second term
is negligible. The first term becomes predominant and conductivity may be
obtained from the dielectric loss from the equation

σ = ε0 ε′ω tan δ, (5.14)

where ε0 is the vacuum dielectric constant. Unlike the conduction loss, the
Debye loss is not explicitly defined. The loss may be due to rotating polar
entities, defects such as impurity-vacancy, impurity-interstitial pairs, electrode
polarization or even due to the presence of air gaps [5.8]. It may be seen from
(5.14) that the conductivity can be estimated using data on dielectric constant
and loss.

5.1.4 Temperature Variation of Dielectric Constant and Loss

Ionic crystals with high purity show a frequency independent slow temperature
variation of dielectric constant up to a certain temperature and a frequency
dependent larger variation at higher temperatures (Fig. 5.3). The tempera-
ture beyond which the second region commences depends on the individual
sample. The variation in the first region is attributed to crystal expansion
and the electronic and ionic polarization. At higher temperatures the increase
is mainly attributed to the thermally generated charge carriers and impurity
dipoles. The data in the first region can be fitted to a linear equation, while
the second requires higher order terms.

Depending on the purity of the sample the loss may be negligible up to a
certain temperature. If loss is present, a frequency dependent variation of loss
is observed as in the case of dielectric constant. The variation for a typical
ionic crystal is shown in Fig. 5.4. The smooth variation in tan δ is the result
of conduction loss. The presence of Debye type loss shows a peak at a certain
temperature superimposed on the plot due to conduction loss. Further, a shift
in the peak is observed on change of frequency. From the magnitude of the
shift the relaxation frequency is obtained. The variation of loss (tan δ) when
both types of losses are present is shown in Fig. 5.5 for a typical case.
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Fig. 5.3. Variation of ε with temperature at different frequencies for a typical ionic
crystal (KBr)

Fig. 5.4. Variation of (a) ε and (b) tan δ with temperature at different frequencies
for a crystal with conduction loss (NaIO4)

5.2 Experimental

5.2.1 Measuring Instruments

TF 329G and TF 1245 Marconi Circuit Magnification Meter

These instruments are based on the principle of resonance circuit [5.2, 5.9].
The capacitor with the dielectric medium is made part of an LC circuit which
is loosely coupled to an oscillator. The circuit is made to resonate by means of
a variable capacitor with and without the sample. The resonance is detected
by noting the changes in the voltage developed across the test circuit. The
dielectric loss is obtained from the width of the resonance curve for the empty
cell and the cell filled with the sample. By changing the inductors, the desired
frequency is obtained.

GR 716C Capacitance Bridge

This is a modified form of conventional AC Scherring bridge. The capacitance
and loss (tan δ) are directly measured in the frequency range 102–107 Hz.
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Fig. 5.5. Variation of tan δ with temperature at different frequencies for a crystal
with Debye-type loss (Sm-doped EuF2)

GR 1620A Capacitance Measuring Assembly

The GR 1620A capacitance measuring assembly consists of an oscillator
(1311A), a transformer ratio arms capacitance bridge (1615A) and a tuned
amplifier and null detector (1232A). Since the inbuilt oscillator is only up to
10 kHz, an external oscillator has to be used for frequencies beyond 10 kHz.

The dielectric constant is determined from the measured value of the
capacitance with and without the sample. A schematic diagram of the ba-
sic capacitance bridge and the modified bridge incorporating the transformer
ratio arms is shown in Fig. 5.6. Use of transformer ratio arms increases the
accuracy. The null balance can be obtained either in terms of a dissipation fac-
tor (for low loss materials) or conductance. The capacitance may be measured
from 10−5 pF to a maximum of 1 µF. The dielectric loss (tan δ) is measured
in terms of the dissipation factor up to a value of 0.01. For higher ranges,
measurements are done in terms of conductance. The balance controls are
operated with lever type switches. The read-out is digital and decimal points
are automatically positioned.

The bridge may be used in two-terminal configuration or three-terminal
configuration. The principle of three-terminal measurement is shown in
Fig. 5.7a. The direct capacitance between H and L represents the capacitance
to be measured and G is the ground. In the two-terminal configuration G and
L are connected together to the ground. For three-terminal measurement G
is connected to a shield which completely surrounds the terminals H and L
and their connecting wires as shown in Fig. 5.7b. The changes in the environ-
ment and losses in the external part of the circuit can change the terminal
capacitance CHG and CLG but the direct capacitance CHL is determined only
by the internal geometry. By such an arrangement the direct capacitance as
low as a fraction of a pF can be measured.
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Fig. 5.6. (a) Basic ratio bridge [RA: variable ratio arm; CN: calibrated variable
standard capacitor; CX : unknown capacitance]; (b) Capacitance bridge with trans-
former ratio arms

Fig. 5.7. Three terminal capacitor: (a) principle and (b) shielded cell

Others

For measurements at higher frequencies >1MHz and low temperatures, the
following instruments are used:

(a) HP 4275A multifrequency LCR meter
(b) CGA 83 transformer ratio arm three terminal bridge
(c) HP 4192A impedance analyzer
(d) Keithley 610C electrometer is commonly employed for DC conductivity

measurements
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Fig. 5.8. Dielectric test jig TJ155C/1

5.2.2 Cell Designs

Test Jig TJ 155C/I

It has a built-in micrometer arrangement with two linear capacitors in parallel
as shown in Fig. 5.8. One of the micrometers, which is a linear low capacitor,
is used for band-width determination. The other is a plate capacitor of 1 in.
diameter to hold the specimen under investigation. This test jig supplied with
Marconi magnification meter can be used only at room temperature.

Sample Holders used with GR 716C Capacitance Bridge

The sample holder for high temperature measurement (Fig. 5.9) consists of a
brass hollow cylinder. The flattened end of the cylinder serves as one of the
electrodes. The second electrode is fixed to the brass rod held by a spring.
The other components are shown in the figure with description. The current
variation is done using a variac and the thermocouple close to the electrode
registers the temperature of the sample.

For measurements at low temperatures, the cell shown in Fig. 5.10 can be
used. The cell with the sample in place is inserted into a liquid nitrogen bath
(−180◦C). The sample temperature could be varied from −180◦C to room
temperature by raising the cell upward.



208 5 Dielectric and Electrical Properties of Solids

Fig. 5.9. Sample holder for high temperature measurements

Laboratory Fabricated Cell for use with GR 1620 Capacitance
Assembly

The cell fabricated for use up to 400◦C is shown in Fig. 5.11. The sample
holder has a lower electrode (E1) which is a brass disc of 2 in. diameter fixed
on the top of a ceramic rod (C.R) which is held tightly in a brass holder (B).
The upper electrode (E2) which is a cylindrical brass rod of diameter 1.5 cm
is movable and is spring-loaded. The movement of the upper electrode is
controlled by the micrometer screw. The assembly with the upper electrode is
fixed on to an ebonite rod (Eb.R). The spacing between the upper and lower
electrodes can be varied with the upper assembly sliding along the ebonite rod.
Fine adjustments with the sample are made with the help of a micrometer
screw. The temperature of the sample can be varied with the help of a heater
surrounding the two electrodes. The heater is constructed with super kanthal
wire wound over a muffle to withstand temperatures up to ≈500◦C. The heater
is placed in a metallic enclosure (Sh) held in position with the help of pillars
(P). The heater with the metallic enclosure is capable of sliding up and down
as required. The heater is fed through a stabilizer and the temperature is
steady within 1◦C. The temperature is measured using a copper constantan
thermocouple and a digital panel meter. Well-shielded coaxial leads are used
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Fig. 5.10. Sample holder for low temperature measurements

to connect the two electrodes to the H and L terminals of the bridge. The
metal enclosure acts as a shield to form the ground terminal G of the bridge.
This arrangement completely eliminates external effects.

The special features of the cell are the replaceable arrangement for the two
electrodes and the moveable heater assembly. The sample-in and sample-out
readings are taken with the rigid electrode at room temperature and for high
temperature measurements, the rigid electrode is replaced by an electrode with
a light spring to allow for sample expansion. The movable heater assembly
serves a dual purpose. First, it allows the sample to be properly placed by
lowering the heater assembly and second, when lifted to cover the sample, it
serves as a shield to form the third terminal.

High Temperature Cell for Measurement of Dielectric Constant
Above 400◦C

Various parts of the cell designed for use above 400◦C are indicated in
Fig. 5.12. As shown, the sample holder is placed in a stainless steel cylin-
der C. The circular disc with the sample holder is fixed firmly at the top of
the cylinder with the help of ‘O’ ring R. The cell is provided with water circu-
lation facility at the top, so that the connectors and the Teflon bushes do not
get heated. Valve (V) is provided to allow for evacuation or to fill with inert
gas. Well-shielded co-axial leads are used for connecting the two electrodes
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Fig. 5.11. Sample holder for high temperature dielectric measurements (E1 – lower
electrode; E2 – upper electrode; S – sample; t1, t2 – thermocouple terminals; H1,
H2 – heater terminals; Sh. – shield; P1, P2, P3 – pillars; C.R. – ceramic rod; B –
brass holder; Eb.R – ebonite rod; M.R – metallic rod)

to the instrument. All the coaxial shields and the outer cylinder which also
acts as a shield are connected to the ground terminal of the three terminal
configurations. The temperature of the sample is varied by keeping the cell in
a furnace. The furnace is designed to provide automatic preset temperatures
up to 800◦C. The cell is also useful for DC conductivity measurements.

5.2.3 Procedural Details

General

The procedure for dielectric constant and dielectric loss measurement is de-
scribed in this section. The procedure may appear specific to our work but is
of general relevance. As a check on the experimental set-up, the cell capac-
itance was initially determined as a function of frequency and temperature.
The capacitance was found to be less than 1 pF throughout the range of
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measurements. This indicates a good shielding of the sample holder and low
loss in the insulating materials used in the cell.

For good electrical contact and to avoid air gaps between the surface of
the sample and the electrodes, several materials were tested such as carbon,
graphite, silver paint, aluminium foil and aluminium foil fastened on silver
paint. A pure KCl crystal supplied by Harshaw Chemical Company was used
as a standard. Measurements were carried out as a function of temperature
at 100 kHz. For the electrode combination of silver paint and aluminium foil,
the dielectric constant was found to show identical values both for heating
and cooling runs. The loss was found to be minimum when compared to other
electrodes. The values were found to be consistent and reproducible. Hence,
all further measurements were done with silver paint and aluminium foil.

For measurements using the sample holder shown in Fig. 5.12, the capaci-
tance with and without the sample are obtained at room temperature initially.

Fig. 5.12. Cell for high temperature dielectric measurements above 400◦C (S–
sample; E1, E2–the electrodes; C1, C2 – ceramic blocks; t1, t2–thermocouple connec-
tors; E1, E2–electrode connectors; C–stainless steel cylindrical enclosure; R – ‘O’
ring; V – valve)



212 5 Dielectric and Electrical Properties of Solids

The upper rigid electrode is then replaced by the spring electrode for tempera-
ture variation measurements. The capacitance is adjusted with the help of the
micrometer screw of the upper electrode to read the same value as with the
rigid electrode. The heater is now brought into position and the capacitance
and loss (tan δ) are measured as a function of frequency and temperature.

Single Crystals

For alkali halides, plates with parallel cleavage planes were used. Other crys-
tals were cut along the required direction to obtain samples of 1–2 mm thick-
ness. They were polished with emery powder or used as supplied if the sam-
ples were already polished. The area of the samples was generally less than
that of the electrodes. Accurate measurement of area was required to en-
sure an accurate value of dielectric constant. For samples of irregular shape
the area was obtained by graphical method. Alternatively, the area was
determined from the mass of the sample obtained with a single pan bal-
ance with an accuracy of 10−6 g combined with the density and thickness.
The samples were annealed at 100◦C for a couple of hours before taking
measurements.

The dielectric constant is calculated using the formula

ε = 1 +
∆C

Cg
, (5.15)

where ∆C is the difference of the capacitance with the sample (Cs) and the
capacitance without the sample (C0). Cg is the geometrical capacitance of the
sample. The geometrical capacitance is ε0(A/t); ε0 is the vacuum dielectric
constant, A the area and t the thickness of the sample.

Powder Samples

Powders of required particle size were obtained by using a mortar and were
sieved through a mesh. The powders were dried for a few hours at 100◦C to
remove moisture. Die-pressed samples were prepared using pressures of the
order of 20,000 lbs in−1. The densities of the pellets were determined from the
mass obtained using a balance with an accuracy of 10−6 g. Pellets of diameter
equal to that of Marconi test jig and thickness 1–2 mm were used. For smaller
quantities of samples, pellets were obtained with a suitable die with diameter
less than that of the electrode. The dielectric constant is obtained by using a
suitable relation in the two cases.

Several correlation equations are available in literature to obtain dielectric
constant ε of the solid having the crystal density from the value measured
with powder samples [5.10–5.13]. Two such equations are:

δp =
ε
1/3
pr − 1

ε1/3 − 1
, (5.16)
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ε =
1

δP
2 [(εpr − b}1/2 − (1 − δP)(1 − b)1/2]2 + b, (5.17)

where δp is the packing fraction, εpr the dielectric constant of the powder
sample and ‘b’ a constant with a value of 0.5. Equation (5.16) by Looyenga
[5.12] is found suitable for materials of dielectric constant <12 and (5.17) by
Dube and Prasad [5.13] for those with dielectric constant >12.

Accuracy of Measurement

A wide range of capacitance can be measured with GR 1620 bridge from a
fraction of a pF to a maximum of 1 µF. The loss component is read as dis-
sipation factor up to a maximum of 0.01. For higher values, measurements
are done in terms of the conductance. The frequency can be varied contin-
uously from 50 Hz to 10 kHz. Above this, the frequency of measurement is
fixed at 20, 50 and 100 kHz using external oscillator. Accuracy in the mea-
surement of capacitance is 10−5 pF and in loss 10−4. The overall accuracy in
the measurement of dielectric constant and tan δ is of the order of 1% and
3%, respectively.

5.2.4 Measurement in the Microwave Region

For measurements in the microwave region, resonant cavity methods are
used in the frequency range 108–109 Hz [5.9] while transmission line methods
are employed at frequencies 109–1011 Hz [5.2]. Special oscillators, detectors
and frequency-measuring cavity wave-meters are employed. A typical ex-
perimental set-up is shown in Fig. 5.13. The measurement of the dielectric
constant consists essentially of the measurement of wavelength of the mi-
crowave radiation in the waveguide with and without the sample. Chan-
dra [5.14] used this set-up to measure the dielectric constants of several
alkali halides up to temperatures close to the melting point. This tech-
nique is particularly suited for studying samples which cannot be studied
by the conventional AC methods because of high conduction at the lower
frequencies.

5.2.5 Dielectric Constants from IR Reflectivity

The IR reflectivity curves, generally recorded over the 100–1,000 cm−1 range,
provide a useful method for determination of the dielectric constants. The
working equations involved in this method [5.15] are:

ε′ = n2 − k2 = ε∞ +
∑

j

4πρjν
2
j (ν2

j − ν2)
(ν2

j − ν2)2 + (γjνjν)2
, (5.18)

ε′′ = 2nk =
∑

j

4πρjν
2
j (γjνjν)2

(ν2
j − ν2)2 + (γjνjν)2

(5.19)
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Fig. 5.13. (a) Apparatus for microwave dielectric measurements; (b) waveguide
sample holder: (A) Vycor tube placed in a three zone furnace, (B) stainless steel
K-band waveguide, (C) waveguide flanges, (D) stainless steel short, (E) end seals,
(F) gasket, (G) mica window, (H) Pt–Pt 10% Rh thermocouple, (I) sample

and
R = [(n − 1)2 + k2]

/
[(n + 1)2 + k2], (5.20)

where n is the refractive index, k the extinction coefficient; νj , γj and 4πρj

are, respectively, the resonant frequency, the damping factor and strength of
the jth resonance. The procedure is to assume a set of values for νj , γj , ρj and
evaluate ε′ and ε′′ for a given value of ν. From these values of ε′ and ε′′, the
values of n, k and the reflectivity R are calculated. The best fit is obtained by
minimizing the quantity:

S =
∑

i

[(Ri)expt − (Ri)calc]2 (5.21)

With the best values of these parameters, ε∞ and εs(= ε′) are calculated from
(5.18, 5.19). As an example, the analysis of the reflectivity curve for MnO is
shown in Fig. 5.14. Plendl et al. [5.16] assumed two resonances for MnO and
obtained the values: ν1 = 262 cm−1, ν2 = 445 cm−1, 4πρ1 = 17.5, 4πρ2 =
0.05, γ1 = 0.092, γ2 = 0.088, ε∞ = 4.95 and εs = 22.5.

This is a versatile method which yields not only the values of ε∞ and
εs but also the resonance frequencies. It is useful in handling materials like
semiconductors which cannot be studied otherwise due to the conduction ef-
fects. Thus, the dielectric constants of CdO and mixed crystals GaSb–InSb
were determined by this method by Finkenrath and Uhle [5.17] and Brodsky
et al. [5.18], respectively.
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Fig. 5.14. IR reflectivity curve of MnO. Dots are calculated points using a two-
resonance damped oscillator

The analysis of IR reflectivity curves discussed above is based on the
classical damped oscillator model. Alternatively, the analysis can also be car-
ried out by the Kramers–Kronig method [5.19].

5.2.6 Impedance Spectroscopy

The Cole–Cole plot [5.20] of ε′ and ε′′ for a lossy dielectric with a single
relaxation time is a semi-circle with a radius (εs–ε∞)/2 and with the centre
at (εs–ε∞)/2. The data points are obtained over a wide range of frequencies.

Complex impedance analysis is a powerful method to analyse multiple
relaxation processes particularly in polycrystalline materials. The complex
impedance is described by the Cole–Cole diagram at different temperatures
to obtain relaxation times arising due to different mechanisms.

In recent years sophisticated automatic impedance measuring instruments
are available. They are versatile and allow the measurements of several para-
meters like impedance, admittance, phase angle, capacitance and dissipation
factor. They have a frequency range of 1 Hz to 20 MHz. Hewlett-Packard HP
4192A analyzer covers the range from 5 Hz to 13 MHz.

5.2.7 Comparison of Methods

Several methods for the determination of dielectric constant have been dis-
cussed in Sect. 5.2.1–5.2.6. The results obtained for KCl and KBr by these
methods are given in Table 5.1.

The results given in [5.21–5.26] are consistent among themselves within
2%. The technique and results of Fontanella et al. [5.26] are by far the best
(accuracy ∼0.1%). The IR reflectivity method, though useful in some situa-
tions, gives less reliable values. Thus the value for KCl obtained from classical
oscillator analysis is the least in the set and that for KBr is the largest. More
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Table 5.1. Static dielectric constant (εs) of KCl and KBr

Method Frequency εs Accuracy Ref.
KCl KBr

Immersion 1 MHz 4.68 4.78 – [5.21]
Microwave 23 GHz 4.85 4.89 – [5.22]
Scherring bridge 4.68 4.75 – [5.23]
3-Terminal 4.72 4.76 1 % [5.24]
Immersion 4.80 4.87 0.5% [5.25]
3-Terminal 4.8126 4.8762 0.1% [5.26]
IR reflectivity

Classical oscillator 4.6 4.9 [5.27]
Kramers—Kronig 5.3 6.5 [5.27]

seriously, the values obtained from Kramers–Kronig analysis are clearly out
of range.

5.3 An Overview

There is extensive literature on the studies of various aspects of dielectric
behaviour of solids. This overview is thus bound to be limited. Further, in
this overview ferroelectric materials are not included as it is a field by itself.

A good treatment of the basics of dielectric behaviour is given in [5.2,
5.4, 5.5, 5.28–5.30]. Compilations of dielectric data on inorganic materials are
given in [5.31,5.32]. Compilations of dielectric properties of biological systems
are made by Stefan [5.33] and Ahmed et al. [5.34]. A review by Pethig [5.35]
deals with protein-water interactions.

5.3.1 Some Important Experimental Results

While reference has been made to data compilations, mention is made here of
some significant contributions. Being the simplest of ionic crystals, the alkali
halides have received much attention. Lowndes and Martin [5.36, 5.37] made
measurements of the static dielectric constants as well as the optical dielectric
constants of several alkali halides at very low temperatures. Rao [5.38] and
Chandra [5.14, 5.39] made measurements of the dielectric constants of NaCl,
the potassium halides and the rubidium halides at high temperatures up to
the melting point. The temperature variation of the static dielectric constants
of rubidium halides [5.39] is shown in Fig. 5.15. The pressure variation of
dielectric constant of alkali halides was studied by Jones [5.24], Lowndes and
Martin [5.37] and Fontanella et al. [5.26] who gave the first as well as second
pressure derivatives of dielectric constant. The pressure variation of dielectric
constants of NaCl and RbCl was studied by Samara [5.40, 5.41]. His results



5.3 An Overview 217

Fig. 5.15. Static dielectric constant (εs) for rubidium halides as a function of tem-
perature

Fig. 5.16. Pressure dependence of the static dielectric constants of NaCl and RbCl.
Changes in εs associated with the pressure-induced NaCl–CsCl phase transition in
RbCl are shown

are shown in Fig. 5.16. In the case of RbCl the high pressure transition is
observed at 7.6 kbar. An integrated data compilation on dielectric properties
of alkali halides is given by Sirdeshmukh et al. [5.42].
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The temperature and pressure dependence of dielectric constants of thal-
lium halides was studied by Samara [5.43]. The temperature variation of
the dielectric properties of the transition metal oxides has been reported
in [5.44,5.45].

A method for the accurate measurement of dielectric constant by sub-
stitution was developed by Andeen et al. [5.46] and was used by them
to determine the dielectric constants of the alkaline earth fluorides [5.47].
The pressure and temperature dependence of the dielecteric constants of
the alkaline earth fluorides was studied by Andeen et al. [5.48], of CdF2

by Young and Frederikse [5.49] and of PbF2 by Samara [5.50]. The work
on dielectric behaviour of fluorite type crystals has been reviewed by Hayes
[5.51].

The dielectric constants at room temperature for several alums were re-
ported by Haussuhl [5.52]. Rama Rao et al. [5.53] reported the temperature
variation of the dielectric constants of six alums. Dielectric constants of cubic
nitrates were determined by Badr and Kamel [5.54]. Conductivity studies on
the nitrates were made by Badr and Kamel [5.55] and El-Kabbany et al. [5.56].

The rare earth garnets are important optoelectronic materials. The di-
electric and electrical properties of some rare earth garnets were reported
in [5.57–5.60]. The dielectric constants of several rare earth garnets were mea-
sured at room temperature by Shannon et al. [5.61].

The low temperature dielectric constants of some anisotropic crystals were
studied by Shelby et al. [5.62]. The anisotropic crystals included MgF2 which
is tetragonal with the rutile structure. Other rutile type crystals for which
dielectric constants have been reported are GeO2 [5.15] and TiO2 [5.63]. The
dielectric constants of several tetragonal crystals with scheelite structure have
been reported by Fang and Brower [5.64] and Brower and Fang [5.65,5.66].

Lal et al. [5.67] reported the temperature variation of dielectric constant
for EuWO4. They observed a sharp increase in dielectric constant which was
attributed to formation of large polarons. The dielectric constant of several
rare earth sesquioxides have been reported by Lal et al. [5.68].

The dielectric properties of hexagonal PbI2 were investigated at different
frequencies and temperatures by Dugan and Henisch [5.69]. Fernandez and
Srivastava [5.70] studied the dielectric loss spectra of several crystals of CdI2
and correlated their observations with polytypic structures.

Although it was stated that ferroelectric crystals will be excluded from
this overview, one aspect will be mentioned as it involves a novel experimen-
tal study. This is the particle size dependence of dielectric behaviour. The
changes in dielectric behaviour with change of particle size have been studied
by Mansingh and Bawa [5.71] for KDP and Rochelle salt powders and by Rao
and Bhanumati [5.72] for RbHSO4. Figure 5.17 shows results of Mansingh and
Bawa [5.71] on KDP. The dielectric constant decreases with particle size but
there is no change in the transition temperature. The most dramatic observa-
tion, however, was made by Goswami [5.73] who observed that ferroelectricity
in BaTiO3 vanishes at a particle size of 100 µm.
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Fig. 5.17. Dielectric constants of KDP for powders of different particle size;
A: 300–600 µm, B: 150–300 µm, C: 125–150 µm, D: 100–125 µm, E: 53–125 µm,
F: 20–53 µm

A compilation of dielectric properties of biological systems by Stefan [5.33]
covers work on several biomaterials such as DNA, cells and membranes, en-
zymes, botanical and animal components. A dielectrospectrometer has been
designed by Sing et al. [5.74] for an in vivo study to detect benign and can-
cerous tissues. Agarwal and Singh [5.75] reported the electrical and dielectric
properties of kidney stones. Saraswati [5.76] investigated the dielectric prop-
erties of natural tooth which essentially consists of hydroxy apatite.

Studies of proteins reveal that they may be compared to semiconductors.
Dry proteins behave like perfect insulators, with a large energy gap (>4 eV).
Conduction is induced either by complexing with a donor to form an elec-
tronic conductor or by hydration to induce protonic conduction [5.35, 5.77].
Measurements of dielectric constant and loss as a function of water content
and temperature have yielded useful information. Ahmed et al. [5.34] ob-
served in their studies on temperature variation that the dielectric constant
shows sharp variations corresponding to change in the crystal structure or
denaturing.

5.3.2 Temperature Variation of Dielectric Constant

Theoretical evaluation of temperature dependence of dielectric constant has
been attempted by several investigators [5.78–5.84].
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Owens’ Relation

By differentiation of the equation given by Szigeti [5.85, 5.86], Owens [5.81]
obtained the relation

(εs − ε∞)T = (εs − ε∞)0[1 − β(2γt − 1)∆T ]−1 (5.22)

to predict the temperature variation of the dielectric constant. Here β is the
volume expansion coefficient and γt the mode Gruneisen constant defined by

γt = −[d(log ωt)/d(log V )], (5.23)

ωt being the transverse optical frequency.

Method of Varotsos

Varotsos [5.82] has proposed a simple formula which permits the evaluation
of dielectric constant at any temperature from data at room temperature and
other parameters like thermal variation of bulk modulus and lattice parameter.
This approach has a limited applicability due to lack of input data over a wide
range of temperature.

Method of Havinga and Bosman

Havinga [5.83] and Havinga and Bosman [5.84] have shown that the temper-
ature variation of dielectric constant could be traced to the temperature vari-
ation of polarizability. They have adopted a macroscopic model to evaluate
three contributions known as A,B,C, terms. Differentiating the Clausius–
Mossotti equation

εs − 1
εs + 2

=
4
3

πα

V
(5.24)

(where α is the polarizability of a small sphere of volume V ), they obtained

1
(εs − 1)(εs + 2)

(
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∂T

)

P

=−β

3
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3
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}
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(
∂α
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(5.25)
1
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∂εs
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)
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ψ
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3
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α

(
∂α

∂V

)

T

, (5.26)

where β is the volume thermal expansion coefficient and ψ the isothermal
compressibility.

The term A is obtained from the thermal expansion β and represents the
decrease in the number of polarizable particles per unit volume with increase
in temperature. The term B is the contribution due to the increase of polar-
izability of a fixed number of particles with increase of available volume as
the temperature increases. B is evaluated from the data on pressure variation
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Table 5.2. Values of the quantities (εs − 1)−1(εs + 2)−1(∂εs/∂T )P , A, B and C
[5.84]

Crystal (εs−1)−1(εs +2)−1

(∂εs/∂T )P

[10−5 K−1]

A[10−5 K−1] B[10−5 K−1] C[10−5 K−1]

LiF 3.7 −3.4 6.4 0.7
NaCl 5.2 −4.0 8.2 1.0
KCl 5.6 −3.8 7.7 1.7
KBr 5.9 −4.0 7.4 2.5

of dielectric constant and coefficient of expansion. In the absence of exper-
imental data on pressure variation of εs an alternate method to evaluate B
was suggested by Havinga and Bosman [5.84] based on a simple ionic model.
The term C is obtained as the difference between the value of (A + B + C)
obtained experimentally from temperature variation of dielectric constant and
(A + B). The C contribution which is related to the temperature variation of
IR polarizability plays a dominant role in determining the temperature vari-
ation of dielectric constant. C reflects the anharmonic effects since it is the
pure temperature derivative of α at constant volume.

This method of interpretation of the temperature variation of the dielectric
constant was applied to the alkali halides by Havinga and Bosman [5.84]. Their
results are given in Table 5.2. This method has also been applied to alkaline
earth fluorides [5.50], CdF2 [5.49] and TiO2 [5.87].

5.3.3 Szigeti’s Theory (Effective Ionic Charge and Anharmonicity)

According to Born and Mayer [5.88] the lattice contribution to dielectric con-
stant for a diatomic crystal is given by

εs − ε∞ =
2πe2

r3ω2
t

1
µ

, (5.27)

where εs is the static (low frequency) dielectric constant, ε∞ the optical (high
frequency) dielectric constant, r the nearest neighbour distance, ωt the trans-
verse optical mode frequency and µ the reduced mass.

In an ideal crystal consisting of deformable ions which do not overlap,
the individual ions carry their formal charge ze. But in real crystals, the
ions overlap. The net charge on the ions will differ from their formal charge.
Szigeti [5.85, 5.86] was the first to take into account the polarization effects
due to this overlap by introducing the concept of effective ionic charge. The
effective ionic charge (q*) is expressed as the effective ionic charge per electron
(ze*/ze). Szigeti’s theory has also been discussed in [5.89, 5.90]. The main
result of Szigeti’s theory is the relation

εs − ε∞ =
4πz2e2q ∗2 (ε∞ + 2)2

9Viω2
t µ

, (5.28)
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Table 5.3. Values of q* calculated from (5.28)

Crystal q* Crystal q* Crystal q*

C 0 GaP 0.58 LiF 0.87
Si 0 GaAs 0.51 NaF 0.93
Ge 0 GaSb 0.33 NaCl 0.74

InP 0.68 KCl 0.80
InAs 0.56 RbCl 0.84
InSb 0.42 CsCl 0.84

Values for alkali halides from [5.85] and others from [5.93]

where z is the valency, e the formal electron charge, Vi the volume per ion
pair. q*, the ratio of effective charge to formal charge (ze*/ze), has come to
be known as the Szigeti charge.

Values of q* obtained from (5.28) for several crystals are given in Ta-
ble 5.3. It can be seen that the effective ionic charge varies from zero for
covalent crystals diamond, germanium and silicon to a value nearly unity
for alkali halides. Partially covalent crystals have intermediate values. Szigeti
[5.85] and Lowndes and Martin [5.36] attributed the deviation from unity
to greater polarizability whereas Denham et al. [5.19], Gielisse et al. [5.91]
and Bansigir [5.92] treat the value of effective ionic charge as a measure of
ionicity.

Equation (5.28) represents the lattice contribution to dielectric constant
modified to include overlap effects. Under harmonic approximation, the pa-
rameters on the right-hand side of (5.28) are unique functions of volume.
Hence (∂εs/∂T )V should be equal to zero. Experimental results on dielectric
constant by Fontanella et al. [5.26], Havinga and Bosman [5.84] and Bartels
and Smith [5.94] indicate that this is not true. (∂εs/∂T )V has been shown
to reflect the anharmonic contribution. It is found to be negative or positive
depending on the crystal structure, magnitude of dielectric constant and tem-
perature. These aspects are discussed by Havinga and Bosman [5.84], Rao
and Smakula [5.95] and Samara [5.43]. Szigeti [5.96,5.97] discussed the effect
of anharmonicity on lattice contribution to dielectric constant and modified
(5.28) to

εs − ε∞ =
4πz2e2q∗2(ε∞ + 2)2

9Viω2
t

1
µ

+ G (5.29)

= η + G.

The first term η (which is the right-hand side of (5.28)) is the harmonic
contribution whereas the second term G represents the anharmonic contribu-
tion. Further, for temperatures T > θD where θD is the Debye temperature,
Szigeti [5.97] has shown that

G = AT, (5.30)
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where A is a constant independent of temperature. Hence
[
∂(εs − ε∞)

∂T

]
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=
(
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V

+
(

∂G

∂T

)

V

. (5.31)

Since (∂η/∂T )V = 0 under harmonic assumption
(

∂G

∂T

)

V

=
[
∂(εs − ε∞)

∂T

]

V

= A (5.32)

and, therefore, neglecting the variation of ε∞ with T

G = T

[
∂(εs − ε∞)

∂T

]

V

∼= T

(
∂εs

∂T

)

V

. (5.33)

The magnitude and sign of G can be obtained from experimental data on
temperature dependence of dielectric constant.

Starting with the Clausius–Mossotti relation, the temperature derivative
of dielectric constant at constant pressure is obtained in terms of A,B,C
components (5.25). By differentiation of (5.24) with respect to temperature,
the temperature derivative at constant volume is given by

(
∂εs

∂T

)

V

= (εs − 1)(εs + 2)
1
3α

[
∂α

∂T

]

V

= (εs − 1)(εs + 2)C. (5.34)

Hence, the anharmonic contribution G is obtained in terms of C as

G = T (εs − 1)(εs + 2)C. (5.35)

Typical values of η and G for some alkali halides are given in Table 5.4.
The results show that anharmonic effects account for about 30–40% of the

lattice contribution to dielectric constant of the thallous halides as compared
to less than 5% in the case of alkali halides. Further for thallous halides and
alkali halides having CsCl structure, the anharmonicities act to reduce the
harmonic contribution. On the other hand, for alkali halides having the NaCl
structure, the anharmonicities enhance the harmonic contribution.

Table 5.4. Values of η and G expressed as a fraction of (εs − ε∞) [5.43]

Crystal η/(εs − ε∞) G/(εs − ε∞)

NaCl 0.969 0.031
KCl 0.950 0.050
CsCl 1.047 −0.047
CsBr 1.041 −0.041
TlCl 1.371 −0.371
TlBr 1.338 −0.338
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5.3.4 Spectroscopic Aspects

Self-energy

When a photon interacts with a diatomic lattice, two mechanisms are possible.
A photon can be absorbed in the creation of a single long wavelength trans-
verse optical phonon (TO) or it can create several phonons simultaneously
through its interaction with the non-linear dipole moment of the crystal. The
former decays into two or more finite wavelength phonons giving rise to width.
The second effect is very small and is generally neglected [5.37,5.98]. The width
of the long wavelength optic phonon is temperature dependent. In addition a
shift is observed with temperature. Since the changes in the width and shift
with temperature are related to fundamental infrared absorption bands, the
data on phonon width and shift provides useful information regarding the
dynamics of the lattice.

The relation between dielectric phenomena and phonon processes has been
investigated by many workers [5.98–5.102]. The temperature dependence of
the frequency shift and the phonon width has been interpreted in terms of
anharmonic effects. Chang and Mitra [5.103] have studied the temperature
variation of shift for NaF and LiF from IR reflectivity curves. Lowndes and
Martin [5.37] measured the low frequency dielectric constants and their tem-
perature and pressure dependence for a large number of alkali halides and
used the data to interpret their phonon spectra.

The measured shift in the phonon frequency ∆ω(obs) consists of two con-
tributions: one, the shift due to volume change ∆ω(vol) and the other, the shift
due to anharmonic effect ∆ω(anh). ∆ω(vol) is the shift due to the pure volume
change that the crystal will undergo if only the expansion effect is present.
This is obtained from measurement of pressure variation of frequency. The
shift due to anharmonic effect (self-energy shift) is obtained by eliminating
the pure volume effect from the observed shift ∆ω(obs). Thus

∆ω(anh) = ∆ω(obs) − ∆ω(vol). (5.36)

From dielectric measurements Lowndes and Martin [5.37] obtained the anhar-
monic contribution (∆ε)V (anh) to the change in the dielectric constant with
temperature using the relation:

(∆εV )(anh) = (∆εT )(obs) − (∆εP )(vol), (5.37)

where (∆ε)P and (∆ε)T are the measured quantities. (∆ε)P is the change in
ε on raising the temperature from 0 to T K at constant pressure. (∆ε)T is
the change in ε on raising the pressure at constant temperature to restore the
volume to its original value. Lowndes and Martin [5.37] obtained the individual
values of (∆ε)P and (∆ε)T to estimate (∆ε)V for a large number of crystals.
Further, they have shown the following correlation between the anharmonic
contribution to change in the dielectric constant with temperature and the
anharmonic frequency shift ∆ω(anh):



5.3 An Overview 225

(∆ε)V

ε(0)
= −2
[
∆(T )
ωqh

− ∆(0)
ωqh

]
, (5.38)

where ∆ω(anh) is expressed as the temperature dependent self-energy shift
∆. The observed variations in self-energy shift ∆ are interpreted in terms of
anharmonic contributions from higher order terms in potential energy based
on the work of Szigeti [5.97] and Cowley [5.99]. The variations are the result
of the sum of two contributions, the cubic and quartic terms in the crystal
potential. The shifts due to the two terms are in opposite directions. The
cubic term results in negative shift and the quartic term in a positive shift to
∆(T ).

Lowndes and Martin [5.37] have studied the influence of anharmonicity on
the longitudinal optical modes of several alkali halides in terms of (5.38). Their
results for some alkali halides are shown in Fig. 5.18. They find that the self-
energy contribution (∆ε)V is positive for those salts crystallizing in the NaCl
structure and negative for the crystals having CsCl structure. This has been
interpreted in terms of third-order and fourth-order anharmonic contribution
to the potential energy. Enhanced anharmonic contribution in CsCl arising
out of larger contribution from the fourth order term leads to a net negative
contribution. Bosman and Havinga [5.23] suggested that the cubic term is

Fig. 5.18. Variation of (∆ε)P and (∆ε)V with temperature for (a) KCl (b) RbCl
(c) CsCl and CsBr; (∆ε)V is a measure of self-energy shift (5.38)
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of lesser significance in CsCl structure because of the higher coordination
number which reduces the fluctuations among the pairs of bonds formed by
an ion with its neighbours.

Evaluation of self-energy is a difficult task both theoretically and
experimentally. Theoretically, it involves rigorous computational analysis
using many body Green’s function approach. Experimentally, it requires ac-
curate measurement of temperature and pressure dependence of transverse
optic mode frequency.

Sano [5.104] adopted a semi-empirical method to obtain the self-energy
of the TO phonon. By logarithmic differentiation of the Szigeti equation
(5.28) with respect to temperature and with some approximations he
obtained

(∆ε)V = (∆ε)P − ω2
t (εs − ε∞)

ω2
qh

[(2C − 1) + 2γt]
∫ T

0

β dT , (5.39)

where C = ∂ log q∗

∂ log V and γt is the transverse mode Gruneisen parameter. Sano
estimated the self-energy values, ∆(T ) of the TO phonon as a function of
temperature from (∆ε)V for KCl. The values were found to be positive in the
high temperature range.

Damping Constant

For ionic crystals under the damped oscillator model [5.103], the dielectric
constant ε(ω) is given by

ε(ω) = ε∞ +
(εs − ε∞)

1 − (ω/ωt)2 − i(ω/ωt)(γd/ωt)
, (5.40)

where (γd/ωt) is the damping constant. In terms of the refractive index n and
the extinction coefficient k

ε(ω) = n2 − k2 − 2ink. (5.41)

The imaginary part of ε is

2nk =
(εs − ε∞)(γd/ωt)(ω/ωt)

[1 − (ω/ωt)2]2 + (ω/ωt)2(γd/ωt)2
, (5.42)

2nk has maximum value at ω = ωt. At this frequency

(γd/ωt) =
(εs − ε∞)ωt

(2nkω)max
=

εs − ε∞
(2nk)max

. (5.43)

The damping constant can also be expressed in terms of the half-width of the
resonance ωt as

(γd/ωt) =
2(ωt − ω1/2)

ωt
. (5.44)
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Fig. 5.19. Temperature dependence of the damping constant (γd/ωt) of NaF
and LiF

Chang and Mitra [5.103] have obtained the temperature variation of (γd/ωt)
from the half-width of the resonance curves. Their data for LiF and NaF are
shown in Fig. 5.19. The temperature dependence of (γd/ωt) is found to be of
the form AT + BT 2.

The ‘LST’ Relation

Lyddane et al. [5.105] derived the relation:

(εs/ε∞) = (ωl/ωt)2. (5.45)

Now known as the ‘LST ’ relation, it relates the static and high frequency
dielectric constants (εs, ε∞) to the transverse optical and longitudinal optical
frequencies (ωt, ωl). The equation holds good for cubic diatomic crystals; these
crystals have an LO mode and a doubly degenerate TO mode. For a more
general case, Cochran [5.106] derived the following modified form:

(εs/ε∞) =
∏

i
(ωl)2i
/
(ωt)2i . (5.46)

The product Π is over all the optic modes.
Some of the applications of the ‘LST’ relation are:

(a) ωl is difficult to be determined experimentally. In many cases, only ωt is
available. In such cases, ωl can be estimated from the LST relation.

(b) If both ωl and ωt are known from experiment and if diverse values of εs

are available for a crystal, the appropriate value of εs may be identified
with the help of the LST relation.

(c) Ferroelectric crystals follow the Curie–Weiss law; εs → ∞ (or a large
value) as T → TC, the Curie point. In these crystals, one of the lattice fre-
quencies shows anomalous variation near the Curie temperature assuming
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a very low value. According to the generalized LST relation, εs → ∞ if
ωt → 0. This is the ‘soft mode’ interpretation of ferroelectricity.

5.3.5 Conductivity of Ionic Crystals

In ionic crystals, conduction is mainly due to the motion of defects. Depending
on the nature of the crystal, the defects may be Schottky pairs (+ve and −ve
ion vacancies) or Frenkel pairs (vacancies and ions in interstitial positions).
The theory of ionic conduction is discussed in [5.7, 5.29]. Energy (Ef) is re-
quired to form a defect and, once a defect is created, energy EM is required
for its migration. The conductivity (σ) is given by

σ = neµ, (5.47)

where n is the concentration of defects, e the charge and µ the mobility of the
defect. Substitution for n from the theory of ionic conductivity [5.29] leads to:

σ = A1 exp
(
− EM

kBT

)
+ A2 exp

(
−EM + (Ef/2)

kBT

)
, (5.48)

where, A1 and A2 are constants for a given crystal and kB the Boltzmann
constant. At low and moderate temperatures, only the first term is operative
whereas at high temperatures the second term dominates. Hence, a log σ vs.
(1/T ) plot will have different slopes at low and high temperatures. These two
regions are called “extrinsic” and “intrinsic”, respectively. The energies of
migration and formation of defects can be calculated from these slopes which
are, respectively, equal to [EM/kB] and [EM + (Ef/2)]/kB.

A typical log σ vs. (1/T ) plot obtained from DC measurement of σ is shown
in Fig. 5.20. As expected, it consists of two linear regions. As mentioned in
Sect. 5.1.4, σ can be obtained from measurement of dielectric loss. A typical
plot of log σ vs. (1/T ) from AC measurements is shown in Fig. 5.21. Here

Fig. 5.20. Plot of log σ vs. (1/T ) for KCl (DC measurement)
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Fig. 5.21. Plot of log σ vs. (1/T ) for calcite (a-axis) at different frequencies (Hz)

Table 5.5. Values of EM and Ef for some crystals

Crystal Method EM [eV] Ef [eV] Ref.

KCl DC 0.51 2.04 [5.107]
CaCO3 a-axis AC 0.11 1.88 [5.108]

it is seen that the plot corresponding to the extrinsic region is frequency
dependent. However, the slopes at different frequencies are nearly the same.
In Table 5.5, the EM and Ef values obtained from DC and AC conductivities
are given. Ef values for several alkali halides are given in [5.42].

5.3.6 Dielectric Constant and Polaron Conduction

Theoretical work by several workers over the years has provided some un-
derstanding of conduction in oxides and transition metal compounds [5.109,
5.110]. For these materials the interaction between electrons and optical
phonons is strong and the conduction is explained on the basis of ‘small po-
larons’. A ‘small polaron’ is a slow moving electron in an ionic lattice. These
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conduction electrons polarize the surrounding lattice in an ionic crystal. The
electrons together with the associated lattice deformation polarization are
termed small polarons. The ‘small polarons’ conduct in a band-like manner at
low temperatures and by hopping mechanism at high temperatures (T > θD/2
where θD is the Debye temperature) [5.111,5.112].

A brief sketch of the theory of polaron conduction based on the treatment
by Mott and Davis [5.113] follows. The potential energy of an electron at a
distance r from another electron is given by e2/ε∞r for an immobile lattice
and e2/εsr for a mobile lattice. Introducing a distance rp from the electron
beyond which the medium is fully polarized and εp as the effective dielectric
constant

1
εp

=
1

ε∞
− 1

εs
. (5.49)

The energy required to polarize the medium is (1/2)(e2/εprp) and the kinetic
energy of the electron is (π2

�
2/2m∗rp

2) where m* is the effective electron
mass. The total energy defined as polaron energy Wp is given by

Wp =
π2

�
2

2m∗rp
2
− e2

2εprp
. (5.50)

Minimising the above equation rp is obtained as

rp =
2π2

�
2

m∗e2
εp. (5.51)

Neglecting the kinetic energy

Wp =
e2

2εprp
. (5.52)

Frohlich [5.114] and Allcock [5.115] by an independent self-consistent calcu-
lation of potentials obtained Wp in terms of the electron–phonon coupling
constant αe. αe is given by

αe = (e2/εp)(m∗/2�
3ωD)1/2, (5.53)

where ωD = kBθD/� and θD is the Debye temperature. They also obtained a
relation for polaron mass mp

mp = 0.02m∗αe
4. (5.54)

The treatment given by Bogomolov et al. [5.116] gives rp as

rp = 1/2(π/6N)1/3, (5.55)

where N is the number of available sites per unit volume.
For αe > 5 and rp less than the distance between the lattice sites, the

polarons are “small polarons”. The polaron parameters may be calculated
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from the dielectric constant and other crystal parameters. A knowledge of the
magnitude of the coupling constant αe and the polaron radius rp helps in
understanding the nature of polaron conduction.

From AC conductivity studies on materials exhibiting small polaron con-
duction, it is observed that below 300 K the conductivity obeys the rela-
tion [5.117]

[σ(ω) − σ(0)] = constant
[

ω2τ

1 + ω2τ2

]
. (5.56)

This frequency dependent conductivity is independent of temperature below
300 K. At higher temperatures, the conductivity is temperature dependent
and is expected to be frequency independent.

The hopping conduction by small polarons is not observed in DC measure-
ments but it is observed only when the measurements are carried out in AC
field at different frequencies. Since τ is of the order of 10−10 s [5.118], at low
frequencies (ω < 105 Hz), ω2τ2 << 1. Hence, ω2τ2 can be neglected in (5.56).
A plot of log [σ(ω)–σ(0)] vs. log ω2 should therefore yield a straight line.

5.3.7 Dielectric Constant and Additivity of Polarizability

The concept of additivity of polarizabilities implies that the molecular polar-
izability of a complex substance can be expressed as the sum of polarizabilities
of simpler molecular entities constituting the molecule. Roberts [5.119] applied
this rule to simple ionic crystals and barium titanate. Tessman et al. [5.120]
have demonstrated the validity of the additivity rule for electronic polarizabil-
ities of alkali halides and alkaline earth chalcogenides. Shannon et al. [5.61]
and Shannon [5.121] have applied the additivity rule of molecular polariz-
abilities to oxides having a variety of structures including some garnets. The
additivity rule of molecular polarizabilities may be illustrated as follows:

αD(M2M′X4) = 2αD(MX) + αD(M′X2), (5.57)

where αD is the dielectric polarizability for a molecular unit, M2M′X4 may
stand for Mg2SiO4,Be2SiO4, etc. The basic equation is the Clausius–Mossotti
equation which relates the polarizability with the measured dielectric con-
stant. Other input data are the density and molecular weight. Good agree-
ment between calculated and observed polarizabilities demonstrate that the
additivity rule is useful in predicting dielectric constants of new materials
whose dielectric constant has not been measured. Shannon [5.122] has given
data on polarizabilities of a large number of ions derived from the dielectric
constants of several oxides and fluorides.

5.3.8 Dielectric Behaviour of Proteins
Dielectric Properties and Protein Hydration

In dealing with biological systems like proteins, the role of water is vital
in understanding their behaviour. This aspect has received the attention of
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many workers [5.77, 5.123, 5.124]. Kuntz and Kauzmann [5.124] reviewed the
hydration of proteins and polypeptides which reveal the existence of water in
many forms, about 0.1% as strongly bound, 10% as less strongly bound and
a major part as free or bulk water.

The dielectric behaviour can be understood by considering three different
stages of protein-water interactions. Initially, when the dielectric properties
of dry protein are measured in vacuum no dispersion will be observed. The
dielectric constant and loss show frequency independent behaviour. The con-
tribution to polarization is by electronic and ionic displacements. As the
water content increases, a large increase in dielectric constant is observed
around the water content of about 1 wt%. The water content at which
large increase occurs is termed ‘critical’ hydration (hC). The critical hy-
dration is identified as the amount of water required to cover the protein
molecules with a single layer of water. Beyond critical hydration water ex-
ists as adsorbed water (wads) and is tightly bound to the protein mole-
cule. The polarization contribution increases to (Pe + Pa) + Pads. At the
third stage where the hydration level is further increased, some of the water
molecules (wd) exist as loosely bound molecules and induce a dipolar con-
tribution Pd to the polarization. Hence at this level of hydration, a large
increase in dielectric constant is observed. The total polarization Ptotal is
expressed as

Ptotal = (Pe + Pa) + Pads + Pd. (5.58)

The molar polarization P , polarizability α and the dielectric constant are
related through Clausius–Mosotti relation. Hence, the dielectric constant ε
changes with the water content due to the increase in polarization.

Dielectric Relaxation and Dispersion

Protein samples in solid state exhibit three regions of dielectric dispersion. The
first dispersion denoted as Ω occurs at very low frequencies and is attributed
to the electrode effects resulting from the accumulation of ions at the sample
electrode interface.

The second dispersion denoted as α-dispersion occurs beyond a few
hundred Hz and is associated with the hopping of charge carriers be-
tween the localized sites. The dispersion peaks are found to move to
higher frequencies with the increase of hydration. For ovalbumin contain-
ing 11 wt% water Takashima and Schwan [5.125] observed a broad dielec-
tric dispersion around 1 kHz. Lawton et al. [5.126] found this dispersion
around 500 Hz for urease containing 13.6 wt% water at room temperature
(Fig. 5.22).

Dielectric measurements in the microwave range of 10 MHz to 25 GHz show
dispersion associated with the orientational relaxations of water bound to
protein molecules. Harvey and Hoekstra [5.127] have observed this effect for
lysozyme around room temperature. Bone and Pethig [5.128] estimated the
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Fig. 5.22. Variation of the dielectric loss parameter ε′′(ω) for urease containing
13.6 wt% water at 294K, to show the forms of the Ω and α-dispersion commonly
exhibited by solid-state protein samples

number of bound water molecules irrotationally bound to protein molecules.
They carried out a detailed study on a number of proteins to understand the
role of bound water in facilitating protein flexibility.

Conduction Mechanism

Pure proteins are insulators at normal temperatures with energy gaps in the
range 4–12 eV between the valence and conduction bands. Electron delocal-
ization may be induced within the valence bands and they show solid state
physical properties similar to those of semiconductors. For instance, electronic
conduction is induced when the proteins are complexed with methylglyoxal
as a result of charge transfer interaction [5.129]. From steady-state measure-
ments on several proteins Bone [5.130] attributed the dispersion observed in
the low frequency range up to 100 Hz to electronic activity by creation of
mobile electrons or holes in the protein complexes.

For hydrated proteins the α-dispersion discussed earlier is associated with
the charge carriers hopping between localized sites. The relaxation time is
related to the steady state conductivity due to proton transport. The mobile
protons originate from ionizable protein molecule and the mobility is induced
due to hydrogen bond network formed by the water molecules. At higher level
of hydration where free hydration or structural flexibility is made possible,
one more component due to orientation of permanent dipoles will be added to
dielectric loss. Pethig [5.35] stated that in the medium frequency range (100 Hz
to few kHz) measurements on dried protein powders overcome complications
associated with the rotation of the protein molecules so that a more direct
estimate of adsorbed water can be made.
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5.3.9 Irradiation Effects

Rao [5.131] reported the dielectric properties of X-irradiated NaCl and LiF
crystals. The relative change in the dielectric loss was found to be more
than the relative change in the dielectric constant. Subrahmanyam and
Badarinath [5.132] observed an increase in dielectric constant of RbCl on
γ-irradiation. Subrahmanyam [5.133] measured the dielectric constant on
quenched and X-irradiated NaCl crystal. He observed an increase of dielectric
constant at low frequencies by more than ten times but on prolonged irra-
diation the original value was restored. At higher frequencies no change was
observed.

Changes in optical and dielectric properties of calcite crystals are reported
by Rao [5.134]. He observed a correlation between the change in the dielectric
loss and thermoluminescence glow. On heating the samples to 350◦C and
cooling to room temperature the dielectric constant was found to recover
its original value. Govinda and Rao [5.135] observed a decrease in dielectric
constant of TGS on γ-irradiation.

An interesting effect in dielectric properties of γ-irradiated fused silica was
reported by Fontanella et al. [5.136]. Their results shown in Fig. 5.23 show
large changes in the relaxation peaks on irradiation. The unirradiated sample
has relaxation peaks at 40 and 240 K. The 240 K peak was found to disappear
with creation of an additional loss peak at about 60 K. No recovery of original
peak was noted even after annealing the sample at room temperature for a
couple of months. A corresponding growth of optical absorption bands in the
visible region was observed. The relaxation was attributed to an aluminium–
alkali centre and the new relaxation at 60 K to an aluminium–oxygen-hole
centre.

Fig. 5.23. ε′′ vs. temperature for a sample of Infrasil 2 before and after irradiation
with about 1.5 × 108 rad of gamma rays from a 60Co source
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5.4 Some of our Results

Using the experimental techniques and procedures discussed in Sect. 5.2,
measurements of dielectric constant, dielectric loss and conductivities (AC
and DC) have been carried out for a variety of materials at various tem-
peratures and frequencies. The frequencies ranged generally from 100 Hz to
100 kHz and in some cases up to 10 MHz and the temperatures from liquid
nitrogen temperature to 700◦C. The exact range of temperature differed from
crystal to crystal.

The materials studied included inorganic substances of different structures,
minerals, organic compounds, biomaterials and a few polymers. Some mate-
rials were studied in the powder form and others as single crystals. In a few
cases, studies have been made both on powders and single crystals.

The experimental results have been analysed and interpreted in terms
of relevant theories to obtain information like effective charges, activation
energies, spectroscopic parameters and polaron parameters.

5.4.1 Dielectric Properties – Data Generation

While detailed information regarding the frequency and temperature varia-
tion of dielectric properties are available in our publications, the main results
are given in Tables 5.6–5.9. These are the static dielectric constant (εs), the
loss (tan δ) at room temperature and the temperature coefficient of dielectric
constant (1/εs)(dεs/dT ) for the range RT–100◦C.

5.4.2 Analysis of Temperature Variation of Dielectric Constant

The theory proposed by Havinga and Bosman (1965) [5.84] has been discussed
in Sect. 5.3.2. It was shown that

1
(εs − 1)(εs + 2)

(
∂εs

∂T

)
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= −β

3
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V
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(5.25)
The macroscopic polarizability α consists of two components, one the optical
polarizability αop due to the displacement of electrons and the other, αir due
to the displacement of ions. Thus

α = αop + αir. (5.59)

Substituting for α in the B term in (5.25)
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(5.60)
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Table 5.6. Static dielectric constant (εs) and loss (tan δ) at room temperature for
some polycrystalline materials

Material εs tan δ [10−2] Ref.

NaCl structure
CaS 7.11 2 [5.137]
SrS 8.50 1.2 [5.138]
BaS 9.10 [5.138]
Sr(NO3)2 structure
Sr(NO3)2 5.17 – [5.139]
Ba(NO3)2 4.59 – [5.139]
Langbeinite structure
K2Zn2(SO4)3 7.63 0.3 [5.140]
(NH4)2Mg2(SO4)3 4.80 0.05 [5.140]
Scheelite structure
KIO4 5.09 0.004 [5.141]
NaIO4 6.30 0.01 [5.141]
Baryte structure
CaSO4 8.50 4.0 [5.142]
SrSO4 8.93 1.8 [5.143]
BaSO4 9.60 0.04 [5.143]
PbSO4 19.43 7.2 [5.142]
Miscellaneous compounds
3MgCO3.Mg(OH)2.3H2O 5.13 1.0 [5.144]
Didymium oxide (R2O3) 55.0 42.0 [5.145]

In the above equation, α is obtained from the experimental values of static
dielectric constant using Clausius–Mossotti relation. αop is obtained from data
on the refractive index n. αir is the difference between α and αop. Following
Havinga and Bosman [5.84], the IR polarizability derivative is obtained from
the relation

V

αir

(
∂αir

∂V

)

T

=
(r/ρ)2 − 2(r/ρ) + 2

3[(r/ρ) − 2)]
, (5.61)

where (r/ρ) is the stiffness constant occurring in the Born repulsion term in
the potential function for an ionic crystal.

In the absence of experimental values of strain optical polarizability con-
stant, it is evaluated using the following equation:

V

αop

(
∂αop

∂V

)

T

=
1
3α

[
(r/ρ) − 2

(r/ρ) − 2

]
+ (2α+− − α++)(1 − e∗/e) (5.62)

proposed by Shankar et al. [5.172] where α+− and α++ are the free ion polar-
isabilities of cation and anion, respectively, and e∗/e = q∗ is the effective ionic
charge. Substituting the values of

(
V
αir

) (
∂αir
∂V

)
T

and
(

V
αop

)(
∂αop
∂V

)
T

in (5.60),
the B term can be calculated and, in turn, C is obtained as the difference of
(A + B + C) and (A + B).
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Table 5.7. Dielectric constant (εs), loss (tan δ) at room temperature and tempera-
ture coefficient of dielectric constant [(1/εs)(dεs/dT )] of some cubic single crystals

Material εs tan δ (1/εs)(dεs/dT ) Ref.
[10−2] [10−4 K−1]

NaCl structure
KCl 4.81 – 2.85 [5.146]
KBr 4.87 – 2.73 [5.146]
RbCl 4.91 – 3.22 [5.146]
RbBr 4.88 – 2.87 [5.146]
LiF 9.30 1.0 2.82 [5.146]
NaF 5.10 – 3.05 [5.146]
CsCl structure
CsI 5.70 0.2 1.55 [5.146]
Fluorite structure
PbF2 29 0.01 9.65 [5.147]
EuF2 8.30 0.06 – [5.148]
ThO2 17.16 1.0 0.30 [5.149]
NaClO3 structure
NaClO3 5.80 1.0 5.20 [5.150]
NaBrO3 5.96 0.07 3.50 [5.150]
Eulytite structure
Bi4(SiO4)3 13.7 0.003 5.80 [5.151]
Bi4(GeO4)3 16.4 0.001 3.24 [5.151]
Selenite structure
Bi12SiO20 45.5 0.008 0.58 [5.152]
Bi12GeO20 40 0.5 0.6 [5.153]
Langbeinite structure
K2Mn2(SO4)3 8.70 – 1.32 [5.154]
(NH4)2Mn2(SO4)3 16.52 1.0 0.84 [5.154]
Sr(NO3)2 structure
Sr(NO3)2 5.18 – 0.29 [5.155]
Ba(NO3)2 4.85 – 0.26 [5.156]
Pb(NO3)2 15.52 – – [5.157]
Garnet structure
Alamandine–pyrope 11.07 0.80 0.80 [5.158]
Gd3Ga5O12 12.08 0.30 0.30 [5.159]
Nd3Ga5O12 12.19 0.47 0.47 [5.160]
Tb3Ga5O12 12.48 0.15 0.15 [5.161]
Y3Fe5O12 12.5 0.6 0.6 [5.162]
Y3Al5O12 12.01 0.2 0.2 [5.163]
Eu3Ga5O12 12.61 0.2 0.2 [5.164]
Gd3Sc2Ga5O12 12.15 0.45 0.45 [5.164]
Y3.1Tb.003Ga4.9O12 12.60 0.04 0.04 [5.164]
Sm2.69Ca0.31Ga4.68Zr0.32O12 13.00 0.10 0.10 [5.164]
Pr2.96In1.34Mg0.4Zr0.4Ga2.9O12 12.61 0.05 0.05 [5.164]
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Table 5.8. Dielectric constant (εs), loss (tan δ) and temperature coefficient of
dielectric constant [(1/εs)(dεs/dT ))] at room temperature of some anisotropic single
crystals

Material Crystal class Orientation εs tan δ (1/εs)(dεs/dT ) Ref.
[10−3] [10−3 K−1]

BaSO4 Orthorhombic 100 7.56 6.0 1.60 [5.149]
010 12.52 3.9 1.72 [5.149]
001 8.52 6.0 0.26 [5.149]

SrSO4 Orthorhombic 100 7.51 1.0 1.49 [5.149]
010 18.46 2.5 0.05 [5.149]
001 8.26 0.3 3.12 [5.149]

CaWO4 Tetragonal Along c-axis 9.10 10 – [5.164]
CaMoO4 Tetragonal Along c-axis 7.02 – – [5.164]
PbWO4 Tetragonal Along c-axis 32.00 40 – [5.164]
LiNbO3 Trigonal Along c-axis 77.10 1 – [5.164]
LaGaO3 Trigonal Along c-axis 25.75 4.5 – [5.164]
Corundum Trigonal Along optic

axis
10.44 0.40 – [5.165]

Topaz Orthorhombic Along optic
axis

6.40 0.20 – [5.165]

Talc Monoclinic Along optic
axis

8.90 0.63 – [5.165]

Tourmaline Trigonal Along optic
axis

6.84 1.51 – [5.159]

Apatite Hexagonal Along optic
axis

9.45 5.15 – [5.166]

The theory is applied to crystals with fluorite structure and to some cubic
nitrates to evaluate the three terms. For PbF2,EuF2,ThO2 and the nitrates,
our experimental data was used. For alkaline earth fluorides and CdF2 ex-
perimental data of earlier workers was taken from literature. The input data
required for the evaluation of the three terms are given in [5.147,5.149,5.173].
The calculated values of strain polarizability constants and also the values of
A,B and C are given in Table 5.10.

The C values in Table 5.10 show that it is negative for PbF2 and Pb(NO3)2
while for all the other crystals it has a positive value. The experimental
(A + B + C) value is also negative at room temperature. For better under-
standing of this result, A,B,C values for PbF2 and EuF2 obtained at various
temperatures from the corresponding input data at these temperatures are
shown in Table 5.11. First, the results given in Table 5.11 show that for EuF2,
the temperature coefficient of dielectric constant is positive and the C value is
also positive throughout the temperature range. However, in PbF2, the tem-
perature coefficient of dielectric constant is negative at low temperatures but
becomes positive at elevated temperatures. Correspondingly, the partameter
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Table 5.9. Dielectric constant (εs) and loss (tan δ) of some organic compounds,
biomaterials and inorganic coordinated polymers

Material εs tan δ[10−3] Ref.

Organic compounds
Urea 4.09 0.5 [5.167]
N -Methyl Urea 4.18 0.6 [5.167]
NN ’-dimethyl urea 3.47 0.6 [5.167]
NN ’-diethyl urea 2.89 0.6 [5.167]
Thiourea 10.2 0.6 [5.167]
NN ’-dimethyl thiourea 4.04 1.0 [5.167]
NN ’-diethyl thiourea 3.2 – [5.167]
Oxamide 3.9 0.05 [5.167]
Dithiooxamide 4.49 0.05 [5.167]
Biomaterials
Urinary stones – major organic components 3–5 0.01 [5.168]
Urinary stones – major inorganic components 5–7 0.05 [5.168]
Dental materials and apatites
Zinc oxide 3.44 – [5.168]
Zinc phosphate 7.43 – [5.168]
Polycarboxylate 6.49 0.05 [5.168]
Glass ionomer 16.50 0.1 [5.168]
Composite resin 3.50 0.1 [5.168]
Detry-RR 2.36 0.1 [5.168]
Human tooth (adult) 7.46 0.040 [5.166]
Human tooth (milky) 10.92 0.093 [5.166]
Mineral hydroxyapatite 6.33 0.020 [5.166]
Synthetic hydroxyapatite 7.47 0.060 [5.166]
Proteins
Lisozyme 3.00 – [5.168]
Bovine serum albumin (BSA) 2.60 – [5.168]
Casein 2.15 – [5.168]
Gelatin 2.75 – [5.168]
Typsin 2.98 – [5.168]
Pepsin 5.00 – [5.168]
Papain 5.25 – [5.168]
Egg albumin 5.50 – [5.168]
Inorganic coordinated polymers
Dihydroxybenzoquinone (DHBQ) 2.89 – [5.169]
Fe-DHBQ 12.54 0.2 [5.169]
Co-DHBQ 5.10 0.10 [5.169]
Ni-DHBQ 22.27 0.40 [5.169]
Cu-DHBQ 4.03 – [5.169]
Zn-DHBQ 3.39 – [5.169]
Dihydroxynapthaquinone (DHNQ) 3.02 0.1 [5.170]
Fe-DHNQ 213 2.2 [5.170]
Co-DHNQ 17.8 0.47 [5.170]
Ni-DHNQ 124 1.0 [5.170]
Cu-DHNQ 19.3 0.58 [5.170]
Zn-DHNQ 4.01 0.07 [5.170]
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Table 5.9. Continued

Material εs tan δ[10−3] Ref.

Tetrahydroxy benzoquinone (THBQ) 3.76 – [5.171]
Fe-THBQ 17.76 0.28 [5.171]
Co-THBQ 9.65 0.2 [5.171]
Ni-THBQ 6.79 0.19 [5.171]
Cu-THBQ 10.9 0.09 [5.171]
Zn-THBQ 12.9 0.19 [5.171]
Dihydroxy anthraquinone DHAQ 3.08 – [5.171]
Zn-DHAQ 4.06 0.01 [5.171]

Table 5.10. Strain polarizability constants and calculated values of A, B, C for
some fluorite type crystals and some nitrates at room temperature

Material V
αop

(
∂αop
∂V

)
T

V
αir

(
∂αir
∂V

)
T

(A+B+C)a

[10−5 K−1]

A [10−5

K−1])

B [10−5

K−1]

C [10−5

K−1]

Ref.

CaF2 0.40 3.00 3.29 −1.85 3.68 1.46 [5.147]

SrF2 0.21 3.07 2.92 −1.93 3.68 1.17 [5.147]

BaF2 0.08 3.14 2.68 −1.98 3.72 0.94 [5.147]

CdF2 0.26 3.23 3.76 −2.16 3.89 2.03 [5.147]

PbF2 −0.04 2.88 −0.79 −2.45 3.92 −2.26 [5.147]

EuF2 0.14 2.90 1.75 −1.54 2.56 0.73 [5.147]

ThO2 0.59 2.18 0.97 −0.86 1.22 0.63 [5.149]

Sr(NO3)2 0.51 4.21 5.10 −2.88 5.95 2.03 [5.173]

Ba(NO3)2 0.57 4.05 4.67 −1.82 3.67 2.82 [5.173]

Pb(NO3)2 0.33 4.15 0 −2.48 5.49 −3.01 [5.173]

a[1/(εs − 1)(εs + 2)](∂εs/∂T )P obtained from observed temperature variation of εs

C also is negative at low temperatures and positive at elevated temperatures.
It is to be noted that A and B parameters are of the same sign in the entire
suite of crystals and over the entire range of temperatures. Thus the con-
tribution C plays a dominant role in determining the temperature variation
of dielectric constant. It is to be noted that the C contribution reflects the
anharmonic effects. Second, it is seen that in the absence of data on pressure
variation of dielectric constant, reasonable values of A,B and C terms can be
obtained by a semi-empirical approach based on a simple ionic model.

Based on the analysis of the data on dielectric constant for PbF2, a similar
procedure was adopted for strontium nitrate, barium nitrate and lead nitrate.
It was observed that for the Sr and Ba nitrates the values of (A+B +C) and
C are negative while for Pb nitrate, as no change in the dielectric constant
was found at room temperature, the C term is again negative.
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Table 5.11. A, B, C values at various temperatures for PbF2 and EuF2 [5.147]

Material Temperature
[K]

(A+B +C)
[10−5 K−1]

A[10−5

K−1]
B[10−5

K−1]
C[10−5

K−1]

PbF2 180 −0.95 −2.41 3.86 −2.40
295 −0.79 −2.45 3.92 −2.26
395 5.30 −3.40 5.44 3.26

EuF2 295 1.75 −1.54 2.56 0.73
395 5.43 −1.89 3.14 4.80

Table 5.12. Effective ionic charge q* calculated from (5.28)

Material q* Ref.

MgO 0.60 [5.174]
CaO 0.64 [5.174]
SrO 0.78 [5.174]
BaO 0.66 [5.174]
CaS 0.41 [5.137]
SrS 0.58 [5.138]
BaS 0.49 [5.138]
PbF2 0.93 [5.142]
EuF2 0.86 [5.142]
Sr(NO3)2 0.84 [5.139]
Ba(NO3)2 0.71 [5.139]
Pb(NO3)2 1.04 [5.139]
NaClO3 0.92 [5.142]
NaBrO3 1.05 [5.142]
CaSO4 1.10 [5.143]
SrSO4 1.07 [5.143]
BaSO4 0.94 [5.143]
CaWO4 0.92 [5.164]
CaMO4 0.78 [5.164]
PbMO4 0.95 [5.164]

5.4.3 Application of Szigeti’s Theory

Effective Ionic Charge

Employing the values of the static dielectric constants at room temperature in
conjunction with other data, the effective ionic charges q* have been calculated
from (5.28). The static dielectric constants obtained in our work have been
used in the calculation except for the alkaline earth oxides for which data
from literature have been employed. Although Szigeti derived the equations
specifically for the alkali halides, he extended it to triatomic crystals like CaF2

and to non-cubic crystals like TiO2. In the same spirit, we have extended the
calculations to polyatomic and non-cubic crystals. The values are shown in
Table 5.12.
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It can be seen that except for the sulphides and to some extent the al-
kaline earth oxides, the values of q* for other materials are close to unity
indicating an ionic character. The values of q* for oxides are in the range
0.6–0.8 showing lesser ionicity compared to alkali halides and alkaline earth
nitrates and sulphates. For the alkaline earth sulphides q* values are in the
range 0.4–0.6 which is very much lower than unity. These low values indicate
strong deviation from ionic nature.

Generally, the q* values increase with the increase in cation size. Thus
the q* value for the Sr compounds is more than that for the Ca compounds.
However, there is a reversal of this trend when we compare the q* values of
Sr and Ba compounds, the latter being systematically less. Srinivasan [5.175]
considered a number of properties of the cubic nitrates and observed that the
bonding in the Ba compound is less ionic than that in the Sr compound. The
reversal of q* values in Ba compounds vis-à-vis the Sr compounds may be
related to this aspect.

Anharmonic Contribution to Dielectric Constant for some
Fluorides and Nitrates

Using (5.35), the anharmonic parameter G/(εs − ε∞) was evaluated for
the alkaline earth fluorides, CdF2,PbF2 and EuF2 and also for the ni-
trates, Sr(NO3)2, Ba(NO3)2 and Pb(NO3)2. The values of C are taken from
Table 5.10. The results are given in Table 5.13. The values agree well with
those obtained by Samara [5.50] for the fluorides. Amongst the nitrates, only
Pb(NO3)2 has a negative value as in the case of PbF2.

5.4.4 Spectroscopic Aspects

Self-energy

The relation between dielectric phenomenon and phonon processes was dis-
cussed briefly in Sect. 5.3.4. Using (5.38) and (5.39), the self-energy values

Table 5.13. Values of the anharmonicity parameter G/(εs-ε∞)

G/(εs − ε∞)
Crystal Expt. [5.50] Calculated value (5.37) Ref.

CaF2 0.040 0.046 [5.147]
SrF2 0.032 0.035 [5.147]
BaF2 0.036 0.033 [5.147]
CdF2 – 0.070 [5.147]
PbF2 −0.197 −0.225 [5.147]
EuF2 – 0.028 [5.147]
Sr(NO3)2 – 0.06 [5.173]
Ba(NO3)2 – 0.09 [5.173]
Pb(NO3)2 – −0.18 [5.173]
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Fig. 5.24. Plots of self-energy (−∆) against temperature for some alkali halides

have been estimated for seven crystals (KCl, KBr, RbCl, RbBr, LiF, NaF
and CsI). The input parameters required are: the static dielectric constant
(εs), optical dielectric constant (ε∞), dielectric constant at absolute zero ε(0),
Gruneisen parameter (γt), the parameter C and the volume thermal expansion
coefficient β.

The values of ε∞, ε(0) and εs up to 300 K are taken from Lowndes and
Martin [5.37]. Beyond 300 K our values of εs are used. γt, C and β are
from [5.176–5.178]. The self-energy values (−∆) are plotted as a function
of temperature in Fig. 5.24. It can be seen that for KCl, KBr, RbCl and NaF
they are positive and show only a slight variation with temperature beyond
300 K. For RbBr the values are positive with a decrease beyond 300 K. For
LiF the values are positive up to 300 K and beyond 300 K they are negative
with a larger variation at higher temperatures. For CsI (−∆) is negative for
the entire range.

The negative anharmonic contributions obtained for CsI and LiF at higher
temperatures indicate that in these compounds the fourth-order contribution



244 5 Dielectric and Electrical Properties of Solids

to the lattice potential is quite large. For the rest of the crystals, third-order
contribution dominates. These results agree qualitatively with the results ob-
tained by Lowndes and Rastogi [5.176] purely from spectroscopic data.

Damping and Dielectric Constant

The values of the damping constant (γd/ωt) were calculated for LiF, KBr and
NaI from dielectric data using (5.43):

(γd/ωt) =
(εs − ε∞)ωt

(2nkω)max
=

εs − ε∞
(2nk)max

. (5.43)

Values at different temperatures were calculated using the input parameters at
those temperatures. Dielectric constant data for LiF and KBr were from [5.46]
and for NaI from [5.37].

Figure 5.25 shows the variation of γd/ωt and εs as a function of tempera-
ture. It can be seen that for KBr and NaI there is a good correlation between
the values of γd/ωt and εs. For LiF there is a clear departure in γd/ωt and
εs values from linearity. The damping is expected to show a variation with
temperature as AT +BT 2. The first term is due to the third-order harmonic-
ity contribution and the second term represents the fourth-order contribution.
Departure from linearity is observed at higher temperatures in the case of LiF.

The self-energy values obtained from our dielectric data as input yielded
reasonably good results. The temperature dependence of damping is explained
well in terms of the temperature dependence of dielectric constant.

Fig. 5.25. Plots of γd/ωt (open circles) and εs (full circles) against temperature for
KBr, LiF and NaF crystals
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5.4.5 Polaron Conduction in Garnets

A brief account of polaron conduction was discussed earlier in Sect. 5.3.6.
The conductivity data obtained for the garnets is examined in the light of
polaron conduction. Polaron parameters have been calculated for some rare
earth garnets using the dielectric data obtained by us together with other
required parameters from literature.

The input data for evaluating polaron parameters are given in Table 5.14.
The calculated values of the polaron parameters for three garnets are shown in
Table 5.15. From the table, it is seen that the coupling constant αe is >5 for all
the garnets and that the polaron radius rp is less than the interionic distance.
These are the required conditions for small polaron conduction mechanism to
be effective in a given lattice.

Apart from these calculations, further supporting evidence is obtained
from AC conductivity (σAC) measurements carried out by us at low tempera-
tures. From these measurements, it is observed that the plots of log (σAC) vs.
ω2 for YGG and YIG at 200 K and NdGG at 300 K are linear. A typical plot
is shown in Fig. 5.26. As mentioned in Sect. 5.3.6, this is to be expected for
small polaron conduction. Petrov et al. [5.182] interpreted high temperature
conduction in rare earth iron garnets in terms of small polaron conduction.
Detailed measurement of AC conductivity of YIG and its interpretation in
terms of small polaron theory was carried out by Sirdeshmukh et al. [5.162].
Thus calculations of polaron parameters and measurements of AC conduc-
tivity at low as well as high temperature clearly indicate the role of small
polarons in the conduction in rare earth garnets.

Table 5.14. Input parameters for evaluating polaron parameters for conduction in
garnets; lattice constants (a) and Debye temperatures (θD) from [5.179, 5.180], ε∞
from [5.181] and εs from [5.160,5.162,5.164]

Crystal a [Å] ε∞ εs θD[K]

Y3Ga5O12 12.27 3.72 12.60 584.5
Y3Fe5O12 12.37 4.84 12.55 562.4
Nd3Ga5O12 12.54 3.72 12.19 513.4

Table 5.15. Polaron parameters for garnets

Polaron parameter YGG YIG NdGG

rp = 1/2(π/6N)1/3 [Å] 0.90 0.918 0.930
εp = ε∞εs/(εs − ε∞) 5.39 7.90 5.28
Wp = e2/4πε0εprp [eV] 1.47 0.99 1.46

αe = (e2/εp)(m∗/2�
3ωD)1/2 17.07 13.85 18.15

mp = 0.02m∗αe
4 [105me] 3.75 4.33 4.63

ωD = kBθD/� [Hz] 7.64 7.35 7.35
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Fig. 5.26. Plot of log σ vs. log ω2 for YIG at 200 K

5.4.6 Dielectric Constant and Additivity of Polarizability

The rule of additivity of polarizability discussed earlier in Sect. 5.3.7 was
employed to evaluate the dielectric constants of mineral garnets and some
rare earth garnets.

Mineral garnets are represented by the formula X3Al2Si3O12, where X =
Fe for almandine, Mg for pyrope and Mn for spessartine. The molecular po-
larizability αD is expressed in terms of the polarizabilities of three simple
molecules as

αD[X3Al2Si3O12) = 3αD(SiO2) + 3αD(XO) + αD(Al2O3). (5.63)

The molecular polarizabilities of the compounds on the right hand side of the
above equation are evaluated from Clausius–Mossotti relation in conjunction
with the data on density and dielectric constant [5.158]. From the sum of the
polarizabilities, the dielectric constants of the three pure mineral garnets are
obtained. The mineral garnet for which the dielectric constant was measured
was a mixed crystal of almandine (Alm), pyrope (Pyr) and spessertine (Spe).
The composition of the mineral sample was determined by chemical analysis.
For the calculation of dielectric constant, the composition was taken into
account to obtain the polarizability.

For the rare earth garnets the equation for the polarizabilities is given by

2αD(X3Y5O12) = 3αD(X2O3) + 5αD(Y2O3), (5.64)

where X may be Ga, Y, Nd, etc. and Y represents Ga, Fe or Al. Literature
values of dielectric constants of rare earth sesquioxides and their densities
were used to evaluate the polarizabilities of oxides on the right-hand side.
The value for Ga2O3 was taken from Shannon et al. [5.61].

The calculated values of dielectric constant along with the measured values
are given in Table 5.16. It can be seen that there is reasonably good agreement
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Table 5.16. Measured and calculated dielectric constants of some garnets

ε
Material Calculated Measured Ref.

Mineral Garnets
Fe3Al2Si3O12 (Almandine) 12.52 – [5.158]
Mg3Al2Si3O12 (Pyrope) 10.42 – [5.158]
Mn3Al2Si3O12 (Spessertine) 13.16 – [5.158]
Alm—Pyr–Spe (mineral sample) 11.73 11.70 [5.158]
Rare earth garnets
Gd3Ga5O12 12.43 12.08 [5.159]
Tb3Ga5O12 12.08 12.45 [5.159]
Nd3Ga5O12 13.16 12.19 [5.159]
Y3Fe5O12 11.22 12.55 [5.159]
Eu3Ga5O12 12.12 12.61 [5.164]

in all cases. Thus, the oxide additivity rule is useful for predicting the dielectric
constant of a complex material if the molecular polarization of the simple
molecular components is known.

5.4.7 Ferroelectric Behaviour in NaCIO3 and NaBrO3

Mason [5.183] has measured the dielectric constant of NaClO3 at 1 kHz in the
temperature range −100◦C to 200◦C. He represented the results in the form of
Curie–Weiss type equations. The equations predict a ferroelectric transition at
320◦C and 414◦C for NaClO3 and NaBrO3 respectively. These temperatures
are above the melting points. The ferroelectricity was attributed to a change
in the orientation of the chlorate (or bromate) ion or to apex reversal of the
halogens. Prasad Rao et al. [5.184] and Dawson [5.185] carried out Raman
studies on these crystals but failed to observe any soft mode behaviour.

In order to reexamine the suggestion of ferroelectricity in these crystals
we have measured the dielectric constant as a function of temperature from
−180◦C to 240◦C. We find that the data could be fitted to two types of
equations. One, in the form of a polynomial and the other, a Curie–Weiss
type equation. These equations are:

Curie–Weiss form:

ε = 5.4 +
106

273 − t
for sodium chlorate, (5.65)

ε = 5.4 +
143

281 − t
for sodium bromate. (5.66)

Polynomials:

ε = 5.69 + 3.06 × 10−3t at − 180◦C < t < 150◦C. (5.67)

ε = 7.51 − 3.55 × 10−2t + 1.64 × 10−4t2 at t > 170◦C (5.68)
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Fig. 5.27. Plots of ε at 106 Hz against temperature for NaClO3 and NaBrO3

for sodium chlorate, and

ε = 6.45 − 1.34 × 10−2t + 9 × 10−5t2 at 30◦C < t < 170◦C. (5.69)

for sodium bromate.
In Fig. 5.27 the values of ε calculated from these equations are plotted

along with the experimental values. It can be seen that the two sets of equa-
tions represent experimental data equally well within the limits of errors.
Thus, the data obtained by Mason could as well have been represented by
a power series equation which does not suggest ferroelectricity. Our analysis
indicates that it is hazardous to predict ferroelectricity in a crystal merely on
the basis of an empirical Curie–Weiss type of equation.

5.4.8 Analysis of Conductivity Data

Activation Energy and Defect Formation Energy

From the data on dielectric constant and loss as a function of temperature,
conductivity σ is obtained. Activation energies (Eex and Ein) are obtained
from the slopes of the log σ vs. 1/T plot in the extrinsic and intrinsic regions
respectively (Sect. 5.3.5). The results are shown in Tables 5.17–5.19. Eex is
equal to EM the energy for migration of the defect. On the other hand, Ein is
the sum of EM and half the defect formation energy Ef . The values of Ef are
also given in the table.

The value of 0.92 for Ef in the case of PbF2 is lower than the rest of the
materials in the table and alkaline earth fluorides which are of the order 2–3 eV
[5.186]. The smaller value for PbF2 has been attributed by Samara [5.50] to
the large dielectric constant ε, existence of soft mode and strong anharmonic
effects. The value for EuF2 is of the same order as those of alkaline earth
fluorides. The results indicate that the predominant defect in the crystals with
fluorite structure is Frenkel anion pair. The mobile charge carrier is F− ion.
On the basis of polarizability values, the conduction in NaClO3 and NaBrO3

can be attributed to the migration of the Na+ ions. The formation energy is
highest for Bi12SiO20 amongst the materials studied.

For the nitrates, the values are from DC conductivity measurements. The
values of energy of motion and formation indicate that while the formation of
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Table 5.17. Activation energies (Eex and Ein) and defect formation energy (Ef)

Material Eex (eV) Ein (eV) Temp. range (◦C) Ef (eV) Ref.

PbF2 0.32 0.78 130–230 0.92 [5.142]
EuF2 0.16 1.05 200–300 1.78 [5.148]
ThO2 0.19 0.79 300–500 1.20 [5.149]
NaClO3 0.18 2.78 200–240 5.22 [5.150]
NaBrO3 0.22 1.60 180–240 2.76 [5.150]
Bi4(SiO4)3 0.07 0.95 230–400 1.76 [5.151]
Bi4(GeO4)3 0.06 1.20 230–400 2.28 [5.151]
Bi12SiO20 0.05 5.33 300–360 10.56 [5.152]
Bi12GeO20 0.49 1.12 300–480 1.26 [5.153]
Sr(NO3)2 0.28 4.15 180–230 7.74 [5.155]
Ba(NO3)2 0.34 2.03 210–320 3.38 [5.156]
Pb(NO3)2 0.71 1.86 150–210 2.30 [5.157]

Table 5.18. Activation energies in the extrinsic (Eex) and intrinsic region (Ein)

Material Direction Eex (eV) Ein (eV) Temp. range (◦C) Ref.

BaSO4 100 0.62 0.78 130–230 [5.149]
010 0.49 1.25 280–480 [5.149]
001 0.58 0.99 270–460 [5.149]

SrSO4 100 0.52 0.79 210–490 [5.149]
010 0.51 1.23 180–490 [5.149]
001 0.58 0.83 220–490 [5.149]

K2Zn2(SO4)3 – 0.47 0.67 280–460 [5.140]
(NH4)2Mg2(SO4)3 – 0.90 1.98 310–460 [5.140]
K2Mn2(SO4)3 100 0.58 1.04 300–480 [5.154]
(NH4)2Mn2(SO4)3 100 0.71 1.45 300–500 [5.154]

the defect is difficult, the motion is much easier than in fluorite type crystals.
This is perhaps due to the large space of about 40 Å

3
available in the lattice.

It is observed that in ionic solids the size of the ions and the polarizability
influence the process of conduction.

For some materials for which the defect mechanism is not clear; only the
values of Eex and Einare given (Table 5.18). In the case of SrSO4 and BaSO4,
measurements were made in three directions. In both cases, the activation
energies are higher in the <010> direction than in the other two directions.

For the minerals and garnets, the log σ vs. 1/T plot is linear at higher
temperatures but highly non-linear at moderate temperatures. In these cases
(Table 5.19) only the values of activation energies are given.

Relaxation Effects

The loss (tan δ) versus temperature curves at different frequencies for
PbF2,EuF2,Bi4(SiO4)3,Bi4(GeO4)3 and YIG show broad peaks at certain
temperatures. A shift in the peaks is observed for a change in the frequency.
The peaks shift towards higher frequencies. The relaxation peaks observed in
YIG are shown in Fig. 5.28. Such peaks have been observed by Agrawal [5.187]
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Table 5.19. Conductivity (σ) and activation energy for garnets and mineral samples

Material σAC

at 300◦C
[(10−9Ω
cm)−1]

σDC

at 300◦C
[(10−9Ω
cm)−1]

Activation energy
[eV]

Ref.

<200◦C >200◦C

Garnets 7.01 6.80 0.18 0.57 [5.158]
GGG 8.09 0.21 0.15 0.84 [5.159]
NdGG 23.60 0.78 0.10 0.37 [5.160]
TbGG 0.45 0.04 0.47 0.78 [5.161]
YIG 6.0 × 104 1.8 × 103 0.42 0.87 [5.162]
Minerals
Corundum 93 17.0 0.08 0.31 [5.165]
Topaz 11.20 9.00 0.07 0.65 [5.165]
Opal 184 41.00 0.06 0.23 [5.165]
Talc 1.4 × 103 740 0.06 0.11 [5.165]
Tourmaline 456 400 0.19 0.46 [5.159]
Apatite 0.63 0.52 – 0.88 [5.159]

Fig. 5.28. Variation of tan δ with temperature at different frequencies showing
relaxation peaks

in doped CaF2 crystals and Young and Frederikse [5.49] in the case of CdF2

due to dipolar impurity. The EuF2 crystal contained Sm3+ impurity and
the YIG crystal contained Si4+ impurity. The observed relaxations are at-
tributed to the dipoles formed by these impurities. The relaxation peaks in
the other crystals may be due to unidentified impurities. The frequencies and
temperatures at which the peaks are observed are given in Table 5.20.

The activation energy for the rotation ER of the dipoles in the crystals
has been calculated using the relation

f = f0e−ER/kBT , (5.70)
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Table 5.20. Temperatures at which relaxation peaks are observed for PbF2, EuF2,
Bi4(SiO4)3 and Bi4(GeO4)3

Crystal 103 Hz 104 Hz 105 Hz 106 Hz ER [eV]

PbF2 – 95◦C 120◦C 220◦C 0.06
EuF2 230◦C 285◦C – – 0.82
Bi4(SiO4)3 270◦C 340◦C – – 0.25
Bi4(GeO4)3 250◦C 300◦C 360◦C – 0.23
YIG 230◦C 270◦C 340◦C 360◦C 0.75

where f is the frequency of the relaxation peak at temperature T, f0 a constant
and ER the activation energy for the rotation of the dipoles. The values of
the activation energy are also given in Table 5.20. The peaks are rather broad
when compared to the peaks generally observed. As such the values obtained
for activation energies are to be considered as approximate.

5.4.9 γ-Irradiation Studies

Measurements of dielectric constant and loss (tan δ) have been carried out on
γ-irradiated crystals of some alkali halides [5.188], cubic nitrates [5.173] and
some minerals [5.159]. The crystals were irradiated with γ-radiation at a dose
rate of 112 krad h−1 from a Co60 source.

For alkali halides, the results are shown in Figs. 5.29 and 5.30. The curves
show large variations in dielectric constant. Peaks are observed (Fig. 5.29)
for 25 h of irradiation and again for 70 h; in KCl a peak is observed only at
25 h of irradiation. The percentage increase in dielectric constant is more for

Fig. 5.29. Plots of ε vs. time of γ-irradiation at 100 kHz for some alkali halides
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Table 5.21. Dielectric constant (ε) and tan δ at 100 kHz of some minerals

Sample Before irradiation After irradiation (72 hours) After annealing
ε tan δ ε tan δ ε tan δ

Garnet 11.75 – 12.53 – 11.88 –
Corundum 10.54 0.001 11.13 0.005 10.60 0.002
Topaz 6.42 – 6.55 – 6.47 –
Tourmaline 8.85 – 9.35 – 8.90 –
Apatite 9.67 – 10.57 – 9.76 –
Talc 16.48 0.4 22.05 0.50 17.63 0.42

RbBr and RbCl than for NaF and LiF. Similar trend is observed in loss also.
(Fig. 5.30). It may be mentioned that in the study on γ-irradiation effects on
F-centre growth curves and microhardness, Thirmal Rao [5.189] found that
the percentage increase was more in rubidium halides when compared to those
of LiF and NaF. Our observation agrees with that of Thirmal Rao.

In an earlier study, Subrahmanyam [5.190] observed that in X-irradiated
NaCl crystal the dielectric constant increases considerably up to a certain
duration, but on prolonged irradiation, the original value is restored. It is
believed that the observed initial increase is due to creation of F-centres.
The charged vacancies accumulate leading to space charge till equilibrium is
reached after which the dielectric constant reaches the original value. Further
irradiation results in the repeat of the process.

The dielectric constants of the nitrates were determined and their optical
absorption recorded. The results for Sr(NO3)2,Ba(NO3)2 and Pb(NO3)2 are
shown in Figs. 5.31 and 5.32. It can be seen that peaks are observed in the ε
vs. irradiation time curves (Fig. 5.31) as in the case of alkali halides. Broad
peaks were also observed in optical spectra recorded after 40 h of irradiation.
The bands are the F-centre bands. Tagaya [5.191] reported F-centre forma-
tion in Sr(NO3)2. In these crystals, the presence of free NO−

3 ion products
NO−

2 and O2 is reported by Tagaya [5.192] and Bhatta et al. [5.193]. On
further irradiation beyond 80 h, random recombination takes place [5.193].
Prolonged irradiation results in recovery of original ions and initial dielectric
constant.

The results for the mineral samples are shown in Table 5.21. An increase
in dielectric constant was observed after 72 h of irradiation. The effect was
stable and no change in dielectric constant was observed even after 15 days.
In order to examine the effect of annealing, the samples were kept at 300◦C for
about 10 h and the measurements were repeated for all the samples at room
temperature. The results show that for all the mineral samples the dielectric
constant assumes values close to those for unirradiated samples.
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Fig. 5.30. Plots of tan δ vs. time of γ-irradiation at 100 kHz for some alkali halides

Fig. 5.31. Variation of ε with time of γ-irradiation for Sr(NO3)2, Ba(NO3)2 and
Pb(NO3)2
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Fig. 5.32. Optical absorption spectra for (a) Sr(NO3)2, (b) Ba(NO3)2 and
(c) Pb(NO3)2

5.4.10 Dielectric Properties and Protein Hydration

Krishna Murthy [5.168] carried out dielectric measurements on the proteins
lysozyme, bovine serum albumin (BSA), casein, gelatin, trypsin, pepsin, pa-
pain and egg albumin. Hydration effect was studied by measurements at var-
ious levels of hydration. Though the samples were dehydrated and preserved
in vacuum at room temperature, the samples were found to retain certain
amount of water [5.35]. Hence, the dielectric constant for dry protein is ob-
tained by extrapolating the curves of dielectric constant vs. wt% of water to
zero hydration. The values thus obtained are shown in Table 5.22.

Figure 5.33 shows the plots of ε′′(ε tan δ) for dry and wet (more than
20 wt% of water) samples of lysozyme and gelatin. As the frequency range

Table 5.22. Hydration data on proteins

Sample ε of dry protein hC wads [wt % of H2O] wdip [wt% of H2O]

Lysozyme 3.00 0.91 4.1 7.8
BSA 2.60 1.02 3.5 6.5
Casein 2.15 1.08 6.5 12.5
Gelatin 2.75 1.10 5.5 11.5
Trypsin 2.98 0.85 3.5 7.25
Pepsin 5.00 0.95 3.8 6.0
Papain 5.25 0.90 2.0 4.8
Egg albumin 5.50 0.87 2.5 4.5
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Fig. 5.33. Variation of ε′′ with frequency for (a) lysozyme and (b) gelatin

was limited to 100 kHz, only α dispersion was observed. The α dispersion
peaks are clearly seen for both the hydrated samples. From the peak values,
the relaxation times are obtained as 5.3× 10−4 and 7.8× 10−4 s for lysozyme
and gelatin, respectively. These observations are similar to α-dispersion for
urease shown in Fig. 5.22.
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Theoretical Evaluation of Some Crystal
Properties

6.1 Introduction

Most of the work described in the earlier chapters relates to the experimental
determination of properties of lattice dynamical interest. Such measurements
can be complemented by theoretical evaluation of physical properties of crys-
tals. Such evaluations facilitate a check, on the one hand, on the assumed
models and, on the other, on the reliability of the measured properties.

With this approach, an attempt has been made to evaluate elastic con-
stants, coefficients of thermal expansion, Debye temperatures and Gruneisen
parameters. One approach is to calculate crystal properties from the inter-
atomic potentials. This approach is employed to evaluate the elastic constants,
the thermal expansion and the Gruneisen parameter. Another approach is
to evaluate some crystal properties from other measured properties. Thus
the Debye temperature can be calculated from the elastic constants and the
Gruneisen constant from the pressure derivatives of elastic properties. The De-
bye temperatures and the Gruneisen parameter can also be calculated from
properties other than the elastic properties. The results of such calculations
are presented.

6.2 Elastic Constants of Ionic Crystals

Krishnan and Roy [6.1, 6.2] made a detailed analysis of lattice vibrations in
alkali halides. One of the results of their study is the derivation of expressions
for the elastic constants of ionic crystals with NaCl and CsCl structure in
terms of the interionic potential. They assumed these crystals to be ionic
with a lattice potential φ given by

φ = −(Az2e2/r) + b exp(−r/ρ), (6.1)

where A is the Madelung constant, z the valency, e the electron charge,
r the interionic distance, b a constant and r/ρ the repulsion parameter. The
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Table 6.1. Elastic constants of some alkali halides; calculated values from [6.2] and
observed values from [6.3]

Crystal
C11 C12 C44

[1011 dynes cm−2]

LiF Calc. 10.7 4.9 4.9
Obs. 11.8 4.33 6.28

NaCl Calc. 5.0 1.3 1.3
Obs. 4.87 1.24 1.26

KBr Calc. 3.5 0.7 0.7
Obs. 3.46 0.58 0.50

KI Calc. 3.1 0.5 0.5
Obs. 2.67 0.43 0.42

parameter r/ρ can be obtained from the compressibility ψ using the relation:

ψ = 18r4
/
{Az2e2[(r/ρ) − 2]}. (6.2)

The expressions for the elastic constants Cij derived by Krishnan and Roy
[6.2] are:

C11 = {2A[(r/ρ) + 1)] − 6X}(z2e2/12r4), (6.3)

C12 = C44 = (−3A + 3X)(z2e2/12r4). (6.4)

Here X is a lattice sum with a value of 3.14 for the NaCl lattice. Similar
expressions were obtained for the CsCl lattice. The equality of C12 and C44

is the consequence of the assumption of central forces.
Krishnan and Roy calculated the elastic constants of several alkali halides.

Their values for some alkali halides are given in Table 6.1. These calculated
values were compared by Krishnan [6.3] with experimental values. The agree-
ment is fair indicating that the Krishnan–Roy theory is applicable for ionic
crystals.

The transition metal oxides have the NaCl structure. Their effective ionic
charges calculated by Kinney and O’Keefe [6.4] from Szigeti’s theory indicate a
high degree of ionicity. Sirdeshmukh and Subhadra [6.5] applied the Krishnan–
Roy theory to this group of crystals. The results are given in Table 6.2 along
with experimental data. The agreement of calculated values of C11 and C12

with experimental values is as good as in the case of alkali halides. The agree-
ment is not so good in the case of C44. As mentioned earlier, any central force
model would predict C12 = C44.

Subhadra and Sirdeshmukh [6.7] also applied the Krishnan and Roy the-
ory to LiH, an ionic crystal with NaCl structure. Here, several different com-
pressibility values were available which yielded different r/ρ values and hence,
different values of Cijs (Table 6.3). There was considerable difference in these
different sets. The strategy adopted to sift the best set and hence the best
value of compressibility is discussed in Chap. 8.
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Table 6.2. Elastic constants of transition metal oxides; calculated values from [6.5]
and observed values from [6.6]

Crystal
C11 C12 C44

[1011 dyne cm−2]

CoO Calc. 26.5 15.6 15.6
Obs. 25.6 14.4 8.0

NiO Calc. 26.3 16.8 16.8
Obs. 27.0 12.5 10.5

MnO Calc. 16.7 13.1 13.1
Obs. 22.2 11.0 7.8

Table 6.3. Elastic constants of LiH; calculated values from [6.7]; sources of com-
pressibility as given in Chap. 8

ψ[10−12 cm2 dyne−1]
r/ρ

C11 C12 = C44

[1011 dyne cm−2]

2.0 5.88 5.8 4.6
2.83 4.74 1.4 4.6
3.70 4.10 −1.1 4.6
4.38 3.77 −2.4 4.6

6.3 Coefficient of Thermal Expansion from Interatomic
Potentials

6.3.1 Thermal Expansion Coefficient of Crystals with Fluorite
Structure

Smyth [6.8] has developed a simple method to estimate the coefficient of
thermal expansion α of a crystal from its interatomic potential φ. According
to this method, α is given by

α = −(CV /2r)(d3φ/dr3)
/
[(d2φ/dr2)]2. (6.5)

This method has been used by Sharma and Madan [6.9] and Kachhava and
Saxena [6.10] to estimate the thermal expansion coefficient of various crystals.

The interatomic potential φ for an ionic crystal [6.11] is given by:

φ = −φe − φd(6) − φd(8) + φr, (6.6)

where the terms, respectively, represent the Coulomb, dipole–dipole, dipole–
quadrupole and repulsion interactions. Benson and Dempsey [6.12] carried out
a term-by-term evaluation of the lattice potential and lattice energy of fluorite-
type crystals. In their work, the repulsion term was, further, composed of four
terms φr(1), φr(2), φr(3), and φr(4) which corresponded to different ion pairs.
Subjecting the potential in (6.6) to (6.5), Sirdeshmukh [6.13] obtained
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Table 6.4. Values of coefficients of thermal expansion (α) of some fluorite-type
crystals

Crystal
α[10−6 per◦C]
Calculated [6.13] Observed [Chap. 2]

CaF2 19.0 18.3
SrF2 19.6 18.0
BaF2 21.0 19.0

α = −
(

CV

2

)
[6φe + 336φd(6) + 720φd(8) − (r/ρ)3φr(1) − (k2r/ρ)3φr(2)

− (k1r/ρ)3φr(3) − (k1r/ρ)3φr(4)]/

[−2φe − 42φd(6) − 72φd(8) + (r/ρ)2φr(1) + (k2r/ρ)2φr(2)

+ (k1r/ρ)2φr(3) + (k1r/ρ)2φr(4)]2, (6.7)

where k1 and k2 are constants in the repulsion terms. Room temperature
values of CV were calculated from known values of the Debye temperature.
Other parameters were taken from Benson and Dempsey [6.12].

Values of the coefficients of thermal expansion calculated from (6.7) are
given in Table 6.4 along with experimental values. It can be seen that the
agreement is fairly good. These calculations provide additional evidence that
these crystals are essentially ionic in character.

6.3.2 Thermal Expansion Coefficients of Some Anisotropic
Elements

The interatomic potential in metals is described by the Morse potential:

φ = L{exp[−2a(r − r0)] − 2 exp[−a(r − r0)]}, (6.8)

where L is heat of vaporization, a the Morse potential parameter, r the in-
teratomic distance and r0 its equilibrium value. Applying (6.5), Joshi and
Mitra [6.14] obtained the following expression for α:

α = (CV /2)(ψ/2V L)1/2, (6.9)

where V is the molar volume. Joshi and Mitra [6.14] used (6.9) to estimate α
for some cubic elements and found good agreement with experimental values.

Sirdeshmukh [6.15, 6.16] assumed the Morse potential to be applicable to
anisotropic systems like the hcp and trigonal elements and used (6.9) to esti-
mate the average (isotropic) coefficient of thermal expansion of some hcp and
trigonal elements. Values of the quantities in (6.9) were taken from Gschnei-
dner [6.17]. The results are given in Table 6.5 The agreement between the
calculated values is fair, particularly in the case of hcp metals.



6.4 Debye Temperatures from Elastic Constants 261

Table 6.5. Average (isotropic) coefficient of expansion α of some hcp and trigonal
elements; calculated values from [6.15,6.16], observed values from [6.17]

Crystal
α [10−6per◦C]

Calc. Obs.

hcp
Be 13.0 11.5
Cd 32.9 30.6
Er 17.9 12.3
Ho 14.5 10.7
Lu 15.3 8.1
Mg 30.7 25.7
Os 5.2 4.7
Re 5.4 6.6
Ru 7.8 9.4
Tc 6.2 8.1
Ti 10.9 8.3
Tm 17.5 13.3
Y 15.4 12.0
Zn 31.7 29.7
Trigonal
Te 29.6 16.7
Se 50.1 36.9

6.4 Debye Temperatures from Elastic Constants

6.4.1 General

The Debye characteristic temperature θ for an isotropic solid is given by the
well-known relation:

θ = (h/kB)(9pNA/4πV )1/3(1/C3
l + 3/C3

t )−1/3, (6.10)

where h is Planck’s constant, kB the Boltzmann constant, NA the Avogadro
number, p the number of vibrating units in the molecule, V the molar volume
and Cl and Ct the velocities of longitudinal and transverse waves. Since the
condition of isotropy is not usually satisfied, the velocities have to be averaged
over all directions and the Debye temperature is given by:

θ = (h/kB)(9pNA/4πV )1/3Cm, (6.11)

where the mean sound velocity Cm is defined by

3C−3
m =
∫ 4π

0

3∑
i=1

C−3
i dΩ/4π. (6.12)

dΩ denotes an element of solid angle and Ci the three sound velocities which
depend on direction and are obtained from Christoffel’s equations of elastic-
ity. The mean sound velocity must be evaluated from the integral of (6.12) to
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obtain the Debye temperature. Equation (6.12) is not integrable analytically
and hence numerical methods, exact or approximate, are employed to obtain
values of Cm from (6.12). Alers [6.18] has reviewed the methods of calculating
Debye temperature from single crystal elastic constants for all the crystal sys-
tems. Anderson [6.19] has discussed the methods of obtaining the Debye tem-
perature from polycrystalline elastic data. These methods are briefly reviewed.
The discussion is limited to crystals of cubic and tetragonal symmetries.

6.4.2 Debye Temperatures from Single Crystal Elastic Constants

Direct Numerical Integration

For cubic crystals, the integrand in (6.12) simplifies considerably as there are
only three elastic constants, viz. C11, C12 and C44. Hence it is enough to
consider direction cosines confined to 1/48 of a sphere. In this discussion, the
values of θ obtained by this method will be designated as θexact.

de Launay’s Method (DLM)

de Launay [6.20] developed the lattice dynamics of cubic metals using a model
consisting of ion points embedded in an electron gas. The ion point lattice is of
Born–Von Karman type with nearest neighbour interactions. The electron gas
is assumed to possess bulk modulus but no shear modulus. With this model,
de Launay obtained expressions for Debye temperatures of cubic solids in
terms of single crystal elastic constants with and without the electron gas
contribution.

In a subsequent paper de Launay [6.21] showed that the cumbersome ex-
pression given earlier reduces to the simpler form:

θ = (h/kB)(9pNA/4πV )1/3(C44/ρ)1/2[9fE/(18 +
√

3)]1/3, (6.13)

where fE is a function of elastic constants. The values of this function are
provided in the form of tables. de Launay’s method has been very popular
and has been found to give highly reliable results.

Graphical Method (GM)

Marcus [6.22] has given a graphical method to calculate the Debye tempera-
ture in terms of the ratios of elastic constants. The equation is

θ = (h/kB)(9NA/4πV )1/3(C11/ρ)1/2g, (6.14)

where the parameter g is obtained from the curves between (C11 −C12)/2C11

and C44/C11. Alers [6.18] observed that this method gives values in fair agree-
ment with those from numerical integration.
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Power Series Expansion (PSEM)

Hopf and Lechner [6.23] proposed a polynomial in the place of the integrand
in (6.12). An improvement of this method by Quimby and Sutton [6.24] and
Sutton [6.25] gives the relation:

θ = (h/kB)(9NA/4πV )1/3(C11 − C44/ρ)1/2Y
−1/3
R (1 + ∆)−1/3, (6.15)

where YR is a function of elastic constants and ∆ a correction term. Leibfried
[6.26] has given a graphical method to calculate the terms YR and ∆.

Harmonic Series Expansion (HSEM)

This method of solving (6.12) involves the substitution of a series of cubic
harmonics in the place of the integration. Houston [6.27] originally developed
this method and Bhatia and Tauber [6.28] have applied it to calculate the
Debye temperature with a three term expansion. Betts et al. [6.29] gave a six
term expansion. The values of θ thus calculated are referred to as θseries. The
equation is given by

θ = (h/kB)(9pNA/4πV )1/3ρ−1/2J−1/3. (6.16)

For cubic crystals, Betts et al. [6.29] showed that

J = 0.10878I1 + 0.070803I2 + 0.016184I3 + 0.352656I4 + 0.287712I5

+ 0.163861I6 (6.17)

and

I1 = 2[C44]−3/2 + [C11]−3/2,

I2 = [C44]−3/2 + [(C11 − C12)/2]−3/2 + [(C11 + C12 + 2C44)/2]−3/2,

I3 = 2[(C44 + C11 − C12)/3]−3/2 + [(C11 + 2C12 + 4C44)/3]−3/2,

I4 = [C44]−3/2 + [C44 + (α/2) + {(9α2 + 16β2)1/2/10}]−3/2

+[C44 + (α/2) − {(9α2 + 16β2)1/2/10}]−3/2,

I5 = [C44 + (α − β)/6]−3/2 + [C44 + {(5α + β)/12}
+{(9α2 + 33β2 − 6αβ)1/2/12}]−3/2 + [C44 + {(5α + β)/12}
−{(9α2 + 33β2 − 6αβ)1/2/12}]−3/2,

I6 = [C44 + 4(α − β)/9]−3/2 + [C44 + {(5α + 4β)/18}
+{(9α2 + 48β2 + 24αβ)1/2/18}]−3/2 + [C44 + {(5α + 4β)/18}
−{(9α2 + 48β2 + 24αβ)1/2/18}]−3/2.

In these equations
α = (C11 − C44) (6.18)
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and
β = (C12 + C44). (6.19)

Betts [6.30] extended the expansion to 9 and 15 terms. Konti and Varshni
[6.31,6.32] used these expressions to calculate the Debye temperatures of sev-
eral crystals.

Similarly for tetragonal symmetry, Betts et al. [6.33] gave

1, 290J = 288I1 + 144I2 + 512I3 − 125I4 + 96I5 + 375I6, (6.20)

where

I1 = [C44]−3/2 + [C66]−3/2 + [C11]−3/2,

I2 = 2[C44]−3/2 + [C33]−3/2,

I3 = [(C66 + C44)/2]−3/2 +
[
1
4
(C11 + 2C44 + C33)

+
1
4
{
(C11 − C33)2 + 4(C13 + C44)2

}1/2
]−3/2

+
[
1
4
(C11 + 2C44 + C33) −

1
4
{
(C11 − C33)2 + 4(C13 + C44)2

}1/2
]−3/2

,

I4 =
[
1
5
(4C66 + C44)

]−3/2

+
[

1
10

(4C11 + 5C44 + C33)

+
1
10
{
(4C11 − 3C44 − C33)2 + 16 (C13 + C44)2

}1/2
]−3/2

+
[

1
10

(4C11 + 5C44 + C33) −
1
10
{
(4C11 − 3C44 − C33)2

+16(C13 + C44)2
}1/2
]−3/2

,

I5 = [C44]−3/2 +
[
1
2
(C11 − C12)

]−3/2

+
[
1
2
(C11 + 2C66 + C12)

]−3/2

I6 =
[
1
5
(2C11 − 2C12 + C44)

]−3/2

+
[

1
10

(2C11 + 2C12 + 4C66 + 5C44 + C33)

+
1
10
{
(2C11 + 2C12 + 4C66 − 3C44 − C33)2 + 16(C13 + C44)2

}1/2
]−3/2

+
[

1
10

(2C11 + 2C12 + 4C66 + 5C44 + C33)

− 1
10
{
(2C11 + 2C12 + 4C66 − 3C44 − C33)2 + 16(C13 + C44)2

}1/2
]−3/2

.
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Fedorov’s Method (FM)

Fedorov [6.34, 6.35, 6.37] presented a general theory for the propagation of
elastic waves in homogeneous crystalline solids. Fedorov and Bystrova [6.38]
developed two approximations to calculate the Debye temperatures based on
Fedorov’s theory. The expression for the Debye temperature based on the
second approximation, which is found to be more accurate is given by

θ = (h/kB)(9pNA/4πV )1/3I−1/3, (6.21)

where I is a function of the Cijs.

6.4.3 θ from Polycrystalline Elastic Data

The problem of averaging single crystal elastic constants to obtain effective
values of polycrystalline elastic constants is important in metallurgy and geo-
physics [6.39, 6.40] and in other fields where mechanical properties of aggre-
gates are of interest.

Voigt [6.41] showed that the elastic moduli of a polycrystal can be calcu-
lated from the single crystal elastic moduli assuming the strain to be uniform
in all grains. Reuss [6.42] assumed a uniform stress over all grains and ob-
tained the relations for the elastic moduli of crystals. The general expressions
for obtaining the average moduli from the single crystal elastic constants are
given below. The suffixes V and R relate to the two assumptions discussed.

Voigt Reuss
KV = (A + 2B)/3 KR = 1/(3a + 6b)
GV = (A − B + 3C)/5 GR = 5/(4a − 4b + 3c)

⎫
⎬
⎭ (6.22)

where
3A = C11 + C22 + C33 3a = S11 + S22 + S33

3B = C23 + C31 + C12 3b = S23 + S31 + S12

3C = C44 + C55 + C66 3c = S44 + S55 + S66

Here Cijs are the elastic stiffness constants and Sijs the compliances. Hill
[6.43] showed that the Voigt and Reuss averages are the upper and lower
bounds for the elastic moduli, the actual value lying in between. He suggested
the arithmetic mean as a better choice. The geometric mean has also been
recommended. Several other averages of the Voigt and Reuss values have been
proposed [6.44–6.47].

Binnie [6.48] and, independently, Gilvarry [6.49] were the first to suggest
that the Debye temperature could be calculated from the averaged elastic
moduli. Anderson [6.50] recommended the use of the HAM (Hill arithmetic
mean) moduli rather than the V or R moduli. Anderson’s working equa-
tions are:

Cl = [{KHAM + (4/3)GHAM}/ρ]1/2 (6.23)
Ct = (GHAM)/ρ]1/2
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The equations for Cm and θ are as already given (see (6.10) and
(6.11)).

Verma and Aggarwal [6.51] empirically proposed an average (VAA) for the
shear modulus given by

GVAA = [(GV + 2GR)/3]. (6.24)

Verma and Aggarwal [6.51,6.52] calculated the Debye temperatures of a num-
ber of crystals and found that the Debye temperatures obtained from this
averaging scheme (θVAA) are closer to θexact than the values from other av-
eraging schemes. Recently, Verma et al. [6.53] and Basu and Verma [6.54]
extended this averaging scheme to the orthorhombic, hexagonal and tetrag-
onal systems and again observed that the θVAA values are superior to those
from other methods.

Reddy [6.55] made an interesting suggestion that the average velocity Cm

in (6.12) can be identified with the sound velocity values obtained from poly-
crystalline samples. Substituting these experimental values in (6.11), he ob-
tained the Debye temperatures of a number of solids.

6.4.4 Brief Review of Earlier Work

There is a large body of data on the values of Debye temperatures of crystals
calculated from elastic constants. These reports are scattered in literature.
We discuss here some of the reports, limiting the choice to papers in which
a large amount of data are given or where the results have led to important
observations.

Betts et al. [6.29] employed the method developed by them to evaluate the
Debye temperatures of nine cubic crystals. Betts [6.30] extended the calcula-
tions to a number of crystals with NaCl structure (other than alkali halides)
and some alkaline earth nitrates. Betts et al. [6.33] used the expressions de-
veloped by them for lower symmetries to obtain the Debye temperatures of a
number of tetragonal, trigonal and hexagonal crystals. Bolef and Menes [6.56]
who measured the elastic constants of several alkali bromides and iodides cal-
culated the Debye temperatures using them and compared the values with
the results from specific heats. Joshi and Mitra [6.57, 6.58] used the method
developed by Betts et al. [6.29–6.33] to calculate the Debye temperatures of a
large number of crystals for which data on elastic constants had become avail-
able. The crystals included metals like Be and In, semiconductors like GaAs
and GaSb, compound crystals like CaCO3 and NaNO3 and organic crystals
like C6H12N4 and C14H10O2.

Robie and Edwards [6.59] used the numerical integration method to cal-
culate the mean sound velocity and Debye temperatures of 14 solids, many
of them of geological importance. The interesting features of their work are
the construction of the velocity surfaces for calcite and a study of the effect
of limiting the angular range in the integration on the values of the mean
velocity.
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Using the most up-to-date data which were then available on the elastic
constants of the alkali halides at liquid helium temperatures, Lewis et al. [6.60]
calculated the Debye temperatures by DLM for 13 alkali halides and compared
them with the values from specific heats; agreement was observed within limits
of errors. An interesting observation made by Lewis et al. was that when the
Debye temperatures were tabulated ion-wise, equality of Debye temperatures
was noted in a diagonal block. Thus the Debye temperatures are roughly equal
for RbCl, KBr and NaI (θ ≈ 170K) or for RbBr and KI (θ ≈ 135K).

Konti and Varshni [6.31] calculated the Debye temperatures of 24 cubic
elements from the single crystal elastic constants using PSEM, FM and the
HSEM. They observed good agreement between the values obtained by these
different methods and also with the values from specific heats. Konti and
Varshni [6.32] calculated the Debye temperatures of all the alkali halides ex-
cept LiI and CsF using low temperature elastic constants. Good agreement
was observed with values from specific heats. Konti and Varshni looked for
regularities in the Debye temperature values. They observed linear relation-
ships between the Debye temperature and reduced mass for a given alkali
halide group (common alkali ion or common halogen ion). From these rela-
tionships a value of 210 K was estimated for LiI for which elastic constant
data was not available.

Michard et al. [6.61] determined the elastic constants of nitrates of Sr, Ba
and Pb, which are cubic, and calculated their Debye temperatures. The val-
ues of the Debye temperature were found to decrease from strontium to lead
and thus depend on the size of the metal ion. Large discrepancies exist in the
values of the Debye temperatures of these crystals as reported by Michard
et al. [6.61], Anderson [6.19] and Betts [6.30]. Seshagiri Rao et al. [6.62]
determined the elastic moduli of an important class of solids, the ferrites,
and calculated the Debye temperatures. Alers [6.18] in his review gave data
on Debye temperatures for nearly 30 solids. Anderson [6.19] reviewed the
methods of evaluation of elastic moduli for polycrystalline aggregates. He ap-
plied these methods for calculating the Debye temperatures of over a hundred
solids belonging to cubic, tetragonal, trigonal, hexagonal and orthorhombic
symmetries.

Extensive calculations of Debye temperatures have been made by Verma
and co-workers. Aggarwal and Verma [6.63] calculated the Debye temperatures
of about a dozen II–VI and III–V compounds using the arithmetic mean
and geometric mean values of Voigt and Reuss averages of elastic moduli
and recommended the use of GMA values. Aggarwal et al. [6.64] calculated
the Debye temperatures of about two dozen elements using the de Launay’s
method and the VRH method. Basu and Verma [6.65] calculated the Debye
temperatures of a number of crystals with the perovskite structure and found
that the values correlate with the volume. Verma et al. [6.53] and Basu and
Verma [6.54] extended the VAA averaging scheme for the calculation of Debye
temperatures of orthorhombic, tetragonal and hexagonal crystals. Ledbetter
[6.66] calculated the Debye temperatures for six elemental solids using nine
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approximations and found that the geometrical mean approximation gave best
results. Padial et al. [6.67] extended the calculations to 81 crystals.

6.4.5 Some of Our Results

Using the methods discussed in the preceding sections, the Debye tempera-
tures of several systems have been calculated. These results are now discussed
system wise.

NaCl-Type Crystals

Subhadra and Sirdeshmukh [6.68] calculated the Debye temperatures of eight
crystals with NaCl structure using elastic constants. The VAA method was
used. The results are given in Table 6.6.

For KCN, the specific heat calculated from these Debye temperatures will
give only the contribution of the relative vibrations of the K+ and (CN)− ions
and the contribution due to any rotation of the (CN)− ion will have to be
estimated separately.

Rare Earth Chalcogenides

Gopi Krishna et al. [6.69] evaluated the Debye temperatures of six rare
earth chalcogenides with NaCl structure using VAAM. The elastic constants
and lattice constants used in these calculations and the results are given in
Table 6.7.

Baldwin and Tompson [6.70] pointed out that the Debye temperatures of
related compounds correlate linearly with the reciprocal of the lattice con-
stant. The values of θ for the rare earth chalcogenides are plotted in Fig. 6.1
against a−1. The Debye temperatures of some rare earth pnictides reported by
Mullen et al. [6.71] and some europium chalcogenides reported by Shapira and

Table 6.6. Debye temperatures (θ) of some crystals with NaCl structure

Crystal
C11 C12 C44 ρ θ [K]

[1011 dyne cm−2] [g cm−3] [6.68] By other methods

NH4I 2.448 0.428 0.240 2.514 119 First report
CsF 4.406 1.380 0.703 4.627 157 First report
MnO 22.2 11.0 7.8 5.365 533 First report
CoO 25.6 14.4 8.6 6.438 514 First report
MnS 14.3 7.4 5.2 3.99 420 First report
BaO 11.2 3.6 3.4 5.992 291 232–370 (sp. heats)
NiO 27.0 12.5 10.5 6.809 578 595 (sp. heats)
KCN 1.936 1.164 0.1545 1.548 123
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Table 6.7. Debye temperatures (θ) of some rare earth compounds with NaCl
structure

Crystal
C11 C12 C44 θ [K] Lattice constant

[1011 dynes cm−2] (VAAM) a[Å]

SmS 1.2 0.11 0.25 268 5.97
YS 2.5 0.2 0.3 387 5.50
Sm0.75Y0.25S 1.35 −0.5 0.3 307 5.69
GdS 3.1 0.3 0.3 325 5.56
TmSe 1.85 −0.65 0.26 258 5.68
TmTe 1.02 0.06 0.186 193 6.35
TmS (323)

Fig. 6.1. Plot of Debye temperature (θ) against reciprocal of lattice constant (a−1)

Reed [6.72] are also included in the plot. The plot is linear. The data point for
YS shows maximum deviation from the linear plot. The Debye temperature
of TmS is not known. Using the value of the lattice constant, the value of θ
is estimated from the plot. This value is given in Table 6.7 in parenthesis.

Rare Earth Garnets

Nagaiah et al. [6.73] evaluated the Debye temperatures of seven rare earth
garnets using the elastic constants reported by Haussuhl and Mateika [6.74]
and Haussuhl et al. [6.75]. HSEM was used for the calculation. The resulting
values are given in Table 6.8.

As in the case of the rare earth chalcogenides, a plot of θ vs. a−1 is drawn
(Fig. 6.2). It is linear. For three rare earth garnets, the Debye temperatures
are not known. These estimated values are also given in Table 6.8.
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Table 6.8. Debye temperatures (θ) of some rare earth garnets

Crystal
C11 C12 C44

ρ[g cm−3]
Lattice
constant
a[Å]

θ[K]
Estimated
from θ − a−1

correlation[1011 dynes cm−2]

Y3Al5O12 33.35 11.1 11.5 4.559 12.003 747
Y3Ga5O12 29.0 11.7 9.55 5.799 12.273 585
Y3Fe5O12 26.85 10.95 7.65 5.169 12.376 562
Eu3Fe5O12 25.1 10.7 7.62 6.307 12.498 499
Gd3Ga5O12 28.70 11.60 9.04 7.087 12.379 515
Nd3Ga5O12 27.78 11.15 8.38 6.614 12.506 513
Sm3Ga5O12 28.076 11.35 8.60 6.857 12.437 512
Sm3Fe5O12 12.530 463
Ho3Fe5O12 12.380 545
Lu3Fe5O12 12.277 584

Fig. 6.2. Debye characteristic temperature (θ) vs. reciprocal of the lattice constant
(a−1) for rare earth garnets

Bismuth Orthosilicate and Orthogermanate

Bismuth orthosilicate [Bi4(SiO4)3] and [Bi4(GeO4)3] orthogermanate are cu-
bic crystals with several applications. Rao et al. [6.76] calculated the Debye
temperatures of these two crystals by the VAA method using the elastic con-
stants reported by Schweppe [6.77]. The input data and the resulting values
are given in Table 6.9. Nedyukha and Chernyi [6.78] suggested that the para-
meter mθ2 (m being the mass) is a measure of the interatomic bond strength.
The values of this parameter are also given in Table 6.9. mθ2is larger for the
silicate than the germanate indicating that the bonding is stronger in the
silicate than in the germanate.

Rutile-Type Crystals

Sirdeshmukh and Rao [6.79] calculated the Debye temperatures of MgF2

and MnF2 using the elastic constants reported by Haussuhl [6.80]. These
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Table 6.9. Debye temperatures (θ) of Bi4(SiO4)3 and Bi4(4)3

Crystal
C11 C12 C44 V

θ [K] VAAM mθ2 [106]
[1011 dyne cm−2] [cm3]

Bi4(SiO4)3 11.58 2.70 4.36 175.5 747 9.91
Bi4(GeO4)3 13.57 2.27 5.18 163.5 271 11.67

Table 6.10. Debye temperatures and mean amplitudes of vibration (
√

〈u2〉) of
some rutile-type crystals

Crystal θ [K]
√

〈u2〉 [Å]

MgF2 602 0.139
MnF2 367 0.180
TiO2 726 0.076

are tetragonal crystals and HSEM was used for the calculations. The re-
sults are given in Table 6.10. The value of θ for TiO2 is also quoted from
Anderson [6.19]. The r.m.s. amplitude of vibration

√
〈u2〉 is calculated from θ;

these values are included in Table 6.10. Nedyukha and Chernyi [6.78] pointed
out that the values of

√
〈u2〉 are a measure of the strength of interatomic

binding, being smaller for stronger binding. It is seen that the bonding in
TiO2 is much stronger than that in MgF2 and MnF2. Since covalent bonding
is stronger than ionic bonding, TiO2 may be partially covalent.

Zircon (ZrSiO4)

Zircon is a tetragonal crystal. There are three reports on its elastic constants.
They are given in Table 6.11. It can be seen that the values of Cijs in sets
ii and iii differ from those in set i by an order. Sirdeshmukh and Subhadra
[6.81] calculated the Debye temperature by Anderson’s arithmetic averaging
method. These values are given in Table 6.11 along with a range of values
from specific heats. It is clear that the values of θ from sets ii and iii are closer
to the value from specific heat than the value from set i. That sets ii and iii
are physically more acceptable has been shown by these results as well as by
several other considerations [6.81].

Crystals with Scheelite Structure

Crystals with scheelite structure are useful as laser hosts. These crystals are
tetragonal. The elastic constants and derived Debye temperatures are avail-
able only for some of them. For several other crystals in this family, neither
specific heat data nor the elastic constants were available. Sirdeshmukh and
Rao [6.85] estimated the Debye temperatures from Lindemannn’s [6.86] melt-
ing theory. According to this theory, the Debye temperature θ is given by

θ = C[Tm/MV 2/3]1/2, (6.25)
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Table 6.11. Cijs and Debye temperature (θ) of zircon

Set no.
C11 C33 C44 C66 C12 C13

Ref.
θ [K]

[1011 dynes cm−2] From Cij From sp. heats

i 5.7 4.6 1.4 3.2 2.5 0.5 [6.82] 300
ii 33.01 38.05 7.33 3.97 10.75 15.42 [6.83] 601
iii 42.37 49.00 11.36 4.85 7.03 14.95 [6.84] 725

600–900

Table 6.12. Debye temperatures (θ) for some scheelite-type crystals

Crystal Tm [K]
θ [K]

From elastic constants [6.87] From Tm [6.85]

SrMoO4 1738 252
CaWO4 1853 241
CaMoO4 1753 300
SrWO4 1808 219
BaWO4 1748 178
PbWO4 1401 164
BaMoO4 1673 212
PbMoO4 1341 181
KIO4 855 172
KReO4 823 154

where C is a constant for a family of related crystals, Tm the melting tem-
perature, M the mass and V the molar volume. Substituting known values
of θ of CaWO4, CaMoO4 and SrMoO4 [6.87] in (6.25), a value of 355.4 was
obtained for C. Using this value of C and known values of Tm, Debye tem-
peratures for several crystals were calculated; these are given in Table 6.12. It
may be mentioned that the Debye temperature for PbMoO4 was estimated for
the first time by this method. The calculation of θ from elastic constants for
PbMoO4 was done later by Suryanarayana [6.88] and Basu and Verma [6.89];
they reported values of 190 K and 54 K, respectively. The value reported by
Suryanarayana [6.88] agrees with the value 181 K obtained from (6.25).

6.5 Gruneisen Parameter

Some aspects of Gruneisen’s theory of thermal expansion have been dis-
cussed in Chap. 2. It was mentioned there that an important outcome of
Gruneisen’s theory is the emergence of the parameter γ, subsequently called
the “Gruneisen constant” or “the Gruneisen parameter”. Gruneisen showed
that thermodynamically

γth = 3αV/ψCV , (6.26)
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where α is the coefficient of linear expansion, V the molar volume, ψ the
compressibility and CV the molar specific heat. Here, γ carries the suffix “th”
to indicate its thermodynamic origin.

The microscopic definition of the Gruneisen parameter is

γ = −(d log ν/d log V ), (6.27)

where ν is a lattice frequency. γ, thus, represents the volume dependence of
lattice frequencies. In the Debye model, it would become

γDebye = −(d log νD/d log V ) = (d log θD/d log V ), (6.28)

where νD and θD are the Debye frequency and the Debye temperature, re-
spectively.

With further development of lattice dynamics it was realized that a
Gruneisen parameter has to be associated with each mode of vibration. Thus,
the mode Gruneisen parameter for the ith mode is given by

γi = −(d log νi/d log V ). (6.29)

Some of the modes of vibration can be observed in IR or Raman or neutron
scattering. The corresponding γis can be experimentally determined. Others
can be calculated lattice dynamically. The mean γ̄ of these mode gammas is
given by

γ̄ =
∑

Ciγi/
∑

Ci, (6.30)

where Ci is the contribution of the ith mode to the specific heat. γ̄ should be
close to γth.

The Gruneisen parameter is no longer a parameter just related to thermal
expansion. It is a link between various aspects of crystal physics like the elastic
properties, their pressure derivatives, the thermal conductivity, the Debye
temperature, the lattice dynamical models and, as will be shown, the dielectric
properties.

Results of our calculations of the Gruneisen parameter from the inter-
atomic potentials, from the pressure variation of Debye temperatures, from
the pressure variation of elastic properties and from dielectric properties are
discussed in the following sections.

6.5.1 Gruneisen Parameter from Interatomic Potentials

The evaluation of Gruneisen parameter from interatomic potentials has been
discussed by Slater [6.90], Das et al. [6.91] and Kachhava and Saxena [6.92].
If φ is the interatomic potential, the Gruneisen constant γ is given by

γ = −(r/6)[(d3φ/dr3)
/
(d2φ/dr2)]. (6.31)

This method has been used for the evaluation of γ of some ionic crystals and
for some elemental solids.
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γ of Some Ionic Crystals

For ionic crystals, a commonly employed potential is

φ = −(AZ2e2/r) + Be−r/ρ, (6.32)

where the first term represents Coulomb attraction and the second term the
overlap repulsion. A is the Madelung constant, Z the valence of the ions, e
the electron charge, r the interionic distance and B and r/ρ the repulsion
constants. The procedure to evaluate r/ρ from the compressibility has been
discussed in Sect. 6.2.

From (6.31) and (6.32), we get

γ = −[(r/ρ)2 − 6)]
/
[6(r/ρ) − 2]. (6.33)

As an example of the application of this method, values of γ for some alkali
halides calculated from (6.33) by Kachhava and Saxena [6.92] are given in
Table 6.13 along with values of γth. It can be seen that the agreement between
γcalc. and γth is fair, the difference being about 20%.

Sirdeshmukh and Rao [6.93] used the same potential to evaluate γ of the
alkaline earth oxides which also have the NaCl structure. The values of γcalc.

and γth for this group of crystals are also given in Table 6.13 . The alkaline
earth oxides are believed to be slightly less ionic than the alkali halides. Yet,
the difference between γcalc. and γth is of the same order as in the alkali
halides. Sirdeshmukh and Rao [6.94, 6.95] also evaluated γ of another group
of ionic crystals, the fluorite compounds, using the same potential with ap-
propriate values for A and Z. The values of γcalc. and γth for some fluorides
and oxides with CaF2 structure are given in Table 6.14. Here, it is observed
that the agreement between γcalc. and γth for the fluorides is of the same or-
der as for the alkali halides. However, the difference between γcalc. and γth is
clearly larger in the case of the oxides suggesting partial covalency in these
compounds.

Table 6.13. Values of γcalc. from (6.33) and γth from (6.26) for some ionic crystals
with NaCl structure [6.92,6.93]

Crystal γcalc. γth

LiF 1.46 1.64
NaCl 1.95 1.64
KCl 1.95 1.49
KBr 2.00 1.46
RbI 1.92 1.51
MgO 1.17 1.54
CaO 1.30 1.76
SrO 1.32 1.68
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Table 6.14. Values of γcalc. from (6.33) and γth from (6.26) for some ionic crystals
with CaF2 structure [6.94,6.95]

Crystal γcalc. γth

EuF2 1.64 1.17
CaF2 1.68 1.68
SrF2 1.77 1.62
BaF2 1.85 1.57
CdF2 1.85 2.2
UO2 1.7 3.2
ThO2 1.7 3.0

γ of Some Elements

Sirdeshmukh and Rao [6.96] evaluated γ of some group-V and group-VI ele-
ments. For this purpose, they assumed that the interatomic interactions for
these solids can be described by the Morse potential given by

φ = L{exp[−2a(r − r0)] − 2 exp[−a(r − r0)]}. (6.8)

Subjecting this potential to (6.31), we get

γ = ar/2. (6.34)

The constant a can be expressed as

a = 3(NAcr/2ψL), (6.35)

where NA is the Avogadro number, ψ the compressibility, L the heat of sub-
limation and c a constant in the expression for the volume V :

V = NAcr3. (6.36)

Thus,
γ = (9V/8ψL)1/2. (6.37)

For evaluation of γ, values of V ,ψ and L were taken from Gschneidner [6.17].
The values of γcalc. and γth are given in Table 6.15. γth values have been
calculated using more recent data. The comparison of γcalc. and γth shows
that the Morse potential is capable of estimating the Gruneisen parameters
of metals.

6.5.2 γ from Pressure Variation of Debye Temperature

According to (6.29)

γ = −(d log θD/d log V ). (6.28)
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Table 6.15. Values of γcalc. and γth for some group-V and group-VI elements [6.96]

Crystal γcalc. γth

As 2.58 1.44
Sb 1.74 1.18
Bi 1.92 1.11
Te 1.66 1.28
Se 1.25 1.59

Fig. 6.3. Pressure dependence of Debye temperature for alkali halides

This can be written as:

γ = (1/θDψ)(dθD/dP ). (6.38)

Sirdeshmukh and Subhadra [6.97] calculated the Debye temperatures of some
alkali halides with NaCl structure at different pressures using the elastic con-
stant data at different pressures. The Debye temperatures were calculated by
the methods discussed in Sect. 6.4. The pressure variation of θD is shown in
Fig. 6.3. In most cases the Debye temperature increases with pressure; in the
rubidium halides it shows a decrease with pressure.

The values of the Debye temperatures at normal pressure and at 3 kbar
are given in Table 6.16. From these values, the Gruneisen parameter can be
calculated using (6.38). These values are also given in Table 6.16 For com-
parison, γth values at room temperature and at low temperature are quoted
from [6.98]. It is noticed that (6.38) yields values of γ of the correct order.
The γcalc. values for the rubidium halides are negative. It may be noted that
while γth for the rubidium halides is +ve at room temperature (RT), it is
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Table 6.16. Debye temperatures (θD) of some alkali halides at P = 0 and 3 kbar
and the Gruneisen constants [6.97]

Crystal
θD [K] γcalc. γth

P = 0 P = 3 kbar (6.38) RT LT

LiF 697.4 703.3 1.89 1.64 1.70
LiCl 390.5 399.3 2.23 1.69 0.90
LiBr 246.8 254.0 2.31 1.88 –
NaF 474.5 478.0 1.14 1.83 –
NaCl 306.1 310.4 1.12 1.64 0.90
NaI 156.1 160.5 1.41 1.66 –
KCl 224.0 225.0 0.26 1.49 0.32
KI 125.4 126.7 0.43 1.45 0.28
RbCl 161.5 161.4 −0.03 1.57 0.00
RbBr 128.5 128.3 −0.07 1.43 −0.03
RbI 100.8 100.4 −0.14 1.51 −0.18

Table 6.17. Pressure variation of Debye temperatures of some fluorite-type crystals
and values of γ [6.99]

Crystal dθD/dP [K bar−1] γcalc. (6.38) γth

CaF2 0.695 1.16 1.68
SrF2 0.400 0.76 1.62
BaF2 0.175 0.36 1.57
CdF2 0.688 2.32 2.2
PbF2 0.307 0.84 2.08

negative at low temperature (LT). The γcalc. values correspond better with
the low temperature values of γth.

Hussain [6.99] calculated the Debye temperatures of some crystals with
fluorite structure using literature data on the pressure variation of elastic con-
stants. From the values of (dθD/dP ), values of γ were calculated using (6.38).
These results are given in Table 6.17. Once again, an order-of-magnitude agree-
ment is observed between γcalc. and γth.

6.5.3 Evaluation of γ from Pressure Derivatives of Elastic Moduli

The evaluation of γ of crystals with NaCl structure by Slater’s method and
Knopoff and Shapiro’s method are considered in this section.

Slater’s Formulation

Slater [6.90] starts with the definition of γ given by

γ = −(d log θD/d log V ). (6.28)
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The characteristic frequency νD is given by the expression:

νD = (9NA/4πV )1/3(1/C3
l + 2/C3

t )−1/3, (6.39)

where Cl and Ct are the velocities of longitudinal and transverse waves, respec-
tively. It is to be noted from the above expression that the Debye characteristic
frequency is related to the velocities of the longitudinal as well as transverse
waves. However, Slater [6.90], considering only the velocity of the longitudinal
waves, assumed that the Poisson’s ratio of the solid is independent of volume
and obtained from (6.28) and (6.39)

γSL = −(1/6) + (1/2)(dB/dP ), (6.40)

where dB/dP is the pressure derivative of bulk modulus. The values obtained
from Slater’s equation for the Gruneisen parameter are generally higher than
the thermal values.

The Contribution of Shear Waves: Formulation of Knopoff and
Shapiro

Knopoff and Shapiro [6.100] deduced an equation for the Gruneisen parameter
by taking into consideration the dependence of the Debye characteristic fre-
quency νD on the velocities of transverse as well as longitudinal waves. They
have also taken into account the variation of Poisson’s ratio with volume.

Starting with (6.28) and (6.39) we have for the Gruneisen parameter

γ = (1/3)[d log ρ{(1/C3
l ) + (2/C3

t )−1/3}−1]/d log ρ, (6.41)

where ρ is the density. The result of the differentiation is

γ = −(1/6) + (1/2)(dB/dP ) − g(1 − 2σ)(dB/dP ) + (2g/3)(1 + σ)(dG/dP ),
(6.42)

where dB/dP is the pressure derivative of bulk modulus, dG/dP the pressure
derivative of shear modulus and g a function of Poisson’s ratio (σ) given by

g(σ) = [{1/(3 − 3σ)5/2} + {3 × 23/2/(3 − 6σ)5/2}]
/

[{1/(3 − 3σ)3/2}

+ {25/2/(3 − 6σ)3/2}]. (6.43)

Under the assumption dσ/dP = 0, (6.42) reduces to Slater’s formula. For a
special case of σ = 0.25, (6.42) turns out to be

γKS = −(1/6) + 0.024(dB/dP ) + 0.793(dG/dP ). (6.44)

It may be seen from (6.44) that for the evaluation of the Gruneisen parameter,
the pressure derivative of shear modulus is more important than the pressure
derivative of bulk modulus.
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Knopoff and Shapiro [6.100] calculated γ from (6.40) and (6.44) and com-
pared these values with γth. They found that there was no systematic behav-
iour and concluded that the results were not very encouraging. However, they
used the method only for eight substances belonging to different structures.
For a better appreciation of the method of Knopoff and Shapiro, it is nec-
essary to apply the method to a larger number of crystals with a common
structure. Rao [6.101] calculated γSL and γKS for a number of crystals with
NaCl structure.

In carrying out the calculations, a problem that is encountered is the
lack of experimental data for the pressure derivative of shear modulus for
polycrystalline aggregates. These values have to be calculated from single
crystal elastic constants and their pressure derivatives using the procedures
suggested by Voigt [6.41] and Reuss [6.42].

For crystals of cubic symmetry, the elastic moduli are given by the follow-
ing expressions:

BV = BR = (C11 + 2C12)/3, (6.45)

GV = (Ca + 3C44)/5 (6.46)

and
GR = 5CaC44/(3Ca + 4C44), (6.47)

where
Ca = C11 − C12. (6.48)

In these expressions, the subscripts V and R stand for Voigt and Reuss values.
The Voigt and Reuss values are the same for the bulk modulus but different
for the shear modulus.

Chung and Buessem [6.102] defined a dimensionless quantity A* for elastic
anisotropy in terms of the Voigt and Reuss values of shear modulus. The
expression is

A∗ = (GV − GR)/(GV + GR). (6.49)

A* is always a positive quantity for anisotropic crystals and is a measure of
the relative magnitude of the elastic anisotropy. A* is zero for an isotropic
crystal.

The pressure derivatives of shear modulus for polycrystalline aggregates
from single crystal data on the pressure variation of the elastic stiffness con-
stants are given by the following expressions:

dGV/dP = (1/5)(dCa/dP ) + (3/5)(dC44/dP ) (6.50)

and

dGR/dP = (4/5)(GR/Ca)2(dCa/dP ) + (3/5)(GR/C44)2(dC44/dP ) (6.51)

and
dCa/dP = (dC11/dP ) − (dC12/dP ). (6.52)
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The Gruneisen parameter from Slater’s formula is calculated using the pres-
sure variation of bulk modulus from (6.40). Using the method of Knopoff
and Shapiro, the Gruneisen parameter is calculated from (6.44). For this, the
Voigt as well as the Reuss values of pressure derivatives of shear modulus ob-
tained from (6.50) and (6.51), respectively, are used. Equation (6.44) involves
Poisson’s ratio which is calculated from the formula:

σ = (3B − 2G)/2(G + 3B). (6.53)

Here, two values of the Poisson’s ratio, σV and σR are obtained corresponding
to the Voigt and Reuss values of shear modulus. The procedure suggested
by Hill [6.43] to find the average values of the elastic moduli between the
Voigt and Reuss limiting values has also been attempted. The average shear
modulus, G*, the average pressure derivatives of shear modulus, dG∗/dP
and the average Poisson’s ratio using G*, viz. σ* are calculated. Using these
average values, the average Gruneisen parameter, γ* is calculated.

Results

The results of the calculations are given in Table 6.18. The table gives the
values of the Gruneisen parameter obtained from thermal data (γth), Slater’s
equation (γSL), Knopoff and Shapiro’s equation using the Voigt approximation
for the pressure derivatives of shear modulus (γKS−V), Knopoff and Shapiro’s
equation using the Voigt approximation for the pressure derivatives of shear
modulus (γKS−R), Knopoff and Shapiro’s equation using the Hill average for
the pressure derivatives of shear modulus (γ*) and the anisotropy factor A*.
For these calculations, the input data are the elastic constants and their pres-
sure derivatives. These are taken from [6.93,6.103–6.105].

The Gruneisen parameters γKS−V, γKS−R and γth are plotted against the
anisotropy factor A* in Fig. 6.4. From an examination of the data given in
Table 6.18 and Fig. 6.4 the following conclusions can be drawn:

(a) Slater’s formula for the Gruneisen parameter always gives a higher value
than the thermal gamma. In some cases, the values from Slater’s formula
are higher by a factor of nearly 2. It has been pointed out by earlier workers
that this difference is due to Slater’s neglect of the volume dependence of
Poisson’s ratio in the derivation of his formula.

(b) The modification introduced by Knopoff and Shapiro [6.100], which al-
lows for the volume dependence of Poisson’s ratio through the inclusion
of the pressure derivative of the shear modulus, in general, gives values of
the Gruneisen parameters which are in better agreement with the thermal
gammas. The present results support the remark made by Knopoff and
Shapiro that the pressure derivative of shear modulus is of greater signif-
icance than the pressure derivative of bulk modulus for the evaluation of
the Gruneisen parameter.
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Table 6.18. Gruneisen parameters from pressure derivatives of elastic moduli for
crystals with NaCl structure

Crystal γth γSL γKS−V γKS−R γ∗ A∗ × 100

LiF 1.63 2.94 1.46 2.56 1.89 5.2
LiCl 1.81 2.61 1.82 2.72 2.27 4.5
LiBr 1.94 2.53 1.95 2.99 2.44 4.5
LiI 2.19 2.73 1.95 3.29 2.59 4.6
NaF 1.51 2.42 1.46 1.23 1.24 0.8
NaCl 1.62 2.47 1.97 1.41 1.69 1.5
NaBr 1.65 2.48 1.86 1.31 1.60 1.6
NaI 1.71 2.53 2.01 1.41 1.70 1.9
KF 1.52 2.47 1.22 0.41 0.88 5.5
KCl 1.49 2.51 1.59 0.11 0.89 11.1
KBr 1.50 2.53 1.66 0.18 0.93 12.6
KI 1.54 2.56 1.91 0.20 1.18 14.1
RbF 1.40 2.62 1.49 0.20 1.01 7.0
RbCl 1.39 2.57 1.60 −0.22 0.76 15.3
RbBr 1.42 2.56 1.75 −0.30 0.85 17.7
RbI 1.56 2.55 1.89 −0.74 0.70 20.8
MgO 1.54 2.08 1.21 1.66 1.43 2.30
CaO 1.76 2.83 1.12 1.12 1.12 0.06
SrO 1.68 2.83 1.03 0.45 0.98 0.25

Fig. 6.4. Plot of Gruneisen parameter (γ) against A* for crystals with NaCl struc-
ture

(c) Considerable difference is observed in the values of γKS−V and γKS−R.
As shown in Fig. 6.4, this difference seems to be related to the anisotropy
factor A*, increasing as A* increases.

(d) A careful comparison between the values of thermal gamma and the
gamma values calculated from the elastic moduli shows that, in most of
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the cases, there is closer agreement between thermal gamma and γKS−V

than between thermal gamma and γKS−R. It implies that, as far as pres-
sure derivatives of elastic moduli are concerned, the Voigt assumption is
better than the Reuss assumption.

6.5.4 Mode Gruneisen Parameters of Fluorite-Type Crystals

The concept and definition of mode Gruneisen parameter was discussed ear-
lier. A mode Gruneisen parameter is given by

γi = −(d log νi/d log V ). (6.30)

In the vibration spectrum of crystals with the fluorite structure, there are
six optic branches. Out of the six long-wave phonons one (ωt1) is infrared
active and another ωt2) is Raman active and is designated (ωR). ωl1 is difficult
to observe and the others are degenerate either with ωt1 or ωt2. Studies of
pressure variation of these phonon frequencies are available and these have
led to the evaluation of the mode Gruneisen parameters γt and γR.

The experimental values of γt and γR for CaF2, SrF2 and BaF2 are sum-
marized in Table 6.19. It can be seen that there is a large difference (of 100–
200%) between the values of γt reported by Ferraro et al. [6.106] and those
by Lowndes [6.107]. On the other hand there is very good consistency among
the values of γR reported by Ferraro et al. [6.106], Ruppin [6.108] and Kessler
et al. [6.109].

For the theoretical evaluation of γt, we may start with the equations given
by Szigeti [6.110,6.111]:

1
ψ

=
µω2

t

6r

(
εs + 2
ε∞ + 2

)
(6.54)

and

ze∗ =
(

εs − ε∞
4π

)1/2( 3
ε∞ + 2

)
(µVi)

1/2
ωt, (6.55)

where ψ is the compressibility, r the interionic distance, z the valency, e the
formal electron charge, Vi the volume per ion pair, γt the transverse optical

Table 6.19. Experimental values of γt and γR

Crystal γt γR

Ferraro
et al.
[6.106]

Lowndes
[6.107]

Andeen
et al.
[6.113]

Ferraro
et al.
[6.106]

Ruppin
[6.108]

Kessler
et al.
[6.109]

CaF2 1.8 3.2 2.85 1.9 1.83 1.85
SrF2 1.2 3.1 2.61 – – 1.60
BaF2 0.8 2.4 2.61 1.8 2.03 2.00
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mode frequency and µ the reduced mass. Differentiation of these equations
leads to

γt =
1

2ψ

[
1
ψ

(
∂ψ

∂P

)
+

ψ

3
+

1
εs + 2

(
∂εs

∂P

)
− 1
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(
∂ε∞
∂P

)]
, (6.56)

V
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−
(

2
ε∞ + 2

)(
∂ε∞
∂P

)
− (1 + 2γt)

]
. (6.57)

Equation (6.56) enables the calculation of γt from the compressibility and
pressure derivatives of compressibility and dielectric constants. Values of γt

for some alkali halides have been calculated from (6.56) by Jones [6.112].
Equation (6.57) can be used in two ways. If values of the strain derivative of
the effective ionic charge are known, the equation can be used to calculate γt.
On the other hand, if γt is known, (6.57) yields the value of (V/e∗)(de∗/dV )
which is another important and interesting entity.

Accurate data on the pressure variation of εs and ε∞ are available for
the alkaline earth fluorides [6.113]. Using these values, Andeen et al. tried to
evaluate the parameter (V/e∗)(de∗/dV ). However, for this calculation γt is
also needed as an input parameter. Andeen et al. found that the two sets of γt

values (given in Table 6.19) lead to widely different values for (V/e∗)(de∗/dV ).
Andeen et al. therefore stated that “no conclusion should be drawn with
respect to the sign of (V/e∗)(de∗/dV ) on the basis of (their data)”. On the
other hand, Andeen et al. equated (V/e∗)(de∗/dV ) to zero and used (6.57)
to estimate the maximum value of γt. The values of γt thus obtained are
quoted in Table 6.19. An attempt is made to sort out the best value of γt

from the several available values and then to estimate the sign and value of
(V/e∗)(de∗/dV ).

Axe [6.114] applied the dipole shell model to the lattice dynamics of crys-
tals with the fluorite structure and obtained the following expressions:

1
ψ

=
1

12r

(
2(εs + 2)µω2

t

(ε∞ + 2)
+ µRω2

R

)
, (6.58)

ze∗ =
(

εs − ε∞
4π

)1/2( 3
ε∞ + 2

)
(µVi)

1/2
ωt. (6.59)

Here, µ = (m1m2)/(m1 + 2m2) and µR = m2 and ωR is the Raman mode
frequency. Equation (6.59) is identical to (6.55). Equation (6.58) is similar
to (6.53) but it contains an additional term involving the Raman mode fre-
quency. Differentiation of (6.58) with respect to volume (and conversion of
some volume derivatives into pressure derivatives) leads to the following equa-
tion for the Raman mode Gruneisen parameter for the fluorite-type structure
compounds:
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Table 6.20. Values of γt, γR and (V/e*)(de∗/dV )

γR (V/e∗)(de∗/dV )

Crystal γt (exp.) Calc. (6.60) Exp. [6.109] Calc. (6.57)

CaF2 1.8 1.41 1.85 0.86
3.2 −0.65
2.85 0.16

SrF2 1.2 3.1 1.6 1.42
3.1 −0.94
2.61 −0.05

BaF2 0.8 2.4 2.0 1.82
2.40 0.03
2.61 −0.48
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]
. (6.60)

This is the first attempt to express the Raman mode Gruneisen parameter in
terms of dielectric data. The input parameters for (6.60) are the compress-
ibility, γt and the pressure derivatives of ψ, εs and ε∞. If accurate values of γt

were available, (6.60) could have been used to estimate γR from dielectric data
and to compare these values with γR obtained from direct experiments. But,
as pointed out earlier, there is a very large scatter in the experimental values
of γt. Since experimental values of γR are dependable, (6.60) can be used to
calculate γR with all available values of γt and by comparing these calculated
γR values with the experimental ones, a choice of γt could be made. Prameela
Devi [6.115] made such calculations using the γt values given in Table 6.19.
The results are given in Table 6.20. When the γt values reported by Lown-
des [6.107] and those by Andeen et al. [6.113] are employed, they lead to γR

values which are either negative or too small. On the other hand, the γt values
given by Ferraro et al. [6.106] lead to values which agree in sign and magni-
tude with the experimental values of γR. Thus, on the basis of the comparison
between the calculated and experimental values of γR, it is possible to sift out
the most acceptable values of γt from the several available values, viz. the set
of γt given by Ferraro et al. [6.106].

It is now possible to consider the parameter (V/e∗)(de∗/dV ), the sign of
which could not be uniquely determined by Andeen et al. [6.113] due to the
uncertainty in the γt values. The value of (V/e∗)(de∗/dV ) obtained by substi-
tuting the “most acceptable” values of γt in (6.57) are given in Table 6.20. The
values of this parameter for all the three alkaline earth fluorides are positive.
The deviation of e* from unity is interpreted as due to ionic distortion caused
by neighbouring ions. Barron and Batana [6.116] pointed out that since a
reduction in volume increases this distortion, the parameter (V/e∗)(de∗/dV )
should be positive. The positive sign obtained in the present calculation is
thus consistent with the interpretation of e∗.
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The Physics of Mixed Crystals

7.1 Introduction

7.1.1 General

When a physical mixture of two compounds is subjected to a crystal growth
process (melting-and-cooling or dissolving-and-evaporation), if a single-phase
crystalline compound results having the same structure as the two pure com-
pounds, such a crystal is called a mixed crystal or a solid solution.

For mixed crystal formation, the two components should have (1) same
structure, (2) same valency, and (3) reasonably close values of lattice dimen-
sions (differing by not more than 6–7%). If these conditions are fulfilled, mix-
ing takes place over the entire range of compositions. If there are deviations
from the above conditions, mixing may not take place or may take place over
a limited composition range.

If the two pure components have the same structure, the mixed crystals
also will have the same structure for all compositions. Thus the KClxBr1−x

mixed crystals have the NaCl structure for all values of x. If the two compo-
nents have different structures, the mixed crystal will have the structure of the
dominant member. Thus in (NH4)xRb1−xCl mixed crystals, the mixed crys-
tals have the NaCl structure in the RbCl-rich region and the CsCl structure in
the NH4Cl-rich region. The atoms or ions of one component may occupy sub-
stitutional or interstitial positions in the lattice of the other. The distribution
of the solute ions may be random (disordered mixed crystal) or preferential
(ordered mixed crystal).

What makes the mixed crystals interesting is that their properties are
intermediate between those of the mixing components. Thus, mixed crystals
of two compounds provide crystals of the same structure but with physical
properties which change continuously from one end of the system to the other.
This creates the possibility of tailor-made crystals.

In the study of mixed crystals, the knowledge of the exact composition is
necessary. This is obtained by the use of the techniques of titration poten-
tiometry, polarography or atomic absorption spectroscopy.
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7.1.2 Earlier Reviews on Mixed Crystals

Mohanlal [7.1] reviewed the properties of the KCl–KBr and NaClO3−NaBrO3

mixed crystal systems. The properties considered by him were (1) the lat-
tice constants of the two systems, (2) Debye–Waller factors of the KCl–KBr
system, and (3) the optical rotation in the NaClO3−NaBrO3 system. Kitaig-
orodski’s [7.2] treatise considers a variety of mixed crystals with an emphasis
on thermodynamics and organic crystals. Hari Babu and Subba Rao [7.3]
reviewed the properties of alkali halide mixed crystals studied by the tech-
niques of ionic conductivity, dielectric loss, microhardness, radiation harden-
ing, colour centres and thermoluminescence.

Sirdeshmukh and Srinivas [7.4] reviewed the composition dependence of
several physical properties of alkali halide mixed crystals. These properties
include the bulk modulus, the elastic constants, the Debye temperatures, the
Debye–Waller factors and spectroscopic properties. Sirdeshmukh and Srini-
vas [7.4] pointed out that on the basis of the trends in composition depen-
dence, the properties of mixed crystals can be grouped in four categories as
follows:

Type A: Properties which show a linear composition dependence.
Type B: Properties which show a slightly non-linear composition dependence
Type C: Properties which show a highly non-linear composition dependence

with values for the mixed crystals exceeding those for end members.
Type D: New phenomena (properties displayed by mixed crystals but not

displayed by the pure crystals).

This grouping of the properties is shown in Table 7.1 Some properties not
discussed in [7.4] but discussed in [7.3] are also included in the table.

Most of the properties show either a linear composition dependence (Type
A) or a slightly non-linear composition dependence (Type B). This trend in the
composition dependence is consistent with the facts that (1) these properties
are by and large, determined by the interatomic forces, (2) the nature of the
interatomic forces is the same for the mixed crystals in a given series, and (3)
the magnitude of the interatomic interactions varies smoothly from one end
member to the other.

The properties which show a highly non-linear composition dependence
(Type C) are influenced by additional factors not present in the pure crystals.
Thus, the presence of a second atom at lattice points normally occupied by
one atom results in a static displacement which enhances the Debye–Waller
factor. This displacement (or strain) is also responsible for a higher dislocation
density which in turn increases the microhardness. Although, on an average
the alkali halide mixed crystals are thoroughly disordered, the ions around
a solute ion assume configuration of minimum energy. The observed heats of
formation can be satisfactorily accounted for only by taking into consideration
these site energies. The substitution of a second ion (say bromine) in a host
crystal (say KCl) affects the symmetry, at least locally. This gives rise to new
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Table 7.1. Categorization of some physical properties of mixed crystals on the basis
of their composition dependence (Type A, linear; Type B, slightly non-linear; Type
C, highly non-linear; Type D, new phenomenon)

Property Type
A B C D

Lattice constant ******************
Thermal expansion ********
Bulk modulus ********
Elastic constants ********
Debye temperature *******************
Refractive index ********
Dielectric constant *******************
Debye–Waller factor ********
Dislocation density ********
Microhardness ********
Heat of formation ********
IR spectra
Single mode *******************
Two modes ********
Raman spectra ********
(first order)

features (Type D) in symmetry-dependent properties like the infrared and
Raman spectra of mixed crystals.

7.1.3 Theoretical Models

In much of the earlier work on ionic mixed crystals, the Born–Mayer model
of the following type was used

−U = φ = −(αe2/r) − (C/r6) − (D/r8) + b exp(−r/ρ). (7.1)

Here U is the lattice energy, φ the potential and the terms on the RHS, respec-
tively, represent the Coulomb, dipole–dipole, dipole–quadrupole and repulsive
interactions. Such a model was used by Wallace [7.5] to estimate the heats of
formation (∆Hf) of alkali halide mixed crystals from the relation

∆Hf = U − [xU1 + (1 − x)U2], (7.2)

where U , U1 and U2 are the lattice energies of the mixed crystal, and of the
two pure components.

Krishnamurthy and Murti [7.6, 7.7] used the same potential as in (7.1)
but made the model more elaborate by considering several distributions of
the solute ions and finding the associated configurational entropy. They also
assumed a single frequency. By this procedure they were able to determine
the phase diagram of the mixed crystal system, the lattice constants, bulk
modulus and formation energy of Schottky defects.
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Chang and Mitra [7.8] were specifically interested in a spectroscopic
problem related to mixed crystals. In some mixed crystal systems like
KClxBr1−x, the IR frequency has a single value changing smoothly from
the value for KCl to that for KBr. This is called ‘one-mode behaviour’. On
the other hand, in some systems like InPxAs1−x, two IR frequencies are ob-
served with values close to those of the end members. This is called ‘two-mode
behaviour’. Chang and Mitra [7.8] modified the real-element-isodisplacement
(REI) model originally introduced by Chen et al. [7.9] and set up equations
of motion for the ions A, B and C in a mixed crystal ABxC1−x in terms of
force constants FAB, FAC and FBC and the masses mA, mB and mC. The
force constants were expressed in terms of the dielectric constants and fre-
quencies of the end-point compounds. Solving the equation of motion, Chang
and Mitra [7.8] obtained the following simple conditions for one-mode and
two-mode behaviour:

mB > µAC one-mode behaviour,
mB < µAC two-mode behaviour.

Here µAC is the reduced mass of crystal AC.

7.2 An Overview

Several properties of mixed crystals have been discussed in the reviews men-
tioned in Sect. 7.1.2. In this section we shall discuss some select properties in
detail. This overview differs from the earlier reviews in two respects. Firstly,
the earlier reviews are confined mostly to the alkali halide mixed crystals but
here other systems are also included. Secondly, in earlier reviews a large body
of numerical results are included but here the emphasis is on the physics of
the property.

7.2.1 Molar Volume and Lattice Parameters

Retgers [7.10] proposed that the molar volume of mixed crystals is additive. If
V1 and V2 and V are the molar volumes of crystal 1, 2 and the mixed crystal
with composition x and (1−x) of the two compounds, Retgers’ law of volumes
states that

V = xV1 + (1 − x)V2. (7.3)

The densities of mixed crystal systems KCl1−xBrx, NaCl1−xBrx and
NaxK1−xCl have been reported by Slagle and Mckinstry [7.11], Wollam
and Wallace [7.12] and Barrett and Wallace [7.13]. The volumes calculated
from these densities are plotted against x in Fig. 7.1. A linear behaviour is
observed in agreement with (7.3).

Expressing the volume in terms of the lattice constant a, (7.3) can be
written as
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Fig. 7.1. Composition dependence of the molar volume of some mixed crystals

a3 = xa3
1 + (1 − x)a3

2, (7.4)

where a1 and a2 and a are the lattice constants of crystal 1, 2 and the mixed
crystal, respectively. This is known as Retgers’ law of lattice constants.

A linear law for the composition dependence of lattice constants was pro-
posed by Vegard [7.14]. This law is given by

a = xa1 + (1 − x)a2. (7.5)

Grimm and Herzfeld [7.15] derived the following law on the basis of the theory
of ionic crystals,

a8 = xa8
1 + (1 − x)a8

2. (7.6)

The available data on lattice constants of mixed crystals [7.14,7.16] were not
sufficiently accurate to permit a critical evaluation of (7.4)–(7.6). The first
systematic attempt to critically compare the three laws vis-à-vis experimental
data was made by Slagle and Mckinstry [7.17]. They determined the lattice
constants of the KCl–KBr system with an accuracy of 0.005% and calculated
the lattice constant a from the general equation

an = xan
1 + (1 − x)an

2 , (7.7)

by assigning values 1, 3, 4, 6 and 8 to the index n. The deviation (aexp–acalc)
was calculated and plotted against x. The plot is shown in Fig. 7.2. It was
found that the best fit was obtained with n =3. The value n = 8 was clearly
rejected.



290 7 The Physics of Mixed Crystals

Fig. 7.2. Plot of (aexp − acalc) vs. x for the KCl1−xBrx system for different values
of n

Ahtee [7.18] compared the measured values of the lattice constants of seven
alkali halide mixed crystal systems and examined the deviations from Vegard’s
law and Retgers’ law. He concluded that the deviations from Retgers’ law were
less than those from Vegard’s law and yet recommended the use of Vegard’s
law in view of its simplicity. Gielisse et al. [7.19] found that the lattice con-
stants of the NiO–CoO system have a linear composition dependence. Zim-
merman [7.20] determined the lattice constants of the Li(H)x(D)1−x system
and found that Vegard’s law was followed.

While in most mixed crystal systems, the lattice constants follow either
Vegard’s law or Retgers’ law, strong deviations from these laws have been
observed in some cases. These cases are now discussed.

(1) Metal alloys
Gschneidner and Vineyard [7.21] analysed lattice constant data on 44 bi-

nary alloy systems. They observed positive deviations in every case. Several
explanations were offered to explain these deviations like the compressibil-
ities, short range order and electron gas effect. Finally, a model developed
in [7.21] based on second-order elasticity was found to predict both the sign
and magnitude of the deviation from Vegard’s law in 29 out of the 44 alloy
systems.

(2) NH4Cl1−xBrx

Anselmo and Smith [7.22] studied the NH4Cl1−xBrx system. The lat-
tice constants were determined from X-ray photographs with an accuracy
of 0.005 Å. The values of a are shown in Table 7.2 along with deviations from
Vegard’s law. It is found that Vegard’s law is followed except in the high chlo-
ride region where negative deviations much larger than the experimental error
are observed.
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Table 7.2. Lattice constants (a) of NH4Cl1−XBrx solid solutions

x a [Å] Deviations
from Vegard’s
law [10−3 Å]

x a [Å] Deviations
from Vegard’s
law [10−3 Å]

0.00 3.875 – 0.47 3.963 +2
0.04 3.875 −7 0.70 4.009 +5
0.08 3.882 −8 0.99 4.060 +3
0.11 3.883 −12 1.00 4.059 –
0.23 3.907 −10

Fig. 7.3. Lattice constant as a function of composition for the Na(ClO3)x(BrO3)1−x

system

(3) Na(ClO3)1−x(BrO3)x

This system was studied by Mohanlal [7.1]. This is a rare case where Weis-
senberg photographs were used to determine lattice constants since powder
photographs showed considerable broadening. The data obtained by Mohan-
lal are shown in Fig. 7.3. Severe positive deviations from Vegard’s law are
observed. Mohanlal calculated the lattice constants for values of n = 1, 2 and
3 in (7.7) but found that the positive deviations still persisted.

(4) KBr1−xIx
Nair and Walker [7.23] studied the KBr1−xIx system with the help of X-ray

powder photographs. Their results are shown in Fig. 7.4. They observed overall
Vegard’s law behaviour with large positive deviations in the KBr-rich region.



292 7 The Physics of Mixed Crystals

Fig. 7.4. Lattice parameter variation of KBr1−xIx with composition x

Table 7.3. Values of α, β and γ (7.8) for the CuInSe2(1−x)Te2x system

Parameter [Å] α [Å] β [Å] γ [Å]

a 5.796 0.339 0.057
c 11.635 0.516 0.242

Nair and Walker [7.23] mention that the Debye–Scherrer lines in this region
were “rather broad”. Also, in the region 0.3< x < 0.7, the crystal samples
showed existence of three phases, one corresponding to the experimentally
determined composition and the other two having compositions x= 0.08 and
x= 0.75 as indicated by their lattice constants.

(5) CuInSe2(1−x)Te2x

Sridevi and Reddy [7.24] prepared mixed crystals of CuInSe2(1−x)Te2x

which are tetragonal. The lattice parameters a and c were determined from
X-ray powder diffractograms. Vegard’s law requires the lattice parameters to
show a linear composition dependence but in this case a significantly different
parabolic composition dependence was observed. The a and c parameters were
fitted to equations of the type

Y = α + βx + γx2, (7.8)

where Y is a or c. The values of α, β and γ obtained by least squares fitting
are given in Table 7.3.

Thus, although most mixed crystal systems follow either Vegard’s law or
Retgers’ law of lattice constants, cases do occur which show deviations. Hence,
whenever a new mixed system is prepared, it is routine practice to examine
the composition dependence of its lattice constants.

7.2.2 Debye–Waller Factors

Atomic thermal vibrations in crystals affect the intensities of diffracted X-rays
(or neutrons). If I(T ) is the intensity at temperature T and I0 that at 0 K,
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their relation is given by

I(T ) = I0e−2B(sin θ/λ)2 . (7.9)

Here, B is the Debye–Waller factor, θ the Bragg angle and λ the wavelength of
X-rays. The Debye–Waller factor is an important parameter which is related
to the amplitude of vibration, the Debye temperature and, in general, to the
vibration spectrum. Several aspects of the Debye–Waller factor are discussed
in Chap. 3.

The Debye–Waller factors of KCl0.5Br0.5 were determined by Wasastjerna
[7.25] and Ahtee et al. [7.26] from X-ray intensities. Mohanlal et al. [7.27]
determined the Debye–Waller factors for two compositions in the KCl–KBr
system from neutron diffraction intensities. These studies indicate that the
Debye–Waller factors of mixed crystals are larger than those predicted by
additivity. In fact, the Debye–Waller factors in the equimolar region are larger
than those of the end members.

A lattice distortion is present in mixed crystals which contribute to the
measured Debye–Waller factor. This can best be understood with reference to
a KCl–KBr mixed crystal. Each K+ ion in a KCl (or KBr) lattice is surrounded
by a combination of Cl− and Br− ions. The number of Cl− and Br− ions
surrounding a K+ ion varies from ion to ion as the mixed crystal is disordered.
This results in a distortion of the field around a K+ ion which in turn causes
a static displacement of the K+ ion and enhances the Debye–Waller factor B
in a mixed crystal. Thus, we have

Bmeasured = Bthermal + Bstatic. (7.10)

Several models [7.28–7.31] have been proposed to estimate Bstatic. The Weiss
model [7.30] leads to the expression

Bstatic = 24x(1 − x)(a1 − a2)2, (7.11)

where a1 and a2 are the lattice constants of the pure compounds. The values
of Bstatic obtained from experiment and from (7.11) for the KClxBr1−x system
are given in Table 7.4.

Table 7.4. Static contribution (Bstatic) to the Debye–Waller factor for KClxBr1−x

mixed crystals

x Bstatic [Å2]
Experimental Reference Calculated (7.11)

0.2 0.34 [7.27] 0.362
0.4 0.47 [7.27] 0.543
0.5 0.51 [7.25] 0.566
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7.2.3 Debye Temperatures

Debye [7.32] proposed a vibration spectrum for a crystal lattice which has
a cut-off frequency νmax or νD. Further, he developed an expression for the
specific heat in terms of a parameter θD = hνD/k. This parameter which
has dimensions of temperature is called the Debye temperature. The Debye
temperature is derivable from the specific heats, elastic constants and X-ray
(or neutron) diffraction intensities. Various methods of determination of Debye
temperatures have been reviewed [7.33–7.36]. Details of the determination of
θ from X-ray diffraction intensities are given in Chap. 3.

Several relations have been proposed either empirically or semi-
theoretically to describe the composition dependence of the Debye tem-
peratures of mixed crystals. Thus, by assuming the additivity of specific
heats and using the low-temperature expression from Debye’s theory for the
specific heats, the following equation is obtained

θ−3 = xθ−3
1 + (1 − x)θ−3

2 , (7.12)

where θ, θ1 and θ2 are the Debye temperatures of the mixed crystals and the
two end members. This is known in literature as the Kopp–Neumann relation.
From empirical considerations Karlsson [7.37] proposed the relation:

θ−2 = xθ−2
1 + (1 − x)θ−2

2 . (7.13)

Giri and Mitra [7.38] proposed the relation

Mθ2 = xM1θ
2
1 + (1 − x)M2θ

2
2, (7.14)

where M , M1 and M2 are the masses of the mixed crystal and those of the
end members; M is given by [xM1 + (1 − x)M2].

A number of reports on the Debye temperatures of mixed crystals are
available. The results in these reports are summarized in Table 7.5. From
these results, it may be concluded that the composition dependence of Debye
temperatures of mixed crystals is slightly non-linear with negative deviations
from linearity.

7.2.4 Hardness of Mixed Crystals

Various aspects of hardness of crystals have been discussed in Chap. 4. There
are several studies on the composition dependence of hardness of mixed crys-
tals. Plendl et al. [7.46] quote references on the microhardness of the fol-
lowing systems: Ag–Au, Ag–Cu, K2SO4−(NH4)2SO4, KCl–KBr, InP–GaP,
CaF2−SrF2,SrF2−BaF2 and NiO–CoO. The microhardness of alkali halide
mixed crystal systems has been studied extensively [7.47–7.49]. Sarma and
Suryanarayana [7.50] carried out a detailed study of the CaF2−SrF2 system.
Bodnar et al. [7.51] made measurements of the hardness of mixed crystal
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Table 7.5. Summary of reports on Debye temperatures of mixed crystals

System Reference Method Remarks

KCl–KBr [7.37] Specific heats Equation (7.13)
suitable

[7.38] Elastic constants Equation (7.14)
suitable

[7.39] Elastic constants Negative deviations
from additivity

KCl–RbCl [7.40] Elastic constants Almost linear
KCl–NaCl [7.41] Elastic constants Large deviation from

linearity attributed to
low stability

KBr–KI [7.42] Specific heats Equation (7.13)
suitable

[7.43] Elastic constants Negative deviations
from additivity

NaCl–NaBr [7.44] Elastic constants Equation (7.12)
suitable

[7.38] Elastic constants Equation (7.14)
suitable

KI–RbI [7.45] Neutron diffraction Equation (7.12)
suitable

AgCl–AgBr [7.38] Elastic constants Equation (7.14)
suitable

systems CuGaS2xSe2(1−x), CuInS2xSe2(1−x), CuGaxIn1−xS2, CuGaxIn1−xSe2

and AgGaxIn1−xS2.
The trends observed in all these studies are: (1) the microhardness shows

a severe non-linear composition dependence with positive deviations from lin-
earity, and (2) the microhardness around the equimolar region (x = 0.4–0.6)
is often larger than the hardness of either end member. Some approaches to
explain these observations will now be discussed.

Plendl and Gielisse [7.52] gave an atomistic interpretation for hardness
and obtained the expression:

H = (1/2)(zm/V )[2πνtr/ψ(Anh)]2. (7.15)

Here H is the hardness, z the valency, m the mass, r the interatomic distance,
νt the transverse optical frequency and ψ(Anh) the anharmonicity factor.
Considering the structure and expressing V in terms of r, (7.15) takes the
form

H = π2zmν2
t /[rψ2(Anh)] (7.16)

for NaCl structure and

H = 4π2zmν2
t /[rψ2(Anh)] (7.17)
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Table 7.6. Values of r, νt, ψ(Anh), Hcalc and Hobs for the CaF2–SrF2 system

CaF2/SrF2 r[10−8 cm] νt[cm
−1] ψ(Anh) Hcalc [kg mm−2] Hobs[kg mm−2]

100:0 2.36 291 0.87 170 166
75:25 2.39 290 0.825 195 199
50:50 2.43 281 0.82 195 208
25:75 2.46 268 0.85 170 180
0:100 2.50 252 0.84 155 137

for CaF2 structure. Values of H calculated from these expressions agree well
with experimentally determined values for several crystals with NaCl and
CaF2 structures. Plendl et al. [7.46] assumed that these expressions apply to
mixed crystals also. Each of the component factors r, νt and ψ(Anh) have their
own composition dependence and their combined composition dependence
accounts for the observed composition dependence of H. The relevant data
for the CaF2−SrF2 system given in Table 7.6 show fair agreement between
Hcalc and Hobs. It may be mentioned that the anharmonicity factor ψ(Anh)
is determined from infrared reflectivity curves. Such data are limited to the
CaF2−SrF2 system and some compositions in the NiO–CoO system. Hence,
(7.16) and (7.17) have not been applied to other systems.

The above discussion is along empirical lines. A semi-theoretical expla-
nation for the composition dependence of hardness of alkali halide mixed
crystals has been given by Shrivastava [7.53] based on the Kataoka–Yamada
model [7.54]. Kataoka and Yamada [7.54] considered the problem of harden-
ing in mixed crystals in terms of the critical resolved shear stress (CRSS).
Considering elastic interaction due to size misfit between the edge disloca-
tions and the solute atoms, Kataoka and Yamada derived an expression for
the enhancement τ0 in the value of the CRSS. The expression obtained by
them is

τ0 =
4
√

2
π

α
{ α

α′

}1/2 µ2b2

Γ

[
∆V

b3

]2
x(1 − x), (7.18)

where

α =
∞∑

n=0

∫ ∞

0

∫ ∞

0

x2(2n + 1/4)2

[x2 + (2n + 1/4)2 + z2 + R2
0]5

dxdz,

α′ =
∞∑

n=0

∫ ∞

0

∫ ∞

0

25x2(2n + 1/4)2

[x2 + (2n + 1/4)2 + z2 + R2
0]7

dxdz,

µ = (1/2)(C11 − C12),

Γ = (1/2)(C11 + C12)
[

C44(C11 − C12)
C11(C11 + C12 + 2C44)

]1/2

b2.

Here, C11, C12 and C44 are the elastic constants and ∆V is the difference
in anion volumes of the two components. In the NaCl structure, the Burgers
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vector b is equal to the interionic distance r. Kataoka and Yamada observed
a good agreement between the measured values of τ0 and values calculated
from (7.18).

Since hardness of a pure crystal is linearly related to the CRSS of a pure
crystal [7.55,7.56], Shrivastava [7.53] proposed that the enhancement of CRSS
in a mixed crystal should result in corresponding enhancement in hardness.
Thus, he proposed for the hardness of a mixed crystal

H = xHA + (1 − x)HB + A(τ0), (7.19)

where A is a constant. Hence,

∆H = A[τ0] = A

[
4
√

2
π

α
{ α

α′

}1/2 µ2b2

Γ

{
∆V

b3

}2
]

x(1 − x). (7.20)

For mixed crystals, the values of µ, b and Γ are taken from linear interpolation
of the values for the end members whereas values of α and α′ are the same for
all the alkali halides and ∆V is a constant independent of composition for a
given system. The constant A is obtained by using the experimental value of
H for one of the compositions as an input to (7.20). Shrivastava [7.53] applied
(7.19) and (7.20) to the KCl–KBr mixed crystal system and observed good
agreement with experimental results (Table 7.7).

Subba Rao and Hari Babu [7.48] considered various factors that affect
the hardness of mixed crystals and pointed out that there are mainly two
contributions. The first is the lattice contribution, i.e. the hardness due to
interatomic forces in the lattice. The second is the defect contribution, i.e.
the effect of various defects like vacancies, dislocations and grain boundaries
which act as obstacles to dislocation motion. Subba Rao and Hari Babu [7.48]
proposed the following equation

H = Cr−n + kx(1 − x), (7.21)

where n is a constant whose value depends on a particular system under con-
sideration and k is the coefficient of hardening. Here, the two terms represent
the lattice and defect contributions, respectively, C is a constant and r is

Table 7.7. Hardness (H) values for KClxBr1−x system

x H[kg mm−2]
Calc. (7.19), (7.20) Obs. [7.48]

0.94 13.77 14.6
0.87 17.55 19.4
0.62 24.62 24.7
0.39 22.96 23.3
0.29 20.29 20.9
0.15 15.00 16.3
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Fig. 7.5. Composition dependence of hardness of KClxBr1−x mixed crystal system

the interionic distance. Using the values of r for mixed crystals of KCl–KBr,
Subba Rao and Hari Babu [7.48] found that the first term shows an effectively
linear variation with x. Thus we may write

∆H = kx(1 − x), (7.22)

where ∆H now is the difference between the observed value and the value
obtained from linear interpolation; k is a constant. The values of H for the
KClxBr1−x system obtained from additivity and from (7.22) are shown in
Fig. 7.5.

7.2.5 Dielectric Constant

There is limited work on the static dielectric constant of mixed crystals.
Gielisse et al. [7.19] determined the static dielectric constant of the NiO–
CoO system from infrared reflectivity curves and found that its composition
dependence is linear. Fertel and Perry [7.57] measured the dielectric constant
of the KCl–KBr system from infrared reflectivity curves and found that the
variation with composition was not smooth. Kamiyoshi and Nigara [7.58]
determined the dielectric constant of the NaCl–NaBr, KCl–KBr, KCl–RbCl,
RbCl–RbBr and KI–RbI systems at 1 MHz using the “immersion method”.
Their results for some of the systems are shown in Fig. 7.6. It is seen
that the composition dependence is non-linear with positive deviations from
linearity.

Combining the Clausius–Mosotti equation, the Lorentz–Lorenz equation
and Vegard’s law variation for the lattice constant and the infrared absorption
wavelengths, Kamiyoshi and Nigara [7.58] obtained the following equation for
the static dielectric constant εs of a binary ionic mixed crystal like ABxC1−x
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Fig. 7.6. Static dielectric constant of alkali halide mixed crystals; continuous curve
calculated from (7.23)

(εs − 1)/(εs + 2) = x(λ/λ1)2(a1/a)6(ε1 − 1)/(ε1 + 2) + (1 − x)(λ/λ2)2

(a2/a)6(ε2 − 1)/(ε2 + 1) + x(a1/a)3{1 − (λ/λ1)2

(a1/a)3}(n2
1 − 1)/(n2

1 + 2) + (1 − x)(a2/a)3

{1 − (λ/λ2)2(a2/a)3}(n2
2 − 1)/(n2

2 + 2), (7.23)

where (a, λ), (a1, λ1) and (a2, λ2) are the lattice constants and infrared ab-
sorption wavelengths of the mixed crystal and two end members and (ε1, n1),
(ε2, n2) are static dielectric constant and refractive index of the end members,
respectively. The values obtained from this equation are shown in Fig. 7.6 by
the solid line. Excellent agreement is observed with experimental data.

Varotsos [7.59] modified (7.23) by bringing in the polarisability and bulk
modulus. Sinha and Shanker [7.60] further modified (7.23) and calculated
the dielectric constants of alkali halide mixed crystals using the equations of
Kamiyoshi and Nigara [7.58], Varotsos [7.59] and their own equation. They
found that, by and large, Kamiyoshi and Nigara’s equation gives the best
agreement with experimental data.

7.2.6 Effective Ionic Charge in Mixed Crystals

Szigeti [7.61, 7.62] proposed a theory for dielectric crystals which led to the
equation
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(q∗)2 = (ze∗/ze)2 = (9Vi/4π2)(1/ze)2(εs − ε∞)µω2
t /(ε∞ + 2)2, (7.24)

where q* is called the effective ionic charge, z the valency, e the electron charge,
e* its effective value, Vi the volume of an ion pair, εs the static dielectric
constant, ε∞ the optical dielectric constant, µ the reduced mass and ωt the
transverse optical frequency. Calculations of q* for several crystals are given
in Chap. 5. The values of q* range from 0 for purely covalent crystals to nearly
unity for purely ionic crystals.

The composition dependence of q* for NiO–CoO mixed crystals was stud-
ied by Gielisse et al. [7.19]. Using experimental values for Vi, εs, ε∞ and ωt

for the mixed crystals, they found that q* varies linearly with composition.
Shanker and Jain [7.63] and Sinha and Shanker [7.60] calculated q* for NaCl–
NaBr, KCl–KBr and KBr–KI systems and the KCl–RbCl system, respectively.
For their calculations they used input data obtained by linear interpolation
of data for end members. They found that q* varies nearly linearly with com-
position.

Starting with Szigeti’s [7.61,7.62] dielectric function

ε(ω) = ε∞ + (e∗2/ε0Viµ)[(ε∞ + 2)/3]2[1/(ω2
t − ω2

l )] (7.25)

and putting ε(ω) = 0, we get

µ(ω2
l − ω2

t ) = (e∗2/ε0ε∞Vi)[(ε∞ + 2)/3]2. (7.26)

Here ε0 is the vacuum dielectric constant. Scott [7.64] introduced a reduced
charge (Z*e) defined by

(Z∗e) = e∗2(ε∞ + 2)2/9ε∞ (7.27)

which leads to
(ω2

l − ω2
t ) = (Z∗e)2/(µε0Vi). (7.28)

Gervais [7.65] calculated (Z∗e) for several binary and ternary compounds
using (7.28).

Wakamura and Arai [7.66] applied (7.28) to calculate (Z∗e) as a func-
tion of the composition for several mixed crystal systems with NaCl and ZnS
structures and found the variation of (Z∗e) with composition to be slightly
non-linear. For a binary mixed crystal denoted by AB1−xCx, (Z∗/ZA) follows
the equation

(Z∗)/(ZA) = a + bx + cx(1 − x). (7.29)

The values of a, b and c for a few systems are given in Table 7.8.

7.2.7 Colour Centres in Alkali Halide Mixed Crystals

There is a vast amount of literature on the colour centres in alkali halide
crystals. This includes books [7.67, 7.68], review articles [7.69, 7.70] and a
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Table 7.8. Values of (Z∗/ZA) and parameters a, b, c for some mixed crystal
systems

System (Z∗/ZA) Parameters
x = 0 x = 1 a b c

KCl1−xBrx 0.747 0.736 0.750 −0.016 −0.015
K1−xRbxCl 0.751 0.839 0.756 0.080 0.036
AgCl1−xBrx 0.791 0.672 0.791 −0.114 0.019
Ni1−xCoxO 0.448 0.470 0.450 0.020 0.000
ZnS1−xSex 0.463 0.419 0.455 0.036 0.132

Fig. 7.7. Influence of composition on (a) spectral position of the F band and (b)
the half-width of the F band at −190◦C

comprehensive compilation of data [7.71]. Suffice it to state that irradiation
of alkali halides by X-rays or γ-rays results in several bands in their absorption
spectrum, the most prominent being the F band.

The composition dependence of F band parameters has been studied in
several alkali halide mixed crystals. Smakula et al. [7.72] studied the shift in F
band position and composition dependence of half-width in KCl–KBr, KCl–
RbCl and RbCl–KBr mixed crystals. Their results are shown in Fig. 7.7. Both
the absorption maximum and the half-width show non-linear composition de-
pendence. Thyagarajan [7.73] recorded the F bands in the NaCl–NaBr system
and found that the F band wavelength and the half-width show a non-linear
composition dependence. Similar behaviour was observed in the KBr–KI and
KI–RbI systems [7.74,7.75].
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Table 7.9. Values of C and s (7.30) for absorption bands in KCl–KBr mixed crystals

Absorption band C[Å
1−s

] s
92 [K] 300 [K] 92 [K] 300 [K]

F 58 80 2.46 2.31
M 98 100 2.39 2.39
R1 117 – 2.19 –
R2 196 – 1.97 –
N1 152 – 2.26 –

The wavelengths of colour centres in alkali halides correlate with the lattice
constant/nearest neighbour distance through equations of the type

λ = Crs, (7.30)

where C and s are constants for a family of related crystals. Such relations are
known as the Mollwo–Ivey relations. The index s generally has values ∼ 1–2.
Values of s for some prominent colour centres in alkali halides with NaCl and
CsCl structures are quoted by Sirdeshmukh et al. [7.71].

Murti and Prasad [7.76] found that the Mollwo–Ivey relations are followed
in the mixed crystals also. The values of C and s for the F , M , R1, R2 and
N1 centres in the KCl–KBr system are given in Table 7.9. Hovi [7.75] found
that there are strong deviations from the Mollwo–Ivey relation in the F centre
data in the KI–RbI system.

7.2.8 Defects in Mixed Crystals

As discussed in Chap. 1, the number of vacancies in a crystal can be esti-
mated by comparing the measured density with the density calculated from
the lattice constant (X-ray density). Such density studies on the KCl–KBr and
NaCl–NaBr systems [7.12,7.77] have shown that the numbers of vacancies in
the mixed crystals are a few per cent more than in the pure crystals.

Vacancies give rise to ionic conductivity. The ionic conductivity of the KCl–
KBr system was studied by Subba Rao and Hari Babu [7.48]. They found that
the conductivity of mixed crystals was more than that of the pure crystals.
They also evaluated the activation energy. As the experiments were made
at moderate temperatures, they could evaluate only the activation energy of
migration. The migration activation energy was found to be less for the mixed
crystals than for the pure crystals. Subba Rao and Hari Babu [7.78] also
studied the ionic conductivity of KBr–KI system. Here again the conductivity
of mixed crystals was more than that of pure crystals. Further, they found
that the activation energy in the intrinsic as well as extrinsic regions varies
non-linearly with composition with negative deviations from linearity.

The dislocations in KCl–RbCl system were studied by Arends et al. [7.79]
by the etching technique. They found that the density of dislocations is much
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more in the equimolar region than in the pure crystals. Qualitatively similar
results were obtained by Veeresham et al. [7.80] for the KCl–KBr system.

7.2.9 Melting Temperature

Data are available for the melting temperatures of several alloy systems (Cs–
K, K–Rb, Rb–Cs, W–Ta, Ta–V, V–W). These are quoted by Rabinovich
et al. [7.81] and Corkill and Cohen [7.82]. In all these alloys, the composi-
tion dependence of the melting temperature is non-linear with negative de-
viations from linearity. Compared to the metal alloys, work on the melting
temperatures of mixed crystals of compounds is limited. In the KCl–KBr
system [7.11] and AgCl–AgBr system [7.83], it is again observed that the
composition dependence is non-linear with negative deviations from linearity.

Lindemann’s melting theory gives

〈(∆rV)2〉/a2 = x2
V = (9�

2Tm)/(MkBθ2
Da2), (7.31)

where ∆rV is the deviation in the atomic position due to thermal vibration, a
the lattice constant, � = (h/2π), M the mass, kB the Boltzmann constant and
θD the Debye temperature. (x2

V) is the square of the reduced displacement.
Rabinovich et al. [7.81] and Corkill and Cohen [7.82] extended Lindemann’s
equation to alloys with some modifications. They introduced the various pa-
rameters for the alloy in terms of the concentration of the alloy components
as follows:

M = xM1 + (1 − x)M2, (7.32)
a = xa1 + (1 − x)a2, (7.33)

θ−2
D = (θ−2

D )1 + (θ−2
D )2. (7.34)

In addition they took into account the size disorder xs given by

x2
s = 4x(1 − x)(r1 − r2)2/a2, (7.35)

where r1 and r2 are the radii of the component atoms and a the lattice
constant.

Further, they expressed the total displacement (∆r) and the reduced total
displacement (xm) as

〈(∆r)2〉/a2 = x2
m = x2

V + x2
s . (7.36)

With these modifications (7.31) becomes

Tm = (MkBθ2
Da2/9�

2)x2
m[1 − (x2

s/x2
m)]. (7.37)

With this expression, Corkill and Cohen [7.82] were able to correctly explain
the observed trends in the composition dependence of Tm of several alloy
systems.
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Sharma et al. [7.84] obtained an expression for the melting temperature
(Tm) of an ionic mixed crystal using the simple Born potential:

φ = (−z2e2/r) + (b/rn). (7.38)

The constants b and n can be obtained from the compressibility ψ. Subjecting
the potential φ to the condition:

Tm = (rm/2CkB)(dφ/dr) at r = rm (7.39)

and introducing an arbitrary constant

C ′ = C + x(1 − x). (7.40)

Sharma et al. obtained

Tm = (z2αe2)[1 − (r0/rm)n−1]/2C ′kBrm. (7.41)

Here r and rm are the values of the interionic distance at 0 K (or at room
temperature) and at the melting point. In using (7.41) for mixed crystals,
Sharma et al. used the following relations:

r0 = x(r0)1 + (1 − x)(r0)2, (7.42)

ψ = xψ1 + (1 − x)ψ2. (7.43)

Using (7.41), Sharma et al. [7.84] calculated the melting temperatures for a
few alkali halide mixed crystal systems.

7.2.10 Pm3m ↔ Fm3m Transition in Mixed Crystals

A crystal assumes a structure for which the free energy is the least. In
some cases the free energy will have very close values for two structures.
In such cases the structure changes from one form to the other with a
change in physical conditions. This is what happens in crystals with NaCl
and CsCl structures. Several alkali halides with NaCl structure transform
from the Fm3m NaCl structure to the Pm3m CsCl structure on the ap-
plication of pressure. On the other hand CsCl, NH4Cl and NH4Br which
have the Pm3m CsCl structure transform to the Fm3m structure at elevated
temperatures.

The Pm3m↔Fm3m transition in CsCl takes place at 479◦C [7.85]. The
Pm3m↔Fm3m transition in CsBr cannot be observed as the transition tem-
perature is above the melting point [7.86]. CsCl–CsBr mixed crystals do un-
dergo the transition up to a CsBr concentration of 60% beyond which the
transition temperatures are again above the melting points. The transition
temperatures of CsCl–CsBr mixed crystals were reported by Weijma and
Arends [7.86] and by Natarajan et al. [7.87]; their results are shown in Fig. 7.8.
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Fig. 7.8. Transition temperatures of CsCl1−xBrx

The transition temperature increases non-linearly as the CsBr content in-
creases.

May [7.88] calculated the transition temperature of CsCl using the Born–
Mayer theory according to which the lattice potential is expressed as

φ = −(αe2/r) − (C/r6) − (D/r8) + be−r/ρ. (7.1)

He calculated the transition temperature Ttr from the relation

Ttr = (φ1 − φ2)/3kB log(A1/A2), (7.44)

where (−φ1) and (−φ2) are the lattice energies for the two structures and A1

and A2 the force constants calculated from the short range terms. To obtain
agreement with the experimental value of Ttr, May [7.88] multiplied the Van
der Waal terms by a constant. Shanker et al. [7.89] extended May’s model
to calculate the transition temperatures of CsCl–CsBr mixed crystals. Their
results are included in Fig. 7.8.

The composition dependence of the transition temperature in the
NH4ClxBr1−x system has been studied by Costich et al. [7.90] from cooling
curves and by Murti and Prasad [7.91] from ionic conductivity measure-
ments. Their results are shown in Fig. 7.9. There is a marked difference in
the results. While Costich et al. observed a highly non-linear composition
dependence with negative deviations from linearity, Murti and Prasad ob-
served a linear composition dependence. There is no theoretical work on this
system.
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Fig. 7.9. Pm3m–Fm3m transition temperature Vs. composition (x) for
NH4ClxBr1−x mixed crystals

7.3 Some of our Results

Results of our studies of some solid state properties of pure crystals have
been discussed in other chapters. In this section, results of our studies of
mixed crystals are discussed.

7.3.1 Lattice Constants of Mixed Crystals

It has been mentioned in Sect. 7.2.1 that the composition dependence of lat-
tice constants of mixed crystals is best described by either of the following
equations:

Retgers’ law : a3 = xa3
1 + (1 − x)a3

2, (7.4)
Vegard’s law : a = xa1 + (1 − x)a2. (7.5)

Srinivas et al. [7.92] determined the lattice constant of the RbClxBr1−x system
from Debye–Scherrer photographs. The composition dependence is shown in
Fig. 7.10; there are small deviations from linearity. The lattice constants were
calculated from the above two equations and the deviations (acalc − aexp) are
plotted against the composition parameter x (Fig. 7.11). It is seen that (7.5)
gives a better fit.

Similarly, the lattice constants of the RbBrxI1−x system were determined
by Kumara Swamy et al. [7.93] with the help of a powder diffractometer. They
evaluated the lattice constants from (7.4) and (7.5). The values of the lattice
constant and the difference (aexp − acalc) are plotted in Fig. 7.12 . Here again,
(7.5) is found to give a better fit.
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Fig. 7.10. Plot of lattice constant a vs. composition x for the RbClxBr1−x system

Fig. 7.11. Plot of (acalc − aexp) against composition x for the RbClxBr1−x system

It was mentioned in Sect. 7.2.1 that the lattice constants of some mixed
crystal systems have shown strong deviations from Vegard’s law as well as Ret-
gers’ law. Three of these systems have been reinvestigated in our laboratories
with improved accuracy. These results are now discussed.

Suryanarayana and Sirdeshmukh [7.94] determined the lattice constants of
NH4Cl1−xBrx mixed crystals using the Debye Scherrer method. The values of
the lattice constant aexp and the deviation (aexp − acalc) from (7.5) are given
in Table 7.10. Negative deviations are observed in the Cl-rich regions. In this
respect, these results agree with those reported by Anselmo and Smith [7.22].
The deviations observed in the Br-rich region, though positive, are also larger
than the experimental error.

Subhadra and Hussain [7.95] determined the lattice constants of the
Na(ClO3)x(BrO3)1−x system with high accuracy using a symmetric focusing
camera. They calculated the difference (aexp − acalc) between the experimen-
tal values and those calculated from Vegard’s law. A plot of the (aexp − acalc)
values from the results of Subhadra and Hussain [7.95] and those reported
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Fig. 7.12. Plots of lattice constant (a) as a function of composition x [inset, (aexp −
acalc) vs. x] for RbBrxI1−x system

Table 7.10. Lattice constants of the NH4Cl1−xBrx system

x aexp [Å] aexp − acalc

[10−3 Å]
x aexp [Å] aexp − acalc

[10−3 Å]

0.000 3.8759 0 0.158 3.8948 −10.2
0.010 3.8777 0 0.289 3.9285 −0.6
0.032 3.8811 −0.7 0.463 3.9623 +1.2
0.048 3.8837 −1.0 0.734 4.0190 +8.0
0.059 3.8855 −1.3 0.863 4.0378 +3.0
0.077 3.8896 −0.5 0.942 4.0504 +1.1
0.111 3.8927 −3.6 1.000 4.0600 0

by Mohanlal [7.1] is shown in Fig. 7.13 as a function of x. Mohanlal’s data
points lie on a double-peaked curve whereas those from the data of Subhadra
and Hussain lie on a single-peaked curve. Further, the values of (aexp − acalc)
in the data of Subhadra and Hussain are smaller in magnitude than those
in Mohanlal’s data. Mohanlal reported that he tried to fit his data to the
equation

an = xan
1 + (1 − x)an

2 (7.7)

using values of 1, 2 and 3 for n but the fit was not satisfactory. Subhadra
and Hussain’s data also does not give a good fit for these values of n. As an
exercise, n was allowed to take higher values up to n = 30. The best fit was
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Fig. 7.13. Plot of (aexp − acalc) against composition x for the Na(ClO3)x(BrO3)1−x

system

obtained for n = 25 with an e.s.d. of 0.0022 Å for (aexp − acalc). Such a value
is, of course, unacceptable.

A detailed study of the KBrxI1−x system was made by Hussain et al. [7.96].
It was mentioned in Sect. 7.1.1 that for mixed crystal formation, the differ-
ence in the lattice constants of the end members should not exceed 7–8%. In
the KBr-KI system this difference is 7%; i.e. this system is a borderline case.
Havighurst et al. [7.16], Tobolsky [7.97] and Nair and Walker [7.23] found
that in this system mixed crystal formation was difficult and two phases ap-
peared. Hussain et al. [7.96] also experienced difficulty in obtaining single
phase samples. A powder X-ray diffractometer was employed for lattice con-
stant determination. The half-widths of the lines were also measured. The
composition dependence of the lattice constant is shown in Fig. 7.14. Clear
deviations from linear (Vegard’s law) behaviour were observed. These devia-
tions were attributed to lattice strain caused by the instability due to the large
difference in the lattice constants of KBr and KI. From the deviations, the
lattice strain εl was calculated from the relation εl = (∆a/a). The maximum
value of εl was 4× 10−3. The lattice strain was independently determined from
the half-widths using standard procedure [7.98]. A plot of εl thus obtained is
also shown in Fig. 7.14 as a function of composition x. εl assumes a maximum
value of 3.4 × 10−3 which is close to the value obtained from the excess lattice
constant.

Thus the deviations from Vegard’s law behaviour in this system can be
interpreted as due to lattice strain caused by instability in the mixed crys-
tals. It is possible that the deviations observed in the lattice constants of
Na(ClO3)x(BrO3)1−x are also due to lattice strains.
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Fig. 7.14. Plot of lattice constant a vs. composition x for the KBrxI1−x system
(dashed line represents additive behaviour); (inset) plot of strain εl vs. x (continuous
line, guide to the eye)

7.3.2 Debye–Waller Factors

Various aspects of Debye–Waller factors of crystals have been discussed in
Chap. 3. In Sect. 7.2.2, it has been pointed out that in mixed crystals, the
static disorder (or size effect) contributes a static component Bstatic to the
measured Debye–Waller factor; a simple method for estimating Bstatic has
been discussed.

The Debye–Waller factors of a large number of mixed crystal systems have
been studied as a function of composition. These are: KCl–KBr [7.99], KBr–
RbBr [7.100], RbCl–RbBr [7.92], KCl–RbCl [7.101], RbBr–RbI [7.93], NaCl–
NaBr and KI–RbI [7.102], AgCl–AgBr [7.103], CsCl–CsBr and NH4Cl−NH4Br
[7.104]. Typical composition dependence of the Debye–Waller factors is shown
in Fig. 7.15. These Debye–Waller factors are already corrected for the static
disorder effect.

The Kopp–Neumann relation for the Debye temperatures of mixed crys-
tals is:

θ−3 = xθ−3
1 + (1 − x)θ−3

2 . (7.12)

At moderate temperatures, the Debye–Waller theory expression for B re-
duces to

B = 6h2T/MkBθ2, (7.45)
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Fig. 7.15. Plots of Debye–Waller factor Bthermal vs. composition x for some alkali
halide mixed crystal systems

where the various symbols have the usual meaning. Combining (7.12) and
(7.45), Kumara Swamy [7.105] obtained

B = [x{(M1/M)B1}3/2 + (1 − x){(M2/M)B2}3/2]2/3, (7.46)

where (B,M), (B1,M1) and (B2,M2) are the Debye–Waller factors and
masses of the mixed crystal and the two end members.

The experimental data on Debye–Waller factors was examined in the light
of (7.46). It was found that (7.46) predicts the same composition dependence
as shown by the experimental data viz. non-linear variation with positive
deviations from linearity. For a quantitative assessment, the values of (Bexp −
Bcalc) were calculated for each composition and its e.s.d. for each system was
calculated. These e.s.d. values are given in Table 7.11. The e.s.d.s are of the
same order as the error in Bexp thus indicating good agreement except in the
case of RbBr–RbI.
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Table 7.11. E.s.d. of (Bthermal − Bcalc) for alkali halide mixed crystal systems

System E.s.d. [Å2] System E.s.d. [Å2]

KCl–KBr 0.06 NaCl–NaBr 0.05
KCl–RbCl 0.03 KI–RbI 0.08
KBr–RbBr 0.06 CsCl–CsBr 0.02
RbCl–RbBr 0.09 NH4Cl–NH4Br 0.02
RbBr–RbI 0.35

Table 7.12. Values of e.s.d. in (θE − θcalc) for some mixed crystal systems

System E.s.d. [K]
Equation

(7.12)
Equation

(7.47)
Equation

(7.48)

KClxBr1−x 2.7 6.2 0.85
AgClxBr1−x 1.5 1.7 1.5
MgxFe1−xO 74.6 86.7 8.4

Only in one system viz. KBr–KI, a different trend was observed. The data
reported by Hussain et al. [7.96] show a non-linear composition dependence
but with negative deviations. It may be mentioned that a similar composition
dependence was observed by Ganesan and Girirajan [7.106] in the CsCl–CsBr
system. But a redetermination by Balaiah [7.104] has led to results similar to
the rest of the systems. Thus, the KBr–KI data seem to have been affected
by some unidentified error.

7.3.3 Debye Temperatures of Mixed Crystals

Debye Temperatures from Elastic Constants

Nagaiah and Sirdeshmukh [7.107] calculated the Debye temperatures of three
mixed crystal systems KClxBr1−x, AgClxBr1−x and MgxFe1−xO from their
elastic constants using the Voigt–Reuss–Hill averaging procedure discussed in
Chap. 6. They compared these values (θE) with values (θcalc) calculated from
the following three equations:

Kopp − Neumann θ−3 = xθ−3
1 + (1 − x)θ−3

2 , (7.12)

Empirical θ2 = xθ2
1 + (1 − x)θ2

2, (7.47)
Empirical θ−1 = xθ−1

1 + (1 − x)θ−1
2 . (7.48)

For each system the e.s.d. in (θE − θcalc) was calculated. These e.s.d. values
are given in Table 7.12. It is found that (7.48) has the lowest e.s.d. in all the
three systems. Further, the e.s.d.s for the MgxFe1−xO system are too large.
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Fig. 7.16. Plot of Debye temperature θM vs. composition x for some alkali halide
mixed crystal systems

Debye Temperatures from X-Ray Intensities

In Sect. 7.3.2 results on Debye–Waller factors of several mixed crystals were
discussed. In Chap. 3, the procedure for evaluation of the X-ray Debye tem-
perature (θM) has been discussed. Typical examples of the composition depen-
dence of θM are shown in Fig. 7.16. It is seen that the composition dependence
is slightly non-linear with negative deviations from linearity.

Geeta Krishna et al. [7.102] examined the data on θM for several mixed
crystal systems vis-a-vis empirical relations. Apart from (7.12), (7.47) and
(7.48), the following equations were also considered:

θ−2 = xθ−2
1 + (1 − x)θ−2

2 , (7.37)

mθ2 = m1xθ2
1 + (1 − x)m2θ

2
2. (7.38)
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To assess the relative merit of these equations, Geeta Krishna et al. calculated
a parameter Ω defined by

Ω =
[∑

n {(θcalc − θM)/θM}2

n

]1/2

. (7.49)

The values of Ω for the different equations for several alkali halide mixed
crystal systems are given in Table 7.13. It is seen that for each system the
least value is obtained for the Kopp–Neumann relation (7.12). Ω has the
largest value for the RbBr–RbI system.

Table 7.13. Values of Ω

System Source of
θM (exp)

Ω

Equation
(7.12)

Equation
(7.47)

Equation
(7.48)

Equation
(7.37)

Equation
(7.38)

KCl–KBr [7.99] 0.016 0.023 0.032 0.058 0.030
KCl–RbBr [7.100] 0.015 0.018 0.020 0.027 0.017
RbCl–RbBr [7.92] 0.020 0.023 0.026 0.035 0.024
KCl–RbCl [7.101] 0.008 0.014 0.020 0.044 0.017
KI–RbI [7.102] 0.013 0.016 0.020 0.030 0.021
NaCl–NaBr [7.102] 0.014 0.023 0.033 0.064 0.028
RbBr–RbI [7.93] 0.079 0.084 0.089 0.104 0.092

Mixed crystals with single compositions in the systems TlBr–TlCl and
TlBr–TlI were available for study. Their mean Debye–Waller factors and De-
bye temperatures were determined by Srinivas and Sirdeshmukh [7.108,7.109].
The θM values are given in Table 7.14 along with those for TlCl and TlBr
[7.110]. It has been mentioned in Chap. 6 that the Debye temperatures of
related crystals have a linear relationship with a−1 where a is the lattice con-
stant. Such a plot is shown for the thallium halide crystals and their mixed
crystals (Fig. 7.17). By extrapolation of this plot a value of 86 K is predicted
for the θM of the CsCl phase of TlI.

Table 7.14. θM values of some Tl halides

Crystal θM [K] Reference

TlCl 101 [7.110]
TlCl0.7Br0.3 (KRS-6) 97 [7.108]
TlBr 95 [7.110]
TlBr0.46I0.54 (KRS-5) 90 [7.109]
TlI (CsCl) 86 (estimated)

Debye Temperatures by Different Methods

Apart from the methods of determining the Debye temperatures from elastic
constants and X-ray intensities, there are other methods also. Thus, the Debye
temperature can be determined by fitting low-temperature specific heats to
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Fig. 7.17. Plot of Debye temperature (θ) against reciprocal of lattice constant (a−1)
for pure and mixed crystals of thallium halides

the Debye – T 3 equation. Further, the Debye temperature can be calculated
from the melting point using the Lindemann melting point formula

θ = C ′(Tm/MV 2/3)1/2, (7.50)

where C ′ is a constant, Tm the melting point, M the molar mass and V the
molar volume. Blackman [7.111] derived the following equation for the Debye
temperature in terms of the compressibility:

θ = (1/2π)(h/kB)(5r/µψ). (7.51)

Here r is the interionic distance, µ the reduced mass and ψ the compressibility.
The number 5 applies only to crystals with NaCl structure; it has a different
value for other structures. Abrahams and Hsu [7.112] suggested the following
empirical relation between the Debye temperature and hardness:

θ = C ′′H
1/2
V V 1/6M−1/2. (7.52)

Here C ′′ is a constant and HV the Vickers hardness.
Srinivas and Sirdeshmukh [7.113] calculated the Debye temperatures of

KClxBr1−x mixed crystals by all these methods. Their results are given in
Table 7.15. All the methods give comparable θ values and reveal the same
trend in composition dependence. However, the θ values obtained from hard-
ness data are systematically higher than the others. In Sect. 7.2.4 it has been
pointed out that the static disorder (size effect) enhances the hardness of a
mixed crystal. This leads to an enhancement in the value of the Debye tem-
perature calculated from the measured hardness.

7.3.4 Hardness of Mixed Crystals

Various aspects of hardness of mixed crystals have been discussed in detail
in Chap. 4. Results of some studies of hardness of mixed crystals have been
discussed in Sect. 7.2.4.
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Table 7.15. Debye temperature θ for the KClxBr1−x system

x θ [K]
Specific
heats

Elastic
constants

Melting
points

Compressibility Microhardness

0 172 170 170 184 170
0.20 180 179 178 190 270
0.40 190 190 188 197 315
0.62 202 201 200 207 334
0.83 218 216 215 220 320
1.00 232 230 230 233 230

Fig. 7.18. Plot of (a) hardness, HV and (b) ∆HV against composition x for mixed
crystals

Hardness of several mixed crystal groups have been studied in our
laboratory. These are: NaClO3−NaBrO3 [7.114], RbCl–RbBr [7.115], RbBr–
RbI and KI–RbI [7.116] and CsCl–CsBr and NH4Cl−NH4Br [7.117]. Typical
plots of hardness as a function of composition are shown in Fig. 7.18. The
common trend shown by all systems is that the hardness has a non-linear
composition dependence with positive deviations from additivity. Plots of
the difference between the measured hardness and that expected from linear
behaviour (∆HV) are also shown in Fig. 7.18. Different models to explain
this non-linear behaviour were discussed in Sect. 7.2.4. According to a simple
model proposed by Subba Rao and Hari Babu [7.48], lattice forces cause
a linear variation and defects and static disorder contribute a non-linear
variation. The combined result is that

∆H = kx(1 − x), (7.22)

where k is a constant. It can be seen that the maximum deviation of H
from additivity is 0.25k. Values of k for several mixed crystal systems are
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Table 7.16. Values of constant k (7.22) for some mixed crystal systems

System k [kg mm−2] ∆r [Å] Reference for H

NaCl–NaBr 96 0.15 [7.47]
KCl–KBr 53 0.15 [7.48]
KBr–KI 83 0.21 [7.49]
RbCl–RbBr 55 0.15 [7.115]
RbBr–RbI 76 0.21 [7.116]
KI–RbI 24 0.14 [7.116]
CsCl–CsBr 22 0.15 [7.117]
NH4Cl−NH4Br 120 0.15 [7.117]

given in Table 7.16. Values of ∆r, the difference in the ionic radii of the
mixing ions, are also given. Considering only the rubidium halide systems,
Sirdeshmukh et al. [7.116] suggested that k depends on ∆r, being less for the
RbCl–RbBr system (with ∆r = 0.15) and more for KBr–KI and RbBr–RbI
systems (∆r = 0.21). But the large k values for NaCl–NaBr, CsCl–CsBr and
NH4Cl−NH4Br systems (with ∆r = 0.15) do not fit into this scheme.

7.3.5 Dielectric Properties

A detailed study of dielectric constant (ε) and dielectric loss (tan δ) was under-
taken for two mixed crystal systems: KCl–KBr [7.118] and RbCl–RbBr [7.119].
The study included the determination of the composition dependence of ε,
tan δ and related parameters at room temperature and at elevated tempera-
tures up to 350◦C. The results are discussed in relation to earlier reports on
mixed crystals mentioned in Sect. 7.2.5.

The static dielectric constant for KCl1−xBrx is shown as a function of
composition in Fig. 7.19 along with the values given by Fertel and Perry [7.57]
and values obtained from (7.23). It can be seen that experimental values by
Sirdeshmukh et al. [7.118] and those calculated by Kamiyoshi and Nigara
[7.58] show a smooth variation with a maximum value at equimolar compo-
sition. On the other hand, the values by Fertel and Perry [7.57] differ from
values in the other two reports [7.58, 7.118]. For RbCl1−xBrx the experimen-
tal values from [7.119] are shown in Fig. 7.20 as a function of composition
along with the values obtained from (7.23). Both the plots show a non-linear
variation with a maximum around equimolar composition.

The variation of dielectric constant with composition at various temper-
atures is shown in Fig. 7.21 for KCl1−xBrx and for RbCl1−xBrx in Fig. 7.22.
The variation is non-linear with a maximum value for equimolar composition.
It is also seen that the difference between the values for the end members and
the middle composition increases with temperature.

The temperature variation of dielectric constant can be expressed in the
form of A, B, C terms on the basis of Havinga’s theory which was discussed in
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Fig. 7.19. Variation of ε with composition x of KC1−xBrx at 100 KHz: (a) [7.118],
(b) [7.58], (c) [7.57]

Fig. 7.20. Calculated and experimental values of dielectric constant (ε) with com-
position (x) for the RbCl1−xBrx system: (a) [7.119], (b) [7.58]

Chap. 5. Further, following the treatment proposed by Samara [7.120], the an-
harmonic contribution to the dielectric constant G is related to the C term as

G = T (εs − 1)(εs + 2)C. (7.53)

The input data and the calculated values of C and G are shown in Table 7.17.
It is observed that the anharmonic contribution varies with the composition
and it is maximum for the equimolar composition.

Samara [7.120] observed that for alkali halides at room temperature the
anharmonic effects account for less than 10% of the lattice contribution to
dielectric constant. From Table 7.17 it is seen that this is true for the mixed
crystals also and it is maximum for the KCl0.47Br0.53 crystal. The non-linear
variation with composition could be due to the enhanced anharmonic effects
in the mixed crystals. Fertel and Perry [7.57] obtained the variation of damp-
ing constant with temperature and composition both experimentally and by
theoretical calculation with virtual crystal model. The damping constant was
found to show a non-linear variation with a maximum at the equimolar com-
position. The theoretical treatment [7.8] and the experimental work on the
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Fig. 7.21. Variation of ε of KCl1−xBrx with composition (x) at 100KHz at different
temperatures

Fig. 7.22. Variation of ε of RbCl1−xBrx with composition (x) at 100KHz at dif-
ferent temperatures

infrared spectra of crystals [7.121] show that the resonance half-width or
damping is a measure of anharmonic contributions to lattice vibrations. Sub-
ramaniam [7.122] evaluated the Gruneisen parameter (γ) for the KCl–KBr
system and found that the average γ for the mixed crystal system is higher
than the average γ for the pure alkali halides. The Gruneisen parameter be-
ing a measure of anharmonicity, it was concluded that atomic vibrations in
mixed crystals are more anharmonic in nature than in the pure crystals. Plendl
et al. [7.46] studied the vibrational spectra of the NiO–CoO and CaF2−SrF2



320 7 The Physics of Mixed Crystals

Table 7.17. Input data and values of A, B, C and G of KCl1−xBr−x crystals;
εs the static dielectric constant; β the volume thermal expansion coefficient and
(r/ρ) repulsion index in the Born potential

x (A+B+C)∗

[10−5/◦K]
β/3
[10−5/◦K]

(r/ρ) (A+B)
[10−5/◦K]

C
[10−5/◦K]

G

0.00 3.54 3.80 10.022 3.39 0.15 0.012
0.22 3.43 3.86 10.016 3.23 0.20 0.016
0.53 5.43 4.23 9.981 3.18 2.25 0.185
0.77 4.07 4.06 10.095 2.93 1.14 0.092
1.00 3.78 4.03 10.022 2.91 0.87 0.089

∗(A + B + C) = 105

(εs − 1)(εs + 2)

(
dεs
dT

− εsβ
3

)

mixed crystal systems. They obtained the spectral parameter and found that
it shows a non-linear variation with composition. The spectral parameters for
the intermediate compositions are higher than those for the pure crystals.

The anharmonic contribution G could not be evaluated for the RbCl–RbBr
system for lack of required input data. But on the basis of above evidence and
the results for KCl–KBr system, it is believed that the non-linear composition
variation in both the systems is the result of anharmonic contributions to the
dielectric constant.

7.3.6 Effective Ionic Charge

Employing the room temperature values of static dielectric constant, the ef-
fective ionic charge was evaluated for the KCl–KBr and RbCl–RbBr systems
as a function of composition from the Szigeti relation (Sect. 7.2.6)

εs − ε∞ = (ε∞ + 2)2(4π2e2)(q∗)2/9µω2
t Vi (7.54)

with (z = 1). For the KCl–KBr system, the input data and the calculated
values of q∗ are shown in Table 7.18. The variation of q∗ with composition
evaluated using the frequency data of Fertel and Perry [7.57] is shown in
Fig. 7.23 as plot 1. Plot 3 corresponds to values obtained from the frequency
data of Ferraro et al. [7.123]. Non-linearity is more pronounced in plot 1 than
in plot 3. Szigeti [7.124] gave a complete account of the lattice contribution to
dielectric constant including the anharmonic effects (Chap. 5) and obtained
the relation

εs − ε∞ = [(ε∞ + 2)2(4π2e2)(q∗)2/9µω2
t Vi] + G (7.55)

= η + G.

Here, η is the lattice contribution in the absence of anharmonicity and G
represents the contributions from higher order terms in the potential energy.
Following Samara [7.120], the Szigeti charge q* has been recalculated from
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Table 7.18. Input data and values of q* and q∗C for KCl1−xBrx crystals: volume Vi

and ε∞ from [7.58], ωt from [7.123] and in parenthesis from [7.57], εs from [7.118],
q* and q∗C calculations with data from [7.123] and in parenthesis from [7.57]

x εs Vi [Å
3
] µ ε∞ ωt[1013 rad s−1] q* q∗C

0.00 4.81 62.33 18.60 2.22 2.67 (2.66) 0.79 (0.79) 0.79 (0.78)
0.22 4.87 64.23 20.06 2.28 2.55 (2.68) 0.78 (0.82) 0.78 (0.82)
0.53 4.95 66.85 21.77 2.34 2.42 (2.58) 0.78 (0.83) 0.76 (0.80)
0.77 4.92 68.75 23.80 2.37 2.28 (2.42) 0.77 (0.81) 0.75 (0.80)
1.00 4.87 71.74 26.26 2.43 2.15 (2.14) 0.75 (0.75) 0.74 (0.73)

Fig. 7.23. Variation of q∗ (open circle) and q∗C (filled circle) with composition x for
KCl1−xBrx: 1, 2 frequency data from [7.57] and 3, 4 from [7.123]

(7.55) using the values of G given in Table 7.17. The corrected values q∗C are
given in Table 7.18 and also shown in Fig. 7.23 as plots 2 and 4.

According to the criterion suggested by Chang and Mitra [7.8] KCl1−xBrx

is expected to show a normal one-mode behaviour in which each of the long
wavelength optical mode frequencies varies continuously and approximately
linearly with composition. The frequency data of Fertel and Perry [7.57] shows
a non-linear variation while Ferraro et al. [7.123] have observed a linear vari-
ation with composition in agreement with the Chang and Mitra criterion. As
shown in Fig. 7.23 the Szigeti charge evaluated by using the frequency data
of the two reports differs considerably. Plendl et al. [7.46] observed a linear
variation of the Szigeti charge with composition for NiO–CoO system. Ferraro
et al. have made a generalized statement that the effective ionic charge varies
linearly with composition for mixed crystals.

The corrected values q∗C obtained using the frequency data of Ferraro et al.
show a linear composition variation consistent with the above findings. On the
other hand, q* evaluated from the frequency data of Fertel and Perry show a
highly non-linear variation even after applying the correction for anharmonic-
ity. Hence, the frequency data of Ferraro et al. are physically more acceptable
than those of Fertel and Perry.
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Table 7.19. Input data and calculated values of q* for RbCl1−xBr−x crystals [7.125]

x εs Vi [Å
3
] µ ε∞ ωt[1013 rad s−1] q*

0.00 4.91 71.26 25.06 2.19 2.22 0.84
0.20 5.06 64.23 27.20 2.22 2.11 0.86
0.40 5.17 66.85 29.74 2.25 1.99 0.86
0.50 5.18 68.75 31.19 2.27 1.94 0.86
0.60 5.13 71.74 32.80 2.28 1.88 0.85
0.75 5.08 79.12 35.54 2.30 1.80 0.84
1.00 4.88 81.74 41.30 2.33 1.65 0.81

Fig. 7.24. Variation of q∗ with composition (x) for the RbCl1−xBrx system

For RbCl1−xBrx, q* values have been evaluated assuming a linear variation
of frequency with composition. The input data and the calculated values of
q* are given in Table 7.19. The values indicate a non-linear variation with
composition as shown in Fig. 7.24.

7.3.7 Colour Centres in RbCl–RbBr Mixed Crystals

In Sect. 7.2.7 aspects of colour centres in mixed crystals were discussed.
Srinivas et al. [7.92] studied the colour centres in RbClxBr1−x mixed crys-
tals. The lattice constants were determined by X-ray diffraction. By colouring
the crystals with γ-rays from a Co60 source, the F centres were recorded. The
half-width of the F centre bands was also determined. The results are given
in Table 7.20.

The composition dependence of the F centre wavelength (λF) is shown in
Fig. 7.25. It is slightly non-linear. It has been mentioned (Sect. 7.2.7) that λF

bears a relationship of the form

λF = Crs (7.30)

with the interionic distance r; for NaCl structure r = a/2. A log–log plot
of λF and r is shown in the same figure from which s = 2.5. Thus the
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Table 7.20. Values of the F band peak position (λF), the F band half-width (W )
and Bstat for the RbClxBr1−x system

x λF [Å] W [eV] Bstat [Å
2
]

0.0 7,060 0.344 0
0.25 6,900 0.369 0.0010
0.39 6,800 0.374 0.0014
0.50 6,720 0.377 0.0015
0.61 6,700 0.377 0.0013
0.80 6,540 0.372 0.0009
1.0 6,340 0.361 0

Fig. 7.25. Plot of (a) λF vs. x and (b) log λF vs. log r for RbClxBr1−x

Fig. 7.26. Plot of (a) half-width W vs. x and (b) Bstat vs. x for RbClxBr1−x

Mollwo–Ivey law holds in this system. Subramaniam and Bansigir [7.126] sug-
gested that the ‘size effect’ affects the half-width of F centre bands. The size
effect causes a static contribution Bstatic to the Debye–Waller factor. The
values of Bstatic are given in Table 7.20 for the RbClxBr1−x system. Plots
of half-width (W ) and Bstatic against composition are shown in Fig. 7.26.
They are similar, supporting the suggestion of Subramaniam and Bansigir
[7.126].



324 7 The Physics of Mixed Crystals

Fig. 7.27. Variation of tan δ at 100 kHz with composition (x) of KCl1−xBrx for
temperatures (a) 290, (b) 310◦C

7.3.8 Defects in Mixed Crystals

Point Defects

The point defects in KClxBr1−x and RbClxBr1−x mixed crystals were stud-
ied by Sirdeshmukh et al. [7.118] and Sathaiah and Sirdeshmukh [7.119], re-
spectively, by making measurements of ionic conductivity and evaluation of
activation energy. The A.C. conductivity σ was evaluated from the data on
dielectric constant and loss using the relation σ = εε0ω tan δ.

The tan δ values for KCl1−xBrx and RbCl1−xBrx are shown in Figs. 7.27
and 7.28, respectively. A non-linear variation with enhanced loss at equimolar
composition is observed for both the systems. Conductivity too shows a non-
linear composition dependence. The composition dependence of the activation
energy for conduction (E) obtained from Arrhenius plots is shown in Figs. 7.29
and 7.30. It is to be noted that activation energy for motion of defects is less
for intermediate compositions for both systems.

Hari Babu and Subba Rao [7.3] suggest that for the KCl–KBr system the
non-linear variation in conductivity and the activation energy for conduction
is the result of defects such as enhanced dislocations and grain boundaries.
This could account for the variations observed in RbCl–RbBr system also.

Dislocations

Hussain et al. [7.114] studied the dislocations in the NaClO3−NaBrO3 system
by the etching technique. The distribution of etch pits is shown in Fig. 7.31
and the dislocation density is shown in Fig. 7.32 as a function of composition.
As in the alkali halide mixed crystals (Sect. 7.2.8) the density of dislocations
is more in the mixed crystals than in the pure crystals.
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Fig. 7.28. Variation of tan δ at 10KHz with composition (x) of RbClxBr1−x for
different temperatures

Fig. 7.29. Variation of activation energy E with composition x of KCl1−xBrx

7.3.9 Melting Temperatures of Mixed Crystals

It was pointed out in Sect. 7.2.9 that while there is considerable data on melt-
ing of alloys, there is very limited data on melting of compound mixed crystals.
A systematic study of melting of compound mixed crystals was carried out in
our laboratory. For this purpose, a hot stage microscope was set up by replac-
ing the commonly used objective by a long distance objective and replacing
the stage by a laboratory-built hot stage. The thermocouple tip was in contact
with the sample. Thus the sample and thermocouple tip could always be seen
together and when melting took place, the thermocouple recorded the actual
sample temperature. By repeated measurements and from results on standard
materials, the error in measured melting temperatures was estimated as ± 5K.

The following systems were studied: NaClO3−NaBrO3 [7.127]; KCl–KBr,
RbCl–RbBr, KBr–RbBr [7.128]; KCl–RbCl [7.129] and RbBr–RbI, KI–RbI
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Fig. 7.30. Variation of activation energy E with composition x at 300◦C for the
RbCl1−xBrx system

Fig. 7.31. Etch patterns on the (100) faces of NaClO3 − NaBrO3 mixed crystals
(a) NaBrO3, (b) Na(ClO3)0.93, (c) Na(ClO3)0.7(BrO3)0.3 and (d) NaClO3

and NaCl–NaBr [7.130]. The composition dependence of melting point for
some of these systems is shown in Fig. 7.33. The general trend is that the
melting point is a slightly non-linear function of composition with negative
deviations from additivity.

Sirdeshmukh et al. [7.130] compared these results with predictions from
Lindemann’s theory. Lindemann’s melting point formula can be written in the
form

Tm = CMa2θ2, (7.56)

where Tm is the melting temperature, M the mass, a the lattice constant
and θ the Debye temperature. For a given mixed crystal system, C can be
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Fig. 7.32. Plot showing dislocation density as a function of composition x for
Na(ClO3)x(BrO3)1−x mixed crystals

calculated from the values of these parameters for pure end members. For
mixed crystals, we have

M = xM1 + (1 − x)M2, (7.57)
a = xa1 + (1 − x)a2, (7.58)
θ−3 = xθ−3

1 + (1 − x)θ−3
2 . (7.59)

Thus with the help of (7.56)–(7.59), the melting points of mixed crystals can
be calculated using only the parameters for the end members. These calculated
values are also shown in Fig. 7.33.

For a quantitative assessment of these calculations, the e.s.d. in
[Tm(exp)−Tm(calc)] was calculated for each system. These e.s.d. values are
given in Table 7.21. Since the experimental error was estimated at ± 5K,
the agreement between experimental results with values from (7.56) was
considered good, fair or poor for e.s.d.s in the range 0–10, 10–20 K and more
than 20 K. Thus, the agreement was found good in case of KI–RbI, KBr–KI
and KCl–RbCl systems, fair in case of KBr–RbBr, KCl–KBr, NaCl–NaBr,
CsCl–CsBr and RbCl–RbBr systems and poor in case of RbBr–RbI.

7.3.10 Pm3m → Fm3m Transition in NH4Cl–NH4Br System

It was pointed out in Sect. 7.2.10 that there is a marked difference in the
composition dependence of the Pm3m–Fm3m transition temperatures of the
NH4Cl−NH4Br system reported by Costich et al. [7.90] and Murti and Prasad
[7.91]. A redetermination of the transition temperatures was carried out by
Balaiah [7.104].

A Perkin-Elmer DSC 7 has been used to determine the transition tempera-
tures. The operation of the DSC is based on the power compensation principle.
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Fig. 7.33. Plots of Tm vs. composition x for alkali halide mixed crystal systems:
experimental data for KClxBr1−x, RbClxBr1−x and KxRb1−xBr from [7.128], for
KBrxI1−x and KxRb1−xCl from [7.129] and for others from [7.130]; symbols: circle,
Expt.; square, calculated from (7.56)
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Table 7.21. E.s.d.s in [Tm(exp) − Tm(calc)]

System E.s.d. [K] System E.s.d. [K] System E.s.d. [K]

KI–RbI 3 KBr–RbBr 10 CsCl–CsBr 14
KBr–KI 4 KCl–KBr 11 RbCl–RbBr 18
KCl–RbCl 5 NaCl–NaBr 13 RbBr–RbI 23

Table 7.22. Phase transition temperatures of NH4ClxBr1−x mixed crystals

[7.90] [7.91] [7.104]
x Ttr[

◦C] x Ttr[
◦C] x Ttr[

◦C]

0 138 0 149 0 158
0.08 130 0.065 156 0.09 146
0.23 104 0.205 158 0.13 146
0.38 101 0.4 168 0.29 125
0.45 101 0.5 171 0.33 126
0.61 118 0.785 186 0.38 124
0.79 136 1 196 0.78 126
0.89 154 0.85 162
1 186 0.93 189

0.96 193
1 193

With power compensation DSC, the sample and reference material are placed
in separate self-contained calorimeters. When the temperature rises or falls in
the sample material, power is applied to or removed from the calorimeter to
compensate for the sample energy. As a result, the system is maintained at a
‘thermal null’ at all times. The amount of power required to maintain the sys-
tem equilibrium is directly proportional to the energy changes occurring in the
sample. Hence the DSC based on the power compensation principle directly
measures energy flow to and from the sample. The temperature sensor is a
platinum resistance thermometer with an accuracy of ±0.1◦C. The samples
are encapsulated in aluminium holders. The phase transition temperatures
are measured using the thermograms recorded at a scan rate of 10◦Cmin−1.

The results of the DSC measurements are given in Table 7.22. The transi-
tion temperatures reported by Costich et al. [7.90] and Murti and Prasad [7.91]
are also included in the same table. The composition dependence of the
transition temperatures obtained by Balaiah [7.104] is shown in Fig. 7.34.
The composition dependence is clearly non-linear with negative deviations
from linearity. The transition temperatures obtained by Costich et al. [7.90]
and Murti and Prasad [7.91] are also plotted in Fig. 7.34 for the various
compositions. The results of Balaiah [7.104] are qualitatively in agreement
with the results of Costich et al. [7.90] which also show a non-linear com-
position dependence of the transition temperature with negative deviations
from linearity. However, the results of Balaiah [7.104] deviate completely
from the results of Murti and Prasad which indicate a linear composition
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Fig. 7.34. Pm3m–Fm3m transition temperature (Ttr) vs. composition x for
NH4ClxBr1−x mixed crystals

dependence. The non-linear composition dependence of transition tempera-
ture in the NH4Cl−NH4Br system is also consistent with the non-linear com-
position dependence of transition temperature observed in the CsCl–CsBr
system. Thus, the non-linear composition dependence of the Pm3m → Fm3m
transition temperature of the NH4Cl−NH4Br mixed crystals is now clearly
established.



8

Elastic Properties of Solids – A Critical
Analysis

8.1 Introduction

The elastic properties of solids have a twofold importance. First, they are indi-
cators of mechanical strength which is a matter of great practical significance.
Second, on the scientific side, the elastic properties are inputs for determina-
tion of interatomic potential parameters and lattice dynamical calculations.
When measured at high pressures, they provide information regarding the
anharmonicity of the lattice. In view of this importance, a vast amount of in-
formation is now available on the elastic properties of solids. This information
is scattered in various scientific journals. Exclusive compilations of data on
elastic properties of solids have also been published [8.1–8.7].

Several experimental techniques are available for the determination of
elastic properties. Some commonly employed techniques will be discussed in
Sect. 8.2 along with a mention of their limitations and uncertainties in the
results obtained from them.

8.2 Experimental Methods

Some of the commonly used experimental methods are briefly discussed in
this section. For more details, reference may be made to the cited literature.

8.2.1 Piston Displacement Method

In this method, the sample is directly compressed by a piston or is enclosed in
a medium which is compressed by a piston. The method originally introduced
by Bridgman [8.8, 8.9] has undergone several modifications [8.10–8.12].

As a typical example, the arrangement used by Vaidya and Kennedy [8.12]
is shown in Figs. 8.1 and 8.2. Only the important parts are described here. X is
the sample held between the piston P and a fixed tungsten carbide element
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Fig. 8.1. Schematic diagram of the piston displacement set-up

Fig. 8.2. Details of the sample assembly in the piston displacement set-up

O. The piston is driven by the hydraulic ram M. The pressure vessel C is
made of tungsten carbide. The sample is covered by an indium sheath and
the space between the sample and pressure vessel is filled with pyrophillite.
The compression seen as a relative displacement between the lever arms W
and H is measured by the dial gauges G.

The observed total compression has significant contributions from the com-
pression of the press and the compression of the indium sheath. The ratio of
these contributions and the sample compression have to be optimized. In
Bridgman’s experiments, the corrections were 75% of the total compression
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whereas the corrections were reduced by half in the set-up of Vaidya and
Kennedy [8.12]. Care has to be taken to minimize the effects of (a) distortion
of the press (b) horizontal fracture of the pressure vessel and (c) friction be-
tween the piston and the pressure vessel walls. This is a static method which
gives isothermal values of the bulk moduli.

8.2.2 Shock Wave Method

In this method an explosive is detonated in an enclosed space. This results in
the production of a shock wave. Either this shock wave is made to directly
impinge on a sample or a projectile propelled by the shock wave is directed on
to the sample. The shock wave velocity (uS) and the particle velocity (up) are
measured by recording the time of arrival of the waves at different designated
points where electrical pin contactors are located. Whereas the shock wave
velocity can be determined in a straight-forward way, the particle velocity has
to be obtained from the free surface velocity (ufs). A typical arrangement [8.13]
is shown in Fig. 8.3, which is self-explanatory. The working equations are

ρ0uS = ρ1 (uS − up), (8.1)

Fig. 8.3. Schematic diagram of a shock-wave set-up
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P1 − P0 = ρ0 uS up, (8.2)

where ρ is the density, P the pressure, uS the shock velocity and up the particle
velocity; up = ufs/2 approximately. The subscripts 0 and 1 refer to the com-
pression state ahead of the shock and the state immediately behind the shock
front, respectively. The procedure for transforming the experimental velocities
to pressure–compression points is discussed in detail by Rice et al. [8.14]. The
P–V plot thus obtained is called the “Hugoniot”; from the Hugoniot, the bulk
modulus can be calculated. Further details are given in [8.13–8.16].

This method is capable of, by far, the greatest pressure range, up to 2 Mbar
[8.17]. It is a dynamic method. It is found that, in general, the compatibility
of static (piston displacement) and shock wave results is good [8.12–8.14]. The
method yields essentially isothermal values.

8.2.3 X-ray Diffraction Method

When the X-ray diffraction pattern is recorded at different pressures, the
Bragg angles change. From this, the changes in lattice parameters can be
calculated. This information, in turn, leads to the evaluation of the linear
compressibilities and finally to the bulk modulus. The method yields isother-
mal values of elastic properties.

The pressure is applied through a pressure medium or, more commonly,
by means of a diamond or tungsten carbide anvil. The sample may be a
single crystal or in powder form. Both film and camera arrangements as well
as diffractometer can be used replacing the common specimen holder by a
pressure cell. While X-ray radiation is commonly employed, Bartholin et al.
[8.18] used neutrons and Will et al. [8.19] used synchrotron radiation.

Considerable work on determination of compressional data by the X-ray
diffraction method has been done [8.20–8.24]. One advantage of this method
is that a small sample is required. Another unique advantage is that in a
single experiment, linear compression can be studied in different directions.
A common problem in high pressure work is that the pressure experienced
by the sample is not necessarily the same as the applied pressure. In the
X-ray diffraction method, this problem is overcome by using a ‘marker’ or an
internal standard. On the other hand, the application of the method is limited
by the use of Mo radiation which causes fluorescence in some materials. Also
the short wavelength of the Mo radiation limits the accuracy with which the
lattice parameters can be evaluated. Leger et al. [8.25] refer to the effect of
uniaxial stresses on the results. Vaidya and Kennedy [8.12] consider the X-ray
method to be of “extremely poor precision”.

8.2.4 Optical Interferometric Method

Optical interferometry can be employed to determine the linear compress-
ibilities and, from them, the bulk modulus. The optical interferometer, the
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Fig. 8.4. Optical interferometer (a) view from above, (b) view from side

Fig. 8.5. Schematic diagram of the interferometric method

sample holder and the schematic diagram of the set-up used by Montalvo and
Langer [8.26] are shown in Figs. 8.4 and 8.5. The interferometer consists of a
glass plate resting over the surface of an iron cylinder. The sample with a
flat face was held in the annular space of the iron cylinder. The incident light
beam from an He–Ne laser was reflected from the lower surface of the glass
plate and the top surface of the sample. The whole interferometer was placed
in a pressure vessel containing isopentane as the pressure fluid. The interfer-
ence fringes were sensed by a photocell coupled to a recorder. The experi-
mental procedure was to count the fringes as the pressure changed from 1 to
10 kbar.

The optical interferometric measurements yield isothermal values of com-
pressibilities and bulk modulus. Montalvo and Langer used this method to
determine the linear compressibilities of several II–VI compound crystals and
claimed an accuracy of 1%. However several of their values differ from accurate
ultrasonic values by amounts larger than the isothermal-adiabatic conversion
correction. Factors like the errors in the value of the compressibility of iron
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used in the calculations, the change in refractive index of the pressure fluid
with pressure change and relative motion between glass and sample surfaces
contribute to the final uncertainty in the results.

8.2.5 Ultrasonic Method

The measurement of velocity of ultrasonic waves is a popular method for
determination of elastic constants of crystals. The sound velocity in a crys-
tal is a function of the elastic constants. For example, for cubic crystals, we
have

ρ υ2 = (C11 − C12)/2, (8.3)

where ρ is the density, C11 and C12 are two of the three elastic constants and
υ is the velocity of a sound wave propagating in the [110] direction with par-
ticle displacement in the [11̄0] direction. There are similar equations for other
combinations of elastic constants and also for the elastic constants of crystals
of other symmetries. Relations between velocities and elastic constants for
hexagonal and tetragonal crystals are given by Cline et al. [8.27] and Farley
and Saunders [8.28], respectively.

Much of the earlier work on the determination of elastic constants was
based on the composite oscillator method [8.29–8.31]. In more recent work,
different versions of the pulse method [8.32–8.34] have been employed.

In a modification of the pulse comparison technique [8.35], two phase-
coherent RF pulses are applied in quick succession to a transducer attached
to the crystal surface. On transmitting through the sample, each pulse will
generate its own train of echoes. When the separation of the second pulse is
adjusted such that the echoes from the two coincide, destructive interference
occurs successively at a number of frequencies. From a knowledge of these
null frequencies and the thickness of the sample, the ultrasonic velocity can
be estimated.

Other technical details of the method are given in [8.27,8.36–8.38]. While
the electronics is capable of measurement with high accuracy, various other
factors like the characteristics of the bonding material, the accuracy of mea-
surement of thickness and the accuracy of orientation of the sample introduce
errors.

The ultrasonic method yields adiabatic values of elastic constants. It is
by far the only method that gives elastic constants of single crystals. From
the single crystal elastic constants, the isotropic bulk and shear moduli can
be computed. Alternatively, the ultrasonic method can be used to find the
sound velocities in polycrystalline samples from which the elastic moduli can
be determined. In this method, very often a density correction has to be ap-
plied as the polycrystalline samples may not be packed to crystal density.
The ultrasonic method is by far the most accurate. To cite an example, Bate-
man [8.39] has reported the elastic constants of ZnO with an accuracy of
0.1%.
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8.2.6 Other Methods

1. Ultrasonic-optic method. In this method, a transparent crystal is excited
into resonant vibration by a quartz plate. The result is that the crystal
acts like a 3-d diffraction grating with respect to optical light. From the
diffraction pattern, orientation of the crystal, crystal density and the res-
onant frequency, the elastic constants are evaluated. This is known as the
Schaefer–Bergmann [8.40] method.

2. Optical scattering method. A method based on frequency shifts of the
Brilluoin components appearing in the thermal scattering of light has
been developed by Krishnan [8.41] to determine the elastic constants.

3. X-ray diffuse scattering method. Ramachandran and Wooster [8.42, 8.43]
developed a method for determining the elastic constants of crystals from
observations on the thermal diffuse scattering of X-rays. They used the
method to determine the elastic constants of diamond, sodium chlorate
and iron pyrites among other crystals.

8.2.7 Relative Merits and Limitations

The piston displacement method, the shock wave method and the X-ray dif-
fraction methods are commonly employed for determination of bulk moduli
whereas the ultrasonic method is used mostly to determine the single crystal
elastic constants.

Bridgman was the pioneer in the development of the piston displacement
method. He was continuously refining his equipment and procedure from the
1920s to 1940s. At a certain stage, Bridgman himself revised his earlier data by
10–20% [8.44]. Vaidya and Kennedy [8.12] call Bridgman’s results ‘remarkably
discordant’. As mentioned in Sect. 8.2.1, several factors related to the high-
pressure assembly need care and correction. Vaidya and Kennedy [8.12] claim
that their own set-up and method are 3–10 times more precise than other
methods.

Rice et al. [8.14] estimate an error of 0.7–3% in compression data obtained
from shock-wave method. The shock-wave data has been found to be con-
sistent with piston displacement data [8.12] and also with X-ray diffraction
data [8.17]. However, Drickamer et al. [8.17] refer to the requirement of a large
number of corrections to the shock-wave results.

The ultrasonic techniques are highly accurate but they have in some cases
led to dubious results. There are also intrinsic analytical difficulties in retriev-
ing elastic constant data from velocity data, particularly with regard to lower
symmetry crystals.

8.3 Discrepancies in Elastic Properties

The methods discussed in Sect. 8.2 are capable of high accuracy. Some of the
methods yield adiabatic values whereas others yield isothermal values. The
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difference between adiabatic and isothermal values ranges from 0.5 to 2%.
These two values are mutually convertible by a thermodynamic correction.
The uncertainties claimed in elastic properties range from 1 to 5%. With such
high accuracy the values for a material by different methods or by different
workers, generally agree within limits of errors.

However, there do exist cases where discrepancies much larger than the
claimed error limits occur in values for the same material reported by different
sources. In Table 8.1, values of bulk moduli at zero (or atmospheric) pressure
are cited. It can be seen that in several cases the differences in bulk moduli are
of the order of 20% or more and in some cases they are as much as a factor of
3–5. In Tables 8.2–8.4, data on single crystal elastic constants of some cubic,
tetragonal, trigonal and hexagonal crystals are quoted. Here again the single
crystal elastic constants differ by about 20% and in some cases by a factor of
3–15. In fact, there are cases where the elastic constants from different sources
even differ in sign.

It may be mentioned that the list of crystals showing differences in reported
elastic properties given in Tables 8.1–8.4 is not an exhaustive list. Further
such conflicting data have been included in some compilations without any
comments. Thus Simmons and Wang [8.7] call their compilation ‘uncritical’
and mention the inclusion of ‘suspect elastic data’ leaving it to the reader to
‘choose the set which he believes better’.

These differences far exceed the admitted limits of uncertainty. When data
differing so severely exist in literature, it becomes necessary to analyse them
with a view to sifting the correct (or acceptable) data from the incorrect (or
unacceptable). Several consistency checks for analysis of elastic properties of
solids are reviewed in the following sections.

8.4 Consistency Checks for Bulk Moduli

Some consistency checks for bulk moduli are discussed in this section. These
are categorized as (a) phenomenological relations, (b) theoretical consistency
checks and (c) empirical relations as consistency checks.

8.4.1 Phenomenological Relations as Consistency Checks

Relations Between Elastic Moduli

The bulk modulus (B), Young’s modulus (Y ), shear modulus (G) and the
Poisson’s ratio (σP) are interrelated as follows:

Y = 2G (1 + σP), (8.4)

B = Y /[3 (1 − 2σP)], (8.5)

σP = (1/2) − (Y/6B). (8.6)
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Table 8.1. Bulk moduli (B) of some solids

Solid Method B [kbar] Ref.

1. C (Diamond) (i) Ultrasonics 5800 [8.45]
(ii) Doppler
(iii) scattering

4170 [8.46]

(iv) Ultrasonics 4430 [8.38]
2. Si (i) Piston

displacement
3120 [8.47]

(ii) Ultrasonics 971 [8.48]
(iii) Piston
displacement

814 [8.49]

(iv) Piston
displacement

1007 [8.50]

3. Iodine (i) Piston
displacement

87.03 [8.50]

(ii) Shockwave 98.04 [8.51]
(iii) Piston
displacement

76.92 [8.52]

(iv) X-ray
diffraction

208.33 [8.53]

4. Se (hex.) (i) Piston
displacement

92.7 [8.54] Bridgman’s data

(ii) Piston
displacement

79 [8.50]

(iii) Ultrasonics 174 [8.55, 8.56]
5. Sb (i) Piston

displacement
369 [8.49]

(ii) Piston
displacement

404 [8.50]

(iii) Shockwave 255 [8.51]
(iv) Ultrasonics 380 [8.57]

6. Zr (i) Piston
displacement

755 [8.49]

(ii) Piston
displacement

1028 [8.50]

(iii) Shockwave 976 [8.51]
(iv) Ultrasonics 945 [8.58]

7. Y (i) Piston
displacement

337 [8.49]

(ii) Piston
displacement

449 [8.50]

(iii) Shockwave 455 [8.51]
(iv) Ultrasonics 491 [8.59]

8. LiH (i) Piston
displacement

270 [8.60]

(ii) Piston
displacement

228 [8.61]

(iii) Piston
displacement

357 [8.62]
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Table 8.1. Continued

Solid Method B [kbar] Ref.

9. LiI (i) Piston
displacement

168.3 [8.63] Murnaghan equation.

(ii)
Piston
displacement

135.4 [8.63] Modified Murnaghan equation.

(iii)
Shockwave

333 [8.51]

(iv)
Ultrasonics

171 [8.64]

10. NaI (i) Piston
displacement

156 [8.49]

(ii) Piston
displacement

151 [8.63]

(iii)
Shockwave

200 [8.51]

(iv)
Ultrasonics

151 [8.64]

11. CsBr (i) Piston
displacement

144 [8.63]

(ii)Shockwave 221.8 [8.51]
(iii) Ultrasonics 145.0 [8.65]

12. AgI (i) Piston
displacement

20.1 [8.49]

(ii) Piston
displacement

28.5 [8.63]

13. CaO (i) Piston
displacement

218 [8.66]

(ii) Piston
displacement

1120 [8.10]

(iii) X-ray 1120 [8.67]
(iv) Ultrasonics
(S.C)

1090 [8.68]

14. CaS (i) Piston
displacement

357 [8.69] Bridgman’s data

(ii) X-ray 455 [8.67]
(iii) X-ray 699 Reanalysis of data in [8.67]

15. SrO (i) Piston
displacement

1183 [8.10]

(ii) Ultrasonics 880 [8.70]
16. CeS (i) Piston

displacement
1300 [8.71]

(ii) X-ray 820 [8.72]
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Table 8.1. Continued

Solid Method B [kbar] Ref.

17. SmS (i) Piston
displacement

151 [8.73]

(ii) X-ray 476 [8.74]
(iii) Ultrasonics 503 [8.75]

18. ZnO (i) Piston
displacement

450 [8.76]

(ii) Ultrasonics 1399 [8.77]
(iii) Ultrasonics 1436 [8.39]
(iv) Optical
interferometry

1447 [8.26]

19. BeO (i) Piston
displacement

3704 [8.10]

(ii) Piston
displacement

2433 [8.76]

(iii) Ultrasonics 2198 [8.36]
(iv) Ultrasonics 2140 [8.78]

20. CdS (i) Piston
displacement

380 [8.76]

(ii) Ultrasonics 615 [8.79]
21. CdSe (i) Piston

displacement
281 [8.76]

(ii) Ultrasonics 532 [8.79]
21. CdSe (i) Piston

displacement
281 [8.76]

(ii) Ultrasonics 532 [8.79]
22. MnF2 (i) Piston

displacement
184 [8.80]

(ii) Ultrasonics 883 [8.81]
23. GeO2 (Rutile) (i) Ultrasonics 1950 [8.82]

(ii) Ultrasonics 2576 [8.83]
24. Stishovite (SiO2, rutile) (i) Piston

displacement
3600 [8.84]

(ii) Piston
displacement

3000 [8.85]

25. Magnetite (i) Piston
displacement

1830 [8.86]

(ii) Ultrasonics 1590 [8.87]
(iii) Ultrasonics 1390 [8.88]
(iv) X-ray 1830 [8.89]

26. Benzil (i) Piston
displacement

30.7 [8.90]

(ii) Piston
displacement

66.5 [8.91]
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Table 8.2. Elastic constants Cij [kbar], bulk modulus B [kbar] and Poisson’s ratio
σP of some cubic crystals

Crystal C11 C12 C44 B σP Ref.

1. FeS2 (Pyrite) (i) 3585 −529 1035 842 −0.17 [8.2]
(ii) 3818 310 1094 1479 0.07 [8.92]

2. Sodium chlorate (i) 618.2 −208.3 119.6 67 −0.50 [8.1]
(ii) 509 155 118 273 0.23 [8.6]

3. PbTe (i) 1040 −44 130 317 −0.04 [8.93]
(ii) 1080 80 130 413 0.07 [8.94]

4. PbSe (i) 4040 3190 162 3473 0.44 [8.95]
(ii) 1130 150 130 477 0.11 [8.96]
(iii) 1240 190 160 540 0.13 [8.97]

Table 8.3. Elastic constants Cij [kbar] and bulk modulus B [kbar] for some tetrag-
onal crystals

Crystal C11 C12 C13 C33 C44 C66 C16 B Ref.

1. Zircon (ZrSiO4) (i) 570 250 50 460 140 320 190 [8.98]
(ii) 3300 1075 1540 3805 733 397 2040 [8.99]
(iii) 4230 703 1490 4900 1136 485 2030 [8.100]

2. ADP (i) 676 59 199 336 87 66 2820 [8.101]
(ii) 758 −243 133 296 87 61 2060 [8.5]

3. KDP (i) 714 −49 129 562 127 63 2680 [8.5]
(ii) 785 320 387 763 123 61 5020 [8.5]

4. SrMoO4 (i) 1275 886 501 1034 347 213 40 [8.102]
213 −2400 1275 −40
665 −490 823 527
823 −989 665 −527

(ii) 1154 599 444 1042 350 475 121 [8.103]
(iii) 1190 620 480 1040 349 420 −120 [8.104]

The following features may be noted:

(a) If any two parameters are known, the other two can be calculated and
checked with experimental values.

(b) The elastic moduli are all positive.
(c) The Poisson’s ratio is positive. Further, from (8.6), it follows that 0 <

σP < 0.5. Empirically, σP is found to be close to 0.3 for most solids.

As an example of the use of phenomenological relations as consistency
checks, we shall consider the bulk modulus of selenium. Gschneidner [8.54]
quoted literature values of 591 and 92.7 kbar for the Young’s modulus and
the bulk modulus; the bulk modulus was from Bridgman’s work. Substituting
these values in (8.6), one gets a value of −0.562 for σP which is physically un-
acceptable in view of (c) and indicates an error in the value of Y/B. Since the
value of Y is reasonable from various considerations, Gschneidner concluded
that there is an error in Bridgman’s value for B for Se, which should have
been much larger. Subsequently, Mort [8.56] reported single crystal elastic
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Table 8.4. Elastic constants Cij [kbar], Sij [kbar−1], bulk modulus B [kbar] and
Debye temperature θ[K] for some hexagonal and trigonal crystals

Crystal S11 −S12 −S13 2S14 S33 4S44 B θ Source

1. Calcite
(trigonal)

(i) 0.00103 0.00035 0.00080 0.0012 0.00175 0.0038 −6300 [8.105]

(ii) 0.001 0.00038 0.00048 0.0009 0.00175 0.0041 700 [8.106]

Crystal C11 C12 C13 C33 C44 C66 B θ Source

2. BeO
(hex.)

(i) 4700 1680 1190 4940 1530 1520 2495 1260 [8.36]

(ii) 4606 1265 885 4916 1477 1670 2244 1280 [8.27]
3. LaCl3

(hex.)
(i) 3065 1238 1653 3611 1677 913 2050 600 [8.107]

(ii) 2585 1670 1517 3419 1731 458 1979 500 [8.107]
(iii) 2952 1564 1607 3648 1742 694 2100 507 [8.107]
(iv) 190 80 100 230 100 60 128 ∼150 [8.108]

constants of Se from which Sirdeshmukh and Subhadra [8.55] calculated the
isotropic elastic moduli and obtained the values B =174 kbar, Y = 234 kbar
and σP = 0.27. This value of B is much larger than the Bridgman value. Fur-
ther, σP is positive and close to 0.3. Thus these values are phenomenologically
consistent. The much lower value of 92.7 kbar quoted from Bridgman’s work
for the bulk modulus of Se (hex.) has to be ignored and the ultrasonic value
of 174 kbar is recommended.

It may be mentioned that values for B for Se larger than that reported by
Bridgman were predicted by Gschneidner [8.54] from an empirical relation be-
tween B and the cohesive energy and by Sirdeshmukh [8.109] by a theoretical
method; these will be discussed later in this section. It may be also mentioned
that a value of 79 kbar reported later by Vaidya and Kennedy [8.50] is much
lower than Bridgman’s value and open to the same criticism as Bridgman’s
value.

It is to be noted that the condition that σP cannot be negative is useful
only in finding whether the B value is physically valid or not. At best, it helps
in estimating a lower bound for B but it cannot estimate, by itself, the correct
value of B.

Relations Between Elastic Constants

The quadratic stress (or strain) energy is positive definite. This condition
results in interrelationship between the single crystal elastic constants [8.110–
8.114]. These relationships will be used in analyzing data on some crystals in
Sects. 8.4.2 and 8.5.

8.4.2 Theoretical Consistency Checks

The bulk modulus may be calculated by theoretical methods and the cal-
culated value may be compared with the experimental values. Alternatively,
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the experimental bulk modulus may be used to calculate other physical prop-
erties theoretically; these calculated properties may then be compared with
their respective experimental values. Some approaches of this type are now
considered.

Knopoff’s Universal Relation

By an interpolation of the equations of state obtained from the finite strain
theory and the Thomas–Fermi model, Knopoff [8.115] derived an expression
for the bulk modulus B of a solid in terms of the atomic volume (Va), atomic
number (Z), the Bohr radius (a0) and the electron charge (e). The relation is:
[
BZ−10/3

]
[ZVa]

7/3 =
[
π10/362/3/15

]
a3
0 e2=34.17 Mbar Å

7
, (8.7)

For compounds, Va is the mean atomic volume and Z is given by

Z2/3 =
∑

i

niZ
5/3
i

/∑
i

niZi (8.8)

where ni is the number of times an atom i with atomic number Zi occurs in
the chemical formula.

The various reported values of B for selenium are given in Table 8.1. Since
Gschneidner [8.54] had expressed doubts regarding the soundness of the Bridg-
man value on the basis of the “negative σP criterion”, Sirdeshmukh [8.109]
applied Knopoff’s method to estimate the bulk moduli of some elemental
solids including selenium. These calculated values are given in Table 8.5 along
with experimental values quoted by Gschneidner. It is seen that agreement
between experimental and calculated values is good in the case of Zr and W
but otherwise there are differences of as much as 30–50% in other cases. The
largest difference occurs in the case of selenium. The calculated value of 526
kbar is much larger than Bridgman’s value of 92 kbar. Further, the calculated
value combined with the Young’s modulus value quoted by Gschneidner yields
a value of 0.3 for the Poisson’s ratio.

Table 8.5. Values of B for some elemental solids

Element B [kbar]
Calc. from (8.7) Expt.

Al 645 735
Ti 709 1075
Mg 270 361
Zr 901 850
W 4, 000 3, 333
Li 80 118
Se 526 92.7
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However, as mentioned in Sect. 8.4.1, later determination of elastic
constants of Se have led to a consistent set of elastic moduli which yield
a value of 174 kbar for the bulk modulus and a Poisson’s ratio value of 0.27.
In view of the high accuracy of ultrasonic results, the value obtained from
Knopoff’s relation appears to be an overestimate.

Knopoff’s method is now used to analyse the data on MnF2 and Fe3O4.
Values of 90 kbar and 2,800 kbar, respectively, are obtained for the bulk modu-
lus of these two compound crystals. This value for MnF2 is lower than both the
values given in Table 8.1 but between the two values, it is closer to the piston-
displacement value. In the case of magnetite, the Knopoff-value is much higher
than all the values quoted in Table 8.1 but is closer to the piston-displacement
and X-ray values.

Knopoff’s method is simple and universal; it is independent of bonding
and structure. Yet, in view of the cases discussed above, we may conclude
that Knopoff’s method may be used only to provide corroborative rather
than conclusive evidence.

Bulk Modulus from Molecular Data

From simple considerations, it can be shown that there is a direct relation
between the bulk modulus (B) and the interatomic force constant (k). Waser
and Pauling [8.116] showed that

B = (N r2
/

9Vc )k, (8.9)

where N is the number of equivalent bonds and Vc the unit cell volume. Yean
and Riter [8.117] proposed an equivalent relation:

B = (2ρNA r2
/
9A)k, (8.10)

where NA is the Avogadro number, ρ the density and A the mean atomic
weight.

While Waser and Pauling used (8.9) to estimate the force constant of sev-
eral elemental and compound crystals from known values of their bulk modu-
lus, Yean and Riter proceeded in the reverse direction and estimated the bulk
modulus from (8.10) using known values of the force constant. In doing so,
Yean and Riter made the important assumption that the interatomic force
constant between two atoms in the solid state is the same as the stretching
force constant for the same two atoms in the molecular state. The stretching
force constant for molecules can be evaluated from IR and Raman spectro-
scopic data. The force constants and bulk moduli estimated by Yean and Riter
for some systems are given in Table 8.6.

The value of 960 kbar estimated for the bulk modulus of Ge compares well
with Bridgman’s value of 787 kbar quoted in [8.54] and the value of 778 kbar
quoted in [8.7]. Further, Yean and Riter predicted the value of 2,240 kbar for
the bulk modulus of SiC without the knowledge of any experimental value.
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Table 8.6. Stretching force constants (k) and estimated bulk moduli (B) for some
crystals

Molecule k [millidyne cm−1] Crystal B from (8.10) [kbar]

C2H6 4.36 C (diamond) 4, 070
Si2H6 1.73 Si 1, 060
Ge2H6 1.62 Ge 960
Sn2H6 1.40 Sn (α) 720
CH3SiH3 2.19 SiC (β, cubic) 2, 240

However, the bulk modulus of SiC was earlier determined by Einspruch and
Clairborne [8.118] who obtained a value of 2,140 kbar from ultrasonic mea-
surements on a polycrystalline sample. Thus, the method seems to work well.
Comparing the value of the bulk modulus of Si calculated from the spectro-
scopic data with the values given in Table 8.1, Yean and Riter recommended
rejection of the abnormally large literature value of 3,120 kbar. It is clear that
this method is suitable only for molecular and crystalline systems having a
common bond and which are amenable to spectroscopic measurements.

Bulk Modulus from Szigeti’s Theory of Dielectrics

Considering the dielectric polarization in ionic crystals, Szigeti [8.119] derived
the relation

B = (1/ψ) = [ r2µω2
t (εs + 2)]

/
[3Vi(ε∞ + 2)], (8.11)

where ψ is the compressibility, r the interionic distance, µ the reduced mass,
ωt the transverse optical frequency obtained from IR reflectivity curve, εs the
static dielectric constant, Vi the volume per ion pair and ε∞ the optical di-
electric constant. Using appropriate values for the various quantities in (8.11),
Szigeti calculated the bulk modulus. The calculated and experimental values
of the bulk modulus (Bcalc. and Bexp, respectively) and the ratio Bexp./Bcalc.

for some crystals are given in Table 8.7.
The values of Bexp./Bcalc. for the alkali halides are all close to unity show-

ing that (8.11) works well, particularly for perfectly ionic crystals like al-
kali halides. For MgO, Szigeti got a low value for Bexp./Bcalc.. Anderson and
Glynn [8.120] felt that the value of ωt used by Szigeti was inaccurate. They
redetermined ωt from the reflectivity curve for MgO and recalculated B. The
revised value for Bexp./Bcalc. is, again, close to unity.

This method is now applied to analyze the bulk modulus data for CaO
and SrO given in Table 8.1. For CaO, the value of Bexp./Bcalc. obtained by
Szigeti using Bridgman’s value for B is low. The alkaline earth oxides are not
as ionic as the alkali halides and some deviations Bexp./Bcalc. from unity can
be expected. But the value 0.13 obtained by Szigeti is too low. The values for
this ratio have been recalculated using the other experimental values of the
bulk modulus for CaO given in Table 8.1. It is seen that with the new values
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Table 8.7. Calculated and experimental values of bulk moduli for some crystals

Crystal Bcalc (8.11) [kbar] Bexp [kbar] Bexp/Bcalc

LiF 670 670 1.00
NaCl 242 239 0.99
KBr 160 152 0.95
MgO 3570 1,690 0.47

1,640a 1.04a

CaO 1,660 218 0.13
1,120a 0.67a

1,090a 0.65a

SrO 680 880a 1.29a

1183a 1.73a

aSee discussion in text; rest of the data are from [8.119,8.120]

of B, the ratio Bexp./Bcalc. has a value ∼0.66 which is much better than the
Szigeti value of 0.13. Clearly, (8.11) is able to show that Bridgman’s value of
bulk modulus of CaO is in error and the more recent values are reasonable.

For SrO again, Szigeti calculated the value of B from (8.11); data on
Bexp. was not available to him to make a comparison. Now that the bulk
modulus of SrO has been determined, the values of Bexp./Bcalc. have been
calculated using data in Table 8.1 leading to values of 1.29 and 1.73; the
lower value of 880 kbar [8.70] appears more reasonable than the larger value
of 1,183 kbar [8.10] for the bulk modulus of SrO.

Theoretical Calculation of Physical Properties Using the Bulk
Modulus as an Input Cohesive Energy

For an ionic crystal, the interaction energy uij between two ions i and j may
be represented by

uij = −zizje
2r−1

ij − cij(6)rij
−6 − dij(8)rij

−8 + bibjfij exp (−rij/ρ), (8.12)

where the terms represent the Coulomb, dipole–dipole, dipole–quadrupole and
repulsion interactions, respectively [8.121]. For a crystal as a whole, the cohe-
sive energy is obtained by summation over all ions. The cohesive energy may
be represented by

U = Ue + Ud(6) + Ud(8) + Ur, (8.13)

where U is the cohesive energy and the four terms, again, represent the contri-
butions of the four interactions. The parameters in the expression, particularly
those in the repulsion term are calculated from the conditions:

dU/dr = 0, (8.14)

r2(d2U/dr2) = 9V B, (8.15)
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where r is the interatomic distance, V the molar volume and B the bulk
modulus. Once these parameters are known, one may go back to (8.13) to get
the cohesive energy. In this way, the bulk modulus comes into the calculation of
the cohesive energy. Comparison of the calculated value and the ‘experimental’
value of cohesive energy helps to judge the reliability of the value of the bulk
modulus used as input.

Benson et al. [8.122] employed this approach in the case of ThO2 and UO2.
They assumed various values of B to calculate U from (8.13) and constructed
a B–U plot (Fig. 8.6) from which they read off the values of B corresponding
to the experimental values of U (−2, 413 and −2, 461 kcalmol−1 for ThO2

and UO2, respectively, [8.122]). These values are given in Table 8.8 along with
experimental values which were available from ultrasonic measurements on
sintered samples. There is a difference of 10–30% between these two sets of
values. Benson et al. [8.122] suggested that this difference could be because
the experimental B values were based on experiments on sintered samples.
However, later accurate ultrasonic measurements on single crystals yielded
values which show the same (or even larger) difference from the B–U plot
values. Thus, the difference between experimental values and those from the
B–U plot persists.

It may be cautiously concluded that the procedure of calculating the bulk
modulus by comparing the calculated value of the cohesive energy with the
‘experimental’ value leads only to an ‘order-of-magnitude’ check on the B-
values.

Fig. 8.6. Bulk modulus (B) vs. cohesive energy (U) plot for ThO2 and UO2

Table 8.8. Bulk moduli of ThO2 and UO2

Method
B [kbar]

ThO2 UO2

Expt. (polycrystalline samples) 2403 2127
Predicted from B–U plot 2770 2958
Expt. (single crystal) 1930 2127
Minimum predicted from B–σ plot 1500 2000
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Fig. 8.7. Bulk modulus (B) vs. surface energy (σ) plot for ThO2 and UO2

Surface Energy

Starting with (8.12), one can proceed to obtain an expression for the surface
energy. The expression depends on the structure of the crystal and also the
plane for which the surface energy is to be calculated. As in the case of the
cohesive energy, the surface energy (σ) will also have four terms:

σ = σe + σd(6) + σd(8) + σr. (8.16)

Benson et al. [8.122] calculated σ for the (111) plane of ThO2 and UO2 assum-
ing different values of the bulk modulus to evaluate the repulsion parameters.
The exact expressions for (8.16) for the (111) plane of the fluorite structure
have been worked out [8.123].

The variation of σ with the assumed value of B is shown in the B–σ
plot (Fig. 8.7). If the surface energy is known from experiment, one may read
off the value of B from the plot corresponding to the experimental value of
σ. Experimental values of σ are, however, not known for ThO2 and UO2.
Some information can still be extracted from the B–σ plot. It can be seen
from Fig. 8.7 that σ depends on B in a sensitive manner. In fact, σ assumes
positive and negative values for different ranges of B. Physically, σ cannot
assume negative values. Thus, we can read off the B value for which σ changes
from positive to negative values. This is the minimum value for B. The correct
value for B will be larger than this value. These minimum values estimated
from Fig. 8.7 are given in Table 8.8. The two sets of experimental values of B
as well as those estimated from the B–U plot are all larger than the minimum
value from Fig. 8.7. Thus, again, surface energy values serve only as an order-
of-magnitude check on bulk modulus values.

Single Crystal Elastic Constants

The Krishnan–Roy theory [8.124] provides a method for evaluation of elastic
constants of crystals. Krishnan and Roy assume the following simple expres-
sion for the cohesive energy of ionic crystals like the alkali halides:
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U = NA [−αM z2 e2/r] + b exp (−r/ρ), (8.17)

where αM is the Madelung constant, z the valence and b and (r/ρ) are con-
stants in the repulsion term. Application of (8.14), (8.15) and (8.17) leads to

B =
[
z2αMe2

18r4

]
[(r/ρ) − 2], (8.18)

(r/ρ) can be determined from the bulk modulus by the use of (8.18). Krishnan
and Roy obtained the following relations for the elastic constants:

C11 = {2αM[1 + (r/ρ)] − 6X} (z2e2/r4), (8.19)

C12 = C44 = 3(X − αM) (z2e2/r4), (8.20)

X is a lattice sum which depends on the crystal structure. For the NaCl struc-
ture, X = 3.14. Thus, with B, as input, (r/ρ) can be evaluated and with (r/ρ)
as input, the elastic constants C11 and C12 can be evaluated. The equality of
C12 and C44 is a consequence of the assumption of central forces. Krishnan
and Roy calculated the elastic constants of several alkali halides and found
good agreement with experimental values. Mathur et al. [8.69] calculated the
elastic constants of alkaline earth chalcogenides from the Krishnan and Roy
equations. Sirdeshmukh and Subhadra [8.125] applied the Krishnan–Roy the-
ory to some transition metal oxides with NaCl structure.

Subhadra and Sirdeshmukh [8.126] used the method of Krishnan and
Roy [8.124] to analyse the several differing values of the bulk modulus of
lithium hydride which has the NaCl structure and is considered highly ionic.
Apart from the values 270, 228 and 357 kbar quoted in Table 8.1, Pretzel
et al. [8.127] quoted values of 400, 312 and 208 (kbar) for the bulk modulus of
LiH by other methods. Subhadra and Sirdeshmukh [8.126] calculated the val-
ues of the elastic constants of LiH from (8.19) and (8.20) using values of bulk
moduli in the range 200–400 kbar as input. Some of their results are given in
Table 8.9. They plotted the values of C11 and C11/C12 against the values of
B used as input. The plots (Figs. 8.8 and 8.9) are smooth lines. Subhadra and
Sirdeshmukh [8.126] would have used experimental values of C11 and C12 to
read off the correct value of B. However, such data was not available to them.

An interesting feature of the C11 vs. B and (C11/C12) vs. B plots is that
both C11 and C11/C12 are very sensitive to the value of B assumed for the

Table 8.9. Values of elastic constants of LiH from (8.19), (8.20)

B [kbar] C11 [kbar] C12 = C44 [kbar] C11/C12

500 580 460 1.25
357 140 460 0.29
270 −110 460 −0.24
228 −240 460 −0.52
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Fig. 8.8. B vs. C11 plot for LiH

Fig. 8.9. B vs. C11/C12 plot for LiH

calculations. In fact C11 and C11/C12 assume–negative values for a range of
B values. Subhadra and Sirdeshmukh [8.126] invoked the stability conditions
proposed by Born and Huang [8.111] and Alers and Neighbours [8.113] ac-
cording to which, in cubic crystals

C11 > 0 (8.21)

and
(C11/C12) > 1. (8.22)

From Figs. 8.8 and 8.9, it is seen that for both the stability conditions to
be satisfied B should be greater than 465 kbar. Thus, 465 kbar is the lower
bound for the bulk modulus of LiH. It may be noted that the Krishnan–Roy
theory assumes central forces, neglects the Van der Waal interactions and
treats the crystal as completely ionic. Subsequent to the analysis by Subhadra
and Sirdeshmukh [8.126], Haussuhl and Skorezyk [8.128] measured the single
crystal elastic constants of LiH. They observed a large difference in the values
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of C12 and C44 indicating considerable departure from ionicity. In view of these
limitations, it may not be proper to fix a sharp limit for the lower bound of
B. Thus the value of 357 kbar reported by Stephen and Lilley [8.62] may be
treated as the best among the several B values.

8.4.3 Empirical Relations as Consistency Checks

There are several empirical relations between the bulk modulus and other
physical properties. Although these correlations do not have a rigorous theo-
retical support, they are otherwise well-established and can be used to check
data on bulk moduli. Some of these empirical relations are discussed in this
section.

Relation Between Bulk Modulus (B) and Volume (V )

Keyes [8.129] showed from dimensional analysis that the bulk modulus varies
inversely as a4 where a is the lattice constant. He verified this relationship for
crystals with zinc blende structure. Mitra and Marshall [8.130] found that for
alkali halides the bulk modulus is inversely proportional to a3. Anderson and
Nafe [8.131] drew log B vs. log V plots for several systems and proposed a
relation:

B V = constant. (8.23)

Subsequently linear log B vs. log V plots have been reported for several
systems (Table 8.10).

It was shown [8.131–8.133] that a relationship close to (8.23) can be derived
on the basis of interatomic forces. Neumann [8.134] suggested that a better
fit with experimental data is obtained by using a modified equation:

B = b a−m (1 − g fi), (8.24)

where ‘a’ is the lattice constant, fi the Phillips ionicity and b, m and g are
constants for a family of crystals.

However, the simple log B vs. log V plots have proved quite useful.
Jayaraman et al. [8.133] pointed out that these plots are useful in scaling

Table 8.10. Systems for which linear log B vs. log V plots have been reported

System(s) Ref.

Oxides, alkaline earth fluorides [8.131]
Wurtzite type crystals [8.27]
Alkali halides, divalent chalcogenides and
trivalent rare earth chalcogenides

[8.133]

Divalent oxides and lead chalcogenides [8.135]
Uranium Pnictides [8.25]
Rare earth chalcogenides [8.72]
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bulk modulus data, in estimating ionic charge and in predicting bulk moduli
where they are not available. Sirdeshmukh and Subhadra [8.135] pointed out
another application of the log B–log V plots viz. in sifting the correct value
of bulk modulus when several differing values are reported. Thus, they were
able to show that among the three values for PbSe given in Table 8.2, the
value 3,470 kbar deviates severely from the log B vs. log V plot (or the B vs.
V −1 plot) and is to be disregarded. Similarly, Vedel et al. [8.72] showed that
between the two values for CeS given in Table 8.1, the value 820 kbar is close
to the log B vs. log V plot for the rare earth chalcogenides, in contrast to the
other value of 1,300 kbar which shows a strong deviation.

The log B vs. log V plots have now been redrawn for the alkali halides
with NaCl structure (Fig. 8.10), alkali halides with cesium halide structure
(Fig. 8.11), NaCl-type oxides (Fig. 8.12), chalcogenides with NaCl structure
(Fig. 8.13) and wurtzite type chalcogenides (Fig. 8.14) including several new

Fig. 8.10. Plot of log B vs. log V for NaCl type alkali halides

Fig. 8.11. Plot of log B vs. log V for CsCl type alkali halides
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Fig. 8.12. Plot of log B vs. log V for oxides with NaCl structure

Fig. 8.13. Plot of log B vs. log V for divalent chalcogenides

B-values. It is seen that in Fig. 8.10, the plot is able to differentiate between
the several largely differing values of B for LiI and also in the case of NaI
where the difference is about 25%. Again in Fig. 8.11, the plot is able to show
that in the case of CsBr, between the three values differing by about 60%, the
largest value deviates very much from the plot and the two lower values are
preferable. Figure 8.12 clearly indicates that the Bridgman value of 218 kbar
for CaO is to be discarded in comparison with the other values which are
larger by a factor of 5. However, in the case of SrO, the deviation of the data
point for the larger value for SrO is only marginal. In Fig. 8.13, the plot clearly
shows that the largest among the B values for PbSe and the lowest among the
B values for SmS deviate too much from the plot and deserve to be ignored.
However, the plot does not differentiate between the different data for CaS
and PbTe with the same clarity. Lastly, in Fig. 8.14, the lesser value for ZnO
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Fig. 8.14. Plot of log B vs. log V for wurtzite type chalcogenides

is clearly off the plot but the same cannot be said about the data points for
BeO, CdS and CdSe.

Thus, the log B vs. log V plots can be effectively used to distinguish
different Bvalues particularly if the differences are large.

Relation Between Bulk Modulus and Cohesive Energy of Elements

Gschneidner [8.54] pointed out that an empirical linear relation exists between
the cohesive energy U and the bulk modulus of elements. The relationship is
of the type

U = mB + b, (8.25)

where m and b are constants for a family of related crystals.
Gschneidner plotted the values of U against B for the elements S, Se, Te

and Po. He found that the data point for Se (based on Bridgman’s results)
deviates severely from the straight line joining the data points for the other
three elements. The value of B read off from the straight line suggested a
much larger value for B of Se than the Bridgman value. It is shown in other
sections that other consistency checks also supported this suggestion and a
later ultrasonic measurement indeed resulted in a much larger value.

The relation between Uand B is all too empirical. In fact, Gschneidner
[8.54] pointed out that the slope m of the straight line plot has positive as
well as negative values for different systems. Thus the plot for any family must
be clearly established before it can be put to use to analyze B values for a
given solid.

Relation Between Bulk Modulus and Thermal Expansion

Sirdeshmukh [8.136] proposed a linear relation between the reciprocal of bulk
modulus (1/B) and the product of the coefficient of expansion (α) and volume



356 8 Elastic Properties of Solids – A Critical Analysis

(V ). He obtained linear plots of α V vs. (1/B) for several families of metals
and the alkali halides.

Relation Between Bulk Modulus and Debye Temperature

The Debye temperature is empirically given by:

θ = c B1/2ρ−1/6m−1/3, (8.26)

where θ is the Debye temperature, ρ the density, m the mass and c a con-
stant. This relation is known in literature as the Madelung formula. Deus and
Schneider [8.137] modified this relation as follows:

θ = a1 x + a2, (8.27)

where x is (B1/2ρ−1/6m−1/3) and a1 and a2 are constants for a family of
crystals.

Relation Between Bulk Modulus and Hardness

Reddy et al. [8.138] proposed an empirical relation between the bulk modulus,
hardness (H), refractive index (n) and Phillips ionicity (fi) as follows:

B = c H n0.13fi, (8.28)

where c is a constant. The relation was found to work well in ternary
chalcopyrites of the AIBIIICVI and AIIBIVCV types with appropriate values
for the constant c.

8.5 Consistency Checks for Single Crystal Elastic
Constants

Single crystal elastic constants Cijare almost invariably determined by ul-
trasonic methods which are highly accurate (Sect. 8.2). While the velocity
determination, per se, is accurate, inaccuracies enter by way of factors like
(a) sample history, wall reflections and bonding problems and (b) analytical
difficulty in converting velocities into Cij ’s. Several examples of strong differ-
ences in reported values of Cij ’s are cited in Tables 8.2–8.4. In this section,
some consistency checks are considered which facilitate sifting of correct data
from several reported values of elastic constants. Again, the checks are based
on (a) phenomenological constraints and (b) use of Cij ’s to calculate other
physical properties.

In analyzing data on single crystal elastic constants use is made of inter-
relations between elastic constants resulting from stability conditions. Some
of these relations and constraints are as follows:
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(a) Cubic [8.111,8.113]:
C11,C12,C44 > 0; C11 − C12 > 0

(b) Hexagonal [8.112]:
C44 > 0; C11 > |C12|; (C11 + C12)C33 > 2C2

13

(c) Tetragonal [8.114]:
C11,C33,C44,C66 > 0; C11 > |C12|; C11C66 > C2

16; C11C33 > C2
13

Alers and Neighbours [8.113] pointed out that for all crystal classes the diago-
nal elements of the elastic constant matrix are all positive. They also discussed
the stability conditions for the trigonal class. Sundara Rao [8.110] discussed
the inter-relationships between the elastic constants for orthorhombic crystals.

8.5.1 Cubic Crystals

In the first three crystals for which data are quoted in Table 8.2, the value of
C12 differs in sign. Since the Poisson’s ratio equals C12/(C11 +C12) a negative
value for C12 results in a negative value for the Poisson’s ratio. Phenomenolog-
ically, σP cannot be negative. Poisson’s ratio values for different sets of elastic
constants are given in Table 8.2. The sets of elastic constants for FeS2,NaClO3

and PbTe with negative values of C12 can be straight away disregarded.
In the last case viz., PbSe, the elastic constants reported by Chudinov

[8.95] are larger than the values from the other two sources by a factor of 3
in the case of C11 and a factor of 20 in the case C12. This results in the bulk
moduli differing by a factor of about 7. The log B vs. log V plot (Fig. 8.12)
clearly shows that the larger value of B does not fit into the correlation and
hence the corresponding set of elastic constants [8.95] has to be ignored.

8.5.2 Tetragonal Crystals

Zircon

In Table 8.3, three sets of Cij ’s are quoted for zircon. Sets (ii) and (iii) broadly
agree with each other, although there are differences between the values for
C11, C12 and C44. However, both sets differ from set (a) by factors ranging
from 1.5 (C66) to 30 (C13).

Sirdeshmukh and Subhadra [8.139] analysed these differing results using
several approaches. Their results are given in Table 8.11. Sirdeshmukh and
Subhadra [8.139] calculated the Voigt–Reuss–Hill bulk modulus from the three
sets of Cij ’s and compared the values with those obtained from other inde-
pendent methods. It is seen that the value of the bulk modulus from set (i)
is very low. It is lower than the values from sets (ii) and (iii) by a factor of
8–9. It is also lower than typical values for several mineral crystals quoted by
Anderson et al. [8.142]. The bulk modulus of zircon has been estimated by
other independent methods. These are given in Table 8.11. It may be noted
that the value from set (i) is in disagreement with all these values whereas the
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Table 8.11. Bulk modulus (B), Debye temperature (θ) and Gruneisen constant (γ)
of zircon

Set
B[kbar] θ [K] γ

From Cij From other methods From Cij From sp. heats

i 190 300 0.11
ii 2, 040 601 0.89
iii 2, 030 725 600–900c 0.99

3731a (X-ray)
3875a (Neutron)

2702b

a See [8.140]
b See [8.115,8.139]
c See [8.141]

values from sets (ii) and (iii) show at least an order-of-magnitude agreement
with these independently estimated values. This comparison of bulk moduli
clearly indicates that the elastic constants in set (i) are unacceptable.

Sirdeshmukh and Subhadra [8.139] further used the bulk moduli to calcu-
late the thermal Gruneisen constant γ given by

γ = 3 αV B/CV , (8.29)

where α is the linear coefficient of thermal expansion, V the volume and CV

the specific heat. Using the values of the bulk moduli from the three sets
together with values for the other quantities taken from literature, Sirdesh-
mukh and Subhadra [8.139] obtained the values given in Table 8.11 for γ. In
analyzing the results on γ, they used the empirical fact that for most solids,
the value of γ lies in the range 1–3. On this basis again, the value of γ = 0.11
originating from set (i) is far too low. On the other hand, the other two val-
ues of γ originating from sets (ii) and (iii) are close to ∼1 and indicate the
superiority of Cij ’s in sets (ii) and (iii).

Finally, Sirdeshmukh and Subhadra [8.139] calculated the Debye temper-
ature of zircon from the elastic constants using Anderson’s method [8.143].
These values are included in Table 8.11 along with values from specific heats.
The value of Debye temperature from set (i) is about half the values from sets
(ii) and (iii). Also, the values from sets (ii) and (iii) are within the range of
values quoted from specific heat data unlike the value from set (i). This again
indicates the superiority of sets (ii) and (iii) vis-à-vis set (i).

Thus, it has been clearly established that the elastic constants in set (i)
are physically unacceptable. This analysis is an example of a comprehensive
check on elastic constant data.

KDP Type Crystals

Two sets of elastic constants each for potassium dihydrogen phosphate (KDP)
and ammonium dihydrogen phosphate (ADP) are given in Table 8.3. In both
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cases there are strong differences in the values of C13. More seriously, there is
a difference in the sign for C12. As mentioned earlier, for tetragonal crystals,
one stability condition is C11 > |C12|. Thus, there is no constraint on the sign
of C12. Both sets satisfy the requirement C11 > |C12|.

The bulk moduli calculated from the elastic constants also show a differ-
ence of 40% in the case of ADP and a difference of 80% in the case of KDP.
However, the bulk moduli are not known from any other independent method.
Being an important family of crystals, the elastic constant data deserves fur-
ther analysis.

Strontium Molybdate

Strontium molybdate (SrMoO4), along with CaWO4 and CaMoO4, belongs
to T II Laue symmetry. There are several intrinsic difficulties in the determi-
nation of elastic constants of these crystals. First, there are seven (instead of
the usual 6) independent elastic constants; the existence of the seventh elastic
constant C16 complicates measurements. Second, the axes of acoustic symme-
try in the (001) plane do not coincide with the <100> and <110> directions
which makes the determination of C16 ambiguous. Third, the equations for
the elastic constants C11, C66, C12 and C16 have four different solutions.

In Table 8.3, three sets of elastic constants are quoted for SrMoO4. The
first set is reported by Chung and Li [8.102]. Chung and Li [8.102] gave in
their paper the four solutions for C11, C66, C12 and C16 referred earlier. These
are reproduced in Table 8.3. It can be seen that the values of Cij ’s in these
solutions not only differ by several factors but also in sign. Chung and Li
[8.102] chose the first of these solutions as the most reasonable, on the basis
of the stability conditions discussed by Alton and Barlow [8.114].

Comparing the values of Cij ’s reported by Chung and Li [8.102] with Cij ’s
of the related crystals CaWO4 and CaMoO4, James [8.103] noticed a similarity
in the values of all Cij ’s except C16 and C66. For crystals with this symmetry,
the following relation must hold:

3∑
i=1

υ2
i = S1/ρ = (C11 + C44 + C66)/ρ , (8.30)

where ρ is the density, S1 a constant and υi are velocities of propagation
of sound waves in the x, y plane. James [8.103] found that this condition is
satisfied in CaWO4 and CaMoO4 but not by the Cij ’s of SrMoO4 reported
by Chung and Li [8.102]. James [8.103] carried out a reanalysis of the velocity
data of Chung and Li [8.102] by calculating the parameter |SUMSQ| defined by

|SUMSQ| =
n∑

n=1

[
υi

2(calc)
υi

2(meas)
− 1
]2

. (8.31)

The input Cij ’s for calculating υi were varied till |SUMSQ| was minimum.
The values thus obtained by James [8.103] are given in Table 8.3 as set (ii);
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the new C16 and C66 values are different from those given by Chung and
Li [8.102] but are comparable with those for CaWO4 and CaMoO4.

The Cij ’s of SrMoO4were subsequently redetermined by Farley et al.
[8.104] taking care regarding the choice of axes which resulted in set (iii).
Farley et al. [8.144] showed that the sign of C16 is negative for all crystals
with scheelite structure.

8.5.3 Trigonal and Hexagonal Crystals

Calcite

Calcite is trigonal with six independent elastic constants. There are two re-
ports on the low temperature elastic constants of calcite [8.105, 8.106]. The
values from these two reports are given in Table 8.4. These values were read
off from a diagram given by Dandekar and Ruoff [8.106] and pertain to a tem-
perature of 160K̇. This is the only crystal for which the elastic constants have
been given in the Sij notation in this chapter. This has been done as the data
are given in this form in the original papers and conversion into Cij ’s may
introduce errors. There are differences of 30%, 60% and 10% in the values of
S14, S13 and S44. Dandekar and Ruoff [8.106] calculated the bulk modulus for
the two sets and found values of −6300 and 700 kbar. The negative value of
bulk modulus is phenomenologically unacceptable and hence the set of elastic
constants reported by Ramamurthy and Reddy [8.105] is to be rejected.

BeO (Hex.)

For hexagonal crystals, there are only five independent elastic constants. The
sixth constant C66 is some times given as it is generally measured indepen-
dently; it is equal to (C11 − C12)/2.

The two sets of Cij ’s for BeO given in Table 8.4 yield B values which
agree with each other and are close to the log Bvs. log V line (Fig. 8.14). The
Debye temperatures calculated from these two sets also are close to each other
and with the specific heat value. However, there is a difference of 32% and
35% in the values of C12 and C13 which is much larger than the estimated
errors of 5–10% mentioned by Bentle [8.36] and Cline et al. [8.27]. Bentle
obtained the values 1,520 and 1,630 kbar for C66 but retained the lower value.
As mentioned, C12 is obtained from the difference between C11 and 2 C66.
If the value 1,630 kbar is used for C66, the difference between the values of
C12 in the two reports will reduce to 12% which is reasonable. The difference
in C13, however, remains. The solution of the velocity equation gives positive
and negative values for C13. But only the positive value is retained, though
there is no physical reason for doing so [8.27].

LaCl3 (Hex.)

In Table 8.4, values of Cij ’s for LaCl3 are given. Sets (i)–(iii) are theoretical
values reported by Stedman and Newman [8.107] from three models. There are
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differences in the Cij values for the three models ranging from 10% (C13) to
100% (C66). These differences may be of significance in relation to the models.
The bulk moduli calculated from these three sets are not very different. So it
is not possible to differentiate between these sets on the basis of bulk modulus
calculations.

Carlson et al. [8.108] calculated the Debye temperatures from these three
sets of elastic constants and obtained values 600, 500 and 507 K, respectively.
The marginal difference in these values is consistent with marginal differences
in the Cij ’s from which they originate. However, all these Debye temperature
values are larger by a factor of 3–4 than the value of 145 K obtained from
specific heat data. Carlson et al. pointed out that the θ from elastic constants
can be reconciled with the θ from specific heats if all the elastic constants are
reduced uniformly by a factor of 16. These reduced Cij ’s are shown as set (iv).
They yield a Debye temperature of ∼150 K which is close to the specific heat
value. The bulk moduli pertaining to sets (i)–(iii) have values in the range
1,980–2,100 kbar. On the other hand, set (iv) yields a bulk modulus value
of 128 kbar. Experimental determination of the bulk modulus and the elastic
constants will help to sort out the differences in these theoretical values.

8.6 Conclusions

Several methods are now available for the determination of elastic moduli and
elastic constants with a high degree of accuracy. In spite of the accuracy of
the methods, there are numerous cases where the values of bulk moduli and
single crystal elastic constants reported by different workers differ by amounts
far exceeding the limits of errors. When such differences exist, it is necessary
to subject the reported data to consistency checks. Several consistency checks
are reviewed to analyse data on bulk modulus. These may be broadly classified
as (a) phenomenological constraints, (b) theoretical estimates of bulk moduli,
(c) theoretical estimates of other physical properties using the bulk modu-
lus as input and (d) empirical checks. Differing results on the single crystal
elastic constants are, again, analysed by using phenomenological constraints
and by comparison of properties calculated from the elastic constants with
independently determined values.

A common feature of most of the consistency checks discussed here is
that they are able to distinguish between values (or data sets) which differ
severely and cannot be forcefully applied when the differences are small. In the
analysis of single crystal elastic constants, the consistency check of calculating
other physical properties like the bulk modulus and Debye temperature has
the limitation that these calculations involve several or all elastic constants.
Thus, it is possible to comment on an entire set of elastic constants and not
on each elastic constant. Another feature is that some of the checks may
help to single out an unacceptable value but cannot decide which among the
acceptable values is best. Finally, a single check may not be enough to analyse
data; application of several criteria may yield better information; the case of
zircon is an example.
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of thermal expansion, 62
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Band-gap in semiconductors
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Biomaterials, 219, 235, 239
Bulk modulus

from molecular data, 345
from Szigeti’s theory of dielectrics,
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Classical damped oscillator
model, 215

Clausius-Mossotti relation, 199, 223,
236, 246

Coefficient of thermal expansion
data generation, 63
from interatomic potentials, 259
of fluorite–type crystals, 259
the electrostatic share, 38

Cohesive energy, 347
Colour centres

in mixed crystals, 300
in RbCl-RbBr mixed crystals,
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Complex dielectric constant, 202
Conduction, 202

in proteins, 219, 233
polaron parameters, 229, 245
relaxation effects, 249

Conductivity of ionic crystals, 228
Consistency checks, 352, 355, 361

Debye temperature
a modified expression, 129
by different methods, 314
comparison from different methods,
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derived from Debye-Waller factors,

126
for scheelite type crystals, 272
from elastic constants, 261

de Launay’s method, 262
direct numerical integration, 262
from polycrystalline elastic data,

265
graphical method, 262
harmonic series expansion, 263
power series expansion, 263

in an antiferromagnetic transition,
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Debye temperature (Continued)
of rare earth compounds, 269
of rare earth garnets, 269, 270
of thin films and fine particles, 96
of rutile type crystals, 271
of zircon, 271

Debye-Scherrer camera, 2
Debye-Waller factor

and electronic environment,
109, 124

and mass ratio, 113
and melting, 106
anharmonic effects, 101
anisotropy of, 98, 120
crystals with

CsCl structure, 117
fluorite structure, 117
NaCl structure, 116
sphalerite structure, 117

data generation, 111
effect of

atomic scattering factors, 94, 123
strain, 122

for a real crystal, 95
from lattice dynamics, 103
mixed crystals, 110
nano effect, 108
of fcc elements, 114
of hcp metals, 121
of NaCl, 94
protein structures, 110
temperature variation, 101

Debye-Waller theory, 77
Defect formation energy, 108, 130-132,
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Defects in mixed crystals, 302, 324
Determination of

amplitudes of vibration, 90
Debye temperature, 90

Dielectric constant
accurate measurement, 218
and damping, 244
anharmonic contribution, 242
cubic nitrates, 218
fluorite type crystals, 237
from IR reflectivity, 213
high frequency, 201
particle size dependence, 218
powder sample, 212

scheelite structure, 236
temperature variation, 203, 219, 235

method of Havinga and Bosman,
220

method of Varotsos, 220
Owens’ relation, 220

Dielectric dispersion, 201
Dielectric loss, 201, 202
Dielectric polarization, 199
Dielectric properties

biological systems, 219
data generation, 235
irradiation effects, 234
protein hydration, 233, 254
rare earth garnets, 218, 247
Rochelle salt, 218

Discrepancies in elastic properties, 317
Dislocation hardening, 135, 149
Dislocations, 324
Doped crystals

hardness, 180
Dynamic ultra hardness tester, 139, 187

Effective ionic charge, 72, 124, 168, 170,
188, 189, 221, 236, 241, 258, 283,
299, 320

Elastic constants, 257, 261, 342, 350
Elastic properties of solids, 331

consistency checks, 338, 343, 352, 356
discrepancies, 337
experimental methods

optical interferometric method, 334
optical scattering method, 337
piston displacement method, 331
shock wave method, 333
ultrasonic method, 336
ultrasonic-optic method, 337
X-ray diffraction method, 334
X-ray diffuse scattering method,

337
Electrical properties, 199
Empirical relations as consistency

checks, 352
bulk modulus and

cohesive energy, 355
Debye temperature, 356
hardness, 356
thermal expansion, 355

log B vs log V plots, 353, 354
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Energy of defect formation
from Debye temperature, 108, 130

Europium fluoride, 70

Ferroelectric behaviour, 247
Flat film camera, 11
Formation energies

in CaF2 type crystals, 131
in CsCl type compounds, 131
in ZnS type crystals, 132
in rare earth metals, 133

Frenkel defects, 25

Garnets
conductivity, 250
Debye temperature, 33, 269, 270
Dielectric constant, 218, 247
hardness, 172-174
lattice constant, 173, 245
polaron conduction, 229-231, 245
polaron parameters, 245

Gilman-Chin parameter, 152, 167, 168,
170-174

Gruneisen constant, 51, 60-67, 75, 101,
103, 272, 277, 385

Gruneisen parameter, 275, 281-284
formulation of Knopoff and Shapiro,

278
from interatomic potentials, 259, 273

Gruneisen theory, 65

Hardness
and chemical bond, 151
anisotropy, 154, 192, 196
doped crystals, 180
effect of magnetic field, 158
empirical relations with other

physical properties, 153, 182
for KClxBr1−x system, 316
lithium niobate, 164
load variation, 146, 160
measurement of, 138, 158
mixed crystals, 182, 294, 315
nanohardness of thin films, 158
organic crystals, 147, 159
pressure variation, 152
radiation hardening, 145, 149, 176
rare earth garnets, 172-174
rare earth metals, 141

static indentation test, 137
surface hardness, 157, 187-189, 198
temperature variation, 184, 153

High temperature cell, 209

Impedance spectroscopy, 215
Impurity hardening, 135, 180
Interstitials, 25
Invar, 51
Irradiation effects in lattice parameters,

24

Kopp-Neumann relation, 294, 310, 314
Kramers-Kronig method, 215
Krishnan-Roy theory, 258, 349-351

Lattice constant
and point defects, 25
and X-ray density of cubic crystals,

32
as a scaling parameter, 29, 31
data generation, 29
determination of, 1, 2
effect of deuteration, 18
effect of hydrogen, 18
effect of magnetic field, 23
effect of particle size, 25
error function, 15
irradiation effects, 24
mixed crystals, 19, 35, 306
mixed valence effects, 21
present level of accuracy, 15
pressure variation, 23
radiation induced changes, 23, 33
silicon, 17
strategies for accuracy, 13
temperature variation, 23, 33
variations due to dislocations, 27

Lead sulphide, 68
Lithium niobate, 164
Load variation of hardness, 146, 160

Measurement in the microwave region,
213

Integrated intensity, 82
Measuring instruments, 204

capacitance measuring assembly, 205
Marconi circuit magnification meter,

204
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of mixed crystals, 325

Metals
hcp metals, 120, 121, 132
rare earth metals, 20, 183, 184, 127

Microhardness tester, 137
Micro-Raman spectroscopy, 159
Mixed crystals, 285

colour centres, 300, 322
Debye temperature, 294
effective ionic charge, 299, 321
hardness, 148, 182, 315
lattice constants, 19, 35, 306
melting temperatures, 325
Pm3m↔Fm3m transition

CsCl-CsBr system, 304
NH4Cl-NH4Br system, 327

static dielectric constant, 298, 317
Mixed valence compounds

Debye temperatures, 269
Debye-Waller factors, 116
hardness, 168

Mode Gruneisen Parameters
of fluorite type crystals, 282

Mollwo-Ivey relation, 302, 323

Nano effect on Debye-Waller factor, 108
Nanohardness of thin films, 158
Nanoindentation, 140, 158
Negative thermal expansion, 61

Optical interferometric method, 334
Optical scattering method, 337
Optoelectronic materials

fluorite, 185, 187, 195, 218, 237-240,
248, 259, 277, 282, 349

rare earth garnets, 172, 237, 245, 247
KDP, 32, 65, 175
scheelite, 238, 272

Orientation dependence of hardness
in NaCl type crystals, 193
of an iron crystal, 154

Phenomenological relations, 342
Piston displacement method, 331
Polaron conduction, 229

in garnets, 245
Polaron parameters, 245
Polymers, 151, 235, 239

Powder diffractometer, 11
Pressure variation

of Debye temperature, 100
of lattice constant, 23
of thermal expansion, 59

Protein structures, 110
Proteins

dielectric behaviour, 231, 239
Push-rod dilatometer, 42, 63

Radiation hardening, 145, 149, 176
Rare earth metals, 10, 21, 100, 140
Relative hardness measurement

design of a simple instrument, 143
Relaxation effects, 202, 249

Schottky defects, 25, 27, 56, 109, 131,
287

Semiconductors
Debye temperatures, 128
Debye-Waller factors, 106, 116, 122
lattice constant, 32

Shock wave method, 333
Solid solution hardening, 148
Spectroscopic aspects, 224, 242

damping constant, 226
self-energy, 224, 242

anharmonic contributions, 243
Static dielectric constant

biomaterials, 219, 235, 239
cubic single crystals, 237
polymers, 230
of mixed crystals, 298
organic compounds, 239

Static indentation test, 137
Structure factors

for some simple structures, 87
Surface energy, 349
Surface hardness, 157, 187
Surface thermal expansion, 57
Symmetric focusing camera, 8

Temperature diffuse scattering, 80, 85,
92

Temperature variation
Debye temperature, 101
Debye-Waller factor, 101
dielectric constant, 203, 219, 235
lattice constant, 23, 33
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Theoretical consistency checks, 343
Theoretical evaluation of

elastic constant, 257
Gruneisen constant, 272
thermal expansion, 259

Theories of thermal expansion, 60
Thermal expansion

and compressibility, 73
and Debye temperature, 71
and effective ionic charge, 72
and the electrostatic share, 38
and vacancies in solids, 52
anisotropy of, 62
effect of gross defects

cracks and voids, 56
dislocations, 53
mosaic block readjustment, 55

effect of γ-irradiation, 57
experimental data, 50
experimental methods

capacitance methods, 40
diffraction methods, 41
dilatometric methods, 42
holographic method, 48
optical methods, 40
ultrasonic method, 47

for cubic crystals, 64
negative thermal expansion, 61
of inert gas solids, 51
of KCl by different methods, 46
pressure variation, 59
theories, 60
USBM project on MgO, 64

Ultrasonic-optic method, 269
Unicam-type camera, 3

Vacancies, 17, 25, 52-55, 132, 203, 228,
252, 297, 302

X-ray diffuse scattering method, 337



Springer Series in

materials science
Editors: R. Hull R. M. Osgood, Jr. J. Parisi H. Warlimont

20 Microcluster Physics
By S. Sugano and H. Koizumi
2nd Edition

21 The Metal-Hydrogen System
By Y. Fukai 2nd Edition

22 Ion Implantation in Diamond,
Graphite and Related Materials
By M. S. Dresselhaus and R. Kalish

23 The Real Structure
of High-Tc Superconductors
Editor: V. Sh. Shekhtman

24 Metal Impurities
in Silicon-Device Fabrication
By K. Graff 2nd Edition

25 Optical Properties of Metal Clusters
By U. Kreibig and M. Vollmer

26 Gas Source Molecular Beam Epitaxy
Growth and Properties of Phosphorus
Containing III–V Heterostructures
By M. B. Panish and H. Temkin

27 Physics of New Materials
Editor: F. E. Fujita 2nd Edition

28 Laser Ablation
Principles and Applications
Editor: J. C. Miller

29 Elements of Rapid Solidif ication
Fundamentals and Applications
Editor: M. A. Otooni

30 Process Technology
for Semiconductor Lasers
Crystal Growth
and Microprocesses
By K. Iga and S. Kinoshita

31 Nanostructures
and Quantum Effects
By H. Sakaki and H. Noge

32 Nitride Semiconductors and Devices
By H. Morkoç
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