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Preface

'... in Him all things hold together.'
(Calossians 1 17 )

Magnetism is a subject which has been studied for nearly three thousand
years. Lodestone, an iron ore, first attracted the attention of Greek scholars
and philosophers, and the navigational magnetic compass was the first
technological product resulting from this study. Although the compass was
certainly known in Western Europe by the twelfth century AD, it was not until
around 1600 that anything resembling a modern account of the working of
the compass was proposed. Progress in the last two centuries has been more
rapid and two major results have emerged which connect magnetism with
other physical phenomena. First, magnetism and electricity are inextricably
linked and are the two components that make up light, which is called
an electromagnetic wave. Second, this link originates from the theory of
relativity, and therefore magnetism can be described as a purely relativistic
effect, due to the relative motion of an observer and charges moving in a
wire, or in the atoms of iron. However it is the magnetism in condensed
matter systems including ferromagnets, spin glasses and low-dimensional
systems, which is still of great interest today. Macroscopic systems exhibit
magnetic properties which are fundamentally different from those of atoms
and molecules, despite the fact that they are composed of the same basic
constituents. This arises because magnetism is a collective phenomenon,
involving the mutual cooperation of enormous numbers of particles, and
is in this sense similar to superconductivity, superfluidity and even to the
phenomenon of the solid state itself. The interest in answering fundamental
questions runs in parallel with the technological drive to find new materials
for use as permanent magnets, sensors, or in recording applications.

This book has grown out of a course of lectures given to third and fourth
year undergraduates at Oxford University who have chosen a condensed matter
physics option. There was an obvious need for a text which treated the fun-
damentals but also provided background material and additional topics which
could not be covered in the lectures. The aim was to produce a book which pre-
sented the subject as a coherent whole, provided useful and interesting source
material, and might be fun to read. The book also forms part of the Oxford
Master Series in Condensed Matter Physics; the other volumes of the series
cover electronic properties, optical properties, superconductivity, structure and
soft condensed matter.

The prerequisites for this book are a knowledge of basic quantum mechanics
and electromagnetism and a familiarity with some results from atomic physics.
These are summarized in appendices for easy access for the reader and to
present a standardized notation.

Structure of the book:
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Some possible course structures:

(1) Short course (assuming Chapter 1 is
known):

Chapter 2 (omit 2.6-2.8)
Chapter 3 (omit 3.2)
Chapter 4 (omit 4.2.5, 4.2.6)
Chapter 5 (omit 5.4-5.7)
Chapter 6 (omit 6.4-6.5)
Chapter 7 (omit 7.1-7.2)

(2) Longer course:

Chapters 1-4
Chapter 5 (5.6 and 5.7 as
background reading)
Chapter 6
Chapter 7 (7.5-7.9 as back-
ground reading)
Chapter 8, selected topics

The interesting magnetic effects found in condensed matter systems have
two crucial ingredients: first, that atoms should possess magnetic moments and
second, that these moments should somehow interact. These two subjects are
discussed in Chapters 2 and 4 respectively. Chapter 2 answers the question
'why do atoms have magnetic moments?' and shows how they behave and
can be studied if they do not interact. Chapter 3 describes how these mag-
netic moments can be affected by their local environment inside a crystal and
the techniques which can be used to study this. Chapter 4 then answers the
question 'how do the magnetic moments on different atoms interact with each
other?' With these ingredients in place, magnetic order can occur, and this is
the subject of Chapters 5 and 6. Chapter 5 contains a description of the different
types of magnetic order which can be found in the solid state. Chapter 6
considers order again, but starts from basic ideas of broken symmetry and
describes phase transitions, excitations and domains. A strong emphasis is the
link between magnetic order and other types of broken-symmetry ground states
like superconductivity. Chapter 7 is devoted to the magnetic properties of met-
als, in which magnetism can often be associated with delocalized conduction
electrons. Chapter 8 describes some of the subtle and complex effects which
can occur when competing magnetic interactions are present and/or the system
has a reduced dimensionality. These topics are the subject of intense research
activity and there are many outstanding questions which remain to be resolved.
Throughout the text, I discuss properties and applications to demonstrate the
implications of all these ideas for real materials, including ferrites, permanent
magnets and also the physics behind various magneto-optical and magnetore-
sistance effects which have become of enormous technological importance in
recent years. This is a book for physicists and therefore the emphasis is on
the clear physical principles of quantum mechanics, symmetry, and electro-
magnetism which underlie the whole field. However this is not just a 'theory
book' but attempts to relate the subject to real measurements and experimental
techniques which are currently used by experimental physicists and to bridge
the gulf between the principles of elementary undergraduate physics and the
topics of current research interest.

Chapters 1-7 conclude with some further reading and problems. The prob-
lems are of varying degrees of difficulty but serve to amplify issues addressed
in the text. Chapter 8 contains no problems (the subjects described in this
chapter are all topics of current research) but has extensive further reading.

It is a great pleasure to thank those who have helped during the course
of writing this book. I am grateful for the support of Sonke Adlung and his
team at Oxford University Press, and also to the other authors of this Masters
series. Mansfield College, Oxford and the Oxford University Department of
Physics have provided a stimulating environment in which to work. I wish
to record my gratitude to my students who have sometimes made me think
very hard about things I thought I understood. In preparing various aspects
of this book, I have benefitted greatly from discussions with Hideo Aoki,
Arzhang Ardavan, Deepto Chakrabarty, Amalia Coldea, Radu Coldea, Roger
Cowley, Steve Cox, Gillian Gehring, Matthias Gester, John Gregg, Martin
Greven, Mohamedally Kurmoo, Steve Lee, Wilson Poon, Francis Pratt, John
Singleton and Candadi Sukumar. I owe a special debt of thanks to the friends
and colleagues who have read the manuscript in various drafts and whose
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exacting criticisms and insightful questions have immensely improved the final
result: Katherine Blundell, Richard Blundell, Andrew Boothroyd, Geoffrey
Brooker, Bill Hayes, Brendon Lovett, Lesley Parry-Jones and Peter Riedi, Any
errors in this book which I discover after going to press will be posted on the
web-site for this book which may be found at:

http://users.ox.ac.uk/~sjb/magnetism/

Most of all, I want to thank Katherine, dear wife and soulmate, who more
than anyone has provided inspiration, counsel, friendship and love. This work
is dedicated to her.

Oxford S.J.B.

May 2001
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Introduction

This book is about the manifestation of magnetism in condensed matter. Solids
contain magnetic moments which can act together in a cooperative way and
lead to behaviour that is quite different from what would be observed if all
the magnetic moments were isolated from one another. This, coupled with
the diversity of types of magnetic interactions that can be found, leads to
a surprisingly rich variety of magnetic properties in real systems. The plan
of this book is to build up this picture rather slowly, piece by piece. In this
introductory chapter we shall recall some facts about magnetic moments from
elementary classical and quantum physics. Then, in the following chapter, we
will discuss how magnetic moments behave when large numbers of them are
placed in a solid but are isolated from each other and from their surroundings.
Chapter 3 considers the effect of their immediate environment, and following
this in Chapter 4, the set of possible magnetic interactions between magnetic
moments is discussed. In Chapter 5 we will be in a position to discuss the
occurrence of long range order, and in Chapter 6 how that is connected
with the concept of broken symmetry. The final chapters follow through the
implications of this concept in a variety of different situations. SI units are
used throughout the book (a description of cgs units and a conversion table
may be found in Appendix A).

1.1 Magnetic moments

The fundamental object in magnetism is the magnetic moment. In classical
electromagnetism we can equate this with a current loop. If there is a current
/ around an elementary (i.e. vanishingly small) oriented loop of area |dS| (see
Fig. 1.1 (a)) then the magnetic moment du is given by

and the magnetic moment has the units of A m2. The length of the vector dS is
equal to the area of the loop. The direction of the vector is normal to the loop
and in a sense determined by the direction of the current around the elementary
loop.

This object is also equivalent to a magnetic dipole, so called because it
behaves analogously to an electric dipole (two electric charges, one positive
and one negative, separated by a small distance). It is therefore possible
to imagine a magnetic dipole as an object which consists of two magnetic
monopoles of opposite magnetic charge separated by a small distance in the
same direction as the vector dS (see Appendix B for background information
concerning electromagnetism).

1.1 Magnetic moments 1
1.2 Classical mechanics and

magnetic moments 6
1.3 Quantum mechanics of

spin 9



2 Introduction

Fig. 1.1 (a) An elementary magnetic moment.
du = IdS, due to an elementary current
loop. (b) A magnetic moment ft = I f dS
(now viewed from above the plane of the
current loop) associated with a loop of cur-
rent / can be considered by summing up
the magnetic moments of lots of infinitesimal
current loops.

The magnetic moment du points normal to the plane of the loop of current
and therefore can be either parallel or antiparallel to the angular momentum
vector associated with the charge which is going around the loop. For a loop
of finite size, we can calculate the magnetic moment u by summing up the
magnetic moments of lots of equal infinitesimal current loops distributed
throughout the area of the loop (see Fig. l . l (b)) . All the currents from
neighbouring inf in i tes imal loops cancel, leaving only a current running round
the perimeter of the loop. Hence,

Fig. 1.2 The Einstein-de Haas effect. A
ferromagnetic rod is suspended from a thin
fibre. A coil is used to provide a magnetic
Held which magnctizes the ferromagnet and
produces a rotation. The experiment can be
done resonantly, by periodically reversing the
current in the coil, and hence the magneti-
zation in she ferromagnet, and observing the
anpular response as a function of frequency.

Samuel Jackson Barnell (1873-1956)

1.1.1 Magnetic moments and angular momentum

A current loop occurs because of the motion of one or more electrical charges.
All the charges which we will be considering are associated with particles that
have mass. Therefore there is also orbital motion of mass as well as charge
in all the current loops in this book and hence a magnetic moment is always
connected with angular momentum.

In atoms the magnetic moment u associated with an orbiting electron lies
along the same direction as the angular momentum L of that electron and is
proportional to it. Thus we write

where y is a constant known as the gyromagnefic ratio. This relation between
the magnetic moment and the angular momentum is demonstrated by the
Einstein-de Haas effect, discovered in 1915, in which a ferromagnetic rod is
suspended vertically, along its axis, by a thin fibre (see Fig, 1.2), It is init ially
at rest and unmagnetized, and is subsequently magnetized along its length
by the application of a vertical magnetic field. This vertical magnetization
is due to the alignment of the atomic magnetic moments and corresponds
to a net angular momentum. To conserve total angular momentum, the rod
begins turning about its axis in the opposite sense. If the angular momentum
of the rod is measured, the angular momentum associated with the atomic
magnetic moments, and hence the gyromagnetic ratio, can be deduced. The
Einstein-de Haas effect is a rotation induced by magnetization, but there is
also the reverse effect, known as the Barnett effect in which magnetization is



induced by rotation. Both phenomena demonstrate that magnetic moments are
associated with angular momentum.

1.1 Magnetic moments 3

Fig. 1.3 A magnetic moment u in a magnetic
field B has an energy equal to —u . B =
—uB cos 0.

1 For an electric dipole p, in an electric field
£, the energy is £ = — p . E and the torque
is G = p x E. A stationary electric dipole
moment is just two separated stationary elec-
tric charges; it is not associated with any
angular momentum, so if £ is not aligned
with p, the torque G will tend to turn p
towards E. A stationary magnetic moment
is associated with angular momentum and so
behaves differently.

2Imagine a top spinning with its axis inclined
to the vertical. The weight of the top, acting
downwards, exerts a (horizontal) torque on
the top. If it were not spinning it would just
fall over. But because it is spinning, it has
angular momentum parallel to its spinning
axis, and the torque causes the axis of the
spinning top to move parallel to the torque,
in a horizontal plane. The spinning top pre-
cesses.

Fig. 1.4 A magnetic moment u in a magnetic
field B precesses around the magnetic field at
the Larmor precession frequency, y B, where
y is the gyromagnetic ratio. The magnetic
field B lies along the z-axis and the magnetic
moment is initially in the xz-plane at an an-
gle 0 to B. The magnetic moment precesses
around a cone of semi-angle 0.

Joseph Larmor (1857-1942)

so that uz is constant with time and ux and uy both oscillate. Solving these
differential equations leads to

where

is called the Larmor precession frequency.

Example 1.1

Consider the case in which B is along the z direction and u is initially at an
angle of 6 to B and in the xz plane (see Fig. 1.4). Then

1.1.2 Precession

We now consider a magnetic moment u in a magnetic field B as shown in
Fig. 1.3. The energy E of the magnetic moment is given by

(see Appendix B) so that the energy is minimized when the magnetic moment
lies along the magnetic field. There will be a torque G on the magnetic moment
given by

(see Appendix B) which, if the magnetic moment were not associated with
any angular momentum, would tend to turn the magnetic moment towards the
magnetic field.1

However, since the magnetic moment is associated with the angular mo-
mentum L by eqn 1.3, and because torque is equal to rate of change of angular
momentum, eqn 1.5 can be rewritten as

This means that the change in u is perpendicular to both u and to B. Rather
than turning u towards B, the magnetic field causes the direction of u to
precess around B. Equation 1.6 also implies that \u\ is time-independent. Note
that this situation is exactly analogous to the spinning of a gyroscope or a
spinning top.2

In the following example, eqn 1.6 will be solved in detail for a particular
case.
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Note that the gyromagnetic ratio y is the constant of proportionality which
connects both the angular momentum with the magnetic moment (through
eqn 1.3) and the precession frequency with the magnetic field (eqn 1.13). The
phenomenon of precession hints at the subtlety of what lies ahead: magnetic
fields don't only cause moments to line up, but can induce a variety of
dynamical effects.

Fig. 1.5 An electron in a hydrogen atom
orbiting with velocity v around the nucleus
which consists of a single proton.

Niels Bohr (1885-1962)

1.1.3 The Bohr magneton

Before proceeding further, it is worth performing a quick calculation to
estimate the size of atomic magnetic moments and thus deduce the size of the
gyromagnetic ratio. Consider an electron (charge —e, mass me) performing a
circular orbit around the nucleus of a hydrogen atom, as shown in Fig. 1.5. The
current / around the atom is I = —e / r where r = 2 r r / v is the orbital period,
v = |v| is the speed and r is the radius of the circular orbit. The magnitude of
the angular momentum of the electron, mevr, must equal h in the ground state
so that the magnetic moment of the electron is

where uB is the Bohr magneton, defined by

This is a convenient unit for describing the size of atomic magnetic moments
and takes the value 9.274x 10-24 Am2. Note that sign of the magnetic moment
in eqn 1.14 is negative/Because of the negative charge of the electron, its
magnetic moment is antiparallel to its angular momentum. The gyromagnetic
ratio for the electron is y = —e/2me. The Larmor frequency is then WL =
\y\B = eB/2me.

1.1.4 Magnetization and field

A magnetic solid consists of a large number of atoms with magnetic moments.
The magnetization M is defined as the magnetic moment per unit volume.
Usually this vector quantity is considered in the 'continuum approximation',
i.e. on a lengthscale large enough so that one does not see the graininess due to
the individual atomic magnetic moments. Hence M can be considered to be a
smooth vector field, continuous everywhere except at the edges of the magnetic
solid.

In free space (vacuum) there is no magnetization. The magnetic field can be
described by the vector fields B and H which are linearly related by
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where U0 = 4r x 10-7 Hm - 1 is the permeability of free space. The two
magnetic fields B and H are just scaled versions of each other, the former
measured in Tesla (abbreviated to T) and the latter measured in A m - 1 .

In a magnetic solid the relation between B and H is more complicated and
the two vector fields may be very different in magnitude and direction. The
general vector relationship is

In the special case that the magnetization M is linearly related to the magnetic
field H, the solid is called a linear material, and we write

where x is a dimensionless quantity called the magnetic susceptibility. In this
special case there is still a linear relationship between B and H, namely

where ur = 1 + x is the relative permeability of the material.
A cautionary tale now follows. This arises because we have to be very

careful in defining fields in magnetizable media. Consider a region of free
space with an applied magnetic field given by fields Ba and Ha, connected
by Ba = u0Ha. So far, everything is simple. Now insert a magnetic solid into
that region of free space. The internal fields inside the solid, given by Bi and Hi

can be very different from Ba and Ha respectively. This difference is because
of the magnetic field produced by all magnetic moments in the solid. In fact Bi

and Hi can both depend on the position inside the magnetic solid at which you
measure them.3 This is true except in the special case of an ellipsoidal shaped
sample (see Fig. 1.6). If the magnetic field is applied along one of the principal
axes of the ellipsoid, then throughout the sample

where N is the appropriate demagnetizing factor (see Appendix D). The
'correction term' Hd = —NM, which you need to add to Ha to get Hi, is
called the demagnetizing field. Similarly

Example 1.2
For a spherically shaped sample, N = 1\3 and so the internal fields inside the
sphere are

For historical reasons, standard convention
dictates that B is called the magnetic induc-
tion or magnetic flux density and H is called
the magnetic field strength. However, such
terms are cumbersome and can be mislead-
ing. Following common usage, we refer to
both simply as the magnetic field. The letters
'B' and 'H' will show which one is meant.

3A magnetized sample will also influence the
magnetic field outside it, as well as inside
it (considered here), as you may know from
playing with a bar magnet and iron filings.

Fig. 1.6 An ellipsoidal shaped sample of a
magnetized solid with principal axes a, b and
c. This includes the special cases of a sphere
(a = b = c) and a flat plate (a, b -* oo,
c = 0).



When the magnetization is large compared to the applied field |Ha| =
|B a | /u 0 (measured before the sample was inserted) these demagnetizing
corrections need to be taken seriously. However, it is possible to sweep these
complications under the carpet for the special case of weak magnetism. For a
linear material with x <5C 1, we have that M « H, Hi & Ha and Bi % u0Hi.
We can then get away with imagining that the magnetic field in the material is
the same as the magnetic field that we apply. This approximation will be used
in Chapters 2 and 3 concerning the relatively weak effects of diamagnetism.4

In ferromagnets, demagnetizing effects are always significant.

One last word of warning at this stage: a ferromagnetic material may have
no net magnetic moment because it consists of magnetic domains.5 In each
domain there is a uniform magnetization, but the magnetization of each domain
points in a different direction from its neighbours. Therefore a sample may
appear not to be magnetized, even though on a small enough scale, all the
magnetic moments are locally aligned.

In the rest of this chapter we will consider some further aspects of magnetic
moments that relate to classical mechanics (in Section 1.2) and quantum
mechanics (in Section 1.3).

Example 1.3

The intrinsic magnetic susceptibility of a material is

This intrinsic material property is not what you measure experimentally. This
is because you measure the magnetization M in response to an applied field
Ha. You therefore measure

The two quantities can be related by

When xintrinsic <£ 1, the distinction between xintrinsic and xexperimental is
academic. When xintrinsic is closer or above 1, the distinction can be very
important. For example, in a ferromagnet approaching the Curie temperature
from above (see Chapter 4), xintrinsic -> oc, but xexperimental -> 1/N.

6 Introduction

4In accurate experimental work on even these
materials, demagnetizing fields must still be
considered.

See Section 6.7 for more on magnetic do-
mains.

1.2 Classical mechanics and magnetic moments

In this section, we describe the effect of an applied magnetic field on a system
of charges using purely classical arguments. First, we consider the effect on a
single charge and then use this result to evaluate the magnetization of a system
of charges. A summary of some important results in electromagnetism may be
found in Appendix B.
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1.2.1 Canonical momentum

In classical mechanics the force F on a particle with charge q moving with
velocity v in an electric field £ and magnetic field B is

Note that m dv/dt is the force on a charged particle measured in a coordinate
system that moves with the particle. The partial derivative dA/dt measures the
rate of change of A at a fixed point in space. We can rewrite eqn 1.30 as

where dA/dr is the convective derivative of A, written as

which measures the rate of change of A at the location of the moving particle.
Equation 1.31 takes the form of Newton's second law (i.e. it reads 'the rate
of change of a quantity that looks like momentum is equal to the gradient of a
quantity that looks like potential energy') and therefore motivates the definition
of the canonical momentum

and an effective potential energy experienced by the charged particle, q (V —
v • A), which is velocity-dependent. The canonical momentum reverts to the
familiar momentum mv in the case of no magnetic field, A = 0. The kinetic
energy remains equal to 1\2mv2 and this can therefore be written in terms of the
canonical momentum as (p — qA.)2/2m. This result will be used below, and
also later in the book where the quantum mechanical operator associated with
kinetic energy in a magnetic field is written (—ih V — qA)2/2m.

See Appendix G for a list of vector identities.
Note also that v does not vary with position.

The vector identity

can be used to simplify eqn 1.28 leading to

and is called the Lorentz force. With this familiar equation, one can show how Hendrik Lorentz (1853-1928)
the momentum of a charged particle in a magnetic field is modified. Using
F = mdv/dr, B = V x A and E = -VV - 9A/at, where V is the electric
potential, A is the magnetic vector potential and m is the mass of the particle,
eqn 1.27 may be rewritten as
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See also Appendix E.

Niels Bohr (1885-1962)

Hendreka J. van Leeuwen (1887-1974)

Ludwig Boltzmann (1844-1906)

1.2.2 The Bohr-van Leeuwen theorem

The next step is to calculate the net magnetic moment of a system of electrons
in a solid. Thus we want to find the magnetization, the magnetic moment
per unit volume, that is induced by the magnetic field. From eqn 1.4, the
magnetization is proportional to the rate of change of energy of the system
with applied magnetic field.6 Now, eqn 1.27 shows that the effect of a magnetic
field is always to produce forces on charged particles which are perpendicular
to their velocities. Thus no work is done and therefore the energy of a system
cannot depend on the applied magnetic field. If the energy of the system does
not depend on the applied magnetic field, then there can be no magnetization.

This idea is enshrined in the Bohr-van Leeuwen theorem which states that
in a classical system there is no thermal equilibrium magnetization. We can
prove this in outline as follows: in classical statistical mechanics the partition
function Z for N particles, each with charge q, is proportional to

where B = 1/k-gT, kB is the Boltzmann factor, T is the temperature, and
i = I,..., N. Here E({r i, pi}) is the energy associated with the N charged
particles having positions r1, r2..., rN, and momenta p1, P2, ..., PN . The
integral is therefore over a 6N-dimensional phase space (3N position coordi-
nates, 3N momentum coordinates). The effect of a magnetic field, as shown in
the preceding section, is to shift the momentum of each particle by an amount
qA. We must therefore replace pi by pi — qA.. The limits of the momentum
integrals go from — oo to oo so this shift can be absorbed by shifting the origin
of the momentum integrations. Hence the partition function is not a function
of magnetic field, and so neither is the free energy F = —kB T log Z (see
Appendix E). Thus the magnetization must be zero in a classical system.

This result seems rather surprising at first sight. When there is no applied
magnetic field, electrons go in straight lines, but with an applied magnetic
field their paths are curved (actually helical) and perform cyclotron orbits. One
is tempted to argue that the curved cyclotron orbits, which are all curved in
the same sense, must contribute to a net magnetic moment and hence there
should be an effect on the energy due to an applied magnetic field. But the
fallacy of this argument can be understood with reference to Fig. 1.7, which
shows the orbits of electrons in a classical system due to the applied magnetic
field. Electrons do indeed perform cyclotron orbits which must correspond to
a net magnetic moment. Summing up these orbits leads to a net anticlockwise
circulation of current around the edge of the system (as in Fig. 1.1). However,
electrons near the surface cannot perform complete loops and instead make
repeated elastic collisions with the surface, and perform so-called skipping
orbits around the sample perimeter. The anticlockwise current due to the bulk
electrons precisely cancels out with the clockwise current associated with the
skipping orbits of electrons that reflect or scatter at the surface.

The Bohr-van Leeuwen theorem therefore appears to be correct, but it is
at odds with experiment: lots of real systems containing electrons do have a
net magnetization. Therefore the assumptions that went into the theorem must
be in doubt. The assumptions are classical mechanics! Hence we conclude
that classical mechanics is insufficient to explain this most basic property of
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Fig. 1.7 Electrons in a classical system with
an applied magnetic field undergo cyclotron
orbits in the bulk of the system. These orbits
here precess in an anti-clockwise sense. They
contribute a net orbital current in an anti-
clockwise sense (see Fig. 1.1). This net cur-
rent precisely cancels out with the current due
to the skipping orbits associated with elec-
trons which scatter at the surface and precess
in a clockwise sense around the sample.

magnetic materials, and we cannot avoid using quantum theory to account for
the magnetic properties of real materials. In the next section we will consider
the quantum mechanics of electrons in some detail.

1.3 Quantum mechanics of spin

In this section I will briefly review some results concerning the quantum
mechanics of electron spin. A fuller account of the quantum mechanics of
angular momentum may be found in the further reading given at the end of
the chapter. Some results connected with quantum and atomic physics are also
given in Appendix C.

1.3.1 Orbital and spin angular momentum

The electronic angular momentum discussed in Section 1.1 is associated with
the orbital motion of an electron around the nucleus and is known as the orbital
angular momentum. In a real atom it depends on the electronic state occupied
by the electron. With quantum numbers / and m/ defined in the usual way
(see Appendix C) the component of orbital angular momentum along a fixed
axis (in this case the z axis) is mlh and the magnitude7 of the orbital angular
momentum is *Jl(l + l)h. Hence the component of magnetic moment along
the z axis is —WZ//XB and the magnitude of the total magnetic dipole moment is
>/*(/ + OMB-

The situation is further complicated by the fact that an electron possesses
an intrinsic magnetic moment which is associated with an intrinsic angular
momentum. The intrinsic angular momentum of an electron is called spin. It
is so termed because electrons were once thought to precess about their own
axes, but since an electron is a point particle this is rather hard to imagine.

Strictly, it is the square of the angular
momentum and the square of the magnetic
dipole moment which are well defined quan-
tities. The operator lr has eigenvalue 1(1 +
l)ft2 and LI has eigenvalue m;h. Similarly,
the operator /* has eigenvalue /(/ + 1)̂ |
and /tj has eigenvalue —m//ig.
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Q -~
Strictly, the eigenvalue of the operator Sz is

s(s + 1)A2.

The g-factor is discussed in more detail in
Appendix C.6.

The =p sign is this way up because the
magnetic moment is antiparallel to the an-
gular momentum. This arises because of the
negative charge of the electron. When ms =
4-2 the moment is —jug. When ms = — ̂
the moment is +/J.Q .

PieterZeeman (1865-1943)

The concept has changed but the name has stuck. This is not such a bad thing
because electron spin behaves so counterintuitively that it would be hard to
find any word that could do it full justice!

The spin of an electron is characterized by a spin quantum number s,
which for an electron takes the value of 5. The value of any component of
the angular momentum can only take one of 2s + 1 possible values, namely:
sh, (s — l)h,..., — sti. The component of spin angular momentum is written
msh. For an electron, with s = \, this means only two possible values so that
ms = ±j. The component of angular momentum along a particular axis is
then h/2 or —h/2. These alternatives will be referred to as 'up' and 'down'
respectively. The magnitude8 of the spin angular momentum for an electron is
Js(s + \)h = V3/J/2.

The spin angular momentum is then associated with a magnetic moment
which can have a component along a particular axis equal to —gfJ.^ms and a
magnitude equal to -Js(s + l)g/u,B = <\/3g/u.B/2. In these expressions, g is a
constant known as the g-factor. The g-factor takes a value of approximately 2,
so that the component of the intrinsic magnetic moment of the electron along
the z axis is9 =» TuB, even though the spin is half-iiuegral. The energy of the
electron in a magnetic field B is therefore

The energy levels of an electron therefore split in a magnetic field by an amount
guBB. This is called Zeeman splitting.

In general for electrons in atoms there may be both orbital and spin angular
momenta which combine. The g-factor can therefore take different values in
real atoms depending on the relative contributions of spin and orbital angular
momenta. We will return to this point in the next chapter.

The angular momentum of an electron is always an integral or half-integral
multiple of h. Therefore it is convenient to drop the factor of h in expressions
for angular momentum operators, which amounts to saying that these operators
measure the angular momentum in units of h. In the rest of this book we will
define angular momentum operators, like L, such that the angular momentum
is hL,. This simplifies expressions which appear later in the book.

Wolfgang Pauli (1900-1958)

1.3.2 Pauli spin matrices and spinors

The behaviour of the electron spin turns out to be connected to a rather strange
algebra, based on the three Pauli spin matrices, which are defined as

It will be convenient to think of these as a vector of matrices,

Before proceeding, we recall a few results which can be proved straightfor-
wardly by direct substitution. Let
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be a three-component vector. Then a • a is a matrix given by

This two-component representation of the spin wave functions is known as a
spinor representation and the states are referred to as spinors. A general state
can be written

where a and b are complex numbers10 and it is conventional to normalize the
state so that

Such matrices can be multiplied together, leading to results such as

They could of course be functions of posi-
tion in a general case.

and

We now define the spin angular momentum operator by

so that

Notice again that we are using the convention that angular momentum is
measured in units of h, so that the angular momentum associated with an
electron is actually hS. (Note that some books choose to define S such that
S = ha/2.)

It is only the operator Sz which is diagonal and therefore if the electron
spin points along the z-direction the representation is particularly simple. The
eigenvalues of sZ, which we will give the symbol ms, take values ms = ±1\2
and the corresponding eigenstates are | tz) and | |z) where

and correspond to the spin pointing parallel or antiparallel to the z axis
respectively. (The 'bra and ket' notation, i.e. writing states in the form \t/r)
is reviewed in Appendix C.) Hence

The eigenstates corresponding to the spin pointing parallel or antiparallel to
the x- and y-axes are

Note that all the terms in eqns 1,40 and 1.41
are matrices. The terma -bis shorthand for a .

bI where I =l n I is the identity matrix.

Similarly |a|2 is shorthand for |a|2 1.
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Fig. 1.8 The Riemann sphere represents the
spin stales of a spin-1\2 particle. The spin
vector S lies on a unit sphere. A line from the
south pole of the sphere to S cuts the horizon-
tal equitorial plane (shaded) at y = x + iy
where the horizontal plane is considered as
an Aigand diagram. The numerical value of
the complex number q is shown for six cases.
namely S parallel or antiparalie! to the x, y
and z axes.

George F. B. Riemann (1826-1866)

The total spin angular momentum operator S is defined by

Many of these results can be generalized to the case of particles with spin
quantum number x > 1\2. The most important result is that the eigenvalue of
S2 becomes s(s + 1). In the case of s = 1\2 which we are considering in this
chapter, s(s + 1) = 3\4, in agreement with eqn 1.53. The commutation relation
between the spin operators is

and cyclic permutations thereof. This can be proved very simply using
eqns 1.40 and 1.42. Each of these operators commutes with S2 so that

Thus it is possible simultaneously to know the total spin and one of its
components, but it is not possible to know more than one of the componencs
simultaneously.

A useful geometric construction that can aid thinking about spin is shown
in Fig. 1.8. The spin vector S poinls in three-dimensional space. Because the
quantum states are normalized, S lies on the unit sphere. Draw a line from the
end of the vector S to the south pole of the sphere and observe the point, q, at
which this line intersects the horizontal plane (shown shaded in Fig. 1.8). Treat
this horizontal plane as an Argand diagram, with the x axis as the real axis and
the y axis as the imaginary axis. Hence q — x + iy is a complex number. Then

the spinor representation of S is | ), which when normalized is

In this representation the sphere is known as the Riemann sphere.

1.3.3 Raising and lowering operators

The raising and lowering operators S+ and 5_ are defined by

where i, j and k are the unit cartesian vectors. The operator S2 is then given by

Since the eigenvalues of S2, S2 or S2 are always 1\4 = (i1\2)2,we have the result
that for any spin state \iff}
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and

Another useful relation, proven by direct substitution is

Expressed as matrices the raising and lowering operators are

and using eqns 1.43, 1.63, 1.64 and 1.65 this then yields

in agreement with eqn 1.53.

1.3.4 The coupling of two spins

Now consider two spin-1\2 particles coupled by an interaction described by a
Hamiltonian H given by11

so that

Combining two spin-1\2 particles results in a joint entity with spin quantum
number s = 0 or 1. The eigenvalue of (Stot)2 is s(s + 1) which is therefore

The raising and lowering operators get their
name from their effect on spin states. You can
show directly that

So a raising operator will raise the z compo-
nent of the spin angular momentum by A. a
lowering operator will lower the z component
of the spin angular momentum by h. If the z
component of the spin angular momentum is
already at its maximum (minimum) level, S+
(S—) will just annihilate the state.

The type of interaction in eqn 1.67 will
turn out to be very important in this book.
The hyperfine interaction (see Chapter 2)
and the Heisenberg exchange interaction (see
Chapter 4) both take this form.

For an operator A to be Hermitian, one must have that A* = A where t
implies an adjoint operation (for matrices this means 'take the transpose and
then complex conjugate each element')- The raising and lowering operators
are not Hermitian (because 5+ = S_ and S_ = S+) and therefore
they do not correspond to observable quantities. They are nevertheless very
useful. Straightforward application of eqns 1.54 and 1.57 yields the following
commutation relations:

where Sa and S* are the operators for the spins for the two particles.
Considered as a joint entity, the total spin can also be represented by an
operator:

and this provides a convenient representation for S2, namely
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Table 1.1 The eigenstates of Sb . Sb and
the corresponding values of ms, s and
the eigenvalue of Sa -Sb.

either 0 or 2 for the cases of s — 0 or 1 respectively. The eigenvalues of both
(Sa)2 and (S*)2 are 3\4 from eqn 1.53. Hence from eqn 1.69

Because the Hamiltonian is H = ASa -Sb, the system therefore has two energy
levels for s = 0 and 1 with energies given by

The degeneracy of each state is given by 2s + 1, hence the s — 0 state is a
singlet and the s = 1 state is a triplet. The z component of the spin of this
state, ms, takes the value 0 for the singlet, and one of the three values —1, 0, 1
for the triplet.

Equation 1.70 has listed the eigenvalues of Sa . Sb, but it is also useful to
describe the eigenstates. Let us first consider the following basis:

In this representation the first arrow refers to the z component of the spin
labelled a and the second arrow refers to the z component of the spin labelled
b. The eigenstates of Sa . Sb are linear combinations of these basis states
and are listed in Table 1.1. The calculation of these eigenstates is treated in
Exercise 1.9. Notice that ms is equal to the sum of the z components of the
individual spins. Also, because the eigenstates are a mixture of states in the
original basis, it is not possible in general to know both the z components of
the original spins and the total spin of the resultant entity. This is a general
feature which will become more important in more complicated situations.

Our basis in eqn 1.72 was unsatisfactory from another point of view:
the wave function must be antisymmetric with respect to exchange of the
two electrons. Now the wave function is a product of a spatial function
^space(r1, r2) and the spin function x, where x is a linear combination of the
states listed in eqn 1.72. The spatial wave function can be either symmetric or
antisymmetric with respect to exchange of electrons. For example, the spatial
wave function

is symmetric (+) or antisymmetric (-) with respect to exchange of electrons
depending on the ±. This type of symmetry is known as exchange symmetry.
In eqn 1.73, < J > ( r i ) and £(ri) are single-particle wave functions for the ith

electron. Whatever the exchange symmetry of the spatial wave function, the
spin wave function x must have the opposite exchange symmetry. Hence x
must be antisymmetric when the spatial wave function is symmetric and vice
versa. This is in order that the product T/rspace(r1, r2) x x is antisymmetric
overall.

States like | 77} and | 44) are clearly symmetric under exchange of
electrons, but when you exchange the two electrons in | tl> you get I it)
which is not equal to a multiple of | t4->- Thus the state | 74,), and also

Eigenstate

I t t )

m> + ut>
V2

iu>
I H ) - l l t >

V2

ms

1

0

-1

0

i S" • S*

1 1
1 \
1 k
o -!



Exercises 15

by an identical argument the state | |t)> a*6 both neither symmetric nor
antisymmetric under exchange of the two electrons. Hence it is not surprising
that we will need linear combinations of these two states as our eigenstates.
The linear combinations are shown in Table 1.1. (| t4-) + 4-t))/V2 is
symmetric under exchange of electrons (in common with the other two s = 1
states) while (| t4-> ~ I lt))/V2 is antisymmetric under exchange of electrons.

Another consequence of this asymmetry with respect to exchange is the
Pauli exclusion principle, which states that two electrons cannot be in the
same quantum state. If two electrons were in precisely the same spatial and
spin quantum state (both in, say, spatial state 0(r) and both with, say, spin-
up), then their spin wave function must be symmetric under the exchange of
the electrons. Their spatial wave function must then be antisymmetric under
exchange, so

Hence the state vanishes, demonstrating that two electrons cannot be in the
same quantum state.

Very often we will encounter cases in which two spins are coupled via an
interaction which gives an energy contribution of the form ASa . Sb, where A
is a constant. If A > 0, the lower level will be a singlet (with energy — 3A/4)
with a triplet of excited states (with energy A/4) at an energy A above the
singlet. This situation is illustrated in Fig. 1.9. A magnetic field can split the
triplet state into the three different states with different values of ms. If A < 0,
the triplet state will be the lowest level.

Further reading

Fig. 1.9 The coupling of two electrons with
an interaction of the form ASa . S gives rise
to a triplet (s = 1) and a singlet (s = 0). If
A > 0 the singlet is the lower state and the
triplet is the upper state. The triplet can be
split into three components with a magnetic
field B.

• B. I. Bleaney and B. Bleaney, Electricity and Magnetism,
OUP 1989, contains a comprehensive treatment of elec-
tromagnetism (see also Appendix B).

• A. I. Rae, Introduction to Quantum Mechanics, IOP Pub-
lishing 1992 is a clear exposition of Quantum Mechanics
at an introductory level.

• A good account of quantum angular momentum can be
found in Chapters 1-3 of volume 3 of the Feynman
lectures in Physics, R. P. Feynman, Addison-Wesley
1975.

• An excellent description of quantum mechanics may be
found in J. J. Sakurai, Modern Quantum Mechanics, 2nd
edition 1994, Addison-Wesley.

Exercises
(1.1) Calculate the magnetic moment of an electron (with

g = 2). What is the Larmor precession frequency of this
electron in a magnetic field of flux density 0.3 T? What is
the difference in energy of the electron if its spin points
parallel or antiparallel to the magnetic field? Convert this
energy into a frequency.

(1.2) Using the definition of spin operators in eqn 1.43, prove
eqn 1.53 and the commutation relations, eqns 1.54 and
1.55.

(1.3) Using the definition of the raising and lowering operators
in eqns 1.57, prove eqns 1.58, 1.61.
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(1.4) Using the commutation relation for spin, namely that
[Sx, Sy] = iSz (and cyclic permutations), prove that

where X is a vector.

(1.5) Using eqns 1.58 and 1.61, show that

where \S, SZ) represents a state with total spin angular
momentum S(S + l)h2 and z component of spin angular
momentum Szh. Hence prove the following special cases
of eqn 1.76:

(1.6) If the magnetic field B is uniform in space, show that
this is consistent with writing A = 5 (B x r) and show
that V • A = 0. Are there other choices of A that would
produce the same B?

(1.7) The kinetic energy operator for an electron is p2/2m. Use
eqn 1.41 to show that this can be rewritten

If a magnetic field is applied one must replace p by p +
e\. With the aid of eqn 1.40, show that this replacement
substituted into eqn 1.79 leads to kinetic energy of the
form

where the g-factor in this case is g = 2. (Note that in this
problem you have to be careful how you apply eqn 1.40
and 1.41 because p is an operator and will not commute
with A.)

(1.8) An atom has zero orbital angular momentum and a spin
quantum number 5. It is found to be in the | fz) state.
A measurement is performed on the value of its angular
momentum in a direction at an angle 0 to the z axis.
Show that the probability of its angular momentum being
parallel to this new axis is cos2 (0/2).

(1.9) Using the basis of eqn 1.72, it is possible to construct
matrix representations of operators such as S£ . S* re-
membering that, for example, an operator such as S° only
operates on the part of the wave function connected with
the first spin. Thus we have

Construct similar representations for Sf, S*, Sy and Sy
and hence show that

Find the eigenvalues and eigenvectors of this operator
and check that your results agree with those in Table 1.1.

(1.10) A magnetic field of 0.5 T is applied to a spherical sample
of (a) water and (b) MnSO4 .4H2O. In each case, evaluate
the fraction the H and B fields inside the sample differ
from the free space values. (The magnetic susceptibilities
of water and MnSO4.4H2O are listed in Table 2.1.) You
should find that the corrections are very small indeed.

(1.11) Show that the operator

which represents the spin operator for the component of
spin along a direction determined by the spherical polar
angles 0 and 0, has eigenvalues ±5 and eigenstates of
the form

Convince yourself that these results agree with the Rie-
mann sphere representation in Fig. 1.8. Show further that

(1.12) An electron in a magnetic field aligned along the z-
direction has a Hamiltonian (energy) operator

The time-dependent Schrodinger equation states that

so that

Using eqn 1.41, show that



Exercises 17

where / is the identity matrix, am is one of the Pauli spin
matrices and a is a real number. Hence show that if ^f(t)
is written as a spinor,

and using the results from the previous question, show
that this corresponds to the evolution of the spin state in
such a way that the expected value of 9 is conserved but
o rotates with an angular frequency given by geB/1m.
This demonstrates that the phenomenon of Larmor pre-
cession can also be derived from a quantum mechanical
treatment.

(1.13) Here is another way to derive spin precession. Start with
eqn 1.88 and use eqn C.7 to show that

which is similar to eqn 1.6 with

The minus sign comes from the negative charge of the
electron.

(1.14) This problem is about the corresponding case of an
electric dipole. (a) An electric dipole with electric dipole
moment p and moment of inertia / is placed in an electric
field E. Show classically that the angle 9, measured
between p and £, obeys the differential equation

Show that this equation leads to simple harmonic motion
when 9 is very small.

(b) Now repeat the problem quantum mechanically. Con-
sider the Hamiltonian

and justify why this might be an appropriate Hamiltonian
to use in this case. Using eqn C.7, show that

where L = -ihd/d6 and that

Hence deduce that

which reduces to the classical expression in the appro-
priate limit. Compare these results to the case of the
magnetic dipole. Why are they different? Why does spin
precession not result in the electric case?

We have shown that electric dipoles in an electric field
oscillate backwards and forwards in the plane of the
electric field, while magnetic dipoles precess around a
magnetic field. In each case, what is wrong with our fa-
miliar idea that if you apply a field (electric or magnetic)
then dipoles (electric or magnetic) just line up with the
field?
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where g = 2 and ms = ± 1/2. Hence E = ±nnB. In addition to spin angular
momentum, electrons in an atom also possess orbital angular momentum. If
the position of the ith electron in the atom is ri, and it has momentum pi, then
the total angular momentum is KL and is given by

where the sum is taken over all electrons in an atom. Let us now consider an
A,

atom with a Hamiltonian HO given by

which is a sum (taken over the Z electrons in the atom) of the electronic
kinetic energy (pf/2me for the ith electron) and potential energy (Vi for the
ith electron). Let us assume that the Hamiltonian HQ has known eigenstates
and known eigenvalues.

We now add a magnetic field B given by

In this chapter the properties of isolated magnetic moments will be examined.
At this stage, interactions between magnetic moments on different atoms, or
between magnetic moments and their immediate environments, are ignored.
All that remains is therefore just the physics of isolated atoms and their
interaction with an applied magnetic field. Of course that doesn't stop it being
complicated, but the complications arise from the combinations of electrons in
a given atom, not from the fact that in condensed matter there is a large number
of atoms. Using this simplification, the large number of atoms merely leads to
properties like the magnetic susceptibility containing a factor of n, the number
of atoms per unit volume.

In Section 1.1 (see eqn 1.35) it was shown that an electron spin in a magnetic
field parallel to the z axis has an energy equal to
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where A is the magnetic vector potential. We choose a gauge1 such that Equation 2.4 relates B and A. However, for
a given magnetic field B, the magnetic vector
potential A is not uniquely determined; one
can add to A the gradient of a scalar potential
and still end up with the same B. The choice
of A that we make is known as a choice of
gauge.

Then the kinetic energy must be altered according to the prescription described
in Section 1.2. Since the charge on the electron is -e, the kinetic energy is
[pi + eA(ri)]2/2me and hence the perturbed Hamiltonian must now be written

The dominant perturbation to the original Hamiltonian H0 is usually the term
uB(L + gS) • B but, as we shall see, it sometimes vanishes. This is the effect of
the atom's own magnetic moment and is known as the paramagnetic term. The
third term, (e2/8me) £ i(B x ri)

2, is due to the diamagnetic moment. These
contributions will be discussed in greater detail in Section 2.3 (diamagnetism)
and Section 2.4 (paramagnetism). In the following section we outline the
effects which will need explaining.

2.2 Magnetic susceptibility

As shown in Section 1.1.4, for a linear material M = xH where M is
the magnetic moment per volume (the magnetization) and x is the magnetic
susceptibility (dimensionless). Note that the definition of M means that x
represents the magnetic moment induced by a magnetic field H per unit
volume. Magnetic susceptibilities are often tabulated in terms of the molar
magnetic susceptibility, Xm, where

In this equation Vm is the molar volume, the volume occupied by 1 mole
(6.022 x 1023 formula units) of the substance. The molar volume (in m3) is
the relative atomic mass2 of the substance (in kg) divided by the density p (in
kg m - 3) . The mass susceptibility Xg is defined by

and has units of m3 kg - 1 . The values of magnetic susceptibility for various
substances are listed in Table 2.1. If the susceptibility is negative then the
material is dominated by diamagnetism, if it is positive then the material is
dominated by paramagnetism.

The magnetic susceptibilities of the first 60 elements in the periodic table
are plotted in Fig. 2.1. Some of these are negative, indicative of the dominant
role of diamagnetism as discussed in Section 2.3. However, some of the values
are positive, indicative of paramagnetism and this effect will be discussed in
Section 2.4.

The relative atomic mass is the mass of 1
mole. Note that relative atomic masses are
usually tabulated in grams.

Table 2.1 The magnetic susceptibility x and
the molar magnetic susceptibility xm for various
substances at 298 K. Water, benzene and NaCl
are weakly diamagnetic (the susceptibility is neg-
ative). CuSO4.5H2O, MnSO4-4H2O, Al and Na
are paramagnetic (the susceptibility is positive).

water
benzene
NaCl
graphite (||)
graphite (L)
Cu
Ag

CuSO4
.5H2O

MnSO4
.4H2O

Al
Na

x/10-6

-90
-7.2

-13.9
-260

-3.8
-1.1
-2.4

176
2640

22
7.3

Xm/10-10

(m 3mol - 1)

-16.0
-6.4
-3.75

-31
-4.6
-0.078
-0.25

192
2.79 x103

2.2
1.7
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2.3 Diamagnetism

All materials show some degree of diamagnetism,3 a weak, negative mag-
netic susceptibility. For a diamagnetic substance, a magnetic field induces a
magnetic moment which opposes the applied magnetic field that caused it.

This effect is often discussed from a classical viewpoint: the action of a
magnetic field on the orbital motion of an electron causes a back e.m.f.,4 which
by Lenz's law opposes the magnetic field which causes it. However, the Bohr-
van Leeuwen theorem described in the previous chapter should make us wary
of such approaches which attempt to show that the application of a magnetic
field to a classical system can induce a magnetic moment.5 The phenomenon
of diamagnetism is entirely quantum mechanical and should be treated as such.

We can easily illustrate the effect using the quantum mechanical approach.
Consider the case of an atom with no unfilled electronic shells, so that the
paramagnetic term in eqn 2.8 can be ignored. If B is parallel to the z axis, then
B x ri = B(-y i,x i,0)and

Fig. 2.1 The mass susceptibility of the first 60 elements in the periodic table at room temperature, plotted as a function of the atomic number. Fe,
Co and Ni are ferromagnetic so that they have a spontaneous magnetization with no applied magnetic field.

so that the first-order shift in the ground state energy due to the diamagnetic
term is

The prefix dia means 'against' or 'across'
(and leads to words like diagonal and diame-
ter).

electromotive force

See the further reading.
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where |0) is the ground state wave function. If we assume a spherically
symmetric atom,6 (x i

2) = (y i
2 ) = 1 /3(r i

2 ) then we have This is a good assumption if the total angu-
lar momentum J is zero.

Consider a solid composed of N ions (each with Z electrons of mass m) in
volume V with all shells filled. To derive the magnetization (at T = 0), one
can follow Appendix E, obtaining

where F is the Helmholtz function. Hence we can extract the diamagnetic
susceptibility x = M/H « u 0 M / B (assuming that x « 1). Following this
procedure, we have the result that

H. L. F. von Helmholtz (1821-1894)

This expression has assumed first-order perturbation theory. (The second-order
term will be considered in Section 2.4.4.) As the temperature is increased
above zero, states above the ground state become progressively more important
in determining the diamagnetic susceptibility, but this is a marginal effect.
Diamagnetic susceptibilities are usually largely temperature independent.

This relation can be rather crudely tested by plotting the experimentally
determined diamagnetic molar susceptibilities for various ions against Zeffr

2,
where Zeff is the number of electrons in the outer shell of an ion7 and r is
the measured ionic radius. The assumption is that all the electrons in the outer
shell of the ion have roughly the same value of {ri}

2 so that

For an ion, this value is different from the
atomic number Z, so we use the symbol
Zeff for an 'effective' atomic number. We are
ignoring electrons in inner shells.

The diamagnetic susceptibility of a number of ions is shown in Fig. 2.2.
The experimental values are deduced by comparing the measured diamagnetic
susceptibility of a range of ionic salts: NaF, NaCl, NaBr, KC1, KBr, .... The
approach is inaccurate since not all the electrons in an ion have the same mean
radius squared (so that eqn 2.16 is by no means exact), but the agreement is
nevertheless quite impressive. Ions are chosen because, for example, Na and
Cl atoms have unpaired electrons but Na+ and Cl- ions are both closed shell
structures, similar to those of Ne and Ar (see the periodic table in Fig. 2.13
below for reference). Thus paramagnetic effects, which would dominate the
magnetic response of the atoms, can be ignored in the ions.

Relatively large and anisotropic diamagnetic susceptibilities are observed
in molecules with delocalized JT electrons, such as naphthalene and graphite.
Napthalene consists of two benzene molecules joined along one side
(Fig. 2.3(a)). The n electrons are very mobile and induced currents can run
round the edge of the ring, producing a large diamagnetic susceptibility which
is largest if the magnetic field is applied perpendicular to the plane of the ring.
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Fig. 2.2 The measured diamagnetic molar
susceptibilities Xm of various ions plotted
against Zeffr

2, where Zeff is the number of
electrons in the ion and r is a measured ionic
radius.

Fig. 2.3 (a) Naphthalene consists of two
fused benzene rings. (b) Graphite consists
of sheets of hexagonal layers. The carbon
atoms are shown as black blobs. The carbon
atoms are in registry in alternate, not adjacent
planes (as shown by the vertical dotted lines).

The effective ring diameter is several times larger than an atomic diameter and
so the effect is large. This is also true for graphite which consists of loosely
bound sheets of hexagonal layers (Fig. 2.3(b)). The diamagnetic susceptibility
is much larger if the magnetic field is applied perpendicular to the layers than
if it is applied in the parallel direction.

Diamagnetism is present in all materials, but it is a weak effect which can
either be ignored or is a small correction to a larger effect.
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2.4 Paramagnetism

Paramagnetism8 corresponds to a positive susceptibility so that an applied
magnetic field induces a magnetization which aligns parallel with the applied
magnetic field which caused it. In the previous section we considered materials
which contained no unpaired electrons, and thus the atoms or molecules had no
magnetic moment unless a field was applied. Here we will be concerned with
atoms that do have a non-zero magnetic moment because of unpaired electrons.
Without an applied magnetic field, these magnetic moments point in random
directions because the magnetic moments on neighbouring atoms interact only
very weakly with each other and can be assumed to be independent. The
application of a magnetic field lines them up, the degree of lining up (and
hence the induced magnetization) depending on the strength of the applied
magnetic field.

The magnetic moment on an atom is associated with its total angular
momentum J which is a sum of the orbital angular momentum L and the spin
angular momentum S, so that

Here, as throughout this book, these quantities are measured in units of h. The
way in which the spin and orbital parts of the angular momentum combine
will be considered in detail in the following sections. In this section we will
just assume that each atom has a magnetic moment of magnitude u.

Although an increase of magnetic field will tend to line up the spins, an
increase of temperature will randomize them. We therefore expect that the
magnetization of a paramagnetic material will depend on the ratio B/T. The
paramagnetic effect is in general much stronger than the diamagnetic effect,
although the diamagnetism is always present as a weak negative contribution.

Fig. 2.4 To calculate the average magnetic
moment of a paramagnetic material, consider
the probability that the moment lies between
angles 9 and 0 + d0 to the z axis. This
is proportional to the area of the annulus
on the unit sphere, shown shaded, which is
2n sin 0 d0.

8The prefix para means 'with' or 'along' and
leads to English words such as parallel.

2.4.1 Semiclassical treatment of paramagnetism

We begin with a semiclassical treatment of paramagnetism (which as we will
see below corresponds to J = oo) in which we ignore the fact that magnetic
moments can point only along certain directions because of quantization.
Consider magnetic moments lying at an angle between 6 and 6 + d0 to the
applied field B which is assumed without loss of generality to be along the z
direction. These have an energy — uB cos 0 and have a net magnetic moment
along B equal to u cos 0. If the magnetic moments could choose any direction
to point along at random, the fraction which would have an angle between 0
and 9 + d0 would be proportional to the area of the annulus shown in Fig. 2.4
which is 2n sin d0 if the sphere has unit radius. The total surface area of
the unit sphere is 4n so the fraction is 1/2 sin 6 d9. The probability of having
angle between 0 and 0 + d0 at temperature T is then simply proportional
to the product of this statistical factor, 1/2 sin0 d0, and the Boltzmann factor
exp(uB cos 0 / k B T ) where kB is Boltzmann's constant. The average moment
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Fig. 2.5 The magnetization of a classical
paramagnet is described by the Langevin
function, L(y) = cothy — 1/y For small y,
L(y) = y/3, as indicated by the line which is
tangential to the curve near the origin. As the
magnitude of the magnetic field is increased,
or the temperature decreased, the magnitude
of the magnetization increases.

along B is then

Paul Langevin (1872-1946)

We will use n to denote the number of magnetic moments per unit volume.
The saturation magnetization, Ms, is the maximum magnetization we could
obtain when all the magnetic moments are aligned, so that Ms = nu. The
magnetization that we actually obtain is M = n { u z ) and the ratio of the
magnetization to the saturation magnetization is a useful quantity. Thus we
have

9For small fields, x « 1, so B = u0H. and using x = M/H « u 0 M / B which is valid in small fields,9 we have

where L(y) = coth y — 1/y is the Langevin function. It is shown in Fig. 2.5.
For small y,

so that

where I have defined y = u B / k B T and x = cos0. This leads to
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This demonstrates that the magnetic susceptibility is inversely proportional to
the temperature, which is known as Curie's law (after its discoverer, Pierre
Curie).10

2.4.2 Paramagnetism for J = 1/2

The calculation above will now be repeated, but this time for a quantum
mechanical system. The classical moments are replaced by quantum spins with
7 = 1/2. There are now only two possible values of the z component of the
magnetic moments: mj = ±1/2. They can either be pointing parallel to B or
antiparallel to B. Thus the magnetic moments are either — uB or uB (assuming
g = 2) with corresponding energies uBB or — u B B . (These two solutions are
sketched in Fig. 2.6.) Thus

so writing y = u B B/k B T = g u B J B / k B T (where J = 1/2 and g = 2) one has
that

This function is different from the Langevin function, but actually looks pretty
similar (see Fig. 2.7). In small applied fields tanh(uB/kBT) « uB/ kBT and

Equation 2.27 can be derived very efficiently using an alternative method. The
partition function Z is the sum of the Boltzmann probabilities weighted by any
degeneracy. The partition function for one spin is

Fig. 2.7 The magnetization of a spin-1/2 para-
magnet follows a tanh y function. For small
y, tanh y = y, as indicated by the line which
is tangential to the curve near the origin.

Fig. 2.6 The energy of a spin-1/2 magnetic
moment as a function of magnetic field.

Pierre Curie (1859-1906)

Often people write

where Ccune is the Curie constant.
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Fig. 2.8 The (a) magnetization M (normal-
ized by the saturation magnetization), (b)
energy E, (c) heat capacity C (at constant
applied magnetic field) and (d) entropy 5
of a paramagnetic salt containing n non-
interacting spin-1/2 ions per unit volume as a
function of k B T / u B B . The quantities E, C
and S are therefore plotted per unit volume
of paramagnetic salt.

and the Helmholtz free energy can be evaluated using the expression F =
—kBT In Z yielding the Helmholtz free energy for « spins per unit volume as

See Appendix E for more details on Z, F and
expressions such as M = - ( 3 F / 3 B ) T .

The magnetization is then given by M = — ( d F / d B ) T which again yields

in agreement with eqn 2.27.
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This approach can also be used to derive other thermodynamic quantities for
this model (see Exercise 2.4), the results of which are plotted in Fig. 2.8 as a
function of k B T / u B B . Figure 2.8(a) thus shows the same information as that
in Fig. 2.7 but with the horizontal axis inverted. This is because to understand
some of the thermal properties of a material we are really interested in the
effects of increasing temperature for a fixed magnetic field. As the sample
is warmed, the magnetization decreases as the moments randomize but this
produces an increase in energy density E = -MSB (see Fig. 2.8(b)). When
T —> oo, the energy is zero since the moments are then completely random
with respect to the applied field with the energy gains cancelling the energy
losses. Cooling corresponds to an energy decrease (a point we will return to in
Section 2.6).

The heat capacity, C = (0E/0T)B has a broad maximum close to kBT ~
uBT which is known as a Schottky anomaly (see Fig. 2.8(c)). This arises
because at this temperature, it is possible to thermally excite transitions
between the two states of the system. At very low temperature, it is hard to
change the energy of the system because there is not enough energy to excite
transitions from the ground state and therefore all the spins are 'stuck', all
aligned with the magnetic field. At very high temperature, it is hard to change
the energy of the system because both states are equally occupied. In between
there is a maximum. Peaks in the heat capacity can therefore be a useful
indicator that something interesting may be happening. Note however that
the Schottky anomaly is not a very sharp peak, cusp or spike, as might be
associated with a phase transition, but is a smooth, broad maximum.

The entropy 5 = —(0F/0T)B rises as the temperature increases (see
Fig. 2.8(d)), as expected since it reflects the disorder of the spins. Conversely,
cooling corresponds to ordering and a reduction in the entropy. This fact is very
useful in magnetic cooling techniques, as will be described in Section 2.6.

In the following section we will consider the general case of a paramagnet
with total angular momentum quantum number J. This includes the two
situations, classical and quantum, considered above as special cases.

2.4.3 The Brillouin function

The general case, where J can take any integer or half-integer value, will now
be derived. Many of the general features of the previous cases (J = 1/2 and
J = oo) are found in this general case, for example an increase in magnetic
field will tend to align the moments while an increase in temperature will tend
to disorder them.

The partition function is given by

Writing x = g J u B B / k B T , we have

Walter Schottky (1886-1976)
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so that

Now the partition function Z is a geometric progression with initial term a =
e - J x and multiplying term r = ex. This can therefore be summed using the
well-known formula

where M is the number of terms in the series, which in this case is M = 2J+1.
After a few manipulations, this leads to

so that with the substitution

we find

where the saturation magnetization Ms is

Leon Brillouin (1889-1969) and where B J ( y ) is the Brillouin function given by

This function is plotted in Fig. 2.9 for various values of J. The Brillouin
function has the appropriate limits. For example, when J = oo it reduces to a
Langevin function:

and when J = 1/2 it reduces to a tanh function:

Hence it reduces to the cases considered in the previous sections.
A typical value of y can be estimated as follows: for J = 1/2, gJ = 2

with B = 1 T, y~2 x 10~3 at room temperature. Thus except at very
low temperature and/or in extremely large magnetic fields, the experimental
situation will correspond to y « 1 (and hence x « 1). For small y the
following result can be derived by using the Maclaurin expansion of coth y:

Hence for low magnetic fields the susceptibility is given by
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Fig. 2.9 The magnetization of a paramagnet
with magnetic moment quantum number J
follows a Brillouin function, BJ(y), which
is plotted here for different values of J. The
values of J are 1/2, 1, 1,3/2,5/2,... and J = oo.

which looks like a classical Curie law.11 A measurement of x therefore allows
one to deduce ueff, the value of the effective moment,

11i.e. x = Ccurie/T where CCurie =
nu0g2J(j+1)/3kB is the Curie constant.

where

Alfred Lande (1888-1975)The constant gj is known as the Lande g-value (see Appendix C).
The Curie's law dependence of the susceptibility leads to x ox 1/T so that

a graph of 1/x against T is a straight line and a graph of xT is constant
against T (see Fig. 2.10). These points will be useful to keep in mind when
in later chapters we consider the r61e of interactions. It is important to note

Fig. 2.10 Curie's law states that x oc 1/T
as shown in (a). Thus a straight-line graph is
obtained by plotting 1/x against T as shown
in (b). A graph of xT against T is constant,
as shown in (c).
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that the susceptibility is evaluated in the limit of vanishing applied magnetic
field and is then given by eqn 2.44 with ueff = gj u B J ( J + 1). However, at
high applied magnetic fields, the magnetization saturates to Ms which, using
eqn 2.39, is equivalent to a moment of gJuBJ per ion. These two values,
ueff = gJ u B ( J ( J + 1) and Ms/n = gJ uBJ, are unequal except when J ->
oo (the classical limit).

2.4.4 Van Vleck paramagnetism

If J = 0 in the ground state |0), then there is no paramagnetic effect because

This implies that the ground state energy of the system does not change if a
magnetic field is applied and so that there is no paramagnetic susceptibility.
However, this conclusion is only correct in first-order perturbation theory.
Second-order perturbation theory nevertheless predicts a change in the ground
state energy E0 because it takes account of excited states with J = 0 being
mixed in. The change of the ground state energy E0 for an ion with J = 0 is

where the second term is due to the diamagnetism and the sum in the first term
is taken over all the excited states of the system. The magnetic susceptibility is
then

John H. van Vleck (1899-1980)

where the first term is positive (because En > E0) and is called the van
Vleck paramagnetism. The second term is negative and is the conventional
diamagnetic susceptibility that we have already considered (see eqn 2.15).
Van Vleck paramagnetism is, like diamagnetism, both small and temperature
independent.

2.5 The ground state of an ion and Hund's rules

A typical atom does not contain one electron, but many. A lot of these will
be in filled shells which have no net angular momentum. However, there may
be unfilled shells and the electrons in these unfilled shells can combine to give
non-zero spin and orbital angular momentum. In Section 1.3.4 we saw how two
spin-1/2 electrons could combine into a joint entity with spin equal to either 0 or
1. In an atom, all the spin angular momentum from the electrons in the unfilled
shells can combine together and so can all their orbital angular momenta. Thus
an atom will have total orbital angular momentum hL and total spin angular
momentum hS. The orbital and spin angular momenta can therefore combine
in
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ways. This is the total number of choices of the z component of L (which is
the number of terms in the series — L, —L + 1,..., L — 1, L + 1, i.e. (2L +
1)) multiplied by the total number of choices of the z component of S (i.e.
(25 + 1) by a similar argument). These different configurations, obtained by
differently combining together the angular momentum (both spin and orbital)
from the electrons in the unfilled shells, will cost different amounts of energy.
This difference in energy occurs because the choice of spin angular momentum
affects the spatial part of the wave function and the orbital angular momentum
affects how electrons travel around the nucleus: both therefore affect how well
the electrons avoid each other and thus influence the electrostatic repulsion
energy. Below we will see how to find the configuration that minimizes the
energy.

2.5.1 Fine structure

So far we have kept the spin and orbital angular momenta separate since
they are independent of one another. However they do weakly couple, via the
spin-orbit interaction (see Appendix C), which acts as a perturbation on the
states with well defined L and S. Because of this, L and S are not separately
conserved but the total angular momentum J = L + S is conserved. If the
relativistic effects are considered as a perturbation (which usually can be done)
then one can consider L2 = L(L + 1) and S2 = 5(5 + 1) as being conserved.
Thus states with L and 5 are split into a number of levels with differing J; this
is known as fine structure. J takes the values from \L - 5| to L + S. From the
definition of J (eqn 2.17),

and since the spin-orbit interaction takes the form yL • S (see Appendix C),
where A is a constant, the expected value of this energy is

The energy of the atom is mainly determined by the values of 5 and L via
electrostatic considerations and so the energy eigenstates can be labelled with
values of 5 and L. The precise value that J takes in the range \L — S\ to
L + 5 is immaterial in the absence of the spin-orbit interaction. Each level is a
multiplet of (25+ 1)(2L + 1) states. When adding the spin-orbit interaction as
a perturbation, the multiplets split up into different fine structure levels labelled
by J. Each of these levels themselves has a degeneracy of 2J +1, so that these
levels can be split up into their different mJ values by applying a magnetic
field. The splitting of the different fine structure levels follows a relationship
known as the Lande interval rule which will now be described. The energy
separation between adjacent levels E ( J ) and E(J — 1) of a given multiplet is
given by
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Thus the splitting is proportional to J (considering the separation of levels
J - 1 and J).

Example 2.1

An example of this combination of angular momentum is shown in Fig. 2.11
for the particular example of L = 3 and S = 3/2. Here (25 + 1)(2L + 1) = 28
and the figure demonstrates that if one considers the states for which J takes

93 the values from |L — S| = 3/2 to L + S = 9/2, since the degeneracy of each J
state is 2J + 1, there are also 28 possible states. This graphically illustrates the
result that

Fig. 2.11 The combination of angular mo-
mentum L = 3 and S = 3/2 leads to values
of J from 3/2 to 9/2.

There are clearly a lot of combinations of angular momentum quantum
numbers that are possible; which one is the ground state for a particular ion?

12Hund's rules are only applicable to the
ground state configuration, and do not imply
anything about the ordering of levels above
the lowest level. They also assume that there
is only one subshell which is incomplete.

Friederich Hund (1896-1997)

2.5.2 Hund's rules

The combination of angular momentum quantum numbers which are found
to minimize the energy can be estimated using Hund's rules.12 These three
empirical rules are listed in order of decreasing importance, so that one first
satisfies the first and then, having done this, attempts to satisfy the second, and
so on for the third.

(1) Arrange the electronic wave function so as to maximize S. In this
way the Coulomb energy is minimized because of the Pauli exclusion
principle, which prevents electrons with parallel spins being in the same
place, and this reduces Coulomb repulsion between electrons.

(2) The next step is, given the wave function determined by the first rule, to
maximize L. This also minimizes the energy and can be understood by
imagining that electrons in orbits rotating in the same direction can avoid
each other more effectively and therefore reduce Coulomb repulsion.

(3) Finally the value of J is found using J = |L — S| if the shell is less
than half full and J = |L + S| if it is more than half full. This third rule
arises from an attempt to minimize the spin-orbit energy. One should
note that the third rule is only applicable in certain circumstances. As
will be shown in the following chapter, in many systems, transition metal
ions being good examples, the spin-orbit energies are not as significant
as some other energy term such as the crystal field so that Hund's third
rule is disobeyed. However, as shown below, for rare earth ions Hund's
third rule works very well.

Having found values for S, L and J, this ground state can be summarized using
a term symbol of the form 2s+1 LJ. Here L is written not as a number, but using
a letter according to the sequence
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and 2S + 1 is the spin multiplicity.

Example 2.2

As an example, consider the rare earth ion Dy3+, which has outer shell 4f9:
f electrons have / = 3, so to satisfy Hund's first rule, 2l + 1 = 7 of them are
spin-up, and we then have 2 left for spin-down (see Fig. 2.12). This gives the
value of S as S = 7 x 1/2 - 2 x 1/2 = 3/2 (which implies that the spin degeneracy
is 25 + 1 = 6), The spin-up electrons give no net orbital angular momentum,
so we only get an orbital contribution from the 2 spin-down electrons and it
is this which we have to maximize. This then implies that I. = 3 + 2 = 5
and hence we must use the symbol H. The shell is more than half f u l l , so
J = |5 + 5/2| = 15/2. Hence the term symbol is 6H15/2.

Hund's rules lead to a prediction of the ground state but tell us nothing about
the excited states or how close they arc to the ground state. They therefore
allow us to estimate the magnetic moment of an ion assuming that only this
ground state is populated.

In this and the following chapter we wi l l want to compare these predictions
with experimental values and we will concentrate on compounds containing
3d and 4f ions since these are important in many magnetic systems. The 3d
elements are the first row of transition metals (Sc-Zn) and the 4f elements are
known as the lanthonides or as the rare earths (La-Lu). They are shown in
the periodic table in Fig. 2.13.

The application of Hund's rules to 3d and 4f ions is shown in Fig. 2.14
(although note that, as discussed in more detail in the following chapter, the
Hund's rule predictions for 4f ions agree more with experiment than those for

Fig, 2.13 The periodic table. The 3d elements
(Sc-Zn) and the 4f elements (Lu-Lu) arc
shown shaded. The number by each element
is the atomic number Z the number of pro-
tons in the nuclcus).

Fig. 2.12 The around stale of Dy 3 + .
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The present chapter deals only with free
atoms or ions. Things will change when the
atoms are put in a crystalline environment.
The changes are quite large for 3d ions, as
may be seen in chapter 3.

Fig. 2.14 S, L and J for 3d and 4f ions
according to Hund's rules. In these graphs «
is the number of electrons in the subshell (3d
or 4f).

From eqn 2.44 we have found that a measurement of the susceptibility
allows one to deduce the effective moment. This effective moment can be
expressed in units of the Bohr magneton uB as

the 3d ions).13 S rises and becomes a maximum in the middle of each group. L
and 7 have maxima at roughly the quarter and three-quarter positions, although
for J there is an asymmetry between these maxima which reflects the differing
rules for being in a shell which is less than or more than half full.

Table 2.2 Magnetic ground states for 4f ions using Hund's rules.
For each ion, the shell configuration and the predicted values of
S, L and J for the ground state are listed. Also shown is the
calculated value of p = ueff /uB

 = 8 J [ J ( J + 1)]1/2 using these
Hund's rules predictions. The next column lists the experimental
value pexp and shows very good agreement, except for Sm and Eu.
The experimental values are obtained from measurements of the
susceptibility of paramagnetic salts at temperatures kBT » ECEF

where ECEF is a crystal field energy.

ion

Ce3+

Pr3+

Nd3+

Pm3+

Sm3+

Eu3+

Gd3+

Tb3+

Dy3+

Ho3+

Er3+

Tm3+

Yb3+

Lu3+
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4f
l2

4f
13

4f
l4

S

2
1
3

2
5

3
7

3
5

2
3

1

1/2
0

L

3

5

6

6

5

3
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5
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9
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0
7
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2F5/2
3H4

4I9/2

5I4

6I5/2
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8S7/2

7F6
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4Il5/2

3H6
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and the Hund's rule predictions would suggest that, using eqn 2.45, we
should expect to measure p = g J [ J ( J + l)]1/2. Extremely good experimental
agreement is usually found between this prediction and the measured values of
P = ueff/uB for 4f ions in the solid state, as shown in Table 2.2. A discrepancy
does occur for Sm and Eu but this is due to low-lying excited states with
different J from the ground states which, because of their close proximity to
the ground state in energy, are also significantly populated and cause p to shift
from its ground state value. Although the 4f ions generally fit quite well, as
will be seen in the following chapter much poorer agreement is found for the
3d ions because of the effect of the local crystal environment. This effect is not
so important for 4f ions because the partially filled 4f shells lie deep within the
ion, beneath the filled 5s and 5p shells.

In this chapter we have considered the magnetic moment on each atom being
associated with the electrons which are localized on that atom. In metals the
conduction electrons are not localized on a particular atom but exist in band
states and are delocalized over the entire material. Conduction electrons can
show both a diamagnetic and paramagnetic effect and this will be considered
in chapter 7.

2.5.3 L-S and j-j coupling
The atomic model that we have considered above has assumed L-S coupling
(also known as Russell-Saunders coupling), namely that the spin-orbit in-
teraction is a weak perturbation and the main energy terms are determined
by the electrostatic interactions that control the values of L and S, i.e. by
combining, separately, the orbital and spin angular momenta for the electrons.
Only then, when the total orbital and spin angular momenta of the atom as a
whole are known, do we consider applying the spin-orbit interaction as a weak
perturbation which splits each term into fine structure levels labelled by J.

For atoms with high atomic number Z, this will not work because the spin-
orbit interaction energy is proportional14 to Z4 (see Appendix C) and therefore
cannot be treated as a small perturbation for these atoms. A better scheme
is known as i-i coupling: here the spin-orbit interaction is the dominant
energy and we couple the spin and orbital angular momentum of each electron
separately, and consequently the weaker electrostatic effect may then couple
the total angular angular momentum from each electron.

Henry Norris Russell (1877-1957)

Frederick A. Saunders (1875-1963)

The Z4 dependence works only for
hydrogen-like atoms. For neutral atoms it is
not so simple, but is close to Z2 .

Example 2.3

As an example of these approaches, take carbon (C) and lead (Pb). They
both have two p electrons in their outer shell, but Pb is much further down
the periodic table than C and has a value of Z4 which is nearly five orders
of magnitude larger. Carbon (configuration: 2p2) can be treated with L-S
coupling, so using Hund's rules we deduce that 5 = 1 (rule 1 is 'maximize
S' so combining the two electrons gives 1/2 + 1/2), L = 1 (rule 2 is 'maximize
L' and because the electrons are p electrons one of them can have ml = 1, but
then the next one must be mi = 0) and J = 0 (rule 3, less than half full so
J = |1 — 1|), so that the term symbol for the ground state of C is 3P0.
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In Pb (configuration: 6p2) the spin-orbit interaction is the dominant energy
and it is more appropriate to use j-j coupling. Each electron has 5 = 1/2 and
/ = 1 and so the combination j can be 1/2 or 3/2, depending on the sign of the
spin-orbit energy. It turns out that this actually leads to j = 1/2. Both electrons
will have j = 1/2 and these can couple via weaker electrostatic effects to make
a resultant J which could be 0 or 1. The ground state is J = 0 because of the
Pauli exclusion principle (because the two electrons have otherwise identical
quantum numbers and therefore must be kept apart in an antisymmetric state),
so that the good quantum numbers for the ground state are j1 = 1/2, j2 = 1/2 and
J = 0. Note that L and S are not good quantum numbers in this case. (Good
quantum numbers are defined in Appendix C.)

2.6 Adiabatic demagnetization

In this section we will describe a technique which can be used to cool samples
down to very low temperature, and which uses some of the ideas we have
developed about paramagnetic materials. This brings out the idea of entropy
rather clearly. Consider a sample of a paramagnetic salt, which contains N in-
dependent magnetic moments. Without a magnetic field applied, the magnetic
moments will point in random directions (because we are assuming that they
do not interact with each other) and the system will have no net magnetization.
An applied field will however tend to line up the magnetic moments and
produce a magnetization. Increasing temperature reduces the magnetization,
increasing magnetic field increases the magnetization, emphasized by the fact
that the magnetization is a function of B/T (see eqns 2.37 and 2.38).

At very high temperatures, the magnetic moments all point in random
directions and the net magnetization is zero. The thermal energy kBT is so
large that all states are equally populated, irrespective of whether or not the
state is energetically favourable. If the magnetic moments have J = 1/2 they
can only point parallel or antiparallel to the magnetic field: hence there are
W = 2N ways of arranging up and down magnetic moments. Hence the
magnetic contribution to the entropy, S, is

In the general case of J > 1/2, W = (2J + 1)N and the entropy is

To calculate the entropy at a lower temperature, one needs a different
approach. The probability p ( m J ) that the z axis component of the total angular
momentum of an ion takes the value my is proportional to the Boltzmann factor
e x p ( - m J g u B B / k B T ) so that

where Z is the partition function (given in eqn 2.32). The amount of order of
this system can be described by the entropy S and because we are now treating
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the system probabilistically, we use the expression:

Alternatively, the equation for the entropy can be generated by computing
the Helmholtz free energy, F, via F = — Nk B T In Z and then using S —
-(0F/0T)B.

Let us now explore the consequences of eqn 2.59. In the absence of an
applied magnetic field, or at high temperatures, the system is completely
disordered and all values of mJ are equally likely with probability p ( m J ) =
1 / ( 2 J + 1) so that the entropy 5 reduces to

in agreement with eqn 2.57. As the temperature is reduced, states with
low energy become increasingly probable; the degree of alignment of the
magnetic moments parallel to an applied magnetic field (the magnetization)
increases and the entropy falls. At low temperatures, all the magnetic moments
will align with the magnetic field to save energy. In this case there is only
one way of arranging the system (with all spins aligned) so W = 1 and
S = 0.

The principle of magnetically cooling a sample is as follows. The param-
agnet is first cooled to a low starting temperature using liquid helium. The
magnetic cooling then proceeds via two steps (see also Fig. 2.15).

Fig. 2.15 The entropy of a paramagnetic salt
as a function of temperature for several dif-
ferent applied magnetic fields between zero
and some maximum value which we will call
Bb. Magnetic cooling of a paramagnetic salt
from temperature Ti to Tf is accomplished
as indicated in two steps: first, isothermal
magnetization from a to b by increasing the
magnetic field from 0 to Bb at constant tem-
perature Ti; second, adiabatic demagnetiza-
tion from b to c. The S(T) curves have been
calculated assuming J = 1/2 (see eqn 2.76). A
term oc T3 has been added to these curves to
simulate the entropy of the lattice vibrations.
The curve for B = 0 is actually for B small
but non-zero to simulate the effect of a small
residual field.
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The first step is isothermal magnetization. The energy of a paramagnet
is reduced by alignment of the moments parallel to a magnetic field. At a
given temperature the alignment of the moments may therefore be increased
by increasing the strength of an applied magnetic field. This is performed
isothermally (see Fig. 2.15, step a –> b) by having the sample thermally
connected to a bath of liquid helium (the boiling point of helium at atmospheric
pressure is 4.2 K), or perhaps at reduced pressure so that the temperature can
be less than 4.2 K. The temperature of the sample does not change and the
helium bath absorbs the heat liberated by the sample as its energy and entropy
decrease. The thermal connection is usually provided by low pressure helium
gas in the sample chamber which conducts heat between the sample and the
chamber walls, the chamber itself sitting inside the helium bath. (The gas
is often called 'exchange' gas because it allows the sample and the bath to
exchange heat.)

The second step is to thermally isolate the sample from the helium bath
(by pumping away the exchange gas). The magnetic field is then slowly
reduced to zero, slowly so that the process is quasi-static and the entropy is
constant. This step is called adiabatic demagnetization (see Fig. 2.15, step
b -> c) and it reduces the temperature of the system. During the adiabatic
demagnetization the entropy of the sample remains constant; but the entropy
of the magnetic moments increases (as the moments randomise as the field
is turned down) which is precisely balanced by the entropy of the phonons
(the lattice vibrations) which decreases as the sample cools. Entropy is thus
exchanged between the phonons and the spins.

Does this method of cooling have a limit? At first sight it looks like the
entropy for B = 0 would be S = NkB In(2J + 1) for all temperatures
T > 0 and therefore would fall to zero only at absolute zero. Thus adiabatic
demagnetization looks like it might work as a cooling method all the way to
absolute zero. However, in real systems there is always some small residual
internal field due to interactions between the moments which ensures that the
entropy falls prematurely towards zero when the temperature is a little above
absolute zero (see Fig. 2.15). The size of this field puts a limit on the lowest
temperature to which the salt can be cooled. In certain salts which have a very
small residual internal field, temperatures of a few milliKelvin can be achieved.

2.7 Nuclear spins

It is not only the electrons in an atom which have a magnetic moment. The
nucleus often has a non-zero spin resulting from the angular momentum of the
nucleus. For each nucleus there is a quantum number, /, called the nuclear
spin quantum number which represents the total angular momentum of the
nucleus in units of h. However this magnetic moment is very small since
its size scales with the inverse of the mass of the particles involved: nuclear
moments are thus typically a thousand times smaller than electronic moments
(most are between 10-3 and 10 - 4uB). The small size and absence of any
strong interaction between nuclei in adjacent atoms precludes the ordering of
nuclear spin systems at ordinary laboratory temperatures.
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Table 2.3 Properties of some common nuclear spins. Listed first are
the neutron (n), proton (p), deuteron (d) and triton (t). Z is the atomic
number (the number of protons), N is the number of neutrons, and
nucleus X is listed as AX where A = Z + N is the mass number. / is
the nuclear spin quantum number, u is the nuclear magnetic moment
measured in nuclear magnetons (uN) and gI is the nuclear g-factor.
The frequency v at which these moments precess in a field of 1 T is
shown in the final column.

Nucleus

n

p=1H

d=2H

t=3H
12C
13C
14N

16
O

17O
19F

3lp

33S

Z

0

1
1
1
6

6

7

8

8

9

15

16

N

1

0

1

2

6

7

7

8

9

10

16

17

/

1

1

1
1
2
0
1
2
1

0
5

1

1

3
2

u/uN

-1.913

2.793

0.857

-2.128

0

0.702

0.404

0

-1.893

2.628

1.132

0.643

81

-3.826

5.586

0.857

4.255

0

1.404

0.404

0

-0.757

5.257

2.263

0.429

v (in MHz

for B = 1 T)

29.17

42.58

6.536

32.43

0

10.71

3.076

0

5.772

40.05

17.24

3.266

The unit of nuclear magnetism is the nuclear magneton uN defined by

where mp is the mass of the proton. (This is much smaller than the magnetic
moment of a 1s electron which is given by the Bohr magneton uB = eh/2me =
9.27 x 10-24 A m2, where me is the mass of the electron, see eqn 1.15.)
The nuclear spin quantum number / takes one of the following values:
0, 1/2, 1, 3/2, 2 , . . . The component of angular momentum in the z-direction is
given by mI in units of h where mI can take one of the following values:

The magnetic moment of a nucleus takes a value, resolved along the z-direction
for the spin state with the largest value of mI, of

where gI is the nuclear g-factor, a number of the order of unity which reflects
the detailed structure of the nucleus. Values of I, gI and u are shown for
selected nuclei in Table 2.3. Neither the magnetic moments of the neutron or
the proton are simple multiples of uN. This is indicative of the complicated
internal structure of each particle; both the neutron and the proton are each
composed of three quarks. For a proton I = 1/2 and gI =5.586. and so its
magnetic moment is uP = 1.410 x 10-26 Am2.
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Normally we ignore nuclear magnetism: the magnetic moments which exist
from the protons in water do not make water stick to the poles of magnets
(in fact water is mainly weakly diamagnetic, due to the clouds of electrons
in the water molecules). However we can detect the magnetic moments of
nuclei by doing experiments which use very sensitive resonant techniques.
This experimental method, known as nuclear magnetic resonance, is discussed
in Section 3.2.1.

Example 2.4

Many common nuclei have no magnetic moment at all, for example the com-
monest forms of carbon and oxygen, 12C and 16O. This is because both of these
nuclei have an even number of protons and neutrons; pairs of identical particles
in a nucleus tend to pair up as singlets. Non-zero magnetic moments are found
in nuclei with unpaired nucleons. Thus 13C has an unpaired neutron and has
I = 1/2, 14N has an unpaired neutron and an unpaired proton and these combine
to give I = 1. Though the commonest isotopes of carbon and oxygen have no
nuclear moments, the next most common isotopes of these two nuclei do have a
magnetic moment (about 1.1% of natural carbon is 13C and about 0.04% of nat-
ural oxygen is 17O; both of these do have a non-zero moment, see Table 2.3).

2.8 Hyperfine structure

Inside an atom the nuclear moment can magnetically interact with the elec-
tronic moment but only very weakly. This leads to energy splittings which are
even smaller than the fine structure discussed in Section 2.5.1, and so is known
as hyperfine structure. The weak magnetic interactions between the nucleus
and the electrons are known as hyperfine interactions. Their origin is rather
complex, but the essential principle can be understood in the following way.
Consider a nuclear magnetic moment u which sits in a magnetic field Belectrons

which is produced by the motion and the spin of all the electrons. This produces
an energy term —u Belectrons. Now Belectrons is expected to be proportional to
the total angular momentum of all the electrons, J, so that the Hamiltonian for
the hyperfine interaction can be written as

Here I is the nuclear angular momentum and A is a parameter which can
be determined from experiment and measures the strength of the hyperfine
interaction.

The precise form of the hyperfine interaction is complicated for a general
atom, but can be worked out in detail for a single-electron atom interacting
with a point nucleus (see Exercise 2.8). Here we treat the problem in outline
only to illuminate the basic mechanism of the interaction.

There are two types of magnetic interaction that are important. The first
is the magnetic dipolar interaction which will be discussed in more detail in
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Section 4.1, The dipolar interaction between a nuclear moment u1 = gIuII
and an electronic moment ue = geuBS is given by Hdipoie where

If both moments are aligned with the z axis, this reduces to to Hdipole oc (1 —
3 cos2 0)Iz- sz r3 and hence leads to an interaction energy which is proportional
to

an expression which vanishes in the case of an s orbital. This is essentially
because a dipole field averages to zero over a spherical surface, as can be
understood from Fig. 2.16.

The spherically symmetric s orbital wave function averages this to zero. The
integral does not vanish however for an unpaired electron in an orbital w i t h
l > 0 such as a p orbital. Our treatment has also only considered the spin part
of the electronic moment; the orbital moment of (he electron also produces a
magnetic field at the nucleus which gives a term proportional to I L. (All of
the terms come out in the wash in the treatment of Exercise 2,8.)

The second mechanism is the Fermi contact interaction, which in contrast
to the previous mechanism which vanished for an s orbital, vanishes for every
orbital except an s orbital. Here we consider what happens to eqn 2.66 when
r —> 0. The nucleus is not of course a point dipole, but has a finite volume,
let us call it V We further assume15 that the nucleus is a sphere of uniform
magnetization M = u1/v. The magnetic flux density inside this sphere is
then u0M, hut we must first subtract the demagnetization field which for a
sphere is u0M/3 (see Appendix D) leaving a flux density equal to 2u0M/3.
Thus an electron which ventures inside the nuclear sphere would experience a
magnetic flux density

so that the energy COM can be obtained by multiplying this by ue|y(0)|2 V, the
amount of electronic moment which is in the nucleus (note that |ir(0)|2V is
the probability of rinding the electron inside the nucleus). Thus the energy cost
Econtact is then

where I have used ue = -2uBS and uI = gIuII. The net field experienced
by the electron inside the nucleus can also be understood with reference to
Fig. 2.16. Only s-electrons have any amplitude at r = 0 and so only they show
this effect. The hyperfine splitting caused by the Fermi contact interaction
for s-electrons tends to be much larger than the hyperfine splitting due to the
magnetic dipolar effect for electrons with / > 0.

As shown in Exercise 2.8 the form of the hyperfine interaction which
includes both dipolar and Fermi contact terms is quite complicated but
essentially consists of a constant times I . S for s-elecirons (I = 0) and I • N for

This assumption is used just to make the
calculation simple. It actually gives the right
answer, hut a better treatment is given in
Exercise 2.8.

Fig. 2.16 A schematic diagram of the mag-
netic f ield distribution inside and outside of
a magnetic nucleus (assumed spherical and
shaded in the diagram). The magnetic field
distribution is caused by a current which
flows around the equator of the sphere shown
shaded in the figure. Outside the sphere the
magnetic field appears to be due to a point
dipole at the centre of the sphere and averag-
ing the field over a spherically symmetric vol-
ume gives Zero; the f i e ld is as often pointing
up as it is pointing down. Inside the nuclear
sphere, the field is on average pointing up and
does not average to zero over a spherically
symmetric volume. This is the origin of the
Fermi contact interaction.
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electrons with l > 0, where N = L - S + 3(S • r)/r2. For s-electrons, J = S
and so the interaction agrees with eqn 2.64. It turns out that N can be projected
on to J so that the expected value of I • N is proportional to I • J (the constant
of proportionality is L(L + l ) / J ( J + 1) for a single electron atom) so that
eqn 2.64 is also appropriate for electrons with / > 0.

The total angular momentum F of the atom, i.e. of the combination of the
nucleus and the electron, is given by

The quantum number F can take values |J — I | , . . . , J + I — 1, J + I. Most
of the next few lines closely follow the treatment of the spin-orbit interaction.
Using eqn 2.70, we can show that

and since the hyperfine interaction takes the form AI • J, the expected value of
this energy is

The hyperfine interaction can be added as a perturbation, and it splits the
electronic levels up into different hyperfine structure levels labelled by F. Each
of these levels has a degeneracy of 2F + 1, so that these states can be split up
into their different mF values by applying a magnetic field. The splitting of
the different hyperfine structure levels also follows a relationship known as
the Lande interval rule by direct analogy with eqn 2.53. The energy separation
between adjacent levels E(F) and E(F — 1) is therefore given by

Thus the splitting is proportional to F, the larger of the two quantum numbers
of the adjacent levels being considered. This is illustrated in the following
example.

Fig. 2.17 An illustration of the hypefine split-
ting for nuclei with (a) I = 1/2, J = 1/2 and (b)
/ = 1, J = 2. The quantum number F can
take values | J - I | J + I-1, J + 1. The
energy of each state is obtained by A/2 [F(F +
l)-I(I+l)-I(I+1)]. Each hyperfine state,
labelled by F, has a degeneracy of 2F + 1,
and these states can be split up into their
different mF values by applying a magnetic
field B. Note that the Lande interval rule is
obeyed. The size of the splitting in a magnetic
field depends on the value of F, I and J via
a g-factor for the quantum number F which
is given approximately by gF = g J [ F ( F +
1) + J(J + 1) - /(/ + \)/2F(F + 1)].

Example 2.5

This effect is demonstrated for two examples in Fig. 2.17. Atomic hydrogen in
the ground state contains one proton (I = 1/2) and one electron (J = S = 1/2)
so that F = 0 or 1 (this example is shown in Fig. 2.17(a)). The energy
splitting between these states is extremely small, about 6 orders of magnitude
smaller than typical electronic energies, and corresponds to an electromagnetic
frequency of about 1420 MHz, or a wavelength of about 21 cm. This transition
is the basis of the atomic hydrogen maser and is also important in astronomy.
Astronomers call this HI emission. If the concentration of atomic hydrogen
in space is not so great that H2 molecules can form, emission of radiation
at 21 cm can be produced thermally (since the energy required is less than
the temperature of the cosmic microwave background, see Fig. 3.8). This is
Doppler shifted if the gas is moving with respect to the Earth, so that the
rotation of gas within different regions of distant galaxies can be measured
from the Earth. It can also be used for our own Galaxy, the Milky Way.
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A more complex example is shown in Fig. 2.17(b), for an atom with I = 1
and J = 2. This shows that the Lande interval rule is obeyed as the size of the
splitting between two adjacent levels scales with the value of F for the upper
level.

Further reading

• B. H. Bransden and C. J. Joachain, Physics of atoms and
molecules, Longman 1983, provides extensive informa-
tion on isolated atoms.

• Useful background information may also be found in P.
W. Atkins, Molecular quantum mechanics, OUP 1983.

• Also useful is the comprehensive book by A. Abragam
and B. Bleaney, Electron paramagnetic resonance of
transition ions, Dover 1986.

• D. J. Griffiths, Introduction to electromagnetism, Pren-
tice Hall 1989 provides a readable account of magneto-
static fields in matter.

• A discussion of the merits of classical versus quantum
mechanical derivations of diamagnetism is given in S. L.
O'Dell and R. K. P. Zia, American Journal of Physics 54,
32(1986).

Exercises
(2.1) Calculate the diamagnetic orbital susceptibility of a gas

of hydrogen atoms (with number density 1020 m-3) in
the ground state, and compare this with the paramagnetic
spin susceptibility at 100 K.

(2.2) Estimate the diamagnetic susceptibility of a duck (as-
sume it is composed entirely of water). What magnetic
field would be necessary to induce the same magnetic
moment in the duck as is contained in a magnetized iron
filing? Repeat the calculation for a cow.

(2.3) Calculate the paramagnetic moment of a crystal (with
dimensions 2 mm x 2 mm x 2 mm) of CuSO4 5H2O (see
Table 2.1, density 2286 kg m - 3 , relative molecular mass
249.7 g) in a field of 1 T at 10 K.

(2.4) Using the expressions for the partition function and the
Helmholtz function of a spin-1/2 particle in a magnetic
field B from eqns 2.29 and 2.30 respectively, show that
for n such non-interacting particles per unit volume, the
energy E per unit volume is given by

the heat capacity per unit volume is given by

and the entropy per unit volume is given by

These results are plotted in Fig. 2.8.

(2.5) Generalize the results of the previous problem to the case
of general J . Writing the partition function

where y = xJ — g J u B J B / kBT (see eqn 2.37), show
that the entropy s(y) and the heat capacity at constant
field C(y) as a function of y are given by

where B J(y) is the Brillouin function. Hence show that
for y « 1,
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and as y -> oo, and using these results deduce that

(2.6) Show that Hund's rules for a shell of angular momentum
/ and containing n electrons can be summarized by

The first term in the square brackets is the coupling of the
orbital moment of the electron with the nuclear moment.
The second and third terms are the dipolar coupling of the
spin of the electron with the nuclear moment. The final
term in this equation is equal to the Fermi contact energy
(eqn 2.69).

(2.9) The magnetic susceptibility of platinum is 2.61 x l0-4.
The density of platinum is 21450 kg m-3 and its relative
atomic mass is given by 195.09 g mol -1. Calculate
its molar susceptibility (in m3 mol -1) and its mass
susceptibility (in m3 kg - 1). Using Appendix A, translate
these results into cgs units to find the molar susceptibility
in emu mol -1 and the mass susceptibility in emu g - 1 . To
understand why the magnetic susceptibility of platinum,
a metal, is temperature independent (in contrast with
Curie's law), see chapter 7.

(2.10) Consider a set of spins described by the partition function
in eqn 2.32. The Helmholtz free energy density is F =
U - TS = -nkBT log Z where U = -M • B is the
potential energy density and S is the entropy density. This
can be rearranged to show that

Show that if the magnetic field B is changed by 5B, with
the temperature held fixed, then

so that

(2.7) Find the term symbols for the ground states of the ions
(a) Ho3+ (4f10), (b) Er3+ (4f11), (c) Tm3+ (4f 12), and
(d) Lu3+ (4f14).

(2.8) The magnetic vector potential A at position r due to a
point dipole u at the origin is

Using this in the Hamiltonian for an electron in an atom

and neglecting terms in A , show that the perturbation,
H' = H-H0, to the Hamiltonian H0 = p2/2me + V(r)
due to the presence of a nuclear dipole u = gIuNI is

To prove this you will need the vector identity

where Q is a vector field. Using V2(l/r) = — 4nS(r),
where 5(r) is a delta function, show that
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We have seen in the previous chapter that the magnetic properties of many
crystals containing rare earths can be deduced by considering the rare earth
ions to be behaving as completely free ions without interacting with each
other or their surroundings. However, for magnetic ions in certain crystals
one cannot usually ignore such interactions and for many materials they are
large and significant. In this chapter we will consider the interactions between
an atom and its immediate surroundings. In the following chapter we shall
consider the direct magnetic interactions between a magnetic atom in a crystal
and its neighbouring magnetic atoms.

3.1 Crystal fields 45
3.2 Magnetic resonance

techniques 52

3.1 Crystal fields

To understand the effect of the local environment due to the crystal on the
energy levels of an atom, it is necessary to first review the shapes of the
atomic orbitals. The angular dependences of the electron density of the s,
p and d orbitals are shown in Fig. 3.1. This figure only shows the angular
part of the wave functions for each orbital; there is also a radial part (for
details, see Appendix C). Only s orbitals are spherically symmetric; the others
have a pronounced angular dependence. This is crucial because the local
environments are often not spherically symmetric so that different orbitals will
behave in different ways.

3.1.1 Origin of crystal fields

The crystal field is an electric field derived from neighbouring atoms in
the crystal. In crystal field theory the neighbouring orbitals are modelled
as negative point charges; an improvement on this approximation is ligand
field theory which is essentially an extension of molecular orbital theory that
focusses on the role of the d orbitals on the central ion and their overlap
with orbitals on surrounding ions (ligands). The size and nature of crystal
field effects depend crucially on the symmetry of the local environment. A
common case to consider is the octahedral environment. This is because in
many transition metal compounds a transition metal ion sits at the centre of
an octahedron with an ion such as oxygen on each corner. The crystal field
in this case arises mainly from electrostatic repulsion from the negatively
charged electrons in the oxygen orbitals. Diagrams of both an octahedral and
a tetrahedral environment are shown in Fig. 3.2.

The d orbitals fall into two classes, the t2g orbitals which point between the
x, y and z axes (these are the dxy, dxz and dyz orbitals) and the eg orbitals which
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Fig. 3.1 The angular distribution of the s, p
and d orbuals. The d z2 and d y2-y2 levels^- \j -.. y-
are grouped together and called the eg levels.
The d r i . , d,;- and dv levels are grouped
Logelhcr and ealled the t2g levels. The d2

orbital is sometimes referred to as d2 (.;.

Fig. 3.2 A metal atom ,M in an (a) octahedral
and (b) tetrahednd envinrnment. The octahe-
dral environment is found in many transition
metal oxides where oxygen anions sit on the
corners of an octahedron with the m e a l atom
at the centre. The tctrahedral environment
ean be conveniently described by considering
alternate corners of a cube as shown.
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point along these axes (the dT2 orbital, which has lobes which point along the
z axis and the dx2-y2 orbital, which has lobes which point along both the x-
and y-axes). Suppose a cation containing ten d electrons is placed in the centre
of a sphere of radius r which is uniformly negatively charged. The d orbitals
will all be degenerate in this spherically symmetric environment, though the
presence of the charge will raise the energy of the entire system. Now imagine
the charge on the sphere to collect into six discrete point charges, each lying
at the vertex of an octahedron, but still on the surface of the sphere. The total
electronic energy of all the d orbitals will not change, but the d orbitals will no
longer be degenerate. What has now been created is an octahedral environment.

To demonstrate that the environment affects the orbitals in different ways,
consider Fig, 3.3 which shows, in plan view, two different d orbitals in an
octahedral environment (this is the projection of Fig. 3.2(a) on to the xy plane).
The crystal field is largely produced by p orbitals on neighbouring atoms.
It is clear that the dxy orbital (Fig. 3.3(a)) has a lower overlap with these
neighbouring p orbitals than the d x 2 _ y 2 orbital (Fig, 3.3(b)) and hence will
have a lower electrostatic energy.

In an octahedral environment, neighbouring positive charges congregate at
the points (±r. 0,0), (0. ±r, 0) and (0, 0, ±r), the three orbitals dxy, dyz, dx

which point between the x, y and z axes will be lowered in energy, but the Ax2
and d x 2 _ y 2 which point along the x, y and z axes will be raised in energy. The
five levels therefore split as shown in Fig. 3.4(a), with the threefold t2s levels
lowered in energy and the twofold eg levels raised in energy.

If the local environment is something other than octahedrally symmetric, the
crystal field may even work in the opposite sense. For example, in a tetrahedral
environment, the orbitals which point along the axes now maximally avoid the
charge density associated with the atoms situated on four of the corners of the
cube which describe a tetrahedron (see Fig. 3.2(b)), Thus in this tetrahedral
case the two-fold eg levels are lower in energy (see Fig. 3,4(b)).

Fig, 3.3 The crystal field originines from an
electrostatic interaction. (a) The dxs orbital
is lowered in energy with respect to (b) the
dx2- y2 orbital in an octahedral environment.

Fig. 3.4 The crystal field in an (a) uctahedral
and (b) terrahedriil environment.
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If one is dealing with a transition metal ion in which not all 3d electrons are
present, those that are present will fill the lowest (in this case the t2g) levels
before filling the ex levels. However, the precise order in which the orbitals fill
depends on the competition between the crystal field energy and the Coulomb
energy cost of putting two electrons in the same orbital, which is known as the
pairing energy and is usually positive. If the crystal field energy is lower than
the pairing energy (known as the weak-field case), then as the electrons are
added to the system, they will first singly occupy each orbital before any orbital
becomes doubly occupied. If on the other hand the crystal field energy is larger
than the pairing energy (the strong-field case), electrons will doubly occupy the
lower energy orbitals before they consider scaling the dizzy energetic heights
of the higher energy orbitals. These cases are illustrated in Fig. 3.5.

If one is dealing with octahedral environments, there is never any doubt
about how to add the electrons if you are dealing with adding 1, 2, 3, 8, 9 or
10 electrons. The interesting cases occur with 4, 5, 6 or 7. This will now be
illustrated for the case of adding six electrons, as would be appropriate for an
Fe2+ ion (see also Fig. 3.5).

Example 3.1

The Fe2+ ion has a 3d6 shell. The pairing energy is positive. In the weak-field
case, one would fill each orbital once which would leave one electron to spare;
this could then be reluctantly paired up with one of the t2g electrons. This
would leave four unpaired electrons and a 5 = 2 state (see Fig. 3.5(a)). This is
known as a high-spin configuration. In the strong field case, all six electrons
are shoe-horned into the three t2g orbitals leaving the eg orbitals unfilled. Since
there are no unpaired electrons, the system has 5 = 0 (see Fig. 3.5(b)). This is
known as a low-spin configuration.

In some materials with Fe2+ it is possible to initiate a spin transition
between the low-spin and high-spin configurations using temperature or
pressure or even light irradiation.

Fig. 3.5 Electronic configurations for the (a)
high-spin (weak-field) and (b) low-spin

(strong-field) cases for a 3d6 ion, e.g. Fe2+.

3.1.2 Orbital quenching

The expected magnetic ground states for 3d ions are shown in Table 3.1. It
is a simple matter to calculate the values of 5, L and J by following Hund's
rules as outlined in Section 2.5. However, as mentioned there, the values of
the predicted moment given by gj [J(J + I)]1/2 do not always appear to agree
with experiment. The exception to this is the case of 3d5 and 3d10 for which
there is a half or completely full shell of electrons so that L = 0.

The reason for this discrepancy is that for 3d ions the crystal field interaction
is much stronger than the spin-orbit interaction. Hence Hund's third rule as
stated in Section 2.5, which is based upon the fact that spin-orbit interaction
is the next most significant energy term after Coulombic effects, is actually
wrong. The data appear to suggest that these systems instead choose a ground
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Tible 3.1 Magnetic ground states for 3d ions using Hund's rules. For each
ion, the shell configuration and the predicted values of S, L and J for the
ground state are listed. Also shown is the calculated value of p = ueff/uB

for each ion using Hund's rules predictions. This is given the symbol p\ =
gJ [J(J+1)1/2 and the next column lists the experimental values pexp which
are derived from measurements on paramagnetic salts containing the relevant
ions. This agrees much better with P2 = 2[S(S + 1)]1/2, which assumes
orbital quenching, so that L = 0, J= S and gJ = 2.

state such that L — 0 (so that J = S, gJ = 2) and hence

As shown in Table 3.1, this produces a much better degree of agreement with
experiment. This effect is known as orbital quenching and the orbital moment
is said to be quenched. For 4f ions, the orbitals are much less extended away
from the nucleus and lie beneath the 5s and 5p shells so that the crystal field
terms are much less important and Hund's third rule is obeyed. The situation in
the higher transition metal ions (the 4d and 5d series) is less clear-cut because
the heavier ions have a larger spin-orbit splitting and the effects of the crystal
field and the spin-orbit interaction can be comparable.

For the case of the 3d ions where spin-orbit interactions can be effectively
ignored, let us consider the orbital quenching effect in more detail. The
crystal field in an octahedral environment is given by a constant plus a
term proportional to x4 + y4 + z4 - fr4 + O(r6/a6) (see Exercise 3.2),
and is therefore a real function. This is typical of crystal-field Hamiltonians
which can be expressed by real functions (without differential operators) and
therefore the eigenfunctions of the Hamiltonian are all real. Now the total
angular momentum operator L is Hermitian and so has real eigenvalues but
the operator itself is purely imaginary.1 Thus if we have a non-degenerate
ground state |0) (non-degenerate so that we can't play tricks by making linear
combinations with it and another ground state) which is realized by the crystal-
field splitting it must be a real function. Therefore (0|L|0) must be purely
imaginary because L is purely imaginary. But since L is Hermitian, <0|L|0>
must be purely real. It can only be purely real and purely imaginary if

Equation C.23 shows that the angular mo-
mentum operator is L = -ir x V which is
purely imaginary.

ion

Ti3+, V4+

V3+

Cr3+, V2+

Mn3+,Cr2+

Fe3+,Mn2+

Fe2+

Co2+

Ni2+

Cu2+

Zn2+

shell

3d1

3d2

3d3

3d4

3d5
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3

1
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3

2

0
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0
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3
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0
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0
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2 D3/2
3F2

4F3/2

5D0
6S5/2

5D4

4F9/2

3F4

2D5/2

1s0

P1

1.55

1.63

0.77

0

5.92

6.70

6.63

5.59

3.55

0

Pexp

1.70

2.61

3.85

4.82

5.82

5.36

4.90

3.12

1.83

0

P2

1.73

2.83

3.87

4.90

5.92

4.90

3.87

2.83

1.73

0
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so that all components of the orbital angular momentum of a non-degenerate
state are quenched.

This result can be seen in another way. Orbital states which are eigenstates
of LZ with eigenvalue ml have an azimuthal dependence of the form eiml0.
The requirement for real eigenfunctions implies that linear combinations of
states with ±ml must be formed,2 so the resulting state has (Lz) — 0. A
semiclassical interpretation of orbital quenching is that the orbital angular
momentum processes in the crystal field, so that its magnitude is unchanged
but its components all average to zero.

In fact the orbital angular momentum may not be completely quenched
because the spin-orbit interaction is not completely ignorable, even in the 3d
ions. The spin-orbit interaction can be included as a perturbation and in this
case it can mix in states with non-zero angular momentum. This results in a
quenched ground state but with a g-factor which is not quite equal to the spin-
only value of 2, the difference from 2 reflecting the mixed-in L > 0 states.
It can also result in the g-factor being slightly anisotropic so that its value
slightly depends on which direction you apply the magnetic field with respect
to the crystal axes.

3.1.3 The Jahn-Teller effect

We have assumed so far that all we need to do is to work out what kind
of symmetry the local environment has, then deduce the electronic structure

Fig. 3.6 The Jahn-Teller effect for Mn3+

(3d4). An octahedral complex (left) can dis-
tort (right), thus splitting the t2g and eg lev-
els. The distortion lowers the energy because
the singly occupied eg level is lowered in en-
ergy. The saving in energy from the lowering
of the Dxz and dyz levels is exactly balanced
by the raising of the dxy level.

This is to make states with azimuthal de-
pendence such as (cos ml0) or sin(m/0).
Remember that
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and hence figure out the magnetic properties based on how many electrons
there are to fill up the energy levels. Sometimes, however, the magnetic
properties themselves can influence the symmetry of the local environment!
This comes about because it can sometimes be energetically favourable for,
say, an octahedron to spontaneously distort as shown in Fig. 3.6 because the
energy cost of increased elastic energy is balanced by a resultant electronic
energy saving due to the distortion. This phenomenon is known as the Jahn-
Teller effect. For example, Mn3+ ions (which have a configuration 3d4) in an
octahedral environment show this kind of behaviour (see Fig. 3.6). In contrast,
Mn4+ ions (3d3) would not show this effect because there is no net lowering
of the electronic energy by a distortion.

To describe the effect, at least at the phenomenological level, we will assume
that the distortion of the system can be quantified by a parameter Q, which de-
notes the distance of distortion along an appropriate normal mode coordinate.
This gives rise to an energy cost which is quadratic in Q and can be written as

where M and w are respectively the mass of the anion and the angular
frequency corresponding to the particular normal mode. This relation is
plotted in Fig. 3.7(a). Clearly the minimum distortion energy is zero and is
obtained when Q = 0 (no distortion).

The distortion also raises the energy of certain orbitals while lowering the
energy of others. If all orbitals are either completely full or completely empty,
this does not matter since the overall energy is simply given by eqn 3.3. How-
ever, in the cases of partially filled orbitals this effect can be highly significant
since the system can have a net reduction in total energy. The electronic
energy dependence on Q could be rather complicated, but one can write it
as a Taylor series in Q and provided the distortion is small it is legitimate to
keep only the term linear in Q. Let us therefore suppose that the energy of a
given orbital has a term either AQ or — AQ corresponding to a raising or a
lowering of the electronic energy, where A is a suitable constant, assumed to
be positive. Then the total energy E(Q) is given by the sum of the electronic
energy and the elastic energy

where the two possible choices of the sign of the A Q term give rise to two
separate curves which are plotted in Fig. 3.7(b). If we consider only one of
them we can find the minimum energy for that orbital using dE/dQ = 0
which yields a value of Q given by

and a minimum energy which is given by Emin = —A 2 /2Mw 2 which is less
than zero. If only that orbital is occupied, then the system can make a net
energy saving by spontaneously distorting.

What we have been considering so far is essentially a static Jahn-Teller
effect because the distortion which can spontaneously occur is fixed on a
particular axis of an octahedron. However, the distortion can switch from one

Fig. 3.7 (a) The energy of an octahedral
complex as a function of the distortion Q
according to eqn 3.3. (b) The energy of an
octahedral complex as a function of the dis-
tortion Q according to eqn 3.4.
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axis to another at higher temperatures, giving rise to a dynamic John-Teller
effect. Another type of dynamic effect involves rapid hopping of the distortion
from site to site. This is important in, for example, materials which contain a
mixture of Mn3+ and Mn4+ ions. Such phenomena can be detected by their
effect on magnetic resonance data.

A further effect is that in certain materials (e.g. DyVCU), below a certain
critical temperature, a Jahn-Teller distortion of each complex can occur
cooperatively throughout the crystal. This is known as a cooperative Jahn-
Teller transition.

This concludes our discussion of the effect of the crystal field. In the rest
of this chapter there follows a description of various experimental techniques
which can be used to study the interaction of a magnetic moment with its
environment.

3.2 Magnetic resonance techniques

The local environment of a magnetic moment is determined by the crystal
fields, but spin-orbit couplings and hyperfine interactions with the nuclei also
play an important role in controlling the electronic structure. These effects
can be studied by using a variety of experimental techniques which involve
magnetic resonance. These experimental techniques will be described in the
remainder of this chapter.

We have already seen in Section 1.1.2 how the application of a magnetic
field to a magnetic moment can induce precession of that magnetic moment
at an angular frequency given by |yB| where y is the gyromagnetic ratio. A
system of magnetic moments in a magnetic field can absorb energy at this
frequency and thus one may observe a resonant absorption of energy from
an electromagnetic wave tuned to the correct frequency. This is magnetic
resonance and it can take a number of different experimental forms, depending
on what type of magnetic moment is resonating. The appropriate frequency of
the electromagnetic wave depends on the sizes of both the magnetic field and
the magnetic moment. Figure 3.8 summarizes the range of electromagnetic
radiation as a function of frequency for a range of different units. It can be used
for reference and referred to throughout the following discussion as necessary.

3.2.1 Nuclear magnetic resonance

The most commonly used form of magnetic resonance is nuclear magnetic
resonance (NMR). This technique is greatly employed in medical imaging,
where it goes by the name of magnetic resonance imaging (MRI) to avoid
the use of the dreaded word "nuclear". Some people may be devastated to
discover that the average human body contains over 1027 nuclei; by mass we
are ~99.98% nuclear! MRI measures NMR in the protons in a patient's body
and provides a safe, non-invasive technique of yielding detailed cross-sectional
images.

To perform any NMR experiment, one needs a nucleus with a non-zero spin.
Nuclei which are commonly studied include 1H (proton), 2H (deuteron) and
13C. In a simple NMR experiment (see Fig. 3.9), a sample is placed inside
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Fig. 3.8 The electromagnetic spectrum. The energy of a photon is shown as a temperature T = E / k B in Kelvin and as an energy E in eV. The

corresponding frequency f is shown in Hz and. because the unit is often quoted in speclroscopy, in c m - 1 . The cm -1 scale is marked with some
common molecular transitions and excitations (the typical range for molecular rotations and vibrations are shown, together with the C-H bending
and stretching modes). The energy of typical II and a bonds are also shown. The wavelength y = c/f of the photon is shown (where c is the
speed of light). The particular temperatures marked on the temperature scale are TCMB (the temperature of the cosmic microwave background), the
boiling points of liquid Helium (He ) and nitrogen (N2), both at atmospheric pressure, and also the value of room temperature. Other abbreviations
on this diagram are IR = infrared, UV = ultraviolet. R = red, G = green, V = violet. The letter H marks 13.6 eV, the magnitude of the energy of
the Is electron in hydrogen. The frequency axis also contains descriptions of the main regions of the electromagnetic spectrum: radio, microwave,
infrared (both 'near' and 'far'), optical and UV.

Fig. 3.9 Schematic diagram of an NMR
experiment. The sample sits inside a radio
frequency (RF) coil which produces an oscil-
lating RF field. A highly homogenous static
magnetic held is provided by a magnet. The
static field BO and the oscillating field B, are
perpendicular 10 each other. In a real experi-
ment, the sample would be much smaller than
is shown here so that it experiences a uniform
field from the RF coil.

a coil which is mounted between the pole pieces of a magnet. The magnet
produces a magnetic field BO along a particular direction, say the £-direction.
We have already seen that the quantity ml, the z component of the angular
momentum of the nucleus, can only take integral values between —I and /.
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The positive charge of the nuclei and the
negative charge of the electron is responsible
for the differing signs in the expressions:

This corresponds to a ladder of 21 + 1 equally spaced levels with mutual
separation gNuN B o . as illustrated in Fig. 3.10(a) for the case I =3/2, as
found in Na or Cu.4 Exciting transitions between adjacent pairs of levels with
a radiofrequency (RF) field is the basis of nuclear magnetic resonance. The
RF field BI is applied in the x-direction, and leads to a perturbation of the
system which is proportional to B 1 I X . The matrix element of the perturbation
is proportional to ( m ' j \ I x \ m I ) and is zero unless m', = ml ± 1. The allowed
transitions are therefore described by the selection rule,

which implies that only transitions between adjacent states may occur. In the
most common arrangement, the RF coil not only produces the excitation, but
is itself part of a tuned circuit with a large Q factor. As transitions are excited
in the nuclei by the RF field, energy is transferred between the RF circuit and
the sample, and this results in small changes of the Q factor of the circuit.

There are two ways to perform the experiment: you could keep the frequency
of the RF field constant and vary the magnetic field or you could keep the
magnetic field constant and vary the frequency of the RF field. It is usually the
former which is performed. A crucial factor is to have a highly homogeneous
magnet to produce the constant field B0. If this is not the case, different parts
of the sample will sit in slightly different magnetic fields and will come into
resonance at slightly different points of the magnetic field sweep, causing the
measured resonance to be extremely broad, maybe so much that it is washed
out altogether.

Example 3.2

For a proton, I = 1/2 and m1 can take the values ±1/2 only, as illustrated in
Fig. 3.10(b). The two states of the system are separated by an energy A.E =
gNuN B which is tiny: for a proton in a typical laboratory magnetic field BO ~
1 T this corresponds to an energy splitting of ~ 10-7 eV; when this energy is
expressed as kBT it is equivalent to a temperature of only ~ 1 mK.

Fig. 3.10 (a) The four levels from an / = |
nucleus, (b) In the simpler case of an / =
5 nucleus, there are just two levels. These
two nuclear levels are separated by an energy

AE = gN/iNBg; the lower (uPPer) level
corresponds to the nuclear magnetic moment
lying parallel (antiparallel) to the magnetic
field % Therefore at room temperature, at this magnetic field, the nuclei will show

only a minute tendency to line up with the applied magnetic field on average
because the thermal randomizing energy will vastly dominate over the weak
alignment energy. Any effect due to the magnetism of the nuclei would be
practically impossible to detect if a resonant technique were not employed.
Because in NMR one is perturbing the system with a RF signal of exactly5 the
right frequency w given by

Actually you do not have to get it exactly
right. You can be plus or minus the linewidth
which can be determined by various factors,
including variations in the magnetic field at
the nucleus due to the dipolar field produced
by neighbouring nuclei.

we can excite transitions across this energy splitting. Why do we need
radiofrequencies? The next example shows why.

for the nuclear and electronic moments re-
spectively.

For the time being, we set J = 0 and thus
ignore the electron spin.

The energy E of the nucleus is the energy of a magnetic moment3 u in the
magnetic field BO, and thus E = —u. BO so that
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Example 3.3

For a magnetic field of 1 T, the frequency v is given by

which is in the radiofrequency region of the electromagnetic spectrum.

This means one can use oscillators and coils (in comparison with electron
spin resonance experiments which have to use Gunn diodes and microwave
waveguides, see Section 3.2.2). Therefore at exactly the right frequency of
RF excitation the system will absorb energy. This is the nuclear magnetic
resonance and is a resonance between the frequency of the RF excitation and
the energy separation of the nuclear levels. Modern NMR spectrometers use
12-15 T magnets, so the frequency of the RF is in the ~500-650 MHz range,
still in the radio frequency region of the electromagnetic spectrum.

The NMR resonance frequency at a given magnetic field can be slightly
shifted up and down from the value yB/2n depending on the chemical
environment of the nucleus. These chemical shifts (typically a few parts per
million) are due to the fact that the electrons orbiting the nucleus slightly
shield the nucleus from the applied field. The amount by which a nucleus is
shielded in a given chemical environment is well known, allowing a given
molecule to be 'fingerprinted'. NMR lines can split due to magnetic coupling
to neighbouring nuclei. This is known as spin-spin coupling and occurs via an
indirect contact hyperfine interaction which is mediated by the electrons. This
also gives information about the environment of the nucleus.

In order to understand the transitions which we are inducing in a little more
detail, let us consider how a two-level spin system (I = 1/2) will absorb energy
from the RF coil. We will label the lower level — and the upper level +. The
probability of inducing a transition between the two levels is independent of
whether the transition is from the lower to the higher level or vice versa. This
is because the perturbing Hamiltonian "H oc Ix, appropriate for an oscillating
RF field, is Hermitian, so that

Hence the probability per unit time of these so-called stimulated transitions
between levels + and — is independent of the direction of the transition and
occurs at a rate W which is proportional to the size of the RF power used to
excite transitions. At time t, if there are N- (t) spins in the lower level, WAL. (t)
will be excited per unit time into the upper level. If there are N+ (t) spins in the
upper level, WN+(t) will be excited per unit time into the lower level. Thus
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which when subtracted gives

which can be solved to give

An initial difference in population tends exponentially to zero when driven by
a stimulated electromagnetic transition. Let us now define n(t) by

so that eqn 3.14 becomes

The rate of absorption or emission of electromagnetic energy by the spin
system is easily calculated since each transition involves an exchange of energy
equal to hw. The energy of the system at time t is

where EL is the energy of the lower level. This expression for E(t) can be
rearranged to give a constant term plus 1/2hwn(t). Thus the rate of absorption
of energy is given by

and, because it is proportional to n(t), will tend to zero with a time constant of
1/2W as the populations of the upper and lower levels become progressively
equalized. This demonstrates also that to absorb energy you need n(t) ^ 0,
i.e. a population difference. This is produced by interaction with the thermal
modes of the system, so that the polarization of the system is brought back
towards a Boltzmann probability expression:

Here, the subscript 0 denotes the equilibrium value of the system. After
absorption of energy the polarization may change, but if the nuclear spin
system interacts with the thermal motion and excitations of the sample, the
polarization of the spin system can return towards its equilibrium value.
If the polarization of the spin system has been reduced to zero by rapid
electromagnetic transitions, the spin system will take some time to 'recover'
once the electromagnetic transitions are switched off; this time is called T\
and measures the time constant of the interaction between the spin system
and its surroundings. T\ is the spin-lattice relaxation time (sometimes called
the longitudinal relaxation time). Thus we would expect that the polarization
would be restored as
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Fig. 3.11 The rate of absorption of elec-
tromagnetic energy given by eqn 3.25 as a
function of the transition rate W. For low W,
the expression is proportional to W, but at
high W it saturates at a value governed by
i/r,.

Now let us put both processes in together, the stimulated transitions and the
relaxation processes. Thus we may combine our equations to arrive at

which has a steady state solution when

Thus

and the steady state rate of absorption of electromagnetic energy is given by

This relation is plotted in Fig. 3.11. For low-amplitude RF perturbing fields,
the rate of absorption of electromagnetic energy is proportional to W. But
at large RF perturbing fields, it settles at a level proportional to T\, and
independent of the precise magnitude of W. This is known as saturation.

The rate of absorption of electromagnetic energy is proportional to the pop-
ulation difference between the upper and lower levels. The rate of absorption
may therefore be used to monitor the population difference and to observe its
time dependence, subject of course to the constraint that such observation will
necessarily perturb the population difference to some extent. Equation 3.25 and
Fig. 3.11 demonstrate that you can only increase the power of the RF signal so
much to improve the signal. This also demonstrates that dE/dt is proportional
to hw, more energetic (i.e. higher frequency) photons lead to a larger signal.
But of course this means larger magnetic fields to match guNB to hw. This will
prove to be an advantage for ESR (see Section 3.2.2 below) since very beefy
microwave photons are needed to excite transitions across the larger electronic
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gaps, and this leads to a higher sensitivity. Because electronic moments are
larger than nuclear moments, you can get away with smaller magnetic fields
than NMR and still use higher frequency photons.

Let us return to NMR and consider relaxation processes in a little more
detail. In a magnetic field a very weak polarization of the spins will exist (weak
because the energy separation AE << k B T.) Let us say it takes an equilibrium
value MO with the static magnetic field BO switched on (recall that BO is along
the z axis). The effect of the radio frequency excitations will be to progressively
destroy this magnetization. Also, as we have seen, if the magnetic field is
switched off, the magnetization will relax back to the equilibrium value by
the weak interactions with the surroundings with a time constant T1. Thus we
expect that

This T\ relaxation must involve interactions with the lattice because energy
must be exchanged with it. This is because changing Mz has energetic
consequences since relaxing a spin in the z-direction changes its orientation
with respect to the applied field, and hence changes its energy.

The Mx and My components should be zero, but if they are not they will
relax back to zero in a time T2 such that

T2 is the spin-spin relaxation time and is the characteristic time for dephasing
because it corresponds to the interaction between different parts of the spin
system. It can also be due to inhomogeneities in the magnetic field BO- It thus
leads to differences in precession frequency due to the interactions between
the observed spin and the spins of its neighbours. Changing Mx or My has no
energetic consequences because the applied field is along Mz.

The effect of the applied magnetic field is also to cause spin precession, so
that the equations for Mx, My and Mz are

Felix Bloch (1905-1983) which are known as the Bloch equations. They were worked out in 1946 and
can be solved for a number of cases of interest, very often by using a rotating
reference frame method in which the coordinates are changed to ones which
rotate in the xy plane at the resonance frequency.

The spin-spin relaxation time T2 can be measured using the following tech-
nique: in thermal equilibrium with B\ switched off, there is a weak magnetiza-
tion parallel to z. A short pulse of RF signal of duration tp, with the frequency
of the RF signal set close to the resonance frequency of the spins, causes the
spins to rotate by an angle yB 1 t p where B1 is the amplitude of the RF signal.
This angle can be adjusted by changing tp and if tp = I I /2yB\ , it produces
what is known as a 90° pulse. The amplitude and time of the pulse are chosen
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Fig. 3.12 A simulated free induction decay
signal. The oscillations die away with time
due to spin-spin relaxation (Tx processes).
The data show an interference pattern which
results from three inequivalent nuclei, each of
which experiences a slightly different mag-
netic field because of their different sites
within a crystal.

so that the magnetization just precesses for a short period and rotates into
the xy plane. With B\ switched off, the magnetization now precesses in the
static field BO, rotating steadily in the xy plane at a frequency yBo, producing
an induced voltage in the coil. The oscillation would carry on for ever if it
were not for T2 relaxation processes (spin-spin relaxation), which cause the
oscillations to relax, thereby giving a measurement of T2. The corresponding
decay of voltage in the coil is known as free induction decay (see Fig. 3.12).

One problem that occurs is that this method also measures relaxation due
to the inhomogeneity of the magnet because this will cause different parts of
the sample to give slightly different precession frequencies. What is needed is
a method to separate the real spin-spin relaxation from the relaxation due to
the inhomogeneity of the magnet. One way this can be achieved is to use a
spin echo technique. The principle of this technique is illustrated in Fig. 3.13
and involves both a 90° pulse (which tips the spins by 90° into the xy plane
as before) and the subsequent application of a 180° pulse (which rotates the
spins by 180°). The effect can be likened to a marathon in which all athletes
run steadily but some athletes are faster than others. After the starter's pistol
(the 90° pulse) the athletes begin to run as a pack, but after a while the fitter
begin to lead while others begin to trail behind. Then suddenly, at time r, the
rules of the game are changed (the 180° pulse) and the runners are told to
turn around and head for the start of the race. Now the slower runners have an
advantage since they are closer to the start. But by symmetry it is easy to see
that the runners will all arrive at the start of the race simultaneously, at time
2r, regardless of their individual speeds. In the same way, all the spins realign
after 2r, regardless of their individual dephasing. This is the spin echo.

Thus in the experiment we can use the spin echo to remove the problem
that the magnetic field is inhomogeneous causing spins to process at different
rates. Also the spread in fields due to chemical shifts is removed. But we will
not have taken away the effect of the spin-spin interaction which is due to
time-dependent fluctuating random magnetic fields due to neighbouring nuclei.
This relaxation mechanism cannot be refocussed and so the echo signal will be
reduced in amplitude by an amount which depends on T. The NMR intensity
of the echo signal should follow I(2r) = I(0)e~2r/T2 and so a measurement
of the true T2, due to the spin-spin coupling, is possible.

A measurement of T1 can be performed using a similar method, though this
time a 180° pulse is applied first. This causes the magnetization to rotate from



60 Environments

Fig. 3.13 The spin echo effect, (a) The equilibrium magnetization initially lies along the z
direction, parallel to B0. (b) At a time which we will call t = 0, a 90° pulse along the x axis
is used to rotate the spins into the xy plane, (c) Because of the steady field B0 along the z axis, the
spins now precess in the xy plane, though at slightly different rates because of inhomogeneities in
the magnetic field, (d) This means they progressively dephase with respect to each other, becoming
more separated in angle as they precess round, (e) At time t = r, a 180° pulse along the x axis
rotates the spins by 180° around the x axis, and as they subsequently precess in the field B0, their
order has been reversed, (f) They then will come back together at time 2r, producing a spin echo
signal, provided no other relaxation process has occurred in the meantime. Although the figure has
been drawn for the case of a short delay between the 90° pulse and the 180°, the effect will work
if the delay is long and the spins make a number of rotations before the 180° pulse is applied.

along z to along —z. It then relaxes back to z with a time constant T\ but does
not precess. Thus as a function of time r after the 180° pulse

At a time r after the 180° pulse, a 90° pulse is used to rotate the magnetization
into the xy plane where it now begins to do a free induction decay with initial
amplitude Mz(r). Thus by measuring the initial amplitude of the free induction
decay as a function of the time delay between the 180° pulse and the 90° pulse,
T\ can be deduced. A variety of other pulse sequences can also be used to
extract additional types of information.

3.2.2 Electron spin resonance

One can perform the analogous experiment to NMR with electrons. In this case
the effect is known as electron spin resonance (ESR), or sometimes as elec-
tron paramagnetic resonance (EPR). The electron magnetic moment is much
larger than that of nuclei so the precession frequencies are also much higher.
For typical laboratory magnetic fields, the electromagnetic radiation is now
in the microwave regime. A schematic of the experimental setup is shown in
Fig. 3.14. The sample sits in a resonant cavity and microwave radiation enters
via a waveguide. It is usually much more convenient to keep the frequency of

Fig. 3.14 Schematic diagram of an ESR
experiment. Microwaves enter a cavity via a
waveguide and the absorption of microwaves
induced by a resonance is measured by mon-
itoring the Q-factor of the cavity. The sample
must be placed in the centre of the magnet,
where the field is most clearly uniform.
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Fig. 3.15 ESR in an ion with J = 1 such
as Ni2+ with (a) no crystal field splitting
(leading to a single ESR line) and (b) crystal
field splitting A (leading to two ESR lines).

the microwave radiation fixed and to sweep the magnetic field. The cavity has
a very high quality factor (Q-factor) and is designed to enhance the sensitivity
of the detection of the weak ESR signal. The microwave absorption is modified
as a function of the applied magnetic field. Very often a set of modulation
coils is added to provide a small oscillatory magnetic field at the sample in
addition to the static magnetic field provided by the magnet. The measurement
can then be further enhanced by a phase sensitive detection technique.6

In an ESR transition the selection rule is

the familiar dipole selection rule because one is inducing magnetic dipole
transitions. Figure 3.15 shows these transitions in an ion with J = 1 such
as Ni2+ in an octahedral environment. The experiment is performed at fixed
frequency hv with the magnetic field swept. Every time two adjacent levels
are separated by hv, there is an ESR transition. Figure 3.15 demonstrates how
the position and the number of lines can give information about the crystal
field splitting.

Figure 3.16 shows the energy of a free Mn2+ ion (spin-|) as a function of
magnetic field. At a magnetic field B this gives a number of possible transitions
between the different mj levels, all of which have size g u B B . Thus a single
line might be expected to be observed in an ESR experiment at a frequency
v given by hv = guB

B. However, in a real experiment on a solid containing
Mn2+ ions, the crystal field significantly complicates this picture, even in a
cubic environment.

However, the hyperfine coupling between the nucleus and the electron gives
a term in the Hamiltonian equal to AI • J and each mj level is split into 21 +
1 hyperfine levels depending on the value of mI. In an ESR transition the
selection rules are therefore given by eqn 3.32 and by

Fig. 3.16 The energy of a spin-5/2 magnetic
moment, such as a free Mn2+ ion, as a
function of magnetic field. The possible tran-
sitions with the selection rule AmJ = ±1
are as shown. This picture ignores the crystal
field.

6A lock-in amplifier is used to produce a
signal which drives the oscillatory magnetic
field. The microwave signal is then fed into
the lock-in amplifier, which rejects any com-
ponent of this signal which is not at the
frequency of the oscillatory magnetic field. In
this way the noise is drastically reduced.
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This is because the energy spacing between
the nuclear levels is very small in comparison
with the energy of the microwave photons.

The latter selection rule occurs because the microwave frequency induces
only dipole transitions between electronic levels, not between nuclear levels.7

Since A is very small in comparison with guBB for typical fields in an ESR
experiment, one need only compute the components of J parallel to B so that
the energy levels in a magnetic field are

where the energy of the nuclear spin in the applied magnetic field has been
ignored (since it is much smaller even than the hyperfine energy). Using the
selection rule, one can now show that the resonances should occur at

and each ESR line will split up into 21 + 1 hyperfine lines.

Example 3.4

For the case of a free Mn2+ ion, I = 5/2, so this means six lines in the ESR
spectrum. This situation is depicted in Fig. 3.17 (although for a Mn2+ ion in a
crystal, the crystal field causes the splittings to be more complex and to depend
on the angle between the magnetic field and the crystal axes in a non-trivial
way).

ESR experiments probe electronic spins in a useful range because crystal
field splittings are very often at GHz frequencies. ESR studies in paramagnetic
salts have provided a great deal of detailed information concerning the crystal
and ligand fields. Very often the effect is anisotropic so that lines move as the
magnetic field is rotated with respect to the crystal axis.

Example 3.5

As an example of how this information can be obtained, consider Ce3+ (4f1)
in an environment with axial symmetry (see Fig. 3.18). This ion has L — 3
and 5 = 1/2 so the spin-orbit interaction splits this into an eightfold degenerate
J = I level and a lower sixfold degenerate J=5/2. The crystal field is axial
and contains only even powers of Jz by symmetry, so the sixfold J = 5/2
manifold (as a group of lines are called) splits up into three doublets, and
the eightfold J = 7/2 manifold into four. These splittings are much smaller
than the spin-orbit interaction in rare earth systems. The doublets can be
split by applying a magnetic field which is almost always the smallest energy
term for typical laboratory magnetic fields, usually around 10-4 eV. At low
temperature, only the ground state will be occupied and it is this transition
which will be observed.
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The ground state of many systems is, like Ce3+, a doublet. This is a
consequence of Kramers theorem, which states that in a system containing
an odd number of electrons, at least two-fold degeneracy must remain in the
absence of a magnetic field. The pairs of states involved, Kramers doublets,
are time conjugate8 and therefore can be split by a magnetic field but not by an
electric field. Ce3+ (4f1) has an odd number of electrons in the 4f shells and
therefore qualifies as a Kramers ion.

The ground state of Ce3+ is a Kramers doublet and, viewed in isolation,
looks like a spin-5 state, although its quantum numbers are very different.
It can in fact be assigned an effective spin 5 = 1/2. This is a fictitious angular
momentum which is chosen so that the degeneracy of the group of levels under
consideration is set equal to (25 + 1). The motivation for this substitution
is to find an effective spin Hamiltonian that approximately describes the
experimental situation in the language of something much simpler, namely
a free atom or ion with spin- 1/2. This Hamiltonian can be written

Fig. 3.17 The hyperfine splitting in a free

Mn 2+ ion at a fixed magnetic field. J = 5/2

and I = 5/2 so each of the six m j levels is
split into six hyperfine levels. The possible
transitions with AmJ = ±1 and AmI = 0
are shown, giving rise to six distinct lines
in the ESR spectrum. This picture ignores
the effect of the crystal field which leads to
these splittings becoming strongly dependent
on the direction of the applied magnetic field
with respect to the crystalline axes.

Hendrik A. Kramers (1894-1952)

8
that is, they are complex conjugates of each

other, and are thus time reversed versions of
each other.
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Fig. 3.18 The energy levels for a Ce3+ ion.
The dominant energy splitting is the spin-
orbit interaction (this energy corresponds to
about 3000 K so the upper manifold is not ap-
preciably thermally excited). The two man-
ifolds are split into sets of doublets by an
assumed axial crystal field. The crystal field
splittings have been exaggerated in this dia-
gram so that they are easily observable. The
lower splitting is ~5 meV which corresponds
to about 50 K. Finally an applied magnetic
field splits all the doublets (only the lower
one is shown split here).

where g is now an effective g-factor (sometimes called a spectroscopic splitting
factor) which would be equal to 2 for a real isolated spin-1/2 electron but
includes the orbital contribution in this case. Very often one needs to use an
effective g-tensor, g, to express the fact that the interaction of the spin with the
field depends on the orientation of the magnetic field, so that eqn 3.36 must be
replaced with

The effect of the crystal field can then be included by adding in a term to
the Hamiltonian to represent the energetic preference for the spin to lie along
particular crystalline directions because of the crystal field. This is known as
single ion anisotropy and the term in the Hamiltonian, HsI, is

for a uniaxial crystal (i.e. one with a particular axis such that the energy just
depends on the angle of the spin with that axis) and for a cubic crystal

where D is an anisotropy constant.
ESR is useful not only in studying the physics of salts with paramagnetic

ions but is used extensively in chemistry. The resonances can also be extremely
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sensitive to atomic position in a molecule and the technique is greatly used
in the study of chemical reactions and particularly of free radicals, which are
atoms or fragments of molecules with an unpaired electron and are often highly
reactive. Free radicals are of great environmental and biological importance.
ESR is not as widely used as NMR because it is applicable only to materials
with an unpaired spin.

Example 3.6

One example of a field in which ESR is very useful is in studies of
various biological molecules which often contain transition metal ions. An
important example is haem, an iron porphyrin group, which is found in
haemoglobin and myoglobin. These molecules are involved in transfer of
oxygen and other small molecules such as carbon monoxide. The Fe(II)
ion in the haem converts from 5 = 2 to 5 = 0 after binding to the
small molecule (this is an example of a spin transition, see Section 3.1.1).

The spin-lattice relaxation times in ESR are often very short in comparison
with those of NMR; this is because the electronic moment is much more
strongly coupled to lattice vibrations than are the nuclei. Lattice vibrations
cause a modulation in the crystal field which couples to the electronic moment
via the spin-orbit interaction, often making T\ so short that the resulting ESR
line is too broad to observe. (The width of the line scales as T1

-1 ). A favourable
case is Mn2+ which is an S-state ion (3d5, 6S5/2) and therefore has no orbital
moment to which the spins can couple and ESR can be observed easily in
this ion at room temperature. For other transition metal ions, the size of T\
depends on the degree of orbital quenching.9 The resonance can be narrowed
(T\ increased) by cooling the sample, since this reduces the lattice vibrations.
This also has the benefit of increasing the relative thermal population of the
levels which increases the intensity of the resonance.

A variant of ESR is a technique called ENDOR (an acronymn for Electron
Nuclear DOuble Resonance) which can be used to measure hyperfine interac-
tion constants and the nuclear Zeeman interaction with great precision. It is
often impossible to measure directly NMR transitions between nuclear levels
in paramagnetic salts because they are very weak. In ENDOR one uses both
an RF signal and a microwave signal and capitalizes on the high sensitivity of
ESR. The microwave power is tuned to a AmI = 0 transition and the ESR
signal then depends on the relative population of those levels. The populations
can be changed by using RF power tuned to the NMR transition. The NMR
transition can then be detected via its effect on the ESR signal.

3.2.3 Mossbauer spectroscopy

Another form of spectroscopy is based upon the Mossbauer effect which was
discovered in 1957. The principle of the experiment is illustrated in Fig. 3.19. A
source containing 57Co nuclei provides a ready supply of excited 57Fe nuclei;
these decay to the ground state via a gamma ray cascade which includes a

The more completely the orbital moment
is quenched towards zero, the smaller the
coupling of the electronic moment to the
lattice vibrations and this leads to a longer T1

and hence a narrower ESR line.
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Fig. 3.19 Schematic illustration of the prin-
ciples of the Mossbauer technique. 57Co de-
cays slowly into an excited state of the 57Fe
nucleus. The majority (91%) of the subse-
quent decay is rapidly to the I = 3/2 state

which then decays to the I = 1/2 ground state.
This decay releases a 14.4 keV photon. The
experiment is performed by moving the Co
source at a speed v relative to the sample
which must contain some 57Fe nuclei. The
detector measures the transmission of y-rays
through the sample which can be used to
deduce the absorption.

14.4 keV gamma ray (corresponding to a frequency v = 3.5 x l018 Hz). This
gamma ray can excite a transition in the sample being studied if it is absorbed
resonantly. To do this, its energy must match the energy gap in the sample. By
moving the source at speed v one can very slightly adjust the frequency of the
gamma ray because of the Doppler effect. Because of the high frequency of the
photon, the Doppler shifts can be quite significant: a velocity v = 1 mm s-1

leads to a shift of vv/c ~12 MHz. Thus one can probe any splittings in
the ground state in the source or absorber nucleus which might result from
magnetic or other interactions.

The technique would be useless if the y ray photon emitted by the excited
57Fe nucleus did not have a well denned frequency. This is why the relatively
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slow decay of the 57Fe nucleus is vital: the rather plodding 0.2 uS half-life
corresponds to an uncertainty of only about 2 MHz in the frequency. A second
vital feature is that the 57Fe atoms are in the solid state. In order to conserve
momentum, a free Fe atom would be subject to a recoil velocity of the order
of hv/mFec ~80 m s-1 which would ruin the experiment (we have seen
that even a relative velocity of 1 mm s-1 can produce a measurable effect).
However a 57Fe atom which is held rigidly in a solid transmits that momentum
to the entire crystal. If the recoil energy is lower than a certain quantity, the
probability of phonon emission becomes vanishingly small and the gamma ray
can be emitted without any loss of recoil energy. This recoil-free emission and
resonant absorption of y-rays is the essence of the Mossbauer effect.

The conditions described above therefore imply that the effect will be
optimized for low-energy y-rays associated with nuclei strongly bound in
a crystal lattice at low temperatures. 57Fe is not the only isotope which is
ideal for this purpose (other isotopes which can be used include 119Sn, 127I,
151Eu, and 197Au) but it is the most commonly used. The raw result which one
obtains from a Mossbauer measurement is a plot of y-ray counts (or relative
absorption) against the velocity of the source with respect to the absorber.

Why should this effect tell us anything about the sample? For a start, the
resonant absorption may not occur exactly where you would expect it to (i.e.
when the source is stationary), but may be slightly shifted (i.e. to when the
source is moving at a particular velocity). This isomer shift is due to the
slight change in the Coulomb interaction between the nuclear and electronic
charge distributions over the nuclear volume which is associated with the slight
increase of size of the 57Fe nucleus in the I = 3/2 state.

Furthermore, one may not necessarily just observe one resonant absorption
line as a function of source velocity, but perhaps a number of lines. This
can be due to quadrupole splitting or magnetic splitting. The first effect is
due to the electric quadrupole moment of the excited 57Fe nucleus (although
the ground state of 57Fe has I = 1/2 and thus has no electric quadrupole
moment, the excited state of interest has / = | and nuclei with / > 3
can have a non-zero quadrupole moment). If the nucleus is subjected to an
electric field gradient, as may be found in certain crystal environments, the
interaction between the nuclear quadrupole moment and the electric field
gradient splits the excited I = 3/2 state into a doublet, so that two lines
are produced in the Mossbauer spectrum. The second effect is caused by
the interaction between the nucleus and the local magnetic field. This can
split the I = 1/2 ground state into a doublet, and the excited I = 3/2
into a quadruplet, leading to six possible lines in the Mossbauer spectrum
(the selection rule is Aml = 0, ±1). This effect can be used to detect
magnetic exchange interactions and local magnetic fields. All these shifts and
splittings are illustrated schematically in Fig. 3.20. Note that the figure is
not (and could not be) drawn to scale. The observed splittings are typically
in the range 107-108 Hz and are therefore 11 or 12 orders of magnitude
smaller than the energy gap between the ground (/ = 5) and excited state
(I = 3/2) of the 57Fe nucleus. Putting this another way, one is measuring
energy splittings of less than 1 ueV with a 14.4 keV photon! Were it not
for the Mossbauer effect, the remarkable recoil-free resonance absorption and
emission of these y rays, such experiments would be completely impossible.

Rudolf L. Mossbauer (1929-)
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Fig. 3.20 The effects of chemical shift,
quadrupole splitting and magnetic splitting
on the nuclear energy levels of 57Fe. The
arrows show the Mossbauer absorption tran-
sitions. The difference in the size of the
transitions is greatly exaggerated; in reality
they typically differ from each other by less
than 1 part in 1011.

3.2.4 Muon-spin rotation

The muon is a spin-1/2 particle (charge ±e, mass 250me) which has a lifetime
of 2.2 us. The muon is found in nature as the dominant constituent of cosmic
rays arriving at sea-level. Muons can be used to study the magnetic properties
of samples, but cosmic rays do not provide a sufficiently intense source. For
this purpose it is therefore necessary to use the more intense beams of muons
available from synchrotrons and cyclotrons.

A technique called muon-spin rotation (often abbreviated to uSR) will now
be described in some detail. It is important to realize that in sharp contrast
to the neutron and X-ray techniques that will be discussed later in the book,
scattering is not involved; muons are implanted into a sample of interest and
reside there for the rest of their short lives, never to emerge again. It is the
positrons into which they decay that are released from the sample and yield
information about the muons from which they came.

The mass of the muon is intermediate between that of the electron and the
proton, and thus so are its magnetic moment and gyromagnetic ratio. The muon
comes in either charge state, although it is the positive muon, u+, which is of
particular use in experiments in magnetism. As a small, positively charged
particle, it is attracted by areas of large electron density and stops in interstitial
sites in inorganic materials or bonds directly on to organic molecules. By
contrast the negative muon, u-, implants close to an atomic nucleus and is
generally much less sensitive to magnetic properties.
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Muons can be prepared by colliding a high energy proton beam with a
suitable target which produces pions. The pions (II+) decay very quickly
(26 ns) into muons

so that if one selects the muons arising from pions which have stopped
in the target, the muon beam emerges completely spin-polarized. This is
because the neutrino (v u ) which is also produced has its spin antiparallel
to its momentum; the pion has no spin, so the muon must have its spin
antiparallel to its momentum and hence emerges spin-polarized. These muons
can then be implanted into a sample but their energy is large, at least 4 MeV.
Following implantation they lose energy very quickly (in 0.1-1 ns) to a few
keV by ionization of atoms and scattering with electrons. A muon then begins
to undergo a series of successive electron capture and loss reactions which
reduce the energy to a few hundred eV in about a picosecond. If muonium
(see Fig. 3.21), a hydrogen-like state consisting of u+ and e-, is ultimately
formed then electron capture ultimately wins and the last few eV are lost by
inelastic collisions between the muonium atom and the host atoms. All of these
effects are very fast so that the muon (or muonium) is thermalized very rapidly.
Moreover the effects are all Coulombic in origin and do not interact with
the muon-spin so that the muon is thermalized in matter without appreciable
depolarization. This is a crucial feature for muon-spin rotation experiments.
One may be concerned that the muon may only measure a region of sample
which has been subjected to radiation damage by the energetic incoming muon.
This does not appear to be a problem since there is a threshold energy for
vacancy production, which means that only the initial part of the muon path
suffers much damage. Beyond this point of damage the muon still has sufficient
energy to propagate through the sample a further distance, thought to be about
1 um, leaving it well away from any induced vacancies and interstitials.

In a uSR experiment the muons are stopped in the specimen of interest and
decay after a time t with probability proportional to e-t'/Tu where Ju = 2.2 us
is the lifetime of the muon. The muon decay is a three-body process

The decay involves the weak interaction and thus has the unusual feature of
not conserving parity. This phenomenon (which also lies behind the negative
helicity of the muon neutrino) leads to a propensity for the emitted positron
(e+) to emerge predominantly along the direction that the muon-spin was
aligned along when the muon decayed.

The angular distribution of emitted positrons is shown in Fig. 3.22 for the
case of the most energetic emitted positrons. In fact positrons over a range of
energies are emitted so that the net effect is something not quite as pronounced.
In an experiment a magnetic field can be applied perpendicular to the initial
muon-spin direction. This can cause the muon-spin to precess. By repeating
the experiment for many muons, one can therefore follow the polarization of an
ensemble of precessing muons with arbitrary accuracy, provided one is willing
to take data for long enough. A schematic diagram of the experiment is shown
in Fig. 3.23(a). Consider a muon, with its polarization aligned antiparallel to
its momentum, which is implanted in a sample. (It is antiparallel because of

Fig. 3.21 Muonium, a hydrogen-like state
consisting of u+ and e-.

Fig. 3.22 The angular distribution of emitted
positrons with respect to the initial muon-
spin direction. The expected distribution for
the most energetically emitted positrons is
shown.
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the way that it was formed, see above, so the muon enters the sample with its
spin pointing along the direction from which it came.) If the muon is unlucky
enough to decay immediately, then it will not have time to precess and a
positron will be emitted preferentially into the backward detector. If it lives
a little longer it will have time to precess so that if it lives for half a revolution
the resultant positron will be preferentially emitted into the forward detector.
Thus the positron beam from an ensemble of processing muons can be likened
to the beam of light from a lighthouse.

The time evolution of the numbers of positrons detected in the forward and
backward detector are described by the functions Np(t) and N B ( t ) respectively
and these are shown in Fig. 3.23(b). Because the muon decay is a radioactive
process these two terms sum to an exponential decay. Thus the time evolution
of the muon polarization can be obtained by examining the normalized
difference of these two functions via the asymmetry function A(t), given by

and is shown in Fig. 3.23(c). The muon is produced with 100% spin polariza-
tion so that, in contrast with NMR, one does not need to use tricks with pulses
to observe a free induction decay. The muon will undergo Larmor precession
in a magnetic field, internal or external. This precession can be followed by
measuring the asymmetry. The frequency of precession is directly related to
the magnetic field via CD = yuB where yu = ge/2mu — 2n x 135.5 MHz T-1

is the gyromagnetic ratio for the muon and mu is its mass (here g ~ 2).
Implanted muons in magnetically ordered materials therefore precess in the
internal magnetic field and directly yield oscillating signals whose frequency is
proportional to the internal magnetic field. In this respect the muon behaves as
a microscopic magnetometer. The Larmor precession frequencies for the pro-
ton (for NMR), electron (for ESR) and muon (for uSR) are shown in Fig. 3.24.

The large magnetic moment of the muon makes it very sensitive to extremely
small magnetic fields (down to ~ 10-5 T) and thus is useful in studying

Fig. 3.23 (a) Schematic illustration of a uSR
experiment. A spin-polarized beam of muons
is brought to rest in a sample S. Following
decay, positrons are detected in either a for-
ward detector F or a backward detector B. If
a transverse magnetic field H is applied to the
sample as shown then the muons will precess.
(b) The number of positrons detected in the
forward (broken-line) and backward (solid-
line) detectors. The dotted line shows the av-
erage of the two signals, (c) The asymmetry
function.

Fig. 3.24 The Larmor precession frequency
/ in MHz (and the corresponding period T =
I/f) for the electron, muon and proton as a
function of applied magnetic field B.
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small moment magnetism. It is also valuable in studying materials in which the
magnetic order is random or of very short range. Since muons stop uniformly
throughout a sample, each signal appears in the experimental spectrum with a
strength proportional to its volume fraction, and thus the technique is helpful in
cases where samples may be multiphase or incompletely ordered. Because no
spatial information is obtained (in contrast to diffraction techniques considered
later) single-crystal samples are not essential (though they can be useful in
certain cases) and experiments can often provide information on the magnetic
order of certain materials where conventional magnetic neutron diffraction
cannot be simply performed. To extract quantitative information from uSR
experiments it is necessary to know the muon-site and this can in some cases
hinder the search for a straightforward interpretation of the data. (In NMR of
course the nucleus localizes the protons rather well so you exactly know the
location of your probe.) Usually there is a small set of possible interstitial sites
which the muon can occupy and in favourable circumstances only one will be
consistent with the observed data. The technique has been widely applied to
magnetic materials.

Further reading

• A good introduction to NMR may be found in P. J. Hore,
Nuclear magnetic resonance OUP 1995. Also extremely
useful is B. Cowan, Nuclear magnetic resonance and
relaxation CUP 1997. The classic text on NMR is A.
Abragam, Principles of nuclear magnetism OUP 1961.

• A. Abragam and B. Bleaney, Electron Paramagnetic
Resonance of Transition Ions, Dover 1986, provides
extensive information about crystal fields and ESR ex-
periments in paramagnetic salts.

• The crystal field can be considered using the so-called
Stevens operators, see K. W. H. Stevens, Proc. Phys.
Soc. A 65, 209 (1952) and M. T. Mulchings, Solid State
Physics 16, 227 (1966).

• For further information on the M6ssbauer effect see
Mossbauer spectroscopy, edited by D. P. E. Dickson and
F. J. Berry, CUP 1986.

• For further information on uSR see S. J. Blundell,
Contemp. Phys. 40, 175 (1999).

Exercises
(3.1) A Sc++ ion has one electron in the 3d shell. It is in an

anisotropic crystal and the crystal field can be written as
a potential acting on the 3d electron as Al2

z. What are
the lowest orbital states of the Sc ion if A > 0 and if
A < 0? The spin-orbit coupling A.1 • s is much smaller
than the crystal field. When this is included, what are
the approximate ground states of the ion, for A < 0 and
A > 0? Discuss the effect on these states of applying a
small magnetic field along the z axis and perpendicular
to the z axis, and sketch the temperature dependence of
the susceptibility.

(3.2) Equal point positive charges are placed on each of the
six comers of an octahedron. Taking the origin of a

set of cartesian coordinates to be at the centre of the
octahedron, show that the potential close to the centre is
given by

where q is the magnitude of each charge and a is the
distance between the origin and each charge.

(3.3) A compound has n transition-metal ions per unit volume,
and each ion sits in a crystal field of the form
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which acts as a perturbation on the degenerate d levels.
We can choose the unperturbed wave functions in a
variety of ways, so let us begin by picking eigenfunctions
of Lz, labelling them by their eigenvalue ml. Thus

where R(r) is the radial part of the wave function which
includes a normalization constant. A general state of the
system can be written as |lr> = E2

mj = - 2 a j \ J ) and then
specified as a vector:

In this basis show that

where A is a constant and show that the eigenvalues and
eigenfunctions are:

eigenvalues :

eigenfunctions :

A magnetic field B induces a splitting HftBmi so that V
becomes

Calculate the eigenvalues and eigenvectors in this case.
A plot of the eigenvalues is shown in Fig. 3.25.

Also show that at low temperatures, kBT « A, the
magnetic susceptibility in vanishing magnetic field is
equal to

the first case being temperature independent and small,
while the second case is equivalent to that expected for a
free ion with l = 1.

Fig. 3.25 A crystal field splits an ion with / = 2 into a triplet and
an excited singlet. A magnetic field B splits these states further.
The eigenstates as listed refer to vanishing magnetic field (as the
field increases, the higher state acquires progressively more |2)
character and the lower state acquires progressively more | — 2)
character).

(3.4) An ion, whose nucleus has zero nuclear spin, has a
ground state comprising two degenerate levels corre-
sponding to an effective spin S = 1/2. The application of
a magnetic field of flux density B produces a separation
of the levels which is linear in B. A single electron
paramagnetic resonance line is observed for the ion at a
frequency of 30 GHz and a magnetic flux density of 0.6 T.
An isotope with non-zero nuclear spin I gives rise to
a hyperfine structure (described in the spin-Hamiltonian
by a term AI S) comprising four approximately equally
spaced resonance lines, with separation 10-2 T, symmet-
rically disposed about the line due to the isotope with
zero nuclear spin. What information does this give about
(a) the nuclear spin and (b) the nuclear magnetic moment
of the isotope? Calculate the value of the parameter A.

Why is it sometimes necessary to perform these measure-
ments at low temperature?

(3.5) Figure 3.26 shows the magnetic moment per ion plotted
versus B/T for three paramagnetic salts. Show that
eqn 2.9 has the same form as the data at both low and high
B/T. The 3d shells of free Cr3+ and Fe3+ ions contain
three and five electrons respectively, and the 4f shell of
Gd3+ contains seven. Using Hund's rules, calculate the
values of S, L, J and gJ for these ions, and show that
the values you obtain account well for the data in the
figure for Gd3+ and Fe3+, but not for Cr3+. Infer the
actual g-factor and ground-state quantum numbers for
Cr3+ from the experimental data, and describe briefly
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the reason for the discrepancy between the data and your
initial calculation.

Show that for two electrons in a triplet state (S = 1)
in this system, the energy eigenstates E can be obtained
from

Find and sketch the solutions for 6 = 0 and 6 = n/2.
Illustrate the possible photon transitions for ha) > D and
hence show how the parameters g||, g_ and D could be
obtained by measuring ESR for 9 = 0 and 9 = n/2.

(3.9) In the Mossbauer effect a 14.4 keV photon is emitted
from an 57Fe atom. Calculate the velocity of recoil for
a free 57Fe atom and a 57Fe atom that is rigidly held in
the lattice of a 10 mg crystal. What is the Doppler shift
of the 14.4 keV photon in each case? A sharp line in a
Mossbauer experiment was obtained when the relative
velocity between source and sample was 2 mm s-1.
Calculate the corresponding frequency shift in Hz and
cm-1 and also the energy shift in eV.

(3.10) The average muon lifetime is 2.2 us; assuming that
a measurable fraction of muons live for 20 µs, what
lower limit does this put on the internal field that can
be measured. In a typical experimental run, 107 muons
are measured. Of these, how many live for 20 µs or
longer? Pulses of muons are produced by a synchrotron
with a pulse-width of 50 ns. What upper limit does this
put on the internal magnetic field in a specimen that
can be measured? (Hint: consider the precession signal
resulting from the muons at the back and the front of
the pulse.) At a cyclotron, a continuous beam of muons
can be produced which avoids this problem. An ordered
magnetic oxide has an internal field of 0.4 T at the
interstitial site which is occupied by an implanted muon.
What precession frequency do you expect to be measured
in this case?

(3.11) The saturation moment of an Fe3+ ion (6S5/2) in a
crystal is expected to be 5µB (see Fig. 3.26). But the
effective moment deduced from the susceptibility mea-
surements is expected to be 5.92µB (see Table 3.1). Why
the difference?

Fig. 3.26 The magnetic moment per ion for three paramag-
netic salts: KCr(SO4)2.12H2O (Cr3+), NH4Fe(SO4)2.12H2O
(Fe3+) and Gd2(SO4)3.8H2O (Gd3+). After W. Henry, Phys.
Rev. 88, 559 (1952).

(3.6) An NMR spectrometer operates at a frequency of
60 MHz. At what applied magnetic field would you
expect to observe the resonance of 1H, 2H, 13C and 19F
nuclei? (Use the data in Table 2.3.)

(3.7) An ESR spectrometer operates at a frequency of 9 GHz
(known as X-band). What magnetic field would be re-
quired to observe a signal from the unpaired electron
in DPPH (an organic molecule used to calibrate ESR
spectrometers which gives a sharp signal at g = 2).

(3.8) A spin Hamiltonian for a system is given by



Interactions

In this chapter we consider the different types of magnetic interaction which
can be important in allowing the magnetic moments in a solid to communicate
with each other and potentially to produce long range order.

74
74 4.1 Magnetic dipolar interaction

4.1 Magnetic dipolar
interaction

4.2 Exchange interaction

The first interaction which might be expected to play a role is the magnetic
dipolar interaction. Two magnetic dipoles u1 and u2 separated by r have an
energy equal to

which therefore depends on their separation and their degree of mutual
alignment. We can easily estimate the order of magnitude of this effect for
two moments each of u = 1 uB separated by r = 1 A to be approximately
u2/4nr3 ~ 10-23 J which is equivalent to about 1 K in temperature.1 Since
many materials order at much higher temperatures (some around 1000 K), the
magnetic dipolar interaction must be too weak to account for the ordering of
most magnetic materials. Nevertheless, it can be important in the properties of
those materials which order at milliKelvin temperatures.

See Fig. 3.8 for a handy conversion from
energy to temperature.

4.2 Exchange interaction

Exchange interactions lie at the heart of the phenomenon of long range
magnetic order. The exchange effect is subtle and not a little mysterious,
since it seems surprising that one has to go to the bother of thinking about
exchange operators and identical particles when all one is dealing with is a
bar magnet and a pile of iron filings. But this, as so often with the subject
of magnetism, is a demonstration of how quantum mechanics is at the root
of many everyday phenomena. Exchange interactions are nothing more than
electrostatic interactions, arising because charges of the same sign cost energy
when they are close together and save energy when they are apart.

4.2.1 Origin of exchange

Consider a simple model with just two electrons which have spatial coordinates
r1 and r2 respectively. The wave function for the joint state can be written as
a product of single electron states, so that if the first electron is in state Ea (r1)
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and the second electron is in state Eb (r2). then the joint wave function is
Ea(r1)Eb(r2)- However this product state does not obey exchange symmetry,
since if we exchange the two electrons we get Ea(r2)Eb(r1) which is not a
multiple of what we started with. Therefore, the only states which we are
allowed to make are symmetrized or antisymmetrized product states which
behave properly under the operation of particle exchange. This was discussed
in Section 1.3.4.

For electrons the overall wave function must be antisymmetric so the spin
part of the wave function must either be an antisymmetric singlet state xs
(S = 0) in the case of a symmetric spatial state or a symmetric triplet state XT
(S = 1) in the case of an antisymmetric spatial state. Therefore we can write
the wave function for the singlet case Es and the triplet case ET as

where both the spatial and spin parts of the wave function are included. The
energies of the two possible states are

with the assumption that the spin parts of the wave function xs and XT are
normalized. The difference between the two energies is

Equation 1.70 shows how the difference between singlet and triplet states can
be parametrized using S1 . S2. For a singlet state S1 . S2 = -3/4 while for a
triplet state S1 . S2 = 1/4. Hence the Hamiltonian can be written in the form of
an 'effective Hamiltonian'

This is the sum of a constant term and a term which depends on spin. The
constant can be absorbed into other constant energy terms, but the second
term is more interesting. The exchange constant (or exchange integral), J
is defined by

and hence the spin-dependent term in the effective Hamiltonian can be written

If J > 0, ES > ET and the triplet state S = 1 is favoured. If J < 0, ES < ET

and the singlet state S = 0 is favoured. This equation is relatively simple
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to derive for two electrons, but generalizing to a many-body system is far
from trivial. Nevertheless, it was recognized in the early days of quantum
mechanics that interactions such as that in eqn 4.6 probably apply between
all neighbouring atoms. This motivates the Hamiltonian of the Heisenberg
model:Werner Heisenberg (1901-1976)

where Jij is the exchange constant between the ith and jth spins. The factor of
2 is omitted because the summation includes each pair of spins twice. Another
way of writing eqn 4.7 is

Note that in some books, J is replaced by
twice the value used here so that eqns 4.6-
4.8 would become

where the i > j avoids the 'double-counting' and hence the factor of two
returns. Often it is possible to take Jij to be equal to a constant J for nearest
neighbour spins and to be 0 otherwise.

The calculation of the exchange integral can be complicated in general, but
we here mention some general features. First, if the two electrons are on the
same atom, the exchange integral is usually positive. This stabilizes the triplet
state and ensures an antisymmetric spatial state which minimizes the Coulomb
repulsion between the two electrons by keeping them apart. This is consistent
with Hund's first rule.

When the two electrons are on neighbouring atoms, the situation is very
different. Any joint state will be a combination of a state centred on one atom
and a state centred on the other. It is worth remembering that the energy of a
particle in a one-dimensional box of length L is proportional to L - 2 ; this is
a kinetic energy and hence demonstrates that there is a large kinetic energy
associated with being squeezed into a small box. The electrons therefore can
save kinetic energy by forming bonds because this allows them to wander
around both atoms rather than just one (i.e. wander in a 'bigger box'). The
correct states to consider are now not atomic orbitals but molecular orbitals
(see Fig. 4.1). These can be bonding (spatially symmetric) or 'antibonding'
(spatially antisymmetric), with the antibonding orbitals more energetically
costly. This is because the antibonding orbital has a greater curvature and
hence a larger kinetic energy. This favours singlet (antisymmetric) states and
the exchange integral is therefore likely to be negative.

4.2.2 Direct exchange

If the electrons on neighbouring magnetic atoms interact via an exchange
interaction, this is known as direct exchange. This is because the exchange
interaction proceeds directly without the need for an intermediary. Though this
seems the most obvious route for the exchange interaction to take, the reality
in physical situations is rarely that simple.

Very often direct exchange cannot be an important mechanism in controlling
the magnetic properties because there is insufficient direct overlap between
neighbouring magnetic orbitals. For example, in rare earths the 4f electrons
are strongly localized and lie very close to the nucleus, with little probability
density extending significantly further than about a tenth of the interatomic
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Fig. 4.1 Molecular orbitals for a diatomic molecule. The bonding orbital, which corresponds to
the sum of the two atomic orbitals (symmetric under exchange, as far as the spatial part of the
wave function is concerned), is of lower energy than the antibonding orbital, which corresponds to
the difference of the two atomic orbitals (antisymmetric under exchange). This therefore favours
a singlet ground state in which two electrons fill the bonding state and the antibonding state is
empty. This diagram is appropriate for the hydrogen molecule H2 which has a lower energy than
that of two isolated H atoms (E0). Note that the diatomic form of helium, He2, does not form
because the four electrons from two He atoms would fill both the bonding and antibonding orbitals,
corresponding to no net energy saving in comparison with two isolated He atoms.

spacing. This means that the direct exchange interaction is unlikely to be very
effective in rare earths. Even in transition metals, such as Fe, Co and Ni, where
the 3d orbitals extend further from the nucleus, it is extremely difficult to
justify why direct exchange should lead to the observed magnetic properties.
These materials are metals which means that the role of the conduction
electrons should not be neglected, and a correct description needs to take
account of both the localized and band character of the electrons.

Thus in many magnetic materials it is necessary to consider some kind of
indirect exchange interaction.

4.2.3 Indirect exchange in ionic solids: superexchange

A number of ionic solids, including some oxides and fluorides, have magnetic
ground states. For example, MnO (see Fig. 4.2) and MnF2 are both antiferro-
magnets, though this observation appears at first sight rather surprising because
there is no direct overlap between the electrons on Mn2+ ions in each system.
The exchange interaction is normally very short-ranged so that the longer-
ranged interaction that is operating in this case must be in some sense 'super'.

The exchange mechanism which is operative here is in fact known as
superexchange. It can be defined as an indirect exchange interaction between
non-neighbouring magnetic ions which is mediated by a non-magnetic ion
which is placed in between the magnetic ions. It arises because there is a
kinetic energy advantage for antiferromagnetism, which can be understood
by reference to Fig. 4.3 which shows two transition metal ions separated by
an oxygen ion. For simplicity we will assume that the magnetic moment on
the transition metal ion is due to a single unpaired electron (more complicated
cases can be dealt with in analogous ways). Hence if this system were perfectly
ionic, each metal ion would have a single unpaired electron in a d orbital
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Fig. 4.2 The crystal structure of MnO. Near-
est neighbour pairs of Mn2+ (manganese)
ions are connected via O2- (oxygen) ions.

antiferromagnetic

ferromagnetic

Fig. 4.3 Superexchange in a magnetic oxide.
The arrows show the spins of the four elec-
trons and how they are distributed over the
transition metal (M) and oxygen (O) atoms,
M is assumed to have a single unpaired elec-
tron, making it magnetic. If the moments on
the transition metal atoms arc coupled anti-
ieTTOrnagneticslly (a. b, c), the ground state
is (a) and this can mix with excited configura-
tions like (b) and (c). The magnetic electrons
can thus be delocalizcd over the M-O-M
unit, thus lowering the kinetic energy. If the
moments on the metal (M) atoms are coupled
ferromagnetically (d,e,f) the ground state (d)
cannot mix with excited configurations like
(c) and (f) because these configurations are
prevented by the exclusion principle. The
ferromagnetic configuration therefore costs
more energy.

and the oxygen would have two p electrons in its outermost occupied states.
The figure demonstrates that antifcrromagnetic coupling lowers the energy of
the system by allowing these electrons to become delocalized over the whole
structure, thus lowering the kinetic energy.

Because superexchange involves the oxygen orbitals as well as the metal
atom, it is a second-order process and is derived from second-order perturba-
tion theory. A general consequence of second-order perturbation theory is that
the energy involved is approximately given by the square of the matrix element
of the transition divided by the energy cost of making the excited state. Here
the transition matrix element is controlled by a parameter called the hopping
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integral t, which is proportional to the energy width of the conduction band
(i.e. the bandwidth) in a simple tight-binding approach. The energy cost of
making an excited state is given by the Coulomb energy U. Thus we have that
J ~ - t 2 /U . (In fourth-order it is possible to have an interaction of the form
AE a - t4(S1 . S2)

2/U3 which is known as biquadratic exchange.)
The exchange integral consists of two parts. The first is a potential exchange

term which represents the electron repulsion and favours ferromagnetic ground
states, but is small when the ions are well separated. The second is a kinetic
exchange term which dominates here and is the effect discussed above. It
depends on the degree of overlap of orbitals and thus superexchange is strongly
dependent upon the angle of the M-O-M bond. The figure has been drawn for
one type of d orbital only, but the effect of other d orbitals which can overlap
with the oxygen orbitals may also need to be added.

In some circumstances, superexchange can actually be ferromagnetic. For
example, imagine a situation in which there is a coupling, through an oxygen
ion, between an occupied eg orbital on one magnetic ion and an unoccupied
eg orbital on another magnetic ion. There is an energetic advantage to the
eg electron hopping onto the unoccupied orbital, if when it arrives its spin is
aligned with the spin of the t2g electrons because of the Hund's rule coupling.
Thus the superexchange could be ferromagnetic in this case, but this is weaker
interaction and less common than the usual antiferromagnetic superexchange.

4.2.4 Indirect exchange in metals

In metals the exchange interaction between magnetic ions can be mediated
by the conduction electrons. A localized magnetic moment spin-polarizes the
conduction electrons and this polarization in turn couples to a neighbouring
localized magnetic moment a distance r away. The exchange interaction is
thus indirect because it does not involve direct coupling between magnetic
moments. It is known as the RKKY interaction (or also as itinerant exchange).
The name RKKY is used because of the initial letters of the surnames of the
discoverers of the effect, Ruderman, Kittel, Kasuya and Yosida. The coupling
takes the form of an r-dependent exchange interaction JRKKY(r) given by

at large r (assuming a spherical Fermi surface of radius kF). The interaction
is long range and has an oscillatory dependence on the distance between the
magnetic moments. Hence depending on the separation it may be either fer-
romagnetic or antiferromagnetic. The coupling is oscillatory with wavelength
n /k F because of the sharpness of the Fermi surface. The RKKY interaction
will be considered in more detail in chapter 7.

4.2.5 Double exchange

In some oxides, it is possible to have a ferromagnetic exchange interaction
which occurs because the magnetic ion can show mixed valency, that is it can
exist in more than one oxidation state. Examples of this include compounds
containing the Mn ion which can exist in oxidation state 3 or 4, i.e. as Mn3+
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Fig. 4.4 Double exchange mechanism gives

ferromagnetic coupling between Mn3+ and
Mn4+ ions participating in electron trans-
fer. The single-centre exchange interaction
favours hopping if (a) neighbouring ions
are ferromagnetically aligned and not if (b)
neighbouring ions are antiferromagnetically
aligned.

or Mn4+. One such is the material La1-xSrxMnO3 (0 < x < 1) which adopts
a perovskite structure. Sr is divalent (it exists as Sr2+) and La is trivalent (it
exists as La3+). This implies that a fraction x of the Mn ions are Mn4+ and
1 — x are Mn3+. The end members of the series, with x = 0 and x = 1, are
both antiferromagnetic insulators, as would be expected for an oxide material
in which the magnetism is mediated by superexchange through the oxygen.
LaMnO3 contains only Mn3+ ions and Mn3+ is a Jahn-Tellerion. LaMnO3 has
A-type antiferromagnetic ordering (see Section 5.2). However when LaMnO3

is doped with Sr up to a level of x = 0.175, the Jahn-Teller distortion vanishes
and the system becomes ferromagnetic with a Curie temperature around room
temperature, below which temperature the material becomes metallic.

The ferromagnetic alignment is due to the double exchange mechanism
which can be understood with reference to Fig. 4.4. The eg electron on a Mn3+

ion can hop to a neighbouring site only if there is a vacancy there of the same
spin (since hopping proceeds without spin-flip of the hopping electron). If the
neighbour is a Mn4+ which has no electrons in its eg shell, this should present
no problem. However, there is a strong single-centre (Hund's rule number 1)
exchange interaction between the eg electron and the three electrons in the
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t2g level which wants to keep them all aligned. Thus it is not energetically
favourable for an eg electron to hop to a neighbouring ion in which the t2g spins
will be antiparallel to the eg electron (Fig. 4.4(b)). Ferromagnetic alignment of
neighbouring ions is therefore required to maintain the high-spin arrangement
on both the donating and receiving ion. Because the ability to hop gives a
kinetic energy saving, allowing the hopping process shown in Fig. 4.4(a)
reduces the overall energy. Thus the system ferromagnetically aligns to save
energy. Moreover, the ferromagnetic alignment then allows the eg electrons
to hop through the crystal and the material becomes metallic. The issue of
conductivity in double exchange ferromagnets will be further discussed in
Section 8.9.5. Double exchange is, essentially, ferromagnetic superexchange
in an extended system.2

Double exchange is also found in magnetite (Fe3O4) which contains an
equal mixture of Fe2+ (3d6) and Fe3+ (3d5) ions on octahedral sites, together
with the same number again of Fe3+ ions on tetrahedral sites. A double
exchange interaction ferromagnetically aligns the Fe2+ and Fe3+ ions on the
octahedral sites. The Fe3+ ions on the tetrahedral sites do not participate in
this interaction and are coupled to the Fe3+ ions on the octahedral sites by an
antiferromagnetic superexchange interaction. Thus the two sets of Fe3+ ions
cancel out, leaving a net moment due to the Fe2+ ions alone. The measured
magnetic moment per formula unit is very close to the expected 4 uB due to
just the Fe2+ ions.

Ferromagnetic superexchange is normally
applied to two isolated ions. The kinetic en-
ergy saved by ferromagnetic alignment cor-
responds to hopping into an excited state.
Double exchange is applied to an extended
system so the kinetic energy saved corre-
sponds to a gain in electron bandwidth.

4.2.6 Anisotropic exchange interaction

It is also possible for the spin-orbit interaction to play a role in a similar
manner to that of the oxygen atom in superexchange. Here the excited state
is not connected with oxygen but is produced by the spin-orbit interaction in
one of the magnetic ions. There is then an exchange interaction between the
excited state of one ion and the ground state of the other ion. This is known as
the anisotropic exchange interaction, or also as the Dzyaloshinsky-Moriya
interaction. When acting between two spins S1 and S2 it leads to a term in the
Hamiltonian, HDM equal to

The vector D vanishes when the crystal field has an inversion symmetry with
respect to the centre between the two magnetic ions. However, in general
D may not vanish and then will lie parallel or perpendicular to the line
connecting the two spins, depending on the symmetry. The form of the
interaction is such that it tries to force S1 and S2 to be at right angles in a
plane perpendicular to the vector D in such an orientation as to ensure that
the energy is negative. Its effect is therefore very often to cant (i.e. slightly
rotate) the spins by a small angle. It commonly occurs in antiferromagnets
and then results in a small ferromagnetic component of the moments which is
produced perpendicular to the spin-axis of the antiferromagnet. The effect is
known as weak ferromagnetism. It is found in, for example, a-Fe2O3, MnCO3

and CoCO3.
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4.2.7 Continuum approximation

In this section we return to the Heisenberg model given in eqn 4.7. For what
follows later in the book it is useful to find an expression for this interaction in a
continuum approximation in which the discrete nature of the lattice is ignored.

Let us first assume that Jij can be taken to be equal to a constant, J, if i and
j are nearest neighbours, and to be zero otherwise. Hence we write

where the symbol (ij) below the E denotes a sum over nearest neighbours
only. Let us consider classical spins, and assume that the angle between nearest
neighbour spins is 0ij and that it is very small, i.e. 0ij < 1 for all i and j. What
we are essentially doing is assuming that the system shows ferromagnetism
(see the next chapter) but the spins are not completely aligned.

With these assumptions, the energy of the system can be written as

where the last equality is obtained using cos 0ij = 1 — 02/2 for 0ij « 1. We
will now ignore the constant term which just refers to the energy of the fully
aligned state. We now define the reduced moment by m = M/Ms, where M is
the magnetization and Ms is the saturation magnetization. The unit vector m
therefore follows the direction of the spins and mx, my and mz can be thought
of as the direction cosines of the spin at lattice point rij. Using the notation of
Fig. 4.5, we can writeFig. 4.5 The magnetic moments are repre-

sented by the reduced moments mi and my
at neighbouring sites i and j separated by a
vector rij. The angle between the moments
is 0ij. The reduced moments mi, and mj are
unit vectors by definition.

and so the energy can be written

In the continuum limit, we ignore the discrete nature of the lattice and therefore
write

where A is given by

a is the nearest neighbour distance and z is the number of sites in the unit cell
(z = 1 for simple cubic, z = 2 for body-centred cubic (bcc) and z = 4 for
face-centred cubic (fcc)).

This result can be seen from another perspective. If we assert that ex-
change arises from a non-uniform magnetization distribution, then if the non-
uniformities are relatively smooth we can derive a result based on symmetry.
The expression must be invariant with respect to spin rotations and also under
change of sign of the magnetization components. Therefore we look for an
expression of the lowest even orders of the derivatives of M, consistent with the
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symmetry of the crystal. Since terms proportional to B M a / d x B would change
sign if M were reversed, we are left with terms quadratic in the gradient of the
magnetization. The most general expression is

where CaB is a tensor with the symmetry of the crystal. In a cubic crystal, this
reduces to The expression in eqn 4.21 is sometimes

written C|VM|2 but note that you have to
be a bit careful when taking the gradient of
a vector.

which is equivalent to the result we have in eqn 4.18 above.

Further reading

• Further information on exchange interactions may be
found in C. Herring in Magnetism, ed. G. Rado and H.
Suhl, vol. 2B, p.l, Academic Press, New York 1966.

• A theoretical account of interactions in magnetic sys-
tems may be found in K. Yosida, Theory of magnetism,
Springer 1996.

• Various exchange interactions in real systems are re-
viewed in P. A. Cox, Transition metal oxides, OUP 1995.

• A very thorough and helpful reference on exchange and
exchange interactions is D. C. Mattis, The theory of
magnetism I, Springer 1981.

Exercises
(4.1) Show that two magnetic dipoles u1 and u2 separated by

r have a dipolar energy equal to

(4.2) Calculate the magnitude of the magnetic field 1 A and
10 A from a proton in a direction (a) parallel and (b)
perpendicular to the proton spin direction.

(4.3) Estimate the ratio of the exchange and dipolar coupling
of two adjacent Fe atoms in metallic Fe. (The exchange
constant in Fe can be crudely estimated by setting it
equal to kBTc where TC is the Curie temperature. For
Fe, TC =1043 K.)

(4.4) Provide a rough estimate of the size of the exchange
constant in a magnetic oxide which is coupled by su-
perexchange using the measured value of the electronic
bandwidth (determined by inelastic neutron scattering) of

0.05 eV. Take the Coulomb energy to be ~1 eV, Hence
estimate the antiferromagnetic ordering temperature.

(4.5) Consider the case of two interacting spin-1/2 electrons.
The good quantum numbers are 5 = 0 and 1 so that
there is a triplet state and a singlet state which will be
separated by an energy gap A. We define the sign of A
so that when A > 0 the singlet state (S = 0) is the lower
state and when A < 0 the triplet state is the lower state.
These situations are shown in Fig. 4.6(a) and (b). Show
that the susceptibility in this model is given by

which is known as the Bleaney-Bowers equation. It is
plotted in Fig. 4.6(c).
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state (i.e. for I = I1 + I2 with magnitude / = 1) show
that the terms in the Hamiltonian above induce transitions
as follows: AM = 0 for A and B, AM = +1 for C,
AM = -1 for D, AM = +2 for E and AM = -2 for
F.

(4.7) A diatomic molecule is formed when two atoms bond
together. Two electrons are in a molecule and have coor-
dinates r1 and r2. There are two nuclei, one fixed at R1

and the other fixed at R2, each with charge Ze. Ignoring
the repulsion between the nuclei, the Hamiltonian can be
written as H0 + H' where

which is a sum of single particle Hamiltonians H1 and
"H2 (each electron orbiting its own nucleus) and

which contains terms for the electron repulsion energy
and the attraction energy for each electron being attracted
by its partner's nucleus. Show that the energy of the
molecule is given by

Fig. 4.6 Two spins coupled by A give rise to a singlet and triplet
state. The energy levels for the case when (a) A > 0 and (b)
A < 0. (c) The susceptibility which is given by the Bleaney-
Bowers equation. It is plotted for A > 0 (lower curve), A = 0
(middle curve), and A < 0 (upper curve).

(4.6) Two nuclei with spins \\ and \2, separated by a vector
r, are coupled by a dipole-dipole interaction and the
Hamiltonian is

where E1 and E2 are the eigenvalues of H1 and .2
respectively,

where ui = g I u N I i , i = 1.2. Show that the Hamilto-
nian can be expressed as

where

the angles 0 and 0 relate to the vector r in spherical
polars, and the raising and lowering operators are Ij =

Ijx ± i I j y . For two protons (I1 = I2 = 1/2) in the triplet

which is known as the Coulomb integral,

which is known as the exchange integral,

which is known as the overlap integral, and where the
eigenfunctions are assumed to be given by

(4.8) Three S = 1 atoms are placed on the corners of an equi-
lateral triangle and can be described by a Hamiltonian

Show that the energy eigenvalues of the system are 0, 2J
and 6J.



Order and magnetic
structures

In the previous chapter the different types of magnetic interaction which
operate between magnetic moments in a solid have been presented. In this
chapter we will consider the different types of magnetic ground state which can
be produced by these interactions. Some of these ground states are illustrated
in Fig. 5.1. The different ground states include ferromagnets in which all
the magnetic moments are in parallel alignment, antiferromagnets in which
adjacent magnetic moments lie in antiparallel alignment, spiral and helical
structures in which the direction of the magnetic moment precesses around
a cone or a circle as one moves from one site to the next, and spin glasses in
which the magnetic moments lie in frozen random arrangements. This chapter
will be concerned with showing how, in broad terms, the interactions discussed
in the previous chapter lead to these differing ground states. In the following
chapter the phenomenon of order will be examined in a more general context
and it will be seen that order is a consequence of broken symmetry.

5.1 Ferromagnetism

A ferromagnet has a spontaneous magnetization even in the absence of an
applied field. All the magnetic moments lie along a single unique direction.1

This effect is generally due to exchange interactions which were described in
the previous chapter. For a ferromagnet in an applied magnetic field B, the
appropriate Hamiltonian to solve is

and the exchange constants for nearest neighbours will be positive in this case,
to ensure ferromagnetic alignment. The first term on the right is the Heisenberg
exchange energy (see eqn 4.7). The second term on the right is the Zeeman
energy (see eqn 1.35). To keep things simple to begin with, let us assume2 that
we are dealing with a system in which there is no orbital angular momentum,
so that L = 0 and J= S.

5.1.1 The Weiss model of a ferromagnet

To make progress with solving eqn 5.1 it is necessary to make an approxima-
tion. We define an effective molecular field at the ith site by
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Notation reminder: In this book J refers to
the exchange constant, J is total angular
momentum.

In fact in many ferromagnetic samples this
is not true throughout the sample because of
domains. In each domain there is a uniform
magnetization, but the magnetization of each
domain points in a different direction from
its neighbours. See Section 6.7 for more on
magnetic domains.

We will relax this assumption later in Sec-
tion 5.1.4.
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Fig. 5.1 Various spin arrangements in ordered
systems: (a) ferromagnets, (b) antiferromag-
nets, (c) spin glasses and (d) spiral and (e)
helical structures.

3 See Section 4.2.1.

Now focus on the ith spin. Its energy is due to a Zeeman part g u B S i . B and
an exchange part. The total exchange interaction between the ith spin and its
neighbours is —2 Ej JijSi . Sj ,where the factor of 2 is because of the double
counting.3 This term can be written as

Hence the exchange interaction is replaced by an effective molecular field Bmf

produced by the neighbouring spins. The effective Hamiltonian can now be
written as

which now looks like the Hamiltonian for a paramagnet in a magnetic field
B + Bmf. The assumption underpinning this approach is that all magnetic
ions experience the same molecular field. This may be rather questionable,
particularly at temperatures close to a magnetic phase transition, as will be
discussed in the following chapter. For a ferromagnet the molecular field
will act so as to align neighbouring magnetic moments. This is because the
dominant exchange interactions are positive. (For an antiferromagnet, they will
be negative.)

Since the molecular field measures the effect of the ordering of the system,
one can assume that

where y is a constant which parametrizes the strength of the molecular field
as a function of the magnetization. For a ferromagnet, y > 0. Because of the
large Coulomb energy involved in the exchange interaction, the molecular field
is often found to be extremely large in ferromagnets.

We are now able to treat this problem as if the system were a simple para-
magnet placed in a magnetic field B + Bmf At low temperature, the moments
can be aligned by the internal molecular field, even without any applied field
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(see eqn 2.37). Without the yM term due to the molecular field, this would be
identical to our treatment of a paramagnet in Section 2.4.3.

These equations can be solved graphically. First, we restrict our attention
to the case of B = 0, so that M = k B T y / g J µ B J λ . Hence the straight
line produced by plotting M against y has a gradient which is proportional
to temperature T as illustrated in Fig. 5.2. For high temperature, there is no
simultaneous solution of eqns 5.6 and 5.7 except at the origin where y = 0
and Ms = 0. This situation changes when the gradient of the line is less
than that of the Brillouin function at the origin. At low temperatures there
are then three solutions, one at Ms = 0 and another two for Ms at ± some
non-zero value. It turns out that when the curve is less steep than the Brillouin
function at the origin, the non-zero solutions are stable and the zero-solution
is unstable. (If the system has Ms = 0 for T < TC, any fluctuation, no matter
how small, will cause the system to turn into either one of the two stable
states.) Thus below a certain temperature, non-zero magnetization occurs and
this grows as the material is cooled. The substance thus becomes magnetized,
even in the absence of an external field. This spontaneous magnetization is
the characteristic of ferromagnetism.

The temperature at which the transition occurs can be obtained by finding
when the gradients of the line M = k B T y / g J µ B J λ M s and the curve M =
M sB J(y) are equal at the origin. For small y, B J (y) = (J + l)y/3J + O(y3).

Pierre Weiss (1865-1946)

Reminder: we are assuming J = S and L =
0 at this stage.

Fig. 5.2 The graphical solution of eqns 5.6
and 5.7 for B = 0.

being present. Notice that the alignment of these magnetic moments gives rise
to the internal molecular field that causes the alignment in the first place, so
that this is something of a 'chicken-and-egg' scenario. At low temperature
the magnetic order is self-sustaining. As the temperature is raised, thermal
fluctuations begin to progressively destroy the magnetization and at a critical
temperature the order will be destroyed. This model is known as the Weiss
model of ferromagnetism.

To find solutions to this model, it is necessary to solve simultaneously the
equations

(see eqn 2.38) and
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The transition temperature, known as the Curie temperature Tc, is then defined
by

The molecular field Bmf = A.MS is thus 3kBTc /gJuB/(J+ 1) and so for a
ferromagnet with J = \ and T ~ 103 K, Bmf = kBTc/uB ~1500 T. This is
an enormous effective magnetic field and reflects the strength of the exchange
interaction.

Fig. 5.3 The mean-field magnetization as a
function of temperature, deduced for differ-
ent values of J.

Material

Fe
Co
Ni
Gd
MnSb

EuO

EuS

TC

(K)

1043

1394

631

289

587

70

16.5

magnetic

moment (uB

/formula unit)

2.22

1.715

0.605

7.5

3.5

6.9

6.9

The solutions of these equations as a function of temperature are shown in
Fig. 5.3 for a range of values of J. Although the form of the curves is slightly
different in each case, some general features persist. The magnetization is zero
for temperatures T > TC and is non-zero for T < TC. The magnetization is
continuous at T = TC, but its gradient is not. This classifies the phase transition
between the non-magnetic and ferromagnetic phases in this molecular field
model as a second-order phase transition. The order of a phase transition
is the order of the lowest differential of the free energy which shows a
discontinuity at the transition. A first-order phase transition would have a
discontinuous jump in the first derivative of the free energy, i.e. in quantities
like the volume, entropy or the magnetization. The jump in the entropy gives a
latent heat. A second-order phase transition has a discontinuity in the second
derivative of the free energy, i.e. in quantities like the compressibility or the
heat capacity. In the present case the discontinuity is in the gradient of the
magnetization, i.e. in the second derivative of the free energy, so the transition
is second order. Phase transitions and critical exponents will be considered in
more detail in Section 6.4. The properties of some common ferromagnets are
listed in Table 5.1.

Table 5.1 Properties of some common
ferromagnets.
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5.1.2 Magnetic susceptibility

Applying a small B field at T > TC will lead to a small magnetization, so that
the y < 1 approximation for the Brillouin function can be used. Thus

Fig. 5.4 The graphical solution of eqns 5.6
and 5.7 for B = 0.

5.1.3 The effect of a magnetic field

The effect of adding a magnetic field is to shift to the right the straight line in
the graphical solution of the equations (see Fig. 5.4). This results in a solution
with M = 0 for all temperatures and so the phase transition is removed.
For ferromagnets in a non-zero magnetic field there is always an energetic
advantage to have a non-zero magnetization with the moments lining up along
the magnetic field. This removal of the phase transition can be seen in Fig. 5.5
which shows graphical solutions to eqns 5.6 and 5.7 for a range of magnetic
fields. In this model it is not necessary to consider the effect of applying a
magnetic field in different directions. Whichever direction the magnetic field is
applied, the magnetization will rotate round to follow it. The model contains no
special direction associated with the ferromagnet itself. In a real ferromagnet
this is not the case, and the effect of magnetic anisotropy associated with the
material will need to be considered (see the following chapter).

so that

This can be rearranged to give

so that

which is known as the Curie Weiss law.
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Fig. S.5 The mean-field magnetization as a

function of temperature for J = 1/2, calcu-
lated for different values of the applied field
B. The phase transition is only present when
B = 0.

At T = TC, the effect of the magnetic field is simple to work out analytically.
At this temperature, the magnetization is given by M oc B1/3 for small
magnetic fields. To prove this, it is necessary to take the next term in the Taylor
expansion of BJ(y). Writing B J ( y ) = (J + 1 ) y / 3 J - $y3 + O(y5), where f
is a constant, we must solve simultaneously M = MsBj(y) and

5.1.4 Origin of the molecular field

When Weiss proposed his molecular field model in 1907 he was disappointed
that the constant A needed to be very large to agree with the large values of Tc
found in nature. Considering only dipole fields, it was not possible to account
for an internal field which, as discussed above, needs to be ~ 103 T to account
for the Curie temperature of Fe. Thirty years later, Heisenberg showed that it
was the exchange interaction, which involves large Coulomb energies, which
is responsible for the large molecular field.4

The molecular field, parametrized by y, can be related to the size of the
exchange interaction, parametrized by Jij. Assuming that the exchange inter-
action is effective only over the z nearest neighbours of an ion, where it takes

4The molecular field is a convenient fiction
and one shouldn't think that magnetic fields
~ 103 T are experienced by electrons in
ferromagnets. The exchange interaction is
purely an electrostatic effect. When we talk
about the molecular field we are pretending
that the exchange interaction is actually in-
ternal magnetic field. The point is that, if
it really existed and Heisenberg exchange
didn't, the molecular field would have to be
~ 103 T to explain the effects we see.

which yields

and hence

and given that yM » B, the right-hand side is dominated by the M3 term so
that M a B1/3.
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a value J, then using eqns 5.1, 5.4 and 5.5, one can easily find that

Using eqn 5.8, the Curie temperature can then be written

In our discussion so far we have assumed that L = 0 and J — S. This works
for most 3d ions. Exchange is between spin degrees of freedom and therefore
depends on 5. The magnetic moment of an ion depends on J, the total (spin +
orbital) angular momentum. For 3d ions they are the same thing, because L is
quenched.

For 4f ions however, S is not a good quantum number, but J is. It follows
that the component of S which is perpendicular to J must average to zero. The
component of S which is parallel to J is conserved. Thus one must project
S onto J. Now J = L + S and L + 2S is equal to gjJ plus a component
perpendicular to J. Hence the component of S that is a good quantum number
is (gJ — 1) J- Values of (gJ — 1) for various 4f ions are listed in Table 5.2. From
this, it is clear that S and J are parallel for the so-called 'heavy rare earths' (Gd
to Yb), but antiparallel for the so-called 'light rare earths' (Ce to Sm).

ion

Ce3+

Pr3+

Nd3+

Pm3+

Sm3+

Eu3+

Gd3+

Tb3+

Dy3+

Ho3+

Er3+

Tm3+

Yb3+

Lu3+

shell

4f1

4f4

4f3

4f4

4f6

4f6

4f7

4f8

4f9

4f10

4f11

4fl2

4f13

4f14

5

1

1
3

2
5

3
7

3
5

2
3

1
1

0

L

3

5

6

6

5

3

0

3

5

6

6

5

3

0

J

5

4

9

4
5

0
7

6
15

8

15

6
7
5
0

gJ gj - 1 (gJ

6

4

72
55

3

2
7

2

3

4

5

6

6
8

_1

1
-5

27
-55
_2

5
7

1
1
2
1

1
3
1

6
1

-1)2J(J + 1)

0.18

0.80

1.84

3.20

4.46

15.75

10.50

7.08

4.50

2.55

1.17

0.32

Table 5.2 The g-factors for 4f ions using Hund's rules.

Using (gJ — 1)J for the conserved part of S, the expression - Eij, JijSi • Sj-
can be replaced with — Eij(gJ — l)2JijJi • Jj. The magnetic moment u =
— g J u B J can then be used to repeat the calculation leading to eqn 5.16,
resulting in
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Pierre-Gilles de Gennes (1932-)

(For the special case of transition metal ions with orbital quenching, gj = 2
and eqn 5.18 reduces to eqn 5.16.) The Curie temperature can then be written

The critical temperature is therefore expected to be proportional to the
de Gennes factor (gj — 1 ) 2 J ( J + 1). Values of the de Gennes factor are
also listed in Table 5.2. Gd, with the largest de Gennes factor, is a ferromagnet
but the rare earth metals show a variety of different ground states, including
antiferromagnetism and helimagnetism which will be considered in the next
sections.

Fig. 5.6 An antiferromagnet can be decom-
posed into two interpenetrating sublattices.

5.2 Antiferromagnetism

If the exchange interaction is negative, J < 0, the molecular field is oriented
such that it is favourable for nearest neighbour magnetic moments to lie
antiparallel to one another. This is antiferromagnetism. Very often this occurs
in systems which can be considered as two interpenetrating sublattices (see
Fig. 5.6), on one of which the magnetic moments point up and on the other
of which they point down. The nearest neighbours of each magnetic moment
in Fig. 5.6 will then be entirely on the other sublattice. Initially we will
therefore assume that the molecular field on one sublattice is proportional to
the magnetization of the other sublattice. We will also assume that there is no
applied magnetic field.

5.2.1 Weiss model of an antiferromagnet

If we label the 'up' sublattice + and the 'down' sublattice - then the molecular
field on each sublattice is

where A. is the molecular field constant which is now negative. On each
sublattice, the molecular field is therefore given by

The two sublattices are equivalent in everything except the direction of the
moments so that
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and hence

This is almost identical to the corresponding equation for ferromagnetism
(eqns 5.6 and 5.7), and so the molecular field on each sublattice will follow
exactly the form shown in Fig. 5.3 and will disappear for temperatures above
a transition temperature, known as the Neel temperature TN, which is then
defined by

Although the magnetization on each sublattice will follow the form shown
in Fig. 5.3, the two magnetizations will be in oppositedirections so that the
net magnetization M+ + M_ of the antiferromagnet will be zero. One can
define a quantity known as the staggered magnetization as the difference
of the magnetization on each sublattice, M+ — M_; this is then non-zero
for temperatures below TN and hence can be used as an order parameter5 for
antiferromagnets.

which is the Curie Weiss law again but with the term — TC replaced by +TN.
This result gives a ready means of interpreting susceptibility data in the

paramagnetic state (i.e. for temperatures above the transition to magnetic
order). The magnetic susceptibility can be fitted to a Curie Weiss dependence

where & is the Weiss temperature. If 0 = 0, the material is a paramagnet (see
eqn 2.44). If 9 > 0 the material is a ferromagnet and we expect 9 = TC (see
eqn. 5.12). If 0 < 0 the material is a antiferromagnet and we expect 6 = — TN
(see eqn. 5.25). These possibilities are shown in Fig. 5.7.

Experimentally determined Weiss temperatures in antiferromagnets are
often a long way from —TN (see Table 5.3 which contains data for some
common antiferromagnets). This discrepancy is largely due to the assumption
we have made that the molecular field on one sublattice depends only on the
magnetization of the other sublattice. A more realistic calculation is considered
in Exercise 5.3.

Applying a magnetic field to an antiferromagnet at temperatures below TN
is more complicated than the case of a ferromagnet below TC because the
direction in which the magnetic field is applied is crucial. There is no longer
an energetic advantage for the moments to line up along the field because
any energy saving on one sublattice will be cancelled by the energy cost for

Louis E. F. Neel (1904-2000)

5 An order parameter will be defined in Sec-
tion 6.1.

Fig. 5.7 The Curie Weiss law states that x oc
1/(T - 0) for T > 0. This is shown in (a) for
three cases: 8 = 0 (paramagnet), 9 = © > 0
(ferromagnet) and 6 = —O < 0 (antiferro-
magnet). Straight-line graphs are obtained by
plotting 1/x against T as shown in (b) with
the intercept on the temperature axis yielding
0. A graph of xT against T can be constant
(0 = 0), increasing for decreasing T (6 > 0)
or decreasing for decreasing T (8 < 0), as
shown in (c).

5.2.2 Magnetic susceptibility

For temperatures above TN the effect of a small applied magnetic field can
be calculated in the same way as for the ferromagnet, by expanding the
Brillouin function B J ( y ) = (J + l)y/3J + O(y3), and results in the magnetic
susceptibility x being given by
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Table 5.3 Properties of some common antiferromagnets.

Material

MnF2

MnO

CoO

FeO

Cr203

a-Fe203

TN

(K)

67

116

292

116

307

950

0

(K)

-80

-510

-330

-610

-485

-2000

J

5
2
5

3

2
3

5

Fig. 5.8 The origin of xj_. A small magnetic
field B is applied perpendicular to the magne-
tization direction of the sublattices, causing
the magnetization of both sublattices to tilt
slightly so that a component of magnetization
is produced along the applied magnetic field.

the other sublattice, if the magnetization on the two sublattices is equal and
opposite.

Consider first the case of absolute zero (T = 0), so that thermal agitation
effects can be ignored. | M+| and | M- | are both equal to Ms. If a small magnetic
field is applied parallel to the magnetization direction of one of the sublattices
(and hence antiparallel to the magnetization direction of the other sublattice), a
small term is added or subtracted to the local field of each sublattice. Since both
sublattices are already saturated, this has no effect and the net magnetization
induced in the material is zero so that x|| = 0. If instead the small magnetic
field is applied perpendicular to the magnetization direction of one of the
sublattices, this causes the magnetization of both sublattices to tilt slightly so
that a component of magnetization is produced along the applied magnetic
field (see Fig. 5.8). Thus xx = 0.

If the temperature is now increased, but still kept below TN, the thermal
fluctuations decrease the molecular field at each sublattice. This greatly affects
the case of applying a small magnetic field parallel to the magnetization
direction of one of the sublattices, since the field enhances the magnetization
of one sublattice and reduces it on the other. In the perpendicular case, raising
the temperature has little effect since the M+ and M_ are reduced equally and
are also symmetrically affected by the small magnetic field. X_ is independent
of temperature, whereas x|| rises from 0 up to xt as T —> TN. These
characteristics are shown in Fig. 5.9.

5.2.3 The effect of a strong magnetic field

Let us first consider the effect of a strong magnetic field on an antiferromagnet
with T — 0 to avoid any complications from thermal fluctuations. If the
magnetic field is large enough, it must eventually dominate over any internal
molecular field and force all the magnetic moments to lie parallel to each other.
But as the field is increased, although the final end result is clear, the route
to that destination depends strongly on the direction of the applied field with
respect to the initial direction of sublattice magnetization.

If the applied magnetic field is perpendicular to the sublattice magnetiza-
tions, all that happens is that as the field increases the magnetic moments bend
round more and more (O gets progressively smaller, see Fig. 5.8) until the
moments line up with the applied magnetic field.



5.2 Antiferromagnetism 95

Fig. 5.9 The effect of temperature on X|| and
XL.

If the applied magnetic field is parallel to the sublattice magnetizations, the
case is more interesting. At small magnetic fields the moments don't rotate
round but stay in line (Fig. 5.10(a)). However, at a critical field the system
suddenly snaps into a different configuration (Fig. 5.10(b)); this is called a
spin-flop transition. For further increases of magnetic field the angle 9 gets
progressively smaller until eventually the magnetic moments line up with the
applied magnetic field.

These effects can be calculated quantitatively. Let M+ lie at an angle of 9 to
the magnetic field (measured counterclockwise) and let M_ lie at an angle of
0 to the magnetic field (measured clockwise). We will apply the magnetic field
along the crystallographic z axis. The antiferromagnetic phase corresponds to
0 = 0 and 0 = n (see Fig. 5.10(a)) and the spin-flop phase corresponds to
0 = 0. It is necessary to determine which phase has lower energy.

We assume that the total energy E is due to the sum of the Zeeman energies
of the individual sublattices and a term representing the exchange coupling
which will depend on the relative orientation between the two sublattice
moments. This leads to

where A is a constant connected with the exchange coupling. To model the
magnetic anisotropy, it is necessary to add on a term of the form

where A is a small constant. This accounts for the fact that the magnetizations
actually do prefer to lie along a certain crystallographic axis (in this case the z
axis) so that that 0 and 0 prefer to be 0 or n but not somewhere in between. In
the antiferromagnetic case (9 = 0, 0 = n) we have E = —AM2 — A which is
independent of field. In the spin-flop case (O = 6) we have

The condition 9E/90 = 0 shows that there is a minimum energy when & =
cos-1 [B/2AM], ignoring the anisotropy term. Substituting this back into E

Fig. 5.10 A magnetic field is applied paral-
lel to the sublattice magnetizations, (a) For
small fields nothing happens and the system
remains in the antiferromagnetic phase, (b)
Above a critical field the system undergoes
a spin-flop transition into a spin-flop phase.
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Fig. 5.11 The energy of the antiferromagnetic
phase and the spin-flop phase as a function of
B.

Fig. S.12 (a) Magnetization for applying a
parallel magnetic field to an antiferromagnet.
Initially nothing happens but then there is a
spin-flop transition to a spin-flop phase at B1.
The magnetic field then rotates the moments
until saturation is achieved at the field B2 .(b)
If there is a strong preference for the spins
to lie along the parallel direction, no spin-
flop occurs. Instead there is a spin-flip tran-
sition at B3. Both figures show the expected
curves for absolute zero. Finite temperature
will round off the sharp corners. This is also
known as a metamagnetic transition.

and plotting the result leads to the graph shown in Fig. 5.11. Below the critical
field Bspin-flop the antiferromagnetic case has the lowest energy. At the critical
field Bspin-flop the system switches from one state to the other and we have a
spin-flop transition. Above this field the spin-flop phase has the lowest energy.

The magnetization for the antiferromagnet in a large parallel magnetic field
is shown in Fig. 5.12(a). There is no effect until the spin-flop transition, above
which the magnetization increases steadily until saturation is reached. If the
anisotropy effect is very strong (A is large), another effect can occur. In this
case, if the external field is along z, no spin-flop occurs. Instead we get a
spin-flip transition, i.e. the magnetization of one sublattice suddenly reverses
when B reaches a critical value, and the system moves in a single step to the
ferromagnetic state. This is illustrated in Fig. 5.12(b).

5.2.4 Types of antiferromagnetic order

Another complication with antiferromagnetism is that there is a large number
of ways of arranging an equal number of up and down spins on a lattice. The
different possible arrangements also depend on the kind of crystal lattice on
which the spins are to be arranged. A selection of possible arrangements is
shown in Figures 5.13 and 5.14.

In cubic perovskites, which have the magnetic atoms arranged on a simple
cubic lattice, G-type ordering (see Fig. 5.13(d)) is very common because
superexchange interactions through oxygen atoms force all nearest-neighbour
magnetic atoms to be antiferromagnetically aligned. This is the case for G-type
ordering only and is, for example, found in LaFeO3 and LaCrOs- LaMnO3

is also a cubic perovskite but shows A-type ordering (see Fig. 5.13(a)), with
alternately aligned ferromagnetic (100) planes. This occurs because of the
Jahn-Teller distortion of the Mn3+ ions which gives alternate long and short
Mn-O bonds within the (100) planes. The orbitals on adjacent Mn3+ ions are
differently oriented, and the superexchange leads to an interaction between an
occupied orbital on one atom with an unoccupied orbital on its neighbour. The
in-plane interaction is thus ferromagnetic while the out-of-plane interaction is
antiferromagnetic because of the conventional operation of the superexchange
interaction.
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Fig. 5,13 Four types of antiferromagnetic or-
der which can occur on simple cubic lattices.
The two possible spin states are m a r k e d -
a n d — .

Fig. 5.14 Three types of antiferromagnetic
order which can occur on body-centred cubic
lattices.

5.3 Ferrimagnetism

The above treatment of antiferromagnetism assumed that the two sublattices
were equivalent. But what if there is some crystallographic reason tor them
not to be equivalent? In this case the magnetization of the two sublattices
may not be equal and opposite and therefore will not cancel out. The
material will then have a net magnetization. This phenomenon is known as
ferrimagnetism. Because the molecular field on each sublattice is different,
the spontaneous magnetizations of the sublattices will in general have quite
different temperature dependences. The net magnetization itself can therefore
have a complicated temperature dependence. Sometimes one sublattice can
dominate the magnetization at low temperature but another dominates at higher
temperature; in this case the net magnetization can be reduced to zero and
change sign at a temperature known as the compensation temperature. The
magnetic susceptibilities of ferrimagnets therefore do not follow the Curie
Weiss law.

Ferrites are a family of ferrimagnets. They are a group of compounds with
the chemical formula MO-Fe2O3 where M is a divalent cation such as Zn2+,
Co2+, Fe2+. Ni2 + , Cu2+ or Mn2+. The crystal structure is the spinel structure
which contains two types of lattice sites, tetrahedral sites (with four oxygen
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Material

Fe304

CoFe2O4

NiFe2O4

CuFe2O4

Y3Fe5O12

Gd3Fe5O12

Dy3Fe5O12

Ho3Fe5O12
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(K) (uB/
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793
858

728
560
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563
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netic moment Con

formula unit)

4.1
3.7
2.3

1.3
5.0

16.0

18.2

15.2

npensation temperature

(K)

-

-

-

-

-

290

220
137

neighbours, these are known as A sites) and octahedral sites (with six oxygen
neighbours, these are known as B sites). There are twice as many B sites as
A sites. The two sublattices are non-equivalent because there are two types
of crystallographic site and they contain two types of different ion. In normal
spinels, the M2+ cations sit at the A sites and the Fe3+ (6S5/2 and therefore a
moment of 5 uB) cations sit at the B sites. In inverse spinels the M2+ cations
sit at half of the B sites, while the Fe3+ cations occupy the other half of the B
sites and all the A sites. In inverse spinels, the moments of the Fe3+ cations on
the A and the B sites are antiparallel, so that the total moment of the sample is
due to the M2+ ions only.

The case of M=Fe, i.e. Fe3O4 (which is a semiconductor, in contrast to the
other ferrites which are insulators), has already been discussed in Section 4.2.5.

Another family of ferrimagnets is the garnets which have the chemical
formula R3Fe5O12 where R is a trivalent rare earth atom. The crystal structure
is cubic, but the unit cell is quite complex. Three of the Fe3+ ions are on
tetrahedral sites, two are on octahedral sites and the R3+ ions are on sites
of dodecahedral symmetry. In yttrium iron garnet (YIG), Y3Fe5O12, the Y3+

has no magnetic moment (it is 4d°) and the moments of the Fe3+ ions on the
tetrahedral sites are antiparallel to those on the octahedral sites, so that the net
moment is 5uB .

Barium ferrite (BaFe12O19 = BaO.6Fe2O3) has a hexagonal structure. Eight
of the Fe3+ ions are antiparallel to the other four, so that the net moment is
equivalent to four Fe3+ ions, i.e. 20uB. In powder form, it is used in magnetic
recording since it has a high coercivity (see Section 6.7.9). The properties of
some common ferrimagnets are listed in Table 5.4.

Most ferrimagnets are electrical insulators and this fact is responsible for
many of their practical applications. Ferromagnets are often metallic and thus
are unsuitable in applications in which an oscillating magnetic field is in-
volved; a rapidly changing magnetic field induces a voltage and causes currents
(known as eddy currents) to flow in conductors. These currents cause resistive
heating in a metal (eddy current losses). Many ferrimagnets therefore can be
used when a material with a spontaneous magnetization is required to operate
at high frequencies, since the induced voltage will not be able to cause any
significant eddy currents to flow in an insulator. Solid ferrite cores are used in

Table 5.4 Properties of some common ferrimagnets.
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many high frequency applications including aerials and transformers requiring
high permeability and low energy loss, as well as applications in microwave
components. Also many ferrimagnets are more corrosion resistant than metal-
lic ferromagnets since they are already oxides.

5.4 Helical order

In many rare earth metals, the crystal structure is such that the atoms lie
in layers. Consider first the case (relevant for dysprosium) in which there-
is ferromagnetic alignment of atomic moments within the layers and that
the interaction between the layers can he described by a nearest-neighbour
exchange constant J1 and a next-nearest-neighbour exchange constant J2. If
the angle between the magnetic moments in successive basal planes (i.e. the
planes corresponding to the layers) is 0 (see Fig. 5,15(a)), then the energy of
the system can be written

where N is the number of atoms in each plane. The energy is minimized when
d E / d 0 = 0 which yields

Solutions to this are either sin 0 = 0. which implies 0 = 0 or 0 = n
(ferromagnetism or antiferromagnetism), or

This last solution corresponds to helical order (also known as helimagnetism)
and is favoured over either ferromagnetism or antiferromagnetism when J2 < 0
and |J1 | < 4|J2| (see Fig. 5.15(b)). The pitch of the spiral will not in general be
commensurate with the lattice parameter and so no two layers in a crystal will
have exactly the same spin directions.

Fig. 5.15 (a) Helimagnetic ordering, (b) The
phase diagram for the model of planes cou-
pled by a nearest-neighbour exchange ton-
slant J1 and a next-nearest-neighbour ex-
change constant J2-
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Helical structures are found in many magnetic systems, most famously
in rare earth metals. Many of these rare earth metals have hexagonally
close packed crystal structures. The axis of the helix is perpendicular to the
hexagonally close packed planes, along what is usually defined as the c axis.
The plane in which the spins rotate in Tb, Dy and Ho is the hexagonally
close packed plane, but in Er and Tm the easy axis for spins is the c axis
so that the c component of the spins is modulated sinusoidally over a certain
temperature range. Spiral structures (Fig. 5.1(d)) are also possible in which the
spins have a component along the easy axis, perpendicular to the plane, but
also a component in the plane which precesses around a helix.

The exchange interaction in rare earth metals is an indirect RKKY inter-
action mediated by the conduction electrons. It has much longer range than
superexchange interactions and changes its sign as a function of distance. The
model presented above, which contains just nearest and next-nearest neighbour
interactions, is therefore an over-simplification. Details of the Fermi surface
of each rare earth metal are needed to compute the wave vector-dependent
exchange interaction J(q). If this takes a maximum at a certain wave vector q,
then helimagnetism can be induced with wave vector q. A further feature is the
large effect of the crystal field in rare earth metals. The crystal field splits the
electronic states and usually one finds that not only the ground state but also
some excited states of the system are thermally populated, further complicating
the analysis that needs to be performed to understand these systems.

So far we have considered materials in which there is one or more magnetic
moments in each unit cell. What happens if we start with a non-magnetic lattice
and sparsely populate it with a dilute, random distribution of magnetic atoms?
One's intuition might suggest that the end result would be something which is
entirely random which would not be likely to exhibit a phase transition from
a high temperature disordered state to a low temperature ordered state. This is
only partly right because such systems, although inherently random, do show
something approximating to a phase transition at a particular temperature to a
state which, while not ordered, is distinctly different from the high temperature
disordered state. We can define a spin glass as a random, magnetic system
with mixed interactions characterized by a random, yet cooperative, freezing
of spins at a well defined temperature Tf (the freezing temperature) below
which a metastable frozen state appears without the usual magnetic long-range
ordering.

Example 5.1

A well studied example of a spin glass is the alloy CuMn in which the concen-
tration of Mn is a few atomic percent. The Mn ions are therefore present only
in dilute quantities and their magnetic moments interact with each other via a
RKKY (see sections 4.2.4 and 7.7.3) interaction mediated by the conduction

5.5 Spin glasses
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electrons in the Cu. The RKKY interaction oscillates in sign so that the
interactions can be either antiferromagnetic or ferromagnetic. The net result
is a system with a great deal of in built frustration with no well denned
ground state, but a large number of alternative possible ground states. At
high temperature the Mn moments thermally fluctuate, but as the temperature
is reduced, locally correlated clusters build up as the moments slow down.
At Tf the moments get stuck in one of these degenerate ground states and
become frozen. In CuMn site-randomness implies a distribution of distances
between spins and thus provides the frustration; spin glasses can also be found
in systems which have bond-randomness, for which the nearest-neighbour
interactions vary between +J and —J. Spin glasses and frustration will be
discussed in more detail in Section 8.2.

So far only electronic moments have been considered. But some nuclei possess
magnetic moments; can they order? The answer is yes, but the effect is very
small and only important at low temperature in materials with no electronic
moments. Nuclear spins are well localized inside the atoms and do not couple
strongly with each other; there can be no direct exchange interaction between
them. Nuclear moments are also about three orders of magnitude smaller than
electronic moments and since the dipolar interaction is proportional to the
square of the magnetic moment, any dipolar interaction will be six orders of
magnitude lower than in the electronic case. If electronic moments are present,
they will completely dwarf any nuclear effect. The small size of the nuclear
magnetic moments means that nuclear spin systems can only show magnetic
order at temperatures below ~1 uK. There is however also the possibility
of RKKY coupling between nuclear moments in metallic samples in which
exchange can be mediated by the conduction electrons. However this effect is
about the same order of size as the nuclear dipolar interaction.

Some remarkable experiments have nevertheless been performed on a
number of materials which have no electronic moments and nuclear spin
ordering has actually been observed. In copper there is a first order phase
transition to an antiferromagnetically ordered nuclear ground state at 58 nK. In
silver, the Neel temperature for the nuclear spins is found to be 560 pK. How
may these extremely low temperatures be obtained? The experiments rely on
the fact that the lattice and the nuclei can have different temperatures, even
though they are in the same sample. Using adiabatic demagnetization (see
Section 2.6) the nuclei can be cooled and reach thermal equilibrium among
themselves in a time characterized by the spin-spin relaxation time T2 which is
typically a few milliseconds. The nuclear spins only relax back up to the lattice
temperature in a time characterized by T1 which can be as long as a few hours.

There is a further cunning trick which may be used: if the nuclei are placed
in a magnetic field, the nuclear levels are split and populated according to their
Boltzmann probability. If the magnetic field is then suddenly reversed (in a
time which is short in comparison to T2) the nuclear spins do not immediately
move relative to their levels and one obtains a population inversion. Moreover,

5.6 Nuclear ordering
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one has the correct Boltzmann distribution between the levels appropriate
for a negative temperature. The negative temperature state is a distinct
thermodynamic state with a distinct magnetic phase diagram. Experiments
on silver show that at low negative temperatures the silver nuclei order
ferromagnetically at – 1.9 nK.

5.7 Measurement of magnetic order

In the preceding sections, the various types of magnetic order have been
described. But how do you measure them? In this section, various techniques
for measuring magnetic order are discussed.

5.7.1 Magnetization and magnetic susceptibility

The most obvious experimental technique to try is a conventional measurement
of magnetization. This is essentially a measurement of the sample's net mag-
netic moment u (dividing this by the sample volume yields the magnetization).

In an extraction magnetometer, the sample is placed at the centre of a
coil and then removed to a large distance, inducing a voltage V in the coil.
The magnetic flux O produced by the sample is equal to / V dt. Usually
the magnetometer is constructed so that there are two counterwound coils,
arranged so that voltages due to changes in the applied field are cancelled
out and only the signal from the sample remains. A vibrating sample
magnetometer (commonly known as a VSM) vibrates a sample sinusoidally
up and down, and then an electrical signal can be induced in a stationary
pick-up coil by the movement of the magnetic moment of the sample. The
signal is proportional to the magnetic moment, as well as to the amplitude
and frequency of the vibration. In the alternating gradient magnetometer,
the sample is mounted on a piezoelectric strip and an alternating field is
provided by counterwound coils, so that at the sample there is an alternating
field gradient. This results in a force on the sample equal to (u • V)B. The
piezoelectric strip therefore deflects in time with the driving frequency and
by an amount that can be measured by the piezoelectric signal, allowing u,
to be deduced. In a torque magnetometer, the sample is suspended on a
torsion fibre. The application of a magnetic field B on the sample produces
a torque equal to p x B. One of the most sensitive techniques uses a SQUID
(superconducting quantum interference device). This is a superconducting ring
which contains a 'weak-link', so that there is a Josephson junction in it, and the
ring is therefore able to act like a very sensitive quantum interferometer. If a
sample is passed through the ring, the persistent current induced is proportional
to the magnetization of the sample. These techniques are of course useful
only if the sample has a non-zero magnetization. For an antiferromagnet the
magnetization is zero unless the applied magnetic field is large.

An alternative strategy is to measure the magnetic susceptibility which gives
a good indication of the type of magnetic order present. This can be measured
and data fitted to the Curie Weiss law. The magnetic susceptibility can be
obtained by a number of methods. It is equal to the magnetization induced
in a sample for a small applied magnetic field, and so the techniques described
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above which measure magnetization can be used to measure magnetic suscepti-
bility. In addition, a method which is mainly used for extracting small magnetic
susceptibilities is the Gouy method. In this method a long cylindrical sample
is suspended between the pole pieces of a magnet so that one end of the sample
is between the pole pieces and the other end is well out of the magnet in a
region of zero field. When the magnet is turned on, the apparent weight of the
sample changes. In the related Faraday method, a smaller sample can be used
but this time the force is produced using a magnetic field gradient obtained
with appropriately shaped pole pieces.

Louis George Gouy (1854-1926)

Michael Faraday (1791-1867)

5.7.2 Neutron scattering

Neutrons have been found to be extremely useful in studying magnetism in
condensed matter, and neutron scattering has significant advantages over other
experimental techniques in the study of magnetic structure and dynamics. They
give the most direct information on the arrangement of magnetic moments in
a specimen.

The neutron is a spin-1/2 particle (see Table 2.3) and has a non-zero magnetic
moment. Neutrons are produced in great quantities by fission reactions inside
the fuel elements of nuclear reactors. The beam of neutrons which emerges
from a reactor has a spectrum of energies determined by the temperature T of
the moderator, usually room temperature but T can be higher or lower if the
moderator is heated or cooled. Neutrons emerging from the reactor therefore
have a distribution of velocities given by

where n(v) dv is the number of neutrons through unit area per second and mn

is the mass of the neutron. The distribution contains a Boltzmann factor and a
v3 term which is the product of a phase space factor v2 (as for the Maxwellian
distribution of velocities in kinetic theory) and a factor of v due to effusion
through the hole. This function is plotted in Fig. 5.16(a). The maximum of this
distribution is at

which corresponds to the condition 1/2mnv2 = 3/2kBT. The de Broglie wave-
length k of a neutron with velocity v is

The distribution function is plotted as a function of wavelength in Fig. 5.16(b).
This demonstrates that thermal neutrons have wavelengths similar to atomic
spacings, thus permitting diffraction measurements to be performed. The
ability to tune the wavelength means that diffraction experiments range in
lengthscale from directly probing the wave function of the small atoms to the
low-resolution study of macromolecules.
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Fig. 5.16 (a) The distribution function of
neutrons as a function of velocity v for tem-
peratures 30 K and 300 K. (b) The same
distribution functions plotted as a function
of de Broglie wavelength y = h /m n v . The
curves are normalized to have the same area.

Neutrons scatter from the nucleus via the strong nuclear force and also from
variations in magnetic field within a crystal via the electromagnetic interaction.
The latter interaction enables the neutron to probe magnetic properties of
materials since the neutron couples to the magnetic moment of the electrons.

We first consider the nuclear scattering. The nuclear forces which cause
scattering of neutrons are very short range (10-15-10-14 m), much smaller
than the wavelength of typical thermal neutrons. Hence an incident neutron
wave Ei = elk.r produces a spherically symmetric elastically scattered wave
Ef = -(b/r)e i k r . The quantity b is known as the scattering length and the
minus sign in our expression for Ef ensures that b > 0 for a repulsive nuclear
potential. The scattering length depends on the particular nucleus and the spin
state of the nucleus-neutron system (which can be I + 1/2 or I — 1/2 for a nucleus
of spin /).

In an elastic neutron scattering experiment, elastically scattered neutrons
produce strong Bragg reflections when the scattering vector is equal to a
reciprocal lattice vector (Fig. 5.17(a, b)). These reflections can be studied in
samples by a number of experimental methods, including (i) rotating a crystal
and measuring the scattering from a monochromatic beam, looking for strong
reflections, (ii) using a range of incident wavelengths (the Laue method, see
Fig. 5.17(c)) and (iii) measuring the diffraction of monochromatic neutrons
from a powder sample (see Fig. 5.17(d)). A possible experimental arrangement
at a reactor source is shown schematically in Fig. 5.17(e). Neutrons can also
be produced at a spallation source. High energy protons from a synchrotron
source strike a heavy metal target (e.g. 238U) resulting in the production of
neutrons. The proton beam from the synchrotron is pulsed, so that the neutron
beam is also pulsed. The spread of energies in the pulse of neutrons can be
exploited by building spectrometers that use the time-of-flight technique. By
measuring the time dependence of the scattered neutrons after the start of
the pulse, the scattering of a range of incident neutron wave vectors can be
extracted from a single pulse (see Fig. 5.17(f)).

The nuclear scattering of neutrons results from interaction with the nucleus,
rather than with the electron cloud, and so the scattering power of an atom
is not strongly related to its atomic number. This is in sharp contrast with
the cases of both X-ray and electron scattering. This has some advantages:
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Fig. 5.17 (a) Incident neutrons with wave
vector k are scattered to k' through a scat-
tering angle of 28 by the crystal planes.
Elastic scattering implies that |k| = |k'|. The
incident neutron wavelength is X = 2n/|k|.
(b) Constructive interference of the scattered
neutrons from crystal planes occurs when
the scattering vector Q = k — k' equals a
reciprocal lattice vector, (c) The Laue method
in which a beam of neutrons with a fixed
incident direction but with a range of wave-
lengths gives rise to a Bragg reflection when
Q is a reciprocal lattice vector, (d) In a
powder diffraction method, a monochromatic
beam of incident neutrons is incident upon a
powder sample. The scattered neutrons lie on
a cone (the Debye-Scherrer cone) of semi-
angle 29. (e) Neutron diffraction at a reac-
tor source. The monochromator and rotating
shield are used to select the wavelength of the
incident neutrons and the scattered neutrons
from the sample are measured by a multi-
detector, (f) At a spallation source, a pulse
of neutrons is produced by spallation from a
target. The detector signals are recorded as a
function of time, data from the faster (shorter
wavelength) neutrons arriving earlier.

it is easier to sense light atoms, such as hydrogen, in the presence of
heavier ones, and neighbouring elements in the periodic table generally have
substantially different scattering cross sections and can be distinguished. The
nuclear dependence of scattering allows isotopes of the same element to have
substantially different scattering lengths for neutrons, so that isotopic substitu-
tion can thus be employed. Neutrons are a highly penetrating probe, allowing
the investigation, again non-destructively, of the interior of materials, rather
than just the surface layers probed by techniques such as X-ray scattering,
electron microscopy or optical methods.

Neutrons have no charge, which is why the electron clouds are invisible
to them. However, if an atom has a net magnetic moment, the neutron's
magnetic moment can directly couple to it. This is the second type of scattering
mechanism which is important for neutrons: magnetic scattering. The result is
that spin-up and spin-down electronic moments 'look' different to neutrons.
Hence, when a sample becomes magnetic, new peaks can appear in the neutron
diffraction pattern. An example of this is shown in Figures 5.18 and 5.19.
which show the magnetic structure of the antiferromagnet MnO. Above TN =
116 K there are neutron diffraction peaks resulting from the face-centred cubic
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Fig. 5.18 The magnetic structure of MnO.
The Mn ions are on a face-centred cubic
lattice. The O2- ions are not shown (see
Fig. 4.2). The Mn ions are shaded black or
white depending on their spin state.

Fig. 5.19 Neutron diffraction patterns for
MnO below and above TN. After C. G. Shull,
W. A. Strauser and E. O. Wollan, Phys. Rev.,
83,333(1951).

(fcc) lattice of Mn ions, all of which are equivalent (see Fig. 5.19). The fcc
lattice gives rise to systematic absences in the diffraction pattern. Below TN,
the magnetic structure is as shown in Fig. 5.18 with spins all being parallel
within each (111) plane, but the moments in any two adjacent (111) planes are
antiparallel. The magnetic unit cell is thus double the size of the chemical unit
cell and so a few peaks suddenly appear in the neutron diffraction pattern below
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TN. The amplitude of the magnetic Bragg peaks can be used as a measure of the
strength of the magnetic order, and hence the magnetic order can be followed
as a function of temperature.

The amplitude of the scattering from a magnetic moment depends on the
direction of alignment of the moment. Hence neutron diffraction can be used to
determine the arrangement of the atomic magnetic moments in a magnetically
ordered crystal.

In a periodic system, sharp Bragg reflections occur when the scattering
vector Q equals a reciprocal lattice vector G. In a helimagnet, there is
an additional periodicity in the system because of the helix which can be
described by the wave vector of the helix q. The helix hence has its axis along
the vector q and the pitch of the helix is equal to 2r/|q|. Bragg reflections
are then observed also at G ± q. Since the helix pitch is larger than the lattice
spacing, |q| < |G| so that these Bragg peaks observed above the magnetic
transition temperature are still observed but together with smaller satellite
peaks on either side of each Bragg peak below the transition temperature.

Neutron scattering is the most direct method available for determining the
details of the magnetic state of a sample. Neutrons are however expensive and
because neutrons interact relatively weakly with matter, large sample sizes are
needed (although this drawback is most serious for inelastic experiments, as
described in Section 6.6.4).

The internal field can be measured by the techniques described in chapter 3.
NMR, Mossbauer and uSR experiments can all measure the temperature
dependences of the magnetization of ferromagnets. Because they are local
probes, i.e. they do not measure an average magnetization but rather the mag-
netization at a particular crystallographic site, they can be used to measure the
magnetization of individual sublattices in antiferromagnets or in ferrimagnets.
They can also give information about the spontaneous magnetization from
within a magnetic domain, even if the sample as a whole is unmagnetized.

A further technique to be considered is X-ray scattering. Magnetic X-
ray scattering is typically a rather weak effect (in diffraction experiments
the magnetic scattering is nominally five orders of magnitude smaller than
the non-magnetic scattering) so X-rays were, until recently, mainly used for
structural rather than magnetic investigations. This has changed because of
the development of X-ray resonant exchange scattering (XRES) in which the
magnetic scattering is enhanced as the energy of the X-rays is tuned through an
absorption edge. Another major factor has been the development of high bril-
liance X-ray synchrotron sources and the provision of good beams of polarized
photons. These factors counter the intrinsic weakness of the effect and have
allowed X-rays to be used in the study of magnetism. X-rays have a number of
advantages. They can be used to study small samples (because the diameter of
the beam can be very small), they are element specific (because you tune the
energy to the absorption edge of a particular atom in your sample and therefore
measure a signal which is a signature of a particular element in the sample) and
can give better resolution than neutrons. They can also be used to separately
measure the spin and orbital contributions to the magnetization density.

5.7.3 Other techniques
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Dichroism is the polarization dependence of the absorption of light (a
Polaroid sheet which consists of oriented long-chain molecules is a well known
example of linear dichroism at optical frequencies). Magnetic dichroism works
in a similar way, and the effect is driven by asymmetries in the magnetization
distribution around an atom caused by unpaired electrons. This is essentially
an orbital phenomenon since a photon transfers helicity ±1 to an absorber, but
the spin-orbit interaction can lead to a dependence of the dichroism on the spin
angular momentum. In the technique of magnetic X-ray circular dichroism
(MXCD for short) the difference in attenuation between right-handed and
left-handed circularly polarized X-rays is measured and the results used to
separately infer the orbital and spin magnetic moments.

» A review of experiments on nuclear magnetic ordering
may be found in A. S. Oja and O. V. Lounsmaa, Reviews
of Modem Physics 67, 1 (1997).

• Neutron scattering is described in M. Dove, Structure
and dynamics, OUP, forthcoming, G. L. Squires, Intro-
duction to the theory of thermal neutron scattering, CUP
1978, and W. Marshall and S. W. Lovesey, Theory of

thermal neutron scattering, OUP 1971.

• A more advanced treatment may be found in Theory
of neutron scattering from condensed matter by S. W.
Lovesey, OUP 1984.

• X-ray scattering and absorption by magnetic materials
by S. W. Lovesey and S. P. Collins, OUP 1996, provides
useful information on magnetic X-ray scattering.

Exercises
(5.1) Estimate the size of the molecular field, Bmf in iron

in units of Tesla. Compare this with u0M, the contri-
bution to the S-field due to the magnetization. Hence
explain why the concept of exchange is necessary to
explain the ferromagnetism of iron. The density of Fe
is 7873 kg m-3, the relative atomic mass is 55.847, the
Curie temperature TC is 1043 K and each atom carries a
moment of approximately 2.2uB •

(5.2) Generalize the Weiss model for spins S > 2. Show that
the magnetization M just below TC is given by

and that there is a discontinuity in the heat capacity at TC

equal to

(5.3) The molecular field on each sublattice of an antiferro-
magnet is given by

where F is a constant which expresses the contribution to
the molecular field from the same sublattice. Generalize
the treatment given in Section 5.2 to show that on each
sublattice the magnetization is

Further reading

You will need the relation
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Hence show that the Néel temperature, the temperature at
which the spontaneous magnetization on each sublattice
disappears, is

Also show that the susceptibility is x < (T — 0)-1 where
9 is given by

(5.4) For the helimagnet described in Section 5.4, the energy is
given by eqn 5.30. Show that the energies for ferromag-
netism, antiferromagnetism and helimagnetism are given
by EFM, EAFM and EHM respectively where

(5.6) The susceptibility x of a ferrimagnet can be treated
using mean-field theory. Consider a ferrimagnet with two
inequivalent sublattices such that the molecular fields B1

and B2 on sublattice 1 and 2 are given by

where M1 and M2 are the magnetization on each sub-
lattice and H is the applied field. However, the two
sublattices have different Curie constants C1 and C2

(i.e. different values of gJ J). Show that the magnetic
susceptibility is given by

and find a value for the transition temperature 0. Show
that if C1 = C2 = C the susceptibility reduces to that
for an antiferromagnet with 6 = λ C / µ 0 .

(5.7) Show that the Hamiltonian for the Heisenberg model

can be rewritten as

Hence show that for a Heisenberg ferromagnet (J >
0) the state ]<£>), which consists of spins on every site
pointing up (say), is an eigenstate of the Hamiltonian and
has energy Eo given by

Consider the Heisenberg antiferromagnet (J < 0) with
the spins residing on two sublattices, each spin inter-
acting only with those on the other sublattice. Show
that the 'obvious' ground state, namely one with each
sublattice ferromagnetically aligned but with oppositely
directed sublattice magnetizations, is not an eigenstate
of the Hamiltonian. This emphasizes that the Heisenberg
antiferromagnet is a complex and difficult problem.

(5.8) MnF2 has a tetragonal crystal structure in which the Mn
ions are situated at the corners of the tetragonal unit cell
a = b =0.5 nm and c =0.3 nm, and at the body-centred
position in the unit cell. Below 70 K the spins of the
Mn ions become antiferromagnetically aligned along the
c axis with the spins of an ion at the centre of the unit
cell aligned opposite to those at the corners. The neutron
scattering from a powdered sample of MnF2 is measured
using an incident neutron wavelength of 0.3 nm and an
angle of scattering between 0° and 90°. Sketch the results
you would expect to observe at (a) 100 K and (b) 10 K.
You can neglect the scattering from the F ions.

(5.9) It is possible to find exact solutions to the Weiss model.
With no applied field the problem reduces to solving
simultaneously the equations

where m is the reduced magnetization and Ms =
ngJµBJ • It is helpful to define x = ey.

(a) For J = 1/2, gJ = 2 and B y ( y ) = tanh y. Show that
this implies that

where A is a constant. This low temperature behaviour
can be explained by the effect of spin waves (see Sec-
tion 6.6).

Note that this is in disagreement with the experimentally
determined power law behaviour for T << TC which
follows

(5.5) Show that for T « TC the Weiss model of a ferromagnet
leads to a magnetization M given by

so that helimagnetism is favoured over either ferromag-
netism or antiferromagnetism when J2 < 0 and |J1| <

4|J2|.

so that |0| = TN only if T = 0.

and
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and hence (think carefully about the ± sign) that this
implies that

with TC = 8nµ2Bg/3kB. The approach given in this ques-
tion is detailed in M.A.B. Whittaker, American Journal
of Physics 57, 45 (1989).

and hence that

Writing TC = nu2y/kB, show that

(b)For J = 1, show that

and hence

with

Show that this implies that



Order and broken
symmetry

The appearance of spontaneous order at low temperature is a fundamental
phenomenon of condensed matter physics. Ferromagnets, antiferromagnets,
liquid crystals and superconductors are all ordered phases, as is the solid state
itself. All these phenomena share some fundamental properties and character-
istics. For example, they are all characterized by a temperature dependence
in which some relevant physical property shows a marked difference above
and below a critical temperature Tc. For each phase one can define an order
parameter which is zero for T > Tc and non-zero for T < Tc. This quantity
therefore acts as an indicator of whether or not the system is ordered. In the
case of ferromagnetism, the order parameter is simply the magnetization. In
this chapter we will show that each type of ordered phase is associated with a
broken symmetry, a concept which is explained in the following section.

6.1 Broken symmetry

In ferromagnets a single unique direction has been chosen along which all the
atomic magnetic moments have lined up. They have all chosen 'up' rather than
'down'. This is actually a rather surprising effect since the underlying physical
equations do not distinguish between 'up' and 'down'. Thus the microscopic
physics has a symmetry not possessed by the experimentally observed ground
state. To delve further into this mystery, we must consider symmetry in greater
detail.

A useful example to consider is the Euler strut, shown in Fig. 6.1. This
consists of a vertical rod which is clamped into the ground at the bottom and
uniformly loaded from the top. As the weight of the load increases, the rod
compresses, and above a critical weight it buckles. Whether it buckles to the
left or the right depends on the precise details of exactly how symmetrically
one places the load on the top. But even in the idealization that it is placed
perfectly centrally on the top, the rod still has to choose which way to buckle.
Balanced precariously, as if on a knife-edge, a random thermal fluctuation
might be enough to send it buckling one way or the other. The left-right sym-
metry, inherent in the lightly loaded rod, is said to be broken by the buckling.

Many similar features are observed in condensed matter systems. The pa-
rameter which drives the symmetry-breaking transition can be a force, such as
an applied pressure, but it is very often temperature. Figure 6.2 shows atoms in
a liquid and in a solid. As a liquid cools there is a very slight contraction of the
system but it retains a very high degree of symmetry. However, below a critical
temperature, the melting temperature, the liquid becomes a solid and that
symmetry is broken. This may at first sight seem surprising because the picture
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Terminology concerning symmetry

A system possesses a particular symmetry
if the Hamiltonian describing it is invariant
with respect to the transformations associated
with elements of a symmetry group. A group
is a collection of elements and an operation
which combines them, that follow a partic-
ular set of rules: the group is 'closed', so
that combinations of elements are also mem-
bers of the group; the group combination is
associative: an inverse and identity are well
defined.

A discrete symmetry refers to a symme-
try group with countable elements, such as
the rotational symmetry group of a cube.
A continuous symmetry has an uncountable
continuum of elements, such as the rotational
symmetry group of a sphere. A system pos-
sesses a global symmetry if it is invariant
under the symmetry elements of the group
being applied globally to the entire system. A
local symmetry applies to the Hamiltonian if
it is unchanged after the symmetry operations
are applied differently to different points in
space. The gauge symmetry of superconduc-
tivity is such a local symmetry.
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Fig. 6.1 (a) The Euler stnit. (b) As an in-
creasing vertical force is applied to the strut,
the strut is compressed but retains left-right
symmetry, (c) Once the force exceeds a criti-
cal value, the strut buckles, breaking the left-
right symmetry, (d) The strut could also break
the symmetry in the opposite sense.

Fig. 6.2 Liquid-solid phase transition. Left:
The high temperature state (statistically av-
eraged) has complete translational and ro-
tational symmetry. Right: These symmetries
are broken as the system becomes a solid
below the critical temperature Tc.

of the solid 'looks' more symmetrical than that of the liquid. The atoms in the
solid are all symmetrically lined up while in the liquid they are all over the
place. The crucial observation is that any point in a liquid is exactly the same as
any other. If you average the system over time, each position is visited by atoms
as often as any other. There are no unique directions or axes along which atoms
line up. In short, the system possesses complete translational and rotational
symmetry. In the solid however this high degree of symmetry is nearly all lost.
The solid drawn in Fig. 6.2 still possesses some residual symmetry: rather than
being invariant under arbitrary rotations, it is invariant under four-fold rotations
(II/2, TT, 3II/2, 2n); rather than being invariant under arbitrary translations, it
is now invariant under a translation of an integer combination of lattice basis
vectors. Therefore not all symmetry has been lost but the high symmetry of the
liquid state has been broken.

The situation is similar for a ferromagnet (Fig. 6.3). A ferromagnet above the
Curie temperature TC possesses complete rotational symmetry. All directions
are equivalent and each magnetic moment can point in any direction. Below
TC the system 'chooses' a unique direction for all the spins to point. The
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Fig. 6.3 Paramagnet-ferromagnet phase tran-
sition. Left: The high temperature state (sta-
tistically averaged) has rotational symmetry.
Right: This symmetry is broken as the sys-
tem becomes a ferromagnet below the Curie
temperature Tc.

Fig. 6.4 The phase diagram of water. Paths
A and B in the phase diagram cross a phase
boundary, while C does not. Path A involves
a change of symmetry, while B and C do not.

higher rotational symmetry of the high temperature state is broken. The lower
temperature state has a reduced rotational symmetry (only rotations about the
magnetization axis, the up-direction in Fig. 6.3, are allowed).

An important point to notice is that it is impossible to change symmetry
gradually. Either a particular symmetry is present or it is not. Hence, phase
transitions are sharp and there is a clear delineation between the ordered and
disordered states. The appearance of order at low temperatures can then be
understood from quite general thermodynamic considerations. The free energy
F is related to the energy E and the entropy S by F = E — TS. In order to
minimize the free energy, at low temperature a system will choose its lowest
energy ground state which is usually ordered. Thus it will minimize E. As the
temperature increases, it becomes more important in minimizing F to find a
state which maximizes S and so a disordered state is favoured.

Not all phase transitions involve a change of symmetry. Figure 6.4 shows
the phase diagram of water. The boundary line between the liquid and gas
regions is terminated by a critical point. Hence it is possible to 'cheat' the
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sharp phase transition by taking a path through the phase diagram which avoids
a discontinuous change (path C in Fig. 6.4). For temperatures above the critical
temperature (647 K) a gas and a liquid are distinguished only by their density.
The transition between a gas and a liquid involves no change of symmetry.
In contrast, the solid-liquid transition involves a change of symmetry and
consequently there is no crilical point for the melt ing curve.

A puzzle about the nature of symmetry-breaking transitions is that the
broken-symmetry ground state does not possess the symmetry of the Hamilto-
nian. On cooling a ferromagnet through the transition temperature, the system
has to choose a particular direction along which all the spins wi l l point, even
though no particulai direction is singled out in the underlying physics. How
can this come about'.'

To understand this, it is useful to consider a non-magnetic example, that of
the molecule ammonia ( N H 3 ) shown in Fig. 6.5. The three hydrogen atoms
form three corners of an equilateral triangle (viewed edge-on in Figures 6.5(a)
and 6.5(b)) and the nitrogen atom can be just above the plane of the triangle or
jus t below it. This pyramidal shape is due to the lone pair of electrons on the
nitrogen which jockeys for space with the three nitrogen-hydrogen bonds. This
gives the molecule a dipole moment, hut also defines a particular direction in
space and breaks the symmetry of the underlying Hamiltonian. Therefore this
pyramid cannot be a stable state of the system.

In fact we can imagine transforming between two pyramidal slates shown
in Figures 6.5(a) and (b) by moving the nitrogen through the middle of the
plane, thus inver t ing the tetrahedron much in the same way as an umbrella
is inverted when it is blown out by a strong wind. If we denote the position
of the nitrogen atom by x, the distance from the plane, we could imagine a
potential energy curve V(x) which has two minima associated w i t h the two
stable configurations. This is shown in Fig. 6.5(c). The two lowest energy
eigenstates of th is potential are shown in Figures 6.5(d) and (e) for the first
excited state 01 (x) and ground state 0 u ( x ) respectively.

The configurations represented in Fig. 6 5(a) and (b) do not therefore
represent stable configurations of the system, but are superpositions of energy
eigcnstates. They therefore represent metastable states. Thus the state in
Fig. 6.5(a) is represented by (0n(.r) - <t>\(x))/\f2 and the state in Fig. 6 5(b)
is represented by <^o(x) + 4>i(.\))/^/2. If you prepared the system in the
metastable state in Fig. 6.5(a). you would find that it would oscillate between
that and the metastable state in Fig. 6.5(b) at a frequency given by the
difference between the energy of 0o(x) and 0 1 ( x ) . This frequency is 24 GH/
in ammonia and this transition is the one used in the ammonia maser. If you
replace the nitrogen for the more massive phosphorous to make PH3, the
frequency goes down by about a factor of ten. Thus as we make the system
heavier we increase the time constant of the metastable state in Fig. 6.5(a).

In a ferromagnct we have a more massive state yet. involving not just heavier
atoms, hut more atoms, maybe 1023 of them. The ground state of the system
wi th all spins pointing in a single direciion is actual ly not a true stationary state
of the system. However it is a metastable state but wi th a stabil i ty time which
is greater than the age of the universe. To access the other state, the one with all
spins reversed, one would have to flip every spin in the system simultaneously,
which is extremely unlikely.

Fig. 6.5 (a) Anmioni NH3 is a cc'.rnhc-
dra) molt'cule wh ich can exist in one of two
forms The other form is shown in (b) There
are two stable positions of the N atom, and
we can thus delme a potential energy VIA I
iissociatei with this system. <d> The first
excited state wave funct ion < p | ( A t (e) The
ground state wave function $o( < 1.
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6.2 Models

In order to discuss some of the consequences of symmetry breaking it is conve-
nient to think about some simple models of magnetism and try to solve them.

6.2.1 Landau theory of ferromagnetism

A convenient model which simply produces a phase transition was provided by
the Russian physicist Lev Landau and arises from some very general consider-
ations. We write down the free energy for a ferromagnet with magnetization M
as a power series in M. Because there is no energetic difference between 'up'
or 'down', this power series cannot contain any odd power of M. Therefore we
can write for the free energy F(M) the expression

where FQ and b are constants (we assume b > 0) and a(T) is temperature
dependent. We can show that this system yields an appropriate phase transition
if we allow a (T) to change sign at the transition temperature TC . Thus in the
region of interest, near the transition, we write a(T) = ao(T — TC) where a0

is a positive constant. To find the ground state of the system, it is necessary
to minimize the free energy so we look for solutions of dF/dM = 0. This
condition implies

The left-hand side of this equation is a product of two terms, so either of them
could be zero. This means

The second condition is only valid when T < TC, otherwise one is trying to
take the square root of a negative number. The first condition applies above or
below Tc but below TC it only produces a position of unstable equilibrium
(which can be deduced by evaluating 92F/9M2). Thus the magnetization
follows the curve shown in Fig. 6.6(b); it is zero for temperatures T > TC
and is non-zero and proportional to (Tc — T)1 /2 for T < TC.

Landau's approach to studying phase transitions is called a mean-field
theory which means that it assumes that all spins 'feel' an identical average
exchange field produced by all their neighbours. This field is proportional
to the magnetization. This approach is identical to the Weiss model outlined
in Section 5.1.1. Mean-field theories are the simplest type of theory that
can be constructed to describe many different types of phase transition and
give similar results in each case. They go under different names in different
cases: e.g. Bragg-Williams theory for order-disorder transitions in alloys.
Mean-field theories fail to explain the critical region accurately because
the assumption that all regions of the sample are the same then becomes
particularly misplaced.

Mean-field theories ignore correlations and fluctuations which become very
important near TC . Very near to the critical temperature, large fluctuations are
seen in the order parameter. The critical region is characterized by fluctuations,

Fig. 6.6 (a) The free energy F(M) of a
ferromagnet. (b) The corresponding magne-
tization as a function of temperature.

Lev D. Landau(1908-1968)
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at all lengthscales. When a saucepan of water is heated, the water warms quite
quietly and unobtrusively until near the boiling point when it makes a great deal
of noise and it bubbles and foams.' The same type of effect occurs near TQ in
a ferromagnet. The dominant length scale which characterizes the fluctuations
is the correlation length £. As T -> TC, % -»• oo i.e., the correlation length
becomes infinite at the critical point. The importance of fluctuations is notable
also from the form of F(M). The curvature at M = 0, (d2F/dM2)M=o, tends
to zero at T" = TC so that the minimum at M = 0 becomes broad and flat-
bottomed (see Fig. 6.6). Hence predictions about the critical region obtained
from mean-field theories, though the theories are straightforward to solve, must
be regarded with some caution.

6.2.2 Heisenberg and Ising models

An alternative approach to understanding the magnetic behaviour of solids
is to consider particular microscopic models of the magnetic interaction. A
commonly studied model is the nearest neighbour Heisenberg model which
has a Hamiltonian

where the constant J is the exchange integral and the symbol (ij) below the
£ denotes a sum over nearest neighbours. The spins S, are treated as three-
dimensional vectors because we allow them to point in any direction in three-
dimensional space. However the sum can be taken over a lattice of 1, 2 or
3 dimensions. Here it is important to distinguish between the dimensionality
d of the lattice on which the spins sit and the dimensionality D of the
spins themselves (in general D is known as the dimensionality of the order
parameter). For the Heisenberg model D = 3 (because the spins are three-
dimensional vectors). However we could be considering a lattice of these spins
in 1, 2 or 3 dimensions (or 4 dimensions if we wanted to!) so d can be 1, 2, 3,

A related model is the Ising model in which the spins are only allowed
to point up or down, i.e. we only consider the z component of the spin. The
Hamiltonian of this model is

Ernst Ising (1900-1998)

In Chapter 1, the operator for the z compo-
nent of the spin was written as Sj. Because
we now also need to label the site of the spin,
we will write the z as a superscript and put
the site label as a subscript. Hence 5? is the
operator for the z component of the spin at
site i.

Here the dimensionality of the order parameter D is equal to 1 (the spins are
only allowed to point along ±z). Nevertheless we could arrange these one-
dimensional spins on a lattice with d = 1 , 2 , . . .

6.2.3 The one-dimensional Ising model (D = 1, d = 1)

If the Ising spins are placed on a one-dimensional lattice, we will show that
there is no phase transition. First, consider a chain with N +1 spins (and hence
we need to consider N 'bonds' between each neighbour). The Hamiltonian isFig. 6.7 The one-dimensional Ising model,

(a) The ground state contains all N + 1 spins
aligned ferromagnetically. (b) A single defect
is added.

A visual demonstration of this phenomenon
is critical opalescence, the blurring and
clouding of images seen through a volume of
gas near its critical point. This occurs because
density fluctuations are strong near the criti-
cal point and give rise to large variations in
refractive index.
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and assume J > 0 so that the ground state is obtained by having all adjacent
spins lined up ferromagnetically (this is illustrated in Fig. 6.7(a)). The ground
state thus has energy —Nj/2 because Sf = +5 for all values of z. Now
consider adding one 'mistake', a single defect (see Fig. 6.7(b)). This costs
an extra energy E — J because we have to turn one favourable interaction
(energy saving J/2) into an unfavourable one (energy cost J/2, so the change
in energy is J). However, there is an entropy gain equal to 5 = k& In N
because we can put the defect in any one of N places. As we let the chain
get very large (N -> oo) the energy cost of a defect remains the same (J) but
the entropy gain becomes infinite. The properties are determined by the free
energy F = E — TS so that as long as the temperature is not zero, the entropy
consideration means that the presence of the defect causes the free energy to
plummet to —oo. This means that defects can spontaneously form and in fact
no long range order occurs for T > 0. Another way of saying this is that the
critical temperature is zero. This consideration is valid for all models on one-
dimensional lattices (because entropy always wins in one dimension) and we
conclude that long range order is not possible in one-dimension.

6.2.4 The two-dimensional Ising model (D = 1, d = 2)

If the Ising spins are placed on a two-dimensional lattice, a phase transition to
a magnetically ordered state below a non-zero critical temperature will result.
This is because the energy cost and the entropy gain of making a defect both
scale with the perimeter size of the defect (see Fig. 6.8). Energy and entropy
therefore can have a fair fight with neither having an overwhelming advantage.
The detailed solution of this model was one of the outstanding achievements
of twentieth century statistical physics (Lars Onsager solved it in 1944) and his
solution is beyond the scope of this book. This illustrates that even problems
which are simple to state are by no means easy to solve.

Fig. 6.8 The two-dimensional Ising model.
Up spins are labelled + and down spins are
labelled -. The energy and entropy of the
down spin defect scale with the perimeter of
the defect boundary.

Lars Onsager(1903-l976)

6.3 Consequences of broken symmetry

When you break symmetry there are various consequences:

• Phase transitions: The system will have a sharp change of behaviour
at a temperature Tc. We describe this by saying the system has changed
phase (e.g. liquid —» solid, paramagnet —> ferromagnet, etc). The region
near the phase transition is called the critical region (see Section 6.4).

• Rigidity: Having broken the symmetry, the system will have a strong
energetic preference for staying in that broken-symmetry state, and
attempts by us to change the way the system has broken the symmetry
meet with resistance. Thus crystals don't bend easily and ferromagnets
show permanent magnetism (see Section 6.5).

• Excitations: At T = 0 the system is perfectly ordered. At finite
temperature this order is weakened by excitations in the order parameter.
In crystals these excitations are called lattice waves, quantized into
phonons. In ferromagnets the analogous modes are called spin waves,
quantized into magnons (see Section 6.6).
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• Defects: If symmetry is broken differently in two adjacent parts of a
macroscopic sample, the boundary will contain a defect: e.g. a disloca-
tion in a crystal or a domain wall in a ferromagnet (see Section 6.7).

A summary of the properties of a number of different broken symmetry
phases is contained in Table 6.1. Each is characterized by a high temperature
disordered state and a low temperature ordered state. Each has an order
parameter, a rigidity phenomenon, a set of excitations representing wave-like
departures from the ordered state, and defects associated with breaking the
symmetry differently in different spatial regions.

A crystalline solid gives rise to Bragg peaks in a diffraction experiment.
Thus we can use as an order parameter pc. the Fourier component of the
charge density corresponding to a spatial frequency equal to a reciprocal lattice
vector G. The case of an antiferromagnet is similar to that of a ferromagnet,
except that the order parameter is the magnetization on one sublattice of the
antiferromagnet. A superconductor has a complex order parameter given by
\l> = | V | e i . Here |V| 2 represents the density of superconducting electrons
(for a superfluid or Bose condensate, it represents the condensate fraction).
The phase <0> of the wave function is the broken symmetry; it is free to take
any value at any point in the normal state, but in the superconducting state
it becomes uniform over the whole sample. For a nematic liquid crystal (see
Fig. 6.9), the order parameter is given by S = (1/2(3 cos2 6 — 1)>, which is the
average value of the function 1/2 (3 cos2 0 — 1) where 8 is the angle between the
long axis of the molecule and the director, n, a unit vector which points along
the mean orientation of the axis of the liquid crystal molecule. An isotropic
(liquid) state corresponds to S= 0. Full alignment corresponds to S = 1.

Table 6.1 The properties of broken symmetry phases. Here PQ is the Fourier component of the charge density corresponding to a spatial frequency
equal to a reciprocal lattice vector G. The complex wave function in a superconductor is ii — |ft |e'*. The electric polarization P is the electric
dipole moment per unit volume.
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Fig. 6.9 A nematic liquid crystal contains
rod-shaped molecules, (a) At low tempera-
tures these order as a solid, (c) At high tem-
peratures they are in a liquid state, (b) There
is an intermediate temperature region where
they are in the nemalic state, in which the
long-axis of the molecules become aligned,
even though the positions of the centre of
mass of the molecules are not ordered.

Table 6.2 Critical exponents for various models.
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6.4 Phase transitions

In Section 6.2 the Landau theory of ferromagnetism was presented. This is
a mean-field theory in which an identical exchange field is felt by all spins.
This leads to the magnetization behaving as (7c - T)1/2 below the transition.
In real systems it is found that the magnetization does behave as (Tc — T)P

close to the transition, but the exponent B is not necessarily equal to 1/2. The
exponent therefore gives important information about the nature of the phase
transition. A number of other similar exponents, known as critical exponents,
can be defined. Thus near the phase transition temperature TC it is found
experimentally that

where B, y, and S are the critical exponents. The values taken by these critical
exponents for various models are shown in Table 6.2.

As stated earlier, correlations and fluctuations are ignored in mean-field
theories. This means that they cannot hope to give a correct description close to
TC, precisely where one might wish to calculate critical exponents. It turns out
however that mean-field theory is a correct description of systems with four or
more dimensions (i.e. d > 4) and predicts the correct critical exponents.

Despite the failure of mean-field theory to account successfully for critical
behaviour in systems with dimensionality below four, it is only necessary
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to consider a small representative set of ideal statistical models to calculate
critical exponents of any physical system if the hypothesis of universality
is accepted. This hypothesis is based on the observation that critical expo-
nents do seem to be surprisingly independent of the type of phase transi-
tion, whether liquid-gas, ferromagnetic-paramagnetic, superconducting-non-
superconducting, or any other. It is supposed that for a continuous phase
transition, the critical exponents depend only on

(1) The dimensionality of the system, d.
(2) The dimensionality of the order parameter, D. (Actually the symmetry

of the order parameter.)
(3) Whether the forces are short or long range.

Hence, it is only important to look at particular universality classes, i.e.
particular values of D and d for both short and long range forces, and pick the
simplest models in each class and calculate the exponents for those. (Actually
the assumptions stated above apply to static critical exponents, rather than the
dynamic critical exponents which characterize time-dependent properties.)

We now need to list those models for which solutions are known. There are
a number of exactly solved models which include the following:

(1) All cases for d = 1. As we have seen, such systems do not exhibit
continuous phase transitions.

(2) All cases for d > 4, which give mean-field solutions.
(3) All cases for long range interactions, which give mean-field solutions.
(4) The case d = 2, D = 1. This is the 2D Ising model (see Table 6.2).
(5) The case D = oo for any d. This is known as the spherical model.

Unfortunately, most real situations correspond to d = 3 and short-range
interactions, which have not been solved exactly.

A method of calculating critical behaviour, even in models which cannot
be exactly solved, was discovered in the early 1970s, in which a block of
spins with volume Ld is considered, where L is much less than the correlation
length £. If we increase (scale) the linear dimensions of this block by a factor
n, the Hamiltonian will be suitably scaled, and it is possible to examine how
the order parameter is thus changed (renormalized) by this transformation. If
such a transformation is denoted by r, then the Hamiltonian ft transforms
as H' — r(H). At the critical point, the correlation length f -> oo, so that
there must exist a limiting function H* such that H* is a fixed point of r,
i.e. r(W) = T~i*. This approach, namely that of looking for fixed points
of scaling transformations, is known as the renormalization group method,
since the set of scaling transformations r form a group. It has proved to be
particularly successful in condensed matter physics, and has deep connections
with renormalization in quantum field theory. A more detailed treatment of the
renormalization group is however beyond the scope of this book.

Cluster models can be useful in describing the paramagnetic regime of
ferromagnets, i.e. the region 7 > TC. They retain some of the simplicity (and
hence predictive power) of mean-field approaches but make some attempt to
model the fluctuations. The idea is to evaluate the configuration of a single
finite-size cluster of spins exactly, and then to couple that to the mean field
from the rest of the sample. Of course the correlation length diverges at TC and
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so the size of the cluster needs to increase as you get closer to the transition.
Very good agreement with data can be obtained if a cluster model is chosen in
which the size of the clusters is unrestricted, and is allowed to vary.2

6.5 Rigidity

Breaking symmetry involves a choice of ground state: should the spins all point
up, or down, or left or right? The energy of a macroscopic sample is minimized
when the symmetry is broken the same way throughout its volume. If you try
to make different parts of a macroscopic sample break symmetry differently,
forces will appear reflecting an additional energy cost. This gives rise to a
generalized rigidity or stiffness. This rigidity is intimately connected to the
order, as can be deduced from the following argument for a crystal.

Consider a cubic crystal with lattice parameter a and imagine stretching
one plane of bonds by increasing a to a + u inducing a strain e = u/a (see
Fig. 6.10). This produces a stress equal to Ge (where G is an elastic modulus)
so that the force on an individual bond is equal to Gea2 = Gau. The energy
stored in this bond is then 1/2Gau2. At high temperatures (large compared with
the Debye temperature3) the mean stored energy in each bond is equal to 1/2KB T
(by the equipartition theorem, see Appendix E) so that

and hence (u2) ex. 1/G. Thus if G vanishes, the fluctuations diverge and vice
versa. Hence the existence of a non-zero elastic modulus (i.e. a rigidity) is
connected with the finiteness of the fluctuations (i.e. the stability of the crystal).

This means that because we have an ordered crystal, we must have a rigid
crystal. Crystals do not deform easily (in contrast to liquids) because there is
an elastic energy proportional to the elastic modulus and to (Vw)2 where u is
the lattice displacement, and the lattice transmits this force to the other end of
a macroscopic sample. Solids are therefore rigid.

These ideas are also applicable to ferromagnets. The spins are aligned
in a ferromagnet and it costs energy to turn them with respect to each
other. Hence we have the phenomenon of permanent magnetism. If the
magnetization is non-uniform there is an exchange cost proportional to (VM)2

(see Section 4.2.7, and eqn 4.18 in particular).
As a final example, consider a superconductor in which the phase of the

wave function, 0, is the order parameter. In a superconductor, 0 is uniform
across a sample and there is a 'phase rigidity' energy proportional to (V0)2.
(In fact twisting this phase across a sample produces a supercurrent a V<£.)

6.6 Excitations

A solid is ordered at T = 0, although zero-point fluctuations mean that, even
then, atoms are not purely static. At non-zero temperature, the order is dis-
rupted by thermally excited lattice vibrations, which are quantized as phonons.
The behaviour of the phonons is characterized by a dispersion relation, i.e.

2See R. V. Chamberlin, Nature, 408, 337
(2000).

Fig. 6.10 A cubic crystal of lattice parameter
a is stretched producing a strain f = u/a.

The Debye temperature ©0 gives the en-
ergy of the highest occupied phonon mode,
divided by KB, under the assumption that the
phonons are non-dispersive. Of course there
is always some dispersion, but ®D neverthe-
less characterizes a typical phonon energy of
the system. Most Debye temperatures are in
the range 100-1000 K. When T » eD, the
phonon modes can be treated classically.
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Fig. 6.11 The phonon dispersion for a one-
dimensional monatomic chain of atoms of
mass m connected by bonds with spring con-
stant K. These phonons are acoustic. There
is no gap (w — 0 at q =0) and at small
q , w ~ u s q where us is the speed of sound.
The dispersion is massless because w = 0
at q = 0 (i.e. energy E — hw = 0 at
momentum p = hq = 0). A relativistic
particle has energy E2 = p2c2 + m2c4, so
that the energy at zero momentum is equal to
me , i.e. proportional to the mass.

a relationship between angular frequency CD and wave vector q (equivalently.
between energy hca and momentum hq). An example for a one-dimensional
monatomic chain is shown in Fig. 6.11. The crucial feature of this is that a> = 0
at q = 0 for acoustic phonons, so that it costs a vanishingly small energy to
produce a phonon of wave vector q, provided its wavelength A. = 2n/q is
long enough. The fact that an acoustic phonon can be thermally generated,
as long as the temperature is non-zero, is because there is no energy gap to
leap across from the ground state of the system (q = 0, u> = 0) to the lowest
acoustic phonon level. There is no energy gap in the phonon dispersion relation
at q = 0 (in contrast to the case for optic phonons). Acoustic phonons give rise
to a r3 heat capacity at low temperature in a three-dimensional crystal.

Whenever you have broken a continuous global symmetry (as you do when
you make a solid from a liquid or a ferromagnet from a paramagnet) it is
possible to produce long-wavelength excitations in the order parameter for
vanishingly small energy cost. Such excitations are called Goldstone modes
(or sometimes Goldstone bosons). Because they cost no energy they are
'massless'. In particle physics an example of this is the photon which is a
Goldstone boson. For a superconductor, the situation is rather different because
it turns out that you are breaking a continuous local symmetry and you don't
get Goldstone modes. The reason for this is rather subtle and is connected with
the Higgs mechanism.

A ferromagnet is perfectly ordered at T = 0 but at non-zero temperature
the order is disrupted by spin waves, quantized as magnons. The crucial
feature of these is that it costs a vanishingly small energy to produce a magnon,
provided its wavelength is long enough. Thus the magnons play the same role
in ferromagnets as phonons do in solids and are the Goldstone modes of the
system. We will show below that, for an isotropic ferromagnet, there is no
energy gap in the magnon dispersion relation at q= 0.

6.6.1 Magnons

In this section we will derive the magnon dispersion relation for an isotropic
ferromagnet. This is an important problem so two alternative derivations will
be presented, the first using a semiclassical approach and the second using a
quantum mechanical approach.

(1) We begin with a semiclassical derivation of the spin wave dispersion.
First, recall the Hamiltonian for the Heisenberg model,

(which is eqn 6.4). In a one-dimensional chain each spin has two
neighbours, so the Hamiltonian reduces to

We can calculate the time dependence of (Sj) using eqn C.7, with the
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result that

We now treat the spins at each site as classical vectors. The ground state
of the system has all the spins aligned, say along the z axis, so that
S] = S, Sx: = S* — 0. Consider a state which is a small departure from
this state with 5j % 5, S*}, Sj «: 5, so that

We now look for normal mode solutions, so put

where q is a wave vector. A little algebra leads to A = LB (showing that
the x and y motion are n/2 out of phase) and hence that

which is the dispersion relation for the spin waves and which is plotted
in Fig. 6.12. Thus the spin waves are as depicted in Fig. 6.13.

(2) It is perhaps more satisfying to derive eqn 6.20 using a quantum
mechanical method, and so we now repeat the derivation.4 We consider
the ground state of the system, | 0 > , which consists of all the spins
lying along the +z direction. In one dimension the Hamiltonian for the
Heisenberg model can be written

Fig. 6.12 The spin wave dispersion relation
for a one-dimensional chain of spins.

Fig. 6.13 A spin wave on a line of spins, (a)
perspective view, (b) view from above.

We take S = 1/2 for now, but it can be easily
generalized.
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Fig. 6.14 The state |0) consists of all the
spins lying along the +z direction. The state
\j) is the ground state with the spin at site j
flipped.

so that H|0> = -NS2]|0>. Now to create an excitation, flip a spin at
site j, so let us consider a state |j) — SJ\<&) which is the ground state
with the spin at site J flipped (see Fig. 6.14). By flipping a spin, we have
changed the total spin of the system by 1/2 — (— 1/2) = 1. This excitation
therefore has integer spin and is a boson. If we apply the Hamiltonian
to this new state, we get

which is not a constant multiplied by |j>, so this state is not an eigenstate
of the Hamiltonian. Nevertheless, we can diagonalize the Hamiltonian
by looking for plane wave solutions of the form

The state \q) is essentially a flipped spin delocalized (smeared out)
across all the sites. Since it is composed of states representing a single
flipped spin, the total spin of \q) itself has the value NS — 1. It is then
straightforward to show that

where

The energy of the excitation is then hw = 4js(l - cos qa) which is the
same as the result we had above in eqn 6.20.

6.6.2 The Bloch T3/2 law

At small q, eqn 6.20 yields

so that w x q2. In three dimensions, the density of states is given by

which leads to

at low temperature where only small q and small w are important. The spin
waves are quantized in the same way as lattice waves. The latter are termed
phonons, and so in the same way the former are termed magnons. As shown
in Section 6.6.1, magnons have a spin of one and are bosons.

The number of magnon modes excited at temperature T, nmagnon, is
calculated by integrating the magnon density of states over all frequencies after
multiplying by the Bose factor, ( e x p ( h w / k B T ) — 1)-1, which must be included
because magnons are bosons. Thus the result is given by
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which can be evaluated using the substitution x = hw/k B T. At low tempera-
ture, where g(w) oc w1/2 in three dimensions, this yields the result

Since each magnon mode which is thermally excited reduces the total
magnetization5 by S = 1, then at low temperature the reduction in the
spontaneous magnetization from the T = 0 value is given by

This result is known as the Bloch T3/2 law and it fits experimental data in the
low temperature regime (see Fig. 6.15).6 The energy of the magnon modes is
given by

so that the heat capacity C = dEmasaon/dT is also proportional to T3/2.

Because each magnon mode is a delocalized
single reversed spin, see the previous section.

6The Bloch T3/2 law is only really correct
for the spontaneous magnetization within a
domain. The data shown in Fig. 6.15 actu-
ally measure this because they were obtained
using uSR which measures the local internal
field with zero applied field.

Fig. 6.15 The spontaneous magnetization in a
ferromagnet. At low temperatures this can be
fitted using the spin-wave model and follows
the Bloch T3/2 law. Near the critical tem-
perature, the magnetization is proportional to
(T — Tc)P where B is a critical exponent.
Neither behaviour fits the real data across the
whole temperature range. The data are for an
organic ferromagnet which has TC » 0.67 K
for which B « 0.36, appropriate for the
three-dimensional Heisenberg model.

6.6.3 The Mermin-Wagner-Berezinskii theorem

In one and two dimensions, however, the integral in eqn 6.29 diverges, so that
M -> 0 for all T > 0 for the isotropic 1-D and 2-D Heisenberg models.7

The number of spin waves which are generated at finite temperature diverges,
and hence spontaneous ferrornagnetism is not possible. This result was first
proved by Mermin and Wagner in 1966 and independently by Berezinskii. The
absence of long range order in two-dimensional systems (with a continuous
symmetry) is often referred to as the Mermin-Wagner-Berezinskii theorem.

For different dimensions, the function g (w)
in eqn 6.29 has a different dependence on w.
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Q

If the wavelength of the spin wave is suf-
ficiently long, the exchange energy cost <x
/(|VA/j|2 + \VM y | 2 )dx dy (in two dimen-
sions) is minimized. See Exercise 6.7.

9
This idea is explored in Exercise 6.7

Fig. 6.16 Schematic diagram of a neutron
triple-axis spectrometer. By setting the angle
of the rotating shield and the monochromator
crystal, the incident neutron energy can be
selected. The sample can also be rotated.
The analysing crystal can also be rotated,
allowing the scattered neutron energy to be
measured.

The addition of G is necessary because the
dispersion relation of magnons, like that of
phonons, is periodic in the reciprocal lattice.

This result only applies to an isotropic Heisenberg ferromagnet. This
possesses rotational symmetry so that all of the spin directions can be globally
rotated without any additional energy cost. This means that long wavelength
excitations, in which the spin state may deviate from its ground state value over
a considerable distance, cost very little energy.8 Thus a fluctuation of the spins
can be excited with very little energy cost; in one and two dimensions they
destroy the long range order. If, however, there is significant anisotropy, there
will be an energy cost associated with rotating the spins from their ground state
value.

It turns out that the anisotropy energy penalty incurred by allowing these
fluctuations increases with the square of R, the radius of the excitation, and
hence the anisotropy energy will suppress all but the smallest of these non-
linear fluctuations.9 It is the presence of such symmetry-breaking fields which
can stabilize long range order in two-dimensional systems. There is also a
dipolar interaction between spins in real systems which, although much weaker
than the exchange interaction, is anisotropic and can act in a similar way to
suppress the growth of fluctuations.

It is observed in experiment that some ultra-thin magnetic films can show
spontaneous ferromagnetism. Sometimes the anisotropy is such that it is
energetically favourable for the spins to be perpendicular to the plane of the
film. (The system is said to have a perpendicular easy axis for magnetization.)
In this case the anisotropy leads to a gap in the spin wave excitation spectrum
(between the ground state and the excited states) and long range magnetic order
can exist at finite temperature. Dipolar interactions, or anisotropy of the energy
of the spins in the plane of the film, can lead to a similar effect and stabilize
the magnetization.

6.6.4 Measurement of spin waves

Elastic neutron scattering, which is used for magnetic structure determination,
was discussed in Section 5.7.2. Spin wave dispersions can be measured using a
technique known as inelastic neutron scattering. The magnitude of the incident
neutron wave vector k is now no longer equal to the magnitude of the scattered
neutron wave vector k'. The energy of the neutron also changes from

to

This is because the neutron has produced in the sample an excitation of energy
hw and wave vector q. Conservation of energy and momentum implies that

where G is a reciprocal lattice wave vector,10 so that a measurement of k, k',
E and E' allows a determination of w and q. Neutrons have energies similar
to the energies of atomic and electronic processes, i.e. in the meV to eV range.
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Thus we can probe energy scales from the ueV of quantum tunnelling, through
molecular translations, rotations, vibrations and lattice modes, to eV transitions
within the electronic structure of materials; magnon energies are typically
in the range 10-3-10-2 eV and therefore can be effectively measured using
inelastic neutron scattering.

Experiments are typically performed using a neutron triple-axis spectrom-
eter (see Fig. 6.16), so called because the angles of the monochromator,
sample and analyser crystals can all be separately varied. This allows scattered
neutrons corresponding to a large range of possible values of w and q to
be measured. In particular, it allows scans to be performed in which q
varies with fixed w (or vice versa). Example data obtained by this technique
are shown in Figures 6.17 for C00.92Fe0.08 and 6.18 for the ferromagnetic
oxide Lao.vPbo.sMnOs (which exhibits colossal magnetoresistance, see Sec-
tion 8.9.5).

6.7 Domains

If different regions of a macroscopic system break symmetry in different
ways, then in the interface between these regions the rigidity can break down.
In general we expect domain walls, defects, vortices, dislocations and other
singularities. In ferromagnets the most important singularity is the domain
wall.

Weiss first proposed that a ferromagnet contains a number of small regions
called domains, within each of which the local magnetization reaches the sat-
uration value. The direction of the magnetization of different domains need not
be parallel. Domains are separated by domain walls. The existence of domains
explains the surprising observation that in some ferromagnetic specimens11 it
can be possible, at room temperature, to attain saturation magnetization of
the whole sample (corresponding to ^M ~ 1 T) by the application of a
very weak magnetic field (as low as 10~6 T). Such low applied fields would

Fig. 6.17 The spectrum of magnon energy
for spin waves in an alloy of Coo.92Feo gg
obtained at room temperature (Sinclair and
Brockhouse 1960). In this figure, k is the
magnon wave vector corresponding to q in
the text.

Fig. 6.18 Spin wave dispersion in the ferro-
magnetic oxide Lao.7 Pb0.3 MnO3 measured
at 10 K by inelastic neutron scattering. The
horizontal axis corresponds to the magnon
wave vector. After Perring et al. 1996.

Which are magnetically 'soft', see Sec-
tion 6.7.9.



128 Order and broken symmetry

~lf x ~ 10-1 for a particular paramagnct,
see Table 2.1, then an applied f ie ld of 10 -6 T
would produce a magneti/alion of u0M —
109.

As we shall see, in some ferromagnetic
materials the movement of domain walls can
in fact be energetically costly. Such sub-
stances would require large applied magnetic
fields to switch them from one magnetic state
to the other.

Fig. 6.19 (a) 180° domain w a l l , (b) 90°
domain wall.

Fig, 6.20 (a) A Bloch wall , (b) A Neel wa l l .

Fig. 6.21 Two spins at an angle 0 with re-
spect to each other, producing an energy cost
Jj*2/?2.

1 4Lsing cos0 « I - - H 2 / 2 tor e< I-

have negligible effect on a paramagnet.12 The large effect in the ferromagnetic
specimen is because the applied field does not have to order the magnetic
moments maevoscopically (they are all already ordered!) taut merely to cause
the domains to align. This can be achieved by the energetically painless process
of domain wall motion.13

In the same ferromagnetic specimen, it is also possible for the magnetization
to be zero in zero applied field. This is also a manifestation of domains;
the magnetization is saturated within each domain, but the directions of the
magnetization of each domain arc such that the net magnetization of the
specimen is zero.

6.7.1 Domain walls

Between adjacent doniins there is a boundary called a domain wall. The
domain walls can be classified according to the angle between the magne-
tization in the two domains (see Fig. 6.19). A 1800 domain wall separates
domains of opposite magnetization. A 9() domain wait separates domains of
perpendicular magnetization.

The most common type of 180" wall is a Bloch wall (see Fig. 6.20(a)> in
which the magnetization rotates in a plane parallel to the plane of the wall.
Another possible configuration is the Neel wall (see Fig, 6.20(b)) in which the
magnetization rotates in a plane perpendicular to the plane of the wall. Let us
attempt to calculate the domain wall width in a Bloch wall.

In a ferromagnet it costs energy to rotate neighbouring spins. Two spins. S1

and S2, which are at angle of 0 with respect to each other (Fig. 6.21) have an
energy -2JSi • S2 = -2jS2 cos 0. If 0 = 0, their energy is -2JS2. Hence
the energy cost of having 9 = 0 is approximately1 4 JS202 if 0 << 1. In a
Bloch wall, spins rotate over ,N sites by an angle TT (see Fig. 6.20(a)). Hence
the energy cost of a line of spins is equal to N contributions of JS202 where
0 = II/N, i.e. to J S 2 n 2 / N . In a Bloch wall we have planes of spins (see
Fig. 6.20) and so we arc interested in 0TBW, the energy per uni t area of the
Bloch wall. In a square metre of wall, there are t /u2 l ines of spins like the one
we have calculated, Hence

which tends to zero as ,N — >oc. This result would seem to indicate that if a
domain wall formed it would just unwind itself, growing in size throughout the
entire system. This is because it costs energy to have spins twisted with respect
to each other, and therefore they will all untwist unless some other interaction
stops them. This other interaction is the magnetocrystalline anisotropy.

6.7.2 Magnetocrystalline anisotropy
Crystals possess a magnetic easy axis and a hard axis. Along certain
crystallographic directions it is easy to magnetize the crystal, along others it is
harder (this is shown for single crystals of Fe, Co and Ni in Fig. 6.22). In Co,
for example, this anisotropy leads to an additional energy of the form
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Fig. 6.22 Magnetization in Fe, Co and Ni
for applied fields in different directions show-
ing anisotropy. After Honda and Kaya 1926,
Kaya 1928.

where K1 and K2 are anisotropy constants and 6 is the angle between the
magnetization and the stacking direction of the hexagonally close packed
planes. Because these constants are positive the energy is minimized when
the magnetization lies along the stacking direction. In eqn 6.38, E, K1 and K2

are energy densities (i.e. they are measured in J m - 3). The anisotropy constants
are found to be strongly temperature dependent.

Equation 6.38 is appropriate for uniaxial anisotropy, in which the energy
depends on the angle to a single axis (in Co this is the stacking axis of
the hexagonally close packed planes). In a cubic system, the appropriate
expression is

where m = (mx, my, mz) = M/|M|. In spherical coordinates this is

The anisotropy energy arises from the spin-orbit interaction and the partial
quenching of the angular momentum. Anisotropy energies are usually in the
range 102-107 Jm - 3 . This corresponds to an energy per atom in the range
10-8-10-3 eV. The anisotropy energy is larger in lattices (of magnetic ions)
of low symmetry and smaller in lattices of high symmetry. For example, cubic
Fe and Ni have K\ equal to 4.8 x 104 Jm-3 and —5.7 x 103 Jm-3 respectively,
but hexagonal Co'has K1 = 5 x 105 Jm - 3 . Low symmetry permanent magnet
materials NdaFe2B and SmCos have K\1 equal to 5 x 106 Jm-3 and 1.7 x
107 Jm-3 respectively.

An additional energy term is due to the demagnetizing energy associated
with the sample shape and is referred to as shape anisotropy. In thin films, a
shape anisotropy 1/2uoM2 cos2 & (where 9 is the angle between the film normal
and M) leads to an energetic saving for keeping the magnetization in the plane
of the film.

6.7.3 Domain wall width

In the magnetic domains of a ferromagnet the magnetization will prefer to
lie along the easy direction but between domains, in the domain wall, it will
have to rotate and a component will lie along the hard axis which will cost
energy. If we assume a simple form for the anisotropy energy density, namely
E = K sin2 & where K is an anisotropy constant, then we can easily find an
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expression for the anisotropy energy contribution to a Bloch wall. We take
K > 0 so that spins prefer to line up along 0 = 0 or 0 = n. We add up the
contribution from each of the N spins and replace the sum by an integral for
simplicity (the continuum limit). Thus the energy density contribution is

The energy contribution per unit area of wall can then be written as NKa/2.
Thus the total energy per unit area of the domain wall, including the con-
tribution from the exchange energy (eqn 6.37) and the contribution from the
anisotropy energy (eqn 6.41) is

This gives us the required behaviour since we have two terms, one proportional
to l/N (tending to unwind the wall and make it bigger) and the other
proportional to N (tending to tighten it and make it smaller). We find the
equilibrium configuration using dEBW/dN = 0 which leads to a value of N
given by

so that the width of the Bloch wall is

where a is the lattice spacing. Larger] makes the wall thicker, larger K makes
it smaller. The energy per unit area of the domain wall is

In terms of the parameter A defined in eqn 4.19 (for a cubic crystal) we have
the domain wall thickness

and the energy per unit area as

6.7.4 Domain formation

Since it costs this energy to make a domain wall, one might wonder why more
than one domain ever forms in the first place. The reason is that the formation
of domains saves energy associated with dipolar fields. Because V.H = - V-M
(see Appendix B) then whenever M stops and starts, at the edges of a sample
for example, the magnetic field diverges and this produces demagnetizing
fields which fill space and which cost B2/2/uo Joules of energy per cubic metre.
The energy associated with the demagnetizing field is called, variously, the
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demagnetization energy, magnetostatic energy or dipolar energy. It takes
the value

where Hd is the demagnetizing field and the integral is taken over the volume of
the sample (see Appendix D), For an ellipsoidally shaped sample magnetized
along one of its principal axes, this energy reduces to

where N is the demagnetizing factor and V is the sample volume.
This dipolar energy can be saved by breaking the sample into domains, but

each domain created costs energy because of the cost of the domain walls.
Therefore, in the same way as the size of a domain wall is a balance between
the exchange and anisotropy energies, so the formation of domains is a balance
between the cost of a demagnetizing field and the cost of a domain wall.

Figure 6.23 shows three different choices for the domain structure tor a
ferromagnetic sample. The single domain structure in Fig. 6.23(a) has no
domain walls but a large dipolar energy. The dipolar energy can be reduced
by breaking the sample into two domains as shown in Fig. 6.23(b), albeit at the
cost of introducing a domain wall. The so-catled closure domain structure in
Fig. 6,23(c) eliminates the dipolar energy but introduces a number of domain
walls.

Dipolar energy can also determine the type of domain wall that can form.
The Bloch wall is favoured in the bulk because it leads to a smaller dipolar
energy. The Neel wall tends to be favoured in thin films (where there is a
dipolar energy cost to rotating the spins out of the plane of the film).

6.7.5 Magnetization processes

Figure 6.24 shows a typical hysteresis loop expected for measuring the
magnetization as a function of the applied magnetic field for a ferromagnetic
sample. If the sample is magnetized to the saturation magnctization Ms by an
applied field, then when the applied field is reduced to zero the magnetization

Fig, 6.23 A samplt which is (a) uniformly
magnetized, (b) divided into two domains,
and (c) with a Simple closure domiiin struc-
ture.



132 Order and broken symmetry

Fig. 6.24 A hysteresis loop showing the
saturation magnetization Ms the remancnt
magnetization Mr and the coercive field Hc.

Fig. 6.25 Effect of an applied f ie ld on the
domain pattern on the surface of a single
crystal iron whisker showing domain wall
displacement, as the applied B field increases
from 0 up 10 a maximum value.

Heinrich Barkhausen (1881-1956)

John Kent (1824-1907)

reduces to the remonent magnetization Mr. A magnetic field equal to the
coercive field Hc is needed to switch the magnetization into the opposite
direction. The parameters Mr and Hc can be used to characterize a ferromagnet.

The length of a ferromagnei changes slightly when it is magnetized. This
effect is known as magnetostriction and demonstrates that the magnetic
and elastic behaviour of a material are connected (the connection is called
magnetoelastic coupling). The crystal deforms because it can lower its
anisotropy energy which can depend on the strain of the crystal. For example,
in a cubic system it may be energetically favourable for the crystal to deform
slightly from exactly cubic symmetry it doing so will save more anisotropy
energy than it wil l cost in elastic energy.

When a demagnetized ferromagnet is magnetized, various processes occur.
First is domain-wall motion; domains which are aligned favourably with
respect to the applied magnetic field grow at the expense of domains which
are unfavourably aligned. (This process is shown in Fig. 6.25.) At higher
fields, domain rotation can occur in which the anisotropy energy can be
outweighed and the magnetization can suddenly rotate away from the original
direction of magnetization to the crystallographic easy axis which is nearest
to the field direction. The final domain process at highest magnetic lields is
coherent rotation of the domains to a direction aligned with the magnetic field,
irrespective of the easy and hard axes.

The motion of domain walls through a magnetic material depends in
detail upon the metallurgical properties of the material. Domain walls can be
pinned by strains in the material, by surfaces and impurities because of the
magnetoelastic coupling. Domain wall pinning therefore increases coercivity.
The magnetization of a ferromagnet also changes by a series of discontinuous
steps due to domain boundary motion, so that very small steps are sometimes
seen on the magnetization curves. This is known as the Barkhausen effect.
Low level acoustic emission also sometimes accompanies the magnetization
process because of these sudden discontinous changes in magnetization and
their coupling to the elastic modes of the system, This effect is known as
magnetoocoustic emission.

6.7.6 Domain wall observation

Domains can he observed using a variety of techniques. In the Bitter powder
technique a colloidal suspension of fine magnetic particles is placed on the
surface of the sample. The magnetic particles collect near domain walls where
there are strong local fields which attract them. These can be observed using
optical microscopy. It is also possible to use polarized light reflecting from
a polished magnetized sample to observe domains, a technique known as
Kerr microscopy. The incident beam of light is polarized and its plane of
polarization is rotated by reflection from the magnetized sample (this is the
Kerr effect, see Section 8.8), The degree of rotation can be measured using a
second polarizer (the analyser). If a beam of light is focussed to a spot and
scanned across the surface of a magnetic sample, then for a particular setting
of the analyser polarizer, some domains will appear bright and others dark.
If the sample is transparent, the experiment can be performed in transmission
(the Faraday effect).
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Electron microscopy can also be effective as the electron beam is deflected
by the Lorentz force due to the internal field. Boundaries between domains
(across which this deflection can suddenly change in sign as the beam is
scanned over) show up particularly well. This technique is called Lorentz
microscopy.

In the technique of magnetic force microscopy15 a tiny cantilever with a
magnetized tip is scanned across a sample surface. The stray fields produced
by a domain wall cause the cantilever to bend, and this bending (detected by,
for example, a change in the resonant frequency of the cantilever) is used to
image the surface.

6.7.7 Small magnetic particles

In many ferromagnetic samples the lowest energy state at zero applied field
is the demagnetized state, so that the overall magnetic moment is zero. If the
sample size is reduced, surface energies (such as the domain wall energies)
become progressively more costly in comparison with volume energies (such
as the demagnetizing energy).16 Thus a critical dimension may be reached
below which it is energetically favourable to remove the domain walls so that
the sample consists of a single magnetized domain. It would thus behave like
a small permanent magnet.

In the following example, we estimate the critical size for a single domain
particle. The calculation will assume that this critical size is still larger than the
domain wall width.

Example 6.1

Consider a ferromagnetic particle of radius r. The energy of the single domain
state (Fig. 6.26(a)) is, using eqn D.I2 and N = 1/3 for a sphere, given by

The state in Fig. 6.26(b), appropriate for cubic anisotropy, approximately
removes all demagnetizing energy, but introduces 90° domain walls of area
2 x irr2, leading to an energy cost

where aff° is the energy cost of a 90° domain wall per unit area. The state in
Fig. 6.26(a) thus becomes more favourable than the state in Fig. 6.26(b) when
E(a) < E(b), i.e. when

A magnetic force microscope is based on
the well-known atomic force microscope.

This is because surface energies scale as
the (sample size) whereas volume energies
scale as the (sample size)3.

The volume of a sphere is V = 4/3jtr .
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The state in Fig. 6.26(c), appropriate for uniaxial anisotropy, is harder to
consider because neither domain is ellipsoidal in shape and there is still some
demagnetizing energy. Roughly, though, the demagnetizing energy of this
configuration is half that of Fig. 6.26(a) since the domains are half the size.
The domain wall cost is then nr20̂ w180° where 0180° is the energy of a 180°
domain wall per unit area. Thus

Hence the state in Fig. 6.26(a) becomes more favourable than the state in
Fig. 6.26(c) when E(a) < E(C), i.e. when

If cr180 ~ 10-2 Jm-2 and u0M ~ 1 T, the critical radius is ~ 10-7 m.
Note, if this value came out to be smaller than the domain wall width, then the
calculation would be nonsensical.

6.7.8 The Stoner-Wohlfarth model

It is possible to calculate the magnetization curve for a single-domain particle,
via the Stoner-Wohlfarth model. Because the particle is a single magnetic
domain, there are no domain walls and one need only consider coherent
domain rotation.

We consider a single-domain magnetic particle in a magnetic field H which
is applied at an angle 6 to the easy axis of its uniaxial anisotropy. If the
magnetization of the particle then lies at an angle of 0 to the magnetic field
direction, the energy density of the system is

Fig. 6.26 Three possible magnetization con-
figurations for a small spherical ferromag-
netic particle.

The energy can be minimized to find the direction of the magnetization at any
given value of the applied magnetic field.

This is shown in Fig. 6.27 where the applied field is written in dimensionless
units using the parameter h given by

for two choices of the direction of the applied magnetic field. Analytic
solutions are possible for this model for 0 = 0 and 9 = n/2, but in the figure it
is shown how they can be solved numerically. In each case the trajectory of the
magnetization direction which lowers the energy is shown by a curve across
an energy surface (energy as a function of 0 and h) and the corresponding
hysteresis loops are also shown. The hysteresis loops are shown for a larger
choice of values of & in Fig. 6.28, together with the calculated result for a
polycrystalline average of directions, as would be appropriate for an array
of single-domain particles (ignoring any interactions between the particles).
This model demonstrates how the anisotropies present in a system can lead to
hysteresis, even in a system in which there are no irreversible effects associated
with domain-wall pinning.
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Fig. 6.27 The hysteresis loops in the Stoner-
Wohlfarth model for (a) 0 = 90° and (c)
8 = 30°. These can be obtained by finding
the minimum energy points on the energy
surfaces as a function of h and 0, which are
shown for (b) 0 = 90° and (d) 0 = 30°.

Fig. 6.28 The hysteresis loops in the Stoner-
Wohlfarth model for (a) B = 0° (bold), 5°,
15°, 30°, (b) 0 = 45°, 60°, 75° and 90°
(bold), (c) A calculated hysteresis loop for a
polycrystalline average.

6.7.9 Soft and hard materials

The energy dissipated (as heat) by a ferromagnet as it is taken around a circuit
of its hysteresis loop is proportional to the area of that loop. If the area is
small, the material is said to be magnetically soft. If the area is large, the
material is said to be magnetically hard. Domain walls traverse a sample as the
field is cycled and we can distinguish these two broad classes of ferromagnetic
materials based on how easy it is for domains to move through a sample.

(1) Soft magnetic materials are easy to magnetize. Soft magnets are used
in transformer coils, generators and motors. In these applications the
magnetization must be reversed many times a second and it is important
that the energy dissipated in each cycle is minimized. Soft materials have
broad domain walls (small anisotropy energy K) which are thus easy
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to move. This leads to small coercive fields. Low magnetostriction is
often desirable so that internal strains will not induce a local anisotropy
energy. An example is permalloy (a commercial Ni/Fe alloy with an
additional ingredient) which has a coercive field Bc ~ 2 x 10-7 T.

(2) Hard magnetic materials are difficult to magnetize and thus difficult
to demagnetize. Hard magnets are used as permanent magnets (e.g.
in the back of loudspeakers, in motors, and of course on the front of
your refrigerator!) and in magnetic tape recording (in powder form).
In these applications, the magnetization needs to be preserved for as
long as possible. The energy dissipated in a hysteresis loop cycle is as
large as possible so that the magnetization will not occur spontaneously.
Hard magnets have large hysteresis and narrow domain walls (large K)
so that it is easy to have domain wall pinning. Large ion moments
and large crystal fields are helpful for hard magnetic properties and
suitable materials often involve rare earths, e.g. Nd2Fe14B which has
Tc = 585 K and coercive field Bc = 1.2 T.

An important application of hard magnetic materials is magnetic recording.
The areal density of bits that can be recorded using magnetic materials has shot
up dramatically over the last few years, reflecting a steady improvement in the
understanding and fabrication of magnetic materials. The approximate figures
are ~0.1 Mbits in-2 in I960, ~10 Mbits in -2 in 1980 and ~25 Gbits in-2

in 2000 (1 bit in-2 is a bit of information, a '0' or T, stored in a square-
inch - this most modern of industries has yet to modernize its units!) As
the areal density increases in the future, superparamagnetic fluctuations (i.e.
thermal fluctuations of the magnetic particles, see Section 8.3) of the magnetic
moments will become important.

Small magnetic particles of Fe2O3 were traditionally used on recording
tapes and disks. Improvements in properties for high-fidelity audio recording
and video tapes are based on high coercivity particles such as Fe2O3 doped
with Co, CrO2, metal particles (usually Fe), and barium ferrite (BaO.6Fe2O3,
see Section 5.3). Hard drives typically consist of a large rigid disk with a thin
film deposited by vacuum deposition or sputtering, usually of a Co/Cr alloy.
The hard disks rotate rapidly and a reading-head moves across the surface of
the disk (it can hover a fraction of a micron above the surface) and is able to
access any part of it.

Further reading
• The concept of broken symmetry is described in more

detail in P. W. Anderson, Basic notions of condensed
matter physics, Addison-Wesley 1984.

• The statistical mechanics of phase transitions is discussed
in J. Yeomans, Statistical mechanics of phase transitions,
OUP 1992.

• Also very helpful on critical phenomena is M. F. Collins,
Magnetic critical scattering, OUP 1989.

• A very thorough description of phase transitions and

broken symmetry phenomena, with particular emphasis
on soft condensed matter, is P. M. Chaikin and T. C.
Lubensky, Principles of condensed matter physics, CUP
1995.

• J. J. Binney, N. J. Dowrick, A. J. Fisher and M. E. J.
Newman, The theory of critical phenomena, OUP 1992
contains an excellent account of renormalization group
methods.

• Information on domains and magnetism may be found
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in G. Bertoni, Hysteresis in magnetism. Academic Press
1998 and A. Hubert and R. Schafer, Magnetic domains,
Springer 1998.
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Exercises
(6.1) A one-dimensional ferromagnetic chain of N spins is

described by the Ising Hamiltonian

(The last term is used to give periodic boundary condi-
tions.)

Show that the partition function Z of this system can be
obtained by introducing new operators

which have eigenvalues +1 or -1, and hence show that
the partition function is Z = (2 cosh(J/2KBT))N.

Using these results obtain an expression for the heat
capacity per spin of the chain as N —> oo. Deduce the
low and high temperature behaviour of the heat capacity
and sketch the heat capacity as a function of temperature.
Discuss the result.

(6.2) A uniaxial ferromagnet is described by the Hamiltonian

(a) Show that the state with all spins fully aligned along
the z axis is an eigenstate of the Hamiltonian.

(b) Obtain an expression for the spin wave spectrum as a
function of wave vector q.

(c) Simplify the expressions for the case where Jij and
Kij are restricted to nearest neighbours, Jo and K0, and
the ferromagnet is (i) a one-dimensional chain, (ii) a two-
dimensional square lattice and (ii i) a three-dimensional
body-centred cubic material.

(6.3) Using the results of Exercise 6.2 for small wave vectors,
deduce the temperature dependence at low temperatures

• Useful general references are D. Craik, Magnetism: prin-
ciples and applications, Wiley 1995 and J. Crangle, Solid
state magnetism, Edward Arnold 1991.

• T. G. Perring, G. Aeppli, S. M. Hayden, S. A. Carter, J.
P. Remeika and S-W. Cheong, Phys. Rev. Lett., 77, 711
(1996).

• R. N. Sinclair and B. N. Brockhouse, Phys. Rev., 120,
1638(1960).

of the number of spin waves for the Heisenberg model
(Ko = 0) and the Ising model (Jo = 0) for each of
the structures (i), (ii) and (iii) of Exercise 6.2. Show that
your results for the Ising model for case (i) agree with
the results obtained in Exercise 6.1 and that there is no
long range magnetic order above absolute zero for the
Heisenberg model in one or two dimensions.

(6.4) Apply spin-wave theory to an antiferromagnet and show
that the dispersion relation is

Hence show that for an antiferromagnet w a |q| at small
q, whereas for a ferromagnet w oc q2 .

(6.5) The Landau theory of a ferromagnet in a magnetic field
H implies that the free energy is given by

where a0 and b are positive constants. Show that this
implies that

where u and v are constants that you should determine.
By sketching M2 against H/M for T just above Tc, just
below Tc, and exactly at TC, show how this method can
be used to determine Tc. This idea is the basis of the
Arrott plot which is a plot of M2 against H/M.

(6.6) Find analytic solutions to the Stoner-Wohlfarth model
for 9 = 0 and 6 = II /2.

(6.7) To illustrate the ideas behind the Mermin-Wagner-
Berenzinskii theorem, consider an excitation in two di-
mensions (see Fig. 6.29) in which the magnetization as a
function of position r = (x, y) has constant magnitude
|M| but varying direction specified by the vector M(r)
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given by (6.10) Show that the HamiUoniaii

has .1 sp in-wave dispersion given by

for |q 6tnax |« I where 6max is (he largest vector 6 for
which J(s) gives any appreciable contr ibut ion.

(6 11) The state |q> in eqn 0.23 represents a delocalized single
Hipped spin in .1 background of unnippeii spins. Ir. three
dimensions it becomes

The probability that the Hipped spin is at she is

Fie. 6-29 An exeiui ion in a 2D nugnel

E x p l a i n why the exchange energy cost due to this excita-
tion is proportional to

and show that it is a constant i.II3|M|2 and therefore
independent of R. This implies that very large scale
rluctuation.s can occur wi th no additional energy cost
compared w i t h a small-scale f luc tua t ion , (hereby destroy-
ing any long range order. This problem is based on an
example presented in an article by A S. Arrotl and B.
Heinrich. Journal of Magnetism and Magnetic Materials
93.571 (1991).

(6.8) Data are writ ten onto a magnetic recording disk w i t h an
urcal density 01 25 Ghits in -. By using some educated
guesses, convert this areal density into other uni ts : (a) bits
per cross-sectional area of a hydrogen atom, (b) copies
of the complete plays by Will iam Shakespeare (i.e. their
information content) per postage stamp. Compare this
density of informat ion storage to that of (he human
genome.

(6.9) Consider an isotropie cubic ferrorniignct c la t t i ce parame-
ter a) in a magnetic Held , w i th Hami ton ian

Show that it has a spin wave dispersion given by

for qa « I.

Show that p = I/N and hence that the lowered spin is
dis t i ibuled with equal probability.

The operator tor the transverse spin correlation function
is

Show that

(for / f ; ' ) and interpret th is w i t h reference to Fig 6.13.

(6 .12 ) Our calculation for the domain wal l width of a Bloch wall
made the assumption that the angle between adjacent
spins in the wa l l was TN everywhere throughout the
N spins of the wall . This was clearly an approximation!
Here is an improved calculation.

Let the spin as a funct ion of r. a coordinate running
perpendicular to the plane of the wal l , be described by
an angle 0 (c ) . We assume that 0 ( - ) — >0 as —> — oo
and H(~) -> TI as .- —> +^o. corresponding to a 180°
wall The energy is given by

where A is the cont inuum exchange constant and / < # ) is
a function which describes the anisotropy. Show that the
energy is minmized when
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Mult iply this equation by (a0/0) and integrate With re-
spect to z to show that

Now suppose that J (0) is given by

where K is an anisotropy constant. Show that this implies
that

where 5 — . I I ^ A / K . Sketch 0(z) and argue that A is a
suitable measure ot the domain wall width. Show further
that

in this case.

(6. 13) Consider the closure domain structure in a ferromagnetic
film as shown in Fig. 6.30. The easy axis is vertical
and the hard axis is horizontal. The energy of the long
180° walls per unit area is rw and the anisotropy energy
density is K. Ignoring the contribution from the 90c walls

Fig. 6.30 A closure domain.

( i c . assume L >> D), show, that

Assuming that TW = 2 x 10-3 Jm-2 and that K =
4 x 104 Jm-3 and L = 4 mm, estimate D
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In this chapter the magnetic properties of metals are considered. In previous
chapters we have concentrated on interacting but localized magnetic moments.
The conduction electrons in metals are delocalized and can wander freely
through the sample; they are known as itinerant electrons. In some cases the
magnetic moments in metals are associated with the conduction electrons,
in other cases the magnetic moments remain localized. In both cases para-
magnetic and diamagnetic behaviour can occur. Ferromagnetism is possible
under certain conditions. Most of the discussion in this chapter will be centred
around the free electron model, which is introduced in the following section.
The free electron model is a crude approximation to most real situations,
but it is simple to consider and will allow the discussion to proceed a long
way. Subsequent sections contain derivations of the magnetic properties of the
electron gas which include Pauli paramagnetism, Landau diamagnetism, the
origin of RKKY interactions, instabilities of the electron gas such as spin-
density wave formation, and the Kondo effect which occurs when localized
moments interact with the electron gas.

7.1 The free electron model

We begin our discussion of the magnetism of itinerant electrons by reviewing
the free electron model. In this model, the periodic potential due to the lattice
is ignored, and the electrons fill states up to the Fermi wave vector kF. Points
in k-space are separated by 2 r / L (see Fig. 7.1(a)) where V = L3 is the
volume of the sample, so that the number of states between k and k + dk is
equal to 4nk2 dk, the volume of a spherical shell of radius k and width dk (see
Fig. 7.1(b)) divided by (2r/L)3, the volume occupied by one point in k-space.
Each state is doubly occupied, by an electron with spin-up and an electron with
spin-down, so there is an additional factor of two. Hence the density of states
g(k) dk can be written as

where the factor of 2 takes care of the two spin-states of the electrons. Hence

If the material has N electrons, then at absolute zero (T = 0) these electrons
will fill up the states up to a maximum wave vector of kF. Hence
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so that

where n = N/ V is the number of electrons per unit volume. The Fermi energy
EF is defined by

The density of states as a function of energy E oc k2 is proportional to E1/2,
i.e.

so that

and hence

The density of states at the Fermi energy is therefore given by1

We note in passing that another useful expression for g ( E F ) can be obtained
by combining eqn 7.4, eqn 7.5 and eqn 7.9 to yield

which shows that g (E- F ) oc me. Many important properties depend on the
density of states at the Fermi energy and therefore it is useful to know that it is
proportional to the electron's mass. In many systems of interest, the electron's
mass is enhanced above its free space value due to the effect of the band
structure or interactions.

In the free electron model we ignore the periodic potential due to the lattice.
However if it is included as a perturbation (the nearly free electron model)
it turns out that it has very little effect except when the wave vector of the
electron is close to a reciprocal lattice vector. At such points in k-space energy
gaps appear in the dispersion relation (see Fig. 7.2).

So far, everything has been treated at T = 0. When T > 0, the density of
states g(E) is unchanged but the occupancy of each state is governed by the
Fermi function f ( E ) which is given by

where u is the chemical potential which is temperature dependent. This func-
tion is plotted in Fig. 7.3. At T = 0, f(E) is a step function, taking the value
1 for E < u and 0 for E > u. The step is smoothed out as the temperature
T increases. When the Fermi function is close to a step function, as is the
usual case for most metals at pretty much all temperatures below their melting
temperature, the electrons are said to be in the degenerate limit. The Fermi

Fig. 7.1 (a) Electron states are separated by
2 r / L . Each state can be doubly occupied and
occupies a volume (2r/L)3. (b) The density
of states can be calculated by considering the
volume in K-space between states with wave
vector k and states with wave vector k + dk,
namely 4rk2 dk.

Equation 7.9 could also be derived using
eqns 7.2, 7.4 and 7.5 directly.

Fig. 7.2 The energy gap at the Brillouin zone
boundary.
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Fig. 7.3 (a) The Fermi function f(£) defined
by eqn 7.11. The thick line is for T = 0. The
step function is smoothed out as the temper-
ature increases. The temperatures shown are
T = 0, T = O.OlM/itfi. T = 0.05u/kB and
T = 0. 1u/KB . (b) The density of states g(E)
for a free electron gas is proportional to E1\2.
(c) f(E)g(E) for the same temperatures as in
(a).

function is a consequence of the Pauli exclusion principle, that each electron
must have a unique set of quantum numbers and no two electrons can sit in the
same state. For (E — u) » kBT the Fermi function approaches the Maxwell-
Boltzmann form e,-(E-u)/kB

T which is known as the non-degenerate limit.
The Fermi energy is the energy of the highest occupied level at T — 0 and

is determined by the equation

The function f ( E ) g ( E ) is shown in Fig. 7.3(c). At T = 0 we easily find that
the Fermi energy precisely equals the chemical potential: Ep = u. For T > 0,
a tedious calculation gives

but this means that equating EF and u is good to 0.01% for typical metals
even at room temperature, although it is worthwhile keeping in the back of
one's mind that the two quantities are not the same. The Fermi surface is the
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set of points in k-space whose energy is equal to the chemical potential. If the
chemical potential lies in a gap, then the material is a semiconductor or an
insulator and there will be no Fermi surface. Thus a metal is a material with a
Fermi surface.

7.2 Pauli paramagnetism

Each k-state in a metal can be doubly occupied because of the two possible
spin states of the electron. Each electron in a metal is therefore either spin-
up or spin-down. When a magnetic field is applied, the energy of the electron
is raised or lowered depending on its spin. This gives rise to a paramagnetic
susceptibility of the electron gas and is known as Paul) paramagnelism.

7.2.1 Elementary derivation

Initially, we neglect the orbital contribution and take g = 2. We also neglect
smearing of the Fermi surface due to finite temperature. As shown in Fig. 7.4,
in an applied magnetic field, the electron band is spin-split into two spin
suhbands separated by guBB = 2uBB. We will assume that guBB is a very
small energy so that the splitting of the energy bands is very small. The numher
of extra electrons per unit volume with spin-up is n^ = ^ g ( E f ) u B B This is
also the number per uni t volume of the deficit of electrons with spin-down,
«; — \g(Ef)^B. Thus the magnetization is given by

and the magnetic susceptibility xP (the subscript 'P' denoting the Pauli
susceptibility) by

where the final equality is obtained using eqn 7.9. Because XP « I we are

justified in writing XP ~ unM/B (see Section 1.1.4).
Our expression for Pauli paramagneiism is temperature independent, al-

though admittedly this is because we started out by ignoring the smearing
of the Fermi surface due to finite temperature. However, if temperature is
included, it makes only a rather small correction (see Exercise 7.1). Pauli
paramagnetism ts a weak effect, much smaller than the paramagnetism
observed in insutators at most temperatures due to Curie's law. This is because
in paramagnetic insulators at least one electron on every magnetic atom in the
material contributes, but in a metal, it is only those electrons close to the Fermi
surface which play a role. The small size of the paramagnetic susceptibility
of most rnetals was something of a puzzle until Pauli pointed out that it
was a consequence of the fact that electrons obeyed Fermi Dirac, rather than
classical, statistics.

Fig. 7.4 Density of states showing splitting
of energy bands in a field 8. The splitting is
shown greatly exaggerated.
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7.2.2 Crossover to localized behaviour

The effect of the Fermi Dirac statistics and the crossover between Pauli para-
magnetism and localized moment behaviour can be illustrated by rederiving
eqn 7.15. One should strictly write the number of electrons per unit volume of
each spin state as

Thus for small B, the magnetization is M = uB(n«| - n\) and hence

where the second line is obtained by performing the integration of the first line
by parts. Using the fact that g(0) = 0 and /(oo) = 0 (see Fig. 7.3), the first
term is zero. Hence

In the degenerate limit at T = 0, —df/dE, the differential of a step function,
is a delta function at EF, i.e.

so that we recover M = ^Bg(EF) and hence x = f j . o f j ^ g ( E F ) in agreement
with eqn 7.15.

In the non-degenerate limit, /(E) % e,-(E-u-)/kET so that

and the magnetization is

so that

in agreement with eqn 2.28. The susceptibility is then equivalent to n localized
moments (of magnitude uB) per unit volume. As stated above, for most metals
EF is a few eV and so the degenerate limit holds well at all temperatures
below the melting temperature. However, for a material in which the carrier
concentration is low (for example in a doped semiconductor) and EF oc n2/3

is much smaller, the non-degenerate limit may be reached and a Curie-like
susceptibility obtained.



7.3 Spontaneously spin-split bands 145

7.2.3 Experimental techniques

The expressions that we have derived for the Pauli paramagnetism of metals
agree moderately well with experiment, but can be improved by correcting for
the effect of electron-electron interactions. The spin susceptibility of a metal
can be extracted from NMR measurements which are much more sensitive to
the field due to the spin magnetic moment of the conduction electrons than to
the fields which arise from the electron's orbital motion (which give rise to the
diamagnetic effects considered in Section 7.6).

The effect of the contact interaction between the conduction electron spin
and the nuclear spin leads to a small shift Ao>, known as a Knight shift,
in the nuclear resonance frequency &>. It can be understood by imagining

that individual conduction electrons hop on and off a given nucleus; the net
hyperfine coupling which the nucleus experiences is the result of averaging
over all the electron spin orientations. This net hyperfine coupling will be
zero without an applied field because the average of the electronic spin
orientations will vanish; the net hyperfine coupling will be non-zero in a non-
zero static field because this will polarize the electron spins. The Knight shift,
K = Aa>/(i), is therefore proportional to the conduction electron density at the
nucleus (which expresses the dependence on the coupling strength) and also
to the Pauli spin susceptibility (which expresses the extent to which an applied
field polarizes the electrons).

The static average of the hyperfine interactions causes the Knight shift.
Fluctuations about this average provide a mechanism for T\ relaxation (known
as Korringa relaxation). The dominant T\ processes are flip-flop transitions
of the electron and nuclear (or muon) spins, in which the difference in electron
and nuclear Zeeman energies is taken up by a change in kinetic energy of
the conduction electron. The exchange in energy between the nucleus and
the conduction electrons is very small, so only electrons within kBT of the
Fermi surface are able to participate since only these have empty states nearby
into which they can make a transition. Thus for simple metals the spin-lattice
relaxation rate 7y~ is proportional to temperature. The Knight shift, usually
expressed in the dimensionless form Aw/w, and the Korringa relaxation rate
T1

-1 are usually connected by the equation

which is known as the Korringa relation.

7.3 Spontaneously spin-split bands

The magnetic moment per atom in iron is about 2.2 uB (see Table 5.1).
This non-integral value is not possible to understand on the basis of localized
moments on atoms. It is therefore strong evidence for band ferromagnetism
(also known as itinerant ferromagnetism) in which the magnetization is due
to spontaneously spin-split bands. In this section we will explore some models
which can be used to understand how bands in some materials can become
spontaneously spin-split.

Walter D. Knight (1919-2000)
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Fig. 7,5 Density of states showing sponta-
neous splitting of energy hands without an
applied magnetic field.

The molecular field is due to exchange.
Exchange is due to the Coulomb interaction.
In more advanced treatments, the Coulomb
energy is included directly as f r t f / p j which
yields the same result.

Edmund C- Stoner (1899-1968)

In molecular field theory we say that all spins 'feel' an identicai average
exchange field kM produced by all their neighbours. In a metal, the molecular
field can magnetize the electron gas because of the Pauli paramagnetism XP-
The resulting magnetization of the electron gas M would in turn be responsible
for the molecular field. This is a chicken-and-egg scenario (also known as
bootstrapping); can this positive feedback mechanism lead to spontaneous
ferromagnetism? Presumably yes, if X (expressing how much molecular field
you get for a given M) and XP (expressing how much magnetization you get
for a given molecular field) are both large enough.

It is desirable to make the above heuristic argument a little more rigorous!
The question that we need to ask is: can the system as a whole save energy by
becoming ferromagnetic?

Let us first imagine that in the absence of an applied magnetic field we take
a small number of electrons at the Fermi surface from the spin-down band and
place them in the spin-up band. Specifically we take spin-down electrons with
energies from Ef — SE up to EF and flip their spins, placing them in the spin-
up band where they sit with energies from EF up to EF + SE. This situation is
illustrated in Fig. 7.5. The number of electrons moved is $(£?)& E/2 and they
increase in energy by SE. The total energy change is g(Ep)SE/2 x SE. The
total kinetic energy change A£K.R. is therefore

This is an energy cost so this process looks unfavourable. However, the
interaction of the magnetization with the molecular field gives an energy
reduction which can outweigh this cost. The number density of up-spins is
n* — \(n + g(Ep)SE) and the number density of down-spins is «; =
j(n - g(Ef)SE). Hence the magnetization is M = ^(n* - «|), assuming
each electron has a magnetic moment of I uB. The molecular field energy is

Writing Li — /HO/IB^' where V is a measure of the Coulomb energy,2 we have

Hence the total change of energy AE is

Thus spontaneous ferromagnetism is possible if .AE < 0 which implies that

which is known as the Stoner criterion. This condition for the ferromagnetic
instability requires that the Coulomb effects are strong and also that the density
of states at the Fermi energy is large. If there is spontaneous ferromagnetism,
the spin-up and spirt-down bands will be split by an energy A, where A is the
exchange splitting, in the absence of an applied magnetic field.
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If the Stoner criterion is not satisfied, then spontaneous ferromagnetism will
not occur. But the susceptibility may be altered. We can calculate this easily by
including both the effects of an applied magnetic field and the interactions. The
magnetization produced by an energy shift SE is simply M = uB(N^ — N±) =
2 u B g ( E f ) S E . Thus

This is minimized when

so that the magnetic susceptibility x is given by

This is larger than the value XP expected without the presence of Coulomb
interactions by a factor (1 — Ug(Ep))~l, a phenomenon known as Stoner
enhancement. It is responsible for the enhanced Pauli susceptibility measured
in the metals Pd and Pt which can both be thought of as systems on the verge
of ferromagnetism; they have a large enough value of the parameter Ug(Ef)
to cause a significant enhancement of the magnetic susceptibility but not large
enough (i.e. not sufficiently close to 1) to cause spontaneous ferromagnetism.

7.4 Spin-density functional theory

So far we have used free electron models or nearly free electron models in
our discussion. It is possible to improve on this with more advanced methods,
and one of these will be discussed in this section. In real systems one cannot
ignore Coulomb interactions between electrons and the effect of exchange
interactions on the motion of the electrons. The positions and motions of all the
particles are correlated because the particles interact with each other and exert
forces upon each other as they move. Thus the interactions lead to correlations
appearing between particles. Such correlations can be very difficult to deal with
theoretically, but a useful and successful approach is that of density functional
theory.

In this theory it is recognized that the ground state energy of a many
electron system can be written as a functional3 of the electron density n(r). The
functional contains three contributions, a kinetic energy, a Coulomb energy due
to the electrostatic interactions between the charged particles in the system,
and a term called the exchange-correlation energy that captures all the many-
body interactions. Rather than dealing with the wave function rfr(r), in density
functional theory one only has to consider the electron density n(r) = |^r(r)|2,
and this results in a considerable simplification. Minimizing the energy func-
tional leads to an equation which can be used to find the ground state energy.

A function is a rule which maps one number
into another number. For example the func-
tion

maps the number 2 into the number 4. A
Functional is a rule which maps an entire
function into a number. For example, the
functional

maps the function f ( x ) = x^ into the num-
ber 2/3.
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The theory works very well for metals, but
not so well for localized systems. This is
because the Coulomb energy represents the
response of a particular electron to the elec-
tron density, but the density is due to all elec-
trons, including the particular electron. So
electron self-interactions are unavoidably, but
mistakenly, included. This is not so bad for
a metal where any given electron is just one
part of the vast conduction electron ocean,
but disastrous in a localized system in which
a particular state may be occupied by only
one electron.

Fig. 7.6 (a) With B = 0 the electron states
are uniformly spaced in t-space, with each
point separated by 2 r / L . (b) The application
of a magnetic field results in only certain
allowed energies. These Landau level states
have a degeneracy which can be calculated
by considering the area in it-space between
the level with wave vector kl+1 and the level
with wave vector kl.

It has been proved that minimizing the functional really does yield the exact
ground state energy, even though one is using the electron density, not the wave
function.

The problem is that the energy functional is not known in full! The
kinetic energy and Coulomb energy can be written down but the exchange-
correlation energy is unknown. However, one can use the value of the
exchange-correlation energy from known results of many-electron interactions
in a homogenous electron gas (an electron system of constant density). This is
called the local density approximation (LDA) and it amounts to saying that at
each point in space, r, where the electron density is n(r), an electron responds
to the many-body interactions as if the electron density throughout all space
(i.e. at positions r' ^ r) takes the value n(r). The contributions to the energy
from different positions in space are all added together (one integrates over all
volume elements); these contributions are different for each volume element,
depending on the local electron density. The LDA is exact for a perfect metal
(which does have uniform electron density) but is not so good for systems with
wildly spatially varying electron density.4

The extension of density functional theory to include the effects of spin
polarization is called spin-density functional theory. In magnetic systems this
is used together with the local spin-density approximation (often referred to as
the LSDA) in which the exchange correlation potential depends not only on the
local electron density but also on the local spin density (the difference between
the electron density of spin-up and spin-down electrons). This technique can
be used to perform realistic calculations of electronic band structure and obtain
quantitative information concerning the spin density of real systems. In the
next section, however, we retreat to the comparitive safety of the simple free
electron model!

7.5 Landau levels

Pauli paramagnetism is an effect associated with the spin of the electrons. What
about the orbital contribution of the electrons? This will be evaluated using the
following argument. We assume that the free electron Hamiltonian is

and the wave functions are plane waves

so that the energy E is given by

As before, with no magnetic field applied, the electron states are uniformly
spaced in k-space, with each point separated by 2 r / L (see Fig. 7.6(a)).

In the presence of a magnetic field B = (0, 0, B), the momentum operator
p = -ihV must be replaced by —ihV + eA where a useful choice for the
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magnetic vector potential is A = (0, Bx, 0). Hence eqn 7.34 becomes

Since this expression contains the operators x, px, py and pz, the wave
function remains a plane wave in the y and z directions, so that py\ls = hkyty
and pz\lr = hkz\fr. Thus eqn 7.37 can be rearranged (using separation of
variables) to give

where x0 = -hky/eB and

is the cyclotron frequency. The term in square brackets in eqn 7.38 is the
Hamiltonian for a one-dimensional harmonic oscillator. Hence the energy
eigenvalues correspond to

where l is an integer. The energy eigenfunctions are a product of plane waves in
the y and z directions and a one-dimensional harmonic oscillator wave function
in the x direction.

In the treatment presented here, the quantity XQ is the 'centre' of the
harmonic oscillator motion in the x direction. This takes different values
depending on the value of ky.

5 A further useful way of attacking this problem
is to choose a gauge which reflects the cylindrical symmetry inherent in this
situation (this is done in Exercise 7.2) and this results in identical energy
eigenvalues to those in eqn 7.40 but the eigenfunctions are a product of a plane

wave in the z direction and a function of Jk% + k^. In whichever gauge the

problem is solved, the allowed states can be thought of as occurring on Landau
tubes which lie parallel to kz (see Fig. 7.7). The application of a magnetic field
causes the electrons to form Landau levels (as they are viewed when thinking
of the states as a function of energy) and each Landau level can be labelled
by the values of the quantum number I (see Fig. 7.6(b)). The degeneracy of
a Landau level can be calculated by noting that the area between one Landau
level and the next in fc-space (see Fig. 7.6(b)) is given by

so that since two electrons occupy each state, and one state occupies an area of
(2;r/L)2 in the kxky plane, the degeneracy p of one Landau level is

Notice that the same energy eigenvalue
would have been obtained if the magnetic
vector potential was chosen to have been
A = (-By, 0,0) (which gives the same
value for B = V x A = (0, 0, B)) but
the energy eigenfunctions would have been
in this case a product of plane waves in the
x and z directions and a one-dimensional
harmonic oscillator wave function in the y
direction. The 'choice of gauge' (i.e. the way
you write down A) doesn't affect the energy
eigenvalues but does affect the set of wave
functions that you derive.

5If you make the choice A = (-By, 0, 0)
you obtain a parameter yo which is propor-
tional to kx which is the centre of the har-
monic oscillator motion in the y direction. It
turns out that the operators corresponding to
X0 and y0 do not commute, so that X0 and y0

cannot take definite values simultaneously.

Fig. 7.7 Landau tubes
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Fig, 7,8 (a) In the absence of a magnetic field
electrons can fill up the states to a maximum
value of £j_ which is delined by eqn 7-43,
The filled states at T = 0 arc shown shaded.
The 'highest occupied block' described in the
text is labelled £;, The parameter x = t"j_ —
EI measures, the energy between the middle
of this block (dot-dash line) and the highest
occupied state, (b) The magnetic field al-
lows only discrete Landau levels with energy
. . . £ / . . 2 - £ /_ ( .£ / . KI+I The occupied
Landau levels at T = 0 are shown as heavy
fines and the highest occupied Landau level
is labelled as El

7.6 Landau diamagnetism

Using the results from the previous section, we are now in a position to
calculate the diamagnetic response of the electron gas, The idea is that as
a magnetic field is applied, and the electron distribution breaks up into a
series of Landau levels, the total energy of the system may change. This
change of energy with field is equivalent to a magnetization of the system.
The phenomenon is known as Landou diamagnetism.

The calculation is based on the observation that for different values of kz

the highest occupied Landau level is different (see Fig, 7.7 which shows that
the Fermi surface cuts different Landau tubes for different values of k z). For a
particular value of kz, we define the energy E± associated with the electronic
motion perpendicular to the field by the equation

In the absence of a magnetic field electrons can fill up the states to a maximum
value of E+_ for a particular choice of kz, but the application of a magnetic
field allows discrete Landau levels. We give the highest occupied Landau level
the label El. The electrons in the B = 0 problem can be broken up into blocks
whose average energy is the corresponding Landau level energy (except for the
top block which is partially filled).

Let us define a parameter x by

(see Fig. 7.8). The mean energy in the highest occupied block is
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and its occupancy is

Multiplying these together gives the energy of the top block. This has been
evaluated for a particular choice of kz but it is necessary to average over all the
electrons on the Fermi surface, and hence over all different values of kz. This
can be achieved by averaging over all possible values of x assuming that x is
uniformly distributed between —ha>c/2 and ha)c/2. Hence

and

This leads to an average energy of the top block (the one labelled £/) associated
with motion perpendicular to the field equal to

so that the total average energy is (using eqn 7.43)

With a non-zero magnetic field, the top block is full of p electrons with energy
EI if 0 < x < hu>c/2 and the block is totally empty if —hcoc/2 < x < 0. (Note
that this calculation is for a particular value of kz so that states are redistributed
amongst those for different values of kz.~) Thus the average energy of the top
block is

so that the mean energy associated with motion perpendicular to the field is

and hence the total average energy (again using eqn 7.43) is

Including a factor kpL/n for the degeneracy of the states in the kz direction,
the difference in total energy for B / 0 and B — 0 is
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Using the expression for the degeneracy p (eqn 7.41) we have that

Hence the magnetic susceptibility is given by

This is the Landau diamagnetism and it is related to the Pauli paramagnetism
Xp by

We might therefore conclude that all metals will be paramagnetic since
the (positive) Pauli paramagnetism is three times larger than the (negative)
Landau diamagnetism. This would be rather rash, because we have assumed
a free electron model and have therefore ignored band structure effects. If the
electron has an effective mass m*, then the density of states at the Fermi energy
g(EF) will be enhanced by a factor m*/me. This therefore enhances both
the Pauli paramagnetism and the Landau diamagnetism by m*/me. However,
in eqn 7.61 we have used uB = eh/2me to obtain the final result. A Bohr
magneton is a fixed constant, independent of effective mass. This implies that
the Landau diamagnetism must be further multiplied by (me/m*)2. The net
result is that

and the total susceptibility of the metal will be

For most metals m* ~ me and they are therefore paramagnetic. If m* <
me/\/3, the net susceptibility becomes negative. This explains the strong
diamagnetism of bismuth, where m* ~ 0.01me.

A further effect which we have so far ignored is the diamagnetism of the
bound electrons in the ion cores. This effect gets larger as the atomic number
increases (because there are more electrons to contribute) but it is still usually
much smaller than the effects associated with the conduction electrons which
we have been discussing.

The electron motion on the Fermi surface can be described by the equation

where k is the electron wave vector on the Fermi surface, and v =
fi~'3£(K)/3k is the electron velocity, and is always perpendicular to the
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Fermi surface. Hence the electron motion is perpendicular to B but stays
on the Fermi surface.6 Diamagnetic orbital contributions to the magnetic
susceptibility arise from closed orbits on the Fermi surface. As shown in
Fig. 7.9, open orbits are also possible. In the simple free electron sphere,
only closed orbits are possible. Both open and closed orbits are possible in real
materials.

Interesting oscillatory changes in properties with magnetic field occur when
the Landau levels break through the Fermi surface as the magnetic field is
increased. Properties change because the density of states at the Fermi energy
can oscillate as a function of magnetic field. This effect is maximized when
a Landau tube crosses an extremal cross-section of the Fermi surface (for the
Fermi sphere, this would be an equatorial cross-section). The oscillation of
the density of states leads to an oscillatory magnetization and this is the de
Haas-van Alphen effect and can be used to measure the cross-sectional area
of the Fermi surface. There is an analogous effect on the electrical resistance
known as the Shubnikov-de Haas effect. Both effects give rise to oscillations
in properties as a function of 1 / B . The period of these oscillations gives the
area Aext of the maximal and minimal cross-sectional area of the Fermi surface
normal to the magnetic field according to

7.7 Magnetism of the electron gas

The Pauli paramagnetism effect describes the paramagnetic response of an
electron gas to an applied magnetic field. But what if the applied magnetic
field is spatially varying? The electron gas will respond to this perturbation ac-
cording to the wave vector-dependent susceptibility, which we now calculate.
(The diamagnetic response will be ignored for the moment.)

7.7.1 Paramagnetic response of the electron gas

A spatially varying magnetic field

provides a perturbation H' equal to

where the ± refers to the electron spin. A plane wave state

is weakly perturbed into states V(k+q)±(r) and ^(k-q)±(r). The amplitude
of these states can be calculated using first-order perturbation theory (see
Appendix C). The perturbed wave function is therefore

This is because in a time dt, the change in k
is dk oc (3£(K)/3k) x B and hence is both
normal to B and in the plane of the Fermi
surface.

Fig. 7.9 Examples of (a) a closed orbit and
(b) an open orbit. The vectors on the orbits
show the real-space velocity of the electron,
given by v = h~]SE(K)/S\i, which is a
vector normal to the Fermi surface. With the
magnetic field B oriented as in (a), a closed
orbit results. With B along the x direction,
an open orbit on the same Fermi surface can
result, as shown in (b).

P. M. van Alphen (1906-1967)

W.J. de Haas (1878-1960)

L. V. Shubnikov (1901-1945)
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where E^ = h2k2/2me. Keeping only leading orders of Hq this implies that

The magnetization M(r) due to this perturbed wave function is then

To calculate the magnetic response of the electron gas as a whole, it is
necessary to sum the expression in eqn 7.72 over all the electrons in the Fermi
sphere. Hence the spatially varying magnetization of the electron gas M (r)
becomes

where Mq is given by

where the density of states g(|k|) = Vk2/n2 and use has been made of the
integral

Using the equation

which we shall justify below, and the expression for g(Ep) in eqn 7.10, the
wave vector-dependent susceptibility Xq is then given by

where the function f(x) is given by
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Xq is plotted in Fig. 7.10. At q = 0, /(0) = 1 so that Xq=0 = XP and so
this result happily reduces to the expression for Pauli paramagnetism derived
in Section 7.2. The kink in the curve which appears at q = 2kF is due to the
existence of the Fermi surface (the diameter of the Fermi sphere is 2kp). This
kink becomes progressively more severe as the dimensionality is reduced down
from three dimensions, as will be discussed later in the chapter.

In general the q-dependent magnetic field Hq can be defined by a Fourier
transform of H(r) by

In the same way the q-dependent magnetization Mq is defined by

and the q-dependent susceptibility Xq is similarly

where for each of eqns 7.80, 7.81 and 7.82 the inverse transformation is also
shown. The q -dependent susceptibility provides a means of calculating the
magnetization of the electron gas. The magnetization M(r) at any point r in
the electron gas is related to the magnetic field H(r) by

which is a convolution. Thus M(r) responds not just to the field at r, but to
a weighted average over nearby values. The convolution theorem implies that
the relationship between the corresponding q-dependent quantities is

which is the same as eqn 7.77 which we used above.

Fig. 7.10 The q-dependent paramagnetic sus-
ceptibility. At q = 0 it takes the value of the
Pauli paramagnetic susceptibility.
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Fig. 7.11 The q-dependent diamagnetic sus-
ceptibility. At q = 0 it takes the value of the
Landau diamagnetic susceptibility.

7.7.2 Diamagnetic response of the electron gas

The q-dependent diamagnetic susceptibility can also be calculated, although
this is considerably more complicated. Only the result is quoted here, and it is

The diamagnetic susceptibility Xq is plotted in Fig. 7.11. At q = 0, the
expression reduces to Xq=o = XL = ~XP/3- Expression 7.85 also has a
singularity at q = 2k$ because of the existence of the Fermi surface.

7.7.3 The RKKY interaction

The q-dependent paramagnetic susceptibility has consequences for the real
space behaviour of a system with a delta-function perturbation. A delta-
function perturbation H(r) = S(r)H can be decomposed into a sum of all
possible spatial frequencies

where Hq = H. Thus a delta function can be considered as a sum over
all frequencies, comprising both very long wavelength and short wavelength
oscillations. If Xq — X is independent of q, then Mq = xHq and

in other words the magnetization is also a delta function and the electron gas
responds completely to the perturbation, shadowing its behaviour perfectly. (In
this case x(r - r') = x<5(r - r').)

However the susceptibility of the electron gas is a q -dependent. Because of
the presence of the Fermi surface, the electron gas therefore becomes much
less responsive for wave vectors above q = 2kp. Thus although it can follow
the long wavelength components of the delta-function perturbation, the short
wavelengths (that is wavelengths below about r \ k f ) get attenuated because the
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electron gas is less able to respond to fields with such large spatial frequencies.
This produces a spatial 'ringing' effect in the magnetization which is analogous
to the oscillations observed in the diffraction pattern from a slit. The resulting
magnetization has spatial oscillations.

This effect can be calculated as follows. The real-space susceptibility is
given by

where r = |r| and the function F(x) is given by

and is plotted in Fig. 7.12. This is known as the RKKY interaction (which
was presented earlier in Section 4.2.4). The integral in eqn 7.88 is far from
trivial and is examined in more detail in Exercise 7.5. The susceptibility (and
hence the magnetization due to a delta function perturbation) is proportional
to cos(2fcp'')/r3 at large distances (r » k p l ) and is oscillatory. At small
r the susceptibility diverges, which is a consequence of the delta function
perturbation which we have been assuming. The RKKY interaction was first
proposed in order to understand the effect of a localized nuclear moment
on the electron gas; the nuclear moment is pretty much as close as one
can get to a delta function perturbation, but is not infinitely localized, but
spread over the (albeit tiny) nuclear volume. The RKKY interaction provides
an important mechanism for magnetic coupling between localized electronic
moments in metals; one moment produces an oscillatory magnetization of the
electron gas which can interact with a second moment. The interaction can be
ferromagnetic or antiferromagnetic depending on the distance between the two
moments.

A similar phenomenon is observed in the non-magnetic case, i.e. the
response of the electron gas to a delta-function charge. This is of interest in the
study of localized charges in metallic alloys. Oscillations in the charge density
are produced by a similar mechanism and are known as Friedel oscillations.

7.8 Excitations in the electron gas

The electron gas also contains a rich spectrum of excitations. These can be
treated elegantly by calculating x (q, <w), the q- and w-dependent susceptibility,
but we shall not proceed with this approach in this book.

In an itinerant ferromagnet in which the bands are spin-split in the absence of
a magnetic field, there are two types of excitations. First there are the familiar
spin-wave excitations which follow a conventional dispersion relation. Our
treatment of spin-waves in Section 6.6 was based on the Heisenberg model

Fig. 7.12 The function F(x) of eqn 7.89
which describes the real space magnetization
produced by a delta function field.
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Fig. 7.13 Excitations in an electron gas. (a)
The spin-split bunds are separated by A, the
exchange spotting, (b) The Fermi surfaces
for spin-up and spin-Juwn electrons, (c) A
Stoner excitation can be created if there is
a filled f state with wave vector k and an
i- empty state with wave vector k - q . The
shaded area shows the possible choices of k
for different values of q. (d) The dispersion
relation (a graph of u> against if) shows a
spin-wave branch and a continuum of Stoner
exdlalions.

and is therefore applicable to localized moment systems, but it turns out that
spin waves can also be derived for metallic systems. Second, there is also a
continuum of electron-hole excitations in which an electron transfers from a
filled state in one of the spin-split bands to an empty state in the other spin-
split band. These latter excitations are known as Stoner excitations. In a Stoner
excitation an electron with wave vector k+q and spin down is excited to a state
with wave vector k and spin up. The energy of the excitation is given by

where Ek = /"r£-/2mc and A is the exchange splitting, the energy cost to flip
a spin. These results are illustrated in Fig. 7.13.

In paramagnetic metals the two spin-split bands are not spin-split in the
absence of a magnetic field. The spin-wave excitations have a short lifetime
and thus are very heavily damped (they arc in the overdamped limit, if
considered as damped harmonic oscillators). They are known as poramognons
and, like conventional spin-wave excitations, they can be studied by inelastic
neutron scattering.

In this book we have been working with two entirely distinct pictures:
insulating materials in which the magnetism is associated with localized mo-
ments on atoms and metals in which the magnetism is associated with entirely
delocalized moments. Many real materials are somewhere in between, with
magnetism associated with spin density fluctuations intermediate between the
localized moment and band ferromagnet regimes. A local moment fluctuation
is localized in real space while a spin fluctuation in a weakly ferromagnetic
metal may be regarded as being localized in q -space.
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7.9 Spin-density waves

The Stoner criterion demonstrates that the electron gas is unstable against
spontaneous ferromagnetism if Ug(E F ) becomes large enough (see Sec-
tion 7.3) and that the magnetic susceptibility can be enhanced by a factor
(1 — U g ( E ) - 1 ) . It turns out that the q-dependent susceptibility, which we
will write as Xn = XP f(q/2kF) without the presence of Coulomb interactions,
is also enhanced by the Coulomb interactions and becomes

where a = U/^Q^. It may occur that Xq has a maximum at some value
of q not equal to zero. In this case the interactions, parametrized by a, can
make the susceptibility diverge at this value of q if aXq reaches unity. Hence
an oscillatory static magnetization could spontaneously develop in the sample.
If q = 0 this would correspond to ferromagnetic order; if |q| = n/a then
antiferromagnetic order could develop. In general, one would expect spiral
structures or spin-density wave structures with wave vector q.

We have evaluated the q-dependent susceptibility for an electron gas in
three dimensions, but the calculation can be repeated (see Exercise 7.6) for
two dimensions and one dimension. The results are shown in Fig. 7.14 and
demonstrate that as you lower the dimension, the knee in the curve for three
dimensions at q = 2kF becomes a kink in two dimensions and a singularity
in one-dimension. The peak in one-dimension is known as a Kohn anomaly
and shows that the one-dimensional electron gas is unstable to the formation
of spin-density waves with wave vector 2kF. This instability is associated with
the fact that a periodic modulation of the magnetization with wavelength 2 r /q
and wave vector q opens up a gap in the energy dispersion at wave vectors

Fig. 7.14 The q -dependent paramagnetic sus-
ceptibility in one, two and three dimensions.
The response function diverges at q = 2kF in
one-dimension. At q = 0 it takes the value
of the Pauli paramagnetic susceptibility in all
dimensions.

Walter Kohn (1923-)
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Rudolf E. Peierls (1907-1995)

Fig. 7.15 (a) Electrons in a band fill up to
the Fermi energy EF- (b) The energy can
be lowered by a periodic potential of wave
vector q = 2kF which lowers the total
electronic energy by producing a gap at the
Fermi surface. The gapping of the Fermi
surface (i.e. going from (a) to (b)) is accom-
panied by a metal—insulator transition. The
corresponding real space distortion is known
as a Peierls distortion. A one-dimensional
electron gas is unstable with respect to this
Peierls instability.

Fig. 7.16 (a) Commensurate spin-density
wave, with wave vector q = r\ a. (b) Incom-
mensurate spin-density wave.

±q/2 (any periodic potential can do this). If q/2 = kp the gap is at the Fermi
surface and this can lead to a lowering of the total energy. This opportunity
to lower the electronic energy can therefore itself drive the formation of the
spin-density wave.

There is an analogous instability for the formation of charge-density waves
with wave vector 2kp. Both effects are connected with the well-known Peierls
instability in which the dimerization of a one-dimensional chain of atoms can
occur spontaneously because the electronic energy saved by opening up a gap
in the energy spectrum near the Fermi surface can outweigh the elastic energy
cost of the dimerization. This is illustrated in Fig. 7.15.

In three dimensions a spin-density wave cannot produce an energy gap at
all points on the Fermi surface. Sometimes the Fermi surface is such that
translation of one part of the Fermi surface by a vector q can place it on top
of another part of the Fermi surface. This phenomenon is known as nesting.
A spin-density wave, with wave vector q, can produce energy gaps along the
region of the Fermi surface for which this nesting is possible. In real metals
it very often happens that two pieces of Fermi surface are approximately
translated from one another in k-space by a fixed wave vector q. This can give
rise to a peak in the susceptibility and a resulting instability. The formation of
the density wave is said to nest the Fermi surface.

If the nesting wave vector q turns out to be r\a where a is the spacing
between atoms, the spin-density wave is commensurate with the lattice and
antiferromagnetic order results (Fig. 7.16(a)). However it is much more usual
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for the nesting wave vector q, which is equal to 2kf, not to be a simple multiple
of IT/a so that the spin-density wave is incommensurate (Fig. 7.16(b)).

Chromium has a body-centred cubic structure, with the side of the cube
equal to a, and develops a spin-density wave structure below TN = 310 K. The
wave vector q & 0.96(27r/a) (thus the material is 'almost' an antiferromagnet)
varies slowly with temperature and is in the [100] direction. The polarization
is longitudinal for T < 115 K and transverse for T > 115 K. The electrical
resistivity of Cr increases just below TN due to the energy gaps introduced into
parts of the Fermi surface by the spin-density wave which reduce the number
of carriers. Spin density waves are also found in a number of organic metals.

7.10 The Kondo effect

In very dilute alloys of magnetic ions in a non-magnetic host, the magnetic
moments of the magnetic ions can be considered as independent if we ignore
the RKKY coupling. The only remaining interaction is between the magnetic
moment and the conduction electron spins. At high temperatures the magnetic
moments behave like free, paramagnetic moments but below a characteristic
temperature, known as the Kondo temperature TK, the interaction between
the magnetic moment and the conduction electrons leads to the impurity spin
becoming non-magnetic. What is happening is that the conduction electrons
begin to form a cloud of opposite spin-polarization around the impurity spin
resulting in a quasi-bound state. This process of magnetic screening of a
magnetic impurity by the conduction electrons is known as the Kondo effect
and has two profound experimental consequences. First, the magnetization
falls below its free-moment value and the susceptibility therefore falls below
the value expected from Curie's law. Second, because the impurity moment
is strongly interacting with the conduction electrons, the electron scattering
cross-section of the moment is strongly enhanced and there is a new term in
the resistivity which is proportional to J In T where J < 0 is the exchange
coupling between the local moment and the conduction electrons.

The resistivity of most materials decreases with decreasing temperature.
This is because the number of phonons decreases as the material cools, and the
resistivity is strongly determined by the number of phonons. Thus it is usually
dominated by a term proportional to T at high temperatures and T5 at lower
temperatures. There is also a constant term, determined by the (temperature-
independent) concentration of impurities which becomes important at the
lowest temperatures.

The new J In T oc — In T (because J < 0) term from the Kondo effect kicks
in at low temperature and leads to the appearance of a resistivity minimum (see
Fig. 7.17), below which the resistivity increases with decreasing temperature.

7.11 The Hubbard model

Metallic behaviour occurs because electrons save kinetic energy by being
delocalized over the whole of a crystal. However, in some systems the on-
site Coulomb energy (the cost of putting two electrons on the same lattice site)
is so strong that electrons cannot move freely through the crystal; the high

Fig. 7.17 The temperature dependence of the
resistivity shows a minimum. The resistivity
is the sum of a term proportional to T^ and a
term given by J In T oc — In T.
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energetic cost of double occupancy of a site means that metallic behaviour
breaks down. Electrons can no longer be treated as free particles but electron
correlations, the features associated with the way electrons have to avoid
each other if the Coulomb effects are large, become very significant. The
competition between metallic behaviour (parametrized by the transfer integrals
in the tight-binding model, or the size of the electronic bandwidth) and
Coulomb energy (parametrized by U, sometimes known as the Hubbard-U)
is expressed by the Hubbard model.

Each site in a material can be doubly occupied, with one electron having
spin-up and one having spin-down. The Pauli exclusion principle precludes
double occupancy of a site by electrons with the same spin. In the half-filled
limit, where there are just enough electrons to have one electron per lattice
site, the on-site Coulomb energy can be minimized if one electron sits on
each site and doesn't move. This is the ground state if U — oo. If U is
large but not infinite, each site remains singly occupied but it is possible for
an electron briefly to visit its neighbour's site if their spins are antiparallel.
This saves a bit of kinetic energy and therefore there is an energetic saving for
the electrons on neighbouring sites to be antiparallel, hence the system will
be an antiferromagnet. However an electron cannot get on to its next-nearest
neighbour's site because that will have the same spin and a site cannot be
occupied by two electrons of the same spin by the Pauli exclusion principle.
Therefore the system is also an insulator. Such an antiferromagnetic insulator,
with a large U and one electron per site, is known as a Mott insulator. When U
is smaller than the electronic bandwidth W, metallic behaviour is realized. The
crossover occurs when U ~ W where there is a metal-insulator transition.

7.12 Neutron stars

We conclude this chapter with a rather extreme example of magnetic con-
densed matter: the neutron star. Formed during the rapid collapse of a star in
a supernova explosion, neutron stars consist of highly dense nuclear matter.
Conservation of angular momentum during the stellar collapse means that
any initial rotational rate of the precursor star is greatly increased (as the star
collapses, its moment of inertia plummets and so its angular rotation rate shoots
up). The radius of a neutron star is typically ~ 10 km and the rotation rate
can be up to 103 s - 1 . The collapse also is associated with flux compression,
so that the magnetic field of neutron stars is enormous, up to ~108 T. For
comparison, the field at the surface of the Sun is ~ 10-4 T and at the surface of
the Earth is ~ 5 x 10-5 T. The magnetic field is most intense near the poles,
but the magnetic field axis of a neutron star, like the Earth's, is at an angle to
the rotation axis, so that it precesses as the neutron star rotates. The resulting
changing magnetic field leads to a large electric field by Faraday's law and this
accelerates electrons along the magnetic axis. The electrons are accelerated
along curved trajectories and therefore emit electromagnetic radiation. The
result is a tightly concentrated beam of radiation that revolves as the neutron
star spins. When the Earth happens to be in the way, we receive regular pulses
of radiation. Hence neutron stars were first called pulsars, i.e. pulsating stars.

We can make some (very rough) estimates of the behaviour of neutrons
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inside the neutron star by using a 'free neutron' model and treating them
non-relativistically. Neutrons, like electrons, are fermions and must obey the
Pauli exclusion principle. Therefore, as a first-guess model of neutron stars,
we can consider the filling up of k-states with neutrons in a box the size of
a neutron star following the method of Section 7.1. The neutron star interior
contains mainly neutrons at a density about 12 orders of magnitude above that
of conduction electrons in a metal. The neutron mass is of course about 3
orders of magnitude higher than the electron mass. Since the Fermi energy is
proportional to n2/3/m, it should be about 5 orders of magnitude higher in
a neutron star than in a metal. Thus the Fermi temperature7 of the neutrons
in a neutron star should be about 109 K which is well above the temperature
of the neutron star (up to ~ 106 K) showing that the neutrons in the neutron
star are in the degenerate limit. The surface of a neutron star is thought to be
solid, but the matter in the interior may possibly be in a superfluid state. This
is analogous to the pairing of helium atoms that is found in superfluid helium,
but in neutron stars it may be pairs of neutrons, and also pairs of protons, that
condense. Neutrons and protons have a pairing energy of 1-2 MeV, which is
equivalent to a temperature of ~ 1010 K, much higher than the temperature of
the neutron star, so that pairing can be expected to occur.

Further reading

• Landau diamagnetism is discussed in A. Dupre, Ameri-
can Journal of Physics, 49, 34 (1981), and the treatment
in this chapter has been adapted from that presented in
this article.

• The band theory of metals and the de Haas-van Alphen
effect is clearly described in J. Singleton, Electronic
properties of solids, OUP 2001.

• A useful treatment of the physics of Landau levels
is in Chapter 6 of J. H. Davies, The physics of low-
dimensional semiconductors, CUP 1998.

• An advanced treatment of the magnetism of band elec-
trons is in K. Yosida, Theory of magnetism, Springer
1996.

Exercises
(7.1) Show that Pauli paramagnetism leads to a magnetic

susceptibility that can be written in a Curie-like form

where the constant T0 is given by

By comparison, for the case of electrons in
a metal we expect Ep ~ 1 eV, so that Tp ~
104 K

• Spin density functional theory is described in J. Kiibler,
Theory of itinerant electron magnetism, OUP 2000.

• Useful information on fluctuations in metallic magnets
may be found in T. Moriya, Spin fluctuations in itinerant
electron magnetism, Springer 1985.

• The Kondo effect is treated in A. C. Hewson, The Kondo
problem to heavy fermions, CUP 1993.

• The physics of neutron stars and related astrophysical
objects are described in S. L. Shapiro and S. A. Teukol-
sky, Black holes, white dwarfs and neutron stars, Wiley
1983.

where TF = E F / k B is the Fermi temperature. Show fur-
ther that if T <g TF the temperature-dependent correction
to XP is

and estimate the size of this correction for a typical metal
at room temperature.
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(7.2) (a) Show that the paramagnetic susceptibility of a non-
degenerate electron gas containing N electrons is iden-
tical to that of N independent localized electrons whose
orbital motion is quenched.

(b) Consider a semiconductor with 3 x 1022 electrons per
cubic metre in its conduction band and an effective mass
m* = 0.lme. Estimate the temperature below which the
magnetic susceptibility is independent of temperature.
Below this temperature, calculate the magnitude of the
Pauli paramagnetism and the Landau diamagnetism.

(7.3) In the presence of a magnetic field B = (0, 0, 5), the
momentum operator p = — i/JV must be replaced by
—\h V+e\ leading to the energy eigenvalues in eqn 7.40.
In Section 7.5 the magnetic vector potential was chosen
to be A = (0, Bx, 0). Show that the same results could
have been obtained if A = ( — B y , 0, 0) was used instead.
The problem can be solved in cylindrical polars where
AQ = jBr, Az = Ar = 0. Show that this choice yields
the same value for B and for the energy eigenvalues.

(7.4) Show that the Fourier transform of the Fermi sphere is
related to a function related to the RKKY function in
eqn 7.89, namely that

(7.5) The integral in eqn 7.88 is a bit complicated to evaluate
and this problem is designed to take it a stage at a time.
First show that

where <p(q) = <p(—q) is a function of the variable q.
Hence show that

where x = q/2kp, y = 2kpr and where f ( x ) is
the function defined in eqn 7.79. To do this integral it
is necessary to resort to a trick of contour integration.

Consider the two integrals

The two integrands are equal when |jt| > 1. Show that
/2 is zero by completing the contour with an infinite
semicircle in the upper half of the x plane and using
Jordan's lemma. Hence, using this result and a contour
for /i that is displaced infinitesimally above the real axis
from x =• — 1 to * = 1, show that

and hence verify eqn 7.88.

(7.6) (a) Show that the density of the states at the Fermi energy
levels in one, two and three dimensions are given by

(b) Show that the q-dependent susceptibility of the elec-
tron gas in one dimension is given by

and in two-dimensions is given by

These results are plotted in Fig. 7.14.

(7.7) Show that the continuum of Stoner excitations described
in Section 7.8 and pictured in Fig. 7.13 are bounded by
the two parabolae
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and that the u> = 0 excitations are contained within the
range of q given by

as shown in Fig. 7.13 (Hint: use the fact that

(7.8) Consider the splitting of energy bands which is shown
in Fig. 7.5, but now in the case in which SE is not
an infinitesimal quantity. The Fermi energy has now
become spin-dependent. If the system of electrons has
n electrons per unit volume, show that n+, the number
of up electrons per unit volume, and show that n_, the
number of down electrons per unit volume, are given by

where EF is the Fermi energy in the absence of exchange
splitting.
Using n+ + n- = n and defining x = (n+ — n~)/n,
show that

The kinetic energy is given by

Show that

The interaction energy can be written

where X, U = MOA^B^ and M = («+ — «-)2 are the
molecular field parameter, Coulomb energy and magne-
tization respectively. The total energy is therefore

Show that the condition dE/dx = 0 leads to stable
solutions when

(Hint: use g ( E F ) = 3n/2Ep.) Interpret this result graph-
ically.

Explain why the non-magnetic state is unstable when
d2E/dx2 < 0 at x — 0. Show that this is equivalent
to

which is the Stoner criterion.
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In this chapter we will examine some of the ways in which competing
interactions and low dimensionality can lead to some extremely subtle,
complex, and sometimes even useful magnetic behaviour in solids. Competing
interactions and low dimensionality both occur naturally in some systems; for
example some crystals grow in such a way that the magnetic moments couple
strongly in chains or occupy sites on frustrated lattices. However, these features
can be introduced artificially, for example, by fabricating a ferromagnetic
multilayer or using electron-beam lithography to produce ferromagnetic wires.
Many of these topics are currently under active study in research groups
throughout the world. This chapter presents an account of some of these
developments, many of which contain mysteries which are not yet fully
unravelled. Because many of the topics are new and complex, the discussion
will be somewhat oversimplified in some cases; the interested reader can
consult the references in the further reading at the end of the chapter for more
details. Nevertheless I hope to give some flavour of a few of the problems
which are, at the time of writing, providing enormous challenges to condensed
matter physicists.

We begin with frustration, which can lead to a number of different ground
states including spin glasses, and then continue to the effects of low dimen-
sionality.

8.1 Frustration

In some lattices it is not possible to satisfy all the interactions in the system to
find the ground state. Often this leads to there being no single unique ground
state but a variety of similar low energy states of the system in which the un-
happiness (by which I mean non-minimization of the energy) is shared around
as much as possible. In this case the system is said to show frustration. As
an example, consider the lattices in Fig. 8.1 in which only nearest-neighbour
antiferromagnetic interactions operate. On the square lattice (Fig. 8.1 (a)) it is
easily possible to satisfy the requirement that nearest-neighbour spins must be
antiparallel. However on a triangular lattice things are not so simple. As shown,
if two adjacent spins are placed antiparallel, one is faced with a dilemma for
the third spin. Whichever choice is made, one of the two neighbours will not
have their energy minimized. The system therefore cannot achieve a state that
entirely satisfies its microscopic constraints, but does possess a multiplicity of
equally unsatisfied states. As a result the frustrated system shows metastability,
hysteresis effects (dependence on the sample's magnetic or thermal history),
and time-dependent relaxation towards equilibrium.
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Fig. 8.1 Antiferromagnetic nearest-
neighbour interactions on the (a) square
lattice and (b) triangular lattice. The
triangular lattice shows frustration, because
it is not possible to orient the spin on
the third site to satisfy the requirement
of antiferroraagnetic nearest-neighbour
interactions with the other two spins.

Hence in some systems the geometry of the lattice can frustrate the ordering
of the spins. In two dimensions, Heisenberg spins on triangular and corner
sharing kagome lattices (see Fig. 8.2) show this effect, while in three dimen-
sions the most well studied systems have a pyrochlore structure, in which the
magnetic ions occupy a lattice of corner sharing tetrahedra. These systems are
believed not to order but to display a classical ground state with macroscopic
degeneracy, sometimes described as cooperative paramagnetism in which
only short-range correlations between spins are found for all temperatures.
Some of these systems are also believed to possess a dispersionless spin-wave
branch, known as a zero mode, which strongly affects the low temperature
thermodynamic behaviour and leads to the persistence of spin fluctuations
down to zero temperature.

Fig. 8.2 A section of the kagome lattice.

8.2 Spin glasses

Spin glasses were described earlier in Section 5.5. In that section a spin glass
was defined as a random, mixed-interacting magnetic system characterized by
a random, yet cooperative, freezing of spins at a well defined temperature Tf
below which a highly irreversible, metastable frozen state appears without the
usual magnetic long range ordering. We now examine the different parts of this
definition in much more detail, beginning with the randomness which can be
introduced in several ways.

First is site-randomness, which can be achieved in an alloy. A commonly
studied spin glass is Cu1_xMnx with x « 1 in which the substitution of small
amounts of Mn into the Cu matrix occurs completely randomly with no short-
range ordering. This directly leads to a random distance between magnetic
Mn ions in the non-magnetic Cu matrix (see Fig. 5.1(c)). Random distances
between magnetic ions can also be engineered by taking an intermetallic such
as GdAl2 and making it amorphous (melting it and then cooling very rapidly
from the melt) so that the crystalline lattice is destroyed.

Another possibility is bond-randomness in which the nearest neighbour
interactions vary between +J and —J. This can be achieved by fixing the mag-
netic ions in a regular crystalline array but modulating the indirect exchange
interactions between the magnetic ions. This is performed in Rb2Cu1_xCoxF4
for which both Cu and Co have effective spins of 3 (the crystal field on the Co
splits the S = 3/2 levels in such a way that only the lowest s = 1/2 doublet is
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populated at low temperatures). The crystal field also causes the spins to point
either parallel or antiparallel to the z axis (a uniaxial single ion anisotropy,
see Section 3.2.2) which is said to give them Ising character. However the
size and sign of the superexchange interaction between magnetic ions depends
crucially on whether the coupling is between Co and Co, or Co and Cu, or Cu
and Cu, and which orbital on the Cu is occupied. The net result is that the bonds
between ions can have different values of the exchange J and these bonds are
randomly distributed throughout the sample.

The randomness inherent in a spin glass is important, but equally important
is the presence of competing interactions. The distribution of distances be-
tween moments in a random-site spin glass leads to competing interactions
because the interactions are of RKKY-type and therefore their sign (ferro-
magnetic or antiferromagnetic) depends on the distance between the spins.
Another contributing feature is the magnetic anisotropy, due to single-ion
anisotropy or Dzyaloshinsky-Moriya interactions. In an amorphous material
these anisotropies vary from site to site so that so-called amorphous magnets
often possess random anisotropy, so that there can be a locally varying 'easy-
axis' for the magnetization.

Competing interactions are automatically present in a random-bond spin
glass, because different bonds 'pull' the system in different ways. These
competing interactions lead to frustration, so that as in systems such as the
kagome lattices, there is a multidegenerate ground state. Spin glasses share
this multidegenerate ground state but also show a new effect, a cooperative
freezing transition, which will now be described.

At high temperature the behaviour of all magnetic systems is dominated
by thermal fluctuations, so that in a spin glass all the spins are independent.
As a spin glass is cooled from high temperature, the independent spins slow
down and build up into locally correlated units, known as clusters. The spins
which are not in clusters take part in interactions between clusters. As the
temperature cools to Tf the fluctuations in the clusters progressively slow
down. The interactions between spins become more long range so that each
spin becomes more aware of spins in a progressively growing region around it.
At Tf the system finds one of its many ground states and freezes. This process
is not fully understood but it appears to be a cooperative phase transition.
However this is not a phase transition to a magnetically ordered state; there
are no magnetic Bragg peaks found in scattering experiments as would be the
case if the system showed long range magnetic order. Below Tf the ground state
appears to be 'glassy', possessing metastability and slow relaxation behaviour.
There is a divergence between the field-cooled and zero-field cooled magnetic
susceptibility below Tf, reflecting this metastability (see Fig. 8.3).

One of the signatures of spin glass behaviour is a sharp peak close to Tf in
the real part of the a.c. susceptibility, x(w)- In this technique the magnetic
susceptibility is measured using a very small alternating magnetic field of
frequency w, sometimes with a constant (d.c.) magnetic field also applied.
The position of the peak varies slightly with w. The imaginary part of x(w),
related to the absorption, shows a sudden onset near Tf. The dynamics of
the fluctuations associated with the freezing process can be studied using
a.c. susceptibility, neutron spin echo (a method of measuring time correlation
functions on relatively long time scales) and uSR. These techniques show
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Fig. 8.3 The static susceptibility of
C u 1 - x M n x for x = 0.0108 and x = 0.0202.
After zero-field cooling, x was measured
in a small field of 0.59 mT for increasing
temperature ((b) and (d)). If the samples were
field-cooled in 0.59 mT x was reversible ((a)
and (c)) (Adapted from Nagata et al. 1997).

that there is a large distribution of relaxation times for the clusters which
form above Tf. As the sample is cooled, these clusters grow and fluctuate
at a rate dependent on the size and nature of each cluster. A spin outside
the clusters will fluctuate rapidly but as soon as it joins a growing cluster
(something of a 'hostile takeover'!) it is forced to slow down and keep step
with its new host. At Tf the random anisotropy becomes important and the
system freezes into a random orientation in which the clusters are fixed.
A wide range of relaxation times is also observed below Tf, showing that
some free spins or small superparamagnetic (see below) clusters are still
there. The co-operative spin freezing in spin glasses is still not yet fully
understood.

The Cu1-xMnx spin glass is usually studied when x is a few percent or less.
In a concentrated spin glass the behaviour is very different because the greater
number of magnetic nearest neighbours, which can be enhanced by chemical
clustering, leads to the presence of large, ordered magnetic clusters which then
dominate the magnetic behaviour. The system then becomes known as a cluster
glass (sometimes known as a mictomagnet) which has some characteristics
of a spin glass but long range magnetic order is always in the background
waiting to spring (the technical term is that the long range magnetic order is
incipient). Sometimes the high temperature state can actually be an ordered
ferromagnet, rather than a paramagnet, and the system actually freezes to
a low temperature non-magnetic disordered state. Such a system is called
a re-entrant spin glass and the behaviour is believed to be connected with
either temperature-dependent random anisotropy or some sort of anisotropy
associated with the freezing. In very high concentrations of magnetic ions, the
system approaches the percolation limit at which it is possible to find a path
of nearest-neighbour links through the whole sample along which each ion is
magnetic; this results in the sample having long range magnetic order. The
transitions between these different states can be seen in the phase diagram of
Au1-xFex shown in Fig. 8.4.
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Fig. 8.4 The phase diagram of Au 1 - x Fe x .
P = paramagnetic, SP = superparamagnetic,
SG = spin glass, CG = cluster glass, F =
ferromagnetic. After Coles et al. 1978.

8.3 Superparamagnetism

If ferromagnetic particles are small enough, they will be single-domain (see
Section 6.7.7), because the energy cost of domain wall formation does not
outweigh any saving in demagnetizing energy. The magnetization of a small,
single-domain ferromagnetic particle is often constrained to lie parallel or
antiparallel to a particular direction. This can be due to magnetocrystalline
anisotropy, or shape anisotropy (associated with the demagnetizing energy and
the shape of the particle), or a variety of other reasons. However, we will
assume that the energy density of the particle contains a term K sin2 9 where
8 is the angle between the magnetization and this particular direction and K is
a constant which quantifies the energy density associated with this anisotropy.
Thus the energy is minimized when 0 = 0 or n (see Fig. 8.5). A particle of
volume V needs an activation energy of A £ = K V to flip its magnetization
from 9 = 0 to n or from n to 0. For very small particles, such that K V is
small compared to k B T , the magnetization can be easily flipped in this way by
thermal fluctuations.

Consider now a distribution of these small ferromagnetic particles in a non-
magnetic matrix and assume that the particles are separated far enough apart
so that interparticle interactions can be neglected. For kBT » K V the system
will therefore behave like a paramagnet, albeit one in which the independent

Fig. 8.5 The energy density of a magnetic
particle contains a term K sin2 9. The energy
is minimized when 8 = 0 or n.
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moments are not atomic moments but large groups of moments, each group
inside a ferromagnetic particle. The system is therefore called a superparam-
agrtet. At high temperatures the moments on the particles are able to fluctuate
rapidly. The relaxation time r of the moment on a particle is given by

where TO is typically 10-9 s. The fluctuations therefore slow down (T increases)
as the sample is cooled (see Fig. 8.6) and the system appears static when r
becomes much longer than the measuring time t of the particular laboratory
experimental technique which you are using. If we define 'much longer' to be
r > at where a = 100, then below the blocking temperature TB, given by
TB = K V / k B ln(oc t/t0), each magnetic particle appears to be locked into one
of its two minima.

The experimental measuring time t is in the range 10-12-10-10 s for
inelastic neutron scattering, 10-10-10-7 s for Mossbauer (the decay processes
in the Mossbauer transition) are ~ 10-7 s, 10-10-10-5 s for uSR (a
measurable fraction of muons live for up to ~10ru where tu = 2.2 uS is the
average muon lifetime) and a.c. susceptibility typically probes l0-1-l0-5 s.
Because of the logarithmic dependence on at/To, any of a, t or tO can be
changed by a few orders of magnitude with only a relatively small change to
TB. If the particles in the superparamagnetic system have a range of sizes then
they will 'block' at different temperatures.

Superparamagnets have some similarities with spin glasses but are quite
different in a number of respects: the interactions between the magnetic
particles are not important in a superparamagnet, whereas they are vital in a
spin glass; also, the spin glass shows a cooperative phase transition while the
superparamagnet shows a gradual blocking of the superparamagnetic parti-
cles. Superparamagnetism is technologically important since many important
recording materials are particulate. This is crucial because magnetic tape is
expected to store information for years, not us, which puts a limit on the
minimum size of the particles. In studying rock magnetism it is sometimes
necessary to consider the exponential decay of magnetism over millions of
years. Thus the stability of particles against superparamagnetic fluctuations
depends on the timescale which you are using; a particle may be stable in a
Mossbauer experiment but fluctuate in an a.c. susceptibility; it may be stable
for a century, but decay on geological time scales.

Fig. 8.6 The dependence of the relaxation
time T as a function of temperature T (scaled
by kB /KV) according to eqn 8.1. The fluc-
tuations therefore slow down (r increases) as
the temperature is reduced.

8.4 One-dimensional magnets

No long range order is possible in one-dimension for T > 0, so it might be
thought that one-dimensional magnets were rather tedious and uninteresting.
In fact nothing could be further from the truth! The one-dimensionality implies
the possibility of complex excitations which are still far from being completely
understood.
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8.4.1 Spin chains

A one-dimensional (d = 1) line of spins is known as a spin chain. The individ-
ual spins can be constrained to lie parallel or antiparallel to a particular direc-
tion (Ising spins), or may be free to point anywhere in a fixed plane (XY spins),
or free to point in any direction (Heisenberg spins). Spin chains can be approx-
imately realized in crystals, if the crystal structure is such so as to keep the
chains reasonably far apart. The single ion anisotropy due to the crystal field
may lead to the magnetic moments behaving as Ising spins (D = 1), XY spins
(D = 2), Heisenberg spins (D = 3), or somewhere in between. A commonly
studied family of systems is based on crystals of the type ABXs where A is a
non-magnetic cation of a single charge, B is a doubly charged magnetic cation
and X is a halide anion. This leads to a simple hexagonal lattice with transition
metal ions forming chains along the c direction. For example CsCoCls behaves
almost as a one-dimensional Ising spin chain since the anisotropy constrains
the spins along a particular direction; KCuFs behaves like a one-dimensional
Heisenberg spin chain, as do a number of Cu salts with organic ligands.

Very often these systems show three-dimensional long range order at very
low temperatures because there will always be some small interchain interac-
tion which can couple the chains together. CsCoCls shows three-dimensional
long range magnetic order below 21 K because of this interchain coupling.
Nevertheless, there is a wide region of temperature above the crossover to
a three-dimensional region, where the magnetic behaviour is that of a one-
dimensional system.

The spin quantum number for each spin on the chain depends on the atom.
For chains with Cu2+(3d9) the spin quantum number is s = 1/2, with Mn2+

(3d5) S = 5/2 and for Co2+ (3d7) in CsCoCl3 the ground state has an effective
spin of S = 1/2 (the 5 — 3/2 free-ion ground state is split by the crystal field
leaving a ground state doublet and excited states). In the next section we will
just consider chains with S = 1/2 on each site.

8.4.2 Spinons

What makes these chains interesting is not their ordering (because unless the
interchain interactions are strong enough, they do not show order), but their
excitations. As shown in Section 6.6.1, in three-dimensional Heisenberg mag-
nets the excitations are magnons, which are bosons. (In a metallic magnetic
material there may also be Stoner excitations, see Section 7.8.) Each magnon
is an excitation with s=1 and so a single magnon can interact with a neutron
in an inelastic scattering experiment.

In Ising spin chains, the excitations are associated with the creation of do-
main walls. There are no gapless excitations (i.e. excitations with vanishingly
small energy in the long wavelength limit; 'massless Goldstone modes' to use
the particle physics parlance) because even to create one domain wall costs a
finite amount of energy (and in fact for an excitation you have to create the
domain walls in pairs). Once the excitation is created it can move freely along
the chain. The excitation energy has no wave vector dependence, but if the
chain is not perfectly Ising-like (as very often happens in real systems) then
there will be some modulation of the dispersion relation.
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In Heisenberg spin chains, the excitations are known as spinons. These have
spin- 1/2 (in contrast to magnons which have spin-1) and are fermions. They have
a dispersion relation which is given by

where J is the antiferromagnetic exchange coupling, and a and q are the
lattice constant and wave vector, both measured along the chain direction.
Equation 8.2 is the bold line in Fig. 8.7. This can be compared with the
conventional spin wave dispersion relation in eqn 6.58 with S = 1/2, but
there is an additional factor of n/2. The excitations in both cases are gapless
because when q -> 0 (long wavelength limit) w -> 0. A neutron scattering
experiment involves a change of spin of one and so although this implies a
creation or annihilation of a single magnon in a three-dimensional system,
it implies a creation or annihilation of two spinons in a one-dimensional
system. Neutron experiments therefore measure the momentum q = q1 + q2

and energy hw = hw1 + hw2 associated with creation or annihilation of
a pair of these spinons and so the experimental data show a continuum of
excitations between eqn 8.2 and hw = 2n |J sin(qa/2)| (see Fig. 8.7). Neutron
scattering experiments have confirmed that these excitations do exist in some
one-dimensional antiferromagnetic chains (see Fig. 8.8). (For a derivation of
eqn 8.2, see des Cloizeaux and Pearson 1962.)

Fig. 8.7 Dispersion relation for spinon ex-
citations in a one-dimensional antiferromag-
netic Heisenberg spin chain (bold line). The
shaded region shows the continuum of ex-
citations measured in a neutron scattering
experiment.

8.4.3 Haldane chains
The previous section described how the excitations in spin-1/2 antiferromagnetic
Heisenberg spin chains are believed to be spinons which are gapless excita-
tions. This result is believed to be true also for half-integer spin chains (i.e.
chains of spins with S = 1/2, 3/2, 5/2,...). Haldane conjectured that something
different would happen for integer spin chains (i.e. chains of spins with
S = 1, 2, 3,...), namely that there would be a gap in the excitation spectrum
which occurs because of nonlinear quantum fluctuations in the ground state.
A one-dimensional chain of integer spins is therefore known as a Haldane
chain and the gap in the excitation spectrum is known as a Haldane gap. This
fundamental difference between half-integer and integer spin chains is related
to the difference between fermions and bosons under exchange; this different
exchange symmetry has a topological origin and has a dramatic effect on the
nature of the excitations.

Most tests of Haldane's conjecture have been carried out on materials with
chains of Ni2+ (s = 1) ions, including CsNiCl3, Ni(C2H8N2)2NO2ClO4 and
Y2BaNiO5. These S=1 spin chains all seem to possess gaps in their excitation
spectra as predicted. Half-integer antiferromagnetic chains are gapless, unless
magnetoelastic coupling opens up a spin-Peierls gap, as discussed in the
following section.

Fig. 8.8 (a) The dispersion relation for
spinons in KCuF3. The experiment was per-
formed using a time-of-flight technique so
the line shows the scattering trajectory for
neutrons with incident energy 148.9 meV
and an incident momentum aligned 8° away
from the c* direction in KCuF3. Scattering
results when the trajectory intersects with
the continuum states, (b) Observed scattering
at 20 K. The non-magnetic background is
indicated by the dashed line. After Tennant
et al. 1993.

8.4.4 Spin-Peierls transition
Although spin-1/2 antiferromagnetic chains are gapless, they are susceptible
to an analogous kind of instability that afflicts one-dimensional metals (see
Section 7.9) which can open up a gap. This occurs at the spin-Peierls transition.
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Fig. 8.9 Schematic representation of the ele-
mentary excitations in (a) a uniform Heisen-
berg antiferromagnetic chain and (b) an al-
ternating chain (for which the ground state is
a singlet state at q = 0), and for which the
unit cell is doubled. Adapted from Bray er al.
1983.

The driving force of this intrinsic lattice instability is the magnetoelastic
coupling between the one-dimensional electronic structure and the three-
dimensional lattice vibrations (phonons). This coupling arises because the
exchange energy of the chains is a function of the separation between
adjacent lattice sites. A distortion of the lattice influences the magnetic energy
(see Fig. 8.9). The name spin-Peierls reflects the similarity with the Peierls
distortion (discussed in Section 7.9).

Above the transition temperature TSP, there is a uniform antiferromagnetic
next-neighbour exchange in each chain; below TSP there is an elastic distortion
resulting in dimerization, and hence two, unequal alternating exchange con-
stants. The dimerization increases progressively as the temperature is lowered
and reaches a maximum at zero temperature. The alternating chain possesses
an energy gap between the singlet ground state and the lowest lying band
of triplet excited states. The magnitude of the gap is related to the degree
of dimerization and hence to the degree of lattice distortion, becoming zero
for the uniform chain (zero dimerization) so that one returns to the gapless
spinon case. Thus the magnetic susceptibility x(T) shows a knee at TSP, with
a rather abrupt fall of x below TSP, corresponding to the opening of the gap
(see Fig. 8.10). Whereas the normal Peierls distortion (the electronic analogue
of the spin-Peierls transition, see Section 7.9) occurs at a temperature Tp

of the order of k B T p ~ EF exp(—l/yel_ph), where Ael-Ph is the electron-
phonon coupling constant, the spin-Peierls transition will occur at kBTsp ~
|J| exp(—l/Asp_ph), where J is the exchange interaction between adjacent spins
and Asp_ph is the spin-phonon coupling constant. Since J « EF (e.g. J is
typically 50 K, EF is typically 500-5000 K), TSP is always small in comparison
with Tp.

There are only very few materials which show a spin-Peierls transition. This
is because antiferromagnetic chains often become three-dimensionally ordered
at low temperature due to interchain coupling. Only in very few materials is the
spin-phonon coupling able to dominate the interchain spin-spin coupling and
allow the formation of a spin-Peierls ground state. Examples of such materials
include CuGeO3 (Tsp = 14 K) and a number of organic systems such as
MEM(TCNQ)2 (TSP = 18 K) and TTF-CuS4C4(CF3)4 (rSP = 12 K).1

1MEM, TCNQ and TTF are organic
molecules with lengthy chemical names.
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Fig. 8.10 The molar magnetic suscepti-
bility of the organic spin-Peierls material
MEM(TCNQ)2 which consists of stacks of
the organic molecule MEM and stacks of
the organic molecule TCNQ. At high tem-
perature the susceptibility fits to a model
appropriate for a uniform Heisenberg antifer-
romagnetic chain (dotted line), but on cooling
the susceptibility drops rapidly at the spin-
Peierls transition as a gap in the excitation
spectrum opens up. The rise at very low
temperatures (as T is lowered) is due to
the Curie-like (~ T-1) susceptibility from
defects. After Lovett et al. 2000.

8.4.5 Spin ladders

Before considering two-dimensional magnets, we can consider a system which
is somewhere in between a one-dimensional magnet and a two-dimensional
magnet. Consider two parallel spin chains with bonds between them such that
the interchain coupling is of comparable strength to the intrachain coupling.
Such a system is known as a two-leg spin ladder (see Fig. 8.11 (a)). It
is also possible to have three-leg (see Fig. 8.11(b)), four-leg, and in fact
n-leg, spin ladders. Promising experimental systems include SrCu2O3 and
La1-xSrxCuO2.5 (both two-leg spin-1/2), and Sr2Cu3O5 (three-leg spin-1/2). In
fact there is a general system Srn_1Cun+1O2n with n odd which consists of
(n + l)/2-leg spin-1/2 because its structure has strips of a CuO2 square lattice
which have (n + l)/2 Cu2+ ions across their width.

The spin-1/2 two-leg ladder is known to have a finite gap in its excitation
spectrum, which is easy to see in the 'strong-rung' limit in which the rung

Fig. 8.11 (a) A two-leg ladder; (b) A three-
leg ladder, (c) In a two-leg the ground state
consists of spin singlets on each rung of the
ladder and hence the two-leg ladder has a gap
in its excitation spectrum, (d) Doping holes
on to the ladder breaks up the singlets (e) but
this energy cost can be minimized if the holes
pair up.
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coupling J± is larger than the coupling J along the legs. In this case the
ground state consists simply of spin singlets along each rung of the ladder
(see Fig. 8.11(c)). To create an excitation, you must promote a rung-singlet
into a rung triplet (costing an energy JL), hence the energy gap. If JL = 0 the
system is two isolated spin-1/2 chains which do not have a gap in their excitation
spectrum. However it is believed that a gap appears as soon as JL is non-zero,
no matter how small it is. For the n-leg ladder, the situation is identical if n
is even. However if n is odd, then on a given rung the spins will pair up into
singlets leaving one left over. At large JL the system can be mapped into a
spin-1/2 chain which is gapless. So an even-leg ladder has a gap in its excitation
spectrum, while an odd-leg ladder is gapless. This appears to be supported by
the results of neutron, uSR and transport experiments.

Doping the spin ladder with holes breaks up singlets in a spin ladder (see
Fig. 8.1 l(d)). For two-leg ladders there is an energetic advantage for the holes
to pair up since they can then share a common rung, reducing the number of
'damaged' singlets from two to one (Fig. 8.11(e)). Hence it is favourable for
holes to pair on two-leg ladders and this shows how it might be possible to
engineer superconductivity in two-leg spin ladders. Superconductivity (rc ~
14 K) has in fact been discovered in Sr14_xCaxCu24O21 (sometimes called
[14-24-41] or the 'phone number' compound) for x — 13.6 at 5 GPa. The
interest in spin ladders derives from the fact they can have a gap in their
excitation spectrum, they can become superconducting, and yet are simple well
defined systems which theorists (who like working in one-dimension) can try
to model. Hence these magnetic systems may shed light on the problem of
high-rc superconductivity (see Section 8.5 below).

8.5 Two-dimensional magnets

Two-dimensional magnetism is often studied in systems with formula A2BX4,
where as before A is a non-magnetic cation of a single charge, B is a doubly
charged magnetic cation and X is a halide anion. The crystal structure is
tetragonal and the magnetic ions sit on a square lattice in two-dimensions.
A typical material is K2NiF4 and very often these systems are said to have
the K2NiF4 structure. The Mermin-Wagner-Berezinskii theorem demonstrates
that in dimensions d < 2, thermal fluctuations prohibit the existence of long
range magnetic order at non-zero temperature in an isotropic system. However
it says nothing about the T = 0 ground state. In one-dimension, it turns
out that for the spin-1/2 Heisenberg antiferromagnet no long range order exists
even at T = 0. The case for the two-dimensional Heisenberg antiferromagnet
is not so clear cut, and there is currently evidence that this does show long
range magnetic order at T = 0. This system is of great interest because two-
dimensional Heisenberg models appear to be important in understanding the
high-Tc cuprate superconductors. These systems contain planes of copper and
oxygen (see Fig. 8.12) which appear to be crucial for the superconducting
properties.

For example, pure La2CuO4 is an antiferromagnetic insulator and has the
K2NiF4 structure. The Cu2+ ions (3d9) have one hole in the d band and thus
have spin-1/2. They sit on a square lattice, each Cu2+ ion separated from its

Fig. 8.12 Copper-oxygen planes in
La2CuO4.
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neighbour by oxygen ions which mediate an antiferromagnetic superexchange
interaction between the Cu2+ spins (see Fig. 8.12). With one electron per
site you would expect the system to be metallic, but the holes are localized
because of the correlations. Doping the material with extra holes (by replacing
some La3+ ions with Sr2+) leads to high temperature superconductivity at
around 40 K for the optimally doped samples (about 20 % of the La3+

replaced by Sr2+). You can make isostructural materials by replacing Cu2+

with Ni2+ (which has S = 1) but these do not become superconducting,
even when doped. There is therefore something special about Cu2+. It is
particularly surprising that these magnetic ions should be helpful in promoting
superconductivity because magnetism normally destroys superconductivity.
This is because local magnetic fields due to magnetic ions act as pair-breakers,
splitting up the Cooper pairs that are responsible for the supercurrents. The
magnetic properties of the two-dimensional S = 1/2 square lattice Heisenberg
antiferromagnet are therefore probably pertinent to the problem of high-Tc su-
perconductivity, although this contention is unproven since, at the time of writ-
ing, no definitive theory of high-Tc superconductivity is universally believed.

The two-dimensional S = 1/2 square lattice Heisenberg antiferromagnet is
therefore of considerable interest and has attracted a number of theoretical
and experimental investigations. As the temperature is reduced, the system
does not order but the correlated regions of short range order increase in
size. This size is known as the spin-spin correlation length, £, and it diverges
exponentially at low temperature leading to true long range order at T = 0.
The behaviour of £ as a function of temperature can be calculated by mapping
the two-dimensional S = 1/2 square lattice Heisenberg antiferromagnet on to
a continuum model known as the two-dimensional quantum nonlinear sigma
model. This procedure is outside the scope of this book but the experimental
results, which have given much support to this approach, are shown in
Fig. 8.13. The results are obtained by using inelastic neutron scattering
from Sr2CuO2Cl2 which is an extremely good approximation to the ideal
two-dimensional S = 1/2 square lattice Heisenberg antiferromagnet. It has
a larger interplane spacing than La2CuO4 and remains tetragonal down to
low temperatures. Interplane interactions lead to long range three-dimensional
antiferromagnetic order at TN = 256.5 K, but well above this temperature the
spin fluctuations are dominated by the two-dimensional fluctuations. Three-
dimensional order leads to sharp Bragg peaks in the inelastic neutron scattering
data, but short range order with a correlation length £ leads to broad peaks with
width proportional to §-1 (for long range order £ -> oo and the peaks become
very sharp). The experimental data show that the peaks narrow as the material
is cooled and the data for different incident energies are shown in Fig. 8.13
with a calculated line based on the predictions of the two-dimensional quantum
nonlinear sigma model. There are no fitting parameters in this theory apart
from 1 which has been obtained from Raman scattering measurements; the
agreement is therefore extremely impressive and demonstrates that this system
is beginning to be understood in some detail.

Nevertheless the application of these results to the problem of high-Tc

superconductivity remains controversial. Recent tantalizing results have shown
that in some of these systems the doped holes are not randomly arranged but
segregate into stripes, the arrangement of the stripes depending rather subtlely

Fig. 8.13 The inverse correlation length £-1

in Sr2CuO2Cl2 derived from inelastic neu-
tron scattering. The data are for different
values of the initial neutron energy £i and the
theoretical curve is based on the predictions
of the two-dimensional quantum nonlinear
sigma model. After Greven et al. 1994.
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Fig. 8.14 A vortex state in the XY model.

on the doping level. This intriguing cooperative behaviour appears to be part
of the puzzle, but whether it is the crucial piece of the jigsaw or another red
herring remains to be seen.

The situation dealt with so far in this section has been Heisenberg spins
which have dimensionality D = 3, i.e. even though they lie on a d = 2
dimensional lattice, the spins can point in any three-dimensional direction.
If the magnetic moments are constrained to lie in a plane, we have the two-
dimensional XY model (D = 2). In this case there is no long range order
at T = 0, but nevertheless there is an interesting phase transition which can
occur. The spin-spin correlation function only decays away algebraically at
low temperatures, not exponentially as they do at high temperatures. There is a
transition temperature between these two regimes which is associated with the
thermal stability of vortices.

The energy to create a vortex in an XY system, such as the one drawn in
Fig. 8.14 is given approximately by nJ In (R /a ) where R is the size of the
system and a is a lattice constant. This energy cost diverges as R -> oo so it
would seem that vortices are very costly to produce. However, the centre of the
vortex could be at any one of the (R/a)2 sites of the system, so the entropy of
the vortex is S = kB ln[(R/a)2]. Hence the free energy of a vortex is

which becomes negative above a temperature TKT given by

at the Kosterlitz-Thouless transition where vortices can be spontaneously
thermally produced. This is a special phase transition because it occurs
between two completely disordered phases, one at low temperature and one
at high temperature. It is accompanied by a change of rigidity; the low
temperature state has an elastic rigidity and the high temperature state does
not. The transition can therefore also be thought of as a vortex unbinding
transition since any vortices in the system below TKT are strongly bound. It is
called a topological phase transition because there is no symmetry breaking
(in contrast with a ferromagnetic-paramagnetic transition).

If the spins are constrained to lie in a line, we have a two-dimensional
Ising model (d = 2, D = 1) which does have a magnetic phase transition.
Materials such as K2CoF4 and Rb2CoF4 are approximate realizations of the
two-dimensional Ising model and have been studied in detail using neutron
scattering and other techniques.

8.6 Quantum phase transitions

The phase transitions which we considered in chapter 6 are all driven by tem-
perature. In such phase transitions, it is the thermal fluctuations (whose energy
scale is controlled by k B T ) which destroy the order as the sample is warmed
through its transition. However, if one has a transition which is controlled by
some other variable (such as pressure, magnetic field, or doping level) then
at some critical value of this variable one can have a transition which can,
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in principle, occur at absolute zero. Such a zero temperature phase transition
is called a quantum phase transition and the point at which it occurs is a
quantum critical point. The relevant fluctuations are no longer thermal but
the quantum mechanical fluctuations determined by Heisenberg's uncertainty
principle. Quantum fluctuations have quite different properties from thermal
fluctuations, and require completely different theories to describe them. A
quantum system is described by a complex-valued wave function and this
introduces features which are not present in classical systems.

In a classical phase transition driven by temperature, the correlation length
and correlation time diverge as you approach the transition. The order pa-
rameter therefore fluctuates more slowly and over an increasing scale as the
transition is approached. Therefore there is some frequency, say w*, associated
with the thermal fluctuations, which tends to zero at the critical temperature Tc.
As long as kBTc » hw* close to the phase transition, the critical fluctuations
will behave classically. Hence for a quantum phase transition, where Tc = 0,
quantum fluctuations cannot be ignored. Systems with quantum critical points
are expected to show unusual dynamics which is controlled by quantum
fluctuations and can be probed using such techniques as NMR and neutron
scattering.

An example of a quantum phase transition is the Ising magnet LiHoF4
in which the ferromagnetic order can be destroyed at absolute zero by
applying a magnetic field perpendicular to the easy-axis of the Ising spins (see
Fig. 8.15). This counterintuitive behaviour occurs because the magnetic field
facilitates quantum tunnelling between the up and down spin states. Above a
critical magnetic field the quantum fluctuations are sufficient to destroy the
ferromagnetic order. The paramagnetic state is different from the usual high
temperature paramagnet in which the spins constantly, but classically, fluctuate
between the up and down states. In LiHoF4 there is a unique phase-coherent
wave function for the ground state which is a quantum superposition of up and
down spin states.

There are a number of materials which show quantum critical points
involving the proximity of magnetic and superconducting regions of the
phase diagram. These include heavy-fermion2 compounds such as CePd2Si2
(see Fig. 8.16(a)) which is an antiferromagnet at ambient pressure but upon
application of hydrostatic pressure3 can be made to superconduct. The phase
transition at 20 kbar and T = 0 is a quantum critical point.

A second example is a family of organic superconductors based upon the
organic molecule ET.4 One can make very pure crystals of charge transfer
salts of ET in which a pair of ET molecules jointly donate an electron to
an inorganic anion, such as Cu(NCS)-

2. The crystal structure consists of
alternating layers of ET molecules and layers of the inorganic anion. The
conductivity is high in the plane of the organic layers because of the molecular
overlaps of the ET molecules, but is low between the planes. Organic materials
are much softer than inorganic materials and so hydrostatic pressure has
a much larger effect than in CePd2Si2. Also, by making changes to the
anion, for example by making it bulkier, one can apply negative pressure by
chemical means. Figure 8.16(b) shows that one obtains a similar phase diagram
using a combination of chemical pressure and applied pressure. Again, an
antiferromagnetic phase lies close to a superconducting phase.

Fig. 8.15 The phase diagram of LiHoF4. The
dashed line is a mean-field theory includ-
ing only electronic spin degrees of freedom,
while the solid line also incorporates the
nuclear hyperfine interaction. After Bitko et
at. 1996.

Heavy-fermion compounds have very large
effective masses, hence the name. They are
often compounds of Ce or U.

Hydrostatic pressure is pressure applied
isotropically, the same way in all directions.

4ET is short for BEDT-TTF, which is in turn
short for bis-ethylenedithiotetrathiafulvalene.
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Fig. 8.16 (a) Temperature-pressure phase diagram of the heavy-fermion superconductor CePd2SJ2

(after Mathur et al. 1998); AF = antiferromagnetism, S = superconductivity, M = metal. (b)
Temperature-pressure phase diagram of the organic superconductors k-(ET)2Cu(NCS)2, K-
(ET)2Cu[N(CN)2]Br, K-(ET)2Cu(CN)[N(CN)2) and k-(ET)2Cu[N(CN)2]Cl. The pressure axis
includes the effect of 'chemical pressure' caused by chemically varying the unit cell size (see text)
as well as conventionally applied hydrostatic pressure (adapted from Kanoda 1997, Lubczynski
et al. 1996). (c) Phase diagram of the cuprate superconductors La2_xSrxCuO4. (adapted from
Kastner et al. 1998); SG = spin glass.

A third example is one we have already described, namely the antiferro-
magnet La2CuO4 which becomes superconducting when it is doped with Sr.
Here the variable which controls the properties is the level of Sr doping, x.
At a critical value of x the system begins to switch from antiferromagnetic to
superconducting.

This proximity between magnetic5 and superconducting regions of the
phase diagram is evidence that the spin fluctuations, rather than phonons,6 are
important in mediating the superconductivity in some of these materials. This
story is however, at the time of writing, still far from being wrapped up.

8.7 Thin films and multilayers

So far we have considered two-dimensional magnets which occur in crystals.
But it is also possible to directly engineer such systems by growing a very
thin film of magnetic material using surface-science techniques. By using
molecular-beam epitaxy, a thin magnetic film can be grown on to a flat
substrate with a thickness of a single atomic layer. The growth is carried out
under ultra-high vacuum conditions so that contamination and oxidation is
reduced as far as possible. The lattice constant and symmetry of the substrate
are chosen so as to closely match the material being grown. Not only films
but mulitlayers can be grown, so that sandwich structures can be prepared
and magnetic coupling studied through non-magnetic spacer layers, as will
be considered in a later section.

The magnetic properties of a monolayer film are expected to be greatly
different from the bulk material from which it is grown. An atom at the surface
of a film has a smaller number of nearest neighbours in comparison with an
atom in the bulk. The reduction in nearest neighbours reduces the electronic

5In UGe2 the superconducting region of the
phase diagram is adjacent to a ferromagnetic
region (Saxena et al. 2000).

In the BCS theory of superconductivity, the
attractive pairing interaction between elec-
trons is mediated by phonons. This appears to
be correct for conventional superconductors,
but is not the right description of supercon-
ductivity in heavy-fermion, organic and high
temperature superconductors.



8.7 Thin films and multilayers 181

bandwidth and hence increases the density of states at the Fermi energy level,
g(E F ) . This increases the chance of the Stoner criterion (see Section 7.3) being
satisfied and hence increases the propensity to magnetic order. Magnetic thin
films are therefore expected to have enhanced magnetic moments. In addition,
a monolayer of Pd or V (normally non-magnetic metals) is predicted to be
ferromagnetic because of this enhancement.

Another trick which can be achieved with these techniques is to grow
metastable phases of magnetic elements by appropriately choosing a substrate
on which to grow the film. Thin film growth of magnetic materials on
crystalline substrates allows the forces present at the interface to drive the
film into a different crystallographic phase. This alternative phase may already
be known as a high temperature or high pressure phase, or alternatively as
a phase which is completely unknown in the bulk. At room temperature Ni is
normally face-centred cubic (fcc), Fe is normally body-centred cubic (bcc) and
Co is usually hexagonally close-packed (hcp). However, by using particular
substrates that lattice-match to each other, metastable crystallographic phases
can be grown. For example metastable phases of fcc Co can be stabilized on
fcc Cu surfaces and bcc Co can be stabilized on GaAs(l 10) surfaces. Since the
energies associated with a change in crystal structure (~ 0.1 eV/atom) are of
the same order of magnitude as those associated with a change of magnetic
structure (e.g. ferromagnetic to antiferromagnetic), often the magnetic proper-
ties of thin films dramatically depend on the growth conditions, as well as on
the structure of the substrate.

The change in symmetry of atoms at the surface of a thin film also has an
impact on the magnetic anisotropy and the easy direction of magnetization. To
lowest order, the anisotropy energy of a ferromagnetic layer may be written as

where K is an effective anisotropy constant which is the sum of three terms,

and 8 is the angle between the magnetization and the surface normal. The first
term in eqn 8.6 represents the surface anisotropy. Ks is the surface or interface
anisotropy constant and t is the thickness of the layer. The factor 2 appears
because each layer has in general two faces. The second term is the volume
anisotropy and may be due to lattice strains, or may appear because we have
a uniaxial single crystal with its axis perpendicular to the plane of the film;
Kv is the volume anisotropy constant. The third term is the shape anisotropy
(see Section 6.7.2) of the film. It is a dipolar contribution and is calculated by
assuming a uniform distribution of magnetic poles on the plane surfaces, and
can therefore in practice be significantly reduced from this calculated value by
the presence of interface roughness.

In thick films, the dipolar term dominates and the magnetization lies in the
plane of the film. In thin films, the surface or interface term may dominate
(because of the t-l factor) and the spontaneous magnetization may become
perpendicular to the plane of the film. This perpendicular anisotropy can be
particularly useful in recording applications.7 Ks arises because the surface
states have lower symmetry which enhances the magnetocrystalline anisotropy

7 In recording applications, small regions on
the film store bits of information. The dipo-
lar field experienced by one of these small
regions due to its neighbours is lower if
the magnetization is perpendicular to the
plane. Therefore the bits can, in principle,
be stored at a higher density. However, this
explanation glosses over a large number of
practical issues which can sometimes lead
manufacturers to prefer systems in which the
magnetization lies in the plane.
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at the surface. It is affected by the roughness of the interface and also by
the lattice mismatch at each interface. The preparation of systems with large
perpendicular magnetization is of great importance in the development of
magnetic recording technology.

A number of experimental techniques have been used to study the mag-
netization of thin films. Mossbauer techniques have already been described
(see Section 3.2.3) and magneto-optic methods will be introduced in the
next section. Polarized neutron reflection (PNR) is a technique which in-
volves spin-polarized neutrons reflected at grazing incidence from a magnetic
multilayer. The reflectivity is different for spin-up and spin-down neutrons
and can be used to infer the depth-dependent magnetization (direction and
magnitude). In magnetic force microscopy (MFM), a magnetic moment on
a cantilever is scanned across the surface of a sample. There is a force on the
tip whenever there is a gradient in the magnetic field above the sample, so the
technique is sensitive to domain walls (see Section 6.7.6). Another microscopy
technique is SEMPA (Scanning electron microscopy with polarization analysis)
which is a conventional scanning electron microscope which studies the
ejection of secondary electrons (these retain their spin polarization and give
information on the magnetization of the surface). Other techniques include
Kerr microscopy (in which a polarized laser beam is scanned across a surface
to image the magnetization) and scanning SQUID microscopy.

8.8 Magneto-optics

Magneto-optical effects were first studied by Michael Faraday in 1845 who
showed that when polarized light passed through a piece of glass that was
placed in a magnetic field, the light emerged with its plane of polarization
rotated. This effect is now known as the Faraday effect. A related phenomenon
was found by John Kerr in 1877; while Faraday's effect occurs in transmission,
the magneto-optic Kerr effect occurs in reflection. John Kerr reflected light
from the polished pole of an electromagnet and noticed that its plane of
polarization was rotated.

Both effects are related to the spin-orbit interaction, and a rigorous treatment
of both effects requires the use of perturbation theory. Nevertheless the general
principles can be understood rather more simply as follows. Right-handed and
left-handed circularly polarized light cause charges in a material to rotate
in opposite senses, and each polarization therefore produces a contribution
to the orbital angular momentum having an opposite sign. A magnetic field
gives rise to a spin-polarization along the magnetic field direction and the
spin-orbit interaction then leads to an energy contribution for the two circular
polarizations having the same magnitude but with opposite sign. This leads to
right-handed and left-handed polarizations having different refractive indices
in the material. If plane polarized light is incident on a magnetic material,
it should be considered as a sum of right-handed and left-handed circularly
polarized beams which propagate through the material at different speeds.
When they emerge, these two beams recombine but the phase-lag between
them implies that the emerging beam has a rotated plane of polarization.

Michael Faraday (1791-1867)

John Kerr (1824-1907)
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In an isotropic medium the dielectric tensor becomes

where Q = (Qx, Qy, Qz) is known as the Voigt vector which is aligned with
the magnetic field and has a magnitude which depends on the material. It is
the off-diagonal terms in the dielectric tensor which contribute to magneto-
optic effcts. The tensor leads to the two circularly polarized normal modes
which have dielectric constants e± = e (1 ± Q • k) where k is the direction of
propagation of the light. The circular modes travel with different velocities and
attenuate differently. The emerging waves therefore combine to yield a rotated
axis of polarization and also an ellipticity (the different attenuations lead to the
polarization of the light that emerges being slightly elliptical).

Studies of metallic magnets use the Kerr effect rather than the Faraday
effect because metals absorb light and so cannot be studied in transmission,
unless a sample is very thin. The Kerr effect is particularly useful for thin
magnetic films and surfaces. In this case the technique is called SMOKE (which
stands for the surface magneto-optic Kerr effect). The technique can be used
during film growth inside an ultra-high vacuum (UHV) chamber by passing
a laser beam through a window of the chamber such that it reflects from the
sample and emerges from the chamber through another window. The change
of polarization of the light can be monitored using crossed polarizers.

The Kerr effect can be performed in various geometries (see Fig. 8.17): in
the polar Kerr effect the magnetization direction M is perpendicular to the
plane of the film. If M is in the plane of the film, then one can measure the
longitudinal Kerr effect if M is in the scattering plane of the light or the
transverse Kerr effect if M is perpendicular to the plane of incidence. Because
it can be performed during film growth, SMOKE is useful in studies of surface
magnetism, magnetism of films as a function of film thickness, and surface
anisotropies (for example it can be used to show at what thickness of film the
magnetization changes from in-plane to out-of-plane).

Magneto-optical effects are extremely useful in magnetic recording since
one can scan a polarized laser beam across a disk very rapidly and measure
the magnetic information encoded on the disk by the changes in polarization
of the reflected light. Although magneto-optical effects are used to read the
disk, data are written by using another laser to locally heat a tiny region of the
disk above TC and applying a magnetic field to the disk; only the heated region
switches - the information on the rest of the disk is left unaltered. The laser
beam then moves on to the next region to write the next bit. At the turn of the
21st century, magneto-optical recording disks have started to be of enormous
importance, providing a cheap and portable method of storage of relatively
large amounts of data.

8.9 Magnetoresistance

The change in resistance, R, of a material under an applied magnetic field H is
known as magnetoresistance. The magnetoresistance Ap/p is usually defined

Woldemar Voigt (1850-1919)

Fig. 8.17 (a) The polar Kerr effect; (b) the
longitudinal Kerr effect; (c) the transverse
Kerr effect.
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As we shall see. many interesting magne-
toresistances are large and negative, and you
can make the magnetoresistance of your new
'wonder magnetic material' appear dccep-
[ively larger by defining the magnetoresis-
tance as { R ( H ) - R ( O ) ) / R ( H ) . i.e. by di-
viding by the smaller number. This trick has
been used more than once in the research
literature!

William Thomson (Lord Kelvin) (1824-
1907)

It is a technologically useful quantity because magneioresistive sensors
are extensively used in applications (e.g. for measuring the magnetic field
from the magnetic strip on a credit card). A free electron gas shows no
magnetoresistance, even with an anisotropic effective mass; magnetoresistance
only appears in models with more than one carrier, and its high field behaviour
depends on the topology of the Fermi surface. The effect was first discovered
in 1856 by Lord Kelvin (then William Thomson) who was examining the
resistance of an iron sample. He found a 0.2% increase in the resistance of the
iron when a magnetic field was applied longitudinally, and a 0.4% decrease
when the field was applied in the transverse direction.

8.9.1 Magnetoresistance of ferromagnets

The observation of negative magnetoresistance in ferromagnets is a very
puzzling one. When a metal carries a current, the displacement of electrons
to different parts of the Fermi surface is such that scattering is minimized;
the electrons find the path of least dissipation to cross the sample. Hence, if
electrons are forced to take a different path, because of the presence of an
applied magnetic field for example, they would take a path which leads to
more scattering. Thus, in general, a positive magnetoresistance is expected. A
negative magnetoresistance can sometimes be observed at low temperatures in
samples which arc thin compared to the mean free path. If a magnetic field
is applied in the plane and perpendicular to the current direction, the electron
paths describe orbits with smaller diameters and therefore surface scattering
is reduced. However, in ferromagnets, the explanation of the negative magne-
toresistance must be entirely different.

A very important insight into this problem was provided by Mott who
considered the transport properties of Ni (see Fig. 8,18 tor a schematic diagram
of the spin-split bands), in which only a few eV are needed to change the
configuration from (3d8 4s2) to (3d9 4s1) or (3d10). In general, Ni is considered
to be (3d9.4 4s0.6). The d band is very narrow (which is a necessary condition
for ferramagnetism in transition metals so that g ( E F ) is large and the Stoner
criterion is satisfied), and hence m*

 d>> me. As the s bands are nearly free,
m*s ~ me. Hence, the conductivity a, which is given by

is dominated by the first term and conduction is mainly due to the s electrons.
In eqn 8.9, ns and nd are the number of electrons in the s and d bands
respectively, and the scattering times are Ts, ~ Td

The transition probability is mainly due to s—»d transitions. At low tem-
peratures, T << Tc, all the unoccupied d states are antiparallel, so only half
of the s electrons can make transitions. For T > Tc, all the s electrons can
make transitions, and so there is more scattering. Hence, a decrease in the
resistivity below Tc is expected. Now, consider applying a magnetic field to

Fig, 8,18 The spin-split bands in a ferromag-
net
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Ni. A magnetic field may increase the spin polarization and allow fewer s—>d
transitions; therefore a negative magnetoresistance is observed.

Most elastic collision processes are such that the electron conserves its
spin. These collisions are characterized by a relatively short relaxation time
i. However, even a weak spin-orbit coupling can allow a weak spin-flip
scattering which has a much longer relaxation time, rsf. In the absence of any
external forces, a perturbation created in the equilibrium distribution of spin-
up and spin-down electrons, will decay first into a uniform distribution in each
spin in a time r, and after that it will reach the equilibrium distribution in a
time rsf. For T << Tc, spin-flip scattering is not expected to be dominant, and a
ferromagnet can be well approximated by the two-current model in which
the | and | electron currents are considered independently. This has been
particularly successful in describing the properties of alloys in which a small
quantity of one transition metal (the impurity) is dissolved in another transition
metal (the host). The scattering due to certain transition-metal impurities is
strongly spin-dependent. This is due to the combined effects of the spin-
splitting of the host d band, the spin-splitting of the impurity d levels and the
different hybridization between the host and impurity states for the spin | and
spin | directions. For example, Cr impurities in Fe scatter the spin | electrons
much more strongly, resulting in a ratio of the resistivities for each spin-state of
P | / P | ~ 6. At high temperatures, the spin-flip scattering due to collisions with
spin waves leads to spin-mixing, i.e. the blurring of the distinction between the
two spin channels. This concept should be kept in mind since it will return in
the discussion of the giant magnetoresistance in sandwich structures.

8.9.2 Anisotropic magnetoresistance

In ferromagnets, the measured magnetoresistance depends on the orientation
of the magnetization with respect to the direction of the electric current in
the material. This effect is known as anisotropic magnetoresistance. Its
origin is connected with the spin-orbit interaction and its influence on s-
d scattering. The symmetry of atomic wave functions is lowered by the
spin-orbit interaction which also mixes states. The crystal axes determine
the direction of L and the magnetization determines the direction of S, so
that the mixing of states leads to anisotropic scattering. Using symmetry
arguments, it is possible to predict the general form of the dependence of the
magnetoresistance on the direction of the magnetization and the current density
in particular crystalline or polycrystalline materials.

8.9.3 Giant magnetoresistance

Anisotropic magnetoresistive effects are rather small, and so something of
a revolution occurred in the late 1980s with the discovery of a very large
effect (given the name giant magnetoresistance, or GMR for short) in
Fe/Cr/Fe multilayers. A large negative magnetoresistance of more than 50%
was discovered at high magnetic field at low temperatures (see Fig. 8.19). The
effect is associated with samples with magnetic Fe layers which were antiferro-
magnetically coupled. It was found that the coupling between magnetic layers
through a spacer layer oscillates in sign as the spacer thickness increases. For
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Fig. 8.19 Giant magnetoresistance in
Fe/Cr/Fe multilayers (Baibich et a\. 1988).

certain thicknesses it is ferromagnetic, and then is antiferromagnetic at larger
thicknesses, and then returns to antiferromagnetic. It appears that the period
of the oscillation is of the order of ten atomic spacings (usually between 9
and 18 A) and its value is mainly determined by the spacer metal, not by the
ferromagnetic metal. Good matching between the spacer and ferromagnetic
lattices favours large couplings. In the best cases, like Co/Ru superlattices, the
amplitude of the oscillation decays with spacer thickness t as 1/t2.

The origin of these oscillations is connected with the RKKY interaction
J(r) ~ cos(2kFr)/r3 between two localized spins separated by a distance
r in a bulk metal. When summed over all the spins on the interfaces, the
coupling becomes J ~ cos(2kF t ) / t2 where t is the separation of the two
ferromagnetic layers. The oscillations in the coupling can be directly related to
the topology of the Fermi surface of the spacer layer. If the ferromagnetic metal
is assumed to have a full majority spin d band, then in the case of ferromagnetic
coupling, minority spin holes will be confined in the spacer layer, but in the
case of antiferromagnetic coupling, there will be no confinement. The energy
difference between these different couplings, with the number of particles
conserved, is then entirely determined by the size quantization of the energy
of minority spin holes in the spacer layer (which has thickness t). This arises
because the energy levels in the spacer layer are discrete; therefore the density
of states consists of a series of steps, the width of each being proportional
to 1/t2. As t increases, the step width decreases, and one of the steps must
eventually cross the Fermi level. The formalism which is used to calculate
this effect can be understood as a one-dimensional analogue of the de Haas-
van Alphen effect; in the case considered here, the size quantization is due
to one-dimensional (rather than two-dimensional) confinement in a direction
perpendicular to the layer planes

The type of magnetic coupling in a sandwich structure can directly influence
the observed magnetotransport behaviour since this is very sensitive to the
alignment of the magnetic layers, with the GMR effects being largest for
antiferromagnetic coupling. The first explanation for GMR was given in terms
of the two-current model (see above) which separately considers the individual
currents of | and | electrons (| means parallel to the majority spin band). In
this discussion, I will initially assume that the mean free path y. is much greater
than the Cr interlayer thickness tCr. Imagine an Fe/Cr/Fe structure in which
the magnetization in each of the two Fe layers are aligned antiparallel in zero
applied field, and suppose further that p| « p|. Then there are two cases to
consider:

(1) H > Hs (where Hs is the saturation field). Here the magnetic moments
in the Fe layers are aligned (see Fig. 8.20(a)) so that the resistivity p is
given by

There is an effective short circuit by the less scattered electrons.
(2) H = 0. The magnetic moments in the two iron layers are now

antiparallel (see Fig. 8.20(b)). In this case the electrons are alternately |
and | in each of the layers with respect to the local magnetization, and
the spin | and | channels are effectively 'mixed' (cf. the spin mixing due
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to spin waves in alloys at high temperature, considered above). so that
P| —> pav and P| > pav where pav = (p^ + p | ) / 2 so that the total
resistivity p is given by

This again predicts the negative magnetoresistance which is observed. The
large effect is due to the inequality of p| and p|, which can be very large, and
the ease in which the 'spin-mixing' can be switched on and off, simply by the
application of the magnetic field.

For thicker Cr layers, the spin-dependent scattering at the interface affects
the electron distribution function near the interface within a layer whose
thickness is of the order of the mean free path A. If /cr « y, the mag-
netoresistance is expected to fall roughly as exp{-tcr/A). However, there
will be no giant magnetoresistance effect if there is no antiferromagnetic
coupling, and since this appears periodically in tcr, the magnetoresistance is
also expected to oscillate with increasing interlayer thickness, as well as die
away exponentially.

Magnetic coupling through multilayers can be measured using many of the
experimental techniques that we described in Section 8.7 on magnetic t h i n
films. Useful additions to these are ferromagnetic resonance (the analogue
of NMR or ESR for ferromagnets) and Brillouin light scattering techniques
(which study excitations using the inelastic scattering of tight). These can
both be used to study spin waves and magnetostatic modes in magnetic thin
films. The spins in the multilayers are coupled together through exchange,
dipolar and anisotropic interactions. Hence the spin-wave excitations, which
are the eigenmodes of this magnetic system, have a dispersion relation which
can depend quite sensitively on the exchange coupling and anisotropies and
magnetoelastic effects.

The preparation of multilayers is not the only way to achieve GMR. It
has also been observed in heterogeneous Cu-Co alloy films. The relative
orientation of the magnetic moments inside the Co-rich grains inside the Cu-
rich matrix determines the magnetoresistance and this can he varied by an
applied field, GMR is however not observed in homogeneous alloys which do
not possess isolated, large, magnetically-rich grains of the appropriate size.
Alloys are easier to prepare than multilayers and therefore this offers exciting
prospects for sensor applications.

Fig. 8.20 (a) The magnetic moments in the
he layers are parallel when H > H, (a)
The magnetic moments in the Fe layers are
antiparallel when H — 0 if the thickness of
[he chromium layer, f cr- is encosen correctly.

8.9,4 Exchange anisotropy

Exchange anisotropy (or unidirectional anisotropy) is the interfacial ex-
change that can be observed between a ferromagnet and an antifcrromagnet
If the Curie temperature TC of a ferromagnet is greater than the Neel temp-
erature TN of an antifeiromagnet, then by depositing one over the other (for
an appropriate choice of the ferromagnet and antiferromagnet, and for a
sufficiently thick ferromagnetic layer), and cooling them in an applied field
through the Neel temperature, the measured magnetic hysteresis loop observed
at T < TN appears to be shifted as if another magnetic field was present
in addition to the applied magnetic field. It appears that it is energetically
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Fig. 8.21 A hysteresis loop shifted by an
exchange anisotropy. Without the exchange
anisotropy the loop would be centred at zero
magnetic field.

favourable for the ferromagnetic film to be magnetized one way (in the
direction in which it was cooled) rather than the other. It is sometimes said to
be exchange biased by the antiferromagnetic layer. The effect of the exchange
biasing is to produce a unidirectional exchange field Bex which can act in
competition with the applied field B (the total energy of the magnetic layer is
given by -M (B + Bex)). If B and Bex are in the same direction, the effect
is simply to shift the hysteresis loop (see Fig. 8.21). If they are at right angles,
a hard axis response is obtained. In both cases, there is a unique angle of the
magnetization which minimizes the energy at each value of the magnetic field.

This technique can be used to add an 'exchange bias' field to magnetore-
sistive sensor heads in order to bias them into their linear regions. It is also
used to constrain the direction of the magnetization in one soft ferromagnetic
layer in a sandwich structure. The magnetization in the other layer can then be
rotated by an applied field, allowing magnetoresistance and coupling energies
to be measured in a carefully controlled way. This is also the basis of the spin-
valve (see Fig. 8.22) which is a giant magnetoresistive sensor consisting of (wo
magnetic layers with a non-magnetic spacer, with one of the magnetic layers
adjacent to an antiferromagnetic layer. The resistance across the sandwich
structure is then sensitive to the value of the applied magnetic field along a
particular direction.

8.9.5 Colossal magnetoresistance

The transport properties of Mn oxides have recently generated enormous
interest. LaMnO3 contains Mn in the Mn3+ state which is a Jahn-Teller ion.
LaMnO3 shows A-type antiferromagnetic ordering (see Section 5.2.4). If a
fraction x of the trivalent La3+ ions are replaced by divalent Sr2+, Ca2+ or
Ba2+ ions, holes are introduced on the Mn sites. This results in a fraction 1 — x
of the Mn ions remaining as Mn3+ (3d4, t2g

3 eg
l) and a traction x becoming

Mn4+ (3d4, t2
3,eg

0). When x = 0.175 the Jahn-Teller distortion vanishes and
the system becomes ferromagnetic with a Curie temperature around room
temperature. Above TC the material is insulating and non-magnetic, but below
TC it is metallic and ferromagnetic. Particularly near TC the material shows an
extremely large magnetoresistive effect (see Fig. 8.23) which has been called
colossal magnetoresistance (abbreviated to CMR), the term 'giant' having
been already taken! The origin of the CMR is connected with the presence of
a metal-insulator transition.

The origin of the behaviour described above is partly connected with the
phenomenon of double exchange (see Section 4.2,5). In a Mn3+ ion, the C2g

electrons are tightly bound to the ion but the eg electron is itinerant. Because
of the double exchange interaction, the hopping of eg electrons between Mn
sites is only permitted if the two Mn core spins are aligned (in fact the hopping
probability is proportional to |cos(0/2)| where 0 is the angle between the two
Mn core spins). The magnetic field aligns the core spins and therefore increases
the conductivity, especially near TC.

The situation is actually more complicated because the carriers interact
with phonons because of the Jahn-Teller effect. The strong electron-phonon
coupling in these systems implies that the carriers are actually polarons above
TC, i.e. electrons accompanied by a large lattice distortion. These polarons are

Fig, 8.22 A spin valve. The antiferromagnet
(AFM) 'clamps' the magnetic moment in
the upper ferromagnetic layer (FMI) along
a particular direction. The magnetic moment
in the lower magnetic layer (FM2) is free
to rotate and can be aligned with an ap-
plied magnetic field The angle between the
magnetic moments in the two ferromagnetic
layers controls the resistance of the device
In zero applied magnetic field, the relative
alignment of the layers is controlled by the
thickness of the non-magnetic spacer layer
(NM).
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Fig. 8.23 Colossal magnetoresistance in
La|_xSrxMnO3 for x = 0.175. (a) Tem-
perature dependence of the resistivity, (b)
Isothermal magnetoresistance. After Tokura
et al. 1994.

Fig. 8.24 The Ruddlesden-Popper phases of
the manganites.

magnetic and are self-trapped in the lattice. The transition to the magnetic state
can be regarded as an unbinding of the trapped polarons. There are other sig-
natures of the electron-phonon couplings, including magnetic-field dependent
structural transitions and charge ordering. The charge-ordered ground state can
compete with ferromagnetism and is enhanced near commensurate values of
the doping (e.g. at x = 1/2 where there is one hole for every two Mn sites).
These effects are not fully understood and are under active current study.

The manganese perovskites are just one type of oxide material which shows
colossal magnetoresistance. Perovskites are a member of a large family of
crystals known as Ruddlesden-Popper phases (see Fig. 8.24). These phases
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8 Perovskite blocks are essentially stacks of
corner-sharing MnO6 octahedra.

have a general formula Xn+1MnnO3n+1 (where X is a lanthanide, strontium,
or mixture) and can be thought of as stacks of perovskite blocks8 n layers thick
with each block separated by a rock-salt like (Sr,Ln)2O2 layer which tends to
decouple the blocks electrically and magnetically. The perovskite compounds
are realized when n = oo, whereas the case n = 1 is equivalent to the
K2NiF4 structure, adopted by the high-Tc cuprates. Manganese compounds
can be made which adopt a range of structures (e.g. n = 1, 2, 3 and oo have all
been prepared at the time of writing). In the perovskites n = oo, each MnO6

octahedron is surrounded by six others. In the n = 2 phases, this 'coordination
number' drops to five, and it is four for the n = 1 phases. The reduction in the
number of nearest-neighbours is expected to produce an anisotropic reduction
in the width of the energy bands which are derived (largely) from the Mn 3d
orbitals, and this modifies the electrical conductivity and magnetic behaviour
of these materials. These materials can thus be carefully controlled by using
different dopants, different doping levels, and adjusting the dimensionality.

8.9.6 Hall effect

Usually this is simply called the Hall effect

A magnetic field applied normal to the current direction in a conducting ma-
terial produces a transverse force on the conduction electrons in the film. This
force on the conduction electrons gives rise to a transverse Hall voltage. This is
known as the ordinary Hall effect9 and is proportional to the applied magnetic
field B, because the Lorentz force on conduction electrons is F = e(E+v x B).
In ferromagnets an additional effect occurs, known as the extraordinary Hall
effect which depends on the magnetization. Note that it is not just a Lorentz
force due to M rather than B, because this is already included in the ordinary
Hall effect since B = uo(H + M). Empirically the transverse resistivity pH is
given

where R0 is the ordinary Hall coefficient, and Re is the extraordinary Hall
coefficient (sometimes the spontaneous Hall coefficient). The ordinary Hall
coefficient R0 tends to be fairly temperature independent, whereas Re is usu-
ally very temperature dependent. The effect is not only seen in ferromagnets,
but also in strong antiferromagnets or paramagnets. The effect only requires
the presence of localized moments. (For example, it is seen in Tb in both its
ferromagnetic and paramagnetic states.) If you measure the Hall resistivity as
a function of field, a straight line graph results but there is a sudden change of
gradient when the saturation field is reached (see Fig. 8.25). This is because at
low magnetic field both B and M increase, so both ordinary and extraordinary
Hall effects are seen and the gradient is due to R0 and Re. Above the saturation
field M can no longer show a further increase and the gradient results from R0

alone.
The mechanism for the extraordinary Hall effect is associated with the spin-

orbit interaction between the conduction electrons and localized moments. The
carriers have an orbital angular momentum about the scattering centre whose
sign depends on whether they pass the centre on one side or the other. This
orbital angular momentum L couples to the spin angular momentum S of the
scattering centre because of the spin-orbit interaction which is proportional to
L • S. The electrons thus find it energetically favourable to pass to one side

Fig. 8.25 The Hall resistivity in a ferromag-
net.
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rather than the other. This results in asymmetric scattering and hence to a
transverse current which is responsible for the extraordinary Hall effect.

8.10 Organic and molecular magnets

Magnetic materials have been conventionally prepared from substances which
are essentially the products of inorganic chemistry. However there has been
recent interest in organic magnetic materials which are based upon organic
chemistry. The tunability, resulting from the rich structure of carbon chemistry
which allows many small adjustments to be made to each molecule, means
that in principle materials can be tailor-made to exhibit desired properties.
This is only 'in principle' however, since the structure-property relations can
turn out to be remarkably intricate. The impetus to study organic materials
in condensed matter physics stems particularly from the recent remarkable
discoveries of three types of new material: first, conducting polymers which
can have electrical conductivities as high as conventional metals such as copper
and which have been used in the fabrication of polymer transistors and light-
emitting-diode devices; second, superconducting charge transfer salts which
can exhibit superconducting transition temperatures as high as 15K; third,
carbon 'bucky-balls' C60, a new allotrope of carbon which when appropriately
doped may exhibit superconductivity or even unusual magnetic properties.

Ferromagnets are rather rare even among the elements and are exclusively
found in the d or f block. To achieve a magnetic moment on an organic
material, it is natural to search for an organic free radical which has unpaired
spins. Many organic radicals exist, but few are stable enough to be assembled
into crystalline structures. Moreover, even when that is possible, aligning
these spins ferromagnetically is usually impossible. Thus the discovery of
ferromagnetism, albeit at rather low temperatures, in certain nitronyl nitroxide
molecular crystals in the early 1990s was particularly remarkable. The first
material of this sort to be found was para-nitrophenyl nitronyl nitroxide (p-
NPNN) (see Fig. 8.26) which shows ferromagnetism up to TC ~0.65 K only in
one of its crystal phases. Nitronyl nitroxides contain only the elements C, H,
N, and O and are therefore fully organic magnets. On each nitronyl nitroxide
molecule there is an unpaired spin associated with the two N-O groups. Small
chemical changes to the rest of the molecule lead to significant changes in
crystal structure, thereby altering the intermolecular overlaps and thus the
magnetic interactions between unpaired spins on neighbouring molecules.
Thus, different compounds have greatly different magnetic ground states.
These materials mostly have transition temperatures below 1 K.

Some of the most technologically promising materials are molecular mag-
nets in which a transition metal ion provides the localized moment and organic
bridges act as exchange pathways. Progress has also been achieved using mate-
rials with unpaired electrons on both the metal ions and the organic molecule.
These have much higher transition temperatures than purely organic magnets,
sometimes above room temperature. One of the promising aspects of these
materials is their optical properties. Some of them are transparent and change
colour when they become magnetic, often when this is associated with a spin
transition. They therefore have a number of potential applications in cases

Fig. 8.26 The molecular structure of the or-
ganic ferromagnet para-nitrophenyl nitronyl
nitroxide (p-NPNN).
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when it is necessary to see by eye that a magnetic change has taken place
(e.g. on telephone cards or display applications).

8.11 Spin electronics

The ability to manipulate and amplify currents of different spin-type is the
basis of the emerging field of spin electronics (also known as spintronics)
which is an attempt to fabricate devices out of combinations of metallic
ferromagnets, non-magnetic metals and semiconductors. The ideas at the basis
of this field are all connected with the fact that spin-up and spin-down electrons
have different mobilities in a ferromagnet. A crucial feature is the degree of
spin polarization in a given ferromagnet. The spin-polarization P is defined
by

and is less than unity for elemental metallic ferromagnets (0.44 for Fe, 0.34 for
Co and 0.11 for Ni). However in some materials P = 1, implying that there is
one spin-split band which is completely empty. Such materials are called half-
metallic magnets (because the electrons of one spin are metallic and those of
the other spin are insulating) and CrC>2, Fes 04 and some of the manganites are
believed to fall into this class. Such materials have a very long spin-diffusion
length, and may be exciting materials for use in spin electronics applications,
for example in magnetic tunnel junctions in which spin polarized electrons are
used to tunnel through an insulating barrier.

A few different designs for a spin transistor have recently appeared which
attempt to use the tunnelling of electrons of different spins from ferromagnets
into semiconducting layers. Conventional electronics is based only on elec-
tronic charge and ignores electronic spin. There is much current optimism that
the use of magnetic materials to control the spin of electronic currents could
be a promising new development for electronic devices in this century.

Further reading

• J. A. Mydosh, Spin glasses: an experimental introduc-
tion, Taylor and Francis 1993 and K. H. Fischer and J.
A. Hertz, Spin glasses, CUP 1991, both contain useful
accounts of theoretical and experimental work on spin
glasses.

• E. Dagotto, Reports on Progress in Physics 62, 1525
(1999) is a readable review on spin ladders.

• A. M. Tsvelik, Quantum field theory in condensed matter
physics, CUP 1995, is an advanced text which contains
a description of current theories used in describing low-
dimensional magnetism.

• A. Auerbach, Interacting electrons and quantum mag-
netism, Springer-Verlag 1994, is a lively treatment of the
quantum mechanics of low-dimensional magnets and the

Haldane gap. These topics are also reviewed in I. Affleck,
J. Phys.: Condensed Matter, 1, 3047 (1989).

• M. A. Kastner, R. J. Birgeneau, G. Shirane and Y. Endoh,
Rev. Mod. Phys., 70, 897 (1998) contains a review of
magnetic properties of single layer copper oxides and the
high-Tc problem.

• E. Manousakis, Rev. Mod. Phys., 63, 1 (1991) reviews the
theory of the two-dimensional Heisenberg antiferromag-
net on a square lattice.

• P. M. Chaikin and T. C. Lubensky, Principles of con-
densed matter physics, CUP 1995, is an excellent source
of information concerning the statistical mechanics of
systems in condensed matter.
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• Quantum phase transitions are reviewd in S. L. Sondhi,
S. M. Girvin, J. P. Carini and D. Shahar, Rev. Mod. Phys.,
69, 315(1997).

• A review of magnetic multilayers with an emphasis on
spin-wave excitations is R. E. Camley and R. L. Stamps.
J. Phys.: Condensed Matter, 5, 3727 (1993).

• Organic magnetism is reviewed in O. Kahn, Molecular
magnetism, VCH (1993).

• K. De'Bell, A. B. Maclsaac and J. P. Whitehead, Rev.
Mod. Phys., 72, 225 (2000) contains an account of

dipolar effects in thin film magnets.

• The current status of various topics in magnetism re-
search may be discerned by reading the conference
proceedings of major magnetism conferences which are
published from time to time in the Journal of Applied
Physics, the Journal of Magnetism and Magnetic Ma-
terials and Physica B. Recent views of various aspects
of magnetism research are published in the Journal of
Magnetism and Magnetic Materials volume 100 x n
where n is an integer.
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Units in
electromagnetism

Units in electromagnetism represent a potential minefield of complication.
SI units are used throughout this book, but much of the twentieth century
literature uses non-Si notation. Therefore this appendix attempts to unravel
some of the mysteries of the old system and it may be used to interpret older
literature for readers who have been brought up on the new system.

From the end of the nineteenth century until just after the second world
war, the cgs system was the system of units preferred by the international
committees who are concerned with such things. In the cgs system, distance
is measured in centimetres, mass in grams, and time in seconds, hence the
name cgs. In the SI system, we use metres (100 times as big as centimetres),
kilograms (1000 times as big as grams) and seconds. This difference in choice
of units of distance and mass appears to be rather innocent, but ends up causing
great changes in other units. For example, force has the dimensions of mass x
length / time2, so in cgs the unit of force, the dyne, is 1000 x 100 = 105 times
smaller than a Newton, the SI unit of force. The cgs unit of energy is the erg,
a dyne cm, so this is 105 x 102 = 107 times smaller than the Joule, the SI unit
of energy.

Unfortunately, that is not the end of it, and when it comes to the definitions
of magnetic field things get decidedly worse. This arises because the choice of
definitions of the fields B, H and M are different in the two systems:

Thus B and H have the same dimensions in the cgs system but confusingly
have different units (the former in Gauss (G), the latter in Oersted (Oe)). The
difference in relation between H and M arises because the two systems make
different choices in the equations defining the magnitude of the magnetic field,
H, at a distance r from a magnetic monopole q:

The omission of the factor of 4r makes this equation, and similar ones relating
the magnetic field from a magnetic dipole, rather simpler in the cgs system.
However the factor of 4r is not removed entirely from the theory but pops up
in a more unwanted place in eqn A.1. The cgs system defined H according
to non-existent monopoles from eqn A.2, so that a unit monopole produces
a field of one Oersted a distance of one centimetre away (and if another unit
monopole is lurking there it will experience a force of one dyne). In SI, H
is more helpfully defined in terms of current (since people normally use a
current source in a laboratory to produce a magnetic field, rather than devising



a suitable arrangement of unit magnetic monopoles). Thus a long solenoid with
n turns per metre and carrying a current of / Amps produces a field given by
H = nI in the SI system.

The logic in the SI system is that the 4r appears in equations like eqn A.2
to remind us that the field from a point magnetic monopole has spherical
symmetry (the 4r is related to the surface area of a sphere, 4rr 2 ) . The same
is true of the electric field E a distance r from a point charge,

in which similar arguments apply. With SI, we have to live with a few extra
factors, which fit from symmetry arguments, in equations defining the field
from point charges and dipoles. The rest of the equations come out much
cleaner and with fewer arbitrary factors.

The one thing to be said in favour of the cgs system is that electric and
magnetic fields come out with the same dimensions, so that certain relativistic
equations can look better. Also in free space B = H which has a certain
symmetry (although this can create an opportunity for confusion). But extra
factors of c get littered all over the place in the cgs system, so that for example
the equation for the Lorentz force on a charge moving with velocity v in
electric and magnetic fields becomes

But there is much worse to come. It turns out that there are two ways to set
up electromagnetism in cgs, with either the esu (electrostatic units) or the emu
(electromagnetic units) with conversion factors needed to go between them.
In magnetism the emu system is usually adopted. The emu unit of magnetic
moment, usually abbreviated just to the 'emu', is a unit with dimensions
of volume (which in cgs is cm3). Magnetic susceptibility, x = M/H, is
dimensionless in both systems, but in cgs is often written as emu cm - 3 , which
is still dimensionless even if it doesn't appear so at first glance. There is
always the troublesome factor of 4n to remember when converting between
cgs susceptibility and SI susceptibility which arises because B = H + 4rM
in the cgs system (see above). For example, the demagnetization factor, N, is
dimensionless and is 0 < N < 1 in SI but 0 < N < 4r in cgs. Unfortunately
the emu is still widely used in some parts of magnetism research. Table A
summarizes the most useful results for converting SI to and from cgs.

Though not an SI unit, the Bohr magneton uB = 9.274 x 10-24 J T-1 is a
useful measure of magnetic moment since it corresponds to the magnetic mo-
ment of a 1s electron in hydrogen. For a paramagnet, the molar susceptibility
Xm is given by Curie's law (adapting eqn 2.44) which is in SI units

where NA is Avogadro's number. Hence XmT is independent of temperature
(see Fig. 2.10) and this can be related to the effective moment. Hence by
rearranging eqn A.5, one has

195



196 Units in electromagnetism

Table A.I Units in the SI system and the cgs system. The abbreviations are m = metre,
g = gramme, N = Newton, J = Joule, T = Tesla, G = Gauss, A = Amp, Oe = Oersted, Wb =
Weber, MX = Maxwell. The term emu is short for electromagnetic unit. Note that magnetic
susceptibility is dimensionless in SI units.

Quantity

Length
Mass
Force
Energy
Magnetic induction
Magnetic field strength
Magnetic moment

Magnetization
(= moment per volume)
Magnetic susceptibility
Molar susceptibility
Mass susceptibility
Magnetic flux

Demagnetization factor

symbol

X

m
F
E
B
H

M

M

X
Xm

Xg
<t>

N

10-2

10-3

io-5

io-7

i<r4

103/4w
IO-3

IO3

4ir
4* x 1(T6

4* x 10~3

10~8

SI unit

m
kg
N
J
T
Am"1

JT"1

or Am2

Am or
JT-'m-3

m3mor1

m3kg-'
Tm2

orWb
0< N < 1

cgs unit

= 1 cm

= 1 g
= 1 dyne
= 1 erg
= 1 G
= 1 Oe
= 1 ergG-1

= 1 Oe

= 1 emu cm~3

= 1 emumoP1

= 1 emug~'
= 1 G cm"2

or MX
0 < N < 4*

so that

where /ieff is measured in Bohr magnetons per formula unit, xm
r is measured in

m3 mol"1, and XmSS is measured in emu mol"1. These numerical relationships

can be useful for extracting effective moments from graphs of XmT against T.

Further reading

B. I. Bleaney and B. Bleaney, Electricity and magnetism, • J. D. Jackson, Classical electrodynamics, Wiley 1962.
OUP 1989.



Electromagnetism

In this appendix several key results in electromagnetism are briefly reviewed.
The further reading should be consulted for detailed derivations of these
results.

The Lorentz force dF on a straight segment of wire of length dr carrying
current / in a magnetic field of flux density B is given by dF = I dr x B
(see Fig. B.1).

This result can now be applied to calculate the couple on the elementary
loop of wire in Fig. B.2. The couple is given by

B.1 Magnetic moments 198
B.2 Maxwell's equations in

free space 199
B.3 Free and bound currents 200
B.4 Maxwell's equations in

matter 201
B.5 Boundary conditions 201

so that defining the magnetic moment of the loop by duz = Idxdy, and
repeating the argument for arbitrary directions of the loop, the couple dG is
given by

Fig. B.1 The force on a current element is
dF = I dr x B.For a loop of finite size, this yields by integration

There will be a net force on the loop only if the magnetic field is non-uniform.
Thus the force in the x direction on the elementary loop in Fig. B.2 is

so that

and by integrating for a magnetic moment of finite size,

It is therefore only a non-uniform magnetic field which can exert a force on a
magnetic moment.

A magnetic moment u, aligned with a magnetic field B has zero torque on
it (by eqn B.3, G = 0 if u and B are parallel). Rotating u with respect to B

Fig. B.2 A square elementary current loop
(with sides of length dx and dy) oriented
perpendicular to the z-direction.

B.1 Magnetic moments
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therefore can only be accomplished by applying a torque. The work done W
by the torque to rotate u to an angle 9 with respect to the magnetic field is

The potential energy U of the magnetic moment can therefore be written as
-uB cos 9 (ignoring the constant term). Hence we can write

A magnetic moment u in a non-uniform field B has a force on it in the x
direction equal to u d B / d x by eqn B.6. To stop it moving in the x direction,
one would have to apply a restoring force — u d B / d x . If it were allowed to
move a distance Sx into a region of stronger field, the work done by this force
would beThis argument can be generalized to show

that

and this is an increment to the sample's free energy (in agreement with the
results of Exercise 2.10).

The magnetic field due to a magnetic moment at the origin is

and the magnetic vector potential (in the most convenient choice of gauge) is

Maxwell's equations in free space areJames Clerk Maxwell (1831-1879)

and describe the interrelationships between the electric field E, the magnetic
induction B, the charge density p and the current density J. Equation B.12
shows that electric field diverges away from positive charges and converges
into negative charges; charge density therefore acts as a source or a sink of
electric field (see Fig. B.3). Equation B.13 shows that magnetic fields have no
such divergence; thus there are no magnetic charges (monopoles) and lines
of B field must just exist in loops; they can never start or stop anywhere.
Equation B.14 shows that you only get loops of electric field around regions
in space in which there is a changing magnetic field. This leads to Faraday's
law of electromagnetic induction. Equation B.15, in the absence of a changing
electric field, shows that loops of magnetic induction are found around electric
currents. Note that everything in this section has been for electromagnetic
fields in free space.

Fig. B.3 Electric field diverges away from
positive charges and converges into negative
charges.

B.2 Maxwell's equations in free space
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Once matter is brought into the picture, things get a little more complicated
and it is worth trying to understand why. The treatment here will just
consider the effects for magnetism, although analogous thinking lies behind the
corresponding derivations for electric fields. Real matter contains a different
type of electric current from the familiar currents we are used to thinking about
flowing down wires. Atoms contain microscopic bound currents due to the
electrons circulating around the nucleus. Thus the total current J in eqn B.15
can be separated into two components

due to the free currents (10 amps flowing down a copper wire) and bound
currents (electrons orbiting an atom).

If M is uniform in a sample, the only net bound current that flows is around
the edge of the material. If M is non-uniform, bound currents will be generated
inside the material. We need a general relation between the bound currents and
the magnetization, and this is that

A derivation of eqn B. 17 will now be sketched (for more details see the further
reading). The vector potential A due to a single point dipole at the origin is
given in eqn B.1 1. Now consider a magnetized specimen, contained in volume
V, with magnetization M(r') at position r'. The vector potential at position r
is

This equation can be simplified using V r(l/r) = -r/r3, the vector identity

where f and g are scalar and vector functions respectively, and transforming
the integral of r' to one over r. The result is that the vector potential at r can
be written as

where the first integral is over the volume of the sample, and the second integral
is over the surface of the sample. The bound current in eqn B.22 agrees with
eqn B.17. The surface current is given by Kbound = M x n and the vector n is
perpendicular to the surface.

The problem with eqn B.15 is that the curl of B is related not only to the
free current density but also to the more inconvenient bound current density.
Therefore we are motivated to define a new 'corrected' field which only 'sees'

B.3 Free and bound currents
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the free current density, although as shown below this will be only partially
successful. Using the result for the bound volume currents, we define a new
field H (called the magnetic field strength, or just the H field) by

and hence we can write a new version of eqn B.15 which includes only Jfree-
Thus in the absence of changing electric fields

This is useful because it relates the H-field to a quantity that can be read on
an ammeter (which Jbound cannot be). Unfortunately this procedure, having
simplified one of Maxwell's equation, complicates another. Equation B.13
changes from the simple V • B = 0 to the slightly more tortuous

Thus H, unlike B, is not divergence-free (or solenoidal, to use the mathemati-
cal jargon). H behaves as if magnetic monopoles (i.e. the magnetic equivalent
of charges) exist.

where a similar distinction is made between free and bound charges and where
the electric displacement, D, is given by

and P is the electric polarization.

B.5 Boundary conditions

A significant difference between the B and H fields is revealed when they meet
a boundary between two different regions. The boundary conditions between
two regions 1 and 2 (see Fig. B.4) can be derived as follows. Consider the
shoe-polish-tin-shaped box1 straddling the surface. V • B = 0 implies that
fs B . dS = 0 using the divergence theorem. Since the surface area of the box
is mostly represented by the top and bottom surfaces of the box,2 we have that
the perpendicular component of B is continuous, i.e. that

1These are traditionally called 'pill-boxes'
in the physics literature, although pills have
long since stopped being sold in such shaped
boxes!

And we can make sure this is the case by
making sure that we let the box thickness
tend to zero before its radius tends to zero. •

B.4 Maxwell's equations in matter

Maxwell's equations in the presence of matter therefore become



B.5 Boundary conditions 201

Fig. B.4 Electromagnetic boundary condi-
tions between regions 1 and 2.

The argument won't work for H because V . H = — V • M which may be non-
zero. The perpendicular component may be discontinuous if the magnetization
diverges inside the box (which it may well do if region 1 is magnetized and
region 2 is not). The argument for the parallel components comes from the
equation V x H = Jfree which implies that f H . dl = f Jfree . dS. As the
Amperean loop shown on the right-hand side of Fig. B.4 shrinks to zero, so
does the free current enclosed by the loop and so the parallel component of H
is continuous, i.e. that

This argument won't work for B because V x B = u0(Jfree + Jbound) and so
the Amperean loop, although enclosing no free current as it shrinks to zero,
can enclose some bound surface current in the limit that the loop shrinks to
zero.

• B.I. Bleaney and B. Bleaney, Electricity and magnetism,
OUP 1989.

• D. J. Griffiths, Introduction to electrodynamics, Prentice-

Hall 1989.

J. D. Jackson, Classical electrodynamics, John-Wiley
1962.
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C.1 Quantum mechanics

In this section we briefly review some basic features of quantum mechanics.
The fundamental object in quantum mechanics is the wave function (also
known as the state function) \fr which contains all the knowledge one obtains
about a system from observation. The wave function iff is a complex function
and |i/r|2 = IJ/TJS* is the probability density.1 To every observable quantity,
there corresponds a Hermitian operator. When you make a measurement, the
result you obtain is one of the eigenvalues of that operator. Hermitian operators
have real eigenvalues and eigenfunctions which are orthogonal to each other.
If the ith eigenfunction of the operator A (operators are given 'hats') is 0,-
(assumed normalized) and has an eigenvalue a,-, then

Here the symbol * denotes complex conju-
gation

The expected value that you obtain after a measurement of operator A is given
by

where dr is a volume element. The wave function ty can be expanded in terms
of the eigenfunctions of A, i.e.

so that (A) is then given by

using the orthonormality of <j>, The probability of obtaining the ith eigenvalue,
a,, is |c/|2. Measurement is a drastic process. If you take a wave function ijj,
measure the physical quantity which is associated with operator A and obtain
the result an (the nth eigenvalue of A), the system is forced into state function
<j>n. This, at least, is the Copenhagen interpretation.

The commutator of two operators A and B is defined by [A. B] = AB—BA.
An expression defining a commutator is known as a commutation relation.
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Example C.l 
The commutator [i, I;] = ih where 3 and 
operators respectively. 

are the position and momentum 

If the two operators and B commute, ([A, 61 = 0), they are said to be 
compatible and measurement of one does not affect the value of the other in 
any way. If they do not commute, there exists an uncertainty relation between 
them so that 

where AA = Jm. 
Schrodinger equation 

The time dependence of + in the absence of a measurement is given by the 

where fi is the Hamiltonian. The time dependence of the expected value of an 
operator is given by 

if the operator A itself is not time dependent. An observable whose operator 
commutes with the Hamiltonian is a conserved quantity and is known as a 
constant of the motion or a good quantum number. 

C.2 Dirac bra and ket notation 
In this section we review some notation, due to Paul Dirac, which is used 
sporadically in this text and often in the magnetism literature. The scalar 
product between two vectors a and b is given by a . b = xi aibr. The length 
of a is given by z/aa which must be real and positive. The notation makes 
the inner product look completely symmetric between a and b, but this hides 
some subtlety. If the vectors are complex, the scalar product should be written 

Paul A. M. Dirac (1902-1984) 

length of the complex vector is well defined. Equation C.8 emphasizes that 
the two vectors in the scalar product should not really be considered on an 
equal footing: one is a row vector, the other a column vector; one is complex 
conjugated, the other is not. Mathematicians say that actually the two vectors 
in a scalar product 'live' in different spaces, so that here b lives in a vector 
space and a lives in its 'dual space'. To turn a vector into its dual, you need 
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to take the adjoint, signified by a t sign (it means 'complex conjugate and
transpose'), so that

However in quantum mechanics, the state function is sometimes a vector,

like a = I ' I, and sometimes a continuous function a(x). If a function, then
\a2J

the scalar product between a(x) and b(x) is

Dirac circumvented this notational problem by writing the state function as
a ket: |a), whether he was dealing with finite-component vectors or functions
(which can be regarded as infinite dimensional vectors). This is just notation, so
that |a) + \b) = \c) is simply another way of writing a + b = c, or equivalently
a + b = c or a(x) + b(x) = c(x). One can turn the ket |a> into a bra, (a|,
by using the adjoint

The scalar product between (a[ and \b) is then written as

a bra-(c)-ket (Dirac here demonstrating evidence of humour). The expression
for an expectation value of an operator can be written

The notation conveys the asymmetry of the scalar product, is widely used
and greatly simplifies many computations. It is particularly useful in labelling
particular states, as in the following:

C.3 The Bohr model

The Bohr model is a semiclassical model describing the motion of an electron
in a hydrogen atom. It gives the right results, but for the wrong reason.
Nevertheless, it is simple and therefore useful for quickly deriving results such
as the dependence of the radius of an atomic orbit on nuclear charge Z and
effective mass.

Consider an electron orbiting a nucleus of charge +Ze (see Fig. C.1).
Equating electrostatic and centripetal forces yieldsFig. C.1 The Bohr model.



C.4 Orbital angular momentum 205

The angular momentum of the electron mevr is quantized in units of h so we
can write

where n is an integer (the principal quantum number). Hence the radius of the
orbit can be written

where a0 is the Bohr radius defined by

The energy E is then given by

C.4 Orbital angular momentum

The angular momentum operator is given by

The z component of the angular momentum thus has an operator

which has eigenfunctions given by e""'* and eigenvalues mlh, where ml is the
magnetic quantum number. The following commutation relations can be easily
proved:

and

where the alternating tensor eijk is defined by

These results can be written as a0 = Sio?

and E = — 1/2m(ac)2^2" where a is the fine
structure constant.
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Equation C.27 is shorthand for

and cyclic permutations. The equation
uses Einstein's summation convention in
which any twice-repeated index is assumed
summed. For example ai,bi is short for
Ei ai bi The alternating tensor is useful in
expressions such as

In this equation j and k are twice-repeated
and thus assumed summed. Hence for exam-
ple

Tabled C.1 P|ml|(cos 0).

1 = 0
l = 1
l = 2

l = 3

ml =0

1

cos 6)

1/2(3cos260 - 1)

1/2(5 cos3 8 - 3 cos 0)

ml = 1

-

sin 0

1/3 sin 0 cos 8

2/3 sin 0(5 cos2 0- 1)

ml = 2

-

-

1/3 sin2 0

1/15 sin2 0 cos 0

ml = 3

-

-

-

1/15 sin3 0

The operator L2 has eigenfunctions

known as spherical harmonics, with eigenvalues 1(1+1) where / is the angular
momentum quantum number and P m l ( c o s O ) is an associated Legendre
polynomial (see Table C. 1).

Thus

Similarly

The raising and lowering operators L± are defined by

Hence one can show that

Certain states have no orbital angular momentum. Singlet states (5 = 0) are a
good example, and this arises because they have real wave functions, as can be
proved straightforwardly. In the absence of a magnetic field the Hamiltonian is
real so that if i/r is an eigenfunction of the Hamiltonian H with energy E, then
so is \l/*. (H\l/ — Ei/r so i-iifr* = Et/r*.) But since the state is by definition
a singlet, \jt = rj/* and ^ is then real. The operators for all components of
L contain /' so that the expectation values (\js\La\ij/) for a = x, y, z are all
purely imaginary if \js is real. But expectation values are measurable quantities
and therefore must be pure real; hence they must all be zero and the state has
no orbital angular momentum.

C.5 The hydrogen atom

Most of the atoms considered in this book are not hydrogen, but the
Schrodinger equation can only be solved exactly for the hydrogen atom. In
this section, some results concerning the hydrogen atom are tabulated for easy
reference.

The Schrodinger equation for a spherically symmetrical potential can be
solved by separation of variables and the eigenfunction * can be written as a
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Table C.2 Radial wave functions.

n

1

2

2

3

3

3

l

0

0

1

0

1

2

r2l+l(x)Ln+l (x>

L\(x) = -l

L\(x) = 2x-4

L\(x) = -6

L\(x) = -3.x2 + l»x - 18

L\(x) = 24* - 96

L\(x) = -120

Knl(P)

2(Z/«o)3/2e-<>/2

(1/2v/2)(Z/a0)3/2(2-p)e-"/2

(l/2v
/6)(Z/a0)

3/2pe-''/2

(l/9V3)(Z/a0)
3/2(6 - 6p + p2)e-"/2

(l/9v
/6)(Z/a0)

3/2(4 - /9)pe-"/2

(l/9V56)(Z/a0)
3/2p2e-»/2

product of radial and angular parts:

The equation for <t>(0) is

which can be readily solved to yield solutions of the form

Solutions to the radial part of the wave function can be found and are of the
form

where n is the principal quantum number,

and the associated Laguerre polynomials are given by

For atomic states the quantum numbers are in the range n > l , 0 < / < « — 1
and —/ < w/ < /. Table C.2 lists some radial wave functions for n — 1,2, 3.
Some radial wave functions R(r) for the hydrogen atom are plotted in Fig. C.2.
Also shown is the radial probability density r2R(r)2.

C.6 The g-factor

The energy of the electron in a magnetic field B is
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Fig. C.2The radial wave functions R(r) (left)
and the corresponding probability density
r2R(r)2 (right) for n = 1,2, 3 and 4.

where g is known as the g-factor. The energy levels therefore split by an
amount guBB. A natural consequence of Dirac's theory of the electron
(outside the scope of this book) is that g is precisely equal to 2. Actually the
g-factor is not quite 2 but takes the value
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where a is the fine structure constant, a dimensionless quantity given by

This theoretical value obtained from quantum electrodynamics (QED) agrees
with experiment to an astonishing degree of precision. The discrepancy from
g = 2 can be explained as follows: electromagnetic interactions are due to
the action of virtual photons. An electron can in fact emit a virtual photon,
only to later reabsorb it. If you measure the magnetic moment of the electron
during the life of one of these virtual photons, you will actually be measuring
the magnetic moment of the electron-photon pair which will include an extra
orbital component. You may also measure the system during a time in which
more than one virtual photon has been created, though this sort of process
becomes less probable as the number of virtual photons increases. On average
then, the system has a magnetic moment slightly higher than what you might
first expect, and this accounts for the non-zero value of g — 2. The expression
is a power series in a with each successive term reflecting the contributions of
progressively more convoluted creations and absorptions of virtual photons.

C.7 d orbitals

The angular parts of the d wave functions (l = 2), in the form most
often considered in condensed matter physics, can be constructed as linear
combinations of functions of the form Y2meim0 where the functions F2m are
those listed in the / = 2 row of Table C.1:

which yields the following results (with the prefactors included for normaliza-
tion)
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nucleus frame

electron frame
Fig. C.3 The intrinsic spin-orbit interaction.
In the frame of the nucleus the electron orbits
the nucleus, but an inertial frame comoving
with the electron it is the nucleus which
orbits.

There are an infinite set of Lorentz transfor-
mations corresponding to the various instan-
taneous rest frames of the electron around
its orbit. The Lorentz transformations do
not commute when the direction of velocity
changes and this is something our derivation
has ignored. The net Lorentz transformation
contains a rotation and it turns out that this
Thomas precession yields a factor of pre-
cisely one-half.

L.H.Thomas (1903-1992)

These orbitals, together with the s and p orbitals, are shown in Fig. 3.1.

C.8 The spin-orbit interaction

The spin-orbit interaction in an atom arises as follows. Consider an electron
orbiting an atom. This is depicted at the top of Fig. C.3 in the nucleus rest
frame. In the lower diagram, the atom is shown in an inertial frame comoving
with the electron in which the nucleus appears to be orbiting the electron. The
orbiting nucleus constitutes a current which gives rise to a magnetic field at the
origin equal to

where

is the electric field at the electron due to the nucleus and V(r) is the
corresponding potential energy. Equation C.53 comes from the transformation
of electric and magnetic fields in special relativity. This magnetic field interacts
with the spin of the electron to give a term in the Hamiltonian

where the orbital angular momentum is given by AL = mer x v and the
magnetic moment m = (geh/2m)S, and where the factor of 5 in eqn C.55
is the relativistic Thomas factor. This result can be obtained extremely
elegantly with the relativistic correction automatically included using the Dirac
equation.2 This effect is known as the intrinsic spin-orbit interaction and is an
interaction between the spin and the orbital part of an electron's wave function
in an atom. For the Coulomb field in a hydrogen-like atom

and for electronic states with quantum numbers l and n one has

so that the spin-orbit splitting is given by

C.9 Lande g-factor

The Lande g-factor gj is given by
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The expression for gj in eqn C.60 is obtained by starting with an expression
for the magnetic moment operator:

In this expression gL = 1 and gs = 2 are the g-factors for orbital and spin
angular momentum respectively. Now S and L may not be good quantum
numbers in many atoms, but J is. Therefore the component of the magnetic
moment which is parallel to J will be a conserved quantity but the component
perpendicular to J will not be. We therefore write

where gj is a constant to be determined. Thus eqn C.62 implies that gj is the
projection of L + 2S on to J. Multiplying both sides of eqn C.61 by J yields

Multiplying both sides of eqn C.62 by J yields3

Also, L2 = (J - S)2 = J2 4- S2 - 2S • J so that

and S2 = (J - L)2 = J2 + L2 - 2L J so that

Equating eqns C.63 and C.64, and inserting the results from eqns C.65 and
C.66 yields

which reduces to eqn C.60 if gi = 1 and gs = 2.

C.10 Perturbation theory

Consider a Hamiltonian Tio which has known eigenfunctions |0,-> with known
eigenvalues Ei, so that

The eigenfunctions |0;) are all orthogonal so that

In this, and subsequent steps, we use the fact
that the eigenvalue of S2 is S(S + 1), of L2 is
L(L + l) and of J2 is J(J + 1).
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From now on, we shall assume the non-
degenerate case, i.e. we will assume that none
of the states are degenerate.

where dr is a volume element. Now suppose that a perturbation V is added to
Wo so that the new Hamiltonian is H where

The system starts in a state |</»,t) with energy Ek before the addition of
the perturbation. The new eigenfunction of the system will be |^> and the
eigenvalue E where

but both \\/f) and E are unknown so far. |YO can be expanded in terms of the
old eigenfunctions so that

Inserting this into eqn C.71, premultiplying by (4>i\ and integrating over the
appropriate volume gives

so that using the orthogonality of the original eigenfunctions (eqn C.69) yields

which is known as the secular equation, where

is the matrix element of the perturbation.
If the perturbation is small, |t/r > will be very close to the starting state |</>jt)

so that ak « 1 and |a,-1 <5C 1 for i / k. Since the wave function has changed
only marginally, one might imagine that the new energy is given by

in other words that it remains completely unchanged. We can improve on this
zeroth order approximation by using the results a^ «» 1 and a,- <C 1 for
i ^ k. Substituting these into the secular equation can give some approximate
expressions for the energy and for «,•. For i = k, the sum in the secular equation
is dominated by the term for which j = k giving

the shift of the energy of the state is given simply by Vkk- This result, which
contains the 'first-order perturbation theory' correction to the energy, is used
very often in the text. The secular equation can also be evaluated for the case
1 ^ k, yielding
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(where E has been replaced by Ek). Putting eqn C.78 back into eqn C.74 yields
the next level of approximation for the energy, namely

which is the 'second-order perturbation theory' result. This process can be
continued and will generate a power series expression for £, with each
successive term in the series containing a higher power of the matrix elements
of the perturbation.

Further reading
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• P. A. M. Dirac, The principles of quantum mechanics, 4th
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• B. H. Bransden and C. J. Joachain, Physics of atoms and
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• P. W. Atkins, Molecular quantum mechanics, OUP 1983.

• G. K. Woodgate, Elementary atomic structure, OUP
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D.1 Energy

Calculating the energy of a magnetized medium in a magnetic field is a
surprisingly subtle business. Various expressions can be obtained but they can
refer to different things. In magnetism it depends on whether one is talking
about the energy of the magnetic moment alone, or the magnetic moment plus
whatever it is that is providing the magnetic field, and exactly how this energy
is partitioned up.

For example, if you place a screwdriver close to the pole pieces of a large
magnet, the screwdriver is strongly attracted into the region of maximum field.
Replacing a bit of the air in the gap between the pole pieces with the mag-
netized screwdriver therefore seems to be an energetically favourable thing,
suggesting that the presence of the magnetizable medium (the screwdriver)
is lowering the energy. However, it takes more energy to establish a current
in a magnet which contains an iron core than in one without an iron core,
suggesting that the presence of the magnetizable medium (in this case the iron
core) is increasing the energy. So does the energy decrease or increase? It
depends on which energy you are considering. In the first example we are
only measuring the energy saved by the force we feel on our arm holding
the screwdriver, and we are ignoring the extra work needed to be done by
the magnet power supply in maintaining the current at the level it had before
we started waving the screwdriver around. This emphasizes that great care
is needed in treating the energetics of magnetic materials (for a detailed
treatment, see the article by Heine in the further reading).

In Appendix B, we found that SW — — u.<$B is the appropriate free energy to
consider for magnetized media. This expression will be useful in formulating
magnetism in statistical mechanics (see Appendix E). In this appendix, we
concentrate on the way in which the presence of a ferromagnetic material
can change both H and B because of the introduction of demagnetizing fields
which themselves cost energy.

D.2 Demagnetizing factors

When the magnetization M inside a ferromagnetic body meets the surface, it
has to suddenly stop. Hence there is a divergence of M. Using the equation
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Fig. D.1 Demagnetization in an inf in i te Hat plate. viewed in cross-section, (a) If the magnetization
lies in the plane of the plate, no magnetic poles are created on the surface of the plate (except
for tiny ones at the ends), (b) If the magnetization is perpendicular to the plane of the plate, as
shown, there is a negative (positive) divergence of M on the lop (bottom) surface which produces
a positive (negative) divergence of H, This results in positive (negative) magnetic poles on the lop
(bottom) surface as shown, (e) This results in a demagnetization field which runs from positive
magnetic poles to negative magnetic poles.

(which follows from V • B = 0, sec appendix B) we find that there is an equal
and opposite divergence of H. The situation is as if magnetic monopoles have
been left on the surface of the ferromagnet, and these monopoles act as sources
of H. The resulting H field is known as a demagnetizing Field. This situation is
illustrated for a simple case in Figure D. 1 which describes the magnetization in
an infinite fiat plate or thin film of ferromagnetic material, if the magnetization
lies in the plane of the plate, the only divergence of M is at the ends which,
we suppose, are an infinite distance away. Therefore there is no demagnetizing
field. If the magnetization is perpendicular to the plane of the plate, magnetic
poles are created on top and bottom surfaces and give rise to a demagnetizing
field Hd = -M inside the plate.

The demagnetizing field can be an extremely complicated function of
position for a ferromagnet of arbitrary shape. However, it takes a relatively
simple form in the case of an ellipsoidal ferromagnet. In this case it is uniform
inside the ferromagnet with a value of Hd equal to

Example D.1

We now examine some special cases.

where N is the demagnetizing tensor. Thus in general we can write

If M is along one of the principal axes of the ellipse, Nij can be diagonalized
so that

The demagnetizing tensor satisfies
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(2) For a very long cylindrical rod parallel to z, Nx = Ny = \, Nz = 0. This
is because if the magnetization lies exactly along the rod, the magnetic
poles created will be at either end of the rod which can be assumed to be
too far away to matter.

(3) For a flat plate perpendicular to z, Nx = Ny = 0, Nz = 1. This is the
case considered above.

(1) For a sphere, Nx = Ny = Nz = 5, so that

D.3 A ferromagnet of arbitrary shape

In this section we will show how to compute the energy due to the demagne-
tizing energy for a ferromagnet of arbitrary shape in an applied magnetic field.
For this problem, the magnetic fields H(r) and B(r) can be broken up into two
components:

where the applied field is Ha(r) = Ba(r)/U0 and the demagnetizing field is
Hd(r) and we write Bd(r) as a sum of the flux density due to the demagnetizing
field u0Hd(r) and u0M(r) inside the material, i.e. Ba(r) = /u,o(Hd(r)+M(r)).
The demagnetizing field arises from the magnetic poles which are produced on
the surface of the magnetic body wherever V • M(r) ^ 0.

We now state an important result. The demagnetizing fields Bd(r) and Hd(r)
satisfy

The proof is as follows: since V x Hd = 0, the demagnetizing field Hd can be
written in terms of the gradient of a scalar function o (e.g. Hd = — Vo). Now

where the last equality follows from V • Bd = 0. Then

where the surface integral is taken over a sphere whose radius R tends to
infinity. The integral is zero if the ferromagnetic body is of finite extent, so
that as R -> oo, Bd ~ R~2 and o ~ R-l at worst.

If the applied field is not present, then the energy E of the demagnetizing
field is simply the integral over all space of the energy density ^oH^. This
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can be converted to an integral inside the volume V of the ferromagnetic body
by using eqn D.9, so that the energy can be expressed as

where the last l ine follows from the fact that M = 0 outside the body. It should
be noted that even though this final integral is only over the body, it expresses
the energy of all stray fields, including those outside the body.

If there is an applied field, then the energy of the ferromagnetic body may be
written as the difference between the energy density in the total field j/j-oH2

and the energy density in the applied field ^/ioH^, This removes the infini te
energy contribution from a uniform applied field integrated over all space. Thus
the energy can be usefully written as

The factor of one-half in the demagnetizing
term can be understood in terms of an avoid-
ance of double-counting. The Zeeman term
is the interaction of the magnetization with
the applied field. The demagnetizing term is
a self-energy so the moments which cause the
field interact with their own field. The fatlor
of one-half ensures that you don't count th i s
energy twice.

Using the fact that V x Ha — 0, we have

Hence, by also using the following equations:

and by also using eqn D.9. the energy E can be written in the familiar form

the sum of a Zeeman term and a demagnetizing term, with each integral
being taken only over the volume V of the ferromagnetic body. The energy
in eqn D. 17 nevertheless implicitly includes the energy associated with the
demagnetizing fields outside the body.

Example D.2

A ferromagnetic sphere of radius a with uniform magnetization M is used
here as a detailed example of the ideas leading to eqn D. 12. It is sketched in
Fie. D.2. The demagnetizing fields are given by

Fig. D.2 A Ferromagnetic sphere with uni-
form magnetization M. The region inside the
sphere of volume V^ ,̂.,, — ^ j t a* is detuned
V, the region outside the sphere is denoted V.
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in agreement with eqn D.12. By combining eqns D.22 and D.24 one has

Further reading

• V. Heine, Proc. Camb. Phil. Soc. 52, 546 (1956) contains
a profound treatment of the thermodynamics of bodies in
electromagnetic fields.

• Treatments are also found in C. J. Adkins, Equilibrium
thermodynamics, CUP 1983, and J. R. Waldram, The
theory of thermodynamics, CUP 1985.

• Magnetostatic energy and demagnetizing factors are cov-

so that inside the sphere (a space of volume VSphere = j^ra3, denoted by V)
simple integration yields the following results:

Outside the sphere (a space denoted by V), B<j = MoHa (since M = 0 outside
the sphere), and the demagnetizing fields result from the magnetic dipole
moment of the sphere. These have radial and polar components given by

so that integration over this region outside the sphere gives:

Then integration over all space gives

in agreement with eqn D.9.

ered in depth in A. Aharoni, Introduction to the theory of
ferromagnetism, OUP 1996.

• I. Brevik, J. Phys.: Condensed Matter 7, 8065 (1995)
contains a helpful analysis of the problem of calculating
the energy of a ferromagnetic body immersed in a ferro-
magnetic liquid.



Statistical mechanics

This appendix briefly sketches some results in statistical mechanics which will
be useful in the main text.

E.1 The partition function and thermodynamic
functions

The probability pi of occupying a state i with energy Ei at temperature T is

where Z is the single-particle partition function which is used to normalize the
probability such that

This implies that Z is given by

Defining B = l/k#T, dZ/df) can be evaluated, giving

Now since we have found the probability distribution, we can use it to calculate
expected values of quantities. The expected value of the energy (E) is given
by

The entropy per particle is given by

and hence

E.1 The partition function
and thermodynamic
functions 220

E.2 The equipartition
theorem 221
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In eqn E.8 we have used the result from
Appendix B that the available free energy is
-u . 58.

For N independent distinguishable particles, the appropriate partition function
becomes ZN and so the total energy is £ = N ( E ) . The first law of
thermodynamics can be expressed as

The Helmholtz free energy F, also known as the Helmholtz function, is defined
by

and is related to the partition function Z by

Using eqns E.8 and E.9, dF can be written

and so

The entropy is given by

E.2 The equipartition theorem

Very often the energy of a system can be written as a sum of quadratic terms.
For example, a mass m on a spring of spring constant K has an energy £ =
jwv2 + 5 Kx2, which contains two such quadratic terms. At low temperatures,
where quantum effects dominate, we expect harmonic oscillator solutions and
a ladder of energy levels. But at high temperatures, where kB T is much larger
than the energy scale set by the spacing between the levels, the system can be
considered classically.

The equipartition theorem states that in the classical limit, when kBT is
much larger than the energy spacing between quantum levels, and the energy
contains a number of independent quadratic terms, the expected value of the
energy is equal to 1/2kBT multiplied by the number of independent quadratic
terms in the energy.

The proof is straightforward: if E ( x 1 , x 2 , . . . xn) = Y^=i atxj where ai are
constants, then

This looks formidable but the integrals for each variable can be easily
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separated. Hence

where use has been made of the standard integrals

Example E.1

Three examples of this result now follow:

(1) For a mass m on a spring of spring constant K, E = ^mv2 + \Kx2,
(two quadratic terms), so that (E) = kBT.

(2) For a molecule of mass m in a gas, E = ^mv2 + ^mv2 + \mv2, (three
quadratic terms), so that (E) = \k^T.

(3) For a solid containing N atoms (and therefore 3N springs, and hence the
energy contains 6N quadratic terms), (E) = 3Nk^T.

In addition to adding 1\2kBT to the energy, each quadratic degree of freedom
adds 1\2kB to the heat capacity.

Further reading

• F. Reif, Fundamentals of statistical and thermal physics,
Mc-Graw-Hill, 1965.

• J. R. Waldram, The theory of thermodynamics, CUP
1985.

• P. M. Chaikin and T. C. Lubensky, Principles of con-
densed matter physics, CUP 1995.

• A. M. Glazer and J. S. Wark, Statistical mechanics, OUP
2001.



Answers and hints to
selected problems

(1.1) 9.27x 1024 Am2; 8.40 GHz; 34.7 ueV; 8.40 GHz. Here we are
only considering spin angular momentum.

(1.4) This is the commutator of a scalar operator (S • X) and a vector
operator (S). Work out one component of this, and so evaluate

and the result follows.

(1.5) Using eqn 1.59 one can show that

so that the z-component of the spin is raised or lowered.
Equations 1.58 and 1.61 can be written as

so that adding or subtracting leads to

Hence

and

and the required normalization is therefore proved.

(1.6) Without loss of generality, put B = (0, 0, B) so that B x r =
B(-y, -x, 0) and 1/2v x (B x r) = (0, 0, B). Other choices are
possible, e.g. A = -By(l,0, 0) or A = Bx(0, 1,0). In fact,
A = B((a — l)y, ax, 0) will work where a is a real number.

(1.7) Hint: evaluate [a • (p + eA)]2/2me.

(1.8) Without loss of generality, the new axis can be at an angle 0 to
the z axis in the xz plane. Thus the operator is

The eigenvector of this operator with eigenvalue 1 is found to be

so that the required probability is

so that

(1.14) (a)Torque= 10 = -pE sine 0 so that 0+pE sin 0/I = 0 which
leads to simple harmonic motion when 0 < 1 with w2 = pE /I.

(b) The Hamiltonian is H = L2/2I - pE cos0. In this
calculation, several commutators need to be evaluated. You
should find that

and the results follow. The electric dipole is different because,
unlike the magnetic moment, it is not associated with angular
momentum. (An electric dipole is just two, opposite charges,
which are spatially separated. A magnetic dipole is two, opposite
charges, which are orbiting each other and so is associated
with angular momentum.) Note that the Hamiltonian contains
no dissipation, so the electric dipole oscillates forever, and the
magnetic dipole processes forever. Both dipoles will only line up
with the external field if we allow them to change their energy,
by exchanging energy with a heat bath. This is a dissipative
process.
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(2.1) -1.65 x 10-15; 7.8 x 10-12

(2.2) A duck is mainly water and has a mass of 2-3 kg. An iron filing
might be 0.1 mm3=10-10 m3 (as a guess) and each iron atom
carries 2.2 uB. The density of iron is 7873 kg m-3 and the
relative atomic mass is 55.847 g. This can be used to show that
the required field is 1 mT (the Earth's field is about 0.05 mT). A
cow might be 400 kg, and assuming that it too is made of water
means that with about 200 times more mass, and hence more
volume, a much smaller field (~ 2 uT) is needed to produce
the same level of magnetization. Of course we have ignored the
effect of haemoglobin.

(2.3) 2.74xl0 - 5 JT-1

(2.4) Hint: use Z = 2cosh (u B B/k B T) and F = -nkBT log Z. Then
E = -n(dlogZ/dB) and C = dE/dT . The entropy can be
obtained either using S = - ( d F / d T ) B or S = (E-F)/T.

(2.5) Hint: a useful intermediate result to prove is that

(2.7) (a) 5I8 (b) 4I15/2 (c) 3H6 (d) 1S0

(2.8) Hints: (1) You will need to evaluate a term containing p.A+A.p.
This is proportional to

where the final equality works because u does not depend on
position, so commutes with r and p, and you can commute r
and p because they appear in a scalar triple product so you are
never multiplying the same component of r and p.
(2) V2(1/r) = V • V(1/r) = 4ns(r). An analogous result is
(S • V)V(1/r) = S4n/3S(r), where the factor of 3 is due to the
fact that S picks out one of out of the three components of the
singularity.

(2.9) 1.89xl0-4 emu mol -1; 9.68 x 10-7 emu g-1

(2.10) At fixed T,

but using M = n k B T ( d log Z/dB), the result follows.

(3.1) Sc2+ has one 3d electron (I = 2, s = 1/2) and has 5 orbital
states characterized by lz = -2, -1,0, 1,2. The energy levels
are thus given by 0, A, 4A (degeneracies 2,4 and 4 respectively,
including spin) with the ground state being twofold degenerate
(E = 0) if A > 0, or fourfold degenerate (E = 4A) if A < 0.
Let us write states using the notation |lz,sz). If A > 0, the
ground state levels are |0, 1/2) and |0, — 1/2) and are not split by
the spin-orbit interaction (because ylzsz = 0). The levels are
split by a magnetic field in any direction, and lead to a Curie-
like susceptibility providing uBB < kBT < A. This condition
ensures that you do not populate excited states (kB T < A) and
you keep on the linear part of the Brillouin function (uBB «
k B T ) .
If A < 0, the ground state levels are |2, 1/2), |2, -1/2) |-2, 1/2) and
| — 2, — 1/2) and the spin-orbit interaction acts so that |2, — 1/2) and
| — 2, 1/2) are lowered in energy by y while |2, 1) and | — 2, — 1)
are raised in energy by y. The lower levels will only now be
split by a magnetic field parallel to z and so the susceptibility
will be Curie-like if uB B<k B T« y . The susceptibility will
be temperature independent if the field is applied perpendicular
to z.

(3.2) Use

(3.3) Converting V into spherical polars produces

For the matrix elements, all off-diagonal terms vanish except
V 2 , -2 and V_2,2- The evaluation of the non-zero matrix ele-
ments are straightforward but tedious. Here is one example:

The eigenvalues and eigenvectors are

Eigenvalue Eigenvector

where

Hence in the limit of low field, the eigenvalues and eigenvectors
are

Eigenvalue Eigenvector

and so if kBT < A, then you only populate the lowest levels
which are a triplet if A > 0 or a doublet if A < 0. Considering
these lowest levels only, the partition function can be written

and the results follow using F = — N k B T log Z and M =
-dF/dB.
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(3.4) I = 3, A = 2 x 10-6 eV. Not much can be said about the
nuclear moment. Line broadening due to phonons is large at high
temperature. Low temperatures are often needed to resolve fine
structure.

(3.5) Measure gJ J = 7 (for Gd3+), 5 (for Fe3+) and 3 (for Cr3+).
This agrees with the predictions of Hund's rules for all of them
except Cr3+ for which one would expect J = 3 and gj = 2.
This is because orbital quenching occurs and means that gj =. 2.
(Orbital quenching also occurs for Fe + but you do not notice
because L = 0 is predicted from Hund's rules anyway.)

(3.6) The fields for 60 MHz are

(3.7) 0.322 T

(3.8) First derive matrix representations for Sz and Sx for an S = 1
particle:

Hence, the Hamiltonian is

and the eigenvalues can be found to give the required result.
When 8 = 0 the eigenvalues simplify to

When 9 = n/2 the eigenvalues simplify to

(3.9) 82.4 ms-1; 7.7xl0 - 1 9 ms - 1 ; 9.4xl014 Hz; 9.1xl0 - 9 Hz;
2.3 xl07 Hz; 0.1 ueV; 7.7xl0 -4 cm - 1 .

(3.10) If the lowest frequency you can easily measure has a period of
20 us, it has a frequency of 50 kHz, corresponding to a field of
about 4 x 10-4 T. The fraction of muons living for 20 us or
longer is e-20/2.2 = 1.1 x 10-4 corresponding to just over 103

of the 107 muons implanted.

This result follows from the exponential decay of muons with
mean lifetime Tu. The fraction living longer than T is given by

If the pulse-width is 50 ns, destructive interference can occur
if the spin-precession period is 100 ns, corresponding to a
frequency of 10 MHz, giving an upper limit on the field of
~0.07 T.

If B = 0.4 T, f = 54.2 MHz.

(3.11) For Fe3+, J = 5 and gJ = 2. The saturation moment is

g j J u B = 5uB. Susceptibility measures u2 = g^J(J + 1)MB

and hence

The saturation moment involves Jz because it is a measurement
of the moment saturated along a particular direction. In contrast,
susceptibility involves J2.

(4.1) There are several ways to derive this result. One way is to start
with the vector potential from dipole 1 which is

and this produces a magnetic field

and gives rise to an energy

It is also possible to derive the result by using the magnetic
scalar potential 01 = u1 . r/4nr3 and then B\ = -u0V01.

(4.2) 1 A: (a) 1.855 T (b) 1.855 mT; 10 A: (a) 0.927 T (b) 0.927 mT.

(4.3) The lattice constant in Fe (which is bcc) is a =2.87 A. The
nearest neighbour distance is therefore a/2 and so the dipole-
dipole energy is ~ (u0 x (2.2/uB) /47nr3) = 30 /ueV. J =
kB TC ~0.09 eV, which is about 3000 times larger.

(4.4) The bandwidth~ 0.05 eV and the Coulomb energy ~ 1 eV.

Hence if |J| = kBTN, then TN = 29 K.

(4.5) The partition function is

This can be used to derive F and hence M given by

and the result for x < 1 then follows. Note that at high
temperatures T > A/kB , x —> nu0 g2uB/2kBT which is
a Curie law. It corresponds to all levels occupied, so that the
susceptibility is | of an S = 1 system (for which S(S + 1) = 2)
and 1 of an S = 1 system (for which S(S + 1) = 0) so is 3 of
a classical Curie law.
At low temperatures, T < A/kB, then if A > 0 one has
X a e-^/k BT —> 0 (non-magnetic because only the singlet
is occupied), but if A < 0 one has x- > 2nu 0 g 2 u B / 3 k B T
(corresponding to the occupied triplet, S(S + 1) = 2, and so
twice a classical Curie law).

(4.6) Hint: First show that

and using r = r(sin0 cos o, sin0 s in0 , cos 0), show that

The results then follow fairly quickly.
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(4.8) Note that if S = S1 + S2 + S3 then

Hence the Hamiltonian can be rewritten in terms of S2, S2, S?,
and S j giving E =J(6—S(S+1)). Hence for the possible values
of S the required energies are obtained.

(5.1) Bmf = 2.1 x l03 T. The number of atoms per unit volume in
Fe are n = 8.49 x 1028 m - 3 , and using M = n • 2.2/iB then
uo M = 2.2 T. Hence Bmf is 103 times bigger than no M.

(5.2) The magnetization is given by

where a and B are constants and

where y is a positive constant given by Tc/a. Near Tc, these
equations lead to

and this leads to the required result using the values of a and B
that can be obtained from eqn 5.38.
The energy is given by E = — 1/2YM2 and using eqn F.42 one
can show that at TC

and hence the result for the specific heat can be found.
In general one can now easily show that

(5.4) The energy is given by

and energy minimization SE/dd = 0 implies that either sin 0 =
0 (and hence & = 0 or n) or cos 0 = —J1/4j2. These solutions
are ferromagnetic (9 = 0), antiferromagnetic (0 = jr) and
helimagnetic (cos 9 = — Jj/4J2) and substitution back into the
equation for the energy reproduces eqn 5.45. The helimagnetic
solution is only possible if |j1 | < 4|J2|.
Which solution gives the lowest energy can be evaluated by
comparing the energies of each solution. Alternatively one can
look at the stability of each solution by evaluating 32£/902.

(5.5) When Y >> l,

This can be used together with

and also with the fact that near Tc one has

to derive the final result.

(5.6) Recall the mean-field theory for a ferromagnet. In that case the
magnetization is given by

where C is the Curie constant. This rearranges to

and so the susceptibility is

where the Weiss temperature is 0 = k C / u 0 .

For this ferrimagnet, the magnetization in each sublattice is

which becomes

The determinant of the matrix in this equation is therefore zero if
T2 — y 2 C 1 C2/u0 = 0 and hence one can deduce that the para-
magnetic regime is when T > 8 where d = A(C1C2)1 / 2 /Lio-
The susceptibility is given by x = (M1 + M2)H which can be
found by inverting eqn F.54 to give

and hence the final answer.

(5.7) The first part follows straightforwardly from an application of
S± = Sx±iSy.

For the Heisenberg ferromagnet, the term SfSz. operating on the

ground state produces S2 and the ground state is an eigenstate of

SfSz.. There are N such terms and hence E = —NS2. The terms

S+S- and S-s+ produce nothing because in each case the
raising operator annihilates the ground state. Thus the ground

state is an eigenstate of both Sj4 S7 and Srst with eigenvalue
zero.
For the Heisenberg antiferromagnet the two terms S?~S~j" and

S~ Sj produce states other than the 'obvious' ground state.
Therefore this 'obvious' ground state is not an eigenstate of the
system.

(5.8) The range of possible momentum transfer is 0 nm-1 to V^in =
2</2~7r/A = 29.6 nm-1.
(a) At 100 K, just get the chemical Bragg reflections at

The symmetry is bcc, so reflections are seen when h + k + / is
even.
(b) At 10 K, also see the magnetic Bragg reflections.
The observed reflections for both cases are listed below. The
magnitude of the scattering vector Q are listed, together with
29, the angle through which the incident beam is scattered.
The magnetic reflections are indicated by an asterisk and the
multiplicity, M, of each reflection is given in the final column.
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h

0
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1
0

1
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1

2
1
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0
0

0

1

1
1

0
0

1

0
0

Q
(nm-1)

12.566
12.566

17.772

20.944

24.425
24.425

25.133
25.133

27.468

28.099
28.099

28
(°)

34.915 *
34.915 *

50.208

60.000 *

71.337
71.337

73.740
73.740

81.952 *

84.261 *
84.261 *

M

4

4

2

8

4

8

8

(5.9) (a) The first expression for m follows from the definition of
tanh y. This can be rearranged to give

and taking the log of this equation gives eqn 5.57. Using
eqn F.48 leads to eqn 5.58.
(b) Rearranging eqn 5.60 to make x the subject leads to

which is a quadratic. This has real solutions if 4 — 3m2 > 0
and are simply found to be eqn 5.62. Now 1 < 4 — 3m2 < 2
if 0 < m < 1, so for x > 0 we need the positive solution in
eqn 5.62. This then yields

and in this case one finds y = 3mT^/2T and the final result
follows.

(6.1) The average energy is found to be

and the heat capacity per spin is then

This behaves like J /4ki$T at high temperature, and as
J2e~J/*B7'/4fcBr2 at low temperature. It is thus zero at both
T = 0 and T = oo and exhibits a broad maximum in between.
There is thus no cusp and this reinforces the point that there are
no phase transitions in purely one-dimensional models.

(6.3) At small q one can use cos qa ~ 1 — (qa)2/2 and obtain

In the Ising case (/o = 0), one has hia = 2dSKg = A where
d = 1, 2, 4 for cases (i), (ii) and (iii) respectively. In this model,
spin waves 'cost' the same energy A regardless of wave vector.
The number of spin waves is then proportional to e~A' B , and
so their energy is proportional to Ae~A^Br. The specific heat
is then easily found to be proportional to

in agreement with Exercise 6.1 with A in this problem being
equal to J in that problem.

In the Heisenberg case (A^o = 0), ha> = Dq2 where the spin-
stiffness D = SJrja2. The number of spin waves Ns is given
by

and at small q

The integral therefore diverges in one or two dimensions (where
dnq is equal to dq or 2nq dq respectively), but converges
for three dimensions (where d"q is equal to 4nq dq). No
long range order is therefore possible for the pure (isotropic)
Heisenberg model in one or two dimensions.

(6.4) In the antiferromagnetic case, one can follow the derivation
for the ferromagnetic case, but you have to remember which
sublattice you are on. One finds that

Hence substituting in

one finds that

and hence

so that hia = 4JS sin qa.

(6.5) Using 3F/3M = 0, some rearrangement quickly yields

which is of the required form. Plotting M against M/H gives
a straight-line, with the intercept on the M/2 axis changing sign
at T = Tc.
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(6.6) The model in appropriate units is

For & = 0, energy minimization gives

for which the solutions are 0 = 0, n, cos-1 (-h). Evaluation of
d2 E / d 0 2 can be used to examine the stability of these solutions.

For 9 = n/2 , energy minimization gives

for which the solutions are 0 = 0, n, cos -1 (h).

(6.7) The components of magnetization are

and using results such as

one can evaluate all the partial differential of Mx and My. Hence

from which the final result follows.

(6.8) 25Gbits in-2 is 3.9xl013 bits m-2 in sensible units.

(a) Taking na2 to be the area of a hydrogen atom gives
3.4 x 10-7 bits (hydrogen atom area) -1 .

(b) Most Shakespearian plays are 20000-40000 words long;
with maybe an average 5 letters per word, and about 40 plays,
one gets about 4 Mbytes or 32 Mbits (8 bits per byte). Taking
a UK stamp, I calculated about 600 copies of the complete
works per stamp, although that could be easily doubled with
data-compression. "I am ill at all these numbers" (Hamlet Act
2 Scene 2)
DNA stores 1 bit per base pair, which is about 1 bit per cubic
nanometre. If you made a sheet of this, this would be equivalent
to about 6x105 Gbits in-2 , but the great advantage of DNA is
that it can coil and is a volume storage technique.

(6.9) The best way to tackle this is to put the magnetic field parallel
to -z which you can do without loss of generality. (Why — z?
So that the ground state has all it spins aligned parallel to z.
Electrons have negative charge and so their spins are antiparallel
to their magnetic moments and will therefore align antiparallel
to the applied field.) You should find that each magnon adds an
energy + g u B B .

(6.11) The equation

can be simplified using ( j | i ) = Si j . The result then follows.

Hint for the next part: S+ kills the state it is operating on unless
the spin it is operating on is < S.

The exercise shows that each spin has a small transverse com-
ponent which is perpendicular to the direction of magnetization.
The transverse components vary in space in just the manner
depicted in Fig. 6.13.

(6.12) It is necessary to solve

The first part of this integral can be evaluated by parts, yielding

The question carefully guides the reader through the rest.

(6.13) The wall energy per unit volume due to the length of walls
in the structure and is therefore approximately aWL/D. The
spins inside the small triangles cost an anisotropy energy. The
area of one of these triangles is D2/4 and there are two of
them in every horizontal length D, so their total cost is 2 x
K x (D2/4) x (1/D) = KD/2. Summing these terms and
differentiating yields the required result. D = 20 um.

(7.1) Using g(Ef) = 3n/2EF.the first result follows quite quickly.

To consider the temperature dependence, it is worthwhile to re-
view some mathematical details concerning the Fermi function.
Consider h(E) = f0 g(E')dE', so that g ( E ) = dh/dE and
consider the integral

Now put x = (E - u ) / k B T and hence

Writing

we have that

The integral part of this can be simplified by replacing the lower
limit by —o. It vanishes for odd s, but for even s

where ( ( s ) is the Riemann zeta function, (f (0) = - 1, f (2) =

1^4>=W>-
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Thus the integral is

This implies that the number density is

Now to first order

so for a constant number of electrons, n takes the same value at
all temperatures and so

The role of a magnetic field is then to shift the energy levels by
+uBB. The number density for each spin state is given by

and using the approximate relations

and

one then has

Hence the susceptibility is

For g(E) a E1/2 it is simple to show that

evaluated at the Fermi energy. The final result then follows.
For a metal with EF ~ 10 eV (e.g. Sn), TF ~ 105 K, the
correction is about 10 - 5 .

(7.2) (a) This is shown in the derivation of eqn 7.23.

(b) The crossover temperature is 2TF/3 =27 K. The Pauli
paramagnetic susceptibility is then 1.3 x 10 . The Landau
diamagnetic susceptibility is then

(7.3) Using A0, = 1 Br, the Schrodinger equation becomes

One can then look for solutions of the form

and this leads to

The solutions are

0
where L a ( x ) is an associated Laguerre polynomial (Ap-
pendix C.5), and the energy is

In this so-called symmetric gauge, all states circulate about the
same point in space, so that rotational symmetry is captured at
the expense of translational symmetry.

(7.5) Hints:

and hence one can show

Also, log(-l) = in, so that

(7.6) (b) It is useful to start with
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where / is an integral given by

In one-dimension

The result then follows.

In two-dimensions, the relevant integral to consider is

Now

so that the integral becomes

and the final result follows.



Symbols, constants and
useful equations

a unit cell dimension
a0 Bohr radius
A area
A hyperfine coupling constant
A continuum exchange constant
A mass number
A magnetic vector potential
b scattering length
B magnetic flux density (magnetic field)
Ba applied field
Bd demagnetizing field
Bi internal field
Bmf molecular field
BJ Brillouin function
c velocity of light in free space (2.9979 x 108m s-1)
D electric displacement
D axial anisotropy constant
dS surface element
dS entropy change
e = exp(l) = 2.718281828
e magnitude of the electron charge (1.6022 x 10 -19C)
E energy
EF Fermi energy
ES singlet energy
ET triplet energy
£ electric field
F Helmholtz free energy (Helmholtz function)
g(E) density of states in energy space
g(k) density of states in wave vector space
g g-factor
gc electron g-factor
gI nuclear g-factor
gI g-factor for orbital angular momentum
gs g-factor for spin angular momentum
g effective g-tensor
G torque
G reciprocal lattice vector
h Planck's constant (6.626 x 10-34J s)
h Planck's constant /2n (1.0546 x 10-34J s)

H magnetic field strength (magnetic field)
Ha applied field
Hd demagnetizing field
Hi internal field
H Hamiltonian

/ current
I nuclear spin quantum number
J total angular momentum quantum number
J exchange constant/integral
k wave vector
kB Boltzmann's constant (1.3807 x 1 0 - 2 3 J K - 1 )
kF Fermi wave vector
K Coulomb integral
K anisotropy constant
K Knight shift
K spring constant
Ks surface anisotropy constant
Kv volume anisotropy constant
I orbital angular momentum quantum number
/ Landau level index
me electron mass (9.109 x 10-31kg)
mI orbital magnetic quantum number
mj nuclear magnetic quantum number
mj magnetic quantum number
mn neutron mass
ms spin magnetic quantum number
M magnetization (magnetic moment per unit volume)
M± magnetization on a sublattice of an antiferromagnet
Ms saturation magnetization
n principal quantum number
n number of atoms/moments per unit volume
N demagnetizing tensor
N demagnetizing factor
N number of neutrons in an atomic nucleus
NA Avogadro's number
p dipole moment
p canonical momentum
p momentum operator
q magnon wave vector
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q helix wave vector
Q scattering vector
r position vector
f position operator
R electrical resistance
Re extraordinary Hall coefficient
R0 ordinary Hall coefficient
S entropy
s, S spin quantum number
S spin angular momentum operator
S+ raising operator
S- lowering operator
S effective spin
t time
t hopping integral
tp pulse length
T temperature
Tc critical temperature
TC Curie temperature
TN Neel temperature
Tp Peierls transition temperature
TSP spin-Peierls transition temperature
T\ spin-lattice relaxation time
T2 spin-spin relaxation time
TF Fermi temperature
U Coulomb energy
v velocity
v velocity vector
V potential or potential energy
W transition rate
Ylmt (0,0) spherical harmonic
Z partition function
Z atomic number
a fine structure constant
B = 1/kaT
y gyromagnetic ratio
ye electron gyromagnetic ratio
Yu muon gyromagnetic ratio
yN nuclear gyromagnetic ratio
A exchange splitting

e0 electric permittivity of free space (8.854 x
10-12Fm-1)

€r relative dielectric constant
9 angle
8 Weiss temperature
A wavelength
A spin-orbit constant
yel-ph electron-phonon coupling constant
yspin-ph spin-phonon coupling constant
u magnetic moment
ur relative magnetic permeability
uB Bohr magneton
uN nuclear magneton
ueff effective magnetic moment in uB per formula

unit
u0 magnetic permeability of free space (4n x

10-7Hm-1)
v frequency
f correlation length
p resistivity
PH Hall resistivity
a conductivity
cr Pauli spin matrices
T period
T superparamagnetic relaxation time
0 angle
<t magnetic flux
X magnetic susceptibility
Xg mass susceptibility
/L Landau diamagnetic susceptibility
Xm molar magnetic susceptibility
Xp Pauli spin susceptibility
Xq q-dependent susceptibility
X spin wave function
[r wave function
^s singlet wave function
^T triplet wave function
u> angular frequency
wc cyclotron frequency
WL Larmor precession frequency
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Fundamental constants

Bohr radius
Speed of light in free space
Electronic charge
Planck's constant

Boltzmann's constant
Electron rest mass
Proton rest mass
Avogadro's number
Standard molar volume
Molar gas constant

Fine structure constant

Permittivity of free space
Magnetic permeability
of free space
Bohr magneton
Nuclear magneton
Neutron magnetic moment
Proton magnetic moment

Useful equations

(2) Series expansions (valid for |x | < 1):(1) Identities:

(3) Integrals:
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Indefinite (with a > 0):

(4) Vector operators:

• grad acts on a scalar field to produce a vector
field:

div acts on a vector field to produce a scalar
field:

• curl acts on a vector field to produce another
vector field:

where ijf(r) and A(r) are any given scalar and
vector field respectively.

(5) Vector identities:

These identities can be easily proved by application
of the alternating tensor and use of the summation
convention. The alternating tensor eijk is defined
according to:

so that the vector product can be written

The summation convention is used here, so that
twice repeated indices are assumed summed. The
scalar product is then

Use can be made of the identity

where Sij is the Kronecker delta given by

The vector triple product is given by

(6) Cylindrical coordinates:

(7) Spherical polar coordinates:
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a.c. susceptibility 168
adiabatic demagnetization 38, 36-101
adjoint 13
alternating gradient magnetometer 102
alternating tensor 205, 233
ammonia 114
ammonia maser 114
amorphous magnets 168
angular momentum 2

operator 10
orbital 9, 23
quenched 49
spin, 10 23
total 23

angular momentum quantum number
206

anisotropic exchange interaction 81
anisotropic magnetoresistance 185
anisotropy 126
antibonding 76
antiferromagnetism 85, 92, 92-6
Arrott plot 137
associated Laguerre polynomials 207
associated Legendre polynomial 206
astronomy 42
asymmetry function 70
Avogadro's number 195

band ferromagnetism 145
Barkhausen effect 132
Barkhausen, H. 132
Barnett effect, 2
Barnett, S. J. 2
biquadratic exchange 79
Bitter powder technique 132
Bleaney-Bowers equation 83
Bloch T3/2 law 125
Bloch equations 58
Bloch wall 128
Bloch, F. 58
blocking temperature 171
Bohr magneton 4, 195
Bohr radius 205

Bohr, N. 4, 8
Bohr-van Leeuwen theorem 8, 20
Boltzmann, L. 8
bond-randomness 167
bonding 76
Bose factor 124
bound currents 199
boundary conditions 200
bra, 11 204
Bragg reflection 105
Bragg-Williams theory 115
Brillouin function 28, 28, 87, 90
Brillouin light scattering 187
Brillouin, L. 28
broken symmetry 111-14, 117
bucky-balls 191

C60 191
canonical momentum 7
canting of spins 81
cgs system 194
cgs units 194
chemical potential 141
chemical shifts 55
chromium 161
circular dichroism 108
closed orbits 153
closure domain 131
cluster glass 169
Cluster models 120
clusters 168
CMR 188
coercive field 132
colossal magnetoresistance 188
commutation relation 13, 202
commutator 202
compatible operators 203
compensation temperature 97
constant of the motion 203
continuous symmetry 111
convective derivative 7
cooperative freezing transition 168
cooperative Jahn-Teller transition 52

cooperative paramagnetism 167
Copenhagen interpretaion 202
correlations 115, 147
cosmic microwave background 42,:
cosmic rays 68
critical exponents 119
critical opalescence 116
critical point 113
critical region 117
critical temperature 111
crystal field 45-52, 71
crystal field theory 45
Curie constant 25, 29
Curie temperature 88
Curie Weiss law 89
Curie's law 25, 29
Curie, P. 25
cyclotron 68
cyclotron frequency 149
cyclotron orbits 8

de Gennes, P.-G. 92
de Haas, W. J., 2 153
de Haas-van Alphen 153
Debye-Scherrer cone 105
defects 118
degenerate limit 141
demagnetization energy 131
demagnetizing factor 214
demagnetizing field 5, 215
demagnetizing tensor 215
density functional theory 147
de Gennes factor 92
diamagnetic 19
diamagnetism 20, 19-22
dichroism 108
dimensionality 116
dipolar energy 131
Dirac bra and ket notation 203
Dirac, P. A. M. 203
direct exchange 76
direct exchange interaction 76
director 118
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discrete symmetry 111
dispersion relation 121
domain wall pinning 136
domain walls 127
domain-wall pinning 132
domains 127, 127-36
double exchange 80, 188
dual space 203
duck

diamagnetism of 43
dynamic Jahn-Teller effect 52
Dzyaloshinsky-Moriya interaction 81,

168

easy axis 128
effective spin 63
Einstein's summation convention 206
Einstein, A. 2
Einstein-de Haas effect 2
elastic modulus 121
elastic neutron scattering 104
electric displacement 200
electromagnetic boundary conditions

200
electromagnetic spectrum 53
electron correlations 162
electron gas

diamagnetic response 156
paramagnetic response 153-55

electron paramagnetic resonance 60,
60-65

electron spin 9
electron spin resonance 60, 60-65, 73
emu 195
ENDOR 65
energy 219
energy gap 122
energy gaps 141
energy in magnetism 214
enhanced moments 181
entropy 27, 36, 43, 88, 117, 219
equipartition theorem 121, 220
esu 195
Euler strut 111
exactly solved models 120
Exchange anisotropy 187
exchange biased 188
exchange constant 75
exchange gas 38
exchange integral 75
exchange interaction 74
exchange symmetry 14, 14, 75
exchange-correlation energy 147

excitations 117, 121-27, 157-58
extraction magnetometer 102
extraordinary Hall effect 190

Faraday effect 182
Faraday method 103
Faraday, M. 103, 182
Fermi contact energy 44
Fermi contact interaction 41
Fermi function 141
Fermi surface 142
Fermi temperature 163
Fermi wave vector 140
ferrimagnetism 97, 97-9
Ferrites 97
ferromagnet 85
ferromagnetic resonance, 187
ferromagnetism 85-92
fine structure 31, 31-2, 35
fine structure constant 209
fluctuations 115
fluorides 77
free currents 199
free electron model 140
free induction decay 59
free radicals 65
Friedel oscillations, 157
frustration 166
fullerenes 191
functional 147

g-factor l0, 16, 211
effective 64
nuclear 39

garnets 98
gauge 19
giant magnetoresistance 185
global symmetry 111
GMR 185
Goldstone modes 122
good quantum number 36, 203
Gouy method 103
Gouy, L. G. 103
graphite 21
group 111
gyromagnetic ratio 2, 4

haemoglobin 65
Haldane chain 173
Haldane gap 173
Hall effect 190

Hall voltage 190
hard axis 128
hard magnets 136
heat capacity 27, 43
heavy-fermion 179
Heisenberg model 76, 116
Heisenberg, W. 76
helimagnetism 99, 99-100, 107, 109
helium 38, 77
Helmholtz free energy 26, 37, 220
Helmholtz function 43, 220
high-spin 48
Hubbard model 162
Hubbard-U 162
Hund's rules 32, 32-5, 44, 48, 76
Hund, F. 32
hydrogen 42

molecular 77
hyperfine coupling 61
hyperfine interactions 40, 52
hyperfine structure 40
hysteresis loop 131

incipient magnetic order 169
indirect exchange interaction 77, 77
inelastic neutron scattering 126
interaction

anisotropic exchange 81
direct exchange 76
double exchange 79
Dzyaloshinsky-Moriya exchange

81
exchange 74
indirect exchange 77
magnetic dipolar 40, 74
RKKY 79
spin-orbit 210
superexchange 77

intrinsic spin-orbit interaction 210
inverse spinels 98
ionic salts 21
iron porphyrin 65
Ising character 168
Ising model 116

one-dimensional 116
two-dimensional 117

Ising, E. 116
isomer shift 67
isothermal magnetization 38
isotope 40
itinerant 140
itinerant exchange 79
itinerant ferromagnetism 145
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j-j coupling 35
Jahn-Teller effect 51, 50-2, 80, 188

cooperative 52
dynamic 52
static 51

kagome 167
Kelvin, Lord 184
Kerr effect 182
Kerr microscopy 132, 182
Kerr, J. 132, 182
ketl 1, 204
kinetic energy 76
K2NiF4 structure 176
Knight shift 145
Knight W. D. 145
Kohn anomaly, 159
Kohn W. 159
Kondo effect 161
Kondo temperature 161
KorringaJ. 145
Korringa relation 145
Korringa relaxation 145
Kosterlitz-Thouless transition 178
Kramers doublets 63
Kramers ion 63
Kramers theorem 63
Kramers, H. A. 63
Kronecker delta 233

L-S coupling 35
Landau diamagnetism 150, 152
Landau levels 149
Landau theory of ferromagnetism

115-16
Landau tubes 149
Landau, L. D. 115
Land6 g-value 29
Lande interval rule 31, 42
Lande, A. 29
Langevin function 24
Langevin, P. 24
lanthanides 33
Larmor J. 3
Larmor precession 3, 17, 70
Larmor precession frequency 3, 70
latent heat 88
Laue method 104
ligand field theory 45
linear material 5
linewidth 54
liquid 111

liquid crystal 118
local density approximation 148
local spin-density approximation 148
local symmetry 111
longitudinal Kerr effect 183
longitudinal relaxation time 56
Lorentz force 7
Lorentz H. 7
Lorentz microscopy 133
low-spin 48

magnetic Bragg peaks 107
magnetic dipolar interaction 40, 74, 126
magnetic dipole 1
magnetic field 5
magnetic field strength 5, 200
magnetic flux density 5
magnetic force microscopy 133, 182
magnetic induction 5
magnetic moment 1, 197

atomic 4, 18-19, 30-6
nuclear 38-0
operator 211

magnetic monopole 1, 198, 200
magnetic recording 136
magnetic resonance 52, 52-65
magnetic resonance imaging, 52
magnetic susceptibility 5, 19-30, 89,

93, 102
mass 19
molar 19

magnetic tunnel junctions 192
magnetic unit cell 107
magnetic vector potential 198
magnetic X-ray circular dichroism

(MXCD) 108
magnetic X-ray scattering 107
magnetite (Fe304) 81
magnetization 4, 8, 102
magnetoacoustic emission 132
magnetocrystalline anisotropy 128
magnetoelastic coupling 132
magnetometer

alternating gradient 102
microscopic 70
torque 102
vibrating sample 102

magnetoresistance 183
magnetostatic energy 131
magnetostriction 132
magnons 117, 122, 124
maser 114
mass number 39

mass susceptibility 19
matrix element 212
Maxwell, J. C. 198
Maxwells' equations 198
mean-field theory 115, 115
Mermin-Wagner-Berezinskii theorem

125
metastable phases 181
microwaves 60
mictomagnetism 169
mixed valency 79
moderator 103
molar magnetic susceptibility 19
molar volume 19
molecular field 85, 90
molecular magnets 191, 191
monopole magnetic 1
Mossbauer effect 67, 73
Mossbauer spectroscopy 65-7, 107
Mossbauer, R. L. 67
Mott insulator 162
MottN. F. 162
muon 68
muon-spin rotation 68, 68-71, 73, 107,

168
muonium 69
uSR muon-spin rotation 168
myoglobin 65

naphthalene 21
Nd2Fe14B 136
nearest neighbour Heisenberg model

116
nearly free electron model 141
Neel, L. E. F. 93
negative temperature 102
nematic 118
nesting of the Fermi surface 160
neutrino 69
neutron scattering 103-7, 126-7

elastic 104
inelastic 126

neutron spin echo 168
neutron triple-axis spectrometer 127
90° pulse 58
NMR40
non-degenerate limit 142
normal spinels 98
p-NPNN 125
p-NPNN (para-nitrophenyl nitronyl

nitroxide) 191
nuclear forces 104
nuclear magnetic moment 39, 101
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nuclear magnetic ordering 101-2
nuclear magnetic resonance 40, 52,

52-60, 73, 107, 145
nuclear magneton 39
nuclear spin quantum number 38
Neel temperature 93
Neel wall 128

octahedral environment 46
Onsager, Lars 117
open orbits 153
operator 202

angular momentum 205
orbital angular momentum 9
orbital quenching 49, 48-50
orbitals 46, 209
orbits cyclotron 8
orbits skipping 8
order parameter 93, 111, 117
ordinary Hall effect 190
organic magnet 125
organic magnets 191, 191
organic superconductors 179
oxides 77

pairing energy 48
paramagnetic 19
paramagnetism 19, 23-30

J = 1/2 25
J = 00 24
general J 28
Pauli 143

paramagnons 158
partition function 8, 25, 27, 43, 219
Pauli exclusion principle 15, 32
Pauli paramagnetism 143, 152, 163
Pauli spin matrices 10
Pauli, W. 10
Peierls distortion 160, 174
Peierls instability 160
Peierls R. 160
percolation limit 169
permanent magnetism 121
permeability of free space 5
perturbation theory 211-13

first-order 212
second-order 213

phase rigidity 121
phase transition 88, 117, 119-120
phone number compound 176
phonons 38, 117, 121
pion 69

platinum 44
polar Kerr effect 183
polarized neutron reflection 182
polarons 188
positron 69
powder diffraction 105
precession 4

Larmor 17
muon-spin 70

principal quantum number 207
proton 54

QED quantum electrodynamics 209
quadrupole splitting 67
quantum critical point 179
quantum electrodynamics 209
quantum mechanics 9
quantum number

good 36, 203
nuclear spin 38

quantum phase transition 179
quark 39
quenching of angular momentum 49

radio-frequency 54
raising and lowering operators 12
random anisotropy 168
rare earths 33, 99
re-entrant spin glass 169
relative atomic mass 19
relative permeability 5
relaxation 56
remanent magnetization 132
renormalization group 120
Riemann G. F. B. 12
Riemann sphere, 12 12, 16
rigidity 117, 121
RKKY interaction 79, 101, 157, 156-7,

168
Ruddlesden-Popper phases 189
Russell, H. N. 35
Russell-Saunders coupling 35

saturation 57
saturation magnetization 24
Saunders, F. A. 35
scanning SQUID microscopy 182
scattering length 104
Schottky anomaly 27
Schottky, W. 27
Schrodinger equation 203, 206

Schrodinger's cat 204
second-order phase transition 88
secular equation 212
selection rule 54, 61
SEMPA 182
shape anisotropy 129
shielding 55
Shubnikov L. V. 153
Shubnikov-de Haas effect 153
SI system 194
SI units 194
single ion anisotropy 64, 168
singlet 15, 75
singlets 206
site-randomness 167
skipping orbits 8, 8
SMOKE 183
soft magnets 136
solenoidal 200
spallation source 104 105
spectroscopic splitting factor 64
spherical harmonics 206
spherical model 120
spin 9

combining 13, 16
down 10, 11
up 10, 11

spin chain 172
spin-density wave 159
spin-density waves 161
spin echo technique 59
spin electronics 192
spin-flip transition 96
spin-flop transition 95
spin glass 85, 100, 100-1, 167-9

concentrated 169
re-entrant 169

spin ladder 175
spin-lattice relaxation time 56
spin-mixing 185
spin multiplicity 33
spin-orbit interaction 31, 32, 210
spin-Peierls transition 174
spin-polarization, 192
spin quantum number 10, 12
spin-spin coupling 55
spin-spin relaxation time 58
spin transistor 192
spin transition 48, 191
spin-valve, 188
spin wave dispersion 123
spin waves 122
spin-density functional theory 148
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spinel 97
spinons 173
spinor representation 11
spinors 11
spintronics 192
spontaneous magnetization 87
SQUID 102
staggered magnetization 93
state function 202
stimulated transitions 55
Stoner criterion 146, 181
StonerE. C. 146
Stoner enhancement 147
Stoner excitations 158, 164
Stoner-Wohlfarth model 134
strong-field 48
sublattice 92
superconductor 118
supercurrent 121
superexchange 77, 83
superparamagnetism 170-1
surface anisotropy 181
symmetry exchange 14
symmetry group 111
synchrotron 68

T1 56, 58, 60, 65, 101

T2 58, 59
term symbol 32
tetrahedral environment 46
Thomas factor 210
Thomas precession 210
Thomas, L. H. 210
Thomson, William 184
time-of-flight technique 104
topological phase transition 178
torque 3, 197
torque magnetometer 102
total angular momentum 23
transition metals 33
transverse Kerr effect 183
triplet 15, 75
two-current model 185

uniaxial anisotropy 129
uniaxial crystal 64
universality 120
universality classes 120

van Alphen P. M. 153
van Leeuwen, H. J. 8
van Vleck paramagnetism 30
van Vleck, J. H. 30
vibrating sample magnetometer 102

virtual photon 209
Voigt vector 183
Voigt,W. 183
von Helmholtz, H. L. F. 21

water 113
wave function 202

antisymmetric 14
symmetric 14

waveguide 60
weak ferromagnetism 81
weak-field 48
Weiss model of antiferromagnetism 92,

108
Weiss model of ferromagnetism 87,

108, 109
Weiss temperature 93
Weiss, P. 87

X-ray resonant exchange scattering
(XRES) 107

X-ray scattering 105, 107

Zeeman P. 10
Zeeman splitting 10
zero mode 167




