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Preface

This book deals primarily with the properties and uses of electromag-
netic waves and photons of visible light. Other regions of the electromag-
netic spectrum are only treated where appropriate: for example there
is coverage of optical fibre communication using near infrared radiation.
Modern quantum theory originated in the observations of the quantum
behaviour of electromagnetic radiation, and now, a century later the
quantum behaviour of light offers tantalizing possibilities for computing
and encryption. During that period a deeper understanding of electro-
magnetic radiation in terms of waves and photons has made possible the
invention of lasers, optical fibre communication, space-based telescopes,
the world wide web and digital cameras. The optoelectronics industry,
undreamt of even forty years ago, has grown to be a major employer
of scientists and engineers. Even crude measures, such as the hundred
million solid state lasers made annually, the millions of kilometres of
optical fibre installed, and the widespread availability of megapixel dig-
ital cameras and of DVDs give a sense of this industry’s economic and
cultural impact. Studies of the subtle features of quantum theory, such
as entangled states, have been facilitated by research tools dependent on
the technological advances in optoelectronics, which illustrates the tru-
ism that technology and pure science go forward hand-in-hand. Clearly
there is a necessity for a wide range of scientists and technologists to
possess an up-to-date understanding of waves and photons so that they
can make use of the theoretical, experimental and technological tools
now available. The main objective of this text is to provide that basic
understanding, which will be important if the reader is to follow future
developments in this rapidly expanding field.

The text is designed to be comprehensive and up-to-date so that stu-
dents at universities and colleges of technology should find this volume
useful throughout their degree programme. Following an introductory
chapter in which basic concepts and facts are presented, the book is
divided into three sections: the first section (Chapters 2–4) covers ray
optics, the second section (Chapters 5–11) wave optics, and the final
section (Chapters 12–18) quantum optics.

Huygen’s principle is used to derive laws of propagation at interfaces
in Chapter 2. On this basis the geometric optics of mirrors and lenses
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is treated in Chapter 3. Then the principles and design of optical in-
struments including microscopes, telescopes and cameras are outlined in
Chapter 4. Aberrations and the simpler techniques for reducing them
to tolerable levels are also described in Chapters 3 and 4.

The section on wave optics starts in Chapter 5 with the superposition
rule for electromagnetic waves and its application to interference effects
such as those seen in Young’s crucial two slit experiment and the Michel-
son interferometer. Coherence and the relation to atomic wavepackets
are both introduced in these simple examples. Diffraction effects are con-
sidered in Chapter 6. Fourier transforms, of which diffraction patterns
are an example, are treated formally in Chapter 7. This allows the con-
nection between Michelson interferograms and the source spectrum to
be exploited in extracting spectra with standard infrared Fourier trans-
form (FTIR) spectrometers. Chapter 8 pulls together themes in optical
instrument design in describing the design of optical mirror telescopes
and radio telescopes, and goes on to compare their performance. Elec-
tromagnetic wave theory rests on Maxwell’s equations and Poynting’s
theorem for the energy in electromagnetic waves. The electromagnetic
wave equation and the laws of propogation of light at interfaces (Fres-
nel’s laws) are derived directly from classical electromagnetic theory in
Chapter 9. The use of evanescent waves in optical fibres and other appli-
cations are described. Chapter 10 carries the description of polarization
forward to include circular polarization which is revealingly the polar-
ization state of individual photons. Electromagnetic interactions with
matter in semiclassical terms are discussed in Chapter 11: dispersion,
absorption and scattering are described and shown to be related. This
completes two sections devoted to the purely classical behaviour of light.

An account of the fundamental experiments that underpin the quan-
tum theory of electromagnetic radiation in Chapter 12 opens the sec-
tion on quantum optics. In Chapter 13 the dual wave–particle nature
of electromagnetic radiation and the Heisenberg uncertainty principle
are examined at length. The principles underlying laser operation, as
well as gas, solid state and semiconductor lasers, and their applications
are treated in Chapter 14. Detectors of radiation in the visible and near
infrared are described in Chapter 15: these include the CCD and CMOS
arrays used in digital cameras. Optical fibre based communication prin-
ciples, devices and systems, as well as optical fibre sensors are described
in Chapter 16. Chapter 17 introduces the semiclassical calculation of de-
cay rates and the behaviour of atoms in the resonant and near resonant
laser beams. Effects including electromagnetically induced transparency
and slow light are introduced. After this the developments leading to
the fabrication of optical clocks are described. Chapter 18 starts by
introducing the formal treatment of electromagnetic fields as quantum
mechanical operators (second quantization). This is followed by a de-
scription of the study of correlations between photons, first observed by
Hanbury Brown and Twiss. Then the theory and experimental methods
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for generating entangled photons are described; experimental studies of
two photon correlations in interferometers showing delayed choice and
quantum erasure close the chapter.

The text has been designed so that subsets of chapters are self-contained
and well suited to accompany focused optics courses, while the complete
text provides compact coverage for courses that extend through three
or four years. Chapters 1–4 cover geometric optics; Chapters 5–11 cover
classical wave optics; and Chapters 12–18 cover quantum optics, includ-
ing individual chapters on lasers and modern detectors. A suggested
reduced course could include all the chapters and sections listed here:

• Introduction and ray optics: Chapters 1 and 2;
• Lenses without abberations: Sections 3.1 to 3.6.1;
• Optical instruments: Sections 4.1 to 4.5.2, and 4.8;
• Wave optics and interferometers: Sections 5.1 to 5.7.1, and 5.8 to

5.9;
• Diffraction and gratings: Sections 6.1 to 6.9;
• Astronomical telescopes: Sections 8.1 to 8.3;
• Electromagnetic theory and Fresnel’s laws: Sections 9.1 and 9.4 to

9.6, and 9.8 to 9.8.1;
• Polarization phenomena: Sections 10.1 to 10.4, and 10.5, and

10.5.2 to 10.7.1, and 10.8 to 10.8.3;
• Light in matter: Sections 11.1 to 11.6.2;
• Quantum behaviour of light: Chapter 12; Sections 13.1 to 13.5.2,

and 13.11 to 13.13;
• Lasers and detectors: Sections 14.1 to 14.4, and 14.4.3 to 14.6;

Sections 15.1 to 15.3.1, and 15.7 to 15.9;
• Optical fibre communication: Sections 16.1 to 16.2, and 16.4 to

16.6, and 16.9 to 16.10.1, and 16.13 to 16.14.
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Introduction

1.1 Aims and contents

An understanding of the properties and manipulation of electromagnetic
radiation in the visible and near visible part of the spectrum are of great
importance in the physical sciences and related branches of engineer-
ing. It was, of course, in the study of electromagnetic phenomena that
quantum effects were first encountered, while today optical experiments
continue to reveal subtleties of the quantum behaviour of radiation. On
the practical side optical sources, devices and detectors are crucial to
both research and industry. A few examples will illustrate their value,
starting with applications in pure research: ground and space based tele-
scopes look back into the remote past of the universe; kilometre sized
interferometers are being used to search for gravitational waves; while
laser cooling enables researchers to bring ions to rest so that their tran-
sitions provide the ultimate in stable reference frequencies for optical
clocks. In the commercial field applications also abound and are of
increasing importance: the millions of kilometres of optical fibre now in-
stalled provide the modern data highway; semiconductor lasers are used
in transmitting this data over fibres, other lasers are used to weld reti-
nas while kilowatt power lasers routinely drill holes in inch-thick steel
plates. Among consumer goods DVD readers and LCD screens function
thanks to our ability to manipulate polarized light. The techniques and
interests of fundamental research and industry overlap a good deal. For
example charged coupled devices (CCDs) with several million pixels on
a single chip are the preferred detectors in astronomy and are also found
in digital cameras. A more exotic example is the interest of solitons
to both pure and applied research: these are waveforms which can be
transmitted over thousands of kilometres of optical fibre without change
of shape. Finally entangled states of photons are studied to investi-
gate questions about the logical structure of quantum mechanics, and
at the same time these states offer the possibility of a form of secure
quantum key distribution for cryptography when exchanging sensitive
information. It is to introduce students of science and engineering to
this intellectually stimulating and industrially significant subject that
the text aims.

In the later sections of this chapter some background material is pro-
vided to set the scene. This includes the following topics: a sketch
of electromagnetic wave theory; a review of the electromagnetic spec-
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trum; basic properties of optical materials; radiation terminology; and
the Doppler shift.

Thereafter the text is divided into three parts corresponding to the
natural division of optics into ray optics, wave optics and quantum op-
tics. These three parts occupy three, seven and seven chapters respec-
tively. Topics that are most naturally dealt with after the introduction of
quantum concepts include lasers, detectors and fibre optics. The empha-
sis is on visible radiation and the near infrared radiation used in optical
fibre communications, with coverage of ultraviolet radiation where this
is relevant to the main themes discussed. A brief review of the contents
of these chapters now follows.

The apertures of lens and mirror systems are usually much larger
than the wavelength of light; in such conditions it is an excellent and
productive approximation to regard light as travelling in straight lines,
rays, between and within the optical components. Huygens’ principle for
wavefront construction is made the starting point of ray optics in Chap-
ter 2, and immediately yields the laws of reflection and refraction. The
ray optics of light incident on plane and spherical mirrors and interfaces
is presented in Chapters 2 and 3 and applied to prisms and lenses. Ma-
trix methods of analyzing paraxial ray propogation are included. The
results are used in Chapter 4 to explain the principles and design of
optical instruments. The function of optical instruments can be com-
promised by the aberrations of lenses and mirrors, so these aberrations
are discussed and the corrective design techniques reviewed in Chapters
3 and 4.

The wave optics section of the text begins in Chapter 5 with the
discussion of the superposition of electromagnetic waves and resulting
interference effects. Young’s two-slit experiment, which provided the key
step in the development of wave theory, and the Michelson interferome-
ter illustrate two complementary techniques for observing interference.
It will be shown that interference effects between beams only appear
when the beams have the same wavelength, polarization and a constant
phase relationship. When beams have the same wavelength and a con-
stant phase relation they are said to be coherent, and if they are, or
are brought into the same polarization state, they will interfere. The
coherence of beams as they are emitted from a source is directly related
to the emission process. Chapters 6 contains material on diffraction,
which is basically interference involving any pattern of apertures, as for
example a broad slit or multiple slits. The emphasis in Chapter 6 is on
Fraunhofer diffraction, for which the source and detector are both far
from the aperture array. Diffraction produced by circular apertures and
by gratings are considered, the latter being the basis for spectrometers.
Both diagrammatic (phasor) and analytic techniques for handling in-
terference and diffraction are described because the flexibility gained is
useful in practice. The usual Gaussian beams of lasers are described and
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matrix methods for paraxial propagation of rays are extended to these
beams. Near field Fresnel diffraction produced by slits and circular aper-
tures/absorbers are discussed, and how Fresnel diffraction connects with
Fraunhofer diffraction.

Fraunhofer diffraction patterns are examples of Fourier transforms in
which the aperture pattern is the input and the diffraction pattern is the
output. In Chapter 7 this connection is treated formally, and the chapter
also contains a description of how the Michelson interferogram can be
Fourier analysed to give the source spectrum, which is a standard proce-
dure in Fourier transform infrared (FTIR) spectrometers. Gaussian and
Lorentzian distributions, which are the commonly met shapes of spectral
lines, are Fourier analysed, and the bandwidth theorem deduced. Opti-
cal telescopes such as the Hubble Space Telescope (HST), and telescope
arrays are described in Chapter 8. The modern techniques that have
extended the usefulness of telescopes, such as adaptive optics, aperture
synthesis and interferometry are discussed. The more exotic gravita-
tional wave detectors and gravitational imaging are treated briefly.

In Chapters 9 and 10 the classical treatment of radiation is developed
from Maxwell’s equations and Poynting’s theorem. It is then possible
to calculate the fractions of radiation reflected and transmitted at inter-
faces between media and how these fractions depend on the polarization
state of the electromagnetic radiation. It is a surprise to find also that
in total internal reflection an evanescent wave travels along the surface
of the second medium; a feature of importance for wave propogation
in optical fibres. There follows a description of interference filters and
beam splitters: these widely used devices rely on interference between
light reflected from multiple layers of dielectrics. Modes of electromag-
netic radiation and their propagation along planar waveguides and prism
couplers are the final topics covered in Chapter 9. Chapter 10 is used
to relate plane and circular polarization, and to describe effects such
as dichroism, birefringence and the optical activity of materials under
applied fields. Birefringence of uniaxial crystals is analysed using the
index ellipsoid. Techniques and materials for polarizing and manipu-
lating polarization are widely used in modern technology: wave plates,
Kerr cells, Faraday isolators, and more complex devices including opti-
cal modulators, DVD readers and liquid crystal displays are discussed
in detail.

The wave velocity in a material depends on the radiation’s wavelength
and this variation is known as dispersion. A well-known example is the
dispersion of white light into a coloured spectrum by a prism. Dispersion
in materials and the related phenomena of absorption and scattering are
discussed in Chapter 11 in terms of the underlying atomic and molecular
response to radiation. Scattering is strongly dependent on wavelength.
The behaviour for wavelengths both short and long (Rayleigh scattering
from the sky) compared to the size of scatterer are described. Absorp-
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tion and dispersion are coupled and their behaviour in dielectrics when
incident radiation induces a resonant response of electrons bound in
atoms is analysed. Drude’s model of free electrons is used to account
for the simple optical properties of metals and plasmas. The energy and
information carried by electromagnetic radiation travel with the group
velocity of the wavepackets rather than the wave velocity of the ideal but
unattainable infinite plane sinusoidal waves. This difference is strikingly
exhibited using the example of propagation of electromagnetic waves in
the ionosphere. Surface plasma waves and one of their uses in medicine
are described.

The quantum optics section of the book commences in Chapter 12
with a review of the key pieces of experimental evidence from early in
the twentieth century that show that electromagnetic radiation possesses
particle as well as a wave properties. The chapter covers de Broglie’s
insight that material particles, for example electrons, also have a wave–
particle nature, and the data that revealed electron diffraction. Bohr’s
model of an atom with quantized orbits, contemporary to these devel-
opments, is used as a first step in the approach to the modern quantum
model of the atom. The reconciliation of the wave and particle nature
of electromagnetic radiation and material particles is presented, and is
known as wave-particle duality. The fundamental step was to recognize
that the intensity of the classical wave over a region of space-time is di-
rectly proportional to the probability for finding a quantum of radiation,
a photon, within that region. Heisenberg’s uncertainty principle and its
implications for the precision of measurements are discussed. Chapter
13 is used to introduce quantum mechanics and its highly successful
predictions about atomic structure and spectra. Eigenstates, expecta-
tion values, compatible observables and the collapse of the wavefunction
are all discussed. Schroedinger’s non-relativistic equation for material
particles is presented and solved for the electron motion in the hydro-
gen atom. Quantization rules for optical transitions are noted. Intrinsic
angular momentum of particles, spin, was introduced by Pauli and the
experiments revealing the spins of electrons and photons are described.
Finally the relationship between the width of a spectral lines and the
lifetime of the decaying state is looked at.

There follow three chapters on applications of quantum phenomena in
research and industry. Chapter 14 contains descriptions of lasing, lasers
types and laser applications. The common helium–neon gas laser is used
as the introductory example, and the treatment covers lasing prerequi-
sites, laser modes, the calculation of gain, hole burning and speckles.
Dye lasers are described next, the first tunable lasers. Then follow ap-
plications in interferometry and spectroscopy where the unprecedented
narrow width of a laser emission line is of first importance. Semicon-
ductor lasers are convenient sources for injecting light into optical fibre
because of their compact beams, and compatibility with modern elec-
tronics. Several types of semiconductor lasers are described including



1.1 Aims and contents 5

vertical cavity and quantum well lasers. Solid state lasers have a crystal
such as Nd:YAG or Ti:sapphire as the active lasing material. They can
achieve high powers and their applications in pulsed mode, with pulses
as short as femtoseconds, are described. Non-linear effects in certain
crystals produced by high intensity beams are of increasing importance:
harmonic generation, parametric amplifiers, Raman scattering and Bril-
louin scattering are all discussed.

Then an account of electronic detectors of visible and near infrared
radiation is given in Chapter 15. The common detectors are semiconduc-
tor photodiodes and photomultipliers, in which a photons are absorbed
and electrons freed. An applied electrical potential produces a current
that may be amplified within the device, as in avalanche photodiodes
and photomultipliers, or amplified externally. Ideally the detector cur-
rent should be proportional to the light intensity over a wide range.
Thresholds, efficiency, sensitivity, linearity and noise are all discussed.
Various types of photodiodes including Schottky and avalanche photodi-
odes are described. The features of CCD imaging arrays met in cameras
are explained. Photomultipliers and the hybrid image intensifiers met
in night sights are also discussed. With the description of detectors and
laser sources completed, optical fibre communications and sensors are
discussed in context in Chapter 16.

Single mode optical fibre along which only a single optical mode can
propagate has especially low dispersion and absorption in the near in-
frared part of the spectrum. As a result faithful transmission of data
at high rates over intercontinental distances on single mode fibre has
become commonplace. Mode transmission and dispersion of optical fi-
bre are analysed in depth in Chapter 16. Optical link techniques, de-
vices, and power budget are all discussed. The methods deployed on
intercontinental links to regenerate attenuated signals optically and to
compensate residual dispersion are highly developed and are treated in
some detail. Multiple laser beams are used to multiplex independent
data streams on a single fibre: this wavelength division multiplexing is
also described. Soliton propagation on optical fibre is now commercially
feasible and the underlying physical theory is presented. Optical fibre
is increasingly used in a range of sensors. Representative examples are
also outlined, including grating sensors, gyros and current transformers.
In the last section of the chapter an account of the properties and uses
of micro-structured optical fibres is given.

The remaining two chapters are used to introduce modern topics in
quantum optics. Chapter 17 provides an introduction to the semi-
classical analysis of the interaction of electromagnetic radiation with
atoms. Radiation is treated as waves while the electrons in the atoms
are described by Schroedinger’s equation. This has proved to be an ad-
equate approach to explain many simple phenomena. The rate of decay
of hydrogen from the excited 2p to the 1s ground state is calculated
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as an example of an electric dipole transition. Selection rules for such
transitions, already stated in Chapter 13, are discussed in more detail
here. Then the susceptibility of a gas to radiation at frequencies around
a transition frequency is calculated. When a gas is exposed to a beam
from a laser tuned to a resonance frequency of the atom, the atoms are
pumped cyclically between the ground and excited state. Such Rabi
oscillations and other related effects are analysed. One curious effect
discussed is electromagnetically induced transparency. This occurs when
a gas opaque to a laser beam on resonance becomes transparent to this
beam when a second laser excites a different atomic transition. A further
unexpected result is that the first laser beam can be slowed dramatically
and even, in a sense, brought to rest. The cooling and trapping of ions
is described to illustrate the usefulness of laser cooling. Atomic transi-
tions are then Doppler free and offer the ultimate in precise frequency
references. The description of an optical clock based on a single mercury
ion closes Chapter 17.

A final step needed in developing a fully consistent quantum theory
of matter and radiation is to replace fields by operators. In the case of
radiation the electromagetic fields become operators, while in the case
of material particles the wavefunctions become operators. Chapter 18 is
used to present the procedure for this second quantization applied to the
electromagnetic fields. A parallel procedure can be applied to material
particles, but will not be attempted here because it would lead too far
afield from the topics of interest in optics. The operators of the electro-
magnetic fields create and annihilate individual photons. Correlations
and degrees of coherence will be re-expressed in terms of the expectation
values of these operators. This approach provides a framework within
which to explain many surprising quantum effects. The ground-breaking
example in which photon bunching from an incoherent source was seen
in the experiments by Hanbury Brown and Twiss is analysed. Photons
(and other particles) can be created in entangled states: symbolically a
state |1〉a|2〉b + |1〉b|2〉a describes a pair of photons, 1 and 2, which are
entangled in states a and b. If photon-1 is measured later and found to
be in state a/b, then photon-2 is inevitably in state b/a. Experimental
methods of creating entangled pairs of photons are described. Inter-
ferometers used to measure photon correlations in entangled states have
permitted the exploration of many purely quantum mechanical subtleties
such as complementarity, delayed choice and quantum erasure. Repre-
sentative experiments are described in the closing sections of Chapter
18.

1.2 Electromagnetic waves

Electromagnetic waves have properties resembling those of the more fa-
miliar mechanical waves. Waves on a stretched string or on the surface
of deep water show local movement and yet the string or the water is
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not carried forward with the waves. What is carried forward is energy,
which in the case of a waves on the sea is readily apparent to someone
in a ship tossed by waves. In the case of electromagnetic waves the
electric and magnetic fields at every point in the wave’s path are the
things that oscillate. Energy carried by the the electromagnetic wave is
detected in ways that depend on its wavelength. For example as you sit
at your desk you might feel the Sun’s rays warming you, or use a radio
receiver to convert modulation of radio waves to sound, or receive light
waves from this sentence on this page so that you can share my thoughts.

The electromagnetic fields are vector quantities which generally point
transverse to the direction of wave motion so that the electric field, the
magnetic field and the direction of motion of the wave are mutually
perpendicular. This assertion is exactly true in free space; where free
space is the vacuum uncluttered by material objects. This is similar to
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Fig. 1.1 The variation of the electric and magnetic fields (a) with position along the
direction of wave motion for a plane electromagnetic wave with linear polarization;
or (b) with time at a fixed point in space.

the transverse displacement of a string when a wave travels along it.
Suppose that an electromagnetic wave travels in the z-direction and the
electric field vector points in the x-direction, then the magnetic field
vector points in the y-direction. The definition of the units rests on the
measurement of the force exerted on a charge: the force on a charge q



8 Introduction

coulombs moving with velocity v is given by the Lorentz relation

F = q [E + v ∧ B ], (1.1)

where the force F is in newtons when the electric field E is expressed
in volts per metre (V m−1) and the magnetic field B is in teslas (T).
Figure 1.1 shows the electric and magnetic fields in a sinusoidal wave
moving along the arrowed path, labelled k. Representative field vectors
are drawn at three points along the path, the remainder are indicated by
shading. The diagram is a snapshot in time, and at a later moment the
whole wave will have moved to the right or to the left, depending on its
direction of travel. The distance between successive identical features
(e.g. peaks) is the wavelength with the symbol λ. Alternatively we can
regard figure 1.1 as showing the time variation of the wave at a fixed
point in space. In this case the time between successive identical features
is the period with the symbol τ . Then the number of peaks passing a
fixed point per unit time is 1/τ , which is called the frequency, measured
in hertz (Hz), and given the symbol f . Therefore, with f waves of length
λ passing per second, the wave velocity is

v = fλ. (1.2)

This is also known as the phase velocity. Electromagnetic waves can
have any wavelength, with light being the em waves detectable by the
eye with wavelengths between 400 and 700nm. The electromagnetic
waves shown in figure 1.1 are called plane polarized or linearly polarized
because each field vector remains in a plane as the wave propogates.

1.3 The velocity of light

Compared to the velocity of mechanical waves the velocity of light is
extremely large; a distant lightning flash is seen well before the thun-
derclap is heard. However this simple observation does not allow any
inference as to whether light arrives instantaneously, or whether its ve-
locity is large but finite. Rømer in 1676 was the first to deduce that the

Jupiter 

Io Io 

Romer starts
timing eclipses

6 months later 
Romer is here

Fig. 1.2 Rømer’s method of determin-
ing the speed of light.

velocity of light is finite: he had been timing a sequence of eclipses of the
moon Io by its parent planet Jupiter. Jupiter orbits the Sun once every
11.8 years with Io in close attendance, Io orbiting Jupiter once every
1.77 days. The motion of the Earth around the Sun and of Io around
Jupiter are so much more rapid than that of Jupiter that we can ignore
the motion of Jupiter in following Rømer’s argument. Rømer noted that,
over a half-year during which the Earth–Jupiter separation was contin-
uously increasing, the period of rotation of Io round Jupiter appeared
to lengthen also. The eclipses of Io by Jupiter were finally twenty-two
minutes later than was to be expected if Io’s period of revolution around
Jupiter was constant. Rømer correctly interpreted this delay as the time
taken by light from Io to travel the distance that the Earth had moved
away from Io over that half year. This effect is illustrated in figure 1.2.
Later Bradley used another astronomical method to obtain a value for
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the velocity of light close to the modern value, 3 108 m s−1. Bradley ob-
served that distant stars appeared to change position during the year.
Looking north for example, all the stars complete an annual circular
orbit of 43 arcseconds diameter. (This is twenty times larger than the
displacement observed in a year in the relative positions of the nearest
stars with respect to the distant stars due to parallax.) Bradley correctly
interpreted this aberration of starlight as being due to the motion of the
Earth around the Sun. He argued that the direction which the starlight
appears to come from is the vector difference between the velocity of
the starlight and that of the Earth. A knowledge of the Earth’s orbital
velocity and the aberration yields the velocity of light. This is shown in
figure 1.3. Such astronomical methods were displaced by more precise
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Fig. 1.3 Aberration of starlight. The
apparent direction of the same star is
shown at times six months apart.

Earth-based measurements in which the round trip time is measured for
light to travel along a measured path to and from a mirror. If this is
done in air then very long paths, of order tens of kilometres, can be
used, but a small correction is needed to compensate for the difference
between the velocity of light in vacuum and in air at the atmospheric
conditions. The round trip time for a total path of 30 km is 0.1ms so
that a precision of 10−9 s (one nanosecond 1 ns) in timing is required
to get a precision of 1 part in 105 in the velocity determination. In or-
der to acheive the necessary precision in timing electronically controlled
shutters such as the Kerr cell described in Chapter 10 are used. This
techniques is commonly used to measure distances in surveying, in which
case the velocity of light is the input and the distance the output.

In the 1960s a new approach to measuring the velocity of light took
advantage of the relation given above: velocity equals wavelength times
frequency. A source emitting a narrow range of frequencies is used, and
both the frequency and wavelength of the radiation in vacuum are mea-
sured, and then multiplied together to give c. The velocity of electro-
magnetic waves in vacuum has been measured very precisely by various
methods, and it is found to be a constant independent of the wavelength
of the radiation.

Late in the nineteenth century Michelson discovered that the velocity
of light is independent of the motion of the source and of the observer;
his measurement will be discussed in Chapter 5. This result is quite
different from the way the velocity of, for example, sound waves behaves.
If an observer at rest measures the velocity of sound as v m s−1, then on
moving toward the source at a velocity u m s−1 the velocity will appear
to rise to (v + u)m s−1, just as you would guess. For electromagnetic
radiation the measured velocity is constant whatever the relative motion
of source and observer! This experimental fact, the constancy of the
velocity of light, is a fundamental feature of nature. Einstein made the
constancy of the velocity of light in free space, whatever the motion of the
source or observer, one of the two postulates on which he built the special
theory of relativity in 1905. By 1984 the value of the velocity of light
in vacuum determined from the product of wavelength and frequency
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measurements was:
c = 299 792 458m s−1. (1.3)

The precision in the determination of c depended on the precision of the
reference standards of length and time. In the case of the unit of time
this was, and is, provided by atomic clocks based on the frequency of a
microwave transition in caesium. Such clocks commonly agree to better
than parts in 1012 so that atomic clocks are accepted as the primary
standards of time (and frequency). The length of the second is defined
to be 9 192 631770 periods of the radiation emitted in a specified transi-
tion of 133Cs. At that time the standard of length was defined in terms
of a wavelength of krypton but with much poorer precision. Scientists
therefore chose to define, once for all, the velocity of light in vacuum at
its then best measured value, given above. This is an altogether reason-
able approach because the velocity of light in vacuum is a constant of
nature, whereas units of length and time are definitely not. This leaves
the unit of length as something that has to be measured; the metre being
the distance travelled by light in vacuum in (9 192 631770/299792458)
periods of the 133Cs microwave transition.

1.4 A sketch of electromagnetic wave the-
ory

A wave equation is the equation of motion for the type of waves consid-
ered; sound, em, water waves, etc. In the case of electromagnetic waves
the wave equation is obtained from Maxwell’s four equations which en-
capsulate the properties of the electromagnetic fields. The resulting wave
equation in vacuum is extremely compact and applies to both electric
and magnetic fields. In this section three key formulae from electromag-
netic theory will be quoted: the wave equation, the equation for energy
flow and the equation for energy storage in electromagnetic waves. A
full derivation will be given later in Chapter 8. This introduction is
restricted to electromagnetic waves travelling in free space: very conve-
niently it applies to a good approximation, and in many circumstances,
to such waves travelling in air.

The simplest em wave is a plane wave travelling in what we can choose
to be the z-direction. With such a wave E has at any moment the same
value over any plane surface perpendicular to the z-axis, and the same
is true of B. Taking E to lie along the x-direction, the wave equation
for the electric field then reduces to

∂2Ex/∂z2 = ε0µ0∂
2Ex/∂t2, (1.4)

where ε0 is a scalar quantity called the permittivity of free space, and
µ0 is another scalar called the permeability of free space. The values of
physical constants such as ε0 and µ0 are collected in Appendix A. We
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can try a sinusoidal plane wave solution

Ex = E0 cos (2πft − 2πz/λ + φ), (1.5)

where φ is a phase factor. The word amplitude is customarily defined
to mean E0, which is the maximum value that Ex takes, but it is also
widely used for the instantaneous value of Ex in for example discussions
of coherence. It will be clear from the context in which way the word
is being used. Differentiating Ex twice with respect to z and t and
inserting the results into the wave equation gives

−(4π2/λ2)Ex = −ε0µ0(4πf2)Ex, (1.6)

so that the wave equation is satisfied provided that

f2λ2 = 1/ε0µ0. (1.7)

It was shown above that the velocity of sinusoidal waves equals the prod-
uct of the frequency and wavelength, so the velocity of electromagnetic
waves in free space must be

c = 1/
√

ε0µ0. (1.8)

On getting this result Maxwell substituted the then measured values of
ε0 and µ0 into this equation in order to predict the wave velocity. He
found that the predicted velocity agreed with the measured value of the
velocity of light to within the precision with which c, ε0 and µ0 were
known. Thus electromagnetic theory leads to a wave equation whose
solutions, in free space, are waves travelling at exactly the measured
speed of light. Maxwell’s equations impose no restriction on the wave-
lengths or the frequencies possible; so the inference made was that light
is just one form of electromagnetic radiation. Soon afterwards, in 1886,
Hertz tested the idea that electromagnetic waves can be generated and
detected well beyond the visible spectrum. He generated electromag-
netic waves of frequencies ∼100MHz from a spark gap in an oscillatory
circuit, and he observed that an oscillatory current was produced in an
identical circuit located several metres away. Early in the twentieth cen-
tury Marconi successfully transmitted radio signals across the Atlantic;
and a century later communication via electromagnetic waves has be-
come all-pervasive.

The magnetic field obtained using Maxwell’s equations is perpendic-
ular to the direction of motion and to the electric field:

By = Ex/c. (1.9)

An alternative way of writing the fields using the angular frequency
ω = 2πf and the wave number or propogation constant1 k = 2π/λ is: 1Another definition used in spec-

troscopy for the wave number is 1/λ.

Ex = E0 cos (ωt − kz + φ), (1.10)



12 Introduction

(a) (b)

Fig. 1.4 The variation of the electric field with position along the direction of wave
motion for (a) a circularly polarized electromagnetic wave and (b) a plane polarized
wave of the same wavelength.

and
By = (E0/c) cos (ωt − kz + φ). (1.11)

Waves can of course travel in any direction. In the more general case
that the wave travels in a direction given by the unit vector k̂ the wave
at a point (r, t) in space-time is

E = E0 cos (ωt − k · r + φ), (1.12)

where k = kk̂ is the wave vector and, as before, k is the wave number.

The shape of the wavefronts of light emitted from a point source would
be spherical, but typical sources are generally in containers which restrict
the angular range of the wavefront. In the ideal case of an unobscured
sinusoidal wave radiating from a point source at the origin, the electric
field at a point in space time (r, t) would be

E = E0 cos (ωt − kr + φ). (1.13)

Here again ω, k and φ are respectively the angular frequency, the wave
number and the phase factor. As the spherical wavefront travels further
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and further from the source it approximates ever more closely to a plane
surface over any fixed area.

A second simple type of polarization is that known as circular polar-
ization. In this case the electric field of a plane sinusoidal wave travelling
in the z-direction is

E = E0 [ ex cos (ωt − kz) + ey sin (ωt − kz) ], (1.14)

where ex and ey are unit vectors along the x- and y-directions respec-
tively. This electric field rotates with angular frequency ω in the xOy
plane. The magnetic field rotates too, remaining at right angles to the
electric field. The contrasting behaviour of the electric field in plane and
circularly polarized waves is shown in figure 1.4. Light emitted by most
sources is a mix of polarizations, changing from instant to instant. If
the plane of polarization is entirely random then the source is said to
be unpolarized. Lasers are the exception, in that lasers are generally
designed to produce beams with plane polarization.

The electromagnetic waves carry energy and in vacuum the instanta-
neous energy density is

U = (ε0E
2 + B2/µ0)/2, (1.15)

where U is in joules/metre3 (J m−3). In the case of a sinusoidal plane
wave in free space, for which B = E/c, this reduces to

U = ε0E
2. (1.16)

The time average of the energy density for a wave of the form given by
eqns. 1.10 and 1.11 is obtained by taking the average over one cycle of
oscillation τ = 2π/ω,

U = ε0E
2
0

∫ τ

0

cos2(ωt − kz + φ) dt/τ

= ε0E
2
0/2. (1.17)

The flow of energy in an electromagnetic wave is the energy crossing unit
area per unit time perpendicular to the wave direction. It is therefore a
vector quantity, called the Poynting vector

N = E ∧ B/µ0. (1.18)

This energy flux or power per unit area, N, is measured in watts/metre2

(Wm−2), and points in the direction the wave is travelling. Its magni-
tude is

N = E2/(µ0c) = E2/Z0. (1.19)

where Z0 =
√

µ0/ε0 is called the impedance of free space. The time
average of the energy flow for a wave of the form given by eqns. 1.10
and 1.11 is

Nz = ε0E
2
0c/2, (1.20)
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which equals the product of the energy density in the field and the wave
velocity.

Many discussions of light travelling through free space and simple
materials use only a single vector field rather than the two vector fields,
E and B. This simplification is permissible because the magnitudes of
the electric and magnetic fields are proportional, and no information
is lost thereby. In analyzing light propagating through optical systems
with lenses and mirrors the simplification can be taken a step further
to use a single scalar field when there is no dependence of the devices
on polarization. Referring back to the expression for the Lorentz force
eqn. 1.1 we see that the ratio of the electric/magnetic force is E/[vB] =
E/[v(E/c)] = v/c, for an electromagnetic wave in free space. Evidently
the magnetic force can be neglected unless the velocity of the electrons
approaches the velocity of light, or if the material has a large magnetic
permeability. Therefore in many cases where electromagnetic radiation
interacts with matter the magnetic field may be neglected. It remains
true that both fields are inextricably involved in carrying and storing
energy in electromagnetic radiation.

1.4.1 More general waveforms

In the preceding account attention was focused on the sinusoidal (also
called harmonic) wave solutions to the wave equation. A more general
travelling wave solution of the wave equation is

Ex = E0F (ct ± z) = E0F (w) (1.21)

where F is any function whatever of the combination w = (ct± x).This
statement can be readily checked. Firstly, differentiating twice with
respect to z gives

∂Ex/∂z = E0(dF/dw)(∂w/∂z) = ±E0(dF/dw), (1.22)

and

∂2Ex/∂z2 = ±E0(d
2F/dw2)(∂w/∂z) = E0(d

2F/dw2); (1.23)

then differentiate Ex twice with respect to t

∂2Ex/∂t2 = E0(d
2F/dw2)(∂w/∂z)2 = c2E0(d

2F/dw2). (1.24)

Hence
∂2Ex/∂z2 = (1/c2)∂2Ex/∂t2 (1.25)

as required. Figure 1.5 shows a wave of arbitrary shape at two instants t
and (t + ∆t), where the star indicates a reference point (feature) on the
wave which moves from z to (z + ∆z) in a time interval ∆t. The value
of F (ct− z) is the therefore the same at these two points in space-time,
namely at (z,t) and (z + ∆z, t + ∆t). Therefore

ct − z = c(t + ∆t) − (z + ∆z),

and ∆z = +c∆t. (1.26)
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Fig. 1.5 An electromagnetic wave F (ct− z) at two different moments t and (t+∆t).

This means that the feature and hence the wave is moving rightward.
The reader can check that F (ct + z) represents a leftward moving wave.
There are many possible waveforms of the type F (ct ± z) and some ex-
amples are shown in figure 1.6: (a) is a square wave, (b) is a wave of
irregular shape but still a repetitive wave and (c) is a waveform called
a pulse or wavepacket which is not repetitive. The reason we can con-
centrate on sinusoidal waves in the face of these and countless other
possibilities is that whatever the waveform it can always be duplicated
exactly by a sum of sinusoidal waves with their amplitudes and phase
factors suitably chosen. There is a well defined procedure called Fourier
analysis which is used to extract these harmonic components from any
waveform. Fourier analysis is treated at length in Chapter 6, while here
it will be sufficient to take note of this underlying simplicity: if results
can be proved for harmonic waves then they must apply equally for any
waveform.
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Fig. 1.6 Examples of electromagnetic waveforms: (a) a square repetitive wave; (b)
an irregular repetitive wave; (c) a wavepacket or pulse.

1.5 The electromagnetic spectrum

Electromagnetic waves in free space can have any wavelength. At one ex-
treme the wavelength of radiation at the mains frequency (EU 50Hz, US
60Hz) is huge (6 106 m, 5 106 m); and at the other extreme the gamma
rays emitted by a decaying π0-meson have wavelength 2.9 10−15 m. The
way that em waves interact with matter depends on their wavelength
and this variation has affected how and when the different parts of the
electromagnetic spectrum were first discovered, how they are named and
in what ways the radiation in each part of the spectrum can be used.

On figure 1.7 the principal regions of the spectrum, the primary
sources and important uses of electromagnetic radiation are all indicated.
Radio and TV stations transmit waves of pre-assigned wavelengths which
lie in the range from about 1 km to a 1m. Cable TV (CATV) and satel-
lite TV use shorter wavelengths. Electromagnetic waves of very long
wavelength (VLF and ELF) are used to communicate with submarines
because radiation of shorter wavelengths is strongly absorbed by sea wa-
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Fig. 1.7 The electromagnetic spectrum.

ter. Microwaves are electromagnetic waves with wavelength from about
1m to 0.1mm. Radar, microwave transmitters for mobile phones as well
as microwave ovens operate in this part of the spectrum. Microwave
detectors have been used to observe the spectrum of the relic radia-
tion from the early universe, the cosmic microwave background (CMB),
whose intensity peaks at a wavelength around 2 mm. The region from
1mm wavelength down to the red end of the visible spectrum is called
the infrared, and overlaps the microwave region. An electric fire radiates
most of its energy in the infrared, while the preferred wavelengths for
telecom optical fibre links are in the near infrared (near, that is, to the
visible spectrum). At these latter wavelengths the absorption of electro-
magnetic waves in glass fibre has a broad minimum. The visible part
of the spectrum extends from 400 to 700 nm. Shorter wavelength radia-
tion down to around 10 nm is called ultraviolet (UV) radiation. At yet
shorter wavelengths the ultraviolet merges into the X-ray region, which
extends from roughly 10 nm to 1 pm (10−12 m). Excited nuclei emit
radiation of very short wavelength from 0.1 nm downward, and these
waves are called γ rays. The shortest wavelength γ rays are emitted in
the decays of elementary particles such as the π0-meson. Apart from
the visible spectrum, which is defined by the range of wavelengths to
which the average eye is sensitive, none of the boundaries mentioned
above are at all precise. For the present we should also note that visible
radiation interacts very effectively with the atoms whose size is ∼0.1nm.
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Radiation of wavelength shorter than light can penetrate matter with
increasing ease as the wavelength falls. Thus ultraviolet radiation pen-
etrates the skin and can damage cells by ionizing the component DNA,
and this penetrating power increases steadily as the wavelength de-
creases. The longer wavelength UV region is divided into UVA of

Fig. 1.8 Emission spectrum of he-
lium gas. This spectrum and the fol-
lowing emission spectra for nitrogen
gas, a fluorescent lamp and the Sun’s
spectrum were recorded with a TV
SPEC spectrometer with 600 lines per
mm, made by Elliott Instruments Ltd.,
www.elliott-instruments.co.uk. Cour-
tesy Dr K. H. Elliott.

Fig. 1.9 Emission spectrum of helium
gas, presented as a histogram of the in-
tensity against wavelength. This spec-
trum was obtained automatically from
the preceding spectrum. Courtesy Dr
K. H. Elliott.

wavelength from 320 to 400nm, UVB of wavelength from 280 to 320 nm
and UVC of wavelength shorter than 280nm. UVB radiation damages
living tissue at intensities not very much greater than those met on a
sunny day in temperate climes. The more dangerous UVC radiation
from the Sun is absorbed by oxygen and ozone; but the UVB is only
absorbed by ozone, hence the concern about the depletion of the ozone
layer in the upper atmosphere. The deep penetrating power of X-rays
and γ-rays makes them useful tools in medical diagnosis and in material
science when applied in a controlled manner.

1.5.1 Visible spectra

The reader will have seen the spectra produced when sunlight passes
through a prism. Light of different colours is bent, refracted, through
an angle which depends on the colour of the light. This variation of
the bending with wavelength is known as dispersion. Light can also be
dispersed into a spectrum when it is reflected from a grating of parallel,
uniformly spaced grooves on a metal surface, the spacing being of order
a few micrometres. Such diffraction gratings are described in detail in
Chapter 6.

Figures 1.8 and 1.9 show the same visible spectrum emitted by a gas
of excited helium atoms. The source is a slit illuminated by a spectral

Fig. 1.10 Emission spectrum of nitro-
gen gas, Courtesy Dr K. H. Elliott.

Fig. 1.11 Emission spectrum of nitro-
gen gas, presented as a histogram of
the intensity against wavelength. This
spectrum was obtained automatically
from the preceding spectrum. Courtesy
Dr K. H. Elliott.

lamp filled with pure helium gas, and through which an electric discharge
is passed. The spectrum of light dispersed by the diffraction grating is
shown in figure 1.8, and its intensity is histogrammed as a function of
wavelength in figure 1.9. If the light were monochromatic, that is to say
all of a single wavelength then the spectrum would be a single line in
figure 1.8, at the image of the slit for that particular colour of light. In
fact the spectrum contains many lines, each due to light of a particular
narrow range of wavelengths. These narrow spectral lines are character-
istic of the spectrum of a gas. Notice first that this spectrum and those
in the following diagrams are truncated by the display software at 300
and 780 nm. Secondly note that for clarity the intensity scales of the
histograms are offset by 40 units from zero.

The set of spectral lines is unique to the element emitting light in the
spectral lamp and we shall see later in Chapter 12 that the spectral lines
show regularities in the wavelengths for each element. Such regularities
were a puzzle to the physicists who discovered them in the nineteenth
century. The regularites arise from the structure of the atoms of each
element and can only be understood using quantum theory. The inter-

www.elliott-instruments.co.uk
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pretation of spectra, which was a key step in guiding the development
of quantum mechanics, will be fully described in Chapters 12 and 13.

Figures 1.10 and 1.11 exhibit the emission spectrum of a spectral lamp
containing nitrogen. Here the individual spectral lines are grouped into
bands which are characteristic of molecular spectra, in this case diatomic
nitrogen. The spectrum from a modern fluorescent lamp is more com-
plex. This is shown in figures 1.12 and 1.13, where the spectral lines
are superposed on a continuum. The spectral lines are emitted by the

Fig. 1.12 Emission spectrum of a mod-
ern fluorescent lamp. Courtesy Dr K.
H. Elliott.

Fig. 1.13 Spectrum of a modern fluo-
rescent lamp, presented as a histogram
of the intensity against wavelength.
This spectrum was obtained automat-
ically from the preceding spectrum.
Courtesy Dr K. H. Elliott.

mercury gas within the discharge tube, and are characteristic of that
element. Some of the UV radiation emitted by the mercury atoms is
absorbed by a powder deposited on the inside wall of the glass envelope.
This is a fluorescent material, meaning that its atoms absorb the UV
radiation and then re-emit visible light with a delay that is less than a
microsecond. Now condensed matter, such as the powder used to coat
a discharge tube, emits over a range of wavelengths rather than produc-
ing line specta. This broadening of the spectral lines into a continuum
results from the proximity and strong mutual interaction of atoms in a
solid or liquid. By using a fluorescent powder which absorbs the ultra-
violet radiation emitted by the mercury atoms and re-emits visible light
the light yield from the lamp is enhanced considerably. Consequently
fluorescent lamps are among the most efficient lamps in converting wall
plug power to visible light.

The final spectrum to be seen in figures 1.14 and 1.15 is the Sun’s
spectrum. This is a continuum marked by dark lines and corresponding
notches in the histogram. This continuum is that of a hot body in
thermal equilibrium, in this case the outer layers of the Sun at around
6000K. The dark lines were interpreted by Fraunhofer as due to the
absorption of light by cooler gases in the upper reaches of the Sun’s
atmosphere. These lines match in wavelength the emission lines of

Fig. 1.14 Spectrum of the Sun. Cour-
tesy Dr K. H. Elliott.

Fig. 1.15 Spectrum of the Sun, pre-
sented as a histogram of the intensity
against wavelength. Courtesy Dr K. H.
Elliott.

elements found on Earth, and this allows inferences to be made about the
gases making up the Sun. The set of Fraunhofer lines due to absorption
by helium in the Sun’s outer atmosphere were initially a mystery because
at that time helium had not be identified and was only later isolated on
Earth. A comparison of the spectra of the fluorescent lamp and the Sun
shows that the modern lamp mimics the shape of the Sun’s spectrum
quite well.

1.6 Absorption and dispersion

Electromagnetic waves passing through matter are partly absorbed by
the atoms and molecules, and their velocity in matter is less than in
vacuum, by a factor called the refractive index. The frequency of the
wave is unchanged and hence from eqn. 1.2 it follows that the wave-
length in matter is smaller than its value in free space by the value of
the refractive index. This point will be made again in Section 9.5. Air
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Fig. 1.16 The variation with wavelength of refractive index of optical glass, of fused
silica and of MgF2.

has a refractive index of 1.0003 at normal temperature and pressure
(NTP: 20◦C; 105 Pa) for visible light. Water has a refractive index of
1.333 at NTP for visible light, but the value rises to around 9.0 for mi-
crowaves. This difference indicates that light and microwaves interact
very differently with water; in fact water is quite transparent to visible
light while it absorbs microwaves strongly enough to make cooking with
microwaves practical. Materials transparent to light have refractive in-
dices ranging from near unity for gases up to 2.47 for diamond, with
those for common glasses lying in the range 1.5 and 2.0. The variation
of the velocity of electromagnetic radiation with wavelength is known
as dispersion and gives rise to effects such as the dispersion of light by
a prism. For most materials that are transparent to light the refractive
index falls smoothly with wavelength across the visible spectrum. A few
materials show anomalous dispersion and for these the refractive index
rises from the blue end to the red end of the spectrum. Transmittance is
the fraction of radiation transmitted by a material, and falls below unity
because there is absorption in the body of material and reflection at the
entry and exit surface. Internal transmittance is defined as the light
intensity reaching the exit surface divided by that which entered the
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material. Figure 1.16 shows the variation of refractive index of several
materials commonly used in making lenses or other transparent optical
components: borosilicate crown glass and dense flint glass; fused silica
which is useful in extending coverage into the UV; magnesium fluoride
(MgF) which is useful in extending coverage far into the IR, as well as
being used in coating lenses to reduce surface reflections. Crown glass is
transparent from 350 to 2000nm; flint glass from 420 to 2300nm; fused
silica from 260 to 2500nm; and MgF from 120 to 8000nm. The normal
dispersion curves for glasses are well fitted by the Sellmeier empirical
formula over the visible spectrum

n2 = 1 + B1/(λ2 − C1) + B2/(λ2 − C2) + B3/(λ2 − C3). (1.27)

The values of the constants Bi and Ci are often tabulated by manufac-
turers of optical materials.

Figure 1.17 shows a correlation between optical properties which is
crucial for us Earth dwellers. In figure 1.17(a) the absorption coefficient
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Fig. 1.17 Coincidences: (a) log of absorption coefficient for water in cm−1; (b) log of

the Sun’s spectral irradiance in Wm−2 µm−1 (c) log of the relative spectral efficiency
of the human eye.
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for water is plotted as a function of the wavelength. An absorption
coefficient α is defined such that a beam of radiation will be reduced in
intensity by a factor α ds after passing through an infinitesimal layer of
thickness ds. That is

dI(s)/ds = −αI(s).

Integration gives the dependence of the intensity with distance s to be

I(s) = I(0) exp (−αs), (1.28)

which is known as Beer’s law. The absorption for water is at a minimum
at approximately 500nm and rises very fast as the wavelength moves off
that value. In figure 1.17(b) the spectrum of radiation emitted by the
Sun is depicted. It is roughly the radiation spectrum of a black body at
6000K, and peaks very close to the wavelength at which the absorption
of water reaches a minimum. Finally figure 1.17(c) shows the relative
spectral sensitivity of the retina of the human eye, with the peak sensi-
tivity at 550 nm. Evidently the eye is well designed to use the available
radiation illuminating the planet. If instead, the retina were designed
to ‘see’ at wavelengths just a factor three away (180 nm or 1650nm) the
absorption by water (α now around unity) would be a severe restriction.
Radiation at 180 nm, in the ultraviolet, is in any case very damaging to
tissue. Attenuation of the ultraviolet component of the Sun’s radiation
by water vapour, oxygen and ozone in the atmosphere is essential to
protect our eyes and skin.

The main process by which the Sun’s energy is converted into a form
accessible to living things is plant photosynthesis, which involves photo-
chemical transitions in complex molecules. Plant photosynthesis oper-
ates at peak efficiency using light in the visible spectrum, which is just
the wavelength range of the copious radiation penetrating to ground
level. Much longer wavelength radiation cannot initiate these molecular
processes, while shorter wavelength ultraviolet radiation would destroy
the active molecules. The multiple coincidence presented in figure 1.17
is fundamental for life as we know it.

1.7 Radiation terminology

The time averaged energy flow of radiation across unit area of a surface
is known as the irradiance and also as the intensity. Radiation is not
generally directed in a beam but spread over a range of angles, hence a
quantity, the radiance, is defined as the radiated energy per unit solid
angle per unit area. The total energy radiated by a source or crossing a
surface is called the radiant flux, φe.

How energy is distributed with wavelength is of importance because
the physical effects of radiation depend strongly on the wavelength. The
spectral radiant flux is the radiant flux per unit wavelength, φe,λ, and
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naturally the total

φe =

∫ ∞

0

φe,λ dλ. (1.29)

A significant property of radiation is whether it produces a visual effect.
Therefore visual quantities are defined parallel to the energy/radiation
quantities so far described. The fundamental factor used to relate visual
and energy quantities is the luminous efficacy, Vλ, so that the spectral
luminous flux associated with the spectral radiant flux is

φv,λ = Vλφe,λ, (1.30)

where the subscripts e and v refer to energy and visual quantities. The
variation of Vλ with wavelength was standardized by the Comite Inter-
national d’Eclairage (CIE) so as to correspond to the response of the
average human eye.

In daylight the sensitivity of the human eye is greatest at a wave-
length of 555 nm. The unit of luminous flux, the lumen (lm), is defined
by taking one watt of radiation at 555nm to have a visual equivalent of
683 lm. The reason for such a strange conversion factor is that the use of
the energy and visual units developed quite independently. Figure 1.18
shows how the sensitivity of the eye varies with wavelength. The solid
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Fig. 1.18 The relative sensitivity of the average human eye as a function of the
wavelength of light.

curve shows the variation of Vλ in daylight (photopic vision), while the
broken line curve is the corresponding curve for night vision (scotopic vi-
sion). Daylight and night vision rely on different receptors in the retina:
in daylight on the cones and at night on the rods. Cones come in three
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types which respond to blue, green and yellow light, respectively. The
more sensitive rods all have the same spectral response so that night
vision is monochrome. Their response peaks at 1700 lm for one watt of
radiation at 507nm wavelength.

The luminous flux from a source is

φv =

∫
φv,λ dλ =

∫
φe,λVλ dλ, (1.31)

where the integral need only run over the visible spectrum from 400 to
700nm.

The visual and energy quantities are shown in Table 1.1 with corre-
sponding pairs on the same line. Of the remaining quantites only the
visual ones will be discussed because their units are the less obvious.
The luminous intensity of a point source in a given direction is

Iv = dφv/dΩ, (1.32)

where dΩ is an element of solid angle, and Iv is measured in lumens
per steradian or candelas (cd). If the point source is isotropic then, of
course, φv = 4πIv.

The illuminance Ev is the luminous flux per unit area, measured in
lumens per square metre, or lux (lx). Finally the luminance, Lv, is the
luminous flux per unit area per unit solid angle, measured in cd m−2.
Luminance is, in everyday speech, the brightness of an object. At lu-
minances below 0.03 cd m−2 human vision relies on the rods, and at
luminances above 3 cd m−2 on the cones. Between these extremes both
types of receptor play a part. Typical luminances are 100 cd m−2 for
indoor lighting, 104 cd m−2 in full sunlight and 10−3 cd m−2 in starlight.
One cd cm−2 may be called a stilb, while in describing the luminance of
display panels one cd m−2 is called a nit.

A diffuse source is one which looks equally bright in all directions.
When viewed at an angle θ away from the normal the projected area is
reduced by a factor cos θ. It follows that, in order to compensate, the
luminance of a diffuse source should obey Lambert’s law:

Lv(θ) = Lv(0) cos θ. (1.33)

Integrating over the forward solid angle gives the total luminous flux
from unit area of the source

Ev =

∫ 2π

φ=0

∫ π/2

θ=0

Lv(θ) sin θ dθ dφ

= 2π

∫ π/2

θ=0

Lv(θ) sin θ dθ

= πLv(0)

∫ π/2

θ=0

sin (2θ) dθ

= πLv(0). (1.34)
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Table 1.1 Table of related visual and energy quantities and their units.

Energy parameter Unit Visual parameter Unit

Radiant flux W Luminous flux lm
Radiant intensity Wsr−1 Luminous intensity lm sr−1

Irradiance/intensity Wm−2 Illuminance lmm−2

Radiance Wm−2 sr−1 Luminance lmm−2 sr−1

A rough surface painted matt white is an excellent diffuse reflecting sur-
face. Light from a compact source can be diffused by passing it through
a ground glass screen.

It is surprising that the brightness of an extended source does not
change with its distance from the observer, unlike a point source. This
effect is noticable on a bright day: for example when viewing the white
cliffs of Dover from the cross-Channel ferry. The area of cliff face lying
within a fixed solid angle at the observer’s eye pupil increases like the
distance squared as the cliffs recede. At the same time the solid angle
presented by the pupil to the cliff face falls off at the same rate. The
two effects cancel and the luminance at the pupil remains the same. In
turn this means that the illuminance of the image on the retina remains
the same as the ferry moves away.

Incandescent light bulbs produce around 15 lm for each watt of electric
power drawn from the wall plug; fluorescent lamps and ceramic metal-
halide lamps produce ∼ 80 lm W−1; high pressure sodium lamps produce
∼ 120 lmW−1. In these examples lm W−1 is the rate of converting elec-
trical energy from the mains to visible energy expressed as lumens. Thus
the efficiency of the conversion of electrical to visible energy in the case
of high pressure sodium lamps is only 120/683 or around 18%. The
other 82% goes to heat the surroundings.

When expressing the intensity ratio between the light entering and
leaving an optical fibre link the decibel (dB) is often used. If the ratio
of the light entering divided by the light emerging is R, then in decibels
this becomes

n = 10 log10 R. (1.35)

Such a ratio unit is convenient when the intensity ratios are very large.
If the loss along an optical fibre is n dB km−1 then over s km it is sn dB.
Powers of, for example lasers, may be expressed in dBm in which the
ratio is the laser power divided by 1mW. Thus if the laser power is
stated to be −5.0dBm this means that the power, P , is given by

−5.0 = 10 log10 [ P/(1 mW) ]. (1.36)

Thus the laser power is 10−0.5 = 0.316mW.
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1.8 Black body radiation

This is radiation which can be produced by simple apparatus and whose
properties can be analysed simply too. Figure 1.19 shows the black body
spectrum at three temperatures. As noted above, the Sun’s emission
spectrum, before absorption in the Earth’s atmosphere, is approximately
that of a black body at 6000K. Consider an enclosure whose walls are
maintained at a constant and uniform temperature, and which is taken
to be evacuated. Suppose a small body is suspended within this volume:
in thermal equilibrium it will radiate as much energy as it absorbs.
This shows immediately that a good emitter at any wavelength must
necessarily also be an equally good absorber of radiation at the same
wavelength, and a poor emitter must be a poor absorber. It follows that
the radiation in the enclosure at a given temperature is independent of
the material in the walls of the cavity. If this were not the case then
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Fig. 1.19 Black body radiation spectra at 3000 K, 4000 K and 5000 K.
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energy could be transfered between bodies at the same temperature. The
radiation in such an enclosure is known as black body radiation. If an
aperture very much smaller than the linear dimensions of the enclosure
is left open, then this acts as a source of black body radiation, and is a
perfect emitter because it transmits all the radiation coming from inside.
This aperture is also a perfect absorber of radiation falling on it because
the radiation entering has a negligible chance of being reflected back out
of the aperture. The spectral emittance ελ of any surface can be defined
as the fraction of radiation emitted around wavelength λ compared to
that emitted by a black body. Also the spectral absorptance aλ can be
defined as the fraction of incident radiation that a surface absorbs at the
same wavelength. Then the result previously deduced is that

ελ = aλ, (1.37)

and is known as Kirchhoff’s law. If a large absorptance could be allied
to a smaller emittance, then a body made from this anomalous material
suspended in the thermal enclosure would form a heat engine that vio-
lates the second law of thermodynamics. Practical black body sources
are thermally insulated boxes, whose walls contain heaters under ther-
mostatic control, the interior wall surfaces are also corrugated. Com-
mercially available sources running typically at 1000K have emittances
of over 99% across the wavelength range 1 to 30µm.

1.9 Doppler shift

Everyone is aware that the tone of the siren of an emergency vehicle
drops just as the vehicle passes by. When it is approaching the frequency
is higher, and when it is receding the frequency is lower than that of the
siren at rest. These frequency shifts constitute the Doppler effect, which
is observed both for sound and for electromagnetic waves. The upper
panel of figure 1.20 shows sound waves emitted by an approaching source.
This source has velocity ve; the sound has velocity vs, frequency f and
wavelength λ. In a short time ∆t the source emits f∆t waves and the
leading one of these waves will travel a distance vs∆t. In the same time
the source moves a distance ve∆t so that the f∆t waves are confined to
a reduced distance (vs − ve)∆t. Thus the wavelength is compressed to

λ′ = (vs − ve)∆t/f∆t.

= λ(vs − ve)/vs

= λ(1 − ve/vs).

Hence the frequency heard is higher

f ′ = f/(1 − ve/vs). (1.38)

The case that the observer is moving with velocity vo and the source is
at rest is shown in the lower panel of figure 1.20. This observer receives
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Fig. 1.20 Doppler shift of frequency when source or observer are moving.

more waves per unit time than one at rest. In a time ∆t the total number
of waves passing the observer is (vs + vo)∆t compared to vs∆t for an
observer at rest. Thus the frequency heard is

f ′ = f(vs + vo)∆t/vs∆t

= f(1 + vo/vs). (1.39)

In the above two equations the velocity of the source or observer needs
to be replaced by the component of the velocity toward the observer or
source respectively when the motion is not along the line joining them.
So the first result becomes

f ′ = f/(1 − vr/vs), (1.40)

where vr is the radial component of the source’s velocity. For electromag-
netic radiation from a moving source in free space this analysis would
give

f ′ = f/(1 − vr/c), (1.41)

where c is the velocity of light. However there is an additional relativis-
tic effect that must be taken into account known as time dilation. The
the time intervals between events occuring in the source’s rest frame
are longer by a factor γ = 1/

√
[1 − (v/c)2] when they are timed by a

stationary observer.

Although macroscopic objects on Earth do not travel at velocities
close to that of light, some elementary particles do so and the result can
be astonishing. µ-leptons created by primary cosmic rays in interac-
tions with atmospheric atoms at heights of 200km or so mostly survive
to reach the Earth’s surface. They are travelling close to the speed of
light (relativistically) so the duration of this journey is (200km)/c ≈
0.67ms or somewhat longer. The lifetime of a µ-lepton at rest mea-
sured in the laboratory is only 2µs and hence, viewed classically, few
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µ-leptons should survive to reach the Earth! However the time dilation
factor increases the lifetime measured in the Earth’s frame of reference
by a factor of around 1000, and so most do reach us.

Thus the frequency detected by the observer is correspondingly lower
than that seen in the rest frame of the source, f0, by a factor

√
[1 − (v/c)2]:

f = f0

√
[1 − (v/c)2]. (1.42)

Note that this depends on v rather than its radial component. Com-
bining eqns. 1.41 and 1.42 gives the frequency detected by the observer

f = f0

√
[1 − (v/c)2]/[1 − vr/c] (1.43)

where f0 is the frequency of the source measured at rest with respect to
the source. When the source moves directly toward the observer

f = f0

√
(1 + v/c)/(1 − v/c). (1.44)

Turning to the situation that the observer is in motion it is found that
the same eqns. 1.43 and 1.44 are obtained for the frequency of the
electromagnetic radiation determined by the observer. This is but one
example of the basic feature of the special theory of relativity that the
relative velocity is the relevant parameter. In equations 1.43 and 1.44 we
should therefore identify v as the relative velocity of approach of source
and observer, and vr as its radial component. When v is small compared
to c eqn. 1.44 can be approximated by:

f = f0(1 + v/c), (1.45)

which, not surprisingly, is also the classical prediction.

Exercises

(1.1) The solar flux impinging on the Earth’s atmosphere
at the equator is 1.5 kWm−2. Calculate the magni-
tude of electric field there. What is the Sun’s total
energy output?

(1.2) Light from a laser of wavelength 633nm in space
is reflected from a comet and the returning light is
found to be red-shifted by 10−1 nm. What is the
relative velocity of the comet with respect to the
observer?

(1.3) The Lyman α line in the atomic spectrum of hy-
drogen has wavelength 121.6 nm in the UV. The
wavelength of this same line in the spectrum re-
ceived from a quasar 01422+2309 is 561.79 nm. Is

this red shift conceivably due to the recession veloc-
ity of the quasar away from the Earth? What else
could have stretched the wavelength by this factor?

(1.4) What are the periods, wavelengths, ve-
locies and directions of these waves: (a)
A(x, t) = cos [2π(3t + 15x)]; (b) B(x, t) =
exp i[2π(5t − 15x − 20y)]?

(1.5) An electromagnetic wave E(x, t) =
15.0 sin [2π(ft − x/λ + φ)] has values 0Vm−1 and
−9.95 Vm−1 at locations (t, x) = (0, 0) and (0,
1500 m) respectively. Calculate f , λ and φ, taking
the longest wavelength solution.
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(1.6) A laser emits a beam with 1 kW power in free space.
What is the energy in a length of 1m of the beam?

(1.7) E0 cos (ωt − kx) and E0 cos (ω′t − k′x) are two
electromagnetic waves in free space and ω′ = ω +
∆ω where ∆ω is small compared to ω. Show that
k′ = k − ∆k where ∆k/k = ∆ω/ω.

(1.8) Mobile phones operate at a frequency of 1GHz.
What is the wavelength? The power radiated by
a digital low power mobile phone is 125 mW. If the
power is assumed to radiate isotropically what is
the electric field at 2 cm from the antenna? The
maximum limit recommended by the IEEE for RF
power in head tissue is 1.6 mW gm−1 over any 1 gm
of tissue, and is designed to limit any heating to a

safe level.

(1.9) Microwave ranges operate at 2.45 GHz. What is
the corresponding wavelength?

(1.10) A beam of light of wavelength 500 nm falls perpen-
dicularly on a screen with two holes. One beam
travels in glass, the other in air. How long will the
glass need to be to cause a delay of 1 ns between
the beam in glass relative to that in air? Take the
refractive indices of air and glass to be 1.0 and 1.5
respectively.

(1.11) Use figure 1.17 to calculate the fraction of radiation
at 10 cm wavelength from the Sun that penetrates
the atmosphere, assuming there is 10 kgm−2 of wa-
ter in the atmosphere.



Reflection and refraction

at plane surfaces 2

2.1 Light rays and Huygens’ principle

The crisp edges of shadows on a sunny day remind us that on the scale
of everyday objects light travels in straight lines. The idea of a light ray
indicating the path of light appears in depictions of the Sun during the
reign of the monotheistic pharaoh Akhenaton (c. 1370 BC), as sketched
in figure 2.1. Around 1000 AD Al Hazen made a simple and elegant
experiment that validates the idea. He placed five lamps in one room
and made a small hole in the partition separating it from an adjacent
darkened room. Al Hazen saw distinct images of each flame on the wall
of the darkened room, and he noted that he could remove each image
simply by putting his hand in the appropriate ray path in the darkened
room. In this and the following two chapters the properties of mirrors,

Fig. 2.1 Typical depiction of the Sun,
Aten, during the reign of Akhenaten.
Each ray ends in a pointing hand.

lenses and optical instruments will be studied using ray optics. The first
requirement is to understand how rays and waves are related.

In the case of the plane wave, eqn. 1.12, E = E0 cos (ωt − k · r + φ),
the rays follow the direction of the wave vector k. Rays therefore point
perpendicularly to the wavefronts. In the case of spherical waves given
by eqn. 1.13, E = E0 cos (ωt − kr), the rays are outwardly directed
radial lines perpendicular to the spherical wavefronts. At a boundary
between two media, for example air and water, rays other than those ex-
actly perpendicular to the surface change direction there: they undergo
refraction. Refraction occurs because the velocity of light in matter
varies from one material to another. The velocity also depends on the
state of the material: the velocity being higher, for example, the less
dense a gas is. Thus on a clear summer’s day, when the air is hotter
the closer it is to the tarmac of the road surface, light from the sky is
refracted in this region so that it turns upward. A mirage is seen, an
apparent pool of water reflecting the sky. The laws of reflection and
refraction at surfaces can be deduced using Huygens’ principle (1678),
an early step in the development of the wave theory of light which is
still useful. Huygens proposed a simple picture of how the ‘disturbance’
at one wavefront produces a disturbance at a later time. His principle
states that all points on a wavefront can be treated as point sources of
secondary spherical waves. Then at a later time the new position of
the wavefront is the surface tangential to the forward going secondary
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waves. Figure 2.2 shows what happens in the case of a plane wave in
free space. After a time t the spherical secondary wavefronts have radius
ct. The new wavefront tangential to them is planar and a distance ct
ahead; consistent with expectation.

Huygens’ construction is adequate away from any obstruction in the
wave path. However at the edge of an aperture the construction predicts
that the wave spills round this edge. A more complete version of wave

ct

Old wavefront New
wavefront

Fig. 2.2 The construction of a future
wavefront, at a time t later. Three of
the spherical waves used in Huygens’
construction are shown.

theory is needed in order to explain what happens at apertures. For the
present it is sufficient to note that light of wavelength λ passing through
an aperture of width a shows departures in angle of order λ/a from
straight line propagation. When green light passes through an optical
component of aperture 1 cm this amounts to 5 10−5 rad, which we can
safely neglect in this and the following chapter.

In the following two sections the laws of reflection and refraction will
be deduced from Huygens’ principle. These laws will then be used to
study the imaging produced by plane mirrors, plane sheets of transpar-
ent material and simple triangular prisms. After that, total internal
reflection (TIR) at a surface between two media is described: this is
how light is guided along optical fibres and the low losses required for
telecom transmissions are achieved. For simplicity the refractive index
of air will be taken to be exactly unity in discussions of optical elements
in air.

2.1.1 The laws of reflection

In figure 2.3 ABC is a plane wavefront which has just reached the mirror
surface at A at a given moment. Huygens’ construction of a wave at a
later time begins with drawing spherical secondary waves from all points
on this wavefront. Representative examples, originating from points A,
B and C, are shown at a time t later when they have travelled out
a distance ct. In Huygens’ construction the wavefront at time t later

Mirror

A

B’

A’ B

C’

C

’θθ

Fig. 2.3 Incident wavefront ABC and partially reflected wavefront A′B′C′ at a plane
mirror. The arrow-headed broken line indicate ray paths.

is the surface tangential to these secondary waves: A′B′C′. The part
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B′C′ is still an incoming wave while part A′B′ is a reflected; and these
movements are indicated by the arrows on the rays. In the triangles
AA′B′ and B′BA:

AA′ = BB′ = ct; (2.1)

AB′ is common; (2.2)

� AA′B′ = � ABB′ = 90◦. (2.3)

Thus the triangles are similar and we have the law of reflection:

θ′ = θ. (2.4)

θ

θ

Ray

Mirror

Wa
vef
ron
t

Normal

Fig. 2.4 The angles between the ray
and the surface normal and between the
wavefront and the mirror surface are
equal.

Now the angle between the ray and the normal to the mirror is identi-
cal to the angle between the wavefront and the mirror surface, as shown
in figure 2.4. Thus the incident and reflected rays make equal angles
with that normal. The plane formed by the incident and reflected rays
contains the normal to the surface at the point of reflection; it is called
the plane of incidence.

2.1.2 Snell’s law of refraction

The refraction of light can be handled similarly using Huygens’ principle.
In figure 2.5 light is incident on a plane interface separating a medium of
refractive index n1 from one of refractive index n2; the velocity of light
in the two media is thus v1 = c/n1 and v2 = c/n2. PP′ is perpendicular
to the interface. The choice is made that n1 > n2: the first medium is
said to be optically denser so that light travels more slowly in the first
medium than in the second. ABC is an incoming wavefront that has

Surface
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B’

A’

B

C’

C
P

P’

2θ

1θ

2θ

1θ

1n

2n

2 > n1n

Fig. 2.5 Refraction at a plane surface separating media of refractive indices n1 and
n2, with n1 > n2.
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just reached the interface at A. Spherical waves originating from A, B
and C are shown at a time t later. Then:

B′B = ct/n2 and AA′ = ct/n1. (2.5)

Now
AB′ = AA′/ sin θ2 = BB′/ sin θ1. (2.6)

Thus
ct/n2 sin θ2 = ct/n1 sin θ1, (2.7)

so we obtain Snell’s law

n1 sin θ1 = n2 sin θ2. (2.8)

Here the plane of incidence contains the incident ray, the refracted ray,
the surface normal and the reflected ray.

A different way of presenting Snell’s law is informative and will also
be useful later. The starting point is to note that the waves match at the
interface: exactly at the boundary the wave peaks in the second medium
are in precisely the same places as the wave peaks in the first medium.
The wavefront A′B′C′ in figure 2.5 illustrates this. The wavelength in the
first medium, λ1, can be expressed in terms of the free space wavelength,
λ, thus

λ1 = v1/f = c/(f n1) = λ/n1, (2.9)

with a similar expression for the second medium. Note that the fre-
quency of em radiation remains the same in going from one material to
another because an electric field at frequency f arriving at the interface
produces effects at the same frequency f in the medium on the far side
of the surface. Now using the fact that the separation between peaks in
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Fig. 2.6 ABC is the actual optical path
of light rays between points A and C.
The broken line is a nearby path.

the two media are equal along the interface, we have:

λ1/ sin θ1 = λ2/ sin θ2. (2.10)

In terms of the wave number (k = 2π/λ), this becomes:

k1 sin θ1 = k2 sin θ2. (2.11)

2.1.3 Fermat’s principle

Yet another way can be used to prove Snell’s law which illustrates a
principle that was first enunciated in a clear form by Fermat. He pro-
posed that the optical path taken between two points by light is the
path which minimizes the travel time of light. The travel time is

T =
∑

i

ni�i/c, (2.12)

where the sum is taken over all path elements of length �i and refractive
index ni. An optical path length is defined as

L =
∑

i

ni�i. (2.13)



2.1 Light rays and Huygens’ principle 35

Fermat’s principle correctly predicts that rays in a uniform medium
follow straight lines. Its success in the case of refraction is easily proved.
The actual path of light, ABC, shown in figure 2.6 has an optical length

L = n1h1 sec θ1 + n2h2 sec θ2, (2.14)

and the travel time is L/c. A small displacement, dx, of B to the left
along the interface the results in a change in path length

dL = n1h1 sec θ1 tan θ1dθ1 + n2h2 sec θ2 tan θ2dθ2, (2.15)

where dθ1 and dθ2 are the corresponding changes in the angles θ1 and
θ2 respectively. From the diagram we have

x1 = h1 tan θ1

x2 = h2 tan θ2.

Now dx = −dx1 = dx2, so that

dθ1 = − cos2 θ1dx/h1,

dθ2 = + cos2 θ2dx/h2.

Substituting for dθ1 and dθ2 in eqn. 2.15 gives

dL = −n1 sin θ1dx + n2 sin θ2dx.

For a minimum of the path length we require dL/dx = 0, which imme-
diately gives Snell’s law. The reader may like to test Fermat’s principle
in the case of reflection. It is significant that from the simple idea that
optical paths should be of extremal length it has been possible to re-
produce ray optics. From the standpoint of classical physics Fermat’s
principle is simply the principle of least action applied to optics.

A’’

A A’

P’

P

a a

Mirror

Object Image

Eye

Fig. 2.7 Virtual image A′ of point A,
distance a from mirror, and focused on
the retina at A′′.

2.1.4 Simple imaging

Figure 2.7 shows how an image is formed by a plane mirror. A cone of
rays diverging from the object A are reflected from the mirror between P
and P′ and focused by the eye onto the retina at A′′. The rays appear to
diverge from the mirror image A′: AOA′ is perpendicular to the mirror
and AO = OA′. Figure 2.8 shows another simple situation where the

Object

Image

s

a
d

i

r

Water: n=1.33

Air: n=1.00

Fig. 2.8 Viewing an object in an opti-
cally denser medium.

object viewed lies within a layer of a material of refractive index n. With
the notation of the diagram:

n sin r = sin i. (2.16)

For the case that the object is viewed close to the surface normal so that
the angles i and r are small:

a = s/ tan i ≈ s/ sin i; d = s/ tan r ≈ s/ sin r. (2.17)

Then:
d/a = sin i/ sin r = n. (2.18)
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Hence the depth appears shallower by the ratio of the refractive indices.
When an object is viewed through a block of glass the image is displaced
sideways as in figure 2.9; and the displacement, d, changes as the block
is rotated. Such a rotatable, parallel-sided glass plate provides simple
lateral alignment in some optical instruments.

2.1.5 Deviation of light by a triangular prism

Simple prisms like that shown in figure 2.10 are used to disperse white
light into the different colours. Light from a source is first collimated into
a parallel beam whose cross-section would be a thin line perpendicular
to the diagram. The incoming arrow indicates this beam incident on the
prism. If the light is of a single wavelength it will follow the arrowed
line and produce a line image perpendicular to the diagram on a screen
at the right hand side of the prism. Figure 2.11 shows typical spectra
produced on the screen when the source slit is illuminated by discharge
laboratory lamps each containing gas of one element. Each line in the

i

r
r

iAir

Glass

Air

d

Fig. 2.9 Displacement of an image by
a thick parallel sided glass plate.

spectrum is produced by light of a different wavelength emitted by the
gas in the lamp. They are separated, dispersed, because the refractive
index of glass varies across the visible spectrum. The angular deviation
of the ray drawn in figure 2.10 is

δ = i − r + e − s. (2.19)

Summing the angles of the triangle bounded by the ray and the prism
edges, gives

(90◦ − r) + (90◦ − s) + α = 180◦,

so that,
r + s = α. (2.20)

Then eqn. 2.19 becomes

δ

α

i r s e
β γ

Fig. 2.10 Ray path through prism.
The deviation δ is minimum in the sym-
metrical configuration where i = e.

δ = i + e − α. (2.21)

Applying Snell’s law to the two refractions

e = sin−1 (n sin s)

= sin−1 [ n sin (α − r) ]

= sin−1 (n sinα cos r − n cosα sin r). (2.22)

Now

sin r = sin i/n, and cos r =

√
1 − sin2 i/n2.

Making these substitutions in eqn. 2.22 gives

e = sin−1

[
sin α

√
(n2 − sin2 i) − cosα sin i

]
. (2.23)

Then replacing e in 2.21,

δ = i − α + sin−1

[
sin α

√
(n2 − sin2 i) − cosα sin i

]
. (2.24)
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The dependence of the deviation on the angle of incidence is plotted in
figure 2.12 for a prism with an apex angle α equal to 30◦ and a refractive
index of 1.5. There is a quite shallow minimum in the distribution of
deviation against the angle of incidence. The minimum occurs in the
symmetric arrangement where e = i, and s = r. At minimum deviation
eqns. 2.20 and 2.21 become

r = α/2, and δmin = 2i − α. (2.25)

Applying Snell’s law at minimum deviation at either surface, and using
2.25:

n = sin i/ sin r = sin [ (δmin + α)/2 ]/ sin (α/2). (2.26)

Now the refractive index of glass changes with wavelength. Thus mini-
mum deviation occurs at different angles for the different colours, with
the results shown in figure 2.11. In the case of borosilicate crown glass
the refractive index changes from 1.51 to 1.54 between the red and blue
ends of the spectrum. Of equal importance for spectroscopy, the refrac-
tive index changes monotonically with wavelength for any common type
of glass so that the dispersion does not superpose colours. Consequently
a prism gives a spectrum in which the wavelength increases smoothly
from one end to the other. A measurement of the angle of minimum devi-
ation easily determines the refractive index to one part in ten thousand.

Hydrogen

Mercury

Helium

Neon

Wavelength
in nm.  400     550     700

Fig. 2.11 Spectral lines observed with
lamps containing gases of various ele-
ments at low presure.

When the prism angle is small such that sinα ≈ α eqn. 2.26 becomes

n = (δmin + α)/α, (2.27)

whence
δmin = (n − 1)α. (2.28)

The deviation minimum is flatter for a narrow angle prism, so that this
equation for the minimum deviation is a good approximation to the
actual deviation over a wide range of angles of incidence around the
symmetric arrangement.

2.2 Total internal reflection

When light is incident on a surface between two materials from the more
optically dense material then at sufficiently large angles of incidence the
refracted ray is suppressed. Rewriting Snell’s law:
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Fig. 2.12 The deviation of a ray pass-
ing through a prism as a function of the
angle of incidence.

sin θ2 = (n1/n2) sin θ1, (2.29)

so that
θ2 > θ1. (2.30)

There is therefore an angle of incidence called the critical angle θc, at
which the angle of refraction will reach 90◦:

sin θc = n2/n1. (2.31)
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Fig. 2.13 Refraction at an optically denser medium. Angle of incidence (a) less than
the critical angle, (b) equal to the critical angle θc, and (c) greater than the critical
angle.

At larger angles of incidence the light is totally reflected and there is
no refracted ray travelling into the less optically dense material. Figure
2.13 shows the situation for increasing angles of incidence: for the an-
gle of incidence less than the critical angle; equal to the critical angle
of incidence when the refracted ray is parallel to the surface; and for
a larger angle of incidence when the reflection is total. The property
of total internal reflection is used widely to guide light with low loss.
These applications include the use of prisms in optical instruments to
manipulate light beams, and transmission of electromagnetic radiation
along optical fibres.

2.2.1 Constant deviation prism

Figure 2.14 shows a single compound prism which converts minimum
deviation into a fixed deviation of 90◦. One such minimum deviated ray
is indicated on the diagram. The minimum deviation is produced not
by a prism of apex angle 60◦ but effectively by two prisms, each of apex
angle 30◦. Between these a 45◦ prism is inserted to give a total internal
reflection. The notional outlines and angles of these components are
shown in the diagram. If the incident ray encounters the first half prism
at minimum deviation, then it will leave this half prism perpendicular
to the mid face. The TIR then deviates the ray exactly 90◦ so that it
enters the second half prism perpendicular to its mid face also, and then
completes the minimum deviation. The total deviation of the minimum
deviated ray is just the 90◦ deviation produced by TIR: the deviations
at the external surfaces of the half prisms are equal, but now in oppo-
site senses, so they cancel. This prism is used in constant deviation

030

030

045

Fig. 2.14 Constant deviation prism.
The dotted lines mark the boundaries
of the hypothetical component prisms.
The ray shown undergoes minimum de-
viation.

spectrometers. The light is directed in a pencil beam at the prism by a
collimator and observed by a telescope at right angles, all mounted in a
fixed frame. Only the prism needs to be rotated to bring each part of
the spectrum into view at minimum deviation.
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2.2.2 Porro prisms

Porro prisms have angles of 45◦, 45◦ and 90◦. A pair of them arranged as
shown in figure 2.15 are used in binoculars to correct the inversion of the
image produced by the lenses, giving an upright final image. There are
four total internal reflections on the light path shown, and each reflection
turns a right handed object into a left handed image, and vice versa. The
overall effect is to preserve the original orientation, a right handed object
remains right handed. Porro prisms used in binoculars have a narrow

Fig. 2.15 This arrangement of two Porro prisms is used in binoculars to correct the
inversion of the image produced by the lenses, giving a final upright image. The light
path is shown for an object and its inverted image. Where the optical path lies inside
the prisms the ray is indicated with a broken line.

groove ground across the centre of the front face, whose purpose is to
absorb scattered light; light entering from outside the field of view is
scattered at glancing angles from the front faces into the field of view
and would otherwise give a background haze. The groove runs vertically
(horizontally) on the left-hand (right-hand) prism. Another advantage
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Fig. 2.16 The upper panel shows a cor-
ner cube and unit vectors perpendicu-
lar to the faces. The lower panel shows
TIR from the x-face.

accruing from the inclusion of a pair of Porro prisms in binocular designs
is that the front lenses can be displaced to be further apart than the
eyes are; which gives improved depth discrimination. Finally the use of
the prisms allows the designer to fold the optical path, so making the
instrument compact and easy to manipulate.

2.2.3 Corner cube reflector

A corner cube reflector is, as the name implies, a corner cut from a
glass cube. An example is shown in the upper panel of figure 2.16.
The sloping face makes equal angles with the cube faces. When a ray
enters through the sloping face it will undergo internal reflections in
some order from each of the three perpendicular faces. It finally emerges
accurately parallel to its original path but travelling in the opposite
direction. To prove this assertion we consider an incident ray whose
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direction on entering the corner cube is along the direction given by the
unit vector

aex + bey + cez,

where the normals to the three mutually orthogonal surfaces of the cor-
ner cube are the unit vectors ex, ey and ez. After reflection from the ex

surface the ray direction becomes

−aex + bey + cez. (2.32)

This is shown in the lower panel of figure 2.16. After reflections from all
three orthogonal faces the exiting ray points along the direction

−aex − bey − cez (2.33)

which has reversed the incident ray. This property guarantees that what-
ever tilt the incoming beam has, it will always be reflected back whence
it came. A square of 100 such corner cubes was left on the Moon during
the Apollo XI mission and they provide a convenient mirror target for
measurements of the Moon–Earth separation. Bicycle reflectors are ar-
rays consisting of large numbers of small corner cubes moulded in clear
plastic. They operate on the same principle and because the reflection
at each facet is by TIR there is no need to metallize the back surface.

2.2.4 Pulfrich refractometer

Sample

cθ

eθ

Fig. 2.17 The Pulfrich refractometer
is illuminated by a focused beam. The
critical ray’s path carries the solid ar-
rows. Measurement of the critical angle of reflection can be used to obtain an

accurate determination of refractive index for solid and liquid samples.
Figure 2.17 shows a Pulfrich refractometer with the test material, re-
fractive index n, sitting on a 45◦/45◦/90◦ reference prism of accurately
known refractive index, nr > n. Light of the selected wavelength coming
from the left is focused onto the boundary so that the beam covers an
angular range down to glancing incidence at the interface. The angular
range of the beam entering the prism has a sharp cut-off at the critical
angle, θc, where sin θc = n/nr. Then applying Snell’s law to the critical
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Fig. 2.18 An anamorphic prism pair.

ray at its exit from the prism

sin θe = nr sin (90◦ − θc)

= nr cos θc

= nr

√
1 − sin2 θc

=
√

n2
r − n2. (2.34)

Thus the specimen’s refractive index is:

n =

√
n2

r − sin2 θe. (2.35)

Thus all that is required to determine the sample’s refractive index is
the measurement of the angle θe.
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Example 2.1

Figure 2.18 shows a beam incident on two identical prisms. These are
oriented so that the beam enters each at the same angle of incidence,
and in the case shown leave perpendicular to the exit surfaces. If the
refractive index of the glass is n show that the beam width in the plane
of the diagram is expanded by a factor

c/a = [ n2 − sin2 i ] / [ n cos i ]2.

If d is the width of the beam measured along the surface of the first
prism

a = d cos i; b = d cos t.

Thus

b/a = cos t/ cos i.

Similarly

c/b = cos t/ cos i.

Hence

c/a = cos2 t/ cos2 i

= [1 − sin2 t ] / cos2 i

= [1 − sin2 i/n2 ] / cos2 i

= [n2 − sin2 i ] / [ n cos i ]2. (2.36)

The prisms do not affect the width of the beam in the perpendicular di-
mension. This arrangement of prisms is called an anamorphic pair and
it is used to render circular the elliptically shaped profile of a laser diode
beam. Anamorphic pairs are preferred over cylindrical lenses for circu-
larizing laser diode beams because the prisms occupy less space and are
cheaper. The degree of shaping can be altered as required by rotating
the prisms.

2.3 Optical fibre

An optical fibre consists of a cylindrical glass core surrounded by con-
centric glass cladding of slightly lower refractive index. Optical fibre
communication relies on total internal reflection to guide em radiation
along the core over paths extending to hundreds of kilometres. Near
infrared radiation is used, this being the wavelength range for which
absorption in the glass is at a minimum.
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Fig. 2.19 Longitudinal cross-section through an optical fibre illuminated by a point
source. The ray drawn is the one at the widest angle off axis to be totally internally
reflected at the core–cladding interface.

Figure 2.19 shows a cross-section taken along the fibre length. Some
radiation travels inside the core and is totally reflected at the core–
cladding interface. For clarity the diameter of the core in the diagram is
made overlarge. On the left is a point source and a ray from the source
which meets the core–cladding interface at the critical angle. After the
first reflection at this interface the ray will travel to the opposite side
of the core where it will meet the core–cladding surface at the critical
angle of incidence, just as in the first reflection. Evidently, once a ray is
trapped in the core it generally remains in the core. The rays from the
source which are retained inside the core lie inside the cone of semi-angle
θacc. This acceptance angle will be a function of the refractive indices of
the external medium, n, the core, nc and the cladding, ne. Snell’s law
can be applied to the ray where it enters the core:

n sin θacc = n1 sin θ. (2.37)

At the core–cladding interface for the critical ray:

n1 sin θc = n2 sin 90◦ = n2, (2.38)

but θ = 90◦ − θc, so that:

n1 cos θ = n2. (2.39)

Hence

sin θ =
√

1 − n2
2/n2

1. (2.40)
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Substituting for sin θ in 2.37:

n sin θacc =
√

(n2
1 − n2

2). (2.41)

The quantity n sin θacc is called the numerical aperture (NA) of the fibre.
The square of the NA, defined in this way, is a standard measure of the
light gathering power of an optical instrument, not simply of optical
fibres. A fuller account of the properties and use of optical fibres is
given in Chapter 16.

Exercises

(2.1) A thin sheet of plastic is placed on a microscope
stage. The distance between the top and bottom
surfaces as measured by the microscope is 300 µm.
If the plastic has refractive index 1.55 what is its
actual thickness?

(2.2) The angle of minimum deviation of a monochro-
matic beam of light is 20◦ as measured with a tri-
angular prism with apex angle 25◦. What is the
refractive index of the prism for this wavelength of
light?

(2.3) What is the critical angle for a diamond/air inter-
face, and for a diamond/water interface? The re-
fractive indices of water and diamond are 1.33 and
2.47 respectively.

(2.4) What is the NA of an optical fibre with core and
cladding of refractive indices 1.505 and 1.50 respec-

tively at wavelength 1.3 µm?

(2.5) A glass thread in air would guide light in the same
way that an optical fibre does. Why is this not a
competitive solution for communications?

(2.6) Use Fermat’s principle to prove the law of reflec-
tion.

(2.7) A light ray travels through a pile of clear accurately
parallel faced glass sheets, each in contact with its
neighbours above and below. The glass sheets can
have different refractive indices. If the angle of inci-
dence of the ray is 45◦ and it emerges from the final
sheet what can you say about the direction of the
emergent ray? Will it ever be the case that total
internal reflection will prevent the ray traversing all
the sheets?



This page intentionally left blank 



Spherical mirrors and

lenses 3

3.1 Introduction

A good proportion of the adult population need lenses, in the form of
spectacles or contact lenses, to carry out day-to-day activities such as
driving. Mirrors also abound: in the home concave mirrors provide
a magnified close-up view of the face, and convex mirrors on the car
driver’s door give the driver a wider field of view, with the catch that
the car following appears further off than it actually is! Everything seen
live on TV comes through a lens system, often of sophisticated design.
These lenses contain ten or more elements: they can zoom in without
loss of focus, compensate for the shaking hand that holds them, and
provide an image that faithfully reproduces the colour and proportions
of the scene. Other lens systems are used by scientists and engineers
to study the very small (microscopes) and the very distant (telescopes).
On many production lines there are monitoring systems relying on lenses
to give non-contact measurements of size, location and orientation of
rapidly moving items. Lenses and mirrors can also produce an intense
concentration of energy at the focal point: this ranges from a lens con-
centrating sunlight so that a piece of paper catches fire to the proposed
ignition of nuclear fusion in deuterium/tritium pellets using laser beams.

The properties of single lenses, single mirrors and complex combina-
tions can be predicted using the laws of reflection and refraction derived
in Chapter 2. Most of the lenses and mirrors met in instruments have
spherical surfaces. When the rays from an object are paraxial, that is to
say they lie close to the axis of an optical system and make small angles
with that axis, then the equations for calculating the image position for
optical systems with spherical surface are relatively simple. This is the
paraxial approximation, and the paraxial formulae for determining the
image position in the cases of reflection and refraction will be derived
first. Then the paraxial formulae for lenses and systems of lenses are
derived and reformulated in the more convenient matrix form.

Rays from a point object that are either at wide angles to the optical
axis of the lens/mirror, or travel far from the optical axis will not con-
verge precisely at the paraxial image point. The deviations of these rays
from the paraxial image are called aberrations. Because the refractive in-
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Fig. 3.1 Cartesian sign conventions.

dex changes with wavelength the position of the image formed by a lens
will depend on wavelength, and this will be the case even for paraxial
rays. The resulting deviations from perfect imaging are called chromatic
aberrations. Mirrors and instruments that only use mirrors are evidently
free from chromatic aberrations. In the latter half of the chapter aber-
rations and the techniques used to reduce them are described.

3.1.1 Cartesian sign convention

Figure 3.1 introduces the Cartesian sign convention that will be used
systematically when analysing the paths of rays incident on mirrors,
refracting surfaces and lenses. The point on the mirror or refracting
surface lying on the optical axis is called the pole or vertex. In the case
of that useful ideal, the thin lens having zero thickness, the pole is at
the centre of the lens. This point is taken as the origin of Cartesian
coordinates, and the object distance, image distance and radius of cur-
vature are all measured from the pole. The positive direction along theThese conventions lead to a relatively

simple formalism: the paraxial lens and
mirror formulae for imaging and mag-
nification are identical; surfaces and
lenses that converge (diverge) a par-
allel beam all have positive (negative)
power; the transition to matrix manip-
ulation is simple.

optical axis is always the direction light is travelling. Thus the object
distance is positive if it is along the direction of the incident light, while
the image distance and radius of curvature are positive if they are in the
direction of the outgoing light. Distances upward from the optical axis
are positive. Most optical systems consist of several mirrors, refracting
surfaces or thin lenses. When calculating the reflection or refraction at
each such element the coordinates for that element must be used.
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Sometimes it is useful to distinguish real from virtual images or ob-
jects. In figure 2.7 the object is real but the image is virtual. The
actual rays start from real objects and pass through real images. Ob-
jects and images are virtual when only the extensions of the actual rays
pass through them.

3.2 Spherical mirrors

Ray paths after reflection from spherical mirrors are deduced from the
reflection laws of Chapter 2. The reflected ray lies in the plane defined
by the incident ray and the normal to the surface at the point of contact,
and it makes an angle to the normal equal to that made by the incident
ray. Figure 3.2 shows the ray construction used for a concave mirror

X

IO C P

h

u

v

r

α β γ

θ
θ

Fig. 3.2 Reflection at a spherical mirror with centre of curvature at C. O is the
object and I the image. A representative ray from O is reflected from the mirror at
X toward I.

forming the image of an object at O a distance u from the mirror. The
mirror has radius of curvature r and its centre of curvature is at C. A
representative ray is reflected from the mirror at X a height h above
the optical axis and travels to cut the axis at I a distance v from the
mirror. The angles are drawn large here for clarity: the rays considered
are paraxial so that the angles are in fact very small. We will show that
all paraxial rays reflected from the mirror converge on this same point,
proving that I is the image of O.

Applying the law of reflection at X the angles marked θ are equal. Note
that with the Cartesian convention u is measured opposite in direction
to the incoming light so it is negative; r and v are measured in the
direction of the outgoing light so both are positive. The labelled angles
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are given in the paraxial approximation by

α = −h/u; β = h/r; γ = h/v. (3.1)

From triangles OCX and OXI respectively

β = α + θ, and γ = α + 2θ. (3.2)

Eliminating θ we obtain

2 β = γ + α. (3.3)

Substituting for the angles and cancelling h gives an equation indepen-
dent of the choice of ray

1/v = 1/u + 2/r, (3.4)

which is the paraxial imaging equation for a spherical mirror. Now
consider light coming from a distant object lying on the optical axis. It
arrives as beam parallel to the axis. After reflection this beam converges
at the focus or focal point, F, as shown by the solid arrowed lines in
figure 3.3. The plane perpendicular to the optic axis through the focus
is called the focal plane. Substituting in the above equation shows that
the distance from the mirror to the focal plane is r/2, which is called
the focal length, f , of the mirror. It locates the focus half way between
the mirror and its centre of curvature. The focal length is thus positive
for a converging mirror, that is one concave toward the incoming light:
it is negative for a diverging, convex mirror. Then re-writing the above
equation

1/v = 1/u + 1/f. (3.5)

The power of the mirror is defined as P ≡ 1/f . The mirror equation,

F

2I

α

α

α

f

Fig. 3.3 F is the image of a distant
point object lying on the optical axis.
I2 is the image of a similar distant point
lying off-axis.

eqn. 3.5, applies equally to concave as well as convex mirrors and for
all locations of the object; whether it is in front of the mirror, or virtual
and behind the mirror.

Figure 3.3 shows images formed by light from two distant ojects, such
as stars: one on the optical axis, the other off axis at an angle α. The
incoming parallel rays from the on-axis star are shown as solid lines in
the figure; while the incoming parallel rays from the second star are
drawn as broken lines. Each set converges to an image point in the

v
u

Mirror

Image

Object

θ
θ

Fig. 3.4 Transverse or lateral magnifi-
cation of a finite width object.

focal plane: for the on-axis star at F, and for the star off-axis at I2.
The angular separation α of the stars determines the separation of their
images in the focal plane, and for paraxial rays this separation is simply,

s = fα. (3.6)

An extended plane object at a distance u from a mirror will produce a
plane image at a distance v provided that the rays from all parts of the
object are paraxial. This object will in general be of a different size to
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the object, as illustrated in figure 3.4 for the case of a concave mirror.
The transverse or lateral magnification is

mt = v/u. (3.7)

Not only will the image differ from the object in its lateral size, but also
in its length along the axial direction. Consider therefore an object in
the form of a rod of length ∆u placed along the optical axis at a distance
u from the mirror. Differentiating the mirror equation, eqn. 3.5 relates
the image length along the optical axis ∆v to ∆u,

(1/v2)∆v = (1/u2)∆u.

The longitudinal magnification is defined as

C F O I

Concave
mirror

Fig. 3.5 Ray tracing for an object O in
front of a concave mirror with centre of
curvature C and focal point F. The im-
age is formed at I. Rays are solid lines,
construction lines are broken.

ml = ∆v/∆u = (v/u)2. (3.8)

If the object in figure 3.4 moves toward the mirror ∆u is positive. Then
∆v is also positive and the image moves away from the mirror.

3.2.1 Ray tracing for mirrors

Ray diagrams are helpful in visualizing the formation of images by mir-
rors and lenses. The three most useful rays are shown in figures 3.5 and
3.6 for concave and convex mirrors respectively. Actual ray paths are
drawn in solid lines, while the construction lines described below are
broken.

• A ray from the object towards the focus in the case of figure 3.6
and away from the focus in figure 3.5. After reflection this ray
travels parallel to the optical axis.

• A ray from the object going parallel to the axis. After reflection
from the mirror it travels through the focal point, as in figure 3.5,
or away from the focal point as in figure 3.6.

• A ray from the object pointing toward the centre of curvature as
in figure 3.6 or directly away from the centre of curvature as in
figure 3.5. After reflection this ray will travel back along its own
path because it is travelling radially with respect to the mirror.

Having three (or more) rays permits a simple cross-check on the accuracy
of the ray tracing: they must intersect at a single image point. All the

C
F

O I

mirror
Convex

Fig. 3.6 Ray tracing for an object O in
front of a convex mirror centre of cur-
vature C and focal point F. The image
is formed at I. Rays are solid lines, con-
struction lines are broken.

rays from the object will, after reflection, either converge towards a real
image; or in the case of a virtual image, as in figure 3.6, the reflected
rays diverge from the image. The concave mirror example shows how an
enlarged image is formed of a person’s face placed nearer than the focal
point. The convex mirror gives a wide field of view and a demagnified
image, which are features useful for surveillance.
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Fig. 3.7 Refraction at a spherical surface. A ray from the object O on the optical
axis is refracted at X towards the image I. The radius from the centre of curvature,
C, through X is shown as a broken line.

3.3 Refraction at a spherical interface

In this section an equation is found for the position of the image when an
object is viewed through a spherical refracting surface. Lenses rely for
their focusing power on the refraction at a pair of spherical interfaces so
the analysis presented here will prepare the ground for deriving the thin
lens equation. As noted earlier we make the paraxial approximation: all
rays are at small angles to the optical axis and any distances off-axis are
also small. Figure 3.7 shows the path of a paraxial ray from an object,
O, on axis in a medium of refractive index n1, which is refracted at a
spherical interface into a second medium of refractive index n2 at X.
Then the ray cuts the optical axis at I. The surface has radius r and
we choose n2 > n1. Applying Snell’s law to the refraction at X, and
remembering that all the angles are small, we have

n1θ1 = n2θ2. (3.9)

For the angles shown, and recalling that according to the Cartesian sign
convention u will have a negative value

α = −h/u, β = h/r, γ = h/v. (3.10)

From triangles OXC and CXI respectively,

θ1 = α + β, and θ2 = β − γ. (3.11)

Substituting for θ1 and θ2 in eqn. 3.9

n1(α + β) = n2(β − γ).

Rearranging this gives

n1α + n2γ = (n2 − n1)β.
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Now substituting for the angles using eqn. 3.10 gives

n2h/v − n1h/u = (n2 − n1)h/r.

Cancelling h gives the imaging equation for a spherical refracting surface
in the paraxial approximation

n2/v − n1/u = (n2 − n1)/r. (3.12)

The quantity
P = (n2 − n1)/r (3.13)

is known as the bending power or simply the power of the refracting
surface.

3.4 Thin lens equation

Figure 3.8 shows a standard thin lens with spherical refracting surfaces.
The lens is assumed to be immersed in one medium of refractive index
n1 while the lens itself has refractive index n2. Applying eqn. 3.12 to

I

Object I’
Final image

u

v = u’

v’

1n1n

2n

Fig. 3.8 Formation of an image of an object on the optical axis of a thin lens. The
intermediate image produced by refraction at the first lens’ surface is I. This is imaged
by refraction at the second surface at I′.

the refraction at the first surface

n2/v − n1/u = (n2 − n1)/r1, (3.14)

where r1 is the radius of curvature of the first surface. Although the
rays do travel a finite distance inside the lens this is neglected in what is
called the thin lens approximation. Then the object distance of I from
the second surface is just the image distance of I from the first surface

u′ = v.
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Applying eqn. 3.12 now to the refraction at the second surface

n1/v′ − n2/u′ = (n1 − n2)/r2, (3.15)

where r2 is the radius of the second lens surface, and v′ is the distance
of the final image, I′, from the lens. Adding eqns. 3.14 and 3.15 gives

2F

f

Fig. 3.9 Image formed by a positive
lens with light incident from an object
at infinity.

2F

f

Fig. 3.10 Image formed by a negative
lens with light incident from an object
at infinity.

n1/v′ − n1/u = (n2 − n1)/(1/r1 − 1/r2).

Here we drop the prime on the final image distance to obtain the paraxial
thin lens equation

n1/v − n1/u = (n2 − n1)/(1/r1 − 1/r2) ≡ 1/f. (3.16)

If the lens is in air the thin lens equation becomes

1/v − 1/u = (n − 1)/(1/r1 − 1/r2) ≡ 1/f, (3.17)

where u is the object distance, v is the final image distance and n is the
refractive index of the lens. Recalling the analysis of the mirror we can
recognize that the quantity f defined above is the lens focal length. The
bending power of a thin lens is the sum of the powers of the two surfaces

F = P1 + P2

= (n − 1)(1/r1 − 1/r2) (3.18)

≡ 1/f. (3.19)

If an object is located at infinity then its image is at the focus of
the lens and vice versa. The situation for the lens is symmetric: eqn.
3.16 gives the same focal length f whichever lens surface is facing the
incoming light. Reversing the lens exchanges the radii, r1 ⇒ −r2 and
r2 ⇒ −r1, and then 1/r1−1/r2 is unchanged. Figure 3.9 shows how light
from a distant point on axis gives an image at a distance f from the lens.

All the lenses discussed so far have positive focal length f and bring a
parallel beam to a real focus, in the language of Section 3.1.1. Having two
convex faces they are called biconvex lenses. Both surfaces are positive
because each would alone converge a parallel beam: referring to eqn.
3.13 P is positive for both surfaces. By contrast in figure 3.10 a biconcave
lens is drawn, each of whose surfaces would diverge a parallel beam and
have negative power. Then eqn. 3.17 shows that the focal length f
is negative. After passing through the lens an incident parallel beam

Biconvex Planoconvex Positive
meniscus

Negative
meniscus

Planoconcave Biconcave

Fig. 3.11 The range of lens’ shapes.
Lenses in the top row are all converging
lenses and those in the bottom row are
all diverging lenses.

diverges so that, as indicated by the dotted construction lines in figure
3.10, it appears to come from a focal point in the incident medium. The
focal point is virtual. In the case that one surface is convex and the
other concave the net focusing depends on the relative curvature of the
surfaces. If the positive (convex) surface is more strongly curved then
the lens is convergent and has positive focal length. It is called a positive
meniscus lens. Conversely if the concave surface is more strongly curved
then the lens is overall divergent: it is a negative meniscus lens. Some
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examples of lens types are drawn in figure 3.11. Proceeding from left to
right along the upper row, and then along the lower row the lens power
steadily decreases. A plane sided sheet of glass marks the boundary
between positive and negative lenses: it has infinite focal length and
zero power.

3.4.1 Ray tracing for lenses

Three rays useful in visualizing the formation of images by a thin lens are
shown in figure 3.12 for a positive lens and in figure 3.13 for a negative
lens. The rays are:

1F
2Fα

α

-f f

u v

O
I

Positive
lens

Fig. 3.12 Ray tracing through a posi-
tive lens. The object at O produces a
real image at I.

• A ray from the object through the pole (centre) of the lens. This
ray emerges undeviated because at the centre of the lens its faces
are parallel. The displacement sideways is negligible because the
lens is thin.

• A ray from the object travelling parallel to the optical axis. On
leaving the lens it travels towards the second focal point F2 in the
case of a positive lens, and away from F2 in the case of a negative
lens.

• A ray through the first focal point F1 for a positive lens or towards
F1 for a negative lens. After the lens it travels parallel to the
optical axis.

Notice that for the negative lens the focal points (F1 and F2) have
switched sides because the focal length is negative. The rays from the
object in figure 3.12 converge after passing through the lens to a real
image. In the case of the negative lens in figure 3.13 the rays diverge
after passing through the lens so that they appear to come from a vir-
tual image behind the lens. The distances from the lenses have been
chosen to be u = −2|f | in each case. Applying the thin lens equation
3.17 gives v = 2f for the positive lens and v = 2f/3 for the negative lens
example. The reader may like to construct examples where a positive
lens produces a virtual image or a negative lens produces a real image.

2F 1F

f
-fu

v

O I

Negative
 lens

Fig. 3.13 Ray tracing through a nega-
tive lens. The object at O produces a
virtual image at I.

The lateral magnification produced by a thin lens can be calculated
by considering the ray through the lens’ pole in either figure 3.12 or
3.13. The size of the object is −u tan θ and of the image −v tan θ, where
θ is the angle the ray makes with the optical axis. Hence the transverse
magnification is

mt = v/u. (3.20)

When a short object is put along the optical axis the magnification can
be obtained by differentiating eqn. 3.17:

−(1/v2)∆v + (1/u2)∆u = 0,

so that longitudinal magnification is

ml = (v/u)2. (3.21)

If the object moves to the right, then the image moves right too.
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Example 3.1

Two lenses are separated by 10 cm, the first of focal length +20 cm, the
second of focal length −20 cm. An object is placed 40 cm in front of the
positive lens. Where is the final image? What is its size? Is it upright
or inverted? Use ray tracing to check the answer.

First step

Second step

Object

Image

Object

Image

F1
F2

F1
F2

Fig. 3.14 Steps in dealing with image formation by a sequence of lenses. In the first
step the second lens is ignored, and in the second step the first lens is ignored. The
first and second focal points are labelled for each step.

The action of each lens is treated in its turn, ignoring the other one.
These two steps are illustrated in figure 3.14, where the lens with the
broken outline is the inactive one. For the first lens, in eqn. 3.17

u = −40, f = +20,

so that

1/v = −1/40 + 1/20 = 1/40.

Hence the image distance is +40 cm.

Now this image lies 30 cm to the right of the negative lens. The rays
are refracted before they get to this image point by the negative lens,
so this is a virtual object for the second lens. The values to be inserted
in eqn. 3.17 when calculating the final image produced by the negative
lens are

u = +30, f = −20,

so that

1/v = +1/30− 1/20 = −1/60.
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Hence the final image distance is located 60 cm to the left of the negative
lens, and so it is virtual. Rays emerge from the negative lens pointing
back to this location. The image magnification is the product of the
individual lens magnifications. Thus

m = (v/u)+lens(v/u)−lens = [+40/(−40)][−60/(+30)] = +2,

hence the image is twice as big as the original object and upright.

Figure 3.14 shows the ray constructions required following the method
given in Section 3.4.1. The upper diagram shows the construction for
the positive lens; the lower for the negative lens. In the lower dia-
gram the actual ray paths are drawn with full lines and their extensions
to the object and image are drawn in broken lines. Notice that the
rays used for the construction are generally different for the two lenses.

3.5 Magnifiers

A single positive lens or loup is used by electronic technicians to improve
on the eye’s ability to resolve detail when wiring circuit boards. In the
lower half of figure 3.15 an object is placed at the near point which is the
point closest to the eye at which one can focus comfortably. For young
people the near point dnear is about 25 cm from the eye. In the upper
diagram a positive lens is placed in front of the eye, and now the eye is
relaxed, that is to say it is focused at infinity. The factor increase in the
image size produced by using the lens is

m = tanα/ tan β

= dnear/fe, (3.22)

where dnear is the distance to the near point. The magnification m can-
not be increased indefinitely. A limit is reached when the lens’ surfaces
become sufficiently curved that departures from paraxial imaging be-
come substantial. Magnification beyond a factor of about 10 with good
quality imaging requires the use of a compound microscope containing
two or more lenses.

ef
Focus

Eye

Eye

Retina

Retina

α α

β

Near point distance

Fig. 3.15 In the lower diagram the
eye views an object located at the near
point. In the upper diagram the same
object is viewed through a positive lens,
of focal length fe, with the eye relaxed.

3.6 Matrix methods for paraxial optics

The analysis of optical systems with several optical components is best
handled using matrix methods. All refractions on the path of a ray are
similar to that occuring at X in figure 3.16 for a surface of radius of
curvature r. The paraxial approximation applies so that:

φ = y/r, (3.23)
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Fig. 3.16 Incident and refracted ray at an interface at a typical location in a com-
pound lens system.

and Snell’s law gives
n2θ2 = n1θ1. (3.24)

The θ angles are related to the tilts of the incoming and outgoing rays
respectively

θ2 = α2 + y/r, θ1 = α1 + y/r. (3.25)

Substituting for θ1 and θ2 in eqn. 3.24 yields

n2α2 + n2y/r = n1α1 + n1y/r,

so n2α2 = n1α1 − (n2 − n1)y/r,

or n2α2 = n1α1 − Py, (3.26)

where P is the power of the surface (n2 − n1)/r. The lateral position
after refraction is unchanged

y2 = y1. (3.27)

Equations 3.26 and 3.27 tell us what happens to position and angle at
an interface. The analoguous equations for a ray travelling in one and
the same material between two interfaces a distance l apart n2 = n1 and
α2 = α2 so that

n2α2 = n1α1, (3.28)

and y2 = y1 + n1α1t, (3.29)

where t = l/n1. This looks unnecessarily complicated, but brings the
advantage that the effect of free propagation in a medium and refraction
at a surface can each be expressed by a matrix operating on the same
column vector (

n2α2

y2

)
= M

(
n1α1

y1

)
. (3.30)
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In the case of refraction,

Mr =

(
1 −P
0 1

)
, (3.31)

and for travel in one medium,

Mt =

(
1 0
t 1

)
. (3.32)

In order that reflections can be included simply in the matrix analysis
the light path must be unfolded at each reflection as shown in figure
3.17. This shows the actual path of a ray in the upper panel and the
corresponding unfolded path in the lower panel. In the lower panel we

Actual path

Unfolded path

Lens A Lens AMirror

Fig. 3.17 Ray paths at reflection: in
the upper panel the actual path, in the
lower panel the unfolded path.

see that each refractive surface crossed after the reflection is placed at its
its mirror image in a plane through the mirror’s pole. Then the matrix
for a reflection is

Mm =

(
1 −P
0 1

)
. (3.33)

None of these three matrices depend on n1 or y1. The matrix that
describes an optical system will be the product of a sequence of such
matrices Mt1, Mr1, Mt2 .... Mtn

S = Mtn....Mt2Mr1Mt1. (3.34)

Mr, Mm and Mt have unit determinant, so any overall product matrix
S will also have unit determinant:

S =

(
a b
c d

)
, (3.35)

with ad − bc = 1.

In the case of a thin lens with surfaces of power P1 and P2

STL =

(
1 −P2

0 1

)(
1 −P1

0 1

)
=

(
1 −F
0 1

)
, (3.36)

where F = P1 + P2 ≡ 1/f is the power of the lens.

The techniques developed above are useful in calculations of the prop-
erties of lens systems. As an example take the case of a pair of thin
lenses, of power F1 and F2 which are separated by a distance t in air.
The overall matrix is

S =

(
1 −F2

0 1

)(
1 0
t 1

)(
1 −F1

0 1

)
=

(
1 − tF2 −F1 − F2 + tF1F2

t 1 − tF1

)
. (3.37)



58 Spherical mirrors and lenses

The total power of the lenses is thus

−F = −F1 − F2 + tF1F2. (3.38)

Rewriting this in terms of focal lengths, and reversing the signs, gives

1/f = 1/f1 + 1/f2 − t/f1f2. (3.39)

3.6.1 The equivalent thin lens

In the paraxial approximation any system of lenses can be replaced by an
equivalent thin lens. The result is proved formally in Appendix B using
matrix methods. Figure 3.18 shows the location of the cardinal planes
of the equivalent thin lens: the cardinal planes are the focal planes,
the principal planes and the nodal planes. The corresponding cardinal
points are located where the optical axis cuts each such cardinal plane.
P1 and P2 mark the two principal planes. In the case of a single thin lens
the principal planes would simply coincide. The focal length, f , of the

I
O

1F 2F

-f f

vu

1P 2P

α
α

Fig. 3.18 Equivalent thin lens for a
compound lens system. F1 and F2

mark the focal planes. P1 and P2 mark
the principal planes, and also the nodal
planes when the exit and entrance me-
dia are identical.

equivalent lens is measured from the principal plane to the focal plane.
Ray tracing in figure 3.18 resembles that for a single thin lens. A ray
striking the first principal plane at height h will emerge from the second
principal plane at precisely the same height h. The two principal planes
are therefore planes of unit magnification. When, as here, the same
medium fills the object and image spaces the principal points are also
points of unit angular magnification, that is they are nodal points. A
ray passing through the first nodal point at an angle α to the optical axis
will emerge from the second nodal point at exactly the same angle α. If
on the other hand the image and object media are different the principal
and nodal planes do not generally coincide. It is at first sight surprising
that the cardinal planes may lie inside or outside the region occupied by
the lenses; the principal planes may even cross over, that is to say the
first principal plane can lie to the right of the second principal plane. In
this case the right hand half of the diagram in figure 3.18 would be moved
bodily to the left so that it overlapped the left half. The prescriptions
given above for ray tracing remain valid in all such cases.

3.7 Aberrations

Monochromatic aberrations are the departures from paraxial imaging
that appear in practical optical instruments: point objects are no longer
imaged as point images. In addition there are chromatic aberrations
which arise because the refractive index of glasses varies with the wave-
length of the radiation, so that in turn the power of a surface given
by eqn. 3.13 varies with wavelength. Thus a point object emitting,
or illuminated by white light is imaged in the different colours at dif-
ferent points. Chromatic aberration effects occur for paraxial as well
as non-paraxial rays, but they do not affect pure mirror systems. The
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Fig. 3.19 Ray path from an object through the lens and continuing to the image
plane.

chromatic and monochromatic aberrations for a typical 2.5 cm diameter
crown glass lens of focal length 10 cm are similar in magnitude, ∼ 1mm
at the focal plane, so that there is equal interest in reducing both types
of aberration.

3.7.1 Monochromatic aberrations

Paraxial imaging is based on the approximation that sines of ray angles
can be approximated by the angles. If the angle is large then more terms
need to be included in the expansion of sin θ,

sin θ = θ − θ3/3! + θ5/5! .... (3.40)

Aberrations that arise from neglecting the second (third) term in the ex-
pansion are called third-order (fifth-order) aberrations. The third-order
aberrations are dominant and are of five distinctive types. These third-
order aberration and their reduction by suitable lens combinations will
be considered in the following sections. Figure 3.19 shows a schematic
ray path from the object O which emerges from the lens (or exit pupil
of a lens system) and intersects the image plane some distance from
the paraxial image point (starred). Let the point on the lens have po-
lar coordinates (ρ, θ), and the image point the Cartesian coordinates
(h + δx, δy), while the paraxial image point is (h, 0). In the paraxial
approximation the wavefront leaving the lens would be spherical with
its centre at the image point. Actual wavefronts deviate from this shape
and this is the origin of aberrations. The deviation of the actual from
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the ideal wavefront, which is for simplicity measured radially in the di-
rection of the image, can only depend on two things: where the ray hits
the lens relative to the optical axis, ρ; and where the image lies in the
image plane relative to the optical axis, h. Hence the deviation is some
function of these vectors

∆R = ∆R(ρ,h).

In the case of system of lenses the lens aperture indicated in figure 3.19
is replaced by the exit pupil of the system, defined as follows. Each
lens system has one aperture which is the most restrictive in limiting
the angular size of the cone of rays from an object point which actually
reach its image point. This limiting aperture is known as the aperture
stop. Its image seen from the image space is called the exit pupil, and
its image seen from the object space is called the entrance pupil. The
ray passing through the centre of the aperture stop is called the chief or
principal ray. This ray also passes through the centre of the entrance
and exit pupils. Rays that pass through the edge of the aperture stop,
and the entrance and exit pupils, are known as marginal rays.

If the system shown in figure 3.19 is rotated about the optical axis,
then because the system is axial symmetric the aberration should not
change. It follows that ∆R can only depend on rotational invariant
quantities made up from ρ and h. There are just three of these: ρ2,
h2 and ρ · h= ρ h cos θ. Then rewriting ∆R to include all possible
quadratic and quartic terms made up from these quantities gives

∆R = a1ρ
2 + a2ρ h cos θ + a3h

2 + b1ρ
4 + b2ρ

3 h cos θ

+b3ρ
2h2 + b4ρ

2h2 cos2 θ + b5ρ h3 cos θ + .... (3.41)

The quadratic terms with the a coefficients can be dropped, because
they give overall movements of the image for paraxial and non-paraxial
rays alike. Thus the term in ρ2 gives focusing and moves the image
plane for all rays; the term in ρ h cos θ tilts all rays to make the im-
age larger/smaller; while the term in h2 is a constant over the whole
aperture. The remaining quartic terms with b coefficients contain the
third-order aberrations. It is straightforward to extract the image dis-
placements from ∆R, the displacement of the wavefront from a sphere
centred on the image point. The Cartesian coordinates at the exit pupil
are x = ρ cos θ and y = ρ sin θ. The tilt of the wavefront in the x- and
y-directions are

(∂∆R/∂x) and (∂∆R/∂y).

Multiplying by the distance, v, from the lens (or exit pupil), converts
these tilts into displacements at the image plane

δx = v (∂∆R/∂x)

and δy = v (∂∆R/∂y). (3.42)
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Then using ∂ρ/∂x = cos θ, ∂ρ/∂y = sin θ, ∂θ/∂x = − sin θ/ρ and
∂θ/∂y = cos θ/ρ these equations become

δx = v cos θ (∂∆R/∂ρ) − v (sin θ/ρ) (∂∆R/∂θ), and

δy = v sin θ (∂∆R/∂ρ) + v (cos θ/ρ) (∂∆R/∂θ).

After some manipulation this yields

δx = c1ρ
3 cos θ + c2(2 + cos 2θ)ρ2h + (3c3 + c4)ρ h2 cos θ + c5h

3, (3.43)

δy = c1ρ
3 sin θ + c2ρ

2h sin 2θ + (c3 + c4) ρ h2 sin θ. (3.44)

The five aberrations separated here with coefficients cn are physically
f

PFMF
Lens

Fig. 3.20 Spherical aberration for a
positive lens. The paraxial focus is FP

and the marginal ray focus is FM. The
broken line indicates the plane of the
circle of least confusion.

quite distinct and are called the Seidel aberrations:

• spherical aberration (c1 = 4vb1),
• coma (c2 = vb2),
• astigmatism (c3 = vb4),
• field curvature (c4 = v(2b3 − b4)),
• distortion (c5 = vb5).

von Seidel developed the analytic study of aberrations in the 19th cen-
tury after being engaged by the optical entrepreneur Zeiss to examine
ways of improving lens performance.

3.7.2 Spherical aberration

The first terms in eqns. 3.43 and 3.44 are the only ones that contribute
to aberrations of objects on axis,

δx = c1ρ
3 cos θ,

δy = c1ρ
3 sin θ.

These relations show that the intersections with the paraxial image plane
of the rays passing through an annular section at radius ρ of the exit
pupil lie on a circle. The radius of this circle increases with ρ so that the Fig. 3.21 Bending of the surface cur-

vature of positive lenses, while keeping
the focal length constant.

image becomes a circular blob. This spherical aberration is illustrated in
figure 3.20 for an axial object at infinity. Positive lenses focus marginal
rays more strongly than paraxial rays. The paraxial rays focus at FP,
while the marginal rays through the periphery of the exit pupil come
to a focus at FM. At the surface indicated by the dotted line lies the
circle of least confusion where the spread of the rays is minimum. The
distance FM FP is the longitudinal spherical aberration, and the radius
of the ray cone at the paraxial focus is the transverse spherical aberra-
tion. Figure 3.21 shows how a lens’ surfaces can be bent while keeping
the focal length fixed. The spherical aberration depends strongly on the
lens shape and is smallest when the shape is close to being planoconvex,
with the curved surface facing the light. In this configuration, with a
parallel beam incident, the deviation of rays is shared equally between
the two lens surfaces.
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For certain combinations of object and image points spherical aberra-
tion is absent and these conjugate points are used in microscope design.
In figure 3.22 P is a point on the surface of a planoconvex lens of refrac-
tive index n, such that its distance from the centre of curvature, C, of
the convex face, radius r, is exactly r/n. Then we can show that rays
from P passing through the lens at any angle converge at a point image
P′ where P′C is n · r. P′CT and TCP are similar triangles because P′C
= n· TC, CT = n· CP and the angle PĈT is common. Hence

T P̂ ′C = α.

Also
P ′T̂C = α′.

Applying the sine rule to ∆TP′C

sin (T P̂ ′C)/r = sin (P ′T̂C)/n · r.

Multiplying by n r we get

n sin α = sin α′.

This is exactly Snell’s law so that TR is precisely the path of ray PT

PP’ C

R
T

n.r

r/n

r

α

’α

Fig. 3.22 Conjugate points (P and P′)
for a spherical refracting surface whose
centre lies at C. CP = r/n, and CP′ =
n × r, where r is the radius and n the
refractive index.

after refraction at T. This result holds for any ray from P which means
that the image P′ is free of spherical aberration. P and P′ are known as
conjugate points for the curved refracting surface. In high magnification
microscopes the object is located at one conjugate point of the first lens
so that spherical aberration is avoided while maximizing the numerical
aperture.

3.7.3 Coma

Coma is familiar to anyone who has used a positive lens to focus the
Sun’s image on paper. When the lens is tilted the Sun’s round image
changes to a comet shaped flare. It is the following terms in eqns. 3.43
and 3.44 that cause coma

δx = c2(2 + cos 2θ)ρ2h

δy = c2ρ
2h sin 2θ.

One term, 2c2 ρ2h, gives a simple radial displacement of the image point,
whilst the sinusoidal terms cause the intersection of the rays with the
paraxial image plane to travel round a circle as θ varies from 0 to π and
again as θ increases from π to 2π. This is illustrated in figure 3.23 on
which the chief ray follows the arrowed line. Rays travelling through an
annular section of the exit pupil (fixed ρ) intersect the paraxial image
plane in a ring as indicated by the letters a, b, c, d. The sizes of the rings
and their radial offsets grow with the radius squared (ρ2) of the annular
section of the lens through which the rays pass. The circles overlap to
give a comet shaped flare which may extend, as in figure 3.23, outward
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Fig. 3.23 Coma for an off-axis point object. Rays passing through a ring on the
lens, like the ones shown, intersect the image plane on a ring. The total image is a
comet shaped flare that starts at the paraxial image point and has a spread of 60◦.

from the paraxial image, when it is called positive coma; or inward,
which is known as negative coma. Coma also varies with lens’ shape.
It is smallest for a positive lens close to planoconvex in shape, with the
object far distant and the light incident on the curved face. This is
very similar to the lens shape that also minimizes spherical aberration.
A neat arrangement of two planoconvex lenses which eliminates coma
when the object is not an infinity is shown in figure 3.24. The first

I

O

PCf PCf

Fig. 3.24 An arrangement of two
planoconvex lenses which minimizes
coma and spherical aberration.

lens produces an image at infinity, and the second refocusses the light
and then the condition for reduced coma and spherical aberration holds
for both lenses. This arrangement of biconvex lenses is often used in
condensers which are optical systems for projecting light from a source
onto the object viewed.

3.7.4 Astigmatism

Astigmatism is illustrated in figure 3.25, where the image of an off-axis
point object consists of two line segments at right angles. The image
nearer the exit pupil is a tangential line, the other is a radial line, while
between them lies a circle of least confusion. The tangential line image
is formed by the rays which lie in the plane containing the chief ray and
the optical axis. These rays in it are called tangential or meridional rays.
The radial line image is formed by the rays lying in the perpendicular
sagittal plane which contains the chief ray. In figure 3.26 the object is
shaped like a spoked wheel. The tangential image has a sharply defined
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Lens/pupil

Tangential line
image

Radial line
image

Object

Fig. 3.25 Image formation with astigmatism. The solid lines are rays in the merid-
ional plane containing the optical axis. The broken lines are sagittal rays forming a
perpendicular plane. These give tangential and radial line images respectively.

rim while the spokes are fuzzy. Conversely the sagittal image has sharply
defined spokes and a fuzzy rim.

Exit pupil

Sagittal
image

Tangential
image

Object

Fig. 3.26 Astigmatic image of a wheel-
shaped object centred on the optical
axis. At the tangential focus radial
lines blurred and at the sagittal focus
the tangential lines are blurred.

Referring to eqns. 3.43 and 3.44, the components which cause astig-
matism are

δx = 3c3ρ h2 cos θ,

δy = c3 ρ h2 sin θ.

The tangential rays are those having θ = 0 or π and have δy = 0. They
form a point image in a tangential focal plane before reaching the parax-
ial image plane. On the other hand the sagittal rays with θ = π/2 or
3π/2 have δx = 0 and form a point image in a sagittal image plane one
thord as far from the paraxial image plane. The tangential rays when
reaching the sagittal image plane still have δy = 0, and so form a sagittal
or radial line image. Similarly the sagittal rays form a tangential line
image in the tangential image plane.

An extreme degree of astigmatism is produced by cylindrical lenses,
an example of which is shown in figure 3.27. There is focusing in the
vertical plane only and the image of a distant point object is a horizontal
line. Intermediate between cylindrical and spherical lenses are the toric
lenses, which have different curvatures in perpendicular planes through
the optical axis.

3.7.5 Field curvature

In eqns. 3.43 and 3.44 there are a second set of terms in ρ h2 cos θ and
ρ h2 sin θ which resemble the terms responsible for astigmatism: namely
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those with the coefficient c4.

δx = c4ρ h2 cos θ,

δy = c4 ρ h2 sin θ.

Here however the coefficients, c4, are identical which makes all the dif-
ference. Following the argument made in the case of astigmatism, the
axial displacement of the tangential and sagittal images from the parax-
ial image plane due to these terms are equal, hence there is simply
a displacement of the image along the axial direction which increases

Line
focus

Fig. 3.27 Cylindrical lens.
quadratically with h, the distance off axis. This aberration is called field
curvature and the curved image surface is called the Petzval surface ΣP.
Any astigmatism gives further displacements, with the tangential image
surface (ΣT) moving three times further from ΣP than the sagittal image
surface (ΣS). In figure 3.28 the displacements of the image planes are
shown as a function of the radial distance off axis for a biconvex lens.

TΣ SΣ

PΣ
Distance

off axis

Axial image displacement

Fig. 3.28 Image surface curvature for a positive biconvex lens. See text for details.

In the case of a negative lens the field curvature is away from the lens
so that by a judicious combination of lenses the field curvature can be
reduced.

The total displacement of the Petzval surface in an image formed by
a series of thin lenses is

∆z ∝
∑

j

(1/[nj · fj ]), (3.45)

where nj is the refractive index, and fj the focal length of the jth lens.
With a single negative and positive lens made of the same glass the
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field can be made flat by choosing f− = −f+. The overall focal length
can be adjusted by the choice of f+ and the lens separation: see eqn.
3.39. One widely used technique employed in lens systems to remove an
unacceptable level of field curvature is to add a field flattener, which is
a negative lens placed a small distance u from the final image plane of
the system. The final image position is given by

v = uf/(f − u) ≈ u,

so the image is otherwise unchanged in size.

3.7.6 Distortion

The fifth and final terms in eqns. 3.43 and 3.44 are

δx = c5 h3,

δy = 0.

They give a purely radial displacement of the image point that increases
with the cube of the distance off-axis, h. If c5 is negative (positive)

Fig. 3.29 Image distortion. The lower
diagram shows a square object. The
upper diagrams show images with bar-
rel and pincushion distortion.

then points on the image are displaced radially inward (outward), the
displacement growing with the distance of the object off axis. Both
types of distortion are shown in figure 3.29 for the object in the lower
panel. The images are said to show barrel and pincushion distortion.
The distortion produced by any lens is reversed if the lens is turned
around, so a pair of lens arranged symmetrically will cancel each others
distortion.

Aperture stop effects

The positioning of the aperture stop in a lens system significantly af-
fects the aberrations. Thin positive lenses do not show distortion if the

Fig. 3.30 The effect of aperture stop
placement.

stop is placed against the lens. However if, as in figure 3.30, the stop
is placed elsewhere distortion results: barrel distortion if the stop is in
front of the lens and pincushion distortion if the stop is behind the lens.
The essence of the aperture stop’s influence, both in this example and
in cases where its effect is favourable, is that it limits the range of rays
that form the image. An intuitive way to view this effect is to note
that in the upper diagram the distance rays travel to the lens is longer
than that travelled by the ray through the lens’ pole, so that the object
distance is larger and the magnification smaller than for the paraxial
rays. Consequently barrel distortion results. In the lower diagram the
object distance is shorter for rays at wide angles, the magnification is
correspondingly larger and pincushion distortion results.

In general the introduction of an aperture stop will only affect an
aberration if one of the earlier aberrations in the sequence (spherical
aberration, coma, astigmatism, field curvature, distortion) is present.
The introduction of an aperture stop will affect neither the spherical
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Fig. 3.31 Positive meniscus lens with an aperture stop and the resulting image
surfaces. ΣP, ΣS and ΣT are the Petzval, sagittal and tangential image surfaces
respectively. The surface of least confusion is close to the ordinate axis.

aberration nor the Petzval field curvature. There is an optimal location
of the stop for any given lens bending which minimizes the coma, and
this is called its natural location.

Bending the lens surfaces moves the image field surface. The meniscus RedBlue

Red Blue

Fig. 3.32 Chromatic aberration pro-
duced by a positive and a negative lens
of a distant point object on axis. The
circle of least confusion lies in the plane
indicated by the dotted line.

lens with a front aperture stop, shown in figure 3.31, gives astigmatic
images, but the surface of least confusion is now flat. In addition the
stop also reduces coma. This lens arrangement was often used in cheap
cameras. It is not possible to choose a lens shape that will minimize
simultaneously all the aberrations even if the aperture stop is located
at the natural location. Combining a shape close to planoconvex and
having the aperture stop at the natural location minimizes spherical
aberration and distortion, but the level of astigmatism is then unac-
ceptable. With a meniscus shape the aberrations are all similar but not
particularly small. Combinations of lenses are needed to give images of
overall high quality.

3.7.7 Chromatic aberration

Prisms made of glass disperse white light into a spectrum; and because
any segment of a lens is a prism-shaped it follows that the red and blue
images produced by a single lens will not coincide. This chromatic aber-
ration in the image of a point object on-axis is shown in figure 3.32. Blue
light is focused more strongly than the red because the refractive index
of glasses and most other transparent substances falls off with increasing
wavelength. This is known as normal dispersion. The distance between
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the red and blue images is the longitudinal chromatic aberration. At
the waist in the ray envelope lies the circle of least confusion where the
image spot is smallest. A commonly used measure of the dispersion is
dispersive power

ν = (nF − nC)/(nd − 1), (3.46)

where the refractive indices nF, nd and nC are those of the glass mea-
sured at three wavelengths of Fraunhofer absorption lines in the Sun’s
spectrum. Historically these were selected to span the visible spectrum:
the F-line is blue (486 nm), the d-line is yellow (589nm) and the C-line
is red (656nm). Another measure of the dispersion is the dispersive in-

Fig. 3.33 A selection of Schott glasses: refractive index plotted against the dispersive
index (Abbe number). The less dispersive crown glasses lie to the left of the centre
line and the more dispersive flint glasses to the right. (With permission from Schott

guide to Glass: courtesy Wolfgang R. Wentzel, Schott AG, Hattenbergstr. 10, 55122
Mainz, Germany.)

dex, V , which is the inverse of the dispersive power. This is often the
quantity specified by glass manufacturers: be aware that V is smaller if
the dispersion is larger! Figure 3.33 plots the refractive index against
the dispersive power for glass types produced by Schott AG.

There are two basic layouts of a pair of lenses with overall positive
power that remove most of the chromatic aberration:

(1) A positive and negative lens made of glass with different disper-
sions which are in contact.

(2) A pair of positive lenses spaced apart by the mean of their focal
lengths.

A lens doublet, that is a pair of lens in contact, has focal length

1/f = 1/f1 + 1/f2.
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Table 3.1 Dispersion of two standard types of crown and flint glass. Crown
glass is made of soda, lime and silica; flint glass of alkalis, lead oxide and
silica. The code number of a glass is constructed, as indicated by the
boldface characters from the D-line refractive index and the dispersive
index.

486 nm 589 nm 656 nm
Glass F (blue) D (yellow) C (red) Dispersive index, V

BK7 517642 1.5224 1.5168 1.5143 64.2
DF 620364 1.6321 1.6200 1.6150 36.4

Now for either lens

1/fi = (ni − 1)ρi,

where ρi is the geometric factor 1/r1 − 1/r2 formed from the radii of
curvature of the lens’ surfaces, and ni is the refractive index of the glass
at 589nm. Thus for each lens the difference in focal length between
486nm and 656 nm is given by

∆(1/fi) = ∆niρi

= νi(ni − 1)ρi

= νi/fi. (3.47)

(3.48)

Using this result the change in the focal length of the system between
486nm and 656 nm is given by

∆(1/f) = ν1/f1 + ν2/f2. (3.49)

This chromatic difference in focal length vanishes if

ν1f2 = −ν2f1. (3.50)

Dispersive power is positive for glass, so that in order to satisfy this
equation one lens needs to be converging, the other diverging. A simple

Crown
glass

Flint
glass

Red rayBlue ray

Fig. 3.34 Achromat doublet lens.

convergent colour corrected system can be made by cementing a double
convex crown glass lens to a planoconcave flint glass lens as shown in
figure 3.34. This is called a Fraunhofer achromat. Table 3.1 gives the
optical parameters for two types of optical glass that are frequently used
in making achromatic doublets. Crown glass has the larger dispersive
power, hence from eqn. 3.50 the positive (crown glass) lens will have
shorter focal length, making the focal length of the combination posi-
tive. In the case of thick doublets there is a further difficulty. Although
the focal lengths for blue and red light have been made equal, the images
do not coincide because the principal planes for the two colours are sepa-
rated by a distance of order 10% of the lens thickness. What will remain
true is that the magnification of objects is the same for both colours,
which removes lateral chromatic aberration. In addition all achromatic
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doublets suffer residual chromatic aberration at other wavelengths away
from 656nm and 486nm, a feature that is called secondary colour. The
bending of the surfaces of an achromat remains at the disposal of the
designer. Thus a lens shape for a given focal length can be chosen to
minimize spherical aberration and coma, as well as chromatic aberration.

Combinations of thin lenses made of three different types of glass give
colour correction at three wavelengths, and such lenses are called apoc-
hromats. The recent availability of expensive extra-low dispersion ED
glass has made the correction of chromatic aberration that much easier,
but with a cost penalty. An ED lens has lower dispersion across the
visible spectrum than either an achromat or apochromat. ED lenses are
essential for modern very long lens systems.

It is also possible to correct chromatic aberration at two wavelengths
with lenses made of the same glass type. From eqn. 3.39 two lenses
separated by a distance t have focal length

1/f = 1/f1 + 1/f2 − t/(f1f2).

Then the difference between the focal lengths at 656nm and 486nm is

α θ

α + θ = β
β

Eye Centre of
curvature

Limiting ray

Limiting ray

Mirror

Fig. 3.35 Angular coverage with con-
vex mirror.

given by

∆(1/f) = −∆f1/f2
1 − ∆f2/f2

2 + t∆f1/(f2
1f2) + t∆f2/(f2

2 f1)

= −ν/f1 − ν/f2 + 2tν/(f1f2). (3.51)

Thus in order to remove the chromatic aberration we must have

0 = [ν/(f1f2)] [−f2 − f1 + 2t],

that is

t = (f1 + f2)/2. (3.52)

The lens separation must be half the sum of the two focal lengths.

3.8 Further reading

The seventh edition of Principles of Optics by M. Born and E. Wolf, and
published by Cambridge University Press (1999) contains a thorough
mathematical acccount of aberrations and many other matters. The
Handbook of Optics, volume 1, contains a broad discussion of aberrations
in the context of fundamentals, techniques and design. The editor in
chief is M. Bass and it was published in 1995 by McGraw-Hill, New
York.
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Exercises

(3.1) Two lenses are separated by 25 cm, the first of focal
length −30 cm, the second of focal length +40 cm.
An object is placed 10 cm in front of the negative
lens. Where is the final image? What is its size?
Is it upright or inverted? Use ray tracing to check
the answer.

(3.2) Apply the results of Appendix B to locate the car-
dinal points of the system described in the previous
question.

(3.3) A shopkeeper uses a convex mirror of radius of cur-
vature 1 m and arc length across the diameter of
50 cm to view his shop. When he is 2m from the
mirror what angular coverage does this give him?
What angular size would a customer’s hand (10 cm)
subtend at the shopkeeper’s eye if the customer is
7m from the mirror. Figure 3.35 shows the ar-
rangement.

(3.4) An object is located 25 cm from a concave mirror
whose radius of curvature is 40 cm. The object
0.1 cm in length lies along the optical axis. Where
is its image located and how long is it? Use ray
tracing to check the image location.

(3.5) What radius of curvature is required to make a
planoconvex lens with focal length 30 cm from glass
of refractive index 1.7? How would you arrange a
pair of planoconvex lenses and an aperture stop in

order to mimimize aberrations. What aberrations
are reduced by this arrangement.

(3.6) Design an achromatic doublet from the glasses
given in Table 3.1 having a focal length of 45 cm.
If only lenses of the same glass type are available
how could you reduce the chromatic aberration?

(3.7) Show that the smallest separation of a real image
and object is four times the focal length of the (pos-
itive) lens and that the lens is then midway between
image and object.

(3.8) Show that if the object is a distance x1 from the
first focus and the image is a distance x2 from
the second focus of a lens of focal length f , then
x1x2 = −f2. This can be done analytically or by
using similar triangles in figure 3.12.

(3.9) A biconcave lens made from glass of refractive in-
dex 1.65 has surfaces with radii of curvature 25 cm
and 45 cm. What is the focal length of the lens?

(3.10) Apply matrix methods to a lens of thickness T , re-
fractive index n having surfaces with radii of curva-
ture r1 and r2. What is the focal length and where
are the principal planes of the lens?

(3.11) A lens of refractive index 1.73 has focal length
20 cm in air. What will its focal length become
when immersed in water?
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Optical instruments 4

4.1 Introduction

The refracting telescope and the microscope are the first instruments
discussed in this chapter; the one used to magnify distant objects, the
other to magnify tiny objects. Camera design and construction are ex-
amined next. Several special lens systems will be described, including
the telephoto, zoom and telecentric lenses. The last is vital in process
control in industry. Reflecting telscopes will be discussed in Chapter 8.
In order to give bright images optical instruments need to have large
lenses that collect non-paraxial as well as paraxial rays. Another funda-
mental reason that aperture size is important is that the smallest detail
that can be seen clearly depends critically on the aperture size: even
aberration-free optical systems produce extended images of point ob-
jects due to the wave nature of light. The plane beam of light incident
on any aperture is diffracted, that is it spreads out on emerging from
the aperture by an amount that depends on the ratio of the wavelength
to the aperture size. Diffraction is discussed more fully in Chapter 6,
where it will be shown that a circular aperture of diameter D limits the
angular resolution with radiation of wavelength λ to at best

∆θ = 1.22λ/D. (4.1)

The corresponding resolution in an image in the focal plane is then f∆θ.
Aberrations can only make the resolution worse; hence the methods for
reducing aberrations need to be applied if the limit on resolution im-
posed by diffraction is to be attained.

The final sections of the chapter contain descriptions of widely used,
non-standard lenses. Aspheric lenses are slightly non-spherical lenses
and simplify the removal of aberrations in modern camera lens design.
Graded index lenses rely on axial or radial refractive index variation,
rather than surface curvature to give focusing. Lastly Fresnel lenses are
discussed, which are flattened versions of normal lenses.

4.2 The refracting telescope

The simple refracting telescope design illustrated in figure 4.1 using a
pair of lenses to give improved magnification over a single lens was in-
vented early in the seventeenth century. It uses two positive lenses, a
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Fig. 4.1 Terrestrial telescope design as used in binoculars. The eye ring is located
at the exit pupil, where the image of the objective is formed by the eyelens. The
angular magnification is β/α.

large radius objective and a smaller eyelens spaced apart by the sum
of their focal lengths. The objective produces an intermediate image I
in its focal plane and the eyelens images this at infinity. A telescope
produces angular magnification: parallel rays from a point on an ob-
ject at infinity exit as parallel rays toward the image point at infinity.
Such optical systems are called afocal and are unique in not possessing
principal planes. The magnification achieved is the angular size of the
image divided by the angular size of the same object seen without the
telescope:

Mθ = β/α

≈ tan β/ tanα

so that Mθ = fo/fe. (4.2)

As mentioned in the previous chapter, one element in any optical in-
strument will restrict the amount of light from the object reaching the
image more than the others. This element is known as the aperture stop.
In order to determine which element is the aperture stop the image is
calculated for each element in the object space. Then the element whose
image subtends the smallest angle, as seen from the object, is the aper-
ture stop. Its image is called the entrance pupil. Similarly the image of
the aperture stop seen from the image side is called the exit pupil. In the
case of a telescope the aperture stop is the objective lens and, because
it is the first element, it is also the entrance pupil. The exit pupil of the
telescope, that is the image of the objective produced by the eyelens is
at a distance vp behind the eyelens where

1/vp = −1/(fo + fe) + 1/fe
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= fo/[fe(fo + fe)].

Then
vp = fe(fo + fe)/fo. (4.3)

Now fo 	 fe so the image is close to the focal plane of the eyelens. The
exit pupil diameter is then

D′ = Dvp/(fo + fe)

= D/Mθ. (4.4)

According to eqn. 4.1 the lower limit imposed by diffraction on the
telescope’s angular resolution is

∆θtel = ∆θobjective · Mθ

= (1.22λ/D) (D/D′)

= 1.22λ/D′. (4.5)

When used with the eye the light collected by the instrument should all
enter the observer’s eye. The eye pupil is placed at the exit pupil, which
is therefore called the eyering for visual observation, and ideally the eye
and exit pupil sizes should be the same. Both the angular resolution and
light gathering power of the eye–telescope combination are limited by
whichever of the eye pupil and the telescope’s exit pupil is the smaller.
If the eye pupil is the smaller then, when viewed by eye, some of the
light collected by the telescope and some of its potential resolution are
wasted. Alternatively if the eye pupil is the larger the light-gathering
and resolution of the eye are not fully utilized. Matching the position
and size of the exit and entrance pupils of coupled optical systems has
to be a general design goal: in that way no component throws away the
light transmitted by the others, and equally no component degrades the
resolution of the others. The eye pupil diameter depends on the light
intensity; from a value of 2mm in bright light to 8mm in near darkness.
In full daylight the pupil diameter is 2.5mm so the eye resolution at
550nm wavelength light (green light) is ∼ 3 10−4 rad, or 1 minute of arc.
Thus the eye can comfortably resolve points 0.1mm apart on an object
placed 25 cm away at the near point.

In Chapter 2 numerical aperture was introduced to quantify the light
collecting power of an optical fibre. Here we generalize the definition:

NA = n sin θ, (4.6)

where θ is the semi-angle subtended by the entrance pupil at the object
lying in a medium of refractive index n.

4.2.1 Field of view

Although the eyelens in a telescope does not restrict the illumination of
the image, it does restrict the angular range over which objects can be
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seen. This range is called the field of view, and the eyelens is called the
field stop. Its image in the object space is called the entrance window of
the system, and the exit window is the eyelens itself. Similar definitions
will apply to other optical instruments, the field stop being the aperture
whose image in the object space restricts the field of view from the
entrance pupil. Suppose the eyelens has diameter d, then the apparent
field of view seen by the eye is

α′ = d/fe. (4.7)

The actual angular field of view is the angle subtended by the eyelens
at the objective:

α = d/(fo + fe). (4.8)

Combining the last two equations

α′ = (fo + fe)α/fe. (4.9)

Then using eqn. 4.2
α′ = (Mθ + 1)α. (4.10)

The full field is only seen from the centre of the exit pupil; from other
points across the exit pupil a smaller angular range is visible, so the
outer part of the field of view is less well illuminated. This effect is
called vignetting. In order to remove the outer poorly illuminated part
of the view an aperture can be placed at the intermediate image in a
telescope or microscope; and this aperture then becomes the field stop.
The distance from the eyering to eyelens is called the eye relief and this
needs to be at least 1.5 cm for comfortable use. The image produced
by the telescope is inverted and to correct this either a further lens is
needed or an inverting prism. The Porro prism described in Chapter 2
is one choice.

e-f

of

Fig. 4.2 Design suitable for either a
Galilean telescope or a beam expander.
The arrows on the rays would be re-
versed when used as a beam expander.

Another type of telescope shown in figure 4.2 uses a negative power
eyelens located so that the lenses are separated by the sum of their focal
lengths. This design, the Galilean telescope, produces an upright image
so that this design is used in opera glasses. Although not invented by
Galileo he improved the performance to ×30 power by experiment and
skillful lens grinding. He was then able to observe four of the moons cir-
culating round Jupiter, the mountainous surface structure of the Moon,
and found that Venus shows phases like the Moon. These observations
dealt the death blow to the old cosmology in which the Sun, Moon,
planets and stars were perfect spheres and themselves lay on transpar-
ent spheres that rotated around a static Earth. The lens arrangement
of the Galilean telescope is often used to expand the diameter of laser
beams which are inherently narrow. For this application the Galilean
design has the advantage over a design using two positive lenses that
there is no intermediate focus (see figure 4.1). This avoids the local
heating that occurs at the focus of an intense laser beam.
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Example 4.1

A binocular has an objective of focal length 16 cm and diameter 48mm.
What eyelens’ properties will give a magnification of 8 times and a 5◦

field of view? What will the eye relief and eyering diameter be? What
will be the apparent field of view?

The overall angular magnification is given by eqn. 4.2 so the focal
length of the eyelens is

fe = 16/8 = 2 cm.

If the field of view is 5◦ then using eqn. 4.8 the eyelens diameter is

d = 18π(5/180) = 1.57 cm.

The eye relief is the distance of the eyering from the eyelens, given by
eqn. 4.3

vp = 2 × 18/16 = 2.25 cm.

In addition the eyering diameter is given by eqn. 4.4

D′ = 48/8 = 6 mm.

The apparent field of view is given by eqn. 4.10

α′ = 9 × 5 = 45◦.

Aberrations would be large for the system just outlined and the single
objective and eyelens are replaced by lens combinations; the eyelens
replacement being called an eyepiece.

4.2.2 Etendue

In a complex optical system consisting of several components, the nu-
merical apertures and fields of view of the components should match
from component to component along the chain. That is to say the exit
pupil (window) of any component should coincide in position and size
with the entrance pupil (window) of the following component. If just
one component has a significantly smaller pupil (window) than its neigh-
bours the additional light gathering power (field of view) of the other
components is simply wasted.

Numerical aperture and field of view are not however independent
properties, and this permits more flexibility than the bare statements
above imply. It may be possible to trade field of view for light gathering
power and vice versa by inserting some combination of lenses between
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the unmatched components. A quantity which expresses the overall
light gathering power, called the etendue, determines whether compo-
nents may be matched in this way or not. The etendue is first defined
and then the way the trading occurs is illustrated with a single lens.

The solid angle Ω subtended by the entrance pupil at the object mea-
sures the light gathering power, that is the fan of rays received from
any point on the object. Equally the unobstructed area A of the object

u v
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h’ 

’ θ2

θ2

’ α

α

Fig. 4.3 Etendue through one optical
component.

visible in the image defines the field of view. The product of these two
quantities and the refractive index squared

T = n2ΩA (4.11)

is variously known as the throughput, luminosity or etendue. Another
useful expression for the etendue can be obtained by re-expressing the
solid angle in terms of the numerical aperture, NA = n sin θ. Taking the
semi-angle θ subtended by the entrance pupil to be sufficiently small,
we have to a good approximation,

Ω = 2π(1 − cos θ) = πθ2, (4.12)

and then

T = π(NA)2A. (4.13)

Taking the product of the etendue and the radiance gives the total radi-
ant flux in the beam, so the etendue gives a measure of the light that an
optical system can transmit. Suppose the incident radiance on a optical
system over the wavelength interval ∆λ at wavelength λ is I(λ)∆λ, then
the flux of radiation through the system in this wavelength interval is

F = T I(λ)∆λ. (4.14)

Figure 4.3 shows a single lens placed between media of refractive indices
n and n′. The object and image heights are h and h′, while their areas

Field stop
Eye relief

Exit pupil
Eye lensField lens

Fig. 4.4 Huygens’ eyepiece.

are h2 and (h′)2 respectively. The cone of rays accepted by the entrance
pupil from any point on the object has semi-angle θ, and these rays
converge in a cone of semi-angle θ′ at the image point. In the paraxial
approximation the ratios are

−h′/h = v α′/(u α) = v n/(u n′),

and θ′/θ = u/v.

Therefore

(n′)2Ω′A′ = (n′)2 π(θ′)2 (h′)2 = n2πθ2 h2 = n2 Ω A.

Thus at each intermediate image through an optical system the image
size and the angular spread of the fan of rays illuminating a point on
the image will both change but the product, the etendue, is seen to be
invariant. More precisely, the etendue of the light that makes its way
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through the whole of an optical system is invariant at each step: we can-
not include light cut off by an aperture at some intermediate surface.
It is always possible in principle to match two optical components with
the same etendue by using intermediate lenses. However this may be
impractical if the difference in pupil sizes is very large.

Some related conclusions can be drawn about the image brightness.
Here brightness is always used to mean the radiance or the luminance,
as defined in Section 1.7. Sticking to energy parameters, we see that the
invariance of the etendue means that radiance or brightness is preserved.
This result is known as the law of conservation of radiance. There is
one special case: that of a point source, for example a distant unresolved
star. With such an object there is no area so that the etendue cannot
even be defined. Clearly the bigger the telescope aperture stop (the
objective) used to collect light from a point source the better.

4.3 Telescope objectives and eyepieces

Generally the field of view needed in a telescope is narrow so that an
achromatic doublet or apochromatic triplet is adequate as the objective.
Among the aberrations spherical aberration and coma can be kept small

Field stop Eye relief

Exit pupil

Eye lens

Field lens

Fig. 4.5 Kellner eyepiece.

by appropriate lens shaping. Astigmatism, field curvature and distortion
are less important over narrow fields of view. In the case that a wide
field is needed, one of the camera lenses described below would be used.
Eyepieces on the other hand are required to give good image quality over
the apparent field of view, which is wider in angle than the field of view
by a factor equal to the angular magnification of the telescope. Three
popular examples of eyepieces are shown in figures 4.4, 4.5 and 4.6. Each
has two components: the field lens and the eyelens. As its name implies

Field stop
Eye relief

Exit pupil
Field and eye lenses

Fig. 4.6 Ploessl eyepiece.

the field lens enlarges the field of view accessible by the eyelens. To do
this the field lens is placed near the focal plane of the objective so that
it does not change the image location appreciably but does pull in ray
bundles from the edge of the field of view. The field lens is not placed
too close to the image of the objective; if it were, then any imperfections
of the field lens would be seen superposed on the final image. Many op-
tical instruments use a field lenses to extend the field of view. Huygens’
eyepiece is the oldest, cheapest and least satisfactory. Two planoconvex
lenses are spaced apart by half the sum of their focal lengths so that
spherical aberration, coma and lateral chromatic aberration are small,
but there is considerable longitudinal chromatic aberration and pincush-
ion distortion. One great drawback is the small eye relief of only 4mm.
The Ramsden eyepiece (not shown) has facing planoconvex lenses and
an eye relief of over 10mm. The Kellner eyepiece is a Ramsden eyepiece
with an achromatic doublet for the eyelens. This gives a well corrected
wide field of view. Another significant advantage which it has over the
Huygens’ eyepiece is that the image formed by the objective lies in front
of the eyepiee. A calibration scale can be mounted there and because
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Fig. 4.7 Schematic structure of a microscope. The objective forms an image in the
focal plane of the eyepiece, so that the final image is at infinity.

this is viewed through the complete eyepiece it will be colour corrected.
The field stop is no longer the edge of the single lens eyepiece, as it was
for the schematic telescope of Section 4.2, but is an aperture placed at
the location of the image formed by the objective. Finally the Ploessl
eyepiece uses a symmetric layout of achromatic doublets which gives su-
perior imaging. Its flat field is particularly important for use with media
such as film and CCDs which cannot adapt, like the eye, to a curved
field. Typical eyepieces have focal length 10mm or 25mm. Kellners give
a 40◦, and Ploessls give a 50◦ field of view.

The eyepieces described here are used in both microscopes and in
telescopes. Eyepieces are matched to the objective. Take for example
a 2.5m focal length objective with a diameter of 25 cm used visually.
Suppose a Ploessl eyepiece is used to give a total magnification of ×100,
then it would require a focal length of 25mm. If this Ploessl eyepiece
has a field of view of 50◦, then the actual field of view given by eqn. 4.10
would be 0.5◦.

4.4 The microscope

Microscopes are designed to give high magnification and sufficient reso-
lution to distinguish features as small as a few wavelengths of light. A
microscope is depicted schematically in figure 4.7. The objective gives
an image at the focal plane of the eyepiece and the final image at infinity
is viewed with the eye relaxed. Suppose the objective has focal length
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fo, the eyepiece has focal length fe, and that the intermediate image lies
a distance L beyond the focus of the objective. Then the magnification
produced by the objective shown in the diagram is

Mo = h′/h = −L/fo. (4.15)

The eyepiece magnification is given by eqn. 3.22, m = dnear/fe, so that
the overall magnification of the microscope is

M = −(L dnear)/(fe fo). (4.16)

More details of the microscope are shown in figure 4.9. The size of a
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Fig. 4.8 Oil immersion objective show-
ing conjugate points.

microscope is dictated by the average person’s reach, and one common
choice is to make the distance between the object and intermediate im-
age equal to 195mm.1 The objective must accept a wide cone of rays
from the object in order to give a well resolved and bright image, and
it must also be aberration free. A typical high power oil immersion ob-
jective might have focal length 2.0mm, giving Mo = 100 and NA 1.4
(and would be labelled 100× NA 1.4 2mm). The first stages of such
an objective are shown in figure 4.8 and illustrate the use of conjugate
object and image points to give perfect images (see Section 3.7.2). Note
that the lens is effectively extended to the object (slide) by filling the
gap between them with oil of the same refractive index as the lens. The
object P and its image P1/2 are conjugate points for the lens surface la-
belled 1. P1/2 also lies at the centre of curvature of surface 2 so that the
rays enter the second lens undeviated. Finally P1/2 and its image, P3,
are conjugate points for the surface 3. The wide cone of rays captured
from P emerge in a much tighter cone from P3, so that standard lenses
can be used to handle the beam thereafter. In this way a NA as large as
1.4 is achievable. In figure 4.9 two achromats or apochromats complete
the objective. The image is corrected for spherical aberration, coma and
chromatic aberration; and the field is flat. The eyepieces are similar to
those mentioned for telescopes, with a Ploessl eyepiece being shown in
figure 4.9.

The illumination of the object is required to fill the angular acceptance
of the objective in order that this acceptance is not wasted. Figure 4.10
shows a source and condenser lenses below the microscope stage pro-
viding what is known as Koehler illumination. This arrangement has a
number of simple advantages. Firstly the area illuminated, the numeri-
cal aperture and the brightness can be adjusted independently. The left
hand diaphragm (field stop) is imaged at the object and controls the
field of view. Then the right hand diaphragm (aperture stop) is used
to match the numerical aperture of the condenser to that of the micro-
scope: if it is smaller then the resolution of microscope is degraded, but
if larger light that does not enter the objective directly can be scattered
in causing a background haze. Finally the intensity can be changed

1This is the DIN (Deutsche Industrie Norm) standard.



82 Optical instruments

Field stop

and image

Eyepiece
first P.P.

Object

Objective
second P.P.

Objective
focal plane

Exit pupil

19
5m

m

h

h’

Of

 e- f

L

Fig. 4.9 Microscope construction showing the ray cone collected from an off-axis
object point.
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by altering the source voltage or with neutral density filters that absorb
equally across the spectrum. A further advantage is that light from each
point on the source forms a parallel beam at the object. This ensures
that the illumination is coherent2 and also that it is is uniform whatever 2This topic will be treated in detail in

Chapter 7.the variations of brightness across the source.

The high intensity of illumination needed in a microscope leads to
considerable scattering of light from the region around the point being
viewed into the microscope. This significant background can be elimi-
nated by the widely used technique of confocal illumination. The field
stops in the illumination system and in the microscope are replaced
by small apertures that limit the region on the object illuminated and
viewed. This region is typically a circle of diameter 1 µm. Background
scattered light is thus eliminated. The image intensity is sampled by

Lamp and
condenser

Abbe
condenser(a)

Object
plane

Diaphragms

(b)

Fig. 4.10 Koehler illumination. (a)
shows the imaging of the left hand di-
aphragm (field stop) at the object. The
other diaphragm is the aperture stop.
(b) shows how the source plus con-
denser give uniform illumination at the
object.

an electronic detector behind the eyepiece and an image of the whole
object is obtained by moving the microscope stage carrying the slide so
that the illluminated spot is raster scanned across the whole slide.

4.5 Cameras

Cameras are used not only for standard photography, but also to record
images produced by optical instruments such as microscopes. For all
these uses film has been mainly supplanted by electronic detectors, no-
tably the charge coupled device (CCD). A CCD consists of silicon pho-
todiodes arranged in a rectangular array. When light is absorbed on a
photodiode a charge proportional to the product of the light intensity
and its duration is produced and stored. This process will be described
in detail in Chapter 15. The exposure time is controlled by an elec-
tromechanical or electronic shutter. After exposure the charge on each
diode is amplified, digitized and stored in memory; and from this data
an image of the scene can be reconstructed. A typical CCD format for a
compact digital camera (‘point and shoot’) is 6.6mm×8.8mm, with 3.6
million pixels each of area 4 µm×4µm. Light falling on each pixel can
be focused onto its photodiode by means of a microlens array. Larger
CCDs are used in the digital version (DSLR) of the single lens reflex
cameras described below. Such CCDs will usually be 16mm×24mm
(APS-C format) in area, or 24mm×36mm (full frame) matching the
film size of SLR cameras. In the latter case the CCDs would typically
have 12 million 8 µm×8µm pixels.

Film in traditional SLR cameras contains photosensitive crystals of
silver halide which are in the range 0.1–2 µm across. The grain distribu-
tion is not uniform and an equivalent pixel size, that contains roughly
equal numbers of grains, is about 3 µm. The pre-existing SLR image
format was 24mm×36mm and the focal length of the standard lenses
was about 50mm, giving a field of view 40◦ × 27◦. Initially, users of
compact digital cameras expected a similar field of view, and so the
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lenses of such cameras have focal lengths of order 12mm. Diffraction
imposes an irreducible limit on the angular resolution achievable of

∆θ = 1.22λ/D,

where D is the lens diameter. Thus the resolution in lateral distance at
the focal plane is

∆t = f∆θ = 1.22λf/D, (4.17)

which can be re-expressed either in terms of the numerical aperture

∆t = 0.61λ/NA, (4.18)

or using the f/#, which is the ratio of a lens’ focal length to its diameter,

∆t = 1.22λ(f/#). (4.19)

Equations 4.17, 4.18 and 4.19 are equally valid for optical systems other
than a camera lens. At a typical aperture of f/8, ∆t is 5 µm which is
comparable to the resolution inherent in the pixel or film granularity.
Lens apertures in SLR cameras can be as large as f/1.2 giving a lens
diameter of around 40mm. One factor that bears on the image reso-
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Fig. 4.11 Depth of field. A point ob-
ject is displaced a distance ∆u from the
location at which its image is in focus.
The image becomes a circle of diameter
∆s.

lution is the detail which the human eye can resolve, which was found
above to be ∼ 3 10−4 rad. When a photograph is viewed from a distance
of 30 cm the corresponding spatial resolution will be 90µm. Of course
the eye looks at a final image of say 20 cm width rather than the CCD
or 125 film. In order to reach that final image size the magnification
required from a 24mm×36m film or CCD image is about a factor of 6.
The resolution obtained on the final image with a DSLR camera hav-
ing 8 µm pixels is therefore 50µm, with the resolution possible with fine
grain film being a few times times better.

The depth of field is defined to be the distance along the optical axis
that the scene remains effectively in focus, that is to say the image of a
point object remains smaller than one pixel. Figure 4.11 shows a cameraIn the case of a pinhole camera the

depth of field is virtually unlimited:
with a 0.5mm hole placed 25 cm from
a screen the equivalent f/# is 500.

in which the film/CCD plane is offset from the image plane. From eqn.
3.8 the relation between the axial image and object displacements is

∆u = ∆v(u/v)2.

If ∆s is the pixel size then the maximum permitted image offset, ∆v, in
figure 4.11 is given by

∆v/v = ∆s/D,

where D is the lens diameter. Combining the last two equations yields

∆u = (∆s/D)(u2/v). (4.20)

The image plane is quite close to the second focal plane, so that to a
good approximation v may be replaced by f . Then the depth of field is

∆u = (f/#)(u/f)2∆s. (4.21)
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Taking as an example a DSLR camera (f = 50mm, ∆s = 8 µm) with
u = 3m, and f/# = f/8 gives ∆u = 8 cm. The eye tolerates a far larger
defocusing than a single pixel.

Both CCDs and panchromatic film record the full visible spectrum.
In the case of CCD a filter is placed over each pixel to restrict the sen-
sitivity to either the red, green or blue parts of the spectrum. One
arrangement of filters is to repeat a basic four-pixel pattern across the

CCD:
R G
G B

. The sensitivity of film is denoted by an ISO number

(speed) proportional to the film density (darkening) for a given expo-
sure. At very low intensities of illumination of the scene photographed
both film and CCDs record no image, and equally at very high intensities
they saturate. CCDs are linear over a larger range of intensity than film.
Standard film has the appellation ISO200, and a faster film with twice
the sensitivity film has ISO400. The equivalent speed of a CCD depends
not only on the area of the pixels but also on the level of amplification of
the charge deposited. This amplification can be adjusted electronically
and automatically to match light level, aperture and exposure time. The
ISO range of DSLR cameras with large 8 µm × 8 µm pixels is typically
100 to 1600. Some CCDs have arrays consisting of alternate small and
large pixels, and this provides even more flexibility.

Digital cameras offer the huge advantage that the image can be in-
spected immediately, and then retained or deleted at will. In addition
facilities for electronic storage, manipulation and transmission become
available once the image is transfered to a PC memory. On many digital
cameras the pixel charge is digitized with 8 bits giving a scale of inten-
sity from 1 to 28, that is from 1 to 256. When the data from the CCD
is stored electronically further bits are needed for labelling. Thus for
one million pixels of order 8 million bits (8Mb) are required, that is one
million bytes (1MB). With the larger 12–20 million pixel CCDs with 12
bit resolution the storage required per picture is correspondingly larger.
The full raw data from the CCD may be stored for later processing,
but generally the memory requirement is reduced by factors up to 16
by preserving the dta in the JPEG (Joint Photographic Expert Group)
format. The content of blocks of pixels are Fourier transformed and the
number of coefficients which are kept will depend on the degree to which
the data is to be compressed. The rate of taking pictures with a digital
camera depends on the rate at which the charges on the CCD are read
out, digitized and transfered to memory. With a typical 40MHz clock
speed the readout from a 1 million pixels takes of order 25ms, allowing
film mode operation.

4.5.1 Camera lens design

An early lens design that has persisted in cheap cameras is the meniscus
lens shown in figure 3.31. The field stop is in the natural location reduc-
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ing coma and spherical aberration and flattening the field. Distortion
and astigmatism are not corrected. With a symmetric pair of lenses
facing a central stop, coma, distortion and lateral chromatic aberration
cancel partly or completely. Thus a step forward was to have a near-
symmetric pair of achromatic doublets, retaining the meniscus shape.
A near-symmetric pair of achromatic doublets of meniscus shape facing
a central stop was the basis of the rapid rectilinear camera lens. Cor-
recting astigmatism/field curvature as well as chromatic aberrations re-
quired the invention of high refractive index low dispersion crown glass
and low refractive index high dispersion flint glass. The resulting ce-
mented triplets of a flint biconcave lens sandwiched between two crown
biconvexes are called anastigmats, that is, flat field achromats. A triplet
of air spaced lenses, again with a biconcave between two biconvexes,
has enough flexibility with six surfaces to permit designers to effectively
remove all the aberrations simultaneously. This design is the basis a
group of lenses such as the Tessar, a modern variant of which is shown
in the central panel in figure 4.12 One further development of symmet-

Fig. 4.12 Modern camera lens families.
Reading from the top these are: Dou-
ble Gaussian, Air-spaced Triplet, and
Double Anastigmat

ric lenses overcomes higher (fifth) order spherical aberration. This is
the double Gaussian triplet shown in the upper panel in figure 4.12; the
individual lenses will often be achromatic doublets of meniscus shape.
The final modern design shown in the lowest panel of figure 4.12 uses a
symmetric pair of anastigmats.

Lens designers with a particular aim can search for an existing de-
sign in a database, and if necessary, proceed from there by iteration.
Current computer based packages perform analytic calculation of lens
system properties beyond the simple paraxial behaviour. These pack-
ages also perform ray tracing starting from an object point anywhere in
the field of view. The rays are distributed in direction so that the points
where they cross the aperture stop cover this surface in a uniform fine
grid. The plot of intersections of the rays across the selected image plane
then gives an accurate measure of the quality of the image. This data is
displayed and also stored for analysis and comparison with alternative
lens designs. All the parameters of the lenses (glass properties, surface
curvatures, thickness, etc.) can be varied before a ray tracing sequence.
The effects of including aspheric surfaces, mirrors and diffractive ele-
ments can also be modelled exactly. Many modern lens designs include
one or more aspheric surfaces, and their inclusion gives a flexibility that
usually results in a design with fewer lenses for the same image quality.
As an example of the detailed analysis feasible with the OSLO R© design
suite,3 figure 4.13 shows the final design and residual aberrations for a3Lambda Research Corp, 80 Taylor St.,

PO Box 1400, Littleton MA 01460-
4400, USA.

near-symmetric camera lens.

4.5.2 SLR camera features

Single lens reflex cameras are the commonest film cameras. A sketch of
the components is shown in figure 4.14. The lens has a focal length of
typically 50mm and an aperture of f/# 1.2, that shown being a double
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Fig. 4.13 Example of a double Gaussian lens design and residual aberrations; sup-

plied by Dr L. Gardner, OSLO R© program manager, Lambda Research Corp.

Film

to eye

to meter/autofocus

M

Diaphragm

Fig. 4.14 The main optical components of a single lens reflex camera (SLR)
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Gaussian design. The viewfinding, focusing and the light metering are
all ‘through the lens’ (TTL) by means of mirrors, hinged at M , which
snap out of the way just before the photograph is taken. The shutter
that delimits the length of the exposure can be located close to the iris
diaphragm at the field stop, and has a similar iris structure. Alterna-
tively the shutter can be a focal plane shutter just in front of the film, in
which case it is in the form of a blind with a slit that is dragged rapidly
past the film. The front mirror has a central portion that is partly sil-
vered so that some light travels to a second mirror and is reflected there
to a light meter and autofocus system. Light reflected by the first mirror
goes through an eyepiece and a pentaprism that restores the orientation44 The top right hand surface of the pen-

taprism is roof-shaped, the ridge run-
ning parallel to the line drawn. Light
travelling upward in the pentaprism
first strikes the far roof surface, is then
reflected towards the reader to the near
roof surface. From there it follows the
arrowed path element, and is reflected
horizontally to exit through the rear
wall. These four reflections restore the
image orientation.

of the scene. In a DSLR camera a CCD replaces the film and the im-
age is reproduced on a visual display for the user. Figure 4.15 shows
the components of a simple autofocus system. The light passes through
two well separated off axis apertures in front of a lens which forms an
image on the equivalent of the film plane. Beyond this the rays fall on
a transparent screen of lenslets (small lenses). These refocus the two
cones of rays onto an array of photodiodes. If the image of the scene is
in focus at the film, the photodiodes illuminated are exactly a distance
t apart. When the image is not in focus on the film the separation is
greater or smaller than t. The distance t is sensed electronically and the
appropriate lens movement performed to regain focus.

t

Baffle

Lens

Film
plane

Lenslet array

Photodiode
array

Fig. 4.15 Autofocusing system. Two
ray pencils are shown which form im-
ages on the photodiode array.

4.5.3 Telecentric lenses

Telecentric lenses provide a projected rather than a perspective view
of small objects and this makes them of great value in machine vision
and for the monitoring of production lines. The characteristic feature of
the telecentric lens design is to locate the aperture stop at the second
focal plane, as shown in figure 4.16 for a single lens. I is the point
image formed of the point O on some object. The rays that reach I
leave O in a cone of rays that has the principal ray as its axis, and
because the aperture stop is located in the focal plane the principal ray
is parallel to the optical axis in the object space. Then, if the object
is displaced in either direction parallel to the optical axis the path of
the principal ray is unaltered. Although this movement of the object
causes the image at I to go out of focus gradually, the image remains
centred on I. This property is necessary in checking alignment of pins
on PC boards, or of laser drilled holes. The lens aperture (f/#) must
be kept small enough that the depth of field over which objects remain
well defined is adequate for the task. Evidently the front component of
a telecentric lens has to be as wide as the area viewed at one time. A

F

I

Image
plane

Aperture
stop

LO

O

RO

f

Fig. 4.16 A telecentric lens with the
aperture stop located in the second fo-
cal plane.

typical telecentric lens has a 5 cm diameter objective, a focal length of
5 cm and a working distance of 10–20cm. The fully corrected telescope
is some 30 cm in length; the image is formed on a CCD and the data
is processed electronically. Typically the image scale varies by less than
1% for axial displacements of ±10mm in such instruments.
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4.5.4 Telephoto lenses

The image size of a distant object is simply its angular size multiplied by
the lens focal length. In telephoto lenses a long focal length is achieved
in a compact format by moving the second principal plane well out in
front of the lenses. Figure 4.17 shows the basic design consisting of a
positive lens placed in front of a negative lens. The positive lens focuses
a distant point on the optical axis at F+, and this image is refocused
by the negative lens at I. From eqn. 3.39 we take the expression for the
equivalent focal length of a pair of lenses separated by a distance t:

1/f = 1/f1 + 1/f2 − t/f1f2.

A simple choice is to make f2 = −f1, so that:

f = f2
1 /t.

In figure 4.17 the equivalent thin lens, with its second principal plane at
P2P2, would focus the incident ray shown there along the broken line.
The distance between the focal plane and the last lens surface is called
the back focal length. Taking an infinitely distant object and using eqn.

+F I

2fs

f

2P

2P

Fig. 4.17 A simple telephoto lens.

3.17 for each lens gives this distance:

s2f = f2
1 /t − f1.

Telephoto lenses are relatively long so they are prone to blurred images
arising from camera-shake. In order to eliminate this weakness makers
build in sensors to detect yaw (rotation about a vertical axis) and pitch
(rotation about a horizontal axis perpendicular to the optical axis). Mo-
tors displace the lens elements, or the CCD, laterally to compensate for
these motions with a response time of milliseconds. It also follows from
eqn. 4.21 that the long focal length of the telephoto lens leads to a
shallow depth of field.

4.5.5 Zoom lenses

The zoom lens is used to achieve very dramatic effects. In a zoom the
overall focal length changes and hence the magnification, while the ob-
ject viewed remains continuously in sharp focus. Figure 4.18 shows the
basic components of a zoom lens, some of which will in practice be achro-
mats, multiple achromats or have aspheric surfaces. The front lens is
essentially the objective that focuses the object. Behind this is a neg-
ative lens that moves axially during the zoom. Finally there are a pair
of relay lenses that bring the image to a focus on film or an electronic
detector. Placing the field stop between the relay lenses maintains a
constant f/# during the zoom. The positions of the negative lens are
shown at the start (1) and end of the zoom (2), together with represen-
tative rays from the object showing that the image plane does not move.
The second principal plane of the equivalent thin lens is shown before,
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1P

1P

2P

2P

1f

2f

Stop
1

2

Fig. 4.18 Zoom lens showing the position of the mobile lens, the principal plane and
ray paths: before the zoom below the optical axis (1), and after the zoom above the
optical axis (2).

P1P1, and after the zoom, P2P2. After the zoom the equivalent focal
length is several times larger so the image is correspondingly enlarged.
A focal length zoom from 200 to 1200mm is commonly available, giving
a 6:1 change in the magnification.

Zoom lenses represent the state of the art in lens design. The number
of lens elements required to remove all aberrations adequately over the
full zoom is rather large, 20 elements in some cases. At each air/glass or
glass/air interface the fraction of incident light reflected is, as we shall
show later, for light incident perpendicular to the surface

R = (n − 1)2/(n + 1)2, (4.22)

where the glass has refractive index n. The resulting reflection coefficient
is 0.04 (0.09) for each glass/air interface where the glass has refractive
index 1.5 (1.9). Thus with 40 surfaces the fraction of the incident light
transmitted would be less than 0.9640 ≈ 0.20 with usual lens materials.
An associated problem arises from the internal reflections between lens
surfaces of light from bright objects in the scene photographed. If, as
is not uncommon, the brightness across the view photographed varies
by a factor one hundred, then multiple reflections of the bright objects
produce blobs and a background haze that dominate the picture. There-
fore, where there are many surfaces in a lens system, each surface must
be given anti-reflection coatings. Such coatings, which are discussed in
Chapter 9, can reduce the reflection coefficient to a fraction of a percent
per surface. Digital cameras have smaller focal lengths than film cam-
eras so the difficulties of manufacturing zoom lenses are much reduced
due to the lenses being physically smaller, and widespread use is now
made of aspheric lenses. Nowadays excellent zoom lenses are fitted as
standard on many digital cameras.



4.6 Graded index lenses 91

4.6 Graded index lenses

Graded index or GRIN lenses focus by refraction inside the lens, rather
than the surface refraction of a conventional lenses. The glass composi-
tion and hence the refractive index changes within the lens. In a similar
way, on a hot day, the differentially heated air above tarmac produces a
mirage. There are two approaches: one is to use a radial refractive index
gradient, the other an axial refractive index gradient. The first approach
is employed in lenses which couple laser diodes to optical fibres or fibres
to fibres and these lenses are usually a couple of millimetres in diameter.
Because the focusing is internal the faces of graded index lenses may be

Fig. 4.19 A GRIN lens with radial
refractive index gradient, of pitch 1.0.
Several meridional ray paths are shown.

simply flat, parallel surfaces.

Figure 4.19 shows the path of rays through a GRIN lens having a
radial refractive index gradient given by

n(r) = n(0)
√

[1 − (g r)2], (4.23)

where g is called the gradient factor. Meridional rays, that is to say rays
lying in a plane containing the optical axis, follow sinusoidal paths along
the lens with a wavelength 2π/g.

From Snell’s law we have

n(r) cos α(r) = n(r − dr) cos α(r − dr)

= .... = n(0) cosα(0), (4.24)

where α(r) is the angle the ray makes with the optical axis at radius r.
At the furthest point from the axis, r = R, the ray is parallel to the axis
so n(R) = n(0) cosα(0). Then using eqn. 4.23, R = sin α(0)/g. The
optical path length in one complete cycle is straightforward but tedious
to evaluate

l = 4

∫ R

0

n(r) dr/ sin α(r)

= n(0)π [1 + cos2 α(0)] /g, (4.25)

which for paraxial rays reduces to l = 2 n(0)π /g. The optical length
axially is l = n(0) p, where p is the wavelength of the sinusoids shown in
figure 4.19. Hence p = 2 π/g.

Representative parameters for a GRIN lenses are: 1.8mm diameter,
n0 around 1.6, g around 0.33/mm. A quantity called the pitch is defined
to be the length of the lens in wavelengths. The lens shown in figure
4.19 has a pitch of 1.0 and produces at one end an image of an object
placed at the other end. Similarly a lens with pitch 0.25 will focus a
parallel beam. Medical endoscopes have integral pitch and can be 30 cm
or more long. Some radial graded index lenses provide magnification of
order ×10.
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In the second class of graded index lenses the index varies linearly
along the axial direction. The variation in refractive index is generally
much greater than in the GRIN lenses, being as much as 0.15. Shaping
the lens surfaces gives new effects. Suppose that the lens is planoconvex
and that the refractive index is increasing along the optical axis, then a
ray near the axis will travel through glass of on average higher refractive
index than rays through the edges of the lens. This feature provides a
useful way to compensate for spherical aberration.

4.7 Aspheric lenses

An alternative way to correct aberrations is to give the lens an aspheric
(departing from spherical) profile. Such lenses have a long history and
an example from the Gotland Museum in Sweden is shown in figure 4.20.
Aspheric lenses are now widely made directly using computer controlled

Fig. 4.20 Mediaeval rock crystal lens
(c. AD1000) from a Viking hoard found
in Sweden. Courtesy Dr. B. Lingel-
bach, Aalen Technical University.

surface grinding techniques, or by casting from moulds prepared that
way. Aspheric lenses can capture a very wide cone of rays from a source
while their surface shaping removes any spherical aberration. Planocon-
vex lenses of focal length 1 to 5 cm with NA as high as 0.75 are very
useful as the first stages of condensers. Fully corrected lens systems can
be made with fewer elements when aspheric lenses are included in the
design.

4.8 Fresnel lenses

Compared with the lenses discussed above the Fresnel lens has relatively
poor optical quality, but it is cheap and can be made with a very large
area. Sections through a normal lens and its equivalent Fresnel lens are
shown in figure 4.21. At the right of the figure one half of the Fresnel
lens is seen as viewed from along the optical axis. Each annular section
of the Fresnel lens has the same surface curvature as the corresponding
piece of the normal lens. However the core of the normal lens has been
removed from the Fresnel lens, making the latter flat in profile. Each
ring of the Fresnel lens focuses in the same way as the corresponding ring
in the normal lens which means that the Fresnel lens produces a similar
image. However the image quality is poorer because of the light loss and
the scattering at the steps between rings. Large area Fresnel lenses can
be conveniently cast in plastic. They are often intended to be used at a
specific object distance, and are often aspheric. Each overhead projector

Standard
lens

Fresnel
lens

Section Section Face on

Fig. 4.21 A normal lens and the equiv-
alent Fresnel lens. On the left are sec-
tions which contain the optical axis in
each case; on the right, one half of the
Fresnel lens is seen as viewed along the
optical axis.

(OHP) uses a largish area Fresnel lens to focus the light from a substage
condenser through the transparency being projected. The Fresnel lens
gives uniform illumination over a wide area and the transparency can
sit directly on the Fresnel lens. Fresnel lenses are used anywhere that a
large area beam of moderate quality is needed, while wallet sized plastic
Fresnel lenses make practical magnifiers for reading fine print, and are
much lighter than glass lenses.
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Exercises

(4.1) Show that the Galilean telescope of figure 4.2 pro-
duces angular magnification Mθ = fo/fe. What is
the factor by which this telescope expands a laser
beam? In a Galilean telescope the objective has
focal length 16 cm and diameter 44 mm, and the
eyelens −2 cm focal length and diameter 10 mm.
What is the angular magnification? What is the
position and diameter of the image of the objective
which is formed by the eyelens? In the complete
optical instrument made up of this Galilean tele-
scope and the observer’s eye what is the aperture
stop? Assume the eye pupil has diameter 5mm and
is 10 mm from the eyelens.

(4.2) A microscope has an objective of 2mm diameter
and focal length 10 mm, an eyelens of diameter
15 mm and focal length 25mm, with tube length
160 mm. Calculate the magnification of each stage
of the microscope. Determine the position and size
of the exit pupil. What is the diameter of the field
of view?

(4.3) Whereas a normal eye when fully relaxed brings ob-
jects at infinity into focus, a nearsighted person’s
fully relaxed eye brings objects much closer into fo-
cus. Suppose this far point is at 3m, what focal
length lens is needed to correct this nearsighted-
ness?

(4.4) A person with long sight has a near point at 1m
rather than the usual 25 cm. What focal length lens
will correct this?

(4.5) In an optical illusion two thin identically curved
concave mirrors across are placed on a table one on

top of the other, the lower one facing up and the
upper facing down with their rims are in contact.
The mirrors are some 20 cm across and the upper
one has a central hole 2 cm in diameter. Viewers
see a coin resting on the top of the upper mirror
at its centre and attempt to pick it up. In fact the
coin is resting on the centre of the lower mirror.
How is this illusion achieved?

(4.6) What arrangement of two identical positive lenses
will invert an image while leaving its linear size un-
changed?

(4.7) Using the same approach as in Section 4.5 to show
that if a camera is focused at infinity then the near-
est point in focus is at u = Df/∆s, where ∆s is the
pixel size of the detector, f the focal length of the
lens and D the lens diameter. For a camera with
f/# of 1.4, focal length 12mm and pixel size 4 µm,
what is u?

(4.8) An eyepiece is constructed from two identical
planoconvex lenses with curved surfaces facing and
separated by 2f/3 where f is the focal length of ei-
ther lens. What is the focal length of the eyepiece
and where are the principal planes? Which lens is
the field stop?

(4.9) A perfect oil immersion objective of the type shown
in figure 4.8 accepts rays out to 90◦ off axis. The
refractive index of the spherical lens and the oil is
1.4. What is the semi-angle of the cone of rays that
the next lens must be designed to accept.

(4.10) Show that the NA of a GRIN lens of radius R is
gRn(0) using the notation of Section 4.6.
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Interference effects and

interferometers 5

5.1 Introduction

The development and applications of the classical wave theory of light
form the content of this and the succeeding six chapters. That light
waves exist became accepted following Young’s observation, early in the
nineteenth century, of interference between light emerging from a pair
of slits both illuminated by the same monochromatic source. As men-
tioned in the first chapter the wave theory of electromagnetic radiation,
including light, was put on a sound theoretical basis around 1864 by
Maxwell. It emerged that ray optics works in everyday situations be-
cause the wavelength of light is very small compared to everyday objects.

Electromagnetic fields are vectors and add together in the same simple
way as force vectors. This fundamental property is called the superpo-
sition principle. It will be used in this chapter to explain interference
effects in which a wave is divided up, the two parts travel different paths,
and are then superposed. Young’s double slit experiment and Michelson
interferometer illustrate the two possibile procedures: respectively the
division of the wavefront by apertures, and division of the wave ampli-
tude by partially reflecting mirrors. The analysis of interference patterns
using complex amplitudes and phasor diagrams are introduced at this
point. A standard simplification made in this and the following chapters
is to drop unnecessary constants when calculating intensities where it
is the variation in intensity which is of interest: for example when the
electric field is E the intensity is taken to be E2 rather than ε0cE

2.

Whether interference effects are seen or not with a given apparatus de-
pends on the coherence of the wavetrains being superposed. Coherence
is treated at length in this chapter, and much use is made of wavepackets
in discussing coherence.

Practical applications of interference in devices used to measure wave-
lengths, distances, velocities and angular velocities are described in this
chapter. Multiple beam interference produced with Fabry–Perot etalons
is introduced, and is shown to give enhanced resolution and precision in
wavelength measurement.
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5.2 The superposition principle

If electromagnetic radiation from several sources is incident on any given
point, the total electric field there is simply the vector sum of the electric
fields produced at that point by each source acting alone

E = E1 + E2 + .... (5.1)

Equally, adding the individual magnetic fields vectorially gives the over-
all magnetic field. These statements go by the name of the superposition
principle. When the point of interest is located in matter (rather than
in free space) there can be differences betweeen the physical effect pro-
duced by the fields of each source alone and by the total field. For
example two lasers illuminating a metal surface may melt the metal,
whereas the individual beams leave it intact. Again we might choose a
laser whose light can cause atoms in a gas to be excited to a level A and
a second laser whose light can cause a transition of atoms from level A
to a higher level B. Neither laser alone could access atomic state B but
together they can do so.

Slits

Monochromatic
   slit source

Observing
   screen

d

P

θ

θ
d sin 

Fig. 5.1 Young’s two slit interference experiment. The distances from the slits to the
source and from the slits to the screen are very large compared to the slit separation.
A typical slit separation might be 1mm.

5.3 Young’s two slit experiment

Young’s apparatus is shown in figure 5.1. A narrow monochromatic
source illuminates a pair of slits separated by a small distance d, and
beyond the slits is a screen. The slits are located symmetrically about
the axis so the waves arriving at each of them are in phase. Young ob-
served bright and dark fringes on the screen, and he realized that these
fringes were due to interference between light from the two slits.

Figure 5.2 shows an analogous situation in which waves are produced
on a water tank by a pair of closely spaced plungers which move at
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the same frequency and in phase. Stars locate the plungers on the fig-
ure. In some directions the waves from the sources are in step and give
large amplitude waves which show up as the alternating white peaks and
black troughs: the waves interfere constructively. In other directions the
waves arrive out of step and interfere destructively leaving the surface
undisturbed, which then appears grey in the figure. Following Young
we now appreciate that the electromagnetic fields in light from the two
slits in figure 5.1 interfere in a similar way.

The fields in a light wave oscillate at frequencies of ∼1014 Hz; fre-
quencies which neither the eye nor any detector can follow. Rather they
respond to the time average of the intensity, which is proportional to the
square of the electric field. Thus the detected intensity of light whose
electric fields are like those displayed in figure 5.2 would appear as shown
in figure 5.3. The regions of constructive interference, shown white,
would be brightly illuminated: and the regions of destructive interfer-
ence, shown black, would be in darkness. A screen placed anywhere in
front of the slits would be covered in bright and dark interference fringes,
so that these are called non-localized fringes.

Constr.

Constr.

Constr.

Constr.

Constr.

Destr.

Destr.

Destr.

Destr.

Fig. 5.2 Surface water waves produced
by sources at the two stars. The bands
of constructive and destructive interfer-
ence are labelled.

Constr.

Destr.

Constr.

Destr.

Constr.

Destr.

Constr.

Destr.

Constr.

Fig. 5.3 Time averaged intensity pat-
tern computed for em waves with wave-
length identical to those in figure 5.2.
White indicates brightness, black dark-
ness.

5.3.1 Fresnel’s analysis

Fresnel, shortly after Young’s observations, used the superposition prin-
ciple to add the Huygens’ waves from apertures in an obstructed light
beam. The secondary waves are spherical and have an electric field

E = V0 cos (ωt − kr)/r, (5.2)

where the angular frequency ω and wave vector amplitude k are the
same as for the incident wave, and the distance and time are measured
from the origin of the secondary wave on the apertures. The factor V0

depends on the incident wave amplitude, and the factor 1/r ensures that
the total power radiated remains constant with the distance from the
source. Adding Huygens wavelets from a long slit produces a cylindrical
wave. At any point beyond the apertures the total electric field is the
sum of the secondary wave electric fields. When the path lengths of sec-
ondary waves to the point of observation are different there is a phase
difference and this is the origin of interference effects such as that seen
by Young. Because the wavefronts are cylindrical, path lengths from the
slit must be measured in the plane of figure 5.1. In the present case,
as in may others, the path lengths of the interfering waves are almost
equal, so that the effect of the factor 1/r in eqn. 5.2 is an overall con-
stant multiplying the total amplitude.

Each slit in figure 5.1 is a source of Huygens’ waves and their waves
arriving at the point P will have travelled distances differing by d sin θ.
When this distance is an integral number of wavelengths m, the waves
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Fig. 5.4 A compact arrangement of Young’s two slit interference experiment. The
point source is at the focal point of one converging lens. The observing plane is in the
focal plane of a second converging lens. Incoming wavefronts are shown with broken
lines.

arrive in phase at P and interfere constructively,

d sin θ = mλ, (5.3)

giving a central bright fringe at which m is zero. Destructive interference
occurs when

d sin θ = (m + 1/2)λ. (5.4)

At small angles the separation between adjacent bright fringes is

∆θ = λ/d, (5.5)

hence the ratio d/λ must be kept small enough so that the fringes can
be seen by eye. The above simple analysis applies provided that the
apertures are all narrow and the distance of the slits from source and
screen are large. If the source slit is so wide that the path length from
different points on the source to a slit varies by more than a fraction of
a wavelength the interference pattern will be blurred. If the two slits are
themselves broad, then the pattern of interference becomes more com-
plicated; something which is investigated in the following chapter.
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Figure 5.4 shows a compact setup with the source and screen lying
at the focal planes of positive lenses. The light from the source arrives
as a plane wave normally incident at the slits, and hence in phase. In
addition light leaving the two slits in a direction making an angle θ to
the optical axis will arrive at the point P having travelled paths differing
by d sin θ. This conclusion is based on the useful fact that all points on
the inclined plane wavefront at S1B are the same optical distance from
the image point P in the focal plane. P lies a distance f tan θ off axis
where f is the focal length of the second lens. Then the electric fields

φ/2φ
1E Real

Imaginary

/2)φ cos(0
2 E 2

E

ω

Fig. 5.5 Phasor diagram for Young’s
two slit experiment.

produced at P by radiation from the two slits are

E1 = E0 cosωt; E2 = E0 cos (ωt − φ).

Light from S2 has the earlier phase because it must leave S2 earlier than
light leaves from S1 in order that they both reach P at the same time.
Another general point to recall here is that a path difference of one
wavelength produces a phase difference of 2π, so that

φ = 2πd sin θ/λ = k d sin θ.

In order to manipulate the math pictorially the complex forms of the
field are used

E1 = E0 exp iωt; E2 = E0 exp [i(ωt − φ)].

These complex amplitudes are shown on a phasor diagram in figure 5.5;
that is an Argand diagram taken at the moment when E1 lies along
the real axis. The superposition principle requires we add the fields
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Fig. 5.6 Intensity in Young’s two slit
experiment as a function of the direc-
tion off axis θ, expressed as a multiple
of the single slit intensity. The dotted
line shows the mean intensity. λ is the
wavelength and d the slit separation.

vectorially giving a resultant, which at time t = 0 is

E = 2E0 cos (φ/2) exp (−iφ/2); (5.6)

or at any time

E = 2E0 cos (φ/2) exp i(ωt − φ/2),

with real part
E = 2E0 cos (φ/2) cos (ωt − φ/2). (5.7)

Hence the intensity

I = 4E2
0 cos2 (φ/2) cos2 (ωt − φ/2). (5.8)

Detectors record the average intensity taken over many full cycles of
total duration T. Their response is thus1

I = 4E2
0

∫ T

0

cos2 (φ/2) cos2 (ωt − φ/2) dt/T

= 2E2
0 cos2 (φ/2) = 2E2

0 cos2 (πd sin θ/λ). (5.9)

1In detail∫ T

0

cos2 (ωt) dt/T =

∫ T

0

(cos (2ωt) + 1) dt/(2T ) = 1/2 + sin (2ωT )/(4ωT ).

4ωT is the 8π times the number of cycles completed in time T . Thus if T is the
response time of a detector (> 1 ns) and ω is an optical frequency (∼1014) the second
term is negligible, making the integral equal to 1/2.



100 Interference effects and interferometers

This variation is shown in figure 5.6 as a function of the angle off axis.
The peak intensity is four times the time averaged intensity (E2

0/2)
produced by a single slit. Averaging over a complete spatial cycle of the
fringe pattern gives

Iaverage = 2

∫ 2π

0

E2
0 cos2 (φ/2) dφ/(2π) = E2

0 ,

so the average intensity over the fringe pattern is the same as the sum
of the intensities for two independent slits. No light is lost or gained, it
is simply redistributed.

Time averaging for monochromatic waves

It will often be useful to use complex waves, making the replacement

F = f cos (ωt − kz − φ) ⇒ Fc = f exp [i(ωt − kz − φ)], (5.10)

where F is any actual electric or magnetic field. The only measurableThe choice for the complex form
of cos (ωt − kz) could be either
exp [i(ωt − kz)] or exp [i(kz − ωt)]
which have identical real parts. Of
these choices the former is met fre-
quently in classical optics and will
be used here for classical optics: the
latter choice is standard in quantum
mechanics and will be used for the
quantum section of the book. The
choice exp [i(ωt − kz)] has the nice
property that the phase increases with
time. If authors make different choices
in classical optics their calculations
give identical results, but there can
be a change of sign in intermediate
non-measurable quantities. Notes are
given to indicate where these changes
occur. When the waveforms have a
purely spatial dependence the choice
between exp±ikz is immaterial and is
made for convenience.

quantities in optics are intensities and fluxes, both being products of
two fields FG averaged over the time of response of the detector. In the
case of monochromatic waves

FG = f cos (ωt − kz − φ)g cos (ωt − kz − ψ)

= (fg/2) [ cos (2ωt − 2kz − φ − ψ) + cosα ],

where α = ψ − φ. The time average over many optical periods is

FG = (fg/2) cosα.

Compare this result with the product of the instantaneous complex fields

FcG
∗
c = fg exp iα,

and it is seen that
FG = Re [FcG

∗
c ] /2. (5.11)

Hence for intensities

E2 = Re [ EcE
∗
c ] /2 = EcE

∗
c /2, (5.12)

while for energy flow the time average of the Poynting vector is

E ∧ H = Re [Ec ∧H∗
c ] /2. (5.13)

Visibility

For simplicity the amplitudes due to the two slits have been assumed to
be equal. If they are unequal the cancellation when the interference is
destructive will not be complete. Suppose the amplitudes are E01 and
E02 then the total electric field is

E = E01 cosωt + E02 cos (ωt − φ),
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and the instantaneous intensity is

I = E2
01 cos2 ωt + E02 cos2 (ωt − φ) + 2E02E01 cosωt cos (ωt − φ)

= E2
01 cos2 ωt + E02 cos2 (ωt − φ) + E02E01[cos (2ωt− φ) + cosφ].

The time average of this intensity is

I = E2
01/2 + E2

02/2 + E02E01 cosφ,

with a minimum that does not fall to zero. A quantity called the visibility
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Fig. 5.7 Intensity distributions for
fringes with visibility 1.0 (solid line)
and visibility 0.5 (broken line).

is defined which expresses the degree of cancellation

V = (Imax − Imin)/(Imax + Imin), (5.14)

where Imax and Imin are the observed maximum and minimum intensities
respectively. In the case considered

V =
2E01E02

E2
01 + E2

02

.

The visibility defined in this way has the overall intensity normalized
away so that its value is limited to the range between 0 to 1. Figure
5.7 shows two sets of fringes with visibilities 1.0 amd 0.5. Fringes with
unit visibility are clearcut, while low visibility fringes are harder to de-
tect because of the poor contrast between the maxima and minima of
intensity.

5.3.2 Interference by amplitude division

In Young’s two slit experiment wavefront division produces interfering
beams. The alternative process is amplitude division in which a partially
reflecting surface divides the light into reflected and transmitted beams
which are subsequently both directed onto a surface where the interfer-
ence pattern is observed. First consider the simple case of monochro-
matic illumination. Figure 5.8 shows an arrangement in which part of

Eye

α

α2 

Fig. 5.8 Construction to show the lo-
calization of the interference between
reflections from a pair of plane reflect-
ing surfaces inclined at a small angle α.

the incident light is reflected by a pair of partially reflecting surfaces
inclined at a small angle to one another. Interference will only be seen if
the two beams can be focused on the same region of the viewer’s retina.
This requires that the eye is focused as shown in the diagram, at a
specific depth below the mirrors. Therefore the fringes are said to be lo-
calized, in contrast to Young’s fringes which can be detected everywhere
in front of the slits. Of course fringes can only be seen if light is incident
from the direction that reflects into the viewer’s eye. A broad diffuse
source is needed if fringes are to be seen over a broad angular range. In
the familiar case of white light from the sky falling on an oil slick the
direction of the bright fringes will be different for different wavelengths
so that coloured bands are seen apparently lying on the oil.

When viewing the surfaces near normal incidence bright fringes of
constructive interference are visible if the optical path difference between
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reflections is an integral number of vacuum wavelengths (mλ). Between
consecutive fringes the path difference changes by λ and the spacing of
the reflecting surfaces by λ/2. Such fringes form a contour map of regions
of equal thickness. They are called fringes of constant thickness and also
Fizeau fringes. Newton’s rings are circular fringes of equal thickness
seen when a lens is placed on top of an optical flat: interference occurs
between the the reflections from the adjacent surfaces of the lens and
the optical flat. The experimental setup is illustrated in figure 5.9 with

R

r / 2R2r

Monochr.
point source

Low power
microscope

Beam
splitter

Lens

Optical flat

Fig. 5.9 Setup for observing Newton’s
rings. Reflections for the same incident
ray path from the lens lower surface and
optical flat upper surface are drawn as
solid lines.

a planoconvex lens whose curved face has a radius of curvature R. At
a radial distance r from the point of contact, the sagitta of the lens is
r2/2R. Light incident there parallel to the optical axis will be reflected
either at the lens or at the flat and then arrive at the microscope; the two
paths differ by an amount r2/R. An unexpected observation is that the
centre of the pattern where the physical path difference is zero appears
dark rather than bright. This comes about because a reflection from an
optically denser medium (here the air/optical flat interface) at normal
incidence produces a phase change differing by π from the phase change
for a reflection from a less dense medium (here the lens/air interface).
Thus bright fringes are seen when

r2/R = (m + 1/2)λ. (5.15)

The quadratic dependence on r means that the fringes get more tightly
packed the further one moves from the optical axis. Departures from
fringe circularity indicate an imperfection whose importance can be es-
timated using the above equation. Viewing Newton’s rings provides a
quick practical test of lens quality.

When two flat reflecting surfaces are aligned parallel as sketched in
figure 5.10 the fringes are now found to be localized at infinity: with the
eye relaxed the two reflections arrive at the same point on the retina.
AC is drawn perpendicular to the reflected rays and the difference in
path length between the two reflections is A′C. The two interfaces are
now taken to be identical so that the phase changes are the same at each
reflection. A bright fringe is seen when the path difference is a whole
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θ θ

θ

Fig. 5.10 Fringes localized at infinity
from interference between similar par-
allel reflecting surfaces.

number of wavelengths
2nd cos θ = mλ, (5.16)

θ being the angle between the direction the viewer is looking and the per-
pendicular to the surfaces and n is the refractive index of the medium.
If an extended diffuse source is used then each bright fringe seen by the
viewer will extend to form a circle subtending a semi-angle θ with respect
to the surface normal. These fringes are called fringes of equal inclina-
tion or Haidinger fringes, and they are localized at infinity. A positive
lens can be used to project the fringes onto a screen or photodetectors.
Notice that the fringe order m is very large for even a 1mm spacing of
the mirrors and that m is largest at the centre of the pattern.

If the source in figure 5.10 were pointlike its two images would, like
Young’s slits, produce non-localized fringes. It is worth asking what it is
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about a broad source that suppresses these non-localized fringes. First
note that different regions of the source produce fringe patterns which
are displaced from one another. Then note that light from these different
regions is incoherent, hence what is seen is the sum of the intensities of
the fringes from all regions of the source. The overall effect with a broad
source is therefore uniform illumination – with one exception. The one
exception is illustrated in figure 5.10 where the eye is focused at an
infinite distance. In that case each area of the source gives a bright
fringe in the direction satisfying eqn. 5.16 and so the fringes from all
areas match exactly.

5.4 Michelson’s interferometer

This interferometer pictured in figure 5.11 was designed by Michelson
to produce constant inclination fringes. With it he and Morley made
measurements that underpinned the theory of special relativity. Mod-
ern versions of this interferometer are widely used in spectroscopy, es-
pecially in the infrared. The source must be both broad and diffuse,

  Source and
diffusing screen

d

M cM

1M
mobile

2M
stationary

’
1M

Fig. 5.11 Michelson interferometer. The two paths are indicated by grey and black
arrowheads. d is the distance of M′

1 (M1’s image in M) from M2.

a lamp positioned behind a ground glass screen is normally adequate.
Light from the broad diffuse source undergoes amplitude division at a
beam splitting mirror M which reflects 50%, and transmits 50% of the
incident light. One beam is reflected from the movable mirror M1, and
the other from the fixed mirror M2. The beams returning after these
reflections are recombined by M and focused by the positive lens onto a
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detector. The lens and detector could be an observer’s eye. Mc is a glass
plate cut from the same sheet as M; its inclusion equalizes the thickness
of glass traversed by the two beams and hence eliminates any chromatic
dispersion.

The detector receives light directly from M2 and also from the image
M′

1 of M1 formed by M. When M′
1 and M2 are parallel (M1 and M2

perpendicular) there is a circular pattern of fringes of equal inclination
illustrated in figure 5.12; the semi-angle θ of any bright fringe satisfying
eqn. 5.16 with d now being the separation of M′

1 from M2. One use-
ful feature of the Michelson is that having a virtual mirror M′

1 the path
difference can be set to zero. A significant advantage of the Michelson in-
terferometer is that light from all points on the broad source contributes
to the fringe formation, a point explained in the last paragraph in the
last section. This makes for fringes far brighter, and easier to use, than
those obtained with wavefront division.

Fig. 5.12 Fringes of constant inclina-
tion seen with Michelson interferometer
when the mirror M2 and virtual mirror
M′

1 are parallel.

When the mirror M1 is moved to increase the path difference eqn. 5.16
tells us that a fringe corresponding to given value of m will expand (θ
increases) and fresh fringes enter at the centre of the pattern. Between
the appearances of successive fringes the mirror M1 moves exactly one
half wavelength. This simple fact is the basis for measuring mechanical
movement directly in terms of wavelengths of atomic transitions, which
themselves are determined solely by the laws and constants of atomic
physics. Macroscopic lengths can therefore be expressed in fundamental,
reproducible units. This is of course intellectually satisfying, but is now
essential to many modern industries.

The alignment of M2 parallel to M′
1 is made using monochromatic

light. A piece of wire is hooked over the ground glass diffuser and M2

is rotated until the two reflected images of this wire coincide. At the
moment they do so the fringes appear and are generally straight fringes
of equal thickness because there is some small remaining tilt between the
mirrors. Further delicate rotation of M2 will remove the tilt and give
circular fringes. Using eqn. 5.16 the reader may like to show that the an-
gular spacing between adjacent fringes increases as the gap between M′

1

and M2 is reduced; which suggests a way of bringing M′
1 into coincidence

with M2. When M′
1 approaches coincidence with M2 the fringes become

very broad and any departures from flatness in the mirrors causes the
fringes to lose their circular shape. At zero separation light across the
whole spectrum is in step and around this setting a white light source
produces a few brightly coloured fringes.

5.4.1 The constancy of c

In the late nineteenth century scientists imagined that light travelled
as waves on an otherwise undetectable aether that existed everywhere
and through which matter moved without much affecting the aether.
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In modern terms the aether would be an absolute frame with respect
to which light would have a constant velocity. If the Earth’s velocity
relative to the aether were v the measured velocity of light on Earth
would be changed by −v. Michelson and Morley attempted to detect
evidence for the Earth’s motion through the aether using the Michelson
interferometer.

Suppose such an interferometer with arms of equal length L moves
with velocity v with respect to the aether in a direction parallel to the
length of the M2 mirror arm. As shown in figure 5.13 the length of the

2 D

L

L

M(0) M(2t)

(t)1M

(t)2M

Fig. 5.13 Michelson–Morley experi-
ment showing the position of the mir-
rors at the specified times in the con-
jectured aether.

return path starting from mirror M via M2 is (L + D) + (L − D) = 2L,
where 2D is the total displacement of M2 through the aether during
the time the light is travelling to and fro. The return path via M1

is 2
√

L2 + D2 which is approximately 2L + D2/L because v is much
smaller than c. The difference between the two paths is thus D2/L.
This difference will reverse if the interferometer is rotated through 90◦

so that the motion is now along the direction of the M1 mirror arm.
From this argument it would follow that there would be a fringe shift
on rotating the interferometer of

∆m = (2D2/L)/λ. (5.17)

Now
D/L = v/c,

and substituting for D/L in the previous equation gives

∆m = (2L/λ)(v/c)2. (5.18)

Taking the actual values used, L = 10m and λ = 500nm, gives

∆m = 4 107 (v/c)2.

At the time of the measurement it was understood that the Earth’s or-
bital velocity was 30km s−1 so that ∆m would have been 0.2, and if one
uses instead the solar system’s 600km s−1 velocity relative to the cosmic
microwave background this shift should be twenty times larger. Michel-
son was able to exclude a fringe shift greater than 10−4. According to
the first postulate of the special theory of relativity em radiation travels
in free space at the same velocity in all inertial frames, that is to say
in frames that have constant relative velocity. This neatly explains the
equality of travel times irrespective of how fast the source or observer
move. The concept of an aether is therefore seen to be an error.

5.5 Coherence and wavepackets

In the above introduction to interference effects pure sinusoidal, that
is monochromatic waves with identical polarization were the rule; after
division the wave trains acquired a phase difference dependent only on
their path difference to the point where they interfere. When waves have
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identical wavelength and a fixed phase difference they are said to be fully
coherent. This ideal situation is only well approximated by laser beams.
If such a fully coherent source were available the interference pattern
would be present however large the mirror separation in Michelson’s in-
terferometer, simply getting weaker as the light intensity from the far
mirror faded away. In practice when a standard laboratory monochro-
matic source is employed the interference pattern disappears at a mirror
separation of only a few centimetres. Such sources give partially coher-
ent beams. A white light source is much less coherent than a laboratory
monochromatic source: the fringes disappear if mirror M1 moves only a
wavelength or so from the null position. The coherence of a beam de-
pends on the form of the wavetrain of radiation produced by the source
and this connection will now be investigated.

The wavetrain from any source is made up of very large numbers of
wavepackets emitted by individual atoms or molecules. The electric field
distribution in a wavepacket is like that in figure 1.6(c).2 A one watt2When the quantum nature of electro-

magnetic radiation is met it will emerge
that the wavepackets describe the posi-
tion and motion of the quanta of ra-
diation. Wavepackets are being pre-
sented here with an eye to this basic
connection. A crude translation into
quantum language would replace the
word wavepacket by the word photon.
However wavepackets can contain many
photons, and in laser beams usually do
so.

torch bulb emits around 1018 such wavepackets per second. Laboratory
reference sources containing a chemically pure gas at low pressure have
a spectrum consisting of spectral lines, so that the radiation is confined
to a few narrow wavelength intervals. The wavepackets corresponding
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Fig. 5.14 The electric field and inten-
sity produced when there are ten ran-
domly phased wavepackets of the same
wavelength and of unit magnitude, and
each about five wavelengths long.

to these spectral lines are typically of duration 10−10 s and the number
of oscillations in a wavepacket is of order 105 rather than the handful
shown in figure 1.6(c).

Over a time interval short compared to the wavepacket duration the
electric field from the ith radiating atom would be approximately

Ei = E0 cos (ωt + φi), (5.19)

where for simplicity the amplitude E0, the angular frequency ω and
the wavepacket duration are taken to be the same for all the atoms.
Each atom radiates independently and so the phase φi is quite random.
Summing the electric fields from all the radiating atoms gives

E = E0

∑
i

cos (ωt + φi)

= E0

[
cosωt

∑
i

cosφi − sin ωt
∑

i

sin φi

]
= E0 ξ cos (ωt + β).

In any other short interval different atoms would be emitting radiation
and the factors ξ and β would have new values. Thus the electric field

E = E0 ξ(t) cos [ ωt + β(t) ] (5.20)

with the magnitude ξ(t) and phase β(t), varying with time. It will be
the case that over an interval, taken at some arbitrary time t1, and
short compared to the duration of a wavepacket the wavetrain is ap-
proximately sinusoidal. If one then chooses another short section of
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the wavetrain at a much earlier or later time t2, this wave section too
is approximately sinusoidal. However the phase between the two sec-
tions is quite random because the time interval is much longer than
the wavepacket length: the relative phase will not, except by chance,
equal ω|t1 − t2|. Figure 5.14 illustrates this, but the reader should bear
in mind that typical laboratory sources emit wavepackets that are 105

waves long, rather than the few waves shown here. The overall electric
field and the intensity are seen instantaneously over a test region ten
wavelengths long produced by a wavetrain containing ten wavepackets
at any given time, each wavepacket of length five wavelengths, and all
having random phases with respect to each other. As time passes this
pattern will continually change. The horizontal line on the intensity
plot indicates the long term mean intensity. Segments of a wavetrain
at instants separated by an interval short compared to the wavepacket
duration are fully coherent. However segments separated by intervals
long compared to the wavepacket duration have sometimes one phase,
sometimes another. Thus the fringes produced by a Michelson interfer-
ometer have good contrast when the path difference between the arms
is nearly zero but will fade at large path differences to leave finally a
uniformly illuminated field of view.

The total instantaneous sum of the two beams at the detector in the
interferometer is, using eqn. 5.20,

E = E0 cos [ ωt + β(t) ] + E0 cos [ ω(t + s) + β(t + s) ],

where s is the time delay between the arms and for simplicity, and
without loss of generality in the result, ξ(t) is taken to be unity. The
instantaneous intensity is then

I = E2
0{cos2 [ ωt + β(t) ] + cos2 [ ωt + ωs + β(t + s) ]

+2 cos [ ωt + β(t) ] cos [ ωt + ωs + β(t + s) ]}
= E2

0{cos2 [ωt + β(t) ] + cos2 [ωt + ωs + β(t + s) ]

+ cos [ 2ωt + ωs + β(t) + β(t + s) ] + cos [ ωs + β(t + s) − β(t) ]}.

The time average of this is

I = E2
0 + E2

0

∫ T

0

cos [ ωs + β(t + s) − β(t) ] dt/T,

where E2
0/2 is the mean intensity of either beam alone. If the beams are

coherent so that β(t) = β(t + s) then this becomes

I = E2
0 + E2

0 cos (ωs),

which shows maximum interference as s is varied, going from 0 to 2E2
0 .

In the case of incoherent beams β(t)− β(t + s) varies randomly and the
integral vanishes leaving

I = E2
0 ,
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1M
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Fig. 5.15 Segments of one wavepacket travelling in the Michelson interferometer. In
the left hand panel the arms are nearly equal in length, while in the right hand panel
they are of very different length.

which is simply the sum of the individual intensities. These results bring
out the key feature that for incoherent beams the time average intensity,
which is what is detected, is just the sum of the individual intensities.
However maximal interference is seen in the time average of coherent
beams.

The above analysis releases us from having to tediously sum the elec-
tric fields for incoherent sources, calculate the intensity and time average
– only to find that the result is always the sum of intensities. It justifies
the simple rubric: with coherent sources add the amplitudes, but with
incoherent sources add the intensities.

It helps in understanding the nature of coherence to consider individ-
ual wavepackets passing through a Michelson interferometer as shown
in figure 5.15. In the left hand diagram the path difference d is made
much smaller than the length of a wavepacket. After the reflection the
segments of the wavepacket arrive in coincidence at the detector or ob-
server’s eye with a phase difference 2πd/λ at the centre of the field of
view. This will be equally true for all wavepackets. Consequently they
all contribute to an identical interference pattern and this is what is
seen. The right hand diagram shows the opposite extreme in which
the path difference is much greater than the wavepacket length. The
two segments of any wavepacket arrive at the detector at different times
so they do not overlap and so interference between them is impossible.
When the wavepacket segment that took the longer path arrives at the
detector it can coincide with part of an entirely different wavepacket that
was emitted later by the source and took the shorter path. Such pairs
of parts have quite random phase; some will interfere constructively and
just as many will interfere destructively. Averaged over the response
time of any detector the overall effect is a uniform illumination. The
path difference over which interference can be observable is called the
coherence length Lc for the radiation, and evidently this is simply the
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length of a wavepacket. The corresponding coherence time is τc = Lc/c.

A useful indication of the degree of coherence of interfering beams
is given by the visibility of the fringes observed. When the difference
between the lengths of the arms of the Michelson interferometer is in-
creased from zero the fringe visibility, defined by eqn. 5.14, declines
from unity when the beams are fully coherent to zero when the path
difference exceeds the coherence length and a uniform intensity is seen.

Two physically identical sources produce incoherent beams because
the atoms in the two are emitting wavepackets quite randomly. This is
equally true of the different parts of a single source. Therefore periods
of time when the interference happens to be constructive between them
will be matched by equal intervals of destructive interference. Therefore,
averaging over the response time of any detector, a uniform intensity
results. Intensities rather than amplitudes are added. Lasers are the ex-
ception to the rule that the atoms in a source emit photons with random
phases. In Chapter 11 the lasing mechanism will be described in detail.
For the moment it is sufficient to appreciate that in lasers the the phase
of each wavepacket emitted is locked to that of the existing radiation
in the laser; this results in the wavepackets remaining in phase for rela-
tively long periods of time. In essence the wavepackets fuse to give one
long extended wavepacket. Lasers are therefore capable of producing
beams of radiation that are coherent over correspondingly long times;
a coherence time as long as a millisecond is readily achieved. This is a
big jump in coherence time compared to what other sources could offer
in the infrared, visible and near ultraviolet. Many novel research and
manufacturing possibilities were opened up by this increase in coherence
time and length.

5.5.1 The frequency content of wavepackets

Any wavepacket can be duplicated with a sum of monochromatic waves
at frequencies around the mean frequency of the radiation. The tech-
nique of Fourier analysis which is used in resolving a wavepacket into
these frequency components and in extracting their magnitudes is a key
topic in Chapter 7. Here simple arguments will be made which relate the
spread of frequencies, ∆f , to the duration of a wavepacket, ∆t. Suppose
that the wavepacket is the sum of waves with frequencies f = ω/2π and
wave vectors k = ω/c

W (x, t) =

∫
Af cos (2πft − kx + φf ) df. (5.21)

Without any loss of generality we can take the peak of the wavepacket
to be the origin (x = 0). At this point, the peak of the wavepacket, the
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contributing waves are all in phase so we can put φf = 0 also. Then

W (0, t) =

∫
Af cos (2πft) df. (5.22)

As time passes the contributing waves at the origin gradually slip out
of phase with each other and the wavepacket electric field at the origin
falls, i.e. the wavepacket moves elsewhere. If fmax and fmin are the
maximum and minimum frequencies in the wavepacket then the waves
at the origin cancel one another after a time ∆t/2 such that

2πfmax(∆t/2) = 2πfmin(∆t/2) + π

i.e. ∆t (fmax − fmin) = 1,

or ∆t ∆f = 1. (5.23)

This relation relates the frequency spread of the constituent waves in a
wavepacket to the wavepacket duration, and will be refined in Section
7.3.1. Now the time during which the waves from a source remain co-
herent is called the coherence time, τc, and is equal to the wavepacket
duration ∆t. Hence a relation between the coherence time of light from
a source and the frequency spread of the light can be written down

τc = 1/∆f. (5.24)

Correspondingly the coherence length of the waves in free space from a
source will be:

Lc = cτc = c/∆f = λ2/∆λ. (5.25)

The coherence length so defined is more precisely the longitudinal co-
herence length, while the transverse coherence length specifies the lateral
distance over which radiation from a source remains coherent. A typical
source used to produce the line spectrum of an element is a low pressure
gas discharge tube, and for such a source the intense lines in the atomic
spectrum have wavepackets lasting of order 10−10 s. Sources once used
as wavelength references have longer coherence times: nitrogen-cooled,
low pressure krypton sources produce an orange-red line of wavelength
whose wavepackets are 0.75m in length.

5.5.2 Optical beats

Beating between optical beams is analogous to the beating of tuning
forks of very similar frequencies. From what has been said above about
the incoherence of one optical source with another it is evident that the
observation of optical beats between sources must require very special
experimental conditions. The analysis of how and when optical beats
can occur helps to bring out the significance of the coherence time of the
radiation and its interplay with the response time of the detector used.
Suppose that in Young’s two slit experiment the slits are illuminated
by different beams whose polarizations are identical but whose angular
frequencies are ω1 and ω2. Suppose also that the coherence times of
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both sources are longer than the response time of the detectors used.
The electric field at point P in figure 5.1 would be the sum of two pure
sinusoidal waves during an interval short compared to the coherence
time

E0 cos (ω1t − k1s1) + E0 cos (ω2t − k2s2), (5.26)

where ki = c/ωi and si is the path length from slit i. The sources could
be beams from separate lasers. The intensity is then

I = E2
0 [ cos2 (ω1t − k1s1) + cos2 (ω2t − k2s2)

+2 cos (ω1t − k1s1) cos (ω2t − k2s2) ]

= E2
0 [cos2 (ω1t − k1s1) + cos2 (ω2t − k2s2)

+ cos (Σωt − Σ(ks)) + cos (∆ωt − ∆(ks))], (5.27)

where ∆ω is the difference (ω1 − ω2), Σω the sum (ω1 + ω2) and so
on. Detector response is produced by the total flux of effective radiation
during the response time td of the detector, that is td times the average
light intensity.3 In the case of photomultipliers and photodiodes we can 3By effective is meant radiation at

wavelengths to which the detector re-
sponds. The response will usually be
the release of electric charge and the re-
sponse time is the length of time taken
for this charge to travel through the de-
tector plus the time for this charge sig-
nal to be processed by the associated
electronics.

take 10 ns as a representative value for td. The first three terms in eqn.
5.27 oscillating at 1014 Hz would average out over the many full cycles in
the detector response time to E2

0/2, E2
0/2 and 0 respectively. However

the final term has an angular frequency ∆ω, which may be low enough
that the detector can sample the waveform more than once in each cycle.
This condition is fulfilled if

td∆ω 
 2π.

Then taking td to be 10 ns the critical frequency difference below which
the detector can sense the variations in the intensity is

∆fd = ∆ωd/2π = 1/td = 100 MHz.

A screen covered with detector pixels would record the transient fringe
movements provided the frequencies of the two stable sources were closer
that ∆fd. Then eqn. 5.27 reduces to

I = E2
0 [1 + cos (∆ωt − ∆(ks))]. (5.28)

The oscillations observed are optical beats analogous to audible beats.
The fringes would be transitory, lasting for a coherence time and then
changing position. If however the source frequencies differ by much more
than ∆fd the response of the detector to the final term in eqn. 5.27 is
also zero leaving an intensity I = E2

0 everywhere across the screen. That
is uniform illumination with an intensity equal to that produced by the
two slits separately.

In summary, optical beats can only be detected when the sources are
highly coherent and close enough in frequency that the beat period is
much longer than the response time of the detectors involved. The beat-
ing together of radio waves shows different features because detectors at
radio frequencies respond linearly to the electric field unlike detectors of
visible radiation which respond to the intensity.
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Quasi-monochromatic sources

It follows from the preceding that if the spread in angular frequency
of radiation from a source ∆ω, and the response time of the detectors
τd, are such that ∆ωτd 
 2π, then interference fringes produced by all
the frequency components will superpose giving high visibility fringes.
In such a cases the coherence time then greatly exceeds the response
time and the source is said to be quasi-monochromatic. The equations
given above for evaluating time averages of intensities and energy flux
in radiation, eqns. 5.12 and 5.13, apply to such quasi-monochromatic
radiation.

5.5.3 Coherence area

The finite width of a source imposes limitations on the coherence of a
wavetrain transverse to the direction of travel. In figure 5.16 the source
illuminating Young’s slits is ∆y wide and at a distance z from the slits,
the angle subtended by the source at the slits is θs while the semi-angle
subtended at the source by the slits is θd. The path difference between
light arriving at the upper slit from the two edges of the source is

∆y sin θd = d∆y/2z,

and there is a similar spread in the case of the lower slit. This leads to

Slit

Slit

Source
aperture

d

z

y∆

sθ

dθ

dθ
y sin 

∆

Fig. 5.16 Transverse coherence length
due to finite source dimension.

a spread in the relative phase between the light arriving at the two slits
of

kd∆y/2z = πd∆y/(zλ).

Thus the light arriving at the slits is coherent only if this phase difference
is small. A corresponding lateral coherence length can be defined, within
which the slits must lie from one another in order that there can be
interference

dc = zλ/∆y = λ/θs. (5.29)

For a circular source the corresponding lateral coherence area is then

Ac = λ2/(πθ2
s ). (5.30)

Arranging this differently

Tc = Ac (πθ2
s ) = λ2, (5.31)

and referring to eqn. 4.11 shows that the etendue from the source into
the coherence area is exactly λ2.

The coherence area and the coherence length taken together define
a coherence volume. At all points within this volume the waves have a
constant phase relation and could be brought together in some apparatus
to interfere. This could be in Young’s two slit experiment or a Michelson
interferometer. Each wavepacket in the beam will, at any given moment
on its journey, determine a coherence volume.
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5.6 Stokes’ relations

There is a general principle, called time reversal invariance, stating that
if time were reversed then physical processes could reverse exactly. The
only known violations are observed in particular weak decays of ele-
mentary particles. However on the macroscopic scale a reversal of any
dissipative process, such as a bursting bubble viewed with a video in
reverse, will occur with negligible probability. When time reversal in-
variance is applied to the reflection and transmission of light at an in-
terface between media relationships are obtained between the reflection
and transmission coefficients for the electric fields. These will only hold
if the absorption at the surface, a dissipative process, is negligible. The
case of total internal reflection is also excluded.

Taking the point of reference on the interface to be the origin of the
spatial coordinates, the incident, reflected and transmitted waves there
all have electric fields of the form a exp (iωt) where ω is the angular
frequency. Now a = |a| exp (iφ) so that any alteration of the time origin
will be absorbed by a change in the phase φ. Therefore time reversal
changes such an amplitude to a∗ exp (−iωt), because for consistency φ
must change to −φ, as well as t to −t. Two time reversals evidently
restore the original waves. Figure 5.17 shows both the original and
the time-reversed processes: r and t are the reflection and transmission
coefficients for light incident from above, r′ and t′ are those for light
incident from below. The time reversed reflected and transmitted waves

(a) (b)

1
r

*r

t
*t

t*r+t*r

r*t+t*r

Fig. 5.17 Reflected and transmitted
amplitudes: (a) for forward process and
(b) for the time reversed process.

reproduce the incident beam, while the beam at the bottom left of (b)
must vanish. Then

r∗r + t∗t′ = 1, (5.32)

r∗t + t∗r′ = 0. (5.33)

The coefficients can be complex if the surface is a set of thin layers of
dielectric. However for a single surface the coefficients are real and the
equations simplify to

r2 + tt′ = 1, (5.34)

r′ = −r. (5.35)

These equations are known as Stokes’ relations after their 19th century
discoverer. All four relations can be derived from the requirement of
conservation of energy between the incident and outgoing light beams if
there is negligible absorption.

5.7 Interferometry

A vast range of research and industrial devices have been built which
make use of interference effects. Applications include: measuring dis-
tances with precision of a fraction of a wavelength; stabilizing laser wave-
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lengths and measuring wavelengths; testing and measuring the imper-
fections of optical components; inertial guidance in aircraft; measure-
ment of refractive indices of gases; and revealing fluid structure and
flow patterns in Tokomaks and wind tunnels. Predominantly these de-
vices involve amplitude rather than wavefront division. The underlying
reason is that wavefront division requires lateral coherence across the
area covering the slits and this in turn implies a small area source, and
in turn this means weak illumination. By contrast, taking an example
of amplitude division, the Michelson interferometer has a broad source
providing strong illumination. Amplitude division lends itself to flexible
designs, with derivatives of the Michelson interferometer design being
frequently met.

5.7.1 The Twyman–Green interferometer

  Monochromatic
source and Pinhole

Tilted plane mirror

Convex
 mirror

Lens under 
    test

Linear
Fringes

Fig. 5.18 Twyman–Green interferometer with a lens under test. The optical quality
convex mirror is positioned to return the rays from the lens under test along their
incident direction.

The Twyman–Green interferometer sketched in figure 5.18 is a variant
of Michelson’s inteferometer, which is used to examine optical compo-
nent quality, in this case the quality of a lens. The combination of a point
monochromatic source located at the focus of a positive lens provides
a parallel coherent beam. An optical quality convex spherical mirror
is positioned behind the lens being tested and is moved relative to the
lens until the rays are retroreflected back along their incident path. In
the other arm a plane mirror is tilted so that straight line fringes are
seen by eye or imaged onto a detector array. If the lens were perfect the
fringes would be equally spaced and straight. Any imperfections cause
distortions which can be interpreted in order to define a grinding and
polishing sequence which would correct the lens. Usually the image is



5.7 Interferometry 115

captured on a CCD array and the analysis carried out by proprietary
software.

In many industries standards of length are maintained using gauge
blocks. Gauge blocks are simple cuboids with one pair of opposite cal-
ibration faces both optically flat and parallel. The material used has
low coefficient of thermal expansion, such as the metal Invar (64% Fe,
36% Ni) with coefficient 1.3 10−7 K−1 or the ceramic Zerodur with co-
efficient as low as 10−8K−1. The thickness of the gauge block between
the calibration surfaces is first measured mechanically, giving a thick-
ness between tlo and thi, which differ by ∼ 10µm. Next the gauge block
is wrung in contact with the mirror in one arm of an interferometer as
shown in figure 5.19. Fringes are seen from the mirror surrounding the
gauge block and from the gauge block. The lateral displacement be-
tween the fringes on mirror and gauge block, expressed as a fraction of
a fringe spacing ∆ni, is measured for several wavelengths λi. Then the

Gauge block

Optical flat

Fringe pattern

Fig. 5.19 Side view of gauge block on
an optical flat, together with the fringe
pattern seen with a Twyman–Green in-
terferometer.

actual thickess of the block is

t = (ni + ∆ni)λi, (5.36)

where the values of the integers ni are as yet unknown. Benoit’s method
of exact fractions provides a way to obtain these values and hence to
determine t with a precision of tens of nanometres.

For one wavelength λ1 the values of n1 consistent with values of the
thickness lying between tlo and thi are each taken in turn and a thickness
calculated. One of these thicknesses will be correct, but the question is
which one. Using each such thickness in turn, t(trial), the values of the
interference order for each other wavelength are calculated,

ni(trial) + ∆ni(trial) = t(trial)/λi. (5.37)

For the correct choice of t(trial), and only for that choice, all the trial
fractions ∆ni(trial) will match the corresponding measured values ∆ni.
This match determines t. In practice three or more wavelengths are used
to eliminate the possibility of accidental coincidences between the trial
and measured values of the ∆ni’s.

5.7.2 The Fizeau interferometer

This interferometer, shown in figure 5.20, uses amplitude division within
a single arm to produce interfering beams. It too is used for optical test-
ing. An intense coherent beam from a laser is focused by a microscope
objective onto a pinhole. This spatial filter produces a beam with lateral
coherence over a wide angle. Such a design allows the interferometer to
accomodate very large area lenses and mirrors that are used in the space
industry. A collimating lens directs the beam through an optically flat
reference surface and then onto the component under test. In the exam-
ple shown a mirror is being tested for flatness. Light returning from the
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mirror passes again through the reference surface and collimating lens
and finally is reflected by the partially reflecting surface onto an image
plane, rather than travelling back to the pinhole. The reference surface
is of high quality, flat to say λ/50, and the reference plate is a slightly
wedge shaped so as to throw the reflections from its other surface out
of the field of view. Interference fringes are formed between the waves

Monochr.
point source Mirror

Reference
 surface

Lens
Surface
 tested

Fringes

Fig. 5.20 Fizeau interferometer used
to test an optical flat.

reflected from the reference surface and the surface under test. If the
test surface were perfect and tilted slightly with respect to the refer-
ence surface a pattern of linear equally spaced fringes would be seen.
The capture of the actual fringe pattern, and its analysis, proceed as
described above for the Twyman–Green interferometer.

5.7.3 The Mach–Zehnder interferometer

The Mach–Zehnder interferometer is shown in figure 5.21. Monochro-
matic light from an extended diffuse source is divided by the beam split-
ter BS1 and the separated beams travel via either mirror M1 or mirror
M2 to meet again at the second beam splitter, BS2. Emerging together
from BS2 the beams are focused by the lens onto an image plane where
their interference fringes are observed. The design permits the two paths
to be widely separated: one path can cross a multi-metre sized volume
such as a wind tunnel or a nuclear fusion device while the other path
skirts that volume. Whenever a test chamber is placed in one arm, glass
plates identical to those belonging to the test chamber are inserted in the
other arm in order to cancel their optical effects on the fringe pattern.
When the mirroring surfaces are all set at exactly 45◦ to the rectangular
shape of the beam path the interference fringes are located at infinity
and appear in the focal plane of the lens. By tilting BS2 from the 45◦

orientation the fringes are moved so that they are localized within the
test volume and the image plane is moved correspondingly, as shown in
the figure. Photographs of the fringes then show any mechanical struc-

M1

M2

BS2

BS1

Extended
 source

Imaging Test volume

Fig. 5.21 Mach–Zehnder interferome-
ter.

ture in the test volume in focus together with the fringes. The structure
might be an aircraft wing in a wind tunnel. In a dynamical situation in-
volving gas compression and flow any variation in the refractive index of
the gas in the test chamber will alter the optical path length and distort
the fringe pattern. In this way the flow lines of gas around an aircraft
model become observable and are available for interpretation. Inter-
ferometers used to observe the gas flow in fusion reactors employ CO2

lasers of wavelength 10.6 µm and can detect variations in the plasma
electron density of one part in a thousand (1017 m−3 in 1020 m−3).

5.7.4 The Sagnac interferometer

The Sagnac interferometer is unique in its ability to allow the detection
of rotation. Figure 5.22 shows that the device consists of a closed optical
path around which coherent beams from the laser source circulate in
opposite directions. This design is called passive because the laser is
not integral with the ring. A beam splitter BS divides the laser beam
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to provide two equal amplitude counterrotating beams. After making
a circuit round the four arms the beams exit through the same beam
splitter and arrive superposed at the detector. An active ring laser is
formed from a monolithic glass block with surface mirrors in place of
the individual mirrors in figure 5.22. The glass is doped with lasing
material so that it forms both the laser and the closed path. When
the ring is rotated the path for one direction of travel is shortened and
for the other lengthened; an effect that can be detected optically and
used to measure the rate of rotation. A simple question but awkward

BS

Detector
Laser

Fig. 5.22 Sagnac interferometer; pas-
sive ring gyro layout.

question is this: rotation with respect to what? The answer supplied
by the general theory of relativity is that the rotation measured is that
with respect to the local inertial frame, that is to say the frame of the
fixed stars. It is not the rotation relative to the Earth or relative to
the solar system that is measured. In analysing this effect we treat the
ring as a circular evacuated loop of radius R. The rate of rotation with
respect to the inertial frame is Ω. Then the angle rotated in the time it
takes light to complete one circuit is

∆θ = 2πRΩ/c.

Thus the paths for the two senses of rotation differ in length by

∆s = 2R∆θ = 4πR2Ω/c.

The corresponding phase difference induced between the beams after
one rotation is then

∆φ = 2π∆s/λ = 8π2ΩR2/(cλ)

= 8πΩA/(cλ), (5.38)

where A is the area enclosed by the loop. This result generalizes for
the case of an arbitrarily shaped loop of vector area A having angular
velocity Ω to

∆φ = 8πΩ · A/(cλ). (5.39)

The sensitivity to rotation can be improved by using a multiturn loop
of optical fibre to carry the light; the phase change is then multiplied up
by the number of turns.

In an active ring with the laser in the loop, the complete orbits of the
counter-rotating beams differ by ∆s, and so the times for making one
complete orbit differ by

∆τ = ∆s/c = 4πR2Ω/c2,

between the counter-rotating beams. Thus the fraction difference in the
orbital periods is

∆τ/τ = 2RΩ/c

and the frequency difference between the counter-rotating beams from
the one laser is

∆f = f∆τ/τ = 2RΩ/λ.
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This result generalizes to

∆f = 4Ω ·A/(λP ), (5.40)

where P is the length of the perimeter of the loop. These results, in
particular eqns. 5.39 and 5.40, are valid whatever material fills the path
provided that this is also rotating at the angular velocity Ω, and that
the wavelength used is the wavelength in free space.4

A practical difficulty met with in using active Sagnac rings is that
the frequencies of the two beams tend to lock together at a common
frequency when the rotation frquency Ω is small. The coupling between
the beams comes from back scattering at the mirrors in the optical
path. In order to reduce this scattering to a low enough level that the
coupling is removed it has been necessary to develop super efficient mir-
rors with reflection coefficients as high as 0.999 999! Compact active
Sagnac interferometers arranged in a set of three with orthogonal axes
are used to provide inertial guidance. The necessary dimensional sta-
bility is achieved by carving the frame containing the three units from
a common block of Zerodur ceramic. These ring gyroscopes have no
moving parts and offer superior precision to mechanical gyroscopes, so
they have been fitted in high performance aircraft. More recently these
have been replaced in many applications by the simpler fibre optic gyros
described in Chapter 16.

5.8 Standing waves

An important application of the superposition principle is to the reflec-
tion of plane sinusoidal electromagnetic waves incident on the surface of
good conductors. Suppose the incident electromagnetic wave’s electric
field is

Ei(x, t) = E0 cos (ωt + kx) (5.41)

parallel to the surface. At the surface, taken to be x = 0, the incident
field is:

Ei(0, t) = E0 cos (ωt). (5.42)

Metals are good conductors, therefore the simplifying assumption is
made that the free electrons within the conductor move instantaneously
so keeping the electric field parallel to surface extremely small. This is
close to the actual behaviour in the metals copper, silver and gold up
to optical frequencies. The displaced electrons generate an electric field
equal and opposite to the incident electric field at the surface:

Er(0, t) = −E0 cos (ωt). (5.43)

Applying Huygens’ principle, this disturbance produces a reflected plane

4See for example Chapter 1 of The Fibre optic Gyroscope by H. Lefevre, published
in 1993 by Airtech House, Boston.
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Fig. 5.23 Travelling waves from the right reflected by a perfect mirror; inci-
dent/reflected waves shown as full/broken lines: shown at intervals of one eighth
of a period.

wave propogating away from the surface:

Er(x, t) = −E0 cos (ωt − kx). (5.44)

The superposition principle determines the total electric field to be

E(x, t) = Ei(x, t) + Er(x, t)

= E0 cos (ωt + kx) − E0 cos (ωt − kx)

= −2E0 sin (ωt) sin (kx). (5.45)

Figure 5.23 shows the incident wave (solid curves) and reflected wave
(broken curves) at successive intervals of one eighth of a period (τ/8).
Figure 5.24 shows the corresponding total wave amplitude. This oscil-
lates, but at certain locations called nodes the amplitude is always zero.
This is therefore called a standing wave. Starting at the conductor the
nodes are spaced at intervals of one half wavelength of the incident trav-
elling waves. Midway between each pair of nodes lie the antinodes where
the field variation is largest. Figure 5.25 shows the incident and reflected
field vectors at the surface of a good conductor. The relative orientation
of E, B and the wave direction k is preserved after reflection and so the
magnetic field is not cancelled out at the surface. If the metal surface is
rough the reflections from nearby points on the surface travel in different
directions and a mirror smooth to a fraction of a wavelength is needed
in order to produce simple standing waves. Everyday mirrors consist of
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Fig. 5.24 The resultant standing waves from the incident and reflected waves shown
on figure 5.23. Note that the ordinate range is twice that in figure 5.23.

metal-coated smooth glass surfaces, while at longer wavelengths a wire
mesh is adequate for satellite dish antennae and radio-telescopes. This
saves on cost and makes radio-telescopes easier to support in high winds.

Standing electromagnetic waves are readily demonstrated by direct-
ing microwaves onto a metal sheet. The standing wave pattern produced
by a 10 cm wavelength source will have nodes spaced 5 cm apart, which
are readily observed using a diode detector. By 1890 Wiener had pho-

inE

inB

rE

rB

Incident wave
direction

Reflected wave
direction

Fig. 5.25 The orientation of the elec-
tromagnetic fields and the direction of
wave propogation of the incident and
reflected waves at the mirror.

tographed standing waves produced with visible light. As shown in
figure 5.26 a glass plate coated with photographic emulsion rested with
one edge on a plane front-metallized mirror and was tilted at a small
angle α (10−3 rads) to the mirror. Plane monochromatic waves whose
wavefronts were accurately parallel to the mirror surface illuminated the
plate. The antinodes of the electric field are visible in figure 5.26, spaced
a distance λ/2 apart perpendicular to the mirror’s surface. This spacing
is amplified by the tilt to λ/(2α) ≈ 0.125mm along the emulsion’s sur-
face. When the photographic plate was processed the expected, equally
spaced black stripes were seen where the light had activated the silver
halide grains. At the edge of the emulsion in contact with the mirror,
which is where the electric field is zero and the magnetic field is at its
largest, the emulsion was clear. Hence the photochemical effect which
leaves a developable image in the emulsion is caused by the action of the
electric rather than the magnetic field.



5.9 The Fabry–Perot interferometer 121

In a laser two mirrors face one another and thanks to the energy
drawn from the active material standing electromagnetic waves develop
between them analogous to those on a violin string when bowed. In each
case there is a node at the two end points. The simplest fundamental
violin string oscillation has an antinode midway along the string and a
wavelength of twice the string length, 2L. Vibrations are also possible
with 2,3 ... antinodes along the wire. Each distinct pattern of oscillation

E node

E node

Mirror and
E node

α

Fig. 5.26 Wiener’s experiment produc-
ing standing waves of light at a mirror
surface.

is called a mode, with the number of antinodes defining the order, n of
a mode. Figure 5.27 shows modes with n equal to 1, 2, 3 and 30, where
successive displacements of the string are indicated at time intervals of
τ/16. In the case of standing electromagnetic waves between mirrors
the order of these modes is very much higher. For the nth mode the
required wavelength (λ) is given by

nλ/2 = L, i.e. λ = 2L/n. (5.46)

An optical arrangement consisting of facing parallel mirrors of high re-
flectivity is called a Fabry–Perot etalon or cavity. The electric field in
the Fabry–Perot etalon has to vanish at both mirrors and so has the
form:

E = 2E0 sin (ωt) sin (kx), (5.47)

where
k = 2π/λ = nπ/L, (5.48)

with n integral in order that the transverse electric field vanishes at
x = L as well as x = 0. In helium–neon gas lasers the active gas is
contained in a 50 cm long Fabry–Perot cavity and the lasing wavelength
is 633nm, making n around 1.6 million.

5.9 The Fabry–Perot interferometer

The Fabry–Perot interferometer shown in figure 5.28 is a single arm in-
strument with a broad diffuse source and a lens to focus the Haidinger
fringes formed between the glass plates. These glass plates are closely
spaced with their inner faces being highly reflecting and optically flat.
Together with their supporting frame the plates form a Fabry–Perot
etalon. The inner surfaces of the plates can be aligned parallel by screws
that hold the plates against a spacer of Zerodur or other material hav-
ing a very low coefficient of thermal expansion. Interference is observed
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Fig. 5.27 Standing wave patterns for
(a) the n= 1 mode, (b) the n= 2 mode,
(c) the n =3 mode, (d) the n= 30
mode. In (a), (b), and (c) the waves
are shown at intervals of τ/16, and at
intervals of τ/2 in (d).

between the multiple beams produced by successive reflections from the
highly reflecting surfaces of the etalon. Some representative reflections
from one point on the source are drawn in the diagram with solid lines.
Parallel rays from all points on the source such as the one indicated by
a broken line will give similar sets of reflections and coincident fringes.
It will emerge below that by using multiple reflections a chromatic re-
solving power is obtained which far exceeds that of prisms or diffraction
gratings. A thin layer of aluminium on the etalon faces is commonly used
to give a uniform reflectivity across the visible spectrum of 80%, while
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Diffuse
source

Spacer

Etalon Lens Screen

Fig. 5.28 Fabry–Perot interferometer. The inner faces of the etalon have large
reflection coefficients. A lens brings the parallel rays from multiple reflections to a
common focus. One set of reflections is shown. Rays from other places on the source
like the broken line ray give similar sets of reflections.

reflectivities as high as 99% are readily achievable with more complex
coatings. The outer surface of each plate is flat, uncoated and makes a
small angle to the inner surface so as to remove its own reflections from
the field of view.

Suppose that by some means the reflection coefficient of the facing
surfaces were simultaneously increased from the glass/air value of a few
% to 90% while one watched. Initially a set of broad constant inclination
circular fringes would be seen, just like those produced by the Michel-
son interferometer. When the reflection coefficient increased the bright
fringes would get progressively narrower, as shown in figure 5.29, but
would remain fixed in position. Finally when each surface reflected 90%
of the incident light the total transmission would fall to 10%×10% = 1%,
which would be concentrated in the narrowed bright fringes. Thus light
from two closely spaced wavelengths whose fringes would overlap ap-
preciably in a Michelson interferometer produce well separated fringes
in a Fabry–Perot interferometer. This behaviour is now analysed quan-
titatively. Figure 5.30 shows the transmitted waves following multiple

Fig. 5.29 Appearance of Fabry–Perot
fringes for the same mirror spacing as
in figure 5.12 with a finesse of 15.

reflections in a Fabry–Perot etalon for an angle of incidence θ. The path
difference between the successive transmitted rays drawn in the figure is
given by eqn. 5.16 with d being the separation of the mirrored surfaces
and n the refractive index of the material between them. Thus the phase
delay between successive rays transmitted, in terms of the wavelength
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in free space and frequency is

δ = 4πnd cos θ/λ = 4πndf cos θ/c. (5.49)

We ignore the weaker diverted reflections at the outer unsilvered surfaces
of the etalon plates. Let the reflection coefficient for the wave amplitude
at the air/glass interface be r and the transmission coefficient be t; while
for the glass/air interface let these coefficients be r′ and t′ respectively.
Assuming that there is no absorption at the surfaces we can use Stokes’
relations between these coefficients given in eqns. 5.34 and 5.35. The
superposition principle gives a total transmitted amplitude

E = tt′[1 + r2 exp (iδ) + r4 exp (2iδ) + ...

= tt′/[1 − r2 exp (iδ)]

= (1 − r2)/[1 − r2 exp (iδ)] (5.50)

where we have use Stokes relation eqn. 5.34 in the last line. For reference
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Fig. 5.30 Successive contributions to
the wave amplitude transmitted by a
Fabry–Perot etalon.

later the reflected amplitude is

Er = r′ + tt′[r exp (iδ) + r3 exp (2iδ) + ...]

= −r + (1 − r2)r exp (iδ)/[1 − r2 exp (iδ)],

where both eqns. 5.34 and 5.35 have been used. Then

Er = r(exp (iδ) − 1)/[1 − r2 exp (iδ)]. (5.51)

Now putting r2 = R and 1 − r2 = T in eqn. 5.50

E = T/ [ 1 − R exp (iδ) ].

The transmitted intensity at an angle θ is therefore

I(θ) = EE∗ = T 2[(1 − R cos δ)2 + R2 sin2 δ]−1

= T 2[1 − 2R cos δ + R2]−1

= [T/(1 − R)]2 [1 + 4R sin2 (δ/2)/(1 − R)2]−1. (5.52)

Thus
I(θ) = 1/[1 + 4R sin2 (δ/2)/(1 − R)2]. (5.53)

This function is plotted against δ in figure 5.31 for a few values of R,
and it shows that as R increases the bright fringes sharpen while re-
taining their peak intensities. The degree of sharpness is quantified by
calculating the full width at half the maximum intensity (FWHM) of
bright fringes. Suppose the value of δ at one peak of intensity is 2πm
and that its value when the intensity has fallen off to half maximum is
2πm + δ1/2, then

1 + sin2 ( δ1/2/2) [ 4R/(1 − R)2 ] = 2,

whence

δ1/2 = 2 sin−1 [(1 − R)/2
√

R)]

≈ (1 − R)/
√

R,
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Fig. 5.31 Intensity distribution against δ/2π = 2d cos θ/λ. The intensity is normal-
ized to the incident intensity.

because all the angles are small. Thus the FWHM of each fringe, 2δ1/2,

is 2(1− R)/
√

R. The corresponding FWHM in frequency of each fringe
is obtained using eqn. 5.49

2∆f1/2 = cδ1/2/(2πnd). (5.54)

A convenient measure of the sharpness called the finesse is defined as
the ratio between the phase change separating successive fringes and the
phase change across the fringe at half maximum, 2δ1/2. The finesse is
thus

F = π/δ1/2 = π
√

R/(1 − R). (5.55)

When the reflection coefficient R is close to unity, it follows5 that

RF ≈ exp (−π) ≈ 0.04,

which is similar in magnitude to the reflection coefficient at an uncoated
glass/air interface. Thus F can be treated as the number of round trips
within the etalon, beyond which the wave intensity becomes insignifi-
cant. Any lack of flatness in the etalon surfaces will be amplified by this
factor so that the finesse expected with a given reflection coefficient can
only be actually attained if the flatness is better than λ/F . A reflection
coefficient of 0.9 and a finesse of 30 represent standard values.

The narrowness of the Fabry–Perot fringes makes this interferometer
a useful spectrometer. The chromatic resolving power of a spectrometer

5lnRF = ln (R) π
√

R/(1 − R). Now putting S = 1 − R we get ln RF =

ln (1 − S) π
√

(1 − S)/S. Then because S is very small, lnRF ≈ −π.
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is defined to be the ratio of the wavelength to the smallest separation
in wavelength that can be resolved with the apparatus. In the case of
the Fabry–Perot instrument two wavelengths, λ and λ−∆λ, will just be
resolvable when their mth order bright fringes are separated by 2δ1/2. If,
close to the centre of the pattern, the interference order for wavelength
λ is m, then

mλ = (m + δ1/2/π)(λ − ∆λ).

Then to a good approximation

πm∆λ = λ δ1/2,

and the chromatic resolving power

CRP = λ/∆λ = πm/δ1/2. (5.56)

Now using the definition of finesse from eqn. 5.55

CRP = Fm.

Using eqn. 5.16 to replace m and recalling that near the centre of the
pattern cos θ ≈ 1 then gives

CRP = 2ndF/λ. (5.57)

Taking a 10mm spacing in air and a finesse of 30 gives a resolving power
of 106 at 633nm wavelength. Now the difference in wavelength between
individual spectral lines produced by most sources is large enough that
adjacent circular fringes due to two spectral lines can correspond to very
different values of m in eqn. 5.16; that is to say they are from different
orders. The wavelength interval within which there is no overlap of
orders and hence no ambiguity in assigning the order of a line of unknown
wavelength is called the free spectral range. Clearly the increase in δ over
the free spectral range is 2π, and the corresponding frequency change
can then be obtained from eqn. 5.49

∆ffsr = c/(2nd). (5.58)

Then
∆λfsr = λ2∆ffsr/c = λ2/(2nd). (5.59)

With a 1mm etalon spacing and a wavelength of 633 nm the free spectral
range is only 0.2 nm which shows that one needs to preselect a narrow
wavelength interval in order to determine an unknown wavelength. Pre-
selection can be achieved in a two stage spectrometer, with the first
stage being a grating or prism spectrometer or alternatively a bandpass
filter of the sort to be described in Chapter 9. A two-stage spectrometer
using a constant deviation prism of the type described in Section 2.2.1
is shown in figure 5.32. Light from a slit source is focused into a par-
allel beam by the collimator and falls on the constant deviation prism.
This gives an outgoing beam that is observed by a telescope. For any
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Fig. 5.32 Two stage spectrometer using a constant deviation prism and a Fabry–
Perot etalon. In the insert the Fabry–Perot fringes across two spectral lines are
shown.

given orientation of the constant deviation prism the telescope receives
a narrow range of wavelengths centred on the wavelength for which that
orientation produces minimum deviation. This window in wavelength
can be scanned through the spectrum simply by rotating the constant
deviation prism. The etalon is placed to intercept the beam from the
prism and the resulting image produced by the telescope is observed by
eye or let fall on a detector array. The inset in figure 5.32 shows the
final image. With the Fabry–Perot etalon removed this would consist of
repeat images of the source slit, one for each spectral line resolved by
the prism. With the Fabry–Perot etalon in place one now sees through
each slit image a diametral slice of the circular Fabry–Perot pattern for
the spectral line involved. If the spectral line is in fact two close lines
of wavelengths λ1 and λ2 which cannot be resolved by the prism, then
that particular slit image will bear two interlaced sets of Fabry–Perot
fringes satisfying m1λ1 = d cos θ1 and m2λ2 = d cos θ2.

Another arrangement for carrying out spectroscopy with a Fabry–
Perot etalon is shown in figure 5.33. In this case the wavelength of the
incident beam is limited to less than the free spectral range by an inter-
ference filter of the sort described in Section 9.7. The detector views the
central spot and a scan through the free spectral range in wavelength is
made by altering the product nd in eqn. 5.16. One method is to pump
gas into the volume between the etalons which requires knowledge of
the pressure and temperature of the enclosed gas in order to evaluate
the refractive index. The alternative scanning technique is to move one
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of the etalon plates while keeping it parallel to its stationary partner.
Movements of a few microns are adequate. The preferred scanning tech-

Pinhole

Source
+ filter

Lens Etalon

Drive to
piezo-electric
spacer

Lens Pinhole
+ detector

Fig. 5.33 Scanning Fabry–Perot spec-
trometer using a piezoelectric spacer.

nique is to use piezoelectric crystals, which undergo a change in length
in the direction of an applied electric field. Three such crystals placed at
120◦ intervals around the rim of the spacer provide sufficiently smooth
parallel displacement of the moving plate.

The size of the pinhole in front of the detector and etendue of the
Fabry–Perot spectrometer will now be determined; the latter will be
compared with the etendue of other spectrometers in the following chap-
ter. If the etalon separation is such that at wavelength λ a fringe sits at
the exact centre of the pattern,

2nd = mλ.

The pinhole is made large enough to accept the half width of the central
fringe. Suppose the angular radius of the pinhole as seen from the lens
is θ, then

2nd cos θ = [m + δ1/2/(2π)]λ.

Subtracting the first of these equations from the second and using an
approximation adequate at these small angles, cos θ = 1 − θ2/2, gives

ndθ2 = δ1/2λ/(2π).

Using eqn. 5.56 to replace δ1/2,

θ2 = m∆λ/(2nd)

= ∆λ/λ, (5.60)

which is the inverse of the CRP. Hence the solid angle subtended by the
pinhole at the lens is

Ω = πθ2 = π ∆λ/λ. (5.61)

The etendue is then the product of this solid angle and the area of the
beam at the lens

T = (πD/2)2(∆λ/λ). (5.62)

where D is the diameter of the clear portion of the etalon.The reader
will recall that the etendue is invariant along a beam, and may like to
check that taking the product of the area of the pinhole times the solid
angle of the beam at the pinhole gives an identical result.

Exercises

(5.1) In Young’s experiment the slit spacing is 0.1 mm
and monochromatic light of wavelength 633 nm is

used. What is the fringe spacing if the image fo-
cusing lens has focal length 1.5 m?
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Fig. 5.34 The Rayleigh refractometer.

(5.2) The first lens in Young’s experiment shown in fig-
ure 5.4 has focal length 0.3 m. How narrow should
the source aperture be in order to ensure that the
slits are coherently illuminated?

(5.3) A source emits light of mean wavelength 500 nm.
The wavepackets are 1m long. What is the spread
in frequency and in wavelength? What fraction is
the frequency spread of the mean frequency? What
is the corresponding fraction in wavelength?

(5.4) Two optically flat glass plates are viewed in light of
wavelength 633 nm. Straight line fringes are seen,
spaced apart at intervals of 1.5 cm across the sur-
face. What is the angle between the plates?

(5.5) Show that at latitude 50◦N the Earth’s rotation
causes a frequency splitting of 176 Hz between
counter-rotating 633 nm laser beams in an active
ring laser. The beam circuit can be assumed circu-
lar of radius 1 m.

(5.6) Suppose a highly coherent laser beam of wavelength
633 nm is interrupted by an electronic shutter so
that random pulses each of duration 10 fs are pro-
duced. What is the coherence length and what
are the spreads in wavelength and frequency of the
beam?

(5.7) The accompanying figure 5.34 shows a Rayleigh
refractometer. Light from coherently illuminated
slits goes through separate hollow airtight arms of
length L each with glass entry and exit windows.
The separate beams are brought together by a lens
with fringes appearing in the image plane. Both
arms are initially evacuated and gas is introduced

slowly into one arm. This causes the fringes to
move across the field of view; up or down in the
diagram. If m fringes pass through the centre of
the field while the gas is entering, show that the
refractive index of the gas, n, is given by

n − 1 = mλ/L.

(5.8) In the Rayleigh refractometer the slits need to be
well separated, which means the fringes are very
close together. Suppose the wavelength of light is
500 nm, the slit separation is 2 cm and an imag-
ing lens of 10 cm focal length is used to bring the
beams together. What is the fringe separation and
how would you view them?

(5.9) Calculate the finesse of a Fabry–Perot etalon whose
plates have a reflection coefficient of 0.95 at 500 nm.
If the plates are 3mm apart in air what is the
free spectral range? What is the potential chro-
matic resolving power obtainable at this finesse?
What degree of optical flatness in the surfaces of
the etalon is needed in order to exploit this po-
tential? The etalon has a clear region of diameter
2.5 cm. Suppose the etalon is used as shown in fig-
ure 5.33 with the imaging lens having a focal length
of 5 cm. What pinhole diameter is required on the
imaging screen to cover the central fringe? What
is the system etendue as defined in Section 4.2?

(5.10) Find an expression linking the free spectral range,
finesse and FWHM of the fringes of a Fabry–Perot
etalon.



Diffraction 6

6.1 Introduction

Diffraction is taken to mean any interference effect due to the interrup-
tion of a wavefront by apertures or obstacles, often disposed in regular
arrays. The pattern of illumination is very different when the plane
of observation is near to the diffracting surface and when it is a large
distance away. Near the diffracting surface the pattern is the geometric
shadow with fringes close to the shadow edges, and as the plane of obser-
vation moves further away this pattern changes smoothly into one that
has lost any obvious resemblence to the geometric shape of the aper-
tures and obstacles producing it. In the limit that the source and image
plane are infinitely far from the diffracting surfaces, the pattern is called
Fraunhofer diffraction. In practice this limiting condition is simple to
produce: the source is placed at the focus of one positive lens and the
plane of observation in the focal plane of another positive lens. Then the
source and observing plane are effectively at an infinite distance from
the diffracting apertures. Diffraction at finite distances is called Fresnel
diffraction. Both Fresnel and Fraunhofer diffraction will be treated us-
ing the the Huygens–Fresnel picture of secondary waves introduced in
the previous chapter. Fraunhofer diffraction is easier to analyse and is
the basis of many research tools and technological applications; it will
therefore receive more attention than Fresnel diffraction.

The first section below contains a discussion of the theoretical basis of
the Huygens–Fresnel picture of diffraction. In the following sections the
analysis of diffraction at a single long wide slit is presented, and then that
for a rectangular slit. This is followed by a treatment of diffraction by
arrays of equally spaced, identical slits. In the limit of very large numbers
of slits these arrays are called diffraction gratings. Next the diffraction
at a circular aperture is described, which leads to the formula previously
used in Chapter 4 to calculate the resolving power of optical systems.
Grating spectrometers are described and their performance compared to
prism and Fabry–Perot instruments. After this Fresnel diffraction at a
long broad slit is treated. It is shown how the diffraction pattern evolves,
as the distance from the aperture increases: from a geometric shadow
to a Fraunhofer pattern. Fresnel diffraction at a circular aperture is
then treated, including a discussion of Fresnel zones and zone plates.
Then a section is devoted to the schemes used in optical lithography
to acheive the high resolution in electronic chip manufacture. After this
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some comments are made about the limitations of the theory underlying
the analysis presented in this chapter when applied to regions very close
to the apertures. In the final part of the chapter simple Gaussian laser
beams and the role of diffraction in their evolution in optical systems
are described.

6.2 Huygens–Fresnel analysis

The simple Huygens–Fresnel picture of interference between secondary
waves presented in the previous chapter has a fundamental difficulty.
Apparently the construction with secondary waves could equally well
lead to a backward going wave as to a forward going wave. This difficulty
was resolved by Kirchhoff’s analysis of wave propagation at apertures,
which is described in Appendix C. Kirchhoff obtained the following
expression for the spatial part of the amplitude at P of a secondary wave
originating from a point A in an aperture which is illuminated by a small
monochromatic source at S of area dS as shown in figure 6.1

E = C exp [ik(rout + rin)] [(cos θin + cos θout)/2] dS/(routrin). (6.1)

Here k is the wave number of the radiation, rin is the length of the path
from the source to A and θin the angle this makes with the normal to the
aperture surface at A. rout and θout are the corresponding parameters
for the path from A to the point P where the amplitude is observed. C is
a constant that depends on the source intensity. The inclination factor

S (source)
Opaque screen

P

A

inr
outr

inθ

outθ

Fig. 6.1 Path lengths and angles used
in Kirchhoff’s analysis.

(cos θin + cos θout)/2 is unity in the forward direction and falls to zero
in the backward direction, and it is this which eliminates a backward
propogating secondary wave. 1/rin and 1/rout are the range factors in
spherical waves which ensure that the total flux remains constant as they
expand. If the incident wave is planar then eqn. 6.1 reduces to

E = D exp [ikrout] [(1 + cos θout)/2] /rout, (6.2)

where D is another constant that depends on the source intensity. Wher-
ever the inclination and range factors change little over the aperture and
image region they only affect the overall magnitude and not the pattern
of interference. In such cases they can often be factored out of the
analysis.

6.3 Single slit Fraunhofer diffraction

Figure 6.2 shows the standard experimental layout used to produce
Fraunhofer diffraction. Incident plane waves are produced by placing
a monochromatic source at the focus of a positive lens. These waves are
incident normally on an opaque plane sheet pierced by a single long slit.
Beyond this sheet another positive lens images the diffraction pattern
onto a screen in its focal plane. The use of lenses brings the source and
image plane in from infinity, so making a compact experimental setup
with which to observe Fraunhofer diffraction.
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The incident wave across the broad slit of width d gives rise to Huy-
gens’ secondary waves whose resultant at the screen can be calculated.
The path lengths to P will differ by the distance each slit element is from

A

’A

d

B

P

f0f

θ
θ

θ

θ
d sin 

Fig. 6.2 Fraunhofer diffraction at a finite width slit.

the line AB, drawn perpendicular to the rays travelling to P. For light
from an element of the slit of width dx at a distance x from A the extra
path length compared to light from A is x sin θ and the corresponding
phase delay is φ(x) = 2πx sin θ/λ = kx sin θ. In the paraxial approxima-
tion the phase delay is kxx′/f where x′ is the lateral coordinate of P:
an expression symmetric in x and x′ which will prove useful later. Thus
the Huygens wave from an element (x,dx) of the slit gives a contribution
to the wave at P

dEp(x) = E0 dx exp [ i(ωt − ks − φ) ],

where s is the optical path length from A to P, and E0 is a constant
expressing the contribution to the field per unit width of the slit. Sum-
ming these contributions gives the total amplitude Ep(θ), from which
we get the intensity at P

I(θ) = E∗
p(θ)Ep(θ).

Evidently the common factor exp i(ωt − ks) disappears in the intensity
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Fig. 6.3 Phasor diagram for Fraunhofer diffraction at a finite width slit. The short
arrow is a representative phasor due to a short segment of the slit width. The
resultant phasor amplitude for the whole slit is the chord length OS.

so it is only needful to add up the phasors E0dx exp (−iφ). Then

Ep(θ) =

∫ d

0

E0 exp (−ikx sin θ)dx (6.3)

= E0 [1 − exp (−ikd sin θ)]/(ik sin θ)

= E0d exp (−ikd sin θ/2) sinc(kd sin θ/2),

where as usual sinc(x) = sin x/x. Thus the intensity is

I(θ) = (E0d)2 sinc2(kd sin θ/2). (6.4)

This calculation of Ep(θ) at P is expressed diagramatically in the phasor
diagram, figure 6.3. The contribution to the amplitude at P from an
element of the slit located at (x,dx) has magnitude E0dx and has phase
angle kx sin θ. Thus its phasor has length E0dx and is inclined at anλ / θ d sin 
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Fig. 6.4 Intensity distribution for
Fraunhofer diffraction at a finite width
slit.

angle φ = kx sin θ to the real axis. Adding all the phasors vectorially
gives a circular arc which turns through an angle α = kd sin θ and has
radius R = E0d/α = E0/k sin θ. The resultant amplitude at P is the
chord of this arc

Ep(θ) = 2R sin (α/2)

= E0 d sinc(kd sin θ/2) (6.5)
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as before. Whenever the arc makes one or more complete circles the
resultant intensity is zero. For this to be the case

kd sin θ = 2nπ,

which reduces to
d sin θ = nλ (6.6)

where n is a non-zero integer. On approaching the forward direction
sin θ → 0, and applying l’Hopital’s rule

Limitθ→0 [ sin θ/θ ] = 1. (6.7)

Thus there is a maximum in intensity in the forward direction for which
eqn. 6.4 gives

I(0) = (E0 d)2. (6.8)

Then eqn. 6.4 can be rewritten compactly

I(θ) = I(0) sinc2(kd sin θ/2). (6.9)

Figure 6.4 shows this intensity distribution calculated for Fraunhofer
diffraction at single long slit. The outer bright fringes are half as wide
as the central one. Their peaks lie nearly midway in angle between the
minima and the first two have intensities only 0.047 and 0.017 of the
forward intensity.

Actual diffracting screens have two-dimensional apertures and the
analysis for one-dimensional slits is easily extended to two dimensions.
The resulting patterns are simple only where there is some symmetry in
the apertures, and of these cases the rectangular and circular apertures
are treated below.

6.4 Diffraction at a rectangular aperture

Up to this point it has been assumed in calculating the effects of in-
terference and diffraction that the slit length, L, is so large that λ/L
is effectively zero. This excludes any diffraction in the direction of the
slit length so that the diffraction pattern is two dimensional, lying in
the plane perpendicular to the slit length. The calculation of diffraction
will now be extended to a rectangular aperture with limited length and
width. Monochromatic plane waves are incident normally on an aper-
ture of width dx in the x-direction and dy in the y-direction. Let ex,
ey and ez be the orthogonal unit vectors in and perpendicular to the
aperture plane. Then consider the Huygens’ wave from an element of
the aperture of area dxdy located at

r = xex + yey.

The phasor amplitude at a point P which lies in the direction given by
the wave vector

k = kxex + kyey + kzez
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will be

dE(k) = E0 exp (−ik · r)dxdy

= E0 [ exp (−ikxx) dx ] [ exp (−ikyy) dy ].

The total amplitude at P is obtained by integrating this expresion over
x and y. These integrals are independent and have been evaluated in

Fig. 6.5 Intensity pattern for Fraun-
hofer diffraction at a rectangular aper-
ture.

the previous section. Re-using eqn. 6.9 gives for the total intensity at P

I(k) = I(0)sinc2(kxdx/2)sinc2(kydy/2), (6.10)

where I(0) is the intensity in the forward direction. The diffraction
pattern is simply the product of those for the two dimensions separately.
This distribution is shown in figure 6.5 for a rectangular aperture twice
as tall as it is wide. Correspondingly the fringes are twice as wide as they
are tall. The figure shows how the image would appear on a photographic
negative or CCD that has been deliberately overexposed in order to
enhance the weaker intensity peaks that lie both along and off the axes.

6.5 Diffraction from multiple identical slits

The experimental arrangement shown in figure 6.2 is a template for
producing Fraunhofer diffraction using an opaque sheet with any choice
of apertures. A very useful arrangement is to have a row of identical
slits, d wide, regularly spaced a distance a apart centre-to-centre, as
shown in figure 6.6. Analysis of the diffraction produced by such an
array will prepare the ground for the discussion of diffraction gratings
and spectrometers. In the remainder of this section we suppose that the
slits are sufficiently long that the variation in the diffraction pattern is
all along a line perpendicular to the slit lengths. It is seen in figure 6.6
that the path length from a slit centre to P changes by a sin θ between
successive slits. Correspondingly the phase difference of the secondary
waves arriving at P from the slit centres is

β = ka sin θ. (6.11)

The phasor addition of the amplitudes at P is illustrated for the case of
three slits in figure 6.7. In the upper diagram the dotted line arcs show
the phasor contributions of the elements in each slit; the resultants of
individual slits are the phasors drawn with open arrowheads; and their
resultant is the long phasor ending in a solid arrowhead. In the lower
diagram the phasors of the three slits are drawn for four choices of β:
namely 0, 2π/3, π, 4π/3 and 2π. If the amplitude at P with a single
slit open is unity, then these four choices for β yield amplitudes 3, 0, 1,
0 and 3 respectively, while the corresponding intensities are 9, 0, 1, 0
and 9. As β changes between these configurations the intensity is either
falling or rising monotonically. Some simple conclusions can be inferred
from figure 6.7 about the pattern of fringes seen when there are N slits.
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Fig. 6.6 Fraunhofer diffraction at an array of equally spaced identical slits.

• There are principal maxima whose intensity is N 2 times that of a
single slit maximum.
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Fig. 6.7 Phasor diagrams for Fraun-
hofer diffraction at three equally spaced
identical slits. The upper panel shows
the the slit phasors and their resultant.
Below the alignments for intensity min-
ima and maxima appear.

• There are N − 2 much lower intensity subsidiary maxima between
each pair of principal maxima.

The same results will now be obtained analytically. The wave at P
due to the mth slit is

Ep(θ) exp [−i(m − 1)ka sin θ ],

where Ep(θ) is the single slit contribution given in eqn. 6.5. Making use
of eqn. 6.9 the intensity at P due to all N slits is

IN (θ) = (E0d)2sinc2(kd sin θ/2)X∗
NXN , (6.12)

where

XN =

N∑
m=1

exp [−i(m − 1)ka sin θ ] =
1 − exp (−iNka sin θ)

1 − exp (−ika sin θ)

= exp [−i(N − 1)ka sin θ/2]

[
sin (Nka sin θ/2)

sin (ka sin θ/2)

]
,

where we have used the result

N∑
m=1

xm−1 = (1 − xN )/(1 − x).
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Fig. 6.8 Fraunhofer diffraction patterns for one, two, three and four slits. The slit
widths and spacing are the same in each case. The single slit pattern is shown as a
dotted line in the multi-slit plots.

Thus

X∗
NXN =

[
sin (Nka sin θ/2)

sin (ka sin θ/2)

]2
.

Substituting this result in eqn 6.12 gives the intensity at P

IN (θ) = (E0d)2 sinc2(kd sin θ/2)

[
sin (Nka sin θ/2)

sin (ka sin θ/2)

]2
.

Writing this more succinctly

IN (θ) = I(0) sinc2(α/2)

[
sin (Nβ/2)

sin (β/2)

]2
(6.13)

where I(0) = (E0d)2 is the forward intensity due to a single slit, and
where we repeat that

α = kd sin θ; β = ka sin θ,
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d being the slit width and a the slit spacing centre to centre. We see
that the intensity pattern for N slits contains a multiple slit pattern

MN (θ) = sin2 (Nβ/2)/ sin2 (β/2)

which modulates the single slit intensity pattern

I(0) sinc2(α/2).

MN(θ) has zeroes wherever

Nβ/2 = mπ,

where m is an integer, with the important exception that whenever m/N
is also equal to an integer p,

β/2 = pπ. (6.14)

In this case l’Hopital’s rule gives

sin2 (Nβ/2)/ sin2 (β/2) → N2, (6.15)

with the result that the principal maxima are N 2 times brighter than
the single slit maximum. These principal maxima occur at angles given
by

a sin θ = pλ. (6.16)

Diffraction patterns with one, two, three and four identical equally
spaced slits are shown in figure 6.8, all with the same slit width and
spacing. In the multi-slit diagrams the single slit pattern scaled up by

Principal maximum (N)

First minimum (0)

First subsidiary maximum (D)

πD = 2N/3

Middle subsidiary maximum (1)

Fig. 6.9 Phasor diagrams for Fraun-
hofer diffraction produced by a large
number of slits.

a factor N2 is shown as a dotted line. The intensities at the princi-
pal maxima touch this envelope, while the subsidiary maxima are much
weaker.

Figure 6.9 shows phasor diagrams when there are a large number
of slits, in this case 37 slits. Reading from the top panel down these
diagrams relate to the forward principal maximum, the adjacent min-
imum, the first subsidiary maximum, and another principal maximum
lying midway between principal maxima. In each case the resultant pha-
sor amplitude is written in brackets. The resultant phasors are drawn
with full arrowheads for the two subsidiary maxima. With each slit
contributing unit intensity the first subsidiary maximum has intensity
D2 = (2N/3π)2, which is 0.045 that of a principal maximum. Thereafter
the subsidiary maxima decline in intensity with those midway between
the principal maxima having about the same intensity as a single slit
maximum.

6.6 Babinet’s principle

The diffraction pattern produced by an opaque screen with any arrange-
ment of apertures is related to that produced by the complementary
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screen: this complementary screen is transparent wherever the first
screen is opaque and opaque wherever the first screen is transparent.
Suppose that at P, lying in the focal plane of the second lens in figure
6.2, the light amplitude with the first screen in place is A1; and A2 when
the complementary screen replaces it. Also suppose the intensity at P
when both screens are removed is A0. Then clearly

A0 = A1 + A2.

However A0 is only non-zero in the exact forward direction, that is when
P lies on the optical axis. Elsewhere

A2 = −A1.

It follows that the intensities produced by complementary screens are
identical except in the forward direction and that there they add to give
the unobstructed intensity. This is known as Babinet’s principle.

6.7 Fraunhofer diffraction at a circular hole

The circular aperture, of radius r, shown in figure 6.10 is used to produce
Fraunhofer diffraction in the standard experimental arrangement. Light
from a point s on the aperture with wave vector k travels to P in the
image plane. There is phase difference of k·s at P compared to light also
travelling to P from the centre of the aperture. The vectors involved are

s = s cosφ ex + s sinφ ey,

k = k cos θ ez + k sin θ ex,

where ex, ey and ez are unit vectors along orthogonal axes drawn in the
diagram. Thus

θ
φ k

s x

y

z

Fig. 6.10 Fraunhofer diffraction at a
circular aperture. The vectors k and s

point from the hole’s centre toward a
point on the image and to an element
of the aperture respectively.

k · s = ks sin θ cosφ,

and the wave at P is

E = E0

∫ r

0

∫ 2π

0

exp (iks sin θ cosφ)s dφds, (6.17)

where E0 includes constants and also the complex exponents that van-
ish when the intensity is calculated. Integration over φ gives a Bessel
function of order zero1

E = 2πE0

∫ r

0

J0(ks sin θ)sds,

1Table of Integrals, Series and Products by I.S. Gradshteyn and I.M. Ryzhik,
edited by A. Jeffrey, 5th edition 1994; published by Academic Press, London.∫ 2π

0

exp (iz cos φ)dφ = 2πJ0(z),∫ r

0

zJ0(z)dz = rJ1(r).
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and the integral over s yields a Bessel function of order one

E = 2πr2E0J1(kr sin θ)/(kr sin θ).

Finally the intensity at P is
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Fig. 6.11 The intensity distribution
for diffraction at a circular hole. It is
also shown in projection on the roof of
the box as it might appear on a pho-
tographic negative with only the Airy
disk visible.

I(θ) = 4π2r4E2
0 [J1(kr sin θ)/(kr sin θ)]2.

Noting that in the forward direction this expression reduces to π2r4E2
0 ,

the intensity in the diffraction pattern of a circular hole can be rewritten
as

I(θ) = I(0)

[
2J1(kr sin θ)

(kr sin θ)

]2
. (6.18)

This function is plotted in figure 6.11. The bright central spot is named
the Airy disk, after the 19th century astronomer who was the first to
calculate this distribution. 84% of the light falls within the Airy disk
and its angular radius θ is given by

sin θ = 0.61λ/r = 1.22λ/D, (6.19)

where D is the diameter of the hole. Lord Rayleigh proposed what
is now the standard definition of the limit of the resolving power of a
lens system: using an optical system with entrance pupil of diameter
D, two point objects are resolvable if their angular separation exceeds
1.22λ/D. At the limit the intensity maximum of one object’s image
would lie at the first minimum of the other object’s image. This Rayleigh
criterion was already used in Chapter 4 to evaluate the resolution of
optical instruments.

6.8 Diffraction gratings

It follows from the analysis of Fraunhofer diffraction by multiple slits
that when the number of slits becomes large the principal maxima be-
come very narrow, while the subsidiary maxima are so weak as to be
undetectable. Opaque screens with large numbers of identical equally
spaced slits are known as diffraction gratings and are widely used in
studying the spectra emitted by sources. The key point is that the prin-
cipal maxima are so narrow that the principal maxima of spectral lines
of closely similar wavelength are separate and distinct: they are resolved.
The chromatic resolving power of spectroscopic devices is defined as

CRP = λ/∆λ, (6.20)

where ∆λ is the smallest difference in wavelength at which it is possi-
ble to separate two spectral lines at wavelength λ. The practical limit
occurs for gratings when the principal maximum for wavelength λ +∆λ
coincides in angle with the minimum adjacent to the same maximum for
wavelength λ. In the case of the pth order maximum produced by light
of wavelength λ on a grating with N slits

Npλ = Na sin θ,
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and at the adjacent minimum

(Np + 1)λ = Na sin (θ + ∆θ). (6.21)

If this minimum coincides with the pth order principal maximum for
wavelength λ + ∆λ it follows that

Np(λ + ∆λ) = Na sin (θ + ∆θ). (6.22)

Subtracting eqn. 6.21 from eqn. 6.22 gives

Np ∆λ − λ = 0,

whence
λ/∆λ = Np. (6.23)

It is worth emphasizing that N is the number of grating lines illuminated
by the source being studied. Lines out of the beam can play no part in
diffracting the beam.

There can be confusion when fringes of one order overlap those of the
adjacent order; which will happen if the range of wavelengths in the
incident radiation is large. In order to avoid overlaps between the the
first and second order principal maxima the spread of wavelengths must
be such that

2λmin > λmax,

where λmin and λmax are the shortest and longest wavelengths. The
widest permissible spread is called the free spectral range of the grating,
which in this case is

λfsr = λmin/2 (first order). (6.24)

For any higher order, p, overlaps with both the adjacent orders, p − 1
and p + 1, must be avoided. In this case

λfsr = λmin/(p − 1) (higher order). (6.25)

Gratings met in research and industry are nearly always reflection grat-
ings because these are straightforward to manufacture with line densities
up to thousands per millimetre. Figure 6.12 shows a parallel beam be-

 y∆
f

α θ

Na
Grating

DetectorSource

Fig. 6.12 Reflection grating.
ing reflected from the faces of the reflective elements, which take the
place of slits in a reflection grating. The path difference between light
reflected from adjacent elements is now a(sin θ − sin α) where α is the
angle of incidence and θ the angle of reflection. This is to be compared
to a delay of a sin θ in the case of a transmission grating with light inci-
dent normally. Therefore the sole change required in the analysis carried
through for a transmission grating to make it applicable to a reflection
grating is to replace sin θ everywhere by (sin θ − sin α). The equation
giving the angular location of principal maxima becomes

a(sin θ − sin α) = pλ. (6.26)
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6.9 Spectrometers and spectroscopes

An instrument used to view spectra by eye is called a spectroscope, while
one employed with any sort of electronic detector is called a spectrom-
eter. One simple design is shown in figure 6.13. A massive cylindrical

Fixed collimator

Source

Scale

Grating

Rotating 
telescope

Frame

Slit

Fig. 6.13 Simple spectrometer or spec-
troscope design.

frame supports a central rotating table designed to carry the dispers-
ing element, which could either be a reflecting grating or a prism. Two
arms protrude from the frame. One arm is fixed rigidly to the frame
and carries a collimator with a variable width entry slit. Light from a
source illuminating this slit emerges as a parallel beam onto the grating
on the central table. The second arm carries a telescope which receives
the light from the reflecting grating. It brings the light to a focus at
a slit, behind which the detector is placed. This telescope arm can ro-
tate independently about the central vertical axis, and carries a vernier
that travels, as the arm moves, over a graduated angle scale that runs
around the edge of the frame. A comparison will now be made between
the chromatic resolving powers obtainable with such a spectrometer us-
ing in one case a grating and in the other a prism.

The chromatic resolving power of a prism is, unexpectedly, limited
by diffraction. In figure 6.14 a parallel beam containing light of two
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α
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Fig. 6.14 Separation of wavelengths λ
and (λ + ∆λ) by a prism at minimum
deviation. The incoming and outgoing
beams are then symmetric. For clar-
ity δmin is abbreviated to δ on this di-
agram.

nearby wavelengths is dispersed by a prism at minimum deviation: these
wavelengths are λ and λ + ∆λ. The prism has vertex angle α and it is
assumed the whole face is illuminated down to the base, which has length
s. BD and BE are wavefronts for the two wavelengths after dispersion,
and w is the width of these beams. When working at minimum deviation
the angle CB̂E = (α + δmin)/2 ≡ θ. Then eqn. 2.26 gives the refractive
index

n = sin θ/ sin (α/2). (6.27)

Differentiating eqn. 6.27 with respect to wavelength gives

dn/dλ = cos θ[ dδmin/dλ ]/[ 2 sin (α/2) ]. (6.28)

The two wavelengths will be resolvable provided that the change in the
deviation in θ between them is greater than the angular width of the
diffraction peak for a slit of width w. In this limit

∆δmin = λ/w. (6.29)

If ∆λ is the precise change in wavelength that produces a change in
minimum deviation λ/w we have

∆δmin/∆λ = λ/(w∆λ). (6.30)

∆λ is small so we can replace dδmin/dλ by ∆δmin/∆λ in eqn. 6.28 giving

dn/dλ = λ cos θ/[ 2w∆λ sin (α/2) ] (6.31)

Rearranging this equation gives the chromatic resolving power of the
prism

λ/∆λ = [2w sin (α/2)/ cos θ](dn/dλ)

= s(dn/dλ). (6.32)
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For reference a comparison is made between the chromatic resolving
power of a 5 cm wide grating with 1200 lines/mm and that of a prism of
base length 5 cm made of DF flint glass2 with high dispersion dn/dλ =2See Table 3.1.

10−4 nm−1. Then using eqn. 6.23 and the above equation, we have

(λ/∆λ)grating = 60000

(λ/∆λ)prism = 5000

Gratings are cheaper to make and simpler to handle so they are preferred
for most applications. The chromatic resolving power of gratings falls
far short of that obtained with a Fabry–Perot etalon. However the free
spectral range of an etalon is so narrow that often a two stage instru-
ment must be used to avoid confusion between orders: the first stage
uses a prism or grating to select a narrow band of wavelengths which
are made the input to the etalon.

6.9.1 Grating structure

The first useful gratings were produced by mechanically engraving lines
on metal. Light is reflected off one face of the V-shaped grooves, which
act as the slits. Defects, in the form of cyclic variations in the depth
or spacing of grooves, were hard to avoid and resulted in low intensity
satellites close to the principal maxima, known as ghosts. These could
be confused with real but weak lines in the spectrum. Nowadays the
position of the engraving tool is monitored and controlled using an in-
terferometer which makes it possible to effectively eliminate such cyclic
or random errors. The master metal gratings are used as moulds from
which polymer replica gratings are cast, after which a film of aluminium
is deposited on the replicas. The newer holographic gratings are pro-
duced photographically. First a polymer sheet coated with photoresist
is exposed to an interference pattern formed by intersecting UV laser
beams and the resist is broken down at locations of high intensity in the
interference pattern. Afterwards the resist surface is chemically etched

φ

Normal to 
grating plane 

Normal to 
reflecting slit 

Fig. 6.15 Blazed grating surface.
to remove the degraded material, leaving a rippled surface that forms
the grating. Finally aluminium is deposited on the grating. This holo-
graphic process gives finer and more regular line spacing, and in addition
the resulting gratings are freer of random defects than the ruled grat-
ings. 3600 lines/mm is a standard line density achieved in holographic
gratings compared to 1200 lines/mm with ruled gratings.

Most of the light incident on a grating will end up in the central zero
order fringe which is at the same location for all wavelengths. The light
going into this central white fringe is wasted as far as any spectroscopic
study is concerned. The situation can be improved in the case of ruled
gratings by shaping the scribing tool so that the groove cross-section
has the appearance shown in figure 6.15. With this profile the normal
to each reflecting facet is now inclined at an angle φ with respect to the
normal to the plane of the grating and hence the peak of the single slit
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diffraction pattern lies in this directon also. This process is known as
blazing and φ is called the blaze angle. Blazing leaves the directions of
principal maxima unchanged because the plane containing the slit cen-
tres is unchanged. The diffraction pattern (for ten slits) is shown both
without and with blazing in figure 6.16. Evidently blazing at an appro-
priate angle can improve the brightness of the first principal maxima by
a very big factor. The wavelength whose first principal maximum on
one side lies exactly at the centre of the rotated single slit envelope is
called the blaze wavelength, and is given by

λblaze = a sin φ. (6.33)

Holographic gratings can be blazed to a limited extent by etching the
grating with an ion beam.
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Fig. 6.16 The diffraction pattern seen
with unblazed (upper panel) and blazed
(lower panel) gratings.

6.9.2 Etendue

The etendue is calculated for the instrument shown in figure 6.12. Colli-
mator and telescope are represented as single lenses with identical focal
lengths f , the collimator slit width along the direction of dispersion is
∆y, and its length is w. The grating is taken to have N lines with inter-
val a and to be a square of side length W = Na. Etendue is invariant
through the system so it can be calculated at any convenient aperture;
here the beam at the collimator slit is considered. Only light passing
through the area of the grating is useful, and its area projects to cover
an area W 2 cosα of the collimator lens. This active area at the lens
subtends a solid angle at the collimator slit

Ω = W 2 cosα/f2. (6.34)

Ideally the slit width should subtend an angular width at the grating
equal to the FWHM of a principal maximum. If it is any larger the max-
ima would be smeared to a greater effective width; if it is any narrower
it would restrict the light etendue unneccessarily. The next step is to
determine this ideal slit width. Differentiating eqn. 6.26 with respect to
wavelength gives

dα = p dλ/(a cosα). (6.35)

Now the lateral displacement at the collimator slit plane of dy produces
a change in the angle of incidence on the grating

dα = dy/f. (6.36)

Using the previous two equations to eliminate dα gives

dy = pf dλ/(a cosα).

Hence for a resolution ∆λ the slit width must be as small as

∆y = pf ∆λ/(a cosα),
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and the slit area is then

A = wpf ∆λ/(a cosα). (6.37)

Using eqns. 6.34 and 6.37 to substitute for Ω and A in eqn. 4.11 gives
the etendue of the spectrometer

T = [W 2 cosα/f2] [wpf ∆λ/(a cos α)]

= W 2wp ∆λ/(fa). (6.38)

Using eqn. 6.26 again to replace p, we get

T = W 2 (w/f) [∆λ/λ] (sin θ − sin α). (6.39)

The luminous flux through the system is simply obtained by multiplying
the etendue by the radiance incident on the input slit in the wavelength
range (λ,∆λ)

F = T I(λ)∆λ

= I(λ) [∆λ2/λ] W 2 (w/f) (sin θ − sin α). (6.40)

Once the chromatic resolving power and the incident luminance are cho-
sen, the slit length and grating area should both be increased, and the
f/# reduced as far as feasible. Of course the light from the source needs
to illuminate the whole slit and its fan of rays should be wide enough
to cover the whole grating; otherwise the potential etendue calculated
above will not be available.

6.9.3 Czerny–Turner spectrometer

A very widely manufactured spectrometer design is based on the Czerny–
Turner mounting shown in figure 6.17. The grating rotates about an axis
through its centre and perpendicular to the plane of the diagram. Con-
cave mirrors are used to collimate the light from the entry slit and focus
the diffracted light onto the exit slit. The use of mirrors avoids any
chromatic aberration that could arise with lenses, and the symmetric
layout means that coma cancels between the two reflections. Folding
the optical paths keeps the instrument relatively compact. When the
grating is at a given orientation the first principal maximum for some
wavelength determined by the slit location will pass through the exit slit
onto the detector. Therefore the spectrum can be scanned across the
detector by rotating the grating. The entry slit is often of fixed width,

Entry slit

Exit slit

Grating

Mirrors
θ2 

Fig. 6.17 Czerny–Turner spectrometer
components.

while the exit slit has a variable width which can be changed to alter
the chromatic resolving power. In order to optimize the light entering
from the source the source can be imaged with a lens so as to just fill the
input slit. The cone of rays from the source should also be made just
wide enough to fill the grating. Light passing alongside the grating is
not only wasted but also gets reflected to give a background haze falling
on the output slit.
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In common with other spectrometers the Czerny–Turner can be used
as a monochromator. In this role the source illuminating the input would
ideally have a flat continuous spectrum (I(λ) is constant). Then the out-
put slit itself becomes a source of narrow bandwidth radiation that can
be tuned in wavelength by rotating the grating.

6.9.4 Littrow mounting

This simple design for a grating spectrometer uses a single lens, or mir-
ror, as shown in figure 6.18. The blazed grating is oriented so that the

Paraboloid
mirror

Entry slit

Blazed
grating

Fig. 6.18 Littrow mounting with a
blazed grating with the light incident
on the grating perpendicular to the re-
flective surfaces.

incoming light is incident at the blaze angle and then the reflected light
returns almost parallel to the incident beam. The mirror is an off-axis
section of a paraboloid, and by giving this a slight tilt the reflected beam
is cast a little below the plane of the diagram so that the detector does
not overlap the source. Littrow mountings suffer from astigmatism and
coma, but are extremely compact. A grating in the Littrow mounting
can be used as a monochromator to tune the wavelength of a dye laser,
as shown later in figure 14.10.

6.9.5 Echelle grating

Michelson appreciated that the chromatic resolving power of a grating

λ/∆λ = pN

is proportional to the order p as well as to the number of lines N . He
reasoned that it should therefore be possible to obtain a high chromatic
resolving power with a coarse grating by using a high order of diffraction.
Today the most practical grating whose design is based on this principle
is the echelle grating, and this is illustrated in figure 6.19. It is an
extreme form of a blazed grating with deep, coarse steps and is used in
a Littrow mounting for which eqn. 6.26 becomes

2a sinφ = pλ, (6.41)

where φ is the blaze angle. Echelle gratings provide a very useful in-
termediate level in chromatic resolving power between the Fabry–Perot
spectrometer and the grating spectrometer. Thus for example with the
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Fig. 6.19 Echelle grating showing in-
coming and outgoing beam directions
in a Littrow mounting.

R2 grating, which has a blaze angle, φ, such that tanφ = 2, and 316
lines/mm, the diffraction order at 500nm wavelength is around 11 and
the chromatic resolving power with a 10 cm width grating is thus 350 000.
Such wide line spacing is hard to achieve holographically and echelle
gratings must be engine ruled under interferometer control.

A two stage spectrometer using a prism and an echelle grating in
series, in which the directions of dispersion for the two instruments are
at right-angles not only covers a wide range of wavelengths but also
achieves good resolution across this range. These instruments are used in
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satellite surveys of the Earth and the atmosphere. For some applications
it is useful to combine the dispersing elements by forming the grating
directly on the surface of the prism; such a device is called a grism.

6.9.6 Automated spectrometers

Simple modern spectrometers contain a fixed grating and a CCD array
to capture the whole spectrum simultaneously. Figure 6.20 illustrates
the basic elements of such a spectrometer. The CCD array is two di-
mensional being made wide enough to cover the image of the slit length,
with typically 10 µm×10 µm pixels. If a standard gratings were used the
image of the input slit would trace out a curved surface as the input
wavelength changes. Instead special gratings are constructed in order
to keep the whole image focused on the plane surface of the CCD ar-
ray. These are holographic gratings in which the slit spacing changes
uniformly across its length, and this feature gives some supplementary
focusing which flattens the image plane. These spectrometers are made
to be hand-held and interface to a PC with immediate display of the
spectrum. Even so the resolution can be as good as 0.2 nm over the

CCD array

Grating

Collimator
mirror

Input slit

Fig. 6.20 Spectrometer with focusing
grating and CCD detector array.

visible spectrum.

6.10 Fresnel and Fraunhofer diffraction

Figure 6.21 contrasts the conditions for observing Fresnel and Fraunhofer
diffraction. When, as shown in the upper diagram, the incident and out-
going waves at the aperture have plane wavefronts the phase of the light
arriving at P depends linearly on the position at which the Huygens’
wave originated across the slit and it is this feature that makes analysis
straightforward. Linear dependence of phase on the position across the
slit can be regarded as the distinguishing feature of Fraunhofer diffrac-
tion. Much more common is the situation shown in the central diagram,
where the viewing plane is at a finite distance from the slit and the
diffraction is known as Fresnel diffraction. P is the point at which the
light is observed and is a perpendicular distance r from the plane of the
slit, and a transverse distance ρ from a point S on the slit. Then the
distance SP is

s =
√

r2 + ρ2 ≈ r + ρ2/2r. (6.42)

If it is assumed that plane monochromatic waves are incident on the slit
then the relative phase of light arriving at P from S is k [r+ρ2/2r], which
varies quadratically with the position of the point of origin across the
slit. This quadratic dependence is characteristic of Fresnel diffraction
and makes it relatively more complicated to analyse than Fraunhofer
diffraction. At large enough distances the wavefronts converging at P
become sufficiently flat that the diffraction approaches the Fraunhofer
limit. At this point the term ρ2/2r has become small compared to the
wavelength. The explicit criterion for Fraunhofer diffraction to apply
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for a slit of width w is that

(w/2)2/(2r) ≤ λ/8,

or equivalently
r ≥ w2/λ = rR, (6.43)

where rR is known as the Rayleigh distance. Thus far the incoming
waves at the slit were assumed to be plane. If the source is instead at a
finite distance rs then the condition for Fraunhofer diffraction to apply
is that both

r ≥ rR and rs ≥ rR, (6.44)

so that the curvature of both incoming and outgoing waves is negligible.
If either condition is violated the phase of the light arriving at P depends
quadratically on ρ, giving Fresnel diffraction. In the case of a circular
aperture of radius r

rR = πr2/λ. (6.45)

In the lower diagram in figure 6.21 the observation plane lies at the
image plane of the source, and the aperture is located anywhere between
source and image plane. According to the definitions given, the diffrac-
tion pattern observed with this experimental layout is also, surprisingly,
an example of Fraunhofer diffraction. In order to understand this con-
clusion, first imagine that a negative lens is placed immediately before
the aperture and that it has the correct focal length −f to give a parallel
beam. In addition imagine a second, positive lens of focal length f to
be placed immediately after the aperture. With this new setup there
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Fig. 6.21 Examples of Fraunhofer
diffraction (upper and lower panels),
and Fresnel diffraction (centre panel).

will be Fraunhofer diffraction because the incident and emerging waves
are planar at the aperture. The new setup differs from the original in
having coincident lenses of equal and opposite powers at the aperture.
Thus it is optically equivalent to the original setup: the image will be in
in the same place and the same size as before. Hence the original setup
in the lower diagram produces Fraunhofer diffraction.

To summarize: in all cases where observation is made in the image
plane of the source Fraunhofer diffraction is observed, which includes the
standard setup shown in figure 6.2. For all other arrangements there is
Fresnel diffraction. In Fresnel/Fraunhofer diffraction the phase of light
arriving at the observing plane is quadratically/linearly dependent on
the distance across the aperture of the point at which the Huygens’
secondary wave originates.

6.11 Single slit Fresnel diffraction

The phasor diagram for Fresnel diffraction differs markedly from that
for Fraunhofer diffraction shown in figure 6.3. In that plot the change in
phase angle between phasors contributed by successive elements of the
slit was constant because of the linear dependence of phase on position
across the slit. By contrast with a quadratic dependence of the phase
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angle on position the arc formed by the phasors will curl up, and the
result looks as shown in figure 6.22. The calculation of the intensity
distribution for Fresnel diffraction at a linear slit shown in the middle
panel of figure 6.21 starts from the expression for the Huygens’ wave
arriving at P from S, an element of the slit of width dρ at a distance ρ
across the slit

dE = exp (iks)dρ/s,

where the factor 1/s allows for the fall-off in amplitude as the wave
spreads out with distance. Thus the total wave at P is
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Fig. 6.22 Phasor plot for Fresnel diffraction at a slit. The resultant amplitude is
the chord length between the points with values of u corresponding to the two edges
of the slit. The tighter turns of the Cornu spiral, which are omitted here, would
converge at the crosses. Points where u = ±0.5, ±1.0, ±1.5... are indicated by ×s.

E =

∫
exp (iks)dρ/s.

Using the approximation from eqn. 6.42 and taking constant factors
outside the integral

E = [ exp (ikr)/r]

∫
exp (ikρ2/2r)dρ,

where the change in the factor 1/r across the slit is ignored. Making a
change of variable to

u =
√

2/λr ρ (6.46)
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and dropping the constant multipier gives

E(u1, u2) =

∫ u2

u1

cos
(π

2
u2
)
du + i

∫ u2

u1

sin
(π

2
u2
)
du, (6.47)

where u1 and u2 are the values of u at the two edges of the slit. This
equation contains the Fresnel definite integrals

C(u) =

∫ u

0

cos
(π

2
u2
)
du; (6.48)

S(u) =

∫ u

0

sin
(π

2
u2
)
du. (6.49)

The amplitude given by eqn. 6.47 can be rewritten

E(u1, u2) = [ C(u2) − C(u1) ] + i [ S(u2) − S(u1) ]. (6.50)

Thus the intensity at P is, apart from constants,

I(u1, u2) = [ C(u2) − C(u1) ]2 + [ S(u2) − S(u1) ]2. (6.51)

These results become more approachable once they are displayed graph-
ically. In figure 6.22 the trajectory of the function C(u) + iS(u) as u
runs from −∞ to ∞ is drawn on an Argand diagram with representative
values of u indicated along the path. The total phasor amplitude given
by eqn. 6.47 is that part of the loop between the points where u is equal
to u2 and u1. The magnitude of the resultant amplitude at P in figure
6.21 is then the length of the chord joining the two ends, while the light
intensity at P is the square of this chord length.

The quadratic dependence of phase on position across the slit has the
following effect: the angle which the curve in figure 6.22 makes with
real axis increases quadratically with the parameter u, and hence the
phasor curve coils up more and more tightly as |u| increases. Only the

u
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Fig. 6.23 Fresnel diffraction at a linear
edge. In the upper panel the intensity
distribution is shown around the edge
of the geometric shadow. The phasor
giving the highest intensity is drawn on
the Cornu spiral in the lower panel.

first few loops are shown; asymptotically they spiral into the end points
Z1 and Z2 in figure 6.22. The length Z1Z2 represents the amplitude of
the electric field at P when the obstructing screen is removed, namely
the amplitude of a freely propagating wave. A line from the origin to
either end point represents half this amplitude and corresponds to the
situation in which one slit jaw is moved off to infinity so that one side
of the incident wave is unobstructed, and the other half of the incident
wave is blocked. P would then lie exactly at the edge of the geometric
shadow. This gives an intensity at P exactly one quarter what it would
be in the freely propagating wave. If P moves laterally into the shadow
then one end, u2, of the phasor remains fixed at the upper end point
Z2 while the other, u1 end of the phasor moves away from the origin
along the curve toward Z2. Thus the amplitude (chord length) and in-
tensity (chord length squared) diminish steadily as P moves deeper into
the shadow. If P moves in the other direction away from the geometric
shadow, the u2 end of the phasor remains at Z2, while the u1 end now
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moves away from the origin along the curve toward the lower end point
Z1. In this case the phasor length oscillates and so will the intensity. As
P moves steadily away from the shadow edge the u1 end of the phasor
moves round loops that grow tighter around Z1 and the intensity oscil-
lates with gradually diminishing swings. The intensity variation near
the edge of the geometric shadow is shown in the upper panel of figure
6.23, normalized to the unobstructed wave intensity. Note that the il-
lumination is highest just outside the geometric shadow, being around
40% brighter than in the unobstructed wave. The phasor producing
maximum intensity is drawn onto the Cornu spiral in the lower panel of
figure 6.23.

How Fresnel diffraction changes as the plane of observation moves
away from the slit until it lies at the Rayleigh distance from the slit is
illustrated in figure 6.24. On the left are shown three planes at selected
distances from the slit, and on the right the light intensity distributions
observed on those planes: the correspondence between each surface and
its intensity curve is indicated by a shared line style. On the surface clos-

Intensity

Rr

Slit width

Slit

 u = 1.414∆

 u = 2.0∆

 u = 6.0∆

Fig. 6.24 Fresnel diffraction at a slit. On the left are shown the planes and on the
right the patterns seen in those planes. Plane and plot are drawn with matching line
styles.

est to the slit indicated by the full line in figure 6.24 ∆u = u2 − u1 = 6,
which is a long section of the Cornu spiral. As P moves across the il-
luminated region of the surface indicated by the solid line the length
of the chord on the Cornu spiral oscillates strongly in length, and the
intensity is shown by the full line curve. The pattern still has some re-
semblance to the geometric shadow. At a surface further off, indicated
by the broken line, the arc length ∆u = 2 is shorter and the chord
length changes less violently as P moves across through the illuminated
region. The corresponding intensity curve is shown as a broken line.
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The third, dotted line surface is at the Rayleigh distance from the slit,
and here ∆u = 1.414. As the point of observation P moves across the
illuminated region the dotted intensity curve is traced out. This has a
shape approximating to the Fraunhofer diffraction pattern for a single
slit. Notice that the minima of intensity are not zero, and will only fall
to zero in the Fraunhofer limit.

6.11.1 Lunar occultation

When the Moon’s surface passes across the line joining the observer on
Earth to a star the Moon is said to occult the star. This alignment
is shown in figure 6.25. At occultation the star’s image at the Earth’s

Star

Moon

Earth

Intensity

sr

mr

Fig. 6.25 Lunar occultation.

surface will be diffracted. Although the distances from the Earth to
Moon, rm, and from Moon to star, rs, are literally astronomical the
diffraction is Fresnel diffraction. This is because the aperture is infinitely
wide so that the Rayleigh distance given by eqn. 6.43 is also infinite.
Thus the fringe pattern is that shown in the lower panel. From figure
6.22 we see that the first maximum of intensity occurs where u ≈ 1.2,
and the second where u ≈ 2.4. Then using eqn. 6.46 the fringe spacing
is

∆ρ ≈ 1.2
√

λrm/2. (6.52)

Taking the wavelength to be 500 nm gives a fringe spacing of about 12m
over the Earth’s surface. The fringes travel at the speed of the Moon’s
shadow so that the signal produced at a light sensitive detector will be
a series of pulses corresponding to the intensity maxima.

6.12 Fresnel diffraction at screens with cir-

cular symmetry

The prediction for the diffraction pattern produced by a circular disk
provided a convincing early test of the wave theory of light. In 1818
Fresnel submitted a paper on wave theory in a competition judged by a
panel appointed by the French Academy of Sciences. One panel member,
Poisson, calculated from Fresnel’s theory that when a circular obstacle
is illuminated by a point source there should be a bright spot at the
exact centre of the geometric shadow. This prediction appeared to be
absurd and easy to refute: Arago, the panel chairman, did the experi-
ment and then saw that the bright spot was really present. This spot
became known as Poisson’s spot. The analysis of Fresnel diffraction at a
circular aperture is presented here in a more qualitative way than that
used for a rectangular aperture. A more complete discusion would be-
come complicated and not add any significant insights.

Figure 6.26 shows a screen illuminated by light from a point source
shining through a circular hole. Huygens’ waves originating from an an-
nulus of the wavefront at the hole will arrive at the point P on axis with
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equal phase delay k(s1+s2) where s1 is the distance from source to annu-
lus and s2 the distance from the annulus to P. With the approximation
made in eqn. 6.42

s1 + s2 = r1 + r2 + ρ2/2r1 + ρ2/2r2.

Then the phase becomes

k(r1 + r2) + kρ2/2r1 + kρ2/2r2,

and dropping the piece common to all annuli, k(r1 + r2), leaves the
relative phase

φ = kρ2(1/r1 + 1/r2)/2 = kρ2/2R, (6.53)

where
R = r1r2/(r1 + r2). (6.54)

Now imagine that the surface of the incoming wavefront is divided into
annular zones such that between adjacent zones the path length to P
changes by one half wavelength. Then the Huygens’ waves from adjacent

screenaperture

point
source

1s 2s

1r 2r

ρ

P

Fig. 6.26 Fresnel diffraction at a cir-
cular aperture.

zones will arrive at P with a phase difference of π, so they tend to cancel
one another’s contributions to the amplitude at P. Annular zones drawn
in this manner are called Fresnel zones and the outer radius of the mth
Fresnel zone is given by

kρ2
m/2R = mπ,

whence
ρ2

m = mRλ. (6.55)

The zones therefore have equal areas

π(ρ2
m − ρ2

m−1) = Rλ

in this approximation. Consequently the cancellation of contributions
to the amplitude from succesive Fresnel zones is quite precise. The total
amplitude at P is

E =

∫ ρ0

0

2π exp [iρ2k/2R]ρdρ.

Making the substitution ξ = ρ2k/2R gives

E = λR

∫ ξ0

0

exp (iξ) dξ = iλR [ 1 − exp (iξ0) ], (6.56)

which indeed oscillates around zero as ρ0 and ξ0 increase.

When a more precise calculation is made, starting from Kirchhoff’s
expression for the secondary wave in eqn. C.8, the corrections to an
individual zone almost cancel. On the one hand the zone area increases
slightly with increasing m; on the other hand the amplitude at P falls off
with m, both because the distance from the zone increases and because
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the inclination factor grows smaller. If there are n zones exposed in the
aperture the total amplitude can be written as follows

E = 0.5E1 + (0.5E1 + E2 + 0.5E3)

+(0.5E3 + E4 + 0.5E5){
+ .... + 0.5En−1 + En (n even)
+ .... + 0.5En (n odd)

}
.

Contributions from odd and even zones have opposite sign so that the
contributions which are bracketed together cancel, leaving

E = 0.5(E1 + En). (6.57)

Now imagine that the aperture is made wide enough that the path to
P from the whole spherical wavefront emitted by the source is unob-
structed. Then the final, nth, zone will be in the backward direction
and will have an inclination factor zero. This zone therefore makes zero
contribution at P, so the previous equation reduces to

E = 0.5E1,

showing that if the wavefront is completely unobstructed the wave am-
plitude on axis is only half as large as when a circular hole exposes just
the central Fresnel zone. It is now possible to use this analysis to explain
the origin of Poisson’s spot.

An aperture exposing exactly n Fresnel zones has as its complement
a disk that exactly covers n zones. Suppose that the electric field at the
centre of the pattern with the disk in place is Edisk. Babinet’s principle
requires that the sum of the complementary wave amplitudes equals the
amplitude for a freely propagating wave on axis. Thus

Edisk + 0.5(E1 + En) = 0.5E1.

It follows that Edisk = −0.5En, which is non-zero. Therefore there is Fig. 6.27 Zone plate seen from beam
direction.always a bright spot at the centre of the geometric shadow of a circular

disk illuminated by a point source. A clean ball bearing makes an ex-
cellent circular disk; but if the outline of the disk used departs from the
circular by an area as small as a single Fresnel zone Poisson’s spot is lost.

6.12.1 Zone plates

A zone plate is a flat circular screen which has alternate transparent and
opaque annular zones, the outer radius of the mth zone counting from
the centre is ρm ∝ √

m. An example is shown in figure 6.27 with the
opaque even zones. If such a zone plate is placed between a point source
and a screen, as in figure 6.26 such that eqn. 6.55 is satisfied,

ρ2
m = mRλ (6.58)
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then the zones on the zone plate precisely match the Fresnel zones. The
contributions to the amplitude at P due to light passing through each
clear zone are then all in phase. If there are n/2 transparent zones the
central intensity is roughly n2/4 larger than that due to the central zone
alone and n2/2 times larger than the intensity with the unobstructed
incident radiation. In effect the zone plate focuses the light from the
point source at P. Using eqn. 6.54 to replace R in eqn. 6.58 gives

ρ2
m/m =

r1r2

r1 + r2
λ,

so that
1/r1 + 1/r2 = mλ/ρ2

m.

If the distances are measured with the Cartesian sign convention this
becomes

1/r2 − 1/r1 = mλ/ρ2
m,

which is identical to the thin lens formula with ρ2
m/mλ being the equiv-

alent focal length. Moving off axis the focusing property is soon lost,
and in addition the image obviously suffers chromatic aberration.

While the focusing property of a zone plate is mainly a curiosity for
light its use is important in nearby regions of the electromagnetic spec-
trum for which lenses are difficult or impossible to construct; that is, for
X-rays and short wavelength UV light. In addition zone plates are used
to focus electron beams used in the commercial fabrication of electronic
circuits on silicon wafers. The focal lengths are then about 1mm and
the zones’ widths are about 1 nm.

Point
source

Wafer

Mask

Aperture stop

Fig. 6.28 Imaging a mask onto a wafer
using Koehler illumination. Principal
rays are drawn from the edges of the
wafer.

6.13 Microprocessor lithography

The progress exhibited in Moore’s law, that the number of transistors
in processors doubles every 18 months, has been due in large measure
to improvements in optical lithography. Each layer of circuitry on a sil-
icon wafer requires the following sequence of operations that make up
the lithographic process. First the wafer is coated with a photoresist
which when irradiated changes to a form that can be chemically etched
away. Then the features required for that layer are transferred from an
optical mask (made by optical or electron beam lithography) onto the
wafer by a lens system using Koehler illumination as shown in figure
6.28. The arrowed rays are the principal rays from the two edges of
the mask and these are incident normally at the wafer surface. This
telecentric arrangement has the advantage that the image will not be
displaced laterally by height variations across the chip surface. After
exposure, etching and subsequent cleaning the wafer is ready for fur-
ther processing which may involve deposition of material or removal of
material in the regions exposed by the etching. The smallest achievable
feature according to the Rayleigh criterion is

∆s = (1.22λ/D)u = 0.61λ/NA, (6.59)
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where u and D are the image distance and exit pupil diameter respec-
tively. Ever finer features can be produced by reducing the wavelength Mask

Mask Phase shifter
π

Fig. 6.29 Phase shift masking. The
mask in the lower panel has a coating
over one open region. The amplitudes
and intensities at the wafer are shown
with broken and full lines respectively.

λ: from 1997 the 248 nm KrF laser has been used and more recently the
193nm ArF laser. As can be seen in figure 1.16 the internal transmit-
tance of fused silica falls steeply in this region so that further reduction
in wavelength requires a change in approach to less well-studied materi-
als and to mirrors. Shortening the wavelength also reduces the depth of
field given by eqn. 4.21. Taking the image to lie in the focal plane, the
depth of field obtainable with the above resolution is

∆u = 0.305λ/(NA)2. (6.60)

At a wavelength of 248 nm and a NA of 0.6 the depth of field is only
0.15µm, which is less than the surface height variation over a wafer.
Consequently several exposures may be needed at different depth set-
tings to adequately expose the resist across all the wafer. The telecentric
illumination ensures that this does not lead to any lateral shift of the
image. Several methods are used to circumvent the diffraction limit so
that features of less than λ/2 are consistently realised, and simple ex-
amples of these techniques are now described.

One method used is to immerse the region between the final lens and
wafer in a liquid of refractive index n and refocus to keep u unchanged.
The wavelength in the liquid is lower by the factor n than the wavelength

Fig. 6.30 A mask with optical prox-
imity corrections is shown in the lower
panel. This yields a satisfactory ap-
proximation to the shape shown above
when projected onto the wafer.

in air, and hence the resolution is similarly improved. Figure 6.29 shows
an example of the technique known as phase shift masking (PSM). In
the upper panel a section of a mask with opaque sections formed by
chrome deposited on quartz is shown together with both the amplitude
pattern and intensity distribution at the wafer. Through diffraction the
structure of the mask has been totally obscured. In the lower panel,
one clear region of the mask is treated to give a phase shift of π, which
might be obtained by coating with molybdenum silicide or by etching
away a layer of quartz. Now the structure of the mask is resolved in the
intensity distribution on the wafer. An array of sophisticated types of
PSM are deployed in practice. The effect of diffraction when features
drop below one wavelength in size is to round corners, extend tracks and
broaden long tracks. Therefore instead of making the mask exactly the
same shape as that required on the wafer in the upper panel of figure
6.30, the mask is shaped instead as shown in lower panel. This is called
optical proximity correction. Detailed optical modelling is needed to
optimise the shapes used.

6.14 Near field diffraction

The Huygens–Fresnel addition of secondary waves fails when used to de-
termine the electric field amplitude of electromagnetic waves very close
to the edges of obstacles. This is because the underlying theoretical jus-
tification for the Huygens–Fresnel analysis made by Kirchhoff no longer
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applies. Kirchhoff assumed that the electric field across any aperture is
exactly what it would be in the absence of any obstacle, and that over
the area of the obstacles it is zero. Reflections of waves from obstacles
are thus neglected although they are important close to the edges of ob-
stacles. Secondly Kirchhoff’s analysis assumes that the electric field is
a scalar quantity. This is adequate only if the points at which interfer-
ence is observed are far enough from the aperture that the light from all
points across the diffracting surface arrives nearly parallel. Then scalar
addition yields a good approximation to the total vector field amplitude.
However the waves from the two edges of a slit to a nearby point travel
in very different directions. Their electric field vectors will not usually
be parallel and should not be added as if they were scalars. Near to the
diffracting surface it is necessary to solve Maxwell’s equations with the
appropriate boundary conditions imposed by the edges of the apertures;
for example, one requirement is that at the surface of a good conductor
the tangential component of the electric field vanishes.

6.15 Gaussian beams

A Fabry–Perot etalon with a large spacing between mirrors is called a
cavity and may have mirrors which are flat or curved. Figure 6.31 shows
a longitudinal section through a beam confined in a Fabry–Perot cavity
with, in this case, mirrors of radius R spaced a distance R apart. This is
called a confocal cavity because the focal points of the mirrors coincide,
and symmetric because the radii are equal. The beam boundary does

R

Fig. 6.31 Gaussian beam confined in a
symmetric confocal Fabry–Perot cavity.
The curved broken lines are wavefronts.

not have straight line edges, rather it has an outline that is hyperbolic
with a waist. The standing waveforms that develop have curved wave-
fronts, shown as dotted lines in the figure, and their intensity falls off as
the edge of the mirror is approached.

These standing waves are examples of solutions of Maxwell’s wave
equation subject to the requirement that there is a node of the electric
field at the mirror surface and that outside the mirror area the intensity
vanishes. Light within a laser is usually confined within a Fabry–Perot
cavity, and consequently the solutions to Maxwell’s equations for radi-
ation confined in such a cavity have special interest. For the present
we can note that in a laser the cavity contains an active material which
establishes and maintains the standing waves of electromagnetic radi-
ation in the cavity. Part of this wave escapes through one partially
transmitting mirror to form the external laser beam. Figure 6.32 shows
a longitudinal slice through such a laser beam after passing through a
perfect converging lens. Although there is no aberration the beam does
not come to a point focus but has the same characteristic waist as the
beam in the cavity. The solution that has been selected for analysis is the
simplest of all the possible waveforms that can occur in a Fabry–Perot
cavity. This waveform has a radial distribution which falls off from the
optical axis with a Gaussian profile, and has no azimuthal variation. It is
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called the Gaussian or TEM00 mode. Here TEM indicates that electric
and magnetic fields are transverse to the direction of the waves, while
the subscript zeroes specify that the profile has no radial or azimuthal
nodes. Because of its simple compact shape this is the preferred laser
beam shape. Usually the mirror edges or some internal aperture restrict
the area of the mode contained in the cavity, lightly clipping the tail of
the Gaussian. However the other broader modes spill much more over
the mirror edges and are not built up by repeated passes through the
active medium.

f

02 w

θ2 

Fig. 6.32 Gaussian beam focused by an aberration-free lens. The curved dotted
lines are wavefronts and the broken lines are asymptotic to the beam outline at a
large distance along the axis.

The electric field distribution in a Gaussian beam of angular frequency
ω and wave number k is E = E00 exp [i(ωt − kz)] with3

E00 = (w0/w) exp (iφ) exp (−r2/w2) exp [−ik(z + r2/2R) ], (6.61)

where w, φ and R are complicated functions of the distance, z, along
the beam axis; r is the radial distance off axis. This and any other exact
solution to Maxwell’s equations with boundary conditions has, built-in,
the effects of diffraction caused by these same boundaries. Thus the
radial confinement in the third term on the right hand side in eqn. 6.61
is accompanied by an angular divergence apparent in the final term of
that equation. Imperfections of lenses or mirrors increase the divergence
of the beam, while the aberration-free waveform of eqn. 6.61 is said to
have diffraction limited divergence. The evolution of a Gaussian beam
as it travels is more complex than that of a beam following ray optics
because ray optics ignores diffraction. Rather than derive the Gaussian

3The details of the derivation can be found in Chapter 4 of the fourth edition of
Principles of Lasers by O. Svelto, published by Plenum Press, New York (1998).
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waveform an attempt is made here to interpret the terms in eqn. 6.61
in three steps.

First note that the radial distribution of the TEM00 mode is a Gaus-
sian:

E00[radial] = exp (−r2/w2), (6.62)

where w/
√

2 is the root mean square radial width. This wave can be
pictured as a plane wave launched at z = 0 with w = w0. Thereafter the
mode undergoes diffraction and at a distance along axis much greater
than the Rayleigh distance, πw2

0/λ the beam boundary asymptotically
approaches a cone in shape. The angular spread is then

θ = λ/w0π, (6.63)

where λ is the wavelength. In detail the radius of the Gaussian beam
evolves with distance as follows:

w2 = w2
0 + z2θ2

= w2
0 [ 1 + (zλ/πw2

0)
2 ] . (6.64)

Secondly the spreading waveform tends to a spherical shape with a radius
of curvature R. Referring to figure 6.33 the sagitta at a radius r off axis
is r2/2R. Thus the phase at the point (z,r,φ) is the same as that at the

Wavefront

R

z

r

/2R2r

Fig. 6.33 Gaussian beam wavefront.
point (z + r2/2R, 0, φ). Consequently the wave dependence on distance
is contained in eqn. 6.61 in a term

E00[motion] = exp [−ik(z + r2/2R)]. (6.65)

Collecting the terms in eqn. 6.61 with an explict dependence on r gives

exp {−[ikr2/2][1/R − 2i/(kw2)]}. (6.66)

Evidently the curvature of the wavefront is not exactly 1/R but has
acquired this complex form44Here the imaginary part would have

the opposite sign if the choice of com-
plex wave were exp [i(kz − ωt)] rather
than exp [i(ωt − kz)].

1/q = 1/R − 2i/kw2

= 1/R − iλ/πw2. (6.67)

It follows that at the plane z = 0,

q0 = iπw2
0/λ. (6.68)

If the radius at launch is made very small we would have q = z, and for
finite apertures this becomes

q = z + iπw2
0/λ. (6.69)

Thirdly, and finally, the total energy in the wave must remain constant
as it expands. This requires a normalization factor in the Gaussian
waveform

E00[normalization] = q/q0 = (w/w0) exp (iφ), (6.70)
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where

φ = tan−1 (zλ/πw2
0) = tan−1 (zθ/w0). (6.71)

Only a single parameter is required in addition to the wavelength to char-
acterize the Gaussian wave fully. The parameter conventionally chosen
is the width of the beam w0 at its waist which has been taken to lie at
z = 0.

The alternative expressions for q, eqns. 6.67 and 6.69, provide a con-
nection between R, z and w. Using this link we have

R = z [ 1 + (w0/zθ)2 ] = z [ 1 + (πw2
0/zλ)2 ]. (6.72)

As required the wavefronts become flat at the waist at z = 0. Rear-
rangement of eqns. 6.64 and 6.72 gives the following useful expressions
for w0 and z in terms of R and w

w2
0 = w2/ [ 1 + (πw2/λR)2 ] (6.73)

z = R/ [ 1 + (λR/πw2)2 ] . (6.74)

These expressions can be used to calculate the location of the waist and
its width when the width and curvature of the beam are known at an
arbitrary location along the beam.

In Section 5.9 we saw that monochromatic light within a Fabry–Perot
cavity whose wavelength was such that successive reflected waves are in
phase can remain in the cavity for a number of reflections comparable
to the finesse; which can easily reach a few hundred. If in addition,
the waveform reproduce its radial and azimuthal distribution after a
complete round trip, rather than spreading, conditions are then excellent
for storing the beam. The requirement that ensures that a Gaussian
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Fig. 6.34 Stability diagram for Fabry–
Perot cavities.

beam reproduces itself after each pass to and fro in the cavity is that

0 < (1 − L/R1)(1 − L/R2) < 1, (6.75)

where L is the mirrors’ separation and R1,2 are the mirror radii of
curvature.5 Otherwise the beam will diverge steadily at each pass. The 5This condition is derived in exercise

6.13.region of stability is shown shaded in figure 6.34. Both the symmetric
confocal and planar cavities are borderline cases but are simple examples
to analyse. In practice some displacement to within the shaded region
ensures stability. There are plans to store light at intensities of 100 kW
in 4 km long Fabry–Perot cavities in the gravitational wave detectors
described in Chapter 8.

In the case of a symmetric confocal cavity the waist is midway between
the mirrors and the mirrors are located at z = ±R/2. Applying eqn.
6.74 to these mirror surfaces gives

R = ±πω2
0/λ, (6.76)
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so that the phases at the mirror given by eqn. 6.71 are ±π/4. In order
for the waves to duplicate their form after two traversals of the etalon
we must have

2kL = 2pπ + π, (6.77)

where p is integral. All the more complex modes beyond the GaussianEquation 6.78 was the condition for
standing waves found with the simpler
analysis of a Fabry–Perot etalon car-
ried through in the previous chapter. In
that analysis it was implicitly assumed
that the mirrors and the plane waves
were of infinite extent laterally.

TEM00 mode either share this condition or have

2kL = 2pπ. (6.78)

It is important to note that the modes with a particular value of p are a
mix of modes with different numbers of longitudinal nodes and different
transverse distributions. The condition given by eqn. 6.78 is also that
for the TEM00 mode in a plane mirror etalon.

We see that all the modes of the symmetric confocal cavity have
wavenumbers which are integral multiples of π/2L, whatever their an-
gular distribution. This simple distribution in the mode wavenumbers
makes the symmetric confocal cavity particularly useful for spectroscopy:
if a monochromatic beam is incident having a relatively broad angular
range it will be able to couple efficiently to a combination of these equal
frequency cavity modes. With the other stable cavity configurations this
simplicity is lost. If for example the mirrors of a 10 cm symmetric con-
focal cavity are moved to be just 11 cm apart, moving inside the zone
of stability in figure 6.34, the cavity modes essentially form a contin-
uum. When therefore non-confocal cavities are used in spectroscopy a
Gaussian beam is required. Scanning across a wavelength range can be
made through changing the etalon spacing or by filling it with gas and
altering the gas pressure. Only the latter method is open when using a
symmetric confocal cavity.

As noted above, lasers are constructed with the active material inside
a Fabry–Perot etalon. Generally a simple TEM00 mode is preferred
because it is compact and, as we see below, its behaviour in optical
systems can be calculated by matrix methods parallel to those used for
paraxial ray beams. Consequently the confocal cavity is avoided because
the higher order modes, having the identical frequencies, would so easily
be excited with the desired Gaussian mode.

6.15.1 Matrix methods

The matrix formulation for tracing paraxial rays through an optical
system that appears in Section 3.6 can be extended quite simply so as
to apply to Gaussian beams. The matrices deduced in Section 3.6 which
describe the action of optical components apply equally to Gaussian
beams. A new complex parameter has emerged which is the analogue of
the radius of curvature of a wavefront in standard ray optics

1/q = 1/R − iλ/(πw2). (6.79)
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In the case of paraxial rays

R = y/α,

where y is the distance the ray lies off axis and α is the ray slope at
the same location. Referring back to Section 3.6 an optical element for
which the matrix operation is

M =

(
a b
c d

)
,

will produce a new radius of curvature

R′ = (cα + dy)/(aα + by)

= (c + dR)/(a + bR). (6.80)

Correspondingly for a Gaussian wavefront the effect on the complex
curvature, q, is

q′ = (c + dq)/(a + bq). (6.81)

A simple example of applying this formalism is now given. The Gaussian
beam is incident on a lens of focal length f with the lens placed at the
beam’s waist of radius r. Then

1/q = −iλ/(πr2).

The matrix describing the operation of the lens on the beam is

M =

(
1 −1/f
0 1

)
,

so that the wave out of the lens has

q′ = 1/ [ (−iλ/πr2) − 1/f ] .

Rearranging this result gives

1/q′ = −iλ/πr2 − 1/f.

It follows that the radius of curvature of the emerging wave is −f . In
addition the waist radius of the wave leaving is identical to that entering
the lens, r. The location of the beam waist beyond the lens is obtained
using eqn 6.74

z0 = −f/ [ 1 + (λf/πr2)2 ]

which shows the waist is closer to the lens than the ray focus. The beam
waist is given by eqn. 6.73,

r2
0 = r2/ [ 1 + (πr2/λf)2 ].

Then if πr2 	 λf the waist radius is approximately λf/πr.
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Exercises

(6.1) Check the set of (bulleted) conclusions given in Sec-
tion 6.5 by drawing phasor diagrams for the case of
four identical slits.

(6.2) A diffraction grating 4 cm long has 1000 lines/mm.
What is its potential chromatic resolving power?
What blaze angle will make 500 nm the blaze wave-
length? What is the free spectral range of the grat-
ing?

(6.3) What aperture diameter would a telescope require
to resolve stars that are 1.3 arcsec apart at a wave-
length 500 nm?

(6.4) What is the frequency of the pulses that are re-
ceived by a detector on Earth which is set up to
observe lunar occultation of a distant star? The
Earth’s radius is 6.38 106 m.

(6.5) What width diffraction grating of 200 lines/mm is
required to just resolve the two sodium D lines at
589.592 and 588.995 nm in first order diffraction?
If a lens of 0.5 m focal length is used to image the
fringes what will the physical separation of the lines
be? What f/# lens is required?

(6.6) A grating has two slits each width d and separated
centre-to-centre by a. How many maxima will lie
under the first maximum of the corresponding sin-
gle slit envelope?

(6.7) If a grating is immersed in water how does this
change the angular position of the maxima?

(6.8) If alternate slits of a grating are covered with a
layer of transparent material that has an optical
thickness 0.5 wavelengths longer than that of the
same thickness of air what will be the effect on the
Fraunhofer diffraction pattern?

(6.9) All the ten zones of a zone plate are transparent.
Alternate zones starting with the second from the
centre are covered with the material mentioned in
the previous question. If a parallel monochromatic
beam is incident normally on the zone plate what
is the intensity at the bright central point at focal
plane compared to that observed with a conven-
tional zone plate of the same dimensions?

(6.10) A 5 cm square reflection grating with 1200
lines/mm is used as in figure 6.12 with lenses of

focal length 1m, and θ is fixed at 60◦. The slit
lengths are also 5 cm long. What value should α
have in order that the detector intercepts the first
order maximum for 632 nm? What is the potential
chromatic resolving power achievable with the grat-
ing, and how narrow should the slits be in order to
attain this? What is the etendue of the instrument?

(6.11) Show that the etendue of the TEM00 Gaussian
mode is λ2.

(6.12) Using the expressions for the radius of the wave-
front and the diameter of a Gaussian beam, show
that λR/πw2 = πw2

0/zλ. Hence prove eqns. 6.73
and 6.74.

(6.13) Using eqns. 3.32 and 3.33 show that the transfer
matrix for a complete round trip in a cavity with
concave mirrors of radius R1 and R2 set a distance
apart L is

S =

(
a b
c d

)
,

with

a = 1 − 2L/R1 − 4L/R2 + 4L2/R1R2,

b = −2/R1 + 4L/R1R2 − 2/R2,

c = 2L − 2L2/R1,

d = −2L/R1 + 1.

Then show using eqn. 6.81 that if a Gaussian mode
propagating in this cavity reproduces itself after
one round trip, that is q′ = q,

q = (d − a)/2 ±
√

[ (d − a)2/4 + bc ].

Now use the fact that the q for a Gaussian mode
has a non-zero imaginary part to prove that

(a + d)2 < 4.

For this step you need to recall that for any transfer
matrix

ad − bc = 1.

Finally show that eqn. 6.75 follows from these lim-
its.
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7.1 Introduction

The technique of Fourier analysis will first be introduced in an elemen-
tary way. This relates the time distribution of any wavetrain to its
frequency distribution in a precise and simple manner. Equally it pro-
vides the relationship between spatial and spatial frequency distribu-
tions. Diffraction of light at apertures acquires a new interpretation:
the spatial distribution of the apertures in coordinate x is being in effect
Fourier transformed into the equivalent distribution in spatial frequency,
kx = k sin θ, where θ is the outgoing direction of the light. Optical trans-
forms, correlations and power spectra are then discussed.

The application of the Michelson interferometer to study the corre-
lations between a light beam at two instants was discussed in Chapter
6. This autocorrelation will be used to give a quantitative measure of
coherence. Fourier transforming an autocorrelation gives the frequency
distribution; its application to spectroscopy is described here. Parame-
ters for quantifying image resolution are explained.

The view of diffraction as a Fourier transformation process led Abbe
to the modern theory of image formation, and hence to a better under-
standing of the resolution of optical instruments. Abbe’s theory and its
applications will therefore be described here. The use of acousto-optic
cells to modulate and deflect light, and holography are also described,
with applications to information processing.

7.2 Fourier analysis

Pure sinusoidal waves such as cos (kx) are mathematical abstractions
because they would extend to infinity. They have simple mathematical
properties, for example their integrals and differentials to all orders are
well defined and simple. In the late eighteenth century Fourier showed
that any repetitive wave (whether infinite in space or time) can be ex-
panded as a sum of pure sinusoidal waves with numerical coefficients
called a Fourier series. This analysis can be extended to wavetrains
that are finite in extent.

Suppose the function f(x) repeats its form at equal intervals λ in co-
ordinate x, then Fourier showed that the following expansion is generally
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valid

f(x) = c0/2+c1 cos kx+c2 cos 2kx+...+s1 sin kx+s2 sin 2kx+..., (7.1)

where k = 2π/λ. These discrete sinusoids are orthogonal over the range
−λ/2 to λ/2,1 so that the Fourier series coefficients are easy to extract,1 ∫ λ/2

−λ/2

cos mkx cos nkxdx

=

∫ λ/2

−λ/2

cos (m + n)kxdx/2

+

∫ λ/2

−λ/2

cos (m − n)kx dx/2

= λ/2 if m = n; 0 if m �= n.∫ λ/2

−λ/2

sinmkx sin nkxdx

=

∫ λ/2

−λ/2

cos (m − n)kxdx/2

−
∫ λ/2

−λ/2

cos (m + n)kx dx/2

= λ/2 if m = n; 0 if m �= n.∫ λ/2

−λ/2

cos mkx sin nkxdx

=

∫ λ/2

−λ/2

sin (m + n)kxdx/2

−
∫ λ/2

−λ/2

sin (m − n)kxdx/2 = 0.

cm = (2/λ)

∫ λ/2

−λ/2

f(x) cos (mkx) dx, (7.2)

sm = (2/λ)

∫ λ/2

−λ/2

f(x) sin (mkx) dx. (7.3)

Notice that when f(x) is an even (odd) function of x the sine (cosine)
coefficients are all zero. One simple example is a periodic square wave
with repeat distance λ, which is defined in the region between −λ/2 and
λ/2 by

f(x) = 1 for |x| < λ/4; f(x) = 0 for λ/4 ≤ |x| < λ/2.

This is a symmetric function of x so that the sm’s all vanish, while

cm = (2/λ)

∫ λ/4

−λ/4

cos (mkx) dx = (2/mπ) sin (mπ/2),

giving

f(x) = 1/2 + (2/π)[ cos kx − cos (3kx)/3 + cos (5kx)/5 − ...]. (7.4)

The contributions from the first two, four and six terms are shown in
figure 7.1. A more compact way of writing the Fourier series is

f(x) =
∞∑
−∞

Fm exp (−imkx), (7.5)

with

Fm = (1/λ)

∫ λ/2

−λ/2

f(x) exp (imkx) dx.

where F±m = (cm ± ism)/2, and F0 = c0/2. Waves from actual sources
like the pulse shown in figure 1.6(c) have finite length and are called non-
periodic. As the following example shows, they are the limiting forms of
periodic waves. We rewrite the square repetitive wave as

f(x) = 1 for |x| < λ/4M ; f(x) = 0 for λ/4M ≤ |x| < λ/2M

with M = 1. Now let λ and M increase by the same factor so that λ/M
remains fixed at a finite value d. This leaves unaffected the pulse centred
on the origin, while increasing the pulse to pulse separation through the
increase in λ. If λ and M are increased to infinity while preserving their
ratio then what remains is a single square pulse of width d/2 at the
origin – which is a non-periodic wave. At the same time the change
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in the argument, kx = 2πx/λ, between successive terms in the Fourier
series tends to zero. In this limit the sum of terms becomes an integral,
where Fm is replaced by F (k)dk, F (k) being a continuous function of k.
It follows, after some manipulation, that

f(x) =

∫ ∞

−∞
F (k) exp (−ikx) dk/2π, (7.6)

with

F (k) =

∫ ∞

−∞
f(x) exp (+ikx) dx. (7.7)

This pair of equations are complementary, and the pair of variables
linked, in this case x and k are called conjugate variables. F (k) is It is important to note that the signs

of the exponents in eqns. 7.6 and 7.7
could be reversed so that

f(x) =

∫ ∞

−∞

F (k) exp (+ikx) dk/2π,

F (k) =

∫ ∞

−∞

f(x) exp (−ikx) dx.

The combination of eqns. 7.6 and 7.7
require the choice of exp [i(ωt − kx)] for
the complex waveform. Equally the
combination of equations presented in
this note require the complex waveform
to be exp [i(kx − iωt)].

known as the Fourier transform of f(x) and taking its Fourier trans-
form, with the sign in front of i reversed, returns f(x). For convenience
the relationships will also be written in this way: F (k) = FT(f(x)) and
f(x) = FT(F (k)). Rewriting the expression for f(x)

f(x) =

∫ ∞

0

F (k) exp (−ikx) dk/2π +

∫ 0

−∞
F (k′) exp (−ik′x) dk′/2π

=

∫ ∞

0

F (k) exp (−ikx) dk/2π

+

∫ ∞

0

F (−k) exp (+ikx) dk/2π, (7.8)

where the replacement k′ = −k has been made in the second integral.
From this separation we see that if f(x) is real the two quantities being
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Fig. 7.1 Partial summations of the
Fourier series for a square repetitive
wave.

integrated must be complex conjugates of one another, that is to say

F (−k) = F (k)∗ and |F (−k)| = |F (k)|. (7.9)

After putting F (k) = |F (k)| exp [iα(k)] eqn. 7.8 becomes for real f(x)

f(x) =

∫ ∞

0

|F (k)| cos [ kx − α(k) ] dk/π. (7.10)

Thus far Fourier analysis has been applied to spatial distributions. It is
equally valid and valuable in relating distributions in time and frequency,
which are the other pair of conjugate variables appearing in a general
wavefunction f(ωt − kx). For these

f(t) =

∫ ∞

−∞
F (ω) exp (+iωt) dω/2π, (7.11)

where

F (ω) =

∫ ∞

−∞
f(t) exp (−iωt) dt, (7.12)

and if f(t) is real

f(t) =

∫ ∞

0

|F (ω)| cos [ (ωt + α(ω) ] dω/π, (7.13)
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where F (ω) = |F (ω)| exp [iα(ω)]. Equations 7.10 and 7.13 show that,
as expected, the expansion of measureable, and therefore purely real
quantities requires only contributions of positive frequency with real
coefficients. Another useful result is that the Fourier transform of a
Gaussian distribution is also a Gaussian

FT[ exp (−x2/2σ2)/
√

2πσ ] = exp (−σ2k2/2). (7.14)

The major consequence of the preceding analysis is that it becomes
straightforward to calculate the results of any frequency dependent phys-
ical process which is caused by a finite wavetrain, provided that effects
add linearly. First the wavetrain is resolved into its pure sinusoidal com-
ponents with their numerical coeficients. Then the effects of the physical
process are calculated for each frequency component. Finally these are
summed to give the total effect.

The Dirac delta function

The use of this function, δ(x), of a variable x simplifies the Fourier
analysis of repetitive pulses. It is defined such that∫ ∞

−∞
δ(x − a)f(x) dx = f(a). (7.15)

The function δ(x−a) has unusual properties: it is zero everywhere except
for a positive spike at x = a which is infinitely narrow, while at the same
time the area under this spike is unity.2 Two useful results follow2Strictly δ(x) is a functional because

it maps an integral onto a number,
whereas a function maps a number onto
a number.

δ(bx) = δ(x)/|b| b �= 0, (7.16)∫ ∞

−∞
exp [ ik(x − x′) ] dk/2π = δ(x − x′). (7.17)

Taking the Fourier transform of a function f(x) twice, and using eqn.
7.17, gives ∫ ∫

f(x′) exp (ik(x′ − x)) dk dx′/2π = f(x),

which confirms that the original function is obtained. The reader may
now like to prove that

FT[f(x − x0)] = exp(+ikx0) FT[f(x)],

FT[F (k − k0)] = exp(−ik0x) FT[F (k)], (7.18)

which are called the shift theorems.

7.2.1 Diffraction and convolution

If the reader refers back to eqn. 6.3 it is seen that the expression for
the amplitude of the diffracted wave is simply the Fourier transform
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Table 7.1 Table of Fourier transforms.

f(x) F (k)

f(ax) F (k/a)/|a|
δ(x) 1

exp (−x), x > 0 (1 − ik)/(1 + k2)

exp (−x2/2σ2)/(
√

2πσ) exp (−k2σ2/2)
Π(x): = 1 for |x| < 0.5,

= 0 for |x| > 0.5 sinc(k/2)

of the wave amplitude at the diffracting aperture, in that case for a
slit of width d. The conjugate variables are the coordinate across the
screen, x, and the lateral component of the wave vector kx = −k sin θ.
With a plane wave incident normally on the screen exp (ikxx) is the
phase factor required for light travelling in a direction making an angle
θ with the forward direction, and this factor constitutes the Fourier
transforming factor. Diffraction of the same incident beam by a screen
whose transmission coefficient is f(x) gives an amplitude in the direction
θ which is its Fourier transform

E(kx) =

∫ ∞

−∞
f(x) exp (ikxx) dx.

For this reason the lens following the screen is called the Fourier lens
and its focal plane is called the Fourier transform plane or simply the
transform plane.

In Section 6.5 the intensity of the diffraction pattern for multiple broad
slits turned out to be the direct product of the pattern for a single
broad slit and the pattern for multiple (infinitely) thin slits. Figure
6.8 illustrates this. This type of simplification is very general. The
transmission coefficient for multiple identical slits can be described using
two functions. One function, h(x), describes an individual slit centred
at x = 0: h(x) = 1 for |x| < a/2 and zero elsewhere. The other

0

0

0

δΣ

Pulse

⇓

Fig. 7.2 The figure shows the convolu-
tion of a sum of delta functions with a
square pulse. The resultant is a set of
square pulses centred on the delta func-
tion locations.

function describes the placement of the slit centres at x1, x2,... : g(x) =∑
m δ(x − xm). The transmission coefficient is then explicitly

f(x) =

∫ ∞

−∞
g(x′)h(x − x′) dx′, (7.19)

an expression that is called a convolution and which is written in short-
hand form as

f(x) = g(x) ⊗ h(x) = h(x) ⊗ g(x). (7.20)

With the example given of multiple identical slits

f(x) =

∫ ∑
m

[ δ(x′ − xm)h(x − x′) ] dx′ =
∑
m

h(x − xm).

This convolution is shown pictorially in figure 7.2. When the functions
are more complicated than delta functions the results are less easy to
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visualize. The simplification in the diffraction pattern of an array of
identical apertures emerges when the Fourier transform of the convolu-
tion is taken:

F (k) =

∫ ∞

−∞

∫ ∞

−∞
g(x′)h(x − x′) exp (ikx) dxdx′.

Putting y = x − x′ gives

F (k) =

∫ ∞

−∞
g(x′) exp (ikx′) dx′

∫ ∞

−∞
h(y) exp (iky) dy = G(k)H(k),

(7.21)
where G(k) = FT[g(x)] and H(k) = FT[h(x)]. Alternatively this result
can be written

FT [ g(x) ⊗ h(x) ] = G(k)H(k), (7.22)

which is known as the convolution theorem. The factorization of the
diffraction pattern of several broad slits into the broad single slit pat-
tern, H(k), and the multiple thin slit pattern, G(k) seen in eqn. 6.13
gives one example of the operation of the convolution theorem. Two
other examples are illustrated in figure 7.3. This figure shows the Fraun-
hofer diffraction patterns for two, and for five randomly placed circular
apertures. The patterns seen are products of the pattern for a single
circular aperture multiplied by the multislit pattern.

Optical transfer function

Any optical system produces a more or less blurred image of a point
object due in part to aberrations and in part to diffraction. We suppose
that the illumination is incoherent, as it would be for a camera viewing a
landscape or a telescope viewing a star field. The spread of light intensity
around the ideal image point is called the point spread function or PSF;
and the ratio of the peak intensity to the peak intensity in the limit
with no aberrations is called the Strehl ratio. When the Strehl ratio is

Fig. 7.3 The diffraction patterns for
two and five identical circular aper-
tures. The small black circles indicate
the hole size and spacing for the two
cases.

of order 0.5 or larger it is given approximately by

S = 1 − [ 2πσ(λ)/λ ]2 (7.23)

where σ(λ) is the rms wavefront error; that is the departure of the wave-
front from an unaberrated shape. Excellent optical systems for which
the Strehl ratio is larger than 0.8, corresponding to a wavefront error of
λ/14 or less, are conventionally called diffraction limited.

The PSF determines how easy it will be to detect a point source
against a background using an optical system and detector such as a
CCD array. The observer would only be able to detect the source pro-
vided that the charge deposited in the pixels inside the image signifi-
cantly exceeds the noise in adjacent pixels. The noise includes contribu-
tions from background and from the detector itself in the absence of any
radiation. If the PSF is reduced by a factor n then the size of the image
of the point source is similarly reduced. Its signal is then concentrated
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in n2 fewer pixels so that the signal to noise ratio or SNR increases by
the same factor.

If the PSF is the same over the whole image then the intensity, I,
across the image is related to that across the object, O, through a con-
volution

I(x) = O(x) ⊗ PSF(x) =

∫
PSF(x − mx′)O(x′)dx′, (7.24)

where m is the magnification. Fourier transforming the PSF resolves the
smearing of the image as a function of spatial frequency, k/2π = 1/λ,
so that the effects of smearing on small and large scale features in the
image are separated. This Fourier transform is called the optical transfer
function or OTF. Then from the convolution theorem we have

FT[I] = OTF FT[O]. (7.25)

The OTF is in general complex and can be expanded thus:

OTF = MTF exp (iPTF), (7.26)

where MTF is called the modulation transfer function, and PTF the
phase transfer function, both being functions of the spatial frequency
and both real. If features of some spatial frequency k in the object have
visibility (contrast) V (k), this is degraded in the image to MTF(k) ⊗
V (k). One simple method used to measure the MTF is to record an
image of test screen. This screen carries parallel lines, spaced λ apart,
the intensity varying sinusoidally like cos (2πx/λ). The visibility of the
image is then compared with that of the original for different choices of
the spatial frequency 1/λ. Figure 7.4 shows some representative plots of
the MTF: one for a perfectly corrected optical system, labelled C; and
others for two imperfect systems, labelled A and B. The MTF for C falls
to zero at a spatial frequency determined by diffraction at the aperture
stop. System A is superior for low spatial frequencies but would be the

λSpatial frequency: 1/
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Fig. 7.4 Examples of the dependence
of the modulation transfer function on
spatial frequency for a well corrected
lens (C) and for two imperfect lenses.
Of these two B performs better at
higher spatial frequencies.

poorer choice for high spatial frquencies, so that B is better for recording
fine detail. This comparison shows that the OTF gives a more complete
representation of optical performance than a single number such as the
resolving power or Strehl ratio.

When coherent illumination is used the amplitudes at the image plane
are added, rather than the intensities. The interference effects exploited
in microprocessor lithography and described in Section 6.13 are one ex-
ample. These effects invalidate an analysis based simply on adding in-
tensites.

7.3 Coherence and correlations

The coherence of light beams and sources, first introduced in Chapter 5,
will now be given a quantitative basis in terms of correlations between
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beams or of correlations within a single light beam (autocorrelations).
Fourier analysis provides the key by which the spectrum of a source can
be extracted from the autocorrelations of the light emitted.

The instantaneous intensity produced by a pair of interfering beams
of light with complex fields E1 and E2 is

I(t) = |E1(t) + E2(t)|2 = |E1(t)|2 + |E2(t)|2 + 2Re [ E∗
1 (t)E2(t) ].

Electronic detectors and our eyes measure an instantaneous intensity
which is the average over a time T, very much longer that the period of
the light oscillations. Thus the measured quantities are

I(t) = I1(t) + I2(t) + 2Re [ E∗
1 (t)E2(t) ],

with the bar indicating a time average. The interference term contains
what is called a correlation of E1 and E2, namely

∫ T

0 E∗
1 (t)E2(t)dt/T .

Usually beams of any interest have constant intensity so that

I = I1 + I2 + 2Re(E∗
1 (t)E2(t)),

where I1 and I2 are constants.

It will be assumed that the beams involved are stationary, which
means that their fluctuations (due to the random emission of wavepack-
ets with random phases) are not changing in character with time. It
follows that the correlations defined here do not depend on when they
are measured. From here on, unless otherwise specified, all beams with
constant intensity are assumed to be stationary.

The size of the correlation term depends not only on how similar the
beams are, but also on how intense they are. In order to remove the
dependence on intensity the correlation is divided through by

√
I1I2 to

give

g(1)(1, 2) = E∗
1 (t)E2(t)/

√
I1I2 (7.27)

which is called the degree of first order coherence between the beams. If
the interference is between light from the same source at times separated
by τ

I = 2I0 + 2Re(E∗(t)E(t + τ)) (7.28)

with the inteference term being an autocorrelation
∫ T

0
E∗(t)E(t + τ)dt/T .

The degree of first order coherence is in this case

g(1)(τ) = (E∗(t)E(t + τ))/I0. (7.29)

For stationary beams g(1)(1, 2) is independent of time and g(1)(τ) de-
pends only on the interval, τ , between measurements.
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Bearing in mind that the maximum value of the real part of any
complex quantity x is |x| and its minimum value is −|x|, it follows that
the maximum and minimum intensities are

Imax/min = 2I0 ± 2|(E(t)E∗(t + τ))|.

Hence the visibilty is

V = |(E(t)E∗(t + τ))|/I0 = |g(1)(τ)|, (7.30)

so that the visibility provides a simple measure of the the modulus of the
degree of first order coherence. Figure 7.5 shows examples of how the
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Fig. 7.5 Fringe visibility for two (top)
fully coherent, (centre) partially coher-
ent, and (bottom) incoherent sources.

intensity would vary across an interference pattern produced by beams
of equal intensity. The x-coordinate could represent either the position
across a Young’s two slit pattern or the position of the mobile mirror in
Michelson’s interferometer. In the upper diagram there is full coherence
and |g(1)| is unity, with g(1) having whatever phase shift there is between
the wavetrains. Then in the second diagram there is partial coherence
with |g(1)| being 0.5 and finally in the third diagram there is incoherence
with g(1) being zero.

7.3.1 Power spectra

The power per unit area of a light beam in free space is given by Poynt-
ing’s formula eqn. 1.19

N(t) = E(t)2/Z0,

measured in Wm−2, where E(t) is the real electric field. The total
energy radiated per unit area is obtained by integrating over time

E =

∫ ∞

−∞
E(t)2dt/Z0. (7.31)

The electric field at any time can be re-expressed in terms of its Fourier
transform e(ω) which is a function of the angular frequency ω. That is
to say

E(t) =

∫ ∞

−∞
e(ω) exp (+iωt)dω/2π. (7.32)

Thus the total energy radiated per unit area becomes

E =

∫ ∫ ∫ ∞

−∞
e(ω)e∗(ω′) exp (i[ω − ω′] t) dt dω′ dω/(4π2Z0)

=

∫ ∫ ∞

−∞
e(ω)e∗(ω′)δ(ω − ω′)dω′ dω/(4π2Z0)

=

∫ ∞

−∞
e(ω)e∗(ω) dω/(2πZ0), (7.33)

where the fact that E∗ = E has been used in writing the first line.
Comparing eqns. 7.31 and 7.33 we see that the total energy radiated
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can be expanded in an identical manner in terms of either the temporal
distribution, E(t), or of its Fourier transform, the frequency distribu-
tion, e(ω). This result is known as Parseval’s theorem and provides the
justification for treating |e(ω)|2/Z0, measured in Wm−2Hz−1, as the
actual distribution of electromagnetic energy in frequency (rather than
angular frequency). It is therefore called the spectral energy distribution.

Using the fact that E is real and eqn. 7.9 we have |e(−ω)| = |e(ω)|,
and then eqn. 7.33 becomes

E = 2

∫ ∞

0

|e(ω)|2dω/(2πZ0), (7.34)

with, as seems reasonable, only positive frequency components con-
tributing. If the integral is restricted to positive frequencies then the
integrand is twice as large. The corresponding energy per unit angular
frequency interval is then |e(ω)|2/(πZ0), while

P (ω) = |e(ω)|2/(πZ0T ) (7.35)

is the mean power per unit area per unit angular frequency during the
time T that the beam is on.

Line width and bandwidth

The classical view of atomic and molecular transitions is that the elec-
tric field emitted by an individual, isolated atom undergoes damped
harmonic oscillations

E(t) = E(0) exp (−γt/2) cos (ω0t), (7.36)

which is shown in the upper panel of figure 7.6, and is zero for negative
values of t. The intensity decreases with time like exp (−γt) with the
mean value of t being 1/γ; this parameter is known as the lifetime of the
state radiating. As might be expected, ω0/2π will emerge as the central
frequency of the radiation. The Fourier transform of the distribution isAs we shall see in Chapters 12 and 13,

quantum theory provides fuller inter-
pretations of both γ and ω. e(ω) =

∫ ∞

0

E(0) exp (−γt/2) cos (ω0t) exp (−iωt)dt

= [ E(0)/2 ]

∫ ∞

0

{ exp [−γt/2 − i(ω + ω0)t ]

+ exp [−γt/2 + i(ω0 − ω)t ] }dt

= [ E(0)/2 ]/[γ/2 + i(ω + ω0)] + [ E(0)/2 ]/[γ/2 + i(ω − ω0)].

The first term can be dropped in the last line because the factor (ω+ω0)
in the denominator makes its magnitude negligible at optical frequencies.
Then we have

e(ω) = [ E(0)/2 ] /[γ/2 + i(ω − ω0)]. (7.37)

Thus the power spectrum normalized to unit total power is

P (ω) = [ γ/2π ]/[γ2/4 + (ω − ω0)
2], (7.38)
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which is called a Breit–Wigner or Lorentzian line shape, and this too is
shown in figure 7.6. The power radiated peaks at an angular frequency
ω0 and has dropped to half its peak value at angular frequencies ω0±γ/2,
so that γ is known as the line width. Lifetimes of excited states of iso-
lated atoms undergoing electric dipole transitions are typically around
10−8 s which gives natural line widths around 0.1GHz. These natu-
ral line widths are appropriate to stationary, isolated atoms. Atoms in
gases at sufficiently low temperature and low pressure approximate to
this ideal.

Spectral lines emitted by laboratory gas discharge sources are fur-
ther broadened by collisions of the radiating atoms with other atoms
and by Doppler shifts arising from their own motion. When an atom
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Fig. 7.6 Lorentzian spectrum. In the
upper diagram the electric field distri-
bution in time is shown; in the lower di-
agram the em energy spectrum. Radi-
ation at optical frequencies would typ-
ically have tens of thousands of oscilla-
tions under the decay curve.

which is emitting a wavetrain collides with another atom there will be
an unpredictable change in phase between the wavetrain before and af-
ter collision. This broadens the frequency distribution while retaining
a Lorentzian shape. In the atmosphere the interval between collisions,
τcoll, is around 5 10−9 s which can be converted to a wavelength spread
by using the relation given in eqn. 5.24: we get

∆λ = λ2/cτcoll = 10−3 nm.

According to the kinetic theory of gases τcoll ∝ 1/(P
√

T ) where P is the
pressure and T here the absolute temperature.

When the atom moves with velocity v towards the observer the angular
frequency of the radiation emitted shifts from the rest value ω0 to ω0 +
ω0v/c. The kinetic theory predicts the velocity distribution of atoms in
a gas to be

F (v)dv = exp (−mv2/2kBT ) dv,

where kB is the Boltzmann constant and m the atomic mass. Then
the frequency distribution of the intensity of radiation is, apart from a
constant factor,

P (ω)dω = exp [−m(ω − ω0)
2c2/(2ω2

0kBT ) ] dω,

which has the Gaussian shape mentioned above. The constant factor
can be chosen so that the integral is unity. We use the result for a
Gaussian ∫ ∞

−∞
exp (−x2/2β2) dx =

√
2πβ; (7.39)

then the standard form having unit area under the curve is

P (ω) = exp (−(ω − ω0)
2/2σ2

ω)/
√

2πσω, (7.40)

with a width parameter σω equal to
√

ω2
0kBT/mc2. For gas atoms in

the atmosphere the width at 500nm wavelength is around 1GHz in
frequency or 10−3 nm in wavelength. The angular frequency distribution
of the electric field is

e(ω) = exp [−(ω − ω0)
2/4σ2

ω ]. (7.41)
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The corresponding time distribution is the Fourier transform of this

E(t) =

∫ ∞

−∞
exp (+iωt) exp [−(ω − ω0)

2/(4σ2
ω)] dω/(2π)

= exp (+iω0t)

∫
exp (+iωt) exp [−ω2/(4σ2

ω)] dω/(2π),

where the first of the shift theorems eqn. 7.18 has been used. The
remaining integral is given by eqn. 7.14, so that apart from a constant

E(t) = exp (−σ2
ωt2 + iω0t), (7.42)

and the actual (real) electric field is

E(t) = exp (−σ2
ωt2) cos (ω0t). (7.43)

This is shown in figure 7.7 together with the frequency distribution of
the electromagnetic energy. Notice that the Lorentzian and Gaussian
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Fig. 7.7 Gaussian spectrum. In the
upper diagram the electric field distri-
bution in time is shown; in the lower
diagram the em energy spectrum.

shapes are quite different with the former having a longer tail. With
gas sources the Doppler and collision (also called pressure) broadening
usually exceed the natural line width while the overall line shape is often
close to a Gaussian.

The existence of a general relationship between the spread in frequency
and in time was broached earlier in Section 5.5.1. Fourier analysis has
shown that when the radiation intensity has a frequency distribution
of pure Gaussian shape the time distribution of the intensity is also a
Gaussian and the widths satisfy the relation

σtσω = 1. (7.44)

This is known as the bandwidth theorem. Now the full width at half
maximum (FWHM), ∆t =

√
8ln(2)σt = 2.35σt, so the above equation

when written in terms of the FWHM of frequency and time becomes

∆f∆t = 0.88. (7.45)

Measurement errors broaden both the angular frequency and time dis-
tributions so that in general the product of the widths is only increased
by measurement error. It is also the case that for any distribution other
than a Gaussian the product of the width of the distribution and its
Fourier transform is always larger than for Gaussians. These points
provide the justification for writing ∆f∆t ≈ 1 when the measurement
errors are small, and ∆f∆t ≥ 1 in general. Whenever waveforms have
the limiting widths given by eqns. 7.44 or 7.45 they are said to be trans-
form limited.

Where the broadening is the same for all atoms or molecules in a
source, whether it is due to collisions in a gas or electrostatic forces be-
tween nearby atoms in a uniform crystal the broadening is called homo-
geneous. Where the broadening varies for different subsets of the atoms,
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as with Doppler broadening or when a crystal has inhomogeneities, this
is called inhomogeneous broadening.

The term bandwidth is also used in the analysis of the response of
detector systems consisting of a detector of radiation and the electronics
for amplifying and frequency filtering the current from the detector.
Suppose that h(t) is the current due to unit radiation intensity on the
detector system, and that the Fourier transform is H(ω). Then the
bandwidth of the system is defined as

B =

∫ +∞

−∞
|H(ω)|2 dω/2π, (7.46)

where the definition uses |H(ω)|2, rather than H(ω) because it is the
power that the detector produces which is relevant.

As an example consider the case of a system which has a response
time τ , so that it effectively integrates the input over a time τ . For this
system we can put

h(t) = 1/τ for − τ/2 < t < +τ/2.

If the input waveform is cos (ω0t), then the response as a function of
angular frequency is

H(ω) =

∫ +τ/2

−τ/2

exp (−iωt) cos (ω0t) dt/τ

=

∫ +τ/2

−τ/2

{exp [ i(ω0 − ω)t ] + exp [−i(ω + ω0)t ]} dt/(2τ)

= sinc[ (ω0 − ω)τ/2 ]/2, (7.47)

where, as before, the term with denominator (ω + ω0) can be neglected.
Therefore the bandwidth expressed in terms of frequency is

B =

∫ ∞

−∞
sinc2[ (ω − ω0)τ/2 ] df/2.

Substituting g for (ω − ω0)τ/2 this becomes3

B =

∫ ∞

−∞
sinc2(g) dg/(2πτ) = 1/(2τ). (7.48)

Following the same steps for a Lorentzian response, which for unit inten-
sity input would give an output intensity exp (−t/τ)/τ , the bandwidth
is

B = 1/(4τ). (7.49)

3Integral 3.821/9 in the 5th edition of Table of Integrals, Series and Products by
I. S. Gradshteyn and I. M. Ryzhik, edited by A. Jeffrey, and published by Academic
Press New York (1994).

∫∞

−∞
{sin2 (ax)/x2}dx = aπ, a > 0.
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7.3.2 Fourier transform spectrometry

Michelson interferometers are widely employed to measure spectra in the
visible and especially the infrared part of the electromagnetic spectrum
using a technique called Fourier transform spectrometry. The apparatus
is arranged as shown in figure 5.11 to study a source’s spectrum. Mir-
rors M′

1 and M2 are set parallel in order to give circular fringes and a
detector is placed behind a small circular hole centred on the focused
fringes. The intensity seen by the detector is recorded continuously dur-
ing a scan in which the mobile mirror is moved at constant speed. This
recorded intensity pattern is called an interferogram, and we shall see
that taking its Fourier transform yields the power spectrum of the source.

A simple example of an interferogram which illustrates how informa-
tion on spectra can be extracted is shown schematically in figure 7.8.
It is an interferogram recorded with the D lines of a sodium gas source
at 588.995nm and 589.592nm, all other spectral lines being filtered out.
Effectively there are two incoherent sources each giving a separate inten-
sity fringe pattern at the detector. These two intensities add to give the
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Fig. 7.8 Schematic of interferogram for
the sodium D lines.

total intensity detected and recorded as the interferogram. At points of
maximum visibility (A,C) the fringe patterns are in step: their peaks in
intensity coincide and their troughs in intensity coincide. Correspond-
ingly at a minimum of visibility (B) they are exactly out of step. Between
successive maxima of visibility the path difference must change by a cer-
tain number of wavelengths, ξ, for the longer wavelength and by ξ + 1
wavelengths for the shorter wavelength. ξ is determined to the near-
est integer simply by counting the number of waves under the envelope
between A and C. Knowing this value

(ξ + 1)λshort = ξλlong,

so ∆λ = λshort/ξ,

which provides a measurement of ∆λ if λshort is already known.

The chromatic resolving power obtained with the Michelson inter-
ferometer in this way depends on the total change in path difference
during the scan. It will be possible to just resolve two wavelengths λ
and λ − ∆λ provided that two adjacent maxima of intensity, A and C,
lie within the scan length (full range of the path difference), which we
take to be xw = nλ. Then at the limit of resolution

(n + 1)(λ − ∆λ) = nλ.

Rearranging this equation gives an estimate of the chromatic resolving
power

λ/∆λ = n = xw/λ. (7.50)

The next step in the discussion will be to consider the analysis of more
typical spectra consisting of many lines, and for which Fourier analysis
is essential.
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The intensity at the detector, assuming that the beams from the mir-
rors have equal intensity, is given by eqn. 7.28

I = 2I0 + 2(E(t)E(t + τ))

where E(t) and E(t+τ) are the values of the real electric field at times t,
and (t + τ) respectively during the scan. Only the autocorrelation term
is of interest here. Writing the electric field in terms of its frequency
components

E(t) =

∫ ∞

−∞
e(ω) exp (+iωt) dω/2π,

the autocorrelation term is

E(t)E(t + τ)

=

∫ ∫ ∫
e(ω)e(ω′) exp (+iωt) exp [+iω′(t + τ)] dω dω′ dt/(4π2T ),

where T is the duration of the measurement. Using the equality∫
exp [ +i(ω + ω′)t ] dt = δ(ω + ω′),

and recalling that because E(t) is real e(−ω) = e∗(ω), the autocorrela-
tion simplifies thus

E(t)E(t + τ) =

∫ ∞

−∞
e(ω)e∗(ω) exp (−iωτ) dω//(2πT )

=

∫ ∞

0

e(ω)e∗(ω) exp (−iωτ) dω/(πT ). (7.51)

We have seen in eqn. 7.35 that |e(ω)|2/(πZ0T ) is simply the power
spectrum P (ω), so that taking the Fourier transform of eqn. 7.51 gives

P (ω) = FT{E(t)E(t + τ)}/Z0. (7.52)

This relation between the power spectrum and the Fourier transform of
the autocorrelation provides the required link betwen the interferogram
and the power spectrum. Equation 7.52 is one version of the Wiener–
Khinchine theorem.

This result can be re-expressed in terms of the wave number k = ω/c
and the path difference x

P (k) = P (ω)(dω/dk) = (c/Z0)FT{E(t)E(t + x/c)} . (7.53)

Figure 7.9 shows a reproduction of a typical spectrum and interfero-
gram obtained in an undergraduate experiment using a mercury lamp.4

4If the number of samplings is N , an N ×N matrix inversion is needed to extract
the Fourier transform of the interferogram. When, as is typically the case, N is of
order 10 000 this process is very time consuming. J. W. Cooley and J. W. Tukey,
Math. Computing 19, p.297 (1965), invented a fast Fourier transform technique that
reduces the number of inversions to Nln(N). However the spectrum obtained is
discrete, being determined at the wavelengths xw, xw/2, xw/4, ... , 2xw/N only.
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There are limitations on the information about a spectrum that can be
extracted from an Michelson interferogram. Firstly the scan length, xw,
restricts the interferogram to a finite window, and secondly the detector
only samples the intensity at discrete steps, xs apart, and not continu-
ously. Figure 7.10 helps to illustrate this, showing in the upper panel
that no useful information can be extraced for radiation of wavelength
longer than the scan length xw. The lower panels show that sampling a
wavetrain of wavelength 2xs/3 can give an identical set of measurements
to sampling one of wavelength 2xs. This effect is known as aliasing. It
can be inferred that measurements every xs along the interferogram only
sample waves of wavelengths greater than 2xs adequately. This infer-
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Fig. 7.9 In the upper panel the spec-
trum of a mercury lamp with broad
lines at 404, 436 and 546 nm is shown,
and in the lower panel the interfero-
gram. We shall see later that the wave
number is directly proportional to the
energy change in a molecular/atomic
transition, which enhances the useful-
ness of this display.

ence is given precision by the Whittaker–Shannon sampling theorem: it
states that sampling at intervals xs over an infinite scan length would
uniquely determine a spectrum containing only waves with wavelength
longer than 2xs.

These limitations can be quantified when the Fourier transform is
examined. What is being measured is not I(x) = E(t)E(t + x/c) but
the product

I ′ = I C W = I(x)
∑
m

δ(x − mxs)W (x)

where C is a comb function consisting of a sum of delta functions at inter-
vals xs, and W is a window function, a square pulse of height unity and
width xw. According to the convolution theorem the Fourier transform
of I ′ is the convolution

P ′(k) = FT(I) ⊗ FT(C) ⊗ FT(W ). (7.54)

The Fourier transform of the square window broadens any line at k0 in
the following way

FT[W ] =

∫ xw/2

−xw/2

exp (ikx) dx/xw = sinc(kxw/2), (7.55)

and if the spectrum is monochromatic with k = k0, then FT(I) = δ(k−
k0) and

FT[I] ⊗ FT[W ] = sinc[ (k − k0)xw/2 ]. (7.56)

Two spectral lines will be regarded as just resolved if the maximum of
the sinc function of one falls at the first minimum of the sinc function of
the other line. This happens when the separation in wave number, ∆k,
between the lines is such that

∆k = 2π/xw. (7.57)

Then the chromatic resolving power is

λ/∆λ = k/∆k = xw/λ, (7.58)
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which refines the estimate given in eqn. 7.50.

By contrast the effect of the comb is to give aliases of any spectral
line. The Poisson summation theorem gives∑

m

δ(x − mxs) = (1/xs)
∑

n

exp (−iksnx), (7.59)

where both summations run from −∞ to +∞ and ks = 2π/xs. This

xw

xs

Fig. 7.10 In the upper panel the scan
length, xw, is much shorter than the
wavelength. In the lower panels aliasing
is shown between sine waves of wave-
length 2xs and and 2xs/3 for a sam-
pling interval xs. Samplings are indi-
cated by dots.

equality is a good approximation in the present case when the number
of samples is several hundred. Then

FT[C] = (1/xs)

∫ ∑
n

exp [ i(k − nks)x ] dx

= (1/xs)
∑

n

δ(k − nks). (7.60)

Suppose again that the spectrum is monochromatic so that FT[I] =
δ(k − k0). It follows that

FT[I] ⊗ FT[C] = (1/xs)
∑

n

δ(k − k0 − nks). (7.61)

These aliases are displaced in wave number from the actual line by in-
tegral multiples of 2π/xs. Aliases from radiation of wavelengths below
2xs which could simulate spectral lines above that wavelength must be
eliminated by inserting an optical filter which removes radiation of wave-
lengths shorter than 2xs.

The Michelson spectrometer has two important advantages over the
grating spectrometer which make it the preferred instrument in many
situations. The first, Jacquinot advantage, is that the etendue is about
one hundred times larger than for a comparable5 grating spectrometer. 5See exercise 6.10 and the example im-

mediately belowThis means that weaker sources can be studied and also weaker lines
identified. The second, Felgett advantage, is that the Michelson detector
receives all the wavelengths throughout the scan, whereas the detector
in a grating spectrometer receives a restricted wavelength range. With
N samples the time required to examine the same spectrum with a grat-
ing spectrometer in the same detail as with a Michelson is longer by a
factor N , which is usually 1000 or more.

When studying infrared spectra the radiation from any part of the
apparatus falling on the detector can give a background illumination
that overwhelms the signal of interest in the case of grating and prism
spectrometers. At room temperatures the spectrum of black body ra-
diation peaks at a wavelength around 10µm. The superior etendue of
the Michelson is then a prime advantage. One simple technique used to
remove this background is to pulse the radiation studied by placing a
shutter in front of the source. Then the pulsed part of the radiation re-
ceived on the detector is selected electronically using a lock-in amplifier.
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In addition, because the Michelson spectrometer measures correlations
it is correspondingly less sensitive to a background which is constant
with time.

Example 7.1

The etendue and chromatic resolving power are the parameters most
useful when comparing different types of spectrometers. In order to
determine the etendue we need to consider the area and angular spread
of the beam falling on the detector. One essential restriction is that
the circular aperture defining the area of the detector exposed should
contain just the central fringe and no more. If there is a maximum of

Dholeθf

holeθ

f

Fig. 7.11 Michelson spectrometer
aperture.

intensity at the exact centre of the fringe pattern for wavelength λ when
the optical path difference between the two arms is x, then

x = nλ.

The adjacent minimum is at an angle θ given by

(n − 1/2)λ = x cos θ = x(1 − θ2/2 + ...).

Taking the difference of the last two equations gives, to an approximation
adequate for the small angles involved,

λ = xθ2.

Referring to figure 7.11 the angular radius θhole of the aperture in front
of the detector is made small enough to accept only the central fringe

θ2
hole = λ/x.

Next let the focal length of the exit lens be f so that the area of the
hole defining the area of the detector exposed is

A = πf2θ2
hole = πf2λ/x.

The other parameter defining the etendue is Ω, the solid angle subtended
at the hole by the exit lens. If D is the lens diameter

Ω = πD2/4f2.

Using eqn. 4.11 the etendue is

T = AΩ = π2D2λ/4x. (7.62)

A typical instrument might have a scan length of 2 cm and a lens of 3 cm
diameter. At 1µm wavelength, for such an instrument, eqn. 7.58 gives a
chromatic resolving power of 2 104. The etendue would be 0.11mm2 sr,
which is very much larger than the etendue of a grating spectrometer.
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7.4 Image formation and spatial transforms

The connection between diffraction and the resolution of detail seen in
optical images was discovered in the mid 19th century by Abbe whilst he
was trying to understand why larger but less well-corrected lenses used
in microscopy gave more detail than smaller, better corrected lenses.
Koehler illumination, illustrated in figure 4.10, is essentially coherent.
Figure 7.12 shows a grating, AB, illuminated by monochromatic plane
waves and imaged by a well-corrected lens. For simplicity the object

Plane waves
incident on
grating

Transform
plane
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plane

Lens

2f f f

A

B
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Fig. 7.12 Abbe’s insight into image formation. The lower order diffractive beams
from the grating AB are shown as shaded bands. A′B′ is the grating image. Rays
travelling from A to A′ are drawn as broken lines; rays from B to B′ as solid lines.

distance is taken to be twice the focal length, giving unit magnification.
Parallel beams are shown emerging from the grating in the directions of
the principal maxima, and these produce bright lines in the transform
plane, that is to say in the focal plane of the lens. Apart from these
maxima the transform plane is dark. As they travel onward from the
transform plane the beams spread out again to form the image of the
grating, A′B′, at twice the focal length from the lens. Abbe pictured im-
age formation as a two step process: in the first step the grating diffracts
the incident light into parallel beams which form the Fourier transform
of the grating; in the second step the lens performs a second Fourier
transform to recover the image of the grating.

Abbe pointed out that even with a perfect lens the image cannot
be exact because the lens only accepts the lower order (small angle)
diffracted beams. If the lens is so small that it only captures the zeroth
order diffracted beam then the image plane is of uniform brightness and
all detail is lost. If instead the first and zeroth orders are captured the
image is a grating of the correct spacing but with a sinusoidally varying



182 Fourier optics

intensity across each element of the grating. We can see this by taking
a distribution in the transverse component of the wave vector kt which
only contains these orders

Aδ(kt) + B[ δ(kt − k0) + δ(kt + k0) ].

Fourier transforming this expression gives a distribution in the lateral
coordinate, x,∫

exp (−iktx){Aδ(kt) + B[ δ(kt − k0) + δ(kt + k0) ]} dkt

= A + B[ exp (−ik0x) + exp (+ik0x) ]

= A + 2B cos (k0x).

The finest resolvable detail on an object will be detail for which the lens
has just big enough diameter to capture the first order diffracted beam.
If this limiting detail has linear dimension ∆x then

k0∆x = k∆x sin θ = 2π,

where θ is the semi-angle subtended by the lens at the object. Then

∆x sin θ = λ. (7.63)

This, Abbe’s view of what is resolvable by an optical system, provides
a complementary approach to the Rayleigh criterion given in Section 6.7.

Notice that the nth diffraction order for a grating of a given pitch
coincides in angle with the first order for a grating with an n-times finer
pitch, so we can say that higher order beams carry information about
the fine detail of the grating. Put another way: higher diffraction orders
correspond to features with higher spatial frequencies across the image
and are needed to recover the sharp edges of the slits in the image. Of
course most objects viewed with a microscope are more complex than
gratings, but the conclusion remains valid that information on the fine
detail in the image is carried by light diffracted at large angles. Although
this wide angle light may be very weak it is essential for resolving fine
detail. The fact that it makes a significant contribution despite its faint-

f f

Fig. 7.13 Spatial filter consisting of
a pinhole and lenses. Only the plane
wave component from the incoming
distorted wave focuses at, and passes
through the pinhole.

ness was what had escaped notice before Abbe’s investigations.

The diffractive orders are directly accessible in the transform plane
and it is here that manipulations are most easily made to enhance the
properties of images formed with a coherently illuminated object.

7.5 Spatial filtering

Any changes made to the high or low order spatial frequency compo-
nents of an image by selectively obscuring regions of the transform plane
is known as spatial filter. Blocking the high order spatial frequencies will
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smooth the image. This will for example remove noise in the form of
dust spots on a picture or the dot structure in pictures produced by
half-tone printing. Conversely, removing low order spatial frequencies
will enhance the outlines of images. Similar image editing facilities are
provided by packages for manipulating graphics on PCs. The simple
filtering shown in figure 7.13 produces a pure plane wavefront from a
distorted wavefront, such as that from a diode laser. The incoming
beam is focused on a pinhole located on axis in the focal plane of the
first lens. Only the plane wave component in the incident beam passes
through the pinhole; all the other components in the beam focus away
from the pinhole. The waves emerging from the pinhole are spherical
and the second lens converts these to a plane wave.

Biological specimens studied with microscopes are mostly transparent
and the structures of interest may only differ from the surrounding mate-
rial in having a slightly different refractive index. One drastic approach
is to dye the specimen with a material that is selectively absorbed by
some structures; but this is not always feasible and it may damage the
specimen. An alternative is to use dark field illumination which is shown
in the lower diagram in figure 7.14. The left hand diaphragm forming
the aperture stop in the condenser is perfectly opaque apart from a nar-
row clear annular aperture. In the plane conjugate to this diaphragm
on the objective side an annular stop is placed which exactly covers the
image of the annular aperture. This plane is the transform plane and
the annular stop introduced blocks the zero order light. An observer

(b)

(a)

f f

Annular
aperture Specimins

Condenser Objective Phase
plate

Annular
blocking

Fig. 7.14 The upper diagram shows
phase contrast illumination, and the
lower diagram shows dark field illumi-
nation.

viewing a blank slide in the field of view would see a perfectly dark field.
If a specimen slide is then inserted the higher spatial frequencies in its
image, which are normally swamped by the zero order beam, can now
produce an image. In this image the edges of structures are particularly
clear.

A more subtle technique earned a Nobel prize for Zernike in 1953
and this is illustrated in the upper diagram of figure 7.14. The annular
condenser aperture just described is again used, but now a transparent
phase plate replaces the annular stop in the objective. This phase plate
is made thicker over the same annular region which was opaque in dark
field illumination to give a phase delay of π/2 for light travelling through
the annulus relative to light missing it. Suppose the amplitude of light at
the transform plane is E0 sin (ωt) with normal illumination and a clear
slide. When a specimen is inserted the light passing through any given
area undergoes a small relative phase shift ε, determined by how much
the local refractive index deviates from the mean refractive index. The
corresponding amplitude is

E0 sin (ωt + ε) = E0 sin (ωt) + εE0 cos (ωt),

and the intensity is E2
0(1 + ε2) ≈ E2

0 , showing that the weak image
has been swamped. Things are quite different when the phase plate is
inserted because the zero order component is phase shifted to E0 cos (ωt).
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Thus the total amplitude becomes E0(1 + ε) cos (ωt) and the intensity
becomes E2

0 (1 + ε)2 ≈ E2
0(1 + 2ε). This gives a detectably large change

in intensity for even a small change in refractive index.

7.5.1 Schlieren photography

This technique is used to make visible the variations in density in a
fluid in motion around large scale objects, and the apparatus used is
sketched in figure 7.15. A monochromatic slit source is focused by a
mirror so as to throw a parallel beam through the volume of interest,
which is shown shaded in the figure: this might, for example, be a wind
tunnel. Afterwards the light falls on a second mirror whose focal plane
(the transform plane) is S′S′ and which images the object AA at A′A′.
A knife edge is placed at S′S′ parallel to the slit source and positioned
to block off part of the zero order as well as all the higher diffraction
orders on one side. Regions of refractive index differing from the mean
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Fig. 7.15 Schlieren photography. The
diffraction orders at the plane of the
knife edge are numbered 0, 1 and 2.

then appear as bright and dark streaks, just as in the phase contrast
microscope. Mirrors are preferred to lenses for the focusing because the
area of the field of view is comparatively large. The mirrors shown are
off-axis paraboloids whose aberrations remain small over the required
angular range.

7.5.2 Apodization

Attempts to observe faint objects near brighter ones are made difficult
because the diffraction rings around the image of the brighter object can
easily swamp the fainter one’s image. The rings outside the central Airy
disk can be suppressed by placing a filter over the telescope objective
whose transmission coefficient falls with a Gaussian dependence on the
radial distance off axis. The diffraction pattern is the Fourier trans-
form of this shape, which is also a Gaussian. Figure 7.16 contrasts the
diffraction patterns for a clear circular aperture and a Gaussian shaded
aperture. While the Gaussian is broader its lack of any outer rings means
that there is a much improved chance of detecting a target against the
glare of a brighter companion. Apodization is the term used to describe
this procedure.
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Fig. 7.16 The image intensity of a
bright point source produced by a
Gaussian shaded aperture (broken line)
and that for a sharp aperture boundary
(solid line).

7.6 Acousto-optic Bragg gratings

Ultrasound waves in a solid or liquid produce sinusoidal variations in
density and hence similar changes in refractive index across the mate-
rial. Incident light will diffract from such density gratings and at the
same time undergo a minute Doppler shift in frequency because the grat-
ing is travelling at the speed of sound. Both the deflection and frequency
shift have significant applications in information processing. The tech-
niques, their analysis and some applications will be reviewed here.
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The crystals used to excite the ultrasound waves such as quartz are
chosen for their high piezoelectric coefficients at ultrasound frequencies
of up to many gigahertz. Figure 7.17 shows an incident plane wave
light beam being diffracted from a Bragg cell. The Bragg cell consists
of a piezoelectric crystal which generates ultrasound waves, an acousto-
optic material through which they travel, and finally an absorber that
suppresses reflections. Choices for the acousto-optic material are extra-
dense flint glass and lithium nibate. If the acoustic wave has sufficient
width W the incident light will be diffracted entirely into the zero order
and first order on one side. This can be understood with the help of the
lower panel in figure 7.17. The directions of the waves being diffracted
in first order from planes of maxima in refractive index are shown, θ′

being the angle which the incident light beam makes with the acoustic
wavefronts inside the cell. Diffraction maxima will satisfy the usual
relation

pλ′ = Λ(sin θ′ + sin α′),

where θ′ and α′ define the incoming and outgoing wave directions, where
Λ and λ′ are the respective wavelengths of acoustic and of light waves
in the crystal, and where p is integral. There is an additional require-
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Fig. 7.17 The upper diagram shows
an acousto-optic Bragg cell diffracting a
laser beam. The lower diagram shows
the scattering of light from a pair of
acoustic waves inside the Bragg cell.

ment for observing a maximum when the acoustic wave is broad: light
diffracted at all points along a given acoustic wavefront must be in phase,
which means that the angle of reflection (α′) equals the angle of inci-
dence (θ′). Then the requirement for a diffraction maximum becomes

2Λ sin θ′ = pλ′.

Expressing this in terms of the angle at which the light waves are incident
in the air and their wavelength in air this becomes

2Λ sin θ = pλ.

Lastly the angle of incidence is made sufficiently small that the radiation
is restricted to zero, or first order with

2Λ sin θB = λ, (7.64)

where θB is given the subscript B because this equation is also the Bragg
condition met in X-ray diffraction. In order for any diffraction to occur
the width of the optical beam, w, should span at least one acoustic
wavelength: Λ < w/ cos θ ≈ w because θ is small. Now If the width W of the acoustic wave

is sufficiently narrow then the angular
separation between the diffractive or-
ders, λ′/Λ, becomes smaller than the
angular spread of the acoustic beam
Λ/W . As a result diffraction of the op-
tical beam in many orders can occur.
This is called the Raman–Nath regime,
but is not of any further interest to us
here.

Λ = V/F, (7.65)

where V and F are respectively the velocity and frequency of the acous-
tic waves. Therefore the requirement on Λ can be re-expreesed as a
frequency limit which acoustic waves must exceed in order to produce
any useful acousto-optic effect

F ≥ V/w. (7.66)
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In flint glass with a light beam of 1mm width F ≥ 3 106 Hz.

The light scattered from the acoustic wave is Doppler shifted from
frequency f0 to frequency f0 + F . It is thus possible to make use of
either the deflection or the frequency shift of light within a Bragg cell.
These changes are determined by the acoustic wave frequency, which in
turn is the frequency at which the piezoelectric crystal is driven. The
frequency shift is used in applications requiring heterodyning of optical
beams, while beam deflection is used in information processing.

7.6.1 Microwave spectrum analysis

Figure 7.18 shows the elements of a system for analysing microwave
spectra, which is used to scan continuously for incoming radar signals.
A laser beam is incident on the Bragg cell and the incoming microwave
signal is applied to the piezoelectric transducer. Each microwave fre-
quency produces a specific laser beam deflection and the deflected beams
are projected by the Fourier lens onto a linear detector array such as a
CCD. Using eqns. 7.64 and 7.65 we can relate the accessible range of

CCD
arrayFourier

lens

Bragg cell

Laser
beam

Fig. 7.18 Bragg cell diffracting a laser
beam. Different microwave frequen-
cies cause different beam angular de-
flections.

microwave frequencies to the angular spread of the microwave beam

∆F = V ∆(1/Λ) = 2V cos θB∆θB/λ ≈ 2V ∆θB/λ. (7.67)

This is maximized when ∆θB fills the angular divergence of the acoustic
beam. The number of distinguishable frequencies across this bandwidthThe requirement on the relative angu-

lar spreads of the two beams is very dif-
ferent when the acoustic beam is used
simply to Doppler shift the frequency
of the optical beam. Then the need is
to maximize the power transfer into the
laser beam and so the angular spreads
of the optical and acoustic beams are
made equal.

Nr is twice the angular divergence ∆θB divided by the angular divergence
of the optical beam, because the deflection of the optical beam is twice
the Bragg angle. Thus

Nr = 2∆θB/∆θlaser = 2∆θBw/λ. (7.68)

Bandwidths of several gigahertz are obtained and of order a thousand
distinguishable frequency steps. Of course the lens focal length, the
CCD detector array pixel size and number of pixels need to be matched
to this performance.

7.7 Holography

Holograms are familiar from the embossed images on credit cards and
displays in various promotions. The first holograms were made in 1948
by Gabor, who received a Nobel prize in Physics for this work. However
it needed the introduction of the laser to make the technique of practical
use in the optical domain. Prototype systems are manufactured which
store data in holograms with fast access and readout. The principles
and several applications of holography will be described in the following
sections.

The images seen through holograms have depth and when the ob-
server’s viewpoint is changed the scene changes exactly as if the original
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Fig. 7.19 The upper diagram shows the exposure to produce a hologram. The
lower diagram shows the images produced when the hologram is illuminated with
the reference beam again. The part of this reference beam that is not scattered by
the hologram is omitted from the lower diagram.

scene were present. What is special about a hologram is that, unlike
a normal photograph which records the light intensity falling on it, the
hologram records the amplitude and phase of the light from the scene.
Coherent illumination is necessary, and can readily be provided by a
laser. The exposure of a hologram and the later image reconstruction
are shown in figure 7.19. During the exposure the light from a laser is di-
vided into two parts that remain coherent with one another. One beam,
called the reference beam, falls directly on the film that will become the
hologram, while the other beam illuminates the object to be recorded.
Light scattered from this object forms an object beam which also falls
on the film. The fringes on the film produced by interference between
the object beam and the reference beam contain phase information from
the object beam, and this pattern is stored as exposed and unexposed
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regions on the film. Processing preserves these fringes as dark and light
areas.

Afterwards the hologram is replaced in its initial position with respect
to the reference beam, but now the object is removed. The observer sees
a realistic three dimensional virtual image of the object exactly where
the object would have been. In addition there is a second real image
which has its surface features inverted, so that, for example, a nose
would appear to project into rather than out of a face. This is known
as a pseudoscopic image. The observer sees the virtual image through a
window formed by the hologram; and if the hologram is broken in two,
either piece alone gives the same view – through a window that is now
smaller. This property shows that the information about all the image is
held over all the hologram; which is very different from how information
is held on a normal photograph.

7.7.1 Principles of holography

An elementary example of holography is shown in figure 7.20 where a
point object is placed in an incoming plane laser beam at a distance R
from the recording film. The fringes produced by interference betweenR

Film

Fig. 7.20 The diagram shows a point
object in a reference beam. The refer-
ence beam and the scattered light from
a point object produce circular interfer-
ence fringes on the film.

the direct light and that scattered by the object are circular and the
mth bright fringe has a radius ρm, such that√

R2 + ρ2
m − R = mλ,

then ρ2
m/2R = mλ,

and ρ2
m = 2mRλ, (7.69)

to an adequate approximation. This is exactly the same expression as
that for the radii of the even order Fresnel zones given in eqn. 6.55.
Therefore the pattern appearing in the developed hologram will be a
zone plate. When this is illuminated by the reference beam the focus-
ing property of the Fresnel zone plate discussed in Section 6.12.1 will
produce a virtual image where the point object had been and a sec-
ond real image a distance R in front of the hologram. For convenience
these images are shown separately in figure 7.21. An extended object
generates a more complex fringe pattern in the recording medium, each
point on its surface that can see the hologram making its own contri-
bution at each point on the hologram, which is the case we now consider.

Suppose that the reference beam in figure 7.19 is Er = Er exp (iωt);
then the object beam will be

Eo(x) = Eo(x) exp (−ikx sinα) exp [−iφ(x) ] exp (iωt),

where x is the coordinate running up the page and α is the angle the
object beam makes with the reference beam. Eo and Er are real. The
phase, φ(x), and amplitude, Eo(x), are determined by the detailed shape
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of the object. Using eqn. 5.12 the time averaged intensity of the light
falling on the recording material at x is

T (x) = Re{[ Eo(x) + Er ]∗ [ Eo(x) + Er ]}/2

= {E2
r + E2

o + ErEo exp [−i(kx sinα + φ(x)) ]

+ErEo exp [ i(kx sinα + φ(x)) ] }/2. (7.70)

Ideally this intensity distribution is linearly reproduced in the transmis-
sion of the processed hologram and in this case the aim should be to
choose the exposure time so that the response of the recording medium
is linear for the full range of intensities across the hologram. If this is
the case then when the hologram is illuminated by the reference beam
(with the object removed) the transmitted light amplitude will be

E(x) = ErT (x)

= Er(E
2
r + E2

o ) exp (iωt)

+E2
r Eo exp [−i(kx sinα + φ(x)) ] exp (iωt)

+E2
r Eo exp [ i(kx sinα + φ(x)) ] exp (iωt). (7.71)

Of these three terms the first is a forward beam aligned along the refer-
ence beam. Apart from a constant the second term is the object beam
and produces the virtual image where the object had been. The final
term describes a beam tilting downward at angle α to the reference beam
and this produces the real image. Its amplitude is the complex conju- R

R

Hologram

Fig. 7.21 The diagrams show the re-
construction of a hologram of a point
object in the reference beam. The ref-
erence beam beyond the hologram is
omitted for clarity. In the upper dia-
gram the reconstruction of the real im-
age is seen, and in the lower the recon-
struction of the virtual image.

gate of the object beam and results in a pseudoscopic image. The three
emerging beams are also recognizable as the diffracted beams of order
+1 (virtual), 0 (forward) and −1 (real).

7.7.2 Hologram preparation

The following are some general points that bear on the preparation of
holograms in the laboratory. In order that the reference and object
beams are coherent the path differences should be small compared to
the coherence length of the laser, and the coherence area should extend
well beyond the object being photographed. With beams inclined at
an angle α it is evident that the fringe spacing is of order λ/ sin α, so
that there is a need to keep the whole apparatus stable during the ex-
posure to the level of parts of a wavelength. This is less of a problem
in laboratories in which an intense pulsed laser is available, for example
a ruby laser giving 20 ns long pulses at 694 nm. The emulsion needs
to contain fine enough silver bromide grains (under 10µm diameter)
to record the fringes, but because fine grains require as much light to
render them developable as coarse grains the film is relatively slow. In
the object beam there are large local fluctuations of intensity due to
interference effects and so a suitable arrangement is to have the refer-
ence beam about three times more intense than the object beam. When
looking at a hologram in one’s hand many large circular features catch
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the eye. These are due to dust and other imperfections; the interference
fringes holding the image information are too small to be detected by
eye. Phase holograms can be produced by treating the exposed film so
as to rehalogenate the silver grains. These renewed silver halide grains
then migrate to the nearby unexposed silver halide leaving regions of
depleted optical density. Phase diffraction gratings have a considerable
advantage over amplitude gratings because the fraction of light which
they diffract into each first order image can be as large as 33%, as against
6% for amplitude gratings; phase holograms share this advantage. Mod-When the hologram is in the near/far

field of the object it is known as a
Fresnel/Fraunhofer hologram. If the
object lies in the reference beam and
this is incident perpendicular to the
film the hologram produced is known as
an inline hologram. Other alignments
give what are called off-axis holograms,
which are the simplest to produce and
avoid the confusion of superposed im-
ages seen with an inline hologram. If
the reference and object beams arrive
from opposite sides of the film this gives
a reflection hologram.

ern materials such as photopolymers and photoresists are widely used
to produce phase holograms. When the former are exposed to light the
monomers polymerize and this produces a useful change in refractive
index; when the latter are exposed to light they become soft and can be
etched away with solvents leaving the image in relief.

Surfaces with any degree of roughness seen in laser light show many
small bright speckles that change with any movement of the viewer.
Speckles are the result of interference between light diffracted from
nearby parts of the surface and hence their angular size is simply the an-
gular resolution of the camera or the eye doing the viewing. On the film
plane this is 1.22λf/D, f and D being the respective focal length and
entry pupil diameter. Speckles will appear on holograms, and one way to
reduce their impact is to take multiple exposures with the beam incident
on the object being displaced a minute amount between exposures.

7.7.3 Motion and vibration analysis

Holograms can be exposed in such a way as to reveal patterns of mo-
tion of musical instruments and living tissue. One approach is to freeze
the motion by pulsing the laser source on for a few nanoseconds, and
then to repeat the pulse after a short delay. The interference patterns
from the two exposures will match over surfaces that have not moved
or have moved a whole number of wavelengths during the delay. These
regions will appear bright in the reconstructed image and form contours
of equal, known movement. An alternative is to take a long exposure
which will give a uniform intensity at moving points, while any nodes
will appear very bright.

Holograms formed by double exposures are widely used to render visi-
ble in three dimensions the flow of fluids, as for example in a wind tunnel.
This contrasts with the projected images obtained with Schlieren pho-
tography or with the Mach–Zehnder interferometery described in Section
5.7.3. In the case of a wind tunnel the first exposure would be made with
the air at rest, and the second with the air flowing. When the scene is
reconstructed from the hologram the contours of increased and reduced
density appear as bright regions in three dimensions.
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7.7.4 Thick holograms

The fringes in a hologram in each small local area are inclined at equal
angles to the reference and object beams as shown in figure 7.22 with
spacing

Λ = λ/[ 2 sin (α/2 ],

where α is the angle between these beams. This separation is of order
one wavelength so that if the recording medium is tens of microns thick
each local region has many parallel fringes which act as Bragg planes.
They are equivalent to the planes of high density in the acousto-optic
modulator described in Section 7.6. There is constructive interference
between these layers provided that the angles of incidence and diffrac-
tion, θ, satisfy

λ = 2Λ sin θ,

where Λ is the layer spacing. This condition holds when the reconstruc-
tion beam points in exactly the direction of the reference beam, and
Bragg scattering occurs in the direction of the beam forming the virtual
image. This of course strengthens the virtual image at the expense of

/2α /2α
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Fig. 7.22 The upper panel shows the
formation of interference fringes in a
thick emulsion by the object and ref-
erence beams. The lower panel shows
Bragg scattering from the interference
fringes after chemical development.

the real, pseodoscopic image. It has however an even more important
and useful negative effect.

When the beam used in reconstruction is incident at some angle dif-
ferent from the reference beam the Bragg condition is no longer satisfied
and no image is seen. As a consequence the way is open to record mul-
tiple images in a thick hologram; recorded and reconstructed with the
reference beam rotated to a new angle for each image. This makes it
feasible to produce a display hologram that changes as one walks past;
a new hologram is revealed at each step the viewer takes. These holo-
grams are usually phase holograms in order that the brightest possible
virtual image is obtained. Photopolymer films used to make such thick
holograms are typically 100µm thick.

Thick reflection holograms produced by two reference beams incident
normally on the recording material from opposite directions will produce
planar interference fringes parallel to the surface and spaced at intervals
of λ/2. This structure will reflect almost all the light at wavelengths
close to λ and very little at other wavelengths: it constitutes what is
called a notch filter. Such filters are useful for making safety glasses
which reduce the intensity of a laser beam by many orders of magnitude
while not reducing the ambient light at other wavelengths.

By using three laser beams simultaneously and panchromatic film6 a 6Responsive to wavelengths across the
visible spectrum.colour hologram can be produced. The choices of the 476.5nm Ar+ ion

laser line, the 532 nm Nd:YAG line and the He:Ne 632.8nm line give good
rendering of colour. Viewing would seem to require that the same three
lasers are used: each wavelength has produced an interference pattern
and this will generate an image of that colour when the corresponding
laser illuminates the hologram. However there is crosstalk because each
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reconstruction beam is also diffracted by the fringes produced by the
other lasers. Crosstalk will be suppressed if the recording medium is
sufficiently thick, because a reconstruction beam of colour Y will only
satisfy the Bragg condition for the fringes made with colour Y and for
no others. As a bonus it is now possible to use a white light source in the
reconstruction phase. Only those components in the white light beam
whose wavelengths are extremely close to one of the laser wavelengths
can satisfy the Bragg condition and these alone contribute to the image.
Together these three Bragg selected wavelength bands form a full colour
image. All other wavelengths in the reconstructing white light beam
pass onward in the reference beam direction. The Bragg diffraction
requirement for obtaining an image from a thick hologram effectively
insulates the three colour images from each other. Figure 7.23 shows a
simple layout invented by Denisyuk for producing and viewing full colour
holograms. The three laser beams are spatially filtered by a pinhole
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direction

Fig. 7.23 The upper panel shows
Denisyuk’s method for recording a
colour hologram. Viewing in white
light is shown in the lower diagram.

to give pure spherical wavefronts. Each reference wave passes through
the recording material with some portion being reflected back from the
object in an object beam. Interference fringes will lie roughly parallel
to the surface of the recording medium because the reference and object
beam enter the recording layer from opposite directions. Several layers
of nodes will therefore be formed through the depth of the recording
medium so that the Bragg isolation of each colour is acheived. The
viewing of the Denisyuk hologram in white light is also shown in figure
7.23.

7.8 Optical information processing

The techniques of spatial filtering and holography underlie methods that
are used for processing information. The applications include the auto-
matic matching of fingerprints and large scale data storage and retrieval.
Examples of the latter are the recently launched Gbyte WORM (write
once read many times) holographic memories. These techniques use
coherent light and rely on the properties of Fourier transforms. The
remaining sections of this chapter will be used to introduce a few repre-
sentative developments in optical information processing.

7.8.1 The 4f architecture

Figure 7.24 shows one common arrangement for optical processing with
coherent light, called the 4f geometry. Coherent plane waves arrive

Object
plane

Transform
plane

Image
plane

f f f f

Fig. 7.24 4f architecture for coherent
optical processing. from the left, and might be provided by a laser plus beam expander

with spatial filtering. The components shown – object plane, the first
transform lens, the transform plane, a second transform lens and the
image plane – are spaced at intervals of a focal length. For simplicity the
focal lengths are taken to be equal, and the discussion is restricted to one
transverse dimension. As an example of optical processing we consider
how to compare a sequence of patterns, fi(x), with a fixed pattern g(x),
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where x is the dimension perpendicular to the optical axis. The Fourier
transform of g(x) is generated in the form of a hologram as explained
below and this, G(k), is placed in the transform plane. Then in turn
the patterns fi(x) are placed in the object plane. The light amplitude
transmitted through the transform plane will therefore be the product
Fi(k)G(k). This is Fourier transformed by the second lens so that at
the image plane the amplitude is

h(x) = FT[ Fi(k)G(k) ] = fi(x) ⊗ g(x), (7.72)

where the convolution theorem has been used. Thus if the patterns
match so that fi(x) = g(x),

h(x) =

∫
g(x′)g(x − x′)dx. (7.73)

Usually g(x) is some fairly random pattern, so that h(x) will be large in
the forward direction, when x = 0, and small elsewhere. On the other
hand, whenever fi(x) is different from g(x), h(x) will have a uniform
distribution. A pattern match is therefore signalled by a bright spot
appearing on the optical axis in the image plane.

A defect of this simple system is that with an inline arrangement
the unscattered reference beam travels forward making it difficult to
distinguish when a match is achieved. What is required is to displace
the signal indicating a match between target and test patterns to a
location well away from the optical axis. Figure 7.25 shows the layout
used to produce the hologram of the target pattern G(k) which has this
desireable property. Part of the broad planar laser beam passes through
a transparency that carries the target pattern and is then focused onto
the recording film. The remainder of the laser beam is deflected onto
the same sensitive area. Its amplitude at a point x on the recording
plane is Er exp (−ikx sinα), where α is the deflection and k is the wave
number of the laser light. If g(x0) is the target pattern at x0 in the
object plane, then its diffraction pattern (Fourier transform) on the film
plane at coordinate x is

G(kx/f) =

∫
g(x0) exp [−ikx0(x/f) ] dx0,

where the sine of the angle in which the light is diffracted is approximated
by x/f . This arrangement produces a Fourier transform hologram in
which the Fourier transform of the object interferes with the reference
beam. The particular layout shown in figure 7.25 makes up a Vander-
Lugt filter, named after its originator. The effect of using a reference fLens

Deflection

Laser

beam

Object

Recording
plane

α

Fig. 7.25 Setup for producing a Van-
derLugt filter.

beam tilted at an angle α is that the bright spot indicating a match in
the comparison is displaced a corresponding distance f sin α below the
optical axis on the image plane in the detector arrangement shown in
figure 7.24. There are practical difficulties in getting a positive match
when the scale and orientation of the patterns being compared are not
the same.



194 Fourier optics

Both the target and test patterns can be presented electronically using
a spatial light modulator. This is usually a liquid crystal display (LCD)
of the sort to be described in Chapter 10. Effectively the LCD forms
a screen a few centimetres across having a million or so pixels, each of
which can be independently set to transmit or absorb light. Referring
to figure 7.24 the LCD screen placed in the transform plane carries the
fixed pattern G(k) while the screen placed in the object plane can be
switched from one pattern to another, fi(x), in tens of microseconds,
making possible comparisons at high rates.

7.8.2 Data storage and retrieval

The ability to store many distinguishable holograms each written with
the reference beam incident at a different angle implies the possibility
of high capacity data storage on holograms. Data densities of up to
100 bits/µm2 have been achieved, which compares well with around 10
bits/µm2 on DVDs but is still less than the 160 bits/µm2 (100 Gbits per
square inch) obtained with current longitudinal recording on magnetic
disks. The parallelism of data storage on holograms makes for high
access rates: all the information on an individual hologram or page is
available simultaneously. Given an access time of 1ms to a particular
1Mbit hologram implies a data rate of 1 Gbs−1, which is many times
faster than the sequential read out rate from other media.

Exercises

(7.1) Calculate the Fourier expansion for a repetitive
sawtooth wave, f(x), having a repeat distance λ
and for which f(x) = x when −λ/2 < x < λ/2 ?

(7.2) What is the fringe count between successive max-
ima of visibility on an Michelson interferogram
taken with a sodium source filtered to pass only
the two D lines?

(7.3) (a) Show that convolution is commutative, that is
that f(x) ⊗ g(x) = g(x) ⊗ f(x). (b) In figure 7.2
imagine that one delta function δ(x − xm) is re-
placed by −3 δ(x− xm). What difference does this
make to the convolution?

(7.4) A microwave beam with frequencies ranging from
40 to 60 MHz drives a lithium niobate acousto-
optic Bragg cell. The optical beam is from a HeNe
laser of wavelength 632.8 nm and for this wave-
length lithium niobate has a refractive index 2.2.
What is the microwave wavelength? What width of
laser beam is required to permit 100 frequencies to
be distinguished across microwave input frequency

range? What angular spread of microwave beam is
required to cover the bandwidth? The velocity of
ultrasound in lithium niobate is 6600 ms−1.

(7.5) A Cd state emits a 643.8 nm line which has a life-
time of 4.1 10−10 s. What is the line width in fre-
quency and in wavelength?

(7.6) A thin transmission hologram is recorded with a
HeNe laser of wavelength 632.8 nm, the object and
reference beams being inclined at ±30◦ to the nor-
mal to the surface respectively. What is the average
fringe spacing in the emulsion?

(7.7) A camera is used to photograph the virtual image
in the setup described in the previous question. As
large a depth of field as possible is required, how-
ever the speckle size increases as the lens is stopped
down. What would be a suitable aperture stop to
keep the speckle size on film under 10 µm?

(7.8) (a) Calculate the degree of first order coherence
of a source emitting a single spectral line with
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Lorentzian shape given by eqn. 7.37. (b) What
would be the visibility of fringes seen with a Michel-
son interferometer using this source?

(7.9) (a) Calculate the degree of first order coherence of
a source emitting a single spectral line with Gaus-
sian shape given by eqn. 7.40. (b) What would
be the visibility of fringes seen with a Michelson
interferometer using this source?

(7.10) A monochromatic source of angular frequency ω0

is pulsed on and off with a cycle time of τp. If the
pulses are square between zero and unity what is
the frequency distribution of the radiation?

(7.11) Show that for both the Lorentzian and Gaussian
power distributions the value at resonance is ap-
proximately the inverse of the FWHM.

(7.12) If F (k) is the Fourier transform of f(x), what are
the Fourier transforms of df/dx and d2f/dx2?
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Astronomical telescopes 8

8.1 Introduction

The major telescopes now being used for astronomical observations in
the visible and near visible regions of the spectrum are reflecting tele-
scopes with primary mirrors of diameters ranging up to 10m. These
huge apertures make it possible to catch enough light to record distant
sources emitting when the universe was less than 10% of its present age.
Mirrors rather than lenses are the practical optical elements at this scale.
Firstly it is essential to support such large pieces of glass over their whole
area in order to prevent the physical sagging which would otherwise al-
ter their optical properties significantly; and this can only be done for
mirrors. Secondly mirrors are free of chromatic aberration, lose little
light through absorption in their surfaces and function at wavelengths
at which lenses would absorb strongly. In the following section the main
design features of astronomical telescopes will be described. Details of
some representative large telescopes are listed in table 8.1.

Atmospheric extinction of the radiation from astronomical sources
is primarily due to water, carbon dioxide, ozone and oxygen molecules.
Each species has absorption bands and they all scatter radiation at other
wavelengths. The molecular scattering of light1 is proportional to λ−4. 1This is called Rayleigh scattering and

is discussed in Chapter 12Absorption below 300nm wavelength is mainly due to ozone and is al-
most complete. Starting at 300 nm, the optical window, with extinction
of 10% or so in the visible, extends into the infrared with increasingly
frequent absorption bands, some almost opaque, to around 15µm. Most
molecular densities fall off exponentially with height, and at a height of
4 km a telescope is above 95% of the atmospheric water vapour. How-
ever the major part of the ozone is above 20 km.

The twinkling of the stars is an indication of atmospheric turbulence,
and this turbulence reduces the resolving power of any telescope on
the Earth’s surface. Typically for telescopes located at 3000m high
sites in dry areas the best resolution achievable (the seeing) at 500 nm
wavelength is around 0.4 arcsec, which is what could be achieved with
a telescope above the atmosphere having an aperture diameter of only
25 cm; but the larger telescope retains its advantage in gathering more
light. Adaptive optics is the term used to describe the ways and means
by which the image distortions due to atmospheric turbulence are cor-
rected in real time. These techniques for recovering the full potential
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Table 8.1 A table of the parameters for some representative large telescopes.

Telescope Design Diameter/segments Mounting Location/height

Keck I,II Ritchey–Chretien 10m/36 Alt-az Hawaii/4208 m
Hobby–Eberle Spherical primary 9.2m/91 Fixed elevation Texas/2072 m

VLT1-4 Ritchey–Chretien 8m/1 Alt-az Chile/2635 m

of very large telescopes are described in the third part of the chapter.
Adaptive optics has scientific applications elsewhere: in controlling the
wavefronts of laser beams used in microscopy, in laser-induced fusion
and in studies on human vision.

Individual telescopes are being used together in arrays in order to
further extend the resolution in the visible and near visible part of the
spectrum. Light from the telescopes is brought together to interfere
and the fringe patterns, interferograms, used to give information on the
source. At Mauna Kea the two 10m Keck telescopes and four 1.8m
telescopes will be used as an interferometer with a largest separation
of 135m – giving a potential resolution at 1 µm wavelength of approxi-
mately 7.4 10−9 rad or 1.5mas (milliarcsec). Interferometry with multi-
ple apertures is discussed in the fourth part of the chapter.

Several Michelson interferometers have been built with kilometre long
arms to detect the tiny change in relative length between their arms
which is expected when a gravitational wave strikes the Earth. Only
rare, catastrophic events, such as supernova explosions in our galaxy
are likely to give detectable signals. This very different application of
interferometry in astrophysics is the topic of the fifth segment of the
chapter. A final short segment of the chapter is used to describe the
observations of gravitational lensing and includes a simple account of
the origin of this general relativistic effect.

8.2 Telescope design

Telescopes need to have a large entry pupil in order to collect the maxi-
mum light and so to detect weak and distant astronomical sources; and
also to resolve the details of the structure of sources. An unresolved star

pf
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Focus

Fig. 8.1 Paraboloid mirror. is one whose angular diameter is much smaller than the angular reso-
lution of the telescope viewing it. The entry pupil of a telescope is the
primary mirror, the one which first intercepts the light. Now the angular
resolution due to diffraction alone, ∆θ, was calculated in Section 6.7,

∆θ = 1.22λ/D, (8.1)

for light of wavelength λ at a circular aperture of diameter D. In the
case of the Hubble Space Telescope, the HST, with a 2.4m diameter pri-
mary mirror the resolution limit imposed by diffraction is 2.54 10−7 rad
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or 52.4mas. The aberrations in a mirror telescope are made comparably
small by using mirrors whose shapes are paraboloids and hyperboloids
of revolution.

Paraboloid mirrors have the useful property that all incident rays
parallel to the axis pass, after reflection, through the geometric focus as
shown in figure 8.1. A paraboloid has the equation r2 = 4fpz where z is
the axial distance from the pole of the paraboloid and r is the distance off
axis. fp is the equivalent paraxial focal length of the mirror. However
the aberration of a paraboloidal mirror rises rapidly when the target
moves off axis: the angular size of comatic flare projected on the sky is

α ≈ θD2/(4f2
p), (8.2)

where θ is the angle off axis. Fortunately hyperboloid shaped mirrors
also give a good axial focus and have off-axis aberrations that are op-
posite in sign to those of paraboloidal mirrors. The combination of one
mirror of each shape has the potential for producing an image for which
the off-axis aberrations largely cancel. Figure 8.2 shows how all the rays
passing through one geometric focus of a hyperboloid mirror will, after
reflection, pass through the second focus. Using the coordinates shown
the equation of the hyperboloid is r2 = (z2 − a2)(e2 − 1) where e is
called the eccentricity. The linear magnification is the ratio of the image
to object distance m = (e + 1)/(e − 1). If the hyperboloid mirror is
placed so that its first geometric focus coincides with the focus of the
paraboloid, then the final image will lie at its second focal point. The
size of the image of a star of angular diameter θ produced by the two
mirror combination would be

D∗ = mfpθ. (8.3)

As noted above, the off-axis aberrations are very much reduced if the
curvatures of the mirrors are chosen suitably. The standard layout for

a

a(e-1)a(e+1)
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zFocusFocus

Fig. 8.2 Hyperboloid mirror. The dot-
ted curve shows where the other half of
the hyperboloid surface would lie.

the primary and secondary mirrors is shown in figure 8.3 with the fi-
nal image being projected through a hole in the primary. The classical
Cassegrain telescope shown in the upper panel has a convex secondary
mirror, while the Gregorian telescope has a concave secondary mirror. A
cross shaped frame of thin rods, called a spider supports the secondary
from the telescope tube. Thus light travelling toward the primary is
Fresnel diffracted by the secondary and its spider, and if the image of
a star is overexposed it acquires thin cruciform arms. In both these
telescope designs the primary is the aperture stop and also the entrance
pupil, so that it is the diameter of the primary mirror which determines
the telescope’s potential light gathering power and angular resolution.

The Cassegrain is more compact than the Gregorian for the same fo-
cal length, which gives a decisive advantage when the telescope weighs
tons and is several metres in length. In addition the Cassegrain sec-
ondary mirror and the hole in the primary can be made smaller. The
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Fig. 8.3 Cassegrain and Gregorian telescopes.

final image surface is curved toward the secondary mirror in the classical
Cassegrain and its variants. In one popular variant on the Cassegrain
telescope the shapes of both mirrors have been altered slightly to make
an aplanatic (free of coma as well as spherical aberration) telescope;
the primary mirror also becomes hyperboloid in shape, but with an ec-
centricity only slightly different from that of a paraboloid mirror. This
Ritchey–Chretien design was used for the HST, Keck and many other
large telescopes. The principal residual aberration is then the astigma-
tism with angular size in the sky, given in arc seconds

α = 0.5mθ2/(57.3f/#), (8.4)

where θ is the angle off axis in arc-minutes, m is the magnification pro-
duced by the secondary and f/# is the focal ratio for the complete
telescope.

When observing a star or galaxy an astronomer needs to be able to
hold the image at a fixed point in the field of view as the Earth rotates.
Two mountings suitable for this purpose are widely used to support tele-
scopes and are shown in figures 8.4 and 8.5. The first diagram illustrates

Azimuth

Altitude

Fig. 8.4 Telescope in alt-az mounting. the alt-az mounting in which one rotation axis is vertical and the other
horizontal. In the alternative equatorial mounting one axis points to the
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pole star and the other is horizontal. The latter mounting has the ad-
vantage that once a target is in view the only motion required thereafter
to retain the target in view is rotation around the polar axis. In the case
of the alt-az mounting the tracking speed is variable and even when the
target is tracked precisely its image rotates in the field of view. This lat-
ter feature requires correction using additional optical elements if a long
exposure – which is often the case – is required. All these weaknesses of
the alt-az mounting are less significant now that computer control can
be complex, reliable and cheap. When the telescope weighs many tons,
having a layout in which the centre of gravity can lie directly over the
bearings is a decisive advantage for the alt-az mounting. It leads to a
lighter, smaller frame and reduces the size of dome required to house
the telescope. Multimetre telescopes mirrors are extremely difficult to
cast, and those of over 5m diameter are often segmented.2 2The twin 10m Keck telescope primary

mirrors are made up of 36 hexagonal
segments cast from a ceramic mate-
rial, Zerodur, of low thermal expan-
sion coefficient (∼10−7 K−1). Each
segment is 76 cm thick, 1.8m across and
weighs 0.4 t. A single Keck instrument
plus supports weighs 300 t and occupies
an eight-storey high spherical shaped
dome.

Example 8.1

The HST is a Ritchey–Chretien telescope, with mirrors having outer di-
ameters of 2.4 and 0.8m. Their equivalent radii of curvature, on axis, are
11.04 and 1.36m, so their paraxial focal lengths are +5.52 and −0.68m
respectively; the mirrors being placed 4.91m apart. Thus the focus of
the primary mirror, the prime focus, is 0.61m beyond the secondary
mirror. If the distance of the final focus from the secondary is v, then
applying the mirror eqn. 3.5 gives

1/v = 1/0.61− 1/0.68,

whence v = +6.41m, putting the final focus 1.5m behind the primary
mirror. The overall focal length f is given by eqn. 3.39,

1/f = 1/fp + 1/fs − d/(fpfs),

where fp,s are the mirror focal lengths and d their separation and this
yields a focal length 57.2m. Then one arcsec in the sky projects onto
279µm in the image plane: the plate scale is said to be 279µm/arcsec.
At this scale a pixel in the CCD arrays, which are typically 15µm across,
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Telescope

Fig. 8.5 Telescope in equatorial
mounting.

covers 0.05 arcsec. The diffraction limit at 500nm wavelength given by
eqn. 8.1 is 0.04 arcsec, so the pixel size is well matched to the attainable
resolution. The long overall focal length relative to the short optical
path within the telescope shows that the Ritchey–Chretien and classical
Cassegrain telescopes are in fact mirror telephoto systems.

Initially the HST showed unexpected spherical aberration because the
primary had been shaped to an incorrect profile, departing at the periph-
ery by 2µm from the correct profile. This was rectified by adding a pair
of mirrors. A field mirror, M1, placed a little ahead of the focal plane
imaged the entry pupil onto a second mirror, M2, so that points on M2

were in one-to-one correspondence with points on the primary mirror.
M2 was shaped so as to cancel the aberration of the primary exactly.
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8.2.1 Auxiliary equipment

The full range of spectrometers described in Chapters 6 and 7 are de-
ployed in studying emission spectra of celestial sources in the visible
and near visible parts of the spectrum. For high resolution work echelle
gratings are often used. Combinations of crossed prisms and gratings
permit the simultaneous examination of a wide spectral range. Where
appropriate, optical fibres are used to transfer light from individual star
images to corresponding individual points along the entry slit of a spec-
trometer. One end of each fibre peers through a precisely located hole
in a plate covering the image plane, while the other end is placed at its
chosen location along the spectrometer slit. In this way several hundred
stellar spectra can be recorded simultaneously.

A very simple auxiliary component is the field lens used to produce
a flat image plane to match the planar surface of detectors. This is
positioned close to the secondary focus. More complex optics provides
magnification or demagnification to match the image size or resolution to
that of detectors. A focal reducer is shown in figure 8.6. This consists
of a field lens near the telescope focus, a collimator and the detector
camera. Rays from a star lying on the optical axis are shown as solid
lines. The field lens images the exit pupil of the telescope to just fill the
collimator aperture which is the entry pupil of the camera/collimator
combination. If fcol and fcam are their focal lengths the image size is

camfcollff

Field
 lens

Collimator CameraPrincipal
  plane

θ α

Fig. 8.6 Image reducer for matching
image area to detector area.

changed by a factor fcam/fcol. The field lens’ area should match the field
of view of the telescope, fθ, where f is the telescope’s focal length, and θ
its angular field of view in the sky. In order to maintain the etendue along
the optical chain we require Dcolα = Dθ, where Dcol is the collimator
diameter, D the primary diameter and α is the angular field of view
of the collimator. Additionally we see in figure 8.6 that fθ = fcolα.
Combining these two requirements determines the collimator diameter

Dcol = Dfcol/f.

The region of parallel beam between the collimator and camera in the
focal reducer provides a natural location to insert dispersive elements
such as prisms, gratings or Fabry–Perot etalons, or for simple filters.

Light auxiliary equipment can be mounted at the Cassegrain focus
behind the primary mirror. Figure 8.7 shows an alternative in which a
plane mirror diverts the light along the altitude axis to what is called
the Nasmyth focus. In the case of the 10m Keck telescopes heavy equip-

Nasmyth     focus

Fig. 8.7 Nasmyth focus along the al-
titude axis of a Cassegrain telescope in
an alt-az mounting.

ment at the Nasmyth focus is carried around on a horizontal frame which
follows the telescope’s azimuthal rotation. This avoids locating heavy
gear at the Cassegrain focus where it would be carried around in three
dimensions. Another alternative is the Coude focus, which requires fur-
ther mirrors to put the image in a stationary position. This necessitates
a long focus, rotating mirrors and a narrow field of view.
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Light from stars is dispersed in travelling through the Earth’s atmo-
sphere, and when a star is not directly overhead (not at the zenith) the
image becomes a coloured strip. This dispersion is removed by putting
Risley prisms in the optical path. An individual Risley prism is made
from two thin prisms glued face to face so that their deflections cancel.
According to eqn. 2.28 a single prism of narrow angle α and refractive
index n would provide a deflection (n− 1)α and a dispersion α(dn/dλ).
In a Risley prism the types of glass used for the component thin prisms
are chosen so that

(n1 − 1)α1 = (n2 − 1)α2,

while at the same time there is a net dispersion. The compensator
for atmospheric dispersion is a pair of Risley prisms in series. When
viewing directly overhead they are rotated to be in opposition and their
dispersions cancel; for viewing in other directions the angle between
the pairs is changed so that their net dispersion cancels that of the
atmosphere.

8.3 Schmidt camera

A radically different telescope design that gives a much wider field of
view than the Ritchey–Chretien is the Schmidt camera. In 1929 Schmidt
came to appreciate that if the aperture stop of a concave spherical mir-
ror is placed at the centre of curvature then all directions of incidence
through the centre of this stop to the mirror are radial and are equally
good optical axes. Consequently with this layout the coma and astig-
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Fig. 8.8 Schmidt camera.matism are eliminated. What remains is the spherical aberration, which
Schmidt was able to reduce drastically by placing an aspheric glass cor-
rector plate across the stop aperture. Figure 8.8 shows the principal
components of Schmidt’s design. The corrector plate cancels out spheri-
cal aberration by being convex at the centre (focusing) while it is concave
at the periphery (defocusing). This surface figuring can only remove
spherical aberration at a single wavelength so there is residual spherical
aberration at other wavelengths. That remaining aberration can be fur-
ther reduced if the corrector plate is made into an achromatic doublet
like those discussed in Section 3.7.7. Two drawbacks of the Schmidt
design are that the image surface is highly curved and that the im-
age is difficult to access. A typical large aperture Schmidt is the UK
Schmidt of 1.24m diameter, focal length 3.07m located at the Siding
Spring observatory in Australia. It has a field of view of 6.6◦ over which
the resolution is about 1 arcsec and has a plate scale of 67 arcsec/mm.
Originally it was used to produce an atlas of the southern sky and is
now also used for measuring the spectra of sources. Schmidts of much
larger aperture are impractical because a larger thin corrector would
sag significantly, and because the overall length, being twice the focal
length, makes mounting difficult. A common variation on Schmidt’s de-
sign, due to Maksutov, uses a thin meniscus lens to correct the spherical
aberration.
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Stellar luminosities

The apparent luminosity, � Wm−2, of a star is the actual power density
arriving at the Earth. The measured absolute luminosity, L, of a star
is the total radiated power in watts, which can be calculated from the
apparent luminosity if the distance to the star, D, is known

L = 4πD2�.

Apparent magnitude, m, is a scale devised by Pogson in the nineteenth
century to quantify the visual scale of intensity that went back in some
form to classical Greece. Values of 1 and 6 correspond respectively to
the brightest stars (excluding the Sun) and faintest stars visible to the
eye. The apparent luminosity corresponding to an apparent magnitude
zero is explicitly defined to be 2.52 10−8 Wm−2 in the V–band, that is
using a broadband filter centred at 510 nm to capture all visible wave-
lengths. Then, because the eye responds logarithmically rather than
linearly to light intensity the relationship between apparent magnitude
and apparent luminosity is

m = −2.5 log10 [�/(2.52 10−8W m−2)]. (8.5)

Finally absolute magnitude is defined as the apparent magnitude which
a star would have at a distance of 10 parsec from the Earth, i.e. at a
distance of 3.086 1017 m. The Sun itself has absolute (V-band) mag-
nitude 4.72 and an apparent magnitude −26.85. Very large telescopes
can identify stars with apparent magnitudes as high (weak) as +25, for
which the apparent luminosity is 2.52 10−18 Wm−2.

8.4 Atmospheric turbulence

Observatories are sited on remote mountains which enjoy clear skies and
low levels of humanity’s light pollution. However, unlike the HST, they
cannot escape the effects of turbulence in the atmosphere. The energy
from turbulent motion is dissipated as local heating in the atmosphere
and this results in important variations locally in the refractive index
of the atmosphere. These variations cause a star’s image to scintillate,
meaning to move and to change in intensity at a rapid rate. These
movements are sufficiently small and rapid that all the eye registers is a
twinkling. An incoming wavefront from a star is planar before entering
the atmosphere but its surface becomes crumpled by the local variations
in the refractive index of the atmosphere. The area over which the
wavefront which arrives at the Earth is relatively flat (but not necessarily
parallel to the incident wave above the atmosphere) is called the Fried
parameter r0. More precisely: over a distance r0 the phase variation of
the wavefront has a root mean square value of 1 rad. Diffraction at this
equivalent aperture gives an angular resolution (point spread function) of
approximately λ/r0. At a mountain observatory site with good seeing r0

can be around 25 cm at a wavelength of 500 nm and then the resolution is
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0.4 arcsec. The shape of the wavefronts arriving at a telescope changes on
a timescale τ0 which can be 50ms in conditions of good seeing at 500nm.
It follows that the resolving power of telescopes with mirrors of any larger
diameter than r0 is degraded to that of a mirror of diameter r0, although
their light gathering capacity is unaffected. The Fried parameter and τ0

both vary strongly with wavelength

r0 ∝ λ6/5,

so that the extent of the point spread function, λ/r0, is proportional
to λ−0.2. This gives a slow improvement in seeing as the wavelength
increases.

The effect of this turbulence on the image seen depends on the size of
the telescope’s aperture. When an unresolved star is viewed through a
telescope whose diameter d is less than the Fried parameter the image
has an Airy disk of angular diameter λ/d. This image moves jerkily
at intervals of average duration τ0 with angular displacements of order
λ/r0. On the other hand if the telescope has diameter D much larger
than the Fried parameter the image consists of speckles of angular size
λ/D. These speckles, numbering roughly (D/r0)

2, continually move,
fade, coalesce and re-form with the same characteristic timescale τ0. A
long exposure produces a blurred image of angular size λ/r0, and with
Strehl ratio3 (r0/D)2. 3See Section 7.2.1

8.5 Adaptive optics

The techniques described as adaptive optics are used to overcome the
effects of atmospheric turbulence and to recover the potential resolving
power of large diameter telescopes. The first step is to sense the shape of
the wavefront arriving from an unresolved star which is sufficiently close
in direction to the target for their images to suffer essentially the same
distortion; the reference star is called a guide star. This information on
the wavefront shape is then used to deform a flexible mirror placed in the
optics of the telescope in such a way that after reflection the wavefronts
recover their planar shape. The control sequence has to respond on a
timescale of milliseconds in order to compensate the changing distortion
faithfully and in real time. Figure 8.9 shows schematically the adaptive
optics which could be placed at the Nasmyth focus of a large telescope.
After reflection from the deformable mirror the light encounters a beam
splitter, with part being directed to a wavefront sensor and part going
to the detectors that are recording data, which are called the science
instruments. Electronic signals from the wavefront sensor are used as
input to a processor that controls actuators which change the shape of
the deformable mirror.

The commonest wavefront sensor is the Shack–Hartman sensor shown
in figure 8.10. A planar, square array of identical lenslets focuses the
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Fig. 8.9 Adaptive optics.

incoming light from the guide star onto a CCD array having for example
four pixels per lenslet. In the upper panel of the figure an undistorted
plane wave is incident and the image on the CCD is a square array of
dots, each dot lying on the optical axis of its lenslet. What is shown in
the lower panel is the result when the incident wave is distorted. Each
image spot is now displaced by a distance and in a direction determined
by the local orientation of the wavefront across its particular lenslet. If
the wavefont has a tilt of ∆θ and the lenslet focal length is f , then the
displacement is simply f∆θ. A section through a distorted wavefront

CCD array
Lenslets

Wave
fronts

Fig. 8.10 Shack–Hartman wavefront
sensor. In the upper panel an undis-
torted plane wave is incident and in the
lower panel the incident wave is dis-
torted. The pattern of image points on
the detector array is shown on the right
in each case.

appears in figure 8.11 where the vertical lines separate the regions seen
by individual lenslets. Once the direction and magnitude of tilt over each
cell is known it is evident that the whole wavefront can be reconstructed
with a precision set by the lenslet diameter. Note for future reference
that the wavefront sensor will not detect an overall delay or advance of
the wavefront due to a change in the refractive index common to the
whole area of the telescope aperture. This piston component of the dis-
tortion becomes significant when light from two or more telescopes is
brought together to interfere.

The most important part of wavefront correction is to remove the
overall tip or tilt of the wavefront because this accounts for just under
90% of the image distortion. This correction can be performed using a
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rigid plane mirror that can be rotated about either of two orthogonal
axes in its own plane as shown in figure 8.12. If this tip/tilt correction is
insufficient a second, this time deformable mirror can be used to remove
the remaining distortion. Deformable mirrors are available with up to
several thousand actuators over the surface. One type of deformable
mirror has a thin glass or ceramic skin which is bonded to actuators
mounted on a flat rigid plate. The actuators are generally piezoelectric
rods which expand or contract under an applied voltage and their move-
ment flexes the mirror surface. The total correction sharpens the image

Wavefront

Fig. 8.11 Wavefront segments recon-
structed by the Shack–Hartman wave-
front sensor.

of an unresolved star to the extent that in the case of Keck II the Strehl
ratio improves from less than 0.01 to 0.35.

If the effective height of the turbulence in the atmosphere is H above
ground level then the isoplanatic angle within which the wavefront dis-
tortion is uniform is given by

θ0 ∼ r0/H. (8.6)

H is typically 5 km so that with a Fried parameter of 15 cm the iso-
planatic angle is only a few arc seconds. Unfortunately the isoplanatic
regions around the available guide stars cover only a small fraction of
the sky. A less satisfactory alternative is to use a narrow laser beam to
generate an artificial guide star near to the target. The most effective
method is to excite fluorescence at a wavelength 589 nm in sodium atoms
concentrated in a layer lying around 90km above the Earth. A different
scheme is to back scatter a laser beam off the atmospheric molecules,
a process that produces a guide star at 10 to 20 km above the Earth.
Laser guide stars have an inherent drawback. On its way upward the

Fig. 8.12 Mirror used for tip/tilt cor-
rection.

laser beam is deflected by the turbulence and on its return it undergoes
an almost equal and opposite deflection. The artificial guide star remains
stationary and cannot give any information on the tip/tilt component
of the atmospheric distortion. However any faint star lying within the
isoplanatic angle of the target can be used to provide the pointing in-
formation that determines the tip/tilt correction, despite this star being
too faint to help beyond that.

Extreme care is taken to reduce variations in telescope performance
arising from factors local to the telescope and its protective dome. Local
convection, differential heating of the telescope components and radia-
tive cooling of the mirrors during a night’s observation are eliminated as
far as possible. Measures such as cooling the dome interior to nighttime
temperatures during the day, insulation of the dome from work areas be-
low it, forcing a slight downdraft of air through the slit during viewing,
and using baffles to reduce wind movement all contribute to maintaining
a stable environment.
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8.6 Michelson’s stellar interferometer

The first successful measurement of a star’s angular diameter was car-
ried out by Michelson in 1921 using the stellar interferometer sketched
in figure 8.13, making a type of measurement foreseen some 60 years
earlier by Fizeau. Light from the star, Betelgeuse, was received by a

Baseline B

D

d

SS’

Fig. 8.13 Michelson’s stellar interferometer. s and s′ are unit vectors in the directions
of the sources. B is the baseline vector length and D the vector separation of the
inner mirrors.

pair of plane mirrors mounted on a long bar attached to the frame of
the telescope4 and reflected into the telescope by two further mirrors.4This was the 2.5m Hooker telescope

located at a height of 1742 m on Mt
Wilson in California. Betegeuse is
the red star in the right shoulder of
Orion, α-Orionis. At a distance of 430
lightyears (4.1 1018 m) it is the near-
est red supergiant star. The current
accepted value for its angular diame-
ter is 0.054 arcsec, making its geometric
diameter about 650 times larger than
that of the Sun.

These outer mirrors could be moved apart along the bar to a maximum
separation of over 6 m. The resultant image at the telescope’s focus was
therefore crossed by fringes due to interference between the light follow-
ing the separate mirror paths.

It is very important when thinking about astronomical interferometry
to remember that the light from any point on a star’s surface is incoher-
ent with the light from any other point on that star, or equally on any
other star. Consequently the intensity pattern seen by Michelson was
the sum of the intensities of the interference patterns due to light from
each region of the star.

The complex amplitude at the telescope’s image plane caused by light
from one edge A of the star would be

E = E0[exp (−ikp1) + exp (−ikp2)] exp (iωt),
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with light of angular frequency ω and wave number k. p1 and p2 are the
lengths of the two different mirror paths and δ = p1−p2 their difference.
Thus the time averaged intensity

I = EE∗/2 = E2
0 [1 + cos (kδ) ]. (8.7)

Let the baseline, that is the vector separation of the two outer mirrors,
be B; let D be the separation of the inner mirrors; and let the unit vector
in the direction of A be s. Then δ = s · (B−D) at the geometric image
point. The corresponding path difference for light arriving at the same
image point from the opposite edge A′ of the star is δ′ = s′ · B − s · D.
Thus there is a phase difference between the sets of fringes produced
separately by the sources A and A′

∆ = k(δ − δ′) = k(s− s′) ·B. (8.8)

Now because s and s′ are unit vectors and the star’s angular size, ∆θ,
is small we have ∆θ = |s − s′|. Then with B aligned parallel to s − s′

eqn. 8.8 reduces to
∆ = kB∆θ. (8.9)

In Michelson’s apparatus ∆ is varied by moving the outer mirrors apart
symmetrically. When this happens B increases, ∆ increases and the sets
of fringes due to A and A′ move apart. Eventually a separation of the
outer mirrors is reached at which the phase difference ∆ is exactly π.
Then the fringes due to A and A′ are exactly out of step and a uniform
total intensity is produced across the star’s image. Figure 8.14 illustrates
how the fringe visibility changes with increasing phase difference. In
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Fig. 8.14 Fringes with decreasing visi-
bilities: 0.81, 0.33 and 0.14.

this figure the fringe envelope is the single slit diffraction pattern due
to a mirror, of width d acting as an entry aperture. The spacing of the
fringes within the envelope is that for a point source viewed by the inner
mirrors. There are therefore D/d fringes across the envelope, and what
was very important for Michelson, their location would not change when
the outriggers were moved in or out. At the setting giving zero visibility,
where ∆ = π, eqn. 8.9 gives

∆θ = π/kB = λ/(2B).

Michelson used this result to deduce the angular size of Betelgeuse, ob-
taining a value 0.047 arcsec. The essential feature of the measurement is
that the angular resolution has been boosted to λ/(2B) by using outrig-
gers whose separation is B, whereas the telescope alone has a resolution
of λ/D.

After Michelson’s measurements the technique languished because
longer outriggers proved very unstable and because of atmospheric tur-
bulence. The difficulty lay in the need to hold the two path lengths equal
to within the source coherence length, for otherwise interference is not
possible. Beginning in the 1940s measurements of stellar diameters were
made with the new technique of intensity interferometry which requires
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less strict path equality. This technique, developed by Hanbury Brown,
will be discussed in Chapter 17. In more recent times the development
of lasers, fast electronics and computers provided tools with which as-
tronomers could carry stellar amplitude interferometry much further.
Long baselines can be measured with a precision of tens of nanometres
and altered sufficiently fast to compensate continuously for the piston
component of atmospheric distortion. Interference patterns (interfer-
ograms) can now be recorded using light from separate telescopes or
from an array of apertures placed in front of a single large telescope;
and where Michelson only made a single measurement of the baseline
length at which the fringe visibility went to zero, nowadays the visibil-
ity itself is measured for as many baseline lengths and orientations as
possible. From this new information the images can be reconstructed
of complex distant sources which might be too small for an individual
telescope to resolve. This field of aperture synthesis interferometry will
be described in the following sections.

8.7 Modern interferometers

Whatever the interferometer the difference between the lengths of the
two optical paths has to be kept to less than the coherence length if
interference is to occur. This poses a problem if the light from two sep-
arated telescopes is brought to interference as illustrated in figure 8.15.
Each telescope collects light from a star, and this is focused into a paral-
lel beam and guided by mirrors so that the beams from both telescopes
are brought together at a common detector. The geometric paths from
a star not lying directly overhead differ by much more than a coherence
length. In order to cancel out this difference delay lines are incorpo-
rated in the optical paths from each telescopes. The mobile mirrors inFor simplicity we assume that the

source intensity and the detector effi-
ciency are both constant over the range
(λ0±∆λ/2) and zero outside this range
∆λ is small compared to λ0 so that
δλ = λ − λ0 is also small and hence
the approximation can be made that

cos (kδ) = cos [ 2πδ/(λ0 + δλ) ]

= cos [ (2πδ/λ0) (1 − δλ/λ0) ]

= cos (2πδ/λ0) cos (2πδ δλ/λ2
0).

The integral∫
cos (kδ) dλ

= cos (2πδ/λ0)

∫
cos (2πδ δλ/λ2

0) dλ

= (λ2
0/πδ) cos (k0δ) sin (πδ ∆λ/λ2

0)

= cos (k0δ)sinc(πδ/Lc).

the delay lines are carried on trolleys moving along rails. The lengths of
the complete optical paths are monitored continuously with laser-based
heterodyne Michelson interferometers of the type described in Section
14.6.3.

Detectors, perhaps placed behind wavelength filters, respond to a
range of wavelengths, which leads to modifications in the treatment given
in the last section. Equation 8.7 for a single point object becomes

I =

∫ λ0+∆λ/2

λ0−∆λ/2

E2
0 [ 1 + cos (kδ) ] dλ, (8.10)

where the integral is taken over the range of wavelength detected. The
integral reduces to

I = E2
0 ∆λ [ 1 + sinc(πδ/Lc) cos (k0δ) ] , (8.11)

where Lc = λ2
0/∆λ is the coherence length of the radiation: see eqn.

5.25. Thus the length of the fringe train is of order λ0/∆λ fringes,
which amounts to 10 fringes if the bandwidth is 10%. At the centre of
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Fig. 8.15 Telescope interferometer with delay lines. The telescopes have auxiliary
lenses to produce a parallel beam, making them afocal.

the pattern the path difference is close to zero so that all wavelengths
remain in phase giving an easily recognizable white light fringe; while at
the edges of the pattern the fringes are coloured.

Atmospheric turbulence poses other difficulties for interferometry with
telescopes because it causes the optical path lengths from source to each
telescope to change rapidly and in an uncorrelated manner. One ap-
proach is to use telescopes or mirrors that have diameters of order of the
Fried parameter, r0, so that the wavefront distortion is at least uniform
across each telescope and then to equip each telescope with tip/tilt cor-
rection using adaptive optics. However this leaves uncorrected the piston
component of the distortion, which can be of order tens of microns in
the visible spectrum and which is changing on a time scale of τ0. The
fringes wander by corresponding amounts. Michelson in his experiments
found that although the fringes moved about due to turbulence they did
not change their profiles, which is vital for any measurement. With his
relatively compact interferometer he was able to hold the fringes in view
by having a glass block mounted in one of the two optical paths. This
he would tilt by hand to hold the fringes in view. In modern systems
the fringes are tracked electronically and kept in view by altering the
optical delay lines appropriately. Equality of the two total optical paths
from the star is maintained to a precision of several nanometres for inter-
ferometers with baselines of order 100m. Most observations have been
made with interferometers using detectors sensitive to infrared radiation
because τ0, r0 and the isoplanatic angle all improve (increase) with in-
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creasing wavelength.

A stellar interferometer in which, as in figure 8.13, the fringes fall
on a CCD detector array in the image plane is termed an image plane
interferometer. Figure 8.16 shows a second variant, called a pupil plane
interferometer, in which the collimated beams impinge on a beam split-
ter and the light from each exit face falls on a single detector. These

+ -
Amplifier

Detector

Detector

 Beam
splitter

Telescopes

Fig. 8.16 Pupil plane interferometer.
The full lines are light paths and the
broken lines carry electrical signals.

plane wavefronts interfere leaving the whole field of view at each detector
uniformly illuminated: when one is dark the other is light – as we now
show. Suppose A and A′ are the complex amplitudes of the incoming
beams, with |A| = |A′|, then the outputs falling on the two detectors
are

A1 = A + iA′, and A2 = iA + A′, (8.12)

where the factor i is due to the phase difference between the reflected
and transmitted beams from a beam splitter. Now if A = −iA′ then
A1 = 0 and A2 = 2A′; thus when one exit pupil is dark the other is
bright, and vice versa. Subsequently the electronic signals from the two
detectors are subtracted to give a resultant

∆I = I1 − I2 = A1A
∗
1 − A2A

∗
2 = 2�m(A∗A′). (8.13)

In the pupil plane interferometer the fringes are scanned across the de-
tectors by dithering the position of a mirror in one optical delay line so
that the path difference changes by many wavelengths. A single detec-
tor can be used rather than the detector array needed for image plane
interferometry.

8.8 Aperture synthesis

There is much more information contained in the fringe patterns than
the single value of the angular radius of a star. By combining data from
interferometers using baselines of different lengths and orientations it is
possible to obtain images of celestial objects. The analysis techniques
which are in use were for the most part developed earlier to extract im-
ages from analagous radiotelescope measurements. In this section the
basic analysis will described, with later sections covering important ex-
perimental and analysis details.5

Figure 8.17 shows an extended astrophysical source viewed by an in-
terferometer. Two orthogonal axes, Ox and Oy, are indicated at the

R

O
B

0s s

x

y

Source

Telescope Telescope

Fig. 8.17 Coordinate system for aper-
ture synthesis.

source and these are repeated at the telescopes, with the third orthogo-
nal axis being directed along the unit vector s0 pointing from the centre
of the baseline to a reference point on the source, R, called the phase

5This section has been adapted from slides of Professor Haniff’s talk ‘Optical In-
terferometry – A Gentle Introduction’ at the 2003 Michelson Interferometry Summer
School at the California Institute of Technology, Pasadena, CA.
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centre. Let the source brightness be I(s) where s is the unit vector point-
ing from the centre of the baseline to any point on the source. Then the
intensity at the detector is, apart from constants,

P (s0,B) =

∫
I(s) [ 1 + cos (kδ) ] dA, (8.14)

where dA is an element of area of the source centred in a direction with
the unit vector s, and where k points along s0. The difference in length
between the two optical paths from the elements of the source at s to
the detector is

δ = s · B + p, (8.15)

where p is the difference between the optical paths from telescope en-
trance pupil to detector – including the delay lines. Now the detector
responds to a range of wavelengths, usually restricted by a filter, for
example the K-band from 2 to 2.4µm. The overall path difference be-
tween the two paths must be held less than the coherence length which
in this case is ∼10µm. The choice is made to set the delay line length
difference so the path difference is zero for the phase centre

s0 ·B + p = 0. (8.16)

Thus
δ = [ s− s0 ] · B = ∆s ·B. (8.17)

Now the angle that ∆s subtends on the sky is ∆s/s0, which is simply
∆s because s0 is a unit vector. ∆s is small and can therefore be resolved
into component angles � in the ORx plane and m in the ORy plane with
∆s2 = �2+m2. In order to simplify the notation kB is similarly resolved
into components u and v along the Ox and Oy axes respectively. Then
the relative phase between light arriving along the two paths becomes

kδ = �u + mv + φ, (8.18)

where φ is any small phase introduced by deliberately altering the dif-
ference between the lengths of the delay lines from the condition of zero
path difference at the phase centre. Thus the intensity at the detector
becomes

P (u, v; φ) =

∫ ∫
I(�, m) [ 1 + cos (�u + mv + φ) ] d�dm

= P0 + cosφ

∫ ∫
I(�, m) cos (�u + mv)d�dm

− sin φ

∫ ∫
I(�, m) sin (�u + mv)d�dm, (8.19)

where P0 =
∫ ∫

I(�, m)d�dm is the total intensity. The other two inte-
grals in this equation are components of the Fourier transform

V (u, v) =

∫ ∫
I(�, m) exp [ i(�u + mv) ]d�dm. (8.20)
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This transform is special: it converts the source brightness angular dis-
tribution into a distribution in u and v, that is into an intensity dis-
tribution in spatial frequency along the Ox and Oy axes respectively.
Rewriting the detected intensity in terms of V (u, v) gives

P (u, v; φ) = P0{1 + Re [ V (u, v) exp (−iφ) ] }. (8.21)

In the case of the pupil plane interferometer Re [ V (u, v) exp (−iφ) ] is
the modulation observed when the delay line length is dithered. The
very same modulation is seen across the image plane of the image plane
interferometer. If the detected power is measured separately for φ set to
zero in one case and φ set to π/2 in the other, the respective power values
will be P0(1 + ReV ) and P0(1 + ImV ). This gives enough information
to be able extract the phase and magnitude of V . The maximum and
minimum of intensity occur when

Re [ V (u, v) exp (−iφ) ] = ±|V (u, v)|

and hence the visibility of fringes

(Pmax − Pmin)

(Pmax + Pmin)
= |V (u, v)|

which shows that |V (u, v)| is simply the visibility defined in eqn. 5.14.
Therefore V (u, v) is given the name complex visibility. It is important to
keep firmly in mind that the visibility amplitude is not the amplitude of
the fringes but rather the amplitude of their contrast. Putting eqn. 8.20
into words: the complex visibility of the fringe pattern is the Fourier
transform of the source brightness distribution.6

We have seen that the visibility V (u, v) is the Fourier transform of
the source brightness I(�, m) at a single point in the the (u,v) plane.
What is needed to reconstruct the source distribution fully is a series of
measurements of the visibility for different baseline lengths and orien-
tations, giving a range of values of kB and hence of (u,v). Then if the
distribution of these measurements is dense enough in the (u,v) space
the following approximation can be made

I(�, m) =

∫ ∫
V (u, v) exp i(�u + mv) du dv

≈
∑

V (u, v) exp i(�u + mv)∆u∆v, (8.22)

where the sum is taken over all the measurements and where ∆u, ∆v
are the spacings between the measurements. Evidently both the phase
and magnitude of the visibility have to be well determined if the image
reconstruction is to be reliable.

6This statement is one version of the van Cittert–Zernike theorem. See for example
M. Born and E. Wolf, Principles of Optics, seventh edition, published by Cambridge
University Press, (1999).
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For clarity in presentation of the analysis of stellar interferometers
it has been assumed, thus far, that the starlight is monochromatic. In
practice, in order that the fringes are bright enough to give reliable
measurements, the spread of wavelengths used can be 10% of the mean
wavelength. Thus the fringes of the different colours will only be su-
perposed around the location where the optical path difference is zero,
which is located at image of the phase centre on the target. Only here
will the fringe contrast accurately reflect the true visibility. It is essen-
tial therefore to make measurements on the visibility amplitude close to
the central white fringe. Also the displacement of the white fringe from
the image of the phase centre determines the phase of the visibility: a
displacement of f fringe widths gives a phase of 2πf . Note that the
number of clear fringes is much fewer than the number, B/d, expected
with a monochromatic source: for a bandwidth of 10% there will be
roughly 10 such fringes.

When the source is centrosymmetric so that I(�, m) is symmetric
around � = 0 and m = 0, examination of eqn. 8.20 shows that the
complex visibility is always real. In this simple case all that is required
are measurements of the visibility amplitude. In addition when the
source is centrosymmetric the measurements only need to be made for
one baseline orientation to fix the source intensity distribution. A simple
example is a circular source of uniform intensity for which the calcula-
tion of Section 6.7 can be re-used. With the notation of figure 8.18 an
element of the source at (ρ, α) covers a solid angle

d� dm = sin ρ dρdα = ρ dα dρ

to a good approximation, and B ·∆s = Bρ cosα. Then

V = ∆I

∫ θ

0

∫ 2π

0

exp (ikBρ cosα) ρ dρ dα,

where ∆I is the intensity per unit solid angle of the source and θ is its
angular radius. Thus

V = 2π ∆I

∫ θ

0

J0(kBρ) ρ dρ

= 2π θ2 ∆I J1(kBθ)/(kBθ)

= 2I J1(kBθ)/(kBθ), (8.23)

where I is the total intensity of the source. Figure 8.18 also shows
this distribution for a source of 20mas angular diameter observed at a
wavelength of 2.2µm. When the source is more complex in shape the

Baseline in metres
0 10 20 30 40 50 60 70

V
is

ib
ili

ty

0

0.2

0.4

0.6

0.8

1 Source

Telescope

ρ

α

Fig. 8.18 Visibility versus baseline for
a 20mas source observed at a wave-
length of 2.2 µm.

measurement of the phase of the visibility is also required.

The effect of the piston component of the atmospheric distortion has
been mentioned above. If the interferometer consists of a pair of tele-
scopes there is the lag/lead in phase between them produced by changes
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in refractive index across the whole area of either telescope. Electronic
systems are used to track these fringe movements and provide compen-
sating delay line correction. However it is not possible to separate the
displacement of the white fringe due to the visibility phase from the
much larger effect due to the path length changes in the atmosphere.
Thus each determination of the phase of the visibility contains an un-
known error, larger than 2π. The phase can be recovered if a suitable
centrosymmetric reference star lies within the isoplanatic region around
the target by relating the positions of the target fringe to the refer-
ence star’s image. In other cases phase recovery requires the techniques
described in the sections following this.

8.9 Aperture arrays

The apertures used to collect the interfering beams can be mirrors them-
selves in alt-az or equatorial mountings which return the light to a fixed
telescope, as in the COAST array at Cambridge in the UK, or they can
be individual telescopes. In the case of COAST the mirrors are moved
to various stations along three tracks forming a Y-shape of about 65m
extent. In this way baselines with a variety of lengths and orientations
can be readily obtained. When the telescopes are stationary the rota-
tion of the Earth provides the means to change the orientation of the
baselines.

An alternative approach in interferometer imaging has been widely
used. A plate with many identical circular holes across its surface is
placed at the exit pupil plane of a large telescope. The individual holes
function as separate telescopes and interference between all these pairs
of telescopes is then simultaneously present in the image plane. If the
orientations and lengths of the baselines formed by the pairs of aper-
tures are all different then fringe patterns for an each aperture pair have
a unique and known fringe spacing and orientation. This permits the
fringe patterns to be disentangled using Fourier analysis. With the aper-
ture diameters being smaller than r0 and the exposures being shorter
than τ0 a uniform distortion is frozen over each aperture. Frequent ex-

Fig. 8.19 Mask used for aperture syn-
thesis on the Keck I telescope projected
onto the primary mirror. The hexagons
are the 36 segments from which the
10m diameter mirror is made.

posures are made to increase the overall signal relative to noise from
electronics and scattered light. Figure 8.19 shows the aperture pattern
used by Tuthill and colleagues7 with the segmented Keck I telescope,
projected back onto the primary mirror. The 21 apertures are placed so
as to avoid any of the 210 baselines being the same as any other baseline,
which makes these 210 fringe patterns distinguishable from one another
because each has a known unique fringe orientation and fringe spacing.

As noted earlier, it is essential to measure the phase accurately as
well as the amplitude of the complex visibility in order to be able to

7P.G. Tuthill, J.D. Monnier, W.C. Danchi, E.H. Wishnow and C.A. Haniff: Pub-
lications of the Astronomical Society of the Pacific 112, 555 (2000).
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reconstruct the source distribution. Of these the phase measurement is
the most troublesome because the path difference is continually changing
by tens of microns thanks to the piston component of the atmospheric
distortion. If there is a bright unresolved star within the isoplanatic cone
around the target of interest its white fringe can be used to give a phase
reference. When no reference is available the following less complete
solution is adopted. Visibilities are measured for each baseline provided
by a triangle of apertures. The measured phases of the visibility function
are then

φ12 = φ0
12 + φ1 − φ2,

φ23 = φ0
23 + φ2 − φ3,

φ31 = φ0
31 + φ3 − φ1.

Here φ0
ij is the undistorted phase for the pair of apertures (i,j). The

measured phase, φij , is this true phase altered by the distortions at the
two apertures involved: φi and φj . Adding these three equations gives
the phase closure relation

φ12 + φ23 + φ31 = φ0
12 + φ0

23 + φ0
31. (8.24)

This sum recovers the sum of the three actual phases. When there are
many apertures the phase closure relations from all independent sets of
three apertures provide almost as many equations as there are phases.
Only a small amount of external information is then required to fully
reconstruct the image. Measurements on each short exposure taken will
yield different values of the visibility phases but give, within errors, the
same closure phases. On the other hand the magnitude of the visibility
will be the same within experimental errors from one exposure to the
next. It is important to appreciate that, in general, the visibility phases
and the image can be simultaneously reconstructed from the closure
phases and visibility amplitudes.

8.10 Image recovery

Once the visibilities are available from enough baselines an attempt can
be made to recover the image using eqn. 8.22. However, as is now
shown, this image is imprinted with the distribution of the baselines in
(u,v) space. Suppose W (u, v) is the Fourier transform of the true source
distribution I(�, m). Then the image recovered is

R(�, m) =

∫ ∫
W (u, v)g(u, v) exp [ i(�u + mv) ]dudv, (8.25)

where g(u, v) is unity at each point a measurement was made and zero
elsewhere. Thus

R(�, m) = I(�, m) ⊗ G(�, m), (8.26)

where

G(�, m) =

∫ ∫
g(u, v) exp [ i(�u + mv) ]dudv
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is the Fourier transform of the distribution of the baselines. G(�, m) is
the diffraction pattern produced on the (l, m) plane by the sampling in
the (u, v) plane. It has complicated lobes which smear the actual source
distribution into the reconstructed image R(�, m).

Various algorithms have been invented to try to extract the actual
source distribution I(�, m) from R(�, m). A commonly used example
called CLEAN will be described here.8 The procedure is to pick out
the brightest cell in the image located, let us suppose, at (�1, m1) with
intensity R1. Then a distribution γG(� − �1, m − m1)R1 is subtracted
from the image brightness distribution where γ is a constant of around
0.5 called the loop gain. This step removes what was the brightest region
of the source taking account of the known smearing of the aperture
pattern. This step is then repeated to remove the next brightest cell, and
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Fig. 8.20 Images of an evolved carbon star CIT6 and a Wolf–Rayet star WR104,
obtained with aperture synthesis at the Keck I telescope. This figure originally ap-
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J.D Monnier, W.C Danchi, E.H Wishnow and C.A Haniff; PASP: 112, 555 (2000))
Copyright 2000, the Astronomical Society of the Pacific; reproduced with the per-
mission of the editors, and by courtesy of Professor Tuthill.

so on. Eventually the residual image after these successive subtractions
will be of near-uniform low intensity containing only background light
and detector noise. Finally in order to recover the best estimate of
the actual image the ‘sources’ at (�i, mi) with intensities γR(�i, mi) are
convoluted with the point spread function (PSF) of the full telescope
aperture. In practice γ needs to be tuned for each set of observations.
Images obtained by Tuthill and colleagues from the Keck I telescope
with a 15 hole mask using a related analysis technique are shown in
figure 8.20.

8J.A. Hogbom, Astronomy and Astrophysics Supplement 15, 417 (1947).
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It is perhaps surprising that the masking technique is so successful
in producing a diffraction limited images after throwing away 90% or
more of the incident light. However by restricting each aperture to the
size of the Fried parameter and by making short exposures the temporal
and spatial variation of the atmospheric distortion is eliminated from
each exposure, and as a result fringes with good signal to noise are ob-
tained. From such fringes obtained with multiple apertures the analysis
described here can simultaneously eliminate the atmospheric distortion
and reconstruct the image. Exposures with the full aperture simply
superpose the images from all the area elements of the lens with their
different and time varying distortions.9

8.11 Comparisons with radioastronomy

The resolution obtained with an interferometer of baseline length B at
wavelength λ is λ/B. By chance the best resolution recently achieved
with optical interferometers is very similar to that of current radiote-
lescopes. The difference in wavelengths (∼1µm and ∼10 cm) is com-
pensated by the difference in baseline lengths (∼100m and ∼104 km).
However radio interferometry and optical interferometry differ critically
in the way radio and light waves are detected. Detectors of light re-
spond to the intensity of the radiation, which is proportional to the
electric field squared EE∗. On the other hand detectors of radio waves
are electric circuits in which the current is proportional to the electric
field. The radio signal from one telescope can therefore be detected, am-
plified and even recorded without losing any of its phase content. This
amplified signal (with a universal time marker) is then transmitted from
its parent radiotelescope site to a distant location where it can inter-
fere with another telescope’s signal. In the contrasting case of optical
interferometers coherent amplification with a phase reference is feasible
but would degrade the signal to noise appreciably. The light from both
telescopes must be transmitted directly along optical paths and brought
to interfere. In addition the lengths of these paths must be measured to
a fraction of the much smaller optical wavelength.

The development of the technology to measure distances of order
100m to a precisions of 10 nm, and to move mirrors to a comparable
precision at speeds of ms−1 is relatively recent. The lasers required in
the measuring process have themselves to be stable to an equivalent
precision, namely better than one part in 1010. Radio interferometry
was implemented earlier from a simpler technological base and has ac-
cumulated vastly more data. The problems of phase and image recovery
in the presence of atmospheric distortion are common to both types of
interferometry. Consequently many analysis techniques, such as phase
closure, which were originally developed for the interpretation of radio

9I am indebted to Professors Tuthill and Haniff for clarification on a number of
issues related to masking.
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data have been re-used in analysing optical data.

8.12 Gravitational wave detectors

Einstein, on the basis of his general theory of relativity, predicted the
existence of gravitational waves. Any non-symmetric accelerating mass
will emit gravitational radiation, but a perfectly spherical star collaps-
ing radially would not radiate. The only experimental evidence is as
yet indirect: this comes from measurements of the slow changes in the
orbital period of a binary pulsar PSR1913+16. The period is changing
at just the rate expected if the system is radiating energy in the form
of gravitational waves, and for the measurement of this effect Hulse and
Taylor were awarded the 1993 Nobel Prize in Physics.

Gravitational waves travel at the speed of light and distort space-
time as they travel though it. The simplest gravitational wave excites
quadrapole oscillations of space-time, and this motion is illustrated in
figure 8.21. A circle of free masses, initially at rest, is shown at time
intervals of one quarter period as a plane gravitation wave passes. In

τ0, 

 /4τ

 /2τ

 /4τ3 

Fig. 8.21 Distortion of a circle of
test masses produced by gravitational
waves travelling perpendicular to the
diagram.

one half cycle the ring is stretched in one direction and squashed at
right angles; in the next half cycle the distortion is reversed. If the arms
of a Michelson interferometer are aligned along the dotted lines then
the relative lengths of the arms would change at the frequency of the
gravitational wave, and the interference fringes would oscillate to and
fro in synchronism. Of course if the wavefronts are not parallel to the
plane of the interferometer there would be a reduced effect. The effects
of gravitational waves are all weak because the gravitational coupling
is itself weak compared to electromagnetism: for example two protons
repel one another electrostatically with a force 1036 times stronger than
their gravitational attraction. The amplitude of a gravitational wave is
expressed as the strain or change in length per unit length of the fab-
ric of space-time. A supernova explosion occuring at the edge of our
galaxy is expected to give a burst of gravitational waves arriving at the
Earth lasting for a few milliseconds, with a frequency around 1 kHz, and
with a strain of around 10−18. A pair of merging neutron stars would
give a chirp of radiation in which the frequency would rise from 40Hz
to 1 kHz over several seconds with a strain of order 10−21. A strain of
10−18 amounts to 10−6 nm in 1 km, and the measurement of such a small
quantity is a formidable challenge. This is the ultimate test of interfer-
ometry where displacements equal to 10−6 of a fringe must be detected.
Nonetheless the current rate of improvement in the sensitivity of huge
Michelson-type inteferometers makes it likely that the direct detection
of gravitational waves will occur within a decade.

It might appear that this precision is unattainable because the dis-
placements are much smaller than the diameter of an atom. However
an em wave reflected from a surface is reflected from all the atoms on
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that surface, so it is the average position of the atoms that determines
the phase of the reflected wave.

A sketch of the principal features of the current large gravitational
wave detectors is shown in figure 8.22. The volume of the optical paths
is enclosed and evacuated in order to eliminate refractive index varia-
tions and convection currents. The laser prefered is a stabilized Nd:YAG
laser producing a beam of about 10W at wavelength 1064nm. This feeds
the beam splitter of a Michelson interferometer whose arms are as long
as feasible in order to maximize the displacement when a gravitational
wave arrives. In the case of the larger LIGO detectors in the USA each
arm consists of a 4 km long Fabry–Perot cavity resonant with the laser
wavelength, while the GEO detector in Germany has arms 600m long.
Throughout the interferometer the light beam is in the TEM00 mode
with its simple Gaussian profile. This makes it possible to use small
diameter mirrors despite the great distances involved. The mirrors and
beam splitter are freely suspended so that the mirrors act as the test
masses for the gravitational wave. They have reflection coefficients close
to unity so that the light makes many round trips within the cavity.
This feature effectively increases the cavity length by a similar factor
and hence too the sensitivity. By suitably positioning the beam split-
ter it is arranged that the returning beams from the cavities interfere
in such a way that all the light emerges toward the laser. Toward the
photodiode the beams interfere destructively, which is called the dark
fringe condition. This arrangement has two advantages. Firstly it is far
easier to detect a small oscillation in light level at the photodiode if its
quiescent state is dark, than if it were carrying a large current whose
fluctuations can mask the signal. Secondly the light emerging toward
the laser is reflected back into the Michelson by a recycling mirror in
front of the laser; this power recycling technique boosts the light level in
the cavities by an order of magnitude. Efficient recycling requires that
the recycling mirror and the Michelson form another resonant cavity.

The difference between the travel times for N passes in the two arms
of an interferometer when the gravitational strain is equal to +S and
−S along the arms is

∆t = 4NLS/c,

where L is the rest length of each arm. The phase difference between
Detector

Laser

Recycle
 mirror

Cavity

Cavity

 Beam
splitter

Fig. 8.22 Layout of a Michelson inter-
ferometer for gravitational wave detec-
tion.

light emerging after N passes along the arms is

∆φs = 2πc∆t/λ = 8NπLS/λ = 4πScτs/λ (8.27)

where τs is the storage time. In obtaining this simple result two effects
were neglected. Firstly the frequency fg of the gravitational wave may
be high enough that the period of one oscillation is shorter that the
storage time. In this case there can be a reversal of the strains during
the time the light is in the arms which reduces the phase difference: in
the limit of very high frequency gravitational waves there would be no
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phase difference. Secondly, all the light has been assumed to stay in
the cavities for the full storage time, whereas it continually arrives and
leaves through the entry mirror. τs must be redefined as the time it
takes the intensity of radiation in the cavity to fall by a factor e when
the laser is turned off. When both effects are taken into account the
phase difference becomes

∆φ = ∆φs/
√

1 + (2πfgτs)2. (8.28)

At very high frequencies such that fgτs 	 1 this reduces to

∆φ = 2cS/(λfg),

and this is called the storage time limit. Current experiments use kilo-
metre long cavities with finesses of order a few hundred, which means
the storage times approach one millisecond. This implies that detectors
are only likely to be sensitive to gravitational waves of frequencies up to
a few kHz.

8.12.1 Laser-cavity locking

It has emerged in the last section that the operation of the interferometer
requires that several cavities should resonate with the laser wavelength.
The crucial process of searching for and maintaining this condition is
called locking the cavity and the laser. In order to understand how this
is achieved we first go back to figure 5.31, which shows the intensity
transmitted through a Fabry–Perot etalon. As a result the reflected in-

Reflected
intensity

Frequency off
  resonance

- +

Fig. 8.23 The sign of the change in the
reflected intensity from a Fabry–Perot
cavity when the the cavity length is in-
creased reverses at resonance. This is
equally true when changes are made in-
stead in the laser frequency.

tensity must have the shape around resonance that is shown in figure
8.23. In this figure the variation of reflected intensity is plotted against
the frequency of the light or equivalently the cavity length. Above res-
onance an increase in frequency causes a rise in the reflected intensity
while below resonance an increase in frequency causes a fall in intensity.
This difference is the basis of the Pound–Drever method for locking the
cavity and laser. It is an illustration of how optics and electronics can
be integrated to achieve sophisticated and delicate control systems.

Figure 8.24 shows a simplified outline of the equipment used. Light
from the laser passes through an optoelectronic modulator across which
a voltage is applied from a radio-frequency oscillator at tens of MHz.
The effect of applying an oscillatory voltage across the modulator is to
cause a small amplitude oscillation in its refractive index. Consequently
the light emerging from the modulator has a synchronous oscillating
phase. Optical modulators are discussed in more detail in Chapter 11.
The electric field of light which has passed through such a modulator is

E = E0 exp [ i(ωt + β sin (Ωt))], (8.29)

where ω is the angular frequency of the incident light, Ω is the angular
frequency of the applied radio frequency voltage, and β is the very small
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amplitude of the induced oscillation in phase. This is known as phase
modulation. With β small eqn. 8.29 can be approximated as follows

E = E0 exp (iωt) [ 1 + iβ sin (Ωt) ]

= E0 exp (iωt){1 + (β/2) exp (iΩt) − (β/2) exp (−iΩt)}. (8.30)

Thus the beam emerging from the modulator now contains three differ-
ent frequencies. The waves at angular frequency ω are called the carrier
waves; and the waves at angular frequencies ω ± Ω are called the upper
and lower sidebands. Now suppose the wave described by eqn. 8.30 is
reflected from a cavity which is near resonance for the carrier. The side-
bands will be well off resonance so their reflection coefficients are close
to unity and change little with the wavelength. Thus the amplitude of
the electric field of the reflected wave is

Er = E0 exp (iωt){rc + iβ sin (Ωt)/2}, (8.31)

where rc is the reflection coefficient of the cavity for the carrier at angular
frequency ω. Hence the reflected intensity is

I = ErE
∗
r = A + B cos (Ωt) + (E2

0β/2)�m[ rc − r∗c ] sin (Ωt), (8.32)

where A and B need not be calculated in detail. As shown in figure
8.24 the reflected light falls on a photodiode detector which produces
an electrical signal proportional to the light intensity. This signal is Mixer
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Fig. 8.24 Pound–Drever stabilization
scheme. This locks the Fabry–Perot
cavity length to an integral multiple of
half wavelengths of a laser. The solid
lines show the light paths while the bro-
ken lines carry electronic signals.

taken to the mixer where it is multiplied by a signal K sin (Ωt) coming
directly from the same radio-frequency oscillator that provides the beam
modulation; finally the mixer output is time averaged. As a result only
the term in eqn. 8.32 which has the sin (Ωt) variation contributes to this
time average. Apart from a multiplicative constant, the final output is

V = �m[ rc − r∗c ]. (8.33)

The reflection coefficient for a cavity is available in eqn. 5.51

rc = r [ exp iδ − 1 ] / [ 1 − r2 exp iδ ],

where r is the reflection coefficient at either mirror of the etalon and δ
is the phase change accumulated by light in going to and fro once in the
cavity. Close to resonance δ = 2nπ + ε with ε being small so that the
reflection coefficient of the cavity can be approximated as follows

rc = iεr/(1 − r2) = −r∗c .

Substituting this value for rc into eqn. 8.33 gives

V = 2rε/(1 − r2). (8.34)

This output has the desired property that it changes sign with ε at
resonance and can be used as a control signal to reach resonance. This
signal drives an actuator to move one of the cavity mirrors (as shown in
8.24), or is used to tune the laser frequency.
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8.12.2 Noise sources

Three sources of noise restrict the sensitivity of the interferometers used
in gravitational wave searches: seismic, thermal and shot noise. How
important these are and how the detectors are designed to reduce the
overall noise are now described. There is some variation between the
importance of different noise sources, depending on the detector designs

Seismic noise encompasses ground motion due to Earth tremors, to
the wind blowing over the surface and to human activity. This last
source can involve movements of tens of microns due to vehicles moving
at hundreds of metres distance. The intensity of seismic noise increases
as the frequency falls and dominates over other sources below approx-
imately 10Hz. The mirrors and beam splitter are all suspended from
spring loaded supports by pairs of thin wires like pendulums. The sup-
ports absorb vertical disturbances and pendulum bobs are insensitive to
high frequency horizontal movements of their supports. Fine control of
a mirror’s position and damping is made magnetically.

Thermal noise is due to the minute thermal vibrations of all the me-
chanical components in the optical chain. It dominates other noise
sources over the mid-frequency range around 100Hz. Each mechani-
cal object has its own natural frequency of vibration and at these fre-
quencies the thermal vibrations can stimulate motion that amounts to a
significant noise as far as gravitational wave detection is concerned. The
pendulums formed by the mirrors and their suspensions swing at around
one hertz and the wires vibrate like violin strings at a few hundred hertz.
These are sharp resonances and only affect a narrow frequency range.
The mirrors themselves can vibrate and are made of fused quartz for
which the resonances are also sharp. However at frequencies away from
the sharp resonances the mirrors when locked are highly stable.

The final noise source of importance arises from the natural fluctua-
tions in the intensity of the laser beam.10 These fluctuations can both10This is a quantum effect caused by

the variation of the number of photons
at any one time. The topic is discussed
in Chapters 14 and 15.

mask true signals and also affect the stabilization and they form the
dominant noise source at high frequencies. In summary the noise is
equivalent to an uncertainty in the arm length

∆L =
√

h̄cλ/(4πτP ), (8.35)

where h̄ is Planck’s constant/2π, P is the optical power in the cavity
and τ the duration of the measurement. Over a 4 km path and with a
laser of 1µm wavelength the detectable strain is

S = 3.96 10−19/
√

Pτ (8.36)

with P in watts and τ in ms. Evidently P must be made as large as pos-
sible. This is partly achieved by locking the cavities on resonance with
the laser so that the energy in the cavities is large than the laser beam
intensity by a factor roughly equal to the cavity finesse. In addition the
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power recycling increases the light stored in the Fabry–Perot cavities by
a further large factor. The aim is to store powers of up to 100kW in
the future. Mirror surfaces have therefore to be smooth enough to avoid
scattering or absorbing energy from the beams. The mirrors through
which the light enters the cavities have to be highly homogeneous to re-
duce internal scattering and the consequent heating which changes the
refractive index of the glass. The power cannot be increased indefinitely
because eventually practical problems arise through the heating of opti-
cal components.

The gain in sensitivity brought about by increasing the light stored
in the Fabry–Perot cavities has two equivalent interpretations. From
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Fig. 8.25 Noise sources of modern kilo-
metre long gravitational wave detec-
tors.

one viewpoint we can see that the longer the storage time is, the longer
will be the path over which the light travels during the passage of a
gravitational wave and hence the higher the sensitivity. From another
perspective the increase in light stored reduces the fractional fluctuation
in light intensity and this also increases sensitivity.

The noise levels achievable with current detectors are notionally indi-
cated in figure 8.25. Gravitational signals need to produce strains larger
than the noise levels shown there in order to be detectable. The value
of S is determined by multiplying the ordinate from the graph by the
square root of the bandwidth of the signal. In broad terms the gravita-
tional wave detectors are optimized for detection of waves in the audio
frequency range 10–5000Hz.

8.13 Gravitational imaging

The first critical test for the general theory of relativity was provided
by observations to find out whether light passing near to the Sun would
be deflected by the distortion of space-time due to its mass. A simple
analogy is provided by rolling a ball bearing across a flat, taut, horizontal
sheet of rubber. Its path would normally follow a straight line. On the Mercury’s image was only visible be-

cause there was, by chance, an eclipse
at the same time it passed into the
Sun’s ‘shadow’. A comparison was
made of the position of Mercury against
the star field on photographs recorded
during the eclipse and at another time
when the Sun’s image was far off. The
measurement was unfortunately only
accurate to around 0.5 arcsec. Radiote-
lescopes can follow a planet’s radio im-
age very close to the Sun without the
help of an eclipse, and they confirm the
general relativistic prediction within an
experimental error of 0.01 arcsec.

other hand if a heavy weight is placed on the sheet the sheet is bowed
down in that region so that the ball bearing would be deflected from
a straight line path. In 1919 the deviation of light from Mercury as it
approached extinction behind the Sun was measured and found to agree
with the predicted 1.750 arcsec. Quantatively a ray of light passing at a
minimum distance r from a mass M is deflected through an angle

α = 4GM/(c2r) = 2Rs/r, (8.37)

called the Einstein angle. G is the gravitational constant (6.67 10−11

kg−1m3s−2) and Rs (2GM/c2) is the Schwarzschild radius for a mass M .
In the case of the Sun (with mass 1.99 1036 kg and radius 6.69 105 km)
this Schwarzschild radius is only 1.4 km. When source and mass are axi-
ally symmetric around a line through the observer and all are separated
from one another by very large distances the observer may see a circu-
lar Einstein ring image of the source extending all round the deflecting
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Fig. 8.26 Partial Einstein rings from several sources at varying distances produced by
the galaxy Abell 2218. The image was made with Hubble Space Telescope; courtesy
Professor R.Ellis (California Institute of Technology), Professor W. Crouch (Univer-
sity of New South Wales) and the NASA Space Telescope.

mass. Sections of Einstein rings can be seen in figure 8.26 recorded by
the HST. The deflecting mass is the galaxy Abell 2218 and the arcs are
images of sources at various large distances beyond this galaxy. The
image does not need to be in colour because the gravitational deflection
is achromatic!

Other effects are also observed when there is good alignment of source,
the deflecting mass and the Earth. A few quasars have been detected
whose high redshifts are sufficiently large that they must be far enough
from the Earth that they ought to be undetectably faint. What happens
in such cases is that an intervening galaxy is focusing a cone of rays to-
ward the Earth and in so doing making the quasar appear brighter than
it really is. This same focusing effect is relied on to assist in the search
for brown dwarf stars. Such stars may contribute to the dark matter in
our galaxy, and being dark they are not easy to detect. The technique
to detect them is, paradoxically, to monitor continuously the intensities
of a large number of stars in a small satellite galaxy of our own galaxy
called the Large Magellanic Cloud (LMC). Whenever a brown dwarf in
our galaxy passes in front of a star in the LMC the focusing effect can
cause the apparent brightness of the star in the LMC to rise by a big fac-
tor and then to fall back to its original value after the ‘eclipse’. Similar
microlensing events involving a brief change in intensity can be mim-
icked by astrophysical processes that cause the star in the LMC to heat
up temporarily. However such processes affect the distribution of the
star’s energy output across the spectrum. This alternative cause of star
brightening can therefore be excluded if the star shows an identical and
simultaneous rise and fall in intensity for blue and red light separately.
Only a few brown dwarf stars have so far been detected by this method
so that it is unlikely that collectively they are a major contributor to
dark matter.
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Exercises

(8.1) An unresolved star of apparent magnitude +1.6 is
observed with telescope whose primary has diame-
ter 2.4 m. The image falls on a detector which has
a response of 1AW−1 of luminous intensity. What
charge accumulates on the detector in 1ms?

(8.2) Suppose, in conditions of seeing where the Fried
parameter is 20 cm, that the distortion is entirely
tip/tilt. Calculate the rms variation in the separa-
tion between the images of a laser guide star and a
real guide star in the image plane of a telescope of
focal length 30 m. The two stars can be assumed
to lie in the same isoplanatic cone.

(8.3) Two unresolved stars of equal intensity have an-
gular separation 0.003 arcsec. What separation is
required for a pair of two telescopes used as an in-
terferometer in order to resolve the stars in light of
wavelength 500 nm? In what way is the orientation
of the baseline important?

(8.4) Show that if an astronomical source is centrosym-
metric the complex visibility is always real.

(8.5) What power level is required in a 4 km long cavity
in the arm of a gravitational wave interferometer
working at an optical wavelength of 1 µm in order
to make it feasible to detect gravitational waves
with strain 10−21 and frequency 1 kHz? Estimate
the storage time if the cavities have a finesse of 500.

(8.6) Calculate the complex visibility of two equal in-
tensity unresolved sources an angular distance 2θ
apart.

(8.7) According to the Sparrow criterion practically all
the information on the detailed features of a source
can be retrieved if the detector pixel size is half
the resolution limit of the telescope. Hence relate
the optimal f/# of the telescope to the pixel size,
p, and the mean wavelength, λ, of the radiation
detected. Can you suggest any reason for caution
in interpreting the features detected in the image
when the samplings across the image are spaced
more closely than this limit (oversampling)?

(8.8) A classical Cassegrain telescope has a primary mir-
ror with focal length 8m and a secondary for which
a is 4m and e is 1.2. Calculate the separation of
the mirrors, the location of the final focus and the
plate scale.

(8.9) What is the angular field of view over which
a paraboloidal mirror of 2.4 m diameter and fo-
cal length 5m produces an image with less than
0.5 arcsec distortion? What is the value of the cor-
responding field of view for the Hubble Space Tele-
scope design?

(8.10) The Fabry–Perot cavities in a gravitational wave
detector have confocal mirrors a distance L apart
and the radiation stored has wavelength λ. What
is the minimum width, w, of the TEM00 mode at
the mirrors? If the mirrors are 4 km apart and the
light has wavelength 500 nm what is the value of
the corresponding width parameter w0?
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Classical electromagnetic

theory 9

9.1 Introduction

In 1864 Maxwell presented a unified theory of electric and magnetic
fields, which is now encapsulated into four fundamental equations that
take his name. These, together with Lorentz’s formula for the force on
any charge in an electromagnetic field, are the basic elements of clas-
sical (that is non-quantum mechanical) electromagnetic theory. In this
chapter Maxwell’s equations will first be introduced and used to infer,
as Maxwell did, that em waves exist and that light is simply one form of
electromagnetic radiation. Next, the energy content and energy flow in
electromagnetic waves will be discussed. The expression for the energy
flow in an electromagnetic field will be deduced by applying the law of
conservation of energy to the electromagnetic field. This completes the
formal basis of the classical theory of electromagnetism and provides
the starting point for discussing the behaviour of light passing through
matter. That discussion takes up the two following chapters and covers
polarization, absorption and dispersion effects.

Many optically useful materials are dielectrics, that is poor conductors
of electricity, and are also only weakly magnetic. The emphasis in this
chapter will be on homogeneous and isotropic dielectrics when the fields
in the electromagnetic radiation are sufficiently small that the response
of matter is linear, and the dielectric is stationary. The label used here
for such materials in such fields is HIL. In Chapter 9 the discussion will
be extended to anisotropic dielectrics, materials with which light can be
manipulated through its polarization. The high electromagnetic fields
in laser beams produce very striking non-linear effects in materials and
these will be discussed after introducing lasers in Chapter 14. Propaga-
tion of electromagnetic radiation in metals, insofar as it affects optics,
is dealt with in Chapter 11.

When the integral versions of Maxwell’s equations are applied at an
interface between different media they impose simple relationships be-
tween the fields on either side of the surface. In the central portion of
this chapter the consequences of these boundary conditions are followed
through for electromagnetic waves impinging on interfaces between di-
electrics. This analysis not only proves the laws of reflection and re-



230 Classical electromagnetic theory

fraction from first principles but also determines the amplitudes and
intensities of the reflected and refracted waves. The reflected and re-
fracted amplitudes are found to depend strongly on the polarization of
the incoming waves: if for example unpolarized light is incident on a
dielectric/dielectric interface at Brewster’s angle the reflected light be-
comes plane polarized. Another product of the analysis presented here
is an explanation of wave behaviour in total internal reflection and frus-
trated total internal reflection, a topic broached in Chapter 2.

Anti-reflection coatings are essential for the optics of modern cameras
because the number of lenses employed is such that most of the light
would otherwise be lost in reflections. On the other hand, laser safety
goggles are required to reflect essentially all the incident radiation over
a restricted wavelength range. An account is given below of the use of
thin multiple layers of dielectrics to form interference filters which either
selectively reflect or transmit a range of wavelengths.

The last portion of the chapter is used to discuss modes of the elec-
tromagnetic field and their propagation in simple waveguides.

9.2 Maxwell’s equations

The electric and magnetic fields, E and B, can be determined directly
by measuring the Lorentz force on a charge q travelling with velocity v,
namely

F = q(E + v ∧ B), (9.1)

and hence they are reasonably regarded as the physical em fields. The
effects these fields have on matter will now be outlined in order to put
Maxwell’s equations in context.

The action of an applied electric field on an atom or molecule is to
pull apart the positive charges (nuclei) and negative charges (electrons)
so that an electric dipole, p = dq is produced, where q is the total
charge of either sign and d is the vector separation of the centre of
gravity of the positive charge from the centre of gravity of the negative
charge. Electric fields within an atom are usually much larger than the

+
Applied 
E field

-

Fig. 9.1 Electric field lines around an
electric dipole.

applied fields so that the separation of the centres of the positive and
negative charges produced by the applied electromagnetic field is small
in comparison to the size of the atom/molecule. Applying Coulomb’s
law, the electric field due to a proton or electron at a distance equal
to an atomic diameter, 0.1 nm, is predicted to be of order 1011 Vm−1.
For comparison the electric field within a continuous 1 kW laser beam
is only around 106 Vm−1, but can be large enough to disrupt atoms in
very high power pulsed lasers. In some polar materials the molecules
have an intrinsic electric dipole moment and these dipoles would usually
point in random directions in the absence of any applied electric field.
In such polar materials an electric field exerts a torque (p ∧E) on each
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molecular dipole. In liquids and gases, where these dipoles are free
to rotate, this torque tends to align them parallel to the electric field
direction. The alignment of the molecular/atomic dipoles, whether in
polar or non-polar materials, caused by an applied electric field is called
polarization. Figure 9.1 shows the electric field produced by a dipole
which indicates that the electric field produced by the aligned dipoles
in a dielectric opposes the applied field. An auxiliary field D called the
electric displacement is therefore introduced

D = ε0E + P. (9.2)

P is the polarization of the material, defined as the electric dipole mo-
ment per unit volume Np, N being the number density of the elec-
tric dipoles. The materials considered in this chapter are homogeneous,
isotropic and at sufficiently low intensity of the radiation so that P is
linearly proportional to E, namely

P = ε0χE. (9.3)

Thus
D = ε0(1 + χ)E = ε0 εr E, (9.4)

where χ and εr are scalar constants for a given HIL material, and are
respectively the electric susceptibility and the relative permittivity.1 An 1The question of what D physically

represents is not spelled out anywhere
that I have looked. Feynman who pos-
sessed a very penetrating insight con-
cluded that it is simply a useful tool.

atomic/molecular susceptibility is also defined

α = p/(ε0E) = P/(Nε0E). (9.5)

In general magnetic dipoles are induced in any material by an applied
magnetic field. There is thus an auxiliary magnetic field defined by

H = B/µrµ0, (9.6)

where µr is called the relative permeability of the material. Equations
9.4 and 9.6 are called the constitutive relations for a material. For the
most part the effects of the magnetic dipoles are unimportant at optical
frequencies so we can generally take µr = 1 in all that follows.

Maxwell’s equations encapsulate the understanding of electromag-
netism that had been achieved by Faraday and other experimenters in
the early part of the 19th century. The integral forms are∫

S

D · dS =

∫
V

ρdV , (9.7)∫
S

B · dS = 0, (9.8)∮
E · dl = −

∫
S

(∂B/∂t) · dS, (9.9)∮
H · dl =

∫
S

j · dS +

∫
S

(∂D/∂t) · dS, (9.10)
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where ρ and j are the free charge density per unit volume and free current
density per unit area respectively. In the first two equations the surface
integrals are over a closed surface and the volume integrals are over the
volume enclosed. In the last two equations the line integrals are over
a closed path and the surface integrals over any surface spanning that
closed loop. The first of Maxwell’s equations is known as Gauss’ law of
electrostatics and relates the flux of the displacement current through a
closed surface to the total charge inside the volume. It is equivalent to
Coulomb’s law. The second equation is its magnetic counterpart, and
the zero on the right hand side expresses the fact that free magnetic
poles (monopoles) have never been detected. The last two equations
are Faraday’s law and the Ampere–Maxwell law. Faraday’s law relates
the electric potential around a closed loop to the rate of change of mag-
netic flux through that loop, written here for the case that the loop
is stationary. Analogous to this the Ampere–Maxwell law relates the
magnetic field integrated round a closed loop to the sum of the free
and displacement currents through that loop. The differential forms of
the equations are obtained by applying two theorems of vector calculus
which hold for any vector Z. These are Gauss’s theorem and Stokes’
theorem, respectively ∫

S

Z · dS =

∫
V

∇ · ZdV , (9.11)∮
Z · dl =

∫
V

(∇ ∧ Z) · dS. (9.12)

For example applying the latter to Faraday’s law gives∫
(∇ ∧ E) · dS = −

∫
S

(∂B/∂t) · dS,

which is true for any surface so we have

∇ ∧ E = −∂B/∂t,

which relates fields at a single place. The differential forms of Maxwell’s
equations2 are therefore2 Maxwell’s equations are consistent

with the special theory of relativity.
When the observer shifts to a differ-
ent inertial frame the Lorentz coordi-
nate transformations convert Maxwell’s
equations to an identical set of equa-
tions where the fields are now those
measured in the new frame. It had
seemed before Einstein’s discovery of
the special theory an odd quirk that
the corresponding Galilean transforma-
tions of Newtonian mechanics did not
reproduce Maxwell’s equations in the
new inertial frame. These matters are
discussed in Chapter 11 of the third edi-
tion of J.D. Jackson’s Classical Electro-

dynamics published by John Wiley and
Sons, New York (1998).

∇ · D = ρ (9.13)

∇ ·B = 0 (9.14)

∇∧ E = −∂B/∂t (9.15)

∇∧ H = j + ∂D/∂t. (9.16)

In free space in the absence of any charges Maxwell’s equations reduce
to

∇ · E = 0 (9.17)

∇ · B = 0 (9.18)

∇∧ E = −∂B/∂t (9.19)

∇ ∧ B = µ0 ε0 ∂E/∂t. (9.20)
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Materials, mainly metals, which contain large numbers of electrons that
are not bound to individual atoms, but are free to carry current when an
external electromagnetic field is applied, are good electrical conductors,
while those materials which contain very few free electrons are called di-
electrics. Electrical conductivity determines the current density through
the relation

j = σE, (9.21)

where the range of values that the conductivity σ in Ω−1 m−1 can
take is huge: copper, an excellent conductor, has a conductivity of
6.45 107 Ω−1 m−1 while a dielectric such as glass has a conductivity
10−12 Ω−1 m−1. In the right hand side of eqn. 9.16 the second term
is the displacement current whose size will depend on the polarization
of the material and, because of the time differential, on the frequency.
There is such a big difference between the relative importance of the
conduction and displacement currents in conductors on the one hand,
and in dielectrics (and free space) on the other hand, that it is help-
ful to separate the discussion of these two classes. The discussion of
the behaviour of waves in dielectrics will begin in this chapter and the
discussion of the behaviour of em waves passing through conductors is
postponed until Chapter 11.

Boundary conditions

It is essential to be able to connect the values of the electromagnetic
fields in one medium to those in another at any interface. Making the
connection requires the use of the integral equations and not the differ-
ential forms because the latter refer to fields at the same place. Figure
9.2 shows projections of a plane surface between materials 1 and 2. The

2D

1DMedium 1

Medium 2

Charge

density Q

Plan view

Fig. 9.2 Integration pillbox volume
straddling an interface between media.

broken lines enclose a volume of pillbox shape which straddles the sur-
face, the flat faces being of unit area and lying a negligible distance from
the interface. The actual interface is supposed to carry a surface charge
of Q Cm−2. Then applying Gauss’ law to this volume gives

D2n − D1n = Q, (9.22)

where D2n (D1n) is the component of D perpendicular to the surface in
material 2(1). Similarly Gauss’ magnetic law gives

B2n − B1n = 0, (9.23)

relating the normal components of the magnetic field. Next consider the
broken line closed path shown straddling the interface in figure 9.3. Here
there is assumed to be a surface current density of js Am−1 travelling
along the interface, perpendicular to, and into the plane of the diagram.
The long arms are of unit length and they are a negligible distance from
the interface. Applying the Maxwell–Ampere law to this path gives

1H

2H

Medium 1

Medium 2

σSurface current 

Fig. 9.3 Integration loop straddling an
interface between media.

H1t − H2t = js, (9.24)
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where H1t (H2t) is the tangential component of the magnetic field H1

(H2) at the interface. Applying Faraday’s law to the same circuit gives

E1t − E2t = 0. (9.25)

Consequently when, as is usually the case for dielectrics, there is no
surface charge or current, the tangential components of E and H, and the
normal components of D and B are all continuous at such an interface.

9.3 The wave equation

Maxwell’s equations lead simply to wave equations for electric and mag-
netic fields. Consider the example of free space first. Taking the curl of
eqn. 9.19, and then using eqn. 9.20 gives

∇ ∧ (∇ ∧ E) = −∂/∂t(∇∧ B) = −µ0 ε0 ∂2E/∂t2. (9.26)

The identity that is valid for any vector field X,

∇∧ (∇ ∧ X) = ∇(∇ ·X) −∇2X, (9.27)

when applied to E gives

∇ ∧ (∇ ∧ E) = −∇2E,

because of eqn. 9.17. Then eqn. 9.26 can be rewritten

∇2E = µ0 ε0 ∂2E/∂t2. (9.28)

Starting from eqn. 9.20 a similar set of steps gives

∇2B = µ0 ε0 ∂2B/∂t2. (9.29)

These last two equations are wave equations; and it was shown in Chap-
ter 1 that there are plane wave solutions. A suitable sinusoidal plane
wave solution is

E = E0 exp [i(ωt − k · r)], (9.30)

whose real part is the actual electric field, with E0 having Cartesian
components (E0x,E0y ,E0z). One reason for using a complex form is
that many mathematical manipulations will be simpler. Thus

∇ · E = ∂Ex/∂x + ∂Ey/∂y + ∂Ez/∂z

= {E0x∂/∂x + E0y∂/∂y + E0z∂/∂z}{exp [i(ωt − kxx − kyy − kzz)]}
= {−ikxE0x − ikyE0y − ikzE0z}{exp [i(ωt − kxx − kyy − kzz)]}
= −ik ·E.

Similarly
∇ ∧ E = −ik ∧ E, ∇2E = −k2E,

while
∂E/∂t = iωE, ∂2E/∂t2 = −ω2E.
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Substituting the calculated differentials into eqn. 9.28 or eqn. 9.29 gives

k2 = µo ε0 ω2.

Consequently both the wave equations will be satisfied provided the
wave velocity

c = ω/k = 1/
√

µ0 ε0. (9.31)

It was pointed out in Chapter 1 that the right hand side of this equation
was found to equal the velocity of light to within the experimental error.
This equality established at a stroke that light is one form of electromag-
netic radiation. According to the special theory of relativity the velocity
of electromagnetic radiation in free space is constant irrespective of the
motion of source or observer. The value of c was therefore fixed in 1984,
by convention, at the experimental value it had at that time

c ≡ 299 792 458 m s−1. (9.32)

This leaves the units of length and time to be defined in a way consistent
with this requirement.

Substituting the complex solution 9.30 into eqns. 9.17, 9.18 and 9.19
gives

−ik ·E = 0, (9.33)

−ik · B = 0, (9.34)

B = k ∧ E/ω = k̂ ∧ E/c, (9.35)

where k̂ is the unit vector k/k. These results justify the statements
made in Chapter 1 that E, B and k form a right-handed set of orthogo-
nal vectors for electromagnetic waves travelling in free space: the waves
are transversely polarized.

The preceding analysis requires very few changes when it is extended
to study electromagnetic waves in HIL dielectrics. These are materials
with high electrical resistance so there are essentially no free charges
or currents, but they can be polarized by an externally applied electric
field. Equations 9.13–9.16 with ρ = j = 0 and µr = 1.0 yield a wave
equation for the electric field

∇2E = µ0 ε0 εr ∂2E/∂t2, (9.36)

with a parallel equation for the magnetic field. The solutions are taken
to be sinusoidal plane waves

E = ReE0 exp [i(ωt − k · r)]. (9.37)

and the wave velocity is

v = ω/k = 1/
√

µ0 ε0 εr = c/
√

εr. (9.38)
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The magnetic field is

B = k ∧ E/ω = k̂ ∧ E/v. (9.39)

Substituting the plane wave solution into the first two of Maxwell’s equa-
tions shows that E, B and k again form an orthogonal set. We can
calculate the refractive index, n, from the wave velocity

n = c/v =
√

εr. (9.40)

It is worth noting that the relative permittivity can change a great deal
with the wavelength of electromagnetic waves. For example water has
a relative permittivity of 80 at low frequencies, while at optical wave-
lengths the refractive index of water is 1.33. Water molecules have an
intrinsic dipole moment, so evidently the time required to get these
molecular dipoles to align with the applied field is much longer than the
period of light oscillations. Glass and other materials used in passive
optical components are all HIL dielectrics. A characteristic impedance
is defined for any material as the ratio

Z = E/H, (9.41)

which gives in the case of dielectrics

Z =
√

(µ0/ε0 εr) = µ0c/n. (9.42)

In the case of free space the characteristic impedance3 Z0 = 377 Ω.3This quantity was previously men-
tioned in Chapter 1.

When the values of the fields in a plane wave are inserted into the
expression for the Lorentz force eqn. 9.1, the electric and magnetic
contributions are of magnitude qE and qEv/c respectively. Electron ve-
locities in matter are much less than c so that it is generally adequate
to ignore the magnetic force in a dielectric.

The relative importance of conduction and displacement currents for a
sinusoidal plane wave can be inferred by comparing j = σE and ∂D/∂t =
−iωε0εrE. The ratio of their magnitudes is

Rc/d = σ/ωε0εr. (9.43)

For glass the ratio, 0.113/εrω, is small at even low frequencies so it is
appropriate to ignore the conduction current for dielectrics. However, in
the case of copper this ratio becomes 0.728 1019/ω which remains large
up to optical frequencies.

9.3.1 Energy storage and energy flow

The energy stored in a capacitor at constant voltage and in an inductance
carrying constant current provide simple examples of energy storage in
electric and magnetic fields respectively. These cases will be considered
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here and the general expression for the total energy stored in any elec-
tromagnetic field will then be (plausibly) inferred.

The energy stored in a capacitor of capacitance C at a voltage V is
CV 2/2. Assuming the capacitor has parallel plates, each of area A and
a distance d apart, then ignoring edge effects C = ε0 εr A/d. Also the
electric field E = V/d. Hence the energy stored in the capacitor is

(ε0 εr A/d)(Ed)2/2 = ε0 εr (Ad)E2/2 = E · D(Ad)/2,

and the energy stored per unit volume is E ·D/2. The energy stored in
the magnetic field within a solenoid of inductance L carrying a current
I is LI2/2. Suppose the solenoid has area of cross-section A, length d
and carries m turns per unit length. Then L = µ0m

2Ad, while B =
µ0mI. Consequently the energy stored in the solenoid’s magnetic field
is, ignoring end effects,

[B2/µ0] (Ad)/2 = B · H(Ad)/2,

so that the energy density in the magnetic field is B · H/2. Thus the
total energy density in an electromagnetic field is

U = (E · D + B ·H)/2. (9.44)

Energy flow in electromagnetic radiation is a vector quantity N with
units Wm−2: in other words it is the power crossing unit surface area.
Maxwell’s equations do not in themselves determine this flow. Poynting
realized that the extra ingredient was to apply conservation of energy to
a volume of electromagnetic field. Take a volume V with surface area S.
The energy within V has three components whose changes must balance
out to zero. Firstly there is the change in stored energy per unit time
∂/∂t(

∫
V UdV ). Secondly there is the outward flow of energy per unit

time through the whole surface
∫

S
N · dS. This can be converted to

a volume integral using Gauss divergence theorem, giving
∫

V ∇ ·NdV .
Thirdly there is the work done per unit time on whatever charges are
enclosed in the volume

∫
V

E · jdV , where j is the current density. In
order that energy is conserved the total of these three contributions
should be zero. Thus

∂/∂t

(∫
V

UdV

)
+

∫
V

∇ · NdV +

∫
V

E · jdV = 0.

This balance must be true for any volume so that

∂U/∂t + ∇ ·N + E · j = 0. (9.45)

We now need to use Maxwell’s equations for media. The scalar product
of E with eqn. 9.16 gives

E · j = E · (∇ ∧H − ∂D/∂t). (9.46)
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Next we apply an identity valid for any pair of vectors to E and H

E · (∇ ∧H) = ∇ · (H ∧ E) + H · (∇ ∧ E)

= ∇ · (H ∧ E) − H · ∂B/∂t,

where eqn. 9.15 was used in replacing the second term on the right hand
side. Substituting this result in eqn. 9.46 gives

E · j = ∇ · (H ∧ E) − E · (∂D/∂t) − H · (∂B/∂t).

Rearranging this equation with the help of eqn. 9.44

∂U/∂t + ∇ · (E ∧ H) + E · j = 0. (9.47)

Comparing eqns. 9.47 with 9.45 allows us to identify the energy flow
vector as

N = E ∧ H, (9.48)

which is known as the Poynting vector. In the case of a sinusoidal plane
wave the actual (real) fields have Cartesian components

Ex = E0 cos (ωt − kz)

By = (E0/v) cos (ωt − kz)

which travel at velocity v and the magnitude of the Poynting vector is

N = [E2
0/(µ0v)] cos2 (ωt − kz),

along the z-direction. The time average of the Poynting vector takenFig. 9.4 Electric field lines: in the up-
per panel around a charge at rest and in
the lower panel around a charge moving
at constant velocity.

over many cycles of the electromagnetic wave is

N = E2
0/(2µ0v) = E2

0/2Z. (9.49)

Similarly the energy density is

U =
1

2
(ε0εrE

2
0 + E2

0/µ0v
2) cos2 (ωt − kz)

= (E2
0/µ0v

2) cos2 (ωt − kz), (9.50)

with a time average
U = E2

0/(2µ0v
2). (9.51)

The time averaged energy density and energy flow are necessarily very
closely related; from eqns. 9.49 and 9.51

N = vU. (9.52)

Electromagnetic fields also carry momentum as well as energy and it is
the momentum of the radiation from the Sun that deflects comets’ tails
so that they point radially away from the Sun. This momentum can
be determined by considering the reflection of a plane electromagnetic
wave at normal incidence from the flat surface of a perfect conductor.
The argument is only sketched here, but a rigorous proof can be found
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in Bleaney and Bleaney.4 The magnetic field H is parallel to the surface
in the dielectric but vanishes in the conductor so that the boundary
condition eqn. 9.24 reduces to H = js. Using eqn. 9.1 the radiation
pressure on the surface is

P = js ∧ B = BHk̂, (9.53)

where k̂ is a unit vector perpendicular to the surface. Now the time
average of the energy density in the incident waves is

U = BH = ED.

Thus the relation between the radiation pressure and the energy flux in
a plane electromagnetic wave is

P = N/v. (9.54)

9.4 Electromagnetic radiation

The electric field of a plane electromagnetic wave, being transverse, is
very different from the electric fields met in electrostatics. The upper

A B
)0c(t -t

)1c(t-t

Fig. 9.5 Electric field lines from a
charge at rest at A until time t0; it then
moves rapidly and comes to rest at time
t1 at B. The lines are drawn as they ap-
pear at a later time t.

panel of figure 9.4 shows the radial electric field of an isolated static
electric charge. If the same charge is moving with constant velocity the
field lines are compressed in the direction of motion as shown in the
lower panel; but they remain radial. What is needed to generate travel-
ling waves with transverse fields is for the charge to accelerate. Figure
9.5 pictures a simple example: the electric field lines are drawn for a
charge that is at rest at A up till time t0, it then moves to B and is
again at rest there from time t1. Before t0 the lines point back to A, and
after t1 they point back to B. Between these times there are kinks in the
field lines which give the electric field a transverse component. As time
passes the kinks move continuously away from the charge with velocity c
in free space. If the charge is instead made to oscillate between A and B
the field’s transverse component will alternate in direction giving waves
with transverse fields oscillating at the frequency of the charge’s motion.
Over an area of a wavefront whose dimensions are small compared to
its distance from the source the wavefront approximates to a plane wave.

The simplest source of radiation is an oscillating electric dipole. The
motion is simple harmonic with the charges oscillating about their com-
mon centre. Referring to figure 9.1 the charges exchange positions every
half cycle of the oscillation. As mentioned above an applied electromag-
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φ

r
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Z

Fig. 9.6 Local spherical polar coordi-
nates with the dipole axis as the polar
axis θ = 0. The r, θ and φ local axes
point in the directions of increasing r,
θ and φ respectively.

netic field acting on matter induces and aligns atomic and molecular
electric dipoles. An excited atom can be classically pictured as one
which has absorbed electromagnetic radiation and become a dipole in
which the electron is oscillating about the much heavier nucleus. Such

4Chapter 8 of the fifth edition of Electricity and Magnetism by B. and B. I.
Bleaney, published by Oxford University Press (1983).
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atomic excitations have frequencies ranging from the near infrared to the
ultraviolet. Molecular excitations, which involve the vibration and os-
cillation of the nuclei, have frequencies in the near to far infrared region
of the spectrum. The radiation from the dipole carries off energy and so
the oscillation dies away: the radiation damps the dipole motion. In this
classical view the excited atom loses its excitation energy by radiating
at its natural frequency.

At points very close to an electric dipole the field pattern is quite
complex, while in the radiation zone at distances large compared to the
wavelength the fields have a simple form. Using the local axes shown in
figure 9.6 the field components in the radiation zone are

Eθ =
−ω2p0 sin θ

4πε0c2r
cos (ωt − kr), (9.55)

Bφ = Eθ/c, (9.56)

where p0 cosωt is the oscillating dipole moment and ω/k = c. The power
radiated is given by eqn. 9.48.The energy crossing an element dS of a

Fig. 9.7 A polar plot of the intensity distribution of radiation from a dipole in the
radiation zone. The dipole direction is shown by the central arrow. The directions
of the fields and the Poynting vector are also shown at a representative point. Lines
of H are tangential to the dotted line circle.

sphere centred on the dipole per unit time is

N · dS = E ∧H · dS ∝ sin2 θdS. (9.57)

This angular distribution of the radiated power is displayed in a polar
diagram in figure 9.7, where the distance from the origin to the shaded
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surface is proportional to sin2 θ. The intensity of radiation falls off to-
ward the axis and is zero exactly along the axis, which agrees with what
is seen in figure 9.5: that there is no transverse component of the electric
field along the axis through AB. Integrating over all directions gives the
total power radiated:

W =

∫
N · dS =

∫ 2π

0

∫ π

0

EθHφr2 sin θdθdφ

= [(ω4p2
0)/(16π2ε0c

3)] cos2 (ωt − kr)

∫ 2π

0

dφ

∫ π

0

sin3 θdθ

= [(ω4p2
0)/(6πε0c

3)] cos2 (ωt − kr).

Averaging over time gives

W = ω4p2
0/(12πε0c

3) (9.58)

per dipole. More complicated charge distributions than dipoles are pos-
sible in an atom, such as a quadrupole which consists of a pair of dipoles
oppositely aligned. Quadrupole oscillations occur and of course radi-
ate. However the radiation from quadrupoles and other multipoles is
weak compared to dipole radiation when the radiating structure is much
smaller than the wavelength of the radiation – which is the case for atoms
radiating light. The dominance of dipole over other more complex radia-
tion persists in quantum theory and will be discussed later. On a larger
scale the antennae of radio stations are true classical electric dipoles:
they are in the form of conducting wires in which alternating currents
flow.

9.5 Reflection and refraction

Electromagnetic theory is now applied to the behaviour of electromag-
netic waves at interfaces between HIL dielectrics of different refractive
indices n1 and n2. Figure 9.8 shows the wave vectors (k) and fields at a
plane interface between two dielectrics when a plane sinusoidal electro-
magnetic wave is incident with its electric field transverse to the plane
of incidence. This is called a transverse electric (TE) wave, or alterna-
tively an s-polarized wave. The subscripts i, r and t refer to the incident,
reflected and transmitted plane waves respectively. Both the materials
are HIL so that the electric field in the reflected and refracted waves will
also be transverse to the plane of incidence. There are no free charges or
currents. The alternative case when the magnetic fields are perpendic-
ular to the plane of incidence is shown in figure 9.9 and bears the labels
transverse magnetic (TM), or p-polarization. All the results obtained in
the present section apply equally to p- as well as to s-polarized light.
In the following section the case of s-polarization is calculated in detail,
while for the case of p-polarization only results are stated.

The axes are oriented as shown in figure 9.8 with the surface being
the plane z = 0, and with x = 0 being the plane of incidence. Along
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Fig. 9.8 Incident, reflected and transmitted wave vectors at a plane interface between
two dielectrics for the case that the electric field is perpendicular to the plane of
incidence: s-polarization.

the y-axis, which lies in the surface, the plane waves reduce to the form
E = E0 exp [i(ωt − kyy)], where (kx,ky,kz) are the components of the
wave vector along the axes. The boundary conditions derived above state
that, provided there are no surface charges or currents, the components
of E and H transverse to the surface and the components of D and
B perpendicular to the surface are all continuous at the surface. This
means, for example, that the transverse component of E just above the
surface in the first medium is identical to the transverse component of
E just below the surface in the second medium. This continuity of the
transverse component of the electric field requires that

E0i exp [i(ωit − kiyy)] + E0r exp [i(ωrt − kryy)]

= E0t exp [i(ωtt − ktyy)]. (9.59)

If the fields are to match in this way at the surface for all times, it follows
that

ωr = ωi = ωt,

which for simplicity we write ω. The above equation can be rewritten

iθ rθ
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Fig. 9.9 Incident, reflected and trans-
mitted wave vectors at a plane interface
between two dielectrics for the case that
the electric field lies in the plane of in-
cidence: p-polarization.

v1kr = v1ki = v2kt, (9.60)

where v1 and v2 are the velocities of light in the two dielectrics. The
first equality simply tells that the reflected wave has the same wave
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number and wavelength as the incident wave. The second equality can
be rewritten again as

n1λi = n2λt, (9.61)

where n1 and n2 are the two refractive indices. Thus it is the wavelength
that changes from material to material while the frequency remains the
same. The field values must equally match across the surface any point,
that is at each and every value of y, hence

kry = kiy = kty, (9.62)

which we write simply as ky. Expanding the results in eqn. 9.62 gives

kr sin θr = ki sin θi,

kt sin θt = ki sin θi. (9.63)

Remembering that kr = ki the first of these two equalities is just the
law of reflection θr = θi. The second equality simplifies to Snell’s law
n1 sin θi = n2 sin θt. It is worth noting that these laws simply amount
to the statement that the component of the wave vector parallel to the
surface is unchanged by reflection or refraction. In the case of light in
an optical fibre ky is known as the propogation vector, the component of
the wave vector along the fibre axis.

This analysis also provides an explanation of what happens in the
process of total internal reflection (TIR) met earlier in Section 2.2. Then
n1 > n2 and we choose an angle of incidence greater than the critical
angle θc, so that sin θi > n2/n1. Thus eqn. 9.62 gives

ky = ki sin θi

= (n1/n2)kt sin θi > kt.

It follows that the component of the refracted wave vector perpendicular
to the surface, ktz, is imaginary,

k2
tz = k2

t − k2
ty < 0. (9.64)

Hence ktz = ±iκ where κ is real and positive. Here the negative sign
must be taken because the positive sign gives a wave whose amplitude
increases exponentially in the less dense medium, which is physically
unreasonable. The transmitted wave is thus

Et = E0t exp (−κz) exp [i(ωt − kyy)]. (9.65)

This is an evanescent wave: it travels parallel to the interface, while its
amplitude and intensity fall off exponentially with the distance from the
surface. Its intensity

N = N0 exp (−2κz) (9.66)

drops by a factor e over a distance 1/2κ. If the incident wave is s-
polarized then the magnetic field

B = k ∧ E/ω = −iκExey/ω − kyExez/ω,
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which has a component along the y-direction and hence the evanescent
wave is not a transverse wave. Similarly when the incident wave is p-
polarized the electric field of the evanescent wave has a component along
the direction of travel.

In optical fibre an evanescent wave travels parallel to the fibre axis
within the optically less dense cladding which surrounds the optically
denser core. We can investigate qualitatively the fraction of total power
travelling in the evanescent wave in single mode fibres. For values of θi

above the critical angle

κ2 = k2
y − k2

t = k2
t [(n1/n2)

2 sin2 θi − 1], (9.67)

and if θ is close to 90◦

κ2 ≈ k2
t (n2

1 − n2
2)/n2

2.

Inserting into this equation the parameters for Corning SMF-28TM

monomode optical fibre, namely ncore = 1.4677, ncladding = 1.4624, at a
wavelength λ = 1.310 µm, gives

κ2 ≈ 0.3572.

Then κ is 0.6 µm−1 and the intensity falls by a factor e2 in a distance
of around 1.67 µm. Now the core radius is only 4.1 µm, whence it fol-
lows that the cross-sectional area of the cladding within this 1/e2 zone
is π(5.772 − 4.12), that is 51.8 µm2, which is comparable to the area
of the core itself, 52.8 µm2. Consequently a significant fraction of the
electromagnetic radiation through a monomode fibre travels within the
cladding.

Figure 9.10 illustrates a simple way in which to observe the effect of
frustrated total internal reflection (FTIR). A planoconvex lens of radius

Glass block

Lens

Fig. 9.10 Arrangement for observing
the effects of frustrated total internal
reflection (FTIR).

of curvature 50 to 100 cm is placed on an optical flat. Viewing as shown
in the diagram at an angle such that the angle of incidence at the glass
block/air interface is significantly larger than the critical angle a dark
patch will be visible at the point of contact. Light in the evanescent wave
penetrates into the gap and is then reflected at the lens surface. Then
because there is a phase difference of π between the reflections from
air/glass and a glass/air interfaces the two reflections interfere destruc-
tively at the point of contact. Applying eqn. 9.67 for light of 500 nm
incident at 45◦ on a glass/air interface, the penetration depth is only
80 nm. Thus the penetration depth is much less than the separation
between the lens and the glass block at which the first of Newton’s rings
appear and therefore none will be seen.

At X-ray wavelengths the refractive index of metals is slightly less than
unity, which means that X-rays incident in free space at close to grazing
incidence on a metal are totally internally reflected. The design of the
XMM-Newton X-ray telescope, launched into space in 1999, makes use
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Paraboloidal
   mirror

Hyperboloidal
    mirror

Focus

Fig. 9.11 XMM-Newton X-ray telescope using TIR. The degree of focusing is ex-
aggerated: the actual focal length is about ten times the combined length of the
mirrors.

of this property. It consists of cylindrically symmetric thin alumininium
mirrors with a 250nm gold coating on their internal surfaces. An axial
section of one mirror pair is pictured in figure 9.11; the first mirror is
a shallow paraboloid, and the second a shallow hyperboloid. Together
they reflect and focus the X-rays from any source located close to the
mirrors’ axis. One such mirror pair would not collect many X-rays so
58 coaxial mirror pairs of graded diameters are arranged concentrically
around one another. The outermost mirror has diameter 70 cm, and the
innermost 31 cm diameter; the total length of the mirror assembly is
60 cm and the focal length measured from the paraboloid/hyperboloid
junction is 7.5m.5 5In the following chapter the situation

in which the refractive index can be
less than unity will be discussed fur-
ther. For the present take note that this
does not imply that electromagnetic ra-
diation or information can ever travel
faster than c. Briefly the reason is that
the distance electromagnetic waves can
penetrate the metal is negligible.

9.6 Fresnel’s equations

The analysis of reflection and refraction using electromagnetic theory
is now continued in order to obtain the complex amplitudes of the re-
flected and refracted waves at the interface considered in figure 9.8. The
exponential factors in equation 9.59 were shown to be equal so that the
condition for continuity at the interface reduces to

E0i + E0r = E0t. (9.68)

Correspondingly, continuity of the tangential component of the magnetic
field across the interface in figure 9.8 for s-polarization requires that

H0i cos θi − H0r cos θi = H0t cos θt. (9.69)

Making the substitution H = En/(µ0c) from eqn. 9.42 this becomes

n1E0i cos θi − n1E0r cos θi = n2E0t cos θt. (9.70)

Equations 9.68 and 9.70 can be solved simultaneously to give

rs = E0r/E0i = (n1 cos θi − n2 cos θt)/(n1 cos θi + n2 cos θt), (9.71)

ts = E0t/E0i = 2n1 cos θi/(n1 cos θi + n2 cos θt). (9.72)
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These results are called Fresnel’s equations and apply for s-polarization.
Fresnel’s equations for p-polarization can be obtained in a similar man-
ner and turn out to be significantly different:

rp = E0r/E0i = (n2 cos θi − n1 cos θt)/(n1 cos θt + n2 cos θi), (9.73)

tp = E0t/E0i = 2n1 cos θi/(n1 cos θt + n2 cos θi). (9.74)

Figure 9.12 shows the reflected and transmitted amplitudes for both
types of polarization when light is incident in air on glass of refractive
index 1.5.
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Fig. 9.12 Variation of the reflection and transmission amplitude coefficients for s/TE
and p/TM polarized light as a function of the angle of incidence at a plane boundary
between dielectrics in the case that light is incident in the optically less dense medium.
The two refractive indices are 1.0 and 1.5.

Several comments can be made about the signs of the coefficients given
by Fresnel’s equations which illustrate the importance of associating a
diagram of the field vectors with Fresnel’s equations. First note that
the sign of rp can be reversed if in figure 9.9 the direction chosen as
positive for the reflected electric field is reversed; that is the arrow la-
belled Er is reversed. The effect of the choice of this direction becomes
obvious at normal incidence, which is illustrated in figure 9.13. In the
case of s-polarization the Ei and Er are parallel, but point in opposite
directions for p-polarization. This seems strange because at normal in-
cidence the s- and p-polarizations are indistinguishable. However if we
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refer to figure 9.12 we find that at normal incidence rp = −rs, so that
the reflected electric fields do in fact point in the same direction for s-
and p-polarization at normal incidence.6 6Note that it doesn’t help to simply re-

verse the choice of the positive sense of
the reflected electric field: the annoying
complications simply move to grazing
incidence.

The relative intensities of the reflected and transmitted beams are
determined by the fluxes in the beams over unit area of the interface.
The time averaged absolute fluxes per unit surface area of the interface
are given by

F = N cos θ = E2
0 cos θ/2Z. (9.75)

where Z is the impedance of the material, which in a dielectric is given
by eqn. 9.42. The reflectance and transmittance are defined as ratios of
the flux of radiation leaving a surface area divided by the flux incident
over the same surface area, thus

Rp/s = (Fr/Fi)p/s = |rp/s|2, (9.76)

Tp/s = (Ft/Fi)p/s = |tp/s|2(Z1 cos θt/Z2 cos θi). (9.77)

Figure 9.14 shows the reflectances for the air/glass interface. At the
angle of incidence, θB, at which the reflected amplitude for p-polarized
waves changes sign its reflected intensity vanishes. This angle is called
Brewster’s angle. From eqn. 9.73 it follows that

iE rE

ik

rk

Y

p-polarization

s-polarization

iE rE

ik

rk

Y

Fig. 9.13 Electric vectors in the inci-
dent and reflected waves at normal in-
cidence. Upper panel for p-polarization
and lower panel for s-polarization.

n2 cos θB − n1 cos θt = 0.

After using Snell’s law to replace θt, this equation reduces to sin2 θB =
n2

2/(n2
1 + n2

2). Then comparing this result with the identity sin2 θB =
1/(1 + cot2 θB) gives

tan θB = n2/n1. (9.78)

If light is incident on a pile of glass plates at Brewster’s angle then each
plate reflects a fraction of the s-polarized light, while the light with p-
polarization is transmitted. After passing through about ten plates the
remaining s-polarized light is very weak. Therefore the beam reflected
at Brewster’s angle by a stack of ten plates is of course s-polarized, and
additionally the transmitted beam is p-polarized.

At normal incidence the reflectance and transmittance are relatively
easy to calculate because all the angles are π/2. For both polarizations
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Fig. 9.14 Reflectance for both s- and
p-polarization when light is incident in
air on a plane glass surface. The glass
has refractive index 1.5.

R0 = (n1 − n2)
2/(n1 + n2)

2. (9.79)

If there is little absorption the transmittance is

T0 = 1 − R0 = 4n1n2/(n1 + n2)
2. (9.80)

A useful reference quantity is the reflectance for a glass/air or air/glass
interface at normal incidence. This is 4% for glass of refractive index 1.5,
and consequently a sheet of glass reflects close to 8% of light incident
normally.
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When sin θt is greater than unity (TIR) the reflection and transmis-
sion coefficients become complex, which has interesting physical conse-
quences. Then cos θt is purely imaginary so we set

cos θt = −iχ, (9.81)

where χ is real and positive, and the negative sign is chosen to be con-
sistent with eqn. 9.65. With the use of Snell’s law this gives

χ =

√
(n1/n2)2 sin2 θi − 1. (9.82)

Then substituting for cos θt in Fresnel’s equations

rs = (n1 cos θi + in2χ)/(n1 cos θi − in2χ) (9.83)

ts = 2n1 cos θi/(n1 cos θi − in2χ) (9.84)

rp = (n2 cos θi + in1χ)/(n2 cos θi − in1χ) (9.85)

tp = 2n1 cos θi/(n2 cos θi − in1χ). (9.86)

Both reflection coefficients have the form exp (iα)/ exp (−iα), that is
exp (2iα), which indicates that the incident light is fully reflected with
a phase shift of 2α. This result confirms what was stated earlier: the
transmitted waves only penetrate a short distance into the less optically
dense material and there is no continuous flow of energy perpendicular
to the surface. In figure 9.15 the amplitude reflection coefficients are
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Fig. 9.15 The variation of the reflec-
tion amplitude coefficient with the an-
gle of incidence on a plane interface be-
tween two dielectrics for both s- and p-
polarization in the case that the light
is incident in the optically denser di-
electric. The refractive indices are cho-
sen to be 1.5 and 1.0. In the upper
panel the magnitudes of the coefficients
are shown and in the lower panel their
phases relative to the incident radia-
tion. θB is Brewster’s angle and θc is
the critical angle.

shown in the case of a glass/air interface with n1 = 1.5. In the upper
panel the magnitudes appear, and in the lower panel the phases. The
reflected p-polarized wave (TM) amplitude, of course, disappears when
the light is incident at Brewster’s angle.

On comparing figures 9.12 and 9.15 it is apparent that the signs of
rs and rp for glass/air at normal incidence are opposite to those for
air/glass at normal incidence. This is significant in experimental situa-
tions where, for example in observing Newton’s rings in reflection, there
is glass touching glass in air. The two reflections, glass/air and air/glass,
at the point of contact have opposite phase and interfere destructively.

Reflection from dielectric metal surfaces involves absorption and then
the Fresnel coefficients are again complex. This case is considered in
Chapter 11. Fresnel’s equations are consistent with Stokes’ relations ob-
tained in Section 5.6 by applying time reversal invariance: eqns. 5.32
and 5.33 are valid in general. In the more restricted case that the coef-
ficients are real, which excludes absorptive surfaces and TIR, eqns. 5.34
and 5.35 also hold true. The Stokes’ relations apply equally when the
interface is made up of one or more thin surface layers on for example
a glass block. This fact was already taken advantage of in analysing
the function of the Fabry–Perot etalon, and can be useful in situations
where the components of the surface are not known or where it would
be tedious to calculate directly using Fresnel’s laws.
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9.7 Interference filters

In some modern optical applications surfaces which effectively reflect
very little light are essential, and in other applications it is equally im-
portant to have a reflectance as near 100% as possible. It was noted
in Section 4.5.5 that the large number of surfaces met with in mod-
ern camera lenses are given coatings in order to reduce the reflectance
to a fraction of a percent per surface. Safety goggles for those people
working with lasers must reflect effectively all the radiation around the
laser wavelength and yet transmit enough light at other wavelengths to
provide useful vision. High power lamps can be fitted with cold mirrors
that are designed to reflect visible light, yet transmit the accompanying
longer wavelength infrared radiation. All these effects are achieved by
coating the surface of the optical elements with one or more layers of
dielectric; the optical thickness of layers is often made exactly one quar-
ter or exactly one half wavelength. Nowadays more than one hundred
layers, alternating between two dielectrics, are routinely laid down on
a single optical surface. The basic principle is that the individual re-
flections should interfere constructively/destructively to enhance/cancel
their reflection amplitudes. For this reason these coatings are known as
interference filters. Interference filters are used widely in optoelectron-
ics for making mirrors that selectively reflect over a narrow wavelength
interval, particularly in diode laser structures, and are then called di-
electric Bragg reflectors.

9.7.1 Analysis of multiple layers

In an individual layer, like that, of thickness d, shown in figure 9.16,
the backward going wave is built up from waves reflected in all the
later layers, which suggests that the analysis becomes very complicated
with large numbers of layers. However things are made simpler once it is
realized that the boundary conditions at a surface apply to the total light
amplitudes arriving from all possible paths. We therefore concentrate

 t - k.r)]ωU exp[i(

.r)]’ t + kωV exp[i(
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Fig. 9.16 Forward and backward trav-
elling total waves within one layer of a
filter; the filter consisting of many lay-
ers of different dielectrics. The electric
fields point into the paper.

on the total forward and backward going waves in any given layer. In
the layer drawn these total waves have electric fields U exp[ i(ωt−k · r) ]
and V exp[ i(ωt + k′ · r) ] respectively. For the present the waves are
taken to be s-polarized so that U and V are parallel and directed into
the diagram; k and k′ are wave vectors in the incident and reflected
directions each making an angle θ to the surface normal. The entry and
exit surfaces of the layer, with respect to the incident beam, are given
coordinates z = 0 and z = d respectively, and d = dez. Viewing the
fields at time t = 0, the electric field at the entry surface is transverse
with value

E1 = U + V pointing in the x−direction, (9.87)

while the transverse y-component of the magnetic field is given using
eqn. 9.41 by

ZH1 = (U − V ) cos θ pointing in the y−direction. (9.88)
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At the exit surface of the layer shown, with the same choice of directions,

E2 = U exp (−iφ) + V exp iφ, (9.89)

ZH2 = [ U exp (−iφ) − V exp iφ ] cos θ, (9.90)

where φ = k · d = 2πnd cos θ/λ, n is the refractive index of the layer
shown, and λ is the free space wavelength of the radiation. From eqns.
9.87 and 9.88

U = (E1 + ZH1/ cos θ)/2, V = (E1 − ZH1/ cos θ)/2.

Substituting these expressions into eqns. 9.89 and 9.90 gives

E2 = E1 cosφ − iZH1 sin φ/ cos θ,

ZH2/ cos θ = −iE1 sin φ + ZH1 cosφ/ cos θ.

Using Z = Z0/n and putting u = n cos θ, these last two equations
become

E2 = E1 cosφ − iZ0H1 sin φ/u, (9.91)

Z0H2 = −iuE1 sin φ + Z0H1 cosφ, (9.92)

which can be summarized in compact matrix form(
E2

Z0H2

)
= M

(
E1

Z0H1

)
, (9.93)

where

M =

(
cosφ −i sinφ/u

−iu sinφ cosφ

)
. (9.94)

These expressions relate the field values at the exit (right hand) plane
to those at the entry (left hand) plane. At normal incidence and for a
layer of optical thickness one quarter wavelength d = λ/4n. In this case
the matrix reduces to

M =

(
0 −i/n

−in 0

)
. (9.95)

If the waves have p-polarization the only change needed in the above
analysis presented in this section is to change the definition of u to
n/ cos θ.

It is at this point that the same boundary conditions that were used
to derive Fresnel’s equations are applied: the transverse components
of the E- and H-fields at a surface in one material are identical to the
transverse components at that surface in the adjacent material. Thus
the matrix appropriate to a series of layers is simply

M = M1M2.....Mm (9.96)

where Mj is the transfer matrix for the jth layer and the material pre-
ceding/following the filter is given the label in/out. Thus the beam is
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incident at an angle θin in a material of refractive index nin. Applying
Snell’s law repeatedly we get for the jth layer sin θj = nin sin θin/nj ,
while

φj = 2πnjdj cos θj/λ. (9.97)

It is now straightforward to calculate the overall reflection and transmis-
sion coefficients for a multilayer filter. Suppose that the incident electric
field in the absence of the filter is E0 and that the overall amplitude re-
flection coefficient to be determined is r. With the filter in place the
transverse fields at the entry surface in the incident medium obtained
using eqns. 9.87 and 9.88 are

Ein = E0 + rE0,

Z0Hin = (E0 − rE0)uin.

Correspondingly at the exit surface of the filter immediately beyond the
filter there is only a transmitted wave

Eout = tE0,

Z0Hout = tE0uout.

The reflection and transmission coefficients are simply the magnitudes
of the reflected and transmitted amplitudes divided by the incident am-
plitude in the absence of any filter. The overall transfer matrix is defined
by (

Eout

Z0Hout

)
= M

(
Ein

Z0Hin

)
.

Substituting for the fields in this equation gives(
t

tuout

)
= M

(
1 + r

(1 − r)uin

)
, (9.98)

from which the reflection and transmission coefficients can be extracted
directly.

If there is a single layer of optical thickness one quarter wavelength
thick and the light is at normal incidence, M is given by eqn. 9.95, and
eqn. 9.98 reduces to

t = (−i/n1)(1 − r)uin

tuout = −in1(1 + r).

Dividing the last equation by the previous one and rearranging gives

(1 − r)ninnout = n2
1(1 + r). (9.99)

The reflection will therefore be eliminated if n1 =
√

ninnout.

In the case of a coating on glass with refractive index 1.5 in air the
antireflecting coating would need to have a refractive index 1.224. To be
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practical a dielectric for optical coatings must be easy to evaporate onto
glass, durable and should not absorb moisture. Among the suitable di-
electrics magnesium fluoride has a refractive index 1.38 quite close to the
value desired in a single anti-reflection coating. A quarter wave layer of
magnesium fluoride achieves an amplitude reflection coefficient of −0.12
and a reflectance of 1.4% for light at normal incidence, compared to 4%
in the absence of any coating.

A much larger reduction in reflectance can be produced using two
quarter wave thick layers of different dielectrics. Taking the light to be
at normal incidence again

M =

(
0 −i/n2

−in2 0

)(
0 −i/n1

−in1 0

)
=

(
−n1/n2 0

0 −n2/n1

)
, (9.100)

which when substituted into eqn. 9.98 gives

t = −(n1/n2)(1 + r),

noutt = −(n2/n1)(1 − r)nin.

Eliminating t from these equations

r = [(n2/n1)
2 − nout/nin][(n2/n1)

2 + nout/nin]. (9.101)

The requirement for r to be zero means that in the case of glass in air we
need n2 = 1.224n1. This requirement allows a flexibility in the choice of0λ / λ
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Fig. 9.17 The reflectance at normal in-
cidence of an air/glass surface coated
with a stack of sixteen pairs of magne-
sium fluoride and titanium oxide layers.
Each layer has an optical thickness of
one quarter wavelength at wavelength
λ0. The reflectance is plotted against
the wavelength divided by λ0.

coating materials that is not possible with a single layer.

If the pair of layers is repeated s times the reflection coefficient be-
comes

r = [(n2/n1)
2s − nout/nin][(n2/n1)

2s + nout/nin], (9.102)

It is thus possible by simultaneously making the ratio (n2/n1) large and
by using many layers to go to the other extreme and produce a coating
with a reflection coefficient extremely close to unity. Magnesium fluo-
ride and silicon dioxide with refractive indices 1.38 and 1.46 are suitable
low refractive index materials, while titanium oxide and zinc sulphide
are suitable materials with high refractive indices, 2.35 and 2.32, respec-
tively.

In most applications it is important that high (or low) reflectance is
maintained over a range of wavelengths and angles of incidence, and
this question of range is considered next. The example just introduced
will be used for illustration. There are alternate layers of two dielectrics
of equal optical thickness one quarter wavelength. Then the transfer
matrix for a pair of layers at any wavelength and any angle of incidence
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is

M =

(
c −is/u

−iu/s c

)(
c −is/u′

−iu′/s c

)
=

(
c2 − s2u′/u −ics(1/u + 1/u′)
−ics(u + u′) c2 − s2u/u′

)
, (9.103)

where c = cosφ and s = sinφ. At the design wavelength (λ0 in free
space) at normal incidence this matrix is a diagonal and r was seen to
be real. r remains real over a range of wavelengths ±∆λ around λ0,
given by

∆λ/λ0 = sin−1 [ (u − u′)/(u + u′) ]. (9.104)

By adding sufficient of these large refractive index ratio layer pairs a very
high reflectance can be achieved over almost all this wavelength interval.
When the layers are alternately magnesium fluoride and titanium oxide
∆λ is 0.165λ0. The behaviour of r for multiple layers of magnesium
fluoride/titanium oxide can be calculated with the help of eqn. 9.103
and an example for a stack of 16 pairs of layers is shown in figure 9.17.
Outside the wavelength range λ0 ± ∆λ the value of r is complex for a
double layer, and as a result the reflectance in figure 9.17 oscillates as
the wavelength is changed.

The lobes outside the high reflectance band need to be suppressed in
applications where a filter with a very sharp cut-off is required. Exam-
ples of this requirement will be met later in telecommunications, where
data is transmitted along a single optical fibre using many laser beams
of closely spaced wavelengths, maybe 0.4 nm apart. Each laser beam
carries a separate stream of information from the others and has to be
cleanly separated from them. The reflectance is apodized, that is to
say the the lobes are removed, by making the refractive index varia-
tion across the filter follow the Gaussian modulation shown in the upper
left hand panel of figure 9.18. The resultant reflectance as a function
of wavelength is shown in the upper right hand panel. For comparison
the lower panels show the refractive index variation and the reflectance
variation without apodization.

Interference filters can be designed to produce a number of other sub-
tle effects. For example a narrow transmission window can be produced
within a broad wavelength range over which the transmission is effec-
tively zero. Two reflective filters of the type just discussed are separated
by a layer of optical thickness one half wavelength of the optically denser
dielectric: the structure is symbolically (HL)m HH (LH)m, where L/H
signifies a quarter wavelength of dielectric of low/high refractive index.
This structure is a Fabry–Perot etalon with the two H layers forming
the gap; its transmittance has very narrow width peaks at wavelengths
such that mλH = 4nHd, where m is an integer and nH is the refractive
index of an H layer. Thus the transmission maximum for m = 1 lies in
the centre of the broad region of high reflectance. A filter with these
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Fig. 9.18 Apodization of filters. The panels show the refractive index variation
across the filter and the reflectance. In the upper panels the filter is apodized and in
the lower the refractive index steps are constant.

characteristics is useful in picking out a narrow wavelength range while
deleting all nearby spectral lines.

9.7.2 Beam splitters

Simple beam splitters are constructed by putting a multilayer coating
on a glass plate, and the coating can be designed so that the reflected
and transmitted beam intensities have a particular ratio, irrespective of
whether the light has s- or p-polarization. One method is to sandwich a
multilayer coating between the two halves of a glass cube cut diagonally
as shown in figure 9.19. Useful ratios between the percentage reflected
and transmitted beam intensities, for example 50/50, can be selected
through the choice of a suitable sandwich design. Generally the outer
faces of the beam splitter cube require an anti-reflection coating to sup-
press unwanted reflections.

Another possibility for splitting a beam is to deposit an iconel metal
coating on a glass sheet, but this brings a bigger absorption loss. For ex-
ample the reflected and transmitted intensities might both be 32%. Yet
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another beam splitter type consists of a coated polymer pellicle only a
few microns thick supported in a circular metal frame. A 50:50 split is
typical with the light incident at 45◦. As a compensation for its inherent
fragility a pellicle beam splitter introduces no optical aberrations. How-
ever there is interference between the reflections from the surfaces, just
as in a Fabry–Perot etalon. Consequently the fraction of light transmit-
ted/reflected oscillates as the wavelength changes by typically 5%.

The example analysed here will be for a symmetric dielectric coating
between between glass prisms, where the angles of incidence at the coat-
ing are all 45◦, and there is negligible absorption. In this case especially
simple relationships hold between the reflected and transmitted ampli-
tudes and their phases. Suppose beams are normally incident on the
faces 1 and 2 with electric fields E1 and E2 respectively in figure 9.19.
Then the symmetry of the interface requires that the emerging beams
from the faces labelled 3 and 4 have electric fields respectively

E3 = rE1 + tE2,

E4 = tE1 + rE2, (9.105)

where r = |r| exp (iφr) and t = |t| exp (iφt) are the respective reflection
and transmission amplitude coefficients. Stokes’ relation, eqn. 5.32,
applied to this symmetric interface yields

|r|2 + |t|2 = 1,

while Stokes’ relation, eqn. 5.33, gives

rt∗ + tr∗ = 0.

In order that these terms cancel they must have opposite phase so

(φr − φt) = (φt − φr) ± π,

thus finally
|φr − φt| = π/2. (9.106)

Choosing φt = 0, φr = π/2, we have for this symmetric 50:50 beam
splitter

t = 1/
√

2, r = i/
√

2. (9.107)

This illustrates the general property for symmetric beam splitters that
the reflected and transmitted waves are out of phase by π/2.

Beam in

Beam in

1 4

3

2

Fig. 9.19 Beam splitter using a multi-
layer coating between two 45◦ prisms.

9.8 Modes of the electromagnetic field

Mechanical systems have a number of degrees of freedom which define
the number of independent types of motion that a system may undergo,
and which we call modes. For example a set of n point masses has 3n
degrees of freedom and each mode is simply the motion of one mass
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in one of the three orthogonal directions. Within electromagnetic wave
theory we can identify corresponding modes of the electromagnetic field
which are analogous to mechanical modes.

Modes of the electromagnetic field are solution of Maxwell’s equa-
tions subject to whatever boundary conditions are imposed by optical
elements. For instance, just outside a perfectly conducting mirror the
tangential electric field would be zero. When the space is unbounded
suitable modes with simple mathematical properties are sinusoidal plane
waves, which can have any wavelength, any direction and any transverse
polarization. Sinusoidal plane waves have simple mathematical proper-
ties and as was demonstrated in Chapter 7 any wavepacket with plane
wavefronts can always be duplicated by a superposition of sinusoidal
plane waves. These component waves will be grouped in wavelength
around the mean wavelength of the wavepacket.

When there are boundary conditions there will no longer be modes
at all wavelengths and travelling in all possible directions. Instead their
distribution in wavelength and angle becomes discrete. The most inter-
esting and useful optical arrangements are those for which the boundary
conditions have some symmetry, such as the cylindrical symmetry of op-
tical fibre or a Fabry–Perot cavity having circular mirrors. In the latter
case the modes have wavelengths such that there are nodes of the elec-
tric field distribution at the mirror surfaces. If the cavity has small, well
separated mirrors the paraxial approximation can be made. Waves are
restricted to have the form

E(r, t) = A(r) exp [i(ωt − kz)] (9.108)

where A varies slowly along the beam (z) direction, so that ∂A/∂z 

k. Then the wave equation 9.36 simplifies to the paraxial Helmholtz
equation

(∂2/∂x2 + ∂2/∂y2)A − 2ik ∂A/∂z = 0. (9.109)

The solutions are Gauss–Hermite functions7 of which the simplest is
the TEM00 mode with a Gaussian profile and cylindrical symmetry, de-
scribed in Section 6.15. The other modes have electric field distributions
which have broader, more complex shapes, with one or more radial and
azimuthal nodes across the mirror planes. The Gaussian mode has the
most compact distribution of energy around the optical axis, so that
spillage around the mirrors at each reflection preferentially depletes the
other modes. All waves trapped in a Fabry–Perot cavity can be re-
solved into a linear superposition of these cavity modes. More generally
when there are two modes with the same transverse form but different
wavelengths they are referred to as different longitudinal modes. Corre-
spondingly modes of different transverse form are referred to as differ-
ent transverse modes: the Gauss–Hermite modes are good examples. A

7See for example the fifth edition of Optical Electronics in Modern Communica-

tions by Amnon Yariv, and published by Oxford University Press (1997).
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wavepacket from the source will almost certainly not all enter a cavity,
some being lost around its edges and some reflected from it. That part of
the wavepacket that is captured is a new wavepacket made up of cavity
modes whose wavelengths match those of the incident waves from the
source.

Two important physical properties of modes can be usefully expressed
in mathematical language. The first property is that each mode is or-
thogonal to all the other modes, meaning that it cannot be decomposed
into a superposition of the other modes. Put another way they do not
overlap: an integral over all space of the product of any pair of modes
is always zero. The second property is that any waveform that is con-
sistent with the boundary conditions, that is to say one which describes
light confined within an optical structure, can always be replicated by
a superposition of the modes for that structure. In a sense the modes
are like unit vectors in a space in which each vector corresponds to a
possible waveform consistent with the boundary conditions. These prop-
erties were explicitly proved in presenting Fourier analysis in Chapter 7
for sinusoidal waves, which are modes for electromagnetic waves in free
unobstructed space.

If the material through which the wavepacket travels has some disper-
sion, then modes of different wavelength will travel at different speeds
and hence the shape of the wavepacket changes. Individual modes travel
without any change of shape; that is to say they propogate freely. We
shall find later that optical fibre for long haul useage is constructed
specifically so that only one mode propogates freely along it.

9.8.1 Mode counting

The modes of classical mechanical systems have equal time-averaged en-
ergies when they are in a state of thermal equilibrium. Thus it came
about in the late 19th century that scientists anticipated that em modes
should, by analogy, also have equal energies in thermal equilibrium. The
black body radiation spectrum was therefore confidently calculated –
giving a prediction which diverged to infinity at short wavelengths! Ex-
periment revealed instead that the spectrum peaked at a wavelength
characteristic of the temperature of the body. The resolution of this
difficulty led to the development of quantum mechanics and a profound
change in the understanding of em radiation. The topic of black body
radiation will therefore open the third section of this book where quan-
tum phenomena are introduced.

In preparation we evaluate the number of modes available in unit
volume of free space using sinusoidal waves as the modes. A simple

x

y

z

Fig. 9.20 Cubical box used for count-
ing modes.

approach is enough: the modes are counted inside a cubical box with
perfectly conducting walls, shown in figure 9.20. This seems a very
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restrictive simplification, but it turns out that the result is quite inde-
pendent of the shape or surface of the box and hence is universally valid.
The tangential component of the electric field must vanish at the walls
which lie at x = 0 and L, y = 0 and L and z = 0 and L. The electric
fields of the modes are standing waves

Ex = Ax cos (kxx) sin (kyy) sin (kzz),

Ey = Ay sin (kxx) cos (kyy) sin (kzz),

Ez = Az sin (kxx) sin (kyy) cos (kzz),

where Ax,y,z are amplitudes, which must depend on the polarization.
In terms of unit vectors oriented parallel to the edges, a wave vector is
defined

k = kxex + kyey + kzez.

The tangential components vanish automatically at the planes through
the origin. These tangential components also vanish at the other faces
provided that

kxL = nxπ, kyL = nyπ, kzL = nzπ, (9.110)

with nx, ny and nz all being positive integers. Hence

n2
x + n2

y + n2
z = k2L2/π2. (9.111)

The numbers nx, ny and nz are now used as the coordinates along or-
thogonal axes which define a new three-dimensional space. The possible
choices of nx, ny and nz define points which form the grid shown in
figure 9.21 and are contained within the positive octant of a sphere of
radius kL/π. The number of modes is simply the volume of the oc-

π Radius   k L /
zn

yn

xn

Fig. 9.21 The space displaying the
electromagnetic modes in a reference
volume. The labelling is explained in
the text.

tant k3L3/6π2, so that the number per unit volume of physical space is
k3/6π2. Now consider the values of the amplitudes Ax,y,z. In free space

∂Ex/∂x + ∂Ey/∂y + ∂Ez/∂z = 0, (9.112)

so that
Axkx + Ayky + Azkz = 0. (9.113)

Thus only two of the amplitudes can be chosen freely, or put another
way there are two independent polarizations. Then the total number of
modes is

N = k3/3π2.

Finally the density of modes around wave number k is

ρk(k)dk = dN = k2dk/π2. (9.114)

This can be re-expressed in terms of frequency using the equality

ρf (f)df = ρk(k)dk.

Thus
ρf(f)df = 8πf2df/c3, (9.115)
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or in terms of the angular frequency

ρω(ω)dω = ω2dω/(π2c3). (9.116)

If the medium is material of refractive index n, rather than free space,
this result changes to

ρω(ω)dω = n3ω2dω/(π2c3). (9.117)

Once the density of modes is known a useful relationship between
the mode count and the etendue of an optical system can be inferred.
Because the modes are uniformly distributed in direction the fraction
directed within the solid angle, Ω, defined by the beam at the entrance
pupil is Ω/4π. If A is the pupil area then the light crossing this area
in one second originates within a distance c/n from the pupil. The
corresponding volume from which the light comes is therefore Ac/n,
where n is the refractive index of the material preceding the pupil. Thus
the number of modes which pass through the pupil per unit time is

N = ρ(ω)dω(Ω/4π)(Ac/n)

= 2n2ΩAdf/λ2, (9.118)

where λ is the free space wavelength. Now using eqn. 4.11 we know that
n2ΩA is simply the etendue of the optical system, so we have

N = 2T df/λ2. (9.119)

Now it was proved earlier, see eqn. 5.31, that the etendue into a coher-
ence area is λ2. Therefore it is plausible to take the factor T /λ2 to count
the number of modes per unit frequency interval, while the remaining
factor two simply counts the number of independent polarization states.
The overall product is the number of modes with different combina-
tions of transverse profiles, frequency and polarization. Further insight
into this result is obtained later by applying the uncertainty relation in
Section 12.10.1.

9.9 Planar waveguides

Total internal reflection is used to trap electromagnetic waves in planar
structures as well as in optical fibres. The analysis here of these simpler

1k 2k a
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y

zx
θ

iθ

Fig. 9.22 A planar waveguide formed
by plane parallel conducting surfaces.
Wave vectors are drawn for the com-
ponent plane waves making up the to-
tal wave that propogates within the
gap. The electric field amplitude for
one mode is drawn on the left.

waveguides will provides a link to the analysis of optical fibres treated
in Chapter 16. Figure 9.22 shows the wave vectors of a plane sinusoidal
wave reflected between plane parallel conducting mirrors that lie a dis-
tance a apart. The incoming plane wave has its electric field in the
x-direction, perpendicular to the diagram and parallel to the surfaces;
while the wave vector direction makes an angle θ with the z-direction.
The reflected wave is directed at −θ. The incident electric field is

Ex = E0 exp [i(ωt + ky sin θ − kz cos θ)]



260 Classical electromagnetic theory

and the reflected wave which cancels this at the upper surface, y = 0, is

Ex = −E0 exp [i(ωt − ky sin θ − kz cos θ)].

Thus the total electric field is

Ex = E0 exp [i(ωt + ky sin θ − kz cos θ)]

−E0 exp [i(ωt − ky sin θ − kz cos θ)]

= 2i E0 exp [i(ωt − kz cos θ)] sin (ky sin θ).

This field will also vanish at the lower surface provided

kya = ka sin θ = mπ, (9.120)

where m is an integer. On the left of the figure the electric field ampli-
tude is plotted for the case that m = 2. Waves satisfying eqn. 9.120
propogate without alteration and are the modes of the waveguide. The
mth mode travels along the z-direction with wave vector

k2
z = k2 − (mπ/a)2 (9.121)

and with group velocity c cos θ. Although the electric field is transverse
to the wave’s direction of travel there is a component of magnetic field
along the z-direction: such modes are therefore called TE modes. TM
modes with a component of electric field along the direction of travel
can be constructed in an analogous manner. Waves whose wavelengths
are greater that 2a cannot satisfy eqn. 9.120 and are reflected back at
the entry to the waveguide. In general an incident wave will therefore
be made up of components which can propagate freely and other com-
ponents which get reflected.

Similar modes occur when the radiation is confined by TIR within a
layer of glass between two layers of glass of lower refractive index. In this
case the requirement that a wave travels unaltered is now more compli-
cated. At each reflection the wave penetrates into the lower refractive
index medium as an evanescent wave and this leads to a phase delay.
The reflection coefficient for a TE mode is given by eqn. 9.83 and the

Fig. 9.23 Cross-sections of two-
dimensional waveguides. The material
of higher refractive index is shaded.

phase shift is 2αs, where

tan αs = n2χ/(n1 cos θi). (9.122)

Then using eqn. 9.82 to replace χ

tan αs =

√
(n2

1 sin2 θi − n2
2)/n1 cos θi

=
√

(n2
1 cos2 θ − n2

2)/n1 sin θ,

where we have used the fact that the angle θ is the complement of the
angle of incidence θi in figure 9.22. In place of eqn. 9.120 we therefore
have

kya = mπ + 2αsa + 2αsb, (9.123)
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where 2αsa and 2αsb are the phase shifts for reflections at the two sur-
faces bounding the guide layer. A wave not satisfying the boundary
condition given by eqn. 9.123 would leak out into the external layers
and thus be attenuated as it travelled. In terms of rays the phase shift
at total internal reflection indicates that the reflected ray leaves the in-
terface at a point displaced along the surface from where the incident
ray struck it. This Goos–Haenchen shift has been directly observed and
it occurs because the ray penetrates a little into the less dense medium
as an evanescent ray.

Cross-sections of waveguides with boundaries in two dimensions are
shown in figure 9.23. In each case the external materials have lower
refractive index, and in some cases one waveguide surface is bounded
by air. At near infrared wavelengths the refractive indices of silicon and
silica are respectively 3.5 and 1.46. Therefore such radiation is easily
guided along silicon waveguides within silica, though with considerable
absorption. A mode must satisfy a duplicate of eqn. 9.123, so we have
for a guide of cross-section ax by ay embedded as shown in the left hand
lower panel

kxax = mπ + 4αs,

kyay = mπ + 4αs.

(9.124)

Waveguides positioned as in the right hand lower panel can be sufficiently
close so that the evanescent wave of one overlaps the other waveguide.
There will therefore be coupling of the waves within the two waveguides,
a property whose use in optoelectronics is described in Chapter 16.

9.9.1 The prism coupler

Light can be transferred efficiently into a planar waveguide by the use
of prism couplers as shown in figure 9.24. The prism is separated by
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Fig. 9.24 Two prism coupler arrange-
ments for launching light into a planar
waveguide.

a thin air gap from a planar waveguide of thickness d, whose refractive
index is greater than that of the substrate on which it rests. Quantities
relating to the prism, air, waveguide and substrate are labelled p, 0,
1 and 2 respectively. Monochromatic light is incident on the base of
the prism at an angle greater than the critical angle for the glass/air
interface. With an air gap of around half a wavelength the evanescent
wave penetrates into the planar waveguide below. The angle of incidence
in the prism determines the angle of refraction in the waveguide: using
Snell’s law

sin θ1 = (np/n1) sin θp,

so that the transverse component of the wave vector in the waveguide is

ky = k1 cos θ1

= k1

√
1 − (np/n1) sin2 θp

= (2π/λ)
√

n2
1 − n2

p sin2 θp, (9.125)
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where λ is the free space wavelength. This wave entering the waveguide
will be a mode provided that it satisfies eqn. 9.123

kyd = mπ + 2α10 + 2α12, (9.126)

where m is an integer, while 2α10 and 2α12 are the phase shifts for
reflections at the waveguide/air and waveguide/substrate interfaces re-
spectively. Either the angle of incidence or the wavelength can be varied
until both eqns. 9.125 and 9.126 are satisfied, and then light is coupled
into the waveguide and travels along the waveguide. When this happens

 Wavelength or Incidence angle

Re
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ce

Fig. 9.25 Variation of the reflection
coefficient of a prism coupler with ei-
ther wavelength or angle of incidence
θp. The sharp dips occur when the light
is coupled into a mode of the waveg-
uide.

the intensity of the light reflected from the prism base shows a marked
drop as illustrated in figure 9.25. Whenever the reflection coefficient
dips in this way it is sure that the light is coupled into the waveguide.

The layouts shown in figure 9.24 are used to measure the properties
of thin layers of dielectric that make up optoelectronic components and
electronic chips. If the layer is thick enough to support two or more
modes at a given wavelength then there is sufficient information available
from measuring the angles of incidence θp at which coupling into the
dielectric layer occurs to extract both the thickness and refractive index
of this layer using eqn. 9.126. If the layer is so thin that only one
mode is carried, the refractive index is needed in order to calculate the
thickness. The technique is complementary to the ellipsometry described
in Chapter 11.

Exercises

(9.1) Titanium oxide has refractive index 2.35. Calculate
the velocity of light in this material and its charac-
teristic impedance. What does the wavelength of
light from a laser of wavelength 633 nm change to
when it enters the oxide?

(9.2) An electric dipole 10−9 Cm oscillates at a frequency
10GHz. Calculate the electric and magnetic fields
at 1 km distance in directions making angles of 90◦,
45◦ and 0◦ with the dipole axis. What is the time
average energy flux in these three directions?

(9.3) Calculate the critical angle for a glass/air interface
the glass having refractive index 1.5 at a wavelength
633 nm. What is the depth in air over which the
light intensity falls by a factor e when light is inci-
dent at 42◦ on a glass/air interface, the glass having
refractive index 1.5? Repeat the calculation for an
angle of incidence 41.82◦.

(9.4) Show that if θB and θ′
B are the Brewster angles for

light incident in opposite directions on a plane in-

terface between dielectrics, their sum is precisely
90◦.

(9.5) Starting from Fresnel’s equations prove the Stokes’
relations tt′ = 1 − r2 and r′ = −r. r and t are the
amplitude reflection coefficients and r′ and t′ the
corresponding coefficients when the same radiation
follows the reverse path.

(9.6) Calculate the amplitude reflection and transmission
coefficients using Fresnel’s equations for light inci-
dent at 30◦ on an air/glass surface.

(9.7) Light is incident at Brewster’s angle on a pile of n
thin glass plates. The reflectance for the air/glass
interface at Brewster’s angle is R for p-polarized
light. Calculate the transmittance of the complete
stack for p-polarized light. You may neglect multi-
ple reflections in this example.

(9.8) Express the laws of reflection and refraction in vec-
tor form. You can use ki, kr and kt to represent
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the incident, reflected and transmitted wave vec-
tors, and n to represent a vector normal to the sur-
face. In each case the magnitude k = 2π/λ where
λ is the wavelength in the material.

(9.9) Calculate the reflectance at normal incidence of
glass of refractive index 1.5 in air which is coated
with one double layer of magnesium fluoride and
titanium oxide, each layer being of optical thick-
ness one quarter wavelength. The titanium oxide
is in contact with the glass. Repeat the calcula-
tion for four double layers. What is the finesse of

a Fabry–Perot cavity made of such mirrors? The
refractive index of magnesium fluoride is 1.38 and
that of titanium oxide is 2.35.

(9.10) Suppose the refractive index of the XMM-Newton
mirror gold surfaces is 0.9999 at X-ray wavelengths.
At what angles of incidence will the X-rays be to-
tally internally reflected in air?

(9.11) Is the relationship implicit in eqn. 9.105 that
r = r′ inconsistent with Fresnel’s Laws which re-
quire r′ = −r?
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Polarization 10

10.1 Introduction

The ability to produce and manipulate light in one state of polarization
underlies the function of many modern devices such as DVD reader/writers
and liquid crystal displays (LCDs). This technology requires the use of
materials that have an anisotropic response to light, which means using
non-HIL materials. These include dichroic materials which absorb light
in one state of polarization more that in the orthogonal state and so pro-
vide polarization filters.1 Birefringent crystals on the other hand have 1The word dichroic is sometimes also

used with a different meaning: to de-
scribe a material which splits light into
beams of different colours.

a refractive index that varies with the orientation of the electric field of
the light with respect to the crystal’s axes. This property provides the
means, for example, to rotate the plane of polarization of light. Similar
anisotropic behaviour can be induced in certain materials when an ex-
ternal electric or magnetic field is applied. These field induced effects are
of especial interest because they can be used to switch and to modulate
light electronically at the high rates needed for optical communications.

A first step in this chapter will be to establish the connection between
states of circular polarization, introduced briefly in Chapter 1, and states
of plane polarization. Dichroic and birefringent materials and their uses
will be described in the next section. The Jones matrices, which provide
a compact way of characterizing coherent states of polarization, are also
introduced and explained. After this the optical effects of applied electric
and magnetic fields and their applications are discussed. Birefringent
liquid crystals are the essential element in a considerable fraction of
consumer product displays; their properties and use will form the final
topic in the present chapter.

10.2 States of polarization

Monochromatic electromagnetic radiation travelling in the z-direction in
an HIL material can be in two independent states of plane polarization.
One of these could have its electric field pointing along the x-direction,
which in complex form is

E1 = E0 ex exp i(ωt − kz),

B1 = (E0/v) ey exp i(ωt − kz), (10.1)
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where v = ω/k is the wave velocity; the other would have fields orthog-
onal to these

E2 = E0 ey exp i(ωt − kz),

B2 = −(E0/v) ex exp i(ωt − kz). (10.2)

The time average of the intensity of the light waves formed by super-
posing these polarization states contains no interference terms

I = ε0c(E1 + E2) · (E1 + E2)
∗/2 = ε0c(E1E

∗
1 + E2E

∗
2 )/2.

Thus these two polarization states can be used as basis states, in a man-
ner analogous to the use of orthogonal vectors, to build any other plane
polarized state. For example, by superposing them in the proportions
cos θ and sin θ we get light travelling in the z-direction with its plane
of polarization inclined at an angle θ to the x-direction. Of course one
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Fig. 10.1 Electric field of a left circu-
larly polarized wave as seen looking to-
ward the oncoming light. It rotates an-
ticlockwise. The electric field of a right
circularly polarized wave rotates clock-
wise.

basis state cannot be formed from the other. The choice of the basis
states is not unique: they could be chosen to have their electric fields at
angles θ and θ + π/2 to the x-direction.

Adding the chosen basis states with a phase difference of π/2 produces
an electromagnetic wave with new properties. The electric field is

E	 = (E0/
√

2) { ex exp [i(ωt − kz)] + ey exp [i(ωt − kz − π/2)]}, (10.3)

of which the real part, the actual electric field, is

E	 = (E0/
√

2) [ ex cos (ωt − kz) + ey sin (ωt − kz)], (10.4)

and this is shown at the location z = 0 in figure 10.1. A common
convention is employed here when describing states of polarization: the
viewer is assumed to be looking towards the oncoming light. Then in the
present case the electric vector rotates anticlockwise around the z-axis
with angular velocity ω, which is known as a state of left circular po-
larization. There is a second state of circular polarization in which the
electric field vector rotates clockwise around the z-axis. This, right cir-
cularly polarized state, is obtained by adding the plane polarized states
with the y-component leading by π/2,

Er = (E0/
√

2) { ex exp [i(ωt − kz)] + ey exp [i(ωt − kz + π/2)]}, (10.5)

and the resulting real part is

Er = (E0/
√

2) [ ex cos (ωt − kz) − ey sin (ωt − kz)]. (10.6)

When unequal contributions of the orthogonal plane polarized states
are added with an arbitrary phase lag φ, the resultant electric field is an
elliptically polarized state. The real electric field has components

Ex = Ea cosχ; Ey = Eb cos (χ − φ) = Eb(cosχ cosφ + sin χ sinφ)
(10.7)
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where χ is ωt − kz. Rearranging these equations gives

sin χ = ±
√

1 − (Ex/Ea)2, and

Ey/Eb − (Ex/Ea) cosφ = sinχ sin φ = ± sinφ
√

1 − (Ex/Ea)2.

Squaring this last line gives

(Ey/Eb)
2 + (Ex/Ea)2 − 2(ExEy/EaEb) cosφ = sin2 φ, (10.8)

which is the equation of an ellipse tilted with respect to the x-axis at
an angle α, which depends on φ. The dependence of α on φ will be
determined next.

Let Eu and Ev be the components of the electric field refered to axes
aligned on the ellipse’s major and minor axes.

Ex = Eu cosα − Ev sin α,

Ey = Eu sin α + Ev cosα. (10.9)

Then when eqn. 10.8 is expanded in terms of Eu and Ev the coefficient
of EuEv will vanish; thus

2 cosα sin α(1/E2
b − 1/E2

a) + 2(sin2 α − cos2 α) cos φ/(EaEb) = 0,

whence the tilt angle is given by

tan 2α = 2EaEb cosφ/(E2
a − E2

b ). (10.10)

If |Ea/Eb| > 1.0 α is less than 90◦, otherwise it is between 90◦ and
180◦. In figure 10.2 the broken lines indicate the path followed by the
end point of the electric field vector in the xOy plane for various choices
of α. The phase lag, φ, increases from zero in the topmost panel to π/2
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Fig. 10.2 The paths of the end point
of the electric field vector for ellipti-
cally polarized waves. The panels show
from the top downward cases of increas-
ing phase lag of the y-component field
with respect to the x-component; start-
ing from zero and ending with a lag of
π/2.

in the lowest panel. Notice that the largest excursions in Ex and Ey are
respectively ±Ea and ±Eb whatever the phase lag.

The product E	 · E∗
r vanishes and hence the time averaged intensity

of any superposition of left- and right-circularly polarized waves

I = ε0c(aE	 + bEr) · (aE	 + bEr)
∗/2

= ε0c [ aa∗E	E
∗
	 + bb∗ErE

∗
r ]/2 (10.11)

contains no interference terms. Therefore the right- and left-circularly
polarized states are orthogonal to one another. They make an equally
good pair of basis polarization states, meaning that any plane, circular
or elliptically polarized state can be reproduced by a linear superposition
of right and left circularly polarized states. For example

E1 = (1/
√

2)(E	 + Er); E2 = (1/
√

2)(E	 − Er), (10.12)

reproduces the states of plane polarization that were introduced at the
start of this section.



268 Polarization

When a wave is reflected at a perfect mirror the electric field of the
reflected wave cancels that of the incident wave at the surface of the mir-
ror. Hence a linearly polarized wave incident normally is reflected with
its polarization unchanged. When circularly polarized light is incident
normally the electric field of the reflected wave rotates in the same sense
as the electric field of the incident wave in order that they cancel at
the surface. Now because the reflected wave is travelling in the opposite
direction to the incident wave, it has the opposite circular polarization:
right (left) circular polarization if the incident wave has left (right) cir-
cular polarization.

In Chapter 5 it was explained how light from actual sources consists of
finite length wavepackets which have random phases. It is necessary to
add that the polarizations of the wavepackets from sources are random.
For example light from lamps met in the home contains wavepackets
whose planes of polarization are uniformly distributed around the ray
direction. The interference effects discussed in earlier chapters are only
observed if the waves are not only coherent but also to have the same
polarization. If the beams being superposed have orthogonal polariza-
tions then, as we have just seen, there is no interference. Interference
is totally suppressed in Young’s two slit experiment if polarizers which
have orthogonal polarization, are placed one over each slit. We now dis-
cuss such polarizers.

10.3 Dichroism and Malus’ law

Materials which absorb light of one plane of polarization more strongly
than light of the orthogonal polarization are called dichroic. The most
well known example is that of Polaroid sheet. Its basic constituent is a
plastic material, polyvinyl alcohol, which is first stretched into a contin-
uous sheet so that the long polymer molecules are lined up parallel in
the stretch direction. Then iodine ions are deposited from vapour and
these attach themselves along the length of the polymer molecules turn-
ing the latter into conductors. When light with its electric field parallel
to the stretch direction falls on the Polaroid sheet a current flows along
these conductive paths and energy is absorbed from the light beam. The
process is so efficient that the beam is almost totally extinguished by
a sheet only a few hundred microns thick. Light with its electric field
transverse to the stretch axis cannot produce a current because there
is no conductive path and hence light with this polarization is not ab-
sorbed. Commercial Polaroid sheets are available whose transmittance
across the whole visible spectrum for one sense of polarization exceeds
50%, while being less than 10−4 for the orthogonal polarization. More
robust dichroic filters made of glass are needed because high power laser
beams would simply melt a sheet of polymer. In one type of glass filter
the surface is covered with equally spaced, parallel metallic strips whose
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pitch is less than one wavelength. Alternatively the volume of the glass
is loaded with parallel aligned, nanometre sized silver particles.

Figure 10.3 shows a beam of initially unpolarized light incident passing
through a pair of polarizing sheets whose transmission axes are inclined
at an angle θ. Assuming that there is full transmission for one sense

x

x

Unpolarized light incident

Transmission axis

Transmission axis

θ

Polarizer

Analyzer

Fig. 10.3 Transmission of unpolar-
ized incident light through a pair of
Polaroids with their transmission axes
making an angle θ. The arrows with
solid heads indicate the electric vectors
at each step.

of polarization and full absorption for the orthogonal sense, then the
electric field of light emerging from the first sheet, the polarizer, is

Ep = E0 cos (ωt − kz) [ ex cos θ + ey sin θ ],

while that emerging from the second sheet, the analyser, is

Ea = E0 cos (ωt − kz)ex cos θ.

Hence the time averaged intensity

I(θ) = [ ε0c/2 ] E2
0 cos2 θ = I(0) cos2 θ, (10.13)

a result known as Malus’s law, where I(0) is the intensity incident on the
analyser. Thus the intensity transmitted by a polarizer when the light
incident is unpolarized would be one-half the incident intensity. With
crossed polarizer and analyser, that is with θ = π/2, no light emerges
from the analyser. A practical way to determine of the quality of a
polarizer is to direct polarized light onto one face and then to measure
the minimum and maximum transmitted intensities as the polarizer is
rotated in its own plane about the beam as axis. The ratio of these
intensities is called the extinction ratio and is 10−3 or less for simple
sheet polarizers.

If a beam contains a mix of plane polarized light and unpolarized
light the fraction of the polarized light can be determined by continu-
ously measuring the transmittance through a polarizer as this is rotated
through an angle of 90◦ about the beam axis. At maximum all the polar-
ized and half the unpolarized light is transmitted, while at the minimum
simply half the unpolarized light is transmitted. Thus the fraction of
plane polarized light, the degree of polarization is

P = (Imax − Imin)/(Imax + Imin). (10.14)

10.4 Birefringence

The physical structure of many crystalline materials is anisotropic so
that the ease with which an electric field can displace the electron clouds
within atoms depends on the direction of the electric field relative to the
crystal’s axes. As a result the relative permittivity and refractive in-
dex also depend on the orientation of the electric field: this effect is
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Table 10.1 The refractive indices of several uniaxial crystals, and
the wavelength range over which their transmittance is high.

Wavelength no ne High transmittance

Calcite 589 nm 1.658 1.486 350–4000 nm
Quartz 589 nm 1.544 1.553 200–2300 nm
LNO 633 nm 2.286 2.202 400–5000 nm
LNO 1300 nm 2.220 2.146 400–5000 nm
YVO4 633 nm 1.993 2.215 400–4000 nm

called birefringence. There can be no such effect when electromagnetic
waves travel in either amorphous materials, in most liquids or in crystals
such as cubic crystals which exhibit a high degree of internal symmetry.
Among liquids the class of liquid crystals show birefringence and these
provide the essential component of liquid crystal displays in TV and PC
monitors; they are discussed in the final part of this chapter.

A birefringent crystal belonging to the uniaxial class is symmetric
under rotations around its optic axis. Calcite (CaCO3), crystalline silica
(quartz, SiO2) and lithium niobate (LiNbO3) are commonly met uniaxial
crystals. In the case of calcite the carbonate groups (CO3) form parallel
planes and the optic axis lies perpendicular to these planes. It is much
easier to move electrons within rather than perpendicular to these planes
and this is the origin of the birefringence. Figure 10.4 illustrates what
happens when a narrow beam (ray) of light is incident perpendicular to
a sheet of calcite whose optic axis lies in the plane of the diagram. The

Ordinary rayExtraordinary
ray

Calcite optic axis

Fig. 10.4 Separation of ordinary and
extraordinary rays in passing through
a sheet of calcite.

ray splits: one component obeys Snell’s law, which in this case means it
travels undeviated through the sheet; the other component is deviated on
entering the calcite. When the calcite sheet is rotated about the incident
ray the deviated ray rotates at the same rate. Anyone looking through
such a calcite sheet sees not one, but two images of whatever lies behind
the calcite. The undeviated image is formed by light with its electric
field vector in the plane perpendicular to the optic axis, and this is
called ordinary polarization. Light producing the other, rotating image
has what is called extraordinary polarization: its electric vector points
perpendicular to that of the light with ordinary polarization. This ability
to split light according to its polarization using birefringent materials
provides many useful tools in research and industrial applications. In
calcite the electric field of light with ordinary polarization is acting in
the plane in which the electrons are easy to move and as a result the
velocity of the ordinary rays is less than that of the extraordinary ray.
Materials like calcite, in which the extraordinary rays travel faster than
the ordinary rays are called negative uniaxial materials. Conversely in
positive uniaxial materials the ordinary rays travel faster. Table 10.1
lists the refractive indices of several uniaxial crystals and the wavelength
ranges over which their transmittance is high. As will be explained
below, the extraordinary index varies with the direction of the ray. What
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is given in the table, written ne, is the value of this index when the
extraordinary ray travels perpendicular to the optic axis of the crystal
and the electric field points along the optic axis. The ordinary refractive
index is the same, no, whatever the ray direction.

10.4.1 Analysis of birefringence

In order to take account of the anisotropy of birefringent materials we
shall retrace parts of the analysis of electromagnetic waves given in the
previous chapter. Recall that Maxwell’s equations were used to give an
equation valid for either the electric or magnetic field: the wave equation,
eqn. 9.28. Then a plane wave solution was attempted. This was found
to satisfy the wave equation provided that the wave velocity satisfied
the relation

v ≡ ω/k = 1/
√

µ0ε0µrεr, (10.15)

which in the case of a non-magnetic dielectric amounts to having a refrac-
tive index n =

√
εr. Here, we consider a sinusoidal plane wave travelling

in a uniaxial crystal whose fields in complex form are

E = E0 exp [i(ωt − k · r)],
B = B0 exp [i(ωt − k · r)].

Then Maxwell’s equations, 9.13, 9.14, 9.15 and 9.16, in the absence of
free charge, reduce to

k · D = 0; k · H = 0;

k ∧ E = ωµ0H; k ∧ H = −ωD. (10.16)

These equations demonstrate that k, E and D are all perpendicular to
H, and therefore coplanar, just as for isotropic materials. Taking the In some crystalline materials the three

relative permittivities appearing in eqn.
10.18 are all different. Such crystals
are known as biaxial and have two optic
axes. Their optical properties are more
complex than those of uniaxial crystals
and will not be discussed here in any
detail. A full account of biaxial materi-
als is given in Polarization of Light by
S. Huard, published by John Wiley and
Sons, New York (1990). Crystals of cu-
bic symmetry are all isotropic; crystals
with tetragonal, trigonal and hexagonal
symmetry are all uniaxial; crystals with
orthorhombic, monoclinic and triclinic
symmetry are all biaxial.

vector product of k with the third of the four equations gives

k ∧ (k ∧ E) = ωµ0k ∧ H = −ω2µ0D. (10.17)

The relative permittivity is no longer a scalar quantity because the elec-
tric polarization of the material depends on the direction of the electric
field with respect to the crystal axes. Fortunately if the material’s ab-
sorption is negligible, which is often the case, the constitutive relation
becomes relatively simple when the coordinate axes coincide with the
crystal’s principal axesDx

Dy

Dz

 = ε0

 εx 0 0
0 εy 0
0 0 εz

Ex

Ey

Ez

 . (10.18)

Put more succinctly
D = ε0 ε · E,

where the diagonal elements of the matrix ε are εx, etc. In uniaxial
crystals there is symmetry around the optic axis, which is taken here to
be the z-axis. Then εy = εx = ε1. Replacing D in eqn. 10.17 gives

k ∧ (k ∧ E) = −(ω2/c2)ε ·E.
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Using the identity of eqn. 9.27 this becomes

(k · E)k− k2E + (ω2/c2)ε · E = 0. (10.19)

This is the desired wave equation whose solution will yield the wave
velocities, and the refractive indices, of the ordinary and extraordinary
waves. Without losing generality, k can be taken to lie in the xOz plane
inclined at an angle θ to the optic axis. Then eqn. 10.19 can be expanded
to read (ω2/c2)ε1 − k2

z 0 kxkz

0 (ω2/c2)ε1 − k2 0
kxkz 0 (ω2/c2)ε3 − k2

x

Ex

Ey

Ez

 = 0.

(10.20)
There is one simple solution with the electric field pointing in the y-
direction, which requires

(ω2/c2)ε1 − k2 = 0,

that is
v ≡ ω/k = c/

√
ε1.

For this orientation of the electric field, in the xOy plane, the constitu-
tive relation, eqn. 10.18, collapses to D = ε0ε1E. Thus D is parallel to
E just as for isotropic materials. Light with this alignment of the electric
field has ordinary polarization with refractive index no =

√
ε1 indepen-

dent of the direction of k. Light with ordinary polarization obeys Snell’s
law whenever it enters or leaves the birefringent material.

The other independent solution involves the remaining two coupled
equations (first and third lines) of eqn. 10.20 and has extraordinary
polarization. In order for these equations to be consistent

[ (ω/c)2ε1 − k2
z ][ (ω/c)2ε3 − k2

x ] − k2
xk2

z = 0. (10.21)

After some manipulation this can be re-expressed as a requirement on
the refractive index n(θ) of the extraordinary wave, when the wave vector
makes an angle θ with the z-axis:

n(θ) = kc/ω. (10.22)

This refractive index has to satisfy

1/n2(θ) = cos2 θ/n2
o + sin2 θ/n2

e , (10.23)

with ne =
√

ε3, and as before no =
√

ε1. This result shows that the
refractive index of the extraordinary wave varies with the angle the wave
vector makes to the crystal’s optic axis. At one extreme, when the wave
travels along the optic axis the refractive index of the extraordinary wave
is the same as that of the ordinary wave. At the other extreme when
the wave vector is perpendicular to the optic axis the refractive index
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is ne (given in Table 10.1). Substituting this value of n back into eqn.
10.20 gives the field vectors which, apart from a constant factor, are

Ee = −exn2
e cos θ + ezn

2
o sin θ, (10.24)

De = ε0n
2
on

2
e(−ex cos θ + ez sin θ). (10.25)

These fields point in different directions. Both are perpendicular to the
electric field of the ordinary wave, which confirms that the ordinary and
extraordinary waves are independent solutions of eqn. 10.20.

10.4.2 The index ellipsoid

It is customary when visualizing the electric field and displacement vec-
tors for the extraordinary waves to make use of the expression given for
the energy contained in the electric field in eqn. 9.44

Ue = E · D/2.

We choose a value of the magnitude of E such that Ue = 1/2, which
makes the notation simpler and crucially does not affect the relative
orientations of the field vectors. With the coordinate axes along the

eD

k

oD

eE

oE

Optic axis

θ

Fig. 10.5 Index ellipsoid for a negative uniaxial crystal. The section perpendicular to
the wave vector is shaded, and the circular section perpendicular to the crystal’s optic
axis is also outlined. The electromagnetic field vectors for a wave with extraordinary
(ordinary) polarization bear the subscript e (o). The angle between Ee and De is
the angle labelled α in figure 10.6.

principal axes, the energy equation becomes

D2
x/(ε0ε1) + D2

y/(ε0ε1) + D2
z/(ε0εz) = 1. (10.26)

The surface described by this equation is the surface traced out by the
endpoint of D and is drawn in figure 10.5. This surface is called the
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index ellipsoid and is drawn here for a negative uniaxial crystal. That
for a positive uniaxial crystal would be an ellipsoid with the semi-axis
along the optic (z-)axis longer than those in the orthogonal directions.
A theorem from solid geometry states that at any point on the ellipsoid
surface described by eqn. 10.26 the normal to the surface is the vector
with components (Dx/(ε0ε1), Dy/(ε0ε1), Dz/(ε0εz)). Evidently this is
the vector E, so that E points normal to the surface of the index ellipsoid.

In figure 10.5 a wave vector, k, is drawn in an arbitrary direction.
According to eqn. 10.16 D is perpendicular to k. Let us consider the
case of ordinary polarization first: the electric displacement, Do is per-
pendicular to the optic axis as shown in figure 10.5. It was proved in
the last section that the displacement vector of the extraordinary waves
is perpendicular to that of the ordinary waves, and is shown labelled
De in the figure. The corresponding electric fields Ee and Eo are the
normals to the index ellipsoid at De and Do respectively. As expected,
Eo is collinear with Do, but Ee and De are not collinear.

For certain directions of the wave vector the orientations of the field
vectors of the extraordinary wave are simple to describe. When k points
anywhere in the plane perpendicular to the crystal’s optic axis De lies
along the crystal’s optic axis. In this case the constitutive relation for
the extraordinary wave simplifies to De = ε0ε3Ee so that its electric and
displacement vectors are parallel and the refractive index is ne =

√
ε3.

At the same time Do and Eo lie perpendicular both to the crystal’s
optic axis and to k. The second simple case is when k points exactly
along the crystal’s optic axis. In this limit there is no distinction be-
tween the behaviour of the extraordinary and ordinary waves. Both
have their electric fields in the plane perpendicular to the optic axis;
for both polarizations D is parallel to E, and both refractive indices
are n0. When k points in a direction intermediate between the optic

α

α

D E

k

N

H

Fig. 10.6 The field vectors of an
electromagnetic wave with extraordi-
nary polarization travelling in a uniax-
ial crystal. The electric displacement,
the electric field, the wave vector, and
the Poynting vector are coplanar. The
shaded surface is a wavefront.

axis and the xOy plane then eqn. 10.23 shows that the refractive index
for the extraordinary wave takes a value intermediate between no and ne.

10.4.3 Energy flow and rays

In general the electric displacement D of the extraordinary wave is not
parallel to the electric field E, and therefore its Poynting vector (N =
E ∧ H) is generally not parallel to the wave vector. In other words the
energy flow is not perpendicular to the wavefronts! The field vectors and
a wavefront for an extraordinary wave are drawn in figure 10.6 exhibiting
the general requirement that D, E and k are coplanar. It is seen that
the velocity of the wavefront measured along the wave vector, vp, is less
than its velocity measured along the Poynting vector, vr:

vr = vp/ cosα, (10.27)
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where cosα = D · E/(D E). vp is the usual wave/phase velocity and vr

is called the ray velocity.

A new surface, called the ray surface, is shown in figure 10.7 for the
extraordinary and ordinary rays in the case of a negative uniaxial crystal.
This surface is defined as the surface reached after unit time by light from

(e)gv(o)gv

N

Optic axis

pθ

Fig. 10.7 Ray surfaces for extraordi-
nary and ordinary waves travelling in
a negative uniaxial crystal. The ray
velocities are drawn for a particular
choice of the direction of the Poynting
vector, N.

a point source in the uniaxial material and is obtained by rewriting and
solving eqn. 10.19 in terms of the vectors N and D. The Poynting vector
is radial and the wave vector is normal to the surface shown. Thus the
ray surface for the ordinary wave is simply a sphere of radius c/no. In
the case of extraordinary polarization the ray surface is the locus of the
velocity vector vr satisfying the relation

1/v2
r = sin2 θp/v2

e + cos2 θp/v2
o , (10.28)

where θp is the angle between the Poynting vector and the optic axis,
ve = c/ne and vo = c/no. The relation connecting the various angles is

θp = θ ± α, (10.29)

where the positive/negative sign applies for negative/positive uniaxial
crystals. The angles are always measured from the nearer direction of
the optic axis.

10.4.4 Huygens’ construction

Huygens’ construction for wavefronts can now be applied to the prop-
agation of light in uniaxial birefringent materials, with the ray surface
providing the shape of the secondary wavelets. Figure 10.8 shows the
propagation of a plane wave of infinite extent, having extraordinary po-
larization, over a time interval t. Each wavelet is a surface that reaches
a distance vrt from its origin in the direction θp with respect to the optic
axis. A new wavefront at time t is drawn in figure 10.8 tangential to
these wavelets. Although the wave vector, k, is perpendicular to the
wavefronts, the Poynting vector N is not: it points from the wavelet
origin to where the wavefront touches the wavelet. We note again that
while E is normal to N, k is normal to D and α is the angle between
them.
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Fig. 10.8 Huygens’ construction for a
plane wave travelling in a negative uni-
axial crystal.

It will generally be the case that a wave falling on a birefringent crystal
has its electric field pointing in a direction other than one which would
make it precisely an ordinary or an extraordinary wave when it enters the
crystal. Such a wave is then a linear superposition of components with
ordinary and extraordinary polarization, and as it progresses through
the crystal the phase relationship between these components changes. In
most cases the paths of the component extraordinary and ordinary waves
also diverge, and unless the light is travelling along the optic axis the
state of polarization changes. Consequently the pure extraordinary and
the ordinary waves provide the appropriate basis states of polarization
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in birefringent materials. They alone retain the same polarization as
they travel through a birefringent material.

10.5 Wave plates

Birefringent materials are used to modify the polarization of beams,
turning plane polarized light into circularly polarized light or rotating
the plane of polarization. They are also used to physically separate a
beam into two orthogonally polarized components. Examples of these
techniques and their applications are the topics of this and the following
sections.

The difference in the refractive indices of light with ordinary and
extraordinary polarization within a birefringent material means that a
phase lag develops between these waves as they travel. A quarter-wave

o45

Plane
polarized

Left circ.
polarized

QWP

Fast
axis

Slow
axis

Fig. 10.9 A quarter-wave plate with an
incident wave plane polarized at an an-
gle of 45◦ measured in an anticlockwise
sense from the fast axis. After passing
the QWP the light is left circularly po-
larized.

plate or QWP, shown in figure 10.9, is a slice of a uniaxial crystal cut
with the optic axis lying parallel to its faces, and of such a thickness that
there is a phase difference of π/2 between the ordinary and extraordi-
nary waves of a particular wavelength after they have travelled through
the plate. A plate of double the thickness is called a half-wave plate or
HWP.2 In quartz the extraordinary waves with electric field along the2A piece of clingfilm makes quite a good

quarter-wave plate, and a piece of clear
Sellotape is a good approximation to a
half-wave plate.

optic axis will travel slower than waves with the orthogonal ordinary po-
larization. These directions of polarization are therefore called the slow
and fast axes, respectively, of the plate. The plate thickness, d, required
to give a quarter-wave delay is such that

λ/4 = (ne − no)d.

Using the values given in Table 10.1 shows that a quartz QWP has a
thickness of 13.9µm for light of wavelength 633 nm in air. Consider
next that a plane polarized beam is incident on the QWP. If its plane
of polarization makes an angle of 45◦ (anticlockwise as seen looking
toward the oncoming light) with the fast axis it can be resolved into
equal components with polarization along the fast and slow axes,

Ef(in) = (E0/
√

2) cos (ωt − kz),

Es(in) = (E0/
√

2) cos (ωt − kz).

When these emerge from the QWP their phase difference is π/2,

Ef(out) = (E0/
√

2) cos (ωt − kz),

Es(out) = (E0/
√

2) cos (ωt − kz − π/2) = (E0/
√

2) sin (ωt − kz).

Evidently the emerging light is left circularly polarized. If the incident
plane of polarization is instead at −45◦ to the fast axis the emerging light
will be right circularly polarized. With other orientations of the incident
plane of polarization the emerging waves are elliptically polarized. This
conversion process can evidently be put in reverse: when a circularly po-
larized beam is incident the emergent beam is plane polarized. Figure
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10.10 shows a polarizing filter that is widely used to suppress reflections
of ambient light. Only the vertically polarized component of the incident
ambient light emerges through the first polarizer. This is converted to
left circularly polarized light by the QWP. On reflection from the screen
the direction of rotation of the polarization vector is unchanged but the
direction of travel is reversed, so this reflected beam is right circularly
polarized. Passage for a second time through the QWP yields horizon-
tally plane polarized light – which is blocked by the polarizer.

A plane polarized wave passing through a HWP emerges with its
polarization reflected in the fast axis of the HWP, as shown in figure
10.11. Suppose the incident electric field has components along the fast

Linear
polarizer

QWP Mirror

Fast

Slow

Fig. 10.10 Linear polarizer and
quarter-wave plate used to suppress
the reflections of ambient light from a
screen. The screen is treated as a mir-
ror. The polarization state of the light
at each step is shown.

and slow axes

Ef(in) = E0 cos θ cosφ; Es(in) = E0 sin θ cosφ,

where φ = (ωt − kz). Then the electric fields at exit are

Ef(out) = E0 cos θ cosφ;

Es(out) = E0 sin θ cos(φ − π) = −E0 sin θ cosφ.

Thus the component of electric field along the slow axis is reversed in
travelling through the HWP.

10.5.1 Jones vectors and matrices

Jones vectors describe the polarization content of a coherent beam and
the related Jones matrices describe the action of optical components on
the polarization of light passing through them. The restriction to coher-
ent states still permits a useful range of practical applications, particu-
larly with laser beams. Plane polarized beams travelling along the z-

E(in)

E(out)

Fast
axis

Slow
axis

θ
θ

Fig. 10.11 A half-wave plate looking
toward the oncoming light. The polar-
ization state of a plane wave is shown
before and after passing through the
HWP.

direction and with their electric field pointing along the horizontal x-axis
and the vertical y-axis are represented respectively by two-dimensional
vectors

h =

(
1
0

)
exp iφ; v =

(
0
1

)
exp iφ, (10.30)

where φ = ωt− kz. Plane polarizers which only transmit light polarized
along these axes are represented respectively by the matrices

H =

(
1 0
0 0

)
; V =

(
0 0
0 1

)
. (10.31)

The effects of plane polarizers on polarized beams can be summarized
as follows:

Hh = h; V v = v; Hv = V h = 0.

Left- and right-circularly polarized beams are represented by the vectors

� =

(
1
−i

)
exp (iφ)/

√
2; r =

(
1
i

)
exp (iφ)/

√
2. (10.32)
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Correspondingly the action of quarter-wave plates whose fast axes are
respectively horizontal and vertical can be expressed by matrices

Q	 =

(
1 0
0 −i

)
; Qr =

(
1 0
0 i

)
. (10.33)

The effect of these QWPs on waves plane polarized at 45◦ to the fast
axis is

Q	

(
1/

√
2

1/
√

2

)
exp (iφ) =

(
1
−i

)
exp (iφ)/

√
2 = �, (10.34)

Qr

(
1/

√
2

1/
√

2

)
exp (iφ) =

(
1
i

)
exp (iφ)/

√
2 = r, (10.35)

agreeing with the earlier analysis. The effect of a sequence of dichroicThe values of some Jones vectors and
matrices depend on whether the com-
plex wave form associated with a real
electric field cos (ωt − kz) is chosen to
be, as here, exp [i(ωt − kz)], or whether
exp [i(kz − ωt)] is the choice. There is
no consensus over this choice. If the
second choice were made then all the
imaginary terms in r, �, Q� and Qr etc.
would reverse their signs.

and birefringent elements with Jones matrices J1, J2 ...Jn would be
represented by the product matrix Jn....J2J1. In particular the effect of
a half-wave plate with its fast axis horizontal is

HW = Q	Q	 =

(
1 0
0 −1

)
. (10.36)

Overall phase factors which occur in the matrices and vectors do not
affect the state of polarization, so they can be dropped in any calculation
used to predict the polarization state alone. If a plane polarized state

θ

e

o

e

o

Crystal optic axis

Crystal optic axis

Fig. 10.12 Wollaston prism with un-
polarized beam incident. The ray po-
larizations are indicated by the labels o
and e.

described by a Jones vector S(0) is rotated by an angle θ anticlockwise
the new state has a Jones vector

S(θ) = R(θ)S(0), (10.37)

where the rotation matrix R(θ) is given by

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (10.38)

Also if a polarizer or a waveplate is rotated anticlockwise in its own plane
through an angle θ about the beam axis the Jones matrix is modified as
follows

P (θ) = R(θ)P (0)R(−θ). (10.39)

10.5.2 Prism separators

These devices take as input an unpolarized beam and ideally output
two orthogonally plane polarized beams travelling in well separated di-
rections. With some devices only one beam is in a pure state of polar-
ization, the other beam less so. Figure 10.12 shows a Wollaston prism,
in which the component prisms are cut from a uniaxial crystal, in this
case calcite, so that their optic axes lie at right angles to one another, as
indicated. On entry to the first prism the Huygens’ wavelets for the ex-
traordinary component are half ellipsoids whose axes of symmetry point
upward in the diagram. Thus the ordinary and extraordinary wavefronts
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remain parallel to the entry surface and travel undeviated in the first
prism. Thereafter their paths are shown in the figure labelled o and
e. At the interface between the prisms the polarization components of
the beam exchange their identities: the ordinary ray in the first region
becomes the extraordinary ray in the second region and vice-versa. Con-
sequently these rays are refracted at the interface away from the incident
ray in opposite senses. When the angle labelled θ is set to 45◦ an angular
separation of 20◦ is obtained at wavelength 589nm. Calcite is widely
used because it has high birefringence, transparency over a wide range
of wavelengths, stability and is available cheaply. The contamination
of the alternative polarization in either beam can be as low as 10−5 in
standard calcite Wollaston prisms.

Separation of one pure plane polarized component is accomplished in
Glan prisms by taking advantage of the difference in the critical angles
for TIR of ordinary and extraordinary rays in uniaxial crystals. Two
examples using calcite are drawn here: a Glan–air prism is shown in
figure 10.13, and a Glan–Thompson prism in figure 10.14. In the Glan–

o38.5

e

o

e

o

Crystal optic axis

Crystal optic axisAir gap

Fig. 10.13 Calcite Glan–air prism with
unpolarized light incident. The p-
polarized ray incident at the interface
is the extraordinary ray; the s-polarized
ray is the ordinary ray. The optic axes
of the prism segments are also indi-
cated.

air prism the optic axes of the component prisms lie perpendicular to
the plane of the diagram and they are separated by an air gap. The
prism is cut with one hypotenuse angle around 38.5◦ so that the angle
of incidence of light arriving at the calcite/air gap interface is midway
between the critical angle for the ordinary ray (37.1◦) and that for the
extraordinary ray (39.7◦). The ordinary ray undergoes TIR while the
extraordinary ray is partially transmitted and forms the required pure
plane polarized, and in addition undeviated, beam.3 The range in angle 3The gap in any Glan prism is many

times the wavelength of light so that
there is negligible frustrated TIR.

of incidence over which the extraordinary ray is transmitted and the or-
dinary ray undergoes TIR, is called the acceptance angle and amounts to
5◦ for a calcite Glan–air prism. The upper surface of the prism through
which the ordinary ray would exit can be blackened to absorb it, or pol-
ished to give good transmission, depending on the application.

A much larger acceptance cone, of up to 30◦ full angle, is obtained with
the Glan–Thompson prism. The gap between the component prisms is
now filled with a transparent material like Canada balsam whose refrac-
tive index (1.55) lies midway between that for an ordinary ray and an
extraordinary ray in calcite. With this modification the ordinary ray un-

o72
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Crystal optic axis

Crystal optic axisCanada
balsam

Fig. 10.14 Calcite Glan–Thompson
prism with unpolarized light incident.

dergoes TIR at the calcite/balsam interface at angles of incidence greater
than 69.2◦, while the extraordinary ray is partially transmitted at all
angles of incidence. Therefore the aspect ratio of the Glan–Thompson
prisms is made large, 2.5–3.0, so as to obtain the necessary large an-
gles of incidence at the interface. The sandwich material in a Glan–
Thompson prism can only withstand beam fluxes of up to 1W cm−2

without being damaged. On the other hand a Glan–air prism can cope
with 100Wcm−2. Both types of Glan prism provide only a single pure
plane polarized beam travelling forward.
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10.5.3 Polarizing beam splitters and DVD readers

A beam-splitting prism designed to separate an unpolarized incident
beam into pure orthogonally polarized beams emerging at 90◦ to one
another is drawn in figure 10.15. The prisms are made of identical glass,
either crown or flint. Recall that when a beam is incident at Brew-
ster’s angle on a stack of glass plates the p-polarized component is fully
transmitted, and the s-polarized component partially reflected at each
surface. With enough such surfaces the s-polarized component is almost
completely reflected. In a polarizing beam splitter the function of the
multiple layers of glass is performed by multiple dielectric layers on the
hypotenuse face of one prism. Over a wavelength range of order 200 nm
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Fig. 10.15 Polarizing beam splitter
made from glass prisms with a mul-
tilayer dielectric coating on the hy-
potenuse face.

the transmittance of p-polarized light remains above 95% while the re-
flectance of the s-polarized light is close to 100%; cross contamination of
the other polarization component is typically 0.1% and 2% respectively.
All other surfaces in the beam paths are given antireflection coatings.

Figure 10.16 shows the optical layout for reading a DVD disk using
a diode laser, a polarizing beam splitter (PBS), a quarter-wave plate
(QWP) and a photodiode detector. The laser wavelength lies in the
range 635 to 650 nm. The information on the disk is carried in the
form of pits etched one quarter wavelength deep in the smooth reflective
surface. The laser beam is focused to an image spot on the reflective
surface, and the information is retrieved by the detector in the light re-
flected from the DVD surface. When the spot falls on the clear surface
the detector receives full intensity, but when the spot covers a pit there
is destructive interference, in the direction of the detector optics, be-
tween the reflection from the pit and the lands surrounding it. The pits
follow a spiral track on the DVD with a pitch of 0.74µm and lengths
between 0.4µm and 2.0µm. The reader shown is mounted on an arm
which maintains the image spot on the spiral track as the DVD rotates.
The intervals of strong and weak reflections and the transitions are elec-
tronically converted to strings of binary zeroes and ones.

The laser light is polarized and its state of polarization at each stage
along its path is indicated in the figure. Its initial polarization state
is such that it is transmitted rather than reflected by the PBS. During
the trip to and from the DVD the sequence already described for figure
10.10 is repeated with the result that the beam is orthogonally polarized
on its return to the PBS and is reflected entirely into the detector. This
arrangement prevents light reflected by the DVD from returning to the
laser. If this were permitted then one of the laser mirrors could form a
Fabry–Perot cavity with the DVD surface and hence affect the laser’s
operation. This deliberate decoupling makes it possible to have a com-
pact unit in which the incident and reflected light share some common
components.

In a read/write DVD the reflective layer is an alloy such as Ge-Sb-
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Reflective layer
Label

Polycarbonate

QWP Mirror

PBS

Laser

Detector

DVD

Fig. 10.16 DVD optical readout with the polarization of the laser beam indicated.
For light travelling to the DVD the symbols are drawn with full lines, and for the
light returning from the DVD with broken lines. PBS signifies the polarizing beam
splitter.

Te whose reflection coefficient depends on its phase state. When this
material is heated to 200◦C it cools slowly to a crystalline state which
has high reflectance; but when it is heated to 500–700◦C it cools rapidly
to an amorphous state with low reflectance. During the writing phase
the power of the laser is raised so that it can melt the alloy: then bursts
of high power and lower power produce non-reflective and reflective track
segments respectively.

10.6 Optical activity

Some materials contain molecules or have a crystal structure with defi-
nite handedness, chirality, so that their refractive indices for right and
left circularly polarized light differ. This property is called circular bire-
fringence. Now a plane polarized beam can be resolved into right- and
left-circularly polarized components as in eqn. 10.12. Consequently
when a plane polarized beam travels through a circularly birefringent
material a phase difference develops between its circularly polarized com-
ponents. This causes the plane of polarization of the incident light beam
to rotate as it passes through such materials, a property known as opti-
cal activity. Substances which cause the plane of polarization to rotate
to the right include the natural sugars and most amino acids, and are
called d(extro)-rotatory. Antibiotics are among the complementary class
of l(aevo)-rotatory molecules. Quartz can function either way because
it can crystallize in mirror image forms: in one form the silicon–oxygen
chains follow a right-handed helix, in the other form a left-handed helix.
Molecules whose structure has such a handedness are called chiral. They
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come in two forms, which are the mirror images of one another.

The handedness of a molecule is the same viewed from either end.
Thus a set of randomly oriented molecules of one handedness produce
a net effect on light. Optical activity can therefore be observed even
in amorphous materials and liquids, provide their molecules are chiral.
If the refractive indices for circularly polarized light travelling in an
optically active material are n	 and nr, then the phase lead accumulated
by the right-circularly polarized component in travelling a distance z is44The phase is (ωt − kz) = ω(t − nd/c)

for either component. Thus the phase
lead of the right circularly polarized
light is ω(−nr +n�)d/c or (2πd/λ)(n�−
nr).

φ = (2πz/λ)(n	 − nr). (10.40)
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Thus we see that the outgoing beam has its plane of polarization rotated
clockwise through an angle equal to half the phase lead of the right- over
the left-circularly polarized component

β = (πd/λ)(n	 − nr). (10.42)

In quartz the specific rotatory power, β/d is 21.7◦/mm.

Photoelasticity

When an object made of Perspex is placed between crossed polarizers
and viewed in white light the field is dark. However, if the object is
stressed, coloured bands appear across the area it covers, indicating
that the stress has induced some birefringence. Regions that form a
continuous band of one colour mark regions of equal stress. Models of
large scale structures construced from clear plastic can be studied in this
way in order to assess the stresses that are likely to be present in the
full scale object.

10.7 Effects of applied electromagnetic fields

Externally applied electric and magnetic fields exert forces on the elec-
tron clouds in atoms and molecules, which in turn cause changes to their
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configuration. This leads to a change in the relative permittivities ap-
pearing in the equation for the index ellipsoid, eqn. 10.26. The refractive
index which at low values of the applied field is n0, becomes

n = n0 + ∆n,

where ∆n depends on the orientation of the applied fields E or B, and
of the polarization of the light with respect to the crystal’s optic axis.
Only the simpler cases will be of interest here, and to cover these cases
the change is written conventionally

∆n = n3(rE + sE2 + rBB)/2, (10.43)

so that
−∆(1/n2) = rE + sE2 + rBB. (10.44)

Here r, s and rB are coefficients which depend on the material, and on
the orientations mentioned above. The corresponding optical effects are
called respectively the Pockels effect, the Kerr effect and the Faraday
effect and will be described in the following sections. Evidently r, s
and rB are tensors whose components depend on the orientation of the
applied field and the polarization direction of the light. However the
crystals are cut, and the fields applied, in such a way that usually only
one component of the relevant tensor is of importance in each device.

The changes in optical behaviour of crystals produced by applied elec-
tric fields have provided a useful interface between electronics and optics.
Electronic signals can be used to switch light on and off, or to modulate
light with an analogue signal at rates up to tens of gigahertz. Optoelec-
tronic devices exploiting this capability are frequently used in research
and telecoms. One application has already been met in Section 8.12.1:
an electro-optic modulator was used to lock together the frequencies of
a cavity and a laser.

10.7.1 Pockels effect and modulators

The Pockels effect is the birefringence induced by an applied external
electric field, and is linearly proportional to the field strength. When the
applied electric field is reversed the effect is reversed, and we will show
that for this reason no Pockels effect is observed in certain symmetric
crystals or in liquids.

Suppose that the basic cell of a crystal contains atoms at coordinates
ri and that it is centrosymmetric crystal: meaning that its basic cell
is symmetric under the transformation: ri → −ri. In such a material
equal and opposite applied electric fields E and −E would produce the
same change in the electron structure of the cell. This means that the
change in refractive index will be the same for these two fields. Hence the
Pockels effect must vanish in centrosymmetric crystalline materials and
equally, using the same argument, in any isotropic liquid. In other less
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symmetric crystals it is the dominant electro-optic effect. The alteration
in the refractive index produced by an applied electric field E is

∆n = n3r · E/2, (10.45)

where the Pockels coefficients depend on the relative orientation of the
crystal axes, the plane of polarization and the direction of the applied
electric field.

Crystals of the positive uniaxial material lithium niobate (LiNbO3, or
LNO) show a strong Pockels effect and are transparent for wavelengths
from 400 to 5000nm. Lithium niobate is ferroelectric: a crystal can
have a very large permanent electric dipole moment in the absence of
any applied electric field and this moment can be reversed by applying
a sufficiently strong electric field. The mechanism involved is the for-
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Optical axis

E(applied)

+ - +

Fig. 10.17 Mach–Zehnder interferom-
eter on a lithium niobate crystal. The
lower diagram is a cross-section taken
at the broken line. The indiffused ti-
tanium waveguides are shaded, and the
gold electrodes are cross-hatched.

mation of domains within which the dipole moments of the individual
crystal cells line up parallel. In LNO alternate domains are parallel and
antiparallel. An applied field causes the polarization of all the domains
to align with itself so that a very large electric susceptibility and relative
permittivity result. LNO possesses not only a strong Pockels effect, but
also strong piezoelectric and acousto-optical responses. Potassium di-
hydrogen phosphate, KDP, is a similarly versatile crystalline material.5

With no voltage applied the cell does not affect the polarization. Rapid
switching in 1 ns or less in standard.

Figure 10.17 shows a device of a type used in telecoms to modulate
the intensity of electromagnetic radiation in the visible or near infrared
at frequencies of order 10GHz. It consists of a LNO crystal a few cen-
timetres long in which waveguides are formed to make the arms of a
Mach–Zehnder interferometer. These waveguides are produced by dif-
fusing vaporized titanium into the crystal. Their cross-section is a few
microns across, similar to that of the core of a single mode optical fibre,
and their refractive index is a little larger than that of the undoped LNO
crystal. Thus light injected into one end of the waveguide is confined by
TIR to travel along the waveguide just as in an optical fibre. Polarized
light from a laser source enters via an optical fibre at one end of the
waveguide, and exits into another optical fibre at the the other end of
the waveguide. Gold electrodes are deposited alongside the arms of the
Mach–Zehnder and an electric potential is applied between them with
the polarity shown in the figure. This voltage produces equal and oppo-
site electric fields in the two arms and hence opposite Pockels effects. A
simple alignment is shown here: the crystal optic axis, the direction of
polarization and the applied electric field are all parallel. The refractive
indices in the arms of the Mach–Zehnder are modified from their value

5The Pockels coefficients for these important complex crystals, LNO and KDP,
are discussed and tabulated in Polarization of Light by S. Huard, published by John
Wiley and Sons, New York (1990).
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ne in the absence of an applied electric field to become

n = ne ± r33n
3
eE/2,

where E is the applied field and r33 is 30.8 10−12 mV−1 is the appropri-
ate Pockels coefficient for LNO at 633nm wavelength. Thus the phase
difference between light in the two arms at the point they reunite is

φ = (2π/λ)r33n
3
eEL,

λ being the vacuum wavelength of the light and L being the length of
the electrodes. This phase difference can be re-expressed in terms of the
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Fig. 10.18 The intensity transmitted
through the Mach–Zehnder modulator
versus the applied voltage.

electrode separation d and the applied voltage V as

φ = (2π/λ)r33n
3
e(LV/d). (10.46)

If we define the electric field of the light entering each arm to be

Ein = E0 exp (iωt),

then that emerging from the device is

Eout = E0[ exp (iωt) + exp [i(ωt + φ)] ],

whose time averaged intensity is

I = EoutE
∗
out = 2E2

0 [ 1 + cosφ ]. (10.47)

This behaviour is shown in figure 10.18 as a function of the applied volt-
age.

The modulator is biased with a fixed voltage between the electrodes
which is large enough to bring the operating point on the intensity versus
voltage curve into the region where the slope is linear. Any small ampli-
tude signal voltage applied on top of this fixed bias will be replicated in
the variation of the intensity of the light transmitted by the modulator
into the output fibre. The voltage that cuts the light off completely, Vπ ,
is called the half-wave voltage. Evidently

Vπ = λd/(2n3
er33L). (10.48)

Taking the wavelength to be 633 nm, the length of the electrodes to be
1 cm and their separation to be 10µm, then the half-wave voltage for
the LNO modulator being considered here would be 1 V. This value lies
neatly within the range of voltages employed in modern electronics.

The time taken for light to pass between the two ends of the electrodes
imposes an upper limit on the frequency of signals that can be used to
modulate the light. This transit time, τ , equals neL/c and only signals
of frequencies well below 1/τ will be reproduced without distortion in
the light intensity output from the modulator. This limit can be raised
appreciably by designing the electrodes so that they carry a travelling
wave which propogates along the length of the electrodes parallel to the
light in the waveguide.
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10.7.2 Kerr effect

In liquids and centrosymmetric crystals the residual electro-optic effect
is the Kerr effect, which is proportional to the square of the electric field.
The applied electric field induces birefringence with the electrical field
direction becoming the optic axis, and the material therefore behaves as
a uniaxial crystal. If the applied field is E then the difference between the
refractive index for light polarized parallel (extraordinary polarization)
and perpendicular (ordinary polarization) to the applied electric field is
expressed as

ne − no = κλE2, (10.49)

where κ is called the Kerr coefficient. A material with a positive Kerr
coefficient therefore has polarization properties similar to those of a posi-
tive uniaxial crystal. One liquid that has often been used, nitrobenzene,6

has a very large Kerr coefficient, 2.4 10−12 V−2 m, while that for water
is only 4.4 10−14 V−2 m. It follows also that

∆n = ne − n = n2I, (10.50)

where n is the refractive index in the absence of an applied field and I
is the light intensity.

Figure 10.19 shows a fast optical shutter consisting of a Kerr cell
located between a crossed polarizer and analyser. The electric field
applied across the cell is oriented at 45◦ to the transmission axes of
both polarizer and analyser. In the absence of any external electric field

Applied electric
field

Polarizer Analyzer

Kerr cell

Polarization along cell
 appliedπwith V

Fig. 10.19 Kerr cell sandwiched be-
tween crossed linear polarizer and anal-
yser. The polarization state of the
beam travelling through the Kerr cell
is indicated for the case that the ap-
plied voltage makes the cell equivalent
to a half-wave plate.

there is no transmission. However when an electric field is applied a
phase delay is produced between light polarized along and perpendicular
to the applied field direction. This delay can be inferred using eqn. 10.49
to be

∆φ = 2πκL(V/d)2, (10.51)

where L is the length and d the width of the cell containing the active ma-
terial and V is the applied electric potential. When the phase difference
is exactly π the Kerr cell is equivalent to a half-wave plate with, in the
case of a material with a positive Kerr coeffiecient, the slow axis pointing
along the direction of the applied electric field. The plane of polarization
of the light therefore rotates by exactly 90◦ in passing through the Kerr
cell and so the beam is transmitted by the analyser. For example, a cell
of width 1 cm and length 4 cm filled with nitrobenzene requires a volt-
age of 2260V to produce a phase difference of π. Switching is extremely
fast, capable of following signals of frequencies up to 10GHz. This high
switching speed has been exploited in the determination of the speed of
light made by measuring the travel time of short pulses of light over a
known path distance to and from a distant mirror. Kerr cell shutters
can readily be constructed with apertures adequate to cover standard
camera lenses and have been extensively used in high speed photography.

6Unfortunately this is a corrosive and unstable material.
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10.7.3 Faraday effect

Faraday, in 1845, made the first observation of an effect of an applied
electromagnetic field on light: he observed that the plane of polarization
of light travelling in glass was rotated when a magnetic field was applied
along the path of the light. In the Faraday effect a difference is produced
between the refractive index of right and left circularly polarized light
travelling along the direction of the magnetic field

∆n = n3rBB, (10.52)

where B is the applied field and rB an optical constant that depends
on the material. Over a path length L a phase difference (2π/λ)∆nL
develops between the two states of circular polarization. If instead the
incident light is plane polarized we can use a result proved in Section
10.6: that the plane of polarization will rotate through an angle equal
to half this phase difference,

θ = (π/λ)∆nL = (π/λ)n3rBLB,

where eqn. 10.52 was used to replace ∆n. This result is generally
contracted to read

θ = VLB, (10.53)

where V is called the Verdet constant. By convention this constant is
taken to be positive if the rotation is left handed when the light travels in
the direction of the applied magnetic field. Materials containing param-

Rotator within
permanent magnet

Magnetic field direction
inside rotator

Polarizer Polarizer

blocked

Fig. 10.20 Optical isolator consisting
of a Faraday rotator sandwiched be-
tween polarizers with their transmis-
sion direction inclined at 45◦. The po-
larization states for light travelling in
either direction are shown below the de-
vice as seen from the left. The Fara-
day rotator is taken to have a positive
Verdet constant.

agnetic ions have relatively large Verdet constants. The Verdet constant,
expressing the rotation angle in radians, is typically 90T−1m−1 for glass
doped with terbium ions, but only 3.8T−1m−1 for water, all measured
at a wavelength in air of 633nm. Many older texts quote the Verdet
constant in the unit arc-min/amp: this value is obtained by dividing the
constant in radT−1m−1 by 235.1.

Unlike the Kerr effect, the rotation of the polarization induced by an
external magnetic field is in one sense (say left handed as seen looking
toward the oncoming light) when the light travels in the direction of the
field and in the reverse sense when it travels in the direction opposite to
the field (right handed when viewed looking toward the oncoming light).
Thus the Faraday rotation is in the same sense when it is observed in a
fixed direction, for example looking along the magnetic field direction.
This feature makes it possible to construct optical isolators which permit
light to travel through them in only one direction.

Figure 10.20 shows such an optical isolator consisting of a Faraday ro-
tator sandwiched between a polarizer and analyser whose transmission
axes are inclined at 45◦ to each other. A typical rotator is a terbium
doped glass rod located inside a powerful permanent magnet. The paths
and the corresponding polarizations of light entering from both the left
and the right are also indicated in figure 10.20. In each case the plane
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of polarization is rotated clockwise through 45◦ by the Faraday rotator,
as seen from the left hand end. Right moving light is transmitted but
left travelling light is blocked.

Isolators are widely used when it is necessary to prevent light from a
laser being reflected back into the laser. Such a reflected beam would be
effectively confined in a cavity formed by laser mirror and the external
reflecting surface, and this can easily disturb the laser’s operation. When
very high powers are involved the polarizers used would be Glan–air
prisms rather than a sheet of Polaroid. The Verdet constant contains
the factor λ−1 so that it changes rapidly with wavelength. Consequently
a Faraday rotator needs to be tuned in order to function at different
wavelengths by moving the glass rod further into or out from the magnet
air core.

10.8 Liquid crystals

The liquid crystal display, LCD, is now ubiquitous, providing the dis-
plays in hand calculators, laptops and mobile phones. It has also almost
entirely displaced the electron beam TV and PC monitors due to a com-
bination of advantages that are explained below. Liquid crystals are
liquids which contain anisotropic molecules and which possess some de-
gree of internal order. The molecules diffuse just like those in any liquid
but they retain either some degree of alignment among the molecules
(nematic ordering) or some degree of alignment and positional ordering
of the molecules (smectic ordering). Thanks to this ordering liquid crys-
tals are highly birefringent and optically active, properties which make
them ideal elements for electronically driven displays.

When a crystalline substance melts to become a liquid crystal the la-
tent heat is almost as large as that evolved in a transition from a crystal
to a pure liquid, and when the liquid crystal is further heated so that
it changes to a pure liquid the latent heat from this phase transition
is much less. This shows that the ordering in a liquid crystal is much
weaker than in a crystalline solid. The liquid crystals discussed here areN SmA SmC

Fig. 10.21 Distribution and alignment
of molecules in nematic, smectic A and
smectic C liquid crystals.

called thermotropic, that is to say there is a limited temperature range
over which they are stable as liquid crystals. Molecules in liquid crys-
tals of interest here have a stiff rod-like centre section with more flexible
extensions and there are strong attractive forces between neighbours.7

Figure 10.21 contrasts the purely orientational ordering in a nematic,
N, liquid crystal and the orientational ordering and layering in smectic
liquid crystals. In smectic SmA liquid crystals the molecules align nor-
mal to the layers, while in smectic SmC liquid crystals the molecules are
tilted. The average direction of alignment over a local region contain-

7There are other liquid crystals that are formed when a material is dissolved in a
solvent, such as soap in water. These lyotropic liquid crystals are not of importance
in the applications discussed here.
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ing many molecules is called the director. The nematic liquid crystals
are uniaxial and the director direction defines the local optic axis of
the liquid crystal. Although the discovery of liquid crystals goes back
to the 19th century the technological exploitation of their optical prop-
erties came only later, after George Gray had successfully synthesized
liquid crystals which were stable over a useful temperature range around
room temperature. The structure of liquid crystals can be chemically
engineered so that the difference between the extraordinary and ordi-
nary refractive indices, ∆n, has a value appropriate to the application,
usually around 0.1 for LCD usage.

10.8.1 The twisted nematic LCD

Figure 10.22 shows the basic components of a simple twisted nematic
(TN) liquid crystal display invented in 1977 by Schadt and Helfrich.
A layer of uniaxial nematic liquid crystal, about 5µm thick, is sand-
wiched between two glass sheets. On the inner glass surfaces a layer of
polyimide is deposited, typically 100 nm thick, whose surface has been
textured by gently rubbing in a fixed direction. This causes the liq-
uid crystal molecules close to the surface to align nearly parallel to the
rubbing direction. By arranging the rubbing directions on the two fac-
ing polyimide surfaces to be orthogonal, the director is forced to twist
through 90◦ between these two surfaces. Polarizing sheets are glued to

Field off Field on
Fig. 10.22 A twisted nematic liquid crystal. The arrows indicate the transmission
directions of the polarizers, and the light lines the rubbing direction on the polyimide
layers. On the left transmitting light with no field applied; on the right blocking light
when an electric field is applied.

the outer surfaces of the glass sheets with their transmission axes aligned
parallel to the rubbing direction of the polyimide surface, which means
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the polarizers are crossed. When the LCD is used in transmission the
panel is illuminated from below by a broad white light source.

The left hand panel in figure 10.22 shows the ‘off’ state with no volt-
age applied to the cell. Light entering from below is polarized parallel to
the rubbing direction on entering the liquid crystal. In the liquid crys-
tal the optic axis, coincident with the local director direction, rotates
through 90◦ across the cell. Evidently left and right circularly polar-
ized waves will have slightly different refractive indices because of the
rotation of the optic axis across the liquid crystal. From the analysis
made in Section 10.6 it follows that the plane of polarization of the light
incident will rotate as it progresses. With the correct choice of the liquid
thickness and the liquid crystal’s birefringence the plane of polarization
of the incident light can be made to follow the rotation of the optic
axis through 90◦ and it will then be transmitted by the upper polarizer.
The requirement for this adiabatic following is that the phase difference
between the extraordinary and ordinary rays is much greater than the
angular twist across the liquid crystal thickness88The ratio of the phase lag to twice the

twist is called the Mauguin parameter.

(2π/λ)∆n z 	 π/2,

where ∆n is this difference in refractive indices, and z the cell thickness.
That is

(4∆n z/λ) 	 1.

Thus if ∆n is around 0.1 and the wavelength is 0.5µm, then a thickness
of 5–10µm is adequate to produce a rotation through 90◦ which can
be adiabatically followed by the electric field. As a result the light is
transmitted by the upper polarizer.

In the ‘on’ state shown in the right-hand panel an electric field is ap-
plied perpendicular to the cell. The molecules become polarized and,
while those very close to the surfaces remain pointing along the rubbing
axis, those throughout the body of the liquid crystal tip so that the
director points along the field direction. With this new alignment the
incident light travels along the optic axis of the liquid crystal, the plane
of polarization of the incident light is no longer guided, and the light is
blocked by the upper polarizer. What is shown in figure 10.22 is known
as a normally white (NW) display. A normally black (NB) display is
obtained if the transmission axis of the upper polarizer is set parallel to
that of the lower polarizer.

Further details of the structure of a twisted nematic LCD are shown in
figure 10.23. A white backlight is provided by either a fluorescent lampBacklight

Glass

Glass

Polarizer

Polarizer

Colour filter
Electrode

TFT
Liquid crystal
Polyimide

Polyimide
Electrode

Fig. 10.23 Component layers of a pixel
of a twisted nematic LCD.

plus diffuser, or by an electroluminescent sheet. The electric field across
the liquid crystal is applied via transparent conductive 100nm thick in-
dium tin oxide electrodes deposited on the glass ahead of the polyimide
layer. It requires only a few volts across the thin layer of liquid crystal to
attain the high electric field needed to switch the molecular alignment.
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However the switching is slow because the molecules have to be turned
against the viscous drag: a full cycle off/on/off takes at least 15ms to
complete. LCDs used as PC monitors are divided into pixels so as to
match standard formats, for example the SXGA format with 1280×1024
pixels. Each pixel contains three electrically independent subpixels, cov-
ered by respectively red, green and blue colour filters. These filters are
in the form of continuous vertical bands so that the subpixels on an
18-inch screen are then 0.28mm tall and 0.093mm wide. Individual
subpixel voltages are applied using an active matrix (AM) addressing as
shown in figure 10.24. Thin film transistors (TFT) located at one cor-
ner of each pixel are used to turn the pixel voltage on and off. Control
voltages are applied via electrical buses: one set of which run between
the rows and the other between the columns of pixels. A data voltage is
applied in sequence to each column in turn and at each of these steps a
gating voltage is applied to just those rows that contain pixels that are
to be turned on. If a DC voltage were applied continuously to a liquid
crystal, then impurity ions would be driven onto the polyimide surfaces
where they would adhere and affect its ability to align the liquid crystal
molecules. In order to avoid this effect the voltage on any pixel is alter-
nated between frames.

LCD panels have an overall thickness of a few millimetres. The trans-
mission coefficient is restricted to 5% at best, because of the absorption
in the many layers. This is still sufficient to outclass the electron beam
tubes in brightness when using only modest backlight intensities. The

Data line

Scan line

LC

Drain

Pixel
electrode

Common
electrode

Fig. 10.24 Active matrix switching for
LCD. The CMOS transistor obscures
only a small fraction of the pixel area.

displays in watches and calculators are illuminated by ambient light only,
so that the power consumption is reduced to a tolerable level. In these
devices a reflector forms the back layer.

The immediate advantages of the LCD over the electron tube for use in
comparable displays are the flat format, light weight, avoidance of high
voltage and roughly halved power consumption. A significant problem
with TN LCDs was the rapid fall off in the contrast and the fidelity of the
colour as the viewing direction is moved away from the perpendicular
to the display surface. The origin of the problem is that when the
molecules align perpendicular to the display surface the birefringence
varies strongly with the viewing angle, and this is made worse by the
molecules not being fully aligned. To alleviate this problem thin surface
layers of diffusing and birefringent material are added to extend the
angular range of satisfactory contrast and colour fidelity.

10.8.2 In-plane switching

A more effective solution is illustrated in figure 10.25 with the electrodes
now located on one glass surface only. The non-transmitting ‘off’ state
is shown in the left-hand panel in which light emerging from the lower
polarizer has its electric field along the director direction. Therefore the
polarization is unchanged as the light crosses the liquid crystal and is
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Field off Field on

Fig. 10.25 In-plane switching LCD. The dark bands on either side of the lower
surfaces are electrodes. The arrows mark the directions of the polarizers’ transmission
axes. In the right hand diagram with electric field applied the liquid crystal molecules
set at 45◦ to the directions of the two transmision axes in the body of the liquid.

blocked by the upper polarizer. In the ‘on’ state, shown in the right hand
panel, the applied electric field is parallel to the glass surface rather than
perpendicular to it as was the case for TN LCDs. Suppose the director
of the liquid crystal, which defines its optic axis, sets at an angle θ to the
direction of transmission of the lower polarizer as shown in figure 10.26.
Then the electric field of the light entering the liquid has components
parallel and perpendicular to the optic axis,

Ee = cos θ; Eo = sin θ,

where all unnecessary factors have been removed. When these compo-
nents emerge they have become

Ee = cos θ; Eo = sin θ exp (−iφ),

where the phase difference

φ = (2π/λ)∆nd,

for a cell of thickness d and a difference in the refractive indices ∆n; λ is
the wavelength in free space. The component of the electric field along

θ Lower polarizer axis

Upper polarizer axis
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eE

1

Dire
cto
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Fig. 10.26 Director and polarizer axes
in twisted nematic cell with field off.

the direction of transmission of the analyser is therefore

EA = cos θ sin θ − cos θ sin θ exp (−iφ).

Thus the time averaged intensity of the light exiting the LCD is

IA = E∗
AEA = sin2 (2θ) sin2 (φ/2). (10.54)
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The intensity is maximized by having the director at 45◦ to the po-
larizers, and making the liquid thickness such that the phase lag φ is
2π. In order to keep the cell thickness large enough for cheap man-
ufacture (several microns) ∆n must be relatively small. Note that in
switching between the two states shown in figure 10.25 the liquid crystal
molecules remain parallel to the glass surfaces; this process is therefore
called in-plane switching (IPS). Because the molecules’ axes stay parallel

White source

Multilayer dielectric mirrors

LCDs

Mirrors Lens to screen

R G B

Fig. 10.27 LCD projector. The LCDs
can be either simple twisted nematic or
polymer dispersed LCDs because only
a narrow beam is required.

to the glass the birefringence changes very little with the viewing angle.
The contrast and colour fidelity remain excellent even when the LCD is
viewed up to 80◦ off axis. Nowadays LCD pictures are generally bright
(∼500 cd m−2) and of high static contrast (∼2000:1) and can be used
out of doors. The dynamic contrast attained by darkening the backlight
in dark scenes can be several thousand. The newer plasma sceens have
a better inherent contrast, the pixels being black when off. LCD as well
as plasma response is rapid enough to display fast sports without intro-
ducing any smearing.

Compact projectors are manufactured using LCDs.9 The notional
layout of such a projector is shown in figure 10.27 using three LCDs of
around 20mm lateral dimension and with a pixel pitch of about 15µm.
Mirrors with multiple layer dielectric coatings are used to selectively
reflect the red, green or blue components of the incident white light onto
the individual LCDs. The LCDs are of simple construction because no
colour masks are needed and the beam is concentrated over a narrow
angular range.

10.8.3 Polymer dispersed liquid crystals (PDLC)

Figure 10.28 shows the structure of a PDLC, in which bubbles of a
nematic liquid crystal are dispersed randomly and densely within an
isotropic polymer matrix. The bubbles are a few microns in diameter. Field off Field on

-

+

Fig. 10.28 Polymer dispersed liquid
crystal. In the left hand panel the bub-
bles’ refractive index is different from
that of the polymer. In the right hand
panel the refractive indices are the same
for light incident normally.

Sheets of such structured material are now used to make windows which
can be switched from clear to opaque in some tens of milliseconds. For
this application the materials are selected to make the ordinary refrac-
tive index, no, of the uniaxial nematic liquid identical to the refractive
index of the polymer. Both faces of the PDLC sheet are coated with
transparent electrodes. As shown in the right hand panel, when a voltage
is applied across the sheet it aligns the liquid crystal molecules perpen-
dicular to the surfaces. Then light at normal incidence, irrespective of
its polarization, enters a material with a single refractive index, no. The
window is transparent. When the applied field is removed the molecules
in each bubble take up orientations that are influenced by their interac-

9LCDs now share projection applications with micro-electromechanical devices.
These consist of an array of mirrors about 15 µm square each hinged on a separate
pillar. An applied voltage tilts any mirror which is addressed through 10◦ by electro-
static attraction and this mirror then directs light into the projector lens. Intensity
is controlled by dithering the mirror at a frequency of around 1 kHz so that it reflects
light into the lens for a controlled fraction of the frame duration.
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tion with molecules of the polymer surface and their optic axes become
isotropically distributed. Thus the refractive index of the bubbles be-
comes

n2 = (n2
e + 2n2

o)/3,

which differs markedly from the polymer refractive index. In this state
the densely packed bubbles in the PDLC window scatter the incident
light so effectively that the surface looks uniformly dull.

10.8.4 Ferroelectric liquid crystals (FELC)

Nematic liquid crystals have a switching rate which, though more than
adequate for visual displays, is not fast enough to be of much use in the
spatial light modulators mentioned in Section 7.8.1. However another
class of liquid crystals, SmC∗, can be switched about one thousand times
faster. Here the star indicates that the molecules have a definite handed-
ness: they are chiral. The molecules possess an intrinsic electric dipole
moment perpendicular to both the layer normal and the director di-
rection. As shown in figure 10.29 the electric dipoles in each layer lie
parallel and a layer forms a ferroelectric domain. In one layer the direc-
tor makes a fixed angle with the layer normal, θ. However the chirality
of the molecules causes the director direction to twist between layers
so that the director direction for successive layers rotates slowly around
the cone of semi-angle θ shown in figure 10.29. The director direction
completes a full circuit around the cone after a few thousand layers.

A ferroelectric LCD cell is shown face on in figure 10.30. The thick-
ness of the layer of liquid crystal is reduced to about 2µm so that the
directors are forced into one of the two orientations, OA and OB, 2θ
apart. In this surface stabilized state all the molecules can be simulta-

Layer

normal
θ

Dipole

Director

Fig. 10.29 Orientation of the director
and electric dipole moment in a layered
SmC* liquid crystal.

neously aligned in one of these two alternative orientations by applying
the electric field in the directions indicated. Switching is rapid because
the applied field acts on the electric dipole moment of each domain, P,
giving a very high torque, P ∧ E. Another useful property of the sur-
face stabilized regime is that once switched the alignment is stable and
consequently power is only required to switch, and not to maintain the
state of each pixel.

Crossed polarizers sandwich the FELC. In the upper panel of figure
10.30 the directors are aligned along OA so this is also the optic axis.
The incident light has extraordinary polarization in the liquid crystal
and is transmitted without change of polarization. It is therefore ex-
tinguished by the analyser. In the lower panel, with the electric feld
reversed, the directors now align parallel to OB and this is now the
optic axis. It follows that the incident light can be resolved into a com-
ponent polarized along OB, and a component polarized at right angles
along OC. The former has extraordinary polarization and the latter has
ordinary polarization. Their electric fields on entering the liquid crystal
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are
Ee = cos 2θ; Eo = sin 2θ.

After transmission, ignoring common factors, their values become

Ee = cos 2θ; Eo = sin 2θ exp (iφ),

where φ is the phase difference arising from the difference between the
ordinary and extraordinary refractive indices, ∆n. We can now reuse
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Fig. 10.30 Surface stabilized ferroelec-
tric liquid crystal cell, seen face on. The
alignments of the directors are shown
for alternative signs of the applied elec-
tric field across the cell.

the analysis that led to eqn. 10.54. This shows that the time averaged
intensity passing through the analyser is

IA = sin2 4θ sin2 φ/2

= sin2 4θ sin2 (π∆nd/λ),

where λ is the wavelength in air, ∆n is the difference in the refractive
indices and d is the thickness of the liquid crystal. The first factor in
this equation is largest when θ is 22.5◦, which is fortunately within the
range of angles available with SmC* liquid crystals. The second factor is
maximal when d = λ/2∆n. Although ideal in their role in spatial light
modulators, the FELC but are not as yet competitors for the display
market.

10.9 Further reading

Polarization of Light by S. Huard, published by John Wiley and Sons
(1997). A comprehensive modern text on polarization including the
Mueller/Stokes formalism and a detailed analysis of devices such as mod-
ulators. Modern optics by R. D. Guenther published by John Wiley and
Sons (1990) contains a comprehensive and comprehensible description
of the numerous ellipsoids used to describe the properties of birefringent
materials.

Exercises

(10.1) (a) What is the Jones matrix for a linear polarizer
with its transmission axis at 45◦ to the x-axis? Can
you interpret the result? (b) What is the Jones ma-
trix for a layer of isotropic absorber which reduces
the incident amplitude by a factor t?

(10.2) What is the instantaneous Poynting vector for the
right-circularly polarized wave whose electric field
is given by eqn. 10.4?

(10.3) Consider a version of the Wollaston prism with the
component prisms being cut with a very acute an-

gle, 2.5◦, instead of 45◦. These two prism are also
glued together. What is the phase delay between
the two polarizations when the thicknesses of the
two prisms where the beams cross them are d1 and
d2? What useful property does this Babinet com-
pensator possess?

(10.4) Show that the Wollaston prism in figure 10.12 with
θ = 45◦ separates the two beams by 20◦.

(10.5) An unpolarized light beam of intensity I0 is inci-
dent perpendicularly on two Polaroid sheets in se-
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ries. These are rotated in their own planes about
the beam as axis. One rotates anticlockwise, the
other clockwise, both at angular frquency ω. What
is the intensity variation with time? At what fre-
quency does the polarization vector of the light
transmitted rotate?

(10.6) Determine over what range of input frequency the
modulator described in Section 10.7.1 would be
able to convert an electrical to an optical signal
without distortion. What are the corresponding
limits on the swing of the signal voltage around
Vπ such that the response remains linear to better
than 0.3%?

(10.7) Calculate the magnetic field required to produce a
45◦ rotation of the plane of polarization of light of
633 nm wavelength in a Faraday rotator made from
a 2 cm long terbium doped glass rod. If the rota-
tor is then used with light of wavelength 533 nm in
the isolator shown in figure 10.20 what fraction of
a reflected beam would penetrate the isolator?

(10.8) A laser beam of wavelength 589 nm in free space
is at normal incidence on a calcite plate whose op-
tic axis is parallel to the surface. What are the

wavelengths in calcite of the ordinary and extraor-
dinary waves? What fraction of each polarization
component enters the crystal?

(10.9) Resolve the elliptically polarized wave in eqn. 10.7,
when φ is π/2, into a circularly and a plane polar-
ized component. Write the result in terms of Jones
vectors of this complex electric field.

(10.10) Show that the angle, α, between the electric field
and electric displacement of the extraordinary wave
is given by

cos α = [n2
e cos2 θ+n2

o sin2 θ]/
√

n4
e cos2 θ + n4

o sin2 θ.

This is also the angle between the Poynting vec-
tor and the wave vector, and is called the Poynting
vector walk-off. Use eqns. 10.24 and 10.25; then
cos α = Ee ·De/(DeEe).

(10.11) Prove eqn. 10.23 by writing the x- and z-
components of eqn. 10.20 in terms of the refractive
indices.

(10.12) Sketch the index ellipsoid for a positive uniaxial
crystal. Hence check the sign change in eqn. 10.29
between negative and positive uniaxial crystals.



Scattering, absorption and

dispersion 11

11.1 Introduction

Light travelling through matter interacts with the atoms and molecules,
which results in three familiar effects: absorption, scattering and dis-
persion. These effects and the connections between them are described
in this chapter and interpreted using the classical theory of how elec-
tromagnetic waves interact with matter. This approach provides many
insights that, after reinterpretation, retain their value when quantum
theory is developed in later chapters.

In the sections immediately below this one scattering will be discussed.
Scattering from electrically polarizable particles with dimensions very
much smaller than the wavelength of the radiation is called Rayleigh
scattering. The blue colour of a clear sky is one consequence of Rayleigh
scattering, in this case of sunlight scattered from molecules in the atmo-
sphere. It will emerge that coherent Rayleigh scattering is the under-
lying process in slowing light down within transparent materials . Mie
scattering is the name applied to scattering of light from larger particles
whose size may be anywhere from about one tenth to a hundred times
the wavelength. Interference effects between light scattered from differ-
ent parts of a scatterer now come into play.

Short sections are used to introduce absorption and to point out cor-
relations between absorption and dispersion that are due to atomic or
molecular processes. Then the classical theory of dispersion and ab-
sorption in dielectrics based on atomic oscillators is outlined. Following
this the optical properties of metals are interpreted using a classical
model in which the conduction electrons are regarded as free within a
metal. This model explains the shallow penetration of electromagnetic
waves into metals at optical frequencies, and the accompanying high
reflectance of metals. Free electrons undergo plasma oscillations at a
frequency somewhere in the ultraviolet, which depends on the electron
density in the metal. The effects of such oscillations on em wave propa-
gation are also interpreted with the model.

Difficulties over the definition of the velocity of electromagnetic waves,
and the way these difficulties are resolved are the topics considered in
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the next section of the chapter. For example, at wavelengths close to the
centres of sharp spectral lines the velocity of an infinite sinusoidal plane
wave can exceed c. However when the velocity of light is defined as the
velocity of energy and information transfer by wavepackets rather than
that of idealized infinite waves there is no violation of the postulates of
the special theory of relativity. A final section describes the excitation of
surface plasma waves at the boundary between a metal and a dielectric,
and their recent use in biological sensors.

11.2 Rayleigh scattering

The scattering of sunlight from gas molecules in the upper atmosphere is
responsible for the blue of the sky. In addition if the blue sky is viewed
through a Polaroid, looking at right angles to the direction linking the
observer to the Sun, the light is found to be strongly polarized. Scat-
tering, as in this example, in which the particles doing the scattering
are much smaller than the wavelength of the radiation is called Rayleigh
scattering. Whenever this is the case the electric field is uniform across
each individual scatterer, taken here to be a gas molecule. An instanta-
neous dipole moment is induced in the molecule of magnitude

p(t) = αε0E0 exp (iωt), (11.1)

where E = E0 exp (iωt) is the electric field of the wave and α is the
polarizability of the molecule. Each dipole, thus excited, radiates at the
frequency of the incident light and in this way scatters light out of the
incident beam. Using eqn. 9.58 the time averaged power scattered by
one molecule is

W = ω4α2ε0E
2
0/(12πc3). (11.2)

If there are N molecules per unit volume the power scattered out from
unit area of the beam in a small distance dz along the beam is NWdz.
The incident power over unit area of the beam is ε0cE

2
0/2 so that the

fractional power loss is

dW/W = −[Nω4α2/(6πc4)] dz

= −(8/3)π3α2N dz/λ4. (11.3)

The strong dependence on wavelength causes blue light to be scattered
about ten times more effectively than red light, which accounts for the
blue of a clear sky. It also explains why light from the setting Sun,
which has a long path through the atmosphere, should look red. Figure
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Viewer

Maximal scattering

Sun

Viewer

Minimum scattering

Fig. 11.1 Rayleigh scattering at 90◦.
In the upper panel light is polarized
perpendicular to the scattering plane,
and in the lower panel it is polarized in
the scattering plane.

11.1 has a viewer looking at the blue sky in a direction at right angles
to the line passing through the Sun. Any molecule scattering light first
absorbs the light, becoming polarized in essentially the same direction
as the light absorbed, and then re-emits light. The angular distribution
of the scattered light can then be inferred from figure 9.7. When the
molecule is excited by light polarized perpendicular to the plane of scat-
tering, as seen in the upper panel of figure 11.1, the observer is viewing
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in a direction for which the intensity is at a maximum. On the other
hand, if the light is polarized in the plane of scattering, as illustrated in
the lower panel of figure 11.1, then the molecular dipole points towards
the observer and no light would be seen. However there can be some
misalignment of the molecular dipole axis with the electric field inducing
it due to asymmetry of the structure of the molecule, and then a little
light would be seen. In any case the light received is strongly polarized
perpendicular to the plane of scattering. Away from this viewing direc-
tion the polarization falls off rapidly.

The expression for the fractional power loss in eqn. 11.3 can be
brought into a form that contains the refractive index instead of the
molecular polarizability. Firstly using eqns. 9.4 and 9.5

εr = 1 + Np/E = 1 + Nα. (11.4)

Specializing to gases at low pressures, the relative permittivities are close
to unity, so that to a good approximation

εr − 1 = 2(n − 1).

Replacing εr in the previous equation gives

α = 2(n − 1)/N.

Finally replacing α in eqn. 11.3 yields

dW/W = −(32/3)π3(n − 1)2 dz/(Nλ4), (11.5)

and after integrating over the path length z,

W (z) = W (0) exp (−βz), (11.6)

where β = (32/3)π3(n−1)2/Nλ4. The distance, 1/β, in which the inten-
sity falls by a factor e is called the attenuation length. Light of 500 nm
wavelength travelling in unpolluted air at sea level has an attenuation
length of 65km: that is a power loss in air of 12Mm−1 (parts per million
in one metre).

The scattering from an individual dielectric sphere of radius a and
refractive index n in air is calculated in exercise 11.10 below. A quantity
called the cross-section is now defined as the total scattered flux divided
by the incident flux per unit area of the incoming beam. It is thus the
equivalent area from which light is removed by the scattering sphere:

σ = (8π/3)(2π/λ)4a6G2, (11.7)

where G = (n2 − 1)/(n2 + 2). The intensity of Rayleigh scattering
therefore increases with the cube of the geometric area of the scatterer,
as well as falling off with the fourth power of the wavelength.
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11.2.1 Coherent scattering

The scattering from the atoms or molecules in condensed matter is now
examined and this will bring out the close connection between coherent
scattering and refraction. Figure 11.2 shows a large area, very thin,
flat sheet of some transparent dielectric of thickness s on which plane
sinusoidal waves are arriving at normal incidence. The electric fields felt
by all the molecules such as that labelled M are identical. Consequently
their induced dipole moments are all in phase and can be written

p(t) = αε0E0 exp (iωt).

These dipoles radiate at the same frequency as the incident radiation.
In order to calculate the electric field at P due to scattered light the
dielectric layer is divided into Fresnel zones centred on O. Then applying
a result proved in Section 6.12, the total amplitude at P due to scattered
radiation from the whole sheet is equal to half that produced by the first
Fresnel zone. Now the field at P due to a dipole located on axis at O is
given by eqn. 9.55

e(ωt − kz) = αω2E0 exp [i(ωt − kz)]/(4πc2z)

pointing parallel to electric vector of the incident light. From eqn. 6.55
the surface area of the first zone is πλz, and hence the number of dipoles
within this zone is

Nd = πzλ(Ns) = 2π2zNs/k,

where N is the number density of the molecules. In calculating the total
electric field at P it is important to recall that the phasor formed by
the electric fields in the first Fresnel zone turns through a half circle.
The resultant electric field is therefore 2/π times the direct sum of that

Plane
wavefront

s

z

M
P

O

Fig. 11.2 Coherent scattering from a
thin plane layer of dielectric.

due to these dipoles, and is π/2 out of phase with the field produced
by a dipole located on axis. After taking these factors into account the
electric field at P due to scattered radiation is

Es = (1/2)(2/π)Nde(ωt − kz − π/2)

= (2πzNs/k)αω2E0 exp [i(ωt − kz − π/2)]/(4πc2z)

= (Nksα/2)E0 exp [i(ωt − kz − π/2)].

Thus the total electric field at P made up of the electric fields of the
scattered and unscattered light is

Ep = E0 exp [i(ωt − kz)] + Es

= E0 exp [i(ωt − kz)] [ 1 − iNksα/2 ]

≈ E0 exp [i(ωt − kz)] exp [−iNksα/2 ], (11.8)

where the approximation is valid when s is sufficiently small. The effect
of scattering is therefore equivalent to increasing the path length in the
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dielectric from s to s+Nsα/2, that is by a factor which we can identify
as the refractive index of the dielectric

n = 1 + Nα/2. (11.9)

In turn the relative permittivity is

εr = (1 + Nα/2)2 ≈ 1 + Nα,

which agrees with eqn. 11.4.

What emerges from this analysis is that the refractive index of di-
electrics has its origin in the interference of coherently scattered with
unscattered light. The following picture is helpful. Light travels at its
free space velocity c in the open spaces between atoms/molecules; scat-
tering produces a wave of small amplitude which is delayed in phase by
π/2 with respect to the direct wave; the resultant wave is little changed
in magnitude compared to the incident wave, but suffers a phase shift
proportional to the scattering amplitude.

Referring back to the previous section it can be seen that the scattering
from a layer of gas was handled as if each molecule scattered incoherently
from every other molecule. In direct contrast, in this section scattering
from condensed matter has been treated as coherent. The reason for the
difference in approach is that the scattering centres must be densely and
uniformly distributed if the scattering is to be fully coherent. This is not
the case in a gas, but it is nearly correct in a transparent solid like glass.
If there were such a thing as a perfectly homogeneous material then the
only consequence of Rayleigh scattering would be to give a refractive
index different from unity. A simple argument is used here to make it
plausible that the Rayleigh scattering from a gas can also be interpreted
as scattering from the density fluctuations in the gas. Suppose that a
unit volume of gas is divided into many equal volumes v which are small
enough so that within each volume the molecules feel nearly the same
electric field. Now the number of molecules per unit volume in a gas
follows a Poissonian distribution, so that each cell would contain on av-
erage Nv molecules with an rms deviation

√
Nv. A simple view to take

is that there are 1/v inhomogeneities, each containing
√

Nv molecules,
and that each inhomogeneity scatters incoherently of all the others. This
yields a total intensity proportional to (

√
Nv)2/v = N , which is exactly

the intensity expected from the scattering off N incoherent scatterers!

11.3 Mie scattering

When scattering takes place from larger particles whose size approaches
the wavelength of light the analysis of scattering from a single particle
becomes complicated. There is interference between light scattered from
different parts of the same scatterer, and the phase delays between light
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travelling through different thicknesses of the scatterer must be taken
into account. The first detailed study for spherical scatterers was made
by Mie in 1908 and his analysis covered scattering from spheres of all
diameters. The Rayleigh treatment is an adequate approximation for
diameters up to roughly one tenth of the wavelength of the radiation,
while at diameters greater than one hundred times the wavelength of the
radiation the ray theory is an adequate approximation. Scattering from
spheres in the intermediate range where neither approximation works is
thus generally called Mie scattering. Only the salient features of Mie
scattering from dielectric spheres will now be discussed.

The interference between different regions causes the angular distri-
bution to acquire lobes that are in essence diffraction patterns. As the
diameter of the sphere increases the overall angular distribution gradu-
ally becomes more forward peaked with a lesser backward peak. When
the sphere diameter is λ/4 (5λ) the ratio of the scattering intensity in
the forward direction with respect to that in the backward direction is
around 2.5:1 (2000:1). The total amount of scattering is expressed as
an equivalent area from which the scattering sphere removes light from
the beam: the cross-section per sphere. The rapid rise in cross-section
with radius seen in Rayleigh scattering tails off and settles down to be-
ing proportional to the radius squared, and hence to the area of the
scatterer, at radii a few times λ/n, where n is the refractive index of
the scatterer. The strong dependence of the scattering intensity on the
wavelength characteristic of Rayleigh scattering changes to a flatter de-
pendence so that the light scattered from clouds, fog and aerosols, in
which the droplet diameters are typically 10µm, is white.

White paints contain a clear polymer matrix loaded with transpar-
ent particles of a very high refractive index material, titanium dioxide;
these particles having dimensions of around half the wavelength of light.
The Mie scattering is intense because of the big difference between the
refractive indices of the polymer (∼ 1.5) and titanium dioxide (∼ 2.76
in one crystalline form), and is nearly constant across the visible spec-
trum. Thus the paint, or rather the backscattered ambient light, looks
white. The scattering is sufficiently strong that a thin layer of paint can
easily mask the colour of the underlying surface. A related effect was de-
scribed in Section 10.8.3. Micron-sized liquid crystal droplets dispersed
in a clear polymer matrix scatter light so effectively that light passing
through is totally diffused. However when an electric field is applied the
refractive index of the droplets becomes equal to that of the polymer
and the panel is rendered transparent.

In a recent application the diameter of a sonoluminescent bubble has
been tracked by Mie scattering during the rapid oscillations in which
the diameter changes from ten microns to a fraction of a micron in one
microsecond.1 What was done was to measure the light scattered into a1K.R. Weninger, B.P. Barber and S.J.

Putterman, Physical Review Letters
volume 78, page 1799 (1997).

large solid angle centred on a scattering angle of 60◦ when the bubble was
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illuminated by a series of short pulses of light. The pulse duration was
0.2 ps and the repetition rate 76MHz. In the angular range selected the
integrated scattered intensity is proportional to the bubble area which
provided a simple way to estimate the bubble diameter at each exposure.

11.4 Absorption

Light can be lost from a beam by absorption as well as scattering. Ab-
sorption of light takes place on electrons bound in atoms or molecules,
and on free electrons in metals. When white light passes through a gas
containing atoms of a single element, and the spectrum of the emerging
light is viewed with a grating spectrometer, the spectrum is seen to be
marked by multiple thin dark lines. These lines mark the individual
narrow wavelength ranges at which absorption is strong and are charac-
teristic of the atomic structure of the element.2 The atoms may promptly 2The fact that light restricted to a very

narrow range of wavelengths forms a
line in the image plane of a spectrome-
ter has led to the light itself being called
a spectral line.

re-emit the radiation or promptly emit radiation at a longer wavelength.
This radiation is known as fluorescence, of which radiation at the same
wavelength as the incident radiation is called resonance fluorescence.
Phosphorescence is the term applied if there is a delay of greater than
a microsecond before the secondary radiation emerges. In denser mate-
rials the absorption occurs over broad bands of wavelength rather than
narrow lines, and of course some materials absorb all the light. The
energy absorbed is generally converted through atomic processses and
collisions to heat. Scattering of light can therefore be interpreted as
the absorption of light in which the absorption is followed by prompt
re-radiation at the same wavelength.3 3Raman and Brillouin scattering,

which are processes that become
significant at high intensities of illumi-
nation, will be considered later after
quantum theory and lasers have been
introduced.

A beam of light traversing matter loses intensity through scattering
out of the beam and through absorption. Coefficients of absorption, βa,
and scattering, βs, can be defined such that in a thin layer of thickness
dz the beam loses fractions of its intensity βadz and βsdz through these
two processes. Then the attenuation of a narrow beam over a distance
z is given by

I(z) = I(0) exp [−(βs + βa)z]. (11.10)

With a broad beam the scattering from one part of the beam to another
must be allowed for. At one extreme, in metals, the intensity of light
falls by a factor e in a few nanometres while in normal window glass this
distance is 0.3m. Materials with an open structure such as plant leaves
acquire their colour through selective absorption of the light which en-
ters and is multiply scattered within the structure. Photosynthesis is
the absorption process and what emerges is the unused green light. By
contrast the colour of metals is due to the strong reflection from the
surface. Gold appears reddish because it absorbs more strongly at the
red end of the spectrum and reflects red light more effectively. How it
comes about that strong reflection is associated with strong absorption
in this case poses a quandary that is resolved in Section 11.6.
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11.5 Dispersion and absorption

Dispersion and absorption are processes that share a common origin in
atomic processes. Figure 11.3 shows schematically the variation of the
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Fig. 11.3 Schematic plot of the refractive index and absorption coefficient for a
material transparent across the visible spectrum.

refractive index and the absorption coefficient of a transparent material
across the infrared to ultraviolet part of the spectrum. There are clear
pairings between the absorption peaks and characteristically shaped os-
cillations in the value of the refractive index. In general many such pairs
may be seen for a dielectric. Such sharp absorption peaks account for
the lines seen in the absorption spectrum of a gas. The equivalent dis-
tributions for materials like glass or water show similar correlations, but
with broader lines and additional features due to the mutual interaction
of the densely packed atoms.

Each oscillation/peak pair appearing in figure 11.3 is due to a process
in which energy is absorbed by atoms or molecules. Excitation of elec-
trons in atoms happens through the absorption of ultraviolet and visible
light, while molecular vibrations and rotations can be excited by the ab-
sorption of visible and infrared radiation down to microwaves. Transpar-
ent materials are transparent because for these materials the electronic
absorptions occur in the ultraviolet and the molecular excitations in the
infrared with none lying within the visible spectrum. Regions where the
refractive index rises with increasing frequency (decreasing wavelength)
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are said to have normal dispersion and regions where the refractive index
falls as the frequency increases are said to have anomalous dispersion.
Common glass therefore has normal dispersion, as can be seen in figure
1.16.

A simple model of the atom as a classical oscillator will be used in the
following sections to account for the shapes and correlations between
the absorption and dispersion features illustrated in figure 11.3. The
quantum interpretation which is presented in later chapters provides a
deeper and quantitative explanation of atomic transitions. What the
classical view provides are insights that do not lose their value when one
uses quantum theory.

11.5.1 The atomic oscillator model

The process considered is the forced oscillation of an electron in an
atom caused by the electric field of an electromagnetic wave. Electron
velocities are tiny compared to c; thus the magnetic force ev∧B, of order
evE/c, is negligible compared to the electric force eE. There are two
other forces acting on an electron besides the electric force due to the
electromagnetic wave. The first is the restoring electric force exerted by
the stationary nucleus. Compared to the electric field of a nucleus at an
electron, of order 1011Vm−1, the electric field in any beam other than a
high energy pulsed laser is very small. Thus the electron displacement is
small compared to the atomic size and the restoring force will be linear
in the displacement. The second force is an equivalent damping force
used to represent the effect of all the processes which dissipate the energy
absorbed by the electron. We shall see later that these include the re-
radiation of the energy and processes such as atom–atom collisions in a
gas. The equation of motion of the electron in this model is

m(d2x/dt2) = −eE0 exp (iωt) − ξ(dx/dt) − κx. (11.11)

Here −e and m are the electron charge and mass respectively; the in-
cident electromagnetic wave’s electric field, E = E0 exp (iωt), points in
the x-direction; ξ is the damping constant and −κx is the restoring force.
In the absence of any electromagnetic wave the electron would undergo
damped harmonic motion with natural angular frequency, ω0, given by

ω2
0 = κ/m.

Then, putting γ = ξ/m, the equation of motion can be rewritten

−eE0 exp (iωt) = m[(d2x/dt2) + γ(dx/dt) + ω2
0x]. (11.12)

The forced motion of the electron will have the same frequency as the
driving electric field

x = x0 exp (iωt), (11.13)

which when substituted in eqn. 11.12 gives

−eE0 = m(−ω2 + iγω + ω2
0)x0,
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after the common factor exp (iωt) has been cancelled. Whence

x0 = (−eE0/m)/(ω2
0 − ω2 + iγω). (11.14)

The displacement of the electron from its equilibrium position within
the atom means that the atom acquires an electric dipole moment

p = −ex0 exp (iωt),

and the atomic polarizability is then

α = p/(ε0E) = (e2/ε0m)/(ω2
0 − ω2 + iγω). (11.15)

The polarization of the material, that is the electric dipole moment perThe previous analysis of Rayleigh scat-
tering only applies well away from res-
onances and it also ignores damping.
Then α is effectively e2/ε0κ.

unit volume, is thus

P = Nαε0E, (11.16)

where N is the number of atoms per unit volume. Using eqn. 11.4

εr = 1 + P/(ε0E) = 1 + Nα. (11.17)

Substituting for α from eqn. 11.15 in the last line gives

εr = 1 + (Ne2/mε0)/(ω2
0 − ω2 + iγω)

= 1 + ω2
p/(ω2

0 − ω2 + iγω), (11.18)

where ωp is called, in anticipation, the plasma angular frequency, and is
given by

ω2
p = Ne2/(mε0). (11.19)

This is a resonant response which is strongest when the incident radi-
ation has a frequency close to the natural oscillation frequency of the
electron in the atom. Close to an individual resonance we can take
ω ≈ ω0. Then eqn. 11.18 simplifies to

εr = 1 + (ω2
p/ω0)/ [ 2(ω0 − ω) + iγ]. (11.20)

The analysis is now continued for a gas, so that the relative permittivity
is close to unity. Then the expression for a refractive index n is to a
good approximation given by

n =
√

εr = 1 + (ω2
p/4ω0)/[ ω0 − ω + iγ/2 ]. (11.21)

The refractive index therefore has a real and an imaginary part

n = nr − ini, (11.22)

where ni is both real and positive. Referring back to the analysis of
TIR given in Chapter 9 it can be seen that if the refractive index has
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an imaginary part this means that the em wave is attenuated.4 After
travelling a distance z the electric field becomes

E(z) = E(0) exp [iω(t − nz/c)]

= E(0) exp [iω(t − nrz/c)] exp (−nizω/c).

Therefore the intensity falls off exponentially,

I(z) = I(0) exp (−2niωz/c), (11.23)

giving an absorption coefficient βa = 2niω/c proportional to ni. The real
part nr must be identified as the standard refractive index which could
be determined by measuring the phase delay of light passing through
the dielectric. Separating the real and imaginary parts of eqn. 11.21
gives

nr = 1 + ω2
p(ω0 − ω)/(4ω0R), (11.24)

ni = γ ω2
p/(8ω0R), (11.25)

where

R = (ω0 − ω)2 + γ2/4.

This result confirms that the Lorentzian line shape introduced in Chap-
ter 7 is the expected atomic line shape. Figure 11.4 shows this predicted
variation of the real and imaginary parts of n as a function of frequency
around the natural frequency of oscillation of the electron. The vertical
scale shown is arbitrary and in the case of a gas the numbers shown for
nr − 1 and ni would be scaled down by a factor of order 1000. This
response reproduces both the shapes and correlations between the fea-
tures present in figure 11.3: each absorption peak is accompanied by a
characteristically shaped rapid variation of the refractive index involving
a region of anomalous dispersion.

The responses of all the electrons in an atom have to be taken into
account. Then the expression for the real and imaginary parts of the
refractive index become

nr = 1 + ω2
p

∑
i

[fi(ω0i − ω)/(4ω0iRi)],

ni = ω2
p

∑
i

[fiγi/(8ω0iRi)].

The coefficient fi is called the oscillator strength of the ith electron. Such
quantities can only be calculated using the quantum theory of atomic
structure and its interaction with electromagnetic radiation.

4If the choice of complex waves were exp [i(kz − ωt)] rather than exp [i(ωt − kz)]
then the sign in front of ini in eqn. 11.22 would need to be positive. In addition +iγ
would be replaced by −iγ in the preceding equations.
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Fig. 11.4 Predictions of the real and the imaginary parts of the refractive index
around resonance. The real part is indicated with a solid line and the imaginary part
with a broken line. Note that (nr − 1) is plotted rather than nr. The vertical scale
is arbitrary.

Consider the case when the damping is weak enough that γ 
 ω0.
Then the peak absorption is at the angular frequency ω0: the peak
value of ni is ω2

p/(2γω0), and the width between the angular frequencies
at which ni falls to half its peak value is γ. Thus if the damping at the
atomic level is weak the peak resonant absorption is large, the absorp-
tion line is narrow and the anomalous dispersion is more pronounced.

The assumption has been made implicitly in the preceding analysis
that the electric field felt by the atoms is spatially uniform across the
dielectric. In fact the local field felt by the atom will be the vector sum of
this field and that due to the surrounding atoms. It can be shown that,
when the dielectric is a non-polar liquid or a cubic crystalline material,
the local electric field has a simple relationship to the applied field5

Elocal = E + P/(3ε0). (11.26)

Then eqn. 11.16 becomes

P = N α ε0 Elocal = N α ε0 [E + P/(3ε0)],

5See for example Chapter 2 of the 7th edition of Optics by M. Born and E Wolf,
published by Cambridge University Press (1999). For other materials the numerical
factor is different from 1/3.
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and substituting χε0E for P gives the Clausius–Mossotti relation

Nα = χ/(1 + χ/3) = 3(n2 − 1)/(n2 + 2). (11.27)

With this replacement the expression for the refractive index becomes

(n2 − 1)/(n2 + 2) = (ω2
p/3)

∑
i

[(fi/ω0i)/(2(ω0i − ω) + iγi)]. (11.28)

In the limit that the refractive index is close to unity the left hand side
reduces to (n−1)/3, so that the equation collapses to that applicable to
a gas. The mean separation of atoms is smaller by a factor ten in solids,
liquids and high pressure gases than it is in gases at normal temperature
and pressure (NTP, 20◦ C and 105 Pa). Thanks to this denser packing
the interactions between atoms in liquids and in solids is stronger and
changes the absorption spectra a great deal. The narrow spectral lines
observed with gases at NTP are replaced by broad bands. Excitation of
molecules can take the form of vibrations in which the distance between
the component nuclei oscillates, or of rotations of the molecule. The
masses vibrating are now the nuclei so that the natural frequencies are
correspondingly smaller and lie predominantly in the infrared/microwave
region of the spectrum.

A further feature of many materials is the presence of molecular struc-
tures which possess permanent electric dipole moments. An applied elec-
tric field will cause these dipoles to align in the field direction, which
makes another important contribution to the polarization. This motion
is heavily damped in liquids and solids so that at optical frequencies this
contribution to the relative permittivity is smoothly and slowly falling
with increasing frequency. The glasses from which so many optical com-
ponents are made are transparent to visible radiation because the atomic
resonances lie in the ultraviolet and the molecular resonances in the in-
frared. Across the visible spectrum lying between these resonances the
refractive indices of glasses shown in figure 1.16 therefore have normal
dispersion and are well fitted by the various Sellmeier formulae, such
as that given in eqn. 1.27. The poles of the terms, where their value
diverges, give a good indication of the location in wavelength of the ul-
traviolet resonances.

A clear connection between absorption and dispersion has emerged
from the simple classical model used here to explain the interaction of
electromagnetic radiation with matter. The connection is not restricted
to this particular model: there is a deeper linkage between them which
originates in the causal nature of physical processes.6 6 A good account is given in Chap-

ter 2 of the seventh edition of Classical

Electrodynamics by J.D. Jackson, pub-
lished by John Wiley and Sons, New
York (1998).

11.6 Absorption by, and reflection off met-
als

When an electromagnetic wave is incident on a metal it induces a cur-
rent of free electrons. Energy transfered to the electrons is dissipated
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in collisions with the lattice of positive ions, and appears as heat. In
this way the part of the wave entering the metal is attenuated within a
short distance. It was pointed out in Section 9.3 that the ratio of the
conduction current to the current arising from polarization in a good
conductor like copper is large up to optical frequencies. When mod-
elling the propagation of electromagnetic waves at these frequencies in
metals it is enough to take account of the response of the free electrons
only. A classical model of this type developed by Drude will be used
here to analyse the propagation of electromagnetic waves in a metal.

In metals the least well bound electrons in each atom become de-
tached from the parent atom and form a sea of free electrons. Travelling
throughout the metal, their paths are punctuated by frequent, mostly
inelastic, collisions with the lattice of positive ions, and these collisions
serve to bring the ions and free electrons into thermal equilibrium. The
effect of a collision is also to randomize the electron’s direction after the
collision.

An applied constant electric field E causes the electrons to acquire a
drift velocity, v, in addition to their random motion; the total velocity is
the vector sum of these two components. Newton’s second law applied
to the electron drift motion gives

mdv/dt = −eE,

−e and m being the electron charge and mass respectively. However the
electrons suffer collisions and after each collision the electron direction
is random, which has the effect of reducing the mean drift velocity after
collision to zero. A measure of the mean drift velocity can be obtained
by integrating the last equation over the mean time, τ , between collisions

mv/τ = −eE. (11.29)

This result shows that the collisions with the lattice have the same ef-
fect as a damping force mv/τ opposing the electric force. At room tem-
peratures in metals such as aluminium, copper and silver τ is around
10−14 s giving a drift velocity of order 0.02 E m s−1 where the field, E, is
expressed in Vm−1. Therefore drift velocities are many orders of mag-
nitude less than the velocities of the free electrons. Equation 11.18 for
the relative permittivity of a dielectric can be easily adapted to become
applicable to a metal by making two simple changes. Firstly the term
arising from the restoring force exerted by the parent nucleus is deleted,
and secondly the damping force per unit momentum, γ is 1/τ . The
equation obtained in this way for the relative permittivity of a metal is

εr = 1 + ω2
p/(−ω2 + iω/τ). (11.30)

Any contribution from the electrons that remain bound in the atoms
has been ignored here. As before ω2

p = Ne2/mε0, with N now being the
number density of free electrons in the metal. When the frequency of
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the electromagnetic waves is well above 1/τ there are many cycles of the
waves between one electron–lattice collision and the next, which means
that damping becomes less and less important as the wave frequency
rises.

In the case of copper the number density of free electrons is around
8.5 1028 m−3 and the mean interval between collisions is approximately
2.4 10−14 s. An estimate of the plasma frequency in copper, based on
these values, is 2.6 1015 Hz; the corresponding wavelength lies well into
the ultraviolet. Using these values in eqn. 11.30 gives a value for the
imaginary part of the refractive index in rough agreement with the ob-
served value, but the real part is grossly underestimated. This indicates
the limitations of the classical Drude model as far as quantitative pre-
dictions are concerned in the visible part of the spectrum. However the
Drude model provides a consistent parametrization of the data at longer
wavelengths. The intensity of light falls with distance in a metal like

I(z) = I(0) exp (−βaz), (11.31)

where the absorption coefficient is given by

βa = 2ωni/c.

Thus the intensity falls off by a factor e in a distance called the skin
depth

s = c/(2ωni) = 0.08λ/ni,

where λ is the wavelength in air. The skin depth is approximately 18 nm
for light of wavelength 589nm falling on copper. Of course metals reflect
well – which at first sight seems hard to reconcile with the idea that they
also absorb strongly. This point is now discussed.

The reflection coefficient for light falling at normal incidence on a
dielectric is given in eqn. 9.79. In the case of reflection from metals
where the refractive index can be complex this becomes

R0 =| (n1 − n2)/(n1 + n2) |2, (11.32)

so that at an air/metal interface

R0 = [(nr − 1)2 + n2
i ]/[(nr + 1)2 + n2

i ]. (11.33)

It is clear that if the imaginary part of the refractive index is much larger
than the real part, as is the case with metals, then the reflectance must
be close to its upper limit of unity. The quandary mentioned above is
resolved by noting that most of the incident light incident on a metal
is reflected, while that small part that is transmitted is absorbed in a
short distance within a metal. Figure 11.5 shows how the reflectances
of copper, gold, silver and aluminium vary across the visible spectrum.
Table 11.1 gives the values of the real and imaginary parts of the refrac-
tive index for several metals at a wavelength of 589nm. Thin layers of
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Fig. 11.5 Reflectance off fresh metal surfaces at normal incidence. From Handbook

of Optical Materials, edited by M.J. Weber and published by the CRC Press, Boca
Raton, 2003. Courtesy Taylor and Francis Group, and Professor Weber.

Table 11.1 Table of refractive indices of metals at 589 nm
wavelength.

Metal Real part Imaginary part

Silver 0.18 3.64
Copper 0.62 2.63
Gold 0.47 2.83

silver and aluminium are deposited on glass to provide mirrors with high
reflectance over a broad spectral range. Although multilayer dielectric
coatings, which were described in Chapter 9, can give higher reflectance
over comparable wavelength intervals these can only be deposited on
items of small surface area. The primary mirrors of astronomical tele-
scopes usually have an aluminium coating. Silver is not used despite its
higher reflectance because it tarnishes quickly in air.

Figure 11.6 shows the typical variation of the amplitude reflection
coefficients as a function of the angle of incidence for a metal. In the
upper panel the curves bear a family resemblance to the corresponding
ones for dielectrics shown in figure 9.12, but with larger values. Instead
of the sharp change seen at Brewster’s angle for purely dielectric inter-
faces, the phase difference between rp and rs falls steadily from π at
normal incidence to zero at grazing incidence and passes through π/2
at what is called the principal angle of incidence, θi. The minimum of
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the amplitude of the p-polarized reflected wave typically occurs a couple
of degrees below the principal angle of incidence for metals, while the
angle at which the ratio of p- to s-polarized amplitudes is least is only
a fraction of a degree below the principal angle of incidence.

The rapid extinction of light in a metal makes it impossible to measure
the refractive index by using Snell’s law, because only the reflected light
is available for measurement. It is not adequate to simply measure the
reflectances of s- and p-polarized light: their relative phase is needed
as well in order to determine the complex refractive index. Suppose
the incident light passes through a polarizer set at 45◦ to the plane
of incidence. The light incident on the surface then has equal s- and p-
polarized components which are in phase. In general, after reflection the
components differ both in magnitude and in phase so that the reflected
light is elliptically polarized. The ratio of the reflected amplitudes is

ρ = tanψ exp(i∆), (11.34)

where tan ψ = |rp|/|rs| and ∆ is their phase difference. The quantities
tanψ and ∆ are measured using an ellipsometer of the sort shown in
figure 11.7. A simple type of measurement involving nulling will be de-
scribed. Monochromatic light is first passed through a polarizer set at
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Fig. 11.6 The upper panel shows the
reflectances from an air/gold interface
for s- and p-polarized light of wave-
length 589 nm. The lower panel shows
the phase difference between the re-
flected p- and s-polarized light. The
dotted lines in both panels mark the
principal angle of incidence, θi.

45◦ to the plane of incidence to give s- and p-polarization amplitudes
which are equal and in phase. The compensator applies a phase differ-
ence between the s- and p-polarized waves which will compensate (null)
the phase difference occuring at reflection. After reflection these waves
are therefore in phase but their amplitudes are reduced by the respec-
tive reflection coefficients. Thus the light reaching the analyser is plane
polarized but at an angle determined by the relative magnitude of the
reflection coefficients for s- and p-polarization. This angle of polariza-
tion is determined by rotating the analyser so that the detector signal
falls to zero. ∆ and ψ can be calculated from the the compensator and
analyser settings, and from these the reflection coefficients can be ob-
tained by applying Fresnel’s laws. The relationships are straightforward

Polarizer

QWP

Analyzer
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Metal surface

ψ

iθ

---
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Fig. 11.7 Ellipsometer for determining
the optical constants of metals. The
successive polarization states are shown
for a nulling measurement with light
incident at the principal angle of inci-
dence.

but lead to complicated expressions. Results are at their simplest when
the angle of incidence is made equal to the principal angle of incidence,
θi. In this case the phase difference between the s- and p-polarized com-
ponents after reflection is π/2, so that the compensator can be a QWP.
If the plane of polarization after reflection is at the angle ψ, then a good
approximation for the refractive index of a metal surface is

nr = tan θi sin θi cos 2ψ,

ni = nr tan 2ψ.

Measurements are made of tan ψ and ∆ at a range of angles of incidence
to extract and check the complex refractive index. Variations on this
technique are widely used in manufacturing and research to measure the
thicknesses of single thin films and stacks of thin films of dielectrics where
the refractive indices are already known and used as inputs. Reflections
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from successive interfaces must be included in the analysis, following the
lines described in Chapter 9. A modern development is spectroscopic
ellipsometry in which the parameters ψ and ∆ are measured for a range
of wavelengths. Despite the complicated analysis required, ellipsome-
try gives results with very small errors because only angles are being
measured, accurate to about 0.01◦, rather than relative intensities.77For more details see Spectroscopic El-

lipsometry by H. Fujiwara, published
by John Wiley and Sons, New Jersey
(2007). 11.6.1 Plasmas in metals

Plasmas are gases in which a proportion of the atoms or molecules are
ionized into positive ions and electrons, and which are overall neutral.
In its equilibrium state the spatial distributions of positive ions and
electrons in a plasma are everywhere uniform and equal. One important
example of a plasma is met in the upper atmosphere. The Sun’s ionizing
ultraviolet radiation maintains layers of plasma, known collectively as
the ionosphere, at heights between 30 and 200km. The free electrons in
metals also qualify as a plasma with a number density of order 1028 m−3

compared to the much lower values, around 1011 m−3, observed in the
ionosphere.

Any disturbance of the electric field causes the electrons to move at a
much higher speed than the ions. This is because the electron mass is so
much smaller, while the electrostatic force has the same magnitude for
both an ion and an electron. Such a disturbance moves electrons out of
a local region, while the positive ions are almost stationary. In this way
the region acquires a net positive charge which attracts the displaced
electrons. The displaced electrons then oscillate about their equilibrium
position under this restoring force at the plasma frequency, ωp, previ-
ously defined in eqn. 11.19. A simple analysis of plasma oscillations is
made next before looking at their effects on em wave propagation.

In figure 11.8 the upper panel shows a plasma in equilibrium and
the lower panel the effect of displacing the electrons a distance ξ in
the z-direction, where ξ varies in some as yet unspecified manner with
z. The electron number density in the shaded region falls as a result
of this movement by a factor dz/(dz + dξ). Thus the electron charge

Equilibrium

Electrons
displaced

ξdz + d

ξz + 

z

dz

Fig. 11.8 Equilibrium and displaced
positions of the free electrons in a
plasma.

density within that region changes from −Ne to −Ne(1 − dξ/dz), N
being the equilibrium electron number density. The net charge density
in that region, including both the stationary positive ions as well as the
electrons, changes from zero in equilibrium to

ρ = Ne(dξ/dz). (11.35)

This induces an electric field which is given by Gauss’s law

∇ · E = ρ/ε0.

In the case considered the field points in the z-direction so this last
equation becomes

dE/dz = (Ne/ε0) dξ/dz,



11.6 Absorption by, and reflection off metals 315

which when integrated gives

E = Neξ/ε0. (11.36)

In turn this field acts on each electron, and the equation of motion is

md2ξ/dt2 = −Ne2ξ/ε0.

This is the differential equation for simple harmonic motion, and the
long term solution is

ξ = ξ0 exp [i
√

(Ne2/mε0)t] = ξ0 exp [iωpt], (11.37)

which justifies the name plasma frequency for
√

(Ne2/mε0).

Referring back to eqn. 11.30, it follows that at frequencies high enough
that the electron/lattice collisions are unimportant
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Fig. 11.9 Real and imaginary parts of
the refractive index of sodium near the
plasma frequency.

εr = 1 − ω2
p/ω2,

which can be rewritten as

n2 = 1 − ω2
p/ω2. (11.38)

We therefore infer that at high enough frequencies the dominant effect of
em waves incident on a metal is to drive the electron plasma into forced
oscillation. Figure 11.9 shows the behaviour of the real and imaginary
parts of the refractive index of the alkali metal sodium around the plasma
frequency predicted by eqn. 11.38. In the case of sodium the measured
wavelength for the plasma oscillation, 210nm, and that predicted using
the free electron density, 209 nm, are in particularly good agreement
and lie well in the ultraviolet. The onset of plasma oscillations has a
profound effect on the transmission of electromagnetic waves. Below the
plasma frequency n2 is negative and hence the refractive index is purely
imaginary. Then the reflection coefficient given in eqn. 11.33 simplifies:

R0 ≈ (n2
i + 1)/(n2

i + 1) = 1. (11.39)

Reflection is therefore very strong. Above the plasma frequency n2 is
now positive and the refractive index is purely real and small, so that
the reflection coefficient is also small. In the case of the plasmas in the In figure 11.5 only silver’s reflectance

shows any sign of a dip to mark the
plasma frequency. Electrons are not
free classical particles but inhabit quan-
tized energy bands so that the predic-
tions of the simple model need some
modification. See for example Chapters
4 onward in Optical Properties of Solids

by F. Wooten, published by Academic
Press (1972).

upper atmosphere the plasma frequency is around 3MHz. Below this fre-
quency short range radio transmissions can travel large distances round
the Earth thanks to reflections from the plasma. Above the plasma
frequency the plasma becomes transparent and for this reason com-
munication with satellites is at frequencies well above 3MHz. When
a spacecraft re-enters the Earth’s atmosphere the ionization produced
around it is so intense that communication at all frequencies is lost.

Attention must be drawn to two apparent violations of the theory of
special relativity in the preceding analysis. First notice that above the
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plasma frequency the refractive index is less than unity. Secondly if we
look back at figure 11.4 it is seen that in the regions of anomalous dis-
persion the refractive index can also become less than unity. It seems
that in these cases electromagnetic waves would travel faster than c,
their velocity in free space! The apparent violation of the special theory
of relativity in regions of anomalous dispersion was already noted by
contemporaries of Einstein and raised as a fundamental objection to the
theory. In order to resolve these inconsistencies more careful considera-
tion must be given to what is meant by the velocity of light.

11.6.2 Group and signal velocity

Up to this point the definition used for the velocity of light has been

vp = ω/k,

where ω and k are the angular frequency and the wave number of an
infinite plane wave such as exp [i(ωt − kz)]. We shall call this velocity

Coordinate

gv

pv

Fig. 11.10 Group and phase veloci-
ties of a wavepacket. There would be
many thousands of individual wave os-
cillations inside a wavepacket from an
actual light source.

the phase velocity of light, as was done previously in Chapter 10. Infinite
waves which span all space and time and have a unique frequency are
however never met in nature. Rather electromagnetic radiation consists
of wavepackets which are of finite duration and extent and which can
be resolved into a superposition of infinite plane waves. There is even a
problem in principle with measuring the velocity of a perfect sinusoidal
wave. In order to recognize a place on the wavetrain for the purposes of
timing its departure and arrival it must be marked in some way – which
would change the wave from being a pure sinusoid. It therefore makes
sense to consider the velocity of wavepackets as the true measure of the
speed of light. The wavepacket peak in figure 11.10 indeed defines where
the fields are large and where the Poynting vector is large. The form of
the wavepacket is taken to have an electric field

E(z, t) =

∫
E(ω) exp [i(ωt − kz)]dω,

centred around wave number k0 and angular frequency ω0, where E(ω)
varies slowly with ω. The phase velocity ω/k varies with frequency or
equivalently with the wave number. Putting ∆ω = ω − ω0 and ∆k =
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Fig. 11.11 Angular frequency varia-
tion with the wave number above the
plasma frequency ωp. The dispersion
relation for free space is also shown.

k − k0 = ∆ω(dk/dω), this can be rewritten

E(z, t) = exp [i(ω0t − k0z)]

∫
E(ω) exp [i∆ω(t − z dk/dω)] dω, (11.40)

where the first term describes the rapidly oscillating waves in figure
11.10 and the second term the envelope. Each wave in the envelope is a
function of t − (dk/dω)z, so the velocity of the envelope is

vg = dω/dk, (11.41)

which is called the group velocity. Surprisingly a wavepacket does not
necessarily travel at a velocity close to the mean velocity of its infinite
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plane wave components. In figure 11.10 the waves within the wavepacket
travel at the phase velocity while the wavepacket itself, that is the en-
velope of the waves, travels at the group velocity. If one could travel
parallel to and alongside the wavepacket at its velocity and somehow
detect the internal waves, then they would appear to travel through the
wavepacket. If the wave velocity exceeds the group velocity the waves
would appear to flow forward under the envelope. Energy and informa-
tion travel at the group velocity so, provided the group velocity remains
less than c, it is of little consequence if the phase velocity exceeds c.

Other useful expressions for the group velocity can be derived from
eqn. 11.41

vg = vp − λ(dvp/dλ); (11.42)

vg = (c/n)[1 + (λ/n)(dn/dλ)]; (11.43)

1/vg = 1/vp + (ω/c)(dn/dω); (11.44)

1/vg = 1/vp − λd(1/vp)/dλ, (11.45)

where λ is, as usual, the free space wavelength. Evidently in free space
pω)/pω -ω(
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Fig. 11.12 Angular frequency varia-
tion with the group and phase velocities
above the plasma frequency ωp.

where there is no dispersion vg = vp = c. An example that brings out
the importance of the group velocity is that of electromagnetic waves
travelling in the ionosphere. Rewriting eqn. 11.38 gives

ω2 = n2ω2 + ω2
p = k2c2 + ω2

p, (11.46)

where k is the wave number in the plasma. This behaviour is drawn as
a solid line in figure 11.11 for waves with frequencies above the plasma
frequency, and asymptotically approaches the form for electromagnetic
waves in free space ω = kc. The corresponding phase and group veloci-
ties are displayed versus the angular frequency in figure 11.12. Close to
the plasma frequency the phase velocity is very large, while the group
velocity is close to zero. At high angular frequencies both velocities
converge on c. Figure 11.13 shows an ionogram recording of the appar-
ent heights at which short pulses of radio waves are reflected from the
ionosphere. The ordinate is directly proportional to the delay between
sending and receiving the signal back after reflection off the ionosphere.
The abscissa is the frequency of the electromagnetic waves used. The
peaks in the ionogram indicate reflection from individual ionized layers
at increasing heights with correspondingly increasing electron densities.
As the frequency of the transmitter is increased toward the plasma fre-
quency of a particular layer the delay climbs steeply. Evidently the
velocity of the signal penetrating the plasma layer slows down, reaching
a minimum at the plasma frequency for that layer. This matches the be-
haviour expected if the velocity of the signal is indeed the group velocity.

Some further care is required in defining the velocity at which informa-
tion can travel. Consider the electromagnetic radiation with wavelength
in the region of anomalous dispersion shown in figure 11.4. One version
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Fig. 11.13 Ionogram showing the apparent height at which pulses of radiation are
reflected from the ionosphere versus the frequency. Courtesy Dr.M. Rietveld of the
EISCAT Scientific Association, N-9027 Ramfjordmoen, Norway.

of the expression for the group velocity is

vg = (c/n)[1 + (λ/n)(dn/dλ)].

Therefore, when dn/dλ is large and positive, which it certainly will be
across a narrow spectral line, vg can also become larger than c. A nar-
row line has a correspondingly sharp absorption peak so that radiation
entering the medium is strongly absorbed. Consequently the frequency
components in the wavepacket closest to the centre of the spectral line
are preferentially absorbed, while the components of the wavepacket
with frequencies above and below the spectral line are less attenuated.
In such cases the energy and information all travel at a velocity less
than c. This velocity at which information travels is termed the signal
velocity .K.E Oughstum and N.A. Cartwright

in the Journal of Optics, A4 (2002)
S125 conclude that ‘Superluminal en-
ergy and information transfer is not
physically possible within the frame-
work of the Maxwell–Lorentz theory in
linear, causally dispersive systems.’

A different aspect of the distinction between group and phase veloc-
ity is met with when electromagnetic waves enter birefringent materials.
Figure 10.8 shows how the Poynting vector of an electromagnetic wave
with extraordinary polarization generally points in a different direction
from the wave vector normal to the wavefronts. Energy travels at the
ray velocity in the direction of the Poynting vector, while the wavefronts
travel at the wave velocity. Now a wavepacket in a beam consists of infi-
nite plane waves whose directions are distributed over a range of angles
as well as wavelengths. These intefere constructively and travel with the
group velocity in a direction determined by their Poynting vectors.
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A surprising conclusion can be made from the analysis in this and
the preceding chapter. Not only will the group velocity of light differ
in magnitude from the phase velocities of the infinite sinusoidal plane
waves making up the wavepacket in a dispersive medium, but also in a
birefringent material a wavepacket of extraordinary waves will generally
not even travel in the direction normal to the wavefronts of the con-
stituent infinite plane waves.

11.6.3 Surface plasma waves

In addition to plasma waves that fill the volume of a metal, and which are
for this reason called bulk plasma waves, surface plasma waves (SPW)
also occur. These waves travel along the interface between a metal and a
dielectric. One device first used by Kretschmann and Raether in 19688 8See Surface Plasmons by H. Raether,

published by Springer-Verlag, Berlin
(1988).

for exciting SPWs is shown in the upper panel of figure 11.14. The
prism is made from a dielectric with relatively large refractive index,
np =

√
εp, for example quartz. A thin layer of metal is deposited on the

prism base and the lower surface of this metal film is put in contact with
a dielectric whose refractive index is much less than that of the prism.
Because the metal layer is so thin, there can be total internal reflection
at what is effectively a prism/dielectric interface. The evanescent wave
can excite a surface plasma wave travelling along the metal/dielectric
interface provided the phase velocity of the incident light matches that
of a surface plasma wave. If this match is achieved the incident light
feeds the surface plasma wave, with the result that the reflectance drops
well below the 100% which normally signals TIR. The intensity distri-
bution of the surface plasma wave as a function of distance from the
metal/dielectric interface is illustrated in the lower panel in figure 11.14.
It typically extends of order one wavelength into the dielectric, but less
far into the metal. The upper panel of the figure also illustrates how to
detect the presence of a surface plasma wave when using a white light
source. After reflection the light emerges from the prism and falls on a
diffraction grating. The resulting spectrum will show a gap at any wave-

pθ

Dielectric

Metal

Grating
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x

SPW Intensity

Metal

Dielectric

Fig. 11.14 The Kretschmann–Raether
scheme for exciting surface plasma
waves is shown in the upper panel.
The lower panel shows the exponential
decline in the intensity of the surface
plasma wave with distance from the
contact surface. The vertical scale is
magnified in the lower panel.

length for which TIR is suppressed when coupling to a surface plasma
wave has occured. Because the surface plasma wave is sensitive to the
physical and chemical content of a layer around one wavelength thick at
the dielectric surface the device described is currently used as a biosen-
sor. This application will be described after analysing the production of
surface plasma waves.

If the material on which the metal is placed is non-magnetic then the
surface plasma waves are p-polarized, and this case will be analysed now.
The coordinate system is indicated in the upper panel of figure 11.14
with the plane x = 0 located on the metal/dielectric boundary. Then
the magnetic field of the surface plasma wave points in the y-direction
and has values

BD = BD0 exp (−κDx) exp [i(ωt − kzz))], (11.47)
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BM = BM0 exp (κMx) exp [i(ωt − kzz))], (11.48)

where the subscripts D and M refer to the dielectric and metal respec-
tively. The wave vector kD is given by

k2
D = k2

z − κ2
D.

Also
k2
D = ω2/v2

D = εDω2/c2

where vD is the wave velocity in the dielectric and εD its relative per-
mittivity. Eliminating kD from the last two equations gives

κ2
D = −εDω2/c2 + k2

z , (11.49)

with a similar relation for the wave vector in the metal

κ2
M = −εMω2/c2 + k2

z . (11.50)

Next we apply Maxwell’s equation, eqn. 9.16, to the surface plasma
wave in the dielectric and keep only the z-component

−κDBD = iεDωEDz/c2,

where EDz is the component of electric field in the z-direction. Rear-
ranging this last equation gives

EDz = +i(κDc2/ωεD)BD. (11.51)

Similary for the wave in the metal we get

EMz = −i(κMc2/ωεM)BM. (11.52)

Finally we can impose the twin requirements that the z-component of
the electric field is continuous at the surface, and that the magnetic field
is continuous at the surface: BD = BM and EDz = EMz. Then dividing
eqn. 11.51 by eqn. 11.52 gives

κD/εD = −κM/εM. (11.53)

This condition can only be satisfied if εM is negative; which is the situ-
ation in the case of a metal when the frequency of the incident electro-
magnetic radiation is less than the plasma frequency. When this is the
case there can be a p-polarized surface plasma wave. Note also that its
electric field is not transverse to the direction of propagation but lies in
the zOx plane.

Proceeding further by squaring the last equation gives

κ2
D/ε2

D = κ2
M/ε2

M.

Using eqns. 11.49 and 11.50 to substitute for κD and κM yields

ε2
M/ε2

D = [k2
z − εM(ω/c)2]/[k2

z − εD(ω/c)2],
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from which it follows that

k2
z = (ω/c)2εMεD/(εM + εD), (11.54)

while

κ2
D/M = −(ω/c)2ε2

D/M/(εM + εD). (11.55)

At high frequencies, but still below the plasma frequency, εM = 1 −
ω2

p/ω2, and substituting this value for εM in eqn. 11.54 gives

k2
z = (ω/c)2εD(1 − ω2

p/ω2)/(εD + 1 − ω2
p/ω2). (11.56)

Equation 11.56 is the surface plasma wave’s dispersion relation and is
drawn as a curved line in figure 11.15. As kz tends to infinity ω tends to
the limit ωp/

√
(1 + εD), while near the origin it tends to ckz/

√
εD. In

the same figure the steeper, straight broken line follows the dispersion
relation for light in free space incident at an angle θp, ω = kzc/ sin θp.
Evidently light in free space cannot excite a surface plasma wave be-
cause its phase velocity always exceeds that of the surface plasma wave;
put another way their dispersion curves never cross away from the ori-
gin. However the phase velocity along the z-direction of light incident  z-component of k
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Fig. 11.15 Dispersion relations for a
surface plasma wave, for an electro-
magnetic wave in free space and for
an electromagnetic wave in the prism.
The condition for which the wave in
the prism and surface plasma wave
match in frequency and wave number
is marked by a spot.

in the prism is c/(
√

εp sin θp), and this flatter dispersion relation can
intersect the dispersion curve for the surface plasma wave. Intersection
is guaranteed if the slope is less than that of the dispersion curve for
the SPW at the origin:

√
εp sin θp >

√
εD. The conditions for exciting

a surface plasma wave can be produced either by varying the angle of
incidence with monochromatic light, or by scanning in wavelength at a
fixed angle of incidence, as is illustrated in figure 11.14. A sharp drop in
the reflectance is the required signal. Using eqn. 11.55, and taking εD

to be 2.0 and εM to be −10, the intensity of the surface plasma wave is
predicted to fall off by a factor e in a distance of 0.11 (free space) wave-
lengths in the dielectric and 0.024 wavelengths in the metal. Gold is the
metal prefered for the prism coating because it does not tarnish and also
because the dips in reflectance are very narrow and deep. A gold layer
which is around 50 nm thick gives an optimally deep and narrow dip.

When used in a biosensor the metal surface is coated with an appro-
priate agent to which the target (for example a bacterium such as E.
coli) will bind. The fluid under test is then made to flow past the pre-
pared surface. If this fluid contains any targets these are trapped by the
surface agent and the accumulation of such material changes the rela-
tive permittivity εD of the surface layer, with a corresponding change in
the frequency of the surface plasma wave. The resulting change in the
wavelength at which the dip in reflectance occurs is large enough that a
few picograms of target biomaterial per square millimetre is detectable.
This approach has the flexibility of separating functions: the detector
is sensitive yet biologically non-specific, while the biological agent is de-
signed to trap a specific bio-target.
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From eqn. 11.54 it is apparent that when the metal and dielectric elec-
tric permittivities are close to cancelling the wavelength of the plasma
wave along the surface direction becomes extremely short. This pro-
vides a practical means of coupling optical waves into nanostructures,
thus linking opto-electronics and nanotechnology. At present this devel-
opment is in its infancy.

11.7 Further reading

Optical Physics, third edition, by S. G. Lipson, H. S. Lipson and D.
S. Tannhauser, published by Cambridge University Press (1995). A
very imaginative book which concentrates firmly on understanding. It
should prove useful in several areas besides the present chapter. ‘How
light interacts with matter’ by V. F. Weisskopf in Scientific American,
August 1968, pages 60–71 is very also informative.

Exercises

(11.1) Show that for a plasma vg = c2/vp.

(11.2) Calculate the plasma frequency in a layer of the
ionosphere where the electron number density is
1012m−3. What will the wave and group velocities
be at a frequency 10 MHz?

(11.3) The power in a beam of light falls by a factor e in
passing through 3m of glass. What is this loss in
dBkm−1?

(11.4) Red ink is allowed to dry to form a thin solid layer
on a glass sheet. It now appears in reflected light
to be greenish. Why is this?

(11.5) Prove eqns. 11.42.

(11.6) Calculate the reduction of intensity of light of wave-
length 589 nm after travelling through 200 km of air
at NTP. The refractive index of air is 1.000292 and
the number density of molecules is 3 1025 m−3.

(11.7) One empirical formula introduced to fit narrow res-
onances seen in the refractive index is

ε = 1 +
∑

[Aiλ
2/(λ2 − λ2

i )].

Express the two constants for a given spectral line
(Ai and λi) in terms of the electron natural fre-
quency and the plasma frequency.

(11.8) Calculate the reflectance on copper of light of wave-
length 589 nm using the data given in Table 11.1.

(11.9) Monochromatic unpolarized light travelling in free
space in the x-direction is scattered from a sphere
of refractive index n, and radius a, this radius being
much less than the wavelength of the light λ in free
space. (a) Deduce using eqn. 11.27 that the electric
dipole moment of the sphere is p0 = 4πa3Gε0E,
where E = E0 cos (ωt) is the electric field of the
light and G = (n2 − 1)/(n2 + 2).

(b) Hence show that the time averaged flux scat-
tered in solid angle dΩ in a direction making an
angle θy with the dipole axis when dipole points
along the y-axis is

dN = dΩ(ω4p2
0 sin2 θy)/(32π2c3ε0).

(c) Write the corresponding expression if the dipole
points along the z-axis.

(d) Show that

sin2 (θy) + sin2 (θz) = 1 + cos2 θx,

where (θx, φx) are the polar angles with respect to
the x-axis etc. The solid angle between the cones
of semi-angle θx and θx + dθx around the x-axis is
2π sin (θx)dθx.

(e) Hence show that the flux of unpolarized radia-
tion scattered into an angular interval between θx

and θx + dθx is

dN = sin θxdθx[ω4p2
0(1 + cos2 θx)]/[32πc3εo].



11.7 Further reading 323

(f) If the differential cross-section for scattering is
defined as (dropping the subscript x)

dσ/dθ = (dN/dθ)/F,

where F is the incident flux per unit area, then
show that the differential cross-section for Rayleigh
scattering of a sphere is

dσ/dθ = πk4a6G2(1 + cos2 θ) sin θ.

(g) Hence show that the total Rayleigh cross-
section from a single sphere is

σ = (8π/3)k4a6G2,

where k = 2π/λ.

(11.10) Why is it that no plasma surface wave is excited at
the metal/prism interface in figure 11.14?

(11.11) Prove eqn. 11.44.
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The quantum nature of

light and matter 12

12.1 Introduction

Just a century ago experiments with electromagnetic radiation led to a
totally new insight, that not only matter comes in discrete packets but so
too does electromagnetic radiation. These packets of radiation, first pro-
posed by Planck and Einstein, are called photons, and electromagnetic
radiation of frequency f Hz consists of photons each carrying a quantum
of energy hf , where h is Planck’s constant with a value 6.62610−34 J s.
Just how small this is can be appreciated by noting that a one watt torch
emits ∼1018 photons per second. Three pieces of experimental evidence
were crucial to the acceptance of the concept of the quantization of ra-
diation. The first came from the measurement of the spectrum of the
radiation from a perfect absorber and emitter of radiation – a so-called
black body. The second piece of evidence was provided by Lenard’s
and Millikan’s studies of the photoelectric effect in which em radiation
liberates electrons from a metal surface. A third piece of evidence was
obtained when Compton measured the change in wavelength of X-rays
scattered by electrons. Somewhat later in 1924 de Broglie proposed
that if electromagnetic waves had a particle nature, then for consistency
matter should possess wave properties. Shortly thereafter interference
effects were observed with electrons, and more recently they have been
observed with other particle types including atoms and molecules. The
experiments which demonstrated the particle nature of electromagnetic
radiation and the wave nature of electrons are described in the first sec-
tion of the chapter.

In 1911 Rutherford discovered the basic features of atomic structure.
It became clear that an atom contains a nucleus that carries most of
the mass and all the positive charge, but whose diameter is only one
hundred-thousandth of the atom’s diameter. Around this nucleus the
much lighter, point-like, negatively charged electrons circulate at dis-
tances of order 10−10 m under the electrical attraction of the nucleus.
Their total charge is equal and opposite to that of the nucleus. It was
originally suggested that the electrons travelled in orbits like planets
around the Sun, but this picture of the atom had a serious flaw. The
electrons in orbits would be accelerating radially and hence they would
radiate continuously. As a result they would lose energy and spiral
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rapidly into the nucleus. Bohr got around this difficulty by arbitrar-
ilyquantizing the orbits. He postulated that electrons only occupy cer-
tain orbits for which the angular momentum is an integral multiple of
h/2π and that while in these orbits the electrons do not radiate. In ad-
dition he postulated that an electron can move from one allowed orbit
to another in a transition which is instantaneous and which is accom-
panied by the emission or absorption of a photon carrying the energy
difference between the two orbits. Bohr’s model was able to account for
the existence of lines in atomic spectra and to explain quantitatively the
striking regularities in the frequencies of the spectral lines of hydrogen
and hydrogen-like atoms. These features had previously been incom-
prehensible, so that this new understanding showed that here were the
beginnings of a theory based on quantization. The successes, and crucial
weaknesses, of the Bohr model will be described in the second part of
the chapter. Today the Bohr model still provides a useful conceptual
step towards the comprehensive theory of quantum phenomena, known
as quantum mechanics.

If electromagnetic radiation, and matter, show both wave and particle
properties then the obvious question to ask is how these properties can
be integrated into a coherent conceptual and mathematical framework.
In the third part of this chapter the interpretation of the wave–particle
duality is discussed. Put very briefly, the wave intensity over a region of
space takes on a new meaning as the probability of finding the associated
particle in that region. However with probability comes uncertainty, and
this is illustrated with examples. Each degree of freedom has an asso-
ciated pair of conjugate variables, as for example in the case of a single
particle the position and momentum in each dimension. These pairs
can only be measured with limited precision, even with ideal measuring
instruments. This limitation is quantified by Heisenberg’s uncertainty
principle for pairs of conjugate variables. Complemenarity can also ap-
ply to pieces of information other than kinematic variables. In all cases,
kinematic or not, exact knowledge of one piece of information implies
total uncertainty about the other. As an example, in Young’s double slit
experiment one may either know which slit the photon passes through
or one may observe the two slit interference pattern, but not both. If
the paths are indistinguishable then interference is seen, but if the path
is known (welcher Weg information) interference no longer occurs. The
final section of the chapter is used to bring out the connections between
photons, wavepackets, coherence volumes and modes of the electromag-
netic field.

12.2 The black body spectrum

Black body radiation is electromagnetic radiation contained within an
enclosure whose walls are maintained at a constant uniform temperature
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and, as discussed in Section 1.8, its spectrum is independent of the ma-
terial of the enclosure. The practical form of a black body was described
in Section 1.8. Figure 12.1 shows the spectra of black body radiation
at three temperatures, like those that had been measured before 1900
by Lummer and Pringsheim, and by others. Their method was to dis-
perse the black body spectrum with a diffraction grating and then to
measure the heating effect of each wavelength segment of the spectrum.
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Fig. 12.1 Black body radiation spectra at 3000 K, 4000 K and 5000 K. Planck’s
quantum predictions which are indicated with full lines fit the data. The classical
prediction for 3000 K is shown with a broken line.

It is straightfoward to make a prediction of the spectrum using classical
theory, but the result is spectacularly wrong! The density of modes of
electromagnetic radiation has been calculated in Section 9.8.1 to be

ρ(f)df = 8πf2df/c3, (12.1)

where f is the frequency. In arriving at this value electromagnetic ra-
diation is regarded as having two degrees of freedom, corresponding to
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the two polarizations. Classical thermodynamics then predicts that the
energy should be partitioned equally between the modes with each mode
having a mean energy in thermal equilibrium of kBT , where T K is the
temperature and kB is Boltzmann’s constant, 1.381 10−28 JK−1. Thus
the energy spectrum predicted is

W (f)df = 8πkBTf2df/c3, (12.2)

with W (f) measured in Jm−3 Hz−1. The equivalent distribution in
wavelength is given by

Wλ(λ)dλ = W (f)df,

hence
Wλ(λ) = W (f)df/dλ = 8πkBT/λ4, (12.3)

and is indicated for a temperature of 3000K by the broken line in figure
12.1. At high frequencies (short wavelengths) this prediction is wildly
in error, a feature known as the ultraviolet catastrophe. Each of the
rapidly increasing number of modes at high frequency has the same en-
ergy, which implies an infinite energy in the electromagnetic field! In
1901 Planck discovered what he took to be a temporary mathematical
fix which brought the prediction into agreement with the data, and he
imagined that his procedure would somehow be incorporated into classi-
cal theory. In fact this was the first step in revealing the quantum basis
of nature.

What Planck proposed was that radiation is absorbed and emitted by
the walls of the container in packets or quanta of energy,

E = hf = h̄ω, (12.4)

where ω is the angular frequency of the radiation and h is known as
Planck’s constant; h̄ is simply h/2π. If there are n quanta in the mode
its energy is nhf . Then the probability of there being n quanta in any
mode within the enclosure is given by the Boltzmann distribution for
systems in thermal equilibrium

P (n) ∝ exp (−Energy/kBT ) = exp (−nhf/kBT ).

Putting x = exp (−hf/kBT ) and normalizing so that the probabilities
add up to unity gives

P (n) = xn/
∑
n

xn = xn(1 − x).

Hence the mean number of photons in a mode is

n =
∑

n

nP (n) = (1 − x)
∑

n

nxn = (x − x2)
d

dx

∑
n

xn

= (x − x2)
d

dx
[1/(1 − x)] = x/(1 − x) = 1/(x−1 − 1).
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Therefore
n = 1/ [ exp (hf/kBT ) − 1 ]. (12.5)

Using the expression for the density of modes given above in eqn. 12.1,
the energy spectrum of black body radiation was predicted by Planck
to be

W (f)df = nhfρ(f)df

= (8πhf3/c3)df/(exp (hf/kBT ) − 1), (12.6)

again in J m−3 Hz−1. In a material of refractive index µ there would be
an additional factor µ3 in the numerator

W (f)df = (8πhf3µ3/c3)df/(exp (hf/kBT )− 1). (12.7)

Planck found that this expression would fit the the observed black body
spectra at all temperatures for which it was measured with the same
value of h in each case. Quantization had solved the inherent weakness
of classical wave theory and provided an excellent fit to the data. Thus
quantization had to be taken seriously! The current measured value of
Planck’s constant is 6.626 10−34 J s making h̄ equal to 1.054610−34 J s.
Note that in the limit of low frequencies and high temperatures, that
is when hf/kBT is very small, Planck’s formula reduces to the classical
expression.

Several simple properties of the black body spectrum follow on from
this analysis. The wavelength at which the spectrum peaks, λpeak, is
obtained by differentiating eqn. 12.6 and setting the result to zero. This
gives

λpeak = 2.898 10−3/T, (12.8)

which was discovered experimentally in 1893 by Wien, and is known as
Wien’s law. The energy density in electromagnetic radiation in equilib-
rium at a temperature T can be obtained by integrating eqn. 12.6 over
frequency. This gives

W =

∫ ∞

0

W (f)df = 8π5k4
BT 4/(15c3h3), (12.9)

where we use the result that the definite integral
∫∞
0

x3dx/(exp x − 1)
equals π4/15. The units of W are Jm−3

The flux of energy per unit time across unit area in the enclosure in one
sense is of interest. This quantity is the irradiance or intensity of black
body radiation measured in Wm−2. Figure 12.2 shows a hemisphere
drawn on a selected surface. Those modes whose normals lie between

θ

θd

Fig. 12.2 Notional surface drawn
within an enclosure containing black
body radiation.

the two cones of semi-angles θ and θ + dθ make up a fraction sin θdθ/2
of all the modes. Thus the total energy in these modes crossing unit
area per unit time is

F = (sin θdθ/2)(Wc cos θ).
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Integrating this result over all angles gives the irradiance or intensity of
black body radiation

F = (Wc/2)

∫ π/2

0

sin θ cos θ dθ = Wc/4. (12.10)

Thus the intensity is

F = 2π5k4
BT 4/(15c2h3) = σT 4. (12.11)

This variation as the fourth power of the absolute temperature is known
as Stefan’s law, and the Stefan–Boltzmann constant, σ, is 5.76 10−8 W
m−2 K−4.

The spectrum of the cosmic microwave background radiation which
fills the universe has been measured with microwave dishes on board
the COBE and WMAP satellites. The measurements reveal that this
cosmic microwave background has a spectrum that deviates by only
parts in one hundred thousand from the black body radiation spectrum
at a temperature of 2.75K. In fact it is the most perfect black body
radiation spectrum ever observed.

12.3 The photoelectric effect

The photoelectric effect occurs when visible light or ultraviolet light falls
on a metal or an alkali metal causing electrons to be emitted from the
surface irradiated. By 1902 Lenard had shown that for each such metal
there exists a threshold frequency below which no photoelectrons are
produced, and this threshold frequency does not change however high
the intensity of the incoming radiation. This behaviour is impossible
to explain with em wave theory alone. According to wave theory an
electron in a metal would be forced to oscillate at the incoming wave
frequency, this oscillation would build up in amplitude over time and
eventually the electron would break free from the surface. Crucially,
this sequence predicted by classical wave theory should proceed what-
ever the frequency of the incident electromagnetic radiation. Lenard also
observed that the maximum energy of the emerging electrons depends
solely on the frequency of the radiation and not on its intensity: facts
which are again inconsistent with classical wave theory. Above threshold
the number of electrons emitted was, as expected, proportional to the
intensity of the radiation.

In 1905 Einstein proposed that in the photoelectric effect a single
electron absorbs one of Planck’s energy quanta from the incident radi-
ation and escapes from the surface. Supposing it requires an energy φ
to release an electron lying exactly at the surface of the metal, then all
electrons will emerge with kinetic energy less than or equal to

KEmax = hf − φ. (12.12)
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Table 12.1 Cut-off wavelengths, frequencies and work functions for several
metals from CRC Handbook of Chemistry and Physics, 77th edition, published
by the Chemical Rubber Company Press, Boca Raton, Fl., (1997). Courtesy
Taylor and Francis Group.

Metal Wavelength in nm Frequency in THz Work function in eV

Sodium 451 665 2.75
Lithium 428 701 2.90
Cesium 580 517 2.14
Copper 267 1120 4.65
Nickel 241 1240 5.15

φ depends on the metal and is called the work function of the metal.
Electrons originating deeper in the metal will lose energy through colli-
sions on their way out, so that KEmax is the maximum electron energy.
Einstein’s proposal introduces the required cut-off frequency fco = φ/h;
radiation below this frequency cannot cause any photoemission of elec-
trons.

Millikan, who was highly sceptical, set out to test Einstein’s predic-
tions in a series of experiments that extended Lenard’s studies, and on
which he, Millikan, continued working for over a decade. An outline of
his later apparatus is shown in figure 12.3. A monochromator is used to
select light from a strong line in the spectrum of a mercury lamp, this
light then travels through a small window to fall finally on the metal
surface being studied. The interior of the outer container is evacuated
so that electrons do not lose energy in collisions with gas molecules, and
so that the metal surface is not contaminated either. Because surface
impurities change the threshold frequency so much, each metal surface
was scraped immediately before being irradiated. Electrons ejected from

from Hg 
source

Mch.

Faraday cup

Alkali metal

e path

photon path

--

+

Fig. 12.3 Millikan’s apparatus to
study the photoelectric effect. Mch is
a monochromator. The light passes
through a window in the container.

the metal surface travelled to a copper Faraday cup and the resulting
current was measured. A net negative voltage was applied to the cup
relative to the metal and this voltage was increased until the current
vanished. If this cut-off voltage is V and e is the electron’s charge, then
the maximum electron kinetic energy would be eV . One advantage ac-
cruing from the use of a copper cup is that copper has a high threshold
frequency with the result that there was negligible photoemission caused
by light reflected onto the cup. Millikan confirmed that there exists a
threshold frequency for each metal he tested, and that with radiation of
any lower frequency no electrons are emitted, however intense the radi-
ation. Some modern determinations of the cut-offs for polycrystalline
pure metal surfaces are given in Table 12.1. Secondly Millikan showed
that when the kinetic energy of the highest energy photoelectrons was
plotted against the frequency of the radiation the dependence fitted Ein-
stein’s predicted linear relation

KEmax = hf − φ = h(f − f0). (12.13)
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Fig. 12.4 Millikan’s measurements of the stopping voltage against the radiation fre-
quency for sodium and lithium. The voltages are corrected for the contact potentials
that are present at contacts between different metals in the circuit. Adapted from
R. A. Millikan, Physical Review 7, 355 (1916), by courtesy of the Amercan Physical
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This dependence is evident in the data collected by Millikan and shown
in figure 12.4. From the slope of the lines fitted to the data for each
metal Millikan extracted values for h which agreed with each other and
with the value found by Planck. Millikan also confirmed that the number
of photoelectrons is proportional to the intensity of the radiation. Later
in 1927 Lawrence and Beams measured the delay between the moment
that the radiation first arrives at the surface after the source is switched
on and the moment at which electron emission commences. Classically
the wave energy is spread over the whole surface of the wavefront and it
would take some time before any individual electron could accumulate
enough energy to escape from the surface. The delay should therefore
increase as the intensity diminishes. By contrast quanta are localized so
that emission should commence instantaneously when the light is turned
on. Lawrence and Beams found that the delay was less than the resolu-
tion of their timing methods and gave an upper limit of 3 10−9 s for the
delay at low light intensities. A tighter limit for the delay was obtained
by Forrester, Gudmundson and Johnson in 1955. They studied the pho-
toelectric effect using light modulated at high frequencies and observed
that the detector signal followed the modulation faithfully, showing that
any delay was much less than the modulation period. Their conclusion
was that the delay is significantly less than 10−10 s. The absence of any
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delay makes implausible a semiclassical picture, in which electromag-
netic radiation is absorbed and emitted as quanta but travels purely as
waves.

12.4 The Compton effect

Compton, following through the consequences of the quantization of ra-
diation, appreciated that when X-rays scatter from matter the underly-
ing process is the scattering of an individual quantum of electromagnetic
radiation from a single electron which is initially at rest. This process

Photon in 
) 0(f

Photon out 
(f) 

Electron 
recoil 

 θ

 φ

Fig. 12.5 Compton’s particle interpre-
tation of X-ray scattering from an elec-
tron.

is pictured in figure 12.5.

The particle aspect of the quantum of energy is now explicit with
electromagnetic radiation being pictured as consisting of particles called
photons each carrying Planck’s quantum of energy.

If the incoming photons had frequency f0 Compton assigned to each
an energy hf0. He also assigned a momentum hf0/c to the photons,
which takes the relationship expressed in eqn. 9.54 between wave ener-
gies and momenta and applies it to an individual photon travelling in
free space. The special theory of relativity gives the same relationship,
E = pc. Suppose now that the scattered photon has frequency f , that
the electron recoils with velocity βc, and that the scattering angles are
as shown in figure 12.5. The electron must be treated relativistically
because the kinetic energy of the recoiling electron is comparable to its
rest mass energy. Initially its energy before being struck is the rest mass
energy mc2, while its energy and momentum afterwards are mγc2 and
mβγc respectively, where γ = 1/

√
(1 − β2). Energy is conserved in the

scatter so that
hf0 + mc2 = hf + mc2γ. (12.14)

The components of momentum along and at right angles to the incident
photon’s direction are also conserved so that

hf0/c − hf cos θ/c = mγβc cosφ, (12.15)

hf sin θ/c = mγβc sinφ, (12.16)

where θ and φ are the respective scattering angles of the photon and the
electron relative to the incident photon’s direction. Rearranging and
squaring the energy equation, eqn. 12.14, gives

h2(f2
0 + f2 − 2ff0) = m2c4(γ − 1)2.

Squaring the momentum equations eqns. 12.15 and 12.16 and adding
the results gives

h2(f2
0 + f2 − 2f f0 cos θ) = m2γ2β2c4.

Taking the difference between the last two equations yields

2h2ff0(1 − cos θ) = 2m2c4(γ − 1).
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The energy equation, eqn. 12.14, can be used to replace the right hand
side of the last equation and this gives

2h2f f0(1 − cos θ) = 2h(f0 − f)mc2,

which when divided by 2hff0mc2 leaves

(h/mc2)(1 − cos θ) = (1/f − 1/f0).

Re-expressing this equation in terms of the wavelengths produces a sim-
pler form

λ − λ0 = (h/mc)(1 − cos θ). (12.17)

This change in wavelength of the scattered X-rays is called the Compton
effect. It depends only on physical constants and the scattering angle,
and not at all on the nature of the scattering material. Numerically
the term that quantifies the wavelength shift, h/mc, is 0.0024nm which
shows that it is necessary to use short wavelength radiation. If the exper-
iment were attempted with visible light the change in wavelength would,
even now, be hard to detect let alone measure precisely. Compton’s X-
ray photons had energies very much larger than the kinetic energy and
binding energy of the electrons in the atoms which he used, and hence
the assumptions that the target electrons are free and at rest is fully
justified.

Compton’s apparatus is sketched in figure 12.6. Radiation from the
X-ray tube

Target Crystal

Collimator

Collimator

Ionization
chamber

Fig. 12.6 Compton’s apparatus for
studying the wavelength change in X-
ray scattering from various light ele-
ments.

molybdenum X-ray source is scattered off a graphite block. Collimators
are used to select narrow beams of X-rays, a collimator being made of a
pair of lead plates each pierced by a single small hole. The scattering an-
gle off graphite is selected by positioning a first collimator appropriately.
After emerging from this collimator the X-rays are Bragg scattered off a
calcite crystal, with a second collimator set so that the angle of reflection
is equal to the angle of incidence. Finally the Bragg scattered X-rays
enter an ionization chamber filled with a gas whose atoms are readily
ionized by X-rays. Under an applied voltage a current flows proportional
to the X-ray flux. Figure 12.6 is drawn for the case that the scattering
angle between the incident and scattered X-rays at the carbon target is
90◦. At each such setting of the scattering angle from graphite Compton
varied the Bragg scattering angle at the calcite crystal in steps and and
at each step recorded the current. The resulting angular distribution
of the scattered X-ray intensity was then converted to a distribution in
wavelength using Bragg’s law. Figure 12.7 shows the spectra observed
at three different scattering angles off a carbon target. The wavelength
of the incident radiation is indicated by the broken line in each panel
and the right hand peak contains the photons scattered from electrons.
Compton found that the shift in wavelength of this right hand peak
fitted his prediction precisely in magnitude, in its dependence on the
scattering angle, and in its independence of the target material. In 1949
Hofstadter and McIntyre detected both the photon and the recoil elec-
tron, checking that they emerge in coincidence, to within 10−9 s.
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The fit achieved to the black body spectrum, the explanation of the
features of the photoelectric effect and the prediction and measurement
of the Compton effect were the key elements in establishing that elec-
tromagnetic radiation has a particle nature.

12.5 de Broglie’s hypothesis

In 1924 de Broglie pointed out that if electromagnetic waves possess
particle properties, then it might be reasonable to suppose that material
particles such as electrons should possess wave properties. He proposed
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Fig. 12.7 Wavelength distribution of
X-rays scattered from graphite. The
vertical line indicates the wavelength of
the direct beam (the Kα line of Molyb-
denum.). Taken from A. H. Comp-
ton, Physical Review 22, 411 (1923), by
courtesy of the American Physical So-
ciety.

that the relations connecting the wave and particle properties of em
radiation should also apply to material particles. Thus the frequency of
the wave f associated with a particle of total energy E would be given
by Planck’s relation

E = hf. (12.18)

The parallel relation for the momentum of a photon is

p = E/c = h/λ.

de Broglie therefore proposed a similar relationship for material particles

p = h/λ. (12.19)

This is called the de Broglie relation, and λ is known as the de Broglie
wavelength of material particles.

It is important to note that the energy concerned is the total energy
of the material particle given by an expression from the special theory
of relativity

E2 = p2c2 + m2c4, (12.20)

where m is the rest mass. This collapses to E = pc for the massless
photon and is the expression applied by Compton. At the other extreme,
when velocities are small compared to c, p 
 mc and

E = mc2(1 + p2/m2c2)1/2

≈ mc2 + p2/2m,

where the binomial expansion is used. p2/2m is the usual kinetic energy
of Newtonian mechanics, while mc2 is the rest mass energy.

de Broglie’s ideas were confirmed when in 1926 Davisson and Germer,
and simultaneously G. P. Thomson, demonstrated the wave properties
of electrons. Davisson and Germer accelerated electrons through poten-
tials of tens of volts and then scattered them from a nickel crystal. They
observed diffraction from the regular atomic layers in the crystal. Thom-
son, on the other hand, passed electrons through thin films of randomly
oriented microcrystals, and observed sharp circular diffraction rings at
angles satisfying the usual Bragg condition

nλ = 2d sin θ, (12.21)
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where n is an integer, d is the crystal plane spacing, λ the electron wave-
length and θ the angle between the electron path and the crystal surface.

If tiny material particles like electrons have wave properties then what
implications does this have for macroscopic objects? A mass of one gram
moving at 1m s−1 has a de Broglie wavelength of 6.6 10−31m so that we
cannot expect to see diffraction of everyday objects. However because
the de Broglie wavelength of electrons of around 2 eV is 1 nm diffraction
effects will eventually impose a lower limit on the size of the gates in
field effect transistors, and hence on the ultimate density of components
in electronic processors. Nowadays the wave nature of material particles
is exploited when using electron microscopes and neutron diffraction to
explore the structure of matter.

12.6 The Bohr model of the atom

In parallel to the discovery of the quantum properties of electromagnetic
radiation, experiments on atomic structure led to the appreciation that
quantization was crucial in understanding the atom and atomic spectra.
Rutherford in 1911 used α-particles (bare 4He nuclei, each with charge
+2e) to bombard thin metal foils and had observed that substantial
numbers were scattered into the backward hemisphere and some almost
straight backward. His observations could only be consistently explained
if the object within the atom which was scattering the α-particles carries
most of the atomic mass, positive charge and is very much smaller than
the atom. This scatterer is the nucleus which consists of neutral neu-
trons and charged protons and is typically 10−15m across. An electron
has 1/2000th the mass of the proton or neutron and carries an equal
and opposite charge to the proton. The electrons in an atom circulate
around the nucleus in orbits extending to 10−10m in diameter.

Classically the electrons in such an atom must radiate continuously
because they are accelerating radially. As a result the electrons would be
expected to spiral rapidly into the nucleus while radiating over a broad
frequency range. By contrast isolated atoms radiate at discrete wave-
lengths, the spectral lines, and their wavelengths form patterns that
invite explanation. Hydrogen has a particularly simple atomic struc-
ture, with one electron orbiting a single proton nucleus. The emission
spectrum of hydrogen gas excited by an electric discharge was already
known at the time to consist of several series of spectral lines that could
be fitted with one overall empirical formula

1/λ = RH(1/n2 − 1/p2), (12.22)

where RH is a constant known as the Rydberg constant. n and p are
positive integers with the restriction that p > n. The currently accepted
value of the Rydberg constant is 1.09678107m−1. Thus the spectrum
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consists of spectral series, each with a fixed value of n while p runs
through the sequence n + 1, n + 2, n + 3, etc. The Lyman series is
generated by the combinations n = 1, p = 2, 3, 4, .... It starts with the
Lyman α-line at 121.6nm (n = 1, p = 2) and terminates at 91.3 nm (n
= 1, p = ∞). Among the other series, also named for their discoverers,
are: the Balmer series (n = 2) lying in the visible and ultraviolet; the
Paschen series (n = 3), the Brackett series (n = 4) and the Pfund series
(n = 5), all lying in the infrared part of the spectrum. An explanation
of these spectral features was achieved by Bohr in 1913 using a simple
quantized model of the atom.

In the Bohr model the electrons in atoms are pictured as travelling
in stable circular orbits which satisfy the requirement that the angular
momentum is exactly an integral multiple of h̄. The transition from an
orbit of higher energy to one of lower energy is instantaneous and is
accompanied by the emission of a photon which carries off the energy
difference. Similarly an electron in a lower energy orbit can absorb
a photon and instantaneously jump to a higher energy orbit provided
the photon energy exactly matches the difference between the electron’s
energy in the two orbits. The photon frequency, f , is given by

hf = ∆E, (12.23)

where ∆E is the difference in energy between the two atomic states. It
is now shown how the pattern of spectral lines for hydrogen emerges
naturally from these simple postulates.

Suppose that in an atom containing a single electron the radius of the
electron’s orbit is r, its speed is v and m is its mass. The quantization
condition is

mvr = nh̄, or v = nh̄/mr. (12.24)

A justification for Bohr’s quantization condition is revealed when the de
Broglie relation from eqn. 12.19 is used to replace the momentum in
eqn. 12.24. This gives

nh̄ = pr = hr/λ,

thus

nλ = 2πr. (12.25)

Therefore the quantization condition requires that one complete orbit
should contain an integral number of electron wavelengths. If the orbit
length did not satisfy this condition then the electron wave, after trav-
elling many times around the orbit, would interfere destructively with
itself.

The electron is maintained in the stable orbit by the Coulomb attrac-
tion of the nuclear charge. Thus its radial equation of motion is

Ze2/(4πε0r
2) = mv2/r, (12.26)
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where −e is the electron charge and Ze is the nuclear charge, Z being
unity for hydrogen. Using eqn. 12.24 to replace v in eqn. 12.26 gives

Ze2/4πε0 = n2h̄2/mr,

so that
r = 4πε0(n

2h̄2/mZe2). (12.27)

The radius of the first orbit in a hydrogen atom

a∞ = 4πε0(h̄
2/me2) = 0.05292 nm (12.28)

is called the Bohr radius and characterizes the linear size of atoms; other
orbits have radii n2 larger. This prediction for the atomic size is consis-
tent with the measured spacing of atoms in condensed matter if the outer
electron orbits of one atom touch or slightly overlap those of an adjacent
atom. A quantity needed later is the angular frequency of rotation of
an electron in the nth Bohr orbit

Ωn = v/r = nh̄/mr2 = (Ze2/4πε0)
2(m/n3h̄3). (12.29)

Finally the total energy of the electron in the nth orbit, made up of the
kinetic and the potential energy, is

En = mv2/2 − Ze2/(4πε0r).

The term mv2 can be replaced using eqn. 12.26 to give

En = −Ze2/(8πε0r)

= −(Ze2/4πε0)
2(m/2n2h̄2). (12.30)

From this result the photon energy emitted/absorbed in a transition
between the pth and nth orbit can be calculated,

∆E = Ep − En = (Ze2/4πε0)
2(m/2h̄2)[1/n2 − 1/p2], (12.31)

where p > n is required for this to be positive. The wavelength of the
photon emitted in such a transition is given by

1/λ = ∆E/hc = R∞Z2[1/n2 − 1/p2], (12.32)

where
R∞ = (1/4πε0)

2(me4/4πh̄3c). (12.33)

This last expression needs some correction because the nucleus has been
assumed to be immobile (of infinite mass). The corrected value in the
case that the nucleus has mass M is

R = [mM/(M + m)](R∞/m) = µ(R∞/m), (12.34)

where µ is called the reduced mass of the electron. Similarly the Bohr
radius must be corrected

a0 = 4πε0h̄
2/µe2. (12.35)
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Fig. 12.8 The energy levels in the hydrogen atom are displayed together with tran-
sitions producing the Lyman and Balmer series. For clarity only the first few tran-
sitions are drawn. The spectral lines are shown below. Each series converges to a
limit corresponding to a transition in which the electron just escapes from the atom
with zero kinetic energy.

The prediction for the Rydberg constant from eqn. 12.33 using the
accepted values for the constants agreed with the measured value.

Thus the Bohr model predicts the experimentally observed spectral
series and the Rydberg constant with precision.1This is very convinc-
ing evidence for the quantization of atomic orbits. Figure 12.8 shows
the energy levels of the hydrogen atom and some of the transitions. As
the quantum number n in eqn. 12.30 increases the discrete energy levels
pack more and more tightly together, converging on zero binding energy.
Above this energy electrons are free and can have any positive energy. It
follows that an electron in an atom can absorb any photon whose energy
exceeds the electron’s binding energy and emerge as a free photoelectron.

Only the Lyman series is seen in the absorption spectrum of hydrogen
gas at low temperatures. The reason lies in the distribution of electrons
between the energy levels in a collection of hydrogen atoms in thermal

1Nowadays the success of quantum theory means that eqn. 12.33 is accepted: the
measurement of the Rydberg constant is therefore one among several experimental
measurements from which the constants appearing in eqn. 12.33 are determined.
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equilibrium. In thermal equilibrium at a temperature T K the number of
hydrogen atoms with an electron in an excited state of energy ∆E above
the lowest energy or ground state is given by the Boltzmann distribution

N(∆E) = N(0) exp [−∆E/kBT )], (12.36)

where N(0) is the number in the ground state. Therefore whenever the
temperature is low enough that kBT is very much smaller than the ex-
citation energy of the first excited state the ground state is almost the
only one occupied. Thus at a temperature of 20 ◦C, for which kBT is
0.025 eV, absorptions in hydrogen gas will, almost entirely, involve Ly-
man line transitions from the ground state.

It must be the case that at the large scale the quantum description be-
comes equivalent to the classical description because at the macroscopic
scale classical mechanics does work well. Bohr therefore proposed a cor-
respondence principle which states that at very high quantum numbers
the quantum description merges with the classical description of phe-
nomena. For example the angular frequency of a photon emitted in a
transition between adjacent levels given by eqn. 12.31 approaches, in
the limit of very large quantum numbers n,

ωn,n+1 = (Ze2/4πε0)
2m/(nh̄)3. (12.37)

This is precisely the angular frequency of rotation of the electron in the
nth orbit met with in eqn. 12.29. Now according to classical wave theory
the angular frequency of the radiation emitted by a rotating electron is
just the electron’s rotation frequency, so we see that in a transition at
high enough quantum numbers the quantum prediction has converged
on the classical prediction.

12.6.1 Beyond hydrogen

The Bohr model fails to explain the spectrum of neutral helium, the
next simplest element beyond hydrogen, and it was only following the
development of quantum mechanics that a comprehensive explanation of
all atomic spectra became possible. The Bohr model works moderately
well for the alkali metals, whose atomic structure has a single electron
outside a core of electrons tightly bound to the nucleus. Thus the elec-
tric field felt by the singleton electron is that of the nucleus and the core
of electrons, which is much like that of a hydrogen atom.

A result useful in interpreting atomic structure within the Bohr model
was obtained by Moseley in 1914. He compared the wavelengths of the
sharp lines appearing in the X-ray spectra produced when elements are
bombarded by high energy electrons. These lines would be emitted
when the projectile electron ejects an electron from one orbit and an
electron in a higher energy orbit drops into the orbit vacated. For the
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shortest wavelength, and therefore highest energy X-ray line, the Kα

line, Moseley found that the wavelengths fitted a single expression

1/λ = R(Z − a)2, (12.38)

where Z is the atomic number, a is around unity and R is approximately
equal to the Rydberg constant.

This result is consistent with the interpretation that the Kα line is
emitted in a transition between the second and first Bohr orbit and that
Ze is the nuclear charge. As with the alkali metals there is essentially
a single electron involved, this time the electron closest to the nucleus.
The net electric field due to the outer electrons is small at its orbit
and is responsible for the small correction ae to the nuclear charge Ze.
This result is highly important: it reveals that the integral charge on
the nucleus, Z, and hence the number of electrons in the atom, is equal
to atomic number. The atomic number determines the position of an
element in the periodic table, which is now seen to reflect the fact that
the number of electrons in an atom determines its chemical properties.

12.6.2 Weaknesses of the Bohr model

It has been already noted that the Bohr model fails to explain the main
features of spectra of elements beyond hydrogen. Its hybrid nature is also
very unsatisfying: first a quantization condition is imposed for closed
orbits and after that classical mechanics is used. As a result there is
no explanation as to why transitions occur and hence no way of calcu-
lating rates at which transitions occur. Furthermore in many physical
situations there is no obvious periodic condition that can be imposed
comparable to the condition on the angular momentum of an electron
orbiting a nucleus. The resolution of all these difficulties only came with
the development of quantum mechanics.

12.7 Wave–particle duality

The acceptance of the existence of wave and particle behaviour of both
electromagnetic radiation and matter led to a search for ways to rec-
oncile these two types of behaviour. A closely connected issue was the
replacement of Bohr’s interim solution of grafting quantum conditions
onto classical mechanics by a new coherent mathematical structure. In
this section the interpretation of the wave–particle duality is discussed.
Later in the following chapter the new quantum mechanics and its ap-
plication to atomic structure is described.

The connection between the particle and wave properties of light is
statistical, and this is equally true for electrons or other material parti-
cles. To be explicit, the probability of finding a photon in a given volume



342 The quantum nature of light and matter

dV is simply determined by the instantaneous energy density, I, of the
electromagnetic wave over the same volume

PdV = IdV/

∫
IdV , (12.39)

where P is called the probability density. The integral is taken over the
whole of space to ensure that the total probability of the photon being
found somewhere is unity.
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Fig. 12.9 Distribution of photons in the detection plane in Young’s two slit ex-
periment for 10, 1000 and 20 000 photons. The broken curves indicate the classical
interference pattern.

Young’s two slit experiment, met first in Chapter 5, provides a simple
application of this statistical picture. Suppose the observation screen is
a pixelated detector with granularity much finer than the fringe widths,
and that all the pixels are equally efficient in detecting photons. Fur-
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ther, suppose that an extremely low intensity, monochromatic source is
used, sufficiently weak so that at any given moment there is only ever a
single photon within the volume between the source slit and the detector
screen in figure 5.1. Figure 12.9 shows typical histograms of the photon
distribution across the detector after 10, 1000 and 20 000 photons have
been detected. For comparison the intensity calculated earlier in Chap-
ter 5 is superposed in each case. An individual photon may hit anywhere
across the screen, apart from locations where the wave intensity is pre-
cisely zero. Only the probability for arriving at each pixel is known,
and the probabilities of reaching a given pixel are identical for each and
every photon emerging from the source slit. The distribution observed
when the number of photons is small is extremely ragged and does not
resemble the wave intensity very closely. As the number increases the
resemblance becomes ever closer, a convergence that is purely statisti-
cal. Recall that if the number of photons expected to strike a pixel is
n, with n being large, the statistical error is

√
n. Thus the fractional

error on the number arriving at a pixel is 1/
√

n, and this fractional er-
ror falls as n rises. In a standard laboratory demonstration of Young’s
two slit experiment there are very large numbers of photons arriving at
the screen per second so that any visual perception of the underlying
statistical fluctuations is impossible.

A two slit experiment with a very low source intensity was first carried
out in 1906 by Taylor and has been repeated many times. He used a
photographic plate as the detector in an exposure lasting several weeks,
after which the plate was processed and the anticipated fringes revealed.
In this experiment and numerous similar ones there is at most only a
single photon within the interference apparatus at any given moment.
This has to mean that a photon is interfering with itself. The interference
pattern does not change when multiple photons are in the apparatus so
that we can conclude that there too each individual photon interferes
with itself only.

It is when photons have high energies that their particle behaviour
is most noticeable. For example a single optical photon can produce
an electron via the photoelectric effect and this electron can be multi-
plied to give a detectable current pulse in a photomultiplier or avalanche
photodiode. Particle behaviour is also evident in atomic, nuclear and
molecular transitions. It is harder to associate particle behaviour with
low frequency radio waves because each photon makes only a miniscule
contribution to the total electric field and each such contribution can-
not be individually detected. However the statistical fluctuation in the
number of photons will be recognizable at low signal levels.
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12.8 The uncertainty principle

Uncertainty is inherent in quantum theory but this uncertainty is quan-
tifiable. We start by considering a thought (gedanken) experiment which
Heisenberg used to illustrate the uncertainty that occurs when simulta-
neous measurements are made of position and momentum. Figure 12.10
shows a microscope used to detect ultraviolet photons scattered from
an electron. The precision in the measurement of the electron’s posi-
tion is fixed by the resolution of the microscope. Using eqn. 6.19 the
angular radius of the Airy disk is taken to be ∆φ = λ/D, where D is
the objective diameter and λ the wavelength of the radiation. Then the
resolution in the electron’s position is

∆y = f∆φ = λ/(2 sin θ),

where f is the distance of the electron from the lens and θ is the semi-
angle subtended at the electron by the objective. Now the angle at
which the photon enters the objective can be anywhere within an angular
range of θ from the lens axis. Thus its momentum in the y-direction is
uncertain by an amount

∆py = 2p sin θ,

where p is the momentum of the incoming photon. Momentum con-
servation then requires that this is also the uncertainty in the electron
momentum. Multiplying together the uncertainties in the electron mo-
mentum and position gives

∆py∆y = λp = h,

where de Broglie’s relation has been used in making the second equality.
The tightest limit on the product of uncertainties is obtained when the
distributions in position and momentum have Gaussian rather than flat
distributions, in which case

∆py∆y = h̄/2.

If there are any instrumental errors in the measurement this can only
increase these uncertainties. Taking into account that non-Gaussian

θ

Objective Aperture

Scattered 
photon

Recoil electron
Incident photon

y-axis

f

D

Fig. 12.10 Heisenberg’s microscope
being used to determine the location of
an electron.

distributions are possible and that there can be additional instrumental
errors leaves only a limit on the product

∆py∆y ≥ h̄/2, (12.40)

which is one expression of Heisenberg’s uncertainty principle. This prin-
ciple brings into sharp relief a fundamental difference between classical
and quantum theory. In the classical view it is imagined that the momen-
tum of the light beam probing the electron can be indefinitely reduced
to make ∆py as small as required. However the reduction in ∆py can
only be achieved in practice by increasing the photon wavelength, which
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increases ∆y, but leaves the product of uncertainties unchanged. The
uncertainty principle applies to the measurement in each of the three
dimensions, from which it follows that simultaneous measurements of
the vector position r and vector momentum p have uncertainties that
satisfy

∆px∆py∆pz∆x∆y∆z ≥ h̄3/8. (12.41)

The product on the left hand side of this equation can be pictured as a
volume element in a six-dimensional phase space. Three of the coordi-
nates are the spatial coordinates, while the other three are the coordi-
nates in momentum space. The inequality in the equation expresses the
requirement that there is a limiting precision within which the kinemat-
ics of any particle can be known. The shape of this volume is dictated
by the circumstances of the measurements, and is not necessarily cubical
or spherical.

Spatial coordinates and time are treated in a unified way within the
special theory of relativity: they merge to form a single space-time lo-
cation (x, y, z, ct). Similarly energy and momentum form an energy–
momentum vector (px, py, pz, E/c). One implication of this unification
is that there must exist an energy–time uncertainty relation of the form

∆E∆t ≥ h̄/2. (12.42)

The interpretation of this uncertainty relation differs from that of the
previous example because time is not a quantity being measured. Rather
∆t is the time taken to make the measurement of the energy, and ∆E is
the resulting uncertainty in the energy measured. Thus if a measurement
is made of the energy of an excited state of an atom which decays with
a lifetime τ the measurement of its energy has an uncertainty of at least
h̄/2τ . The consequent uncertainty in the angular frequency of the light
emitted in transitions from this state to the ground state is ∆ω ≥ 1/(2τ).
This can be recognized as the natural line width described in Section
7.3.1. In that section the origin of the natural linewidth was ascribed to
a damping process, which is the classical equivalent of the exponential
decay of excited states. Two other processes were described which in a
typical source broaden the spectral lines much more than their natural
width: these are collisions and the Doppler effect. The effect of collisions
is to reduce the time available for measurement, while the Doppler ef-
fect arises from the thermal motion of the atoms which emit the photons.

Quantum uncertainty relations bear a resemblance to the bandwidth
theorems proved for classical wavepackets in Chapter 7. Expressed here
as a wavefunction rather than a distribution in electric field the time
and angular frequency distributions of a Gaussian wavepacket have the
form

ψ(t) ∼ exp (−iωt) exp [−(t − t0)
2/2σ2

t ] (12.43)

and angular frequency distribution

ψ(ω) ∼ exp [−(ω − ω0)
2/2σ2

ω], (12.44)
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for which

σtσω = 1.

The corresponding distributions in time and angular frequency are

| ψ(t) |2∼ exp [−(t − t0)
2/σ2

t ] (12.45)

and

| ψ(ω) |2∼ exp [−(ω − ω0)
2/σ2

ω], (12.46)

for which the root mean square deviations are ∆ω = σω/
√

2 and ∆t =
σt/

√
2. Then

∆t∆ω = 1/2. (12.47)

For any other distribution the product is greater, so we have a bandwidth
theorem

∆t∆ω ≥ 1/2.

The corresponding relation linking position and wave vector errors is

∆x∆k ≥ 1/2.

If these expressions are multiplied by h̄ the outcomes resemble the quan-
tum uncertainty relations! There is an important distinction which
this direct conversion obscures. In the classical view the shape of a
wavepacket could be measured precisely to give the shape parameters
σx and σk. In the quantum picture ∆x and ∆k are the uncertainties in
the measurements on an individual photon.

The laws of classical physics are deterministic and statistical analysis
is used as a practical tool only in dealing with systems containing very
large numbers of particles. A good example is to be found in the kinetic
theory of gases. By contrast, statistical behaviour is fundamental to
even the simplest quantum systems.

It is informative to view diffraction as an artefact of the uncertainty
principle. For example consider the diffraction pattern produced by a slit
of width d on which light of wavelength λ is incident. The uncertainty in
the lateral position of any photon going through the slit is d and using
the uncertainty principle this implies an uncertainty in its transverse
momentum of at least

∆py = h̄/2d.

Consequently the angular spread of the photons is at least

∆θ = ∆py/p = h̄/(2dp) = λ/(4πd),

which indeed reproduces the proportionality of the angular size of the
first bright fringe to the quotient (wavelength)/(slit width).
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12.9 Which path information

It goes without saying that to produce a two slit interference pattern the
electromagnetic waves should pass through both slits. On the other hand
a photon, a particle, ought to pass through one slit or the other. It is
only because there is no information about which slit the photon passed
through that an interference pattern is observed. With a symmetric pair
of slits the wave amplitudes at each slit are equal and the probability
of the photon being at either slit is 0.5. That is all we can know when
we observe the interference pattern with its visibility of 100%. If on the
other hand the photon is tagged in some way to identify its path the two
slit interference pattern is inevitably destroyed. In such cases the wave
amplitude at the slit where the photon is not detected must be zero,
and the wave at the other slit naturally produces a single slit diffraction
pattern.

Einstein suggested that it might be feasible to determine which slit
the photon had passed through by measuring the recoil of the board in
which the slits are cut, and still allow an interference pattern to be seen.
Bohr demonstrated that this method fails because of the uncertainty
principle. Figure 12.11 shows the arrangement. The momentum transfer

 D/dλ

D

d

Light source

Board

Screen

Fig. 12.11 Young’s two slit experi-
ment.

to the board will depend on whether the photon is deflected leftward by
the right hand slit or rightward by the left hand slit. The difference in
momentum transfer between the two cases is pd/D, where p is the photon
momentum, d is the slit spacing and D is the slit/screen separation. In
order that the measurement made on the board’s lateral momentum can
be sensitive to this difference the precision of measurement should satisfy

∆py < pd/D.

Next consider the effect of the board’s movement sideways on the fringe
pattern. Unless the position is known to better than the fringe spacing
the fringe pattern will be smeared out and lost. Thus the lateral position
of the board must be known to a precision

∆y < λD/d.

Multiplying these two requirements together gives

∆py∆y < pλ.

The right hand side of the equation is just h. Therefore the proposed
measurement to label the slit through which the photon passes and pre-
serve the interference fringes would violate the uncertainty principle.
One can either observe which slit the photon travels through or observe
the two slit interference fringes, but not both. Put another way, the
interference relies on the choice of paths taken by the photon being in-
distinguishable. If knowledge of the path (welcher Weg information) is
complete the interference fringes are no longer detectable.
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There can however be intermediate situations in which there is partial
information about the path and correspondingly an interference pattern
with reduced visibility. This can be demonstrated with the apparatus
pictured in figure 12.12. Monochromatic light is incident through a lens
onto the slits, which are each covered by a polarizer. The transmission

Polarizer

Polarizer

Wollaston
prism

slit a

slit b

CCD A

CCD B

Extraordinary

Ordinary

Axis

Fig. 12.12 An experiment to demonstrate partial information about the photon’s
path and the resulting reduced fringe visibility. The Wollaston prism and CCDs are
mounted on a common frame which can be rotated about the axis indicated. The
diagram is adapted from that of L.S. Bartell, Physical Review D21, 1698 (1980).
Courtesy of Professor Bartell and the American Physical Society.

axes of these polarizers are set at +45◦ and −45◦ to a line perpendicular
to the paper for slits a and b respectively. The Wollaston prism2 sep-2See Section 10.5.2.

arates the ordinary and extraordinary components of the light so that
they are focused by the lens onto the CCDs A and B respectively. The
Wollaston prism and the two CCDs are mounted in a frame that can
be rotated about the axis indicated by the dotted line in the figure. If
the amplitudes of the electric fields on slits a and b are both E, then
their components with polarization perpendicular to the paper are both
E/

√
2 and are extraordinary waves on entering the Wollaston prism.

Similarly the components linearly polarized in the plane of the paper
are both E/

√
2, and have ordinary polarization in the Wollaston prism.

Consequently interfrence fringes are seen at both CCDs, and it is im-
possible to say through which slit any photon travelled.

Next suppose that the Wollaston prism and the detectors are rotated
together through 45◦ around the dotted line axis. Light emerging from
slit a now enters the Wollaston prism with ordinary polarization, while
the light from slit b has extraordinary polarization. Therefore all the
light from slit a(b) is directed to CCD A(B). The path is known now and
there are no longer any two slit fringes to be seen at either CCD A or
CCD B. Finally the Wollaston-CCD array can be set at some intermedi-
ate orientation so that there is partial knowledge about the slit through
which each photon passes. For example if the choice of orientation gives
a 90% chance that any photon arriving at CCD A(B) comes from slit
a(b), then the fringe pattern reappears but with a visibility reduced to
around 60%.
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12.10 Wavepackets and modes

In earlier chapters the emission of electromagnetic radiation from sources
was pictured as taking the form of a stream of finite length wavepackets.
These wavepackets can now be recognized for what they are: the wave-
trains describing individual photons emitted in an atomic transition.3 3Laser radiation is distinctive because

a wavepacket contains large numbers
of photons that have been emitted in
phase. A detailed description of lasers
is given in Chapter 14.

The duration of wavepackets is determined by the lifetime of the initial
state τ and hence the corresponding quantum uncertainty in the pho-
ton energy is ∆E = h/τ . Any instrumental errors will lead to a larger
overall uncertainty.

A further important connection can now be established between the
uncertainty principle and the modes of an electromagnetic field intro-
duced in Chapter 9. The latter are solutions of Maxwell’s equations
which satisfy the boundary conditions imposed by the particular opti-
cal system involved. They are the independent orthogonal states of the
electromagnetic field in this system. One such mode is the Gaussian
mode which propagates freely in a Fabry–Perot cavity. In the simple
case of the electromagnetic field within a closed box discussed in Section
9.8 the modes have discrete wavelengths: the components of the wave
vectors were shown to be integral multiples of π/L, where L is the box
dimension considered. Thus the volume in wave vector space occupied
by a single mode is

∆kx∆ky∆kz = π3/(LxLyLz).

Rearranging this and noting that ∆ki = ∆pi/h̄ gives

LxLyLz∆px∆py∆pz = π3h̄3.

This simple argument reproduces, apart from a numerical factor, eqn.
12.41 for the minimum volume in six-dimensional phase space within
which a photon can be confined. Thus it can be inferred that, in gen-
eral, and not just in the case of a rectangular box, the modes of the
electromagnetic field for a particular set of boundary conditions repre-
sent the finest granularity into which the six-dimensional phase space
can be divided consistent with the uncertainty principle.

12.10.1 Etendue

Etendue was defined in Chapter 4 as the product of the area and the
solid angle of the light beam transmitted through an optical system.
Multiplying the irradiance of the incident light beam by the etendue
determines the radiant flux through the system. Here we examine the
implications of the uncertainty principle on how finely the etendue can
be resolved.
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Beams in optical systems are usually paraxial so that the component of
the photon momentum in the direction of the beam axis, the z-direction,
is much greater than the transverse momentum components. Thus the
uncertainty in this longitudinal component of momentum is almost the
same as that in the total momentum,

∆pz ≈ ∆p = h̄∆k = h̄∆ω/c,

where ∆ω is the spread in angular frequency of the light beam. There-
fore the uncertainty in the longitudinal momentum is determined by the
frequency spread.

Suppose the beam has a width in the lateral x-coordinate of ∆x, and
an angular spread of ∆θx. The uncertainty in the position of a photon
is thus ∆x, and that in the angle it makes with the x-axis is ∆θx. There
are corresponding uncertainties in the y-direction. The beam etendue is
then

T = ∆x∆y∆θx∆θy

= (∆px/p)(∆py/p)∆x∆y. (12.48)

Now it was shown in Section 5.5.3 that the etendue from an aperture
into its coherence area is

Tc = λ2. (12.49)

Thus if the beam profile exactly matches the coherence area, it follows
that

∆x∆y∆px∆py = λ2p2 = h2, (12.50)

which reproduces the limit on this product imposed by the uncertainty
principle. The result demonstrates that coherence area of the beam is
the smallest meaningful division of the etendue.

12.11 Afterword

The interpretation of quantum phenomena introduced in this chapter
and used hereafter is the generally accepted view originating with Bohr.
In essence it accepts the probabilistic connection between waves and
particles and does not consider any deeper explanation. Einstein, for
one, was extremely uncomfortable with the idea that nature is proba-
bilistic. Numerous experiments designed to seek flaws in the predictions
of the standard interpretation have been carried out and have provided
valuable insights into quantum behaviour. However, more than 80 years
later, tests have yet to reveal any discrepancies between the predictions
based on the standard interpretation and the data.

The remaining chapters of the book will build on the understanding
developed in this present chapter of the dual nature of electromagnetic
radiation and matter. In the 1920s and 1930s a new consistent quantum



12.12 Further reading 351

mechanics replaced the attempt by Bohr to describe atomic structure
with an ad hoc mixture of classical mechanics and quantum conditions.
The wholesale success obtained with this new quantum mechanics in
predicting the details of atomic structure and spectra, including fea-
tures not accounted for by the Bohr model, is described in Chapter 13
onwards. Chapter 13 also describes the associated discovery of the elec-
tron’s intrinsic angular momentum, or spin, and relates how the circular
polarization of electromagnetic radiation is connected to the photon spin.
Photons and electrons obey contrasting quantum statistics, which also
differ from classical statistics. In Chapter 14 the interaction of radiation
with matter, the principles of lasers and their applications are outlined.
Detectors of radiation are described in Chapter 15 while an account of
modern communication systems based on optical fibres is presented in
Chapter 16. Chapter 17 is used to give an account of the interactions
of electromagnetic waves, particularly laser beams, with atoms. The
standard semiclassical theory is used. A further step in developing the
quantum theory of radiation is taken in Chapter 18, where creation and
annihilation operators for photons are introduced, a step that is known
as second quantization. Modern experimental techniques for manipu-
lating photons are introduced in the same chapter, in particular the
study of correlations between photons and the production of photons in
entangled states.

12.12 Further reading

Crucial Experiments in Modern Physics by G. L. Trigg, published by
Van Nostrand Reinhold company (1971). This gives accounts of se-
lected experiments with details drawn from the original papers.

Exercises

(12.1) Solar radiation falling on satellites causes the emis-
sion of electrons. In order to reduce the charg-
ing effect that this produces, the surface can be
coated with platinum whch has a high work func-
tion, 6.33 eV. Calculate the cut-off frequency and
wavelength for the photoelectric effect on platinum.
Roughly how much of the solar spectrum’s energy
does this exclude?

(12.2) What is the wavelength shift of an X-ray when scat-
tered through 17◦ by an electron initially at rest?
In figure 12.7 what is the origin of the left hand
peak in each panel which appears undisplaced in
wavelength from the incident X-rays?

(12.3) Calculate the wavelengths of a photon with energy
1 eV, and of an electron with kinetic energy 1 eV.

(12.4) Calculate the relative proportions of hydrogen
atoms in the ground and first excited state in gas
in thermal equilibrium at 100 000 K and at 1000 K.
Would the Balmer and Lyman absorption lines be
seen in the spectrum of radiation after passing
through hydrogen gas at the two temperatures?

(12.5) In a certain atomic transition the parent and
daughter states have lifetimes 3 10−8 and 4 10−8 s.
What is the natural width of the transition in terms
of the photon energy?
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(12.6) The Sun’s surface temperature is around 6000 K.
What is the peak wavelength of the spectrum and
what is the surface irradiance (intensity)? What
is the peak wavelength of radiation from a black
body at room temperature, and of the cosmic back-
ground radiation at 2.75 K?

(12.7) Calculate the longest and shortest wavelengths in
the Balmer, Paschen and Brackett series in the hy-
drogen spectrum.

(12.8) In positronium an electron is bound to a positron,
the positron being the antiparticle of the electron
which has the same mass as the electron, but op-
posite electric charge. What is the wavelength of
the Lyman α-line of positronium?

(12.9) Calculate Planck’s constant from the slopes of the
lines drawn through the data points in figure 12.4.

(12.10) A camera is used to photograph a distant scene.
calculate the uncertainty in the transverse momen-
tum of a photon arriving at the image plane in
terms of the f/#, and the wavelength. Hence cal-
culate the image resolution.

(12.11) A quasi-monochromatic light beam has a mean

wavelength of 500 nm and a spread of 0.1 nm in
wavelength. Its angular spread is 0.01 rad. What
is the coherence volume?

(12.12) In the process of photoluminescence a material is
irradiated with light and light of longer wavelengths
is re-emitted by the material. Why is this light of
longer rather than shorter wavelengths?

(12.13) In figure 12.12 the Wollaston prism and CCDs are
rotated so that there is a 90% probability that the
light reaching CCD A is from slit a. Calculate the
visibility at the centre of the fringe pattern on ei-
ther CCD. The illumination of the slits can be as-
sumed equal.

(12.14) The cosmic microwave background last interacted
with matter when the photons were still energetic
enough to ionize hydrogen gas. After this decou-
pling era the wavelength of the photons stretched
as the fabric of the universe expanded. If the pho-
ton energy at the spectral peak was 1.5 eV at the
decoupling era what was the temperature in the
universe at that time? By what factor has the uni-
verse since expanded?
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the atom 13

13.1 Introduction

Despite its successes the Bohr model of the atom is conceptually unsat-
isfactory in having quantum conditions grafted onto classical mechan-
ics. Its successes lay in explaining the spectra of hydrogen-like atoms.
Crucially it does not provide a way to calculate the relative intensi-
ties of spectral lines and fails to explain the spectra of other elements
adequately. The more comprehensive and purely quantum mechanical
analysis of atoms developed in the 1920s and 1930s is presented in this
chapter. In the first part of the chapter the elements of quantum mechan-
ics are introduced leading to Schroedinger’s equation, a wave equation
which describes the motion of material particles. Generally we shall only
be concerned here with the motion of electrons.

Schroedinger’s equation is applied first to determine the motion of an
electron in a one-dimensional square potential well. This simple case of
a quantum well serves to demonstrate the basic properties of quantized
bound states of electrons. Practical examples of quantum wells appear in
quantum well lasers and optical modulators. Then the case of motion in
an harmonic oscillator potential is treated, whose energy states turn out
to resemble those of the em field. After this the motion of an electron in
a hydrogen-like atom is analysed. Quantization of the energy and angu-
lar momentum of the electron emerge in a natural way from the analysis.

Pauli’s exclusion principle solved the riddle of why the electrons in an
atom do not all enter the lowest energy level: there can never be more
than one electron in any given quantum state. The exclusion principle
and the related discovery of the intrinsic angular momentum, or spin
of the electron are described in the next section. This leads into a dis-
cussion of multi-electron atoms, the splitting of energy levels and the
selection rules governing transitions.

In the succeeding section of the chapter measurements to determine
the momentum and the angular momentum of photons are recounted
It emerges that the photon too has an intrinsic angular momentum
(spin) and that in circularly polarized beams the photons have their
spins aligned with their direction of travel. A comparison of the con-
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trasting statistical behaviour of electrons and photons follows. The final
section compares the classical and quantum interpretations of line widths
and decay rates.

13.2 An outline of quantum mechanics

The new mathematical framework to deal with quantum phenomena
was developed by Schroedinger, Heisenberg, Born and Jordan. This
non-relativistic quantum mechanics is adequate for our purposes but is
strictly applicable only if the material particles travel at velocities very
much less than c. The key achievement was to arrive at a wave equationDirac produced a relativistic theory

which was developed into a compre-
hensive relativistic field theory of elec-
tromagnetic radiation and its interac-
tion with charged particles by Feyn-
mann, Tomonaga and Schwinger, and
is known as quantum electrodynamics
(QED).

for the electron analogous to the electromagnetic wave equation for the
photon. This wave equation replaces Newton’s equation of motion for
material particles. An underlying assumption is that the universal laws
of conservation of energy, momentum and angular momentum should
remain valid in quantum mechanics.

It is postulated that the behaviour of a single electron or a set of elec-
trons is described by a complex wavefunction which contains all possible
information that exists about the system. This wavefunction, Ψ(qn, t),
is a function of time and all the independent variables, written as a
set {qn}. These variables could be the spatial coordinates for a single
electron (plus its polarization – if it should have any). The interpreta-
tion of the wavefunction parallels the interpretation of electromagnetic
waves when locating a photon: the probability for finding a system with
variables in a range dV = dq1dq2... around q1, q2,... is defined to be

P (q1, q2, ...) dV = Ψ∗ΨdV. (13.1)

The wavefunction used is normalized, meaning that a numerical factor is
inserted so that integrating PdV over the full range of the independent
variables gives unity. In the case of a single electron PdV is simply the
probability of finding the electron within the spatial volume dV . The
formal development of quantum mechanics presented below has basic
features that apply equally to photons and electromagnetic waves. The
treatments of electrons and photons diverge because the wave equations
are different and, as we shall see later, because any number of photons
can share the same quantum state while only a single electron can ever
occupy any given quantum state.

Quantities that are measurable for a particle or a system of particles
are known as observables. Position, momentum, orbital angular momen-
tum, polarization and energy are all observables. It goes without saying
that the measurements of observables give real and not complex num-
bers. As a first example these ideas are illustrated for a free electron
moving in one dimension. It is described by a wavefunction which is
simply a plane wave travelling in the x-direction

Φk = (1/
√

L) exp [i(kx − ωt)], (13.2)
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where L is a very large range in x to which the electron is restricted
and which will be increased to infinity as required.1 The operators for 1 Plane waves provide a simple exam-

ple for discussion and finite realistic
wavepackets are all linear sums of plane
waves. Plane sinusoidal waves extend
to infinity and the range L is needed to
give a normalizable wavefunction. The
values of measurable quantities are cor-
rectly predicted when the limit L → ∞
is taken. On occasion care is needed
when taking the limit.

momentum and the total energy are defined as follows and indicated by
placing hats over the respective symbols for the observable

p̂ = −ih̄
∂

∂x
, (13.3)

Ê = +ih̄
∂

∂t
. (13.4)

When these operators act on a plane sinusoidal wavefunction they give

p̂Φk = −ih̄
∂Φk

∂x
= h̄kΦk = pΦk, (13.5)

ÊΦk = +ih̄
∂Φk

∂t
= h̄ωΦk = EΦk. (13.6)

The quantities p and E appearing on the right hand side, without hats,
are the values that would be obtained in measurements of the momen-
tum and kinetic energy respectively.2 It is argued that these operators 2This prediction of an exact value for

the momentum appears to violate the
uncertainty principle. However the
likelihood of finding the electron in any
interval, Φ∗Φdx = dx/L, is the same
everywhere. Then the position, which
is the conjugate variable to the momen-
tum, is indeterminate.

for momentum and total energy should apply equally for wavefunctions
in general because any wavefunction can be Fourier analysed into linear
sums of sinusoidal waves.

The motion of any free electron would be described by a wavepacket
made up of a superposition of plane sinusoidal waves, analogous to a
photon wavepacket. The Fourier transform of the wavepacket is a fre-
quency distribution from which a momentum distribution can be cal-
culated. Then the result of measuring the electron momentum once
would be some random value within this distribution. However mak-
ing measurements on a large set of electrons with identical wavepackets
would reproduce the distribution determined by Fourier analysis. The
mean value of such a set of measurements is called the expectation value.

Because the operators are complex and the quantities measured are
real it follows that the waves for electrons and other material particles
must themselves be complex, unlike electromagnetic fields which are
real. Here the wave equation for electrons will be introduced first and
then solutions obtained for simple potentials.

13.3 Schroedinger’s equation

Schroedinger constructed an operator equation with which to analyse the
non-relativistic motion of electrons. The starting point is to write the
law of conservation of energy for an electron moving in some potential
V (r)

E = V (r) + p2/2m, (13.7)

where E is the total energy and p2/2m is the kinetic energy of the
electron. Generalizing eqn. 13.3, the operator equivalent of

p2 = p2
x + p2

y + p2
z
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is simply
−h̄2∇2 = −h̄2(∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2).

This result can be used to convert eqn. 13.7 into a notional equation
between operators

ih̄∂/∂t = V (r) − (h̄2/2m)∇2. (13.8)

A valid wave equation results if the operators act on the electron wave-
function Ψ(r, t). The result is

ih̄∂Ψ(r, t)/∂t = V (r)Ψ(r, t) − (h̄2/2m)∇2Ψ(r, t), (13.9)

which is called Schroedinger’s time dependent equation. Its solution de-
scribes the motion of the electron in the chosen potential V (r).

If, as here, the potential does not vary with time the solution factorizes
to give

Ψ(r, t) = ψ(r) exp (−iEt/h̄) (13.10)

which when substituted in Schroedinger’s equation gives its time inde-
pendent form

Eψ(r) = V (r)ψ(r) − (h̄2/2m)∇2ψ(r), (13.11)

where E is the electron kinetic plus potential energy. In the case that
the electron is free this reduces to

Eψ(r) = −(h̄2/2m)∇2ψ(r). (13.12)

A solution is
ψk(r) = exp (ik · r),

and if this is substituted in eqn. 13.12 it gives, as expected, E =
h̄2k2/2m or E = p2/2m.

Schroedinger’s equation is linear in ψ so that wavefunctions which sat-
isfy the equation can be superposed to give another valid wavefunction
just as solutions of the electromagnetic wave equation can be superposed.
There are several crucial differences between, on the one hand Maxwell’s
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Fig. 13.1 The panels show unphysical
discontinuities. In the left hand panel
the wavefunction, has a discontinuity, it
jumps up, which would require infinite
momentum. In the right hand panel
the derivative has a similar discontinu-
ity, and this would require infinite en-
ergy.

equations and electromagnetic waves, and on the other Schroedinger’s
equation and electron waves. Schroedinger’s equation is complex and
the electron waves are complex and not directly measurable: Maxwell’s
equations are real and the electromagnetic fields are real and directly
measurable. Note that it has often been useful in the preceding chapters
to perform calculations using complex fields whose real parts are the ac-
tual electromagnetic fields. Another difference is that for Schroedinger’s
equation to apply the motion of the electron must be non-relativistic,
whereas Maxwell’s equations are fully relativistic. All the external influ-
ence on an electron is absorbed into a static potential V in Schroedinger’s
equation, which is only adequate to describe electrostatic fields. Despite
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these limitations a basic understanding of atomic states and their radi-
ation is achieved by applying Schroedinger’s equation.

Any solution of Schroedinger’s equation must satisfy several simple
requirements. Firstly the wavefunction must be finite everywhere in or-
der that the probability of finding the electron is finite everywhere. The
next requirement is that the wavefunction is continuous and single val-
ued everywhere. If instead the wavefunction jumped discontinuously, as
shown in the left hand panel of figure 13.1, the derivative would become
infinite at that point. Thus a measurement of momentum made over a
region including this point would yield an infinite momentum. Similarly

Energy

0-V

0

a

x-coord.

Fig. 13.2 The energy levels of eigen-
states in the square potential well.

the first derivative must be continuous everywhere. Were this to jump
discontinuously, as shown in the right hand panel of figure 13.1, then
the second derivative would be infinite. Referring back to eqns. 13.7
and 13.9 we see that this is impossible when both the energy and the
potential are finite everywhere. These requirements on the continuity of
the wavefunction and its derivative are essential tools when joining up
solutions of Schroedinger’s equation at boundaries where the potential
changes. We shall see that boundary conditions are at the root of the
quantization of energy and other measurable quantities.

13.3.1 The square potential well

Before tackling the motion of an electron in the Coulomb potential of the
nucleus the motion of an electron of mass m in a one-dimensional square
potential well will be studied. This example provides an uncluttered first
view of a quantum wavefunction for an electron in a potential well. The
potential is drawn in figure 13.2, it has a value −V0 over the region
−a/2 < x < a/2 and is zero elsewhere. Within the attractive well
Schroedinger’s equation is

(−h̄2/2m)d2ψ/dx2 = (E + V0)ψ (internal), (13.13)

while outside the potential it becomes

(−h̄2/2m)d2ψ/dx2 = Eψ (external). (13.14)

Bound states of the electron, for which E is negative and the kinetic
energy, (E + V0), is positive are considered first. A solution inside the
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Fig. 13.3 Graphical method for ob-
taining solutions of Schroedinger’s
equation for the square well potential
of depth V0 and width a. ki is the
wavenumber within the well, and ke

that outside it. The curves are dis-
cussed in the text.

well which is symmetric about the origin is

ψi = Ai cos (kix), (13.15)

where ki =
√

2m(E + V0)/h̄ and Ai is some constant. Externally

ψe = Ae exp (∓kex) (13.16)

where ke =
√
−2mE/h̄ and Ae is another constant. The upper sign in

the exponent is taken for x > a/2 and the lower sign for x < −a/2. The
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opposite choices of sign for the exponentials would give wavefunctions
growing exponentially with the distance from the well. These can be
rejected because they grow infinitely.

Applying the requirements that the wavefunction and its first deriva-
tive are continuous at the wall at x = a/2 gives

Ai cos (kia/2) = Ae exp (−kea/2) and

Aiki sin (kia/2) = keAe exp (−kea/2).

Dividing one equation by the other gives

ke = ki tan (kia/2). (13.17)

From the definitions of ki and ke we also have
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Fig. 13.4 The four wavefunctions of
lowest energy satisfying the square well
boundary conditions. They are labelled
with the number of nodes within the
well. Broken lines mark the well edges
where classical motion would termi-
nate.

(kia/2)2 + (kea/2)2 = ma2V0/(2h̄2). (13.18)

The last two equations can be solved simultaneously either by computer
or graphically as exhibited in figure 13.3 where (kea/2) is plotted as a
function of (kia/2) for a given potential V0. The relation found in eqn.
13.17 is represented by the full lines, while the quarter circle represents
eqn. 13.18 with ma2V0/(2h̄2) taken to be 100. Simultaneous solutions
to eqns. 13.17 and 13.18 lie at the points where these curves intersect.

A second set of wavefunctions which are antisymmetric about the
origin also satisfy Schroedinger’s equation for the square well. The waves
inside the well have the form

ψi = Bi sin (kix), (13.19)

where Bi is some constant. Outside the well

ψe = Be exp (∓kex) (13.20)

where Be is another constant. For these wavefunctions the continuity
conditions lead to a different transcendental equation

ke = −ki cot (kia/2). (13.21)

This equation is plotted with broken lines in figure 13.3. On this plot
the simultaneous solutions to eqns. 13.21 and 13.18 lie at the intersec-
tions of the broken lines and the quarter circle. Then on figure 13.2 the
energy levels of all seven solutions are shown using full and broken lines
for the states with even and odd wavefunctions respectively. Finally the
wavefunctions of the four lowest energy (most tightly bound) states are
plotted in figure 13.4.

The preceding analysis shows that bound states are restricted to dis-
crete energies. Only then can the sinusoidal waves inside the well join
smoothly onto a wave that decays exponentially outside the well. At
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other energies the requirement of continuity at the boundary makes it
necessary to have a sum of a decaying and an increasing exponential out-
side the well. No matter how little the electron’s energy differs from the
discrete value picked out by the solution of Schroedinger’s equation in
figure 13.3 the exponentially increasing component of the wave outside
the well will tend to infinity at an infinite distance and cannot describe
electron states localized in the well. This restriction to states with dis-
crete energies is a feature which distinguishes quantum mechanics from
classical mechanics. Discrete energy states are met in atoms, molecules
and in nuclei. Unbound electrons, that is to say electrons with positive
energies, have wavefunctions that are oscillatory both inside and outside
the potential well. The continuity conditions at the boundary can now
be satisfied at any positive energy and so there is a continuum of allowed
states extending from zero energy upwards.

Another departure from classical behaviour illustrated by the solutions
of the square well potential is that the wavefunction of a bound electron
does not vanish in the region outside the well where its kinetic energy has
become negative. Classically the electron would be confined between the
walls where its kinetic energy is positive and it would never penetrate
beyond the well. The quantum wavefunction decays exponentially in this
region and is analogous to the evanescent electromagnetic wave occuring
in total internal reflection and described in Section 9.5. The parallel
extends further to include frustrated total internal reflection. Figure
13.5 shows a potential barrier of finite width. Electrons incident from
the left are reflected to give standing waves. In addition the electron’s
wavefunction penetrates the potential barrier, and at the far side this
exponentially decaying wave joins smoothly onto an oscillatory wave that
travels away from the boundary. Electrons can therefore travel through
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Fig. 13.5 Potential barrier and wave-
function penetration.a region where their kinetic energy is negative and emerge on the far side,

a possibility which is absolutely forbidden to them in classical mechanics.
This purely quantum process is called barrier penetration or tunnelling.

13.4 Eigenstates

The wavefunctions that are solutions of Schroedinger’s equation for sim-
ple potentials like the square well, and including the case of the free elec-
tron with zero potential energy, are known as energyeigenfunctions. The
corresponding energies are called energy eigenvalues and the electron is
said to be in an eigenstate of energy. An eigenstate may be an eigenstate
of several observables with each taking unique values for a given eigen-
state. These are then known as compatible or simultaneous observables:
examples are the energy, the angular momentum and a component of the
angular momentum of an electron in a hydrogen atom. In an eigenstate
the measurement of these compatible observables leaves the electron in
the eigenstate. It is worth repeating that the eigenvalues of energy are
discrete when the potential localizes the electron in a potential well, but
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continuous from zero up to any conceivable positive value when an elec-
tron is free.

The existence and the properties of eigenstates generalize to systems
of electrons and other material particles. Such a system has a set of
eigenstates {φi} of observables such as A with eigenvalues {ai} respec-
tively. With the standard notation the operator corresponding to A is
Â, and this acts on the wavefunction φi in the following way:

Âφi = aiφi, (13.22)

meaning that any measurement of the observable A on the eigenstate φi

always gives the eigenvalue ai.

13.4.1 Orthogonality of eigenstates

An intrinsic property of eigenstates is their orthogonality in the sense
that the overlap integrals between the wavefunctions of any pair of them
over all the free variables vanishes. Suppose φi and φj are two such
eigenfunctions of an electron; then writing Schroedinger’s equation for
φi and multiply it by φ∗

j ,

φ∗
j

(
− h̄2

2m
∇2 + V

)
φi = φ∗

jEiφi,

then repeating the process with the wavefunctions the other way about

φi

(
− h̄2

2m
∇2 + V

)
φ∗

j = φiEjφ
∗
j .

Subtracting one equation from the other and integrating the result over
a volume much larger than the potential well gives

(Ei − Ej)

∫
φ∗

jφidV = −(h̄2/2m)

∫
(φ∗

j∇2φi − φi∇2φ∗
j ) dV

= −(h̄2/2m)

∫
∇ · (φ∗

j∇φi − φi∇φ∗
j ) dV .

Using Gauss’ theorem the right hand side becomes a integral over a
surface enclosing the volume considered,

(Ei − Ej)

∫
φ∗

jφidV = −(h̄2/2m)

∫
(φ∗

j∇φi − φi∇φ∗
j ) · dS.

This new surface integral is evaluated over a surface sufficiently remote
from the potential well that the wavefunctions and their derivatives have
vanished. Hence ∫

φ∗
jφi dV = 0, Ej �= Ei. (13.23)

Eigenfunctions are usually normalized for convenience so that∫
φ∗

i φi dV = 1. (13.24)
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Thus ∫
φ∗

i φjdV = δij , (13.25)

where δij is the Kronecker δ defined by

δij = 0 for i �= j, (13.26)

δij = 1 for i = j. (13.27)

With a free electron

φk = (1/
√

L) exp [i(kx − ωt)]

where the subscript k is a continuous variable rather than an integer
label. Then using the Dirac δ function introduced in Chapter 7 and
eqn. 7.17 ∫

φ∗
kφk′dx = δ(k − k′). (13.28)

Similar properties hold good for the modes of electromagnetic radia-
tion in an optical setup, because these are the eigenstates of Maxwell’s
equations satisfying the boundary conditions imposed by the optical
components. For example the standing electromagnetic waves possible
in a Fabry–Perot cavity have discrete wavelengths and their waveforms
are mutually orthogonal.

13.5 Expectation values

In the more general case that a system is not in an eigenstate of an
observable, the value that is obtained by measuring the observable can
only be predicted statistically. Quantum mechanics predicts the expec-
tation value of an observable A, which is written 〈Â〉, and defined by
the equation

〈Â〉 =

∫
ψ∗Âψ dV , (13.29)

where ψ is normalized. The equation is to be interpreted in this way.
Suppose that the same measurement of A is made on each of a large
number of systems which have been prepared in exactly the same way
so that they have identical wavefunctions ψ – such a hypothetical col-
lection of systems is called an ensemble. Then the average value of the
observable measured over the ensemble equals the expectation value. In
the case of an eigenstate of the observable A the expectation value is
simply the eigenvalue of A for that eigenstate.

Any wavefunction ψ of a system which has an observable A can always
be expanded as a linear superposition of the normalized eigenfunctions
{φi} of A. Assuming for simplicity that the eigenvalues are discrete,

ψ =
∑

i

ciφi. (13.30)



362 Quantum mechanics and the atom

Then the expectation value of A in a state with wavefunction ψ is defined
to be

〈Â〉 =

∫
ψ∗Âψ dV

=
∑
i,j

c∗i cj

∫
φ∗

i Âφj dV

=
∑
i,j

c∗i cjaj

∫
φ∗

i φj dV

=
∑

j

c∗jcjaj . (13.31)

The interpretation of this result is that

Pj = c∗jcj

is just the probability that the measurement finds the value aj, or equally
the probability that the system is found to be in the eigenstate φj . When
the eigenvalues are continuous as for a free electron described by eqn.
13.2

ψ =

∫
c(k)φk dk. (13.32)

A similar analysis to that given above then yields

〈Â〉 =

∫
c∗(k)c(k)a(k) dk, (13.33)

where a(k) is the value obtained when A is measured on the eigenstate
with momentum k. Now

P (k)dk = c∗(k)c(k)dk (13.34)

is the probability that the measurement finds a momentum eigenvalue
lying between k and k + dk.

All actual measurements yield real values so that expectation values
of observables have to be real. Thus for any observable A∫

ψ∗Âψ dV =

(∫
ψ∗Âψ dV

)∗

=

∫
ψÂ∗ψ∗ dV ,

and then ∫
ψ∗ÂψdV =

∫
(Âψ)∗ψ dV . (13.35)

Operators which have this mathematical property for all wavefunctions
of a system are called hermitean; thus observables are always represented
by hermitean operators.

The expectation values of observables are unchanged if the wavefunc-
tion is multiplied by a phase factor exp (iα) where α is real. Thus there
is always a phase ambiguity in the wavefunctions.
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13.5.1 Collapse of the wavefunction

If the measurement of the observable A on a system with wavefunc-
tion ψ gives the value ai, the system must immediately thereafter be
in the eigenstate with wavefunction φi, and no longer in the state with
wavefunction ψ. A second measurement of the observable A will again
give ai, and so would further measurements. This result is profoundly
different from anything met in classical mechanics. The change is dis-
continuous: up to the exact moment of the measurement the system is
evolving according to the wavefunction ψ and immediately afterwards
its wavefunction has become φi. This step is known as the collapse of
the wavefunction.

Schroedinger highlighted the logical difficulty of an external observer
causing the wavefunction to collapse by using a cat fable. The cat is
locked in a box together with a mechanism which will release a lethal
gas if and when a single radioactive nucleus decays. It is then argued
that the wavefunction of the contents of the box should be a superpo-
sition of two wavefunctions: the first for the undisturbed mechanism
and a live cat; the second for an activated mechanism and a dead cat.
Later Schroedinger opens the box and observes the contents. At this
instant the wavefunction of the contents collapses to either one that
contains a live cat, or to another that contains a dead cat. The gen-
erally favoured resolution of this paradox of a cat simultaneously alive
and dead is through what is called decoherence. Broadly speaking any
interaction of a quantum system with its surroundings is equivalent to
making a measurement. For example the air molecules striking the cat
are sufficient to collapse its wavefunction.3 3See for example ‘Decoherence and the

the transition from quantum to classi-
cal’ by W. J. Zurek, Physics Today, Oc-
tober 1991.

Carrying the idea of having wavefunctions for macroscopic objects to
its logical conclusion requires the universe to possess a wavefunction.
In this extreme case all possible observers are part of the wavefunction.
Whether this is a correct view; and whether, and how the wavefunction
of the universe could collapse have led to considerable speculation.

13.5.2 Compatible, or simultaneous observables

Eigenstates of a system are usually eigenstates of several observables,
and it requires knowledge of all of these to completely specify an eigen-
state. Here we consider the case where there are just two of these com-
patible observables, A and B. There is a set of eigenfunctions {φ} for
which

Âφj = ajφj ; B̂φj = bjφj ,

and some eigenfunctions will share the same eigenvalues for A but have
different eigenvalues of B. Measurement of A followed by a measurement
of B on any arbitrary state will result in its wavefunction collapsing
into an eigenfunction, φj . Further measurements thereafter of A and B



364 Quantum mechanics and the atom

yield aj and bj respectively. The expectation value for the product of
compatible observables∫

ψ∗ÂB̂ψ dV =
∑

j

c∗jcjajbj =

∫
ψ∗B̂Âψ dV ,

holds true whatever arbitrary state ψ of the system is considered. Con-
sequently the expectation value of ÂB̂ − B̂Â always vanishes. This op-
erator is called the commutator of A and B and is written with square
brackets [Â, B̂]. If, as in the case being considered

[Â, B̂ ] = 0, (13.36)

Â and B̂ are said to commute.

The uncertainty principle revisited

The operators of conjugate variables like the position and momentum
do not commute

[ x̂, p̂ ]ψ =

{
x

(
−ih

∂

∂x

)
−
(
−ih

∂

∂x
x

)}
ψ = ih̄ψ.

For any such pair of conjugate variables, which we denote by F and G

[ F̂ , Ĝ ] = ih̄. (13.37)

This relationship is now shown to be directly related to the uncertainty
principle.

Writing δF for the operator F̂ − 〈F̂ 〉, the variance is defined as

(∆F )2 = 〈F̂ 2〉 − 〈F̂ 〉2

= 〈 [ F̂ 2 − 2〈F̂ 〉F̂ + 〈F̂ 〉2 ] 〉 = 〈(δF )2〉 (13.38)

Again using eqn. 13.37
[ δF, δG ] = ih̄,

so that
2 Im〈δFδG〉 = ih̄,

and hence
|〈δFδG〉|2 > h̄2/4. (13.39)

Using the Schwarz inequality and eqn. 13.38

(∆F )2(∆G)2 = 〈(δF )2〉〈(δG)2〉 ≥ |〈δFδG〉|2.

Finally using eqn. 13.39 to replace the right hand side in this equation
gives

(∆F )2(∆G)2 ≥ h̄2/4 (13.40)

which reproduces the uncertainty principle. In general we can say that
if the operators of two observables do not commute, then simultaneous
measurements of their observables will obey an uncertainty relation.
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13.6 The harmonic oscillator potential

A frequently met dynamical system is that of a mass undergoing simple
harmonic motion in the x-dimension under a restoring force linear in
the displacement from the origin, kx. Its eigenstates are of particular
interest because they are exact parallels to the eigenstates of black body
radiation. This parallel will prove of value in Chapter 18. The potential
energy is the integral of the force

V =

∫ x

0

kxdx = kx2/2,

and this function is displayed in figure 13.6. Schroedinger’s time inde-
pendent equation for this potential is then

−(h̄2/2m) d2ψ/dx2 + (kx2/2)ψ = Eψ.

Setting α4 = km/h̄2 and s = αx, the equation can be rewritten

d2ψ/ds2 + (λ − s2)ψ = 0, (13.41)

where λ = 2E/h̄ω0, with ω0 =
√

k/m being the natural frequency of
oscillation of the mass in this potential. This equation has analytic
solutions of the form

ψ(s) = H(s) exp (−s2/2), (13.42)

where H(s) is a polynomial. Solutions with a term exp (s2/2) are ex-
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Fig. 13.6 The energy levels of eigen-
states in the harmonic potential well.cluded because they diverge at infinity and are not confined to the po-

tential well. The derivatives are

dψ(s)/ds = [dH(s)/ds] exp (−s2/2) − s H(s) exp (−s2/2),

d2ψ(s)/ds2 = [d2H(s)/ds2] exp (−s2/2)− 2s [dH(s)/ds] exp (−s2/2)

+(s2 − 1)H(s) exp (−s2/2),

and when these are substituted into eqn. 13.41 the result is

[d2H(s)/ds2] − 2s [dH(s)/ds] + (λ − 1)H(s) = 0. (13.43)

Finite polynomial solutions to this equation can be obtained provided
that λ takes the discrete values4 4See Chapter 4 of the third edition

of Quantum Mechanics by L. I. Schiff,
published by McGraw-Hill Kogakusha
Ltd., Tokyo (1968).

λ = 2n + 1, (13.44)

where n is any non-negative integer. When λ is replaced by its de-
fined value, 2E/(h̄ω0), it immediately follows that the energy of the
n’th eigenstate is

En = h̄ω0(n + 1/2). (13.45)

The lowest energy solutions, labelled with the value of n as a subscript,
are

H0(s) = 1; H1(s) = 2s; H2(s) = 4s2 − 2; H3(s) = 8s3 − 12s. (13.46)
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These functions are called Hermite polynomials. There is a simple re-
currrence relation derived from eqn. 13.43 that can be used to generate
further members of the sequence

Hn+1(s) = 2sHn(s) − 2nHn−1(s).

The resulting Gauss–Hermite solutions to the Schroedinger equation for
the harmonic well, Hn(s) exp (−s2/2), are shown in figure 13.7. Of these
the lowest energy solution has the familiar Gaussian shape. Correspond-
ing energy levels are indicated by the horizontal lines in figure 13.6.
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Fig. 13.7 The four wavefunctions of
lowest energy in a harmonic well, la-
belled with the quantum number n.
The vertical dotted lines indicate the
points at which the kinetic energy is
zero, and where the classical motion
terminates.

The classical state of lowest energy would be that in which the mass
is at rest at x = 0 and has zero kinetic energy. By contrast the lowest
energy quantum state with the Gaussian wavefunction has a positive
energy h̄ω0/2. This is called the zero point energy and is a characteristic
of quantum systems. In the square well potential the lowest energy state
is displaced upward in energy from −V0 so that there too the particle is
not at rest in its lowest energy state.

It is striking that the energy spectrum of the eigenstates in the har-
monic well match those postulated by Planck for the modes of the em
field of angular frequency ω0 – apart from the displacement upward by
the zero point energy. This feature will be considered further in Chapter
18, and it will emerge that the parallel is exact: when there are no pho-
tons in a mode of the electromagnetic field it too has a zero point energy
h̄ω0/2! In the intervening chapters this uniform dispacement upward by
h̄ω0/2 of all the energy levels of any mode of electromagnetic radiation
can be safely neglected because only the transitions between states are
discussed.

13.7 The hydrogen atom

Schroedinger’s analysis of the electron motion within the Coulomb po-
tential due to the nuclear charge provided a detailed and precise descrip-
tion of atomic structure, which incorporated all the successes of the Bohr
model. In a hydrogen-like atom with a nucleus carrying a charge Ze and
having mass M , the Coulomb potential felt by the single electron of mass
m is −Ze2/(4πε0r) at a distance r from the nucleus. This potential is
drawn for the hydrogen atom in figure 13.8. Then the Schroedinger time
independent equation is

−(h̄2/2µ)∇2ψ − Ze2/(4πε0r) = E, (13.47)

where µ = mM/(M +m) is the reduced mass of the electron and E is the
total energy of the atom. The same approach is taken as that applied
in seeking solutions to the square well potential. Although the analysis
is more complicated the solutions in this case are analytic. Here only
the results are discussed, but full details of the solution can be found in
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Table 13.1 Table of radial eigenfunctions Rnl(r).

n l Rnl(r)

1 0 2(Z/a0)3/2 exp (−Zr/a0)

2 0 (1/
√

8)(Z/a0)3/2 [2 − Zr/a0] exp (−Zr/2a0)

2 1 (1/
√

24)(Z/a0)3/2 [Zr/a0] exp (−Zr/2a0)

3 0 (
√

4/3/81)(Z/a0)3/2 [27 − 18Zr/a0 + 2(Zr/a0)2] exp (−Zr/2a0)

many standard texts on atomic physics or quantum mechanics.5

The eigenfunctions separate into radial and angular components, which
are best written in spherical polar coordinates

ψnlm(r, θ, φ) = Rnl(r)Ylml
(θ, φ). (13.48)

Each solution is identified by three integral quantum numbers n, l, ml.
The function Rnl contains an associated Laguerre polynomial F (r), and
Ylm is a spherical harmonic function. In general these have the forms

Rnl(r) = exp (Cr/n) rl F (r), (13.49)

Ylml
(θ, φ) = sin (|ml|θ) exp (imlφ) G(θ), (13.50)

where C is a constant and F (r) and G(θ) are polynomials in r and θ
respectively. The exact forms of the eigenfunctions are given in Tables
13.1 and 13.2 for a few of the lowest values of n, l and ml. These wave-
functions are orthonormal in the usual sense that the volume integrals
over all space are∫

ψ∗
nlml

ψn′l′m′

l
dV = δn,n′ δl,l′ δml,m′

l
. (13.51)

Valid combinations of the quantum numbers are restricted to the follow-
ing values:

n = 1, 2, 3, ..... ;

l = 0, .... , n−2 , n−1;

ml = −l , −l+1 , −l+2, ..... , l−2 , l−1, l. (13.52)

The energy of an electron, its orbital angular momentum and a com-
ponent of its angular momentum, which can be chosen to be the z-
component, are the three compatible observables and their eigenvalues
are specified by the quantum numbers n, l and ml respectively. The 0radius / a
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Fig. 13.8 The Coulomb potential due
to the hydrogen nucleus and the elec-
tron energy levels. a0 is the Bohr ra-
dius.

predicted energy eigenvalues duplicate those found with the Bohr model

En = −µZ2e4/[(4πε0)
22h̄2n2], (13.53)

5For example the third edition of Quantum Mechanics by L. I. Schiff, published
by McGraw-Hill Kogukusha, Tokyo (1968).
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Table 13.2 Table of angular eigenfunctions Ylm(θ, φ).

l m Ylm(θ, φ)

0 0 1/
√

4π

1 0
√

(3/4π) cos θ

1 ±1
√

(3/8π) sin θ exp (±iφ)

2 0
√

(5/16π)[3 cos2 θ − 1]

2 ±1
√

(15/8π) sin θ cos θ exp (±iφ)

2 ±2
√

(15/32π) sin2 θ exp (±2iφ)

so that n is called the principal or energy quantum number.

Angular momentum operators can be constructed from the momen-
tum operators as follows. In classical mechanics the z-component of the
vector angular momentum, L, is

Lz = xpy − ypx,

from which the quantum mechanical operator can be obtained by re-
placing the position and momentum by their operator equivalents

L̂z = −ih̄

[
x

∂

∂y
− y

∂

∂x

]
. (13.54)

The total orbital angular momentum operator, L, is given by

L̂2 = L̂2
x + L̂2

y + L̂2
z. (13.55)

L̂2 commutes with all the components Lx, Ly and Lz, but these com-
ponents do not commute with each other. For example

[Lx, Ly] = ih̄Lz. (13.56)

This explains why the total orbital angular momentum and only one
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Fig. 13.9 Radial electron density dis-
tributions in the hydrogen atom for the
lowest energy eigenstates. The dotted
lines indicate where the kinetic energy
changes sign.

of its components can be compatible observables. For completeness the
forms of these operators in spherical polar coordinates are

L̂2 = −h̄2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
(13.57)

and L̂z = −ih̄
∂

∂φ
. (13.58)

When these operate on the wavefunctions they give

L̂2ψnlml
= l(l + 1)h̄2ψnlml

(13.59)

and L̂zψnlml
= mlh̄ψnlml

. (13.60)

It follows that l specifies the magnitude,
√

l(l + 1)h̄, of the orbital an-
gular momentum, while mlh̄ specifies its component in the z-direction.
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The historical spectral notation is used in labelling the eigenstates
of the electron: an electron with orbital angular momentum quantum
number l = 0, 1, 2, 3, 4, 5.... is said to be in an s, p, d, f, g, h,.... state.
A pair of electrons with quantum numbers n = 2, l = 1 are described as
being in the configuration 2p2. The radial distribution of the electron
probability density r2R2

nl is shown in figure 13.9 for a few values of n and
l, where the factor r2 is included to take account of the growth in the
volume element as the radius increases, dV = r2 sin θ dθ dφdr. The dot-
ted lines in this diagram indicate where the kinetic energy changes sign.
Each wavefunction has (n − l) radial nodes. Figure 13.10 shows diame-
tral sections containing the z-axis through the l = 1 electron probability
distributions. The three-dimensional distributions are obtained by ro-
tating these planar distributions around the axis indicated by the broken
line in figure 13.10. Note that the three 2p electronic wavefunctions give
a combined electron density distribution that is spherically symmetric.
Such spherically symmetric distributions always result when there is an
electron in each of the 2l + 1 substates for a given l value; that is to say
when the electron subshell is full.

Figure 13.11 indicates the alignment of the orbital angular momen-
tum vector about the z-axis for the eigenstates with l = 2. The orbital

l=1; m=0

l=1; m=+1 or -1

Fig. 13.10 Diametral sections through
the probability distributions in the hy-
drogen atom for electrons in the 2p
shell.

angular momentum vector makes a well defined angle with the z-axis
cos−1 {ml/

√
[l(l + 1)]}, but its azimuthal position is indeterminate, re-

flecting the fact that only one component of orbital angular momentum
can be an observable compatible with the total angular momentum. The
eigenstates have a definite parity, that is to say the result of reflecting
the coordinates in the origin causes the wavefunction to change by a fac-
tor ±1. A wavefunction with orbital angular momentum � has a parity
of (−1)	.

The wavelengths of photons emitted in transitions between the energy
levels are discrete. Therefore if the light from a source is passed through

π+2 h/2

π+h/2

0

π-h/2

π-2 h/2 m = -2

m = -1

m = 0

m = +1

m = +2

Fig. 13.11 Orientations of the angu-
lar momentum vector for the eigen-
states with the orbital angular momen-
tum quantum number equal to 2.

a diffraction grating the photon will strike a point in the image plane
that is determined by its wavelength. Detecting this location yields the
wavelength and hence the eigenstates of the atom both before and after
the transition. In general if the lifetime of the state decaying is τ the
uncertainty in the energy of the photon is at least h̄/τ . If other transi-
tions exist with energies lying within this range it is no longer possible
to identify the states involved from the photon wavelength alone. Eigen-
states sharing the same value of n but different values of l and ml have
identical energies and such eigenstates are termed degenerate. As will be
seen later the degeneracy is lifted by relativistic effects and by placing
the atom in a constant magnetic or electric field.

The most intense lines in the hydrogen spectrum involve transitions
in which l changes by unity

∆l = ±1, (13.61)
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which is one example of a selection rule in optical spectra. The corre-
sponding rule for the associated changes in the magnetic quatum number
is

∆m = ±1, 0. (13.62)

Transition rates for these electric dipole transitions are calculated in
Chapter 17, where the selection rules are also discussed. Transitions be-
tween the states of a hydrogen atom in which the change in � is different
from those specified in eqn. 13.61 occur at far lower rates and are known
collectively as forbidden transitions.

13.8 The Stern–Gerlach experiment

Spatial quantization in which a component of the electron’s orbital an-
gular momentum in some arbitrarily selected direction is quantized is
another unexpected quantum feature. The details of spatial quantiza-
tion are now developed and the experimental test of its consequences
carried out by Stern and Gerlach will be described.

We focus first on a single electron in an atom. As it orbits nucleus it
forms a current loop which has correspondingly a magnetic moment

µ = Ai, (13.63)

where A is the area of the loop and i is the current. If the electron’s
orbit has radius r, the area A = πr2, while the current is the product
of the electron charge multiplied by the number of times it passes any
given point in its orbit in one second. Suppose the electron velocity is
v, then this current is

i = −e(v/2πr).

Hence the magnetic moment

µ = −evr/2 = −µBL/h̄, (13.64)

where L is the orbital angular momentum and µB is a natural unit of
magnetic moment defined to be eh̄/2m, and called the Bohr magneton.
Vectorially

Magnet

Magnet

Field lines

Oven
Collimator Screen

Deflected
atoms

Fig. 13.12 The Stern–Gerlach exper-
iment. The upper panel shows a sec-
tion through the magnet perpendicular
to the beam direction. The lower panel
shows a vertical section containing the
incident beam.

µ = −µBL/h̄. (13.65)

An external magnetic field applied in what we take to be the z-direction
will break the spherical symmetry of the atom’s environment and define
a suitable quantization axis. The energy of the atom is altered by an
amount

Em = −µ ·B = µBmlB, (13.66)

where mlh̄ is the z-component of the orbital angular momentum. ml

is therefore called the magnetic quantum number. In a non-uniform
magnetic field varying in the z-direction the atom will experience a force

F = −µBml
∂B

∂z
. (13.67)
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Stern and Gerlach carried out an experiment in 1922 which displayed
this effect of spatial quantization directly. Their experiment is illus-
trated in figure 13.12. Atoms evaporated from liquid silver in an oven
are collimated into a beam by a series of slits in metal plates. The atoms
then travel between the poles of a magnet whose faces are shaped to give
a magnetic field strength which varies strongly across the gap and hence
has a large value of ∂B/∂z. Beyond the magnet the atoms travel some
distance to a screen where they are detected. When the magnet is off
the atoms travel undeviated and form a line image of the collimator slit
on the screen.

The force given by eqn. 13.67 lies in the z-direction, pointing from
one pole piece to the other. In the classical view the magnetic moments
of the atoms would be oriented in random directions and their angular
deflections in the direction of the field gradient would simply broaden
the collimator slit image. However when the magnet was turned on the
image on the screen changed to a pair of line images of the collimator
slit well separated from one another in the direction of the field gradient.
This is precisely what is expected from eqn. 13.67, demonstrating the
reality of spatial quantization. However a disturbing anomaly was noted.
The number of components into which an atomic beam splits should be
odd because 2l + 1 is an odd number; but in practice the number of
components seen with some atomic elements, including silver, is even.
A simple explanation of this anomaly was revealed a few years later with
the discovery of the spin of the electron.

13.9 Electron spin

In 1925 Uhlenbeck and Goudsmit proposed that the electron has an
intrinsic angular momentum or spin whose magnetic quantum number
is 1/2. Therefore the magnitude and the quantized component of this
spin have values

s =
√

(1/2)(3/2)h̄ , ms = ±h̄/2. (13.68)

The total angular momentum, j, of an electron must be the vector sum
of its intrinsic and its orbital angular momenta

j = s + l, (13.69)

with magnetic quantum numbers mj in the sequence −j, −j + 1, ...
,+j. Overall an electron in an atom therefore requires four eigenvalues
to specify its eigenstate fully (n, l, ml, ms) which doubles the number of
available quantum states.

The spin of the electron is not associated with any mechanical motion
of some internal structure within the electron. Modern experiments can
probe for structure as small as 10−18 m and none has been detected in the
electron: as far as we know the electron is point-like. The explanation
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Table 13.3 Table of noble gas electron configurations. In the notation
used here the initial number is the value of the principal quantum num-
ber. The letter signifies the orbital angular momentum in spectroscopic
notation: s stands for l = 1, p for l = 2, and so on through d, f, g,... The
superscript indicates the number of electrons sharing those two quantum
numbers.

Element Atomic number Configuration

Helium 2 1s2

Neon 10 1s2 2s2 2p6

Argon 18 1s2 2s2 2p6 3s2 3p6

Krypton 36 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6

for why the splitting in the Stern–Gerlach experiment can produce an
even number of lines is now clear. Any atom containing an odd number
of electrons will automatically have a total angular momentumn quan-
tum number, j, that is half integral making (2j + 1) even. A further
experimental observation is that the magnetic moment of the electron
associated with its spin is almost exactly twice the value obtained by
applying the relation, eqn. 13.65, deduced for the orbital angular mo-
mentum; its magnetic moment is thus µB rather than µB/2.

A difficulty with both the Bohr and Schroedinger models as outlined
so far is that in elements whose atoms contain many electrons these elec-
trons would all drop into the lowest energy level. It would then be hard
to explain why the chemical properties of the elements show a marked
periodic behaviour as the atomic number increases through the peri-
odic table. Contemporaneously with Uhlenbeck and Goudsmit, Pauli
provided the essential idea which solved the problem of how electrons
arrange themselves in atoms.

Pauli enunciated the exclusion principle which states that there can
only ever be one electron in any given eigenstate.

This means that as the atomic number increases from one element in
the periodic table to the next each additional electron enters the lowest
energy empty eigenstate. Each eigenstate with specific values of (n, l, ml)
can contain at most two electrons, one with ms = +1/2, the other with
ms = −1/2.

The periodicity in the chemical behaviour of the elements is reflected
in their ionization energies, shown here in figure 13.13 as a function of
atomic number. This ionization energy is the energy required to detach
the least well-bound electron from the atom so that it emerges with zero
kinetic energy. Clear peaks are evident at the atomic numbers of the
chemically inert noble gases: helium, neon, argon, etc. These elements
have the electron configurations given in Table 13.3. The inference is
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Fig. 13.13 The ionization energies required to remove the least well bound electron
from the atomic elements are plotted against the atomic number. The inert noble
gases with their completed electron shells are indicated by the dotted lines.

that the electron configuration in which all the 2(2l + 1) eigenstates for
a given l-value are filled are extremely well bound. It was noted earlier
that if all the magnetic sublevels for a given orbital angular momentum
are filled then the product of the electron wavefunctions is spherically
symmetric. For such a wavefunction the total orbital angular momen-
tum operator has an expectation value zero. Further the spins of the
two electrons paired in an eigenstate with the same (n, l, ml) values are
antiparallel and have a total spin of zero. Thus the closed shells in the
noble gases have zero total orbital angular momentum, zero total spin
and hence zero total angular momentum. The spherically symmetric
electronic structure of atoms of noble gases is thus also exceptionally
stable.

13.10 Multi-electron atoms

The alkali metals follow the noble gases in the periodic table and there-
fore have one additional electron which enters a previously empty l = 0
orbit. For example sodium follows neon with 11 electrons and its elec-
tron configuration is (1s2 2s2 2p6)3s1. The lone 3s electron experiences
an electric field due to the nuclear charge, Ze, surrounded by the (Z−1)
electrons in the closed shells. If the electrostatic field of the (Z−1) elec-
trons exactly cancelled that of Z − 1 protons, then the electric potential
felt by the 3s electron would be −e2/4πε0r. Consequently the energy
levels and the spectral lines produced when the 3s electron in a sodium
atom is excited are similar to those of hydrogen; but with lines corre-
sponding to transitions to any of the (full) 1s, 2s and 2p eigenstates
are naturally absent. For similar reasons the other alkali metals show
hydrogen-like spectra.
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Figure 13.9 illustrates that eigenfunctions with lower principal quan-
tum number, n, penetrate closer to the nucleus than those of higher prin-
cipal quantum number. Eigenstates with lower values of n are therefore
less well shielded from the electric charge on the nucleus and hence more
strongly bound in alkali metal eigenstates than the corresponding hy-
drogen eigenstates. There is also some dependence of the binding energy
on the orbital angular momentum quantum number because the radial
distribution given in eqn. 13.49 depends on l. In general the calculation
of the eigenfunctions for individual electrons is more complicated than
for hydrogen-like atoms. It is necessary to introduce an average electric
potential which includes the potential due to the other electrons as well
as that due to the nucleus. However the mutual Coulomb interaction of
the electrons in the unfilled shells cannot alter their total orbital angular
momentum, their total spin nor their total angular momentum. Thus
the angular momentum observables for the light elements are the vector
sums of the orbital angular momenta, of the spins and of the total angu-
lar momentum, and finally the magnetic component of the total angular
momentum:

L =
∑

i

li, S =
∑

i

si, J = L + S, M =
∑

i

(mli + msi
), (13.70)

where the sums run over all the electrons. The atomic state of any light
element atom can be characterized fully by the set of quantum numbers
(L, S, J, M).6 The possible values of J lie at integral steps within the6This is known as Russell–Saunders

coupling of angular momenta. In
heavy elements the coupling between
the spin and orbital angular momenta
of individual electrons is stronger than
the coupling between different electron
spins or between different electron an-
gular momenta. This produces a differ-
ent coupling scheme, called j-j coupling.
See for example Quantum Physics of

Atoms, Molecules, Solids, Nuclei and

Particles by R. Eisberg and R. Resnick,
published by John Wiley and Sons,
New York (1974).

range
|L − S| ≤ J ≤ L + S. (13.71)

The labelling of the eigenstates of an atom is usually in the form of a
term symbol 2S+1XJ , where X is the upper case spectroscopic label cor-
responding to the value of L; that is S, P, D, F, ... for L = 0, 1, 2, 3,
etc. When there is a single optically active electron it can be useful to
add the principal quantum number n thus, n2S+1XJ . The superscript is
called the multiplicity. It gives the number of eigenstates with different
values of J for that combination of S and L provided L ≥ S. For conve-
nience, and where there is no ambiguity the principal quantum number
or the multiplicity are often omitted.

There are more complex selection rules for the dominant transitions
in multi-electron atoms

∆S = 0, ∆L = 0,±1, ∆J = 0,±1, ∆M = 0,±1; (13.72)

but of these the transitions J = 0 → J = 0, and M = 0 → M = 0 for
∆J = 0 are excluded. Underlying these rules is the requirement that in
an allowed transition a single electron emits, or absorbs a single photon
in an electric dipole transition.

Relativistic and quantum effects modify the energies of the eigenstates
that have been calculated using a mean electrostatic potential for each
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electron. In addition the interaction of the magnetic moments of the
orbital and intrinsic angular momenta leads to a displacement in energy
proportional to both of these angular momenta

∆E ∝ +L · S.

This spin–orbit splitting of energy levels is illustrated for hydrogen in
figure 13.14, where it is only 10−4 of the level spacing. In atoms with

Energy
splitting
in units of

 eV-410

0.045

0.135

0.453

5/23D
3/2, 3P3/23D

1/2, 3S1/23P

3/22P

1/2, 2S1/22P

Fig. 13.14 The spin–orbit splitting of
some hydrogen eigenstates, and the al-
lowed transitions between the levels.

several electrons in an unfilled shell the spin–orbit coupling is larger; it
also increases with increasing atomic number because the electric fields
are stronger. Take for example the case of the 3P state of a sodium atom
which splits into two states: in the 3P1/2 state the orbital and spin angu-
lar momenta are antiparallel, while in the 3P3/2 state they are parallel.
The transitions giving the sodium yellow D-lines are 3P3/2 → 3S1/2 and
3P1/2 → 3S1/2 with wavelengths 588.995nm and 589.592nm respec-
tively, which are easily resolved.

The inclusion of quantum and relativistic corrections in a systematic
manner was achieved when Dirac replaced the Schroedinger equation
with a relativistic wave equation of the electron. Later this was refined
into quantum electrodynamics by Feynmann, Tomonaga and Schwinger
and involved the quantization of the electromagnetic fields themselves.
The simpler aspects of field quantization will be considered in Chapter
18.

13.10.1 Resonance fluorescence

Fluorescence was described in Chapter 11 as the prompt radiation emerg-
ing from a material when illuminated. The wavelength of the fluores-
cence can never be shorter than that of the incident radiation because
the atoms excited can only re-emit photons of equal or lower energy than
the incident photons. When a cell containing sodium vapour at around
250K is illuminated by a sodium lamp the whole cell glows yellow in all
directions. This is an example of resonance fluorescence involving the
transition between the 3S1/2 to 3P1/2,3/2 levels of the sodium atom at a
wavelength 589nm. Photons in the incident light have exactly the right
energy to excite the sodium atoms in the vapour cell from the 3S1/2 state
into a 3P excited state and these atoms then promptly re-emit photons
of the same energy so that they return to their ground state.

13.10.2 Atoms in constant fields

An applied constant magnetic field B changes the energies of the eigen-
states of an atom by an amount determined by the atom’s magnetic
moment µ. In the case of elements with low atomic numbers the energy
displacement in a large magnetic field B is

∆E = −µ · B = −(µB/h̄)(L + 2S) ·B, (13.73)
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where the factor 2 is required because the magnetic moment associ-
ated with spin is twice that associated with orbital angular momentum.
Eigenstates with the same value of the quantum number J but different
values of M which were degenerate in zero applied field now have slightly
different energies, which removes the residual degeneracy between mag-
netic substates. The application of an external magnetic field therefore
causes the splitting of spectral lines, in what is known as the Zeeman
effect. In a field of a few teslas the splitting is small and a Fabry–Perot
etalon is needed to resolve the individual Zeeman split lines. The selec-
tion rules of interest are

∆M = 0,±1 (but not M = 0 → M = 0, if ∆J = 0 ). (13.74)

For example the transition in sodium 2P3/2 →2 S1/2 splits into six lines.
In the case that the total spin is zero the splitting is especially simple,
then

∆E = −(µB/h̄)L · B = +µBBM, (13.75)

which has only three values corresponding to the possible allowed tran-
sitions ∆M = 0,±1. The splitting is then into three lines, one of which
is undisplaced while the other two are displaced equally from this, one
up in frequency the other down in frequency. This is seen for example
in the splitting of neon lines and is known as normal Zeeman splitting.
In other atoms whose total spin is non-zero the line splitting is more
complicated and is known, for historic reasons, as anomalous Zeeman
splitting. An applied electric field also produces splitting of spectral
lines and this is known as the Stark effect.

13.11 Photon momentum and spin

In Chapter 9 the linear momentum of a light beam p was shown to be
directly proportional to the energy of the beam E by considering the
force exerted when a light beam is reflected from a conducting surface.
It was found that in free space E = pc. Compton reinterpreted this
as the relationship between the energy and momentum of each photon.
Direct confirmation of this idea was obtained in 1933 by Frisch using
the arrangement shown in figure 13.15. Atoms evaporating from a bath
of liquid sodium stream through a collimator and head toward a cold
screen half a metre away, where they adhere. The whole region is evacu-
ated. Light from the sodium lamp shown in the diagram passes through
a filter which transmits only the D-lines at 589nm. Any sodium atom
in the beam which is in the 3S state can absorb one of these photons
and when this happens the atom absorbing the photon acquires a trans-
verse momentum equal to the photon momentum of h/λ. The resulting

Oven
Collimator

Screen

Deflected
atoms

photons

Lamp

Fig. 13.15 Frisch’s experiment to mea-
sure directly the linear momentum of
photons.

transverse velocity of the atom is therefore

v = h/(λM) = 0.0294 m s−1,

where 3.82 10−26 kg has been substituted for M , the mass of the sodium
atom. At the temperature of the sodium bath, 700K, the mean velocity
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of the atoms is 900m s−1 and hence the deflection is 3.8 10−5 rad, giving
a displacement on the screen of about 16µm.

More recently this same technique has been used extensively for iso-
tope separation. Isotopes of an element have the same electric charge
but different nuclear masses, hence different Rydberg constants, and
therefore the spectral lines of isotopes will be separated slightly in wave-
length. The apparatus used is conceptually similar to that illustrated in
figure 13.15, with the oven now containing the mixture of isotopes, and
with the sodium light source replaced by a laser of extremely narrow
linewidth. This laser’s wavelength is tuned precisely to the wavelength
of an intense transition for the isotope of interest. Only atoms of that
isotope are able to absorb the laser light and are then deflected. If a
long path and a narrow collection slit are used the atoms of the isotope
of interest can be filtered off and accumulated.

Poynting suggested in 1909 that circularly polarized electromagnetic
waves should carry angular momentum. The structureless photon there-
fore, like the structureless electron, should have an intrinsic angular
momentum. This idea was confirmed in 1936 by Beth and Harris who
measured directly the torque produced when circularly polarized electro-
magnetic radiation has its sense of rotation reversed on passing through
a half-wave plate.

The apparatus designed by Beth is drawn in the right hand panel
of figure 13.16. A beam of plane polarized infrared light incident from
below travels successively through a quarter-wave plate (QWP), a half-
wave plate (HWP) and a second quarter-wave plate whose rear surface
is silvered. After reflection the beam reverses its path and leaves where

LCP
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RCP
outRCP

in

LCP
out

Suspension

Mirror
on QWP

HWP

Baffle

QWP

Incoming plane
polarized beam

Fig. 13.16 Beth’s experiment to ob-
serve the angular momentum of circu-
larly polarized light. The right hand
panel shows the optical equipment.
The left hand panel indicates the state
of polarization of the beam at each
stage going in and out after reflection.
Adapted from R. A. Beth, Physical Re-
view Letters 50, 115 (1936), courtesy
the American Physical Society.

it entered. The HWP is freely suspended on a very fine quartz fibre
through a hole in the upper QWP. In the simplest arrangement the slow
axes of the two QWPs are set respectively parallel and perpendicular
to the slow axis of the HWP. The resulting states of polarization are
drawn in the left hand panel for each step in the light’s path. Each
pass through the HWP reverses the state of circular polarization of the
beam and correspondingly its angular momentum. The reaction pro-
duces a torque on the HWP and this torque is doubled by having two
passes through the HWP. However the static deflection of the HWP is
still small. Beth therefore used a dynamical displacement, reversing the
sense of circular polarization of the incoming radiation, and hence the
torque, at the natural frequency of oscillation of the HWP on its sus-
pension. The HWP then oscillated with an easily measurable angular
displacement, produced in the same way that pumping a swing produces
the highest endpoints.

Beth also proved mathematically that when a photon is assigned unit
angular momentum in units of h̄ the quantum prediction for the angu-
lar momentum of a light beam reproduces the classical prediction; that
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is to say, the photon’s spin quantum number s = 1 and the quantized
component is sz = ±h̄. His measurements confirmed the dual predic-
tion for the amplitude of the oscillation of the HWP. It follows that a
circularly polarized beam must be viewed as made up of photons with
their spins either all parallel to the beam direction, or all anti-parallel,
depending on the sense of the circular polarization. By contrast a plane
polarized beam, being made up of equal proportions of left and right
circularly polarized photons has no net angular momentum. Naturally
Beth checked this conclusion too.

In any transition the usual mechanical conservation laws apply: not
only linear momentum and total energy are conserved, but also the to-
tal angular momentum and its component along an applied magnetic
field. The normal Zeeman effect provides a simple demonstration of the
conservation of angular momentum. Observations can be made with a
modification of the arrangement of a constant deviation spectrometer
and a Fabry–Perot etalon described in Chapter 5, and shown here in
figure 13.17. A neon source is located between the poles of an electro-
magnet and light emerges from a hole in one pole so that the source is
viewed along the field direction. The choices of 15mm for the Fabry–
Perot etalon spacing and 1T for the field give good results. After ex-
iting the etalon the light passes through a quarter-wave plate and a
Polaroid before entering the viewing telescope. Each spectral line is
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magnetic field

 View of 
 triplets
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Collimator 

Slit

Telescope 

QWP and
polaroid

Etalon

Fig. 13.17 Apparatus for viewing the
polarization states of Zeeman split
lines.

split into a triplet, the outer members corresponding to transitions in
which ∆M = ±1. The QWP plate converts states of circular polariza-
tion into states of plane polarization, while the Polaroid can be rotated
to find whether the light reaching it is plane polarized. What is found
is that the two outer lines can be cut off completely at orientations of
the Polaroid that are 90◦ apart, which shows that the two outer lines
have opposite circular polarization. It is found that in the transition in
which the change of the magnetic component of the angular momentum
of the atom is +h̄(−h̄) the photon is right (left) circularly polarized and
carries an angular momentum component of −h̄(+h̄). Thus the angular
momentum change of the atom is carried off by the photon.

Figure 13.18 summarizes in a schematic way the alignments met in
parallel beams of right and left circularly polarized light in free space.
The velocity vector, the field vectors and their sense of rotation, as well
as the spin orientation of the photons are all displayed. The direction of
the spin vector lies on the cone sketched, but the azimuth angle is inde-
terminate. Although the photon has unit intrinsic angular momentum
only the two states with ms = ±1 have been discussed because a photon
travelling in free space is never in the ms = 0 magnetic substate. Such
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Fig. 13.18 The vector orientations in
parallel beams of left and right circu-
larly polarized light.

photons would contribute to components of the electric and magnetic
fields along the direction of the wave’s travel; components forbidden by
Maxwell’s equations. The ultimate reason for the absence of the ms = 0
magnetic substate must be sought in quantum electrodynamics (QED),
the quantum field theory of the em field and its interaction with charges.
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In QED the absence of the longitudinal photons is directly related to the
masslessness of the photon.

13.12 Quantum statistics

As noted previously, Schroedinger’s equation is the equivalent for elec-
trons of the electromagnetic wave equation. Correspondingly the modes
of electromagnetic radiation discussed earlier are simply the eigenstates
for electromagnetic radiation. However there is a striking contrast be-
tween the statistical properties of photons and electrons. On the one
hand in Planck’s successful calculation of the black body radiation spec-
trum any number of photons are permitted to share the same eigenstate
(mode). Equally, lasers only function because astronomical numbers of
photons may occupy the same mode. On the other hand Pauli’s exclu-
sion principle requires that any electron eigenstate never contains more
than a single electron.

Surprisingly these two types of statistical behaviour have the following
common feature. In quantum mechanics it is impossible to distinguish
any particle of one species from another particle of the same species;
neither one photon from another, nor one electron from another. If two
particles of the same species are in a state with a wavefunction ψ(1, 2)
there is no measurement that can distinguish between this state and
one in which the particles are interchanged and whose wavefunction is
ψ(2, 1). All the predictions for expectation values contain the product
ψ∗(1, 2)ψ(1, 2), from which it can be inferred that

ψ∗(1, 2)ψ(1, 2) = ψ∗(2, 1)ψ(2, 1). (13.76)

This has two possible solutions

ψs(2, 1) = +ψs(1, 2), (13.77)

ψa(2, 1) = −ψa(1, 2). (13.78)

The second, antisymmetric wavefunction ψa will vanish if the two par-
ticles are in the same eigenstate. Evidently this is the correct choice
for pairs of electrons, and automatically contains the exclusion princi-
ple. There is no such restriction with the first, symmetric wavefunction,
ψs. This then is the choice for photon wavefunctions. When there are
many electrons present the wavefunction must be antisymmetric under
the interchange of each pair of electrons separately. Correspondingly the
wavefunction of multiple photons must be symmetric under the inter-
change of any pair of them. Photons are then said to obey Bose–Einstein
statistics, while electrons obey Fermi–Dirac statistics, these statistics
being named after their discoverers.

Planck’s analysis showed that the mean number of photons in a state
with energy E in equilibrium at temperature T K is

〈nphoton〉 = 1/[exp (E/kBT ) − 1]. (13.79)
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In the parallel case for electrons in which the exclusion principle applies
the result is

〈nelectron〉 = 1/[exp (E/kBT ) + 1], (13.80)

which is always less than unity. Note that classical particles obey Boltz-
mann statistics for which

〈nclassical〉 = 1/[exp (E/kBT )]. (13.81)

When the excitation energy E becomes large compared to kBT the pop-
ulations are all sparse and the quantum distributions then approach the
classical distribution.

13.13 Line widths and decay rates

Suppose the probability per unit time for an atom to decay from an
excited state, 2, to another state, 1, is γ. Each excited atom in a volume
containing N(t) such atoms at time t has an identical probability to
decay, but we can never predict which will in fact decay in a further
time dt. All that can be predicted is that the average rate of losing
atoms from the excited state 2 is γ, thus

dN(t)/dt = −γN(t). (13.82)

Integrating this gives the well known exponential decay distribution

N(t) = N(0) exp (−γt). (13.83)

Thus the intensity of light emitted by the volume of atoms must vary in
a similar way with time

I(t) = I(0) exp (−γt), (13.84)

and the electric field of the radiation will contain a time dependence
exp (−γt/2). The electric field will also be oscillating at an angular
frequency, ω0 = ∆E/h̄, where ∆E is the energy difference between the
two atomic states in the transition. Thus the electric field variation with
time is

E(t) = E(0) exp (−γt/2) cos (ω0t). (13.85)

The Fourier transform of this function has been given in eqn. 7.37. The
spectral distribution of electric field and the intensity of the light emitted
by the atoms have Lorentzian shapes:

e(ω) = (iE(0)/2)/[ (ω − ω0) + iγ/2 ], (13.86)

P (ω) = P0/[ (ω − ω0)
2 + γ2/4 ], (13.87)

where P0 is ε0cE
2(0)/8. This last equation can be recognized also as the

spectral distribution for absorption obtained in Section 11.5.1 using wave
theory. In that analysis atomic excitations were treated as mechanical
oscillations of electrons within atoms. The lifetime (1/γ) and the line
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width in angular frequency (γ) are tied together in accordance with
the uncertainty principle. Note that if the parent state decays to several
lower energy states then the overall decay rate is the sum of the separate
decay rates γi:

γ =
∑

i

(γi). (13.88)

The line width in any of the decays, and hence the uncertainty in the
energy of the photons emitted, is determined by this overall decay rate.

In Section 7.3.1 broadening of the line shape of an atomic transition in
matter was discussed from the classical viewpoint. This needs some fur-
ther comments here. The lifetimes and line shapes of atomic transitions
are altered by the motion of the atom and by interactions with its neigh-
bours. In a low pressure gas in discharge tube the Doppler broadening
dominates, while in a solid the effect of the electromagnetic fields of
neighbouring atoms can dominate. When the effect, of whatever origin,
is the same for all atoms in the source the broadening is called homoge-
neous: when the effect varies with the state of the atom the broadening
is known as inhomogeneous. In a perfect crystal the electric fields acting
on each atom are identical so the broadening is homogeneous, while in
an amorphous solid, like glass, the local fields vary and the broadening
is inhomogeneous. Homogeneous broadening leads to a Lorentzian line
profile, while inhomogeneous broadening leads to a Gaussian line profile,
as in the case of Doppler broadening described by eqn. 7.40. Atomic col-
lisions produce broadening through two effects. Firstly the collision can
knock an electron out of an excited state before it would have normally
decayed, which is collisional de-excitation. Secondly collisions can cause
abrupt phase changes in the wavepacket emitted, known as de-phasing.
Apart from collisional de-excitation all these processes mentioned affect
the line width but do not change the decay rate of the excited state.
The coherence time of the radiation will be the inverse of the line width
broadened by all contributing mechanisms.

This section has brought together results common to classical wave
theory and quantum theory which show that despite the fundamental
inadequacy of the classical view of atomic processes it does contain use-
ful elements. We can see that the frequency of oscillation in the classical
picture is in reality the transition frequency, while damping is the way
the loss of atoms from the excited state is expressed classically. Often
the classical picture is convenient and remains a useful interpretive tool.

13.14 Further reading

The third edition of Quantum Mechanics by L. I. Schiff, published by
McGraw-Hill Kogukusha, Tokyo (1968). Quantum Physics of Atoms,
Molecules, Solids, Nuclei and Particles by R. Eisberg and R. Resnick,
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published by John Wiley and Sons (1974). This texbook follows the
consequences of quantum theory into the realms given in its title.

Exercises

(13.1) What is the mean number of photons in an eigen-
state/mode of energy 0.4 eV in a system in thermal
equilibrium at a temperature 3000 K? Repeat the
calculation for electrons and classical particles.

(13.2) What is the mean number of photons in an eigen-
state/mode of energy 0.4 eV in a system in thermal
equilibrium at a temperature 3K. Repeat the cal-
culation for electrons and classical particles.

(13.3) Show that an operator whose eigenvalues for a set
of orthonormal eigenstates are all real is hermitian.

(13.4) Show that the momentum components px and py

commute, that the coordinates x and y commute
and that an unmatched momentum py and coordi-
nate x commute.

(13.5) Check that the functions in eqn. 13.46 satisfy eqn.
13.43.

(13.6) An electron in a hydrogen atom drops from the
n = 3 excited state to its ground state. What is
the energy of the photon emitted? What is the mo-
mentum of the photon? What is the velocity with

which the hydrogen atom recoils in order that mo-
mentum is conserved? What is the kinetic energy
of the hydrogen atom? Discuss where this energy
comes from.

(13.7) Calculate the angle between the orbital angular
momentum vector and the quantization axis in an
eigenstate with orbital angular momentum quan-
tum number 4 and magnetic quantum number 3.

(13.8) Show that the wavefunctions of the three 2p elec-
tron states in a hydrogen-like atom give an overall
isotropic electron distribution.

(13.9) Show that [Lz, Lx] = ih̄Ly .

(13.10) Show that for a plane sinusoidal plane wave the
expectation value of the momentum raised to any
power m is (h̄k)m.

(13.11) Check that the operator −ih̄∂/∂φ acting on the
eigenfunctions in Table 13.2 returns mlh̄ in each
case.
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14.1 Introduction

Einstein deduced that for radiation and matter to reach thermal equilib-
rium there must exist an additional process beyond the absorption and
spontaneous emission of photons. This unexpected process is stimulated
emission in which one photon incident on an atom causes the emission
of a second photon coherent with the incident photon. This requires the
atom to be initially in the appropriate excited state. Within lasers a
cascade of stimulated emissions can produce an astronomical number of
coherent photons, a process whose description – Light Amplification by
the Stimulated Emission of Radiation – led to the acronym laser. The
analogous microwave masers were invented first in 1953, and then in 1960
Maiman built the first ruby laser. Since that time lasers have become
ubiquitous: in supermarket and library checkouts, in DVD readers and
in optical fibre communications. Laser beams are more highly coherent
and of greater radiance than any earlier sources; these are properties
widely exploited in science and industry. Some lasers are pinhead sized,
others fill huge laboratory halls. Their versatility is amazing: CO2 lasers
are used to drill holes in 2 cm thick steel plates with high precision, while
other lasers weld detached retinas. These important and interesting de-
vices are at the heart of modern optics and its applications.

In this chapter the major types of lasers will be discussed, concentrat-
ing on a basic example in each case. Some applications are included in
this chapter, in particular a couple of representative spectroscopic tech-
niques. The study of non-linear processes has developed rapidly through
the use of laser beams, and these processes are discussed in the last sec-
tion of the chapter.

In the section immediately below, the Einstein coefficients which quan-
tify the emission and absorption processes are introduced and the rela-
tionships between them are deduced. Then the three prerequisites for
most types of laser operation are discussed: these are stimulated emis-
sion, a population inversion and a resonant cavity. The He:Ne gas laser
is used as the introductory example. This account includes discussions
of laser gain, hole burning, laser speckles and optical beats. After this
another more powerful gas laser, the CO2 laser, and some of its appli-
cations are treated.
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There follows a section devoted to dye lasers which were the first tun-
able lasers. Two modern spectroscopic techniques are described, repre-
sentative of techniques made feasible with the advent of tunable lasers.
Then a modern laser interferometer is described which provides an ex-
ample of the usefulness of the heterodyne technique.

Semiconductor lasers are small compared to gas or dye lasers and
eminently suited to applications in consumer electronics and telecom-
munications. A brief account of semiconductor properties prefaces an
account of the principle semiconductor laser types, including quantum
well lasers. Discussion of their usage in telecoms is postponed to a later
chapter.

Two dielectric, or solid state, lasers are described in the next sec-
tion: these are the Nd:YAG and Ti:sapphire lasers. Working in tandem
these lasers provide the extreme energy beams with which it is hoped
to produce nuclear fusion in tritium/deuterium pellets by heating and
implosion. They have also been used to provide the most precise optical
frequency scales based on what are called optical combs.

In a final section non-linear processes are described. These include
parametric processes such as those in which laser beams generate har-
monics of their frequency in crystals. This discussion closes with an ac-
count of Raman and Brillouin scattering, whose importance grew once
intense laser beams became available.

14.2 The Einstein coefficients

The three processes by which matter emits or absorbs electromagnetic
radiation are sketched in figure 14.1. Of these the upper pair are already
familiar: the absorption and the spontaneous emission of a photon whose
energy equals that gained or lost by the electron whose quantum state
changes in the transition. In 1916 Einstein realized that the process

Absorption

Spontaneous
emission

Stimulated
emission

Fig. 14.1 The three photon–matter in-
teractions: in the upper panel absorp-
tion; in the centre panel spontaneous
emission; and in the lower panel stimu-
lated emission.

exhibited on the lower panel of the figure must also occur, and this be-
came known as stimulated emission. Stimulated emission occurs when
an atom is initially in an excited state and a photon is incident on it
with an energy equal to the difference between this state and some lower
energy state. This photon stimulates the electron to drop into the lower
energy state, at which moment it emits a photon which is a clone of
the incident photon. The second photon has the same energy, direction,
polarization and phase as the first: the pair are thus fully coherent and
can be described by the same wavepacket. When a beam of coherent
light passes through matter it excites some atoms: of these some decay
spontaneously while others are stimulated to decay. The photons from
stimulated decays rejoin the beam, but those emitted spontaneously
generally leave it, appearing as scattered light. The simple relationships
between the three processes in thermal equilibrium will now be deduced.
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Suppose that there are N1(N2) atoms of one atomic species per unit
volume in the two states of energies E1(E2) and that all other energy
states can be ignored. The rate at which photons are absorbed is pro-
portional to both N1 and to the energy density of photons of frequency
f = (E1 −E2)/h, that is to the spectral energy density of the radiation
W (f) measured in Jm−3Hz−1. The absorption rate is

(dN2/dt)ab = B12N1W (f). (14.1)

Similarly the rate of stimulated emission is proportional to N2 and W (f),

(dN2/dt)st = −B21N2W (f). (14.2)

Finally the rate of spontaneous emission is proportional to N2 but inde-
pendent of W (f),

(dN2/dt)sp = −A21N2. (14.3)

A21, B12 and B21 are constants known as the Einstein coefficients. Fur-
ther A21 = 1/τsp, where τsp is the lifetime of the upper state against
spontaneous decay.1 1As in Chapter 12 the spectral energy

density is regarded as a function of the
frequency. If the spectral energy den-
sity expressed in terms of the angular
frequency is W(ω) then we have for a
given spectral interval:

W(ω) dω = W (f) df.

Now dω = 2πf and hence W (f) =
2πW(ω). Therefore the expressions for
the Einstein coefficients B12 and B21

and the relations between these and
A21 depend on whether W (f) or W(ω)
is used in eqns. 14.1 and 14.2. A21

itself is unaffected.

Evidently when the radiation is of sufficiently high intensity that ef-
fects non-linear in the electric field strength become important the simple
analysis being followed here would be inadequate.

If the atoms and the radiation are in thermal equilibrium so that the
numbers N1 and N2 do not change with time, then the three processes
must balance giving

B12N1W (f) − B21N2W (f) − A21N2 = 0, (14.4)

whence
W (f) = A21N2/(B12N1 − B21N2). (14.5)

The Einstein coefficients will be different for different atomic or molecu-
lar processes. However the coefficients are independent of the radiation
density and Einstein used this fact to infer the relationship between the
coefficients. He specialized to the case of thermal equilibrium with black
body radiation. At a temperature T K in material of refractive index n
the black body radiation spectral energy density is given by eqn. 12.7,

W (f) = (8πhf3n3/c3)/ [exp (hf/kBT ) − 1 ]. (14.6)

Furthermore, in thermal equilibrium the ratio of the atoms in the two
states is given by the Boltzmann relation

(N2/g2) = (N1/g1) exp (−hf/kBT ),

where g1,2 are the degeneracies of the two states. That is to say that
g1,2 are the number of indistinguishable quantum states having energy
E1,2. Thus

N1 = (N2g1/g2) exp (hf/kBT ). (14.7)
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Inserting this value of N1 into eqn. 14.5 gives

W (f) = A21/{B12(g1/g2) exp (hf/kBT ) − B21}. (14.8)

The equations 14.6 and 14.8 must be consistent, hence we arrive at two
equalities

g1B12 = g2B21, (14.9)

A21 = (8πhf3n3/c3)B21. (14.10)

These relations between the Einstein coefficients hold true in general
because the coefficients are determined by the atomic structure. In
Chapter 17 they are calculated for a transition in hydrogen. The ratio
of the rates of stimulated to spontaneous emission, again in thermal
equilibrium, is thus

(dN2/dt)st/(dN2/dt)sp = B21W (f)/A21. (14.11)

In equilibrium with black body radiation this ratio becomes

(dN2/dt)st/(dN2/dt)sp = 1/[ exp (hf/kBT ) − 1 ]. (14.12)

It is illuminating to consider the mechanical analogy, of a pendulum
being driven at its resonant frequency. The drive will do work on the
pendulum for one choice of phase between the drive and the oscillations,
but when this phase is changed by π energy is drawn from the pen-
dulum. These alternatives are the classical counterparts of absorption
and stimulated emission. Spontaneous emission is therefore the process
without a classical analogue, rather than stimulated emission!

14.3 Prerequisites for lasing

If for example a volume of neon gas is simply heated to 400K, the
temperature within a He:Ne laser, then the relative probability given
by eqn. 14.12 for stimulated emission of light at 632.8 nm, the He:Ne
lasing wavelength, is only 10−25. Raising the equilibrium temperature
alone could not produce the cascade of stimulated emissions that define
lasing. The other ‘ingredients’ needed for lasing action in addition to
stimulated emission are generally these: a population inversion and a
Fabry–Perot cavity. A population inversion is achieved when the number
of atoms in some excited state of energy E2 exceeds the number of
those in a state of lower energy E1. This provides a reservoir of atoms
which can then be stimulated to emit photons coherently. A glance at
eqn. 14.7 reveals that a population inversion cannot happen in thermal
equilibrium: it requires instead some subtle pumping process which fills
the upper state while keeping the lower energy state virtually empty.
Once pumping has produced a population inversion any random photon
of energy (E2 − E1) can stimulate an excited atom to emit a second
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Table 14.1 Table of coherence times and lengths.

Source τc �c

Sunlight 0.4–0.7 µm 3 fs 900 nm
Hg lamp 435 nm line 100 fs 30 µm

Low pressure sodium lamp 5 ps 1.5mm
Multimode He:Ne laser 0.6 ns 18 cm
Single mode He:Ne laser 1 µs 300m

coherent photon; both photons can then stimulate two more excited
atoms to emit two more coherent photons so there are now four fully
coherent photons. The process of stimulated emission repeats again and
again so that a stream of coherent photons builds up travelling through
the active material. This single pass through the active material can be
extended to multiple passes by enclosing the active material between two
parallel mirrors, which define a Fabry–Perot cavity. If the reflectance
of one mirror is 100%, and that of the other is slightly less than 100%,
then photons which pass through the weakly transmitting mirror make
up the external highly coherent laser beam.

The use of a cavity produces another significant effect: standing waves
develop in the cavity with wavelengths determined by the cavity length.
We can take over results proved in Section 5.9. Firstly these standing
waves satisfy the relationship.

mλ = 2nL or f = mc/(2nL), (14.13)

where m is an integer, n is the refractive index, L the cavity length, f
the frequency and λ is the free space wavelength. Secondly we note that
the narrow line shape of a mode of a passive cavity is shown in figure
5.31. On the other hand laser linewidths, also narrow, are those of a cav-
ity filled with active material and will be discussed below. Extremely
narrow linewidths can be achieved if only a single frequency is lasing.
The coherence times and coherence lengths for various sources are shown
in Table 14.1; this makes clear the huge improvement in coherence that
lasers bring. If lasing occurs at only a single frequency the laser is called
a single (longitudinal) mode laser, in a multi(-longitudinal) mode laser
several standing waves at nearby frequencies lase.

The electric field distribution in standing waves inside a Fabry–Perot
cavity has been discussed in Section 6.15. The simplest transverse mode,
the TEM00 mode is plane polarized, the magnitude of the electric field
has azimuthal symmetry and falls off with a Gaussian dependence on
the radial distance from the beam axis. This is the mode which lasers
are generally designed to produce because of its compactness and sym-
metry around the beam axis. Higher order modes are less compact and
are usually attenuated by some aperture, as for example the capillary
tube of a helium–neon, He:Ne, laser. Stimulated emission is then inad-
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equate to compensate this loss and the intensity of higher order modes
is insignificant. Thus the ideal situation is for the laser to lase at one
frequency (a single longitudinal mode), emitting a plane polarized beam
with a TEM00 profile (a single transverse mode).

Lasers are sources in which stimulated emission accounts for almost
all the emission and thus lasers emit long streams of identical photons.
Beams from a single longitudinal mode laser can have a far narrower
linewidth and consequently be more highly coherent than any beam from
pre-existing optical sources. The lateral spread of many laser beams is
due almost entirely to diffraction: that is to say they are diffraction lim-
ited. If the laser is lasing in a single longitudinal with TEM00 profile,
then, as explained in Section 12.10.1, all the radiation is confined to the
minimum possible etendue, λ2. Thus the radiance (or equivalently the
brightness) of laser beams can be orders of magnitude higher than those
from sources previously available. The introductory example of a laser
taken here is the helium–neon laser, a simple very widely used gas laser.

14.4 The He:Ne laser

A simplified diagram of the structure of a He:Ne laser is shown in figure
14.2, the glass envelope being filled with a gas mixture containing one
neon atom for every five helium atoms, at a total pressure of typically
0.003 atmospheres (2.5 torr). A DC supply of about 1 kV maintains a
discharge current of a few milliamps through the gas, and the electrons
in this discharge excite the atoms by colliding with them. Those neon
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Fig. 14.2 Outline structure of a He:Ne laser.

and helium energy levels of relevance here are displayed in figure 14.3.
The pumping action starts with excitation of the more numerous helium
atoms by electron collision into the 21S0 level, which is displaced by only
0.05 eV from the neon 5s level. The label 5s indicates that one of the 2p
electrons has been promoted to the 5s level in neon. There is a high prob-
ability that a helium atom in the 21S0 level will transfer its whole energy
to a neon atom when they collide, leaving the neon atom in the 5s level.
Neon atoms excited into the 5s level decay first into the 3p level, then
into the 3s level, and finally to their ground state. The transition 5s→3p
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is a forbidden transition and hence the neon atoms have a long life in
the 5s state. Neon atoms in the 3p state diffuse to the glass walls where
collisions return them stepwise to the ground state. With the excited
gas enclosed in a glass capillary envelope this stage is rapidly completed.

To summarize: the neon atoms are pumped into the 5s state and a
population inversion is achieved between this and the almost empty 3p
state. The 5s→3p transition is the lasing transition.

Any random photon whose wavelength corresponds to that of the
5s→ 3p transition, 632.8 nm, can initiate a cascade of coherent photons
through stimulated emission. When the direction of motion of this initial
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Fig. 14.3 He:Ne electron energy levels
relevant to lasing at 632.8 nm.

photon coincides with the tube axis the cascade of stimulated photons
undergoes repeated reflections from the external mirrors shown in figure
14.2 and as a result standing wave modes develop. Then, if the gain due
to stimulated emission for a round trip inside the cavity exceeds the sum
of losses in the cavity and at the mirrors, that mode’s intensity will build
up and it will lase: an intense coherent beam at the mode frequency is
emitted through the weakly transmitting mirror.

Referring again to figure 14.2 the gas is seen to be confined in a capil-
lary of a few millimetres in diameter and typically 40 cm long. The end
caps are glass plates inclined at the Brewster’s angle to the tube axis so
that the p-polarized radiation is fully transmitted, while the s-polarized
light suffers a loss in intensity of over 4% at each surface. This loss
greatly exceeds the gain per pass due to stimulated emision, with the
result that the emerging laser beam is p-polarized. These windows also
absorb infrared radiation which eliminates the lasing that would occur at
3.39µm through another set of neon levels. The intensity of the beam
from He:Ne lasers ranges from a fraction of a mW to a maximum of
around 100mW.

Pumping power is electrical and its agents are the electrons in the
discharge which strike the atoms. Other pumping processes used to pro-
duce lasing are met below: charge injection is used in semiconductor
lasers and optical pumping in some other solid state lasers.

A He:Ne laser is usually the first laser that students encounter and
provides a simple, sturdy and stable source. The narrow line width and
pure polarization state of its beam make it very valuable in interferom-
etry. In applications such as bar-code reading, lecture room pointers
and direction indicators for construction work the He:Ne laser has been
largely replaced by semiconductor lasers. The latter are not only more
compact, efficient and robust than He:Ne lasers, but also operate at the
low voltages generally used in electronics.
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14.4.1 Three and four level lasers

Lasers can be either three level, or four level, as indicated in figure 14.4,
where in each case the slow transition from level 2 to level 1 is the las-
ing transition, while all other transitions are fast. The pumping of a
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Fig. 14.4 Three and four level lasers.
The upper state in the lasing transition
is labelled 2, and the lower level is la-
belled 1.

three level system is more difficult because over half the atoms must
be pumped from the ground state into level 2 in order to achieve a
population inversion. In four level systems the energy of level 1 above
the ground state should be much greater than kBT so that the equi-
librium population of level 1 is negligible. With this condition fulfilled
the fraction of atoms that need to be pumped into level 2 to produce a
population inversion between levels 2 and 1 is quite modest. The He:Ne
laser fits better into the class of four level lasers.

14.4.2 Gain

Even if a population inversion is established in an active medium en-
closed in a cavity, lasing will still only occur if the gain in radiation at
the lasing frequency per round trip due to stimulated emission exceeds
all losses incurred within the cavity and at the mirrors. This require-
ment is investigated next.

The line shape of the lasing transition, F (f), is taken to be normal-
ized so that

∫
F (f)df is unity; it might have either the Gaussian or

Lorentzian profiles introduced in Section 7.3.1 or a combination of these
known as a Voigt profile. Here we consider a beam of spectral intensity
I(f) Wm−2Hz−1 travelling into the active laser medium, and whose in-
tensity, I(f), does not vary across the line width of the transition. The
spectral energy density of the radiation measured in J m−3Hz−1 is

w(f) = I(f)(n/c),

where n is the refractive index of the medium. Then, taking into account
the line shape of the transition, the effective spectral energy density of
radiation, as far as the transition of interest is concerned, is2

W (f) = F (f)I(f)(n/c),

measured in J m−3 Hz−1. Now any gain arises from the excess of stim-
ulated emission over absorption. If N1 and N2 are again the number
densities of atoms in the lower and higher energy states respectively,
a coherent beam travelling a distance ∆z passes across N2∆z excited
atoms per unit area and so the change in its intensity in this distance is

∆I = [(dN2/dt)st + (dN2/dt)ab] hf ∆z.

2This result is strictly valid for homogeneously broadened lines where all the atoms
can undergo transitions at any frequency across the line profile. However the conclu-
sions drawn in this section are valid for both inhomogeneously and homogeneously
broadened lines.
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Spontaneous emission can be ignored because it is both incoherent and
relatively isotropic. Using eqns. 14.1 and 14.2 this becomes

∆I = (B21N2 − B12N1)F (f)I(f)(n/c)hf∆z. (14.14)

There is therefore an exponential dependence of the intensity on path
length in the medium

I(z; f) = I(0; f) exp [ g(f)z ],

where
g(f) = (B21N2 − B12N1)F (f)hfn/c

is called the gain coefficient. Using eqns. 14.9 and 14.10 this gain
coefficient is

g(f) = A21 [ N2 − (g2/g1)N1 ] F (f)(c2/8πf2n2). (14.15)

Positive gain requires g1N2 > g2N1, so that there exists a population
inversion. We can simplify the notation by setting ∆N = N2−(g2/g1)N1

and A21 = 1/τsp where τsp is the lifetime of the upper state against
spontaneous decay. Using eqn. 7.38

F (f0) = 2πP (ω0) = 4/γ,

where γ is the observed line width, and may be much broader than the
natural line width A21. With these substitutions the gain at the central
frequency can be rewritten

g(f0) = [ ∆N/(τsp γ) ] (c2/2πf2
0 n2) = ∆N σ0, (14.16)

where
σ0 = (c2/2πf2

0n2)/(τspγ). (14.17)

The magnitude of g depends on two factors: σ0, which is inherent to
the particular transition; and the population inversion ∆N , which is
determined by the pump power. The quantity σ0 has the dimensions of
area, and eqn. 14.16 shows it to be the stimulated emission cross-section
parameter for a single excess excited atom. Also σ0 is proportional to
the spontaneous emission rate (A21 = 1/τsp), and inversely proportional
to the observed line width (γ). It is clear that, thanks to the factor f−2

0

in σ0, lasing becomes more difficult as the frequency increases.

The loss of intensity in the beam per unit length in the cavity due to
scattering and other processes can be expressed as

I(z; f) = I(0; f) exp (−αz), (14.18)

where the absorption coefficient, α, is not expected to vary much across
the line width. At the mirrors there are discrete losses which include
the effects of scattering and absorption in the mirror, in addition to the
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transmission loss through the mirror. The overall gain in one pass along
the whole length of the cavity and returning to the starting point is thus

G = exp (2Lg) exp (−2Lα)R2, (14.19)

L being the length of the cavity and R the reflectance at the mirrors.
There is evidently a threshold for lasing at which the gain, gth, exactly
balances the losses. Then

exp (2Lgth) exp (−2Lα)R2 = 1,

whence
gth = α − ln R/L, (14.20)

and because R is usually close to unity we have to a good approximation
that

gth = α + (1 − R)/L. (14.21)

When a laser is turned on the pumping process causes a population
inversion and the gain rises. If the pumping rate is high enough the gain
crosses its threshold value and lasing commences. A further increase in
the pump rate causes a rise in the population inversion and a stronger
laser beam. By contrast the gain stabilizes at its threshold value thanks
to negative feedback: if the gain rises the laser intensity rises and this
drives N2 down, so that the gain falls; on the other hand if the gain falls
the intensity falls, N2 rises and so the gain rises. This is the standard
condition for continuous wave (CW) lasing.

The laser intensity begins to saturate when the stimulated emission
rate overtakes the spontaneous emission rate. Both processes then de-
plete the upper state population equally and further increases in in-
tensity are hard to achieve. When these rates are equal the intensity
of the internal laser beam, Isat, is called the saturation intensity. The
corresponding photon flux in the laser is

φsat = Isat/(hf0),

where f0 is the laser frequency. Now the spontaneous and stimulated
emission rates become equal when

σ0φsat = 1/τsp. (14.22)

Substituting for φsat in terms of Isat gives

Isat = hf0/(σ0τsp). (14.23)

Line widths

The lasing transition may be one of several by which the upper state
can decay. When these other decays have rates 1/τi the lifetime of the
upper state, τ , is given by

1/τ = 1/τsp +
∑

i

(1/τi), (14.24)
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and the natural line width in frequency is 1/(2πτ). Environmental line
broadening mechanisms were introduced in Section 7.3.1. Homogeneous
line broadening is that due to processes common to all the atoms, while
inhomogeneous line broadening involves processes which vary from atom
to atom. The total line width due to all effects is that denoted by γ in
the analysis of the previous section.

The dominant line broadening process in the He:Ne laser is the Doppler
shift resulting from the random thermal motion of the neon atoms. Like
all other inhomogeneous processes the Doppler broadening gives a line
with the Gaussian shape described by eqn. 7.40. Of course the lifetime
of the atomic states is unaffected by Doppler shifts. Whenever homo-
geneous broadening is dominant the spectral lines retain the Lorentzian
profile described by eqn. 7.38. In a Nd:YAG laser the lasing transition is
a transition between energy states of the Nd3+ ions. These ions are well
dispersed in a regular crystal in environments that are closely similar,
hence the line broadening is homogeneous. However in an amorphous
solid such as the glass matrix of a Nd:glass laser the environment is dif-
ferent for each Nd ion and the result is inhomogeneous broadening and
a Gaussian line profile.

Another distinction needs to be appreciated, this time between the dif-
ferent effects that collisions can produce, although all give homogeneous
broadening. On the one hand collisions with electrons and atoms can
cause an excited atom to drop into a lower energy state. This reduces
the lifetime of the atom as well as broadening the frequency spread of
the spectral line. On the other hand, when an atom which is already
radiating undergoes a collision, this alters the phase of the wavetrain ran-
domly. The Fourier transform of such a wave has a broader frequency
spread than that of an uninterrupted wave. However these phase-shifting
collisions do not alter the decay rate or lifetime of the atomic state.

14.4.3 Cavity modes

Figure 14.5 shows the Doppler broadened line for the lasing transition in
the He:Ne laser, and the positions of the cavity modes, which are equally
spaced in frequency. The Doppler broadened profile has the shape given
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Fig. 14.5 The Doppler broadened
line of the Ne transition at 632.8 nm.
The cavity resonance positions are also
shown; their individual widths are nar-
rower than the lines drawn here.

by eqn. 7.40 with FWHM of about 2GHz in frequency, or 2 10−3 nm in
wavelength. With mirrors a distance L apart the cavity mode spacing
in frequency is

∆f = c/(2nL), (14.25)

where n the refractive index is close to unity for a gas. Taking a mirror
separation of 40 cm gives a mode spacing of 0.375GHz or 5 10−4 nm.
The FWHM of the modes can be taken from eqn. 5.57

∆fc = f/CRP = c/(2nLF), (14.26)

where F is the cavity finesse. Applying this equation to the case of
a cavity of 40 cm length and finesse 400 gives a line width of about
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1MHz, or equivalently 1.4 10−6 nm. The corresponding coherence time
is τc = 1/(2π∆fc), giving 1.7 10−7 s.

Fabry–Perot cavities are the optical counterparts of resonant electric
circuits and mechanical oscillators. The sharpness of a resonance is
characterized by its Q value, defined as

Q = f/∆fc, (14.27)

where f is the resonant frequency and ∆fc the FWHM of the resonance.
If N is the number of stored photons we have a simple identity

Q = (hfN)Q/(hfN),

and substituting for Q on the right hand side gives

Q = f(hfN)/(hf∆fc) = ω(hfN)/(hfN/τc),

where as usual ω = 2πf . Therefore

Q = ω(energy stored)/(rate of energy loss). (14.28)

The linewidth and coherence time evaluated one paragraph above are
those of a passive cavity: the coherence time is determined by the rate
at which the radiation in the TEM00 mode is lost through or around
the mirrors at reflection. In a laser with an active cavity the coherent
radiation in the mode is continually refreshed by stimulated emission so
that a much longer coherence time and narrower linewidth can result.
Working against this are effects which cause the optical path length of
the cavity to fluctuate, and so cause the mode wavelength to fluctuate.
Fluctuations in the gas temperature and density, mechanical vibrations
and thermal expansion of the cavity all play a part. Even if all the phys-
ical parameters could be held constant an ultimate lower limit on the
linewidth is imposed by phase fluctuations due to spontaneous emission.
This limit will be evaluated below in Section 14.7.3 and comparisons
made with the actual performance of specific lasers.

Lasing modes which differ according to the number of nodes they
produce along the cavity are called longitudinal modes. This does not
exhaust the choices of modes, because for each longitudinal mode there
can be alternative transverse distributions of the mode intensity. The
simplest mode is the TEM00 mode described in Section 6.15, a mode
whose intensity falls off as a Gaussian in the radial distance from the
beam axis. Profiles of the intensities of other transverse modes are com-
plex in form and less compact around the beam axis than the TEM00

mode. Their losses at the limiting aperture are then larger than their
round trip gain and they cannot lase. The radius w of the 1/e2 intensity
point for the TEM00 mode can be obtained from eqn. 6.74. For sim-
plicity we take the example of a marginally stable symmetric confocal
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cavity of length L. Then z = L/2 and R = L in eqn. 6.74 so that the
beam radius at the mirror

w =
√

Lλ/π,

with the waist, w0, being a factor
√

2 smaller. Thus a 40 cm long con-
focal He:Ne laser operating at 632.8 nm would only make use of the gas
discharge within a diameter of ∼0.5mm around the optical axis. The
semi-angle of the divergence of the TEM00 mode is given by eqn. 6.63

θ = λ/w0π,

which is 1.0mrad for the case being considered.

The radiance of even a 1mW He:Ne laser is astonishingly large: using
the beam width and divergence just calculated this radiance is

R = 10−3/[ (πw2
0)(πθ2) ] = 10−3/λ2

which gives 2.5 109 Wm−2sr−1, four orders of magnitude greater than
the radiance of the Sun.3

An alternative configuration preferred for the He:Ne laser is a hemi-
spherical cavity with one plane mirror and the other having radius of
curvature close to the separation (with L < R). This arrangement is
fairly insensitive to misalignment, and lies within the region of stabil-
ity in figure 6.34. With such a cavity the laser spot size can be tuned
by altering (R − L) and can be made a few times larger than that ob-
tained with the confocal configuration. Mirrors are usually made of much
greater diameter than the laser beam in order to make construction and
alignment easier. The beam can then be clipped by an aperture, placed
near to the spherical mirror of a hemispherical laser; while the glass
capillary of a He:Ne laser can be the mode-clipping aperture.

Lasers are also made with unstable cavities with one small and one
large mirror. The diverging beams can be turned to an advantage pro-
vided that the gain per pass compensates the loss of beam per pass.
Having a large beam area means that much more active material is illu-
minated and laser power is high. Radiation escaping around the smaller
mirror forms the external beam, albeit not having a Gaussian profile.

14.4.4 Hole burning

The discussion in Section 7.3.1 shows that the spectral lines of the neon
atoms at 400K in the low pressure gas of a He:Ne laser are Doppler
broadened by about 2GHz, while collision broadening is very much
smaller. Thus the width of a spectral line emitted by a group of neon

3An alternative route to this result would be to use the fact that the etendue
deduced in Section 12.10 for a single mode is λ2.
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atoms all travelling with the same velocity is equal to the homogeneous
line width, but is displaced by the Doppler shift. The upper panel of
figure 14.6 shows the Doppler broadened line of the neon transition at
632.8nm, which is also the same shape as the laser gain curve. For the
purpose of illustration, only a single cavity mode is assumed to lie within
the gain curve. Radiation in this mode can only stimulate emission from
those neon atoms whose Doppler shifted frequency is close to the mode
frequency. As explained in Section 14.4.2, at the onset of lasing the gain
is reduced to the threshold value at the cavity frequency; elsewhere the
gain profile is unaffected. This effect, shown in the upper panel of figure
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Fig. 14.6 Gain profiles for lasing where
a single cavity mode lies within the gain
profile. In the upper panel the line is in-
homogeneously broadened, so that las-
ing causes hole burning. In the lower
panel the line is homogeneously broad-
ened and the whole profile is pulled
down when lasing commences.

14.6, is called hole burning. A second hole also appears symmetrically
placed with respect to the peak of the gain profile because the beam
velocity is reversed between alternate passes through the cavity. The
width of the hole burnt in the Doppler gain profile is much narrower
than the Doppler broadened line so that much of the gain goes to waste.
This helps to explain why a He:Ne laser’s efficiency in converting electric
power at the plug to laser beam power is only 0.05%. Another reason
contributing to the low efficiency is that a lot of energy is lost in ionizing
helium atoms, which have a high ionization potential. As an example of
an efficient laser we introduce the Nd:YAG laser here.

The lasing transition in a Nd:YAG laser is that of the Nd ions, which
are diffused in a near perfect yttrium aluminium garnet crystal lattice.
Line broadening is now due to environmental effects that are common
to all the Nd ions and hence homogeneous. Consequently a cavity mode
located anywhere across the gain profile in a Nd:YAG laser can stimulate
all the Nd ions to emit. When lasing commences it pulls down the whole
of the gain profile until the gain at the frequency of the mode falls to
the threshold value. This is the case shown in the lower panel of figure
14.6. A Nd:YAG laser is therefore much more efficient than a He:Ne gas
laser.

Usually many longitudinal modes across the line profile compete for
the pumped energy. In a He:Ne laser they act on separate sets of atoms
with different velocities, so that many modes lase at the same time. Ini-
tially it was thought that with homogeneous line broadening only the
mode nearest the gain peak would lase. However modes draw energy
principally from atoms around their antinodes, and the antinodes of dif-
ferent modes are at different locations. As a result modes around the
gain peak lase, but relatively fewer than with inhomogeneous broaden-
ing.

Hole burning has a positive value: it provides a signal by which a laser
can be tuned to the centre of the natural line. Of course this implies a
mechanism to control the laser frequency by, for example, altering the
cavity length. If the two complementary holes burnt in the profile are
brought to coincide at the centre of the profile, then the laser frequency
coincidences with the centre of the spectral line. In this condition the
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laser power drops sharply because the components of the laser beam
travelling in opposite directions now stimulate the same group of nearly
stationary atoms. This minimum in the laser intensity, the Lamb dip,
signals that the laser frequency is tuned accurately to the transition
frequency.

14.4.5 Laser speckles

Laser speckles are the familiar bright spots seen when a laser beam
falls on any surface that is not perfectly flat. The pattern changes and
appears to scintillate as one’s eye moves. This effect comes about be-
cause the laser beam is coherent across the area of each mode, which
can mean across the whole beam. In this situation light reflected from
all the surface imperfections illuminated will therefore interfere, and the
eye perceives a pattern of bright and dark spots formed by this inter-
ference. The features of the interference pattern have a mean angular
size determined by the resolution of the eye: this is λ/d, where λ is the
laser wavelength and d the diameter of the observer’s pupil. Even small
involuntary eye movements change the relative path length from the
observer’s eye to different points on the surface by many wavelengths,
and this causes the scintillations. Laser speckles have features in com-
mon with the speckles described for astronomical images in Section 8.4.
In each case light encounters irregularities within its coherence area:
irregularities in the surface viewed give rise to laser speckles, while as-
tronomical speckles originate with variations in the refractive index of
the atmosphere.

14.4.6 Optical beats

The possibility of observing beats between two coherent sources differ-
ing in frequency by ∆f was discussed in Section 5.5.2. It was shown
that the interference could be detected if the detector had a response
time shorter than 1/∆f . This interference was first observed optically
by Javan, Ballick and Bond in 1962.4 In their experiment two indepen-
dent He:Ne lasers of slightly different length were operated so that each
lased in a single longitudinal TEM00 mode at 1.153µm wavelength. It
was arranged that the beams had parallel polarizations and then they
were superposed using mirrors so that the combined beam struck a pho-
tomultiplier. The output of the photomultiplier was spectrum analysed
and seen to contain the expected beat note at around 5 MHz. There is
an apparent paradox because a photon originating from one laser at one
frequency would only be expected to interfere with itself and not with
a photon at another frequency from a different laser. The resolution of
this quandary lies in asking whether it is possible to distinguish which
laser any particular photon came from. If it is then there should be no
interference. However, if as in Javan’s observations, it is not possible to

4A. Javan, E. A. Ballick and W. L. Bond: Journal of the Optical Society of
America 52, 96 (1962)



398 Lasers

identify which source the photons come from, then interference will be
observed.

14.5 The CO2 gas laser

CO2 lasers contain a gas mixture at around 0.1 atmosphere pressure,
consisting of ∼ 12% CO2, ∼ 8% nitrogen, with the balance being helium.
Lasing occurs between the vibrational energy levels of the CO2 molecule
shown in figure 14.7; the lasing wavelength can be either 10.6µm or
9.4µm. An electric discharge, which can be continuous or pulsed at a
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Fig. 14.7 Energy levels involved in the
operation of a CO2 laser. Sketches of
the vibrational excitations are drawn
near to the corresponding levels.

few kilohertz, provides energetic electrons which collide with and excite
the nitrogen molecules. These in turn transfer their excitation energy in
further collisions to CO2 molecules. Some CO2 molecules are then in the
uppermost vibrational excited state shown in the diagram with decay
rates of around 0.3 s−1 for the two decays drawn there. After the lasing
transition is completed the daughter states themselves are short lived,
and so a population inversion is produced. Cartoons drawn close to the
levels involved in lasing in figure 14.7 indicate the types of vibration
occurring in these states. The helium atoms are useful both in helping
to deplete the lower enegy states in collisions and in carrying off the
heat generated to the walls of the laser tube. These lasers have modest
efficiencies of around 10%, so there is a lot of heat to dissipate. In multi-
kilowatt CO2 lasers the gas is circulated through a heat exchanger in a
closed loop, and the laser beam is folded as shown in figure 14.8. TheRelay
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Fig. 14.8 Beam path and gas flow in-
side a CO2 gas laser.

relay mirrors are copper and the exit mirror is some material such as
GaAs which has a low absorption coefficient for 10µm radiation. Both
the mirrors and the tube are water cooled.

Industry uses large numbers of CO2 gas lasers for marking and cut-
ting metals and ceramics, as well as for welding. As an example a
commercial 5 kW pulsed CO2 laser can cut 1 cm thick steel plates at the
rate of 2 cm s−1. The pulsed power density employed in drilling reaches
1012 Wcm−2 so that the material is ablated, thus eliminating the swarf
associated with mechanical tools. Much lower power CO2 lasers are used
in medicine, in particular for delicate vocal chord surgery.

14.6 Organic dye lasers

The active material of these lasers is a dye-loaded liquid or solid. A dis-
tinguishing feature is that the gain bandwidth is broad and within this
range the wavelength is continuously tunable. In fact dye lasers were the
first fully tunable lasers. Specializing to liquid lasers, the lasing material
is a dye dissolved in water or in an organic solvent at a dilution of parts
in 104, sufficient to isolate the dye molecules from one another and so
ensure that they enjoy similar environments. These complex molecules
possess a variety of molecular vibrational and rotational states which
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result in broad continuous bands of energy levels, as illustrated in figure
14.9. This gives dyes their characteristic property of being able to ab-
sorb and emit over a range of wavelengths. One such dye is rhodamine
6G which can lase at any wavelength in the range 570–610nm; another
is Na-fluorescein which can lase anywhere between 535 and 570nm. The
dye molecules must be first pumped to the S1 band using radiation of
wavelength shorter than the wavelength at which the laser is to operate.
One electron within a molecule is then in an excited state. In the singlet
(S) and triplet (T) levels its spin is aligned respectively anti-parallel and
parallel to the spin of the rest of the molecule; both partners having
spin h̄/2. The interband transitions S ↔ S and T ↔ T are allowed and
fast, while the T ↔ S transitions have lifetimes of order 10−5 s. Excita-
tion to the S1 band is followed by a rapid de-excitation through several
steps to the lowest level in the S1 band in about 10−12 s. Thereafter the
molecule makes an interband transition to some level in the S0 band,
the lifetime for this transition being a few times 10−9 s, and this is the
lasing transition. Finally the molecule drops into the ground S0 state in
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Fig. 14.9 Energy levels involved in the
operation of a typical dye laser.

a further 10−12 s.

Dye lasers can be operated to give either pulsed or continuous wave
lasing. Figure 14.10 shows the principal components of a CW dye laser.
The dye is in the form of a stable continuous liquid jet crossing a reso-
nant cavity. Energy is pumped into the dye by a flash lamp or another
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Mirror

Dye jet
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Dye laser
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Fig. 14.10 Outline structure of a dye laser.

laser, often a frequency doubled Nd:YAG laser with output wavelength
532nm; this pump light is focused onto the dye where it crosses the cav-
ity. The cavity is defined by a mirror and an echelle grating, with the
grating mounted in the Littrow configuration described in Section 6.9.4.
In this arrangement the grating orientation selects the lasing wavelength
and its resolving power determines the spectral width of the laser beam.
Then in order to make full use of the resolving power of the grating
the beam is expanded using a telescope so as to cover the entire grat-
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ing width. The faces of the dye jet stream in the excitation region are
inclined at the Brewster’s angle to the beam in the cavity. Only the
p-polarized light is then fully transmitted at these surfaces, with the
result that only this polarization component achieves positive gain on
a round trip in the laser cavity. This means that the laser beam elec-
tric field will lie in the plane of the diagram. Any misalignment of the
electric fields of the pump and the dye laser reduces the efficiency of the
pumping process, consequently the angle between the pump beam and
the dye laser beam is kept as small as possible.

The line widths achieved with the layout shown in figure 14.10 are in
the range 0.3–10GHz. A layout which produces better resolution will
be described later for the Ti:sapphire laser, another tunable laser. Then
line widths in the range 1–10MHz are obtained.

Unavoidably some small proportion of the dye molecules decay from
the S1 band into the T1 band so that there is a steady accumulation of
molecules in the T1 band. These molecules then readily absorb light to
make further T → T transitions, light that might otherwise contribute
to stimulated emission. In order to sustain continuous operation the dye
must be refreshed, and therefore it is pumped around a circuit. This cir-
culation also avoids continuous exposure of the dye to the intense laser
beam which can break down the dye molecules.

The existence of tunable lasers has made it possible to develop new
spectroscopic techniques. Two examples of such techniques will now be
examined: saturation spectroscopy in which the Doppler broadening of
spectral lines is eliminated, and cavity ring-down spectroscopy which is
used to study weak spectral lines.

14.6.1 Saturation spectroscopy

Saturation spectroscopy was first developed by Haensch, Levenson and
Schawlow and by Bardé.5The upper panel of figure 14.11 shows part of
the emission spectrum of hydrogen gas at room temperature around the
Hα line at 656nm. In the lower panel the same spectrum appears, this
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Fig. 14.11 The upper panel shows the
hydrogen gas emission spectrum near
the Hα line at room temperature. The
Doppler broadening is ∼6GHz. In the
lower panel the saturation spectrum is
shown, with a resolution improved by
a factor of around 20 (courtesy Prof.
Haensch).

time taken using saturation spectroscopy. The Doppler broadening has
now been eliminated and fine structure, not previously observable in the
spectrum by optical methods, is clearly revealed. The Doppler width of
a spectral line is given by eqn. 7.40, which predicts that in hydrogen gas
at room temperature the width of these lines is around 6 GHz, compared
to the natural linewidth ∼100MHz for such allowed transitions.

Figure 14.12 contains a sketch of the equipment used in saturation

5T.W. Haensch, M.D. Levenson and A.L. Schawlow: Physical Review Letters
27,707 (1971); C. Barde: Comptes Rendues Acad. Sciences, Paris 271, 371 (1970).
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spectroscopy. The input beam comes from a laser whose frequency can
be tuned continuously over the range of interest; it could be either a
pulsed dye or a Ti:sapphire laser. This beam is split in two beams and
these daughter beams are directed in opposite directions through the cell
containing the gas so that their paths overlap there. One of these beams,
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Fig. 14.12 Apparatus for saturation spectroscopy. Adapted from T.W. Haensch,
I.S. Shain and A.L. Schawlow: Physical Review 27, 707 (1971). Courtesy Professor
Haensch and the American Physical Society.

the pump beam, is around ten to one hundred times more intense than
the other, the probe beam. After emerging from the cell the probe beam
falls on a detector whose output will provide a record of the absorption
spectrum. The experiment involves scanning the dye laser frequency in
small steps across the Doppler gain profile of the absorption line of the
gas, and recording the detector current at each step.

The Doppler broadened profile of a transition is shown in the upper
panel of figure 14.13, plotted as a function of the velocity of the atoms
toward the probe beam. Suppose that the frequency of the laser, f , is
lower than the transition frequency of the gas being investigated, f0.
Each beam will only be absorbed by atoms moving towards it with
velocity v such that the beam appears blue-shifted as seen by the atoms
to ω0. That is

f0 = f(1 + v/c).

As a result the pump burns a hole in one side of the Doppler profile and
the weaker probe samples the atoms on the opposite side of the profile,
which is indicated in figure 14.13. During the laser frequency scan the
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Fig. 14.13 The upper panel shows
the spectral line plotted against the
velocity of the atoms toward the
probe beam. In the lower panel the
pump/probe frequency coincides with
the line centre.

attenuation of the probe beam emerging from the gas cell follows the
Doppler profile until the laser frequency reaches the centre of the pro-
file. At this stage the pump and the probe are both being absorbed by
the population of atoms at rest, so that the population the probe sam-
ples is depleted by the action of the pump. Consequently the detector
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response follows the curve shown in the lower panel of figure 14.13 with
a narrow dip centred on the transition frequency. The width of this dip
is determined by the combination of the homogeneously broadened line
width, ∆fh and the laser line width, ∆fl. Doppler broadening has been
eliminated. A limit to the resolution attainable is set by the laser line
width, which is around 1MHz for modern dye lasers.

Thus far no mention has been made of the second probe beam in
figure 14.12, which passes through a part of the gas cell well away from
the pump beam. This probe falls on a second detector which therefore
records the pure Doppler profile. Then the Doppler free spectrum can be
isolated by subtracting the first detector signal from the second detector
signal. Two further important components are not illustrated in the
figure, which together suppress backgrounds. The first is an electrically
driven mechanical windmill which is used to chop the pump beam; the
second is a phase sensitive detector fed by the difference amplifier, which
selects the component of this signal at the chopping frequency.

14.6.2 Cavity ring-down spectroscopy

The study of very weak transitions poses a new problem because the ab-
sorption that a beam experiences in passing through the sample becomes
undetectable. For the same reason it is difficult to detect the presence of
a gas through its absorption spectrum if this gas is at a low concentra-
tion in a gas mixture. An obvious way to enhance weak spectral features
is to pass the the beam repeatedly through the gas sample. This method
was taken to its limit in 1988 by O’Keefe and Deacon in what is called
cavity ring-down (CRD) spectroscopy.6 This technique is now widely
used in environmental science studies. They enclosed the gas sample
in a Fabry–Perot cavity with high reflectance mirrors so that the light
traversed the gas very many times. The basic elements of the apparatus

L

Pulsed
laser beam

Gas filled 
Fabry-Perot cavity

Photomultiplier

Coherence length

Fig. 14.14 Apparatus for cavity ring-down spectroscopy, with an optically stable
Fabry–Perot cavity.

6A. O’Keefe and D.A.G. Deacon: Review of Scientific Instruments 59, 2544 (1988)
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are shown in figure 14.14. In a single measurement step one laser pulse
at the desired frequency is injected into a Fabry–Perot cavity containing
the gas of interest. Unlike other applications of the Fabry–Perot cavity
the coherence length of the pulse is kept much shorter than the cavity
length so that multiple beam interference effects are eliminated. The
pulse behaves like a shuttlecock bouncing to and fro between the cavity
mirrors. On the far side of this cavity from the laser source a photomul-
tiplier and its associated circuitry continuously record the instantaneous
intensity of light passing through the mirror. Depending on the level of
absorption of the laser pulse within the cavity, the signal at this detector
will decay more or less slowly. The quantity of interest is the time it
takes for the intensity of the light reaching the photomultiplier to fall
by a factor e. From this cavity ring-down time the absorption coefficient
of the gas at the wavelength of the laser can be determined. A series
of such measurements are taken as the laser frequency is tuned over its
spectral range, and from these measurements the absorption spectrum
of the gas can be tabulated against frequency.

Obviously the ring-down time is also affected by the rate at which the
light escapes from the cavity through the mirrors. If this rate is too high
the decay due to absorption becomes undetectable. Hence the mirror
reflectance needs to be close to unity, with 1−R typically less than 10−4.

Suppose that the cavity is filled with a gas whose absorption coefficient
at the laser frequency is α, and that the cavity has length L. Then the
intensity change in the laser beam in one round trip is

r = exp (−2αL)R2,

where we assume that the mirrors have equal reflectance. The time taken
for one round trip is 2L/c. Then the above equation can be rewritten
as a function of t, the time elapsed since the pulse entered the cavity,

r = exp (−cαt)R2.

Averaging over times long compared to one round trip, the intensity
measured by the photomultiplier has this time dependence

I(t) = I(0) exp (−cαt)R2n

where n is the number of round trips in time t. Now n is simply ct/2L
so we have

I(t) = I(0) exp (−cαt)Rct/L.

Next taking logarithms, and recalling that when R is very close to unity
the approximation − ln R = 1 − R is valid, we have

ln [ I(t)/I(0) ] = −cαt − (1 − R)(ct/L).

An exponential curve is fitted to the variation of the intensity with time
and from this a decay constant, τ , can be extracted:

1/τ = cα + c(1 − R)/L, (14.29)
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which is called the cavity ring-down time. If the cavity is evacuated and
the ring-down time remeasured at the same frequency the result is

1/τ0 = c(1 − R)/L. (14.30)

Evidently the effective path length traversed by the pulse is

Leff = L/(1 − R),

which for a cavity of length 0.5m and mirrors with reflectance 0.9999
is about 5000m. This large amplification of the length traversed by the
laser pulse means that very weak spectral features become detectable.
The evacuated cavity ring-down time corresponding to these parameters
is 16.7µs. Subtracting eqn. 14.30 from eqn. 14.29 gives the absorption
coefficient

α = 1/cτ − 1/cτ0. (14.31)

Defining ∆τ to be the precision of timing, then the minimum detectable
absorption is

αmin ≈ (∆τ/cτ2). (14.32)

Taking ∆τ to be a modest 1 ns, αmin is 10−8 m−1 for the case consid-
ered. Sensitivities a thousand times smaller are attained with ring-down
spectrometers based on the design described here. The beauty of cavity
ring-down spectroscopy is that, unlike standard absorption spectroscopy,
it is insensitive to fluctuations in the laser intensity: only the ring-down
time is being measured.

A novel application of CRD spectroscopy is in the determination of
the reflectance of mirrors, like those used in gravitational wave inter-
ferometers, whose reflectances differ from unity by only one part in a
million. The ring-down time of an empty cavity made from these mir-
rors is measured and inserted in eqn. 14.30, and this gives a precise
value of the reflectance of the mirrors. No other methods of measuring
reflectance appear to be competitive when the reflectance is that close
to unity.7

14.6.3 A heterodyne laser interferometer

The design described here is of a modern precision Michelson interfer-
ometer used to measure distances with nanometre accuracy. The source
used is a stabilized He:Ne laser with long coherence length. Heterodyn-
ing is a term taken from radio usage to describe the beating together
of two electromagnetic beams of slightly different frequency: one is an
unmodulated reference wave and the other wave is modulated. In this
way the modulation is transfered to the beat note and is accessible to
recovery electronically. A key feature of the interferometer is to split the
emission from a single laser into orthogonally polarized components with
frequencies differing by a few megahertz. These two beams are individ-

7See C. J Hood, H.J. Kimble and J. Ye: Physical Review A64, 033804 (2001).
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Fig. 14.15 Two-frequency Michelson interferometer. The cross-hatched boxes are
quarter-wave plates, the solid boxes are mirrors and the open boxes are plane polar-
izers. Detectors are drawn as half moons. The two frequencies’ paths are indicated
by grey and open arrows, with their polarizations alongside.

ually coherent so that during any coherence time their relative phase is
varying linearly with time. One way to produce the desired beams is to
place the laser in a longitudinal magnetic field which Zeeman splits the
emission line. The difference in their polarization is used to separate the
beams so that one beam travels along one arm and the other beam along
the other arm of the Michelson interferometer. After passing through the
interferometer the beams interfere and give a beat wave at a few mega-
hertz which carries the interference information. Electronics is used to
count the integral number of fringes appearing at the centre of the field
during the translation of the mobile mirror. How this measurement is
extended to give the movement to a fraction of a fringe is now addressed.

Figure 14.15 shows the interferometer. The two beams are partially
reflected at the beam splitter BS to provide a reference signal. The re-
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flected beams travel through a polarizer P2 with its axis set at 45◦ to
both polarizations. The two components emerge from P2 with identi-
cal polarization and, applying Malus’s law, half their incident intensity.
These components interfere at the photodetector D2 to give a reference
signal

Aref = [exp (iωt) + exp (iω′t)]/
√

2.

The intensity averaged over times long compared to the optical period,
but small compared to the beat period is

Iref = AA∗ = 1 + cos∆ωt,

where the beat angular frequency, ∆ω = ω −ω′. Capacitive coupling to
the detector removes the DC component of the signal giving a reference
signal

Iref = cos∆ωt. (14.33)

This result needs further comment to bring out some salient points.
The first thing to note is that the interference between the two different
wavelength beams produces beats with a beat period 2π/∆ω ∼1µs. A
laser source with a very stable frequency is required in order to make
its coherence time long compared to this beat period. Detectors are
readily available with short enough response times, ∼1 ns, so that they
can record these fast beats. Detectors will be discussed in the following
chapter.

A second beat signal is obtained from the radiation falling on the
other detector D1 and this contains the information on the path differ-
ence between the interferometer arms. The two beam components that
go straight through the first beam splitter are separated by the polarizing
beam splitter PBS. One frequency component (with one polarization)
is reflected from mirror M1 while the other frequency component (with
orthogonal polarization) is reflected from mirror M2. Both beams make
two passes through a quarter-wave plate which rotates their polariza-
tions by 90◦. The returning beams are therefore both directed by the
PBS onto the 45◦ polarizer P1. They emerge from P1 with identical
polarization and fall on the photodetector D1. The wave falling on D1
is thus

Aint = {exp iωt + exp [i(ω′t + φ)] }/
√

2,

where φ is the phase change due to the difference in the paths via M1 and
M2. Repeating the analysis previously carried through for the reference
signal we obtain the time averaged signal recorded by the detector D1

Iint = cos (∆ωt + φ). (14.34)

This is called the interferometer signal. The reference and interferometer
signals, given in eqns. 14.33 and 14.34, are multiplied electronically,
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yielding

Ih = cos (∆ωt + φ) cos∆ωt

= cos2 ∆ωt cosφ + cos∆ωt sin ∆ωt sinφ

= {[cos (2∆ωt) − 1] cosφ + sin (2∆ωt) sinφ}/2.

The next processing step is to take the time average of Ih over an interval
much longer than the beat period. This gives

Ic = −(cosφ)/2. (14.35)

A second similar electronic chain is used to multiply Iint by the quadra-
ture of Iref , namely I ′ref = sin ∆ωt, and the time average of this product
is taken. This yields

Is = −(sin φ)/2. (14.36)

Next φ is extracted from Ic and Is, and finally if the integral fringe count
is m, the total distance travelled by the mobile mirror is

t = (λ/2n)(m + φ/2π), (14.37)

where n is the refractive index of the air in the arms of the interferometer.

The precision is mainly limited by the degree of flatness of the inter-
ferometer mirrors. If these are flat to better than λ/100 then the path
difference can be determined to λ/100.

A determination of the direction of travel requires some more circuitry
and software analysis. The values of sin φ and cosφ are recorded at fixed
time intervals and the changes between measurements calculated. Then
for example a product is taken of cosφ and the change in sinφ,

∆(sin φ) cos φ = cos2 φ∆φ.

From eqn. 14.37 we can see that the sign of this product depends on the
direction of travel of the mobile mirror.

Information about the mirror velocity can be extracted if the phase
shift produced by the mirror movement is measured dynamically. While
in motion the moving mirror induces a Doppler shift of the frequency
of the reflected light ω by an amount 2vω/c, where v is the mirror’s
instantaneous velocity. As a result the instantaneous difference between
the angular frequency of the interferometer and reference signals is

Ω = ∆ω + 2ωv/c. (14.38)

If this frequency difference is measured continuously it provides a con-
tinuous record of the mirror’s velocity. In practice the mobile mirror is
mounted onto the object whose motion is of interest.
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Measurements of velocity using a single frequency laser beam are also
feasible. However this homodyne interferometry has significant disadvan-
tages relative to heterodyne operation. Although beating the returning
beams still yields a Doppler shift in frequency it is now with respect to a
baseline frequency shift, ∆ω, of zero hertz at zero velocity. Information
as to the direction of motion is therefore lost with homodyne operation.
A velocity of 1m s−1 gives a Doppler shift of 3.2MHz for a wavelength
of 633 nm, which means that in homodyne operation the electronics has
to uniformly amplify signals over the range from DC to radio frequen-
cies, which is costly. By contrast, in heterodyne operation the signal
frequencies lie entirely in the radio band, so that the extraction of the
velocity and its direction are straightforward.

14.7 Introducing semiconductors

Semiconductor lasers were developed later than gas lasers, but are now
the most widely used: of order a hundred million are manufactured each
year. As a preliminary to discussing this important class of lasers a brief
description of the relevant properties of semiconductors is given here.

In solids the neighbouring atoms are sufficiently close that their elec-
tromagnetic interactions alter the quantum states of the outermost elec-
tron shells. Instead of the single discrete energy state repeated for each
atom in a gas there are states shared across the crystal which are all
slightly different in energy and so cover a band of energies. Figure 14.16
shows typical examples of the energy bands occupied by the electrons
from the outer unfilled shell in the cases of a conductor, a semiconductor
and an insulator. At the absolute zero of temperature the electrons pack
down to fill the energy levels below a limit EF, called the Fermi energy,
while all higher energy levels are empty. Those levels which are occupied
by electrons at low temperature are shaded in figure 14.16. The lower,
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Fig. 14.16 Conduction and valence
bands for a conductor, a semiconduc-
tor and an insulator. In each case the
broken line indicates the Fermi energy.

valence, band is full in the cases of insulators and semiconductors. Thus
if a voltage is applied across these materials no current flows because the
Pauli principle prohibits another electron from entering an energy state
already containing an electron. In metals the conduction band is partly
filled and current can flow across the metal. Going now to a temperature
T K the probability for a given level of energy E being occupied is given
by the Fermi–Dirac formula

F (E) = {exp [ (E − EF)/kBT ] + 1}−1, (14.39)

analoguous to eqn 13.80. This distribution is illustrated in figure 14.17
for a semiconductor. The average thermal excitation at room temper-
ature is 0.025 eV. In the case of semiconductors the band-gap between
the valence and conduction bans is sufficiently small, ∼1 eV, so that the
thermal excitation causes appreciable numbers of electrons to enter the
bottom of the conduction band at room temperatures and leave empty
energy levels (holes) in the valence band. If a voltage is applied across
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the semiconductor the electrons in the conduction band will move. Holes
in the valence band behave as if they had an effective mass equivalent
to that of an electron and positive charge. This behaviour is crucial
to the analysis of semiconductor behaviour. The electron and hole mo-
tion contribute equally to the current in a semiconductor. By contrast
the band-gap in an insulator is so large that thermal excitation causes
negligible promotion of electrons into the conduction band, and hence
only tiny currents flow. Copper, a metal conductor, has an electrical
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Fig. 14.17 Energy distribution in a
semiconductor at a finite temperature.

conductivity of ∼6 107 S m−1; semiconductors such as silicon and GaAs
have an electrical conductivities which are orders of magnitude lower,
4.3 10−4 S m−1 and 3 10−7 S m−1 respectively; insulators like glass have
electrical conductivities that are less than 10−10 S m−1.

When an electron drops from the conduction to the valence band in
a semiconductor a photon may be emitted, and this transition is the
lasing transition in semiconductor lasers. It is important in semicon-
ductors such as GaAs. It would be convenient if it were also an impor-
tant process in silicon which is the semiconductor mostly widely used
in electronics: unfortunately it is not. This difference in behaviour is
connected with differences in the electron kinetic energy–wave number
(E–k) distributions within the valence and conduction bands for GaAs
and silicon. These distributions are compared in figure 14.18. A transi-
tion in which an electron drops from the conduction band to the valence
band in silicon involves a change of 1010 m−1 in the value of its wave
vector k. However the value of the wave vector of the infrared photon
emitted in the transition is far smaller, 106 m−1. Consequently the vec-
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Fig. 14.18 The E-k distributions of
electrons and holes in GaAs in the up-
per panel, and in silicon in the lower
panel. E is the electron/hole kinetic
energy and k the wave vector. Radia-
tive transitions are shown in each case.

tor sum of the electron and photon wave vectors does not vanish, and
as a result momentum would not be conserved. The only way that the
overall momentum can be conserved is for the imbalance to be taken
up by a phonon, that is to say, a quantum of mechanical oscillation of
the silicon lattice. Such a complex radiative process has a characteristic
time of around 1ms, making it far slower than competitive non-radiative
processes by which the electron can reach the valence band.

In the corresponding radiative transition in GaAs the electron gets rid
of its potential energy without any change in momentum, and a pho-
ton alone is emitted. This radiative transition is therefore very fast,
with characteristic time around 1 ns. As a result the far slower non-
radiative transitions are rare. GaAs is an example of what is called a
direct band-gap semiconductor, while silicon is called an indirect band-
gap semiconductor. Only the direct band-gap semiconductors with their
efficient conversion of injected holes and electrons to photons offer any
potential for constructing lasers.

The energy of the photons emitted is simply the band-gap energy. This
is 1.43 eV in GaAs, corresponding to a wavelength of 865 nm, slightly
outside the visible spectrum. Radiative transitions are suppressed if
the semiconductor crystals have imperfections: such dislocations then
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provide sites for fast non-radiative processes. The E–k curve in figure
14.18 for electrons in the conduction band is described near the apex by
an expression similar to that expected for free electrons,

E = k2h̄2/(2m∗) + Ec, (14.40)

where Ec is the energy at the bottom of the conduction band. The mass
is replaced by an effective mass, m∗, to account for the effect of the
electron’s interactions with the lattice ions. The effective mass of an
electrons in the conduction band of such semiconductors is ∼ 0.1me. In
the valence band the corresponding relation is

E = −k2h̄2/(2m∗) + Ev, (14.41)

where Ev is the energy at the top of the valence band. The electrons
behave as if their mass were negative. Consequently a hole in the valence
band, which is the absence of an electron with negative mass, behaves
like a particle with positive mass and charge.

The pure semiconductors which have been under discussion so far
consist of one element or one uniform alloy. They are called intrinsic
semiconductors and their conductivity is called intrinsic conductivity.
Additional extrinsic conductivity can be obtained by doping intrinsic
semiconductors with a sufficiently low concentration of atoms of other
suitable elements such that the doping does not produce dislocations; the
resulting extrinsic semiconductors have properties that can be tailored
to make a wide variety of semiconductor lasers. GaAs is a semiconduc-
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Fig. 14.19 Semiconductor energy lev-
els produced by p- and n-doping. The
arrows indicate the thermal excitation
of electrons, as described in the text.

tor widely used in lasers and will be the example we specialize to here.

Gallium is an element in group III of the periodic table with three
valence electrons per atom and arsenic is from group V with five valence
electrons per atom. The Ga and As atoms in GaAs share eight valence
electrons in a covalent bond. Replacing a small fraction of the gallium
atoms with similar sized atoms from a group IV element, such as Sn or
Si, leaves the crystal structure unchanged while each such donor atom
provides one valence electron surplus to the requirement of forming the
covalent bond. The extra electrons inhabit what are called donor quan-
tum states: these electrons are are only weakly bound to their parent
ion in orbits which extend over many atoms. The donor states lie only of
order 0.01 eV below the conduction band, so that at room temperature
a high proportion of the donated electrons are thermally excited into
the conduction band and can contribute to the current when an electric
field is applied.

On the other hand if the gallium atoms are replaced by atoms such
as zinc or cadmium with one fewer valence electrons, then vacant accep-
tor levels appear whose energies lie slightly above the valence band. At
room temperature electrons from the valence band are thermally excited
into these acceptor levels leaving holes in the valence band, and these
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holes are available to carry current. Both donor and acceptor levels are
shown on figure 14.19. The correspondingly shifted Fermi levels are also
indicated. Acceptor and donor doped GaAs are known as p-GaAs and
n-GaAs respectively. The electrons in n-GaAs and the holes in p-GaAs
are known as majority carriers, while the other carriers are called minor-
ity carriers. Doping improves the concentration of carriers dramatically,
that is to say the concentration of electrons and holes that contribute
to the current. Whereas in intrinsic GaAs the carrier density is around
one in 1016 atoms, a typical doping level of one atom in 106 produces
a carrier density of around one in 106 also. Heavy n/p-doping (above
roughly one in 104) in which the conductivity approaches that of met-
als is labelled as n+/p+-doping; light n/p-doping (below roughly one in
109) in which the conductivity remains near the intrinsic conductivity
is labelled as ν/π-doping.

Figure 14.20 shows the energy levels across the diode junction be-
tween p-GaAs and n-GaAs. When no external voltage is applied, which
is the case illustrated in the upper panel, the electrons flow from the
n-doped region until the Fermi levels are equalized on the two sides of
the junction. The resulting relative negative voltage of the p-doped re-
gion increases the energy of the electrons in this region, and is called the
contact potential, VJ. In the lower panel of this figure the same junction
is forward biased, meaning that an external positive voltage, typically 1
or 2 volts, is applied to the p-doped region. This flattens the ramp in
energy across the contact region. There is now a population inversion in
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Fig. 14.20 Energy diagrams for a semi-
conductor junction diode: in the upper
panel with no applied field; in the lower
panel with forward bias. A radiative re-
combination is shown.

the region of contact, which is maintained by the continuous injection of
electrons from the n-doped side and holes from the p-doped side. In di-
rect band-gap semiconductors like GaAs the injected electrons will drop
into the injected holes when they meet at the junction, and photons
having an energy equal to the band-gap energy, Eg will be emitted.

A device made in this way is a light emitting diode (LED), and is an
incoherent source. Figure 14.21 shows a cross-section through a simple
LED. Red, green and blue LEDs are built using semiconductors with ap-
propriate band-gaps. Advanced designs have structures that can share
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Fig. 14.21 A cross-section through a
light emitting diode. The outer dimen-
sions in this plane are a few microns.

features of the semiconductor lasers described below. LEDs are widely
used in displays now seen on car dashboards, in hand torches and in traf-
fic lights. LED lifetimes now exceed those of any competitive sources
and it is likely that future high intensity arrays of LEDs will replace
many lighting elements.

The remaining ingredient required to turn a doped forward biased
GaAs junction into a semiconductor laser is a Fabry–Perot cavity. A
standard technique is to cleave the GaAs along crystal planes so that
these form moderately high reflectance mirrors at the ends of the device.
Such a simple homojunction diode made of bulk p- and n-doped material
will not lase at room temperatures because the electrons and holes spread
many microns from the junction where the inversion occurs.
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14.7.1 DH lasers

The basic semiconductor lasers which operate efficiently in ambient con-
ditions have the generic structure illustrated in figure 14.22. This shows
a cross-section taken perpendicular to the direction of the laser beam.
Lasing occurs in the GaAs region sandwiched between layers of n- and
p-doped GaAlAs. In the GaAlAs alloy a proportion of the gallium atoms
are replaced by aluminium atoms, aluminium being another group III
element with the same number of valence electrons as gallium. There
are two heterojunctions separating pairs of dissimilar semiconductors, n-
GaAlAs/GaAs and GaAs/p-GaAlAs, thus making a double heterostruc-
ture (DH). The width of the positive metal strip in contact with the p-
GaAlAs determines the region through which the electric current flows
and hence the width of the region in the GaAs layer which lases. This
active stripe has a rectangular cross-section, ∼100nm by a few microns.
Its length along the beam direction, which lies perpendicular to the
diagram, being of order 0.3mm. The GaAs crystal is cleaved along
crystal planes lying parallel to the diagram in order to form a reflective
Fabry–Perot cavity. GaAs has a high refractive index, 3.6, which when
substituted into eqn. 9.79 gives a reflectance of 0.32 at the air/cleaved
GaAs interface.

Figure 14.23 shows the level structure when the DH is strongly for-
ward biased, that is with the p-region made positive with respect to the
n-region. The alloy GaAlAs has a larger band-gap than GaAs, therefore
the GaAs layer forms a well in potential energy for both the electrons in
the conduction band and also, paradoxically, for the holes in the valence
band. Note that while the electron energies increase upward in the di-
agram, energies of holes (absence of electrons) increase in the opposite
sense. Thus a hole in the valence band will have its lowest energy at
the top of the valence band. Electrons and holes are injected, under the
forward bias, into the thin GaAs layer, producing a dense population
inversion there and so facilitate lasing. Another useful property of the
double heterostructure is that the refractive index of GaAlAs is less than
that of GaAs, and consequently the active region forms a waveguide to
confine the radiation laterally. This is illustrated by the diagram in the
lower part of figure 14.23.

Figure 14.24 shows a notional plot of the light intensity in the laser
beam versus the injection current. At a low injection current sponta-
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Fig. 14.22 A cross-section through a
double heterostructure laser perpendic-
ular to the laser beam’s optical axis.

neous, and therefore incoherent emission dominates; then at a current
of order 10mA the gain threshold for lasing is crossed and the light in-
tensity rises steeply with a slope of order 0.5WA−1. The gain curve for
GaAs is centred on 860nm and is about 10 nm wide so that there will
be many possible lasing frequencies satisfying the condition for standing
waves in the Fabry–Perot cavity

f = mc/2nL,
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where m is an integer, n the refractive index and L the cavity length.
Taking the laser length, which is also the cavity length, to be 0.3mm and
the GaAs refractive index of 3.6, then the mode spacing will be 140GHz
in frequency or 0.35 nm in wavelength. When the injection current is
below threshold the thirty or more modes lying within the gain curve
radiate equally, but when the injection current rises above the threshold
only one or two modes near the peak of the gain curve will lase.

If ∆I is the excess current above the threshold value the number of
electron/hole annihilations per second contributing to lasing is ∆I/e.
Then the laser beam power is

P = η(∆I/e)hf, (14.42)

where the overall efficiency of electron/hole annihilations to give pho-
tons in the laser beam, η, is around 0.3. An estimate of the threshold
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Fig. 14.23 The upper panel shows the
energy levels in a double heterostruc-
ture GaAlAs laser. The lower panel
shows wave intensity variation across
the same section.

current density can be obtained by supposing that the threshold current
of 10mA is spread over the active stripe of area 300µm by 3 µm: this
gives 1000A cm−2. Diffraction at the exit side surface of the active stripe
produces a rather wide angle beam of elliptical cross-section. Astigmatic
lenses or an anamorphic pair of prisms, like those shown in Figure 2.18,
are used to reshape and focus the beam. Although semiconductor lasers
have active regions whose linear dimensions are roughly one thousandth
those of gas lasers, nonetheless their beams have comparable powers,
and this reflects the relative density of the population inversions in the
two classes of laser.

In double heterostructures like that shown in figure 14.22, the alloys
on either side of each junction must have crystalline structures which
match to high precision. Otherwise there would be defects in the re-
gion of the junctions, and such defects would provide locations at which
non-radiative electron/hole annihilations would proceed rapidly. This
would rule out any prospect of lasing. Fortunately Ga1−xAlxAs crystals
are all interpenetrating face centred cubic lattices whose lattice con-
stant changes negligibly, from 0.564 to 0.566nm, as x varies from zero
to unity. This makes it possible for crystals to be grown with few de-
fects at the boundary between different GaAlAs alloys. GaAlAs lasers
are built whose lasing wavelength can be designed to lie anywhere in
the interval 750–870nm, corresponding to the range in x over which the
band-gap remains direct. Injection current

Spontaneous
   emission

Stimulated
  emission

Threshold

B
ea

m
 in

te
ns

ity

Fig. 14.24 Light intensity versus injec-
tion current for a typical DH laser.Silica based optical fibres exhibit extremely low absorption near wave-

lengths of 1310nm and 1550nm. Semiconductor lasers operating at
these wavelengths are made from aloys of another set of semiconductors,
whose crystal lattices and lattice constants match equally well. These
are the quaternary compounds Ga1−xInxAs1−yPy from which lasers are
built whose wavelength may be set anywhere within the range from 1000
to 1700nm. Table 14.2 gives the wavelengths available with lasers made
from a selection of semiconductor alloys. The art of band-gap engineer-
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Table 14.2 Table of ranges over which lasers can be con-
structed from various semiconductor alloys.

Alloy Range in wavelength

GaAs 0.82–0.88 µm
InxGa1−xN 0.36–0.60 µm

InxGa1−xAsyP1−y 1.0–1.7 µm
AlxGa1−xAs 0.68–0.92 µm
CdxPb1−xS 1.9–4.2 µm
CdxHg1−xTe 3.2–17 µm

ing has made it possible to design semiconductor lasers which operate at
wavelengths anywhere in the near ultraviolet, visible and near infrared
parts of the spectrum.

The application of semiconductor lasers as sources for optical fibre
transmission in telecom applications will be developed in Chapter 16.
For the present we can note here several advantages of semiconductor
lasers for telecom applications:

• The etendue of a semiconductor laser beam is well matched to that
required for efficient injection into optical fibres,

• Their compactness and low voltage requirements are compatible
with standard modern fast electronics,

• The wavelengths of semiconductor lasers can be chosen to minimize
simultaneously both the absorption losses and dispersion along
optical fibres.

Any departure of a laser beam from the diffraction limited ideal is
characterized by the M 2 parameter. We use the expressions introduced
in Section 6.15. Suppose the actual beam waist and divergence are larger
by a factor M than the ideal: Θ = Mθ and W0 = Mw0. Then the
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Refractive index
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Laser beam

Fig. 14.25 A cross-section through a
DFB laser containing the beam’s opti-
cal axis.

expression for the beam width at a distance z from the waist becomes

W 2 = W 2
0 + z2Θ2, (14.43)

which is M2 larger than the ideal.

14.7.2 DFB lasers

The lasers described so far use a cavity to define the lasing wavelength.
An alternative is to build wavelength selection in by forming a diffracting
structure called a distributed feedback Bragg (DFB) reflector within the
laser. This is a region in one of the bounding layers whose refractive
index varies cyclically with period Λ along the laser beam direction. It
is therefore necessary to give the laser facets an antireflection coating so
as to eliminate cavity resonances. A cross-section along the beam axis
of such a DFB laser appears in figure 14.25. There will be strong Bragg
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reflection back along the beam axis at any free space wavelength λ for
which

λ/n = 2Λ,

where n is the effective refractive index. At such wavelengths the su-
perposition of the oppositely travelling waves produces standing waves
along the beam axis. The strongest feedback is obtained by choosing
this wavelength to lie at the peak of the gain profile. Lasing is then
restricted to the mode at this wavelength. An important advantage of
DFB lasers is that linewidths are narrow, typically 10MHz or 2 10−5 nm
at 800nm wavelength.

14.7.3 Limiting line widths

The presence of spontaneous emission imposes a quantum mechanical
limit on the line width of lasers. The laser frequency is taken to be fL

and its angular frequency is then ωL = 2πfL. Suppose the number of
stimulated and spontaneously emitted photons which enter the external
beam from a single laser mode in the coherence time are respectively
n and 1, then the ratio of the respective electric field amplitudes is√

n : 1. The vector sum of these fields is presented in figure 14.26. Each
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Fig. 14.26 Diffusion of the laser phase
due to spontaneous emission.

spontaneous photon has random phase, so that each of them changes the
phase of the total field by ∆φ ∼ 1/

√
n. Successive spontaneous photons

emitted from the laser cavity cause the phase to perform a random walk
with steps spaced at intervals equal to the cavity coherence time, τc.
A random walk in phase space requires 1/∆φ2 steps to give a total
phase change of one radian, which in this case is just n steps. The time
taken is called the phase diffusion time, τD, and equals nτc. During
the phase diffusion time the laser phase would alter by ωLτD in the
absence of any spontaneous emission, hence the fractional uncertainty
in the laser angular frequency due to the phase diffusion is 1/(ωLτD).
The corresponding limiting laser line width is thus

∆ωL = 1/τD = 1/(nτc).

Now the laser beam power is

P = nh̄ω/τc,

whence
n = Pτc/h̄ω.

Substituting this value of n into the expression for the limiting linewidth

∆ωL = h̄ω/(Pτ2
c ).

This result must be multiplied by a factor (N2/∆N) because the number
of atoms in the upper level, N2, capable of spontaneous emission is
greater than the population inversion, ∆N , responsible for stimulated
emission:

∆fL = hfN2/(2π∆NPτ2
c ), (14.44)
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which is one form of the Schawlow–Townes relation.

This limiting line width is not attained for various reasons. Consider
the case of a He:Ne laser, length 0.4m, a cavity finesse of 400, 1mW
power, and assume that N2/∆N is unity. Taking a result from Section
14.4.3 τc for this cavity is 1.7 10−7 s, so that ∆fL has a value of about
∼ 10−3 Hz. This would be 10−17 times the laser frequency, and in order
not to degrade this performance the optical length of the laser would
need to be kept constant to a similar precision! Moderately well sta-
bilized He:Ne lasers have line widths of order 1MHz, and with further
refinements a width of 1 Hz is attainable. In the case of semiconductor
lasers with shorter, lower reflectivity cavities τc is a factor 104 smaller so
that ∆fL rises to ∼0.1MHz. Even this is not attainable because spon-
taneous emission causes the hole density to fluctuate and in turn these
fluctuations cause refractive index fluctuations. Line widths of the DFB
lasers are about a hundred times larger than the Schawlow–Townes limit.

Extremely narrow line widths are obtained using an empty, temper-
ature controlled, Fabry–Perot cavity to provide a stable reference fre-
quency. An active feedback system continuously drives the laser fre-
quency onto this reference frequency. The Pound–Drever stabilization
described in Section 8.12.1 is one implementation of this approach.

Laser intensities fluctuate as well as the frequency. In the case of a
diode laser the effect is due primarily to fluctuations in bias current and
temperature, as well as the statistical fluctuations of spontaneous emis-
sion and electron–hole recombinations. The overall effect is expressed
as a relative intensity noise (RIN) measured in dBHz−1. RIN makes an
important contribution to the noise on long optical links, a topic dis-
cussed in Chapter 16.

14.8 Quantum well lasers

Quantum well lasers are even more compact and efficient than the semi-
conductor lasers described so far. The thickness of the active layer where
lasing takes place is reduced from hundreds of nanometres to less than
ten nanometres, so that it is less than the wavelength of a thermal
electron.8 As a consequence such a narrow active region behaves as a
quantum well of the sort described in Section 13.3.1, and the motion of
the electron, and equally that of a hole, is quantized in the z-direction
perpendicular to the physical layers making up the laser.

8In order to appreciate this consider an electron with thermal energy at room
temperature, that is 0.024 eV. Using an effective mass of 0.067 m, appropriate for an
electron in the conduction band in GaAs, the de Broglie relation gives a wavelength
of 31 nm.
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Figure 14.27 shows the quantum well laser band structure and the dis-
crete electron and hole energy levels within the well. The energy gap is

gapE

As1-xGaxAl As1-xGaxAlGaAs

Fig. 14.27 The energy level structure
of a quantum well laser, showing a ra-
diative transition.

seen to be increased by the sum of the electron and hole kinetic energies
in their ground states.

The quantum well laser has advantages that stem from the very differ-
ent density of electron states compared to a standard double heterostruc-
ture laser. Consider first the case of electrons in bulk semiconductor:
they move freely in three dimensions with reduced effective masses, and
they have two spin states. The dynamics is the same as that of photons
in free space which was analysed in Section 9.8, and the photons also
have two spin states. Therefore we can take over the expression for the
density of states for photons and apply it to electrons in a standard DH
laser. The density of states of electrons in the non-quantum well laser
is thus

ρ(k)dk = k2dk/π2.

Re-expressing k in terms of kinetic energy E,

dk =
√

m∗/(2E)dE/h̄,

and then

ρ(E)dE = ρ(k)dk = (2m∗)3/2
√

EdE/(2π2h̄3). (14.45)

This function is drawn as the broken line in the right hand panel of
figure 14.28.

Turning to the quantum well case the density of electron states must
be strictly zero for kinetic energies ranging from zero right up to the
energy of the first quantum state, which is shown in the left hand panel
of figure 14.28. At an electron energy equal to that of the first quantum
state the density of states rises immediately to the value appropriate
to electrons moving in three dimensions with the same energy; that is
to say the density given by eqn. 14.45. When an electron has greater
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Fig. 14.28 Quantum well energy levels
are shown in the left hand panel. In the
right hand panel the density of states of
the quantum well is shown as a full line
and the density of states for an electron
in bulk semiconductor by a broken line.

energy than that of the lowest energy quantum state the excess energy
is due to motion in the transverse plane. The density of states resulting
from this motion is

ρt(Et)dEt ∝ ktdkt ∝ dEt, (14.46)

where kt is the wave number and Et the kinetic energy from this motion.
Thus the number of states occupied increases linearly with the energy
between each pair of quantum well levels. The shaded area in the right
hand panel of figure 14.28 shows the occupied states when the maximum
electron energy lies somewhere between the first and second quantum
well energies.

The large density of states accessible exactly at the energy of the first
quantum state means that the efficiency is much larger than that of DH
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semiconductor lasers with their smoothly rising density of states. In ad-
dition the quantization of the allowed states also gives a narrowing of the
gain profile, while the energy gap, and hence the laser wavelength can be
selected by making an appropriate choice of the quantum well thickness.
This makes it possible to construct a sequence of lasers with small differ-
ences in wavelength, something which is useful in telecoms applications.
Thanks to their smaller active volumes quantum well lasers can respond
to modulation at frequencies higher than standard semiconductor lasers.

Another advantage of quantum well lasers is that because the volume
of the active region is so much smaller, the threshold current density
is drastically reduced to of order 30A cm−2. The restricted size also
imposes limitations that need to be addressed.

Single quantum wells saturate at relatively low currents because the
number of electrons and holes that can be stored in smaller active region
is correspondingly less. Therefore up to tens of quantum wells are laid
down one above the other between the confinement layers, thus provid-
ing a larger active region without sacrificing the low threshold current.
As a result the optical power remains linear up to correspondingly higher
values of the injection current. These multi-quantum well (MQW) lasers
are now widely used in telecom and other applications. The small cross-
section of the active area perpendicular to the beam direction means
that powers above about 100mW can damage the surface facets. This
limitation is overcome by using arrays of quantum well lasers. Such ar-
rays provide beams with incoherent powers of 50W with which to pump
the solid state dielectric lasers described later in this chapter.

The advantages conferred by small size, such as low threshold cur-
rent and high efficiency, can be enhanced still further. Quantum wires
and quantum dots are structures in which two dimensions or all three
dimensions are made less than the electron wavelength. Correspond-
ingly quantum dots have threshold currents of microamps rather than
milliamps. They are now coming into use, for example in tracking bio-
logical processes: biological samples in which quantum dots have been
deposited are pumped with radiation of shorter wavelength than the
lasing wavelength. The dots then lase and can be easily located.

14.8.1 Vertical cavity lasers

The semiconductor lasers described above are all examples of edge emit-
ting lasers (EELs). Here attention is shifted to vertical cavity surface
emitting lasers (VCSELs) whose beam is directed upward through the
confining layers above it. Figure 14.29 shows a section through a VC-
SEL in the form of a mesa, a few microns tall, etched from the parent
wafer. That the laser light now travels perpendicular to the MQW layers
seems disadvantageous because it reduces the thickness of active mate-
rial that the photons travel through per pass. However a large overall
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gain is recovered by inserting high reflectance distributed Bragg reflector
(DBR) mirrors above and below the confining layers. The active region
is therefore enclosed within a vertical cavity of very high finesse and
the laser light makes correspondingly more passes through the active
region. These distributed Bragg reflector mirrors are formed from alter-
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Fig. 14.29 The structure of a verti-
cal cavity surface emitting laser. The
structure is a few microns tall.

nate layers of high and low refractive index layers of AlAs and GaAs,
and possess the properties described in Section 9.7.1 for such structures.
Figure 9.17 illustrates that a reflectance very close to unity can be ob-
tained over a narrow wavelength range with such a mirror. The gain is
maximized by locating the MQWs at an antinode of the standing laser
wave in the vertical cavity formed by the mirrors. A transparent upper
electrode made of indium tin oxide (ITO) forms the exit window for the
laser beam. Laterally, that is in the plane of the MQWs, the guidance of
the laser light is provided by total internal reflection at the air/VCSEL
interface.

The short VCSEL cavity length, of order 1 µm, results in the mode
spacing given by eqn 14.25 being much larger for VCSELs than for EELs.
It then becomes easy to design the DBR mirror stop band, over which
its reflectance is 100%, to include a single longitudinal lasing mode.

The novel VCSEL geometry brings other significant advantages. The
lasing surface is potentially the whole surface area of the active region,
which can be anything from 10 to 1000µm2. With a large surface area
a larger laser power can be tolerated. The VCSEL aperture is naturally
circular so that a circular TEM00 beam is obtained automatically, while
the large aperture means that the beam divergence is correspondingly
reduced compared to EELs. Values of the beam quality parameter M 2

introduced in Section 14.7.1 are usually a little above unity. Thresholds,
as for other MQW lasers, are as low as 1 mA and wallplug efficiencies are
about 20%. VCSELs producing beams of a few milliwatts are suitable
for telecom applications, where the orientation of their near diffraction
limited beams makes for easy coupling into optical fibres.

Semiconductor lasers are grown on wafers of typically 4 inches diam-
eter and each wafer yields many thousands of devices. The wafer must
be cleaved to produce the individual EEL chips, and the functionality of
the lasers is only then open to test. On the other hand the status of VC-
SELs can be monitored during the various stages of fabrication which
makes for greater yields. Afterwards the wafer only needs dissecting.
If an array of VCSELs is required, an area of a VCSEL wafer can be
used directly because the VCSEL beams fire perpendicular to the wafer
surface.
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14.9 Nd:YAG and Nd:glass lasers

These lasers are examples of solid state dielectric lasers which have much
larger volume than semiconductor lasers, and as a result are very much
more powerful. They can be operated to give pulsed or CW beams. The
lasing ions, Nd3+, are dispersed at atomic concentrations of 0.5–1.5% in
a matrix that can be glass or yttrium aluminium garnet (Y3Al5O12 or
briefly YAG). The energy levels involved are shown in figure 14.30, and
the laser structure in figure 14.31. Pumping of the population inversion
is now performed optically using a flashlamp, or another laser. When
a semiconductor laser provides the pump beam the complete device is
called a diode pumped solid state or DPSS laser. In the example shown
a GaAs laser at 808nm pumps the Nd ions into the 4F5/2 level.

5/2F4

3/2F4

9/2I4

11/2I4

Pump

808nm

Lasing

1064nm Nd:YAG
1054nm Nd:glass

Fast decay

Fast decay

Fig. 14.30 Energy levels involved in
the operation of Nd:YAG or Nd:glass
laser.

After reaching the 4F5/2 level the Nd ion loses energy by collisional in-
teractions with other lattice ions and drops into the 4F3/2 level in about
10−12 s. A Nd ion in the 4F3/2 level has a long effective radiative life-
time (550µs in YAG) because the lasing transition, 4F3/2 →4I11/2, with
a change of four units in angular momentum is highly forbidden. The
lasing wavelengths in the different matrices are very similar: 1064nm
with a YAG matrix, and 1054nm with glass. Further collisional inter-
actions take the ions from the 4I11/2 state into the ground state. The
4I11/2 state is 0.26 eV above the ground state in energy so that the frac-
tion of Nd ions in this state in thermal equilibrium at room temperature
is negligible. A very long lifetime of the upper lasing level is a feature
which Nd lasers share with other solid state lasers, and these lasers are,
as a result, able to accumulate very large population inversions. Thus a
high photon density can be achieved and very intense beams.

A Nd:YAG crystal used to produce 10mW CW beam is only a few
cubic millimetres in volume; at the other extreme metre diameter blocks
of Nd:glass are used in high power lasers. YAG has the advantage over
glass as the host matrix that it has a regular crystal lattice. The ions’
environments are thus very similar and the lasing line is homogeneously
broadened to only 0.45 nm. This compares with the inhomogeneously
broadening to 28nm in an amorphous glass matrix. Cooling is also eas-
ier with YAG because its thermal conductivity is much larger, again
a consequence of its crystal structure. However glass can be cast in
large cheap uniform blocks which are ideal for producing pulses of ex-
treme power, provided that an adequate interval is left between pulses
for cooling.

In figure 14.31 the left hand mirror must transmit the diode laser
input beam at 808nm and reflect the Nd laser beam at 1064nm, while
the right hand mirror has reflectance slightly less than unity at 1064nm
to provide the output beam. Both faces of the Nd:YAG crystal are
antireflection coated in this laser. The efficiency of converting the diode
laser power to laser power at 1064nm is typically 0.40, which, taken



14.9 Nd:YAG and Nd:glass lasers 421

Laser
diode

Lens Mirror

Nd:YAG
crystal

Pockels
cell

Output
coupler

Laser
beam

Fig. 14.31 Outline structure of a laser diode pumped Nd:YAG laser.

with a similar diode efficiency, gives an efficiency for converting wallplug
power to power in the final laser beam of about 0.16. The technique of
frequency doubling is discussed later in the chapter: for the present we
note that a β-barium borate crystal inserted in the Nd:YAG laser cavity
at the position indicated for the Pockels cell will convert a high fraction
of the laser power at 1064nm to a coherent beam at 532nm. The use of
the Pockels cell itself shown in the figure is described in the next section.

14.9.1 Q switching

Q switching is the method used to cause lasers to emit a train of short
pulses, each pulse having very large instantaneous power. In particular
Q switching is used to exploit the long lifetimes of the upper state in the
lasing transitions of solid state lasers like Nd:YAG lasers. The technique
involves pumping the upper level for a time comparable to its lifetime
while holding off the cavity feedback and then to turn on the feedback
to produce a sudden burst of photons. During the pumping phase there
will be the usual gain in beam intensity from a single pass through the
active material but this gain is not handed on to the next pass.

Either an active or, more interestingly, a passive shutter within the
laser cavity is used to cyclically alter the Q-value of the cavity. The
shutter blocks or diverts the laser beam and then briefly opens. During
the intervals when the shutter is closed the pumping continues and the
population of the long lived upper state steadily builds up. When the
shutter opens the gain swiftly rises to a large value and the laser beam
intensity follows suit. The intense stimulated emission depletes the pop-
ulation of the upper lasing level rapidly, and the result is a short high
intensity pulse.

Active shutters can take several forms: a mirror on a mount which
can be rotated to block the beam; or an acousto-optical modulator of
the sort described in Section 7.6 can be used to deflect the beam. Al-
ternatively a Pockels cell and polarizer can be used. When a voltage is
applied to the Pockels cell it alters the polarization of the beam so that
this is no longer fully transmitted by the polarizer and the gain is held
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below the threshold for lasing.

Q switching can also be effected passively. One method is to replace
one of the cavity mirrors by a semiconductor saturable absorber mirror
(SESAM) of which one example is shown in figure 14.32. A SESAM is a
distributed Bragg reflector in which a set of quantum wells are located
within the surface layer of the mirror; the energy gap of the quantum
wells is chosen to match exactly the energy of the lasing transition.
The quantum wells initially absorb the incident radiation arriving from
within the cavity and this action holds the gain below unity. During
this stage the population inversion builds up steadily within the solid
state laser cavity. Eventually the quantum wells in the SESAM become
saturated with their populations equalized. At this point the reflectance
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Fig. 14.32 Passive Q switching. The
upper panel shows the SESAM struc-
ture. The central panel shows the vari-
ation of its reflectivity with time and
the lower panel shows the consequent
pulsing of the laser beam intensity.

of the SESAM climbs to unity because no more photons can be absorbed
by the quantum wells. There is a corresponding sharp increase in the
round trip gain and a high power pulse is produced by the laser. This
quickly depletes the population inversion in the active material and the
quantum wells empty rapidly. The sequence of events is portrayed in
figure 14.32. These plots are appropriate for a case in which the peak
gain is well above threshold and the cavity ring-down time is short, of
order 10−8 s. The rapid rise in intensity is followed by an exponential
decay with a time constant set by the ring-down time.

Typical values for the energy and duration of the pulses produced by
a Q switched Nd:YAG laser are 1 kJ and 1ns, giving an instantaneous
power of 1012 W. Pulses as short as 100 fs are achieved and the magnitude
of the electric field in such pulses is huge. The power, P , and the electric
field, E, are related through

P/A = ε0cE
2/2 (14.47)

where A is the beam’s area of cross-section. Thus the electric field
amplitude is

E = 27.4
√

P/A. (14.48)

A beam of 1012 W focused onto a spot of radius 50µm produces an
electric field there of 3 1011 Vm−1. This stupendous value can be put in
context by comparing it with the electric field acting on the electron in
an isolated hydrogen atom

EHy = e/[ 4πε0a
2
0 ] = 5.1 1011 V m−1,

where a0 is the Bohr radius. Interatomic fields in solids are considerably
smaller, of order 105–108 V m−1. Q switched laser beams are evidently
intense enough to affect atomic energy levels and distort atomic and
molecular structure. In such circumstances the response of matter to
radiation will no longer remain proportional to the applied field. The
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Fig. 14.33 Energy levels involved in
the lasing action of a Ti:sapphire laser.

non-linear behaviour of materials under small constant applied electro-
magnetic fields was introduced in Chapter 10, and effects produced by
the intense electromagnetic fields in laser beams will be described in the
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sections below.

14.10 Ti:sapphire lasers

Titanium doped sapphire (Al2O3) solid state lasers are extremely versa-
tile: they can be tuned over a wide frequency range, and are capable of
producing pulses of extremely short duration, lasting only a few optical
cycles. In this pulsed mode of operation they can also be used, paradox-
ically, as the basis for advanced frequency standards.

Ti:sapphire lasers are pumped by another laser, generally a Nd laser
frequency doubled to 532nm. The Nd laser is itself in turn pumped
by a semiconductor laser array. Figure 14.33 shows the broad spread
of the electronic and vibrational levels of the titanium ion, Ti3+ in a
sapphire matrix. Once the Ti ion has been pumped into the 2E band it
undergoes collisional de-excitation that quickly brings it to the bottom
of that band. Next the lasing transition between bands occurs, for which
the ion has a long lifetime of 3.2µs. Finally further collisions carry the
ion rapidly to the ground state. The interband transition can have any
wavelength from 660–1180nm, so that useful gain is available across the
whole of this range. The crystals used are generally cylindrical and can
range from a few millimetres in diameter and a millimetre in thickness
to metre sized crystals, depending on the power required. The titanium
doping used is at an atomic concentration of about 0.1%. Figure 14.34
illustrates the components of a tunable Ti:sapphire laser. The mirror
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Output
coupler

Miror

Mirror

Mirror

Mirror A

Mirror

Crystal

Lens

Fig. 14.34 Outline of the structure of a Ti:sapphire laser. (Courtesy CDP Sys-
tems, Moscow, Russia and Mark Goossens, Edinburgh Instruments, 2, Bain Square,
Livingstone, EH54 7DQ, UK.)

labelled A at the lower right has high reflectance for the range 660 to
1180nm, but transmits the pump light at 532nm.
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Commonly Ti:sapphire lasers are tuned over portions of the full range
using a sequence of components. A first wavelength selection is made
with birefringent filters (BRF): these are wave plates of uniaxial material
inclined at the Brewster’s angle, φB, to the laser beam. Only the p-
polarized waves are transmitted without loss so that the laser beam has
p-polarization. The fact that the BRF plates and the crystal surfaces
are inclined at their Brewster’s angles to the beam leads to astigmatism,
and this is corrected by the combination of curved mirrors and a folded
beam path shown in the figure. Figure 14.35 shows side and end views
of one BRF plate whose optic axis lies in the plane of the plate. After

Optic axis

Beam

Beam

E

E

Bφ

Fig. 14.35 Birefringent filter used in
tuning a Ti:sapphire laser. The upper
panel is a side view; the lower is a view
along the beam.

crossing this plate of thickness t the difference between the optical paths
travelled by the ordinary and extraordinary waves is

∆s = ∆n t/ sinφB, (14.49)

where ∆n is the difference between the refractive indices of the ordinary
and extraordinary waves. If ∆s equals an integral number of waves at
some wavelength λ, then a beam at this wavelength passing through
the plate would emerge with the same polarization as on entry. After
successive round trips radiation of this wavelength becomes p-polarized,
and suffers no further losses from reflection. However light of a nearby
wavelength which enters the BRF plate with p-polarization emerges el-
liptically polarized and suffers partial reflection at the exit surface of the
plate. This loss inhibits lasing except at the loss-free wavelengths.

In a multi-plate filter the thicknesses of the second and third BRF
plates are integral multiples of the thickness of the thinnest. The trans-
mittance for plates of thickness t, 2t and 9t is plotted in figure 14.36 as a
function of the frequency. In the lowest panel the overall transmittance
of the three such plates in series is shown. It can be seen that the trans-
mittance remains at unity only at frequencies picked out by the thinnest
plate, while the other plates reduce the range around these frequencies
over which the transmittance remains close to unity. The combination
gives the free spectral range of the thinnest plate and the bandwidth of
the thickest. If ∆λfsr is the free spectral range then

mλ = ∆s,

(m − 1)(λ + ∆λfsr) = ∆s,

where m is an integer. Subtracting the last equation from the previous
equation gives

λ − (m − 1)∆λfsr = 0.

Then using eqn. 14.49

∆λfsr ≈ λ/m = λ2/∆s ≈ λ2/∆nt. (14.50)

Finally

∆ffsr = c/∆nt. (14.51)
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If the thinnest plate is a 0.1mm thick sheet of calcite, for which ∆n =
0.0172, the free spectral range given by eqn. 14.51 is roughly 17THz.
When tuning the laser wavelength the filters are rotated in unison so
that the transmittance curves translate together right or left in the fig-
ure. Fine tuning uses an etalon consisting of a solid plate with reflective
coatings on each face: tuning involves tilting this etalon with respect to
the beam axis. A silica etalon of thickness 0.5mm would provide a free
spectral range, c/(2nt), of 200GHz.

The intracavity tuning system just described is more complex than the
grating tuning introduced when describing the dye laser. However the
grating is more lossy than the birefringent filter plus etalon combination.
Commercial systems mostly use this intracavity tuning for both dye and
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Fig. 14.36 Sketches of the transmit-
tance through the layers of a birefrin-
gent filter. From the top downward in
sequence: transmittance through plates
of thickness t, 2t, 9t and through all
three plates in series. The dotted
line indicates notionally the transmit-
tance at which the gain would be at its
threshold value.

Ti:sapphire lasers.

14.11 Optical Kerr effect and mode locking

When the electromagnetic fields of a laser beam become comparable in
amplitude to interatomic fields in solids the analysis carried through in
Section 11.5.1 needs modification. It was assumed there that the restor-
ing force on the electron was linear, which implies that the potential
has a quadratic dependence on electron displacement, however strong
the force. This potential is indicated by the broken line in figure 14.37.
In general this can only be correct for small displacements, and a more
realistic potential has a shape like that drawn with a full line in the
same figure. Therefore the electronic polarization must be expressed as
an expansion in powers of the applied electric field

Pi = ε0

∑
j

χijEj +
∑
j,k

χ
(2)
ijkEjEk +

∑
j,k,l

χ
(3)
ijklEjEkEl + ...

 ,

where χij is the susceptibility at low field values, which if we assume
the material is isotropic at low field values we can take to be a scalar χ.
Then

P = ε0χE + PNL. (14.52)

The successive non-linear coefficients get progressively smaller: the com-
ponents of χ(2) are ∼10−12 mV−1 and the components of χ(3) are ∼10−21

m2 V−2 for solids when the applied field is oscillating at optical frequen-
cies. Therefore the higher order terms in PNL become appreciable when
the electric field approaches the electric field felt by an electron in an
atom. Evidently also the refractive index of a material can have a non-
linear dependence on the intensity of a laser beam traversing it. In turn
this means that a laser beam can affect its own phase, an effect known
as self-phase modulation.



426 Lasers

When the material is centrosymmetric at the crystal level, that is
to say it is symmetric under the parity transformation r → −r, then
all the even coefficients in eqn. 14.52 must vanish.9 Such materials
include liquids, amorphous solids and cubic crystals. Now the relative
permittivity is given by

εr = 1 + P/ε0E, (14.53)

and the refractive index by n =
√

εr. Then to a good approximation we
have, for these materials,

n = n0 + 3χ(3)E2/(8n0), (14.54)

where n0 is the refractive index at low field values and χ(3) is the appro-
priate element of the tensor. It follows that the refractive index dependsElectron displacement

Po
te

nt
ia

l

0- +

Fig. 14.37 Electron potentials in a
solid as a function of displacement from
equilibrium. The quadratic potential
shown by the broken line gives a lin-
ear restoring force. The more realistic
potential shown as the full line gives a
non-linear restoring force.

linearly on the laser beam intensity, I,

∆n = n − n0 = n2I. (14.55)

This result was quoted earlier in Section 10.7.2 for constant applied elec-
tric fields. The electric dipoles in matter possess mechanical inertia and
will therefore respond differently to constant and optical fields. At opti-
cal frequencies the response is to the mean square field value. Further,
in the case that the laser is pulsed the response will not have time to
develop fully.

The phase change induced by the optical Kerr effect in a laser beam
of angular frequency ω0 over a distance L in these materials is

φ = ω0(t − nL/c)

= ω0t − (2πL/λ)(n0 + n2I). (14.56)

Consequently the variation of the beam intensity with time in a laser
pulse leads to a variation of frequency with time. The instantaneous
frequency is then

ω = dφ/dt = ω0 − (2πLn2/λ)dI/dt. (14.57)

This self-phase modulation is most marked in the very short pulses pro-
duced by mode locking.

14.11.1 Mode locking

Mode locking is the form of Q switching introduced by Spence, Keane
and Sibbett 10 which is used to produce laser pulses as short as 5 10−15 s
or 5 fs. How short such a pulse is can be appreciated by noting that at
a wavelength of 700 nm it contains only two complete wave cycles. In

9See Section 10.7.1.
10D.E. Spence, P.N. Keane and W. Sibbett, Optics Letters 16, 42 (1991).
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order to achieve mode locking the interval between the shutter openings
is made equal to the time taken for the photons to make a round trip in
the cavity. The layout of a mode-locked Ti:sapphire laser is pictured in
figure 14.38, in which the Ti:sapphire crystal itself becomes the passive
switching element. Ti:sapphire has such a large Kerr effect coefficient

Prisms

Rotatable
Mirror M

MirrorMirror

Output
coupler

Ti:sapphire

KLM Collimator
Pump beam

Fig. 14.38 Kerr lens mode locked Ti:sapphire laser.

(n2 is 3.2 10−20 m2W−1) that the strong electric field within an intense
laser beam alters the refractive index of the crystal appreciably. A laser
beam with the simple TEM00 mode structure has a Gaussian distribu-
tion of intensity as a function of the distance off axis. In this mode the
refractive index of the Ti:sapphire will develop a similar radial variation
so that the laser crystal becomes in effect a graded index lens like those
described in Section 4.6. If the beam is a short pulse the focusing pro-
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Fig. 14.39 A positively chirped pulse.
The upper panel shows the frequency
offset variation with time; the lower
shows the electric field variation with
time. For clarity a very short pulse
only thirty or so cycles long is shown.
At a wavelength of 800 nm such a pulse
would have a duration of 100 fs.

duced is sufficient to squeeze the beam through the collimator located
between the crystal and mirror. By contrast a CW mode has a weaker
electric field. It will not be focused and will be partially blocked by the
collimator: hence it will have a reduced gain relative to that of a short
pulse. The net result is that the beam circulating in the cavity quickly
evolves into a single short pulse. This passive mechanism is known as
Kerr lens mode locking (KLM).

The self-focusing of the laser beam is accompanied by self-phase mod-
ulation. In the case of Ti:sapphire which has a positive Kerr coefficient,
the wave angular frequency, ω, falls as the pulse intensity rises and then
rises as the intensity falls. A Gaussian pulse is used for illustration in
figure 14.39. The waveform is shown in the lower panel and the fre-
quency shift along the pulse evaluated with eqn. 14.57 is illustrated in
the upper panel. Pulses in which the frequency varies with time are
called chirped pulses. In this case the chirp is defined to be positive
because the frequency rises with time. If the frequency falls with time
the pulse is called negatively chirped. In that case time in figure 14.39
would increase from right to left. Both eqn. 14.57 and figure 14.39 show
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that chirping through self-phase modulation introduces a wider range of
frequency components into the pulse than existed before.

This positive chirping is cancelled by group velocity dispersion at the
prism pair and mirror shown in figure 14.38. The light emerging from
the second prism is dispersed and so spread across the final mirror M. It
is then possible to alter the relative path lengths in the cavity for light
of different wavelength by rotating this mirror about an axis perpen-
dicular to the diagram. If the initial pulse before chirping had a pure
Gaussian distribution in time and angular frequency then the widths in
time and angular frequency would satisfy eqn. 7.44, σω = 1/σt, and it
would be what is called a bandwidth limited pulse. After chirping the
range of frequencies is increased and the pulse is no longer bandwidth
limited. Compressing such a pulse until it is once again bandwidth lim-
ited produces a pulse shorter than the initial pulse because its spread
in frequency is wider than that of the initial pulse. In this way chirp-
ing followed by compression can make pulses shorter and hence more
intense.

14.12 Frequency combs

While femtosecond pulses are of immense direct value in studying fast
physical, chemical and biological processes, they also offer improvements
in the precision in the measurement of frequency, and hence of time.
The pioneering work of T. W. Haensch and J. L. Hall in this field and
in precision spectroscopy led to them sharing the 2005 Nobel Prize for
Physics with R. Glauber.11 We start by analysing the frequency content
of the mode locked laser output shown in the upper panel of figure 14.40.
Pulses are spaced at intervals, trep, the photon round trip time in the
cavity, and the FWHM of each pulse is called tp. The carrier waves
within the pulse envelopes travel at the phase velocity, ω/k, whilst the
pulses themselves travel at the group velocity, dω/dk. The phase of the
carrier wave at the peak of a pulse is called the carrier-envelope offset,
φceo. The change in this offset per round trip in the laser cavity is

∆φceo =

∫ L

0

ω(dx/vg − dx/vp), (14.58)

where L is the round trip length and vg(vp) the group (phase) velocity.
Using eqn. 11.44 this can be rewritten

∆φceo =

∫ L

0

(ω2/c) (dn/dω) dx. (14.59)

It is useful to define a frequency

ωceo = ∆φceo/trep. (14.60)

11See for example D. J. Jones, S. A. Diddams, J. K. Ranka, A Stentz, R. S.
Windeler, J. L. Hall and S. T. Cundiff: Science 288, 635 (28th April 2000); Th.
Udem, R. Holzwarth and T. W. Haensch: Nature 416, 233 (2002).
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Fig. 14.40 The upper panel shows the pulse train from a mode locked laser. The
lower panel shows the angular frequency components of this pulse train drawn with
solid lines. The latter is called an optical comb.

Then an individual pulse has an electric field of the form

A(t) exp [i(ωc + ωceo)t].

where ωc is the mean angular frequency of the carrier waves in the pulse,
and A(t) is the pulse envelope. Then the electric field of the pulse train
is the convolution of the above individual pulse shape with δ-functions
spaced at intervals trep

E(t) = A(t) exp (iωct) ⊗
∑
m

δ(t − mtrep) exp (iωceot). (14.61)

It is the equivalent frequency distribution which is of interest. The
Fourier transform of the first component in this convolution is∫

A(t) exp [i(ωc − ω)t]dt = a(ω − ωc), (14.62)

where a(ω) is the Fourier transform of A(t). For simplicity the sequence
of pulses is assumed to continue indefinitely. We can then use the Poisson
summation theorem to re-express part of the second component of the
convolution∑

m

δ(t − mtrep) = (1/trep)
∑

n

exp (iωrepnt), (14.63)
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where ωrep = 2π/trep. Although this theorem requires that m and n
should both be integers running from minus to plus infinity, the actual
pulse trains are sufficiently long for the summation formula to be quite
reliable here. Thus the whole of the second component in the convolution
is ∑

m

δ(t − mtrep) exp (iωceot) = (1/trep)
∑

n

exp [i(nωrep + ωceo)t],

(14.64)
whose Fourier transform is

∑
n δ(ω − nωrep − ωceo)/trep. In Chapter 7

it was shown that the Fourier transform of a convolution is the product
of transforms, hence the Fourier transform of the electric field given in
eqn. 14.61 is

e(ω) = [ a(ω − ωc)/trep ]
∑

n

δ(ω − nωrep − ωceo). (14.65)

This function is displayed in the lower panel of figure 14.40, and forms
what is called an optical comb with very narrow spectral lines at the
frequencies

ω = nωrep + ωceo.

The envelope is centred at the angular frequency ωc, the mean angular
frequency of the carrier waves. It would generally have a more complex
shape than the smooth Gaussian chosen here. In terms of frequency the
previous equation becomes

f = nfrep + fceo. (14.66)

14.12.1 Optical frequency measurement

The precision achieved in the measurement of wavelengths using tradi-
tional interferometry is parts in 1011, and is unlikely to improve. Mea-
surements of frequency are in principle more precise because they only
involve counting pulses in one second. The wavelength is then easy to
deduce using λ = c/f . The optical comb provides a simple and elegant
method for measuring the frequency of any stabilized optical source.

The measurement involves comparison with the internationally recog-
nized frequency reference provided by the 133Cs transition at 9.19GHz.
There are three steps in the procedure, all involving counts made at
microwave frequencies with standard high speed electronics calibrated
against the 133Cs microwave transition.

In the first step light from the stabilized laser source at frequency fopt

is beaten against light from the Ti:sapphire laser. A crude frequency
selection only is needed to pick out the tooth in the comb nearest in
frequency to the stabilized source. This mth tooth is at a frequency
fceo + mfrep, so the beat frequency is

fbeat = fceo + mfrep − fopt. (14.67)
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The repetition frequency frep depends on the cavity length, and for a 3 m
long folded cavity the round trip time would be 10 ns, making frep equal
to 100MHz. The difference frequency fbeat will also be a microwave
frequency so that both fbeat and frep can be measured electronically.
Evidently fceo is also required before fopt can be determined. It can be
measured by producing a second harmonic of one of the low frequency
teeth and beating this against a high frequency tooth.12 Suppose that
the teeth involved are the nth and the 2nth, then this beat frequency is

2(nfrep + fceo) − (2nfrep + fceo) = fceo, (14.68)

which is also in the microwave range and can be measured electronically.
Inserting the measured microwave frequencies, fbeat, frep and fceo, into
eqn. 14.67 gives fopt.

In Chapter 17 we shall examine how the transitions of an isolated ion
are used to provide a reference frequency for a stabilized laser. An op-
tical comb is then used to transfer the measurement of laser frequency
to the microwave region. This total system forms an optical clock. In
such a clock the analogue of the pendulum swing is one cycle of the
electromagnetic radiation from the ion. All the other components are
the equivalent of the escapement and gear train.

14.13 Extreme energies

The amplification achievable within any laser is limited by the heating
and the mechanical stresses produced by the high electric fields. In 1985
Strickland and Mourou13 devised a way to circumvent this difficulty: the
technique is known as chirped pulse amplification (CPA). Three steps are
required and these are illustrated in figure 14.41, which is based on the
design of the ASTRA facility at the Rutherford Appleton Laboratory.
A short pulse from a laser is first chirped and stretched by a large factor.
At ASTRA an input pulse 20 fs long is stretched to 530 ps so that the
intensity is reduced more than ten thousandfold. This pulse stretching
step uses a pair of diffraction gratings and steering mirrors. The pulse is
diffracted and reflected back along its original path in such a way that
the highest frequency (blue) component of the pulse has travelled 20 cm
further than the lowest frequency (red) component. Next this positively
chirped pulse is passed through several Ti:sapphire rods pumped by a
Nd:YAG laser, from which it emerges with high intensity. In the third
step the pulse is compressed as shown using parallel metal gratings ar-
ranged so that the red component now travels the longest path. During
compression the intensity of the pulse is amplified by the compression
factor.

12We will be meeting techniques for generating second harmonics later in this
chapter.

13D. Strickland and G. Mourou: Optical Communications 56, 219 (1985).
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Fig. 14.41 Chirped pulse amplification. The pulse shape and intensity is indicated
at each stage. The inset indicates the sequence of the passes which the beam follows
in the stretcher. Courtesy Professor P. A. Norreys and CCLRC Rutherford Appleton
Laboratory.

The ASTRA facility at the Rutherford Appleton Laboratory produces
some of the most powerful laser pulses using CPA. Typically a nanojoule
20 fs pulse from a mode locked Ti:sapphire laser is stretched to 530ps.
Pulses are amplified from 1 nJ to 1.5 J by Ti:sapphire crystals pumped
by Nd:YAG lasers. After compression to 40 fs the pulses have peak
powers of typically 40TW. If this degree of amplification were applied
directly to an unstretched pulse the pulse would destroy the amplifier
crystals. This output pulse is indeed so intense that the path of the final
beam has to be evacuated to prevent self-focusing in the air. Focused
intensities of 1018 Wcm−2 are easily attained. Programs are underway
in several laboratories to attempt to ignite nuclear fusion by imploding
and heating tritium/deuterium pellets with similar intense laser beams.

14.14 Second order non-linear effects

We now return to analyse the second order non-linear effects that are
important in non-centrosymmetric crystals. For simplicity any higher
order effects are ignored in this analysis. Then taking the laser electric
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field to be E cos (ωt) the non-linear polarization is

PNL = ε0χ
(2)E2 cos2 (ωt) = ε0χ

(2)E2 [ 1 + cos (2ωt) ]/2. (14.69)

This result contains an optically rectified term χ(2)E2/2 as well as a
second harmonic component. The quantum interpretation of the sec-
ond harmonic component is that two photons of angular frequency ω
are absorbed and a single photon of angular frequency 2ω is emitted.
This process is used to convert the electromagnetic radiation at 1064nm
wavelength present in a Nd:YAG laser to radiation at 532nm wavelength
by placing a suitable crystal with a high value of χ(2) within the laser
cavity. Its location would be that indicated for the Pockels cell in fig-
ure 14.31. The output is proportional to E2 so that a pulsed laser will
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Fig. 14.42 Ordinary and extraordi-
nary refractive indices for BBO. Type I
phase matching is obtained at the posi-
tion of the star for frequency doubling
of a Nd:YAG laser beam.

give a higher yield of the second harmonic radiation than a CW laser
of equal power. A useful second harmonic component can also be ob-
tained from some semiconductor lasers by operating them at high power.

Dispersion in the crystal convertor causes the harmonic waves gen-
erated at angular frequency 2ω to travel at a different phase velocity
to the parent waves at angular frequency ω. Consequently the waves
at angular frequency 2ω which originate at different locations along the
beam’s path will be out of phase with one another and in long crystals
there will be destructive interference. This difficulty can be finessed by
using a convertor crystal which is birefringent: wave velocities at the two
wavelengths can then be made equal provided that it can be arranged
that one has ordinary, and the other has extraordinary polarization. We
specialize to the case of a negative uniaxial crystal, β-barium borate
(BBO), for which ne < no. Figure 14.42 shows its refractive indices as a
function of wavelength. At each wavelength the extraordinary refractive
index takes a value somewhere between the two extremes depending on
the direction of the wave vector with respect to the crystal axis. The
star on the diagram indicates the choice of the refractive index for ex-
traordinary waves at 532 nm wavelength which is equal to the refractive
index of ordinary waves at 1064nm wavelength. How this choice is imple-
mented is demonstrated with the index ellipsoids at the two wavelengths
shown in figure 14.43. The wave vector direction drawn there makes the
refractive indices of extraordinary waves at 532 nm wavelength and ordi-
nary waves at 1064nm wavelength equal to each other. Referring back
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Fig. 14.43 Index ellipsoids for BBO at
wavelengths 532 nm and 1064 nm. The
orientation of the wave vector is that
required to give type I phase match-
ing when frequency doubling a Nd:YAG
laser beam.

to Section 10.4.2 and figure 10.5 may be helpful here. This is called
type I phase matching, and schematically the polarization choices can
be expressed in equivalent ways

o(2λ) + o(2λ) → e(λ),

o(ω) + o(ω) → e(2ω),

where for example o(ω) indicates a wave with ordinary polarization at
angular frequency ω. The alternative type II phase matching is obtained
with the combination

o(ω) + e(ω) → e(2ω).
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Second harmonic generation in BBO is efficient: in practice 50% of
the input energy can be converted to second harmonic energy. The
direction the wave vectors make with the optic axis can be obtained
using eqn. 10.23. The refractive index of the extraordinary wave at
angular frequency 2ω, n(2ω) is given by

1/n2(2ω) = cos2 θ/n2
o(2ω) + sin2 θ/n2

e(2ω).

For type I phase matching θ is selected such that n(2ω) is the same as
the ordinary refractive index at frequency ω, no(ω). Then the previous
equation can be rewritten

1/n2
o(ω) = cos2 θ/n2

o(2ω) + sin2 θ/n2
e(2ω).

Rearranging this gives the angle between the wave vector and the crystal
axis needed to achieve phase matching

sin2 θ = [ n−2
o (ω) − n−2

o (2ω) ] / [ n−2
e (2ω) − n−2

o (2ω) ], (14.70)

which was used to create figure 14.42.

Another useful technique for generating a coherent beam of a new
frequency is to direct two intense laser beams of two different frequencies
at a convertor crystal with a high value of χ(2), such as β-barium borate.
Suppose that these beams have angular frequencies ω1 and ω2, and wave
numbers k1 and k2 respectively. Then the resulting second order non-
linear component of polarization within the crystal is

PNL = ε0χ
(2) [ E cos (ω1t − k1 · r) + E cos (ω2t − k2 · r) ]2. (14.71)

In this product there are components of angular frequencies 2ω1, 2ω2,
ω1 + ω2 and ω1 − ω2. The term of interest here is

PNL(ω1 + ω2) = ε0χ
(2)E2 [ cos [ (ω1 + ω2)t − (k1 + k2) · r ], (14.72)

which shows that a new beam at angular frequency ω3 and wave number
k3 can be produced for which

ω3 = ω1 + ω2, (14.73)

k3 = k1 + k2, (14.74)

provided that ω3/k3 is equal to the phase velocity of electromagnetic
waves at angular frequency ω3 in the crystal. Equations 14.73 and

1, k1ω

2, k2ω

3, k3ω

Fig. 14.44 Photon energy–momentum
balance in a convertor crystal.

14.74 are known as the phase matching conditions. In quantum terms
they specify that energy and momentum are conserved when photons of
energy–momentum h̄(ω1,k1) and h̄(ω2,k2) are absorbed and one with
energy–momentum h̄(ω3,k3) is emitted: the process is displayed dia-
gramatically in figure 14.44. If there is perfect phase matching then
the phase of a wave created at a depth x and at time t in a crystal of
thickness L will, on emerging at time T from the end of the crystal, be

[ (k1 + k2)x − (ω1 + ω2)t ] + [ k3(L − x) − ω3(T − t) ] = k3L − ω3T.
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As a consequence the waves generated at all depths in the crystal are
all in phase as they exit the crystal.

Some conversion will still take place even if phase matching is not
perfect. In this situation the wave at frequency ω3 produced at a vector
distance x measured from the mid-point along the crystal will be out of
phase with a wave produced at the mid-point by (k1 +k2 −k3) ·x. The
magnitude of this wave produced in a layer of thickness dx at a distance
x from the mid-point is

dA = cos (∆kx)dx,

where ∆kx = (k1 + k2 − k3) · x. Integrating over the crystal thickness
π k L/2∆
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Fig. 14.45 Intensity of harmonic gen-
eration as a function of the phase mis-
match in a crystal such as BBO.A =

∫ +L/2

−L/2

cos (∆kx) dx

= (2/∆kL) sin (∆kL/2)L

= L sinc(∆kL/2), (14.75)

so that the relative intensity for this degree of mismatch is

I(∆k) = I(0) sinc2(∆kL/2), (14.76)

and the ratio I(∆k)/I(0) is plotted in figure 14.45. The net conversion
rate can be maximized by choosing a crystal length such that

Lc = π/∆k, (14.77)

which is sometimes called the coherence length.

The second order non-linear effect can equally well be used to gener-
ate radiation at angular frequencies ω1 and ω2 from a beam of angular
frequency ω3. The phase matching conditions deduced above also ap-
ply to this process. Devices based on the reverse process are sketched
in figure 14.46: the upper panel shows a parametric amplifier, and the
lower panel a parametric oscillator. In both cases a crystal such as BBO
is the conversion material. The pump beam at angular frequency ω3

OPA

OPO

Crystal

CrystalMirror Mirror

Pump in

Signal in Idler

Signal

Idler

Pump   in

Fig. 14.46 Outline diagrams for the
function of an optical parametric am-
plifier and an optical parametric oscil-
lator.

provides the input power. In the parametric amplifier a separate weak
input signal beam at angular frequency ω1 is amplified. There is no
input signal beam to the parametric oscillator; its signal beam develops
as a standing wave in the cavity shown. An accompanying idler beam at
angular frequency ω2 is produced in both the parametric amplifier and
in the oscillator. Then energy and momentum are balanced according
to the phase matching conditions.

Optical parametric devices are employed to generate coherent, high
intensity beams at frequencies that are not available directly with suit-
able lasers. The only limitation on their frequency coverage is that the
crystal employed should be transparent to all three beams: pump, signal
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and idler. Lithium triborate and BBO are two crystals widely used in
parametric amplifiers, being transparent over the ranges 0.16–2.60µm
and 0.19–3.5µm respectively. Tuning of the signal and idler frequen-
cies over a wide range is rather easy: the crystal is rotated so that the
angle between its optic axis and the beam axis is altered and this al-
ters the phase matching conditions. Heating is much less in parametric
devices than in a laser, hence signal beams of very high power can be
produced by pumping the crystal with laser beams. In applications that
require a pair of entangled photons the idler and signal beams assume
equal importance. This important topic will be developed in Chapter 18.

Third order non-linear processes give rise to analogous four wave mix-
ing in which the incident waves of angular frequency ω1 and ω2 produce
waves of angular frequencies ω3 and ω4, satisfying the condition

ω1 + ω2 = ω3 + ω4. (14.78)

Alternatively three incident waves can mix to produce a fourth. Four
wave mixing has made itself evident in telecom applications when typi-
cally 40 optical beams equally spaced in frequency are transmitted long
distances down the same optical fibre. Four wave mixing then causes
cross-talk between the information carried on adjacent sets of beams.
The way this is avoided will be discussed in the following chapter.

14.14.1 Raman scattering

Rayleigh scattering from matter is accompanied by related weaker pro-
cesses called Raman and Brillouin scattering which, unlike Rayleigh
scattering, involve a change in the internal energy of the scatterer. Ra-
man scattering, which we treat first, can involve electronic excitation of
atoms, or vibrational and rotational excitation of molecules or excita-
tion of larger structures. The transitions involved in Raman scattering

Energy

Stokes
transition

anti-Stokes
transition

Frequency

Rayleigh

Fig. 14.47 The Stokes and anti-Stokes
transitions are shown in the upper
panel; the lower plot is of the frequen-
cies of these lines and the Rayleigh line.

from a molecule are exhibited in figure 14.47. One photon is absorbed
raising the molecule to a higher energy state and a second photon is
immediately emitted carrying the molecule to a quantum state different
from the initial state; the states have different vibrational/rotational en-
ergies. If the emerging photon has more (less) energy than the incident
photon the transition is known as an anti-Stokes (Stokes) transition.
The energy levels drawn with full lines in the upper panel are molecular
rotational/vibrational levels. Broken lines are used to denote the inter-
mediate states. As shown in the lower panel of figure 14.47, the Stokes
and anti-Stokes lines are equally displaced from the Rayleigh line. Of
the pair the Stokes line has the higher intensity because the initial state
for this transition has the lower energy and hence the larger population.

The respective energy changes in Raman scattering off nitrogen gas
molecules are ∼0.3 eV and ∼1.0meV respectively for changes in the vi-
brational and rotational quantum states; the corresponding frequency
shifts between the incident and scattered radiation are ∼70THz and
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∼230GHz. Again specializing to nitrogen gas, the intensities of the vi-
brational and rotational Raman lines are respectively 0.07% and 2.3%
of the Rayleigh intensity. Raman scattering has become relatively sim-
ple to study with laser beams because they have the narrow bandwidth
that permits easy discrimination between Raman and Rayleigh scatter-
ing; they also have the intensity to excite copious Raman scattering.

Raman scattering provides information on molecular states that is
complementary to information obtained by standard spectroscopic tech-
niques. The reason is that the overall change in quantum numbers in
Raman scattering, being a two step process, can circumvent the selec-
tion rules for a single direct transition between the initial and final state.
Properties of such otherwise inaccessible states can be studied following
their excitation by Raman scattering.

The vibrational excitations within condensed matter can also be treated
quantum mechanically, and the quanta of mechanical energy are known
as phonons.14 Within the fused silica from which optical fibre is made
a very large number of possible vibrational and rotational excitations
are available thanks to the variability in the chemical bonds between
the atoms in this amorphous material. Raman scattering involves the
exchange of a phonon between the photon and non-propagating modes of
excitation of the amorphous structure. The intensity of the light scat-
tered from silica is plotted against the energy change in figure 14.48.
The prominent Stokes’ peak is displaced by about 0.055 eV or 13.2THz
in frequency from the Rayleigh line. Raman scattered light builds up in
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Fig. 14.48 The spectrum of light after
traversing a long span of optical fibre.

intensity over the long distances traversed in telecom fibres to such an
extent that stimulated Raman scattering can become important.

14.14.2 Brillouin scattering

In contrast to Raman scattering Brillouin scattering involves the transfer
of energy to acoustic modes of vibration in the material as distinct from
the optical modes excited in Raman scattering.15 The quanta of acous-
tic modes have thermal energies; at room temperature these energies are
of order 0.024 eV. The absorption and emission of phonons in Brillouin
scattering produces Stokes and anti-Stokes lines having displacements
from the Rayleigh scattering line which are orders of magnitude smaller
than in Raman scattering. Brillouin scattering can be pictured in terms
of electromagnetic waves scattering from acoustic waves. This was the
framework used in Section 7.6 to analyse scattering from the uniform
acoustic waves produced by a piezoelectric crystal. In that analysis the

14These entities have already been mentioned in connection with indirect band-gap
transitions.

15See Chapter 2 of the second edition of Solid State Physics by J. S. Blakemore,
published by Cambridge University Press (1985), for details on the acoustic and
optical modes of crystals.
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uniform acoustic wave patterns were shown to Bragg scatter the incident
light. On the other hand a laser beam passing through matter in general
is scattered from a multiplicity of acoustic waves that carry the thermal
energy of the material.

Figure 14.49 shows an incoming photon of frequency f and wave num-
ber k0 being scattered by an acoustic wave with acoustic velocity va in
a material of refractive index n. The phonon exchanged has energy Eφ,

0k

0kk

φk

θ

Fig. 14.49 Brillouin scattering.

momentum pφ, wave vector kφ. After the exchange the photon emerges
with wave vector k, travelling at an angle θ to its original direction.
The exchange of an acoustic phonon hardly changes the photon energy
so that k ≈ k0 and then applying conservation of momentum to the
exchange

kφ = 2k0 sin (θ/2).

Being massless the phonons have energy given by

Eφ = vapφ = vah̄kφ

= 2vah̄k0 sin (θ/2)

= 2va sin (θ/2) [ hn/λ ], (14.79)

where λ is the free space wavelength of the electromagnetic radiation.
Here this result will be applied to backward scattering in an optical
fibre. We take the acoustic wave velocity to be 6000m s−1, the refractive
index to be 1.5, and the wavelength in free space to be 1.5µm. Then
the frequency shift

∆f = Eφ/h = 2van/λ,

is 12GHz. In a gas at room temperature and pressure the Brillouin scat-
tering involves frequency shifts that are around 1 GHz from the Rayleigh
scattering peak. Brillouin scattering in an optical fibre contributes to the
central scattering peak in figure 14.48, which includes all the Rayleigh
scattering and near elastic scattering from the density and chemical fluc-
tuations in the fused silica.

14.14.3 Stimulated Raman and Brillouin scattering.

Despite their low rates both Brillouin and Raman scattering impose
maximum limits on the beam intensities used in optical fibre commu-
nications. The scattered radiation builds up continuously along the
multi-kilometre spans of single mode fibre so that eventually stimulated
emission initiated by this scattered radiation commences. Any further
increase in the injected power into the fibre simply fuels the stimulated
Brillouin or Raman scattering (SBS or SRS). A widely used arrange-
ment described in Chapter 16 is to transmit multiple beams of closely
spaced wavelengths, each carrying separate information, along a single
fibre. Stimulated Brillouin scattering can then cause interference be-
tween channels and degrade the information carried.
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The acoustic waves from which Brillouin scattering occurs last for
several nanoseconds so that the Brillouin scattering of a laser beam is
strong when the bandwidth of the laser beam is less than ∼50MHz.
Only radiation scattered close to the forward and backward directions is
trapped in a single mode fibre core. That in the exact forward direction
has zero frequency shift and hence Brillouin scattering of interest in sin-
gle mode optical fibre is dominantly backward, which reduces some of
its impact on communications. Over multi-kilometre paths the thresh-
old for SBS is around 10mW: excess beam intensity is lost to SBS and
the useful beam intensity is clamped near this threshold value. Fortu-
nately this threshold can be raised by using a broad bandwidth, so that
with ∼1GHz bandwidth the threshold rises to ∼1W. Stimulated Raman
scattering has a corresponding threshold of ∼ 2 W which is independent
of the laser bandwidth because this scattering is from optical phonons.
Raman scattering is however predominantly forward.

On the positive side high optical power can be pumped into fibres in
order to amplify or excite lasing through stimulated Brillouin or stim-
ulated Raman scattering. Such lasers are relatively easy to integrate
into optical fibre systems. It will be shown in Chapter 16 how stimu-
lated Raman scattering can also be used to compensate the attenuation
experienced by laser beams travelling very long distances in optical fibre.

14.15 Further reading

Laser Fundamentals, second edition by W. T. Silfvast, published by
Cambridge University Press (2004). This text provides a comprehensive
and up to date account of many types of modern lasers.

Detailed analyses of the properties of cavities used for lasers and many
other topics in laser physics appear in the fifth edition of Principles of
Lasers by O. Svelto, published by Plenum Press, New York (1998).

The Physics of Semiconductor Devices, fourth edition, by D. A. Fraser,
published by the Clarendon Press, Oxford (1986). This provides a clear
and concise account of the semiconductor physics underlying semicon-
ductor lasers.
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Exercises

(14.1) The FWHM of the Doppler line of a He:Ne laser
is 1.5 GHz. The cavity length is 50 cm and the re-
flectance of the mirrors is 0.99. What is the cavity
finesse? How many longitudinal modes lie within
the FWHM of the of the Doppler line?

(14.2) A cavity has length 40 cm and has mirrors of re-
flectance (1 − 10−5). What is the finesse? What
is the corresponding line width of a gas laser based
on this cavity? What is the Q-value of the cavity?
Suppose the cavity is used with two different He:Ne
laser tubes differing in length by 0.5 mm, but hav-
ing identical glass containers holding the He:Ne gas
mixture. How much would the lasing frequencues
differ in the two setups?

(14.3) A laser rod is to be pumped by a linear flash lamp
mounted parallel to it and of similar length and as-
pect ratio. Flexible metal sheeting is used to reflect
the light from the lamp onto the rod. How should
the tube and lamp be positioned and into what
shape should the sheeting be formed to maximize
the pumping efficiency?

(14.4) The mirrors of a one metre long Fabry–Perot cav-
ity have reflectance (1−10−6). Calculate the cavity
ring-down time. What is the alteration in the ring-
down time if the cavity is filled with a gas whose
absorption coefficient is 10−6 m−1?

(14.5) The values of the refractive indices of BBO rele-
vant to frequency doubling the output of a Nd:YAG
laser are: no(532) = 1.675, ne(532) = 1.555,
no(1064) = 1.655, ne(1064) = 1.542. Calculate
the walk-off angle between the frequency doubled
beam and the pump beam in the BBO crystal.

(14.6) Obtain an expression relating the Fabry–Perot cav-
ity ring-down time and the threshold gain for the
same cavity used as a laser.

(14.7) A He:Ne laser with a 40 cm long cavity has mir-
rors of reflectance 0.99. Calculate the threshold
gain at the central wavelength of the gain profile
632.8 nm. Hence estimate the population inversion
in atoms per m3. Assume that the absorption co-
efficient is zero, that the upper state lifetime in the

lasing transition is 10−7 s and that the gain profile
FWHM is 2GHz.

(14.8) A Nd:YAG laser has a ring=down time, τc, of 20 ns,
a gain profile of 200 GHz and the lifetime of the
excited state against spontaneous decay is 230 µs.
Estimate the population inversion in ions per m3

required to produce lasing. The refractive index is
1.5.

(14.9) Show that for a He:Ne laser whose thermal energy
corresponds to a temperature of 400 K that the
Doppler broadened profile has a FWHM of 1.5 GHz.

(14.10) Why are the lasing transitions in Nd:YAG and in
Nd:glass respectively homogeneously and inhomo-
geneously broadened?

(14.11) Is it possible for lasing to occur when the popula-
tion of the lower level is greater than that in the
upper state?

(14.12) Calculate the frequency shift in light of wavelength
1µm which undergoes Brillouin scattering in a
crystal. Take the velocity of acoustic waves to be
3000 m s−1 and the refractive index to be 1.5.

(14.13) A laser system used to generate an optical comb
emits a stream of 800 nm pulses 20 ps long with a
100 MHz repetition rate. What is the frequency
separation of the teeth of the comb? How broad in
frequency is the envelope of the comb?

(14.14) Suppose the quantum well of a quantum well laser
is sufficiently deep that the electron wavefunction
has nodes very close to the walls of the well. The
the well thickness, taken to lie in the z-direction,
is Lz. Show that the the kinetic energy of an elec-
tron in the well in the z-direction is n2h2/(8m∗L2

z)
where m∗ is the electron’s reduced mass and n is
an integer.

(14.15) Consider a semiconductor in which the conduction
band electrons have an effective mass 0.1me and
the holes an effective mass 0.5 me in the valence
band. Calculate the change in lasing transition en-
ergy and frequency between a DH laser and a QW
laser for which the well is 14 nm thick.
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15.1 Introduction

The two main processes used to detect electromagnetic radiation at vis-
ible and near visible wavelengths both involve single photon absorption
on a single electron. One process is the photoemission of an electron
from the surface of an alkali metal or semiconductor; the other is the
excitation of an electron from the valence to the conduction band of
a semiconductor. Both processes produce free charge carriers so that
an applied electric potential causes a current to flow under continuous
illumination. This photocurrent is in principle linearly proportional to
the intensity of the incident light and in practice linearity is maintained
over a wide range of intensity.

Several physical properties determine the usefulness of photodetectors.
These properties include the sensitivity in responding to light, measured
in amps of current per watt of optical power incident, and how this sen-
sitivity varies with wavelength. There is a small dark current which
flows even if there is no incident radiation, and this constitutes a back-
ground to any measurement. The speed of response of the phodetector
to changes in illumination determines what rate of data transfer rate is
achievable with the detector. Finally there is noise on any measurement
with a photodetector due both to the random arrival of photons, and
to thermal excitation of electrons in the detector and its associated cir-
cuitry. Both dark current and noise impose limits on the usefulness of
detectors when the radiation levels are weak. All these properties are
discussed as needed for each detector type. In several types of detector
the applied potential is made sufficiently large so that a free charge cre-
ated by the initial photon absorption acquires enough energy to produce
a cascade of charges in collisions with atoms. As a result a measurable
electrical pulse can even be produced following the absorption of a single
photon.

Semiconductor detectors are described immediately below, commenc-
ing with the simpler photoconductors. This case is used to introduce
the parameters used to quantify light detection efficiency: these are the
quantum efficiency and responsivity. The next section is used to discuss
photodiodes, which are widely used as detectors in receiving signals car-
ried on electromagnetic radiation transmitted along optical fibres. Pos-
sible sources of noise will be enumerated and analysed, and the various
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parameters used for quantifying noise will also be described. A section
on solar cells follows. Avalanche photodiodes are discussed next: in
these devices high electric fields are used to accelerate the photopro-
duced free charges to high enough energies so that they ionize atoms
inside the photodiode, thus creating an avalanche of charges. Avalanche
photodiodes therefore have better sensitivity at low light levels than sim-
ple photodiodes. Another type of photodiode, the Schottky photodiode,
forms the next topic. Schottky photodiodes have very fast responses
and are therefore used for very high speed communications. The final
topic on semiconductor detectors concerns the two-dimensional arrays
of photodiodes used as sensors in digital cameras.

The remainder of this chapter is used to describe detectors which
rely on photoemission; the first step in detection being the ejection of
electrons from the surface of a photocathode, which is an alkali metal
or semiconductor surface with a low work function. In a photomulti-
plier the photoelectrons are accelerated toward another electrode, called
a dynode, from which they eject several secondary electrons. This step
of acceleration and multiplication is repeated at a sequence of up to 14
dynodes, so that as many a 108 electrons may be produced from a sin-
gle incident photon. Photomultipliers are fast and very sensitive, well
suited for use in measuring very low light levels and for counting individ-
ual photons. Microchannel plates are compact versions of the amplifying
dynode stages in photomultipliers and in addition have imaging capabil-
ities. They and their application in image intensifiers and night vision
devices will be treated at the end of the chapter.

15.2 Photoconductors

These simple detectors consist of a semiconductor across which a voltage
is applied. In the dark they have a high resistivity. When an incident
photon whose energy exceeds the band-gap is absorbed it can raise an
electron from the valence to the conduction band, leaving a hole behind.
This process provides charge carriers that increase the conductivity of
the semiconductor. If the band-gap energy is Eg then only light of
wavelength shorter than λc is effective, where

λc = hc/Eg = 1.24 µm/[ Eg in eV ]. (15.1)

Both direct and indirect band-gap semiconductors are useful. The band-
gaps are 1.11 eV in silicon and 1.43 eV in gallium arsenide. A useful
measure of the conversion probability is the quantum efficiency, which
is simply the number of electrons which pass into the external circuit
from the detector divided by the number of photons incident. Clearly
if the photon energy is less than the band-gap energy this is identically
zero. If each photon absorbed produces one electron then the quantum
efficiency, η, is

η = (1 − R) [ 1 − exp (−αt) ]. (15.2)
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Fig. 15.1 Absorption coefficients of several semiconductors: adapted from J. M. Se-
nior Optical Fibre Communications: Principles and Practice, second edition 1992,
published by Pearson/Prentice-Hall International, Englewood Cliffs, New Jersey.
Courtesy Dr Senior and Pearson Publishing.

In this equation the first factor is the fraction of light transmitted
through the semiconductor surface of reflectance R. The second factor
is the fraction of the light entering the semiconductor which is absorbed
in its thickness t, α being the absorption coefficient for the radiation in-
cident. Figure 15.1 shows the wavelength dependence of the absorption
coefficients of representative semiconductors. On crossing the thresh-
old wavelength the absorption coefficient, α, rises sharply for a direct
band-gap semiconductor, such as gallium arsenide, and then rises less
rapidly as the wavelength decreases further. In the case of silicon, an in-
direct band-gap semiconductor, the discussion in Section 14.7 shows that
momentum conservation in the absorption process cannot be achieved
exactly at threshold without involving a phonon. Hence the absorption
coefficient in silicon rises much more slowly with decreasing wavelength.
This has the consequence that the absorption length in silicon changes
a lot across the visible spectrum, being ∼5µm at 700nm and ∼0.2µm
at 400nm. Recall that 90% of the radiation is absorbed in 2.3 absorp-
tion lengths. The quantum efficiency given by eqn. 15.2 is an upper
limit. It does not take into account losses of electrons and holes which
are trapped by the crystal defects and then recombine. Such defects
are especially dense near the surface, making this loss severe when the
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absorption length is a fraction of a micron or less.

The current produced by a flux of φ photons per second is

I = φeηG, (15.3)

which includes a factor G called the photoconductive gain. This gain
can be greater or less than unity and depends on two response times:
the first is the time taken for a free charge to recombine in the bulk
semiconductor, tr, and the second is the time taken by a charge to travel
between the electrodes supplying the applied voltage, tx. Suppose that
tr exceeds tx, then the photoproduced charges leave the detector before
recombining. As each departs through the electrical contact a similar
charge is drawn in from the other electrical contact in order to keep the
semiconductor neutral. This repeats until such time as the daughter or
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Fig. 15.2 Responsivity of a silicon pho-
toconductive cell. The straight lines in-
dicate the responsivity with 50% and
100% quantum efficiency.

further descendant recombines. Thus the current is enhanced by a factor

G = tr/tx, (15.4)

and this gain can in practice reach several hundreds. On the other hand
if tr is less than tx only a fraction of the charges escape recombination
before they reach the electrodes.

The incident optical power in a flux of φ photons per second at a
wavelength λ is

P = φ(hf) = φhc/λ. (15.5)

The sensitivity of a detector is quantified by the responsivity, defined as
the current per unit incident optical power

S = I/P = Geηλ/(hc). (15.6)

In figure 15.2 the responsivity is plotted for a silicon photoconductor,
taking a gain of unity. Two straight lines are drawn which correspond
to constant quantum efficiencies of 100% and 50%. The linear rise of
responsivity with wavelength obtained at constant quantum efficiency
comes about because, as the wavelength rises there are more photons
per watt of beam power. Near threshold at 1.11µm the responsivity
of a silicon detector rises rapidly and peaks at approximately 850 nm.
As the wavelength falls further the absorption becomes concentrated
in the surface layer and then trapping of free charges at surface crystal
defects and their subsequent recombination drastically reduces the num-
ber available to contribute to conduction. Thus the responsivity falls off

Positive Electrode

Negative Electrode

Photoconductor separating electrodes

Fig. 15.3 Photoconductive cell viewed
face on.

rapidly at shorter wavelengths.

Cadmium sulphide has a responsivity which closely matches the shape
of the response of the human eye as a function of wavelength and for
this reason has been widely used for controlling street light switches.1

1Its days may be numbered because the EU has issued a directive aimed at reduc-
ing the usage of heavy metals including cadmium. This directive bans the deployment
of such photosensors.
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The dark resistance of a typical photoconductive cell is ∼1MΩ while in
daylight this drops to ∼1 kΩ. Alloys of HgCdTe have band-gaps which
are narrower. By varying the relative proportions of cadmium and tel-
lurium photoconductive cells can be designed using these alloys to detect
radiation at any wavelength over the range 1–25µm.

The photoconductor cell shown in figure 15.3 is suitable for use at
wavelengths for which the absorption length is short. A layer of pho-
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Meter

Photoconductor

Ground

Fig. 15.4 Photoconductive cell light
meter.

toconductor is deposited on a ceramic base and two metal electrodes
are evaporated above this with an interdigitated gap left between them.
This shape maximizes the surface area and minimizes the length of the
photoconductive material between the electrodes so that a compact de-
vice results whose resistance under illumination is low. The surface is
covered with a transparent anti-reflecting coating which also protects
the semiconductor. A light meter circuit based on such a cell is pictured
in figure 15.4.

15.3 Photodiodes

The commonest detectors for visible and near visible wavelength radia-
tion are photodiodes of various types.They operate like semiconductor

Photon

Metal
2SiO

rim

Metal contact

p

n

+n

SiN coating

Depletion layer

Fig. 15.5 A section through a photodiode. At the lower left is the symbol used for
a photodiode in electronics.

LEDs or lasers in reverse: light incident on the depletion layer at a
diode junction produces current carriers in the form of electron–hole
pairs. There is no competing process and absorption of a sufficiently en-
ergetic photon carries an electron across the band-gap in both direct and
indirect band-gap semiconductors. Figure 15.5 shows a section through
a silicon photodiode: the symbol at the bottom left is that used for
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photodiodes in electronics. With no light incident there is small dark
current through the detector due to the high energy tail of thermally
excited electrons crossing the band-gap. Figure 15.6 shows the junction
region of such a photodiode under a reverse bias V . The upper panel
shows the electron energy levels, the centre panel shows the electric field
distribution and the lower panel the charge distribution. For this ex-
ample the density of acceptor atoms in the p-doped region is chosen to
be twice that of the donor atoms in the n-doped region. Typically the
junction voltage in the absence of any bias voltage, Vj, is around 0.8 volts.

The reverse bias widens the depletion layer by sweeping free charge
from more donor and acceptor atoms, and leaving them ionized. The de-
pletion layer is highly resistive because the free charge has been substan-
tially eliminated, in contrast to the bulk of the doped regions. Pretty
much all the applied voltage is developed across the depletion layer,
which is typically 1–3µm thick. Because the doping density in the p-
silicon is chosen for illustration to be twice that in the n-silicon, it follows
that the depletion layer reaches twice as far into the n-doped region as
into the p-doped region.

Returning to the upper panel a photon with energy greater than the
band-gap is absorbed and produces an electron-hole pair; the electric
field drives these carriers across the depletion layer and this constitutes
the current. However when photons are absorbed outside the depletion
layer, for example in the p-doped region, any electrons (which do not
recombine on the way) will diffuse slowly until they reach the depletion
layer, and only then do they feel the electric field and move quickly across
this layer. Evidently this slows down the response of the photodiode and
every effort must be made to minimize the fraction of absorptions tak-
ing place outside the depletion layer. Electrons diffuse about three times
faster than holes in silicon therefore the light is incident through the p-
doped layer as shown in figure 15.5. The p-doped region is also made
thin in order to minimize the number of photons absorbed outside the
depletion layer.

The upper surface of the photodiode is passivated, that is to say coated
to protect the p-layer from the atmosphere. Silica or silicon nitride is
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Fig. 15.6 The upper panel shows the
energy levels of a photodiode with a
junction potential Vj under reverse bias
V . The centre panel shows the electric
field distribution, and the lower panel
shows the unbalanced charge.

used, with the thickness selected to minimize the reflection from the sur-
face. The heavily doped n+ layer shown in figure 15.5 is there to give a
low resistance contact, that is an ohmic contact, to the metal electrode.
The depletion layer should ideally match the absorption length in thick-
ness, but this can be especially difficult with silicon whose absorption
length changes rapidly across the visible spectrum.
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Example 15.1

Here we show how to relate the applied potential, the doping levels of
the semiconductor and the thickness of the depletion layer. Applying
Maxwell’s equation 9.13 to the n-doped part of the depletion layer

dEn/dx = eNd/(ε0εr),

where E is the electric field in the x-direction normal to the junction
surface, Nd is the number density of donor ions and εr is the relative
permittivity of the semiconductor. Integrating from the edge of the
depletion layer to the junction gives

En = eNdx/(ε0εr),

so that the electric field increases as shown in the centre panel in figure
15.6 until the junction is reached. Then it falls off linearly through the
negatively ionized acceptor ions in the p-doped part of the depletion
layer. Integrating once more gives the potential drop across the n-doped
region

Vn = eNdx
2
n/(2ε0εr),

where xn is the thickness of the depletion layer on the n-doped side.
Repeating this calculation for the p-doped region of the depletion layer
gives

Vp = eNax
2
p/(2ε0εr),

where Na is the number density of acceptor ions. Now in addition the
depletion layer is overall neutral so that

Naxp = Ndxn. (15.7)

Taking the ratio Vp/Vn and using eqn. 15.7 to eliminate xn/xp gives

Vp = (Nd/Na)Vn.

Then the total potential across the depletion layer is

Vn + Vp = [ eNdx
2
n/(2ε0εr) ] [ 1 + Nd/Na ]. (15.8)

This is of course equal to Vj + V . With equal doping, Nd = Na = N ,

Vn + Vp = eNx2/(4ε0εr),

where x is the full thickness of the depletion layer.



448 Detectors

15.3.1 Dark current

In addition to the photocurrent through a pn junction there is current
carried by thermally excited free charges, and this current will now be
evaluated. This current has two opposing components. In the p-doped
region electrons can be thermally excited into the conduction band and
then cross the junction into the lower energy conduction band in the
n-doped region. This is called the thermal current which, because it is
the result of thermal excitation across the semiconductor band-gap, is
independent of the bias applied. The other current is in the opposite
direction. Electrons from the conduction band of the n-doped region
can be thermally excited sufficiently to be able to enter the conduction
band of the p-doped region. There they recombine with holes. This
recombination current is determined by the difference in the conduction
band energies and is therefore strongly dependent on the bias applied to
the junction. At zero bias the two currents are in balance, while under
forward bias the recombination current rises rapidly.

The number density of the charge carriers around the junction is
shown in figure 15.7 when a forward bias is applied. np and pp are
the densities of electrons and holes in the p-doped region respectively;
nn and pn are the corresponding densities in the n-doped region. The
vertical scale is logarithmic. In equilibrium the densities are constrained
by the semiconductor equation22See the fourth edition of The Physics

of Semiconductor Devices by D. A.
Fraser, published by the Clarendon
Press, Oxford (1968).

nppp = nnpn = n2
i , (15.9)

where ni is the density of carriers in the intrinsic semiconductor, which
in silicon is 2 1016 m−3. If the p- and n-doping are at the level 1021 m−3

the majority carrier densities, nn and pp, are 1021 m−3. As a result
the minority carrier densities are heavily suppressed to 4 1011 m−3. The
density of minority carriers is highest at the edge of the depletion layer
and dies away with distance from the junction. At large distances from
the depletion layer the densities of both carrier types are constant.

The electron densities at the two edges of the depletion layer of an
unbiased junction are related by the Boltzmann equation

np = nn exp (−eVj/kBT ), (15.10)

where Vj is the junction potential and T K the absolute temperature.
When a forward bias V is applied the minority carrier density increases
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Fig. 15.7 Carrier distributions across
a p-n junction with the depletion layer
shaded. The junction is forward biased
so that there is a substantial injection
of carriers across the junction.

due to charge being injected across the junction and

np + ∆np = nn exp [−e(Vj − V )/kBT ].

Using the previous equation to eliminate nn gives

np + ∆np = np exp (eV/kBT ),

so that
∆np = np[ exp (eV/kBT ) − 1 ], (15.11)
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with a similar expression for the increase of holes in the n-doped region
at the junction. The excess charge at the boundary of the depletion
layer diffuses steadily into the bulk semiconductor producing a current
proportional to the excess charge densities

I0 = Ir [ exp (eV/kBT ) − 1 ]. (15.12)

From the viewpoint of detecting radiation in a photodiode under reverse
bias this current is an unwanted dark current. Its limiting value with
large reverse bias, Ir, is called the saturation dark current. The mag-
nitude of Ir is proportional to np and pn, which eqn. 15.10 shows are
exponentially dependent on temperature. A fall of 10K causes the dark
curent to fall by a factor of two. Devices can be fitted with thermo-
electric cooling that can easily cool a detector by 40K. Heavy doping
is also helpful: an increased majority carrier density leads to a higher
recombination rate with the result that there are fewer minority carriers
to support the dark current. It is straightforward to compensate the
dark current in a measurement. Most simply the current can be mea-
sured with the detector exposed to the source and then shielded; the
difference of these measurements will have the dark current removed.
At room temperature this dark current is ∼1 nA for a silicon detector
of area one square centimetre. Evidently when the light incident on the
detector carries data in the form of modulation at high frequency the
background including dark current is removed by using capacitive cou-
pling in the readout electronics.

15.4 Photodiode response

Figure 15.8 illustrates how the total current varies with the applied
voltage across the photodiode for several levels of illumination. A flux
of φ photons at a wavelength shorter than the threshold wavelength
produces a photocurrent

I = eηφ, (15.13)

where, as before, η is the quantum efficiency. There is no gain of the
type seen in photoconductors because all the carriers recombine on leav-
ing the depletion layer.3 3Although both an electron and a hole

are produced this does not mean that
the current is twice that given by eqns.
15.3 or 15.13. You can imagine that
the electron and hole travel round the
external circuit in opposite senses and
annihilate at some point. Then it be-
comes clear that together their paths
pass once around the circuit, not twice.

When measuring light intensities a photodiode is operated with re-
verse bias, which is the bottom left quadrant on figure 15.8. A linear
variation of current with light intensity is obtained. At a large reverse
bias the free electrons can be accelerated sufficiently so that they become
energetic enough to initiate ionization: there is a corresponding rapid
rise in current, known as avalanche breakdown. The broken straight line
drawn in the lower left quadrant of figure 15.8 is a load line showing
the variation of current with voltage when the photodiode drives a fixed
resistive load. If the resistance is RL the load line slope is 1/RL. Con-
sequently the smaller that RL is, the steeper the load line will be, and
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hence the greater the range of linear response. The range of linear re-
sponse obtained in practice typically extends over input optical powers
from a fraction of a nanowatt up to tens of milliwatts. The saturation
dark current is also indicated on the figure.

Notice that in the lower right hand quadrant of the figure the current
is opposite to the applied bias voltage. In order to appreciate how this
comes about we need to refer to figure 15.6. First note that a small
forward bias V only reduces the height of the step in energy between
the conduction bands in the p- and n-doped regions to Vj − V . It does
not reverse the step. Thus photoelectrons continue to flow toward the
n-doped region provided that the bias remains less than the junction
potential and hence they flow against the bias voltage. In the lower
right hand quadrant of figure 15.8 energy is drawn from the photocell,
and this is the mechanism by which solar cells produce electrical power
from sunlight.
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Fig. 15.8 Current versus voltage through a photodiode for three intensities of the
incident light. The highest curve is for no illumination and the other two curves are
for intensities x mW and 2x mW. Ir is the saturation dark current. The broken line
is the load line discussed in the text.
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15.4.1 Speed of response

How quickly a photodiode can respond to radiation is determined by
two factors. The first is the time taken to sweep charge across the
depletion layer; the second is the electrical response time of the detector
and amplifier. We continue to consider the case of a silicon photodiode.
Usually the electric field in the depletion layer is high enough, above
1MVm−1, so that the electrons reach the limiting saturation velocity
of around 105 ms−1, while the holes are travelling roughly half as fast.
With a 3µm depletion layer the collection time is ∼30 ps. In practice
collection takes longer because electron–hole pairs are also produced by
absorptions outside the depletion layer. One of the two charges then
has to diffuse to the depletion layer before being swept across it. This
diffusion is a comparatively slow process. The electrical parameters of
the circuit are the capacitance of the diode junction and the resistance
of the load, which is taken to be 50Ω here. The capacitance is

C = ε0εrA/d,

where εr, the relative permittivity of silicon, is 11.8, the area, A, is
taken to be 1mm2 and d, the thickness of the depletion layer, is 3 µm.
Inserting these values gives a capacitance of 35pF. Then the RC time
constant is 1.7 ns, which is longer than the collection time. Such a device
could detect modulation of radiation at frequencies approaching one gi-
gahertz. In operation with monomode optical fibres the sensitive area
of the detector is matched to the cross-section of the light mode in the
fibre, or about 1000µm2; a shallower depletion layer is used too. Then
both the collection time and the RC time constant are a few picoseconds.

Photodiodes, known as pin photodiodes are constructed with a very
lightly doped nearly intrinsic layer between the p- and n-layers. With
large enough bias the depletion layer extends across the whole intrinsic
layer. One immediate advantage is the increase in quantum efficiency
from having a wide depletion layer. If the doped regions are made rel-
atively thin the proportion of absorptions that take place outside the
depletion layer is reduced. The full collection time is then only very
little longer than the drift time across the depletion layer.

Those photodiodes for use at the telecoms wavelengths (around 900 nm,
and from 1200 to 1700nm) are either AlGaAs/GaAs diodes sensitive over
the range 700–900nm, or InGaAsP/InP diodes covering the range 900–
1700nm. The radiation incident will have a narrow wavelength range
so that it becomes practical to select the chemical content of the semi-
conductor through which the radiation enters such that its band-gap
is greater than the photon’s energy. This layer is transparent to the
incident radiation and is therefore called a window layer; any delay as-
sociated with charges diffusing from this layer into the depletion layer
is eliminated. The efficiency and speed can be further enhanced using
structures of the sort already met in the context of lasers. Distributed
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Bragg reflectors are built on both surfaces of the photodiode providing
a Fabry–Perot cavity at the wavelength of interest, with the junction
lying at an antinode of the cavity. The remainder of the cavity is mostly
taken up by window layers. With this structure the depletion layer can
be made thin enough to give a very fast response while having a high
quantum efficiency because the radiation traverses it many times.

15.4.2 Noise

The output from the photodiode plus amplifier is only useful to the ex-
tent that the noise they generate does not impair the signal arriving
with the radiation incident on the photodiode. This signal may simply
be the intensity of the radiation which is to be measured. However in
communication applications information is carried in the form of high
frequency modulation of the radiation. A filter is then used to pass fre-
quency components in the detector output restricted to some bandwidth
around the signal frequency. This frequency filter will naturally also pass
the noise in this limited frequency range. The device noise as specified
by manufacturers is expressed per unit

√
Hz. Then if the photodiode

and amplifier have bandwidth B the noise is
√

B times this value.

A first contribution to the noise comes from the randomness in the ar-
rival of photons. This randomness is quantum mechanical in origin and
has been discussed in Chapter 12. A second contribution to noise comes
from the thermal motion of charges within any resistance whether in the
detector or the amplifier. A final contribution is less well understood
and is called 1/f noise, a term which describes its frequency distribu-
tion. This third component of the noise will be ignored here because it
is only of significance at low frequencies below a few 100Hz.

The number of photons arriving at a detector per unit time in a beam
of constant intensity is random and therefore has a Poisson distribution.
This noise is called the shot noise. If the resolution time of the detector
is τ then the mean number of photoelectrons in this interval is

n = φητ (15.14)

where, as before, φ is the photon flux and η is the quantum efficiency of
the detector. The probability of there being n photoelectrons in a given
time interval when the average is n will have a Poissonian distribution

P(n) = nnexp(−n)/n! (15.15)

with a mean square deviation equal to n. Then the mean current is

I = en/τ, (15.16)

with the variance on the current due to the shot noise being

σ2
s = (e/τ)2n = eI/τ. (15.17)
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This result can be recast in terms of the bandwidth, B, of the detector’s
response. Using eqn. 7.48

σ2
s = 2eIB. (15.18)

This expression applies equally to the dark current because the thermal
excitation giving rise to it is also a random process

σ2
d = 2eIdB, (15.19)

where Id is the dark current flowing in the absence of any illumination.

Thermal noise, also called Johnson noise, is caused by the thermal
motion of mobile charges in any electrical device, in this case the load
resistor, RL. At a temperature T K the mean thermal energy associated
with movement along the direction of the current is kBT/2, where kB

is the Boltzmann constant. Equating this to the energy stored in the
diode capacitance gives

CV 2/2 = kBT/2, (15.20)

where V 2 is the mean square noise voltage. The corresponding mean
square noise current through the load resistance RL is then

σ2
j = V 2/R2

L = kBT/R2
LC, (15.21)

which is the Johnson noise current. If a transimpedance amplifier is used
the feedback resistance divided by the open loop gain should be inserted
for RL in calculating the Johnson noise. CRL is the time constant of
the circuit comprising the photodiode and its load, which can be related
to the electrical bandwidth using eqn. 7.49. This gives B = 1/(4RLC)
so that the previous equation can be rewritten

σ2
j = 4kBTB/RL. (15.22)

The Johnson and the shot noise are uncorrelated which means that the
total mean square noise current is

σ2 = σ2
s + σ2

j . (15.23)

A useful measure for assessing the significance of the noise is the signal
to noise power ratio (SNR)

SNR = I2/σ2. (15.24)

There is a corresponding signal to noise ratio between currents. It is
worth noting here that power is the relevant quantity in recording infor-
mation electronically or otherwise.

A parameter which enables the user to calculate the noise expected
from a detector in a particular application is the noise equivalent power
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(NEP). This is the input optical power that would exactly equal the
noise per unit bandwidth in the absence of any signal:

NEP =
√

(σ2
0/B)/S, (15.25)

in WHz−1/2. S is the detector responsivity and σ0 is given by

σ2
0 = σ2

j + σ2
d. (15.26)

A final useful noise parameter, the detectivity D∗ measured in m Hz1/2 W−1,
is the inverse of the NEP per unit area of the detector,

D∗ =
√

Area/NEP. (15.27)

Detectivity is useful when comparing the noise of detectors whose sen-
sitive areas are of different size. All these noise parameters vary rapidly
with the wavelength of the radiation being detected, and are there-
fore specified at particular wavelengths by manufacturers. A silicon
photodiode of area 1mm2 might typically have an NEP of 10−14 or
10−15 W/

√
Hz at 950nm wavelength.

15.4.3 Amplifiers

The currents from photodiodes are usually amplified before further anal-
ysis. A commonly used amplifier is the transimpedance amplifier, shown
in figure 15.9, which uses an operational amplifier with feedback to pro-
duce a voltage output from a current input. The upper panel shows the
basic circuit, while the lower panel shows the equivalent circuit treat-
ing the photodiode as a pure current source with discrete impedance
elements. Rsh is the shunt resistance of the photodiode, for example
100MΩ, C is its capacitance, and Rser is the small series resistance which
we may neglect here. Rf is the feedback resistor and Cf the feedback ca-
pacitor. An operational amplifier has several important properties that
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Fig. 15.9 Photodiode and tran-
simpedance amplifier. The upper panel
shows the basic circuit and the lower
panel the equivalent circuit.

are relevant here. First the gain of the operational amplifier with no
feedback, the open loop gain, is very high at low frequencies and rolls off
with increasing frequency. The gain bandwidth product is usually spec-
ified being, for example 1MHz, meaning unit gain at 1 MHz and 106

gain at 1Hz. In practice the device is used at frequencies where the gain
remains very large. Secondly the input impedance of the operational
amplifier is very high, ∼ 1012 Ω so that very little current enters the
amplifier, and almost all the current from the photodiode flows through
the feedback path. Finally the negative and positive input terminals
are at almost identical potentials, and here where the positive termi-
nal is at ground potential, the voltage on the negative terminal, Vin, is
very small. Paradoxically, the input impedance presented by the tran-
simpedance configuration to the photodiode is small, which means that
the share of the photodiode current flowing in the shunt circuit is much
less than that flowing through the feedback circuit. For simplicity the
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whole of the photodiode current will be assumed to flow through the
feedback circuit. Therefore the voltage developed between the output
terminal and ground is

Vout = −IZf + Vin, (15.28)

where Zf is the feedback path impedance. This result holds independent
of the precise gain, just so long as this gain remains large. Now

1/Zf = 1/Rf + jωCf ,

where ω is the angular frequency of the modulation of the radiation
falling on the photodiode. Then

Zf = Rf/(1 + jωτf),

where τf = CfRf . Consequently the amplitude of the output voltage
developed is

Vout = −IRf/
√

(1 + ω2τ2
f ). (15.29)

It is the frequency response of the feedback circuit that is critical here,
rather than that determined by the photodiode capacitance and shunt
resistance. The cut-off frequency can be made high by keeping Cf , and
hence τf , small.

If A is the gain of the operational amplifier, then

Vout = −AVin

where Vin is the voltage between the input terminals of the operational
amplifier. Substituting for Vout using eqn. 15.28 this becomes

Vin = IZf/(A + 1).

Hence the load seen by the photodiode is small. Consequently the load
line in figure 15.8 will be steep. In turn, this means that full use can
be made of the intrinsic linear response of the photodiode over a wide
range of the radiation intensity. Limits to this range of linear response
are discussed in the next section.

There are contributions to the output voltage noise from shot noise in
the detector, Johnson noise in the feedback resistor and amplifier noise,
σa. The mean square deviation of the output voltage, the noise, is then

σ2
v = (σ2

s + σ2
j )R2

f /(1 + ω2τ2
f ) + σ2

a , (15.30)

where as before σ2
s = 2eIB, while the Johnson noise is smaller, σ2

j =
4kBTB/Rf . At low frequencies these dominate the amplifier noise.
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Linear range

Photodiodes, by virtue of the simple process involved, are linear in their
response to the intensity of the incident radiation over a wide range of
intensities. The lower limit to this linear range is reached when the
photocurrent is of the same magnitude as the noise floor made up of
the shot noise on the dark current and the Johnson noise. This limit
can therefore be determined from the NEP and the bandwidth of the
detector. An upper limit to the range over which response is linear is
generally reached when the current is so large that the voltage across the
body of the photodiode outside the depletion layer becomes appreciable
with respect to the bias applied. This saturation current is given by

Is = (Vj + V )/RL,

where Vj is the junction potential, V the reverse bias, and RL is the
load resistance. The corresponding input power at this point is called
the saturation power: Ps = Is/S, where S is the detector’s responsivity.
Photodiodes are linear in their response to radiation for intensities dif-
fering by factors of more than 106.

15.4.4 Solar cells

Solar cells are photodiodes used to generate electrical power from solar
radiation. The intensity of solar radiation reaches about 1000Wm−2 at
midday in summer at European latitudes, so that solar radiation is seen
as a promising source of renewable energy. Crystalline silicon and GaAs
have threshold wavelengths of 1.12µm and 870nm respectively, hence
photodiodes made from these semiconductors are sensitive to a large
fraction of the Sun’s radiation. Silicon is preferred because the exist-
ing infrastructure in the electronics industry reduces cost. The overall
efficiency for producing electrical power from solar power using com-
mercially available cells is at best 25%. Amorphous silicon is cheaper to
make but has a threshold at 730 nm wavelength, so that the efficiency is
only 12% at best. The highest efficiency is achieved with cells that con-
sist of several layers each tailored for a different range of wavelengths,
with experimental devices achieving 40% conversion efficiency.

Referring to figure 15.8, the working region of solar cells is in the
lower right hand quadrant with energy being drawn from the photodi-
ode. This quadrant is reproduced in figure 15.10 with current–voltage
characteristics drawn in for two levels of illumination. The inset shows
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Fig. 15.10 Solar cell current and volt-
age variation for two light intensities.
The broken diagonal line is the load line
for the circuit drawn.

the simple circuit with a load resistor, RL. Isc is the current with a
short circuit (RL = 0), and Voc is the open circuit voltage developed
(RL = ∞). The point X is the working point where the load line and
the characteristic cross. In this condition the shaded area, which is the
current times voltage, gives the output power. An optimal choice of the
load gives an output power of around 0.8IscVoc.
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Example 15.2

Here we make an estimate of the efficiency of a silicon solar cell for
converting solar power to electrical power. The equation for the current
in the photodiode is

I = Ir(exp (eV/kBT ) − 1) − I	,

where I	 is the photocurrent caused by the incident radiation and Ir is
the saturation dark current. Rearranging this gives

I + I	 + Ir = Ir exp (eV/kBT ).

Then on open circuit

I	 + Ir = Ir exp (eVoc/kBT ),

so that

Voc = (kBT/e) ln [ (I	 + Ir)/Ir ] ≈ 0.0259 ln (I	/Ir) (15.31)

at room temperature. We consider crystalline silicon as the photodiode
material with a dark current which can be as low as 1 pW cm−2. Its
responsivity is 0.4AW−1 so that daylight of an intensity 100mW cm−2

produces a short circuit current density of 40mA cm−2. Using eqn.
15.31 the corresponding open circuit voltage at 300K is 0.63V. Thus
the overall efficiency for converting solar power to electric power is

ηsolar = 0.8VocIsc/Psolar = 0.20.

15.5 Avalanche photodiodes

When a large reverse bias is applied to a photodiode the charge carriers
released by photons are accelerated sufficiently so that they produce fur-
ther electron–hole pairs by impact ionization on the lattice atoms. Two
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Fig. 15.11 Photon conversion, shown
together with the first two electron
impact ionizations at the start of an
avalanche in a photodiode.

impact ionizations are shown in figure 15.11. Each ionization creates a
new electron–hole pair and the incident electron loses an energy equal
to the band-gap energy. If the electric field is large enough an avalanche
of charge is produced, so that both the current and the responsivity
are increased: of course the quantum efficiency is unchanged. When
the incident radiation is so weak that the shot noise is very much less
than the Johnson noise then operation in the avalanche mode can be
used to increase the output current substantially, while not affecting the
noise appreciably. Using eqns. 15.18 and 15.22 this condition will hold
provided that

2eIB 
 4kBTB/RL that is I 
 0.052/RL,
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at room temperature. Avalanches take time to develop and to decay
away, hence the depletion layer should be made as thin as possible so
that the avalanche terminates quickly. On the other hand a high quan-
tum efficiency requires a thick depletion layer. This conflict is resolved in
avalanche photodiodes (APDs) by having separate absorption and mul-
tiplication layers, as illustrated in figure 15.12. The uppermost panel

+p π p +nPhotons

Electric field

Charge
+
+

--- ---

Fig. 15.12 Avalanche photodiode: the
top panel shows the structure; the cen-
tre panel the electric field distribution;
the bottom panel the charge distribu-
tion due to the depletion of the major-
ity carriers.

shows the doping pattern along the photodiode; the middle panel shows
the electric field distribution; and the lower panel shows the charge dis-
tribution.

Absorption takes place across the wide weakly doped π-doped layer.
Therefore the reverse bias is increased to the point that the electric field
spills across the p-layer and reaches right through the weakly doped π-
layer. Electrons generated in the π-layer are swept into the thin region
of high electric field around the p−n+ junction, and there the avalanche
develops. The gain in silicon for which the current remains linearly pro-
portional to the radiation intensity can be as large as 1000. Figure 15.13
shows the gain as a function of the applied voltage. At high enough volt-
ages the avalanche becomes uncontrolled and a large pulse of current is
produced, independent of whether it is only a single photon or many
photons that are being absorbed. This breakdown voltage is ∼150V for
silicon APDs.

Both holes and electrons can cause impact ionization, and the yield
from holes relative to that from electrons is called k. The value of
k is small, 0.02, for silicon, which means that an avalanche in silicon
initiated by electrons propagates once in the direction of travel of the
electrons, and then terminates quickly. This gives the fastest possible
APD response. If k is close to unity then components of the avalanche
can propagate in both directions and the avalanche only dies away slowly.
The current after multiplication is

J = GI = eGηφ, (15.32)

where G is the gain achieved in the multiplication step. The shot noise
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Fig. 15.13 Gain variation against the
voltage applied to an avalanche photo-
diode. At reachthrough the depletion
layer extends all across the π-layer.

is

σ2
s = J2 − (J)2 = G2 [ I2 − (I)2 ]

= G2(2eIB) = 2eJGB.

An additional factor F is needed to take account of excess shot noise
occuring in the multiplication process,

σ2
s = 2eJBGF. (15.33)

F can be held down to 2–5 with appropriately designed APDs. Thus
the signal to noise ratio is now

SNR = J
2
/ [ 2eJBGF + σ2

j ].
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The InGaAs/InP APDs used as detectors at telecom wavelengths around
1.31µm and 1.55µm have gains of 10–40 and breakdown voltages of
∼50V. Such APDs with sensitive areas, ∼1000µm2, matched to opti-
cal fibres have dark currents of ∼10 nA, capacitances ∼1 pF, and band-
widths of a few gigahertz.

APDs operated above the breakdown voltage make simple and robust
detectors of single photons. Absorbed photons gives rise to uniform large
pulses and these pulses can be counted to determine the number of pho-
tons. A suitable circuit is needed to protect the APD from runaway
avalanches and to quench the avalanches. When operated in this Geiger
mode silicon APDs have gains of 105−8. The rise time of the pulse is
short, ∼10ps. However there is a dead period of ∼1µs after each count
during which time the electric field within the APD is insufficiently large
for the absorption of a new photon to produce a pulse. There is also
a stream of dark counts initiated by electrons that have been thermally
excited into the conduction band. These dark counts can be suppressed
by cooling the detector: either through tens of degrees using a thermo-
electric cooler or down to 77K with liquid nitrogen.

APDs are widely used wherever intensities are weak; in telecoms, laser
ranging and fluorescence spectroscopy. Laser ranging consists of direct-
ing a laser pulse at a distant mirror, and timing the interval between
the outgoing and returning pulse. This return pulse is necessarily weak.
In fluorescence spectroscopy a material is first irradiated by a laser and
then the spectrum of its fluorescence is measured. From this spectrum
the chemical composition of the material may be determined. The tech-
nique is valuable when the sample of material is delicate or minute,
as for example scrapings from an historical or artistic artefact. In these
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Fig. 15.14 The left hand panel shows
the energy levels of separated metal and
n-doped semiconductor; the right hand
panel shows the energy levels for the
Schottky junction. The broken line in
the semiconductor region indicates the
energy of the donor state electrons.

two applications APDs of very large area, ∼1 cm2, are usually employed.

Individual photons can also be detected using photomultiplers, and
these will be discussed later in this chapter. For the present we can note
that the silicon APD has a much better quantum efficiency across the
visible spectrum, ∼70% compared to ∼15%. APDs are in addition more
compact, easier to cool, require a relatively low voltage, and are insensi-
tive to magnetic fields. Photomultipliers, on the other hand, are simpler
to use, give gains of 108 without any external amplifier, have short dead
times, and can be made with sensitive areas of up to ∼600 cm2.

15.6 Schottky photodiodes

Schottky photodiodes are high speed photodiodes in which a doped semi-
conductor is in contact with a thin metal layer. We consider the case
shown in figure 15.14 of an n-doped semiconductor. In this example the
junction will be a Schottky junction if the work function in the metal,
φm is larger than that of the semiconductor, φs. The left hand panel of
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figure 15.14 shows the electron energy levels in the isolated metal and
isolated semiconductor, while the right hand panel shows the energy lev-
els at an unbiased junction. A potential barrier is established at the

A

B

n-doped semiconductor

Metal

--

Fig. 15.15 Schottky photodiode with
reverse bias. The alternative absorp-
tion processes are both shown.

junction, a Schottky barrier, which prevents electrons flowing across the
junction. The barrier height is

φb = φm − φs + ∆E. (15.34)

∆E is the small difference between the energy at the base of the conduc-
tion band in the semiconductor and the Fermi level, the latter lying close
to the donor energy level. A depletion layer develops in the semiconduc-
tor near the metal, in which the electrons have been swept out, leaving
positively charged donor ions. Electrons are attracted from inside the
bulk of the metal and form a sheet of charge in the metal at the junction.
Figure 15.15 shows the energy levels at an n-doped semiconductor–metal
junction under reverse bias. Note that the Schottky barrier height is un-
affected by the applied voltage.

There are two distinct methods used to detect radiation using Schot-
tky diodes. In one approach photons of energy greater than φb are
absorbed on electrons in the metal, and this process is illustrated by the
absorption labelled A in figure 15.15. Electrons gain enough energy to
surmount the Schottky barrier and their flow across the junction consti-
tutes a photocurrent. This Schottky barrier height can be small, much
less than the band-gap energy in the semiconductor. Consequently it
is possible to detect radiation well into the infrared. For example the
Schottky junction between PtSi and p-doped silicon has a barrier height
of only 0.22 eV high, which corresponds to a threshold wavelength of
5.6µm. In this case the semiconductor is p-doped, so that holes cross
the Schottky barrier.

The second method used to detect radiation with a Schottky photodi-
ode is illustrated by the absorption labelled B in figure 15.15. Now the
photon is absorbed in the depletion layer, in the same way as in a pn pho-
todiode. For example the active region could be lightly doped ν-GaAlAs
covered with a layer of gold only 10nm thick. A cross-section through
such a detector is shown in the upper panel of figure 15.16, where the
illumination enters through the heavily doped n+-InP ohmic substrate.
InP is transparent at wavelengths longer than 920nm and InGa0.5As0.5

has a threshold wavelength for absorption at 1650nm so the detector
illustrated would be sensitive between 920nm and 1650nm, which in-
cludes the telecom wavebands. Front illuminated Schottky photodiodes,
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Fig. 15.16 Schottky n-doped InGaAs-
metal photodiodes: showing both back
illumination and illumination through
the conductive transparent metal oxide
(CTO).

like that shown in the lower panel of figure 15.16, are constructed with
a conductive transparent oxide layer in place of metal. Cadmium tin
oxide is one such a material having a transmittance of 90% at the tele-
com wavelengths, while indium tin oxide is transparent across the visible
spectrum.

An important advantage of Schottky photodiodes over other photo-



15.7 Imaging arrays 461

diodes is their higher speed of response. Front illumination gives ab-
sorptions close to the metal so that only the electrons, which have the
greater mobility, travel across the depletion layer. In addition the slow
diffusion of carriers generated outside the depletion layer is eliminated
because the material adjacent to the depletion layer is a conductor. As
a result Schottky photodiodes are capable of operating at ∼100GHz.

15.7 Imaging arrays

Two-dimensional rectangular arrays of semiconductor photodiodes built
on a common substrate are the dominant devices used in imaging appli-
cations today. The arrays found in digital cameras, camcorders and as-
tronomical telescopes are almost all silicon based charge coupled devices,
CCDs, with 1–100 million individual identical square sensitive elements
or pixels. The lens system focuses the scene of interest onto the surface
of the array. Pixel side length depends on the application and generally
lies somewhere in the range 5–25µm. Digital SLR camera have CCDs
with sensitive regions of area 24mm×36mm, matching the size of SLR
film or 16mm×24mm. The related CMOS arrays are also silicon pho-
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Fig. 15.17 Part of a section taken through a column of pixels in a CCD array. The
depletion layer is shaded.

todiode arrays in which each pixel also contains a few transistors that
provide processing power. CMOS arrays share the complementary metal
oxide semiconductor structure of mainstream silicon electronics. Figure
15.17 shows a section through a CCD taken along a column of pixels.
The substrate is p-doped silicon with a surface layer of n-doped silicon,
and at their junction a depletion layer forms. A 0.1µm thick insulat-
ing layer of silicon dioxide (silica) is grown on top of the n-doped layer.
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The pixel photodiodes are defined and controlled by the voltages ap-
plied to gates. These gates are semi-transparent indium tin oxide (ITO)
or polysilicon electrodes which extend in the row direction across the
whole width of the array. There are three such gates per pixel, shared
by all the pixels in a row. Each column of pixels is isolated from its
neighbours by p-doped implants in the surface of the silicon which run
the length of the detector between the columns, known as channel stops.

Figure 15.18 shows a face-on view of such a detector with a notional
number of rows and columns. Either a positive or negative voltage

p-doped stops
between columns

Gates in a
single

pixel row
g1g2g3

Fig. 15.18 Face-on view of a CCD
showing the gates for a single row of
pixels and the channel stops that iso-
late the columns.

can be applied to a gate with respect to the substrate. If the voltage is
positive the potential energy well for conduction band electrons within
the depletion layer becomes deeper, while a negative voltage makes the
well shallower. These two states are illustrated in figure 15.19. When
photons are absorbed within the photodiode the electrons produced are
drawn into the potential well while the holes travel to the electrode at
the base of the substrate. During the recording phase a positive voltage
is applied to the central gate of each pixel and a negative voltage to its
two outer gates. Electrons produced in a pixel will therefore end up in
the deeper central part of the well below the central gate. Capture of
electrons in the central well continues throughout the exposure so that
the charge stored under a pixel is directly proportional to the integrated
intensity of the radiation falling on the area of the pixel.

The buried subsurface well in figure 15.19 is called a buried channel.
Unfortunately a simpler structure in which the electrons accumulate
against the silicon/silicon dioxide interface would suffer from a severe
disadvantage: there are many defects at this interface which trap elec-
trons so that subsequently they cannot be read out.

An estimate of the parameters of the buried channel can be made by
taking the extreme case that the minimum of the energy well actually
touches the insulator. Suppose the thickness of the depletion layer in
the p-doped silicon is xp, and xn is the full width (fully depleted) of the
n-doped layer. Writing eqn. 15.8 again we have

V = [ eNdx
2
n/(2ε0εr) ] [ 1 + Nd/Na ].

Taking the density of the donors to be Nd to be 1021 m−3 and xn to be
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Fig. 15.19 Potential wells for electrons
in a CCD with a buried channel.

1µm gives

V = 0.77(1 + r),

where r is the dopant ratio Nd/Na. The p-doping is made lighter so
that the depletion layer extends well into the substrate. A suitable value
for the dopant ratio is 8, so that an applied voltage of 7V would put
the electron energy minimum exactly at the insulator/silicon interface.
With lower voltages the well minimum can be positioned, as required,
well away from the insulator/silicon boundary.
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An estimate of the capacitance of a pixel, and hence of the maximum
charge stored per pixel can be made as follows. This capacitor is taken
here to consist of the layer of silicon dioxide of thickness di, relative
permittivity εr and with the pixel area A. This capacitance is

C = ε0εrA/di.

Taking 2.25 as the relative permittivity, a thicknesses 0.7µm and a pixel
area of 100µm2 the capacitance is 28 fF. Then the maximum charge that
can be stored by applying 6V on the gate is around 170 fC or 110 000
electrons. When the charge is greater than the storage capacity the
excess charge overflows into the neighbouring pixels, a process known
as blooming with consequent image deterioration. In order to eliminate
blooming an additional well is provided alongside each column of pixels
and any excess charge flows into this drain.

During the exposure to record the scene projected by the camera onto
the CCD, electrons are also being thermally excited, first into traps
at the insulator/silicon interface and thence into the silicon conduction
band. The contribution of this dark current must be estimated and then

Front Back
illumination

Fig. 15.20 Comparison of front illu-
mination of a standard CCD and back
illumination of a thinned CCD.

subtracted from the total charge stored; in addition the gates have to
be pulsed to remove any dark charge before each exposure. The dark
current is typically 1 nA cm−2 at room temperature and has a strong
dependence on the absolute temperature. Thermo-electric cooling sub-
stantially reduces the dark charge. Cooling with liquid nitrogen to
77K cuts the dark charge accumulation rate by a factor 107, so that
a 25µm×25µm pixel picks up only a few electrons per hour. This is the
degree of suppression necessary in making long astronomical exposures.

15.7.1 Quantum efficiency and colour

A proportion of the incident light is absorbed in the polysilicon gates
and silicon dioxide insulating layer. In addition there are losses be-
cause charge can be trapped at the interfaces on surface crystal defects.
These effects are worst at the blue end of the spectrum because the
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absorption length in silicon drops to 0.2µm at 400 nm wavelength. In
order to recover quantum efficiency in the blue the substrate can be
thinned by careful etching to leave a final thickness of around 15µm,
and this is then back illuminated through the bare surface of the thinned
substrate. Figure 15.20 compares the structure of front and back illumi-
nated CCDs. Back-illuminated CCDs are often anti-reflection coated to
increase the surface transmission. The quantum efficiency of a thinned,
back illuminated, antireflection coated CCD is compared to that of a
front illuminated CCD in figure 15.21. In order to support the fragile
thinned CCD it is mounted with the front face against a rigid frame.
The exposed substrate surface needs to be heavily p-doped to maintain
good electrical contact which must now be made through the edges of
the CCD. There is an improvement in quantum efficiency over front il-
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lumination of about a factor two. For reference, the quantum efficiency
of the human eye in daylight is much poorer, peaking at 0.03 at 555µm.
Standard panchromatic film maintains a quantum efficiency of about
0.02 across the whole visible spectrum.

There are several ways by which colour images can be recorded with
CCDs. The standard method adopted in cameras is to place filters
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Fig. 15.22 Components of CCD readout. The parallel clock lines for the g2 gates
are shown. For clarity the g1 and g3 clock lines are only indicated for one row.

over each pixel but this unfortunately reduces quantum efficiency. Usu-
ally there are two green-sensitive pixels for each pair of blue- and red-
sensitive pixels in order to mimic the eye response. Camcorders however
have three separate CCDs, one for each colour.

15.7.2 CCD readout

The components of a CCD used to read out the charge stored in each
pixel when reconstructing the image are indicated in figure 15.22. After
exposure the charge stored in each row of pixels is passed one step down
the column to the row beneath it in the diagram, with the charge in
the lowest row being transfered to a set of non-photosensitive registers.
After this the charges in these insensitive registers are moved one reg-
ister at a time to the right so that each charge passes in turn from the
bottom right of the figure into an amplifier and digitizer. This sequence
is repeated until the charges from every row have all been amplified and
digitized. The time consuming step is the digitization. Analogue to
digital convertors giving 12 bit precision (that is 1 part in 212) run at
typically 50MHz per digitization, and thus the full frame from a one
megapixel camcorder can be read out in ∼20ms.
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Fig. 15.23 Charge transfer from one gate to the next in three phase transfer. Positive
voltage is applied to the lines V1, V1 and V3 in the sequence: V2 at t1; V2 and V3
at t2; V3 at t3; V3 and V1 at t4; V1 at t5; V1 and V2 at t6. Each line stays positive
for three steps and then zero for three steps. In the steps pictured V1 is zero.

The upper part of figure 15.23 shows the voltage drive connections to
the gates along a column of pixels used for three phase readout. Positive
voltage is applied sequentially to the three lines (V1, V2, V3, V1, V2,...)
so that the potential wells containing the stored electrons move along
the column. The movement of these potential wells is illustrated in the
lower part of the same figure at times t1, t2 and t3, with time progressing
downards. Three cycles of voltage changes carry the charges forward by
one pixel. Charge transfer is extremely efficient, with a loss per transfer
of 10−6 achieved in scientific devices.

A difficulty with this full frame architecture is that during the readout
the exposure continues and this can produce smears at locations of high
image intensity. Some form of external shuttering is therefore necessary.
An alternative approach to eliminate the unwanted sensitivity during
the read out time is to modify the CCD structure so that part of each
pixel’s area is used as a storage capacitor that is shielded from radiation
by an opaque surface film. These areas form columns between the ac-
tive pixel columns. With this inline transfer architecture the first step
in the readout is to transfer, simultaneously, the contents of each pixel
into its storage capacitor. Thereafter the readout proceeds as described
previously. Exposure times are then electronically controllable and can
be easily made as short as 1 µs.

It is evident that the surface area of a pixel remaining clear after taking
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into account inline transfer, drains and blocking between columns has
become rather small. A lot of the quantum efficiency lost in this way
with a front illuminated CCD can be recovered by using a microlens
array above the CCD. Each pixel’s lens collects as much of the light
incident on the pixel area as possible and focuses it onto the residual
active area. The resulting quantum efficiency is comparable to that of
back illuminated CCDs.

15.7.3 Noise and dynamic range

When the charge on a pixel is N electrons the corresponding shot noise
in the charge collected is

√
Ne. Taking the previous estimate made for

the charge required to fill the well completely, namely 110000 electrons,
the shot noise on this charge is

√
110 000 or ∼330 electrons. The cor-

responding dark charge accumulated in an exposure lasting ∆t seconds
with a dark current density of I Am−2 and a pixel area of Am2 is

Q = ∆tIA.

Therefore during a 1/500th second exposure of a 100µm2 area pixel
whose dark current of 1 nA cm−2 the dark charge accumulated is about
12 electrons. The range of charge per pixel which is both detectable
and linearly proportional to the input light intensity therefore runs from
about 10 to 110 000 electrons, giving a dynamic range of 11 000. This
range can be improved by cooling the CCD.

15.7.4 CMOS arrays

These arrays, also known as active pixel arrays, differ from CCD ar-
rays in having two or three transistors fabricated into the structure of
each pixel. The transistors are used to convert charge to voltage at the
pixel itself and to perform other operations. CMOS stands for com-
plementary metal oxide semiconductor, the standard structure used in
electronic chips. Existing infrastructure then makes it cheaper to pro-
duce CMOS arrays at the system level. In addition row and column
gates are fabricated across the whole array, so that any pixel can be
addressed independently by applying voltage to just the row gate and
column gate for this pixel. This makes it possible to read out pixels
much more rapidly than with a CCD. More of each pixel is occupied by
non-sensitive components than is the case for CCDs so that microlens ar-
rays are essential to achieve a high quantum efficiency. Disadvantages of
the on-pixel processing are that the signals from individual pixels under
uniform illumination are more variable in CMOS arrays than in CCD
arrays, and in addition these signals are noisier. However both bloom-
ing and smearing are automatically eliminated with CMOS arrays. It is
also possible to make a partial read out from selected areas of interest
from a CMOS array rather than always reading out everything, which is
unavoidable with a CCD. CCDs are still found in most digital cameras,
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with the penetration of CMOS arrays being higher for DSLR cameras.
One final point is that all the electronics, such as the clock drives, which
are external to a CCD can be incorporated on the CMOS array chip,
giving a camera on a chip.

This completes the description of semiconductor photodetectors. For
the remainder of the chapter attention is centred on that other broad
class of photodetectors, the vacuum tube detectors. Photoemission from
alkali metal or semiconductor surfaces provides the first step in photon
detection.

15.8 Photomultipliers

Photomultipliers are vacuum tube detectors of radiation in which pho-
tons incident on a thin photocathode eject electrons via the photoeffect,
as in Millikan’s experiment. The photoelectrons are then multiplied
within the device by a factor up to 108. Figure 15.24 pictures an axial
section through a photomultiplier contained within a highly evacuated
cylindrical glass envelope. Light is shown incident on the photocathode
material deposited on the inside of the end window, making this an end
window tube. Photons of energy greater than the work function, W , of
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Fig. 15.24 End window photomultiplier.

the photocathode can eject electrons into the evacuated space. Without
this vacuum the electrons would rapidly lose energy in collisions with
gas molecules and be lost.

Photoelectrons from the photocathode are accelerated by an applied
potential toward the first in a series of dynodes, labelled D1. These
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dynodes are electrodes coated with a good secondary emitter from which
an energetic electron will eject several secondary electrons on impact.
Along the dynode chain the potential increases by equal steps so that
multiplication is repeated at each dynode. The output pulse of charge
arriving at the anode produces a voltage pulse across the load. Copper
coated with CuBeO(Cs) is an excellent secondary emitter whose yield
peaks at ∼5 electrons for incident electrons with energy around 100
to 200 eV. The voltage steps are therefore made 100 to 200V using a
chain of equal resistors as illustrated in the diagram. Typically there
are eight to fourteen dynodes and the amplification is from 106 to 108.
This overall gain, G, is extremely sensitive to the voltage, V , because
the gain at each dynode is roughly proportional to the voltage for that
step,

G ∝ (V/n)n,

where there are n dynodes. Then for a small change in voltage, dV , the
change in gain is given by

dG/G = ndV/V,

so that with ten dynodes a 1% change in voltage leads to a 10% change
in gain.

The wavelength below which photoemission can occur is

λmax = hc/W = 1.24 µm/W (in eV), (15.35)

where W is the work function of the surface. Alkali metals have photoe-
mission thresholds in the near infrared and visible part of the spectrum.
The quantum efficiency peaks at wavelengths just below the threshold
wavelength and declines rapidly as the wavelength falls further. It re-
quires alloys consisting of several such alkali metals, each with a different
threshold, to obtain a surface whose quantum efficiency is consistently
high over a wide range of wavelengths. One material commonly used for
detection across the visible spectrum is Na2KCsSb, whose threshold is
at 850µm, and whose spectral response is given the appellation S20.

The responsivity of a photomultiplier using an S20 photocathode on a
borosilicate glass window is shown by the full line in figure 15.25, where
the straight lines indicate responsivities corresponding to quantum effi-
ciencies of 10% and 20%. This sensitivity range can be extended into
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the ultraviolet by the use of a quartz window on the photomultiplier.
Photomultipliers generally have quantum efficiencies which are in the
range 10–25%, much lower than those of photodiodes. Photocathodes
made from compounds of group III and V elements are useful for de-
tecting radiation in the near infrared covering the telecom bands. The
shot noise and Johnson noise are given by the same formulae as for the
photodiodes, namely eqns. 15.18 and 15.22. There is excess noise due to
the statistical fluctuations in the multiplication along the dynode chain,
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which usually increases the shot noise by a factor of up to 2.

Photomultipliers have a wide dynamic range over which the anode
current remains linearly proportional to the intensity of the radiation
incident on the photocathode. The lower limit is set by the noise on the
dark current coming from thermionic emission, mainly at the photocath-
ode and first dynode. Anode dark currents vary widely at room temper-
ature: with an S20 photocathode and multiplication by 106 the anode
dark current is between ∼1 pA and ∼1 nA. The dependence of dark
current on the absolute temperature follows the Richardson–Dushman
formula

I = DT 2 exp (−W/kBT ), (15.36)

where W is the work function of the photocathode, and D is 1.2 106

Am−2K−2. Cooling the photomultiplier is therefore very effective in re-
ducing this background. The dark current increases by a large factor if
the photocathode is exposed to daylight, even in the absence of applied
voltage, and requires hours to return to its unexposed value. An upper
limit to the region of linear response is reached when the current through
the last steps in the dynode chain becomes appreciable in comparison
to the current in the parallel resistor chain, so that there is effectively
a lower resistance in parallel with the dynode resistance. At this limit
the resistance of these later steps is reduced and the voltage distribution
along the dynode chain is altered. This in turn affects the amplification.
Nonetheless the response can be linear over ranges of 106 in incident
intensity, very comparable to what is obtained with photodiodes.

A fundamental weakness of photomultipliers is that an applied mag-
netic field can seriously affect the multiplication. In magnetic fields the
electron paths spiral along the magnetic field lines and hence can be
deflected away from the following dynode. This is an effect from which
the compact solid state devices are relatively immune.

15.8.1 Counting and timing

At extremely low light intensities the pulses due to individual photon
absorptions are apparent: there is no longer a continuous current. The Pulse height
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Fig. 15.26 Photomultiplier pulse
height distributions for three different
anode voltages. The number of pulses
is the same for all three plots.

pulse of anode current initiated by a single photon absorption has a du-
ration that is determined by the spread in transit time between electrons
which have followed longer and shorter paths down the dynode chain.
The layout of the dynodes shown in figure 15.24 is designed to minimize
this variation. Typically the FWHM of fast photomultiplier pulses is
about 2 ns. If the photomultiplier has a gain of G and the pulse of cur-
rent produced by a single photon lasts for ∆t, then the anode current is
Ge/∆t and the voltage developed across a resistive load RL is

V = GeRL/∆t.

Taking a gain of 107, a pulse lasting 5 ns and a load of 50Ω then the pulse
height is 16mV. The inherent fast response, short dead time and high
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amplification of photomultipliers therefore make it relatively straight-
forward to detect individual photons and to time their arrivals when the
photon rate is even as high as 100MHz.

By measuring the arrival time to high precision (for example to 1 ns)
it becomes possible to detect coincidences between photons arriving at
different detectors, and alternatively to measure the distribution of the
time interval between successive photons. Experimental work to be de-
scribed in Chapter 18 which depended for its success on the ability to
discriminate single photon pulses and to time photon pulses accurately
was carried out with fast photomultipliers. Figure 15.26 indicates the
distribution in the peak pulse voltage from a photomultiplier when sin-
gle photons are recorded with the intervals between successive photons
being much longer than the response time of the photomultiplier. The
three curves are distributions obtained with equal numbers of photons
in each case, but with different anode voltages. The higher the applied
voltage, the broader and flatter the pulse height distribution becomes.
It is the randomness inherent in the multiplication along the dynodes
that is responsible for the width of the distributions. Pulses contribut-
ing to the small sharp rise at the lowest pulse heights in figure 15.26 are
spurious noise pulses from such effects as thermal emission at dynodes.
In order to count the photons the pulses are fed to a pulse height dis-
criminator which only produces an output pulse when the input pulse
exceeds a threshold as indicated by the arrow in figure 15.26. These
output pulses from the discriminator are then counted electronically.
Looking at figure 15.26 it is evident that the count rate increases as the
anode voltage increases. However the applied voltage must be not be
set so high that the noise pulses exceed the threshold for counting.

Figure 15.27 shows how the counting rate varies with the voltage ap-
plied to the photomultiplier for three beam intensities. When the applied
voltage is very low the gain is low and the pulse height is rarely large
enough to exceed the threshold. The count rate reaches about 50% of
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the true rate when the applied voltage approaches a value at which the
height of the average pulse is equal to the threshold voltage. At that
stage the count rate is increasing steeply with voltage because the am-
plification increases like a high power of the voltage. After this steep
rise there is a slowly rising plateau where the increase is due to noise
pulses crossing the threshold. In order to maintain a valid count rate
the photomultiplier voltage should be set about 10% above the knee.
The counts recorded will include some spurious counts from other ori-
gins such as cosmic rays, radioactive material in the photomultiplier and
noise so that it is necessary to make a pulse count with no light incident
and to subtract this background count from that taken with the light
on. The difference is then free of background and noise counts. Similar
procedures to those described in this section would also be used in pho-
ton counting and timing with APDs.
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15.9 Microchannel plates and image inten-

sifiers

A single microchannel is an analogue version of the dynode chain in a
photomultiplier. It consists of a narrow diameter glass tube whose bore
is coated with a good secondary emitter. The voltage to produce the
acceleration is applied between the ends of the tube. Then an electron
entering the negative end of the microchannel will be accelerated along
the microchannel and when it strikes the tube wall it can eject secondary
electrons. This process repeats many times along the microchannel so
that a pulse of electrons emerges from the positive end of the tube.
Figure 15.28 illustrates the development of the electron cascade along
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Fig. 15.28 Development of an electron
cascade along an individual microchan-
nel.

a microchannel. A microchannel plate (MCP) is a glass plate typically
penetrated by several million parallel identical microchannels: looking
at either face the openings form a close packed regular array of identi-
cal circular apertures. The ratio of the channel diameter to the plate
thickness, is about 1:50, with the choice of channel diameter ranging
from 5µm upward. Each face of the plate is coated with a metal film
so that there is good electrical contact to the throat of each channel.
The raw materials for the construction of a plate are uniform cylindrical
glass rods with lead glass cladding over a borosilicate crown core. These
rods are stacked together, and the stack is heated and stretched. The
resultant long multiple rod is sliced into lengths which are again stacked
together, heated and stretched. After enough repetitions of this sequence
the resulting solid block now contains millions of individual rods fused
together, and this block is sliced to produce individual plates. Finally
the softer borosilicate crown glass cores are etched away in a hydrogen
atmosphere. This process also chemically reduces the inside surface of
the lead glass in each channel to lead oxide, a material which is a good
secondary emitter. Generally the block is sliced so that the channels are
tilted around 10 degrees away from the normal to the plate’s surface.
Without this tilt the electrons, which are incident almost perpendicular
to the surface, could travel through a channel without once striking its
wall. The area of the channel openings makes up a fraction of gener-
ally between 0.4 and 0.7 of the whole channel plate surface. The gain
obtained when a potential of 1000V is applied across a single plate is
about 104, and with a matched pair of MCPs in series the gain rises to
about 107.

Microchannel plates are widely used in image intensifiers. Such a
device is illustrated in figure 15.29. It shows a section through the in-
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Fig. 15.29 Image intensifier based on
a microchannel plate.tensifier containing the optic axis. The incident light from a camera lens

falls on the photocathode surface which is located parallel to, and about
1mm distant from the MCP. A MCP used in this way could typically
have diameter 25mm, a thickness 250µm and have pores of diameter
10µm. A potential of 200V accelerates the photoelectrons ejected from
the photocathode onto the MCP front face, and a voltage of 1000V ap-
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plied across the MCP itself produces the multiplication in the channels.
After this the electrons emerging from the output face of the MCP are
accelerated for the last time through a final potential of 2–3kV to im-
pinge on a phosphor coated glass surface a few millimetres distant. In
this way an intensified monochrome replica of the image projected onto
the photocathode is produced at the phosphor. The components so far
described form a simple image intensifier of the sort used in night sights
and can produce a useful image in starlight when the illuminance is only
10−3 lx.

Figure 15.29 includes further components that have not yet been men-
tioned. A solid block of optical fibres is used to transfer the light emerg-
ing from the phosphor onto a CCD array. This final stage provides
the capability to store and subsequently process the enhanced image
produced at the phosphor. The image resolution is defined by the gran-
ularity of the MCP, and the granularity of the fibre block is made fine
enough so that it does not degrade this resolution. An image inten-
sifier is enclosed in a shell that is evacuated to a very high vacuum,
< 10−5 torr. This is necessary in order to suppress the number of ions
produced in electron–gas molecule collisions: these ions get accelerated
by the electric fields and on impact damage the photocathode and MCP.

An assembly consisting of a photocathode and an MCP with an anode
faceplate has the same overall function as a photomultiplier, and is called
an MCP-PMT. These devices have very similar quantum efficiency and
responsivity to photomultipliers, and in addition have some useful ad-
vantages over their precursors. When the pores have diameters less than
10µm the pulse FWHM is only 200ps wide, so that MCP-PMTs have a
higher rate capability. Furthermore they can be gated on and off elec-
tronically in times of order 10 ns simply by reversing the relatively low
cathode-MCP potential. Finally the MCP-PMT is more robust and can
operate in magnetic fields that would render a photomultiplier useless.

15.10 Further reading

Detection of Light; from the Ultraviolet to the Submillimeter, second
edition,by G. H. Rieke, published by Cambridge University Press (2003)
provides a comprehensive and detailed account of detectors extending
from the ultraviolet well into the infrared.

Semiconductor Detector Systems by H. Spieler, published by Oxford
University Press (2005) gives a thorough account of the electronic sys-
tems into which detectors are integrated.
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Exercises

(15.1) A silicon photoconductor is cuboidal in shape with
terminals in the form of metal layers over two oppo-
site faces. Radiation of 1 µm wavelength is incident
on a side face which is 2mm wide and 1mm long in
the direction extending between the contacts. How
thick should the silicon be in order to absorb 90%
of the radiation transmitted through the air/silicon
interface? The resistivity of the silicon is 3000 Ωm
and its relative permittivity is 11.8. Calculate the
electrical time constant of the device.

(15.2) A voltage of 200 mV is applied to the photocon-
ductor described in the last question. Using a mo-
bility, µ, of 0.135 m2V−1s−1 calculate the transit
time of electrons through the photoconductor. If
the recombination time is 0.1 ms what is the pho-
toconductive gain?

(15.3) Estimate the fraction of light reflected from a sil-
icon/air interface. Then determine the quantum
efficiency and responsivity of the photoconductor
described in the last two questions.

(15.4) If the photoconductor described in the last three
questions is exposed to light modulated at a fre-
quency 0.1 MHz would the photoconductor output
show this modulation?

(15.5) A photodetector has a bandwidth, B, of 100 MHz,
a dark current, id, of 4 nA at 300 K. The opti-
cal power falling on the detector’s sensitive area is
2µW, for which the responsivity is 0.6 AW−1. The
detector current flows through a load of resistance,

R, equal to 50Ω. Calculate the shot noise, the
Johnson noise and the signal to noise ratio. What
is the NEP of this detector?

(15.6) If the light intensity to which the detector described
in the last question is exposed to is increased to
2mW recalculate the shot noise, Johnson noise and
SNR.

(15.7) A photomultiplier has a photocathode area of
200 mm2, and a quantum efficiency of 20% at
500 nm wavelength. The anode voltage is 2 kV giv-
ing an average multiplication of 5 at each of the ten
dynodes. The anode dark current is 3 nA and the
load R is 50 Ω. Calculate the gain, responsivity,
NEP and detectivity.

(15.8) With which, if any, photodetector is it possible to
discriminate between the arrival of one or two pho-
tons simultaneously?

(15.9) Why is it that photoconductors produce gain
whereas photodiodes do not? In the case of pho-
toconductors why does high gain imply a slow re-
sponse?

(15.10) Show that the product of the bandwidth and the re-
sponsivity for a photoconductor equals eηλ/(hcτx),
where τx is the transit time.

(15.11) The quantum efficiency of a silicon APD is 0.8 at
800 nm. The incident radiation power on the APD
is 0.1 µW, and the current from the APD is 50 µA.
Determine the APD gain.
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Optical fibres 16

16.1 Introduction

Optical fibres were introduced in Section 2.3. Standard glass fibre is
cylindrically symmetric in cross-section, with a central core surrounded
by cladding with a slightly lower refractive index. Light is guided along
the fibre within the core by total internal reflection at the interface be-
tween core and cladding. In what is called single mode fibre the core
is so fine (∼8µm diameter) that at near infrared wavelengths only a
single optical mode propagates within the core along the fibre. Modern
single mode fibre has been developed to have very low attenuation and
also low dispersion for single mode propagation at wavelengths in the
near infrared. Thanks to these properties it became possible to transmit
information at very high rates over exceptionally long distances on op-
tical fibre. Information is transfered to a laser beam using for example
a modulator like that shown in figure 10.17 and the beam injected into
the core of an optical fibre. At the far end of the fibre connection a
photodetector recovers the initial electrical signal from the beam. Cor-
respondingly high frequency electrical signals carried on conductors are
attenuated much more rapidly because the skin effect confines the cur-
rent to a thin surface layer and hence leads to high resistance.

In wavelength division multiplexing (WDM) typically tens of laser
beams equally spaced in wavelength, each carrying a separate informa-
tion stream, are transmitted on a single fibre. The data rate per beam
is many gigabits per second (Gb s−1), where a gigabit is 109 bits. Each
beam therefore carries as much information as several satellite links. Fi-
bre links also have a longer life than satellites and avoid the awkward
time delay inherent in satellite communication. Millions of kilometres of
single mode optical fibre now carry the major share of the data, video
and audio traffic around the world. For example optical fibre links across
the Atlantic and Pacific can support transfer of many terabits of infor-
mation per second (Tb s−1), one terabit being 1012 bits.

Over short distances information transmission on optical fibre is less
competitive for a number of reasons. Coaxial cable and twisted pairs
then offer comparable data rates; the cost and complexity of the elec-
trical/optical conversion at the fibre ends becomes more significant; and
fibre connections require more sophisticated tools and testing as well
as a cleaner environment. Consequently the distribution of information
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over the shorter multiple paths to offices and homes, the so-called last
mile, is as yet limited.

In comparison with electrical connections optical fibre has other ad-
vantages that are of importance in many applications. Optical fibre is
insensitive to electromagnetic interference, and does not generate any,
nor are there the problems with ground loops that affect long electrical
links. It is also lighter and occupies far less space, and is made from
some of the commonest elements in the Earth’s crust.

In the first section below attenuation in optical fibre is discussed. Then
the theory of propagation along optical fibre will be outlined, showing in
what circumstances transmission can be limited to a single optical mode.
Single and multimode fibre properties are discussed including their at-
tenuation and dispersion. A short section used to introduce signalling
concepts is followed by a discussion of suitable sources and detectors.
Then follows an account of devices used to connect fibres and route ra-
diation between fibres. After this a simple link with a laser source and
photodiode detector is considered: the noise sources are described and
hence the launch power needed to give a low bit error rate is deduced.

In the next section long haul links are discussed. Methods of signal
amplification on fibre, dispersion compensation and wavelength division
multiplexing are all covered.

Solitons are waves which travel without change of shape: they may
be electromagnetic waves on optical fibre, water waves or other waves.
Electromagnetic soliton waves offer advantages over rectangular pulses in
carrying information over optical fibre, and currently their exploitation
in information transfer is beginning. Soliton propagation is analysed in
Appendix D, and a section in this chapter is devoted to describing their
potential in communication over optical fibre.

A growing number of sensors either incorporate optical fibres as the
sensor or use optical fibre to transmit or collect radiation. Examples
are treated in the penultimate section of this chapter, and they include
fibre optic gyroscopes and optical current transformers. The ancillary
devices needed to manipulate radiation in these applications are similar
to those used in communications.

Photonic crystal fibres are optical fibres through which run longitudi-
nal airholes. When such a fibre is viewed end-on these holes are seen to
have a regular crystal-like layout. There is no doped core. Guidance of
electromagnetic radiation along the fibre is achieved either through the
refractive index variation due to the holes, or through band-gap guid-
ance. In the latter case light whose wavelength lies within a certain band
cannot propagate through the array of holes, just as a band of energies
is forbidden to electrons in a semiconductor. These fibres are described,
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and a few representative applications outlined in the last section of this
chapter.

16.2 Attenuation in optical fibre

A principal reason why long haul communication traffic is carried pre-
dominantly on optical fibre lies in the exceptionally low absorption loss
which near infrared radiation suffers in pure silica. Standard single mode
optical fibre is made from pure silica with a core doped with a few percent
of GeO2. The core has diameter of around 8µm and the surrounding
cladding has an outer diameter of 125µm. Typically the refractive index
of the core is a fraction of a percent larger than that of the cladding.
Attenuation in this specialized optical fibre is sufficiently small that it
is generally expressed in dB km−1, a dB being defined by eqn. 1.35.
Figure 16.1 shows the attenuation along single mode optical fibre plot-
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Fig. 16.1 Losses in single mode optical fibre at near infrared wavelengths. The plot
is adapted from T. Miya, Y. Terunuma, T. Hosaka and T. Miyashita, Electronics
Letters 15, 106 (1979) and published by the Institute of Engineering and Technology:
by courtesy of the publishers.

ted against wavelength for near infrared radiation. The upper broken
curve indicates the attenuation achieved through the use of ultra-pure
materials, for which the loss approaches 0.2 dB km−1 at 1550nm wave-
length, corresponding to about a 4.5% loss per kilometre. By contrast
passage through tens of metres of ordinary window glass attenuates the
intensity of incident light to an unusable level. The absorption mini-
mum found near 1550nm lies in a gap between atomic absorption peaks
in the ultraviolet and molecular absorption peaks in the infrared. There
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Table 16.1 ITU bands.

Band Wavelength in nm

O 1260–1360
E 1360–1460
S 1460–1530
C 1530–1565
L 1565–1625
U 1625–1675

is an additional unavoidable loss imposed by Rayleigh scattering from
small scale inhomogeneities in density or chemical composition that are
frozen in when the glass cools during manufacture. Contamination from
metals has to be held below parts per billion. For example one part
per billion of copper would produce further attenuation appearing as an
amplitude 1 dB km−1 around 850 nm. The remaining absorption peaks,
following the upper broken line in the figure, are due to water trapped
in the glass. Photons in radiation at these wavelengths have the correct
energy to excite the vibrations of the OH ions trapped within the glass.
The solid curve in figure 16.1 shows the attenuation now achieved by
almost totally excluding water from the glass. Whereas transmission
had been restricted to wavelengths close to 1310nm or 1550nm, now
there is a 400nm wide band of wavelengths over which the attenuation
is low enough for long haul useage. Table 16.1 lists the wavelength bands
defined by the International Telecommunication Union (ITU).

As an example of modern trans-oceanic optical fibre connections the
Apollo link installed in 2003 consists of four fibre pairs across the At-
lantic, each pair with a capacity of 800 gigabits of data per second.

High frequency electrical signals carried on coaxial metal cables are,
by comparison, severely attenuated by the skin effect. As the frequency
rises the current in a conductor is confined to an ever thinner surface
layer. This causes the resistance of the cables to increase and hence
the attenuation of the signal to increase as its frequency rises. The loss
in modern video coaxial cables is 10 dB over 100m at 100MHz, and
at 1GHz the loss is 33 dB. For short links cheap plastic fibre is also
available which can be used with visible or near infrared radiation: the
attenuation of such fibres ranges from ∼20–200dB km−1 depending on
the type of plastic used.

16.3 Guided waves

In Chapter 2 guidance of light along optical fibres was explained in terms
of rays undergoing total internal reflection at the core cladding bound-
ary. The analysis carried out next is based on wave theory and will be
confined to the case of step index fibre, that is fibre in which there is a
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step in refractive index between a core of uniform refractive index and
cladding of a different uniform refractive index. This analysis reveals the
lateral distribution of the light propagating along the fibre and shows
that with a small enough ratio between the core diameter and the wave-
length only a single optical mode is trapped and travels along the fibre.
The simpler case of light trapped in a plane sheet of glass sandwiched
between two sheets of lower refractive index was treated in Section 9.9,
and the reader may like to refer to that section before reading on.

The electromagnetic wave travelling along the fibre is taken to have
angular frequency ω so that the electric field is

E = U exp (iωt). (16.1)

Inserting this into the wave equation, eqn. 9.36, and using cylindrical
polar coordinates (r, φ, z) with the z-axis pointing along the fibre axis
gives

∂2U/∂r2 +(1/r)∂U/∂r +(1/r2)∂2U/∂φ2 + ∂2U/∂z2 + k2U = 0, (16.2)

where the magnitude of the wave vector k is nω/c, n being the refractive
index. In single mode fibre the refractive indices of the core, n1, and
the cladding, n2, differ by a fraction of one percent. It is then justified
to make the simplifying approximation that the waves travel in the z-
direction with transverse electric and magnetic fields. This is known as
the weak guiding regime, in which

U = u(r) exp (i�φ) exp (−iβz). (16.3)

In the weak guiding regime the modes can be linearly polarized. Two
orthogonal choices are possible, for example with E in the x- or y-
directions. This justifies the way that the electric field was presented in
eqn. 16.1 as a scalar, from which the vector field E can be recovered
by multiplying by a unit vector in the transverse rφ plane. The integer
� specifies how many times the waveform repeats around the fibre axis,
and β, the propagation constant, is the wave vector component along
the direction of travel. Substituting the waveform 16.3 into the wave
equation, eqn. 16.2, gives

d2u/dr2 + (1/r)du/dr + (k2 − β2 − �2/r2)u = 0. (16.4)

From eqn. 16.3 it follows that the radial component of the wave vector
is
√

(k2 − β2). The wave numbers are k1 = n1ω/c and k2 = n2ω/c
respectively for core and cladding. Then if the wave is guided along the
fibre the transverse waveform in the core must be a standing wave, so
that

√
(k2

1 − β2) is real. At the same time the transverse waveform in
the cladding must be an evanescent wave, with

√
(k2

2 − β2) imaginary.
Thus the propagation constant should lie in the range given by

k2 < β < k1. (16.5)
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In the core the solution to eqn. 16.4, that is to say the mode, takes the
form of a Bessel function of the first kind,

u(r) = E01J	(krr), (16.6)

where kr =
√

(k2
1 − β2). This solution oscillates approximately like a

damped sinusoid. In the cladding the solution is a modified Bessel func-
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Fig. 16.2 Solutions to the characteristic equation for the propagation of LP0� modes
on optical fibre. The parameters are defined in the text. V is set to 9.0.

tion of the second kind

u(r) = E02K	(κrr), (16.7)

where κr =
√

(β2 − k2
2). This solution resembles a decaying exponen-

tial. How the core and cladding solutions fit together is determined by
the requirements, given in eqns 9.24 and 9.25, that the tangential com-
ponents of the electric and magnetic field are continuous at the surface
between the core and the cladding; that is at radius a. These conditions
can be satisfied simultaneously provided that1

kra
J	±1 (kra)

J	(kra)
= ±κra

K	±1 (κra)

K	(κra)
, (16.8)

which is the characteristic equation for a given choice of � in eqn. 16.3.
At this point it is useful to introduce a quantity, called the normalized
frequency, V , which is defined by

V 2 = k2
r a

2 + κ2
ra

2 = (ω2/c2)(n2
1 − n2

2)a
2. (16.9)

For the lowest order modes with � = 0, the characteristic equation re-
duces to

sJ1(s)/J0(s) = tK1(t)/K0(t), (16.10)

1The proof of this statement can be found in the fifth edition of Optical Electronics

in Modern Communications by Amnon Yariv, published by Oxford Universty Press
(1997).
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where s = kra and t = κra. This equation is solved graphically in figure
16.2 taking V to have the value 9.0. The solid curves show the variation
of the left hand side of eqn. 16.10 with s: note that they cross the s-axis
wherever J1(s) is zero. The broken line curve shows the corresponding
behaviour of the right hand side of the equation. Solutions to eqn. 16.10
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Fig. 16.3 Radial waveforms of the
LP01, LP02, LP11 and LP12 modes.
The dotted lines indicate the core ra-
dius in each case.

occur where the curves intersect, and these locations are marked by solid
dots and labelled with the modes’ names. Figure 16.3 shows the radial
dependence of the electric field amplitudes for several modes. The name
LP	m signifies a linearly polarized mode, with the first subscript indi-
cating the number of nodes around the z-axis and the second subscript
indicating the number of radial maxima in intensity. The cross-sections
showing one choice for the polarizations of the LP01 and LP11 modes
are sketched in figure 16.4. There are two degenerate modes in each case
which have the same spatial distributions, but orthogonal polarizations.

Solutions of the characteristic equation are eigenstates, or modes, that
would travel without changing their form along the fibre in the absence of
absorption in the glass. In the case of any other waveforms the boundary
conditions require that the electric field in the cladding increases with
the radial distance. These waves therefore spread into the cladding and
are eventually lost.

Looking at figure 16.2 it is evident that the normalized frequency
V determines the number of the freely propagating modes. The LP0m

mode can only be a solution to the characteristic equation provided that
V is larger than the value of kra at which mth zero of J1(kra) occurs.
These zeroes are located at values of kra equal to 0, 3.83, 7.02, etc. For
the LP1m modes the cut-offs are at the zeroes of J0, namely when kra
equals 2.405, 5.552, etc., while other modes have even larger cut-off val-
ues in kra. If a mode is launched along a fibre and the radiation has
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Fig. 16.4 Sketches of the cross-sections
and field orientations in the LP01 and
LP11 modes. In each case drawn there
are orthogonal modes which have the
electric and magnetic field directions
exchanged.

a frequency such that the value of V is just smaller than the cut-off
for the mode, then radiation leaks gradually into the cladding without
returning. Such modes are called leaky or lossy modes.

When V is less than 2.405 only the LP01 mode can propagate freely,
and the fibre is called single mode or monomode. Single mode operation
is the standard for telecom usage because of its simplicity: the waveform
has a cross-section not very different from the Gaussian cross-section of
the mode preferred for laser operation; interference between modes and
dispersion between modes travelling with different group velocities are
eliminated. Using eqn. 16.9 it follows that V will be sufficiently small
to exclude all but the LP01 mode when√

(n2
1 − n2

2)(ω/c)a < 2.405. (16.11)

Thus at 1310nm, which has been a preferred telecom wavelength,√
(n2

1 − n2
2) a < 0.5 µm.
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If the core radius were only a micron then it would be difficult to man-
ufacture and hard to inject much light into such a fibre. Consequently
the refractive indices of the core and cladding have to be almost equal
in order to have a reasonably large core radius. There will also be a
shortest wavelength for which an optical fibre operates as a single mode
fibre. This cut-off wavelength is

λmin = 2πa
√

(n2
1 − n2

2)/2.405 = 2.61a
√

(n2
1 − n2

2).

The numerical aperture of a step index fibre is given by eqn. 2.41

NA =
√

(n2
1 − n2

2), (16.12)

which will necessarily be small for a single mode fibre because n1 and
n2 differ so little.

An estimate of the number of modes propagating freely in a multimode
fibre can be made as follows. Using eqn. 4.13 the etendue of an optical
fibre is

T = π2a2(n2
1 − n2

2). (16.13)

Now the etendue per mode is given by eqn. 12.49, so that an estimate
of the number of modes that freely propagate is T /λ2 per polarization
state. Hence the total number of freely propagating modes is

N = 2T /λ2 = 2π2a2(n2
1 − n2

2)/λ2 = V 2/2, (16.14)

This estimate is a good approximation when V is large.

For future reference an effective area of the cross-section of an optical
mode travelling along an optical fibre is defined here as

Aeff =

[∫
I(r) dA

]2
/

∫
I2(r) dA (16.15)

where I(r) is the intensity of the optical mode at a point r on the cross-
section. Launching light into the core of a single mode fibre requires a
very tight and well aligned beam, which lasers are well suited to provide.

16.4 Fibre types and dispersion properties

In a widely used standard single mode fibre, Corning R© SMF-28TM, the
core diameter is 8.2µm with refractive index 0.36% higher than the
cladding, while the effective group refractive index is 1.4677 at 1310nm.
The cladding has an outer diameter of 125µm, which is adequate to
fully contain the evanescent tail of the LP01 mode. At 1310nm the NA
of this monomode fibre is 0.14, and the effective area of the LP01 mode
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is 8µm2. The loss at 1550nm is less than 0.22dB km−1.

Multimode fibre has a much larger core diameter than single mode
fibre. The difference between the refractive indices of the core and
cladding is made larger too. 50µm is a common choice for the core diam-
eter, with the result that the numerical aperture is larger and generally
lies in the range 0.2–0.5. At visible and near infrared wavelengths there
are up to several thousand modes freely propagating along multimode
fibre. Most modes are far from the cut-off wavelength and therefore have
weak evanescent tails. The cladding outer diameter is standardized at
125µm in common with single mode fibre, and is adequate to contain
these weak evanescent tails of the modes in multimode fibre.

A protective buffer layer and a tough cover of outer diameter 250µm
are standard for both single mode and multimode fibre. The buffer has
a higher refractive index than the cladding in order to prevent modes in
the cladding from being trapped there by total internal reflection at the
cladding/buffer interface.

The dispersion in multimode fibre is simpler to analyse in terms of
ray paths, rather than by calculating the dispersion between the modes.
In the upper panel of figure 16.5 the paths of rays are shown within the
core of a step index multimode fibre. In this class of fibre the refractive
index changes sharply between core and cladding, just as in standard
single mode fibre: this is shown in projection to the right of the panel.
An axial ray has the shortest path, while those striking the interface at
the critical angle of incidence θc = sin−1 (n2/n1) have the longest path.
The difference between the times taken by the axial and critical rays to
travel an axial distance L along the fibre is

∆t = (L/ sin θc − L)/v = L(n1 − n2)/(n2v),

where v = c/n1. Then

∆t = n1∆nL/(n2c),

where ∆n = n1−n2. Dispersion is far less in the multimode graded index

Refractive index
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Fig. 16.5 Sketches of the paths of
rays travelling in the core of step in-
dex (above) and graded index (below)
multimode fibre. On the right the re-
fractive index profiles are drawn.

fibre shown in the lower panel of figure 16.5. Its refractive index has the
quadratic dependence on radius shown on the right of the panel. Wide
angle rays travel through material of lower refractive index off axis and
follow curved paths similar to those of rays in the GRIN lenses described
in Section 4.6. In combination these effects help to reduce the difference
between the optical path lengths of the wide angle rays and the axial
ray. The corresponding time difference now drops to

∆t = n1(∆n)2L/(8n2
2c),

where n1 is the axial refractive index.
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The delay due to intermodal dispersion on step index and graded in-
dex multimode fibre can now be estimated for typical fibres. We take
the axial refractive index in the core to be 1.50 and the refractive index
of the cladding to be 1.47. Then over 1 km of step index fibre the delay
is 102 ns, and over graded index fibre it is 0.26 ns.

The single allowed mode travelling along a single mode fibre is of
course free of intermodal dispersion. There remains the chromatic dis-
persion caused by the variation of the refractive index of both core and
cladding with wavelength. This dispersion has two principal compo-
nents. First the material dispersion due to the change of the refractive
indices with wavelength, and second the waveguide dispersion due to the
change of the distribution of the LP01 mode between core and cladding
with wavelength. The group velocity of radiation is given by eqn. 11.43

vg = dω/dk

where ω is the angular frequency and k is the wave number. Then the
delay between light of free space wavelength λ and λ + ∆λ over a path
length L is

∆t = [ d(L/vg)/dλ ] ∆λ = L Dm ∆λ, (16.16)

where

Dm = d(1/vg)/dλ

is known as the group velocity dispersion. Using eqn. 11.45 to substitute
for 1/vg gives

Dm = −(λ/c) (d2n/dλ2). (16.17)

In addition a change in wavelength affects the solution of eqn. 16.10
and hence the distribution of the mode energy between the core and
cladding. This in turn affects the group velocity. The resulting waveg-
uide dispersion will depend on the degree to which the mode penetrates
the cladding and hence on the ratio a/λ. Figure 16.6 indicates the two
contributions to the chromatic dispersion in single mode fibre expressed
as the delay in picoseconds over one kilometre for a change in wavelength
of one nanometre. The material contribution is drawn with a broken line,
the waveguide contribution with a dotted line, and the total dispersion
with a full line. These plots are appropriate for a standard silica fibre
with a GeO2 doped core of diameter ∼8µm. Very conveniently the zero
dispersion wavelength coincides with the wavelength, 1310nm, at which
the absorption in optical fibre (between two OH absorption peaks) has
a minimum. Hence wavelengths around 1310nm were initially preferred
for long haul transmission. The wavelength at which the chromatic dis-
persion vanishes can be altered by changing the doping level or by ma-
nipulating the radial distribution of the doping. For example reducing
the core diameter shifts the zero dispersion point to higher wavelengths.
However the energy density over the core increases, which reduces the
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Fig. 16.6 Chromatic dispersion in standard single mode fibre.

overall power level at which non-linear effects become important.

A comparison between the delay due to dispersion in multimode and
single mode fibres requires a choice of bandwidth for the source. As
an average case take a bandwidth of 0.4 nm (5GHz). This yields a de-
lay of picoseconds per kilometre, which is around a thousand times less
than that on multimode fibres. Hence information can be transmitted
at around a thousand times higher rate on single mode fibre. Its low
attenuation and low absorption at near infrared wavelengths accounts
for the dominance of the use of single mode optical fibre in long haul
communications.

The near coincidence between the wavelength where the absorption is
least and that at which the dispersion vanishes is not just due to chance.
Referring back to Chapter 11 and in particular to figures 11.3 and 11.4
it is seen that the behaviour of the refractive index and absorption are
linked. Replotting the refractive index as a function of wavelength be-
tween a pair of absorption resonances yields the diagram drawn in the
upper panel of figure 16.7. In this region the absorption always has a
minimum. The first and second differentials of the refractive index are

n

λ

dn__
λd

λ

n2- d ___
2λ d λ

Fig. 16.7 The refractive index and
its first two derivatives in the wave-
length region between two absorptive
resonances.

shown in the lower panels of figure 16.7. Evidently the material disper-
sion contribution to the group velocity dispersion, given by eqn. 16.17,
will vanish close to the absorption minimum.

Asymmetries in the fibre cross-section, composition and stress lead to
differences between the group velocities of the orthogonal LP01 modes
resulting in polarization mode dispersion (PMD). If the refractive indices



486 Optical fibres

of the two polarizations differ by ∆n then the phase difference over a
path length D is 2πD∆n/λ, where λ is the free space wavelength. Hence
the initial phase relation between the two polarization states repeats af-
ter a distance λ/∆n, which is known as the beat length. Over other
path lengths a beam that was initially plane polarized emerges with el-
liptical polarization. Temperature and pressure affect this birefringence
and the result is that the polarization state of the emerging light can
fluctuate rapidly. Photodetectors are polarization insensitive so that
this fluctuation does not affect the actual detection process. However
the dispersion between the polarization components becomes important
at extreme data rates. Single mode fibres are now manufactured with
polarization mode dispersion below 0.1 ps/

√
km which leads to a differ-

ential delay of less than 1 ps on a 100km long link.

In applications which require that the state of polarization is well
defined polarization maintaining fibres are used. Surprisingly these fi-
bres are designed to have large built-in stresses and hence large linear
birefringence. Sections through polarization maintaining fibre types are
shown in figure 16.8, for the so-called bow tie and panda fibres. TheFast Axis Fast Axis

Fig. 16.8 Panda and bow tie polar-
ization maintaining fibre cross-section.
The small circle at the centre of each is
the core.

inserts indicated by the heavier shading are of different refractive index
from the cladding and produce stresses when the fibre cools during man-
ufacture. The difference between the travel times over a few metres of
these fibres for the LP01 modes polarized along the fast and slow axes
is around a few picoseconds. As a result these modes move in and out
of phase very rapidly as they travel along the fibre. Only light linearly
polarized exactly along the slow or fast axis of the fibre retains its linear
polarization as it travels along the fibre. Poor alignment will mean that
the light emerging from the other end of the fibre will have unstable po-
larization. When the alignment is off by an angle θ Malus’s law predicts
that the intensities of the polarization components along the two axes
are proportional to cos2 θ and sin2 θ. Thus an alignment better than
1.8◦ will keep the intensity ratio above 1000:1 and avoid such instability.

16.5 Signalling

Computer data, video and audio information are all presented for trans-
mission down a link as electrical pulses. These are in the form of a string
of binary bits: one voltage level represents a 0-bit and another level a
1-bit. The information is transferred to a laser beam that is injected into
the fibre core. This transfer is made either by using the electrical pulses
to modulate the laser voltage or to operate a modulator like that shown
in figure 10.17 which acts on the laser beam. One common code used is

NRZ

Biphase
RZ

0

0 Time

Fig. 16.9 Binary codes: non-return to
zero and biphase return to zero. The
markers indicate the end of each bit pe-
riod.

the non-return to zero (NRZ) code, in which a binary string 101100100
appears as shown in the upper panel of figure 16.9. The upper level for a
1-bit is ‘light on’ and the lower level for a 0-bit is ‘light off’. The highest
data rates are tens of Gb s−1 (gigabits per second). This is still rela-
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tively small compared to laser frequencies of 300THz so that each bit
contains huge numbers of optical waves. A biphase return to zero (RZ)
code is shown in the lower panel for the same bit string, and requires
double the switching speed. In this coding scheme a 0-bit is signalled
by a transition down during the time slot for that bit, while an upward
transition signals a 1-bit. At the far end of the fibre link the light falls
on a photodetector. In order to recover the bit stream from the output
of the detector a discriminator is required. This compares the signal
voltage to a voltage level half way between those expected for the 0- and
1-bits. It is clear that the discrimination must be made in the case of the
NRZ code at a time close to the mid-point of each pulse period, which
requires synchronization between the incoming pulses and the discrim-
inator. Circuits for this purpose locate the pulse edges and adjust the
timing continuously. They have therefore to be capable of interrogating
the incoming pulses at frequencies much higher than the pulse frequency.

After travelling along many kilometres of optical fibre the pulses are
distorted by the combined effects of noise, attenuation, dispersion and
time jitter. One simple method used to assess the quality of the signal
emerging after detection is to display the voltage level repetitively on
a fast oscilloscope. The resulting display has the appearance shown in
figure 16.10 and is known as an eye diagram. The number of pulses sam-
pled is very large. In the upper panel the eyes are open and a voltage
level can be set which will discriminate reliably between a 1-bit and a
0-bit. Many causes will lead to departures from this ideal: noise makes

Fig. 16.10 Oscilloscope eye diagrams.
In the upper diagram the eyes are open,
but in the lower diagram the noise, dis-
persion and time jitter have partially
closed the eyes.

the pulse height vary, dispersion rounds the sharp edges of the pulses
and timing jitter moves pulses forward and backward in time. Taken
together they produce the partial closure of the eyes seen in the lower
panel of figure 16.10. Discrimnation is then less reliable. Repeaters can
be incorporated along links to limit the signal degradation. At these
repeaters the incoming optical signals are converted back to electrical
signals, which are then reshaped as square pulses and retimed, before be-
ing converted back to optical signals to travel the next section of the link.

Information to be transmitted is first packaged into blocks containing
a fixed number of bits, some of the time slots being reserved for bits
which are not part of the raw data. Of these additional bits some are
used to identify the data destination and its priority. Other bits are
used to assist in the detection and correction of errors in transmission.
These error recovery bits are assigned values so that they form specific
patterns with the data bits. Whenever the optical signal is converted
to an electrical signal the data is checked by looking for these patterns.
Limited errors can be corrected, otherwise a retransmission is requested
for the block of data involved.

Amplitude modulation of a laser beam of frequency f with a sinusoidal
wave at a much lower frequency ∆fm would give a waveform

[1 + δ cos (∆fmt)] cos (ft) =
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cos (ft) + (δ/2) cos [ (f + ∆fm) t] + (δ/2) cos [ (f − ∆fm) t],

containing components at frequencies f ± ∆fm. A modulation deep
enough to turn off the carrier wave at frequency f would have δ ∼ 1, so
that these components would have large amplitudes comparable to that
of the carrier. The pulses used in modulating laser beams transmitted
along optical fibres are rectangular, which contain Fourier components of
much higher frequency than the bit rate ∆fm. With this caveat in mind,
∆fm will be taken as an estimate of the bandwidth of the modulated
beam. The corresponding wavelength spread is ∆λm = ∆fmλ2/c, where
the wavelength in free space is λ = c/f . Using eqn. 16.16 the dispersion
over a link of length L and group velocity dispersion Dm is therefore

∆tm = ∆fmLDmλ2/c. (16.18)

This is to be compared with the duration of the signal pulses at frequency
∆fm, namely ∆tp = 1/∆fm. If the signal is to be recognizable we must
have

∆tm 
 ∆tp, (16.19)

which can be re-expressed as

∆f2
m 
 c/(LDmλ2). (16.20)

As an example consider transmission over a 100 km link of standard sin-
gle mode fibre with group velocity dispersion 17 ps/km/nm at 1550nm
wavelength. This gives

∆fm 
 8.6 109 Hz. (16.21)

Bearing in mind the earlier caveat we can see that operation over such
a link will be restricted to data rates well below 1Gb s−1.

There is an additional contribution to the bandwidth from the laser
line width, ∆f	, so that the overall bandwidth is

√
[ (∆fm)2 + (∆f2

	 ) ].
In any case the laser linewidth should be kept small compared to the
modulation frequency, irrespective of the requirement to limit dispersion.

16.6 Sources and detectors

Semiconductor lasers have properties that make them ideal sources for
communications over single mode optical fibre: firstly they have high
brightness and an etendue matched to this optical fibre. The trans-
verse mode of these lasers is the TEM00 mode, whose Gaussian profile
matches well with the LP01 mode of optical fibre. A semiconductor
laser typically injects a beam of many milliwatts power into the core
of a single mode optical fibre. Alignment is obviously critical because
the cross-sectional areas of both a fibre core and a semiconductor laser
beam are small. Manufacturers supply laser packages in which the laser,
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a microlens and a fibre are already aligned and sealed. A length of the
fibre called a pigtail extends from package and can be used to couple the
source into a fibre link. If the laser is edge emitting the lens will need
to be astigmatic to convert the laser beam profile to a circular shape.
Another approach is to use anamorphic prism pairs as pictured in figure
2.18. A further key advantage of semiconductor lasers is that their line
widths are very narrow compared to any other source and this, we have
seen, is important in limiting the effects of dispersion. A typical choice
of source is an InGaAsP/InP DFB laser of the type described in Section
14.7.2. By choosing the chemical composition appropriately the operat-
ing wavelength can be located between 1000 and 1700nm. A bandwidth
of 10MHz is usual for a DFB laser.

At high frequencies, it is often preferable to use an external modulator
rather than modulate the laser directly. The reason for this preference
is that when a laser is turned on it takes some time for its the gain to
reach equilibrium and during this interval the laser frequency chirps. A
similar effect occurs when the laser is turned off. Travelling wave ver-
sions of the Mach–Zehnder modulator described in Section 10.7.1, can
be used to modulate light at very high frequencies. These modulators
have metal waveguides on which the electrical pulses propagate along
the modulator arms in phase with the optical waves. In this way mod-
ulation rates of 40Gb s−1 are achieved.

LEDs are well suited to use as sources for injecting light into mul-
timode fibres. They are incoherent sources emitting in many modes
with line widths of order 50 nm. They have comparable etendue, or put
another way the many modes of the LED match with the many modes
which can propagate freely on the multimode fibre. With so many modes
the illumination across the fibre becomes more uniform and stable than
it would with just a few modes filled. Using multimode fibre and LEDs
is far less expensive than using single mode fibre and lasers. Besides this
cost advantage the alignment of components is far less critical, and the
components are themselves less delicate. Therefore for transmission over
short distances the multimode fibre and LED combination is prefered.
However the relatively large dispersion of multimode fibre and the broad
linewidth of LEDs render them both unsuitable for long haul, high rate
information transfer.

The photodetectors used to convert the optical signals to electrical
signals are usually InGaAs/InP photodiodes. These may be pin photo-
diodes, or avalanche photodiodes when the highest sensitivity is required.
The properties of these detectors have been discussed at length in Chap-
ter 15. The impact of the noise produced by sources and detectors, and
of detector sensitivity will be discussed later.
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16.7 Connectors and routing devices

The devices described here are those commonly used in communication
over single mode fibre, but they are often used in other applications
and with other fibre types. Components such as lasers, photodiodes and
routing devices are often connectorized by manufacturers so that the
device package has one or more pigtails of monomode fibre, perhaps a
metre in length. The fibre end could be fitted with a standard connec-
tor, or it could be a bare end, depending on the user’s requirements.

Permanent fibre to fibre connections are made with mechanical or fu-
sion splices. In either case the two fibre ends are prepared by stripping
back the buffer layer and cleaving the core and cladding. Generally the
cleaver consists of a steel anvil with a groove into which the fibre end
is introduced. There is a hinged diamond cutter which is brought down
to touch the fibre and the action cleaves the fibre at right angles to its
length. This surface is checked with a microscope so as to detect and
reject cleaved surfaces which show crazing or chipped edges.

A fusion splicer has several components: saddles into which the cleaved
ends of the two fibres are clamped; precision controls to align and bring
the fibre ends together; an arc welder; and a microscope used to monitor
the processes. When the alignment is satisfactory the electric arc is fired
across the fibre joint in order to produce a weld. The loss at a well made
fusion splice is only ∼0.1dB. Mechanical splices are made by inserting
the fibres into opposite ends of a precision capillary. Connections be-
tween two sets of fibres are made using a silicon substrate into which
precision grooves have been etched parallel to a crystal axis. Each pair
of fibre ends to be connected are placed touching one another in one of
the grooves. All the fibre ends are clamped in place by a second silicon
block. Mechanical splices can be assisted by using a gel between the
fibre ends with a refractive index matching that of the fibre. The loss
at a well made mechanical splice is ∼0.25dB.

Non-permanent junctions are made using connectors, and a typical ex-
ample used with single mode fibre is shown in figure 16.11. Alignment

Fig. 16.11 Fibre optic connector.
The connector body (cross-hatched)
supports the precision ceramic ferrule
through which the stripped fibre is
threaded. The boot (shaded) grips the
fibre cover and relieves the strain. Out-
side there is a threaded (or bayonet)
latch.

depends on a precision ceramic ferrule through which a capillary tube
runs. The stripped end of the fibre is fed through this capillary so that
it protrudes slightly. Then the protruding end is ground down and pol-
ished flush with the ferrule surface. Two such connectors fit into either
side of a precision ceramic sleeve and just touch one another. The con-
nectors are secured to this sleeve by screw or bayonet latches similar
to those used in electrical connectors. Losses at good connectors are
only ∼0.6 dB, and only vary by ∼0.2 dB over a thousand insertions and
withdrawals.

Losses are also incurred if the fibre is bent appreciably, because then
the angle of incidence at the core/cladding interface is changed and some
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light can escape into the cladding. Along a single turn of 30mm diameter
on a typical monomode fibre the loss is less than 0.5 dB. However the
loss mounts rapidly as the turn diameter is reduced below this value.
Bends can also be useful. When light is injected into an optical fibre
some energy can enter leaky modes which may later re-enter the core
at a connector or other device and disturb the operation of the link.
These lossy modes can be shed easily by bending the fibre loosely over
a snake-like former at a point along its length near the source.

16.7.1 Directional couplers

Directional couplers are devices used to couple light from one fibre to an-
other. Two examples are shown in figure 16.12. The directional coupler
in the upper panel is constructed from two stripped fibres. These are
wound around one another, heated to near the melting point, stretched
and then cooled. Within the fused region modes extend over the whole
fibre so that radiation arriving in one core may exit through the other.

The second directional coupler shown in figure 16.12 consists of a
waveguide structure built on a substrate of lower refractive index. Evanes-
cent waves couple light between the light guides. When input A is illu-

AA

BB

AA

BB

Fig. 16.12 Directional couplers. The
upper panel shows two stripped fibres
that have been welded together. The
lower panel shows a planar waveguide
coupler.

minated from one end the variation of power in the two guides in the
overlap region is

IA(z) = IA(0) [ a2 cos2 (Cz) + b2 ],

IB(z) = IA(0) a2 sin2 (Cz),

where z is measured from the start of the overlap region, a2 + b2 = 1
and C is the strength of coupling. Perfect coupling has b = 0, and in
this case an overlap of length π/2C transfers all the power from input
A to output B. The waveguides have rectangular cross-sections of a few
microns side length so that radiation couples efficiently to or from single
mode optical fibre butted against an entry or exit port.

Couplers can be designed to combine light of different wavelengths
onto a single fibre. In an arrangement used in fibre amplifiers, light
from a pump laser of wavelength 980 nm entering through input B is
fully transferred to output A, whilst infrared light at 1550µm which en-
ters through input A emerges from output A. Another coupling device,
the star coupler, is made by fusing several fibres together rather than
two; in this case the input from one fibre is shared equally among all the
outgoing fibres.

More sophisticated waveguide devices will be met as we proceed. The
trend in manufacturing is to concentrate as many manipulations of light
as possible within devices built on a single substrate, thus avoiding in-
terconnections by fibre. These units are called planar waveguide circuits.
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16.7.2 Circulators

The symbol used to indicate a three port circulator is shown on the left
in figure 16.13. Light entering port 1 in the left hand panel exits only
at port 2; light entering at port 2 exits only at port 3; light entering
port 3 is lost. On the right a four port circulator is shown. Figure 16.14
shows the internal structure of a three port circulator. It incorporates
two birefringent plates, BP1 and BP2, a Faraday rotator FR, which
gives a 45◦ rotation, a half-wave plate, HWP, and a polarizing beam
splitter, PBS. In the upper panel light travels from port 1 to port 2, and

1

2

3 1

2

3

4
Fig. 16.13 Symbolic representations of
three and four port circulators. The ar-
rows indicate the permitted light paths
within each circulator.

in the lower panel from port 2 to port 3. Sketches are included of the
polarization states as the light enters and leaves the rotator and as it
leaves the half-wave plate; all as seen seen from port 1. The solid line
polarization vectors correspond to the solid line path, and the broken
line polarization vectors correspond to the broken line path.

Light entering port 1 with ordinary polarization travels straight through
BP1 along the broken line, while light with extraordinary polarization
walks off along the solid line. Each of these beams has its polarization ro-
tated by 45◦ in the rotator, and then in travelling through the half-wave
plate their polarizations get reflected about its optical axis. These two
steps, taken together, interchange the polarizations of the two beams,
and consequently there is a compensating walk-off in BP2 which reunites
the beams at port 2. Travelling in the reverse direction, as shown in the
lower panel of figure 16.14, the beams recover their initial polarization
before entering BP1. The beam entering BP2 with extraordinary po-

Port 1

Port 2

Port 3

PBS

BP1 FR HWP BP2

Port 1

Port 2

Port 3

PBS

BP1 FR HWP BP2

Fig. 16.14 Paths of light through a cir-
culator. In the upper panel the paths
from port 1 to port 2 are shown, and
in the lower panel those from port 2 to
port 3. The polarizations are indicated
for each path. The labels are explained
in the text.

larization (broken line) therefore walks off twice while the beam with
ordinary polarization is undeflected. Both beams exit through port 3.
When light enters port 3 each polarization component is deflected away
from port 2 and is lost. Consequently the only connected paths are
1 → 2 and 2 → 3.

16.7.3 MMI devices

An example of these compact waveguide devices is shown in figure 16.15.
The entry and exit waveguides have rectangular cross-section of a few mi-
crons side length in order to match the area of the modes in single mode
optical fibres. Linking these waveguides is a broad slab in which multi-
ple modes propagate between its entry and output ports. The length of
this slab can be chosen such that the multiple mode interference (MMI)
produces an image of the input ports coincident with the output ports.
This makes a 2×2 coupler. MMI devices can also be designed to com-
bine and split the incident beams in other more complicated ways: 1×n,
4×4 and so on. In the remainder of this section the principles of MMI
operation will be demonstrated by analysing the simple 2×2 coupler.

Within the central slab each mode has a waveform

E = E0 exp [i(ωt − ktx − βz)], (16.22)
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using the coordinates shown in figure. Each mode that propagates with-
out loss has nodes at the side walls, so that

ktW = mπ, (16.23)

where kt is the transverse x-component of the wave vector k, W is the
width of the wide section and m is an integer describing the mode order.
Also

k2 = k2
t + β2, (16.24)

where β is the propagation constant. With the slab geometry shown
the waves propagate through it in a direction close to its long axis, and
k2
t 
 k2. Using eqn. 16.23 to replace kt in eqn. 16.24 we then have to

a good approximation

βm =
√

(k2 − m2π2/W 2)

= k [ 1 − (mπ/kW )2/2 ]

= 2πn/λ − m2πλ/(4nW 2) (16.25)

for the mth order mode. Here λ is the wavelength in free space and n is
the refractive index of the waveguides and slab. A beat length is defined
over which the lowest two modes recover their initial phase difference,

L12 = 2π/(β1 − β2) = 8nW 2/(3λ). (16.26)

The relative phase between the first and the jth modes also returns to
its initial value after a distance

L1j = 2π/(β1 − βj) = 3L12/(j2 − 1).

Consequently all the modes recover their initial phase relation to the
first mode after a distance 3L12. As a result the intensity pattern across
the slab at this plane is the same as across its entry surface. Light en-
tering the MMI through the lower left (right) hand port would all exit
through the upper left (right) hand port. At a distance 3L12/2 from the
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Fig. 16.15 MMI waveguide structure.
On the left is a plan view and on the
right cross-sections are shown through
the structure. The sections of the
waveguides are several microns in width
and height.

entry surface the modes with m odd are all in phase again while the m
even modes are exactly π out of phase: the intensity pattern is then the
mirror image of that at entry. In an MMI of this length the light enter-
ing the left hand input would exit at the right hand port, and vice versa.

The function of the central slab is to make the interference maxima
fall on the output ports. These maxima are not displaced laterally when
small errors are made in the length of the slab. Construction is therefore
relatively less critical than for directional couplers. Further, the ports
of MMI devices can be placed well apart which means that there is
negligible coupling from one input port back into another input port.

16.8 Link noise and power budget

A key requirement for any optical fibre link is that the information trans-
mitted is received with negligible errors. The accuracy of the transfer
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is quantified by the bit error rate (BER), that is the probability that a
1-bit is incorrectly assigned as a 0-bit, or vice-versa. It is measured by
transmitting and checking the reception of a long sequence of random
bits. For video transfer a BER of below 10−9, meaning less than one
bit being incorrect in 109, is adequate, while for data transfers a BER
of below 10−12 is required. A limit on the bit error rate translates into
a corresponding limit on the signal to noise ratio at the receiver, and in
turn this imposes requirements on the total noise and the attenuation
over the link. In this section the relationship between SNR and BER
will be deduced and an example of the power budget calculated for a
link. The link considered consists of monomode fibre with 0.3 dB/km
attenuation, and the laser is a 1310nm wavelength DFB laser.

Let the average electrical current for 1-bits be is, while that for the
0-bits is zero, above some constant background. The noise is taken to
have a Gaussian distribution with rms value σ. Then if the discriminator
level is set at is/2, the chance of a 1-bit being recorded as a 0-bit is

BER = [ 1/(
√

2πσ) ]

∫ is/2

−∞
exp [−(i − is)

2/2σ2 ] di.

Now make the substitution is − i = j, so that

BER = [ 1/(
√

2πσ) ]

∫ ∞

is/2

exp (−j2/2σ2) dj,

which is evidently also the probability that a 0-bit is recorded as a 1-bit.
Next put ξ = j/(

√
2σ), and the above equation becomesCurrent signal to noise ratio
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Fig. 16.16 Logarithm of the bit error
rate versus the signal to noise ratio for
the detector current. BER = (1/

√
π)

∫ ∞

is/(2
√

2σ)

exp (−ξ2) dξ

= (1/2) [ 1 − erf(is/(2
√

2σ) ], (16.27)

where erf(z) is the error function.2 This BER is plotted against the
current SNR, is/σ, in figure 16.16. In order to obtain a BER suitable
for video transfer of below 10−9 the ratio is/σ must be above 12. Thus
the SNR of the electrical power from the detector must satisfy

SNR = (i2s/σ2) > 144 (21.6 dB).

The noise is made up of contributions from the detector and the laser.
Using eqns. 15.18 and 15.22 the sum of the shot noise and the Johnson
noise in the detector current is

σ2
(s+j) = (2ηe2/hf)Pd∆f + (4kBT/RL)∆f, (16.28)

where η is the detector quantum efficiency, Pd is the optical power falling
on the detector, ∆f is the bandwidth and RL the load resistance.

2See the Handbook of Mathematical Functions by M. Abramowitz and I. A. Ste-
gun, published by Dover Publications Inc., New York (1972).
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Fig. 16.17 Signal and noise currents along an optical fibre link as a function of link
length. A margin of 21 dB in the power SNR is indicated.

Laser intensity noise, known as the relative intensity noise (RIN),
arises from causes described in Section 14.7.3. If the mean optical power
of the laser is P0 then the mean square deviation of this power is

σ2
L = (RIN)P 2

0 ∆f. (16.29)

Relative intensity noise is around 10−13 Hz−1 (−130dB Hz−1) for DH
lasers, around 3 10−15 Hz−1 for DFB lasers, and around 10−16 Hz−1 for
neodymium YAG lasers. Taking the attenuation over a link of length L
as exp (−αL), and using eqns. 16.28 and 16.29, the total mean square
noise in the detector current is

σ2 = (ηe/hf)2(RIN)P 2
0 exp (−2αL)∆f

+(2ηe2/hf)P0 exp (−αL)∆f + (4kBT/RL)∆f, (16.30)

where we have used Pd = P0 exp (−αL). The three contributions are
plotted separately in figure 16.17 as functions of the distance along the
fibre path, together with the detector current for a 1-bit. Typical values
have been used for all parameters: 2.5mW of optical power is launched
by the 1310nm DFB laser into the link; the RIN is 3 10−15 Hz−1; the
fibre attenuation is 0.3 dB/km; the quantum efficiency of the detector is
0.5; the bandwidth is 1GHz and the load is 1 kΩ at 300K. Up to a dis-
tance of 80 km the current SNR remains above 12, and equivalently the
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power SNR remains above the 21.6 dB required to maintain a BER below
10−9. Some further allowance must be made for the losses in connectors
and splices. The noise generated by stimulated Raman and Brillouin
scattering has been discussed in Chapter 14. This noise would be unim-
portant in the case considered above, but its growth as the launched
power increases limits the maximum usable power to of order one watt.

Actual power losses occurring along an optical fibre link are measured
by using optical time domain reflectometry (OTDR). One component of
the reflectometer is a laser which emits a train of short pulses down the
link. A second component is a receiver which records the intensity and
timing of light returning after each pulse is emitted. A typical display
seen on a reflectometer screen appears in figure 16.18. This shows the
logarithm of the accumulated reflected intensity from many pulses ver-
sus the distance down the link at which reflection took place. Over the
greater part of the plot the reflected intensity is due to Rayleigh back
scattering. Rayleigh scattering is directly proportional to the beam in-
tensity, so that it falls off exponentially with distance in the same way as
the beam intensity. The attenuation per kilometre of fibre is determinedDistance from source
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Fig. 16.18 Optical time domain re-
flectometry. The logarithm of the re-
flected intensity is plotted versus the
distance from the source. At A there
is a good splice/connector, at B a poor
splice/connector and at C a bare fibre
end.

from the gradient of these sections of the plot. At the point labelled A
the tiny blip and negligible drop indicate a well made splice or a good
connector, while the large spike and loss thereafter at point B reveal a
poor connection. Finally at point C there is a reflection from a bare
fibre end.

Poor connections can give rise to considerable noise in optical systems
with lasers. Each reflective surface can form a Fabry–Perot cavity with
a laser mirror facet, and standing waves will build up in these cavities.
Radiation trapped in this way can easily disturb the laser operation and
increase its relative intensity noise.

16.9 Long haul links

The discussions in Sections 16.4, 16.5 and 16.8 have shown that trans-
mission over optical links of 50–100km range on single mode fibre can
achieve a very low BER at gigahertz data rates. Beyond this range the
effects of attenuation and dispersion become severe. These difficulties
have been successfully overcome so that transoceanic optical links now
carry most of the communications traffic between continents. The in-
gredients contributing to this achievement are now outlined and then
described in detail.

Fortunately amplification can be carried out optically while the signal
is still on its way. This avoids the complications that would be involved
in converting the signal to an electrical signal, amplifying it electroni-
cally and finally converting back to an optical signal. However electronic
regeneration has the advantage that the signal can be re-shaped and re-
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timed, processes which may be necessary after a sequence of optical
amplifier stages. Dispersion can be eradicated by using lengths of fibre
with opposing and so compensating dispersions.

Alongside increasing the reach of optical links a parallel advance has
been made in improving the data rate by transmitting data separately on
many laser beams of different wavelengths along a single fibre. At first
this wavelength division multiplexing (WDM) was limited to two wave-
lengths, at 1310nm and 1550nm. Nowadays a typical system would
use 48 lasers whose wavelengths are spaced apart by 0.8 nm (100GHz)
around 1550nm, spanning the C-band (1530–1565nm). A limit to the

Isolator

pump
Laser

Coupler
Directional

Erbium doped fibre

Fig. 16.19 Erbium doped fibre ampli-
fier station.

total bandwidth obtainable is reached when the data rate in Gb s−1 ap-
proaches the channel spacing in gigahertz, because any further increase
in the data rate on each channel or decrease in the spacing in laser fre-
quency will cause adjacent channels to overlap and interfere.

In this limit the O- to U-bands, extending from 1260–1675nm, could
together provide a total bandwidth of approaching 60THz on one single
mode optical fibre.

16.9.1 Fibre amplifiers

The most mature amplifier technology, that of the erbium doped fibre
amplifier (EDFA), uses stimulated emission to amplify the attenuated
signal beam. An erbium amplifier consists of a length of fibre doped
with 100–500 parts per million (ppm) of erbium which is spliced into
the link at the point where amplification is required. Figure 16.19 shows
the components of such an amplifier. Radiation from an independent
local laser source is fed into the doped fibre via a directional coupler, its
wavelength chosen so that the Er3+ ions are pumped into a long lived
excited state. The incoming signal beam is then amplified by stimulated
emission from Er3+ ions in these excited states. Figure 16.20 shows the
energy levels of the Er3+, which are broadened by the inhomogeneous
electric fields within the glass. The upper states involved in stimulated
emission lie within the E2 band and have long lifetimes of about 12ms.
These states can be pumped directly by a laser of wavelength 1480nm
or indirectly via the E3 level using a laser of wavelength 980nm. If the
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3 E11/2I4

(short lived)

1450-1650nm

Fig. 16.20 Er3+ energy levels involved
in erbium doped fibre amplification.
Alternative pumping schemes are indi-
cated.

attenuated signal beam has a wavelength within the range emitted in
the E2 →E1 transitions, namely 1450–1650nm, it will stimulate emis-
sion from the excited ions and hence be amplified along the length of the
erbium doped fibre. The gain produced is largest at about 1535nm and
is useful over the range 1470–1630nm, thus covering the whole of the
C-band. A virtue of the EDFA is that it can simultaneously amplify all
the optical beams travelling along the same fibre whose wavelengths lie
within this broad gain spectrum. This property has been central in the
development of wavelength division multiplexing. Typically 100mW of
pump power injected into 10m of erbium doped fibre will produce 20 dB
gain in a microwatt signal anywhere across the C-band (1530–1565nm).
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At the same time that the signal is amplified in a fibre amplifier pho-
tons spontaneously emitted by the erbium ions in the E2 →E1 transition
are also multiplied if their paths are directed along the core of the fibre
amplifier. Any of this amplified spontaneous emission (ASE) within the
bandwidth of the signal beats with the signal to give noise. The isolator,
shown in figure 16.19 prevents the backward propagation of ASE light
to amplifiers earlier in the link.

A competitive technique for providing amplification makes use of the
Raman effect described in Section 14.14.1. This method of amplifica-
tion requires no special doping of the fibre and operates along the whole
length of the link. It is the Stokes’ transition that is utilized. Refer-
ring to figure 14.47 a laser pumps the intermediate state in the Stokes’
transition and the photons in the signal beam stimulate the downward
transition from this state. This stimulated emission amplifies the signal
beam. Figure 14.48 shows the distribution in frequency of the radiation
emitted in the Stokes’ transition in optical fibre. The gain in the signal
beam produced by Raman amplification will have a similar dependence
on frequency. Therefore the gain curve has a broad peak which is cen-
tred 13.2THz below the frequency of the laser pump, that is at 100 nm
higher in wavelength, and its width is around 80 nm. In the Stokes’ tran-
sition the energy transferred induces mechanical oscillations in the glass
lattice and hence it is independent of the laser wavelength. Therefore
the central wavelength of the Raman gain curve is always 100nm above
the laser pump wavelength. This makes it possible to amplify beams
of any wavelength across the O- to U-bands simply by using a pump
laser whose wavelength is 100 nm shorter. A set of pump lasers spaced
∼100nm apart in wavelength can provide a relatively flat Raman gain
curve with any desired wavelength coverage.

Raman amplification is weak relative to amplification in erbium doped
fibre over a similar length of fibre, but now the whole length of the link
provides amplification rather than the tens of metres used in EDFA.
The high power pump lasers needed for Raman amplification, produc-
ing around 1W, are now widely available; this has removed a crucial
advantage of EDFA. In comparison with the long lived excited state
involved in EDFA the Raman excited states are short lived. The fluc-
tuations in laser pump power are therefore mirrored in Raman amplifi-
cation, whereas they are smoothed out in erbium doped amplifiers. If
the Raman pump beam and the signal beam travel together along a
link the fluctuations would get imprinted on the signal beam with a cor-
responding huge increase in noise. This catastrophe is avoided by the
simple trick of injecting the pump beam from the opposite end of the
fibre to the signal beam. Then the effect of fluctuations is averaged over
the whole time the data beam spends travelling along the link, which is
order 0.25ms for a 50 km span.
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16.9.2 Dispersion compensation

Across the C-band, for which fibre amplifiers were first introduced, there
is considerable group velocity dispersion in standard single mode fibre.
We have seen in Section 16.5 how this puts an upper limit on the mod-
ulation frequency, well below what is attainable at 1310nm wavelength
where the group velocity dispersion vanishes. Solutions to this prob-
lem required the development of new fibre types differing in their radial
doping profile from standard single mode fibre. Figure 16.21 shows the
refractive index profile for non-zero (NZ) dispersion shifted fibre. This mµRadius in 
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Fig. 16.21 Refractive index profile of
non-zero dispersion shifted fibre. Cour-
tesy Scott R. Bickham and Michael M.
Sauer, Corning Inc.

has a core of smaller cross-section and hence the effective area of the
LP01 mode is smaller too. The group velocity dispersion of NZ disper-
sion shifted fibre is plotted as a function of wavelength in figure 16.22
and is reduced to about 4 ps/km/nm at 1550nm wavelength.3

It might seem preferable to have aimed for zero dispersion across the
C-band. Nonetheless this must be avoided because exact zero dispersion
is a condition which gives rise to excessive crosstalk between channels in
wavelength division multiplexing. The origin of this crosstalk lies in the
non-linear interaction causing four wave mixing between the beams at
different wavelengths travelling along the same fibre. These are similar
to the interactions discussed in Section 14.14. Four wave mixing is a
third order process: waves of frequencies fn and fn+m interact to give
satellite waves of frequencies fn − (fn+m − fn) and fn+m +(fn+m − fn).
When the lasers frequencies are equally spaced, which is the norm in
dense wavelength division multiplexing, the frequencies of the generated
channels coincide with original channel frequencies. Then if the group
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Fig. 16.22 Dispersions of standard sin-
gle mode fibre, dispersion shifted fibre
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dispersion is zero the generated channels will remain in phase with the
original channels as they travel along the fibre and so interfere and garble
the data on all channels. Having some small residual dispersion causes
the generated channels to drift in and out of phase with the original
channels so that they are incoherent and do not interfere. The neces-
sary small residual dispersion, ∼4 ps/km/nm, has then to be corrected
in order to maintain the signal bandwidth. A simple approach is to ter-
minate each section between amplification stages by a relatively short
length of fibre having a very large dispersion of the opposite sign to the
main length. Such dispersion compensating fibre would have a group
velocity dispersion of −100ps/km/nm. Alternatively a link can contain
equal lengths of fibre with equal and opposite small dispersions.

Purely electronic signal processing methods have been developed to
provide dispersion compensation on shorter links at high data rates.
These are very valuable for upgrading the many links installed with non-
dispersion shifted fibre. They offer dispersion compensation∼1000ps/nm.4

3The ITU recommends specifications to help achieve compatibility between optical
fibres and devices from different suppliers. Thus ITU-T G.652 covers standard single
mode fibre optimized at 1310 nm, G.652.C covers low water peak fibre.

4My thanks to Professor Ian Bennion for pointing out this progress to me.



500 Optical fibres

16.10 Multiplexing

The number of laser beams carried at the same time on one single mode
optical fibre on long haul optical fibre links is typically 48 with their
frequencies equally spaced at intervals of 100GHz, that is at intervals of
0.8 nm in wavelength. This is known as dense wavelength division mul-
tiplexing (DWDM), and the layout for such a link is illustrated in figure
16.23. The details relating to dispersion compensation and amplifica-

1λLaser 

nλLaser 

1λ

nλ

Modulators Detectors

Data

Data

Mux Demux
EDFA

Add/drop
...bλ, aλ

Fig. 16.23 Optical link with wavelength division multiplexing. The erbium doped
amplifier and the add/drop module are indicated.

tion are left out; instead the emphasis in the figure and in the following
sections is on the multiplexing/demultiplexing of laser beams of several
wavelengths onto/from a single optical fibre, and the routing of individ-
ual wavelengths. Compact, sophisticated devices have been developed
to perform these functions. Several passive and active devices are de-
scribed below. Passive devices are considered which use thin film inter-
ference filters or fibre Bragg gratings to select wavelengths, as well as
array waveguide gratings which can simultaneously combine or separate
beams of multiple wavelengths. Moving now to active devices, arrays
of micron sized mirrors provide examples of a micro electro-mechanical
system (MEMS) which route multiple beams and can simultaneously
switch their routing. All the devices described below have important ap-
plications outside communications: for example in optical fibre sensors,
adaptive optics and projection TV. As mentioned earlier one objective
being pursued by manufacturers is to integrate many components into
monolithic waveguide devices and so eliminate the interconnections be-
tween components, which are delicate and expensive to make.

16.10.1 Thin film filters and Bragg gratings

Both these types of device can be used to select an individual beam from
among the many beams multiplexed onto a single fibre, even when the
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separations in wavelength are as little as 0.4 nm. The operation of thin
film interference filters has been analysed in Section 9.7 and the filters
required in the present context must be apodized in order to suppress
all the beams nearby in wavelength to the one selected. A simple de-
multiplexer using several thin film transmission filters is shown in figure
16.24. Each filter on the glass block transmits one wavelength channel.

A related device is the fibre Bragg grating (FBG), in which a cyclic
variation in the refractive index along the fibre core (the Bragg grating)
forms the interference filter. If the grating pitch is Λ and the mean
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Filter
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Mirror

Fig. 16.24 Thin interference films on
a glass block, used to demultiplex three
wavelengths.

refractive index of the core is n, then light reflected from successive
grating planes is in phase if its free space wavelength λB is such that

λB = 2Λn. (16.31)

The grating pattern is imprinted on the fibre core using an ultraviolet
pulsed laser and a diffraction grating. Although the imprinting is en-
hanced by the GeO2 doping of the core, the modulation obtained in the
refractive index, ∆n/n, is still only about 10−4, with the consequence
that the relative amplitude of the wave reflected from each grating cycle
is correspondingly small. It requires a grating millimetres in length to
fully reflect the incident radiation at the Bragg wavelength. An estimate
of the bandwidth can be made as follows. Let the grating be of length
L, and contain N grating cycles, then multiplying eqn. 16.31 by N gives

NλB = 2nL. (16.32)

Suppose that changing the wavelength by ∆λ produces destructive inter-
ference between the reflections from the two ends of the grating. Then

(λB + ∆λ)(N − 1/2) = 2nL. (16.33)

Subtracting eqn. 16.32 from eqn. 16.33 gives

λB/2 = (N − 1/2)∆λ,

so that to a good approximation

∆λ = λB/2N = λ2
B/(4nL). (16.34)

Thus a 1mm long grating of refractive index of 1.5 at a wavelength of
1.55µm has a bandwidth 0.4 nm. A more detailed analysis shows that
the reflectance distribution as a function of wavelength has side lobes
like those shown for a thin film grating in the lower panel of figure 9.18.
Apodization, that is the elimination of these side lobes, is achieved by
a technique identical to that used in the case of thin film gratings. The
refractive index is modulated by a Gaussian envelope so that its varia-
tion is like that shown in the upper panel of figure 9.18.

A fibre Bragg grating is shown in figure 16.25 being used with two cir-
culators to drop a beam of one wavelength, λx, from multiplexed beams
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and to add a similar beam. This add/drop module is also pictured
schematically in figure 16.23 at an intermediate station along a fibre
link. Beams of many wavelengths enter port 1 of the first circulator in
figure 16.25 and exit at port 2. While travelling along the fibre connect-
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xλDrop xλAdd 

FBG
xλfor 

Fig. 16.25 Optical add/drop module
for a wavelength λx.

ing the two circulators the beam of wavelength λx is reflected back by the
Bragg fibre grating, it re-enters port 2, exits at port 3 and is dropped for
local reception. In the reverse process a locally generated beam of wave-
length λx enters port 1 of the second circulator, is reflected by the same
fibre Bragg grating and then exits at port 3 together with the beams
of other wavelengths coming from the first circulator. Evidently by im-
printing several gratings at different points along the fibre linking the
circulators it is possible to add/drop several wavelengths simultaneously.

Chirped fibre Bragg gratings are gratings in which the grating pitch
changes along the fibre. In this way the path length of the reflected
radiation varies with wavelength. Such chirped fibre gratings provide
a way by which dispersion can be compensated on existing links made
from non-dispersion shifted fibre. If the Bragg wavelength changes by
∆λB over a grating of total length L, then the dispersion compensation
achieved is

D = 2nL/(c∆λB), (16.35)

where n is the refractive index of the fibre. Taking a length of 0.1m, a
refractive index 1.5 and a wavelength change of 0.4 nm, the compensation
is 2500ps/nm.

16.10.2 Array waveguide gratings

Array waveguide gratings (AWG) are compact devices that use diffrac-
tion to multiplex beams of different wavelengths arriving on individual
fibres onto a single fibre, or alternatively to demultipex them from a
single fibre onto individual fibres. A demultiplexer, typically a few cen-
timetres across, is illustrated in figure 16.26. The upper panel shows
the waveguide structure built onto a substrate. An input fibre carrying
many wavelengths feeds the single input waveguide which leads to the
first coupling slab. From there multiple waveguides lead to a second
coupling slab. On the far side of this second slab several waveguides
emerge, each carrying a single wavelength from among those present in
the input. Details of the second coupling slab appear in the lower panel
of the same figure, in which the ports marked a and b are entry ports
and those marked 0 and 1 are exit ports.

Both the entry and exit faces of the coupling slabs have circular out-
lines, which are of equal radius and are centred on the centre of the
opposite face of the same slab. In the first slab the light from the input
waveguide spreads out due to single slit diffraction at its junction with
the slab. The illumination at the exit face is uniform and, thanks to
the geometry, the phase is constant over this exit face. Connecting the
coupling slabs is the waveguide array, the lengths of the waveguides in-
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Fig. 16.26 Array waveguide grating. The upper panel shows both slabs and the
waveguide array. The lower panel shows details of the second slab. The ports labelled
a and b are the input ports, those labelled 0 and 1 are output ports.
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creasing by a fixed amount from one waveguide to the next. This has the
consequence that there is a fixed phase difference between light entering
the second slab from adjacent waveguides, exactly as if the light were
emerging from the slits of a diffraction grating. The number of output
ports from the second slab equals the number of wavelengths to be de-
multiplexed. It is arranged that the increment in path length between
succesive waveguides is such that the principal diffraction maxima for
each of these wavelengths falls on its own unique exit port.

Suppose that the wavelengths multiplexed in the input are spaced at
intervals ∆λ, that the central wavelength is λ0 in free space, and that the
fixed path increment between successive waveguides in the array is ∆L.
∆L will typically be of order 10µm. Now the entry ports on the second
slab (...a,b,....) are equidistant from the central exit port, labelled 0.
Thus waves of wavelength λ0 will arrive in phase at port 0 provided that
the optical path length increment between successive waveguides is an
integral number of wavelengths: that is provided that

n∆L = mλ0, (16.36)

where n is the refractive index of the waveguides and m is the diffraction
order, a positive integer. With this arrangement the mth order principal
maximum for wavelength λ0 falls on the central exit port.

The design must also be such that the mth principal maximum for the
wavelength next to the central wavelength, λ0+∆λ, falls on the adjacent
exit port, labelled 1. This requires that the difference in optical path to
port 1 via any pair of adjacent array waveguides such as those labelled
a and b must be exactly m times the wavelength λ0 + ∆λ. Now the
difference between these paths across the second slab alone is

∆s = nd sin θ, (16.37)

where d is the spacing between adjacent waveguides as they enter the
second slab, and θ is the angle shown in figure 16.26. This angle is
small, so that sin θ can be approximated by x/f where f is the radius of
curvature of the slab’s input and exit faces and x is the spacing between
successive exit ports. Then

∆s = nxd/f. (16.38)

To this optical path difference we must add the difference in optical
length between the array waveguides feeding ports a and b, namely
n∆L. If this total path difference satisfies the equality

n∆L + nxd/f = m(λ0 + ∆λ), (16.39)

then indeed the mth order principal maximum for wavelength λ0 + ∆λ
falls on port 1. Subtracting eqn. 16.36 from eqn. 16.39 gives

nxd/f = m∆λ. (16.40)
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Using eqn. 16.36 to replace m gives

∆λ = xλ0d/(f∆L). (16.41)

We must not overlook the possibility that secondary maxima will cause
crosstalk between the channels. Referring to Section 6.5 the intensities
of secondary maxima of a multi-slit grating were shown to be at most
4.5% of the intensity of the principal maxima. Therefore array waveg-
uide gratings are constructed with a large number of waveguides, in this
case 100 waveguides, which effectively eliminates crosstalk between the
wavelength channels.

16.10.3 MEMS

The micro electro-mechanical devices of interest here are arrays of up to
several thousand identical mirrors, typically 10 µm×10 µm in area, and
all independently controlled. Their movements are implemented by ei- Input fibres
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Fig. 16.27 MEMS mirror array used
as a cross-connect.

ther piezoelectric or electrostatic actuators. Such devices are constructed
using methods similar to those perfected for microchip manufacture. A
simple example is the 4×4 optical cross-connect shown in figure 16.27.
It consists of a square array containing 16 mirrors. When a voltage is
applied across the terminals of a given mirror, electrostatic attraction
raises the mirror into an upright position, while if unenergized it lies
flat. Any combination of one-to-one connections between the input and
output ports can be obtained by raising the four appropriate mirrors.
Switching from one configuration to another takes less than 0.1ms. This
MEMS router has a number of advantages: the device is compact and
there is negligible crosstalk between channels. Switching speeds are low
compared to electronic switching, so this method can only be used where
switching is infrequent.

A second application of mirror arrays is that of selective switching in
DWDM. In this example the mirrors switch demultiplexed wavelength
channels between the output fibres at will. The complete demultiplexer
plus wavelength switch is drawn in figure 16.28: in the upper panel a
plan view is shown, and in the lower panel a side view. For clarity
only a pair of wavelengths are used in the illustration. Divergent light
from the fibre end terminating some link is collimated so as to fall as
a parallel beam on the diffraction grating. The diffracted beams of the
different wavelengths diverge from one another and are focused by the
second lens onto separate mirrors in a linear array of mirrors. The lens
is placed a distance equal to its focal length from the grating so that
the light in each demultiplexed beam arrives as a parallel beam at a
mirror. The response of the mirrors is analogue, meaning that their
tilt angles can be varied continuously over some range by varying the
applied voltage. One mirror is shown tilted up, the other tilted down
so that the two wavelengths (λ1 and λ2) are separated in the vertical
plane. In the plan view their return paths simply retrace their outward
paths to the mirror. However, in the side view shown in the lower panel,
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Fig. 16.28 Wavelength selective switching illustrated with two wavelengths. The
side view is that seen from the point indicated in the plan view by the letter V .

the two wavelengths are seen to exit through separate lenses that focus
them onto two different fibres stacked vertically around the input fibre.
There could, for example, be 48 channels in an actual demultiplexer.
The time required to reset the routing is ∼1ms. Optical cross-connects
operate more quickly because they are binary: they have just two mirror
tilt settings, and they can therefore be driven hard against stops.

16.11 Solitons

Solitons are isolated waves that travel without changing their shape in
media. The first example taken note of was a wave on the water of a
canal, observed by Scott Russell in 1834. His attention was drawn to the
bow wave of a canal barge which parted from the barge’s prow when the
barge was halted. To his surprise this single well-defined wave carried on
down the canal for one or two miles without changing shape. The preser-
vation of the waveform requires that the spreading of that waveform due
to dispersion should be exactly cancelled by some non-linear process. An
analogous type of cancellation was described in Section 14.11.1. In that
example self-phase modulation caused by the non-linear Kerr effect in
a crystal is used to cancel the effect of dispersion in a laser and hence
produce mode-locking.
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In optical fibre also the self-modulation due to the Kerr effect pro-
duces chirping of the opposite sense to that produced by positive group
velocity dispersion. This is indicated in the upper pair of panels in figure
16.29. Positive group velocity dispersion (Dm > 0) causes high frequen-
cies to travel faster than low frequencies, while eqn. 14.57 shows that
the Kerr effect delays the high frequencies in the pulse when n2 > 0.
Self-modulation grows with the intensity so that at some intensity there
can be perfect cancellation of the dispersion. When this is the case the Time
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Fig. 16.29 The upper panel shows the
effect of fibre non-linearity on a pulse.
The centre panel shows the effect of dis-
persion along the fibre. In the lower
panel the combined effects compensate,
leaving the waveform unchanged at any
point along the fibre.

waveform travels without chirping or lengthening of its envelope, and
appears as shown in the lower panel of the figure.

In Appendix D the wave equation is deduced for electromagnetic waves
travelling along optical fibre, taking account of both dispersion and the
Kerr effect. This equation, known as the non-linear Schroedinger equa-
tion, has a fundamental soliton solution of the form given in eqn. D.12.
This is

E = sech(t) exp (iz/c), (16.42)

where t is the time and z the position, referred to a frame travelling at
the group velocity of the pulse. The temporal shape of the envelope is
quite similar to a Gaussian. There are also solutions whose initial shape
at z = 0 is

E = Nsech(t), (16.43)

where N is an integer greater than or equal to two. Only the fundamen-
tal soliton travels without changing shape. Those having larger values
of N do change shape as they travel, but return to their original shapes
after a path length z0, called the soliton period. As shown in Appendix
D, z0 can be expressed in terms of the pulse length t0 in picoseconds,
and the group velocity dispersion, Dm, expressed in ps/km/nm:

zo ≈ t20/Dm km. (16.44)

With a pulse of 20 ps duration and a dispersion of 1 ps/km/nm this
yields a soliton period of 400km, which is much longer than a single
span between amplifiers. A final result taken from the appendix is that
the power in a fundamental soliton is given by

P0 ≈ 1000/z0 mW. (16.45)

With the parameters chosen this comes to 2.5mW, quite similar to the
power launched in non-soliton transmission.

Mollenauer, Stolen and Gordon5 were the first to investigate soliton
propagation on optical fibre, launching 1550nm laser pulses of 7 ps dura-
tion over 700km of single mode fibre, which corresponded to about half
the soliton period. The autocorrelations of the output pulses launched

5L. F. Mollenauer, R. H. Stolen and J.P. Gordon, Physical Review Letters 45,
1095 (1980)
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Fig. 16.30 The autocorrelations of optical pulses after travelling over 700 km of
optical fibre. Each is labelled with the input power. The details are explained in
the text. Adapted from L. F. Mollenauer, R. H. Stolen and J. P. Gordon: Physical
Review Letters 45, 1095 (1980). Courtesy Professor Mollenauer and the American
Physical Society.

with different power levels are shown in figure 16.30. Of these the second
pulse has the power predicted for an N = 1 soliton and indeed is identi-
cal in shape to the input pulse. The next three output pulse shapes are
those for initial pulses whose energies were approximately 4, 9 and 16
times larger. These output pulses have the shapes expected for N = 2,
3 and 4 solitons respectively. Finally the leftmost output pulse was ob-
tained with an input pulse of a much lower energy. Its self-modulation
is therefore negligible and it has simply broadened due to chromatic dis-
persion.

When a pulse has an energy and a shape similar to that of a funda-
mental soliton its form converges toward that of the fundamental soliton
as it propagates. The residual components that distinguished the origi-
nal pulse from the soliton disperse and form a smooth weak background.

16.11.1 Communication using solitons

Fundamental solitons are immune to dispersion so it is attractive to use
them to replace the rectangular pulses of standard data transmission;
this is illustrated in figure 16.31. Although optical solitons have been
considered for this role for decades, commercial soliton based transmis-
sion systems only appeared in 2005.

The preferred source of optical solitons for telecoms is a CW semicon-
ductor laser whose output is modulated by a lithium niobate modulator.
If the tails of solitons overlap this causes cross-phase modulation so that
they drift toward one another as they travel over a link. It is therefore
necessary to have a pulse width less than half the bit period. Naturally
solitons lose energy in the same way as any other pulses and when this
happens the dispersion will no longer be fully compensated by self-phase
modulation. The Raman amplification described in Section 16.9.1 can
maintain the pulses continuously near their optimum energy because it
provides amplification over the whole fibre length.
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The simple approach for soliton based communications outlined above
requires the use of low dispersion fibres. However four wave mixing
would then lead to interference between the channels multiplexed onto
the same fibre. The solution adopted to eliminate this problem is one

Time

NRZ

Time

Soliton

Fig. 16.31 The upper panel shows a
non-return to zero pulse train. In the
lower panel the corresponding soliton
pulse train is shown.

already described for non-soliton transmission: the link is made up of
alternating lengths of fibre with cancelling group velocity dispersions.
The resulting dispersion managed solitons therefore do change in form
as they propagate, but it is arranged that after each cycle containing a
pair of fibres with opposite dispersions the pulses return to their initial
shape. There is an accompanying relaxation on the requirement on the
pulse height. Locally dispersion is the dominating effect and pulses are
nearly Gaussian in shape.6

16.12 Fibre optic sensors

Optical fibres are used in many sensors simply to carry light to and
from the sensor. It is the returning radiation that is monitored and any
variation in this can be used to infer how the sensor’s environment is
changing. Here the discussion is limited to examples in which the optical
properties of the fibre are altered by the environment so that the fibre
is also the sensor. Sensors to detect temperature, pressure and strain
based on fibre Bragg gratings are considered first. Then two sensors
that exploit unique properties of optical fibre are described: the fibre
optic gyroscope (FOG) and the optical current transformer (OCT) used
in measuring current flow along very high voltage power lines.

16.12.1 Fibre Bragg sensors

Changes in external pressure, temperature and strain all alter the length
of an optical fibre. Hence if a fibre is imprinted with a Bragg grating the
wavelength at which Bragg reflection occurs can provide an indication of
such changes. A long fibre can be built into a structure, such as a dam,
with the fibre having several gratings spaced at intervals along its length.
If the pitch of each grating is different from that of every other grating
it then becomes possible to monitor the environment along the whole
fibre because each reflection can be recognized by its unique wavelength.
Figure 16.32 shows such a distributed sensor. The grating spectrometer
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Coupler Fibre gratings

Focusing grating
Signal 

processing

CCD/CMOS
array

1λ 2λ

1λ

2λ

Fig. 16.32 Fibre Bragg grating sensor.images the reflections from the Bragg gratings, which all have different
wavelengths, onto separate areas of a CMOS array. When, for example,
the temperature of one of the Bragg gratings changes, its pitch changes
and this alters the wavelength reflected. In turn the location where this
reflected light is imaged by the grating spectrometer on the CMOS array
changes, and from the displacement the temperature can be determined.

6An informed expert account of the advances that have lead to practical soliton
transmission is given by L. F. Mollenauer and J. P. Gordon in Solitons in Optical

Fibres published by Academic Press, New York (2006).
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An alternative method used in monitoring oilwell temperatures is to
detect the Raman back-scattering from a plain optical fibre. The Stokes
and anti-Stokes intensities are proportional to their parent state popu-
lations

Is = A exp (−E1/kBT ); Ias = A exp (−E2/kBT )

where E1 and E2 are the parent state energies. Evidently the inten-
sity ratio depends only on the temperature T K and the known energy
difference E2 − E1:

Is/Ias = exp [(E2 − E1)/kBT ].

Hence the temperature can be extracted from this intensity ratio. A
high powered pulsed laser is used to illuminate the fibre. Then, because
the delay between the pulse leaving and returning is determined by the
distance to the scattering point, the Raman scattering from different
sections of the fibre can be identified by time slicing the returning light.
Thin film interference filters are used to isolate the Raman scattering
from the stronger Rayleigh back scattering.

16.12.2 The fibre optic gyroscope

The principles of the Sagnac interferometer described in Section 5.7.4
find a modern application in fibre optic gyroscopes. Figure 16.33 shows
the common form, an interferometer fibre optic gyroscope (I-FOG). Any
rotation of the fibre loop in its own plane relative to the inertial frame of
the fixed stars produces a phase difference between coherent light beams
travelling around the fibre loop in the clockwise (CW) and counter-
clockwise (CCW) senses. This phase difference was given in eqn. 5.38.
In an I-FOG the loop is a multiturn coil of optical fibre which gives
a large phase difference while keeping the device compact. The phase
difference becomes

φs = 8πΩNA/cλ, (16.46)

where the rotation rate is Ω, the free space wavelength is λ and the coil
has N turns each of area A.

Long distance navigation requires headings (directions) with a preci-
sion of ∼0.01 ◦/hr, equivalent to ∼10−7 rad s−1 in Ω.7 Fibre optic gyros
with this sensitivity have been available for some years. Less precision,
∼10◦/hr, is required when monitoring vehicle motion in prototyping and
crash simulation. Fibre optical gyros have major advantages over me-
chanical gyros, being more rugged and having no moving parts. They
have largely replaced mechanical gyros, with many hundred thousands
in current use.

7The most widely used modern navigational aid is GPS, but this can only give
positions, and is not accessible to submarines.
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The interferometric fibre optic gyroscope shown in figure 16.33 uses an
open loop design in which the phase difference, φs, is measured directly.

Source
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/2π

sφ

I

Ω
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Detector
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Fibre loop

Fig. 16.33 Interferometric fibre optic gyroscope. At the bottom left is the output of
the lock-in amplifier plotted against the phase difference between the counter-rotating
beams emerging from the fibre loop.

The coil would typically have a diameter of 0.1m and be 1 km in length.
A laser is the source and its beam is divided equally between the counter-
rotating beams travelling round the loop. After completing this circuit
the beams are recombined and pass through a directional coupler to a
photodetector. The intensity at the photodetector is

I = 2I0(1 + cosφs), (16.47)

where I0 is the intensity of either beam. This dependence is sketched in
the bottom left hand corner of figure 16.33. Such a design for an I-FOG
would have poor sensitivity because the rate of change of the intensity

dI/dφs = −2I0 sin φs (16.48)

is close to zero at low rotation rates. Ideally the working point, that is to
say the point at which the rotation is zero, should be moved to φs = π/2.
Then two advantages accrue: the sensitivity is at its maximum and
the sign of the rotation can be determined by whether φs increases or
decreases from π/2. A controlled, constant phase shift of this sort is
not a practical proposition and instead frequency modulation is used
to achieve a similar result. The lithium niobate modulator indicated in
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figure 16.33 modulates the light beams at an angular frequency ωm: the
CCW beam is modulated before, and the CW beam is modulated after
passing round the loop. Therefore the phase difference becomes

∆φ = φs + φm cos [ωm(t − τ/2)] − φm cos [ωm(t + τ/2)], (16.49)

where φm is the amplitude of this modulation and τ is the transit time
around the loop. The above expression reduces to

∆φ = φs + 2φm sin (ωmτ/2) sin (ωmt).

This is simplified by choosing the modulation frequency such that ωm =
π/τ . Then

∆φ = φs + 2φm sin (ωmt), (16.50)

and the intensity at the photodiode becomes

I = 2I0(1 + cos∆φ). (16.51)

The end product of introducing modulation is that the working point is
oscillating along the cosine curve in figure 16.33 at an angular frequency
ωm. This means that in order to determine φs the component of I vary-
ing at angular frequency ωm must be extracted. The lock-in amplifier
shown in figure 16.33 is the component used to do this. It receives two
inputs: the first input is the output current from the photodetector;
the second, reference input, is a voltage from the oscillator driving the
modulator. Lock-in amplifiers filter off any signal from the first input
which is at the frequency of the reference input, and output a signal
proportional to this component. We can expand the current, I, into its
Fourier components, retaining only the constant term and the term with
angular frequency ωm, giving

I = 2I0 [ 1 + J0(2φm) cosφs + 2J1(2φm) cos (ωmt) sin φs ]

≈ 2I0 [ 1 + J0(2φm) + 2J1(2φm) cos (ωmt)φs ], (16.52)

where J0 and J1 are Bessel functions of the first kind. In this case the
lock-in amplifier output is proportional to

VL = 4I0J1(2φm) sin φs ≈ 4I0J1(2φm)φs, (16.53)

and from this the desired phase φs can be calculated. J1(2φm) can be
maximized by choosing 2φm to be 1.8 rad, and this in turn maximizes
the sensitivity.

From eqn. 16.52 it is apparent that the noise in the detector current
sets the limit to the precision with which φs can be determined. Usually
the limiting contribution is from shot noise. Then using eqn. 15.18 the
noise to signal ratio on the current is

√
(2eB/I0). Taking a current,

I0, of 100µA and a bandwidth, B, of 1 Hz this ratio is S = 6 10−8. To
a good approximation the minimum detectable phase angle is equal to
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S rad. Inserting this value in eqn. 16.46 gives the minimum detectable
rotation rate

Ωmin = S [ λc/(8πNA) ].

Choosing NA = 100m2 and λ = 1550nm, gives Ωmin ≈ 10−8 rad s−1 or
0.002 ◦/hr, which is adequate for long distance navigation.

A number of other sources of noise and bias have had to be under-
stood and their effects eliminated in order to achieve this sensitivity in
practice. Firstly there is the effect of the variation of the fibre proper-
ties along its length which cause the beam polarizations to alter as they
travel. Therefore a polarizer is placed after the laser and polarization
maintaining fibre is used in the loop. Secondly light which is Rayleigh
scattered from either beam can induce self- and cross-modulation of the
beams with attendant random variations in the phases. To avoid this a
source is used whose coherence length is relatively short, only several mi-
crons, and this inhibits the interaction between the beams as they pass
each other within the loop. Thirdly, any small temperature gradients
will affect the beams differently and it is necessary to wind the fibre coil
so that turns symmetrically placed with respect to one another about the
mid-point of the coil are in good thermal contact. Finally temperature
variations of the laser source can affect its output and hence distort the
phase measured. A suitable laser source is formed by a length of erbium
doped fibre having reflective facets at each end, which itself is pumped
by another laser. This fibre laser has the required broad bandwidth of
∼50nm and is far less temperature sensitive (only 5 parts per million
change in wavelength per degree kelvin) than a a multimode laser. Even
then its temperature must be finely controlled. When these safeguards
are implemented the fibre optic gyroscope becomes a compact and ro-
bust navigational tool.

16.13 Optical current transformer

Current sensors are needed in power distribution systems to both detect
failures and to meter the current flow accurately for revenue assessment.
Electrical transformers on 100kV lines have to be extremely well insu-
lated: they are therefore heavy, difficult to install and correspondingly
expensive. The equivalent optical current transformer is simply an op-
tical fibre end wound around the current carrying cable. Detection of
the current is made possible by the Faraday effect discussed in Section
10.7.3. The magnetic field produced in the optical fibre by the current
flowing in the cable causes the plane of polarization of the light travel-
ling in the fibre to rotate. What is measured is the overall rotation of
the plane of polarization of light going round the loop. Unlike a elec-
tromagnetic transformer there is no hysteresis, and no requirement for
insulation.

Plane polarized light from a laser is transmitted along the fibre, and
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Fig. 16.34 Optical current transformer. The relative intensities at the two detec-

tors are proportional to cos2 2θ and sin2 2θ, where θ is the rotation of the plane of
polarization of the laser beam in one pass through the fibre loop.

its plane of polarization rotates under the influence of the magnetic field
through an angle given by eqn. 10.53

θ = V
∫

B · dL (16.54)

where V is the Verdet constant, B is the magnetic field and dL is an
element of length along the fibre axis. The integral is taken over the
whole length of the fibre. Assuming a closed fibre loop of N turns
carrying a current I, the total current through the fibre loop is NI. Then
using Ampere’s law, eqn. 9.10, to replace the integral in the previous
equation we get88It is possible to neglect the displace-

ment current because the frequency is
low.

θ = V(µ0NI), (16.55)

a result which is independent of the actual shape of the loop. For ex-
ample at 820nm Verdet’s constant for optical fibre is ∼4 rad (T m)−1,
so that with ten turns of fibre wound around a cable carrying 1 kA the
plane of polarization rotates through 2.8◦. An optical current trans-
former is drawn in figure 16.34. Light is reflected back along the optical
fibre from a mirror deposited on the fibre’s end facet. As seen from the
laser, the rotation of the plane of polarization due to the Faraday effect
is in the same sense on the return path as on the outward path. This
doubles the rotation.
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Figure 16.34 shows that the returning beam is incident on a Wollaston
prism, which separates the beam into components whose polarizations
are parallel and perpendicular to the intial laser beam’s polarization.
These components have intensities proportional to sin2 2θ and cos2 2θ,
where θ is the rotation angle given by eqn. 16.55. Although single
mode fibres are used, even these have some residual linear and circular
birefringence. Various refinements in the design of the optical current
transformer are therefore required in order to eliminate the unwanted
rotation of the plane of polarization caused by birefringence.

The right- and left-circularly polarized components of the beam both
reverse their senses of rotation on reflection from the mirror at the end of
the fibre. Therefore the effects of circular birefringence on the outward
and return paths simply cancel. Unfortunately the effect of linear bire-
fringence would be doubled. In order to avoid this doubling a Faraday
rotator is placed in front of the mirror: the mirror/rotator combination
is a Faraday mirror which has the property that it rotates the polariza-
tion plane by 90◦. As a result the components of the electric field along
orthogonal axes, Ex and Ey, are exchanged between the outward and
return journeys at each point along the fibre path, apart from the small
rotations induced by circular birefringence and the Faraday effect. There
is therefore partial cancellation of the effects of linear birefringence. Near
total cancellation is achieved by the further step of replacing the fibre
by spun fibre. During manufacture the fibre is spun around its optic
axis while it is being drawn and still molten. This process leaves a large
residual circular birefringence so that the plane of polarization of radi-
ation travelling along the fibre rotates rapidly. The spin period along
the fibre is made sufficiently short that the linear birefringence changes
negligibly over this distance. It follows that in one complete rotation
of the polarization of the radiation travelling along the fibre the linear
birefringence is essentially constant, and so the net effect of the linear
birefringence per full rotation is nil. With these improvements a preci-
sion of one part in a thousand is obtained in measuring currents up to
several hundred kA.

16.14 Photonic crystal fibres

Photonic crystal fibres (PCFs), otherwise known as microstructured fi-
bres are optical glass fibres of a uniform chemical composition in which
light is guided by an array of holes running along the length of the fibre.
Cross-sections through such fibres reveal an ordered array of holes, of
which two examples having a basic triangular pattern are illustrated in
figure 16.35. The term crystal in the name refers to the patterning of
the holes rather than to any crystalline material. In the upper panel
of figure 16.35 is an example of those fibres whose cores are made solid
by missing out one or more holes at the centre of the pattern. Around
this core the region of perforated glass constitutes a cladding of lower
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mean refractive index, and this index change guides the light, just as in
a standard fibre.

In the lower panel in figure 16.35 the core is instead hollow and light
is guided along this hollow core by a different mechanism. The two di-

Λ

d

Fig. 16.35 Cross-sections through
photonic crystal fibres. The upper
panel shows an example in which light
is index guided along the core. In the
fibre shown in the lower panel the light
is band-gap guided.

mensional lattice of holes surrounding the core has a photonic band-gap
which is the optical analogue of the electron energy band-gap present
in semiconductors, which was discussed earlier in Section 14.7. Both
types of band-gap are the consequence of a ‘crystal’ structure, here a
two dimensional lattice of holes. Light whose wavelength lies within the
band-gap cannot penetrate the cladding and once launched in the core
is confined to travel within it. In principle the attenuation of band-gap
guided light could be very low because it travels principally in the air
filled core, with an evanescent tail in the cladding. This ideal has an im-
portant potential for communications. The lowest attenuation achieved
is falling rapidly with time, but in 2007 was around 2dB/km, and at
that time still uncompetitive compared to standard single mode fibre.

Construction of PCFs starts with the fusing together of a set of silica
capillary tubes and solid rods. The resulting block is then used as the
feed material in a drawing tower like that employed in making standard
optical fibre. Both types of PCFs are produced with an outer cladding
diameter of 125µm in order to be compatible with installation proce-
dures used for standard fibre. In the following the emphasis will be on
the solid core index guiding crystal fibres.

The spacing, Λ, and the diameter, d, of the holes can be varied and in
this way the dispersion and area of the optical mode can be tuned over
a much wider range than is possible with the usual single mode fibre.
One application of this flexibility is the production of a fibre which is
single mode however short the wavelength. The criterion that operation
should be monomode, using the definition of eqn. 16.9 is that

V = (2πa/λ)
√

(n2
1 − n2

2) < 2.405.

Here n1 must be interpreted as the refractive index of the area covered
by the fundamental mode. n2 is the corresponding refractive index for
the cladding mode. As the wavelength decreases the difference between
the two refractive indices also falls, so that if V is less than 2.405 at
some wavelength it remains less than 2.405 at all shorter wavelengths.
With the triangular layout of holes shown in figure 16.35 and a single
missing central hole the fibre becomes endlessly single mode provided
that d/Λ < 0.43.

The effect of exposing microstructured fibre to intense short laser
pulses is to generate a broad continuum of spatially coherent light.
Pulses from a Nd:YAG laser at 1060nm can produce a supercontinuum
spectrum whose intensity is uniform from ∼400nm to ∼1600nm. The
process is complex and involves self-phase modulation, Raman scattering
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and four wave mixing. A supercontinuum spectrum is easiest to obtain
if the fibre has low dispersion. Then the phase matching required for
four wave mixing is guaranteed over a wide range of wavelengths. The
zero dispersion wavelength is designed to be close to the pump wave-
length. This is evidently just the reverse of the goal in dense wavelength
division multiplexing. Commercially available supercontinuum sources
are almost 1000 times brighter than an incandescent source, and in addi-
tion are pulsed and possess lateral spatial coherence. Such sources have
made feasible new studies in biology and other disciplines. The optical
comb described in Section 14.12.1 is another application making use of
a supercontinuum source.

16.15 Further reading

Understanding Fiber Optics by J. Hecht, published by Pearson/Prentice
Hall (2006). This text contains a comprehensive discussion of all aspects
of fibre optics in communications; not over-burdened with mathematics.

Solitons in Optical Fibers: Fundamental and Applications by L. F.
Mollenauer and J. P. Gordon, published by Elsevier Academic Press
(2006). A lively and interesting account of this burgeoning field by two
pioneers.

Guided Wave Optical Components and Devices, edited by B. P. Pal
and published by Elsevier Academic Press (2005). This book contains
a compilation of articles by experts.

Exercises

(16.1) Light of wavelength 1550 nm suffers a loss of
20 dB/km along a plastic optical fibre. A beam
of 1 W power is injected into a 10 km length of this
fibre. How many photons arrive per minute at the
far end?

(16.2) A step index multimode glass fibre has core and
cladding with respective refractive indices 1.48 and
1.46 at 1310 nm wavelength. Calculate the inter-
modal dispersion over 5 km of this fibre. Esti-
mate the highest data rates that such step index
fibres can support and express this in Mb s−1km.
A (quadratic) graded index fibre has the same ax-
ial and cladding refractive indices as the step index
fibre. The chromatic group velocity dispersion on
the graded index fibre is 200 ps/km/nm at 1310 nm,
and the source used has a bandwidth of 40 nm. Cal-
culate the intermodal and chromatic contributions
to the dispersion over 5 km of this graded index fi-

bre. Hence estimate the maximum achievable data
rate.

(16.3) An LED emits radiation of mean wavelength
900 nm and a spread of 40 nm down a 10 km length
of fibre for which the material dispersion (d2n/dλ2)
is 5 1010 m−2. What is the corresponding broaden-
ing of pulses transmitted over this fibre length?

(16.4) Consider the case of a 50 km link using a 1550 nm
laser source of RIN equal to −145 dBHz−1 which
injects 1.5 mW into the fibre whose attenuation
is 0.2 dBkm−1. The detector has a bandwidth
1.5 GHz, a quantum efficiency of 0.4 and drives a
1 kΩ load. Calculate the noise contributions on the
signal at the load due to shot noise, detector noise
and RIN. What is the margin in dB between the
signal power and the noise? If there is a connection
close to the detector which loses 10 dB of optical
power how does this affect the margin?
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(16.5) Explain how a fibre Bragg grating with varying
pitch can chirp incident light beams.

(16.6) Two identical single mode fibres are well aligned,
their ends separated a small air gap. What is the
loss of optical power through this connection in dB?

(16.7) What is the free spectral range of an array waveg-
uide grating? Calculate this for an AWG used at
1550 nm in which the difference in the length of
adjacent waveguides is 10 µm and their refractive
index is 1.5.

(16.8) Following on from the previous question, an array
waveguide grating has slabs and guides with the
same refractive index 1.5 at the operating wave-
length 1.55 nm. The second slab has length 1.1 cm
and the difference in length between successive
guides is 63µm. Both the entry and exit ports to
the second slab are spaced apart, centre-to-centre,
by 20 µm. What is the channel spacing, the diffrac-
tion order and the free spectral range? How many
channels can be used?

(16.9) Soliton pulses of 10 ps duration and wavelength
1550 nm are injected into a single mode optical
fibre with a chromatic group velocity dispersion
3 ps/km/nm. What is the soliton period? What
is the soliton power required? What is the pulse
energy and how many photons does it contain?

(16.10) An optical fibre has a core of diameter 10 µm and
refractive index 1.480. The cladding has refrac-
tive index 1.475. What is the numerical aperture?
What is the cut-off wavelength for single mode op-
eration?

(16.11) Show explicitly that if the slab in the MMI waveg-
uide structure pictured in figure 16.15 has a length
3L12/2 rather than 3L12 the outputs are exchanged
left with right.

(16.12) Estimate the number of modes that can freely prop-
agate over multimode fibre of numerical aperture
0.5, core diameter 50 µm at 1300 nm wavelength.
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17.1 Introduction

In this chapter the interaction of electromagnetic radiation with atoms
is analysed semiclassically: the atoms are treated as quantum mechan-
ical objects and the electromagnetic radiation as classical waves. This
approach is successful in explaining a wide range of phenomena. A prin-
cipal defect of the semiclassical analysis is that spontaneous emission
must be put in by hand; it does not emerge naturally. Beyond this,
inferences based on knowledge of the quantum aspect of radiation are
used here to give guidance on the interpretion of the semiclassical analy-
sis. Applications are described which exploit the interaction of coherent
light in the form of laser beams with low density gases of atoms or ions
cooled by laser beams. A representative sample of the phenomena so far
observed are discussed.

In the first section below a calculation of the rates for electric dipole
transitions in atoms is made subject to two simplifying assumptions.
First that the radiation has low intensity, such that non-linear effects
are negligible, and second that the spectral distribution is flat across the
linewidth of the transition considered. The susceptibility of dilute gases
is also calculated.

Then follows a study of the interaction of laser beams with atoms
when the laser frequency is close or equal to one of the atoms’ dipole
transition frequencies. In this case, by contrast, there are many pho-
tons per mode and the spectrum of the radiation can be much narrower
than the transition line width. The consequences are striking. Atoms
illuminated in this way initially absorb laser radiation and enter the ex-
cited state; then the radiation stimulates them to emit and return to the
ground state. This sequence repeats as long as the atoms are illuminated
by the laser. The oscillations are known as Rabi oscillations because,
much earlier, Rabi had discovered the equivalent effect produced with
microwaves.

In quantum electrodynamics (QED), which is the quantum theory
of electromagnetic interactions, both the electromagnetic field and the
atom are quantized and treated as a total system. One idea borrowed
from this approach is to view an atom and the photons within a laser
beam whose frequency is tuned close to a transition frequency as a
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dressed state of the atom. Several optical effects are described in the
next two sections of the chapter, namely Mollow fluorescence and the
Autler–Townes effect, whose explanations are straightforward in terms
of dressed states.

Normally a probe laser beam at a frequency matching an allowed tran-
sition from the ground state to an excited state E, will be absorbed in
a short distance by an assembly of atoms. However in certain circum-
stances when a second laser is used to simultaneously pump a different
allowed transition to the same excited state E, the atoms become trans-
parent to the probe beam. This property is known as electromagnetically
induced transparency (EIT). It is equally surprising that the probe laser
beam can be slowed to a walking pace in a cloud of such atoms, and
can even be stalled for an interval as long as several milliseconds. These
effects are customarily observed in gases, particularly at very low tem-
peratures, but have been produced in a few cases in particular crystals.
A section of the chapter is devoted to the discussion and explanation of
EIT.

The following dilemma was faced in attempts to obtain the ultimate
in precision measurements of optical frequencies. In principle a suitably
narrow spectral line could be measured by observing the resonance fluo-
rescence from a single stationary ion illuminated by a laser. As the laser
frequency is scanned in steps across the absorption line the resonance
fluorescence could be measured and hence the line shape determined.
Unfortunately a state whose fluorescence has narrow line width has nec-
essarily a low decay rate so that the signal is hard to detect against ex-
perimental background. The paradoxical way of avoiding the dilemma
was suggested by Dehmelt in 1982 and involves a quantum effect known
as shelving.

Shelving is also one of the techniques that has made it possible to build
optical clocks whose ‘pendulum beats’ are the oscillations of radiation
emitted in a very narrow width, optical transition of a single ion. A
second essential ingredient in the construction of such an optical clock is
the ability to cool ions to very low temperatures so that their transition
frequencies are only affected by the second order Doppler shifts. The
final element required for an optical clock is an optical comb of the sort
described in Section 14.12.1. Optical combs are used to convert optical
frequencies at ∼ 1015 Hz to known multiples of microwave frequencies,
for which electronic counting techniques already exist.

The subsequent two sections of the chapter cover in turn the laser
cooling of ions, and then shelving. In a final section the example of an
optical clock based on a single, near stationary, trapped ion is used to il-
lustrate how the devices and techniques mentioned above are integrated
togetther.
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A fully quantum mechanical treatment in which the radiation is also
quantized yields essentially identical results for the phenomena discussed
in this chapter. In the chapter after this one the process of quantizing
the electromagnetic field will be presented with applications.

17.2 Transition rates

The Einstein coefficients introduced in Section 14.2 quantify the tran-
sition rates for the processes of spontaneous and stimulated emission
and of absorption. Here explicit expressions are derived for the Ein-
stein coefficients where the transitions occur between atomic states in
the presence of radiation whose spectral distribution is flat across the
line width of the transition. It will emerge that the most rapid transi-
tions are those in which electric dipole radiation is emitted or absorbed.
The analysis is semiclassical: the atomic states are quantized while the
radiation is treated as classical waves.

A simple example is considered in which a single electron undergoes
transitions in an atom between a pair of levels with energies W1 and
W2, and with wavefunctions Ψ1(r, t) and Ψ2(r, t) respectively. All other
states of the atom are ignored so that the atom is an idealized two
state atom. The angular frequency of radiation emitted or absorbed in
transitions between these states is

ω0 = (W2 − W1)/h̄, (17.1)

where W1 is the energy of the lower energy state. The Schroedinger
equation of this atom in isolation is

ĤΨ(r, t) = ih̄ ∂Ψ(r, t)/∂t. (17.2)

Here H is the total energy, or Hamiltonian, and Ĥ the corresponding
operator. Thus the eigenstates of the electron in the isolated atom satisfy

Ψi(r, t) = ψi(r) exp (−iWit/h̄), (17.3)

where i = 1, 2. The spatial wavefunctions ψi(r) are independent of time,
and are orthogonal and normalized: that is to say the integrals over all
space satisfy the equation∫

ψ∗
i (r)ψj(r) dV = δij , (17.4)

where δij is the Kronecker delta function defined by eqns. 13.26 and
13.27. All coherent states of this atom can be described by wavefunctions
of the form

Ψ(r, t) =
∑

i

ciψi(r) exp (−iWit/h̄), (17.5)
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where
∑

i |ci|2 = 1 so that the overall probability of finding the electron
in one or other of the two energy levels is unity. The atom is exposed
to an oscillating electromagnetic field whose electric field is

E = E0 cos (k · r − ωt). (17.6)

The principal effect is a contribution to the potential energy of the atom
given by

∆W = eE · r, (17.7)

where r is the vector distance of the electron from the nucleus, taken
here to be the origin of coordinates. Because the electromagnetic wave
and its interaction are being treated classically the operator correspond-
ing to this potential energy is simply a scalar quantity ∆W . Now the
wavelength of visible and near visible radiation is much larger than the
atomic size, which is of order 0.1 nm, and so the factor k · r, which is
less than or equal to 2πr/λ, is very small. Therefore, to an excellent
approximation, the electric field can be written as E0 cosωt, and the
interaction energy of eqn. 17.7 can be rewritten as

∆W = eE0 · r cosωt. (17.8)

Taking this energy contribution into account, eqn. 17.2 is replaced by

[ Ĥ + ∆W ]Ψ(r, t) = ih̄ ∂Ψ(r, t)/∂t. (17.9)

Substituting the general wavefunction from eqn. 17.5 into this equation
gives

Ĥ
∑

i

ciψi exp (−iWit/h̄) + ∆W
∑

i

ciψi exp (−iWit/h̄)

=
∑

i

Wiciψi exp (−iWit/h̄) + ih̄
∑

i

ċiψi exp (−iWit/h̄), (17.10)

where ċi = ∂ci/∂t. Using eqn. 17.2 this reduces to

∆W
∑

i

ciψi exp (−iWit/h̄) = ih̄
∑

i

ċiψi exp (−iWit/h̄). (17.11)

Multiplying this equation by ψ∗
1 and integrating the result over all space

gives

∆W11 c1 exp (−iW1t/h̄)+∆W12 c2 exp (−iW2t/h̄) = ih̄ ċ1 exp (−iW1t/h̄),
(17.12)

where

∆Wij = E0 ·Dij cosωt, (17.13)

and Dij = e

∫
ψ∗

i rψj dV (17.14)

is the electric dipole moment between the two atomic states.1 Then1Strictly speaking the electric dipole
moment matrix element.
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Dji = D∗
ij . (17.15)

Multiplying eqn. 17.12 by exp (iW1t/h̄), and using eqn. 17.1 gives

∆W11c1 + exp (−iω0t)∆W12 c2 = ih̄ċ1. (17.16)

It is straightforward to show that ∆W11 and ∆W22 are identically zero.
The electron density in any atomic state should be the same if the coor-
dinates are simply reversed through the origin: r ⇀↽ −r, which is called
the parity transformation. Consequently

ψ∗
i (−r)ψi(−r) = ψ∗

i (r)ψi(r),

and hence
ψ∗

i (−r) [−r ] ψi(−r) = −ψ∗
i (r) [ r ] ψi(r).

This means that the integral of eqn. 17.14 would reverse sign under the
parity transformation when i = j. Therefore the integral must vanish
when i = j, and so must ∆W11 and ∆W22. Then eqn. 17.16 reduces to

exp (−iω0t)∆W12 c2 = ih̄ċ1. (17.17)

The remaining term ∆W12 is an interaction energy due to the electric
dipole coupling between the two states of the atom. How large this
interaction energy is determines how fast the transitions between the two
states take place. An angular frequency Ω0, called the Rabi frequency,
is now defined in terms of this interaction energy by putting

h̄Ω0 exp (iν) = E0 ·D12. (17.18)

For convenience a complex version is defined by

V = Ω0 exp (iν). (17.19)

Then eqn. 17.13 can be rewritten as

∆W12 = h̄V cos (ωt), (17.20)

and finally substituting for ∆W12 in eqn. 17.17 gives

V cosωt exp (−iω0t) c2 = iċ1. (17.21)

A similar derivation gives a parallel expression

V∗ cosωt exp (+iω0t) c1 = iċ2. (17.22)

For atoms initially in the lower state c1 = 1 and c2 = 0. Then the tran-
sition probability over a time interval t is |c2|2/t. When the transition
rate is low the above pair of simultaneous equations can be solved iter-
atively. First c1(t) is set to unity and c2(t) calculated; then this value
of c2(t) is used in the equations to give an improved value of c1(t), and
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so on. Only the first step is followed here, which is adequate for low
enough intensity fields such that effects non-linear in the electric field
strength can be neglected. This restriction is of course identical to that
made when defining the Einstein coefficients in Section 14.2. Replacing
c1 by unity in eqn. 17.22

iċ2 = V∗ cos (ωt) exp (iω0t)

= (V∗ /2){exp [i(ω0 + ω)t] + exp [i(ω0 − ω)t]}.

Integrating this result with respect to time gives

c2 = (−V∗/2){ [ exp [i(ω0 + ω)t] − 1 ]/(ω0 + ω)

+ [ exp [i(ω0 − ω)t] − 1 ]/(ω0 − ω) ] }. (17.23)

Of the two terms in the above equation, the one divided by the sum
of two optical frequencies (ω0 + ω) is very much smaller than the other
divided by the difference of two nearby optical frequencies (ω0 − ω).
Therefore the former term can be neglected with no great loss in accu-
racy: this is what is known as the rotating wave approximation, and is
used systematically throughout the remainder of the chapter. In this
approximation the relation given in eqn. 17.13 becomes

∆W12 = E0 · D12 exp (iωt)/2 = [ h̄V/2 ] exp (iωt), (17.24)

where eqn. 17.18 has been used in making the second equality. Now
continuing the calculation of c2,

c2(t) = −iV∗ exp [i(ω0 − ω)t/2] sin [(ω0 − ω)t/2]/(ω0 − ω). (17.25)

Therefore the fraction of atoms transferred to the upper state is

|c2(t)|2 = Ω2
0 sin2 [ (ω − ω0)t/2 ]/(ω − ω0)

2. (17.26)

In the case that the atomic dipoles have random orientations with re-
spect to the applied electric field the average value of the square of the
electric dipole moment along the direction of the electric field is

|d12|2 = |D12|2cos2 θ = |D12|2/3, (17.27)

where θ is the angle between the electric field and the dipole directions.
In turn using this result and eqn. 17.18 we get

Ω2
0 = E2

0 |D12|2/(3h̄2). (17.28)

Finally the average fraction of atoms transferred to the upper state in
time t is

|c2(t)|2 = Ω2
0 sin2 [ (ω − ω0)t/2 ]/(ω − ω0)

2

= [ E2
0 |D12|2/(3h̄2) ] sin2 [ (ω − ω0)t/2 ]/(ω − ω0)

2. (17.29)
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The spectral energy density of the radiation, Wem(f) in Jm−3Hz−1, is
related to the electric field strength in this way:

ε0E
2
0/2 =

∫
Wem(f) df, (17.30)

where f = ω/2π. Thus the previous equation can be rewritten

|c2(t)|2 = [ 2 |D12|2/(3ε0h̄
2) ]

×
∫

Wem(f){sin2 [(ω − ω0)t/2 ]/(ω − ω0)
2}df. (17.31)

Next we make use of the second basic assumption, namely that the
spectral energy density Wem is constant across the atomic line width.
The integral of interest is thus

I =

∫ ω+

ω−
{sin2 [ (ω − ω0)t/2 ]/(ω − ω0)

2} dω/(2π), (17.32)

where ω± = ω0 ± ∆ω/2. The duration of the measurement, t, is finite,
but will usually be long enough that the factor ∆ωt is very much greater
than unity. In this case the integral2 equals t/4. Finally the average
fraction of atoms transfered in time t is

|c2(t)|2 = [ |D12|2/(6ε0h̄
2) ] Wem(f)t. (17.33)

Consequently the Einstein coefficient B12 given by eqn. 14.1 reduces to

B12 = |c2(t)|2/[ Wem(f)t ]

= |D12|2/(6ε0h̄
2). (17.34)

The spontaneous decay rate given by the Einstein coefficient A21 can be
deduced despite the absence of spontaneous decays from the semiclassi-
cal analysis: using eqn. 14.10 gives

A21 = 2ω3|D12|2n3/(3ε0hc3), (17.35)

where n is the refractive index. Thus if the wavefunctions of the initial
and final states are known then D12 can be calculated. It is now straight-
forward to make a number of predictions about processes in which weak
broad sources interact with two state atoms. First the electric dipole
selection rules already outlined in Section 13.7 are investigated. Then
follows an exercise to calculate the rate for the transition 2p→1s in hy-
drogen. Lastly an expression for the susceptibility of a gas is derived.

2Integral 3.821/9 in the 5th edition of Table of Integrals, Series and Products by
I. S. Gradshteyn and I. M. Ryzhik, edited by A. Jeffrey, and published by Academic
Press New York (1994).

∫∞

−∞
{sin2 (ax)/x2} dx = aπ, a > 0.
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17.2.1 Selection rules

It can be seen from eqn. 17.34 that the size of the Einstein coefficients is
determined by the overlap integral, D12, appearing there. This overlap
integral given in eqn. 17.14 is responsible for the electric dipole selection
rules outlined in Chapter 13.

We consider the simplest case only, that of a hydrogen atom and use
the expressions for the wavefunctions given in eqn. 13.48. Taking the
electric field direction to define the polar z-axis, and with the electron
having polar coordinates (r, θ, φ) with respect to the nucleus, the angular
part of the integral in eqn 17.14 is

Dang =

∫
Y ∗

	′,m′(θ, φ) cos θ Y	,m(θ, φ) sin θ dθ dφ, (17.36)

where (�,m) and (�′,m′) are the angular momentum quantum numbers
of the two states. All such integrals vanish identically unless both
∆� = �′ − � = ±1 and ∆m = m′ − m = 0,±1. The reader may like
to check a simple case.

What might be called a geometric interpretation of these selection
rules can be obtained in the following way. First note that the vec-
tor r has Cartesian components x = r sin θ cosφ, y = r sin θ sin φ and
z = r cos θ. Thus x+ iy, x− iy and z have the same angular dependence
as the spherical spherical harmonic functions for unit angular momen-
tum which appear in Table 13.2: Y1,+1, Y1,−1 and Y1,0 respectively.
Therefore we can legitimately treat r as a spherical harmonic with unit
angular momentum in these angular integrations. The quantity being
integrated in eqn. 17.36 is thus the overlap of a spherical harmonic of
orbital angular momentum �′ with the product of two spherical harmon-
ics: one with angular momentum � and and the other with unit angular
momentum. Now we have seen that the angular momenta of atoms are
quantized and that they add vectorially. Putting these facts together we
can infer that the overlap integral simply vanishes whenever the vector
addition is impossible. In this way a selection rule ∆� = ±1 emerges.
The selection rules for the magnetic quantum number arise in a similar
way.

Other weaker transitions are still possible in which the change in or-
bital angular momentum is different from that occurring in an electric
dipole transition. These transitions are possible thanks to the slight
departure of the actual electric field from the constant value assumed
when writing eqn. 17.8. In that case only the first term in the expansion

exp (ik · r) = 1 + ik · r − (k · r)2 + ...

was considered. The contribution of the (n + 1)th term is smaller by a
factor (k·r)n in amplitude, and by a factor (k·r)2n in intensity compared
to the electric dipole. These are known as forbidden transitions.
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Example 17.1

Here we calculate the rate for the transition of a hydrogen atom from
the n = 2 to the n = 1 state. In an electric dipole transition the electron
orbital angular momentum changes by unity, which excludes the decay
2s→1s, leaving only the 2p→1s decay. The magnetic component of the
orbital angular momentum, ml can change by zero or unity, while the
electron spin component, ms, does not change. Thus there are six possi-
ble decays involving the following changes in m, the magnetic component
of the total angular momentum:

• m = +3/2 → m = +1/2;

• m = +1/2 → m = ±1/2;

• m = −1/2 → m = ±1/2;

• m = −3/2 → m = −1/2.

These allowed decays are shown in figure 17.1. The spatial wavefunctions

2p

lm + sm = m
1s

m
 = 0)l(m

= sm
+3/2

+1/2

+1/2

-1/2

-1/2

-3/2

+1/2

-1/2

+1/2

-1/2

+1/2

-1/2

+1

+1

0

0

-1

-1

+1/2

-1/2

Fig. 17.1 Allowed transitions in hydro-
gen between the magnetic substates of
the 2p and 1s states.

of the hydrogen atom are given in Tables 13.1 and 13.2. Those for
(n = 2; l = 1; m	 = +1) and (n = 1; l = 0; m	 = 0) are

ψp = ψ(n = 2; l = 1; m	 = +1)

= r exp (−r/2a0) sin θ exp (iφ)/(8
√

πa
5/2
0 ), (17.37)

ψs = ψ(n = 1; l = 0; m	 = 0)

= exp (−r/a0)/(
√

πa
3/2
0 ). (17.38)

The Einstein coefficient for the transition between these states is given
by eqns. 17.14 and 17.35 using the spatial wavefunctions just presented

A = [ 2ω3/(3ε0hc3) ]

∣∣∣∣∫ ψ∗
perψs dV

∣∣∣∣2
= [ 2ω3/(3ε0hc3) ]e2(|X |2 + |Y |2 + |Z|2), (17.39)

where dV = r2 sin θ dθ dφdr and

X =

∫
ψ∗

pxψs dV , Y =

∫
ψ∗

pyψs dV , Z =

∫
ψ∗

pzψs dV .

Evaluating the first of these integrals

X = [ 1/(8πa4
0) ]

∫
r2 exp (−3r/2a0) sin2 θ cosφ exp (−iφ) dV

= [ 1/(8πa4
0) ]

[ ∫ ∞

0

exp (−3r/2a0) r4dr

] [ ∫ π

0

(cos2 θ − 1)d(cos θ)

]
[∫ 2π

0

{[ 1 + exp (−2iφ) ]/2} dφ

]
= [ 1/(8πa4

0) ] [ (2a0/3)5(24) ] [ 4/3 ] [ π ] = 4a0(2/3)5. (17.40)
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The Y and Z integrals have the same radial and polar angle components
as the X integral so that

Y = ....

∫ 2π

0

{[ 1 − exp (−2iφ) ]/2i} dφ = X/i, (17.41)

while

Z = ....

∫ 2π

0

exp (−iφ) dφ = 0. (17.42)

Collecting terms in eqn. 17.39 gives

A = [ 2ω3/(3ε0hc3) ] 32(2/3)10 e2a2
0 = 6.26 108 s−1. (17.43)

Each of the six decays from the 2p magnetic substates has a rate equal
to that calculated above.

17.2.2 Electric susceptibility

A classical analysis of the response of a gaseous dielectric to a time
varying electric field was given in Section 11.5.1. The electrons were re-
garded as oscillating at some (undetermined) natural frequencies under
the restoring force provided by the Coulomb attraction of the nucleus. It
was made clear in Chapters 12 and 13 that those resonance frequencies
are in fact the transition frequencies between atomic states, while the
classical damping reflected the decay rate of the atomic state. In this
section the semiclassical model of the atom–radiation interaction is used
to obtain an expression for the susceptibility of a dilute gas.

As before a two level atom is considered. Using the rotating wave
approximation eqn. 17.22 becomes

(V∗/2) exp (−i∆ωt)c1 = iċ2, (17.44)

where we have put
∆ω = ω − ω0. (17.45)

The decay of the upper level by spontaneous emission has to be put in
by hand

(V∗/2) exp (−i∆ωt)c1 − iγc2/2 = iċ2, (17.46)

where γ = 1/A21. Without the applied field this collapses to ċ2 =
−γc2/2, with the intended decay rate γ. Again assuming c1 is close
to unity, which is appropriate with low intensity radiation, the above
equation becomes

ċ2 + γc2/2 + (iV∗/2) exp (−i∆ωt) = 0. (17.47)

Substituting the long term solution at the driving frequency,

c2 = c0 exp (−i∆ωt),
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into this equation gives

c0 = (V∗/2)/(∆ω + iγ/2). (17.48)

Thus

c2 = (V∗/2) exp (−i∆ωt)/(∆ω + iγ/2)

= (E0 ·D∗
12/2h̄) exp (−i∆ωt)/(∆ω + iγ/2), (17.49)

where eqn. 17.18 was used in making the second equality. The wave-
function in eqn. 17.5 becomes

Ψ(r, t) = ψ1(r) exp (−iW1t/h̄) + c2ψ2(r) exp (−iW2t/h̄).

We can remove a common phase factor exp (−iW1t/h̄) to simplify the
calculations, and then

Ψ(r, t) = ψ1(r) + c2ψ2(r) exp (−iω0t).

Hence the electric dipole moment of the atom is

p(t) = −e

∫
Ψ∗rΨ dV

= −D∗
12 exp (iω0t)c

∗
2(t) − D12 exp (−iω0t)c2(t).

Replacing c2 with the help of eqn. 17.49 gives

p(t) = −D12(E0 · D∗
12/2h̄)

× [ exp (+iωt)/(∆ω − iγ/2) + exp (−iωt)/(∆ω + iγ/2) ],

so the component along the direction of the electric field is

p(t) = −[ |(E0 · D12)|2/(2h̄E0) ]

× [ exp (+iωt)/(∆ω − iγ/2) + exp (−iωt)/(∆ω + iγ/2) ].

Averaging over the random angular distribution of the dipoles gives

p(t) = [ E0|D12|2/(6h̄) ] [ exp (+iωt)/(ω0 − ω + iγ/2)

+ exp (−iωt)/(ω0 − ω − iγ/2) ]. (17.50)

This result can be compared with the polarization expressed in terms of
the susceptibility χ(ω) for the electric field

E0 cos(ωt) = (E0/2) [ exp (iωt) + exp (−iωt) ].

Rewriting eqn. 9.3 for this purpose

Np(t) = (ε0E0/2) [ χ(+ω) exp (−iωt) + χ(−ω) exp (iωt) ], (17.51)

where N is the number of atoms per unit volume. The comparison with
eqn. 17.50 yields

χ(ω) = [ N |D12|2/ [ 3ε0h̄(ω0 − ω − iγ/2) ]. (17.52)
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Writing µ2 for |D12|2/3, the mean squared electric dipole moment, this
becomes

χ(ω) = (Nµ2/ε0h̄)/(ω0 − ω − iγ/2). (17.53)

A corresponding result of the classical analysis is given in eqn. 11.20.3

The superiority of the analysis presented here is clear: χ(ω) is directly
calculable for a given transition from a knowledge of the state wavefunc-
tions, and such predictions are then found to agree with experimental
measurements.

17.3 Rabi oscillations

These are the high frequency oscillations of the population of atomic
states when an intense laser beam illuminating atoms has a frequency
near to the frequency for a transition between the lower energy state
and a higher energy state. Initially the radiation is absorbed so that
the atoms move into the higher energy state. At this point the laser
beam stimulates the atoms to emit and return to the ground state. This
sequence repeats indefinitely during the time the laser stays on. It is the
dominant effect provided that the laser beam is sufficiently intense so
that few spontaneous emissions occur during each cycle; that is provided
Ω0 	 γ, the decay width. In addition to the higher beam intensity, an-
other difference from the situation analysed in the preceding sections
is that the laser line width is much narrower than that of the atomic
transition and is narrow enough that the radiation incident can often be
considered as monochromatic.

The analysis of these Rabi oscillations will be made for a two state
atom, so we can re-use the expressions 17.21 and 17.22 derived above
for the relations between the amplitudes of the two states, c1 and c2.
These can be rewritten

(V/2) [ exp (iωt) + exp (−iωt) ] exp (−iω0t)c2 = iċ1, (17.54)

(V∗/2) [ exp (iωt) + exp (−iωt) ] exp (iω0t)c1 = iċ2. (17.55)

In the rotating wave approximation only the exponents in ∆ω = ω −ω0

survive, so we have

(V/2) exp (i∆ωt)c2 = iċ1, (17.56)

(V∗/2) exp (−i∆ωt)c1 = iċ2. (17.57)

The analysis will be very different from that followed in the case of
low intensity radiation because now c2 ranges from zero to unity. It is

3The change in sign in front of iγ/2 compared to the analysis appearing in Sec-
tion 11.5.1 arises because in the present case the field is given a space-time de-
pendence exp [i(kz − ωt)] while in the classical analysis the dependence used was
exp [i(ωt − kz)].
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therefore necessary to extract a general solution of these simultaneous
equations. Eliminating c1 gives

c̈2 + i∆ωċ2 + (Ω2
0/4)c2 = 0. (17.58)

A solution of the form c2 = exp (iλt) can be attempted, which when
substituted into this equation gives

−λ2 − ∆ωλ + Ω2
0/4 = 0. (17.59)

This equation has two roots

λ± = (1/2){−∆ω ± Ω}, (17.60)

where

Ω =
√

(∆ω2 + Ω2
0) (17.61)

is called the generalized Rabi frequency. Thus the complete solution has
the form

c2(t) = c+ exp (iλ+t) + c− exp (iλ−t), (17.62)

where the coefficients, c+ and c−, are determined from the initial con-
ditions. The first condition is that at t = 0, c2 = 0. Hence c− = −c+.
Secondly, after a very short time ∆t

c2(∆t) = c+ [ iλ+∆t − iλ−∆t ] = ic+Ω∆t. (17.63)

In the same approximation eqn. 17.57 becomes

ċ2(∆t) = −i(V∗/2)c1(∆t) = −i(V∗/2), (17.64)

whence
c2(∆t) = −i(V∗/2)∆t. (17.65)

Comparing eqns. 17.63 and 17.65 gives

c+ = −(V∗/2Ω). (17.66)

Thus the full solution for c2 is

c2(t) = −(V∗/2Ω) exp (−i∆ωt/2) [ exp (iΩt/2) − exp (−iΩt/2) ]

= −i(V∗/Ω) exp (−i∆ωt/2) sin (Ωt/2). (17.67)

In turn

c1(t) = exp (i∆ωt/2) [ cos (Ωt/2) − i(∆ω/Ω) sin (Ωt/2) ]. (17.68)

Then the fraction of atoms in the excited state is

|c2(t)|2 = (Ω0/Ω)2 sin2 (Ωt/2). (17.69)

This fraction oscillates at the generalized Rabi frequency Ω. The greater
the offset of the laser frequency from the transition frequency becomes
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Fig. 17.2 Time dependence of the upper state population for different offsets of the
pump angular frequency from the transition angular frequency. The offsets are ∆ω
= 0, Ω0/2 and Ω0.

the smaller will be the ratio (Ω0/Ω) in eqn. 17.69 and hence the weaker
the oscillations in c2. Figure 17.2 displays how the population of the up-
per state develops with time for three choices of the laser detuning from
the transition frequency: ∆ω = 0, Ω0/2 and Ω0. In these respective
cases |c2(t)|2 is sin2 (Ω0t/2), 0.8 sin2 (

√
5/16Ω0t) and 0.5 sin2 (Ω0t/

√
2).

Referring to eqn. 17.18 shows that increasing the laser power increases
Ω0 and hence Ω also. This has two effects: first the oscillations speed
up and secondly the amplitude of the Rabi oscillations increases.

The Rabi oscillations can be readily observed with a detector placed
out of the laser beam. This detector will capture the fluorescence, that
is the spontaneous emission from the upper state, whose intensity will be
proportional to the population of the upper state. A filter transmitting
a narrow band of wavelengths placed in front of the detector would be
adequate to exclude extraneous light. Interesting effects are produced
when the laser beam is pulsed using an optical modulator like those de-
scribed in Section 10.7.1. If the pulse duration is precisely π/Ω, eqn.
17.69 shows that if all the atoms are initially in the lower state the pulse
transfers the maximum number to the upper state; and if the laser is also
on resonance all the atoms are transfered. This type of pulse is called a
π-pulse. Such pulses can be used to transfer atoms into states not linked
to the ground state by any fast electric dipole transition. Referring to
figure 17.3 a first π-pulse from a laser emitting at angular frequency
ω13 transfers the atoms from the state labelled 1 to the state labelled
3. Then a second π-pulse from another laser at angular frequency ω23

2

3

1

23ωh-

13ωh-

Fig. 17.3 Excitation of level 2 by π
pulses in sequence for the allowed tran-
sitions 1 → 3 and 3 → 2, where the
transition 1 → 2 is forbidden.

transfers these atoms to the final state labelled 2. These pulses do not
necessarily need to be square pulses of duration π/Ω, all that is required
is that the integral over the pulse duration

∫
Ω dt = π. This way of

exciting states that are not directly accessible is more efficient than the
Raman excitation described in Chapter 14.

A pulse with double the duration of a π-pulse is called a 2π-pulse and
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should simply return the atoms to the initial state. In principle all of
the radiation absorbed is therefore re-emitted as stimulated emission,
and so there is no net absorption. This process is therefore known as
self-induced transparency. In order to approach this ideal the pulse now
does have to be a flat-topped pulse – which is hard to achieve. There
is also inevitably some reduction in the intensity of the emerging pulse
due to spontaneous emission.

Laser pumping of atomic transitions has an additional effect: it pro-
duces power broadening of the spectral line width from γ to

√
(γ2 + 2Ω2

0).
A saturation intensity is defined as that intensity at which the power
broadening increases the line width by a factor

√
2: Ω0s = γ/

√
2. The

saturating electric field amplitude can be obtained by substituting for
Ω0 in eqn. 17.18

E0s = h̄γ/(
√

2 |D12|). (17.70)

The saturation intensity is

Is = ε0cE
2
0s/2 = ε0ch̄

2γ2/(4 |D12|2). (17.71)

We can replace one γ with A21, and then use eqn. 17.35 to replace A21.
With a refractive index of unity this gives

Is = 2π2ch̄γ/(3λ3) (17.72)

for the saturation intensity.

17.4 Dressed states

The preceding analysis shows that an atom is strongly influenced by an
intense laser beam tuned to a frequency close to one of its transition
frequencies. Any mode of the electromagnetic field of a laser is popu-
lated by large numbers of photons, whereas the same mode would, by
contrast, generally be empty in thermal radiation. It will emerge that
the energies of the atomic states involved in the transition are then al-
tered by the presence of the laser beam to an extent that depends on
the electric field strength. In these conditions a more appropriate de-
scription of the system as a whole is to use dressed states, rather than
bare non-interacting states. These dressed states incorporate the en-
ergy shifts produced by a laser mode coupled to the atomic transition.
This fruitful approach will be presented here in a simplified manner only.

We start from the expressions given above in eqns. 17.67 and 17.68
for the coefficients of the two bare atomic states when the laser is on
resonance:

c1(t) = (1/2) [ exp (−iΩ0t/2) + exp (iΩ0t/2) ], (17.73)

c2(t) = (1/2) [ exp (−iΩ0t/2) − exp (iΩ0t/2) ]. (17.74)



534 Quantum interactions

Thus the wavefunction of the illuminated atom is

Ψ = (1/2){ ψ1 exp (−iω1t + iΩ0t/2)

+ ψ1 exp (−iω1t − iΩ0t/2)

− ψ2 exp (−iω2t + iΩ0t/2)

+ ψ2 exp (−iω2t − iΩ0t/2) }, (17.75)

where as before Ψj(r, t) = ψj(r) exp (−iωjt). This can be re-expressed
as

Ψ = [Ψ+ + Ψ−]/
√

2, (17.76)

where the new wavefunctions are

Ψ+ =
1√
2

[ ψ1 exp (−iω1t) + ψ2 exp (−iω2t) ]

× exp (−iΩ0t/2), (17.77)

Ψ− =
1√
2

[ ψ1 exp (−iω1t) − ψ2 exp (−iω2t) ]

× exp (+iΩ0t/2). (17.78)

These new states form an orthonormal pair:∫
Ψ∗

±Ψ± dV = 1; and

∫
Ψ∗

±Ψ∓ dV = 0.

The energies of the two components in each of these wavefunctions can
be extracted from their time variation. The wavefunction Ψ+ has com-
ponents of energy h̄(ω1 +Ω0/2) and h̄(ω2 +Ω0/2), while Ψ− has compo-
nents of energy h̄(ω1 − Ω0/2) and h̄(ω2 − Ω0/2). Figure 17.4 shows the
resulting energy levels corresponding to the components of Ψ+ and of
Ψ−. The two components of Ψ+ differ in energy by exactly the photon
energy, h̄ω0. An inference can be made that these components corre-

2Ψ

1Ψ

+Ψ -Ψ

0Ωh-

0Ωh-

0ωh-

Uncoupled Dressed

Fig. 17.4 Uncoupled and dressed
atomic energy levels, for the case that
the pump angular frequency equals the
transition angular frequency ω0.

spond to two energy levels of a dressed atom; with the higher energy
level having one more photon in the mode. A similar inference can be
made for the components of Ψ−. The number of photons in question is
the number in the mode enveloping the atom, and in the intense laser
beams used will be very large. Therefore Ψ1 and Ψ2 are two levels lying
in a tower of levels where the number of photons in the mode increases
by one between levels. An equally important feature seen in the figure
is that each level is split into two levels separated by h̄Ω0, where Ω0

is the Rabi frequency. These inferences are found to be justified when
the full quantum mechanical analysis is carried through. The splitting
of levels seen in figure 17.4 is known as the AC Stark effect or dynamic
Stark splitting.

The dressed states can be expressed in terms of the bare states in this
symbolic manner:44This notation will be extensively used

in the final chapter. State vectors are
described in detail for use in conjunc-
tion with that chapter in Appendix E.

|Ψ+; n〉 = [ |Ψ1〉|(n + 1)〉 + |Ψ2〉|n〉 ]/
√

2, (17.79)

|Ψ−; n〉 = [−|Ψ1〉|(n + 1)〉 + |Ψ2〉|n〉 ]/
√

2, (17.80)
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Fig. 17.5 Uncoupled and dressed states in the case that the pump laser angular
frequency Ω exceeds the transition angular frequency ω0 by ∆ω. The dressed states
form a tower of manifolds.

where the symbol |Ψi〉 represents a bare state with wavefunction Ψi; the
symbol |n〉 represents a state of the laser mode containing n photons.
The symbols |Ψ±; n〉 describe pairs of dressed states differing in energy
by h̄Ω0. At each increase in n one more photon is added to the dressed
states thus building a tower of levels.

These levels are all available but it is the number of photons in the
mode that determines which levels are populated.5

When the laser angular frequency differs from the transition frequency
the expressions for the displacements of the energy levels become more
complicated. Suppose now that the angular frequency of the laser, ω
is no longer equal to ω0, but is larger. Then an analysis parallel to
that just carried through produces a level structure like that pictured
in figure 17.5. The dressed states shown are related symbolically to the

5The case of zero photons appears problematic because this level would not be
split. However if there are only a few photons in the mode the laser intensity must
be low and the splitting correspondingly small: in the limit that there are no photons
in the mode, the laser is off and there is no question of splitting.
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bare states in this way

|Ψ+; n〉 = cos θ|Ψ1〉|(n + 1)〉 + sin θ|Ψ2〉|n〉, (17.81)

|Ψ−; n〉 = − sin θ|Ψ1〉|(n + 1)〉 + cos θ|Ψ2〉|n〉, (17.82)

where

cos θ =
√

(Ω + ∆ω)/2Ω, (17.83)

sin θ =
√

(Ω − ∆ω)/2Ω. (17.84)

The change in the separation in energy between the states Ψ1 and Ψ2

due to the pumping is 2h̄δ = (Ω−∆ω). As the laser detuning is increased
this displacement falls and for very large detuning such that ∆ω 	 Ω0,
h̄δ ≈ Ω2

0/4∆ω. This displacement therefore contributes a small light
shift to levels that are not being pumped in an atom.

Mollow fluorescence

A portion of a tower of dressed states is shown on the left hand side
of figure 17.6. The number of atoms in each manifold depends on the

Ωh-

Ωh-n’th manifold

(n-1)’th manifold

(n-2)’th manifold

Intensity

Angular
Frequency

0ω

Ω2

0ω

0ω

Ω - 0ω

Ω + 0ω

Dressed states

Fig. 17.6 Mollow fluorescence: on the left is a tower of dressed states; at the top
right the typical transitions are shown; below these the resulting spectrum is shown.

laser intensity, and of course the laser intensity also determines the sep-
aration h̄Ω between pairs of states. When an atomic gas is illuminated
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by a laser on resonance with some transition from the ground state the
spectrum of its fluorescence shows a three-fold peak, an effect which is
known as Mollow fluorescence. This spectrum is illustrated on the lower
right of figure 17.6 while above it are shown examples of the transitions
that contribute to it. One peak is centred at the angular frequency of
the resonance, the other peaks are equally displaced up and down in
frequency from this by Ω. Each populated level that emits fluorescence
contributes one transition to the central peak and one transition to one
of the outer peaks: therefore the central peak has an area equal to the
sum of the areas of the outer peaks. The lines are also power broadened
to widths

√
(γ2 + 2Ω2

0). When the laser intensity is gradually reduced
the peaks merge into the central peak, while at the same time the peaks
shrink in width. Finally when the laser intensity is very low, only the
resonant fluorescence peak remains with natural width γ.

The Autler–Townes effect

Observation of the related Autler–Townes effect requires the use of two
lasers. One intense laser beam pumps transitions between a pair of
atomic states of a gas, so that these can be considered to be dressed
states. Transitions from these dressed states to a third state are pro-
duced by weaker radiation from a second laser, a probe laser whose fre-
quency is tunable. Transitions to the third state are at a frequency very
different from the pump frequency so that this state is unaffected by
the pumping, apart from a tiny light shift. The probe laser’s frequency
is scanned in small steps from well below to well above the transition
frequency and the absorption of its beam measured at each step. In
the upper panel of figure 17.7 the dressed levels and the isolated third
state are shown, together with transitions in which photons are absorbed
from the probe beam. The lower panel shows the absorption spectrum
found during the scan of the probe laser. There are two peaks sepa-

Ωh-

Ω

Angular frequency

Absorption

Dressed
 states

Unpumped
 state

Fig. 17.7 Autler–Townes splitting of
an absorption line: the transitions are
shown above and the absorption spec-
trum below.

rated by the Rabi frequency of the pump; this splitting is known as the
Autler–Townes effect. When the intensity of the pump laser is reduced
the splitting is reduced and the two peaks merge together.

The response of the pumped atoms to the probe can be estimated by
calculating the susceptibility due to the transitions between the pair of
dressed states and the isolated state shown in figure 17.7. Let the probe
laser angular frequency be ω, and the angular frequencies of the two
transitions from the dressed states be ω0 ± Ω/2. Then using eqn. 17.53
we obtain for the susceptibility

χ = g/(Ω/2 − ∆ω − iγ/2) + g/(−Ω/2− ∆ω − iγ/2), (17.85)

where
g = Nµ2/(ε0h̄), (17.86)

assuming equal dipole moments and spontaneous decay rates for the two
transitions. As usual ∆ω = ω − ω0. Then

χ = g(2∆ω + iγ)/(Ω2/4 − ∆ω2 − iγ∆ω + γ2/4). (17.87)
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This result does indeed show two absorption peaks at

ω = ω0 ±
√

(Ω2 + γ2)/2,

whose separation approximates to Ω when γ is small enough to be ne-
glected. For future reference note that here the absorptive part of the
susceptibility at resonance (where ∆ω = 0) is 4gγ/(γ2 + Ω2), and that
this remains sizeable.

17.5 Electromagnetically induced transparency

In electromagnetically induced transparency (EIT) laser pumping at one
wavelength renders a material transparent at a second wavelength to
which it is usually opaque.6 A significant proportion of the studies of
EIT have been made with atomic gases of the alkali metals sodium and
rubidium, which have a particularly suitable level structure. The effect
has been observed with a few materials with special crystal structures
but with no other condensed matter materials. Patterns of atomic lev-
els which have been used to demonstrate EIT are illustrated in figure
17.8: Λ, V and cascade. For simplicity the following discussion will be
restricted to the case of the Λ configuration which is depicted below the
other two. The coupling transition, 2 → 1, and probe transition, 3 → 1,
are both allowed electric dipole transitions, while the transition 2 → 3 is
forbidden. Normally the beam from a probe laser at angular frequency
ωp would be totally absorbed within centimetres along a container filled
with the gas. However if a second coupling laser simultaneously pumps
the coupling transition at angular frequency ωc the gas mysteriously
becomes transparent at the probe frequency. It was seen in the preced-
ing section that a reduction of opacity at the resonance frequency was
produced by the Autler–Townes effect as a result of the splitting of the
absorption peak. However in electromagnetically induced transparency,
the transparency is complete and is achieved in a qualitatively different
manner involving quantum interference. This will be explained in the
following paragraphs.

Not only is the gas completely transparent to the probe beam but the
probe pulse undergoes a dramatic reduction in group velocity, slowing
down to a walking pace in the gas. A probe pulse of length of order
a kilometre in air can be compressed to a length of micrometres in the
gas. It is even possible to, in a sense, halt the pulse and release it after
a delay of order a few milliseconds.

6See, for example, K.-J. Boller, A. Imamoglu and S.E Harris, ‘Observations of
electromagnetically induced transparency’; Physical Review Letters 66, 2593 (1991):
L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi,‘Light speed reduction to
17m s−1 in an ultracold atomic gas’, Nature 397, 594 (1999): L. V. Hau ‘Taming light
with cold atoms’, Physics World 14(9), 35 (2001): S. E. Harris ‘Electromagnetically
induced transparency’, Physics Today 36 (July 1997).
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Fig. 17.8 Atomic level configurations for which electromagnetically induced trans-
parency can be produced. The transition indicated with a dotted line is forbidden.

In sodium or rubidium the two lower levels, 2 and 3, are usually cho-
sen to be either the hyperfine or the Zeeman split levels of the ground
state (nS1/2); these are only separated by of order [1GHz]h in energy.
The transitions to the upper state are the well known D-lines at 589 nm
and 795nm respectively for sodium and rubidium. Figure 17.9 shows a
sketch of the experiment performed by Hau and colleagues.7 A cloud
of ∼106 sodium atoms is trapped and cooled to 0.5 10−6 K, using lasers
and magnetic fields. The probe and coupling beams are polarized, in the
senses indicated by arrows in the diagram, in order to excite transitions
from two hyperfine split levels of the ground state into a common upper
magnetic substate of the 3P3/2 level. A third laser beam perpendicular

Coupling
   laser

Probe
 laser

B
PMT

Na atom
 cloud

Fig. 17.9 Sketch of apparatus used by
Hau and colleagues to observe electro-
magnetically induced transparency in a
cloud of ultracold sodium atoms.

to both the others traverses the cloud and falls on a CCD. The absorp-
tion in the gas cloud produces an image of the cloud on the CCD, which
is cigar shaped, 200µm long and 50µm across. Images of the cloud are
only taken in intervals during which the the probe and coupling lasers
are off. When these two lasers are on the intensities of their beams
emerging from the gas region are measured continuously with photo-
multiplier tubes, giving a time resolution of around one nanosecond.8

7A review is given in ‘Taming light with cold atoms’, by L. V. Hau, Physics World
14(9), 35 (2001).

8See Section 15.8 for details of photomultipler operation.
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When only the probe laser is on and is tuned to resonance with the
probe transition the probe beam is fully absorbed within the cloud of
atoms. As noted earlier, when the coupling laser is turned on the cloud
becomes transparent to the probe laser. This change comes about be-
cause the atoms reach a particular superposition of the states 2 and 3,
called the dark state. The dark state and the orthogonal bright state are
symbolically

|dark〉 = (Ωp/Ω)|2〉 − (Ωc/Ω)|3〉, (17.88)

|bright〉 = (Ωp/Ω)|3〉 + (Ωc/Ω)|2〉, (17.89)

where Ωc and Ωp are the respective Rabi frequencies of the coupling and

probe beams, while Ω =
√

(Ω2
p + Ω2

c). From eqn. 17.69 we see that the

pumping rate between a pair of atomic energy levels is proportional to
the Rabi frequency squared. Hence the amplitude for pumping from level
2 within the dark state into level 1 is Ωc(Ωp/Ω), and that for pumping
from level 3 within the dark state into level 1 is −Ωp(Ωc/Ω), and these
amplitudes cancel exactly. It follows that any atom reaching the dark
state will remain in that state and be perfectly transparent to both the
laser beams. On the other hand the bright state together with state
1 will form a tower of dressed states, and the absorption of the probe
would show Autler–Townes splitting.

What is unexpected is that all the atoms end up in the dark state irre-
spective of their initial state. In order to understand this result we need
to examine the progress of atoms initially in the bright state. The lasers
will certainly pump these atoms betweeen the lower levels and level 1.
However on each occasion that the atoms reach level 1, some will de-
cay spontaneously and of these some will enter the dark state, where
they stop. There is a one-way street into the dark state: transparency is
inevitable. This process takes a few radiative lifetimes of the upper state.

The transition to the dark state is more rapid if only the coupling
laser is on initially, and the probe laser is turned on afterwards. The
probe laser beam is considered to be pulsed, which is the case of most
interest here. In this sequence, provided the gas is sufficiently cold, the
atoms are initially all in the lowest energy state, 3, which eqns. 17.88
and 17.89 show to be precisely the dark state when the probe laser is off.
When the probe pulse arrives the atoms undergo a shift from the initial
dark state 3 to a dark state that contains a superposition of states 2 and
3, and then when the probe pulse has passed they revert back to state
3. This evolution of the dark state requires only a small increase in the
amplitude of 2, so that equilibrium is reached rapidly in a few cycles
of the coupling laser. The electromagnetic wave making up the probe
pulse and the atoms in the evolving dark state form a single coherent
system known as a dark state polariton.
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The susceptibility of the cloud of atoms can be calculated in a way
similar to that used for the Autler–Townes effect. There is a crucial dif-
ference compared to that case: the lower energy states are now coupled
in the dark state. This makes the calculation more complex and it will
not be attempted here.9 The result, neglecting small terms, is that

χ = g∆ω(−∆ω2 + Ω2
c/4 + i∆ωγ′/2)

/[ (∆ω2 − Ω2
c/4)2 + ∆ω2(γ′)2/4 ]. (17.90)

As before the contraction used for the probe transition is

g = Nµ2
p/(ε0h̄), (17.91)

where µ2
p is the mean squared dipole moment for the probe transition.
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Fig. 17.10 The real (imaginary) part of the susceptibility is shown in the upper panel
by a solid (broken) line. In the lower panel the transmission through the gas cloud
is shown. All versus the offset of the probe frequency from the transition frequency.

A parameter γ′ has been introduced which expresses the rate at which
the coherence of the dark state is lost through spontaneous decays and
atomic collisions. The real and imaginary parts of the susceptibility are
shown in the upper panel of figure 17.10 as a function of the detuning of
the probe laser from the transition frequency. Typical values are used

9A clear presentation can be found in Quantum Optics by M. O. Scully and M.
S. Zubairy, published by Cambridge University Press (1997).
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in making this plot: 6 MHz for γ ′/2π and 12MHz for Ω/2π. The be-
haviour is very striking when the probe is tuned to resonance: instead
of the absorption being at its strongest, the absorption vanishes so that
the gas is predicted to be transparent. In order to emphasize this feature
the transmittance for a layer of gas is shown in the lower panel of figure
17.10. In a pioneer experiment by Harris and colleagues10 in which a
10 cm long cell of warm strontium gas was used, the absorption of the
probe laser at 337.1nm changed from exp (−20) to exp (−1) when the
coupling laser was applied.

This cancellation of the absorption at zero detuning is a purely quan-
tum interference effect. There are two indistinguishable paths which are
producing interference. These are not paths of light in space but instead
alternative sequences of transitions by which the atoms can reach the
higher energy state 1: in terms of the bare states these sequences are:
3 → 1 and 3 → 1 → 2 → 1. Thanks to the strong pumping by the
coupling laser, the amplitude for the second path is as large as that of
the first path and the interference between these paths is destructive.
It is this key property which distinguishes electromagnetically induced
transparency from the Autler–Townes effect, in which a drop and not a
cancellation of absorption can be observed at resonance.

If the atoms are in motion then the Doppler frequency shifts vary from
atom to atom and this can smear out the oscillations in the susceptibil-
ity seen in figure 17.10. At 1000K the spread of Doppler shifts is about
1GHz, while at 10−6 K it is only 32 kHz for sodium atoms emitting the
D-line. EIT is therefore most readily produced in low density, ultra-low
temperature gases. However, in warm gases these Doppler shifts can
be made to cancel. The trick is to use probe and coupling transitions
with almost equal frequency and to make the probe and coupling beams
copropagating. The Doppler shifts of the beams then cancel in the sense
that they induce transitions to the same energy level. Turning now to
the possibilities for observing EIT in condensed matter, the first thing to
note is that the disturbances of the phases of the atomic states due pri-
marily to electron–phonon interactions are far worse. Coherence times
for dark states would generally be less than 1 ns. It has therefore only
been possible to produce EIT in a few special crystals.

17.5.1 Slow light

In addition to the transparency achieved in EIT, it is equally surprising
that when the laser probe frequency is on resonance the phase velocity
of the probe pulse is equal to c while its group velocity becomes very
small. We can show this using eqn. 17.90. Suppose the probe laser is

10K.-J. Boller, A. Imamoglu and S. E. Harris, Physical Review Letters, 66 2593
(1991).
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tuned close enough to the resonance that Ω2
c 	 ∆ω2. Then eqn. 17.90

predicts that the real part of the susceptibility is

χr = 4g∆ω/Ω2
c. (17.92)

Now the refractive index is n =
√

εr =
√

1 + χ, so that its real part

nr = 1 + χr/2 = 1 + 2g∆ω/Ω2
c, (17.93)

and the phase velocity exactly at resonance is c. Using eqn 11.44 the
group velocity is given by

1/vg = nr/c + (ω/c)(dnr/dω),

so that close to resonance we have, to a good approximation,

1/vg = 1/c + 2gω/(cΩ2
c) = 2gω/(cΩ2

c). (17.94)

Then using eqn. 17.91 to replace g in this equation gives

vg = Ω2
cc/(2gω)

= Ω2
c h̄ε0c/(2Nωµ2

p), (17.95)

where N is the density of atoms per unit volume and µ2
p is the mean

squared dipole moment for the transition. The value of the group veloc-
ity can be made extremely small by reducing the coupling laser power
which in turn reduces the Rabi frequency Ωc. Looking back at eqn.
17.88 it is seen that this in turn alters the proportions of the atoms in
levels 2 and 3 that make up the dark state. Therefore the intensity of
the coupling laser must be changed slowly enough for the atoms to be
able to follow the evolving dark state; such a change is called adiabatic.

The group velocity of the probe laser was reduced to 17m s−1 in the
experiments of Hau and colleagues.11 Thus a 2.5µs pulse of the probe
beam which is 750m long in air is reduced to a length of around 42µm
in the cloud of atoms. In those experimental conditions the relative
permittivity of the gas, εr, is close to unity, and it follows that the max-
imum electric field amplitude, E0, changes little on entering the cloud
of atoms. In turn this means that the energy density in the electromag-
netic field, ε0εrE

2
0/2, does not change on entering the cloud of atoms.

Therefore the effect of the compression of the probe pulse on entering
the cloud of atoms is to reduce its total energy by a factor c/vg; which
for the example quoted is a factor 17 million. The energy of the probe
pulse is transferred via the atoms to the coupling laser beam. On leaving
the cloud the reverse process restores energy to the probe pulse.

In the extreme case that the coupling laser beam is turned off com-
pletely while the probe pulse is within the cloud, then eqn. 17.95 shows

11L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi,‘Light speed reduction to
17m s−1 in an ultracold atomic gas’, Nature 397, 594 (1999).
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that the velocity of the probe is reduced to zero. The energy of the
probe pulse is then almost totally transferred to the coupling beam and
the tiny residual energy fraction is held by the dark state atoms located
where the probe pulse expires. These same atoms have encoded within
them the information content of the probe pulse. What this means is
that the oscillations of the probe pulse’s waveform along its direction of
travel are preserved in the proportions of atoms in level 2 and level 3
and in their phases, while the alignment of the angular momenta of the
atoms preserves the sense of polarization of the probe pulse. The dark
state polariton has then collapsed so that it consists solely of atoms in
a coherent state without any electromagnetic wave component. Because
the states 2 and 3 are only connected by a forbidden transition this
purely atomic dark state polariton can persist after the coupling laser
is turned off for a period of order the lifetime of the forbidden decay
linking them. In several experiments the coupling laser has been again
switched on after an interval of a few milliseconds; at which moment
the probe pulse revived, then completed the remainder of its journey
through the cloud of atoms and emerged to be detected.

In the following two sections techniques are described which are key
elements in the operation of optical clocks. A final section is used to
describe an optical clock using these techniques together with the optical
comb described in Section 14.12.1.

17.6 Trapping and cooling ions

Laser beams are widely used to manipulate and cool atoms and ions,
and to manipulate macroscopic particles. Here the example selected for
discussion is the trapping and cooling of ions. This is of particular in-
terest because the optical transition of an isolated, cooled ion provides
the high precision reference frequency in an optical clock. First the ions
need to be trapped.

Ions cannot be trapped electrostatically because it is impossible to
form a local minimum in a purely electrostatic potential: this is a state-
ment of Earnshaw’s theorem. However electric fields oscillating at radio
frequencies can produce the equivalent of a stable electrostatic potential
well in which an ion can be trapped. Figure 17.11 shows an axial section
through one type of radio frequency trap, the Paul trap. There are metal
electrodes forming a pair of endcaps and a central ring, all being hyper-
boloids of revolution. The trap is contained in an evacuated container
cooled to 4K by liquid helium. A radio frequency voltage is applied be-
tween the endcaps and the ring: in one half cycle the electric force on an
ion in the trap points in the direction indicated in the diagram, while in
the next half-cycle this force is reversed. The net effect is an electrostatic
potential well with a minimum at the trap centre. Traps are typically
of millimetre dimensions with an electric field of ∼100Vm−1 oscillating
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at ∼10MHz. With hyperboloid electrodes the potential produced by an
RF field is quadratic in both the radial and axial directions, so that the
motion of a trapped and cooled ion will be the same as that analysed
in Section 13.6. We take the axis of symmetry to be the z-axis. Once
an ion is cooled its remaining secular motion in such a well is quantized
and has a total kinetic energy given by

E =
∑
x,y,z

h̄ωi(ni + 1/2), (17.96)

where ωx, ωy and ωz are the angular frequencies for the motion along
orthogonal axes, while nx, ny and nz are integers. In the present case
where there is azimuthal symmetry, ωy = ωx.

In addition to the secular motion in the well there is residual micromo-
tion at the radio frequency, but this motion vanishes at the well centre.
It is difficult to illuminate the ions when the trap has the structure shown
in the figure. More practical traps dispense with either the endcaps or

Fig. 17.11 Paul trap showing the di-
rection of the electric force on an ion in
one half cycle of the applied radio fre-
quency field. The star marks where the
micromotion vanishes.

the ring: however a higher voltage is then required to hold the ions and
the potential is no longer strictly quadratic in shape. Atoms are injected
into the trap from a heated solid, and ionized by a low energy electron
beam. These hot ions are cooled to thermal velocities by collisions with
helium at very low pressure, and then this helium gas is pumped off;
after which, one or more stages of laser cooling bring the ions close to
rest near the trap centre. Only a single ion is required to provide a
reference frequency, and this will reside at the trap centre and will have
no micromotion. Such ions are kept continuously in the cooled trapped
state for many days at a time.

Laser cooling of the trapped ions was first proposed by Wineland and
Dehmelt in 1975. Two steps of cooling are considered here. In the first,
Doppler step, a laser is used to illuminate the ions, and its frequency is
tuned to just below that of a strong allowed transition. As seen by the
ions travelling towards laser beam the laser frequency is blue-shifted,
and for some ions the shift makes the laser frequency equal to the tran-
sition frequency. These particular ions each absorb a laser photon in a
head-on collision and their momenta are thereby reduced. Subsequently
these ions spontaneously emit a photon, but the direction of emission
is random so that the net momentum acquired by the cloud of ions
through recoils is zero. By using two counter-propagating beams the
ions travelling in both senses can be cooled. Furthermore, by arranging
the laser beam axis to make equal angles with the three axes of the trap
the cooling can be extended to motion along all three axes.

The minimum temperature achievable in this way is determined by
the line width, γ, of the transition being used for cooling. In order to
show this we consider an atom with a transition angular frequency ω0

illuminated by a laser of angular frequency ω = ω0 + ∆ω. Then the
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transition rate given by eqn. 17.49 is

σ = |c2|2 = σ0/(∆ω2 + γ2/4), (17.97)

where σ0 has a fixed value for a given transition. Cooling is maximized
when the laser is tuned so that

∆ω = γ/2. (17.98)

Before an ion absorbs a photon its kinetic energy is mv2/2, where m is
its mass and v its velocity. After absorbing the photon the ion’s kinetic
energy becomes

[ mv ± h̄k ]2 /(2m) = mv2/2 ± h̄v · k + R, (17.99)

where the alternative signs apply to absorption of a photon from the
two oppositely directed laser beams. k is the photon wave vector for
one beam, and R = (h̄k)2/2m. R is also the recoil energy that an ion
receives when it spontaneously emits a photon with wave vector k. The
Doppler shifted angular frequencies of the beams, as seen by the ions,
are respectively

ω = ω0 − γ/2 ∓ v · k. (17.100)

Thus the rates for the transitions given by eqn. 17.97 are

σh/t = σ0/[ (−γ/2∓ v · k)2 + γ2/4 ]

≈ σ0/(γ2/2 ± v · kγ)

= (2σ0/γ2)/(1 ± 2v · k/γ)

≈ (2σ0/γ2)(1 ∓ 2v · k/γ), (17.101)

where the subscripts h and t refer to collisions with the k and −k beams.
In order to obtain the net cooling rate these transition rates must be
multiplied by the energy changes ±h̄v · k + 2R, where the additional
energy R relative to eqn. 17.99 is acquired when the ion recoils in the
subsequent spontaneous emission. Then the net cooling rate is

dE/dt = σh(+h̄v · k + 2R) + σt(−h̄v · k + 2R)

= (8σ0/γ2) [ R − h̄(v · k)2/γ ]

= (8σ0/γ2) [ R − h̄v2k2 cos2 θ/γ ], (17.102)

where θ is the angle the ion’s velocity makes with the laser beam’s
direction. The cooling evidently ceases when the term in square brackets
is zero. Taking the average over all inclinations of the ion’s momentum
with respect to the laser beam’s direction, the limit at which cooling
ceases is given by

R = h̄k2v2cos2 θ/γ = h̄k2v2/3γ. (17.103)

Now the recoil energy R is (h̄k)2/2m so that in this limit

h̄/(2m) = v2/3γ. (17.104)
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Therefore an estimate of the minimum kinetic energy and temperature
reached in the Doppler phase of cooling is given by

3kBT/2 = mv2/2. (17.105)

Then
kBT = h̄γ/2. (17.106)

In the case of Hg ions cooled using the 2P1/2 → 2S1/2 transition with
wavelength 194 nm and width 70MHz the minimum temperature attain-
able would be around 1mK. The recoil energy of the ion, R, expressed
in terms of a frequency is written hfr, where fr = 25kHz in the case of
an Hg ion absorbing radiation at 194 nm. The quantum of vibrational
energy of the secular motion of the ion in the trap is hfs where the
frequency of vibration of the ion, fs is of order 3 MHz. Thus if the line

1/2P2

1/2S2

5/2D2

194 nm
 

282 nm

Fig. 17.12 Energy levels of the mer-
cury ion. The transition at 194 nm is
an allowed dipole transition, the tran-
sition at 282 nm is forbidden.

width is around 70MHz, the ion’s energy after Doppler cooling amounts
to an excitation of around 20 quanta of its secular vibrational motion.

A lower final temperature can be achieved by using a transition that
has a narrow line width. In the case of a mercury ion there is a con-
venient electric quadrupole transition 2D5/2 → 2S1/2 at 282 nm with a
natural line width of 1.7Hz and a lifetime of 90ms. This is shown in
figure 17.12. The cooling process is modified because this line width is
so narrow.

Figure 17.13 shows the absorption spectrum when the wavelength
of a laser beam illuminating a Doppler cooled mercury ion cloud is
scanned through wavelengths around 282 nm. Absorption is observed
at resonance and at sidebands offset from the resonance by multiples
of ωs = 2πfs. These sidebands are due to transitions in which the ion
also gains or loses one or more quanta of vibrational energy of its sec-
ular motion. The explanation for why discrete peaks have replaced the
usual continuous, Doppler broadened absorption peak proceeds as fol-
lows. The waveform of the radiation at the ion is, apart from a constant,

E = cos (ω0t − kz). (17.107)

where the displacement of the ion due to its secular motion, z, is

z = z0 cos (ωst). (17.108)

Now the amplitude of the secular motion of the ion is only of order
10nm, much smaller than the wavelength of the radiation. Therefore

sω - 0ω 0ω

γ

sω + 0ω
Angular frequency

Intensity

Fig. 17.13 Absorption spectrum
around the 282 nm transition for
Doppler cooled mercury ions. Only the
stronger, first sidebands are shown.

kz 
 1, which defines what is called the Lamb–Dicke regime. In this
Lamb–Dicke regime we can take sin kz = kz and cos kz = 1, so that
expanding the right hand side of eqn. 17.107 at the ion

E = cos (ω0t) − kz sin (ω0t)

= cos (ω0t) − kz0 cos (ωst) sin (ω0t)

= cos (ω0t) − (kz0/2){sin [(ω0 + ωs)t]

+ sin [(ω0 − ωs)t]}. (17.109)
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Therefore the radiation absorbed (or emitted) by the atom is dominantly
at the unshifted frequency, with sidebands having intensities lower by
a factor (πz0/λ)2. This is precisely what would be observed if the ions
were point-like oscillators of frequency fs. In addition, thanks to the
narrow line width of the transition, the sidebands are well resolved from
the central peak.

These features can be taken advantage of in the second stage of cool-
ing. The laser frequency is tuned to coincide with that of the lower
sideband of the 282 nm transition. Each absorption of a photon of en-
ergy h̄(ω0 − ωs) is nearly always followed by the spontaneous emission
of a photon of energy h̄ω0, which guarantees cooling. After cooling the
ions are predominantly in the lowest energy state for the secular mo-
tion, with only the zero point energy h̄ωs/2. With a secular frequency
of 3 MHz the corresponding temperature would be 74µK.

Suppose that after Doppler cooling alone the ions are exposed to a
laser tuned close to the 2D5/2 → 2S1/2 resonance. Then the central
peak is addressed, and the secular motion is eliminated. Only the second
order Doppler broadening due to time dilation12 remains. The fractional12See Section 1.9

change in wavelength is thus (v/c)2 for radiation emitted or absorbed
by the ion. Recalling the relation which relates the ion kinetic energy
to its equivalent temperature, T K,

mv2/2 = 3kBT/2, (17.110)

we find that the equivalent temperature is ∼1mK, so that the velocity
is only ∼0.2m s−1. Hence the second order Doppler shift is of order one
part in 1018. This sets an ultimate limit on the precision that could be
attained using the 282nm transition of a Doppler-cooled, trapped mer-
cury ion as a frequency or time standard.

Two or more ions can be held in a linear version of the Paul trap in
which the ions settle along a line with well defined separations. A pair
of Hg ions trapped in this way have been used to demonstrate a type
of Young’s two slit experiment.13 Two ions a few microns apart scatter
radiation from a laser beam of wavelength at 194nm onto an imaging
detector. Fringes are observed across the area of this detector due to
interference between radiation scattered by the two ions.

17.7 Shelving

The 282nm transition of mercury ions is an example of an electric-
dipole forbidden transition possessing an exceptionally narrow natural
line width, 1.7Hz in 1064GHz, which can be used as an ultra-precise

13U. Eichmann, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, W. M. Itano, D. J.
Wineland and M. G. Raizer: Physical Review Letters 70 2359 (1993).
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frequency reference. Put another way, it can be used as the pendulum
in an optical clock. A single measurement of an optical transition with
a narrow line width of say, 1Hz, offers a potential precision of one part
in 1015 compared to one part in 1010 for a single measurement of a mi-
crowave transition of width 1Hz. However the study and use of such
narrow optical transitions presents difficulties that the use of shelving
has overcome.

Suppose a cloud of mercury ions is illuminated in a Paul trap by a laser
at 282nm (1064GHz) so as to excite the transition to the 2D5/2 level.
In principle the central frequency and the width of the transition could
be determined by scanning the laser frequency across the resonance in
small steps and observing the fluorescence at each step. However each
mercury ion can only emit a few photons per second; of these rare pho-
tons a single detector intercepts only a few percent; and of this subset
the detector registers a fraction determined by its quantum efficiency.
Hence the background counts from noise in the detector overwhelm the
signal counts from the photons of interest.

The resolution of the dilemma was discerned by Dehmelt in 1982.
We refer back to figure 17.12 which shows a simplified diagram of the
energy levels of mercury, an ion to which Dehmelt’s method has been
successfully applied. What is done is to pump the ions on the fast dipole
transition to the 2P1/2 level using a laser tuned to 194 nm, while also
illuminating them with a probe laser of wavelength 282 nm. Then para-
doxically a detector is used to detect the fluorescence at 194nm, rather
than fluorescence at 282nm, using appropriate filters.

Consider what happens when the intensity of the laser at 194 nm
is sufficient to saturate the transition to the 2P1/2 level whose width
is 70MHz. The populations of the 2S1/2 and 2P1/2 levels are then
equal, and around ∼108 fluorescent photons will be emitted per sec-
ond at 194nm by a single ion. A detector could in principle intercept
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Fig. 17.14 Intensity of the fluorescence
at 194 nm from a single cooled trapped
Hg ion, showing typical shelving peri-
ods. The distribution of the duration
of shelving times, td, depends on the
lifetime of the 2D5/2 level.

all the photons emitted within a cone covering 5% of the total solid an-
gle, and in practice still records of order 104 photons per second despite
losses in the optics and the low quantum efficiency at the wavelengths
involved. This stream of fluorescent photons at 194 nm from a single
ion will come to an abrupt halt on each occasion that a photon from
the laser at 282nm is absorbed. At that instant the ion is transferred
to the 2D5/2 state where it remains for around 90ms before decaying
back to the 2S1/2 ground state. Once the ion reaches the 2S1/2 state
again the stream of fluorescence at 194nm resumes. The way the fluo-
rescence at 194 nm varies with time is shown in figure 17.14 for a single
trapped mercury ion illuminated in this way. The intervals during which
the ion is shelved in the 2D5/2 state are those with no fluorescence at
194nm. The distribution of the duration of the shelving intervals, td, is
proportional to exp (−td/τ), where τ is the lifetime of the 2D5/2 state.
This allows the lifetime of the 2D5/2 state to be measured in an elegant
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manner. Of equal importance for our purpose, shelving can be used to
help determine the exact frequency of the envisaged clock transition,
5D5/2 → 2S1/2.

The method employed is to scan the frequency of the probe laser across
this transition in small steps. At each step the number of shelvings will
be proportional to the intensity of the transition to the 5D5/2 level. After
a complete scan the distribution of the number of shelvings per unit time
is plotted against the frequency of the probe laser. The shape of this
distribution will follow the line shape of the transition, with the line
centre lying at the wavelength for which the shelving rate is maximum.
Instead of having to detect the transition through rare fluorescence at
282nm, the transition is now signalled by the cliff edges in the count of
fluorescence photons at 194nm. Thanks to this approach the forbidden
transition at 282 nm can be probed with the statistics of the allowed
transition at 194 nm. This type of statistical leverage is called quantum
amplification.

17.8 Optical clocks

The basic features of an optical clock are these:

• A cooled, trapped ion having an optical transition to the ground
state with very narrow natural line width. This provides the fre-
quency standard.

• The interrogation of this reference transition by means of a stabi-
lized laser using the shelving technique. After each scan the central
frequency of the laser is reset to the transition frequency of the ion.

• An optical comb of the sort described in Section 14.12.1. The
optical comb is used to express the stabilized laser frequency as
a known multiple of a microwave frequency, for which electronic
counting techniques already exist.

The example of a clock based on a 199Hg ion will be described. There
are tiny but significant energy shifts between the atomic energy levels of
different isotopes arising from the difference in the nuclear mass. These
are avoided by using a single isotope. Such devices were developed by a
team at the National Institute for Standards and Technology at Boulder,
Colorado.14 A much simplified sketch of such an ion clock is presented in
figure 17.15. The sequence followed in interrogating the ion is to probe
it with a tunable stabilized laser advancing in small frequency steps
through the clock frequency transition at 282nm. At each step the ion
is first brought to the ground state, then the probe laser is turned on for a
short time ∼50ms. Immediately afterwards the pump laser at 194 nm is

14See for example ‘An optical clock based on a single trapped 199Hg+ ion’ by S.
A. Diddams, Th. Udam, J.C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Holberg,
M. W. Itano, W. D. Lee, C. W. Oates, K. R. Vogel and D. J. Wineland in Science
293, 825 (August 2001).
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turned on and depending on whether the flood of fluorescence at 194 nm
is detected or not, it is possible to say whether shelving has occurred.

194 nm. beam

282 nm. probe beam

194 nm. fluorescence detector

Isolated Hg ion

Stabilized laser

Beam splitter

Cavity length control

Power control

Optical comb generator

rep fβ) = n - 2*f2n(f

rep fα) = m - fHg(f

rep) = fn-1 - fn(f
Clock
 O/P

Beat notes

Beat notes

Clock
 O/P

Fig. 17.15 Components of an optical clock based on a single cooled, trapped 199Hg
ion. The electronic control paths are indicated with broken lines. Courtesy Professor
Wineland.

This interrogation cycle is repeated tens of times at each frequency step
along the scan. By having the lasers on at separate times the light shift
produced by one laser will not affect the energy levels seen by the other
laser. The plot of the shelving rate against frequency is stored and used
to reset the reference probe frequency so that the centre of its scan co-
incides with the exact centre of the 2D5/2 → 2S1/2 transition. In this
way the central frequency of the stabilized laser is being continuously
updated to agree with the transition frequency, fHg, thus making this
latter accessible to external measurement or comparison.

An optical comb, of the type described in Section 14.12.1, is used
to transfer frequencies from the optical to the microwave part of the
spectrum for which there are standard electronic counting techniques.
The comb is generated when femtosecond pulses from a mode-locked
laser pass through a microstructured fibre. A comb is used which cov-
ers more than an octave in frequency, and has a tooth spacing frep of
∼1GHz. Two beat frequencies are used to lock this frequency so that it
is a known integer fraction of the stabilized laser frequency, fHg. Then
when frep is measured by microwave electronics the result gives the ion
transition frequency fHg by multiplication. One of the beat frequencies
is the difference (fHg−fm), where fm is forced to be an integral multiple
of frep/100 (i.e. n1frep/100) by adjusting the length of the cavity of the
mode-locked laser. At the same time the beat frequency (f2n − 2fn) is
forced to be an integral multiple of frep/100 (i.e. n2frep/100) by altering
the power of the mode-locked laser. Finally the beat frequency between
adjacent teeth (fn − fn−1) provides frep the reference frequency, around
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1GHz. This is the frequency measured with microwave electronics. The
outcome of these steps is that

frep = fHg/(m + n1/100 + n2/100), (17.111)

in which all the integers m, n1 and n2 are known.

At the present time when the international standard clock is based
on a microwave transition of 133Cs, the frequency of the optical clock is
determined by the microwave counters whose counting rate is based on
a 133Cs clock. If the optical clock were to become the primary standard,
then it would be necessary to define its frequency to be equal to the
best current measurement of this frequency in calibrations made with
existing standard microwave clocks. Then the frequency fHg appearing
in the previous equation would have an internationally defined value
from which frep would be determined. In turn this would fix the length
of the second to be exactly

1/frep = (m + n1/100 + n2/100)/fHg. (17.112)

Optical clocks have been built and compared with one another and with
atomic clocks so that the precision of optical clocks is well studied, and
currently lies in the range between one part in 1014 and one part in 1015.
The ultimate limit is imposed by the variation of second order Doppler
shift due to the ion’s residual secular motion: this was discussed in
Section 17.6 and found to be one part in 1018.

17.9 Further reading

Laser Cooling and Trapping by H. J. Metcalf and P. van der Straten,
published by Springer (1999). This text covers the cooling and trapping
of neutral atoms rather than ions, and physical applications.

Exercises

(17.1) Estimate the amplitude of the secular motion of Hg
ions in a Paul trap if their vibration frequency is
1MHz.

(17.2) Write down the expression for the susceptibility of a
cloud of atoms when the incident radiation is tuned
to an atomic transition. Evaluate this quantity for
an atomic density of 1016 m−3, a resonance at wave-
length 590 nm and line width 10 MHz. Assume that
the dipole moment for the transition is twice the
Bohr radius times the electron charge. What is the

absorption length in the cloud?

(17.3) Show that the expression given for the satura-
tion intensity in eqn. 17.72 reduces to Is =
208/(τλ3) Wm−2 where the lifetime against spon-
taneous decay is measured in nanoseconds and the
wavelength in micrometres. What is the saturation
intensity for pumping the transition of the previous
question?

(17.4) Suppose that a DC electric field is applied to a two
state atom. What happens and how is the analysis
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of Section 17.2 affected?

(17.5) A laser beam of power density P Wm−2 is tuned to
an atomic resonance of two state atoms whose elec-
tric dipole moment is D12 for that transition. Show
that the Rabi frequency is (D12/h̄)

√
(2P/εc). If

D12 is 2ea0 where a0 is the Bohr radius, then de-
duce the power density required to produce a Rabi
frequency of 5 MHz. How powerful a laser is re-
quired if the target area of the sample of gas is
10−8 m2?

(17.6) Two state atoms are pumped with a laser whose
electric field has amplitude 10 kVm−1 to produce
a transition at 589 nm, the laser being tuned to
589.0001 nm. If the dipole moment for the transi-
tion is 2.5ea0, where a0 is the Bohr radius, calculate
the mixing angle θ of the bare states in the dressed
states.

(17.7) In an experiment to produce EIT the target
cloud of ultra-cold sodium atoms has a density
3.3 1018 m−3. The cloud is exposed to coupling and
probe lasers tuned to excite transitions from two
different hyperfine split levels of the ground state
to the same upper state, both wavelengths being
around 589 nm. The coupling pump intensity is
500 Wm−2. The dipole moment for the transitions
is 2.5ea0 where a0 is the Bohr radius. Calculate
the group velocity of the probe beam close to reso-
nance.

(17.8) The Autler–Townes splitting of a probe transition
from one atomic state to a ground state at 4.0 µm
wavelength is 50MHz. A pump laser of wavelength
3.5 µm provides a power density 0.40 W cm−2 and is
tuned to the transition from another excited state
to the same ground state. Estimate the dipole mo-
ment for the pump transition at 3.5 µm and the
decay rate of the associated excited state.

(17.9) The Autler–Townes splitting of a probe transition
from one atomic state to a ground state at 0.55 µm
wavelength is 200 MHz. The pump laser provides
a power density 2.5MW m−2 and is tuned to the
transition from another excited state to the same
ground state at wavelength 0.6 µm. Estimate the
dipole moment for the pump transition at 0.6 µm
and the decay rate of the associated excited state.

(17.10) Show that in EIT with the probe tuned very close
to resonance the group velocity is

vg = (µc/µp)2Pc/(Nh̄ω)

where Pc is the coupling laser power per unit area,
µc and µp are the respective dipole moments for the
coupling and probe transitions, and ω is the probe
transition angular frequency. Show that the probe
velocity is determined by how quickly the coupling
laser beam can supply energy to pass all the atoms
in the beam path through the common upper state.
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The quantized

electromagnetic field 18

18.1 Introduction

In the preceding chapters the interaction of radiation with matter has
been treated semi-classically: in any calculations radiation was regarded
as waves with photons appearing simply at absorption or emission. How-
ever there are many quantum mechanical effects in optics that can only
be understood using a theory in which not only atomic states are quan-
tized but also the electric and magnetic fields. The more consistent,
quantitative theory in which the electromagnetic field is quantized will
be outlined below. In the remainder of the chapter this theory is used
to interpret experiments involving photon correlations and the entangle-
ment of photons.

It was noted earlier that Maxwell’s equations hold the same place in
electromagnetism that Schroedinger’s equation holds in mechanics, with
the fields E and H being the analogues of the wavefunction ψ. The step
considered here in which the fields, E and H, and also ψ, can be quan-
tized is known as second quantization to distinguish it from the familiar
first step in which the kinematic quantities, energy and momentum, were
quantized – that is to say they became operators.

Second quantization will be carried through in the two sections imme-
diately following this one. Then first order coherence will be re-examined
in terms of quantized fields, using Young’s two slit experiment as an ex-
ample. Second order coherence and correlations between two different
photons are introduced in the next section. After this the two quantum
states are introduced whose properties closely match respectively those
of beams from lasers and from thermal sources. This leads to a discus-
sion and interpretation of the pioneering experiments of Hanbury Brown
and Twiss to observe photon bunching and to measure stellar radii using
photon correlations.

It emerges that pairs of photons can exist in correlated states that lack
classical parallels. The classical state of two photons is simply expressed
as a quantum state: a photon X in mode i and a photon Y in mode j,
are in an overall state that can be written |X〉i|Y 〉j . One example of a
quantum state which has no classical equivalent is |X〉i|Y 〉j + |X〉j|Y 〉i,
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in which the two photons are said to be entangled. A section is used to
describe how entangled photon pairs are produced by spontaneous para-
metric down conversion in non-linear crystals. The HOM interferometer
uses a beam splitter to manipulate entangled photons and its appli-
cation to measure short coherence times is described in the following
section. Then the Franson–Chiao experiment with entangled photons is
described. These experiments confirm that path indistinguishability is
essential for the observation of multi-photon as well as single photon in-
terference effects. The concept of complementarity, originated by Bohr,
extends the uncertainty principle to situations in which the complemen-
tary pieces of information are no longer limited to the values of conjugate
kinematic quantities such as a particle’s momentum and position. A fi-
nal experiment illustrates this idea: one member of an entangled pair is
used to select or alternatively erase an interference pattern formed by
the other photon.

18.2 Second quantization

Quantization of the fields integrates the particle–photon and the wave–
electromagnetic field aspects of electromagnetic radiation. The classical
electromagnetic field in free space which we intend to quantize must first
be resolved into plane polarized plane waves: its modes are discussed in
Chapter 9. The real electric and magnetic fields of such a wave in free
space are

Ex = 2ζωa sin (ωt − kz)

= i ζω [ a(t) exp (ikz) − a∗(t) exp (−ikz) ], (18.1)

By = Ex/c. (18.2)

where a(t) = a exp (−iωt) and ω = kc. The constant ζω =
√

h̄ω/2ε0V
has the dimensions of volts/metre. V is a reference volume within which
the processes of interest take place. Its exact size and shape are not
of importance: in all cases it cancels1 from formulae for measurable1All actual waves are finite in extent

whereas the plane waves into which
Fourier analysis resolves them are in-
finite in extent. Thus it is necessary
when handling plane waves to intro-
duce a finite reference volume V that
covers the region of the actual waves.
Physical quantities of interest like en-
ergy density are evaluated per unit vol-
ume so that the actual size of V does
not need to be specified.

quantities. The absorption of the dependence on time into a(t) will
prove its usefulness later on. The last element of the classical picture
needed here is the total energy in the electromagnetic field in the volume
V:

H =

∫
V

(ε0E
2/2 + B2/2µ0) dV. (18.3)

After substituting for E and B, some terms contain the integrals:∫ +Z

−Z

exp (±2ikz)dz = sin kZ (18.4)

where ±Z are the boundaries in z of the volume of integration. The
other terms are linearly proportional to Z. Then because the refer-
ence volume V is much larger than the wavelength the oscillatory terms
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become negligible compared to those increasing linearly with Z. The
integral therefore reduces to

H = ζ2
ω { ε0 a(t)a∗(t) + a(t)a∗(t)/(µ0c

2) }V
= h̄ω { a∗(t) a(t) }. (18.5)

Thanks to the careful choice of the constant factor ζω in eqn. 18.1 this
result is already suggestive of how the wave and quantum aspects come
together. If in this energy equation a∗(t)a(t) were the number of pho-
tons the equation would match Planck’s formula.

The excitation of a mode of the electromagnetic field has a mathe-
matical parallel in the excitation of a simple harmonic oscillator (SHO),
whose quantization was presented in Section 13.6. Quantization of the
SHO gives equally spaced energy levels which mimic the equally spaced
energy levels in a mode of the electromagnetic field when 1, 2, 3,.... pho-
tons are present. A comparison of the energies of the two systems will
now be used to bring out their formal mathematical resemblance; after
which we follow the standard steps used to quantize the SHO, but now
applied to the electromagnetic field.

The particular SHO considered consists of a unit mass oscillating un-
der a restoring force

√
ωQ(t) proportional to the displacement Q(t).

Thus its angular frequency of oscillation is ω. Its total potential plus
kinetic energy is:

H = (1/2){ω2Q(t)2 + P (t)2 }, (18.6)

where P (t) = Q̇(t) is the momentum of the unit mass. Returning now to
the electromagnetic field we rewrite the complex electric field in terms
of real quantities, q(t) and p(t)

a(t) = (ωq(t) + ip(t))/
√

2h̄ω, (18.7)

a∗(t) = (ωq(t) − ip(t))/
√

2h̄ω, (18.8)

and then the energy equation, eqn 18.5, becomes

H = (1/2){ω2q(t)2 + p(t)2 }, (18.9)

which makes explicit the parallel with the SHO energy appearing in eqn.
18.6. Therefore q(t) and p(t) can be regarded at least mathematically
as a position coordinate and the corresponding momentum. They are
referred to in the present context as quadratures because they are com-
ponents of the field which are π/2 out of phase: q =

√
2h̄/ω a cos (ωt)

and p = −
√

2h̄ω a sin (ωt). Quantizing the electromagnetic field can
therefore follow the same procedure as used for the SHO in Section 13.6.

The essential step is to associate quantum mechanical operators q̂(t)
and p̂(t) with the variables q and p. These operators act on the state
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vectors describing the modes2 of the electromagnetic field. Then, for
consistency, these operators must obey the usual commutator relation
connecting position and momentum operators which was presented in
eqn. 13.37

[q̂(t), p̂(t)] = ih̄. (18.10)

This tells us that the electromagnetic field variables p and q are not
compatible observables: a state which is an eigenstate of one is not an
eigenstate of the other.

A suitable simple state vector for a mode of the electromagnetic field
will be written |n〉, in which the argument is the number of photons in
the mode. When the complete electromagnetic field is considered the
overall state vector will be the product of state vectors, one for each
mode of the electromagnetic field; each state vector being labelled to
indicate the wave vector, frequency and the polarization of the mode.
The state vector must not be pictured as a wavefunction describing
the mode shape in space; instead it describes the photon content of a
mode. Choices of the basis modes other than sinusoidal plane waves are
possible, and for these choices the labelling would be different. Referring
back to Section 13.6 the distribution of q is that shown for s in figure
13.7 with n equal to 0, 1, 2 and 3, and where

ψ(q) = 〈q|n〉. (18.11)

The states of a mode containing different numbers of photons are orthog-
onal, and for convenience each state vector can be defined as normalized:
thus

〈m|n〉 = δmn. (18.12)

Operators corresponding to a and a∗ are defined by rewriting eqns. 18.7
and 18.8 in terms of operators

â = (ωq̂ + ip̂)/
√

2h̄ω, (18.13)

â† = (ωq̂ − ip̂)/
√

2h̄ω. (18.14)

The operator â will turn out to be an annihilation operator which re-
moves a photon from a mode, whilst â† is a creation operator which
creates an additional photon in the mode. Using eqn. 18.10 these defi-
nitions produce the commutation relation

[â, â†] = 1. (18.15)

Different modes of the electromagnetic field are independent, and using
i and j to label any two modes, we must have

[âi, â
†
j ] = δij , [â†

i , â
†
j ] = [âi, âj ] = 0. (18.16)

2Appendix E contains some introductory material about state vectors.
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The electric field operator for a given mode is constructed from the
classical electric field given in eqn. 18.1, replacing a(t) with the operator
â(t) and a∗(t) with the operator â†(t)

Ê(t) = ζω [â exp (−iξ) + â† exp (iξ)], (18.17)

where ξ = ωt − kz − π/2, ζω =
√

h̄ω/2ε0V and ω = kc. The magnetic
field is obtained from eqn. 18.2 with operators replacing simple fields. In
the experiments described below the radiation is a parallel beam, and we
take the beam to travel in the z-direction. Only ω is then needed to label
a mode rather than ω and k. Plane polarization along the x-direction
can be assumed, allowing the component label on the electric field to
be omitted. Generalizing the previous equation to give the electric field
operator of a beam containing a spread of frequencies,

Ê(t) =
∑
ω

ζω[ âω exp (−iξ) + â†
ω exp (iξ) ], (18.18)

= Ê+(t) + Ê−(t)

where âω and â†
ω are the respective annihilation and creation operators

for photons of frequency ω. Ê+(t) contains only annihilation operators
âω, and is by convention called the positive frequency component of the
field operator Ê(t). Ê−(t) contains only creation operators â†

ω and is
called the negative frequency component. Using eqn. 18.15 we get the
commutation relation between the frequency components

[ Ê+, Ê− ] = ζ2
ω . (18.19)

Some comments are also needed here about the way the time depen-
dence is being handled in this chapter which contrasts with the familiar
Schroedinger representation that was used in the earlier chapters on
quantum optics. The time dependence has been moved to the opera-
tors Ê−(t) and Ê+(t), while the modes of the electromagnetic field on
which they operate are unchanging. This is called the Heisenberg rep-
resentation, in contrast to the Schroedinger representation, in which the
time dependence is all in the wavefunctions, and the operators are time
independent. Comparisons between the two representations are made
in Appendix F. In introducing the time dependent operators it was
useful to show the time dependent factors exp (±iξ) explicitly, with the
operators â†

ω and âω being time independent. In what follows the time
dependent factors will be separated whenever this is necessary or helpful.

Replacing the classical variables by operators in eqn. 18.9 gives the
energy operator for a mode of the electromagnetic field:

Ĥ = (1/2)(ω2q̂q̂ + p̂p̂) = h̄ω (â†â + 1/2). (18.20)

Then

Ĥ |n〉 = h̄ω ( â†â + 1/2 )|n〉
= (n + 1/2) h̄ω |n〉. (18.21)
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Pursuing the analogy with the harmonic oscillator, â†â is interpreted as
the operator that yields the number of photons in the mode, so that
the energy of a mode containing n photons is En = (n + 1/2)h̄ω. This
looks reasonable apart from an unexpected additional energy of h̄ω/2
per mode. Consequently the vacuum – the state with zero photons in
any mode – has energy:

H0 =
∑
ω

h̄ω/2, (18.22)

where the sum runs over all modes of the electromagnetic field. In quan-
tum theory the vacuum is therefore not a static passive state, but has
what is called a zero point energy. The number of modes is infinite so
that the total energy in the vacuum is infinite. However this energy is
not accessible to measurement because all the energies that are mea-
surable are always differences in energy, and from these the zero point
energy cancels.

From the existence of this zero point energy Casimir infered that two
closely-spaced, neutral, conducting surfaces in vacuum should feel a mu-
tual attractive force. Casimir realised that within the gap the modes of
the electromagnetic field are restricted by the boundary conditions on
E and B at the conducting surfaces. Within the gap the allowed modes
have discrete, closely spaced values of k; but outside the gap any value
of k is possible. This means that, with fewer modes the total zero point
energy density of the electromagnetic field within the cavity is less than
outside. Hence there is a net inward force on the conductors. Though
small, this Casimir force has been measured and found to be of the mag-
nitude calculated by Casimir. This and effects noted later make it clear
that the energy of a mode containing n photons is indeed (n + 1/2)h̄ω
and not n h̄ω.

It is now appropriate to check the consistency of the interpretation of
â and â† as annihilation and creation operators respectively. Consider
the effect of the operator â on a mode containing n photons. The energy
of the new state â|n〉 is given by:

Ĥ â|n〉 = h̄ω (â†â + 1/2)â|n〉
= h̄ω â (â†â − 1/2)|n〉,

where we have used the commutation relation, eqn. 18.15, to move one
â operator past the â† operator. Continuing,

Ĥ â|n〉 = h̄ω â (n − 1/2)|n〉 = (n − 1/2)h̄ω â|n〉. (18.23)

Evidently the new state, â|n〉, contains one less photon, which justifies
the identification of â as an annihilation operator. The new state |n−1〉
including a normalization factor is given by

â|n〉 =
√

n |n − 1〉. (18.24)
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Similarly we can show that the operator â† creates an additional photon,

â†|n〉 =
√

n + 1|n + 1〉. (18.25)

Finally the assignment of â†â as the number operator n̂ can be checked

n̂|n〉 = â†â|n〉 =
√

n â†|n − 1〉 = n|n〉. (18.26)

Although the occupation number of photons in the mode is an observ-
able, neither a nor a∗ represent observables for the state |n〉.

Collecting the results for any empty mode

â|0〉 = 0, â†|0〉 = |1〉, Ĥ |0〉 = (h̄ω/2)|0〉. (18.27)

The electric field operator, eqn 18.18, is a sum of terms each contain-
ing a single annihilation or a single creation operator. Therefore its
expectation value is

〈n|Ê|n〉 = 0. (18.28)

This simple result reproduces the classical conclusion that the average
electric field of a monochromatic plane wave is zero. On the other hand
the expectation value of the square of the electric field does not vanish.
If a single mode is considered the subscripts appearing in eqn 18.18 can
be dropped:

〈E2〉 =

∫
V

〈n|Ê2|n〉dV

= ζ2
ω 〈n|(ââ + ââ† + â†â + â†â†) |n〉V

= (h̄ω/ε0) (n + 1/2), (18.29)

where we have used 〈n|ââ|n〉 = 〈n|â†â†|n〉 = 0. Thus the mean square
fluctuations of the electric – and magnetic field – in the vacuum are
non-zero.

The vacuum fluctuations of the electromagnetic field produce small
changes in the energy levels of atomic states, and the change is slightly
different for each different atomic configuration. Most famous of all is
the Lamb shift: the resulting relative displacement of 0.11µeV (27MHz)
between the 2s1/2 and 2p1/2 states in the hydrogen atom. The displace-
ment was evaluated theoretically and then measured by Lamb in 1947.
The quantitative agreement he found was crucial early evidence of the
precision and reliability of the predictions of quantized field theory. The
quantitative confirmation from similar effects and from the Casimir ef-
fect make it certain that the zero-point energy of the em field in the
vacuum really exists. Second quantization underpins a full and consis-
tent understanding of the electromagnetic field.

Beams from lasers and thermal sources all show fluctuations of am-
plitude and frequency due to variations in the number and energy of
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the photons emitted per unit time. If the internal physical state of the
source – chemical content, temperature and pressure – are stable then
the character of these fluctuations will not change with time. As pointed
out in Chapter 7, light sources of interest are usually stationary. These
give beams whose statistical properties observed over a time long com-
pared to the wave period are independent of when the sampling is done.
The average value of any measurable quantity taken in this way for a
given source is thus equal to the quantum mechanical expectation value
of the observable. Thus for a stationary source, where averaging is made
over a a time long compared to the wave period, and then repeated after
an interval τ ,

〈Ê−(t)Ê+(t)〉 = 〈Ê−(t + τ)Ê+(t + τ)〉, (18.30)

independent of τ .

18.2.1 Continuous variables

In beams from actual sources there is a spread of frequencies rather than
the discrete set of frequencies tacitly assumed above. For simplicity it
will be assumed the wave vector points along the z-direction and that
the waves are linearly polarized. The formalism is restricted to beams
with a range of angular frequencies small compared to the central value
ω0: this is called the narrow bandwidth approximation.

The conversion from a summation over ω to an integral over ω must
not affect the total number of modes. ∆ω is taken to be the mode spacing
calculated in Chapter 13 for the reference volume V ; â†

ω and âω are taken
to be the operators at frequency ω. Then if the continuous frequency
operators are â(ω) and â†(ω) there are two equivalent expressions for
the number of photons in ∆ω:

â†(ω)â(ω)∆ω = â†
ωâω. (18.31)

In addition the summation is replaced by an equivalent integration33This is the same transformation from
discrete to continuous variables met
earlier in the introduction of Fourier
analysis in Chapter 7.

∑
ω

→ (1/∆ω)

∫
dω/2π. (18.32)

At a fixed reference point, which we choose to be at z = 0, the positive
and negative frequency components of the electric field in eqn. 18.18 can
be re-expressed as

Ê+(t) = [ iζω0
/2π ]

∫ ∞

−∞
â(ω) exp (−iωt)dω, (18.33)

Ê−(t) = −[ iζω0
/2π ]

∫ ∞

−∞
â†(ω) exp (iωt)dω. (18.34)

With a beam directed along the z-direction the dependence on position
and time is always through the combination ωt−kz = ωs, so the electric
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field operators away from z = 0 are readily evaluated by replacing t with
s. The Fourier transform of â(ω) is

â(t) = (1/2π)

∫ ∞

−∞
dω â(ω) exp (−iωt), (18.35)

which when substituted in the previous expressions gives the simpler,
useful forms for narrow bandwidth beams

Ê+(t) = iζωâ(t), (18.36)

Ê−(t) = −iζωâ†(t). (18.37)

The normalization volume V can be regarded as a tube formed by the
beam of area of cross-section Am2 and axial length c m. For an individ-
ual component mode of angular frequency ω

â(t + τ) = â(t) exp (−iωτ); â†(t + τ) = â†(t) exp (iωτ). (18.38)

The expectation value of the dimensionless operator â†
ωâω for a discrete

mode is the number of photons in that mode; while the expectation
value of â†(ω)â(ω)dω is the number of photons with angular frequencies
between ω and ω + dω integrated over time. The integrated number in
a pulse with state vector |ψ〉 within the same angular frequency range
is

f(ω)dω = 〈ψ|â†(ω)â(ω)|ψ〉dω, (18.39)

while the mean flux of photons is

F =

∫ ∞

0

dωf(ω)/T, (18.40)

where T is the pulse duration.

18.3 First order coherence

The rate at which photons are recorded by a detector can be obtained us-
ing Fermi’s golden rule, eqn. G.6, derived in Appendix G. The classical
form of the interaction energy used in Chapter 17 is

∆W = eD ·E (18.41)

where E is the electric field and D the dipole moment. The matrix ele-
ment given in eqn. G.8 splits into an atomic term involving the emission
of an electron and an electromagnetic field term involving the annihila-
tion of a photon. Thus

∆W = 〈[electron + ion]|D|[atom]〉〈f |Ê+|i〉 (18.42)

where |i〉 and |f〉 are respectively the initial and final states of the elec-
tromagnetic field alone. Then using eqn. G.6 the rate at which photons
are absorbed by a detector is

γ = G
∑

f

|〈f |Ê+|i〉|2. (18.43)



564 The quantized electromagnetic field

The contribution of the detector is absorbed into a constant G. It con-
tains the efficiency of the detector to detect radiation of the frequency
incident and a geometric factor determined by the area of the detector.
The detector will need to be chosen so that the rate is useful, but there-
after G cancels from the quantities of interest used in measuring degrees
of coherence. The above equation can be rewritten:

γ = G
∑

f

〈i|Ê−|f〉 〈f |Ê+|i〉. (18.44)

The sum over accessible final states can be replaced by the sum over
all states without affecting the equality because the additional states all
have 〈i|Ê−|f〉 equal to zero. Then the closure relation eqn. E.10 gives

γ = G 〈i|Ê−Ê+|i〉. (18.45)

This equation shows that the rate of detecting photons is proportional
to the expectation value of the field operator product Ê−Ê+, which in
turn is related to the number of photons in the initial state. For com-
pactness, expectation values like 〈i|Ê−Ê+|i〉 will generally be truncated
to 〈Ê−Ê+〉. These results will now be applied to the familiar situation
of Young’s two slit experiment. The operator Ê+ can destroy a photon
arriving from either slit, so we write

Ê+ = Ê+
1 + Ê+

2 , (18.46)

where the subscripts label the slits. The intensity (the number of pho-
tons detected) at the screen is

〈I〉 = G〈Ê−Ê+〉 = G [ 〈Ê−
1 Ê+

1 〉 + 〈Ê−
2 Ê+

2 〉 + 〈Ê−
1 Ê+

2 + Ê−
2 Ê+

1 〉 ]

= 〈I1〉 + 〈I2〉 + 2G�e〈Ê−
1 Ê+

2 〉, (18.47)

where 〈I1〉 and 〈I2〉 are the intensities when one slit is illuminated and
the other blocked. The quantum degree of first order coherence is defined
in a way similar to the classical form so that the experiment dependent
factor G is cancelled out:

g(1)(1, 2) =
〈Ê−

1 Ê+
2 〉√

〈Ê−
1 Ê+

1 〉〈Ê−
2 Ê+

2 〉
. (18.48)

The value of the degree of first order coherence between a single station-
ary beam at times t and t + τ is

g(1)(τ) =
〈Ê−(t)Ê+(t + τ)〉
〈Ê−(t)Ê+(t)〉

. (18.49)

A generally used definition of the coherence time of radiation takes the
form

τc =

∫ +∞

−∞
|g(1)(τ)|2 dτ . (18.50)
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The coherence time is infinite for a pure sine wave since this is coherent
everywhere.

Equations 18.48 and 18.49 have classical equivalents in eqns. 7.27 and
7.29 respectively. Classical time averages evolve to quantum expectation
values.

18.4 Second order coherence

In 1954 Hanbury Brown and Twiss (HBT) made the quite surprising pre-
diction that the arrival times at a detector of photons from a thermal
source would show strong correlations. Explicitly the probability of suc-
cessive photons arriving within a time short compared to the coherence
time would be double that expected if the distribution of arrival times
were random. Figure 18.1 shows results of a modern measurement of
the time intervals between successive photons, in one case from a laser,
and in another from a standard thermal source. A rise in probability is
seen as the time interval between successive photons tends to zero, but
only for the thermal source.

It seems paradoxical that in the case of the laser, whose first order
coherence extends over a much longer period of time, the distribution
of the arrival times of the photons is entirely random. Evidently sec-
ond order coherence between pairs of photons is very different from first
order coherence in which a photon interferes with itself. These correla-
tions will be explained in quantum mechanical terms. Two preliminary
steps toward the explanation are required: the correlations measured
have to be expressed quantum mechanically, and the properties of ther-
mal and laser light also need to be expressed in the quantum framework.

The matrix element for detecting photons at locations labelled 1 and 2
is 〈f |Ê+

2 Ê+
1 |i〉. Therefore the rate at which coincidences occur between

photons arriving at the two separate detectors is given by

γ = G
∑

f

|〈f |Ê+
2 Ê+

1 |i〉|2

= G
∑

f

〈i|Ê−
1 Ê−

2 |f〉〈f |Ê+
2 Ê+

1 |i〉 (18.51)

where G includes the effect of the efficiency and the geometric area
illuminated of each detector. Using the closure relation eqn. E.10 gives

γ = G 〈i|Ê−
1 Ê−

2 Ê+
2 Ê+

1 |i〉. (18.52)

This ordering of the operators with the annihilation operators preceding
(to the right of) the creation operators has emerged naturally and is
known as normal ordering. In addition the annihilation operators are in
chronological order and the creation operators in the reverse chronolog-
ical order. This is known as being time ordered. In order to determine
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Fig. 18.1 The correlation between the arrival times of successive photons. Reprinted
from ‘Time distribution of photons from coherent and Gaussian sources’ by Arecchi,
Gatti and Sona in Physics Letters Vol. 20 pages 27–29, copyright 1966, with permis-
sion of Elsevier and Professor Arecchi.

whether coincidences are occurring more or less frequently than the ran-
dom rate, their rate is divided by the random rate. The random rate is
obtained by taking the product of the individual count rates

γ0 = 〈i|Ê−
1 Ê+

1 |i〉〈i|Ê−
2 Ê+

2 |i〉. (18.53)

The degree of second order coherence is then defined (leaving out the
initial state label i) as:

g(2)(1, 2) = γ/γ0 =
〈Ê−

1 Ê−
2 Ê+

2 Ê+
1 〉

〈Ê−
1 Ê+

1 〉〈Ê−
2 Ê+

2 〉
. (18.54)

Experimental factors such as the efficiency and size of each detector
cancel out when this ratio is taken. When a single detector is used to
detect correlations between photons separated by a fixed time interval,
τ , this becomes:

g(2)(τ) =
〈Ê−(t)Ê−(t + τ)Ê+(t + τ)Ê+(t)〉
〈Ê−(t)Ê+(t)〉〈Ê−(t + τ)Ê+(t + τ)〉

. (18.55)

If the electromagnetic field is stationary so that the mean intensity re-
mains constant:

g(2)(τ) =
〈Ê−(t)Ê−(t + τ)Ê+(t + τ)Ê+(t)〉

〈Ê−(t)Ê+(t)〉2
, (18.56)
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which is independent of t. The classical equivalents of these results have
field values in place of the expectation values of operators.

In the narrow bandwidth approximation the electric field operators
can be replaced using eqns. 18.36 and 18.37 to simplify the expressions
for the degrees of first and second order coherence:

g(1)(τ) =
〈â†(t)â(t + τ)〉
〈â†(t)â(t)〉 , (18.57)

g(2)(τ) =
〈â†(t)â†(t + τ)â(t + τ)â(t)〉

〈â†(t)â(t)〉2 . (18.58)

18.5 Laser light and thermal light

Laser light and black body radiation are two extreme states of the elec-
tromagnetic field. A laser beam has very long wavepackets that approx-
imate to pure sinusoidal waves; such beams are highly coherent. In con-
trast black body radiation consists of radiation of all wavelengths having
short wavepackets with random phases. The radiation from most sources
has a limited spectral range, but possesses statistical behaviour similar
to black body radiation due to the random phases of the wavepackets.
This radiation is therefore known as thermal or chaotic radiation. Those
states of the electromagnetic field introduced in Section 18.2, |ni〉, which
contain a specific number, ni, of photons in a mode i are known as Fock
states and are mathematically simple. However special experimental
techniques are needed to produce such states, and one of these tech-
niques is discussed later in the chapter. In the following two subsections
the mathematical construction of coherent laser-like, and thermal states
from simple Fock states will be described and their detailed coherence
properties deduced.

Thermal radiation differs fundamentally from coherent radiation in
not being in a pure quantum state. Pure states are linear sums of Fock
states in the form

∑
n pn|n〉 and the expectation of an observable A

〈Â〉 =
∑
m,n

p∗m pn〈m|Â|n〉 (18.59)

shows interference between the Fock states. On the other hand thermal
radiation is an incoherent mixture of number states, whose probabilities
are Pn. In this case the expectation value of the same observable is

〈Â〉 =
∑

n

Pn〈n|Â|n〉, (18.60)

where there is no interference between the number states.
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18.5.1 Coherent (laser-like) states of the electromag-
netic field

The coherence time of a very well stabilized laser can last for one second
or longer, so that the beam emitted is nearly a pure sinusoidal wave
extending over a distance that would reach to the Moon. Its electric
field over this interval is of the form a exp (−iξ). It is tempting to infer
that coherent quantum state are eigenstates of the electric field operator.
In fact they are eigenstates of its positive frequency component, E+(t);
that is to say they are eigenstates of the annihilation operator. The
exact form of the state vector for a coherent state is

|α〉 = exp (−|α|2/2)

∞∑
n=0

(αn/
√

n!)|n〉, (18.61)

where α = |α| exp (iθ) can be any complex number. The sum over Fock
states appearing in eqn. 18.61 shows that the number of photons in a
coherent state is variable. This does not however mean that in a given
laser beam the number of photons is varying: rather it means that the
ensemble of laser beams described by one coherent state vector contain
different numbers of photons. The indeterminacy is like that affecting
the impact point of a photon in Young’s double slit experiment. The
distribution of the number of photons around the mean is random, with
a Poissonian distribution. The properties of these coherent states will
now be examined in more detail.

The coherent states are normalized

〈α|α〉 = exp (−|α|2)
∑

n

[ (α∗)nαn/n! ] = 1, (18.62)

where the second equality uses the expansion exp x = 1 + x + x2/2! + ...
Then the effect of the annihilation operator is

â |α〉 = exp (−|α|2/2)
∞∑

n=1

[ αn/
√

(n − 1)! ]|(n − 1)〉

= α exp (−|α|2/2)

∞∑
n=0

[ αn/
√

n! ]|n〉

= α |α〉. (18.63)

Similarly
〈α| â† = α∗〈α|. (18.64)

Using eqn 18.18, the effect of the electric field operator Ê+ on a coherent
state is

Ê+|α〉 = ζω exp (−iξ) â |α〉 = α ζω exp (−iξ) |α〉, (18.65)

which confirms the earlier presumption that a coherent state is an eigen-
state of the (positive frequency component of the) electric field operator.
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The hermitian conjugate relation is

〈α| Ê− = 〈α|ζω exp (iξ)α∗. (18.66)

Hence the expectation for the electric field is

〈α|Ê+ + Ê−|α〉 = 2 ζω|α| cos (ξ − θ).

As was intended the choice of coefficients in eqn. 18.61 has produced
a state for which the expectation value of the electric field is a stable
sinusoidal wave. The probability that there are exactly n photons in
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Fig. 18.2 The uncertainty spread in
(a) a coherent wave; (b) the same wave
after squeezing the amplitude uncer-
tainty; (c) the same wave after squeez-
ing the phase uncertainty. In each case
the waves lie in the space between the
two extremes shown.

this state is

P (n) = |〈n|α〉|2 = exp (−|α|2)|α|2n/n!, (18.67)

which is a Poissonian distribution for a mean of |α|2. Although the
coherent states are normalized they are not orthogonal

〈α|β〉 = exp (−|α − β|2). (18.68)

This result reflects the fact that coherent states drawn from the ensem-
bles described by |α〉 and |β〉 may contain the same number of photons,
and that this probability falls off rapidly as the difference between the
mean numbers of photons in the two ensembles increases. The expecta-
tion value of the photon number squared

〈n2〉 = 〈α| â†ââ†â |α〉 = |α|2〈α| ââ† |α〉, (18.69)

where eqns. 18.63 and 18.64 have both been used. Then

〈n2〉 = |α|2〈α| [â†â + 1] |α〉
= |α|4 + |α|2

= 〈n〉2 + 〈n〉, (18.70)

and the variance

∆n2 = 〈n2〉 − 〈n〉2 = 〈n〉, (18.71)

as expected for a Poissonian distribution. The variance quantifies the
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Fig. 18.3 Argand diagram showing the
uncertainty in the electric field ampli-
tude for a coherent state.

particle noise produced, for example the noise at a detector due to the
variation in the number of photons arriving in a given time interval. It is
identically the shot noise already met with in Chapter 15. The squared
electric field expectation is evaluated similarly, giving

〈E2〉 = 〈E〉2 + ζ2
ω . (18.72)

with variance ∆E2 = ζ2
ω . This result is independent of the number of

photons so that as the number of photons (|α|2) increases the uncertainty
becomes less significant and the approximation to a pure sinusoidal wave
improves. Figure 18.2(a) shows the time dependence of the electric field
with its uncertainty indicated by upper and lower limits. The same
electric field vector and its uncertainty are also shown on an Argand
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diagram in figure 18.3. The uncertainty in the phase angle φ = (ξ − θ)
when this angle is close to 0◦ can be written4

∆φ = 1/(2
√

n), (18.73)

hence the product ∆φ∆n = 1/2. φ and n are conjugate variables in the
same sense that momentum and position are conjugate variables. For
states of the electromagnetic field in general

∆φ∆n ≥ 1/2, (18.74)

which is the form the Heisenberg uncertainty principle takes for this pair
of conjugate variables. The definition of this quantum optical phase is
full of pitfalls and the reader should refer to advanced texts for details.5

In the case of the simple Fock states the number of photons is exact but
the phase of the field is completely indeterminate. It is possible by ma-
nipulating coherent beams to make the phase uncertainty smaller while
keeping the product equal to 1/2. Such states are known as squeezed
states. Figure 18.2(b) shows the limits of a coherent wave after the am-
plitude uncertainty has been squeezed, while (c) shows the corresponding
plot for a coherent wave after the phase uncertainty has been squeezed.

Input for determining the degree of first order coherence of a coherent
state is obtained using eqns. 18.65 and 18.66. Then

〈Ê−(t)Ê+(t + τ)〉 = |α|2ζ2
ω exp (−iωτ). (18.75)

Thus the degree of first order coherence is

g(1)(τ) =
〈Ê−(t)Ê+(t + τ)〉
〈Ê−(t)Ê+(t)〉

= exp (−iωτ), (18.76)

and the degree of second order coherence is

g(2)(τ) =
〈Ê−(t)Ê−(t + τ)Ê+(t + τ)Ê+(t)〉

〈Ê−(t)Ê+(t)〉2
= 1, (18.77)

which shows that light in the state described by eqn. 18.61 is indeed
fully coherent in first and second order.

18.5.2 Thermal light

Thermal light includes black body radiation as well as radiation from
sources with a restricted frequency range in which the photons at any
frequency have random phase relative to each other. In Chapter 12

4See Chapter 4 of the third edition of The Quantum Theory of Light by R. Loudon,
published by Oxford University Press (2000).

5See Measuring the Quantum State of Light by Ulf Leonhardt, Cambridge Uni-
versity Press, Cambridge 1997.
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it was shown that in black body radiation the probability of having n
photons in a given mode at temperature T K is

P (n) = exp (−nh̄ω/kBT ) / [ 1 − exp (−h̄ω/kBT ) ], (18.78)

and the mean is

〈n〉 = 1/[ 1 − exp (−h̄ω/kBT ) ]. (18.79)

It follows that the distribution can be expressed alternatively as

P (n) = 〈n〉n/ [ 〈n〉 + 1 ]n+1. (18.80)

This form is therefore valid for the number of photons within a single
mode from a thermal source. Putting z = 〈n〉/(1 + 〈n〉) we have
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〈n2〉 =
∑

n

P (n)n2

= (1 + 〈n〉)−1
∑

n

znn2. (18.81)

Then using
∑

n zn = 1/(1 − z) and∑
znn2 = z

d

dz

[
z

d

dz

∑
zn

]
,

we obtain

〈n2〉 = 2〈n〉2 + 〈n〉, (18.82)

and the variance

∆n2 = 〈n〉2 + 〈n〉. (18.83)

The second term in the variance is the particle noise, which also ap-
peared in the variance of the photon number count of coherent states,
while the first term is called the wave noise. Figure 18.4 shows the dis-
tribution in the number of photons from a laser and a thermal source
in a single mode when they both have an average photon count of 5 in
that mode.

A simple relation can now be derived between the degrees of first
and second order coherence for thermal radiation. The second order
correlation contains contributions of the form:

M = 〈â†(t)â†(t + τ)â(t + τ)â(t)〉. (18.84)

Non-zero contributions are only possible when the pair of photons cre-
ated enter exactly the same two modes from which photons were annihi-
lated. Otherwise the initial state is not recovered after the annihilations
and creations, and thus the amplitude is zero. The operator pairings
that can satisfy this requirement are: (a) first/third and second/fourth;
or (b) first/fourth and second/third. In pairing (a) â†(t)â(t + τ) and
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â†(t + τ)â(t) involve different6 modes which are incoherent so the am-
plitude factorizes to 〈â†(t)â(t+ τ)〉 〈â†(t+ τ)â(t)〉. Pairing (b) factorizes
for the same reason. Thus

M = 〈â†(t)â(t)〉 〈â†(t + τ)â(t + τ)〉 + 〈â†(t)â(t + τ)〉 〈â†(t + τ)â(t)〉.

Then because the radiation is stationary 〈â†(t+τ)â(t+τ)〉 = 〈â†(t)â(t)〉
and hence

M = |〈â†(t)â(t)〉|2 + |〈â†(t)â(t + τ)〉|2. (18.85)

Then applying eqns. 18.57 and 18.58 the degree of second order coher-
ence

g(2)(τ) = 1 + |g(1)(τ)|2, (18.86)

which is the general result for radiation from a thermal source. The
typical Lorentzian line shape in intensity of a source containing isolated
stationary atoms was introduced in eqn. 7.38:

f(ω) = [γ/2π]/[(ω − ω0)
2 + γ2/4] (18.87)

where ω0 is the central angular frequency, γ is the width. The time
dependent correlation is the Fourier transform of this

〈 â†(t)â(t + τ)〉 =

∫
dωf(ω) exp (−iωτ). (18.88)

Using tables of Fourier transforms7 gives

〈â†(t)â(t + τ)〉 = exp (−iω0τ − γ|τ |/2). (18.89)

Thus the degree of first order coherence is

g(1)(τ) =
〈â†(t)â(t + τ)〉
〈â†(t)â(t)〉 = exp (−iω0τ − γ|τ |/2). (18.90)

Then making use of the general relationship between the degrees of sec-
ond and first order coherence 18.86 gives

g(2)(τ) = 1 + |g(1)(τ)|2 = 1 + exp (−γ|τ |). (18.91)

At zero time difference this correlation coefficient is exactly 2, which
comes about because there are exactly two possible pairings of the pho-
tons.

6The likelihood of the modes being the same is negligibly small because the choice
is a random one among the many modes in thermal radiation

7See page 359 of the fifth edition of Table of Integrals, Series, and Products by
I. S. Gradshteyn and I. M. Ryzhik, edited by A. Jeffrey, and published by Academic
Press, New York (1994).
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In most sources the atoms are close enough to interact with each
other. Equally the atoms are in motion and their radiation is as a result
Doppler shifted. Both these effects lead to a broader emission line which
generally has a Gaussian or near Gaussian shape. The power spectrum
is then given by eqn. 7.40

f(ω) = exp [−(ω − ω0)
2/(2σ2 ]/(

√
(2π)σ), (18.92)

where σ is the rms width of the line. Then repeating the above analysis
for the Gaussian line shape gives

〈â†(t)â(t + τ)〉 = exp (−iω0τ − σ2τ2/2), (18.93)

and
g(2)(τ) = 1 + exp (−σ2τ2). (18.94)

At zero time difference this too gives a correlation of exactly 2. The
correlation will have a similar dependence on τ when the radiation is
filtered out from a source having a broad spectrum, that is to say chaotic
thermal radiation.

18.6 Observations of photon correlations

An experiment of the sort originally carried out by Hanbury Brown and
Twiss to observe correlations between photons from a thermal source
is shown in figure 18.5. Light from a source was filtered to isolate a
spectral line and was focused on a pinhole. The emerging narrow wave-
length thermal light was divided by a beam splitter into two equal beams
that illuminated separate photomultipliers. The electronic signals from
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Hg arc

Mirror

Amplifier

Amplifier

Multiplier

Integrator

PM1

PM2

Fig. 18.5 The experimental apparatus
used by Hanbury Brown and Twiss to
observe the photon correlations from a
thermal source.

the detectors were passed through separate bandwidth limited ampli-
fiers which removed the steady time-average component of the signals
but unfortunately also removed most of the wanted high frequency sig-
nal. The size of the aperture, the sensitive area of the detectors and
their spacing was such that the detectors covered the transverse coher-
ence area of the aperture and so accepted exactly one transverse mode
as explained in Section 5.5.3. The electrical outputs from the detectors
were multiplied electronically and this product integrated over a fixed
time giving a final output proportional to the time-average. In their ex-
periment Hanbury Brown and Twiss moved PM2 laterally and showed
that when the two coherence areas overlapped there were correlations
between the intensities detected by PM1 and PM2. As the overlap di-
minished so the correlations died away.

More recent versions of the experiment have a similar configuration,
but use modern electronics, with which a variable time delay can be
imposed between the signals from PM1 and PM2 before multiplication.
In this case the coherence areas coincide throughout the measurements.
The signal from one detector is delayed by a time τ so that instanta-
neously the multiplier output is [I(t) − 〈I〉][I(t + τ) − 〈I〉] and its time
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average is 〈I(t)I(t + τ)〉 − 〈I〉2. This is compared to the mean squared
intensity at one detector 〈I〉2, giving

gHBT(τ) =
〈I(t)I(t + τ)〉

〈I〉2 − 1. (18.95)

This is seen to be g(2)(τ)−1. Then for a chaotic source with a Gaussian
spectrum we can use the prediction of eqn. 18.94

gHBT− thermal(τ) = exp (−σ2τ2), (18.96)

while for a coherent (laser) source eqn. 18.77 gives

gHBT− coherent(τ) = 0. (18.97)

These predictions are shown in figure 18.1 together with experimental
data taken in an experiment using laser and thermal sources; the agree-
ment is excellent. There are no correlations in the case of the coherent
beam so there is no bunching. However with incoherent beams there is
more randomness in the arrival times and hence photon bunching will
occur. When the time delay is reduced to zero the degree of second
order coherence, g(2)(0), for a thermal source is thus exactly twice that
for a laser. At the other extreme with a time delay larger than the co-
herence time the alternative ways of removing and adding photons can
be separated experimentally so that the correlations disappear.

18.6.1 Stellar correlation interferometer

After the successful detection of correlations with thermal beams Han-
bury Brown and Twiss built a stellar interferometer to make measure-
ments of the angular sizes of stars by means of photon correlations. In
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Fig. 18.6 Stellar correlation interfer-
ometer.

their measurements in the 1950s they achieved a resolution far exceeding
that possible with Michelson stellar interferometers. As shown in figure
18.6 two large searchlight mirrors were used to focus starlight onto sep-
arate photomultipliers PM1 and PM2 located at r1 and r2 respectively.
The time average product of the signals was divided by the product of
the time averages of the individual signals, which is essentially the ratio
of the number of coincidences between photons arriving at the detectors
to the product of the numbers arriving at the two detectors.

For the moment suppose the interferometer views a pair of point
sources, S1 and S2. A coincidence is observed if one photon with wave
vector k1 from S1 has arrived at PM1 and one with wave vector k2

from S2 at PM2 or vice versa. These two possibilities are indistinguish-
able, and hence the amplitude for coincidences is the sum of these two
amplitudes

exp (−ik1 · r1 − ik2 · r2) + exp (−ik2 · r1 − ik1 · r2)

= exp (−ik1 · r1 − ik2 · r2) [ 1 + exp (i(k1 − k2) · (r1 − r2)) ],
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ignoring overall constants. The rate of coincidences is proportional to
the modulus squared

γ = |1 + exp (i(k1 − k2) · (r1 − r2))|2/2

= 1 + cos (k∆rθ)

where the separation laterally of the detectors is ∆r and the sources
subtend an angle θ at the detectors. This treatment has ignored coinci-
dences between two photons from the same source, one arriving at each
detector. For a thermal source the inclusion of this contribution changes
the rate to

γ = 3 + cos (k∆rθ) = 1 + cos2 (k∆rθ/2). (18.98)

The correlation pattern observed when viewing a star requires this result
to be integrated over the area of the star.

Michelson’s stellar interferometer described in Chapter 7 gives similar
information from the first order interference pattern, but those measure-
ments are very sensitive to changes in ∆r. If ∆r changes by even half a
wavelength during the measurement it is enough to erase the phase infor-
mation on which the basic Michelson inteferometer measurement relies.
The HBT interferometer only requires that the path changes should be
much smaller than the coherence length for the light passing the filters
used. However astronomers later devised ways described in Section 8.6
which removed the difficulties with the basic Michelson stellar interfer-
ometer. The stellar correlation interferometer only enjoyed a temporary
vogue, during which detector separations of up to 200m gave an angular
resolution of 2 10−9 rad.

18.7 Entangled states

These are states of radiation – or material particles – which are only
conceivable within quantum theory; they have no classical counterpart.
A Young’s slit experiment provides a simple example. If the flux is kept
low enough that only a single photon is present in the apparatus at any
given moment the em field at the slits is in the entangled state

|ψ〉 = [ |1〉1 |0〉2 + |0〉1 |1〉2 ]/
√

2, (18.99)

where the subscripts indicate the slit (1 or 2) and the arguments indicate
the number of photons at each slit (0 or 1). The entities entangled are the
electromagnetic fields at the two slits and the overall state vector exhibits
the purely quantum feature that the photon is in one or other state
with probability 0.5. It was shown in Chapter 7 that if measurements
are made to determine which slit each photon passes through, then the
interference pattern disappears. If the photon is located at slit 1 then
the overall state vector becomes |ψ′〉 = |1〉1|0〉2; whilst if the photon is
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located at slit 2 the state vector is |ψ′′〉 = |0〉1|1〉2. Once the photon is
located at a slit there is no entanglement and no two slit interference. A
more exact description of this entangled state is to say that the vacuum
and single photon are entangled at the two slits.

18.7.1 Beam splitters

The symmetric, 50:50, non-absorbing beam splitter described in Section
9.7.2 is the standard passive device for producing entangled states. Fig-
ure 18.7 shows the input and output ports labelled with field operators.
The operator âi annihilates a photon at port i, and â†

i is the correspond-

1a

2a

3a

4a

Fig. 18.7 Beam splitter with annihi-
lation operators for input and output
ports.

ing creation operator. Then taking over eqns. 9.105 from Section 9.7.2
and inserting operators in place of the classical electric fields gives

â3 = (â1 + iâ2)/
√

2, (18.100)

â4 = (â2 + iâ1)/
√

2, (18.101)

using the amplitudes given in eqn. 9.107. It is important to include the
field at both input ports, even when only one port is illuminated because
the vacuum cannot be ignored as it was in a classical analysis. As usual

[âi, â
†
i ] = 1. (18.102)

The field operators at the pair of input ports are certainly independent,

[â1, â
†
2] = 0. (18.103)

Equally those at output ports should be independent. Using eqns.
18.100 and 18.101 we can check that this is so:

[â3, â
†
4] = 0. (18.104)

Note that this equality only holds because the field operators at both
input ports are included in eqns. 18.100 and 18.101. This confirms
what was expressed above about the necessity of including the vacuum
field in quantum analyses. Suppose port 1 only is illuminated. The state
vector of the incident radiation is

|1〉1|0〉2 = â†
1|0〉1|0〉2. (18.105)

From eqns 18.100 and 18.101 â1 = (â3 − iâ4)/
√

2, and hence â†
1 =

(â†
3 + iâ†

4)/
√

2. The corresponding emerging state is thus

[ (â†
3 + iâ†

4)/
√

2 ] |0〉3|0〉4 = (|1〉3|0〉4 + i|0〉3|1〉4)/
√

2 (18.106)

which is evidently entangled.

18.7.2 Spontaneous parametric down conversion

Experiments to illuminate fundamental concepts in quantum mechan-
ics have made much use of states of the electromagnetic field in which
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two photons have been entangled. These are also states which offer a
starting point for the development of practical quantum cryptography.
A well tried active means for generating entangled pairs of photons at
an adequate rate for experiments is spontaneous parametric down con-
version (SPDC). This process is the reverse of the process for frequency
summing introduced in Section 14.14. Intense coherent radiation from
a laser, the pump, impinges on a non-linear crystal whose susceptibility
increases with the electric field strength. The process of interest involves
the absorption of a pump photon (p) and the simultaneous emission of
a pair of photons. The latter are called the signal (s) and idler (i) with
by convention ωs ≥ ωi. Conservation of energy requires that the angular
frequencies satisfy the relation

ωp = ωs + ωi, (18.107)

and conservation of momentum requires that in addition

kp = ks + ki. (18.108)

This phase matching of the pump and outgoing waves means that at any
point (r, t)

exp [ i(ωst − ks · r) ] exp [ i(ωit − ki · r) ]

= exp [ i(ωpt − kp · r) ] , (18.109)

so that in classical terms the product of the outgoing waves matches
the input wave. The severity of the momentum matching requirement
becomes clear when eqn. 18.108 is rewritten in terms of the refractive
indices at the different frequencies

k̂pnpωp = k̂snsωs + k̂iniωi, (18.110)

where k̂p is the unit vector along the pump direction and np is the re-
fractive index at the pump frequency. However, as we saw in Section
14.14, the refractive index of birefringent materials varies with direc-
tion and polarization so that phase matching is achievable. The use of
β-barium borate (BBO), a negative uniaxial crystalline material, was
already discussed there. BBO has many other practical advantages.
Phase matching with high yields per pump photon is possible over the
range 210–3000nm and it has low absorption (< 5%/cm) over most of
this range. BBO crystals withstand high pump photon fluxes and can
be made very large (5 cm long) and uniform, and are stable in air when
anti-reflection coated. Another comparably useful material is potassium
di-hydrogen phosphate (KDP).

The pump beam is usually polarized in the plane containing the optic
axis of the crystal. Then alternative choices for the polarization of the
signal and idler can be selected. In type I SPDC the signal and idler
are both plane polarized perpendicular to the pump. In type II SPDC
one photon has the same polarization as the pump (extraordinary ray),
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Fig. 18.8 Type II degenerate SPDC. The circles are where the ordinary and extraor-
dinary rays of a given, in this case equal, wavelength cross the screen. The entangled
pair selected by pinholes are labelled with wave vectors ki/s and ks/i. The dotted
lines indicate the plane containing the optic axis and beam.

the other is polarized perpendicularly (ordinary ray). It is possible in
addition, with an appropriately cut crystal, to choose the beam direc-
tions so that the signal and idler have the same frequency. This is called
degenerate SPDC.

Figure 18.8 shows the layout for type II SPDC, for example in a BBO
crystal pumped by 351.1nm UV from an argon–ion laser. Momentum
matching requires that the the signal photon direction must lie some-
where on a cone whose apex is the conversion point, and the idler follows
a complementary path on another such cone. The cone angles depend
on the signal and idler wavelengths. In the figure a particularly impor-
tant configuration is shown in which the cones for degenerate type II
SPDC cross one another. Pinholes in an opaque screen placed at the
cross-over points select signal and idler photon pairs. Interference filters
placed behind the pinholes then limit the selection to photons of nearly
the same frequency (degenerate).

One pinhole will pass an idler photon and the other a signal pho-
ton; but which goes through which hole is undetermined. The photons
are therefore entangled and because they have different polarization (or-
dinary and extraordinary) they are said to be polarization entangled.
Choosing a thin crystal, so that no phase lag develops between the or-
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dinary and extraordinary rays, their overall state vector is

[ |E〉1|O〉2 + |O〉1|E〉2 ]/
√

2. (18.111)

Any phase lag at the exit surface of the crystal due to the difference
between the phase velocities of the ordinary and extraordinary rays can
be compensated by passing the signal and idler beams through half-
wave plates so that they exchange polarizations and then to pass them
through a second BBO crystal identical to that used for SPDC. By us-
ing appropriately aligned quarter and half-wave plates other entangled
states are readily obtained.

In order for there to be second order coherence between the two beams
the coherence time should be longer than the time interval between the
detection of the signal and idler photons. A typical filter bandwidth
employed is 10 nm, giving a coherence time of ∼100 fs.

The beauty of SPDC is that it provides entangled pairs of photons at a
high controllable rate at wavelengths which the experimenter can select
in the visible, near UV or near IR region. In the following sections several
experiments using SPDC and beamsplitters will be used to illustrate the
quantum principles underlying first and second order interference effects.

18.8 The HOM interferometer

The interferometer shown in figure 18.9 was used by Hong, Ou and Man-
del to show directly the indistinguishability of photons. They injected
degenerate signal and idler photons from type I SPDC into the oppo-
site entry faces of a 50:50 beam splitter BS. The photons have the same
polarization. From eqns. 18.100 and 18.101 it follows that
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Coincidence
counter

NL

M1 M2

IFIF

BS

D4 D3

Pump

Signal Idler

Fig. 18.9 HOM interferometer used to
study photon correlations. NL is the
non-linear crystal. BS is a 50:50 beam
splitter with arrows showing the motion
used. The interference filter IF and pin-
holes select signal and idler.

â1 = (â3 − iâ4)/
√

(2), (18.112)

â2 = (â4 − iâ3)/
√

(2). (18.113)

Consequently

â†
1â

†
2 = (â†

3 + iâ†
4)(â

†
4 + iâ†

3)/2

= i(â†
3â

†
3 + â†

4â
†
4)/2. (18.114)

Thus the state prepared when the photons exit from the beam splitter
will be

|1〉1|1〉2 = â†
1â

†
2|0〉 = i[|2〉3|0〉4 + |0〉3|2〉4 ]/2. (18.115)

As a result both photons should exit through the same face of the beam
splitter, and Hong, Ou and Mandel sought to verify this prediction. A
complementary way to approach this result is to recall that the phase
difference between the reflected and transmitted light is π/2 so that the
amplitudes for two reflections and for two transmissions differ in phase
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by π and so cancel precisely. In either view the underlying idea being
tested is that the amplitudes may be added because the idler and signal
photons are indistinguishable.

351.1 nm radiation from an argon–ion laser induces type I SPDC in
a KDP crystal labelled NL. In type I SPDC the signal and idler have
the same (ordinary) polarization. M1 and M2 are mirrors and BS is a
beam splitter which can be displaced as indicated by the arrows. D3 and
D4 are fast photomultipliers. In front of each of these are pinholes and
interference filters, labelled IF, which define the degenerate signal and
idler beams. The electronic pulses associated with photons arriving at
D3 and D4 were counted separately, and also the coincidences between
pulses at D3 and D4.

When the beam splitter is exactly centred so that the apparatus is
left-right symmetric both photons are expected to arrive at D4 or both
at D3, never one at D3 and one at D4. D3/D4 coincidences become
possible once the beam splitter is displaced sideways, as indicated by
the two short arrows in the diagram. Figure 18.10 shows the D3/D4
coincidence rate as a function of the beam splitter position. When itsmµSplitter position in 
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Fig. 18.10 Coincidences with the
HOM interferometer as a function of
the beam splitter position. The experi-
mental results are compared to the pre-
dictions described in the text. Diagram
adapted from C. K. Hong, Z. Y. Ou and
L. Mandel, Physical Review Letters 59
2044 (1987). Courtesy Professor Hong
and the American Physical Society.

position is symmetric with respect to the detectors the only coincidences
remaining come from a slight lack of overlap between the idler and signal
fields at the pinholes.

When the beam splitter is moved sideways the reflection paths change
in relative length by some distance s = cτ . In this case the coincidence
rate becomes

P (τ) ∝ 1 − exp [−(τ∆ω)2], (18.116)

where ∆ω is the bandwidth of the interference filters. It confirms that
P (τ) vanishes when the path difference, and τ , go to zero. In figure 18.10
the coincidence rate rises as the path difference increases from zero until
eventually when the time difference is greater than the coherence time
the rate becomes constant. The fit with eqn. 18.116 shown in figure
18.10 gives the bandwidth of the signal and idler radiation. At half-
height the width of the dip in the figure is 16 nm, corresponding to a
time delay of 50 fs, which is the coherence time, or equivalently the time
duration of the photon wavepackets. Unlike measurements of coherence
time using first order coherence, this technique does not require path
differences to be held constant to a fraction of a wavelength during the
measurement.

In modern versions of the HOM interferometer the light may be steered
by monomode optical fibres rather than mirrors, while the beam splitter
is replaced by a 50:50 fibre coupler. Signal and idler photons are selected
by pinholes and focused by lenses onto the fibre ends. Interference fil-
ters behind the pinholes give the usual tight restriction on the idler and
signal frequency range.



18.9 Franson–Chiao interferometry 581

18.9 Franson–Chiao interferometry

An experiment proposed by Franson demonstrates in a striking manner
that the observation of two photon correlations depends simply on the
alternative paths being indistinguishable. The results have a bearing on
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Fig. 18.11 Franson–Chiao interferom-
eter used to observe two photon inter-
ference in which the idler and signal are
not mixed.

the validitity of quantum mechanics. Figure 18.11 shows the layout of
the experiment carried out by Kwiat, Steinberg and Chiao, in which a
351.1nm beam produces SPDC in the KDP crystal labelled NL. The
signal and idler photons of wavelength 702.2nm travel through separate
Mach–Zehnder interferometers and are detected at the photomultipli-
ers, DS and DI respectively. The rate of coincidences between photons
detected at DS and DI are recorded as well as the singles rates at DS
and DI. Pinholes and interference filters, IF, are used to select degen-
erate entangled photon pairs. These Mach–Zehnder interferometers are
constructed from 50:50 beam splitters, and totally internally reflecting
prisms whose reflecting faces are labelled I and S. The long arms of each
Mach–Zehnder form optical trombones whose path lengths can be varied
by displacing the prisms labelled S and I laterally.

In this experiment the conditions for interference at the detectors and
for correlations between the two detectors are quite different. As regards
first order interference the long and short paths in each Mach–Zehnder
differ by 63 cm giving a delay, Td, of 2.1 ns. This is much longer than the
coherence time, Tc, of 120 fs determined by the bandwidth (∼10 nm) of
the filters in front of the detectors. Thus first order interference between
the two arms of a single Mach–Zehnder will not be observed.

Turning now to correlations the situation is more delicate. Firstly the
coherence time of the pump is 200µs so that a photon travelling along
the long path in one Mach–Zehnder remains coherent with its partner
taking the short path in the other Mach–Zehnder. The time resolution,
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Fig. 18.12 Coincidence rate (solid line)
and singles rate (broken line) in the
measurement by P. G. Kwiat, A. M.
Steinberg and R. Y. Chiao. The plots
show smooth fits through the data ap-
pearing in Physical Review A47 2472
(1993). Courtesy Professor Chiao and
the American Physical Society.

Tr, of the detectors is around 1 ns which is substantially less than the
time delay between the short arm of one Mach–Zehnder and the long
arm of the other Mach–Zehnder. Thus an electronic gate a little larger
than Tr, and much less than Td, was imposed between coincidences in
order to exclude those in which one photon travelled along a long arm
and the other along a short arm. The only remaining coincidences pos-
sible are just those between photons travelling along the two short arms
or between photons travelling along the two long arms.

Figure 18.12 shows the variation of count rates as the length of the
longer arm in the signal Mach–Zehnder is varied, all the other three
arms being held fixed. The upper broken line gives the singles rate on
one arm; the lower full line shows the coincidence rate between the sig-
nal and idler arms as a function of the position of the signal prism SS.
As expected there is no sign of interference in the singles rate. Despite
the absence of first order interference the coincidence rate also shown
in figure 18.12 does oscillate as the length of the long arm in the signal
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Mach–Zehnder is changed. This result demonstrates that the observa-
tion of first order coherence is not a prerequisite for observing second
order correlations.

The explanation of how such correlations can occur is as follows.
Firstly, there are only two combinations of signal and idler paths through
the Mach–Zehnders that fall within the electronic gate: short-short and
long-long. There is an obvious difference between these combinations
which at first sight appears to distinguish between them and would rule
out the observed correlations: the time interval between SPDC taking
place and photon detection is longer by many nanoseconds for the long-
long coincidences than it is for short-short coincidences. However the
conversion time in the crystal is not measured and so the coincidences
resulting from the short-short and long-long combinations are not dis-
tinguishable.

There is however one valid requirement that must be satisfied in order
that long-long coincidences are coherent with short-short coincidences,
and that concerns the time difference Tdd = ∆Lshort/c−∆Llong/c where
∆Lshort (∆Llong) is the difference between the short (long) arms of the
two Mach–Zehnders. Tdd has to be shorter than the coherence time
imposed by the filters, Tc, otherwise the long-long and short-short pro-
cesses become incoherent. In the experiment Tdd was therefore made
very much less than Tc.

The photons detected and giving coincidences are therefore in an en-
tangled state described by the state vector

|ψ〉 = (1/2) [ |ψshort〉s |ψshort〉i + |ψlong〉s |ψlong〉i ] (18.117)

where the subscripts s and i indicate the signal and idler respectively.
The phase difference between the two entangled components is

φ = ωs∆Ls/c + ωi∆Li/c (18.118)

where ∆Ls and ∆Li are the path differences within the signal Mach–
Zehnder and within the idler Mach–Zehnder respectively. The phase in
the entangled state can be expanded as

φ = (ωs + ωi)(∆Ls + ∆Li)/(2c) + (ωs − ωi)(∆Ls − ∆Li)/(2c)

= (ωs + ωi)(∆Ls + ∆Li)/(2c) + (ωs − ωi)Tdd/2. (18.119)

The product of Tdd and the bandwidth of the filters has been made small
so it follows that the second term on the right hand side is negligible
and we have

φ ≈ ωp∆L/(2c) (18.120)

where ∆L = ∆Ls+∆Li and ωp = ωs+ωi is the pump angular frequency.
Thus the coincidence rate is, apart from constants,

P = (1/2)|1 + exp (iφ)|2 = 1 + cos (ωp∆L/2c). (18.121)
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This predicts the repeat distance of the data shown in figure 18.12 very
well.

This experiment was suggested by Franson in order to make a test of
hidden variable theories. Hidden variables would be properties of pho-
tons and other particles which are not observable (cannot be measured)
but whose values would determine exactly the result of any measurement
for which quantum mechanics can only ascribe probabilities for differ-
ent possible results. Hidden variable theories are thus deterministic in
contrast to quantum mechanics. It is impossible to distinguish between
quantum mechanics and hidden variable theories in measurements of
first order interference just because the hidden variables are hidden.
The theories do differ in their predictions for certain correlations. In the
Franson–Chiao experiment the maximum visibility in the coincidence
interference pattern possible with hidden variable theories is only 0.5,
far below the observed value of 0.80 ± 0.04. However a visibility of pre-
cisely 1.0 is what is predicted by quantum mechanics, the photons being
anti-correlated for one path difference and fully correlated for another.
The failure to reach a visibility of exactly unity seems to lie rather in
experimental imperfections than in some defect of quantum mechanics:
at the minima in the data the cancellation is not exact because of im-
perfections in alignment and the finite size of the pinholes. Many other
tests for hidden variables have been carried out, all with negative results.

18.10 Complementarity

It was stated in Chapter 13 that for any dynamical degree of freedom
the uncertainty principle restricts the precision with which the corre-
sponding pair of conjugate variables (e.g. x and the x-component of
momentum) can be measured. An extension of the uncertainty princi-
ple called the principle of complementarity is required in explaining some
interference effects. This states that precise knowledge of one of a con-
jugate pair of variables implies that all possible outcomes of measuring
the partner variable are equally probable. In Young’s two slit exper-
iment the uncertainty principle and the principle of complementarity
are equivalent. Any method used to detect the slit through which the
photon passes will disturb the photon momentum and change its phase
randomly so that the interference pattern is destroyed. Thus informa-
tion on which path is travelled, the so-called welcher Weg information,
destroys the interference pattern.

The principle of complementarity goes beyond the uncertainty prin-
ciple when the definition is extended to include complementary pieces
of information which are not linked dynamically. Information on cor-
relations is the determining factor in whether second order interference
effects are seen in the experiment performed by Kim, Kulik, Shih and
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Scully which is described next.

18.10.1 Delayed choice and quantum erasure

The apparatus is pictured in figure 18.13. A 351.1nm beam from an
argon–ion laser passes through a pair of slits in a screen placed directly
in front of a BBO crystal. Type II SPDC is then produced in two re-
gions, A and B, within the crystal each 0.3mm wide and spaced 0.7mm
apart. The signal and idler photons are separated by a Glan–Thompson
prism placed directly behind the BBO crystal and they travel along
the labelled paths. Slits and interference filters are positioned in front
of each detector which ensure that degenerate photons of wavelength
around 702.2nm are being detected. The signal beams from both slits
are detected by the single detector D0 located in the focal plane of a lens.
A slit is rigidly attached in front of D0 with its axis perpendicular to the
diagram. D0 and its slit could be moved perpendicular to the lens axis
in the plane of the diagram, that is to say in the y-direction. A prism

Pump in
A

B
Signal

Idler D0

BSB BSA

MB MA

D1 D2

DB DA

BS

Fig. 18.13 Delayed coincidence and
quantum erasure experiment. A and
B are locations in a BBO crystal at
which SPDC is produced. The signal
photons fall on the photomultiplier D0
which can move laterally. D0 is much
closer to the source than the other de-
tectors which sense the idler photons.

is used to separate the two idler beams which then travel to separate
beam splitters, BSA or BSB. The beams reflected from BSA and BSB
fall on detectors DA or DB respectively. Detection of a photon at DA
(DB) identifies the slit at which the conversion occurred as A (B). The
beams transmitted by BSA and BSB are reflected by mirrors MA and
MB respectively onto a final beam splitter BS and the entangled out-
put beams from this beam splitter fall on two detectors D1 and D2. In
contrast to the hits on DA and DB which directly identify at which slit
the conversion occurred, hits on D1 and D2 give no information about
where the conversion occurred.

In the experiment the coincidences between photons arriving at the
signal and idler detectors were recorded; these are D0/DA, D0/DB,
D0/D1 and D0/D2. By design the optical path from the BBO crys-
tal to the signal photon detector D0 is made much shorter than the
optical path to any of the other detectors. As a result the signal photon
is detected well before the information on which path the idler photon
has selected is known. The path differences have to be compensated by
electronic time delays applied to the pulses from D0 on their way to the
coincidence circuits.

Two of the coincidences detected in the experiment, D0/DA and
D0/DB, identify that the conversion occurred at slit A or slit B, and so
they are termed WS (which slit) coincidences. The other coincidences
detected, D0/D1 and D0/D2, can be due to photons from a conversion
at either slit, so these are labelled ES (either slit) coincidences.

Figure 18.14 shows the rates for ES coincidences plotted against the
displacement of detector D0 in the y-coordinate. D0/D1 coincidences
appear as solid circles, D0/D2 coincidences as open circles. Both these
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ES coincidence rates (D0/D1 and D0/D2) display a variation that is ev-
idently a two slit interference pattern, with exactly one half-wave offset
between the patterns for D0/D1 and D0/D2.

By contrast the WS coincidence rate (D0/DA and D0/DB) distribu-
tions do not show a two slit interference pattern when D0 is displaced
laterally. The explanation is that these coincidences immediately tell
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Fig. 18.14 The coincidence rates for
D0/D1 (solid circles) and D0/D2 (open
circles) as a function of the position
of D0. The theoretical predictions are
discussed in the text. The diagram is
adapted from that of Y. H. Kim, R.
Yu, S. P. Kulik, Y. Shih and M. O.
Scully, Physical Review Letters 84 1
(2000). Courtesy Professor Scully and
the American Physical Society.

from which slit the signal photon originated. In recording the WS co-
incidence data the decision about which slit, A or B, the signal photon
came from is delayed until the later detection of the idler photon. Such
a measurement is therefore known as a delayed choice experiment.

The elimination of the interference pattern through making a delayed
choice cannot be explained using the dynamical form of the uncertainty
principle. The information being applied is simply the knowledge that
the idler photon was detected by DA or DB. However the effect is in-
terpretable using the principle of complementarity. In this more global
view the complementary pieces of information are the identity of the
detector (DA or DB) recording the idler photon, and the location of
the signal photon in y. Then knowing one piece of information exactly
requires that all outcomes for the other are equally probable.

A further step in refinement is made when taking the ES coincidence
data. In this data set the information identifying the slit where con-
version occurs, which was available at the time the idler photon was
reflected from either BSA or BSB, is now destroyed. The information is
destroyed by entangling the amplitudes with a beam splitter BS. This or
any similar experimental procedure in which potential path information
is deliberately destroyed is called quantum erasure. As has been seen,
quantum erasure restores the interference pattern.

A general principle that the results of the experiments described here
help to illustrate is that the quantum state of the system in an experi-
ment includes not only what is known about the system, but also what is
knowable from auxiliary experiments provided these would not disturb
the experiment in question.

Analysis

A detailed analysis of the experiment proceeds as follows. The entangled
initial state vector is

|i〉 = |iA〉|sA〉 + |iB〉|sB〉, (18.122)

where for example |iA〉 is the state vector of an idler photon from slit
A. The operator whose expectation value is proportional to the D0/D1
coincidence rate is the normal ordered product of the operators for anni-
hilating the photons at D0 and D1 and the operators for creating them
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there:

[ â†
iA(ti)â

†
sA(tsA) − iâ†

iB(ti)â
†
sB(tsB) ] [ âiA(ti)âsA(tsA) + iâiB(ti)âsB(tsB) ],

in which the factors ±i account for the relative phase shift between the
idler photon from slit B which is reflected, and the idler photon from
slit A which is transmitted at the beam splitter. Among these terms

âiA(ti) = âiA exp (−iωiti), âiB(ti) = âiB exp (−iωiti)

âsA(tsA) = âsA exp (−iωstsA), âsB(tsB) = âsB exp (−iωstsB).

The phase shift due to the difference in path lengths from the two slits A
and B to D0 is φ = ωs(tsA − tsB). Then the rate of D0/D1 coincidences
is, apart from constants,

R(D0/D1) = 〈i| [ â†
iAâ†

sA − iâ†
iBâ†

sB ] [ âiAâsA + iâiBâsB ] |i〉
= 2 + i exp (iφ) − i exp (−iφ)

= 2(1 − cos (ψ)) = 4 sin2 (ψ/2), (18.123)

where ψ = π/2 − φ. The calculation of the D0/D2 coincidence rate
proceeds exactly as for the D0/D1 coincidences with the labels A and B
now interchanged, giving

R(D0/D2) = 2 − i exp (iφ) + i exp (−iφ)

= 4 cos2 (ψ/2). (18.124)

When the detector D0 is moved laterally a distance y the corresponding
value of the phase factor is

ψ = 2πyd/fλ,

where d is the slit separation and f the focal length of the lens. The slits
have a finite width a so that the coincidence rate is further modulated
by the standard single slit diffraction pattern. Finally eqns. 18.123 and
18.124 become

R(D0/D1) = 4 sin2 πdy

fλ
sinc2 πxa

fλ
, (18.125)

R(D0/D2) = 4 cos2
πdy

fλ
sinc2 πxa

fλ
. (18.126)

These distributions are the basis of the superposed full and broken lines
compared to the data in figure 18.14.

18.11 Further reading

The Quantum Theory of Light, third edition by R. Loudon, published
by Oxford University Press (2000). This standard text develops topics
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introduced here and in the previous chapter more fully and rigorously,
including, for example, a detailed analysis on squeezed states.

Introductory Quantum Optics, by C. Gerry and P. Knight, published
by Cambridge University Press (2005). This recent book covers quantum
optics including the fully quantum Jaynes-Cummings model of photon–
atom interactions and covers the interesting experiments in cavity QED.

Optical Coherence and Quantum Optics, by L. Mandel and E. Wolf,
published by Cambridge University Press (1995). A rigorous source book
on the theory and techniques of optical coherence.

Exercises

(18.1) When the counting time in the HBT experiment
for a thermal source is extended beyond the co-
herence time several modes, m in number, will be
involved. Show that the variance in the photon
count is 〈N〉+ 〈N〉2/m where N is the total photon
count.

(18.2) If the quantum efficiency of the photon detec-
tor is η the average count changes from 〈M〉 to
〈m〉 = η〈M〉. Show that the variance in the pho-
ton count for a thermal source becomes η2〈∆M2〉+
η(1 − η)〈M〉. The first term is the variance ex-
pected for perfect efficiency × η2 and the second is
the partition noise.

(18.3) Prove eqn. 18.72.

(18.4) Prove that (â)n|n〉 =
√

n! |0〉 and that (â)n|n−1〉 =
0.

(18.5) Prove eqn. 18.15 using eqns. 18.13 and 18.14.

(18.6) Deduce that the magnetic field operator B̂(t) =∑
ω
k∧eω (ζω/ω) [ âω exp (−iξ)+â†

ω exp (iξ) ] where
eω is the unit polarization vector of the electric field
component with frequency ω and wave vector k.

(18.7) |{α}〉 is a state made up of many coherent states
in different modes of the electromagnetic field. In
the case that there are two of these modes with
frequencies ω(1) and ω(2), |{α}〉 = |αω(1)〉|αω(2)〉.
Show that g(2)(τ ) = 1 for such states.

(18.8) Show that the total energy operator for states of the
electromagnetic field can be written:

∑
n

En|n〉〈n|,
where En is the energy with n photons in the mode.

(18.9) In Young’s double slit experiment the initial state
can be expressed as |in〉 = (1/

√
2)(â†

1+â†
2)|0〉 where

â†
i creates a photon at slit i. The intensity on

the screen is proportional to 〈in|Ê−Ê+|in〉. Show
that the intensity distribution across the screen is
[1 + cos (k · ∆r)] where ∆r is the vector difference
between the paths from the slits to the point on the
screen being considered.

(18.10) Photons are separated with equal probability be-
tween two paths, 1 and 2, which might be the two
ouput ports of a beam splitter. If the total num-
ber of photons incident is n what is the expectation
for the product n1n2 of the numbers entering each
arm?

(18.11) Sketch Argand diagrams like that of figure 18.3 cor-
responding to the squeezed state represented in fig-
ure 18.2.

(18.12) Show that the phase mismatch in the generation
of second harmonic waves in the forward direction
in a distance dx is ∆kdx = (2ω/c)(n(2ω) − nω))dx
where n(2ω) is the refractive index of the crystal for
the pump and nω) that for both idler and signal.
In a crystal of length L show that the intensity falls
of with the phase mismatch like sinc2(∆kL/2).
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Physical constants and

parameters A

Electron charge e = 1.6022 10−19 C
Electron mass me = 9.109410−31 kg
Electron volt eV = 1.602210−19 J
Proton mass mp = 1.6726 10−27 kg
Atomic mass unit u = 1.660510−27 kg

Planck’s constant h = 6.626 10−34 Js
h̄ = 1.0546 10−34 Js = 6.582 10−16 eV s

Permittivity of free space ε0 = 8.854 10−12 Fm−1

Permeability of free space µ0 = 4 π 10−7 NA−2

Fine structure constant α = e2/4πε0h̄c = 7.2974 10−3 (≈ 1/137)
Bohr radius a∞ = 4πε0h̄

2/mee
2 = 0.529210−10 m

Avogadro’s number NA = 6.022 1023 mol−1

Boltzmann’s constant kB = 1.3807 10−23 JK−1

Wien’s constant λmax T = 2.898 10−3 m K
Stefan–Boltzmann constant π2k4/60h̄3c2 = 5.671 10−8 Wm−2 K−4



This page intentionally left blank 



Appendix: Cardinal points

and planes of lens systems B

The matrix approach is used here to locate the cardinal points of a lens
system: the focal, principal and nodal points. The initial and final media
have the same refractive index n. Let the transfer matrix through the
system be (

a b
c d

)
.

Suppose the system forms an image at a distance s2 to the right of the
last refracting surface of an object a distance s1 measured from the first
refracting surface to the object. Then the matrix equation relating an
outgoing ray at the image at height y2 and making an angle α2 with the
optic axis to the same ray from the object at height y1 and at an angle
α1 is (

nα2

y2

)
=

(
1 0
s2 1

)(
a b
c d

)(
1 0

−s1 1

)(
nα1

y1

)
.

The rightmost square matrix describes the straight line propogation from
the object to the front surface of the first lens, and measuring s1 accord-
ing to the Cartesian sign convention makes −s1 the positive distance
traversed. The second square matrix describes the effect of the optical
system, and the final square matrix describes the straight line propoga-
tion from the final lens surface to the image plane, over a postive distance
s2. Thus(

nα2

y2

)
=

(
1 0
s2 1

)(
a − bs1 b
c − ds1 d

)(
nα1

y1

)
=

(
a − bs1 b

as2 − bs1s2 + c − ds1 bs2 + d

)(
nα1

y1

)
. (B.1)

Then:
y2 = (as2 − bs1s2 + c − ds1)nα1 + (bs2 + d)y1. (B.2)

The image distance off-axis y2 will not depend on the direction α1 that
the ray leaves the object, so the coefficient

as2 − bs1s2 + c − ds1 = 0

so s2 = −c − ds1

a − bs1
(B.3)

or s1 =
c + as2

d + bs2
. (B.4)
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The distances of the focal points from the rear and front lens’ surface
respectively are obtained by making first s1 and then s2 equal to infinity

s2f = −d/b, and s1f = a/b. (B.5)

Also from eqn B.2
y2/y1 = bs2 + d.

The planes of unit magnification (principal planes) are found by setting
y2/y1 = 1. This gives

s2p = (1 − d)/b, (B.6)

and

s1p = (c + as2p) = (−ad + a + cb)/b

= (a − 1)/b, (B.7)

where the requirement that the determinant is unity, ad − bc = 1 was
used. Collecting these results

s2p = (1 − d)/b, and s1p = (a − 1)/b. (B.8)

The determination of the points of unit angular magnification (nodal
points) starts from the imaging equation B.1

nα2 = (a − bs1)nα1 + by1.

On axis this reduces to

nα2 = (a − bs1)nα1.

Thus

1N

2N

2ns1ns

α

αLenses

Lenses1P 2P

1F 2F

2ps1ps

2fs1fs

Fig. B.1 The upper panel shows the
nodal planes of a lens system, and the
lower panel the principal planes and the
focal planes. The dotted lines at the
edge of the shaded region indicate the
outer surfaces of the final lenses. Note
that the principal and nodal planes
can lie inside the shaded region and
also that the first principal/nodal plane
could lie to the right of the second. In
air the nodal and principal planes coin-
cide.

s1n = (a − 1)/b = s1p. (B.9)

Similarly
s2n = (1 − d)/b = s2p. (B.10)

These results confirm that where the object and image media are the
same (n1 = n2 = n) the principal and nodal points coincide. We also
see that the distances from the principal points to the focal points are
the same in the object and image regions

s1p − s1f = −1/b, (B.11)

s2f − s2p = −1/b. (B.12)

Note that the directions of s1p, etc. are given in figure B.1 according to
the Cartesian convention. Clearly −1/b is the focal length of the equiva-
lent thin lens. Thus we have justified the use of the equivalent thin lens
in treating any coaxial system of lenses in the paraxial approximation.
For a explicit example see eqn. 3.37 where the optical system is a pair
of lenses separated by a distance t.



Appendix: Kirchhoff’s

analysis of wave

propagation at apertures C

Kirchhoff, using a model for electromagnetic waves with scalar fields,
was able to describe how em disturbances propagate through an aper-
ture. His results provide the formal basis for the Huygens–Fresnel use of
secondary waves in predicting interference effects, including diffraction.
Kirchhoff considered a scalar field

E = φ(rout) exp (−iωt),

satisfying the wave equation

∇2E = [∂2E/∂t2]/c2, (C.1)

which is the form the wave equation, eqn. 1.4, would take if the electric
field were a scalar. Note that the radius vector is named rout rather
than r in order to avoid a change of variable later. The point at which
the field is to be determined is taken to be the origin. Substituting the
scalar field into the wave equation gives

∇2φ = −k2φ, (C.2)

which is known as the Helmholz equation and where k = ω/c. An out-
going spherical wave

φr(rout) = exp (ikrout)/rout, (C.3)

provides a solution that is valid at any point away from the origin itself
but diverges at the origin. This will be used as the reference solution.
Its derivative will also be required, and this is

∇φr(rout) = ikrout exp (ikrout)/r2
out − rout exp (ikrout)/r3

out

= (ikrout − 1) exp (ikrout) rout/r3
out. (C.4)

Suppose the actual wave is φ(rout), then applying eqn. C.2 twice gives

φ∇2φr − φr∇2φ = −k2φφr + k2φrφ = 0,

at any point away from the origin. The next step is to integrate this
function over a volume V of any form enclosing the origin but excluding
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a small sphere centred on the origin. This gives∫
V

[ φ∇2φr − φr∇2φ ] dV = 0.

Applying Gauss’s theorem converts the LHS to an integral over the inner,
Si, and outer, So, surfaces enclosing V∫

Si+So

[ φ∇φr − φr∇φ ] · ndS = 0, (C.5)

where ndS is a vector element of either surface directed outward from
V . Using eqns. C.3 and C.4 this becomes∫

Si+So

[ exp (ikrout)/r3
out ] [ (ikrout − 1)φ rout − r2

out∇φ ] · n dS = 0.

(C.6)
The contribution to the integral from the small sphere radius δr sur-
rounding the origin is evaluated with rout = −δrn, dS = δr2dΩ, and
φ = φ(0). This gives

Ii =

∫
Si

[− exp (ikδr)/δr3 ] [ (ikδr − 1)φ δrn − δr2∇φ ] · n δr2dΩ

= −
∫

Si

exp (ikδr) [ (ikδr − 1)φ(0) − δr∇φ(0) · n ] dΩ.

Now δr can be made arbitrarily small and in the limit

Ltδr→0[ Ii ] → 4πφ(0).

Inserting this result in eqn. C.6 gives∫
So

[ φ∇φr − φr∇φ ] · ndS = −4πφ(0), (C.7)

which is the general result sought for any wave φ satisfying eqn. C.2.
Thus if φ is known over a surface enclosing the point of interest the
value of φ there can be calculated using eqn. C.7 where φr is the simple
spherical wave reference function.

The simple optical arrangement pictured in figure C.1 will be used to
obtain a general expression useful in calculating diffraction effects. A

P (detector)
S

(source)

A

outr
inr

n
outθ

inθ

Fig. C.1 The point source S illumi-
nates an aperture. P is the point of
observation and A is a representative
point on the aperture. point source S illuminates an aperture, and the resulting wave intensity

is observed at P. First we calculate the wave amplitude across the aper-
ture and then insert that in eqn. C.7 to obtain the wave amplitude at P.
A is any point in the aperture, and the unit normal at A to the surface
through A spanning the aperture is n. By definition

rout = �PA; rin = �SA.

There are no obstructions between the source and A so the wave ampli-
tude at A is

φ(rin) = exp (ikrin)/rin,
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and its gradient at A is

∇φ(rin) = rin(ikrin − 1) exp (ikrin)/(rin)3.

Inserting φ(rin) for φ and φr(rout) for φr in eqn. C.7 gives the wave
amplitude at P∫

So

exp [ ik(rin + rout) ]{(ikrout − 1)rout · n/(rinr3
out)

−(ikrin − 1)rin · n/(r3
inrout)}dS = −4πφ(0),

where the integral is restricted to the surface spanning the aperture,
because this is the only region from which light can reach P. This pre-
sumes that the screen has no other effect than simply absorbing the
wave incident on it. In the far field situation where the distance from
the aperture to source S, and from the aperture to P are very much
larger than the wavelength of the radiation, krin 	 1 and krout 	 1.
With these restrictions the result is the Fresnel–Kirchhoff equation

φ(0) = (−ik/2π)

∫
S

{exp [ ik(rout + rin) ]/(routrin)}

×{ [cos (θin) + cos (θout) ] /2} dS. (C.8)

The term [ cos (θin)+cos (θout) ] /2 is called the inclination factor and in
the backward direction this is exactly zero. This eliminates a perceived
weakness of the Huygens–Fresnel theory that the secondary waves from
an unobstructed plane wave would add up equally well in the backward
as in the forward direction. In most cases met with in instrumental op-
tics �SA and �AP are nearly collinear and the inclination factor can be
taken to be unity. For such cases the above analysis is adequate.

The analysis presented here will not apply in the near field region close
to the aperture. It is then no longer true that krin 	 1 and krout 	 1,
and in addition the actual vector electric fields due to light from different
points on the aperture are no longer all parallel. Hence a scalar field
cannot be used. A calculation starting from Maxwell’s equations with
boundary conditions appropriate to the aperture is required rather than
assuming the waves are absorbed totally over the surface of the screen
without any other effect. At large distances, the far field region, such
a calculation simply reproduces Kirchhoff’s result. More details can be
found in Born and Wolf.1

1Chapter 8 of the seventh edition of Principles of Optics by M. Born and E. Wolf
published by Cambridge University Press (1999).
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Appendix: The non-linear

Schroedinger equation D

The wave equation for the transmission of em waves along an optical
fibre is derived here, taking account of both dispersion and the optical
Kerr effect. Then the soliton solution is presented. A direct derivation
from Maxwell’s equations is avoided because this is rather involved: in-
stead a more general approach is used applicable to other systems. An
important point to emphasize immediately is that the soliton waveform
on a fibre is the envelope of the em pulse.

The refractive index of the fibre for waves at angular frequency ω0

is taken to be n0 at low intensity, when non-linear effects are negligi-
ble. Then at a nearby angular frequency ω, equal to ω0 + ∆ω, and at
intensities used in optical communications, the refractive index is

n = n0 + ∆ω(dn/dω) + ∆ω2(d2n/dω2)/2 + n2P/Aeff , (D.1)

where n2 is defined by eqn. 14.55, P is the optical power and Aeff is
the effective area of the optical mode. Multiplying this by 2π/λ where
λ is the wavelength in free space, and re-expressing the result in terms
of wave numbers gives

k = k0 + k1∆ω + k2∆ω2/2 + kNLP, (D.2)

where

k0 = 2πn0/λ, kNL = 2πn2/(Aeffλ), k1 = dk/dω, k2 = d2k/dω2.

A plane wave is chosen

E = u exp [−i(ω0t − k0z)], (D.3)

where u is the envelope

u = u0 exp [−i(∆ωt− ∆kz)], (D.4)

and we put
P = P0|u|2. (D.5)

In the special circumstances of soliton propagation this envelope, u, will
be invariant as the waves travel: it is therefore the component of interest.
We now assert that if u is a solution of the wave equation

−i∂u/∂z = ik1∂u/∂t− (k2/2)∂2u/∂t2 + kNLPu, (D.6)
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then the dispersion relation, eqn. D.2, also holds true. In order to check
this assertion the trial wave of eqn. D.4 is substituted into eqn. D.6.
This gives

∆k u = k1∆ω u + k2∆ω2u/2 + kNLP u. (D.7)

Dividing this by u then gives the expected dispersion relation. The wave
equation is now simplified by transforming to the frame moving with the
group velocity, k1. This requires the coordinate substitutions

τ = (t − k1z)/t0, ξ = z/zc,

where zc and t0 are free parameters at this stage, but will acquire special
significance later on when they are chosen appropriately. It follows that

t = t0τ + k1zcξ, z = zcξ,

and then

∂/∂τ = (∂t/∂τ)(∂/∂t) + (∂z/∂τ)(∂/∂z) = t0(∂/∂t);

∂/∂ξ = (∂t/∂ξ)(∂/∂t) + (∂z/∂ξ)(∂/∂z) = k1zc(∂/∂t) + zc(∂/∂z).

In this new frame the wave equation D.6 becomes

(−i/zc)∂u/∂ξ = −(k2/2t20)∂
2u/∂τ2 + kNLP0|u|2 u. (D.8)

The parameters t0 and zc are now chosen in such a way as to link them
to P0, which anticipates the inherent properties of solitons. Setting

P0 = (kNLzc)
−1 (D.9)

and t20/zc = −k2, (D.10)

the wave equation, eqn. D.8 simplifies to

i∂u/∂ξ +
1

2
(∂2u/∂τ2) + |u|2u = 0, (D.11)

which is known as the non-linear Schroedinger equation (NLS).

The NLS has a simple solutions of the form

u = sech(τ) exp (iξ/2), (D.12)

which is the envelope exhibited in the second panel of figure 16.30. This
is produced by an incident pulse whose envelope at z = 0 is sech(t/t0),
and is called the fundamental soliton. The requirement that the pulse
shape remains invariant both constrains the shape to that given by eqn.
D.12, and also limits the possible combinations of values that zc, t0 and
P0 can take. Starting from a fundamental soliton of given shape and
energy others can be generated by scaling P0, zc and t0 appropriately:
P0 is scaled by a factor m2, zc by a factor m−2 and t0 by a factor m−1;
m being any arbitrary factor.
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Other solitons can be produced if the initial pulse at z = 0 has the
form N sech(t/t0) where N is a positive integer. Solitons with values
of N larger than unity undergo changes of shape as they travel, always
returning to their initial shape after cycles of length z0 = πzc/2. The pa-
rameter z0 is therefore called the soliton period, which can be expanded
as

z0 = −πt20/(2k2) = π2ct20/(λ2Dm), (D.13)

where Dm is the group velocity dispersion defined in eqn. 16.17. If λ
= 1550nm, the time is expressed in picoseconds and the group velocity
dispersion in ps/km/nm, then we have with these choices

z0 ≈ t20/Dm km. (D.14)

The half width of the soliton pulse at the half height of the pulse’s power
is given by

0.5 = sech2(τ), (D.15)

whence τ = 0.88 and t = 0.88t0. Evidently t0 is a measure of the soliton
pulse width. In a similar way the power is constrained by

P0 = 1/kNLzc = Aeffλ/(4n2z0). (D.16)

A typical mode in telecom single mode fibre has an effective area 70 µm2,
while the Kerr coefficient for fused silica is 2.6 10−20 m2 W−1, so that

P0 ≈ 1000/z0 mW, (D.17)

with z0 again in kilometres.
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Appendix: State vectors E

The quantum state of photons (or other particles) is best described us-
ing state vectors when second quantization is being carried through.
Consider a system whose eigenstates provide a set of orthonormal wave-
functions {φi}. Suppose ψ is a normalized wavefunction describing a
state of the system. This can be expanded as

ψ =
∑

i

ciφi, (E.1)

in which the cis are complex coefficients. Then the integral∫
ψ∗ψ dV =

∑
ij

c∗i cj

∫
φ∗

i φj dV =
∑

i

c∗i ci. (E.2)

The right hand side of this equation can be expressed in matrix notation
as

( c∗1 c∗2 c∗3 ... )


c1

c2

c3

.

.

 , (E.3)

which is identical to the scalar product of two vectors with coordinate
lengths referred to the same set of orthogonal axes (c∗1, c

∗
2, c

∗
3, ...) and

(c1, c2, c3, ...). The state of the system with wavefunction ψ can then be
pictured as a state vector in a space in which the the unit length vectors
along the axes are the state vectors of the eigenstates {φi}: this space is
known as a Hilbert space. Such state vectors are very useful in visualizing
and making calculations in quantum mechanics. The following account
uses the notation introduced by Dirac. A state vector for a column
matrix is written |ψ〉 and called a ket vector. For an eigenstate with
wavefunction φi the ket is |φi〉. Then in vector form eqn. E.1 becomes

|ψ〉 =
∑

i

ci |φi〉. (E.4)

Another type of state vector is needed to correspond to the row matrix
in eqn. E.3. These are called bra vectors, and are written 〈ψ| and 〈φi|.
Of course the vectors |ψ〉 and 〈ψ| describe exactly the same state.1 For

1The Hilbert spaces containing the bra and ket vectors are actually separate vector
spaces known as dual spaces. See for example the second edition of The Principles

of Quantum Mechanics by R. Shankar, published by Kluwer, Dordrecht (1994).
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the bra vectors
〈ψ| =

∑
i

c∗i 〈φi|. (E.5)

The scalar product 〈φi|φj〉 is defined by

〈φi|φj〉 =

∫
φ∗

i φj dV = δij . (E.6)

In addition we have

〈ψ|φi〉 = c∗i ,

〈φi|ψ〉 = ci.

Then the state vectors |ψ〉 and 〈ψ| can be expanded in this way

|ψ〉 =
∑

i

〈φi|ψ〉 |φi〉, (E.7)

〈ψ| =
∑

i

〈ψ|φi〉 〈φi|. (E.8)

The scalar product of two different states, |ψ1〉 and |ψ2〉, is∫
ψ∗

2ψ1 dV = 〈ψ2|ψ1〉

=
∑
ij

〈ψ2|φi〉 〈φi|φj〉 〈φj |ψ1〉

=
∑

i

〈ψ2|φi〉 〈φi|ψ1〉

= 〈ψ2

∑
i

[ |φi〉 〈φi| ] ψ1〉. (E.9)

Comparing the first and fourth lines of this equation we see that the
sum in the fourth line is the identity. Writing this in matrix notation
gives

∑
i

[ |φi〉 〈φi| ] =


1 0 0 . .
0 1 0 . .
0 0 1 . .
. . . . .
. . . . .

 , (E.10)

where the right hand side is known as I the identity matrix. This use-
ful result is known as a closure relation. The expectation value of an
observable A in state described by |ψ〉 is given by

〈Â〉 =

∫
ψ∗Âψ dV

=
∑
ij

c∗i cj 〈φi|Â|φj〉, (E.11)

which can be re-expressed in this way

〈Â〉 =
∑
ij

c∗i Aijcj , (E.12)
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where the terms Aij form a matrix with elements

Aij = 〈φi|Â|φj〉. (E.13)

Observables have real values so that
∑

ij c∗i cj 〈φi|Â|φj〉 must also be real.
This can only be true if the combinations

c∗i cjAij + cic
∗
jA

∗
ji

are always real. Therefore it must be the case that

A∗
ij = Aji. (E.14)

In words, the complex conjugate transpose of any element of the matrix
is equal to the element itself. Writing the complex conjugate transpose
of the operator Â as Â† we have in turn that

Â† = Â, (E.15)

which re-expresses the result noted in Chapter 13 that observables are
associated with Hermitean operators.

In order to carry out the reverse process of obtaining a wavefunction
referred to a point (r, t) in space time from a state vector we introduce
a new state vector, |r, t〉. This is a state vector whose wavefunction is a
delta function at the space time point with coordinates (r, t). Then

ψ(r, t) = 〈r, t|ψ〉., (E.16)

Rotations can be made in Hilbert space similar to rigid rotations in
normal coordinate space and leave any product of state vectors 〈ψ|ξ〉
unaffected. However these transformations differ from rigid rotations
in cordinate space because the length of a vector in Hilbert space is a
complex number. Suppose U is such a unitary transformation, then

〈ψ|ξ〉 = 〈Uψ|Uξ〉. (E.17)

Now 〈Uψ| has components

(Uψ)∗i = U∗
ijψ

∗
j = U †

jiψ
∗
j = ψ∗

j U †
ji,

where the matrix U † is the complex conjugate transpose of U . Then we
have

〈Uψ| = 〈ψ|U †. (E.18)

Substituting this is in eqn. E.17

〈ψ|ξ〉 = 〈ψ|U †Uξ〉, (E.19)

whence it follows that
U †U = I. (E.20)

This means that the complex conjugate transpose of a unitary operator
is also its inverse, U−1, because U−1U = I. Rigid rotations in coordi-
nate space are real. Then not only are they unitary but they are also
orthogonal, meaning that ŨU = I, where Ũ is the transpose of U , with
Ũij = Uji.
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Appendix: Representations

F

There are alternative ways to assign the time dependence of a quantum
system and the choice between these alternatives is made in a way that
eases calculation and interpretation. The choice made in Chapter 13
when introducing quantum mechanics is called the Schroedinger repre-
sentation, in which the wavefunction varies with time as described by
eqn. 13.10

ΨS(t) = exp (−iÊt/h̄) ΨS(0), (F.1)

while the operators are considered as not varying with time. The sub-
script S is being used here to distinguish quantities in the Schroedinger
representation from those in the other representations described below.
The expectation of an observable is given by eqn. 13.29

〈Â〉 =

∫
Ψ∗

S(t)ÂSΨS(t) dV

=

∫
Ψ∗

S(0) exp (iÊt/h̄)ÂSΨS(0) exp (−iÊt/h̄) dV , (F.2)

The second representation is the Heisenberg representation, indicated by
a subscript H , in which the time variation is shifted to the operators. It
must remain true that

〈Â〉 =

∫
Ψ∗

HÂH(t)ΨH dV , (F.3)

but now

ΨH = ΨS(0), (F.4)

ÂH(t) = exp (iÊt/h̄)ÂS exp (−iÊt/h̄). (F.5)

In the Heisenberg representation the wavefunction is constant in time
while the operators are time varying. The time variation is given by

ih̄ (dÂH(t)/dt) = −Ê exp (iÊt/h̄)ÂS exp (−iÊt/h̄)

+ exp (iÊt/h̄)ÂS exp (−iÊt/h̄)Ê

= −ÊÂH + ÂHÊ

= [ ÂH(t), Ê ]. (F.6)
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A third common representation lies formally midway between the
other two, and is called the interaction representation. This representa-
tion is useful if there is an interaction which weakly couples two systems
so that the total energy operator can be written

Ê = Ê0 + ÊI, (F.7)

where E0 is the energy of the two systems in the absence of any inter-
action, and EI is the relatively small interaction energy. Then

ΨI(t) = exp (iÊ0t/h̄)ΨS(t), (F.8)

ih̄ (dΨI(t)/dt) = ÊIΨI(t), (F.9)

ÂI = exp (iÊ0t/h̄)ÂS exp (−iÊ0t/h̄), (F.10)

ih̄ (dÂI/dt) = [ ÂI(t), Ê0 ]. (F.11)

The wavefunction evolves like a Schroedinger wavefunction under the
action of the interaction energy alone. On the other hand the operators
evolve like Heisenberg operators under the action of the uncoupled en-
ergies. In the absence of any interaction the interaction representation
collapses to the Heisenberg representation. The interaction represen-
tation is the appropriate choice when the interaction energy is much
smaller than energies of the non-interacting systems.

While the analysis in Chapters 12, 13 and 17 uses the Schroedinger
representation that presented in Chapter 18 uses the Heisenberg repre-
sentation. In Chapter 17 the interaction of the em field and the atom is
treated classically without operators. However in Chapter 18 the quan-
tized electric fields are the time varying operators, while the photon
states – and that includes the coherent laser-like states, the Fock states
and the thermal states – are all time independent.



Appendix: Fermi’s golden

rule G

A useful expression for evaluating rates is derived here using the for-
malism developed in Chapter 17. The transition rate is given by eqn.
17.26

γ = |c2(t)|2/t = Ω2
0 [ sin2 (∆ωt/2)/(∆ω2t) ], (G.1)

where ∆ω is the offset of the pumping laser. Ω0 is the Rabi frequency,
which we can rewrite in terms of the interaction energy W12 using eqns.
17.19 and 17.24

Ω2
0 = 4|∆W12|2/h̄2. (G.2)

This relation can be generalized to apply to any transition produced by
an interaction energy ∆W ,

Ω2
0 = 4

∣∣∣∣∫ ψ∗
f∆Wψi dV

∣∣∣∣2 /h̄2, (G.3)

where ψi and ψf are the intial and final states with energies h̄ωi and
h̄ωf respectively, and for consistency we identify ∆ω as (ωi −ωf ). Then
using eqn. G.1 the rate of the process is

γ = (4/h̄2)

∣∣∣∣∫ ψ∗
f∆Wψi dV

∣∣∣∣2 [sin2 (∆ωt/2)/(∆ω2t) ]. (G.4)

A typical measurement time, t, is sufficiently long that the term in square
brackets vanishes unless ∆ω becomes very small. We take the same limit
used in obtaining eqn. 17.34: ∆ω → 0, and t → ∞, while ∆ωt remains
very much larger than unity. This yields

sin2 (∆ωt/2)/(∆ω2t) → (π/2)δ(∆ω).

The delta function expresses the requirement here that in any transition
energy must be conserved. Then

γ = (2π/h̄2)

∣∣∣∣∫ ψ∗
f∆Wψi dV

∣∣∣∣2 δ(ωi − ωf ), (G.5)

which is known as Fermi’s golden rule for calculating rates of reactions.
In terms of state vectors this can be re-written

γ = (2π/h̄2)
∑

f

| 〈f | ∆W | i〉 |2 δ(ωi − ωf), (G.6)
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or
γ = (2π/h̄2)

∑
f

| ∆Wif |2 δ(ωi − ωf), (G.7)

where
∆Wif = 〈f | ∆W | i〉 (G.8)

is known as the matrix element for the transition. The transition may
end in a state which belongs to a distribution of states that form a
continuum in energy with Nf (ω) states of energy less than h̄ω. Then
Fermi’s golden rule becomes

γ = (2π/h̄2)

∫
| ∆Wif |2 δ(ωi − ωf ) (dNf/dωf ) dωf

= (2π/h̄2) | ∆Wif |2(ωf=ωi)
(dNf/dωf)(ωf =ωi), (G.9)

where both the matrix element Wif and the density of the final states
(dNf/dωf) are evaluated for ωf equal to ωi.



Appendix: Solutions H

Exercises

Chapter 1

(H.1) 1.06 kVm−1; 4.24 1026 W.

(H.2) The light received at the comet’s surface will be
red-shifted, and there will be a further red-shift
when the reflected light is received by the observer.
1
2

of 4.74 104 ms−1 = 2.37 104 ms−1.

(H.3) The wavelength change by a factor of 4.62 which
would give a recession velocity 0.91c. In fact the
waves have got longer because space has stretched
by this factor since the radiation left the quasar.

(H.4) (a) Period = 0.33 s, wavelength = 0.0667 m, veloc-
ity 0.2 m s−1 in the negative x direction. (b) Use
15x + 20y = kxx + kyy where kx and ky are the
components of a vector k with k = 1/λ. Period =
0.2 s, wavelength = 0.04 m, velocity = 0.02 m s−1.
The velocity is rotated by 53.1◦ from the positive
x-direction toward the positive y-direction.

(H.5) Using the pieces of data in the order given. φ = 0,
λ = 2437 m and f = 1.23 105 Hz.

(H.6) 3.33 µJ.

(H.7)

(H.8) λ = 30 cm, E = 137 Vm−1.

(H.9) λ = 12.2 cm.

(H.10) x∆n/c = 10−9, so that the length is 0.6 m.

(H.11) α is approximately 1 cm−1, and the fraction pene-
trating is 0.37.

Chapter 2

(H.1) 465 µm.

(H.2) 1.77.

(H.3) 23.9◦, 32.6◦.

(H.4) NA = 0.123.

(H.5) Any imperfections on the outer surface of the glass
thread would lead to light losses, and on a long run
of many kilometres these losses would be intolera-
ble. Any similar imperfections on the cladding are
unimportant because the radiation does not reach
its outer surface.

(H.6)

(H.7) Applying Snell’s law to each pair of surfaces crossed
in sequence gives nair sin θair = nm sin θm for the
mth layer. The final layer is air so the ray emerges
at 45◦. By the same token it would require some
sheet to have a refractive index less than air to
cause TIR, which is impossible.

Chapter 3

(H.1) The image is at +8.2 cm beyond the postive lens,
i.e. a virtual image. The magnification is +0.58 so
the image is upright.

(H.2) Using eqn 3.39 the focal length is +80 cm, while
eqn. 3.37 gives the matrix for the combination.
Equation B.5 gives the distances between the focal
planes and the front/rear lens surfaces. Equation
B.8 gives the distances between the principal planes
and the front/rear lens surfaces. The focal planes
are 30 cm in front of the negative lens and 147 cm
behind the positive lens. The first principal plane
is 50 cm to the right of the negative lens and the
second is 67 cm to the right of the positive lens.
Compare this with the format of a telephoto lens.

(H.3) Figure 3.35 shows that reflected rays at the mirror
edges. Thus the angular coverage is twice β + θ,
that is 2α + 4θ, which in the case given is ≈ 74◦.
Using eqn 3.5 v = +0.47 m, so the image is behind
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the mirror and 2.47 m from the shopkeper. The
magnification is 0.067 and so the image of the hand
is 0.67 cm across. This subtends an angle 0.3 mrad
at the shopkeeper’s eye.

(H.4) The image lies 100 cm in front of the mirror. The
image size is 1.6 cm.

(H.5) 21 cm. Arrange them with curved faces inward
which minimizes spherical aberration. A symmet-
ric arrangement also minimizes coma and distortion
so the stop is placed mid-way between the lenses.

(H.6) A focal length +19.49 cm lens from BK7 glass and
focal length −34.37 cm lens from DF glass. Place
the lens a distance apart equal to half the sum of
their focal lengths.

(H.7) The distance separating object and image, (v −u),
can be rewritten using the thin lens equation in
terms of u and f . Then setting to zero the differ-
ential with respect to u gives the minimum. There
are two solutions, one being u = 0. Why can you
reject this one?

(H.8) Substitute u = −f + x1 and v = f + x2 in the thin
lens equation. This result can be useful in find-
ing the principal planes of a lens system. The fo-
cal points can easily be located using parallel light.
Then this equation can be used to determine the
focal length from measurements of x1 and x2 for a
few object and image points.

(H.9) −24.7 cm.

(H.10) An equation analogous to eqn. 3.37 results with
F1 and F2 being the powers of the two surfaces,
and F being the power of the lens. Substitut-
ing for the powers of the surfaces gives: 1/f =
(n−1)(1/r1−1/r2)+T (n−1)2/(nr1r2). Note that
the reduced thickness t = T/n. Using eqn. B.8 the
distances from the lens’ surfaces to the principal
planes are TF2/(nF ) and −TF1/(nF ).

(H.11) The proof in Section 3.4 can be repeated to give

1/v − 1/u =
n − nw

nw
(1/r1 − 1/r2).

Thus the focal length is multiplied by (n −
nw)/[nw(n− 1)] which in this case is 0.408, so that
the focal length in water is 8.16 cm.

Chapter 4

(H.1) The image of something of angular size α formed
by the objective is foα and this has angular size
foα/fe at the eyelens. The angular magnification is
8× and this is also the laser beam expansion factor.

The image of the objective formed by the eyelens is
virtual: 5.5 mm diameter and 1.75 cm from the eye-
lens toward the objective. Evidently the eye cannot
be placed at this point so there is a mismatch.
The eye’s image formed by the two lenses is
176.1 cm behind the objective and 40mm diame-
ter. The eyelens image formed by the objective
is 112 cm behind the objective and 80 mm across.
Thus the eye pupil is the aperture stop because seen
from the object space in front of the objective its
image subtends an angle smaller than the objective
or the image of the eye lens.

(H.2) The objective is ×16 and the eyepiece ×10. The
eyering is 28.7 mm from the eyelens and has diam-
eter 0.30 mm. The small diameter of a single lens
objective produces an eyering much smaller than
the eye pupil; compound objectives produce a bet-
ter match. The angular field of view is the eye lens’
diameter divided by the lens separation, 15/195, or
4.6◦. Projected onto the slide surface this defines a
circle of diameter 150/195 or 0.77 mm.

(H.3) A lens to image ∞ at −3m is required: f = −3m.

(H.4) The lens needed will form an image at −1m of an
object at −25 cm: f = +33.3 cm.

(H.5) The mirrors are separated at their poles by a dis-
tance equal to the focal length of either. The upper
one produces an image of the coin at infinity. The
lower mirror images this at its focal point which is
precisely in the aperture of the upper mirror.

(H.6) The first lens is placed so that the object is at its
focus and the image is at infinity. The second lens
images this at its focal plane inverted and at full
size. Such a relay lens combination can be used
to move an image longitudinally as required in a
periscope.

(H.7) 25.7 m.

(H.8) From eqn 3.39 the focal length is 3f/4. Either by
imaging an object at infinity or by using eqn. B.5
the focal plane can be found to be a distance f/4
beyond the second lens. This puts the second prin-
cipal plane −f/2 from the second lens, and +f/6
from the first lens. The first principal plane is +f/2
from the first lens and −f/6 from the second. Thus
the first principal plane is to the right of the second
principal plane. This is worth sketching in order
to appreciate how ray tracing works in such cases.
The image of the second lens formed by the first
is 2f from the first lens, that is on the far side of
the second lens from the first, and magnified 3×.
Evidently this would subtend a larger angle at the
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objective than the first lens in the eyepiece, so the
first lens is the field stop.

(H.9) In the figure referred to, the angle of incidence, α,
at the surface of the spherical lens of the extreme
ray is given by sin α =PC1/R where R is the radius
of this lens. Thus sin α equals 1/(the refractive in-
dex of the sphere). The angle of refraction is thus
90◦. Then the semi-angle of the cone of rays is
α = sin−1 (1/1.4) or 45.6◦.

(H.10) Using eqn. 4.24 the widest angle which a ray at the
optical axis makes with this axis in a GRIN lens is
given by

n(0) cos α(0) = n(R) = n(0)
√

(1 − g2R2).

Thus the numerical aperture is

NA = n(0) sin α(0) = n(0)gR.

Chapter 5

(H.1) 9.5 mm.

(H.2) The angle subtended by the source aperture at the
slits, θs, determines the lateral coherence length
dc = λ/θs. With the given aperture and wave-
length: θs < 6.33 10−3 and the corresponding limit
on the slit width is w = θsf < 1.9 mm.

(H.3) The coherence length, lc is that of the wavepackets.
Then the coherence time, τc = lc/c = 3.3 10−9 s. In
turn the frequency spread ∆ν = 1/τc = 0.3 GHz.
This is a fraction 5 10−7 of the frequency. Note
that ∆λ/λ = −∆ν/ν so this is also the wavelength
fraction.

(H.4) Between consecutive fringes the path has changed
by λ and the gap thickness has changed by
λ/2 =366.5 nm. Thus the angle required α =
366.5 10−9/1.5 10−2 = 2.4 10−5 rad.

(H.5) The angular frequency of the Earth’s rotation is
Ω = 2π/86400 = 7.27 10−5 rad s−1. Then using
eqn. 5.40 ∆f = 27.27 10−5 cos 40◦/6.33 10−7 =
176 Hz.

(H.6) The coherence time is τc = 10−14 s so the coher-
ence length is 3 µm. The frequency spread is ∆f =
1/τc = 1014 Hz. This compares to a mean fre-
quency of c/6.33 10−7 = 4.7 1014 Hz. Consequently
the wavelength spread is ∆λ = λ∆f/f = 133 nm.

(H.7) The change in the optical path length through the
arm filled with gas is (n−1)L so that the difference
between the two paths changes by this length also.
This is (n − 1)L/λ wavelengths so the number of
fringes passing the centre of the field will be the
same.

(H.8) At a 2 cm separation of what are effectively
Young’s slits the angular fringe separation is λ/d =
2.5 10−5 rad. The lens produces a fringe separation
of 2.5 10−6 m. These need to be viewed with a low
power microscope.

(H.9) The finesse is 61.2 and the free spectral range ∆λfsr

is 0.0417 nm. In order to exploit the finesse the sur-
faces need to be flat to λ/F = 10nm. The chro-
matic resolving power is 7.34 105. The etendue is
the product of the pinhole area and the solid an-
gle of light arriving. The angular radius of central
fringe, θ, is obtained using

2nd cos θ = 2nd(1 − θ2/2) = m(λ − ∆λ)

and

2nd = mλ

so that θ =
√

∆λ/λ. This requires a pinhole diam-
eter 2fθ = 117 µm. The area of this pinhole is Apin

= 1.07 10−8 m2. The area of the lens which is illu-
minated is just the clear area of the etalon which is
of diameter 2.5 cm. The radius subtends an angle
at the pinhole of θill = tan−1 (1.25/5) = 14◦. Thus
the solid angle subtended by the area of the lens il-
luminated is Ωpin = 2π(1 − cos θill) = 0.188 sterad.
Hence the etendue is ApinΩpin = 202 µm2 sterad.

(H.10) 2∆f1/2 = ∆ffsr/F .

Chapter 6

(H.1) The zeroes occur when the phase delay between
slits is π/2, π and 3π/2; the subsidiary maxima at
2π/3 and 4π/3.

(H.2) CRP is 40 000. Blaze angle is 30◦. The nth prin-
cipal maximum for wavelength λ/n will coincide
with the first principal maximum for wavelength λ.
Hence to exclude these the free spectral range is
around 250 nm.

(H.3) 1.3 arcsec = 6.30 µrad, and the diameter required
is at least 9.7 cm.

(H.4) The velocity of the Earth’s surface under the
Moon’s shadow is, at the equator, 466 m s−1. Hence
the fringe frequency is 466/12 = 39 Hz. Taking
into account the Moon’s motion round the Earth
changes this frequency by 3%.

(H.5) The required CRP is λ/∆λ = 589.3/0.597 = 987.
To achieve this a grating of at least 5mm width
is required. The maxima are located at θ =
λ/(line spacing) = 0.12 rad = 6.8◦. Their angular
separation is given by cos θ∆θ = ∆λ/(line spacing)
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= 1.19 10−4 rad. Since the angles are small this
translates at the focal plane to f∆θ = 59 µm. The
angular resolution of the lens must be much less
than ∆θ, and using eqn. 6.19 shows the diame-
ter D � 1.22λ/∆θ = 6mm, so the f/# required
(� 0.01) is easily obtained.

(H.6) The zeroes of the single slit pattern are at an-
gles ±λ/d and the principal maxima are at angles
±nλ/a where n is integral. Thus the last maximum
inside will be the mth for which m < a/d. Hence
there are a/d−1 on either side plus the central one,
in all 2a/d − 1.

(H.7) Optical path lengths increase by a factor equal to
the refractive index of µ. Hence phase differences
increase by the same factor. Consequently the an-
gular positions of the Fraunhofer single slit pat-
tern zeroes previously given by eqn. 6.6 are now
given by µd sin θ = nλ, with λ being the wave-
length in free space as before. Thus the angular
pattern shrinks by a factor around µ, or 1.33 for
water. Evidently this shrinkage will occur for mul-
tislit and for Fresnel diffraction patterns also.

(H.8) The phase difference between successive slits
changes from that given in 6.11 to β = ka sin θ +
π/ cos θ. Then close to the forward direction, where
cos θ is close to unity eqn. 6.14 for principal max-
ima yields a sin θ = (p − 1/2)λ, so we see that the
maxima have been displaced by half their angular
spacing, and this includes the central peak. Away
from the forward direction the displacement will
gradually increase. Evidently the effect is similar
to that of blazing the grating, only in this case the
multislit pattern moves relative to the single slit
envelope.

(H.9) The phase difference between successive zones is
converted from π to 2π so that all are in phase.
Thus the intensity is increased by a factor 4.

(H.10) Substituting in eqn. 6.26 yields sin α = 0.108
and α = 6.2◦. The potential CRP is 60 000.
The angular width of the maxima is given by
cos α∆α/(sin θ − sin α) = 1/CRP. Whence ∆α =
1.26 10−5 rad and the slit width required to match
this is 12.6 µm. Using the expression for etendue
eqn. 6.39 gives T = 0.0016 mm2 sterad. This re-
sult will be of interest when examining the relative
performance of grating and Fourier transform in-
terferometers in the following chapter.

(H.11) Using the notation of Section 6.15 the area of the
mode at the waist is πw2

0 and the solid angle spread
there is πθ2. The product is the etendue, and using
eqn. 6.63 this comes to λ2.

(H.12) First put πw2
0/zλ = A. Then using eqns 6.64 and

6.72 we get

λR/πw2 = λz(1 + A2)/ [ πw2
0(1 + A−2) ] = A,

as required. Replacing πw2
0/zλ by λR/πw2 con-

verts eqns. 6.64 and 6.72 to eqns. 6.73 and 6.74.

Chapter 7

(H.1) f(x) =
∑

(−λ/mπ) sin (2πx/λ) cos (mπ).

(H.2) The count is λmean/∆λ = 987.

(H.3) (a) In the integral∫ ∞

−∞

f(x′)g(x− x′) dx′

make the substitution y = x−x′. Alternatively you
can use the convolution theorem. (b) The corre-
sponding square pulse will be negative rather than
positive and three times taller. One way to picture
a convolution is to imagine one function, f , to be
a sequence of contiguous delta functions, each with
a multiplier equal to the value of f at its location,
f(xm). When the second function g is convolved
with the delta function at xm it is displaced to lie
centred at xm and is scaled up by the value of the
first function there.

(H.4) The microwave wavelength corresponding to a
frequency of 50MHz in lithium niobate is
1.32 10−4 m. We can use eqn. 7.67 for the
angular spread of the microwave beam, giv-
ing ∆θB = (6.32 10−7)(2 107)/2(6.6 103), that
is 0.958 10−3 rad. The width of the laser
beam can be obtained from eqn. 7.68 w =
(6.32 10−7)100/2(0.958 10−3) or 3.3 cm.

(H.5) 2.44 GHz frequency and 0.00337 nm in wavelength.

(H.6) The spacing across the surface is 632.8 nm/(2 sin 30◦)
= 0.6328 µm, or 1580 lines/mm.

(H.7) If the required f/# is fn then 1.22 λfn = 10−5 m,
whence fn = 12.9.

(H.8) (a) The complex electric field is E(t) =
E(0) exp (−γt/2) exp (−iωt). Thus

g(1)(τ ) =

∫
E∗(t)E(t + τ ) dt/

∫
E∗(t)E(t) dt

=

∫
exp (−γ(t + τ/2)) exp (−iωτ ) dt

/

∫
exp (−γt) dt

= exp (−iωτ − γτ/2).
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This result is independent of the sign of τ , so that
g(1)(τ ) = exp (−iωτ − γ|τ |/2). (b) The visibility is
exp (−γx/2c) where x is the path difference.

(H.9) (a) The complex electric field is E(t) =
E(0) exp (−σ2

ωt2) exp (iω0t), so that

g(1)(τ ) =

∫
exp (iω0τ ) exp (−σ2

ωt2)

exp (−σ2
ω(t + τ )2)dt/

∫
exp (−2σ2

ωt2) dt

= exp (iω0τ − σ2
ωτ 2/2)

×
∫

exp (−σ2
ω(
√

2t + τ/
√

(2))2) dt

/

∫
exp (−2σ2

ωt2) dt

= exp (−iωτ − σ2
ωτ 2/2).

(b) The visibility is exp (−σ2
ωτ 2/2).

(H.10) The pulsed electric field is E(t) = s(t) p(t), so
the Fourier transform is the convolution e(ω) =
FT [s] ⊗ FT [p] where s is the sinusoidal waveform
and p the pulse. Thus

FT [s] =

∫
exp (ω0t) exp (−iωt) dt

= δ(ω − ω0).

The repetitive pulse train has a similar expansion
to that given in eqn. 7.4

p(t) = (2/π) [ cos (ωpt) − cos (3ωpt)/3 + ... ].

Its Fourier transform is

FT [p] = (1/π) [ δ(ω − ωp) + δ(ω + ωp)

−(1/3)(δ(ω − 3ωp) + δ(ω + 3ωp)) + ...].

Now for example the convolution of δ(ω−ω0) with
δ(ω − ωp) gives∫

δ(ω′ − ω)δ(ω − ωp − ω′) dω′

= δ(ω − ωp − ω0). (H.1)

Then the electric field as a function of angular fre-
quency is

e(ω) =

(1/π) [ δ(ω − ω0 − ωp) + δ(ω − ω0 + ωp) ]

−(1/3π) [ δ(ω − ω0 − 3ωp) + δ(ω − ω0 + 3ωp) ]

+....

Thus the structure is a line spectrum which con-
tains lines spaced at equal intervals 2ωp from ω =
ω0 + ωp.

(H.11) For the Lorentzian P (ω0) = 4/πγ, or 1.27/γ. By
inspection the FWHM, ∆ω, is γ. In the case of
the Gaussian P (ω0) = 1/(

√
2πσω), or 1/2.51σω .

At the half height point, ω + ∆ω/2, we have

exp (−∆ω2/8σ2
ω) = 1/2, thus ∆ω =

√
(8 ln 2)σω,

or 2.35σω . Then P (ω0) is approximately 1/∆ω in
both cases.

(H.12) The first differential is

df

dx
=

d

dx

∫
F (k) exp (−ikx) dk/(2π)

=

∫
(−ik)F (k) exp (−ikx) dk/(2π).

Thus the Fourier transform of df/dx is −ikF (k).
Similarly the Fourier transform of d2f/dx2 is
−k2F (k).

Chapter 8

(H.1) The apparent luminosity is given by eqn. 8.5 � =
2.52 10−8 10−16/2.5 which gives 0.577 10−8 W m−2.
Now the power received by the telescope is �πd2/4
where d is the primary mirror diameter, which gives
2.61 10−8 W. Over 1ms the charge accumulated is
26.1 pC.

(H.2) When the Fried prameter is 20 cm the root mean
square wavefront distortion over 20 cm is 1 rad.
If this is all tip/tilt the rms waveform tilt is
λ/6 or 100 nm in 20 cm, making an angle of
5 10−7 rad. Consequently the separation fluctuates
by 30 (5 10−7) = 15 µm in the image plane.

(H.3) If the baseline is aligned parallel to the line join-
ing the stars the separation B must be such that
λ/B < 0.003 arcsec, that is 1.5 10−8 rad. Thus
B > 35m. If B is at an angle θ to this direction the
resolution drops by a factor cos θ. When the base-
line is perpendicular to the line joining the stars the
resolution is simply that of either telescope alone.

(H.4) The complex visibility becomes∫ M

−M

∫ L

−L

I(�,m) exp ( [ i(lu + mv) ] )d�dm.

Taking one integral∫ L

−L

I(�,m) exp (ilu)d�

=

[∫ 0

−L

+

∫ L

0

]
I(�,m) exp (ilu)d�.
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Putting p = −� in the first integral gives

−
∫ 0

L

I(−p,m) exp (−ipu)dp

=

∫ L

0

I(p,m) exp (−ipu)dp,

because I(p,m) is symmetric in both arguments.
Thus the integral over the range −L to +L is∫ L

0

I(�,m) cos (i�u)d�,

which is real. By extension the visibility is real.

(H.5) Using eqn. 8.36, and taking a measurement time
of 10ms, the power required is (4 10−19/10−21)2/10
watts or 16 kW. The time for one pass to and fro
in a cavity is 26.7 µs, so with a finesse of 500 the
storage time roughly 13 ms.

(H.6) The total source intensity is [ δ(� − θ) + δ(� +
θ) ] δ(m)/2 where the line joining the two stars is
taken as the baseline axis. Inserting this in the
expression for visibility, eqn. 8.20, gives∫

[ δ(� − θ) + δ(� + θ) ] [exp (i�u)/2] d�

= [exp (iθu) + exp (−iθu)]/2 = cos (θu).

This gives unity when the stars merge so that θ
is zero; which confirms the choice of the constant
factor, 0.5, in the source intensity.

(H.7) On the sky the pixel angular size is p/f . This
should equal half the angular resolution, that is
λ/2D. Thus f/D = 2p/λ. With oversampling
there is a possibility of detecting spurious finer spa-
tial detail than the image actually contains. See
Section 7.3.2.

(H.8) Use figure 8.2. The distance the secondary’s first
focus lies behind its pole is a(e− 1) = 0.8m. Thus
the mirrors lie 8− 0.8 = 7.2 m apart. The distance
the second focus of the secondary lies in front of
its pole is a(e + 1) = 8.8 m so that the final im-
age lies 8.8 − 7.2 = 1.6 m behind the primary. The
primary image size for a source of angular size θ
is 8θ m, and the magnification of the secondary is
(e + 1)/(e − 1) = 11, Thus the final image size
is 88θ m. There are 206 265 arcsec per rad, so the
plate scale is 88/206 265 = 4.32 10−4 m/arcsec, that
is 432 µm/arcsec.

(H.9) The f/# of the first telescope is 2.08. Using eqn.
8.2 gives its comatic flare to be (θ/17.4) arcsec
at an angle θ off axis. Thus the field of view

with less than 0.5 arcsec distortion has a semian-
gle 8.7 arcsec. In the case of the HST eqn. 8.4
gives a field of view of 12 arcmin which is roughly
100 times larger.

(H.10) Eqn. 6.64 relates the width, w, at a distance z from
the waist, to the width at the waist, w0. In the case
of the confocal Fabry–Perot cavity z = L/2, so we
have

w2 = w2
0 + λ2L2/(4π2w2

0).

The first term is smaller the smaller w0 is made,
but the second, diffractive term grows as w0 is
made smaller. To get the minimum we calculate
∂w2/∂w2

0 and set it to zero.

∂w2/∂w2
0 = 1 − λ2L2/(4π2w4

0),

which is zero when w2
0 = λL/(2π). Substituting

this value back into the original expression for w2

gives w2 = λL/π. In the example given w0 is
1.78 cm and the width at the mirrors is 2.52 cm.
In practice the mirrors have to be made several
times larger in radius in order to capture the tails
of the Gaussian distribution. If the mirrors were
2.52 cm in radius the loss of light spilling over round
a mirror’s edge would be of order 1% per reflection
with perfect alignment. However the stored radi-
ation undergoes a very large number of reflections
so that a loss even at this low level per reflection is
prohibitive.

Chapter 9

(H.1) 1.28 108m s−1; 160 Ω; 269 nm.

(H.2) Equations 9.55 and 9.56 give the non-zero electric
and magnetic field components: Eθ and Bφ. At 90◦

these are 394 Vm−1 and 1.31 µT respectively. The
energy flow is instantaneously EθBφ cos2 (ωt)/µ0

and time averaging gives 206 Wm−2. At 45◦ the
fields are 279 Vm−1 and 0.93 µT, while the energy
flow is 1.73 GW. Along the dipole axis the fields
vanish and hence the energy flow is zero.

(H.3) The critical angle is 41.81◦. Using eqn. 9.67 gives
for the case of 42◦ incidence kt = i 0.854 µm−1 so
that the intensity falls by a factor e in a distance
perpendicular to the surface of 0.585 µm. At 41.82◦

kt = i 0.194 µm−1 and the penetration distance is
2.57 µm. The penetration depth remains small even
at an angle only a fraction of a degree above the
critical angle.

(H.4) Recall that tan θB = n2/n1, so that tan θB =
n1/n2. This makes tan θB = cot θB, and the re-
quired result follows.
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(H.5) Fresnel’s equation for the s-polarization transmis-
sion coefficient is

ts = 2n1 cos θi/(n1 cos θi + n2 cos θt)

so the reverse path requires that the refractive in-
dices are exchanged and the angles exchanged in
the above equation giving

t′s = 2n2 cos θt/(n2 cos θt + n1 cos θi).

The same exchanges can be used to obtain r′
s from

rs. Then Stokes’ equations follow.

(H.6) rs = −0.240, ts = 0.760, rp = 0.159 and tp = 0.772.
These values can be checked against figure 9.12.

(H.7) According to Stokes’ relation r′ = −r so the re-
flectances at the air/glass and the glass/air inter-
face are the same. Thus the fraction travelling
through the stack is (1 − R)2n.

(H.8) The reflection law is

ki ∧ n = −kr ∧ n,

and Snell’s law is

ki ∧ n = +kt ∧ n.

Notice that the vector forms are compact, and are
more complete because they also contain the re-
quirement that these vectors are coplanar.

(H.9) Using eqn. 9.102 and squaring the result gives
R1 = (1.70292 − 1.5)/(1.70292 + 1.5) = 0.10, also
R4 = (1.70298 − 1.5)/(1.70298 +1.5) = 0.92. Using
eqn. 5.55 the finesse for a cavity with mirrors on
glass made of four double layers is π

√
R4/(1−R4)

or 37.0.

(H.10) Using the expression for the critical angle
cos (90◦ − θc) = 0.9999. This gives (90◦ − θc) =
48.6 arcmin. Thus TIR will be possible at angles
up to 48.6 arcmin from grazing incidence.

(H.11) Fresnel’s laws only apply to a simple interface be-
tween two dielectrics with different refractive in-
dices n1 and n2. The relationship r′ = r applies
when the surface is a symmetric thin layer of one
or more materials where the initial and final re-
fractive indices are the same. If Fresnel’s laws are
applied in the limit that the two refractive indices
become the same, then both r and r′ go to zero, in
which case indeed r′ = ±r.

Chapter 10

(H.1) (a)

R(45◦)HR(−45◦) =
1

2

(
1 1
1 1

)
.

The polarizer changes the overall amplitude by
a factor 1/

√
2 and this lies at 45◦ to the axes.

Thus the amplitude along each axis is 1/2. (b)(
1/t 0
0 1/t

)
.

(H.2) The magnetic field is

B = [E0/(
√

2c)][ey cos (ωt − kz)− ex sin (ωt − kz).

Thus E ∧ H = [E2
0/(2cµ0)]ez.

(H.3) The delay is (2π/λ)(d1−d2)(ne−no), where d1 and
d2 are the thicknesses of the two prisms crossed by
the light beam. The Babinet compensator permits
the user to change the phase delay between the or-
thogonally polarized components of a wave by mov-
ing the compensator transverse to the optical path.

(H.4) At the prism interface the incident extraordinary
ray goes from material with refractive index 1.486
to material in which it is an ordinary ray for which
the refractive index is 1.658. Snell’s law gives the
angle of refraction as 39.33◦. This ray is incident
on the exit surface at an angle (45◦ − 39.33◦) or
5.67◦. Snell’s law gives the angle of refraction in
air as 9.43◦. Following the other ray gives its angle
in air to be 10.57◦. Thus the angle between the
rays on exit is 20◦.

(H.5) The angle between the polarization axes is 2ωt so
that the intensity is by Malus’s law I0 cos2 (2ωt)
or (I0/2)(cos (4ωt) + 1). The rotation angular fre-
quency of the polarization is identical to that of the
second polarizer ω.

(H.6) The frequency range is limited to well below the in-
verse of the transit time, c/nL, where n is the refac-
tive index of LNO and L is the electrode length. In
this case this cut-off frequency is 13.6 GHz. If the
voltage swing about the bias point v is not large
compared to Vπ, then the optical response is pro-
portional to sin (πv/Vπ) ≈ πv/Vπ−(πv/Vπ)3/3+...,
which approximates to the desired linear response.
When v is 0.1Vπ then the distortion from a linear
response is 0.3%.

(H.7) Using eqn. 10.53 the requirement is that B =
π/4VL, where V is the Verdet constant and L
the length. With the values given the field is
0.43 T. The Verdet constant is approximately in-
versely proportional to the wavelength so that
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at 533 nm the rotation would not be 45◦ but
45 (633/533) = 53.4◦. Assuming that the reflected
beam has the same polarization as the second po-
larizer, the fraction of light leaking through would
be sin2 (53.4◦ − 45◦) = 0.02.

(H.8) The wavelengths are 589/1.658 = 355 nm and
589/1.486 = 396 nm for the ordinary and extraordi-
nary waves. The transmission coefficients are given
by eqn. 9.80. For ordinary waves 0.94 and for ex-
traordinary 0.96.

(H.9) The circularly polarized part is Ea[ex cos χ +
ey sin χ and the plane polarized part is (Eb −
Ea)ey sin χ, where χ is (ωt − kz). In Jones vectors
this is

[−i(Eb − Ea)

(
0
1

)
+ Ea

(
1
−i

)
] exp (iχ).

(H.10)

(H.11) The extraordinary wave terms in eqn. 10.20 are

[n2
o − n2 cos2 θ]Ex + n2 cos θ sin θEz = 0,

and

n2 cos θ sin θEx + [n2
e − n2 sin2 θ]Ez = 0.

These can only be consistent if

[n2
o −n2 cos2 θ][n2

e −n2 sin2 θ]−n4 cos2 θ sin2 θ = 0,

whence the required result follows.

(H.12)

Chapter 11

(H.1) Differentiating eqn. 11.46 gives dω/dk = kc2/ω,
whence the result follows.

(H.2) Using eqn. 11.19 ωp is 5.64 107 rad s−1 and fp is
8.98 MHz. Substituting for ω and ωp in eqn. 11.46
gives k = 9.223 10−2 m−1. Then vp = ω/k gives
a phase velocity of 6.81 108 ms−1. Using the result
proved in the previous question vg = c2/vp, the
group velocity is 1.32 108 ms−1.

(H.3) A distance of 1 km is 333.3 times 3m, so the loss
factor in 1 km is exp (−333.3) or 10−144.6. This is
−1446 dBkm−1.

(H.4) In normal usage on paper a red ink is absorbed by
the fibres in paper. Light incident on the paper
enters the open structure formed by the fibres and
is reflected many times before re-emerging. Any
wavelengths that are absorbed strongly by the dye
in the ink will be missing from the spectrum of

the re-emerging light. Thus red ink absorbs the
non-red, that is the green part of the spectrum.
Hence a solid layer of such dried ink will therefore
reflect green light strongly, while the small fraction
of green light penetrating the ink will be absorbed
in a short distance.

(H.5)

vg = dω/dk = d(kvp)/dk

= vp + k(dvp/dk).

= vp + k(dvp/dλ)(dλ/dk)

Now k = 2π/λ, so that

dk/k = −dλ/λ.

Thus

vg = vp − λ(dvp/dλ).

(H.6) Using eqn. 11.6 β is 7.81 10−6 m−1. Thus in 200 km
the intensity is reduced by a factor exp (−1.562) or
0.210.

(H.7) Rewriting eqn. 11.20 in terms of wavelengths, drop-
ping the damping term and rewriting the resonant
wavelength as λi gives

n2 = 1 + (1/λ2
p)/[(1/λ2

i ) − (1/λ2)]

= 1 + (λλi/λp)2/(λ2 − λ2
i ). (H.2)

It is seen that empirical formula applies to narrow
lines, that is with weak damping, and that A is
(λi/λp)2, while λi is resonant wavelength.

(H.8) Using eqn. 11.33 the reflectance is

R = rr∗ = [(nr − 1)2 + n2
i ]/[(nr + 1)2 + n2

i ].

This gives a reflectance of 0.74.

(H.9)

(H.10) The dispersion relation of a surface plasma wave
in this case would have a slope at the origin of
c/
√

εp. This is to be compared to the slope of
the dispersion relation for light incident in the
prism, ω/k = c/(

√
εp sin θp). Evidently the latter

is steeper so that the two curves never cross away
from the origin, and excitation of such a SPW is
not possible.

(H.11) From the definition of vg in eqn. 11.41

1/vg = dk/dω = d(nω/c)/dω

= [ (dn(ω)/dω)ω + n(ω)]/c

= 1/vp + [ ω/c ] [ dn(ω)/dω ].
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Chapter 12

(H.1) Using the Einstein relation eqn. 12.12 the cut-off
frequency f0 is 1.53 1015 Hz, the wavelength is c/f0

= 196 nm. This excludes over 99% of the solar spec-
trum.

(H.2) The wavelength shift is given by eqn. 12.17 in
which the constant factor has a value 0.0024 nm.
Thus for scattering through 17◦, ∆λ = 0.0024(1 −
cos 17◦), which gives 1.05 10−4 nm. The left hand
peaks are due to scattering off the nucleus. This
has a mass, M , several thousand times that of the
electron so that the constant h/Mc is correspond-
ingly several thousand times smaller. The resulting
wavelength shift was undetectable in Compton’s
experiment.

(H.3) In the case of the photon λ = c/f = ch/E, where
E is the (total) energy. This gives 1.26 µm. In the
case of the electron we could proceed the same way
but need to recall that the total energy is the kinetic
plus the rest mass energy, the latter being 511 keV.
Then instead of c we must use the electron veloc-
ity. It is of course easier to obtain the electron’s
momentum,

√
2mKE, where KE is its kinetic en-

ergy, and then use the de Broglie relation. With
the electron mass of 9.11 10−31 kg this gives a mo-
mentum p = 5.40 10−25 kgms−1, and λ = h/p =
1.23 10−9 m.

(H.4) Using the Boltzmann relation eqn. 12.36
the relative number of atoms in the first ex-
cited state with binding energy 3.39 eV di-
vided by the number in the ground state
with binding energy 13.61 eV at 100 000 K is
exp (10.22)(1.602 10−19)/(105 × 1.381 10−23) or
0.305. At 1000 K the fraction is negligible. At
100 000 K both Balmer and Lyman absorption lines
would be seen, but at 1000 K only the Lyman series,
because so few atoms are in an excited state.

(H.5) Using equation eqn. 12.42 the natural line width
∆E = h̄/(2∆t), where ∆t is the time available for
the measurement. Combining the effect of the life-
times, and expressing h̄ as 6.582 10−16 eV s gives

∆E = (h̄/2)(1/∆tparent + 1/∆tdaughter)

= (6.582 10−16/2) (0.5833 10−8) = 1.92 10−8 eV.

Then ∆f = 4.64 MHz.

(H.6) Using Wien’s law eqn. 12.8 gives 483 nm. The
irradiance is given by Stefan’s law eqn. 12.9
7.34 107 Wm−2. The peak wavelength at room
temperature is 9.66 µm in the infrared, and

1.054 mm for the CBR, which is in the microwave
region at 284 GHz.

(H.7) In the Balmer series the n = 3 to n = 2 level transi-
tion has the longest wavelength and lowest energy,
while the n = ∞ to n = 2 level transition gives the
shortest wavelength and highest energy. Using eqn.
12.22 the wavelengths are 656.5 nm and 364.7 nm.
For the Paschen series the transitions are to the
n = 3 level and give 1876 and 821 nm. For the
Brackett series the wavelengths are 4052 nm and
1459 nm.

(H.8) The reduced mass of the electron in positronium
is m2/(m + m) or half the electron mass. Thus
the Rydberg constant for positronium Rp = R∞/2.
The wavelengths are thus twice those of the hydro-
gen spectrum and the Lyman α-line has wavelength
243 nm.

(H.9) The slopes give close to 6.57 10−34 Js which is the
value that Millikan found.

(H.10) The angular size of the lens seen from the image
plane is D/f where D is the lens diameter and f its
focal length. The ratio is precisely 1/[f/#]. The
momentum is h/λ so that the uncertainty in the
transverse momentum is ∆py = h/[λf/#]. Ap-
plying the uncertainty principle the resolution is at
best ∆py = h/∆y = λ[f/#]. This can be compared
to eqn. 4.19.

(H.11) The longitudinal momentum spread is ∆pz =
h∆λ/λ2. The lateral spreads are ∆px = ∆py =
(h/λ)∆θ. Thus the product of the three uncer-
tainties in the momentum components is X =
h3∆λ10−4/λ4. Consequently the product of the
three spatial uncertainties is greater than or equal
to h3/X = 104λ4/∆λ which is 6.25 106 µm3. This
does not tell how wide or long the beam is, but
simply the size of the coherence volume.

(H.12) Suppose the light is absorbed by atoms or mole-
cues in their ground states, then after absorbing
light they are in some excited state with excitation
energy equal to the photon energy. If the excited
state prefers to decay into a state which is also an
excited state the energy of the photon emitted in
this step is less than the energy of the incident pho-
ton. This will be true for any further decays that
end up at the ground state. All the wavelengths
will therefore be longer than that of the incident
light.

(H.13) Let the amplitude of the ordinary and extraordi-
nary polarized light at CCD A from slit a be a and
b exp (iα) respectively, while the corresponding am-
plitudes from slit b are b exp (iγ) and a exp i(γ + α)
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respectively. Here α is the phase difference between
the ordinary and extraordinary light after passing
through the Wollaston prism, while γ is the phase
lag due to the path difference from the two slits to
the image point for the ordinary polarization. The
intensity is thus

I = (a + b exp (iγ))(a + b exp (−iγ))

+[ b exp (iα) + a exp i(α + γ) ]

[ b exp (−iα) + a exp [−i(α + γ)] ]

= 2 [ a2 + b2 + 2ab cos γ ].

In the example a2 = 0.9 and b2 = 0.1 so that
I = 2(1 + 0.6 cos γ), where γ varies across the im-
age. The visibility is (Imax − Imin)/(Imax + Imin)
giving 0.6.

(H.14) Using Wien’s law the temperature at decoupling
was 2.9 10−3/λmax which is 2.9 10−3Ephoton/hc.
This gives 3500 K. Comparing the peak wave-
lengths the universe has expanded by a factor
3500/2.75 or around 1270.

Chapter 13

(H.1) At 3000 K, and using the value 8.6174 10−5 eVK−1

for the Boltzmann constant gives kT = 0.259 eV.
Then using the eqns. 13.79, 13.80 and 13.81 gives
for the respective cases gives

〈nphoton〉 = 1/[exp (0.4/0.259) − 1] = 0.27,

〈nelectron〉 = 1/[exp (0.4/0.259) + 1] = 0.18,

〈nclassical〉 = exp (−0.4/0.259) = 0.21.

(H.3)

(H.2) At 3K, and using the value 8.6174 10−5 eVK−1 for
the Boltzmann constant gives kT = 2.59 10−4 eV.
Then eqns. 13.79, 13.80 and 13.81 give almost iden-
tical tiny values: exp (−1540).

(H.3) Let {φi} be the set of eigenfunctions of these states
and let Â be the operator. Then

Aii = 〈φi|Â|φi〉 = ai,

Aij = 〈φi|Â|φj〉 = aj〈φi|φj〉 = 0,

where all the ai are real. Thus for all i, j A∗
ij = Aji

so that Â is hermitean.

(H.4) For the momenta

[px, py]ψ = −h̄2

[
∂2

∂x∂y
− ∂2

∂y∂x

]
ψ.

Now the partial differentials act only on the vari-
able specified treating the other as a constant, so

the order of differentiation is unimportant. Thus
the commutator vanishes. In the case of the coor-
dinates neither is an operator acting on the other
so their commutator vanishes. Finally

[x, py]ψ = −ih̄{x(∂/∂y)ψ − (∂/∂y)(xψ)}
= −ih̄{x(∂/∂y)ψ − x(∂/∂y)ψ} = 0.

(H.5)

(H.6) The photon energy is 12.1 eV, and its momentum is
12.1 eV/c. The atom will have a momentum equal
and oppositely directed. Its mass is 1.67 10−27 kg
or 938 MeV/c2. Thus its velocity is 1.29 10−8c or
3.87 m s−1. Its kinetic energy is 1.25 10−26 J or
7.81 10−8 eV. This is a tiny fraction of the pho-
ton’s energy, but must come from the excess en-
ergy in the excited state. In calculating the decay
kinematics one should apply the laws of conserva-
tion of energy and momentum incuding both the
photon and recoil atom. This clearly depresses the
energy of the photon slightly below the energy dif-
ference between the excited state and ground state.
When a photon is absorbed it has to supply both
the energy difference between the ground and ex-
cited state and the kinetic energy of the atomic
recoil. It looks as though an emitted photon is not
energetic enough to cause the upward transition!
In practice the energy uncertainty in the excited
state is enough to mask the tiny energy deficit.

(H.7) The angular momentum vector has length
√

12h̄
and its component is 3h̄. Thus the angle is
cos−1 (3/

√
12) = 0.866, that is 30◦.

(H.8) The angular distribution is

I ∝ |Y1,−1(θ, φ)|2 + |Y1,0(θ, φ)|2 + |Y1,+1(θ, φ)|2

= (3/8π) sin2 θ + (3/4π) cos2 θ + (3/8π) sin2 θ

= 3/4π,

which is independent of the angular coordinates,
that is it is isotropic.

(H.9)

[Lz, Lx]ψ = −h̄2[x
∂

∂y
− y

∂

∂x
][y

∂

∂z
− z

∂

∂y
]ψ

+h̄2[y
∂

∂z
− z

∂

∂y
][x

∂

∂y
− y

∂

∂x
]ψ

= −h̄2

[
x

∂

∂y
y

∂

∂z
+ y

∂

∂x
z

∂

∂y

−y
∂

∂z
x

∂

∂y
− z

∂

∂y
y

∂

∂x

]
ψ

= −h̄2
[
x

∂

∂z
− z

∂

∂x

]
ψ

= ih̄Lyψ.
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(H.10)

〈pm〉 = (1/L)

∫ L/2

−L/2

exp [−i(kx − ωt)](
−ih̄

∂

∂x

)m

exp [i(kx − ωt)]dx

= (h̄k)m

∫ L/2

−L/2

dx/L = (h̄k)m.

(H.11)

Chapter 14

(H.1) The finesses, given by eq. 5.55 is 313. The mode
spacing is the free spectral range given by eq. 5.58
and is 0.3 GHz, so there are five modes lying within
the FWHM.

(H.2) Using eqn. 5.55 gives a finesse of 3.14 105. Then
the cavity line width, ∆f , given by eqn. 14.26 is
1190 Hz. The Q-value is f/∆f or 3.97 1011. When
the laser tubes are changed there is a change in
the optical path length between the two mirrors
because in one case 0.5 mm is filled with air at at-
mospheric pressure, and in the other with the low
pressure He:Ne mixture. The refractive index of air
is 1.0003, so the change is 0.0003 and the change
in optical path between successive reflections from
the same mirror is 0.3 µm. The mode frequencies
shift by about 3.75 10−7 λ.

(H.3) The sheeting should be formed as a cylinder, some-
what longer than the rod, having an elliptic cross-
section. The lamp and rod are mounted with their
axes along the two focal lines of the cylinder. In
this way the light leaving the lamp perpendicular
to the flash lamp gets reflected onto the laser rod. If
the ellipse is made very narrow the lamp will shield
the rod from some of the radiation it emitted, and
if too large light will escape from the ends.

(H.4) The ring-down time for the empty cavity given by
eqn. 14.30 is 3.3 ms. Using eqn. 14.29 in the case
the cavity is full of gas, the ring down time is 1.7 ms.

(H.5) Using eq. 14.70 the angle between the common di-
rection of the wave vectors and the crystal optic
axis is given by sin2 θ = 0.15173 and θ is 22.9◦.
The walk-off angle is that between the Poynting
vectors, and this is the same as the angle between
the E and D fields of the frequency doubled radia-
tion. Formulae for these appear in eqns. 10.24 and
10.25. Then

E =
√

n4
e(532) cos2 θ + n4

o(532) sin2 θ

= 2.4807,

D/ε0 = n2
o(532)n

2
e(532) = 6.784,

E · D/ε0 = n2
o(532)n

2
e(532)

×[ n2
e(532) cos2 θ + n2

o sin2 θ ]

= 16.803.

Then the walk-off angle is given by

cos φ = E ·D/(ED) = 0.998

so that the walk off angle is only 3.2◦.

(H.6) From eqns. 14.21 and 14.29 we have γth = 1/(cτ ).

(H.7) From eqn. 14.21 the threshold gain is 0.025 m−1.
Then using eqn. 14.16

∆N = 8π∆fτspγth/λ2,

where ∆f is the FWHM. This gives 3.14 1014 m−3.

(H.8) From eqn. 14.16 the required population inversion
density is

∆N = 8π∆fτspn2/(cλ2τc)

which gives 3.83 1020 m−3.

(H.9) Using the result from eqn. 7.40

σω =
√

(ω2
0kT/Mc2),

where ω0 is the laser angular frequency, and M is
the atomic mass of 20Ne. This gives σω equal to
4.06 109 rad−1. Then the FWHM is

∆ω = 2.35σω = 9.53 109,

so that in frequency the FWHM is 1.52 GHz.

(H.10) In YAG the Nd ions are located in a regular lat-
tice and consequently the environments of all of
them are closely similar. Therefore the broaden-
ing is common to all. On the other hand glass is
amorphous so that the environments vary a great
deal. This makes for inhomogeneously broadening.
The gain bandwidth is as a result sixty times wider
for Nd:glass lasers at 30 nm compared to 0.5 nm for
Nd:YAG.

(H.11) When the degeneracy of the lower level is large it
can happen that the population inversion (N2 −
(g2/g1)N1) is positive. Thus in principle it would
be possible.

(H.12) The scattering is from the acoustic waves giving a
Doppler shift of

∆f/f = 2vacoustic/vlight = 310−5.

At 1µm wavelength the frequency shift is then
9GHz.
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(H.13) The separation of the teeth is fixed by the repeti-
tion rate at 100 MHz and the envelope is of order
1/20 ps or 50GHz.

(H.14) The thickness of the well will equal a whole number
of half waves, Lz = nλ/2. Then the kinetic energy
of the electron in the z-direction is given by eqn.
14.40

E = h̄2k2/2m∗ = h2/(2m∗λ2),

where k is the wave vector. Then replacing λ gives
E = n2h2/(8m∗L2

z).

(H.15) The kinetic energy of the lowest bound state in the
quantum well is h2/(8m∗L), where L is the well
width and m∗ the effective mass of the bound par-
ticle. This gives 19meV for the electron in the con-
duction band and 3meV for the hole in the valence
band. In all 22meV which translates into a fre-
quency change of 5.3 1012 Hz.

Chapter 15

(H.1) The absorption length at wavelength 1 µm obtained
from figure 15.1 is 100 µm so that the depth in
which 90% is absorbed is d where exp(−d/100) =
0.1, that is 230 µm. The resistance, R, of the
1mm long 230 µm by 2mm area photoconductor is
6.52 MΩ. The capacitance, C, is ε0εr×area/length
= 4.80 10−14F. The time constant, RC, is 0.313 µs.

(H.2) The electric field, E, across the photoconductor is
200 Vm−1 so the electron velocity Eµ is 27 ms−1,
and the transit time is 37 µs. This is much longer
than the electrical time constant. The gain is given
by eqn. 15.4 and is 2.7.

(H.3) The reflectance at normal incidence is obtained
from eqn. 9.79, with the silicon refractive index be-
ing

√
11.8 = 3.435. Thus the required reflectance,

R, is 0.301. In turn the quantum efficiency is
0.9× (1−R) or 0.63. Finally the responsivity given
by eqn 15.6 is 1.37 AW−1.

(H.4) No, because the recombination time is much longer
than the period of oscillation.

(H.5) The shot noise is given by eqn. 15.18 σ2
s =

2eB(is + id), where is is the photocurrent 0.6 × 2
= 1.2 µA. This gives 3.84 10−17A2. The Johnson
noise is given by eqn. 15.22, σ2

j = 4kBTB/R, which
gives 3.31 10−14A2. Thus the signal to noise ra-
tio i2s/(σ

2
s + σ2

j ) is 43.4. The dark current shot
noise σ2

d is 1.6 10−19, negligible compared to the
Johnson noise. Using eqn. 15.25 the NEP is
3.03 10−11 W/

√
Hz.

(H.6) The shot noise is now 3.846 10−14AW−1, and the
Johnson noise is unchanged. Thus the SNR is
2.01 107.

(H.7) The gain G = 510 = 107. If n photons are incident
per second the power incident, P , is nhf = nhc/λ,
where f is the frequency, λ the wavelength. This
gives a power 2.48n eV. The anode current is Gnηe
where η is the quantum efficiency. Thus the cur-
rent, i is 2 106ne. Then the responsivity i/P
is 0.81 A µW−1. The dark current shot noise is
2eGBid, where id is the dark current and B is the
bandwidth, giving (10−20B) A2. The Johnson noise
4kTB/R is (3.31 10−22B) A2. Thus the NEP, using
eqn. 15.25, is 0.122 fW/

√
Hz. Then the detectivity

D∗ given by eqn. 15.27 is 1.16 10−14 m
√

HzW−1.

(H.8) The APD in the Geiger mode gives uniform large
pulses however many photons arrive. Photomulti-
pliers would give larger pulses when two electrons
arrive, but there is still a spread in the distribution
of pulse height so that there is some overlap be-
tween the distributions for single and double pho-
tons. Partial separation of two and one photon
events is feasible.

(H.9) In a photodiode the hole and electron pair produced
by photon absorption travel under the applied elec-
tric field out of the depletion layer to the p-doped
and n-doped regions respectively. They immedi-
ately recombine with the excess minority carrier
charges that exist at the edge of the depletion layer.
Hence the recombination time is exactly the same
as the transit time, giving unity gain. In the case
of photoconductors a high gain implies a long re-
combination time and in turn this implies a slow
response.

(H.10) The responsivity is given by eqn. 15.6. Generally
the recombination tim, τr, is longer than the transit
time, τx, in order to achieve gain. Thus the recom-
bination time determines the bandwidth, B = 1/τr,
from which the result given follows.

(H.11) Using eqn. 15.6, with unity gain, the responsivity
is 0.515 A W−1. The photocurrent for unit gain
would then be this responsivity times the input
power, or 5.15 10−8 A. The ratio between the ac-
tual current and this current is the gain, 970.

Chapter 16

(H.1) The loss in 10 km is 200 dB, an attenuation by
a factor 10−20. The number of photons is thus
(60)10−20(λ/hc), that is 4.7.
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(H.2) Using the equations given in Section 16.4 the dis-
persion over 5 km in step index fibre is 0.34 µs.
For step index fibre at a data rate of 3.3 Mb s−1

each bit would overlap its neighbour. Thus a rate
of about 300 kB s−1 could be maintained. The
bandwidth-distance product is then 1.5Mb s−1km.
For graded index fibre the intermodal dispersion is
0.58 ns. The chromatic dispersion is 40 ns. The
data rate is limited by the chromatic dispersion
to about 2.5 Mb s−1 and so the fibre capability is
12.5 Mb s−1 km.

(H.3) The material dispersion over a distance L when the
wavelength spread is ∆λ is given using eqn. 16.16,

∆t = d(L/vg)/dλ∆λ = (L/c) λ ∆λd2n/dλ2),

where vg is the group velocity and n the refractive
index. Inserting the parameters given yields ∆t is
60 ns.

(H.4) Over 50 km the attenuation is −10 dB or by a fac-
tor 10. Using eqn 16.30 the shot noise contribution
to the mean square deviation in the current is

[ 2λη e2/(hc) ] P0 exp (−αL)∆f

= 3.60 10−14 amp2.

The RIN contribution is similarly

[ (λη e/(hc) ]2 RIN P 2
0 exp (−2αL) ∆f

= 2.67 10−14 amp2.

The noise contribution from the detector is

(4kT/RL)∆f = 2.48 10−14 amp2.

Adding these three contributions gives
8.75 10−14 A2. Thus the rms noise is 0.296 µA.
The signal strength is

[ ληe/hc] P0 exp (−αL) = 74.95 µA.

The SNR in the current is thus 256, and in terms
of power the SNR is 48 dB. The poor connection
near the detector reduces the signal by a factor 10,
and the mean square shot noise current by a factor
10, the RIN by a factor 100, but leaves the detec-
tor noise unaffected. Thus the rms noise current
becomes 0.169 µA, and the signal current falls to
7.495 µA. The new current SNR is 44.25 and the
power SNR falls to 33 dB.

(H.5) Suppose Λs is the pitch at the start of the grating
and Λe the pitch at the end of the grating, and
that the grating length is L. Then light of wave-
length λs = 2Λsn will be reflected at the start of

the grating and light of wavelength λe = 2Λen will
be reflected at the end of the grating, where n is the
mean refractive index. Consequently light of wave-
length λe will be delayed by a time 2Ln/c compared
to light of wavelength λs.

(H.6) The reflection coefficient at each air/glass interface
is given by eqn. 9.79 R = [ (n − 1)/(n + 1) ]2 ≈
0.04. Thus the loss at each surface in dB is
10 log10 (1 − R) = −0.177. Overall the loss is thus
0.35 dB.

(H.7) Suppose that light of wavelength λ0 whose mth
principal maximum falls on the far left hand out-
put port produces an (m+1)th principal maximum
which falls on the far right hand output port. If the
mth principal maximum on the far right hand port
is formed by light of wavelength λ0 + ∆λ, then the
free spectral range is just ∆λ. Then we have

m(λ0 + ∆λ) = (m + 1)λ0.

Thus ∆λ ≈ λ0/m. The optical path difference
between successive waveguides is n∆L = 15µm.
Thus the diffraction order is n∆L/λ0 = 15/1.55 ≈
9. Consequently ∆λ = 1550/9 = 172 nm.

(H.8) Using eqn 16.41 the spacing is

∆λ = xdλ0/(f∆L),

where x and d are the port spacings, f is the slab
length and ∆L is the difference in length between
successive guides. Inserting the values given ∆λ is
0.895 nm. The diffraction order is the optical path
difference between successive guides divided by the
wavelength, that is 61. The free spectral range is
then 1550/61 = 25.4 nm. The useful number of
channels is thus 25.4/0.895, that is 28.

(H.9) Using eqn. 16.44 the soliton period is 33 km. Us-
ing eqn. 16.45 the pulse power is 30 mW. Then
the pulse energy, E, is the pulse power times its
duration, or 300 fJ. This contains Eλ/hc photons.
There are 2.3 million photons in the pulse.

(H.10) The numerical aperture is given by eqn. 2.41, NA

=
√

(n2
1 − n2

2), giving 0.12. Using eqn. 16.11 the
cut-off wavelegth, λ is given by√

(n2
1 − n2

2)(2πa/λ) = 2.405,

where a is the core radius. After substituting the
values given the cut-off wavelength is 1590 nm.



622 Appendix: Solutions

(H.11) The notation of Section 16.7.3 is used here. After
a path length 3L12/2 the phase of the jth mode
relative to the first mode is (βj − β1)(3L12/2) =
π(j2 − 1). Therefore the phases of modes with j
odd have changed relative to the phase of the first
mode by an integral multiple of 2π. The phases
of the even modes relative to the first mode have
all moved by an odd multiple of π. Any odd order
mode has a transverse distribution across the slab
of the form

A cos (ktx + α),

where x is the transverse coordinate measured from
the midline down the slab. Each even mode is of
the form

A′ sin (k′
tx).

After a distance 3L12/2 these become

A cos (ktx + 2π) = A cos (ktx),

A′ sin (k′
tx + π) = −A′ sin (ktx).

Making the exchange x → −x then reproduces the
entry surface.

(H.12) Using the expression given in eqn. 16.14 gives 1825
modes.

Chapter 17

(H.1) If the displacement is x = x0 sin (ωst) then the ve-
locity v = ωsx0 cos (ωst), and the kinetic energy is
(mω2

s x
2
0/2) cos2 (ωst). At the midpoint of the mo-

tion the potential energy is zero so the total energy
is mω2

s x
2
0/2. Equating this to the quantum of vi-

brational energy h̄ωs gives x2
0 = 2h̄/mωs. Then

inserting for the atomic mass 200 times the atomic
mass unit gives x0 approximately 10 nm.

(H.2) χ = (Nµ2/ε0h̄)(2i/γ). Inserting the values
given χ = 0.000 615i. Thus the relative per-
mittivity is 1 + 0.000 615i, and the refractive in-
dex 1 + 0.000 3075i. The dependence of the
electric field on the distance z through the
cloud is E(z) = E(0) exp (−ωniz/c) or E(z) =
E(0) exp (−2πniz/λ), where λ is the wavelength in
free space. Thus the intensity |E(z)|2 falls by a fac-
tor e in a distance z = λ/(4πni) which is 152 µm.

(H.3) The lifetime τ = 1.59 10−8 s. The saturation elec-
tric field is given by substitution in eqn. 17.18 with
Ω0 = γ/

√
2. From this the saturation value of the

electric field is determined. Finally this can be in-
serted into eqn. 17.35 to obtain the Einstein coef-
ficient. The saturation intensity is 63.6 Wm−2.

(H.4) The atom is stretched by the permanent field so
that the centre of charge of the electron cloud no
longer coincides with the centre of charge of the nu-
cleus. The wavefunctions are modified so that they
are solutions of eqn. 17.9, with both W and ∆W
being time independent. As a result there will not
be any pumping between states.

(H.5) If the electric field in the laser beam is of amplitude
E0, then the power density is P = cε0E

2
0/2. Using

eqn. 17.18 gives Ω0 = (D12/h̄)
√

(2P/ε0c). Putting

in the values given yields Ω0 = 4.41 106
√

P . Hence
a Rabi frequency of 5 MHz requires a power den-
sity of 50.7 W m−2. Over the area quoted the power
is 0.507 µW, which would be an appropriate laser
power because the area matches well to the cross-
section of a laser beam.

(H.6) The Rabi angular frequency for no detuning is
given by eqn. 17.18, Ω0 is 2.01 109 rad s−1. The
angular frequency offset is ∆ω = 2πc∆λ/λ2, which
gives 5.43 108 rad s−1. Then the generalized Rabi
frequency

√
(Ω0)2 + ∆ω2) is 5.79 109 rad s−1. Fi-

nally using eqn. 17.84 sin θ = 0.608, so that θ is
37.4◦.

(H.7) We use eqn. 17.95 giving ω = 3.2 1015 rad s−1. The
electric field amplitude is 614 Vm−1; the Rabi fre-
quency of the coupling laser Ωc is 123 MHz. Finally
vg is 450 ms−1.

(H.8) The electric field amplitude E0 is 1735 Vm−1. Us-
ing eqn. 17.18 the dipole moment is 1.90 10−29 C m.
Then using eqn. 17.35 the Einstein coefficient for
spontaneous decay is 2.37 105 s−1.

(H.9) The electric field amplitude E0 is 43.4 kVm−1. Us-
ing eqn. 17.18 the dipole moment is 3.08 10−30 C m.
Then using eqn. 17.35 the Einstein coefficient for
spontaneous decay is 1.2 106 s−1.

(H.10) Using eqn. 17.95 and replacing Ωc by µcEc/h̄,

vg = µ2
cE

2
c ε0c/(2h̄ωNµ2

p)

= (µc/µp)2Pc/(Nh̄ω).

For simplicity take the dipole moments to be equal,
then

vg = Pc/(Nh̄ω).

Now h̄ω is the excitation energy per atom and N
is the density of atoms, which supports the inter-
pretation offered.
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Chapter 18

(H.1) Suppose that the count for mode i is ni, then using
eqn. 18.82

〈n2
i 〉 = 〈ni〉 + 2〈ni〉2

= 〈N〉/m + 2〈N〉2/m2,

where N is the total count. Then the variance is〈
(
∑

i

ni)
2

〉
−
〈∑

i

ni

〉2

=

〈∑
i�=j

ninj

〉
+

〈∑
i

n2
i

〉
−
〈∑

i

ni

〉2

= m(m − 1)〈N〉2/m2 + 〈N〉 + 2〈N〉2/m − 〈N〉2

= 〈N〉 + 〈N〉2/m.

(H.2) Suppose that M is the number of photons incident
and m is the number detected. The variance on m
is given by

∆m2 = 〈m2〉 − 〈m〉2.
Now although 〈m〉2 = η2〈M〉2, 〈m2〉 �= η2〈M2〉:
when one photon has been detected there are only
M − 1 remaining which are potentially detectable.
Instead 〈m(m − 1)〉 = η〈M(M − 1)〉. Then

∆m2 = 〈m(m − 1)〉 + 〈m〉 − 〈m〉2

= η2〈M(M − 1)〉 + η〈M〉 − η2〈M〉2

= η2〈M2〉 + (η − η2)〈M〉 − η2〈M〉2

= η2(〈M2〉 − 〈M〉2) + η(1 − η)〈M〉
= η2∆M2 + η(1 − η)〈M〉.

(H.3)

〈E2〉 = ζ2
ω〈α|(exp (−iξ)â + exp (iξ)â†)

(exp (−iξ)â + exp (iξ)â†)|α〉.
Then using eqns. 18.15, 18.65 and 18.66,

〈E2〉 = ζ2
ω [ exp (−2iξ)α2

+exp (2iξ)(α∗)2 + 1 + 2|α|2 ]

= 4ζ2
ω cos2 (ξ − θ)|α|2 + ζ2

ω

= 〈E〉2 + ζ2
ω.

(H.4) Use eqns. 18.24 and 18.25 n times.

(H.5)

(H.6) In free space B is perpendicular to E, in phase with
E and B = Ek/ω. Then the result follows.

(H.7) First show that |{α}〉 is an eigenstate of Ê+,
Ê+(t)|{α}〉 = Eα(t)|{α}〉. Then substitute for
Ê+(t), Ê+(t + τ ) etc. in eqn. 18.55.

(H.8) Form the expectation value of this quantity using
pure and incoherent states using eqns. 18.59 and
18.60.

(H.9) The initial state with a photon located with equal
probability at either slit is

|in〉 = (1/
√

2)(â†
1 + â†

2)|0〉.

In addition

Ê+ = ζ [ â1 exp (−ixi1) + â2 exp (−ixi2) ],

where ξ1 − ξ2 = k · ∆r. Also

Ê− = ζ [ â†
1 exp (+ixi1) + â†

2 exp (+ixi2) ].

Then

〈in|Ê−Ê+|in〉
= (ζ2/2) [ 〈1| + 〈2| ] Ê−Ê+[ |1〉 + |2〉 ]

= (ζ2/2) [2 + exp [i(ξ1 − ξ2)] + exp [i(ξ2 − ξ1)]

= ζ2 [1 + cos (k · ∆r) ]

(H.10) 〈n1n2〉 = 〈ψ|â†
1â

†
2â2â1|ψ〉 where â1 and â2 are the

annihilation operators for the two ports. The state
vector is |ψ〉 = {(â†

1 + â†
2)/

√
2}n|0〉. Then the ex-

pectation value is

〈0|(ân
1 + nân−1

1 â2 + ....ân
2 )

â†
1â

†
2â2â1((â

†
1)

n + n(â†
1)

n−1â†
2 + ....(â†

2)
n)|0〉/(2nn!)

= {〈0|ân
1 â†

1â
†
2â2â1(â

†
1)

n|0〉
+n2〈0|ân−1

1 â2â
†
1â

†
2â2â1(â

†
1)

n−1â†
2|0〉 + .....}/(2nn!)

= {0 + n2(n − 1)(1)(n − 1)!(1!) +

(n(n − 1)/(2!))2(n − 2)(2)(n − 2)!(2!) + ....}
= n(n − 1)Ltx→1(1 + x)n−2/2n

= n(n − 1)/4.

(H.11) In the case of peak amplitude (phase) squeezing
the uncertainty area is an ellipse with its short axis
radial (tangential).

(H.12) The phase mismatch is

∆kdx = [ k(2ω) − 2k(ω) ] dx

= (2ω/c) [ n(2ω) − nω) ] dx.

Then the amplitude of the outgoing waves gener-
ated at a distance x from the end of the crystal
is exp (i∆kx) at exit. Summing and averaging the
contributions along the crystal the resulting ampli-
tude is

E =

∫ L

0

exp (i∆kx)dx/L

= exp (i∆kL/2)2 sin (∆kL/2)/(∆kL)

= exp (i∆kL/2)sinc(∆kL/2),

whence the intensity varies like sinc2(∆kL/2).
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β-barium borate (BBO), 433–436
used for SPDC, 577

π-pulse, 532

aberration
aperture stop effects, 66–67
astigmatism, 63–64
chromatic, 67–70
coma, 62–63
distortion, 66
field curvature, 64–66
monochromatic, 58–67
spherical, 61–62

absorption, 303–314, 384
by metals, 309–314

AC Stark effect, 534
adaptive optics, 197, 205–207
afocal

definition, 74
angular resolution, 73, 84, 198

derivation, 138–139
annihilation operator, 558
APD, 457–459

breakdown voltage, 458
excess shot noise, 458
Geiger mode, 459
linear gain region, 458
quantum efficiency, 459

aperture stop, 60
definition, 74

aperture synthesis, 212–219
CLEAN algorithm, 218
phase closure relation, 217

apodization, 184, 501
array waveguide grating (AWG), 502–505
atmospheric distortion, 204–205

piston component, 206, 211
piston component compensation, 210
tip/tilt correction, 207, 211

atomic oscillator model, 305–309
atomic/molecular susceptibility, 231
attenuation

in air, 299
optical fibre, see optical fibre

Autler–Townes effect, 537–538
difference from EIT, 541

autocorrelation, 170

avalanche breakdown, 449

Babinet’s principle, 137
Balmer series, 337
band-gap engineering, 413
bandwidth, 174–175
bandwidth limited pulse, 428
bandwidth theorem, 174
beam splitters, 254–255
Beer’s law, 22
biaxial crystals, 271
birefringence, 269–281
birefringent crystals, 265
birefringent filters, 424
bit error rate (BER), 494
black body radiation, 26, 567, 570
black body spectrum, 22, 327

Planck’s analysis, 326–330
blazing, 142–143
Bohr magneton, 370
Bohr model of atom, 336
Bohr, Niels, 326
Boltzmann distribution, 340, 380, 385
Born, Max, 354
Bose–Einstein distribution, 379
boundary conditions for electromagnetic

fields, 233–234
Bragg condition, 185, 191, 335
Bragg grating, see also lasers

acousto-optic, 184–186
distributed Bragg reflector (DBR), 419

Breit–Wigner line shape, 173
Brewster’s angle, 247, 280

in metals, 312
Brewster’s angle windows, 389
bright state, 540
brightness, 24
Brillouin scattering, 437–439

calcite, 270, 278, 279
cameras, 83–88

SLR, 86
cardinal planes, 58

matrix calculation, 591–592
carrier-envelope offset, 428
Cartesian sign convention, 46
cavity ring-down spectroscopy, 402–404

CCDs, 461–466
buried channel, 462
channel stops, 462
dynamic range, 466
gates, 462
in cameras, 83–85
noise, 466
pixel size, 461

chaotic thermal radiation, 573
charge coupled devices, see CCDs
chief ray, see principal ray
chirality, 281, 294
chirped grating, 502
chirped pulse amplification, 431
chirping, 427–428
chromatic resolving power

of diffraction grating, 140
definition, 124
of Fabry–Perot etalon, 125
of prism, 141–142

circular birefringence, 281
circular polarization, 13, 276, 277

left/right, 266
of photons, 377–379

circulator, 492, 501
CMOS arrays, 461, 466–467
COAST array, 216
coherence, 105–109, 169–171
coherence area, 112, 397
coherence length, 108, 110

for phase matching, 435
longitudinal, 110
sources compared, 387
transverse, 110

coherence time, 109, 110, 381, 564
HOM measurement, 580
sources compared, 387

coherent scattering, 300–301
coherent states of electromagnetic field

quantum analysis, 568–570
complementarity, 583–586
Compton effect, 333–335
Compton, Arthur, 333
conduction band, 408
configuration, 369
Confocal symmetric cavity, 156, 159–160
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conjugate variables, 165, 167, 326, 355,
364

content outline, 1–6
convolution, 166–168
corner cube, 39
correlations, 169–171
correspondence principle, 340
creation operator, 558
critical angle, 37, 243

dark current, 448–449
dark field illumination, 183
dark state, 540
Davisson, Clifton, 335
de Broglie relation, 335
de Broglie’s hypothesis, 335–336, 341
de Broglie, Louis, 325
decibel (dB), 25
decoherence, 363
Dehmelt, Hans, 545, 549
delayed choice, 584–586
dense wavelength division multiplexing,

see DWDM
depletion layer, 445
dextro-rotatory, 281
dichroic, 265
dielectrics, 235–236
diffraction, 167–168

Abbe theory, 181–182
Gaussian beams, 156–161
Huygens–Fresnel analysis, 130

diffraction gratings, 139–140
waveguide gratings, 502–505

diffraction limited wavefront, 168
Dirac delta function, 166, 361
directional couplers, 491
director, 289, 294
dispersion, 304–309

anomalous, 20
by triangular prism, 36
definition, 20
multimode fibres, 483–484
single mode fibre, 484–486

compensation, 499
dispersion relation, 321
dispersive index, 68
dispersive power, 68
doping, 410–411
Doppler cooling, 545–547
Doppler shift, 542

formula, 29
of sound, 27
optical clocks, 552

dressed states, 520, 533–537
related to bare states, 534
tower of, 536

DVD reader, 280–281
DWDM, 500
dynamic Stark splitting, 534

echelle grating, 145

eigenstates, 359–361
degenerate, 369

Einstein coefficients, 384–386
relations, 386
calculation, 521–525

Einstein, Albert, 330, 347, 350
EISCAT ionogram, 317
electric dipole coupling, 523
electric dipole moment, 522, 529
electric dipole radiation, 239–241
electric dipole transition, see also

transition rates
selection rules, 370, 374

electric field
negative frequency component, 559
photochemical effect, 120
positive frequency component, 559

electric susceptibility, 231
evaluation for gas, 528–530

electromagnetic spectrum, 16
electromagnetically induced transparency

(EIT), 538–544
electron, see also plasmas

spin, 371
total angular momentum, 371

ellipsometer, 313
elliptical polarization, 266–267, 313
em field

squeezed states, 570
vacuum fluctuations, 561–562

em wave equation, 234–236
em waves

energy flow in, 13, 236–239
energy stored in, 13, 236–239

ensemble, 361
entangled states, 575–576

from beam splitter, 576
entrance pupil, 60, 74
entrance window, 76
equivalent thin lens, 58
erbium doped fibre amplifiers, 497–498
etendue, 77–79, 349

and mode count, 259
laser, 388

evanescent wave, 243, 359
exit pupil, 60, 74
exit window, 76
expectation values, 355, 361–364
extraordinary polarization, 270
eye

photopic response, 23
pupil diameter, 75
scotopic response, 23
sensitivity, 23

eye diagram, 487
eyelens, 74
eyepieces, 79–80
eyering, 75

f number, 84

Fabry–Perot cavity
in gravity wave detector, 221–225
in laser, 386, 411, 412

Fabry–Perot etalon
cavity modes, 256
chromatic resolving power, 125
finesse, 124
free spectral range, 125
interference film mirrors, 253

Fabry–Perot interferometer, 121–127
etendue, 127

Faraday effect, 287–288, 492, 513
Fermat’s principle, 34
Fermi energy, 408
Fermi’s golden rule

derivation, 607–608
Fermi–Dirac distribution, 380, 408
fibre Bragg grating, 500–502, see also

sensors
fibre optic gyroscope, 510–513
fibre optic sensors, see sensors
field lens, 79, 202
field of view, 76
field stop, 76
first order coherence, 563–565

degree of, 170, 564
Fizeau fringes, 102
Fizeau interferometer, 115
fluorescence, 303

resonance, 375
focal length

spherical mirror, 48
thin lens, 52

focal planes, 58
Fock states of electromagnetic field, 567
focus

thin lens, 52
forbidden transitions, 370, 526
four wave mixing, 436, 517
Fourier lens, 167
Fourier series, 163–164
Fourier transform plane, 167
Fourier transforms, 165–169
Franson–Chiao interferometry, 581–583
Fraunhofer diffraction, 130–146

circular aperture, 138–139
multiple slits, 134–137
Rayleigh criterion, 139
single slit, 134

Fraunhofer lines, 19
free spectral range

definition, 125
frequency, 8
frequency combs, 428–431
Fresnel and Fraunhofer diffraction

compared, 146
Fresnel diffraction, 147–156
Fresnel zone plates, 153
Fresnel zones, 151–154
Fresnel’s equations, 246
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for TIR, 248
Fried parameter, 204
frustrated total internal reflection

(FTIR), 244

GaAs
properties, 409

GaAs properties, 411
Gauss–Hermite functions, 256
Gaussian, 173

Fourier transform, 166
Gaussian mode

analysis, 157–159
stability condition, 159

general theory of relativity, 220, 225
Gerlach, Walther, 370
Germer, Lester, 335
ghosts, 142
Glan–air prism, 279
Glan–Thompson prism, 279
Goudsmit, Samuel, 371
gravitational imaging, 225
Gray, George, 289
group velocity, 316–319

formulae for, 317
in single mode fibre, 484–485

group velocity dispersion, 484
guide star, 205

Haidinger fringes, 102
half wave plate (HWP), 276–277
Hanbury Brown and Twiss experiment,

573–574
Hanbury Brown, Robert, 565, 574
Harris, S. E., 542
Hau, Lene, 543
Heisenberg representation, 605
Heisenberg, Werner, 354
Helmholz equation, 593
hermitean, 362
heterodyne interferometer, 404–408
hidden variable theories test, 583
HIL materials, 229
hole burning, 395
holograms, 188

phase, 190
thick, 191

holography, 186–194
HOM interferometer, 579
homodyne interferometer, 408
Hubble Space Telescope, 198, 200

design, 201
image, 226

Huygens’ construction
in reflection, 32
in refraction, 33
in uniaxial crystal, 275

Huygens’ principle, 31
Huygens-Fresnel waves, 97

idler photon, 577

image intensifiers, 471
image plane interferometer, 212
index ellipsoid, 273
interaction representation, 606
interference, 95

amplitude division, 101
Fresnel’s analysis, 97–101
localized fringes, 101
non-localized fringes, 97
requirement of coherence, 2
standing waves, 118
wavefront division, 101

interference filters, 249–253, 501
apodization, 253

interferometer
Fabry–Perot, 121–127
Fizeau, 115
Mach–Zehnder, 116
Sagnac, 116
Twyman–Green, 114

interferometry, 113–127
international standard clock, 552
intrinsic semiconductor, 410
isoplanatic angle or region, 207
ITU telecom bands, 478

Jones vectors, 277–278

Keck telescopes, 198, 201, 207, 216, 218
Kerr effect, 286, 425, 506
Kerr lens mode locking (KLM), 427
Kirchhoff’s analysis of em waves at

apertures, 593–595
Kirchhoff’s law, 27

laevo-rotatory, 281
Lamb dip, 397
Lamb–Dicke regime, 547
Lambert’s law, 24
laser cooling, 544–548
laser speckles, 190, 397
lasers

3 and 4 level, 390
acronym origin, 383
ASTRA, 431–432
CO2, 398
coherence, 387
coherence time, 415
contrasted with thermal sources, 567
distributed feedback Bragg (DFB),

414–415
double heterostructure (DH), 412–414
dye, 398–400
gain, 390–392
gain coefficient, 391
He:Ne, 388–389

cavity modes, 393–395
radiance, 395

in optical clocks, 550
InGaAsP/InP, 489

limiting line width, 415
mode locking, 425–428
Nd:YAG, 421
Nd:YAG and Nd:glass, 420–421
Nd:YAG pump, 431
optical fibre, 439
Pound–Drever mode locking, 222
quantum well, 416–418
relative intensity noise (RIN), 416, 495
single mode, 387
telecom compatibility, 414
TEM00 mode, 388
Ti:sapphire, 423–425, 427
vertical cavity (VCSEL), 418–419

lasing
prerequisites, 386–388

laws of reflection and refraction
derivation, 241–248

LCD, 289–293
in-plane switching, 291
TFT, 291
twisted nematic (TN), 289

Lenard, Philipp von, 330
lens

aberrations, see aberration
lenses, 51–70, see also thin lens

aspheric, 92
camera, 83–88
Fresnel, 92
graded index, 91
microscope, 80–83
telecentric, 88
telephoto, 89
telescope, 73–80
zoom, 89

light emitting diode (LED), 411
light shift, 536
line width, 172

and decay rate, 380–381
collision broadening, 173, 393
Doppler broadening, 173, 393, 400
homogeneous broadening, 174, 381,

393, 396, 402, 420
inhomogeneous broadening, 175, 381,

393, 396, 420
laser, 392
power broadening, 533

liquid crystals, 288–295
ferroelectric, 294
nematic, 288
polymer dispersed, 293
smectic, 288

lithium niobate, 284
Littrow mounting, 145
Lorentz force, 8
Lorentzian line shape, 173

at absorption resonance, 307
loup, 55
luminosity

absolute, of stars, 204
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apparent, of stars, 204
luminous efficacy, 23
lux (lx), 24
Lyman series, 337

M2 parameter, 414, 419
Mach–Zehnder interferometer, 116, 581
magnitude

apparent, of stars, 204
absolute, of stars, 204

Malus’s law, 269
marginal rays, 60, 61
mass energy relation, 335
matrix methods

for Gaussian beams, 160–161
for paraxial rays, 55–58

Maxwell’s equations, 230–233
MCP-PMT, 472
MEMS mirror array router, 505–506
Michelson interferometer, 103–109,

176–180
gravitational wave detection, 221
heterodyne, 404–408

Michelson’s stellar interferometer,
208–212

compared to correlation
interferometer, 575

micro electro-mechanical systems
(MEMS), 500

microchannel, 471
microchannel plates, 471–472
microscope, 80–83
Mie scattering, 301–303
Millikan, Robert, 331–333
modes of electromagnetic field, 255–257,

349
count of, 257
longitudinal, 256
occupation number, 561
transverse, 256

modulation transfer function, 169
Mollow fluorescence, 536–537
monomode fibre, see single mode fibre
multi-electron atoms, 373–376
multimode fibre, 483–484
multiple mode interference devices

(MMI), 492–493

narrow bandwidth approximation,
562–563

Nasmyth focus, 202
Newton’s rings, 102
NIST optical clock, 550
nit, 24
nodal planes, 58
non-linear effects

second order, 432–436
third order, 436

non-linear Schroedinger equation, 507
derivation, 597–599

notch filter, 191
nucleus, 336
numerical aperture, 75

objective, 74
observables, 354

compatible, see simultaneous
simultaneous, 359

operators
normal ordering, 565
time ordered, 565

optical activity, 281
optical beats, 110, 397
optical clocks, 550–552
optical comb, 551
optical current transformer, 513–515
optical fibre, see also single mode fibre

attenuation, 477–478
copper connections compared, 476, 478
Corning Glass, 482
fusion splicing, 490
graded index, 483
guided wave analysis, 478–482
laser choice, 488–489
mechanical connector, 490
pigtail, 489
polarization maintaining, 486
rays in, 41
satellite links compared, 475
signalling on, 486–488
step index, 478
use of LEDs and multimode fibre, 489

optical fibre link, 496–506
connectors/routers, 490–493
dispersion compensation, 499, 502
electronic regeneration, 496
power budget, 494–496

optical modulator, 284–285, 532
used with optical fibre, 489

optical time domain reflectometry, 496
ordinary polarization, 270
oscillator strength, 307

p-polarization, 241
paraxial approximation

definition, 45
parity, 369
Parseval’s theorem, 172
Paul trap, 544, 548
Pauli exclusion principle, 372
Pauli, Wolfgang, 372
period, 8
phase contrast illumination, 183
phase matching, 577
phase transfer function, 169
phase velocity, 8, 316
phonons, 409, 437
phosporescence, 303
photocathode, 467
photoconductive gain, 444

photoconductors, 442–445
photodiodes, 445–456

1/f noise, 452
AlGaAl/GaAs, 451
amplifiers, 454
avalanche, see APD
current, 449
detectivity, 454
imaging arrays, see CCDs and CMOS

arrays
InGaAsP/InP, 451
Johnson noise, 453
linearity, 456
noise, 452–454
noise equivalent power (NEP), 453
pin, 451
Schottky, see Schottky photodiodes
shot noise, 452–453
signal to noise ratio (SNR), 453
speed, 451–452
window layer, 451

photoelasticity, 282
photoelectric effect, 330–333

Einstein’s equation, 330
measured limit on delay, 332

photoelectrons
energy, 331

photomultipliers, 459, 467–470
effect of magnetic field, 469
plateauing, 470
S20 dark current, 469

photon, 325, 326, 333, 337
masslessness, 335, 379
momentum, 333, 376–377
probability density, 342
spin, 377–379
summary of evidence for, 335

photon bunching, 574
photon counting, 469–470
photonic band-gap, 516
photonic crystal fibre (PCF), 515–517
photons, see also two photon correlations

indistinguishability, 579–583
planar waveguides, 259–261
Planck’s constant, 325, 329
plane/linear polarization, 8
plasma frequency, 306, 311, 315
plasma waves

bulk, 314–316, 319
surface, 319–322

plasmas in metals, 314–316
Pockels cell, 421
Pockels effect, 283–285
point spread function, 168, 205, 218
Poisson’s spot, 151
polarization

degree of, 269
transverse electric (TE), 241
transverse magnetic (TM), 241

polarization of dielectrics, 233
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polarizing beam splitter (PBS), 280
polarizing filter

metal strip, 268
Polaroid filter, 268
population inversion, 386, 411
potassium di-hydrogen phosphate

(KDP), 284
used for SPDC, 577

Poynting vector, 13, 238, 240
principal planes, 58
principal ray, 60
prism

anamorphic pair, 41, 413
constant deviation, 38
Porro, 39

prism coupler, 261
projectors, 293
Pulfrich refractometer, 40
pupil plane interferometer, 212

Q switching, 421–422
Q value, 394
quadratures, 557
quantum

proposal by Planck, 328
quantum amplification, 550
quantum barrier penetration, 359
quantum dots, 418
quantum efficiency, 442
quantum electrodynamics, 519
quantum erasure, 585
quantum mechanics, 354–357, 364
quantum numbers

in hydrogen atom, 367
in multi-electron atoms, 374
magnetic, 370, 371
orbital angular momentum, 369
principal, 368
spin, see electron spin

quantum statistics, 379–380
quarter wave plate (QWP), 276–277
quasi-monochromatic sources, 112

Rabi frequency, 523, 534, 537, 540, 543
complex, 523

Rabi oscillations, 519, 530–533, 536
Rabi, Isidore, 519
radiation pressure, 239
radiation terminology, 22–25
radio astronomy, 219
Raman amplifiers, 498
Raman scattering, 436–437, 516
ray surface, 275
ray tracing

spherical mirror, 49
Rayleigh scattering, 298–301, 438, 478
reflection

laws of, 32
refractive index, 19–22, 236

complex, 306–307

from coherent scattering, 300–301
of air, 20
of common optical materials, 20
of metals, 312
of water, 20
Sellmeier formula, 21
silicon and silica, 261
single mode fibre, 482

relative permeability, 231
relative permittivity, 231
representations

outline, 605–606
representations used in text, 606
resonance fluorescence, 303
responsivity, 444
Rutherford scattering, 336
Rutherford, Ernest, 325, 336
Rydberg constant, 336, 339, 341

s-polarization, 241
Sagnac interferometer, 116, 513
saturation spectroscopy, 400–402
Schawlow–Townes limit, 416
schlieren photography, 184
Schmidt camera, 203
Schottky barrier, 460
Schottky photodiodes, 459–461
Schroedinger representation, 605
Schroedinger’s cat, 363
Schroedinger’s equation, 355–357

harmonic oscillator potential, 365–366
hydrogen atom, 366–370
square well potential, 357–359

Schroedinger, Erwin, 354
second order coherence, 565–567

degree of, 566
second quantization, 555–563
secondary emitters, 468
seeing, 204
selection rules, 526
self-induced transparency, 533
self-phase modulation, 425
Sellmeier formula, 21, 309
semiconductor

absorption coefficients, 443
semiconductor properties, 408–411
sensors, 509, 515

Bragg grating, 509–510
SESAM, 422
Shack–Hartman sensor, 205
shelving, 548–550
shift theorems, 166
signal photon, 577
simple harmonic oscillator model, 557
single mode fibre, 475, 481

chromatic dispersion, 484–485
group velocity dispersion, 488
polarization mode dispersion, 485

slow light, 542–544
Snell’s law, 33

solar cells, 456–457
soliton

fundamental, 507
soliton period, 507
solitons, 506–509

communication by, 508–509
sources and detectors

for fibre links, 488–489
spatial filter, 115, 182–184
spatial light modulator, 194
spatial quantization, 370
SPDC, 576–579

degenerate, 578
type I, 577
type II, 577

specific rotatory power, 282
spectral energy distribution, 172
spectrometers, 141–146

automated, 146
chromatic resolving power comparison,

141–142
constant deviation, 125, 378
Czerny–Turner, 144
Fabry–Perot, 124–127
Fourier transform, 176–180

Felgett advantage, 179
Jacquinot advantage, 179

grating
etendue, 143–144

prism, 141–142
spherical interface, 50–51

bending power, 51
paraxial ray formula, 51

spherical mirror, 47–49
focal length, 48
paraxial ray formula, 48

spin–orbit splitting, 375
spontaneous emission, 384
spontaneous parametric down conversion,

see SPDC
state vectors, 557

introduction to, 601–603
stationary sources, 170, 562
Stefan’s law, 330
Stefan–Boltzmann constant, 330
Stern, Otto, 370
stilb, 24
stimulated emission, 384

cross-section, 391
Stokes’ relations

derivation, 113
Stokes/anti-Stokes transitions, 436
Strehl ratio, 168, 205
supercontinuum spectrum, 516
superposition principle, 96

telescope
refracting, 73–80

telescopes
gravitational wave, 220–226
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telescopes, astronomical, 197–220
alt-az mounting, 200
angular resolution, 198
Cassegrain, 199
equatorial mounting, 200
Gregorian, 199
optical window, 197
Ritchey–Chretien, 200, 201

thermal states of electromagnetic field
quantum analysis, 570–573

thin lens, 51–55
bending power, 52
focal length, 52
focus, 52
paraxial ray formula, 52
ray tracing, 53

Thomson, George Paget, 335
total internal reflection, 37

frustrated, 244
wave interpretation, 243

transform limited waveform, 174
transimpedance amplifier, 454
transition rates, 521–525

2p→ 1s in hydrogen, 527
transmittance, 20
trapping and cooling ions, 544–548
tunnelling, 359
Twiss, Richard, 565, 574
two photon correlations, 565–567

HBT stellar interferometer, 574–575

Arecchi measurement, 565
experiments, 579–586
HBT experiment, 573–574

two state atom, 521
Twyman–Green interferometer, 114

Uhlenbeck, George , 371
ultraviolet catastrophe, 328
uncertainty principle, 344–346, 364, see

complementarity
em phase and amplitude, 570

uniaxial crystal, 270
units, 22–25

table of, 25

V-band, 204
valence band, 408
VanderLugt filter, 193
velocity of light, see also phase and

group velocity
defined value, 10
measurement, 8–10

Verdet constant, 287, 514
visibility, 101

complex, 214–216
von Seidel, Philipp, 61

wave noise, 571
wave number

definition, 11

wave vector
definition, 12

wave–particle duality, 326, 341–343
wavefunction

collapse, 363
introduction, 354–355
of hydrogen atom, 366–367

waveguide array, 502
wavelength, 8
wavelength division multiplexing, see

WDM
wavepackets, 105–110, 349
WDM, 475, 497, 500–506
which path information, 347–348
Wien’s Law, 329
Wiener’s experiment, 120
Wiener–Khinchine theorem, 177
Wineland, David, 545
Wollaston prism, 278, 348
work function, 331

XMM-Newton telescope, 244

Young’s two slit experiment, 96–100, 564
photon interpretation, 342

Zeeman effect, 376, 405
zero point energy, 366, 548, 560




